MCUXpresso SDK USB Stack Device
Reference Manual

NXP Semiconductors

Document Number: MCUXSDKUSBDAPIRM
Rev. 0
Oct 2025

Contents

Chapter Overview

1.1

1.2

1.3

Introduction 1
USB Device Callback Work Flow 5
USB Device Class-Specific Request Work Flow 7

Chapter Definitions and structures

2.1

2.2
2.2.1

23
2.3.1

24
24.1
242

OVerVIEW s 11
Data Structure Documentation 12
struct usb_Version_t e e e e e e e 12
Typedef Documentation 13
usb_device_handle 13
Enumeration Type Documentation 13
usb_status t e e e 13
usb_controller_index_t. e 13

Chapter USB Class driver

3.1

3.2
3.2.1
322
323
324
3.25
3.2.6
3.2.7
3.2.8
329
3.2.10
3.2.11
3.2.12

Overview e 15
Data Structure Documentation 17
struct usb_device_endpoint_struct_t Lo Lo 17
struct usb_device_endpoint_list_t 17
struct usb_device_interface_struct_t 17
struct usb_device_interfaces_struct_t e 18
struct usb_device interface list t 18
struct usb_device_class_struct_t e 18
struct usb_device_class_config_struct t oL oL 19
struct usb_device_class_config_list_struct_t 19
struct usb_device_control_request_struct_t L. 19
struct usb_device_get_descriptor_common_struct_t 20
struct usb_device_get_device_descriptor_struct_t.o L. 20

struct usb_device_get_device_qualifier_descriptor_struct_t 21

Section
Number

3.2.13
3.2.14
3.2.15
3.2.16
3.2.17
3.2.18
3.2.19
3.2.20
3.2.21

3.3
3.3.1
332

34

34.1
34.2
343
344
345
34.6

3.5

3.5.1
352
353

3.6

3.6.1
3.6.2
3.6.3
3.6.4

3.7

3.7.1
3.7.2
3.7.3
3.74

3.8

3.8.1
3.8.2
3.8.3
3.84
3.8.5

Contents

Page

Title Number

struct usb_device_get_configuration_descriptor_struct_t 21
struct usb_device_get_bos_descriptor_struct_t 21
struct usb_device_get_string_descriptor_struct_t 22
struct usb_device_get_hid_descriptor_struct_t 22
struct usb_device_get_hid_report_descriptor_struct_t 23
struct usb_device_get_hid_physical_descriptor_struct_t 23
union usb_device_get_descriptor_common_union_t 24
struct usb_device_class_map_t L Lo o 25
struct usb_device_common_class_struct_t 25
Enumeration Type Documentation 26
usb_device_class_type_t L 26
usb_device_class_event_t e 26
Function Documentation 26
USB_DeviceClassInit o e 26
USB_DeviceClassDeinit i 26
USB_DeviceClassGetSpeed i 27
USB_DeviceClassEvent e 27
USB_DeviceClassCallback 28
USB_DeviceClassGetDeviceHandle 28
USBMSC Classdriver i 30
OVEIVIEW . . . v o o e e e e e e e e e e e e e 30
USBMSCdriver e e e e e 31
USB MSC UFILdriver e e e e e e e 39
USB CDC Classdriver i . 47
OVEIVIEW 47
USB CDC ACM Class driver v v it i 48
USB CDCECM Classdriver v v ittt 62
USB CDCRNDIS driver e i it e e 75
USBDFU Classdriver i . 96
OVEIVIEW . . . v o o e e e e e e e e e e e e e e 96
Data Structure Documentation 97
Enumeration Type Documentation 97
Function Documentation 97
USB AUDIO Classdriver it . 100
OVEIVIEW o o e e e e e e e e e e e e 100
Data Structure Documentation e 105
Macro Definition Documentation o 106
Enumeration Type Documentation 106
Function Documentation 106

Section
Number

3.9

3.9.1
39.2
393
394

3.10

3.10.1
3.10.2
3.10.3
3.10.4
3.10.5

3.11

3.11.1
3.11.2
3.11.3
3.11.4
3.11.5

3.12

3.12.1
3.12.2
3.12.3
3.12.4

3.13

3.13.1
3.13.2
3.13.3
3.134

3.14

3.14.1
3.14.2
3.14.3
3.14.4

4.1

Contents

Page
Title Number
USB MTP Classdriver i . 111
OVEIVIEW o o e e e e e e e e e e 111
Data Structure Documentation 123
Enumeration Type Documentation 127
Function Documentation 128
USB CCID Classdriver it 132
OVEIVIEW 132
Data Structure Documentation 136
Macro Definition Documentation 159
Enumeration Type Documentation 159
Function Documentation 160
USBHID Classdriver i i 164
OVEIVIEW 164
Data Structure Documentation 165
Macro Definition Documentation, 167
Enumeration Type Documentation 167
Function Documentation 167
USB PHDC Classdriver. i . 172
OVEIVIEW 172
Data Structure Documentation 173
Enumeration Type Documentation 174
Function Documentation e 174
USB PRINTER Classdriver 178
OVEIVIEW . . . v o o e e e e e e e e e e e e e 178
Data Structure Documentation 179
Enumeration Type Documentation 180
Function Documentation 180
USB VIDEO Classdriver i . 184
OVEIVIEW . . . v o o e e e e e e e e e e e e e 184
Data Structure Documentation 196
Enumeration Type Documentation 203
Function Documentation 204
Chapter USB Device driver
Overview e 207
Data Structure Documentation 210
struct usb_device_endpoint_callback_message_struct_t 210
struct usb_device_endpoint_callback_struct_t, 210

struct usb_device_endpoint_init_struct_t 211

Contents

Section Page
Number Title Number
4.2.4 struct usb_device_endpoint_status_struct_to 211
4.3 Macro Definition Documentation 211
4.3.1 USB_SETUP_PACKET SIZE 211
4.4 Typedef Documentation 211
4.4.1 usb_device_endpoint_callback_t L. 211
4.4.2 usb_device callback t 212
4.5 Enumeration Type Documentation 212
4.5.1 usb_device_status_t e e e e e e 212
452 usb_device_state t e e, 213
4.5.3 usb_device_endpoint_status_t Lo oo 213
454 usb_device_event_t e e e 213
4.6 Function Documentation 214
4.6.1 USB_Devicelnit o e 214
4.6.2 USB _DeviceRun e 214
4.6.3 USB_DeviceStop e 215
4.6.4 USB_DeviceDeinit e e e e 215
4.6.5 USB_DeviceSendRequest 216
4.6.6 USB_DeviceRecvRequest 217
4.6.7 USB_DeviceCancel e 218
4.6.8 USB_DevicelnitEndpoint 219
4.6.9 USB_DeviceDeinitEndpoint oL oo 219
4.6.10 USB_DeviceStallEndpoint Lo 220
4.6.11 USB_DeviceUnstallEndpoint 221
4.6.12 USB_DeviceGetStatus o v v v i e e e e e e 222
4.6.13 USB_DeviceSetStatus o o e e e 223
4.6.14 USB_DeviceKhcilsrFunction 223
4.6.15 USB_DeviceEhcilsrFunctiono 223
4.6.16 USB_DeviceLpclp3511IstFunction 224
4.6.17 USB_DeviceGetVersion v v v v v i i e e e e e 224
4.6.18 USB_DeviceUpdateHwTick 224
4.7 USB Device Controller driver 225
4.7.1 OVEIVIEW 225
4.7.2 Data Structure Documentation 227
4.7.3 Enumeration Type Documentation 228
474 Function Documentation e 229
4.7.5 USB Device Controller KHCI driver 230
4.7.6 USB Device Controller EHCI driver 236
4.7.7 USB Device Controller LPC IP3511 driver 242
4.8 USB Device Spec Chapter 9driver 248

4.8.1 OVEIVIEW . . . o o o e e e e e e e e e 248

Contents

Section

Number Title

4.8.2 Enumeration Type Documentation
4.8.3 Function Documentation
4.9 USB Device Configuration
4.9.1 OVEIVIEW . . . v v v o e e e e e e e e e e e
492 Macro Definition Documentation

Chapter USB OS Adapter

Chapter 1
Overview
1.1 Introduction

The USB device stack is composed of the USB controller driver only, which consists of the common
controller driver and the controller (like: xHCI in Kinetis) driver. The device class driver and the USB
framework to handle the standard enumeration and request defined by USB specification 2.0 are moved to
the application layer. These two parts are example-specific to reduce the footprint of the examples.

Note
The xHCI represents either EHCI or KHCI, not the XHCI for USB 3.0.

In the USB Device stack, there are two different USB applications. One is the lite version and the other is
similar to the examples in the previous USB stack.

The whole architecture and components of USB stack are shown below:

Introduction

N W N NN W

Application BM
Lite

Application BM

Application
FreeRTOS

USB SC""‘S.? USB Class USB Class
Ch9 gl Ch9 Driver Ch9 Driver
code _ _
@ ____________________________________ d
Common P .]
Cuntrnller & >
Driver

For the lite version application, the code size is smaller than the non-lite version because the lite’s class
driver/ch9 implementation is example-specific, while the non-lite’s class driver/ch9 implementation is a
generic implementation. However, an obvious drawback of the new architecture is that customers need to
use the controller driver API to implement the standard enumeration process, the class-specific process,
and the customer-specific functionality.

The device stack initialization sequence for the lite version application is as follows:

; : Controller
Driver Driver Driver
I________ﬁ\ii____:ti:____:::__' G T R e VS,
<L J
FS HS Other
Controller || Controller | Controller

KHCI

£

EHCI

Figure 1.1.1: USB device stack architecture

Introduction

1. Initialize the Pin Mux, USB clock, and so on. If the SoC has a USB KHCI-dedicated RAM, the
RAM memory needs to be clear after the KHCI clock is enabled. When the demo uses USB EHCI
IP, the USB KHCI dedicated-RAM can’t be used and the memory can’t be accessed.

2. Initialize the USB device stack by calling the API USB_Devicelnit.

3. When the device task is enabled, create the USB device task by using the device handle, returned
from USB_Devicelnit, as the task parameter when the environment is an RTOS.

4. Install the USB ISR.

5. Enable the USB interrupt and the interrupt priority.

6. Start the USB device by calling the USB_DeviceRun.

(Start >
L
Initialize the Pin MUX, USE clock, etc

1

Set application to default state

| Initialize USB device stack by calling
i API USB_Devicelnit
1

b 4
Create device task if the task is
enabled

1

Install the USB ISR

A
Set the USB interrupt priority and

enable the interrupt
I
Y

Enable the USE device functionality

Figure 1.1.2: USB device initialization for lite version

To assist customers with less concerns about the footprint and focus on ease of use of the USB stack, a
generic usb_ch9 implementation is provided and the specified class driver, such as HID class driver, CDC
class driver, and so on. This implementation is more generic, it can be reused in different examples and
the APIs are easier to use. However, some callback functions need to be implemented and the code size is
larger.

Introduction

The device stack initialization sequence for non-lite version application is as follows:

1. Initialize the Pin Mux, USB clock, and so on. If the SOC has the USB KHCI-dedicated RAM, the
RAM memory needs to be clear after the KHCI clock is enabled. When the demo uses USB EHCI
IP, the USB KHCI-dedicated RAM can’t be used and the memory can’t be accessed.

Note

The USB_GLOBAL, USB_BDT, and USB_RAM_ADDRESS_ALIGNMENT(n) are only
used for USB device stack. The USB device global variables are put into the section m_-
usb_global or m_usb_bdt by using the MACRO USB_GLOBAL and USB_BDT. In this way,
the USB device global variables can be linked into USB dedicated RAM by changing the
linker file. This feature can only be enabled when the USB dedicated RAM is not less than 2
K Bytes.

2. Initialize the USB device stack by calling the API USB_DeviceClasslnit. Initialize each application.
Get each class handle from the usb_device_class_config_struct_t::classHandle.

4. When the device task is enabled, create the USB device task by using the device handle, returned
from USB_DeviceClasslnit, as the task parameter when the environment is RTOS.

Install the USB ISR.

Enable the USB interrupt and the interrupt priority.

7. Start the USB device by calling the USB_DeviceRun.

»

AN

USB Device Callback Work Flow

A e,
i Start
L

Initialize the Pin MUX, USB clock, etc

'

Set application to default state

1
Initialize USE device stack by calling
APl USE DeviceClassinit

1
Save each class handle, and initialize
each application.
|

Y
Create device task if the task is

enabled
3
Install the USE ISR

Set the USE interrupt priority and
enable the interrupt

L
- Enable the USB device functionality

Figure 1.1.3: USB device initialization for non-lite version

To support different RTOSes with the same code base, the OSA is used inside the USB stack to wrap the
differences between RTOSes.

Note

The OSA should not be used in the USB application. As a result, from the USB application’s
viewpoint, the OSA is invisible.

1.2 USB Device Callback Work Flow
The device callback is registered when the USB_Devicelnit function is called.

The following events should be processed in this callback function:

* kUsbDeviceEventBusReset
When the application receives this event, the device has received a BUS RESET signal. In the event,
the control pipe should be initialized. See the work flow. The parameter eventParam is not used.

* kUsbDeviceEventSetConfiguration

|
USB Device Callback Work Flow

When the application receives this event, the host has sent a set configuration request. The configu-
ration value can be received from the parameter eventParam. In the event, the application configu-
ration can be set. Initialize each interface in the current configuration by using zero as an alternate
setting.

* kUsbDeviceEventSetInterface
When the application receives this event, the host sent a set alternate setting request of an interface.
The interface and alternate setting value can be received from the parameter eventParam. The event-
Param points to a uint16_t variable. The high 8-bit is interface value and the low 8-bit is alternate
setting. In the event, the application changes the alternate setting of this interface if the new alternate
setting is not equal to the current setting.
Normally, change the steps as follows:
1. Cancel all transfers of the current alternate setting in this interface.
2. De-initialize all pipes of the current alternate setting in this interface.
3. Initialize all pipes of the new alternate setting in this interface.
4. Prime the transfers of the new setting.
For example,

uintle6_t«* templ6 = (uintlé6_t+)eventParam;
uint8_t interface = (uint8_t) ((»templ6&0xFF00)>>0x08) ;
currentAlternateSetting[interface] = (uint8_t) (xtempl6&0x00FF) ;

The device callback event work flow:

USB Device Class-Specific Request Work Flow

APP Common driver
Bus reset
B
- kUsbDeviceEventBusReset
Initialize control pipe
PIp -
Control pipe callback
Eontrol pipe callback(set configure)
kUsbDeviceEventSetConfiguration
Initialize default pipe
PIP -
usb_device_recv
Control pipe callback(set interface)
-« kUsbDeviceEventSetinterface
Cancel transfer
-
De-initialize old pipe
PIP -
Initialize new pipe
PIP .
usb_device_recv
-

Figure 1.2.1: USB device callback working flow

1.3 USB Device Class-Specific Request Work Flow

The class sepcific request can be classified into two types according to whether these is the data stage in
a setup transfer. The section describes class specific request with data stage only. For the class-specific
request without data stage, the case is quite simple, we don’t describe here. Depend on the data direction,
there are two cases, host wants to send data to device and host wants to get data from device.

.-
USB Device Class-Specific Request Work Flow

USB Device Class-Specific Request with Data Sent from Host

BUS DCI USB ch9 APP
SEI)ETUP o
ata -
< ACK control_callback(class data c’:Ert request)
Data OUT - Get class setup out buffer
NAK Eo. i
B Prime control out pipe kUSB_DeviceHidEventRequest
Data OUT - ReportBuffer
|
Data -
ACK
e

control_callback(class data yrt)

usb_device_class_req Lﬁst

Send ZLT in control in pipe Eg.
Data IN ¢ kUSB_DeviceHidEventSetReport

ACK

Prime next setup

Figure 1.3.1: USB Device Class-Specific Request with Data Sent from Host

. _J
USB Device Class-Specific Request Work Flow

USB Device Class-Specific Request with Data Sent to Host

BUS DCI USB ch9 APP
SETUP >
Data
L
- ACK control_callback(class data£ request)
Data IN usb_device_class_request
L)
NAK Fill buffer and length handle when there
e are some data need to send to host.

Prime control IN pipe |E.g. kUSB_DeviceHidEventGetReport

Prime ZLT transfer

Data IN >
< Data
ACK -
DE’E?KOUT -
g Prime next setup

Figure 1.3.2: USB Device Class-Specific Request with Data Sent to Host

.-
USB Device Class-Specific Request Work Flow

Chapter 2
Definitions and structures

2.1 Overview

This lists the common definitions and structures for the USB stack.

Data Structures

e struct usb_version_t
USB stack version fields. More...

Macros
* #define USB_STACK_VERSION_MAJOR (0x01UL)

Defines USB stack major version.

#define USB_STACK_VERSION_MINOR (0xO0UL)

Defines USB stack minor version.

#define USB_STACK_VERSION_BUGFIX (0x00U)

Defines USB stack bugfix version.
#define USB_MAKE_VERSION(major, minor, bugfix) (((major) << 16) | ((minor) << 8) | (bug-

fix))

USB stack version definition.

#define USB_STACK_COMPONENT_VERSION MAKE_VERSION(USB_STACK_VERSION-
_MAIJOR, USB_STACK_VERSION_MINOR, USB_STACK_VERSION_BUGFIX)

USB stack component version definition, changed with component in yaml together.

Typedefs

* typedef void * usb_host_handle
USB host handle type define.
* typedef void * usb_device_handle

USB device handle type define.
* typedef void * usb_otg_handle

USB OTG handle type define.

Data Structure Documentation

Enumerations

e enum usb_status_t {
kStatus_ USB_Success = 0x00U,
kStatus_ USB_Error,
kStatus_USB_Busy,
kStatus_USB_InvalidHandle,
kStatus_ USB_InvalidParameter,
kStatus_USB_InvalidRequest,
kStatus_ USB_ControllerNotFound,
kStatus_USB_InvalidControllerInterface,
kStatus_USB_NotSupported,
kStatus_USB_Retry,
kStatus_ USB_TransferStall,
kStatus_ USB_ TransferFailed,
kStatus_ USB_ AllocFail,
kStatus_USB_LackSwapBulffer,
kStatus_ USB_TransferCancel,
kStatus_USB_BandwidthFail,
kStatus_ USB_MSDStatusFail ,
kStatus_USB_DataOverRun }

USB error code.
e enum usb_controller_index_t {

kUSB_ControllerKhciO = 0U,
kUSB_ControllerKhcil = 1U,
kUSB_ControllerEhci0O = 2U,
kUSB_ControllerEhcil = 3U,
kUSB_ControllerLpclIp3511Fs0 = 4U,
kUSB_ControllerLpclp3511Fs1 = 5U,
kUSB_ControllerLpcIp3511Hs0 = 6U,
kUSB_ControllerLpcIp3511Hs1 = 7U,
kUSB_ControllerOhciO = 8U,
kUSB_ControllerOhcil = 9U,
kUSB_ControllerIp3516Hs0 = 10U,
kUSB_ControllerIp3516Hs1 = 11U,
kUSB_ControllerDwc30 = 12U,
kUSB_ControllerDwc31 = 13U }

USB controller ID.

2.2 Data Structure Documentation
2.2.1 struct usb_version t

Data Fields

* uint8_t major

Enumeration Type Documentation

Major.
e uint8_t minor

Minor.
* uint8_t bugfix

Bug fix.

2.3 Typedef Documentation
2.3.1 typedef voidx usb_device_handle

For device stack it is the whole device handle; for host stack it is the attached device instance handle

2.4 Enumeration Type Documentation
2.4.1 enum usb_status_t

Enumerator

kStatus USB_Success Success.

kStatus USB_Error Failed.

kStatus_USB_Busy Busy.

kStatus_USB_InvalidHandle Invalid handle.

kStatus_USB_InvalidParameter Invalid parameter.

kStatus_USB_InvalidRequest Invalid request.

kStatus USB_ControllerNotFound Controller cannot be found.

kStatus_USB_InvalidControllerInterface Invalid controller interface.

kStatus_USB_NotSupported Configuration is not supported.

kStatus_USB_Retry Enumeration get configuration retry.

kStatus_USB_TransferStall Transfer stalled.

kStatus_USB_TransferFailed Transfer failed.

kStatus USB_AllocFail Allocation failed.

kStatus_USB_LackSwapBuffer Insufficient swap buffer for KHCI.

kStatus_USB_TransferCancel The transfer cancelled.

kStatus USB_BandwidthFail Allocate bandwidth failed.

kStatus USB_MSDStatusFail For MSD, the CSW status means fail.

kStatus_USB_DataOverRun The amount of data returned by the endpoint exceeded either the size
of the maximum data packet allowed from the endpoint or the remaining buffer size.

2.4.2 enum usb_controller index_t

Enumerator

kUSB_ControllerKhci0 KHCI OU.
kUSB_ControllerKhcil KHCI 1U, Currently, there are no platforms which have two KHCI IPs, this
1s reserved to be used in the future.

Enumeration Type Documentation

kUSB_ControllerEhci0 EHCI OU.

kUSB_ControllerEhcil EHCI 1U.

kUSB_ControllerLpcIp3511Fs0 1LPC USB IP3511 FS controller 0.

kUSB_ControllerLpcIp3511Fs1 1LPC USB IP3511 FS controller 1, there are no platforms which
have two IP3511 IPs, this is reserved to be used in the future.

kUSB_ControllerLpcIp3511Hs0 1.PC USB IP3511 HS controller 0.

kUSB_ControllerLpcIp3511Hs1 1.PC USB IP3511 HS controller 1, there are no platforms which
have two IP3511 IPs, this is reserved to be used in the future.

kUSB_ControllerOhci0 OHCI OU.

kUSB_ControllerOhcil OHCI 1U, Currently, there are no platforms which have two OHCI IPs, this
is reserved to be used in the future.

kUSB_ControllerIp3516Hs0 1P3516HS OU.

kUSB_ControllerIp3516Hs1 1P3516HS 1U, Currently, there are no platforms which have two I-
P3516HS IPs, this is reserved to be used in the future.

kUSB_ControllerDwc30 DWC3 OU.

kUSB_ControllerDwc31 DWC3 1U Currently, there are no platforms which have two Dwec IPs, this
is reserved to be used in the future.

Chapter 3
USB Class driver

3.1 Overview
Modules

USB AUDIO Class driver
USB CCID Class driver
USB CDC Class driver
USB DFU Class driver
USB HID Class driver

USB MSC Class driver
USB MTP Class driver
USB PHDC Class driver
USB PRINTER Class driver
USB VIDEO Class driver

Data Structures

* struct usb_device_endpoint_struct_t
Obtains the endpoint data structure. More...
* struct usb_device_endpoint_list_t
Obtains the endpoint group. More...
* struct usb_device_interface_struct_t
Obtains the interface list data structure. More...
e struct usb_device_interfaces_struct_t
Obtains the interface data structure. More...
e struct usb_device_interface_list_t
Obtains the interface group. More...
e struct usb_device_class_struct_t
Obtains the class data structure. More...
* struct usb_device_class_config_struct_t
Obtains the device class information structure. More...
* struct usb_device_class_config_list_struct_t
Obtains the device class configuration structure. More...
* struct usb_device_control_request_struct_t
Obtains the control request structure. More...
e struct usb_device_get_descriptor_common_struct_t
Obtains the control get descriptor request common structure. More...
* struct usb_device_get_device_descriptor_struct_t
Obtains the control get device descriptor request structure. More...
* struct usb_device_get_device_qualifier_descriptor_struct_t
Obtains the control get device qualifier descriptor request structure. More...
* struct usb_device_get_configuration_descriptor_struct_t
Obtains the control get configuration descriptor request structure. More...
* struct usb_device_get_bos_descriptor_struct_t
Obtains the control get bos descriptor request structure. More...
* struct usb_device_get_string_descriptor_struct_t

Overview

Obtains the control get string descriptor request structure. More...
struct usb_device_get_hid_descriptor_struct_t

Obtains the control get HID descriptor request structure. More...
* struct usb_device_get_hid_report_descriptor_struct_t

Obtains the control get HID report descriptor request structure. More...
e struct usb_device_get_hid_physical_descriptor_struct_t

Obtains the control get HID physical descriptor request structure. More...
* union usb_device_get_descriptor_common_union_t

Obtains the control get descriptor request common union. More...
* struct usb_device_class_map_t

Define class driver interface structure. More...
¢ struct usb_device_common_class_struct_t

Structure holding common class state information. More...

Typedefs

* typedef void * class_handle_t

Macro to define class handle.
* typedef usb_status_t(x usb_device_class_init_call_t)(uint8_t controllerld, usb_device_class_-

config_struct_t xclassConfig, class_handle_t xclassHandle)

Define function type for class device instance initialization.
* typedef usb_status_t(x usb_device_class_deinit_call_t)(class_handle_t handle)

Define function type for class device instance deinitialization, internal.
* typedef usb_status_t(x usb_device_class_event_callback_t)(void xclassHandle, uint32_t event,

void xparam)
Define function type for class device instance Event change.

Enumerations

* enum usb_device_class_type_t

Available class types.
e enum usb_device class_event_t

Available common class events.

Functions

* usb_status_t USB_DeviceClassInit (uint8_t controllerld, usb_device_class_config_list_struct_t
xconfigList, usb_device_handle xhandle)

Initializes the common class and the supported classes.
e usb_status_t USB_DeviceClassDeinit (uint8_t controllerld)

Deinitializes the common class and the supported classes.
* usb_status_t USB_DeviceClassGetSpeed (uint8_t controllerId, uint8_t xspeed)

Gets the USB bus speed.
e usb_status_t USB_DeviceClassEvent (usb_device_handle handle, usb_device_class_event_t event,
void xparam)

Handles the event passed to the class drivers.
* usb_status_t USB_DeviceClassCallback (usb_device_handle handle, uint32_t event, void *param)

Handles the common class callback.
e usb_status_t USB_DeviceClassGetDeviceHandle (uint8_t controllerld, usb_device handle

xhandle)

-
Data Structure Documentation

Gets the device handle according to the controller ID.

3.2 Data Structure Documentation
3.2.1 struct usb_device_endpoint_struct_t

Define the endpoint data structure.

Data Fields

* uint8_t endpointAddress

Endpoint address.
* uint8_t transferType

Endpoint transfer type.
e uintl6_t maxPacketSize

Endpoint maximum packet size.
* uint8_t interval

Endpoint interval.

3.2.2 struct usb_device_endpoint_list_t
Structure representing endpoints and the number of endpoints that the user wants.

Data Fields

¢ uint8_t count

How many endpoints in current interface.
 usb_device_endpoint_struct_t * endpoint

Endpoint structure list.

3.2.3 struct usb_device_interface_struct _t

Structure representing an interface.

Data Fields

* uint8_t alternateSetting
Alternate setting number.

* usb_device_endpoint_list_t endpointList
Endpoints of the interface.

* void * classSpecific

Class specific structure handle.

|
Data Structure Documentation

3.2.4 struct usb_device interfaces_struct_t

Structure representing interface.

Data Fields

e uint8_t classCode

Class code of the interface.
* uint8_t subclassCode

Subclass code of the interface.
* uint8_t protocolCode

Protocol code of the interface.
e uint8_t interfaceNumber

Interface number.
¢ usb_device_interface_struct_t * interface

Interface structure list.
e uint8_t count

Number of interfaces in the current interface.

3.2.5 struct usb_device_interface list_t

Structure representing how many interfaces in one class type.

Data Fields

e uint8_t count

Number of interfaces of the class.
e usb_device_interfaces_struct_t * interfaces

All interfaces.

3.2.6 struct usb_device class_struct t

Structure representing how many configurations in one class type.

Data Fields

* usb_device_interface_list_t * interfaceLlist
Interfaces of the class.

* usb_device_class_type_t type
Class type.

* uint8_t configurations
Number of configurations of the class.

-
Data Structure Documentation

3.2.7 struct usb_device_class_config_struct_t

Structure representing the device class information. This structure only can be stored in RAM space.

Data Fields

» usb_device_class_callback_t classCallback

Class callback function to handle the device status-related event for the specified type of class.
e class_handle_t classHandle

The class handle of the class, filled by the common driver.
* usb_device_class_struct_t * classInfomation

Detailed information of the class.
3.2.7.0.0.1 Field Documentation

3.2.7.0.0.1.1 class_handle_t usb_device_class_config_struct_t::classHandle

3.2.8 struct usb_device_class_config_list_struct_t

Structure representing the device class configuration information.

Data Fields

* usb_device_class_config_struct_t * config

Array of class configuration structures.
* usb_device_callback_t deviceCallback

Device callback function.
e uint8_t count

Number of class supported.

3.2.9 struct usb_device_control_request_struct_t

This structure is used to pass the control request information. The structure is used in following two cases.

1. Case one, the host wants to send data to the device in the control data stage:
a. If a setup packet is received, the structure is used to pass the setup packet data and wants to get the
buffer to receive data sent from the host. The field isSetup is 1. The length is the requested buffer
length. The buffer is filled by the class or application by using the valid buffer address. The setup
is the setup packet address. b. If the data received is sent by the host, the structure is used to pass
the data buffer address and the data length sent by the host. In this way, the field isSetup is 0. The
buffer is the address of the data sent from the host. The length is the received data length. The setup
is the setup packet address.

2. Case two, the host wants to get data from the device in control data stage:

|
Data Structure Documentation

If the setup packet is received, the structure is used to pass the setup packet data and wants to get the
data buffer address to send data to the host. The field isSetup is 1. The length is the requested data
length. The buffer is filled by the class or application by using the valid buffer address. The setup is
the setup packet address.

Data Fields

* usb_setup_struct_t * setup

The pointer of the setup packet data.
* uint8_t * buffer

Pass the buffer address.
e uint32_t length

Pass the buffer length or requested length.
* uint8_t isSetup

Indicates whether a setup packet is received.
3.2.9.0.0.2 Field Documentation
3.2.9.0.0.2.1 usb_setup_struct_tx usb_device_control_request_struct_t::setup
3.2.9.0.0.2.2 uint8_tx usb_device_control_request_struct_t::buffer
3.2.9.0.0.2.3 uint32_t usb_device_control_request_struct_t::length

3.2.9.0.0.2.4 uint8_t usb_device_control_request_struct_t::isSetup

3.2.10 struct usb_device_get_descriptor_common_struct_t

Data Fields

e uint8_t * buffer
Pass the buffer address.

e uint32_t length
Pass the buffer length.
3.2.10.0.0.3 Field Documentation
3.2.10.0.0.3.1 uint8_tx usb_device_get_descriptor_common_struct_t::buffer

3.2.10.0.0.3.2 uint32_t usb_device_get_descriptor_common_struct_t::length

3.2.11 struct usb_device_get_device_descriptor_struct_t

Data Fields

e uint8_t * buffer
Pass the buffer address.

-
Data Structure Documentation

* uint32_t length
Pass the buffer length.

3.2.11.0.0.4 Field Documentation
3.2.11.0.0.4.1 uint8_tx usb_device_get_device_descriptor_struct_t::buffer

3.2.11.0.0.4.2 uint32_t usb_device_get_device_descriptor_struct_t::length

3.2.12 struct usb_device_get_device_qualifier_descriptor_struct_t

Data Fields

e uint8_t * buffer
Pass the buffer address.

* uint32_t length
Pass the buffer length.
3.2.12.0.0.5 Field Documentation
3.2.12.0.0.5.1 uint8_tx usb_device_get_device_ qualifier_descriptor_struct_t::buffer

3.2.12.0.0.5.2 uint32_t usb_device_get_device_qualifier_descriptor_struct_t::length

3.2.13 struct usb_device_get_configuration_descriptor_struct_t

Data Fields

e uint8_t * buffer

Pass the buffer address.
* uint32_t length

Pass the buffer length.
* uint8_t configuration

The configuration number.
3.2.13.0.0.6 Field Documentation
3.2.13.0.0.6.1 uint8_tx usb_device_get_configuration_descriptor_struct_t::buffer
3.2.13.0.0.6.2 uint32_t usb_device_get_configuration_descriptor_struct_t::length

3.2.13.0.0.6.3 uint8_t usb_device_get_configuration_descriptor_struct_t::configuration

3.2.14 struct usb_device_get_bos_descriptor_struct_t

Data Fields

e uint8_t * buffer

|
Data Structure Documentation

Pass the buffer address.
e uint32_t length
Pass the buffer length.
3.2.14.0.0.7 Field Documentation
3.2.14.0.0.7.1 uint8_tx usb_device_get_bos_descriptor_struct_t::buffer

3.2.14.0.0.7.2 uint32_t usb_device_get_bos_descriptor_struct_t::length

3.2.15 struct usb_device_get_string_descriptor_struct_t

Data Fields

e uint8_t * buffer

Pass the buffer address.
e uint32_t length

Pass the buffer length.
* uintl6_t languageld

Language ID.
* uint8_t stringlndex

String index.
3.2.15.0.0.8 Field Documentation
3.2.15.0.0.8.1 uint8_tx usb_device_get_string_descriptor_struct_t::buffer
3.2.15.0.0.8.2 uint32_t usb_device_get_string_descriptor_struct_t::length
3.2.15.0.0.8.3 uint16_t usb_device_get_string_descriptor_struct_t::languageld
3.2.15.0.0.8.4 uint8_t usb_device_get_string_descriptor_struct_t::stringindex

3.2.16 struct usb_device_get_hid_descriptor_struct_t

Data Fields

e uint8_t * buffer

Pass the buffer address.
e uint32_t length

Pass the buffer length.
¢ uint8_t interfaceNumber

The interface number.

-
Data Structure Documentation

3.2.16.0.0.9 Field Documentation
3.2.16.0.0.9.1 uint8_tx usb_device_get_hid_descriptor_struct_t::buffer
3.2.16.0.0.9.2 uint32_t usb_device_get_hid_descriptor_struct_t::length

3.2.16.0.0.9.3 uint8_t usb_device_get_hid_descriptor_struct_t::interfaceNumber

3.2.17 struct usb_device_get_hid_report_descriptor_struct_t

Data Fields

e uint8_t * buffer

Pass the buffer address.
e uint32_t length

Pass the buffer length.
e uint8_t interfaceNumber

The interface number:
3.2.17.0.0.10 Field Documentation
3.2.17.0.0.10.1 uint8_tx usb_device_get_hid_report_descriptor_struct_t::buffer
3.2.17.0.0.10.2 uint32_t usb_device_get_hid_report_descriptor_struct_t::length

3.2.17.0.0.10.3 uint8_t usb_device_get_hid_report_descriptor_struct_t::interfaceNumber

3.2.18 struct usb_device_get _hid_physical_descriptor_struct_t

Data Fields

¢ uint8_t * buffer

Pass the buffer address.
e uint32_t length

Pass the buffer length.
* uint8_t index

Physical index.
e uint8_t interfaceNumber

The interface number.

Data Structure Documentation

3.2.18.0.0.11 Field Documentation
3.2.18.0.0.11.1 uint8_tx usb_device_get_hid_physical_descriptor_struct_t::buffer
3.2.18.0.0.11.2 uint32_t usb_device_get_hid_physical_descriptor_struct_t::length

3.2.18.0.0.11.3 uint8_t usb_device_get_hid_physical_descriptor_struct_t::interfaceNumber

3.2.19 union usb_device get_descriptor_common_union_t

Data Fields

* usb_device_get_descriptor_common_struct_t commonDescriptor

Common structure.
* usb_device_get_device_descriptor_struct_t deviceDescriptor

The structure to get device descriptor.
* usb_device_get_device_qualifier_descriptor_struct_t deviceQualifierDescriptor

The structure to get device qualifier descriptor.
* usb_device_get_configuration_descriptor_struct_t configurationDescriptor

The structure to get configuration descriptor.
* usb_device_get_string_descriptor_struct_t stringDescriptor

The structure to get string descriptor.
* usb_device_get_hid_descriptor_struct_t hidDescriptor

The structure to get HID descriptor.
* usb_device_get_hid_report_descriptor_struct_t hidReportDescriptor

The structure to get HID report descriptor.
* usb_device_get_hid_physical_descriptor_struct_t hidPhysicalDescriptor

The structure to get HID physical descriptor.

Data Structure Documentation

3.2.19.0.0.12 Field Documentation

3.2.19.0.0.12.1 usb_device_get_descriptor_common_struct_t usb_device_get_descriptor_-
common_union_t::commonDescriptor

3.2.19.0.0.12.2 usb_device_get_device_descriptor_struct_t usb_device_get_descriptor_common_-
union_t::deviceDescriptor

3.2.19.0.0.12.3 usb_device_get_device_qualifier_descriptor_struct_t usb_device_get_descriptor_-
common_union_t::deviceQualifierDescriptor

3.2.19.0.0.12.4 usb_device_get_configuration_descriptor_struct_t usb_device_get_descriptor_-
common_union_t::configurationDescriptor

3.2.19.0.0.12.5 usb_device_get_string_descriptor_struct_t usb_device_get_descriptor_common_-
union_t::stringDescriptor

3.2.19.0.0.12.6 usb_device_get_hid_descriptor_struct_t usb_device_get_descriptor_common_-
union_t::hidDescriptor

3.2.19.0.0.12.7 usb_device_get_hid_report_descriptor_struct_t usb_device_get_descriptor_-
common_union_t::hidReportDescriptor

3.2.19.0.0.12.8 usb_device_get_hid_physical_descriptor_struct_t usb_device_get_descriptor_-
common_union_t::hidPhysicalDescriptor

3.2.20 struct usb_device_class_map_t

Data Fields

e usb_device class_init_call_t classInit

Class driver initialization- entry of the class driver.
e usb_device_class_deinit_call_t classDeinit

Class driver de-initialization.
¢ usb_device_class_event_callback_t classEventCallback

Class driver event callback.
* usb_device_class_type_t type
Class type.

3.2.21 struct usb_device_common_class_struct t

Data Fields

¢ usb_device handle handle

USB device handle.
* usb_device_class_config_list_struct_t * configlList

USB device configure list.

Function Documentation

* uint8_t * setupBuffer

Setup packet data buffer.
e uintl6_t standardTranscationBuffer

This variable is used in: get status request get configuration request get interface request set interface

request get sync frame request.
¢ uint8_t controllerld

Controller ID.

3.3 Enumeration Type Documentation
3.3.1 enum usb_device_class_type_t

3.3.2 enum usb_device_class_event_t

3.4 Function Documentation

3.4.1 usb_status_t USB_DeviceClasslnit (uint8_t controllerid, usb_device-
_class_config_list_struct_t x configList, usb_device_handle x handle

This function is used to initialize the common class and the supported classes.
Parameters
in controllerld | The controller ID of the USB IP. See the enumeration usb_controller_-
index_t.
in configList | The class configurations. The pointer must point to the global variable.
See the structure usb_device_class_config_list_struct_t.
out handle | A parameter used to return pointer of the device handle to the caller.
The value of the parameter is a pointer to the device handle. This design
is used to make a simple device align with the composite device. For
the composite device, there are many kinds of class handles. However,
there is only one device handle. Therefore, the handle points to a device
instead of a class. The class handle can be received from the usb_device-
_class_config_struct_t::classHandle after the function successfully.
Returns

A USB error code or kStatus_ USB_ Success.

3.4.2 usb_status_t USB_DeviceClassDeinit (uint8_t controllerid)

This function is used to deinitialize the common class and the supported classes.

Function Documentation

Parameters
in controllerld | The controller ID of the USB IP. See the enumeration usb_controller_-
index_t.
Returns

A USB error code or kStatus_ USB_ Success.

3.4.3 usb_status_t USB_DeviceClassGetSpeed (uint8_t controllerid, uint8_t x
speed)

This function is used to get the USB bus speed.

Parameters
in controllerld | The controller ID of the USB IP. See the enumeration usb_controller_-
index_t.
out speed | Itis an OUT parameter, which returns the current speed of the controller.
Returns

A USB error code or kStatus_ USB_ Success.

3.4.4 usb_status_t USB_DeviceClassEvent (usb_device_handle handle,
usb_device_class_event_t event, void x param)

This function handles the event passed to the class drivers.

Parameters
in handle | The device handle received from the USB_Devicelnit.
in event | The event codes. See the enumeration usb_device class_event_t.
in, out param | The parameter type is determined by the event code.
Returns

A USB error code or kStatus_ USB_ Success.

Function Documentation

Return values

kStatus_USB_Success | A valid request has been handled.

kStatus_USB_Invalid- | The device handle not be found.
Parameter

kStatus_USB_Invalid- | The request is invalid, and the control pipe is stalled by the caller.
Request

3.4.5 usb_status_t USB_DeviceClassCallback (usb_device_handle handle,
uint32_t event, void x param)

This function handles the common class callback.

Parameters
in handle | The device handle received from the USB_Devicelnit.
in event | The event codes. See the enumeration usb_device_event_t.
in, out param | The parameter type is determined by the event code.
Returns

A USB error code or kStatus_ USB_ Success.

3.4.6 usb_status_t USB_DeviceClassGetDeviceHandle (uint8_t controllerid,
usb_device_handle x handle)

This function gets the device handle according to the controller ID.

Parameters
in controllerld | The controller ID of the USB IP. See the enumeration usb_controller_-
index_t.
out handle | An out parameter used to return the pointer of the device handle to the
caller.

Function Documentation

Return values

kStatus_USB_Success | Get device handle successfully.

kStatus_USB_Invalid- | The device handle can’t be found.
Parameter

|
USB MSC Class driver

3.5 USB MSC Class driver

3.5.1 Overview

The USB mass storage device class defines the protocols for file transfers between the host and the device.
The MCUXpresso SDK USB stack provides support for MSC class driver which implements the bulk only
transport specification and the UFI command specification.

Modules

« USB MSC UFI driver
e USB MSC driver

USB MSC Class driver

3.5.2 USB MSC driver

3.5.2.1 Overview

Data Structures

struct usb_device_msc_cbw_t

Command Block Wrapper(CBW) More...
struct usb_device_msc_csw_t

Command Status Wrapper(CSW) More...
struct usb_Iba_transfer information_struct_t

Read/write information. More...
struct usb_device_logical_unit_information_struct_t

device information More...
struct usb_device_lba_information_struct_t

device information More...
struct usb_device_lba_app_struct_t

Data transfer information. More...
struct usb_device_ufi_app_struct_t

command and Data transfer information for UFI command More...
struct usb_device_msc_thirteen_case_struct_t

The thirteen possible use cases of host expectations and device intent in the absence of overriding error

conditions. More...
struct usb_device_msc_ufi_struct_t

The MSC device UFI command status structure. More...
struct usb_device_msc_struct_t

The MSC device structure. More...

Macros

#define USB_DEVICE_CONFIG_MSC_SUPPORT_DISK_LOCKING_MECHANISM (0U)

prevent media removal flag

#define USB_DEVICE_CONFIG_MSC_CLASS_CODE (0x08U)

The class code of the MSC class.
#define USB_DEVICE_MSC_BULK_ONLY_MASS_STORAGE_RESET (0xFFU)

Bulk-Only Mass Storage Reset (class-specific request)
#define USB_DEVICE_MSC_GET_MAX_LUN (0xFEU)

Get Maximum LUN (class-specific request)
#define USB_DEVICE_MSC_DCBWSIGNATURE USB_LONG_TO_BIG_ENDIAN(0x55534243-

UL)
CBW dCBWSignature.
#define USB_DEVICE_MSC_DCSWSIGNATURE USB_LONG_TO_BIG_ENDIAN(0x55534253-
UL)
CSW dCSSWSignature.
#define USB_DEVICE_MSC_CBW_DIRECTION_BIT (0x80U)

CSW bmCBWFlags bit7.
#define USB_DEVICE_MSC_CBW_LENGTH (31U)

CBW command length.
#define USB_DEVICE_MSC_CSW_LENGTH (13U)

|
USB MSC Class driver

CSW command length.
 #define USB_DEVICE_MSC_COMMAND_PASSED (0x00U)

Command Block Status Values.

e #define USB_DEVICE_MSC_INQUIRY_COMMAND (0x12U)
UFI Commands code.

Enumerations

* enum usb_device_msc_stall_type {
USB_DEVICE_MSC_STALL_IN_CBW = 1U,
USB_DEVICE_MSC_STALL_IN_DATA,
USB_DEVICE_MSC_STALL_IN_CSW }

stall flag
e enum USB_DeviceMscEvent_t {

kUSB_DeviceMscEventReadResponse,
kUSB_DeviceMscEventWriteResponse,
kUSB_DeviceMscEventWriteRequest,
kUSB_DeviceMscEventReadRequest,
kUSB_DeviceMscEventGetLbalnformation,
kUSB_DeviceMscEventFormatComplete,
kUSB_DeviceMscEventTestUnitReady,
kUSB_DeviceMscEventInquiry,
kUSB_DeviceMscEventModeSense,
kUSB_DeviceMscEventModeSelect,
kUSB_DeviceMscEventModeSelectResponse,
kUSB_DeviceMscEventRemovalRequest,
kUSB_DeviceMscEventSendDiagnostic,
kUSB_DeviceMscEventStopEjectMedia,
kUSB_DeviceMscEventRequestSense,
kUSB_DeviceMscEventReadCapacity,
kUSB_DeviceMscEventReadFormatCapacity }
Available common EVENT types in MSC class callback.

USB device MSC class APIs

* usb_status_t USB_DeviceMsclnit (uint8_t controllerld, usb_device_class_config_struct_t xconfig,
class_handle_t xhandle)

Initializes the MSC class.
e usb_status_t USB_DeviceMscDeinit (class_handle_t handle)

Deinitializes the device MSC class.

-
USB MSC Class driver

3.5.2.2 Data Structure Documentation
3.5.2.2.1 struct usb_device_msc_cbw t

Data Fields

* uint32_t signature

Byte 0-3 dCBWSignature.
* uint32_t tag

Byte 4-7 dCBWTag.
* uint32_t dataTransferLength

Byte 8-11 dCBWDataTransferLength.
* uint8_t flags

Byte 12 bmCBWFlags.
* uint8_t logicalUnitNumber

Byte 13 bCBWLUN.
* uint8_t cbLength

Byte 14 bCBWCBLength.
e uint8_t cbwcb [16]

Byte 15-30 CBWCB, CBWCB is used to store UFI command.

3.5.2.2.2 struct usb_device msc_csw t

Data Fields

* uint32_t signature

Byte 0-3 dCSWSignature.
e uint32_t tag

Byte 4-7 dCSW1ag.
e uint32_t dataResidue

Byte 8-11 dCSWDataResidue.
e uint8_t cswStatus

Byte 12 bCSWStatus.

3.5.2.2.3 struct usb_Iba_transfer_information_struct_t

Data Fields

* uint32_t startinglogicalBlockAddress

The logical block at which the read/write operation shall begin.
* uint32_t transferNumber

The number of contiguous logical blocks of data that shall be transferred.

3.5.2.2.4 struct usb_device_logical_unit_information_struct_t

Data Fields

* uint32_t totalLbaNumberSupports

|
USB MSC Class driver

Total blocks number supported.
* uint32_t lengthOfEachLba

Length of each block.
* uint32_t bulkInBufferSize

Bulk in buffer size.
e uint32_t bulkOutBufferSize

Bulk out buffer size.

3.5.2.2.5 struct usb_device Iba_information_struct_t

Data Fields

* uint32_t logicalUnitNumberSupported
Number of LUN.

3.5.2.2.6 struct usb_device_Iba_app_struct_t

Data Fields

e uint32_t offset

Offset of the block need to access.
e uint32 _t size

Size of the transferred data.
* uint8_t * buffer

Buffer address of the transferred data.

3.5.2.2.7 struct usb_device_ufi_app_struct _t

Data Fields

e uint8_t * cbwcb

current ufi command block strored in the CBW
e uint32_t size

Size of the transferred data if commmand has data flow.
uint8_t * buffer

Buffer address of the transferred data if commmand has data flow.
usb_device_request_sense_data_struct_t * requestSense

sense data for the current command
uint8_t logicalUnitNumber

Logical Unit Number.

3.5.2.2.8 struct usb_device_msc_thirteen_case_struct t

Data Fields

* uint32_t hostExpectedDatalength
The number of bytes of data that the host expects to transfer.

-
USB MSC Class driver

* uint32_t deviceExpectedDatal.ength

The number of bytes of data that the device expects to transfer.
e uint8_t * buffer

Data buffer.
e usb_Iba_transfer_information_struct_t Ibalnformation

Read/write information.
e uint8_t IbaSendRecvSelect

Whether the command is read or write command.
* uint8_t hostExpectedDirection

Host expected data direction.
e uint8_t deviceExpectedDirection

Device expected data direction.

3.5.2.2.9 struct usb_device_msc_ufi_struct_t

Data Fields

 usb_device_request_sense_data_struct_t * requestSense

Request Sense Standard Data.
¢ usb_device_msc_thirteen_case_struct_t thirteenCase

Thirteen possible cases.
* usb_device_read_capacity_struct_t * readCapacity

READ CAPACITY Data.
* usb_device_read_capacity16_data_struct_t * readCapacity 16

READ CAPACITY Data.
* usb_device_mode_parameters_header_struct_t ModeParametersHeader

Mode Parameter Header.
e uint8_t formattedDisk

xFormatted or unformatted media
* uint8_t * formatCapacityData

Capacity List.

3.5.2.2.10 struct usb_device _msc_struct t

Data Fields

¢ usb_device handle handle
The device handle.
usb_device_class_config_struct_t * configurationStruct
The configuration of the class.
usb_device_interface_struct_t * interfaceHandle
Current interface handle.
uint32_t transferRemaining
Transfer remaining data.
uint32_t currentOffset
Current address offset.
uint32_t implementingDiskDrive

Disk drive.
usb_device_msc_cbw_t * mscCbw

|
USB MSC Class driver

CBW structure.
e usb_device_msc_csw_t * mscCsw

CSW structure.
e usb_device_msc_ufi_struct_t mscUfi

UFI command information structure.
e uint8_t dataOutFlag

CBW indicating bulk out transfer, clear this flag when data transfer done.
* uint8_t datalnFlag

CBW indicating bulk in transfer, clear this flag when data transfer done.
* uint8_t inEndpointStallFlag

In endpoint stall flag.
* uint8_t outEndpointStallFlag

Out endpoint stall flag.
* uint8_t cbwValidFlag

The CBW was received after the device had sent a CSW or after a reset ,or else it is invalid.
* uint8_t performResetRecover

Device need reset command from host.
* uint8_t performResetDoneFlag

Device has perform reset command.
* uint8_t needInStallFlag

In endpoint should be stalled.
* uint8_t needOutStallFlag

Out endpoint should be stalled.
* uint8_t cbwPrimeFlag

CBW prime flag, prime means device MSC has been ready to receive CBW, the bulk out endpoint has got

the prepared buffer.
* uint8_t cswPrimeFlag

CSW prime flag, prime means device MSC has been ready to receive CSW, the bulk in endpoint has got the

prepared buffer.
e uint8_t stallStatus

Stall status.
* uint8_t logicalUnitNumber

Supported logical units number of device.
* uint8_t bulkInEndpoint

Bulk in endpoint number.
* uint8_t bulkOutEndpoint

Bulk out endpoint number.
* uint8_t alternate

Current alternate setting of the interface.
* uint8_t configuration

Current configuration.
e uint8_t interfaceNumber

The interface number of the class.
* uint8_t inEndpointCswCancelFlag

the state when calcel function happens, and need send the csw after cancel

3.5.2.2.10.1 Field Documentation

3.5.2.2.10.1.1 uint8_t usb_device_msc_struct_t::logicalUnitNumber

See bulk only specification 3.2 Get Maximum LUN (class-specific request)

-
USB MSC Class driver

3.5.2.3 Enumeration Type Documentation

3.5.2.3.1 enum usb_device_msc_stall_type

Enumerator

USB_DEVICE MSC_STALL IN_CBW Stall in CBW.
USB_DEVICE _MSC_STALL_IN_DATA Stall in data transfer.
USB_DEVICE _MSC_STALL_IN_CSW Stall in CSW.

3.5.2.3.2 enum USB_DeviceMscEvent_t

Enumerator

kUSB_DeviceMscEventReadResponse host has already read the whole data from device or device
send is cancelled etc

kUSB_DeviceMscEventWriteResponse devcie has already received the data from host or device
receive is cancelled etc.

kUSB_DeviceMscEventWriteRequest Host want to write data to device through write command,
devcie need prepare one buffer to store the data from host.

kUSB_DeviceMscEventReadRequest Host want to read data from device through read command,
device need prepare one buffer containing data pending for transfer.

kUSB_DeviceMscEventGetLbalnformation Get device information.

kUSB_DeviceMscEventFormatComplete Format complete.

kUSB_DeviceMscEventTestUnitReady Test Unit Ready command.

kUSB_DeviceMscEventInquiry Inquiry Command command.

kUSB_DeviceMscEventModeSense mode sense command

kUSB_DeviceMscEventModeSelect mode select command, prepare data buffer and buffer length to
store data for mode select

kUSB_DeviceMscEventModeSelectResponse got data of mode select command

kUSB_DeviceMscEventRemovalRequest Prevent_allow_medium_command.

kUSB_DeviceMscEventSendDiagnostic Send Diagnostic command.

kUSB_DeviceMscEventStopEjectMedia Start_stop_unit_command.

kUSB_DeviceMscEventRequestSense Request Sense command.

kUSB_DeviceMscEventReadCapacity ReadCapacity command.

kUSB_DeviceMscEventReadFormatCapacity Read Format Capacity command.

3.5.2.4 Function Documentation

3.5.2.4.1 usb_status_t USB_DeviceMsclInit (uint8_t controllerld, usb_device_class_config_struct_t
x config, class_handle_t x handle)

This function is used to initialize the MSC class.

USB MSC Class driver
Parameters
controllerld | The controller ID of the USB IP. See the enumeration usb_controller_index_t.
config | The class configuration information.
handle | A parameter used to return pointer of the MSC class handle to the caller.

Returns

A USB error code or kStatus_USB_Success.

3.5.2.4.2 usb_status_t USB_DeviceMscDeinit (class_handle_t handle)

The function deinitializes the device MSC class.

Parameters

handle

The MSC class handle received from usb_device_class_config_struct_t::classHandle.

Returns

A USB error code or kStatus_USB_Success.

-
USB MSC Class driver

3.5.3 USB MSC UFI driver

3.5.3.1 Overview

Data Structures

* struct usb_device_inquiry_command_struct_t

UFI inquiry command structure. More...
* struct usb_device_request_sense_command_struct_t

UFI request sense command structure. More...
* struct usb_device_read_format_capacities_command_struct_t

UFI read format capacities command structure. More...
* struct usb_device_read_capacities_command_struct_t

UFI read capacities command structure. More...
e struct usb_device_read_write_10_command_struct_t

UFI read write 10 structure. More...
* struct usb_device_test_unit_ready_struct_t

UF1I Test Unit Ready structure. More...
* struct usb_device_inquiry_data_fromat_struct_t

UF1I inquiry data format structure. More...
* struct usb_device_request_sense_data_struct_t

UFI request sense data structure. More...
* struct usb_device_read_capacity_struct_t

UFI read capacity data structure. More...
* struct usb_device_read_capacity16_data_struct_t

UFI read capacity data structure. More...
* struct usb_device_capacity_list_header_struct_t

UFI capacity list header structure. More...
* struct usb_device_current_max_capacity_descriptor_struct_t

UFI current maximum capacity structure. More...
e struct usb_device_formattable_capacity_descriptor_struct_t

UFI formatting capacity structure. More...
* struct usb_device_mode_parameters_header_struct_t

UFI mode parameters header structure. More...
* struct usb_device_format_capacity_response_data_struct_t

UFI Capacity List structure. More...

Macros

* #define USB_DEVICE_MSC_UFI_NO_SENSE 0x00U

Indicates that there is no specific sense key information to be reported.

#define USB_DEVICE_MSC_UFI_RECOVERED_ERROR 0x01U
Indicates that the last command completed successfully with some recovery action performed by the UFI
device.

#define USB_DEVICE_MSC_UFI_NOT_READY 0x02U

Indicates that the UFI device cannot be accessed.

#define USB_DEVICE_MSC_UFI_MEDIUM_ERROR 0x03U
Indicates that the command terminated with a non-recovered error condition that was probably caused by
a flaw in the medium or an error in the recorded data.

#define USB_DEVICE_MSC_UFI_HARDWARE_ERROR 0x04U

|
USB MSC Class driver

Indicates that the UFI device detected a non-recoverable hardware failure while performing the command
or during a self test.

 #define USB_DEVICE_MSC_UFI_ILLEGAL_REQUEST 0x05U
Indicates that there was an illegal parameter in the Command Packet or in the additional parameters
supplied as data for some commands.

* #define USB_DEVICE_MSC_UFI_UNIT_ATTENTION 0x06U

Indicates that the removable medium may have been changed or the UFI device has been reset.

 #define USB_DEVICE_MSC_UFI_DATA_PROTECT 0x07U
Indicates that a command that writes the medium was attempted on a block that is protected from this
operation.

* #define USB_DEVICE_MSC_UFI_BLANK_CHECK 0x08U
Indicates that a write-once device or a sequential-access device encountered blank medium or format-
defined end-of-data indication while reading or a write-once device encountered a non-blank medium
while writing.

 #define USB_DEVICE_MSC_UFI_VENDOR_SPECIFIC_ERROR 0x09U

This sense key is available for reporting vendor-specific conditions.

* #define USB_DEVICE_MSC_UFI_ABORTED_COMMAND 0x0BU
Indicates that the UFI device has aborted the command The host may be able to recover by trying the
command again.

* #define USB_DEVICE_MSC_UFI_VOLUME_OVERFLOW 0xODU
Indicates that a buffered peripheral device has reached the end-of-partition and data may remain in the
buffer that has not been written to the medium.

* #define USB_DEVICE_MSC_UFI_MISCOMPARE 0x0EU

Indicates that the source data did not match the data read from the medium.

* #define USB_DEVICE_MSC_UFI_ASC_MEDIUM_NOT_PRESENT 0x3AU

additional sense code

* #define USB_DEVICE_MSC_UFI_ASC_MEDIUM_CHANGE 0x28U

additional sense code not ready to ready transition- media change

* #define USB_DEVICE_MSC_UFI_INVALID_COMMAND_OPCODE 0x20U

Invalid command operation code.

e #define USB_DEVICE_MSC_UFI_WRITE_FAULT 0x03U

Write fault.
 #define USB_DEVICE_MSC_UFI_UNRECOVERED_READ_ERROR 0x11U

Not recovered read error.

* #define USB_DEVICE_MSC_UFI_UNKNOWN_ERROR 0xFFU

Unknown error.

* #define USB_DEVICE_MSC_UFI_INVALID_FIELD_IN_COMMAND_PKT 0x24U

Invalid field in command packet.

* #define USB_DEVICE_MSC_UFI_LBA_OUT_OF_RANGE 0x21U

Invalid logical block address out of range.

* #define USB_DEVICE_MSC_UFI_REQ_SENSE_VALID_ERROR_CODE 0x70U

Valid error code, 70h indicate current errors.

 #define USB_DEVICE_MSC_UFI_REQ_SENSE_ADDITIONAL_SENSE_LEN 0x0AU
The UFI device sets the value of this field to ten, to indicate that ten more bytes of sense data follow this

field.
« #define USB_DEVICE_MSC_UFI_PREVENT_ALLOW_REMOVAL_MASK 0x01U

Prevent media removal flag.

 #define USB_DEVICE_MSC_UFI_LOAD_EJECT_START_MASK 0x03U
LoEj Start flag.
 #define USB_DEVICE_MSC_UFI_FORMATTED_MEDIA 0x02U

Formatted Media - Current media capacity.

-
USB MSC Class driver

* #define USB_DEVICE_MSC_UFI_UNFORMATTED_MEDIA 0x01U

Unformatted Media - Maximum formatting capacity for this cartridge.
 #define USB_DEVICE_MSC_UFI_NO_CARTRIDGE_IN_DRIVE 0x03U

No Cartridge in Drive - Maximum formating capacity for any cartridge.

* #define USB_DEVICE_MSC_UFI_INQUIRY_ALLOCATION_LENGTH 0x24U

INQUIRY Data length of INQUIRY Command.
e #define USB_DEVICE_MSC_UFI_REQ_SENSE_DATA_LENGTH 18U

Request Sense Data length of REQUEST SENSE Command.
 #define USB_DEVICE_MSC_UFI_READ_CAPACITY_DATA_LENGTH 0x08U

READ CAPACITY Data length of READ CAPACITY Command.
* #define USB_DEVICE_MSC_UFI_READ_CAPACITY16_DATA_LENGTH 0x0CU

READ CAPACITY Data length of READ CAPACITY Command.
 #define USB_DEVICE_MSC_UFI_PERIPHERAL_QUALIFIER OU

Reserved.

* #define USB_DEVICE_MSC_UFI_PERIPHERAL_QUALIFIER_SHIFT 5U

Peripheral Device Type shift.
* #define USB_DEVICE_MSC_UFI_VERSIONS 4U

Version value.

* #define USB_DEVICE_MSC_UFI_PERIPHERAL_DEVICE_TYPE 0x00U

Peripheral Device Type value of INQUIRY Data.
 #define USB_DEVICE_MSC_UFI_REMOVABLE_MEDIUM_BIT 1U

Removable Media Bit value, this shall be set to one to indicate removable media.

e #define USB_DEVICE_MSC_UFI_REMOVABLE_MEDIUM_BIT_SHIFT 7U

Removable Media Bit shift.
* #define USB_DEVICE_MSC_UFI_ADDITIONAL_LENGTH 0x20U

Additional Length.

3.5.3.2 Data Structure Documentation
3.5.3.2.1 struct usb_device_inquiry_command_struct_t

Data Fields

* uint8_t operationCode
Operation Code.

* uint8_t logicalUnitNumber

Specifies the logical unit (0~7) for which Inquiry data should be returned.
uint8_t pageCode

Page Code.
uint8_t reserved

Reserved.
uint8_t allocationLength

Specifies the maximum number of bytes of inquiry data to be returned.
uint8_t reserved] [7]

Reserved.

|
USB MSC Class driver

3.5.3.2.2 struct usb_device_request_sense_command_struct_t

Data Fields

* uint8_t operationCode

Operation Code.
* uint8_t logicalUnitNumber

Logical Unit Number.
e uint8_t reserved [2]

reserved
* uint8_t allocationLength

Allocation Length.
e uint8_t reserved] [7]

reserved

3.5.3.2.3 struct usb_device_read_format_capacities_command_struct_t

Data Fields

* uint8_t operationCode

Operation Code.
* uint8_t logicalUnitNumber

Logical Unit Number.
e uint8_t reserved [5]

reserved
* uint16_t allocationLength

Allocation Length.
e uint8_t reserved] [3]

reserved

3.5.3.2.4 struct usb_device_read_capacities_command_struct_t

Data Fields

* uint8_t operationCode
Operation Code.

* uint8_t logicalUnitNumber
Logical Unit Number.

e uint32_tlba
Logical Block Address.

e uint8_t reserved [2]
Reserved.

* uint8_t pmi
This bit should be set to zero for UFIL

e uint8_t reserved] [3]

Reserved.

-
USB MSC Class driver

3.5.3.2.5 struct usb_device_read_write_10_command_struct_t

Data Fields

* uint8_t operationCode

Operation Code.
e uint8_t lunDpoFuaReladr

Logical Unit Number DPO FUA RelAdr.
e uint32_tIba

Logical Block Address.
e uint8_t reserved

Reserved.
* uint8_t transferLengthMsb

Transfer Length (MSB)
e uint8_t transferLengthLsb

Transfer Length (LSB)
e uint8_t reserved] [3]

Reserved.

3.5.3.2.6 struct usb_device_test_unit_ready_struct_t

Data Fields

* uint8_t operationCode

Operation Code.
* uint8_t logicalUnitNumber

Logical Unit Number:
e uint8_t reserved]1 [10]

Reserved.

3.5.3.2.7 struct usb_device_inquiry_data_fromat_struct_t

Data Fields

e uint8_t peripheralDeviceType
Peripheral Device Type.
e uint8_t rmb

Removable Media Bit.
e uint8_t versions
ISO Version, ECMA Version, ANSI Version.
* uint8_t responseDataFormat
Response Data Format.
* uint8_t additionalLength
The Additional Length field shall specify the length in bytes of the parameters.
e uint8_t reserved [3]
reserved
e uint8_t vendorInformatin [8]

Vendor Identification.
* uint8_t productld [16]

|
USB MSC Class driver

Product Identification.
* uint8_t productVersionLevel [4]

Product Revision Level.

3.5.3.2.8 struct usb_device_request_sense_data_struct_t

Data Fields

e uint8_t validErrorCode

Error Code.
e uint8_t reserved

reserved
* uint8_t senseKey

Sense Key.
e uint8_t information [4]

Information.
* uint8_t additionalSenseLength

Additional Sense Length.
e uint8_t reserved] [4]

reserved
e uint8_t additionalSenseCode

Additional Sense Code.
e uint8_t additionalSenseQualifer

Additional Sense Code Qualifier.
e uint8_t reserved? [4]

reserved

3.5.3.2.9 struct usb_device_read_capacity_struct_t

Data Fields

* uint32_t lastLogicalBlockAddress

Last Logical Block Address.
* uint32_t blockSize

Block Length In Bytes.

3.5.3.2.10 struct usb_device _read_capacity16_data_struct_t

Data Fields

 uint32_t lastLogicalBlockAddress0

Last Logical Block Address.
 uint32_t lastLogicalBlockAddress1

Last Logical Block Address.
e uint32_t blockSize

Block Length In Bytes.

-
USB MSC Class driver

3.5.3.2.11 struct usb_device_capacity list_header_struct_t

Data Fields

e uint8_t reserverd [3]

reserved
* uint8_t capacityListLength
Capacity List Length.

3.5.3.2.12 struct usb_device_current_max_capacity_descriptor_struct_t

Data Fields

e uint32_t blockNumber

Number of Blocks.
* uint32_t descriptorCodeBlockLength

Byte 4 Descriptor Code , byte 5-7 Block Length.

3.5.3.2.13 struct usb_device formattable capacity_ descriptor_struct_t

Data Fields

¢ uint32_t blockNumber

Number of Blocks.
 uint32_t blockLength

Block Length.

3.5.3.2.14 struct usb_device_mode_parameters_header_struct_t

Data Fields

* uint16_t modeDatalLength

Mode Data Length.
* uint8_t mediumTypeCode

The Medium Type Code field specifies the inserted medium type.
* uint8_t wpDpfua

WP and DPOFUA bit.
e uint8_t reserved [4]

Reserved.

3.5.3.2.15 struct usb_device format_capacity_response_data_struct t

Data Fields

* uint8_t capacityListHead [sizeof(usb_device_capacity_list_header_struct_t)]
Capacity List Header.

|
USB MSC Class driver

e uint8_t currentMaxCapacityDesccriptor [sizeof(usb_device_current_max_capacity_descriptor_-
struct_t)]

Current/Maximum Capacity Header.
e uint8_t formattableCapacityDesccriptor [sizeof(usb_device_formattable_capacity_descriptor_-

struct_t)*3]
Formatting Capacity Descriptor.

3.5.3.3 Macro Definition Documentation

3.5.3.3.1 #define USB_DEVICE_MSC_UFI_ASC_MEDIUM_NOT_PRESENT 0x3AU

additional sense code medium not present

-
USB CDC Class driver

3.6 USB CDC Class driver
3.6.1 Overview

The USB communications device class (or USB CDC) is a composite Universal Serial Bus device class.
The class may include more than one interface, such as a custom control interface, data interface, audio,
or mass storage-related interfaces. The MCUXpresso SDK USB stack provides support for CDC ACM,
which is defined in CDC PSTN Subclass. In addition, the Microsoft® RNDIS is also implemented upon
the CDC ACM driver.

Modules

e USB CDC ACM Class driver
e« USB CDC ECM Class driver
e USB CDC RNDIS driver

|
USB CDC Class driver

3.6.2 USB CDC ACM Class driver

3.6.2.1 Overview

This section describes the programming interface of the USB CDC ACM class driver. The USB CDC
ACM class driver handles the specific control requests for CDC ACM, transfers data packets to and from
the host through the bulk pipe, as well as provides notification to host through the interrupt pipe.

3.6.2.2 USB CDC ACM Device structures

The driver uses an instantiation of the usb_device_cdc_acm_struct_t structure to maintain the current state
of a particular USB CDC ACM instance module driver. This structure holds the USB device handle and
keeps track of the configuration value, alternate setting, pipes and interfaces that are enumerated for this
USB ACM device.

The USB CDC ACM class driver populates the structure members.

3.6.2.3 USB CDC ACM Initialization

The usb_device_cdc_acm_init is called from usb_device_class_init when it matches the class type of CD-
C with the one in configure structure passed from application. In this function it associates the configure
structure with the USB CDC ACM device, resets the configuration value and creates mutex for each pipe.

3.6.2.4 USB CDC ACM Endpoint Initialization

After the enumeration procedure is done, all the endpoints, other than the control endpoint, are initialized
with their own attributes, for example, endpoint address, transfer type and maximum packet size. Most of
the attributes can be drawn from the configure structure. Each endpoint is assigned a callback function to
serve the corresponding event.

3.6.2.5 USB CDC ACM Event Handling

The usb_device_cdc_acm_event is called from usb_device_class_event when there occurs a class-specific
event and it matches the class type of CDC with the one in configure structure. For some events which
need to notify the application, the callback function defined in application is invoked with the dedicated
event type.

3.6.2.6 USB CDC ACM Send data

The usb_device_cdc_acm_send is called to send packet to host through the bulk pipe. Users need to
specify the USB CDC ACM class handle, the endpoint address, the buffer address and the length of the

-
USB CDC Class driver

buffer to prime a sending transfer. Note that the transfer is initiated by the host so this transfer is not
accomplished until the kUsbDeviceCdcEventSendResponse event occurs.

It allows only one transfer at a time, so the call to usb_device_cdc_acm_send returns kStatus_USB_Busy
if the previous transfer is not done yet.

3.6.2.7 USB CDC ACM Receive data

The usb_device_cdc_acm_recv is called to receive packet from host through the bulk pipe. Users need to
specify the USB CDC ACM class handle, the endpoint address, the buffer address and the length of the
buffer to prime a receiving transfer. Note that the transfer is initiated by the host so this transfer is not
accomplished until the kUsbDeviceCdcEventRecvResponse event occurs.

It allows only one transfer at a time, so the call to usb_device_cdc_acm_send returns kStatus_USB_Busy
if the previous transfer is not done yet.

Data Structures

* struct usb_device_cdc_acm_request_param_struct_t
Definition of parameters for CDC ACM request. More...
* struct usb_device_cdc_acm_pipe_t
Definition of pipe structure. More...
* struct usb_device_cdc_acm_struct_t
Definition of structure for CDC ACM device. More...

Macros

* #define USB_DEVICE_CONFIG_CDC_ACM_MAX_INSTANCE (1U)

The maximum number of CDC device instance.

#define USB_DEVICE_CONFIG_CDC_COMM_CLASS_CODE (0x02U)

The CDC communication class code.
#define USB_DEVICE_CONFIG_CDC_DATA_CLASS_CODE (0x0AU)
The CDC data class code.
#define USB_DEVICE_CDC_REQUEST_SEND_ENCAPSULATED_COMMAND (0x00U)
The CDC class request code for SEND_ENCAPSULATED_COMMAND.
#define USB_DEVICE_CDC_REQUEST_GET_ENCAPSULATED_RESPONSE (0x01U)
The CDC class request code for GET_ENCAPSULATED_RESPONSE.
#define USB_DEVICE_CDC_REQUEST_SET_COMM_FEATURE (0x02U)
The CDC class request code for SET_COMM_FEATURE.
#define USB_DEVICE_CDC_REQUEST_GET_COMM_FEATURE (0x03U)
The CDC class request code for GET_COMM_FEATURE.
#define USB_DEVICE_CDC_REQUEST_CLEAR_COMM_FEATURE (0x04U)
The CDC class request code for CLEAR_COMM_FEATURE.
#define USB_DEVICE_CDC_REQUEST_SET_AUX_LINE_STATE (0x10U)
The CDC class request code for SET_AUX_LINE_STATE.
#define USB_DEVICE_CDC_REQUEST_SET_HOOK_STATE (0x11U)
The CDC class request code for SET_HOOK_STATE.
#define USB_DEVICE_CDC_REQUEST_PULSE_SETUP (0x12U)

|
USB CDC Class driver

The CDC class request code for PULSE_SETUP.
 #define USB_DEVICE_CDC_REQUEST_SEND_PULSE (0x13U)

The CDC class request code for SEND_PULSE.
 #define USB_DEVICE_CDC_REQUEST_SET_PULSE_TIME (0x14U)

The CDC class request code for SET_PULSE_TIME.
e #define USB_DEVICE_CDC_REQUEST_RING_AUX_JACK (0x15U)

The CDC class request code for RING_AUX_JACK.
e #define USB_DEVICE_CDC_REQUEST_SET_LINE_CODING (0x20U)

The CDC class request code for SET_LINE_CODING.
* #define USB_DEVICE_CDC_REQUEST_GET_LINE_CODING (0x21U)

The CDC class request code for GET_LINE_CODING.
 #define USB_DEVICE_CDC_REQUEST_SET_CONTROL_LINE_STATE (0x22U)

The CDC class request code for SET_CONTROL_LINE_STATE.
 #define USB_DEVICE_CDC_REQUEST_SEND_BREAK (0x23U)

The CDC class request code for SEND_BREAK.
 #define USB_DEVICE_CDC_REQUEST_SET_RINGER_PARAMS (0x30U)

The CDC class request code for SET_RINGER_PARAMS.
e #define USB_DEVICE_CDC_REQUEST_GET_RINGER_PARAMS (0x31U)

The CDC class request code for GET_RINGER_PARAMS.
 #define USB_DEVICE_CDC_REQUEST_SET_OPERATION_PARAM (0x32U)

The CDC class request code for SET_OPERATION_PARAM.
 #define USB_DEVICE_CDC_REQUEST_GET_OPERATION_PARAM (0x33U)

The CDC class request code for GET_OPERATION_PARAM.
» #define USB_DEVICE_CDC_REQUEST_SET_LINE_PARAMS (0x34U)

The CDC class request code for SET_LINE_PARAMS.
e #define USB_DEVICE_CDC_REQUEST_GET_LINE_PARAMS (0x35U)

The CDC class request code for GET_LINE_PARAMS.
 #define USB_DEVICE_CDC_REQUEST_DIAL_DIGITS (0x36U)

The CDC class request code for DIAL_DIGITS.
* #define USB_DEVICE_CDC_REQUEST_SET_UNIT_PARAMETER (0x37U)

The CDC class request code for SET_UNIT_PARAMETER.
 #define USB_DEVICE_CDC_REQUEST_GET_UNIT_PARAMETER (0x38U)

The CDC class request code for GET_UNIT_PARAMETER.
 #define USB_DEVICE_CDC_REQUEST_CLEAR_UNIT_PARAMETER (0x39U)

The CDC class request code for CLEAR_UNIT_PARAMETER.
e #define USB_DEVICE_CDC_REQUEST_SET_ETHERNET_MULTICAST_FILTERS (0x40U)

The CDC class request code for SET_ETHERNET _MULTICAST _FILTERS.
 #define USB_DEVICE_CDC_REQUEST_SET_ETHERNET_POW_PATTER_FILTER (0x41U)

The CDC class request code for SET_ETHERNET_POW_PATTER_FILTER.
¢ #define USB_DEVICE_CDC_REQUEST_GET_ETHERNET_POW_PATTER_FILTER (0x42U)

The CDC class request code for GET_ETHERNET_POW_PATTER_FILTER.
 #define USB_DEVICE_CDC_REQUEST_SET_ETHERNET_PACKET_FILTER (0x43U)

The CDC class request code for SET_ETHERNET _PACKET_FILTER.
e #define USB_DEVICE_CDC_REQUEST_GET_ETHERNET_STATISTIC (0x44U)

The CDC class request code for GET_ETHERNET _STATISTIC.
 #define USB_DEVICE_CDC_REQUEST_SET_ATM_DATA_FORMAT (0x50U)

The CDC class request code for SET_ATM_DATA_FORMAT.
e #define USB_DEVICE_CDC_REQUEST_GET_ATM_DEVICE_STATISTICS (0x51)

The CDC class request code for GET_ATM_DEVICE_STATISTICS.
e #define USB_DEVICE_CDC_REQUEST_SET _ATM_DEFAULT_VC (0x52U)

The CDC class request code for SET_ATM_DEFAULT_VC.

-
USB CDC Class driver

* #define USB_DEVICE_CDC_REQUEST_GET_ATM_VC_STATISTICS (0x53U)

The CDC class request code for GET_ATM_VC_STATISTICS.
e #define USB_DEVICE_CDC_REQUEST_MDLM_SPECIFIC_REQUESTS_MASK (0x7FU)

The CDC class request code for MDLM_SPECIFIC_REQUESTS_MASK.
* #define USB_DEVICE_CDC_NOTIF_NETWORK_CONNECTION (0x00U)

The CDC class notify code for NETWORK_CONNECTION.
 #define USB_DEVICE_CDC_NOTIF_RESPONSE_AVAIL (0x01U)

The CDC class notify code for RESPONSE_AVAIL.
 #define USB_DEVICE_CDC_NOTIF_AUX_JACK_HOOK_STATE (0x08U)

The CDC class notify code for AUX_JACK_HOOK_STATE.
 #define USB_DEVICE_CDC_NOTIF_RING_DETECT (0x09U)

The CDC class notify code for RING_DETECT.
 #define USB_DEVICE_CDC_NOTIF_SERIAL_STATE (0x20U)

The CDC class notify code for SERIAL_STATE.
 #define USB_DEVICE_CDC_NOTIF_CALL_STATE_CHANGE (0x28U)

The CDC class notify code for CALL_STATE_CHANGE.
e #define USB_DEVICE_CDC_NOTIF_LINE_STATE_CHANGE (0x29U)

The CDC class notify code for LINE_STATE_CHANGE.
 #define USB_DEVICE_CDC_NOTIF_CONNECTION_SPEED_CHANGE (0x2AU)

The CDC class notify code for CONNECTION_SPEED_CHANGE.
 #define USB_DEVICE_CDC_FEATURE_ABSTRACT_STATE (0x01U)

The CDC class feature select code for ABSTRACT_STATE.
 #define USB_DEVICE_CDC_FEATURE_COUNTRY_SETTING (0x02U)

The CDC class feature select code for COUNTRY_SETTING.
* #define USB_DEVICE_CDC_CONTROL_SIG_BITMAP_CARRIER_ACTIVATION (0x02U)

The CDC class control signal bitmap value for CARRIER_ACTIVATION.
 #define USB_DEVICE_CDC_CONTROL_SIG_BITMAP_DTE_PRESENCE (0x01U)

The CDC class control signal bitmap value for DTE_PRESENCE.
 #define USB_DEVICE_CDC_UART_STATE_RX_CARRIER (0x01U)

The UART state bitmap value of RX_CARRIER.
 #define USB_DEVICE_CDC_UART_STATE_TX_CARRIER (0x02U)

The UART state bitmap value of TX_CARRIER.
 #define USB_DEVICE_CDC_UART_STATE_BREAK (0x04U)

The UART state bitmap value of BREAK.
* #define USB_DEVICE_CDC_UART_STATE_RING_SIGNAL (0x08U)

The UART state bitmap value of RING_SIGNAL.
 #define USB_DEVICE_CDC_UART_STATE_FRAMING (0x10U)

The UART state bitmap value of FRAMING.
 #define USB_DEVICE_CDC_UART_STATE_PARITY (0x20U)

The UART state bitmap value of PARITY.
 #define USB_DEVICE_CDC_UART_STATE_OVERRUN (0x40U)

The UART state bitmap value of OVERRUN.

|
USB CDC Class driver

Enumerations

enum usb_device_cdc_acm_event_t {
kUSB_DeviceCdcEventSendResponse = 0x01,
kUSB_DeviceCdcEventRecvResponse,
kUSB_DeviceCdcEventSerialStateNotif,
kUSB_DeviceCdcEventSendEncapsulatedCommand,
kUSB_DeviceCdcEventGetEncapsulatedResponse,
kUSB_DeviceCdcEventSetCommPFeature,
kUSB_DeviceCdcEventGetCommPFeature,
kUSB_DeviceCdcEventClearCommPFeature,
kUSB_DeviceCdcEventGetLineCoding,
kUSB_DeviceCdcEventSetLineCoding,
kUSB_DeviceCdcEventSetControlLineState,
kUSB_DeviceCdcEventSendBreak }

Definition of CDC class event.

USB CDC ACM Class Driver

usb_status_t USB_DeviceCdcAcmlnit (uint8_t controllerld, usb_device_class_config_struct_t

xconfig, class_handle_t xhandle)

Initializes the USB CDC ACM class.
usb_status_t USB_DeviceCdcAcmDeinit (class_handle_t handle)

Deinitializes the USB CDC ACM class.
usb_status_t USB_DeviceCdcAcmEvent (void xhandle, uint32_t event, void xparam)

Handles the CDC ACM class event.
usb_status_t USB_DeviceCdcAcmSend (class_handle_t handle, uint8_t ep, uint8_t xbuffer, uint32-

_tlength)

Primes the endpoint to send packet to host.
usb_status_t USB_DeviceCdcAcmRecv (class_handle_t handle, uint8_t ep, uint8_t xbuffer, uint32-

_tlength)

Primes the endpoint to receive packet from host.

3.6.2.8 Data Structure Documentation

3.6.2.8.1 struct usb_device_cdc_acm_request_param_struct t

Data Fields

uint®_t ** buffer

The pointer to the address of the buffer for CDC class request.
uint32_t x length

The pointer to the length of the buffer for CDC class request.
uint16_t interfaceIndex

The interface index of the setup packet.

* uintl6_t setupValue

The wValue field of the setup packet.

-
USB CDC Class driver

* uint8_t isSetup
The flag indicates if it is a setup packet, 1: yes, 0: no.

3.6.2.8.1.1 Field Documentation

3.6.2.8.1.1.1 uint8_t«x usb_device_cdc_acm_request_param_struct_t::buffer
3.6.2.8.1.1.2 uint32_tx usb_device_cdc_acm_request_param_struct_t::length
3.6.2.8.1.1.3 uint16_t usb_device_cdc_acm_request_param_struct_t::interfacelndex
3.6.2.8.1.1.4 uint16_t usb_device_cdc_acm_request_param_struct_t::setupValue
3.6.2.8.1.1.5 uint8_t usb_device_cdc_acm_request_param_struct_t::isSetup
3.6.2.8.2 struct usb_device_cdc_acm_pipe_t

Data Fields

¢ osa_mutex_handle_t mutex

The mutex of the pipe.
* uint8_t * pipeDataBuffer

pipe data buffer backup when stall
 uint32_t pipeDatal.en

pipe data length backup when stall
* uint8_t pipeStall
pipe is stall
* uint8_tep
The endpoint number of the pipe.
* uint8_t isBusy
1: The pipe is transferring packet, 0: The pipe is idle.
3.6.2.8.2.1 Field Documentation
3.6.2.8.2.1.1 osa_mutex_handle_t usb_device_cdc_acm_pipe_t::mutex
3.6.2.8.2.1.2 uint8_t usb_device_cdc_acm_pipe_t::ep
3.6.2.8.2.1.3 uint8_t usb_device_cdc_acm_pipe_t::iisBusy

3.6.2.8.3 struct usb_device_cdc_acm_struct _t

Data Fields

¢ usb_device _handle handle

The handle of the USB device.
usb_device_class_config_struct_t * configStruct

The class configure structure.
usb_device_interface_struct_t * commlInterfaceHandle

The CDC communication interface handle.
usb_device_interface_struct_t * datalnterfaceHandle

|
USB CDC Class driver

The CDC data interface handle.
* usb_device_cdc_acm_pipe_t bulkIn
The bulk in pipe for sending packet to host.
* usb_device_cdc_acm_pipe_t bulkOut
The bulk out pipe for receiving packet from host.
* usb_device_cdc_acm_pipe_t interruptin
The interrupt in pipe for notifying the device state to host.
* uint8_t configuration

The current configuration value.
e uint8_t interfaceNumber

The current interface number.
* uint8_t alternate

The alternate setting value of the interface.
* uint8_t hasSentState

1: The device has primed the state in interrupt pipe, 0: Not primed the state.

-
USB CDC Class driver

|
USB CDC Class driver

3.6.2.8.3.1 Field Documentation
3.6.2.8.3.1.1 usb_device_handle usb_device _cdc_acm_struct_t::handle
3.6.2.8.3.1.2 usb_device_class_config_struct_t« usb_device_cdc_acm_struct_t::configStruct

3.6.2.8.3.1.3 usb_device_interface_struct_tx usb_device _cdc_acm_struct_t::comminterface-
Handle

3.6.2.8.3.1.4 usb_device_interface_struct_t« usb_device cdc_acm_struct_t::datalnterfaceHandle
3.6.2.8.3.1.5 usb_device_cdc_acm_pipe_t usb_device_cdc_acm_struct_t::bulkin

3.6.2.8.3.1.6 usb_device_cdc_acm_pipe_t usb_device_cdc_acm_struct_t::bulkOut

3.6.2.8.3.1.7 usb_device_cdc_acm_pipe_t usb_device_cdc_acm_struct_t::interruptin

3.6.2.8.3.1.8 uint8_t usb_device_cdc_acm_struct_t::configuration

3.6.2.8.3.1.9 uint8 t usb_device cdc_acm_struct_t::interfaceNumber

3.6.2.8.3.1.10 uint8_t usb_device cdc_acm_struct_t::alternate

3.6.2.8.3.1.11 uint8_t usb_device_cdc_acm_struct_t::hasSentState

3.6.2.9 Macro Definition Documentation

3.6.2.9.1 #define USB_DEVICE_CONFIG_CDC_ACM_MAX_INSTANCE (1U)

3.6.2.9.2 #define USB_DEVICE_CONFIG_CDC_COMM_CLASS_CODE (0x02U)

3.6.2.9.3 #define USB_DEVICE_CONFIG_CDC_DATA_CLASS CODE (0x0AU)

3.6.2.9.4 #define USB_DEVICE_CDC_REQUEST_SEND_ENCAPSULATED_COMMAND (0x00U)
3.6.2.9.5 #define USB_DEVICE_CDC_REQUEST_GET_ENCAPSULATED_ RESPONSE (0x01U)
3.6.2.9.6 #define USB_DEVICE_CDC_REQUEST_SET_COMM_FEATURE (0x02U)

3.6.2.9.7 #define USB_DEVICE_CDC_REQUEST_GET_COMM_FEATURE (0x03U)

3.6.2.9.8 #define USB_DEVICE_CDC_REQUEST_CLEAR_COMM_FEATURE (0x04U)

3.6.2.9.9 #define USB_DEVICE_CDC_REQUEST_SET_AUX_LINE_STATE (0x10U)

3.6.2.9.10 #define USB_DEVICE_CDC_REQUEST_SET HOOK_STATE (0x11U)

3.6.2.9.11 #define USB_DEVICE_CDC_REQUEST PULSE_SETUP (0x12U)

3.6.2.9.12 #define USB_DEVICE_CDC_REQUEST_SEND_PULSE (0x13U)

6 MCUXpresso SDK USB Stack Device Reference Manus
3.6.2.9.13 #define USB_DEVICE CDC_REQUEST SET PULSE_TIME (0x14U)

S AN 492 ddaflimas 1I1CODD INCVAIAAE AR/, DENILIFOCOT DINM/AS ALY IANNY I

-
USB CDC Class driver

kUSB_DeviceCdcEventRecvResponse This event indicates the bulk receive transfer is complete or
cancelled etc.

kUSB_DeviceCdcEventSerialStateNotif This event indicates the serial state has been sent to the
host.

kUSB_DeviceCdcEventSendEncapsulatedCommand This event indicates the device received the
SEND_ENCAPSULATED_COMMAND request.

kUSB_DeviceCdcEventGetEncapsulatedResponse This event indicates the device received the G-
ET_ENCAPSULATED_RESPONSE request.

kUSB_DeviceCdcEventSetCommPFeature This event indicates the device received the SET_COM-
M_FEATURE request.

kUSB_DeviceCdcEventGetCommFeature This event indicates the device received the GET_COM-
M_FEATURE request.

kUSB_DeviceCdcEventClearCommUFeature This event indicates the device received the CLEAR_ -
COMM_FEATURE request.

kUSB_DeviceCdcEventGetLineCoding This event indicates the device received the GET_LINE_-
CODING request.

kUSB_DeviceCdcEventSetLineCoding This event indicates the device received the SET_LINE_C-
ODING request.

kUSB_DeviceCdcEventSetControlLineState This event indicates the device received the SET_CO-
NTRL_LINE_STATE request.

kUSB_DeviceCdcEventSendBreak This event indicates the device received the SEND_BREAK re-
quest.

3.6.2.11 Function Documentation

3.6.2.11.1 usb_status_t USB_DeviceCdcAcmlnit (uint8_t controllerld, usb_device_class_config_-
struct_t x config, class_handle_t x handle)

This function obtains a USB device handle according to the controller ID, initializes the CDC ACM class
with the class configure parameters and creates the mutex for each pipe.

Parameters

controllerld | The ID of the controller. The value can be chosen from the kUSB_ControllerKhciO,
kUSB_ControllerKhcil, kUSB_ControllerEhci0O, or kUSB_ControllerEhcil.

con The user configuration structure of type usb_device_class_config_struct_t. The user
8 g yp g

populates the members of this structure and passes the pointer of this structure into
this function.

USB CDC Class driver

handle | 1t is out parameter. The class handle of the CDC ACM class.

Returns

A USB error code or kStatus_ USB_ Success.

Return values

kStatus_ USB_Success

The CDC ACM class is initialized successfully.

kStatus_USB_Busy

No CDC ACM device handle available for allocation.

kStatus_USB_Invalid-
Handle

The CDC ACM device handle allocation failure.

kStatus_USB_Invalid-
Parameter

The USB device handle allocation failure.

3.6.2.11.2 usb_status_t USB_DeviceCdcAcmbDeinit (class_handle_t handie)

This function destroys the mutex for each pipe, deinitializes each endpoint of the CDC ACM class and
frees the CDC ACM class handle.

Parameters

handle | The class handle of the CDC ACM class.

Returns

A USB error code or kStatus_ USB_ Success.

Return values

kStatus_ USB_Success

The CDC ACM class is de-initialized successfully.

kStatus_USB_Error

The endpoint deinitialization failure.

kStatus_USB_Invalid-
Handle

The CDC ACM device handle or the CDC ACM class handle is invalid.

-
USB CDC Class driver

kStatus_USB_Invalid- | The endpoint number of the CDC ACM class handle is invalid.
Parameter

3.6.2.11.3 usb_status_t USB_DeviceCdcAcmEvent (void x handle, uint32_t event, void x param
)

This function responds to various events including the common device events and the class-specific events.
For class-specific events, it calls the class callback defined in the application to deal with the class-specific
event.

Parameters

handle | The class handle of the CDC ACM class.

event | The event type.

param | The class handle of the CDC ACM class.

Returns

A USB error code or kStatus_USB_Success.

Return values

kStatus_USB_Success | The CDC ACM class is de-initialized successfully.

kStatus_USB_Error | The configure structure of the CDC ACM class handle is invalid.

kStatus_USB_Invalid- | The CDC ACM device handle or the CDC ACM class handle is invalid.
Handle

kStatus_USB_Invalid- | The endpoint number of the CDC ACM class handle is invalid.
Parameter

Others | The error code returned by class callback in application.

3.6.2.11.4 usb_status_t USB_DeviceCdcAcmSend (class_handle_t handle, uint8_t ep, uint8_t x
buffer, uint32_t length)

This function checks whether the endpoint is sending packet, then it primes the endpoint with the buffer
address and the buffer length if the pipe is not busy. Otherwise, it ignores this transfer by returning an
error code.

|
USB CDC Class driver

Parameters

handle | The class handle of the CDC ACM class.

ep | The endpoint number of the transfer.

buffer | The pointer to the buffer to be transferred.

length | The length of the buffer to be transferred.

Returns

A USB error code or kStatus_USB_Success.

Return values

kStatus_USB_Success | Prime to send packet successfully.

kStatus_USB_Busy | The endpoint is busy in transferring.

kStatus_USB_Invalid- | The CDC ACM device handle or the CDC ACM class handle is invalid.
Handle

kStatus_USB_Controller- | The controller interface is invalid.
NotFound

Note

The function can only be called in the same context.

3.6.2.11.5 usb_status_t USB_DeviceCdcAcmRecv (class_handle_t handle, uint8_t ep, uint8_t x
buffer, uint32_t length)

This function checks whether the endpoint is receiving packet, then it primes the endpoint with the buffer
address and the buffer length if the pipe is not busy. Otherwise, it ignores this transfer by returning an
error code.

Parameters

handle | The class handle of the CDC ACM class.

ep | The endpoint number of the transfer.

-
USB CDC Class driver

buffer | The pointer to the buffer to be transferred.

length | The length of the buffer to be transferred.

Returns

A USB error code or kStatus_ USB_ Success.

Return values

kStatus_USB_Success | Prime to receive packet successfully.

kStatus_USB_Busy | The endpoint is busy in transferring.

kStatus_USB_Invalid- | The CDC ACM device handle or the CDC ACM class handle is invalid.
Handle

kStatus_USB_Controller- | The controller interface is invalid.
NotFound

Note

The function can only be called in the same contexct.

|
USB CDC Class driver

3.6.3 USB CDC ECM Class driver

3.6.3.1 Overview

This section describes the programming interface of the USB CDC ECM class driver. The USB CDC
ECM class driver handles the specific control requests for CDC ECM, transfers data packets to and from
the host through the bulk pipe, as well as provides notification to host through the interrupt pipe.

3.6.3.2 USB CDC ECM Device structures

The driver uses an instantiation of the usb_device_cdc_ecm_struct_t structure to maintain the current state
of a particular USB CDC ECM instance module driver. This structure holds the USB device handle and
keeps track of the configuration value, alternate setting, pipes and interfaces that are enumerated for this
USB ECM device.

The USB CDC ECM class driver populates the structure members.

3.6.3.3 USB CDC ECM Initialization

The usb_device_cdc_ecm_init is called from usb_device_class_init when it matches the class type of CD-
C with the one in configure structure passed from application. In this function it associates the configure
structure with the USB CDC ECM device, resets the configuration value and creates mutex for each pipe.

3.6.3.4 USB CDC ECM Endpoint Initialization

After the enumeration procedure is done, all the endpoints, other than the control endpoint, are initialized
with their own attributes, for example, endpoint address, transfer type and maximum packet size. Most of
the attributes can be drawn from the configure structure. Each endpoint is assigned a callback function to
serve the corresponding event.

3.6.3.5 USB CDC ECM Event Handling

The usb_device_cdc_ecm_event is called from usb_device_class_event when there occurs a class-specific
event and it matches the class type of CDC with the one in configure structure. For some events which
need to notify the application, the callback function defined in application is invoked with the dedicated
event type.

3.6.3.6 USB CDC ECM Send data

The usb_device_cdc_ecm_send is called to send packet to host through the bulk pipe. Users need to
specify the USB CDC ECM class handle, the endpoint address, the buffer address and the length of the

-
USB CDC Class driver

buffer to prime a sending transfer. Note that the transfer is initiated by the host so this transfer is not
accomplished until the kUsbDeviceCdcEventSendResponse event occurs.

It allows only one transfer at a time, so the call to usb_device_cdc_ecm_send returns kStatus_USB_Busy
if the previous transfer is not done yet.

3.6.3.7 USB CDC ECM Receive data

The usb_device_cdc_ecm_recv is called to receive packet from host through the bulk pipe. Users need to
specify the USB CDC ECM class handle, the endpoint address, the buffer address and the length of the
buffer to prime a receiving transfer. Note that the transfer is initiated by the host so this transfer is not
accomplished until the kUsbDeviceCdcEventRecvResponse event occurs.

It allows only one transfer at a time, so the call to usb_device_cdc_ecm_send returns kStatus_USB_Busy
if the previous transfer is not done yet.

Copyright 2024 NXP
SPDX-License-Identifier: BSD-3-Clause

Data Structures

* struct usb_device_cdc_ecm_pipe_t
Definition of pipe structure. More...
e struct usb_device_cdc_ecm_struct_t

Definition of structure for CDC ECM device. More...

Macros

¢ #define USB_DEVICE_CDC_COMM_CLASS_CODE (0x02U)

The CDC communication class code.

#define USB_DEVICE_CDC_DATA_CLASS_CODE (0x0AU)
The CDC data class code.

#define USB_DEVICE_CDC_ECM_CLASS_CODE (0x02U)
The CDC ECM class code.

#define USB_DEVICE_CDC_ECM_SUBCLASS_CODE (0x06U)

The CDC ECM sub class code.
#define USB_DEVICE_CDC_ECM_PROTOCOL_CODE (0x00U)

The CDC ECM protocol code.
#define USB_DEVICE_CDC_NETWORK_CONNECTION (0x00U)

The CDC class notify code for NETWORK_CONNECTION.
#define USB_DEVICE_CDC_CONNECTION_SPEED_CHANGE (0x2AU)

The CDC class notify code for CONNECTION_SPEED_CHANGE.
#define USB_DEVICE_CDC_ECM_SET_ETHERNET_MULTICAST_FILTER (0x40U)

The CDC class request code for SET_ETHERNET _MULTICAST _FILTERS.
#define USB_DEVICE_CDC_ECM_SET_ETHERNET_POWER_MANAGEMENT_PATTERN-

_FILTER (0x41U)
The CDC class request code for SET_ETHERNET _POWER_MANAGEMENT_PATTERN_FILTER.

|
USB CDC Class driver

« #define USB_DEVICE_CDC_ECM_GET_ETHERNET_POWER_MANAGEMENT_PATTERN-
_FILTER (0x42U)

The CDC class request code for GET_ETHERNET _POWER_MANAGEMENT_PATTERN_FILTER.
e #define USB_DEVICE_CDC_ECM_SET_ETHERNET_PACKET_FILTER (0x43U)

The CDC class request code for SET_ETHERNET PACKET_FILTER.
e #define USB_DEVICE_CDC_ECM_GET_ETHERNET_STATISTIC (0x44U)

The CDC class request code for GET_ETHERNET _STATISTIC.
 #define USB_DEVICE_CDC_ECM_PACKET_TYPE_MULTICAST_MASK (1U << 4)

The CDC ECM ethernet packet filter bitmap value of PACKET_TYPE_MULTICAST.
* #define USB_DEVICE_CDC_ECM_PACKET_TYPE_BROADCAST_MASK (1U << 3)

The CDC ECM ethernet packet filter bitmap value of PACKET _TYPE_BROADCAST.
 #define USB_DEVICE_CDC_ECM_PACKET_TYPE_DIRECTED_MASK (1U << 2)

The CDC ECM ethernet packet filter bitmap value of PACKET_TYPE_DIRECTED.
* #define USB_DEVICE_CDC_ECM_PACKET_TYPE_ALL_MULTICAST_MASK (1U << 1)

The CDC ECM ethernet packet filter bitmap value of PACKET_TYPE_ALL_MULTICAST.
 #define USB_DEVICE_CDC_ECM_PACKET_TYPE_PROMISCUOUS_MASK (1U << 0)

The CDC ECM ethernet packet filter bitmap value of PACKET_TYPE_PROMISCUOUS.

Enumerations

e enum usb_device_cdc_ecm_event_t {
kUSB_DeviceCdcEcmEventSendResponse,
kUSB_DeviceCdcEcmEventRecvResponse,
kUSB_DeviceCdcEcmEventNotifyResponse,
kUSB_DeviceCdcEcmEventSetEthernetMulticastFilters,
kUSB_DeviceCdcEcmEventSetEthernetPowerManagementPatternFilter,
kUSB_DeviceCdcEcmEventGetEthernetPowerManagementPatternFilter,
kUSB_DeviceCdcEcmEventSetEthernetPacketFilter,
kUSB_DeviceCdcEcmEventGetEthernetStatistic }

Definition of CDC class event.

USB CDC ECM Class Driver

* usb_status_t USB_DeviceCdcEcmlnit (uint8_t controllerld, usb_device_class_config_struct_t
xconfig, class_handle_t xhandle)

Initializes the USB CDC ECM class.
e usb_status_t USB_DeviceCdcEcmDeinit (class_handle_t handle)

Deinitializes the USB CDC ECM class.
* usb_status_t USB_DeviceCdcEcmSend (class_handle_t handle, uint8_t ep, uint8_t «buffer, uint32_t

length)

Primes the endpoint to send packet to host.
* usb_status_t USB_DeviceCdcEcmRecv (class_handle_t handle, uint8_t ep, uint8_t xbuffer, uint32-

_tlength)

Primes the endpoint to receive packet from host.
» usb_status_t USB_DeviceCdcEcmEvent (void xhandle, uint32_t event, void xparam)

Handles the CDC ECM class event.

-
USB CDC Class driver

3.6.3.8 Data Structure Documentation
3.6.3.8.1 struct usb_device_cdc_ecm_pipe_t

Data Fields

* uint8_tep

The endpoint number of the pipe.
* uint8_t isBusy

1: The pipe is transferring packet, 0: The pipe is idle.
* uint8_t * pipeDataBuffer

pipe data buffer backup when stall.
 uint32_t pipeDatal.en

pipe data length backup when stall.
* uint8_t pipeStall
1: The pipe is stall, 0: The pipe is not stall.

3.6.3.8.1.1 Field Documentation

3.6.3.8.1.1.1 uint8_t usb_device_cdc_ecm_pipe_t::ep

3.6.3.8.1.1.2 uint8_t usb_device_cdc_ecm_pipe_t::iisBusy
3.6.3.8.1.1.3 uint8_tx usb_device_cdc_ecm_pipe_t::pipeDataBuffer
3.6.3.8.1.1.4 uint32_t usb_device _cdc_ecm_pipe_t::pipeDatalLen
3.6.3.8.1.1.5 uint8_t usb_device_cdc_ecm_pipe_t::pipeStall

3.6.3.8.2 struct usb_device_cdc_ecm_struct_t

Data Fields

¢ usb_device handle handle

The handle of the USB device.
* usb_device_class_config_struct_t * config

The class configure structure.
¢ usb_device_interface_struct_t * commlInterfaceHandle

The CDC communication interface handle.
¢ usb_device_interface_struct_t x datalnterfaceHandle
The CDC data interface handle.
* usb_device_cdc_ecm_pipe_t bulkIn
The bulk in pipe for sending packet to host.
* usb_device_cdc_ecm_pipe_t bulkOut
The bulk out pipe for receiving packet from host.
* usb_device_cdc_ecm_pipe_t interruptln
The interrupt in pipe for notifying the device state to host.
* uint8_t configurationValue

The current configuration value.
¢ uint8_t interfaceNumber

The current interface number.

|
USB CDC Class driver

e uint8_t alternate
The alternate setting value of the interface.

-
USB CDC Class driver

|
USB CDC Class driver

3.6.3.8.2.1 Field Documentation
3.6.3.8.2.1.1 usb_device_handle usb_device _cdc_ecm_struct_t::handle
3.6.3.8.2.1.2 usb_device_class_config_struct_t« usb_device_cdc_ecm_struct_t::config

3.6.3.8.2.1.3 usb_device_interface_struct_tx usb_device _cdc_ecm_struct_t::comminterface-
Handle

3.6.3.8.2.1.4 usb_device_interface_struct_t+ usb_device cdc_ecm_struct_t::datalnterfaceHandle
3.6.3.8.2.1.5 usb_device_cdc_ecm_pipe_t usb_device_cdc_ecm_struct_t::bulkin

3.6.3.8.2.1.6 usb_device_cdc_ecm_pipe_t usb_device_cdc_ecm_struct_t::bulkOut

3.6.3.8.2.1.7 usb_device_cdc_ecm_pipe_t usb_device_cdc_ecm_struct_t::interruptin

3.6.3.8.2.1.8 uint8_t usb_device_cdc_ecm_struct_t::configurationValue

3.6.3.8.2.1.9 uint8 t usb_device cdc_ecm_struct_t::interfaceNumber

3.6.3.8.2.1.10 uint8_t usb_device cdc_ecm_struct_t::alternate

3.6.3.9 Macro Definition Documentation

3.6.3.9.1 #define USB_DEVICE_CDC_COMM_CLASS_CODE (0x02U)

3.6.3.9.2 #define USB_DEVICE_CDC_DATA_CLASS_CODE (0x0AU)

3.6.3.9.3 #define USB_DEVICE_CDC_ECM_CLASS_CODE (0x02U)

3.6.3.9.4 #define USB_DEVICE_CDC_ECM_SUBCLASS_CODE (0x06U)

3.6.3.9.5 #define USB_DEVICE_CDC_ECM_PROTOCOL_CODE (0x00U)

3.6.3.9.6 #define USB_DEVICE_CDC_NETWORK_CONNECTION (0x00U)

3.6.3.9.7 #define USB_DEVICE_CDC_CONNECTION_SPEED_CHANGE (0x2AU)

3.6.3.9.8 #define USB_DEVICE_CDC_ECM_SET_ETHERNET_MULTICAST_FILTER (0x40U)

3.6.3.9.9 #define USB_DEVICE_CDC_ECM_SET_ETHERNET _POWER_MANAGEMENT_PATTERN-
_FILTER (0x41U)

3.6.3.9.10 #define USB_DEVICE_CDC_ECM_GET_ETHERNET POWER_MANAGEMENT PATTER-
N_FILTER (0x42U)

3.6.3.9.11 #define USB_DEVICE_CDC_ECM_SET_ETHERNET_PACKET _FILTER (0x43U)

3.6.3.9.12 #define USB_DEVICE_CDC_ECM_GET_ETHERNET_STATISTIC (0x44U)

-
USB CDC Class driver

3.6.3.9.13 #define USB_DEVICE_CDC_ECM_PACKET_TYPE_MULTICAST _MASK (1U << 4)
3.6.3.9.14 #define USB_DEVICE_CDC_ECM_PACKET_TYPE_BROADCAST_MASK (1U << 3)
3.6.3.9.15 #define USB_DEVICE_CDC_ECM_PACKET _TYPE_DIRECTED_MASK (1U << 2)
3.6.3.9.16 #define USB_DEVICE_CDC_ECM PACKET_TYPE_ALL_MULTICAST MASK (1U << 1)
3.6.3.9.17 #define USB_DEVICE_CDC_ECM_PACKET_TYPE_PROMISCUOUS_MASK (1U << 0)
3.6.3.10 Enumeration Type Documentation

3.6.3.10.1 enum usb_device_cdc_ecm_event_t

Enumerator

kUSB_DeviceCdcEcmEventSendResponse This event indicates the bulk send transfer is complete
or cancelled etc.

kUSB_DeviceCdcEcmEventRecvResponse This event indicates the bulk receive transfer is com-
plete or cancelled etc.

kUSB_DeviceCdcEcmEventNotifyResponse This event indicates the interrupt in transfer is com-
plete or cancelled etc.

kUSB_DeviceCdcEcmEventSetEthernetMulticastFilters This event indicates the device received
the SET_ETHERNET_MULTICAST_FILTERS request.

kUSB_DeviceCdcEcmEventSetEthernetPowerManagementPatternFilter This event indicates the
device received the SET_ETHERNET_POWER_MANAGEMENT_PATTERN_FILTER re-
quest.

kUSB_DeviceCdcEcmEventGetEthernetPowerManagementPatternFilter This event indicates the
device received the GET_ETHERNET_POWER_MANAGEMENT_PATTERN_FILTER re-
quest.

kUSB_DeviceCdcEcmEventSetEthernetPacketFilter This event indicates the device received the
SET_ETHERNET_PACKET_FILTER request.

kUSB_DeviceCdcEcmEventGetEthernetStatistic This event indicates the device received the GET-
_ETHERNET_STATISTIC request.

3.6.3.11 Function Documentation

3.6.3.11.1 usb_status_t USB_DeviceCdcEcminit (uint8_t controllerid, usb_device_class_config_-
struct_t « config, class_handle_t « handle)

This function obtains a USB device handle according to the controller ID, initializes the CDC ECM class
with the class configure parameters and creates the mutex for each pipe.

|
USB CDC Class driver

Parameters

controllerld | The ID of the controller.

config | The user configuration structure of type usb_device_class_config_struct_t. The user
populates the members of this structure and passes the pointer of this structure into
this function.

handle | 1t is out parameter. The class handle of the CDC ECM class.

Returns

A USB error code or kStatus_ USB_ Success.

Return values

kStatus_USB_Success | The CDC ECM class is initialized successfully.

kStatus_USB_Busy | No CDC ECM device handle available for allocation.

kStatus_USB_AllocFail | The CDC ECM device handle allocation failure.

kStatus_USB_Invalid- | The USB device handle allocation failure.
Parameter

3.6.3.11.2 usb_status_t USB_DeviceCdcEcmDeinit (class_handle_t handle)

This function destroys the mutex for each pipe, deinitializes each endpoint of the CDC ECM class and
frees the CDC ECM class handle.

Parameters

handle | The class handle of the CDC ECM class.

Returns

A USB error code or kStatus_ USB_ Success.

Return values

kStatus_USB_Success | The CDC ECM class is de-initialized successfully.

-
USB CDC Class driver

kStatus_USB_Error | The endpoint deinitialization failure.

kStatus_USB_Invalid- | The CDC ECM device handle or the CDC ECM class handle is invalid.
Handle

kStatus_USB_Invalid- | The endpoint number of the CDC ECM class handle is invalid.
Parameter

3.6.3.11.3 usb_status_t USB_DeviceCdcEcmSend (class_handle_t handle, uint8_t ep, uint8_t %
buffer, uint32_t length)

This function checks whether the endpoint is sending packet, then it primes the endpoint with the buffer
address and the buffer length if the pipe is not busy. Otherwise, it ignores this transfer by returning an
error code.

Parameters

handle | The class handle of the CDC ECM class.

ep | The endpoint number of the transfer.

buffer | The pointer to the buffer to be transferred.

length | The length of the buffer to be transferred.

Returns

A USB error code or kStatus_ USB_ Success.

Return values

kStatus_USB_Success | Prime to send packet successfully.

kStatus_USB_Busy | The endpoint is busy in transferring.

kStatus_USB_Invalid- | The CDC ECM device handle or the CDC ECM class handle is invalid.
Handle

kStatus_USB_Controller- | The controller interface is invalid.
NotFound

Note

The function can only be called in the same context.

3.6.3.11.4 usb_status_t USB_DeviceCdcEcmRecv (class_handle_t handle, uint8_t ep, uint8_t x
buffer, uint32_t length)

This function checks whether the endpoint is receiving packet, then it primes the endpoint with the buffer
address and the buffer length if the pipe is not busy. Otherwise, it ignores this transfer by returning an

|
USB CDC Class driver

error code.

-
USB CDC Class driver

Parameters

handle | The class handle of the CDC ECM class.

ep | The endpoint number of the transfer.

buffer | The pointer to the buffer to be transferred.

length | The length of the buffer to be transferred.

Returns

A USB error code or kStatus_USB_Success.

Return values

kStatus_USB_Success | Prime to receive packet successfully.

kStatus_USB_Busy | The endpoint is busy in transferring.

kStatus_USB_Invalid- | The CDC ECM device handle or the CDC ECM class handle is invalid.
Handle

kStatus_USB_Controller- | The controller interface is invalid.
NotFound

Note

The function can only be called in the same context.

3.6.3.11.5 usb_status_t USB_DeviceCdcEcmEvent (void « handle, uint32_t event, void x param

)

This function responds to various events including the common device events and the class-specific events.
For class-specific events, it calls the class callback defined in the application to deal with the class-specific
event.

Parameters

handle | The class handle of the CDC ECM class.

event | The event type.

|
USB CDC Class driver

param | The class handle of the CDC ECM class.

Returns

A USB error code or kStatus_ USB_ Success.

Return values

kStatus_USB_Success | The CDC ECM class is de-initialized successfully.

kStatus_USB_Error | The configure structure of the CDC ECM class handle is invalid.

kStatus_USB_Invalid- | The CDC ECM device handle or the CDC ECM class handle is invalid.
Handle

Others | The error code returned by class callback in application.

-
USB CDC Class driver

3.6.4 USB CDC RNDIS driver

3.6.4.1 Overview

This section describes the programming interface of the USB CDC RNDIS driver. The USB CDC RND-
IS driver implements the various control messages and data message defined by Microsoft RNDIS. The
control messages is sent through the SEND_ENCAPSULATED_COMMAND and GET_ENCAPSULA-
TED_COMMAND CDC class request.

3.6.4.2 USB CDC RNDIS Device structures

The driver uses an instantiation of the usb_device _cdc_rndis_struct_t structure to maintain the current
state of a particular CDC RNDIS instance module driver.

The CDC RNDIS driver populates the structure members.

3.6.4.3 CDC RNDIS Initialization

The CDC RNDIS device is initialized with the configure structure of type usb_device_cdc_rndis_config-
_struct_t. It specifies the RNDIS request specific callback function and the maximum transmit size for
device. Besides, the device state, hardware state and the media status is set to their initial value.

3.6.4.4 CDC RNDIS Control Message

The control messages is sent through the SEND_ENCAPSULATED_COMMAND and GET_ENCAPS-
ULATED_COMMAND CDC class request. Take the RNDIS_INITIALIZE_MSG as an example, the host
sends a SEND_ENCAPSULATED_COMMAND request which carries the message type of RNDIS_IN-
ITTIALIZE_MSG to the device, then the device sends back a notification through interrupt pipe to indicate
that the response is available. Next the host sends a GET_ENCAPSULATED_COMMAND request which
carries the message type of RNDIS_INITIALIZE_CMPLT to the device to obtain the proper information.

Data Structures

* struct rndis_init_msg_struct_t
Define message structure for REMOTE_NDIS_INITIALIZE_MSG. More...

e struct rndis_init_cmplt_struct_t

Define message structure for REMOTE_NDIS_INITIALIZE_CMPLT. More...
struct rndis_halt_msg_struct_t

Define message structure for REMOTE_NDIS_HALT _MSG. More...
struct rndis_query_msg_struct_t

Define message structure for REMOTE_NDIS_QUERY_MSG. More...
struct rndis_query_cmplt_struct_t

Define message structure for REMOTE_NDIS_QUERY_CMPLT. More...
struct rndis_set_msg_struct_t

|
USB CDC Class driver

Define message structure for REMOTE_NDIS_SET_MSG. More...
* struct rndis_set_cmplt_struct_t
Define message structure for REMOTE_NDIS_SET_CMPLT. More...
* struct rndis_reset_msg_struct_t
Define message structure for REMOTE_NDIS_RESET_MSG. More...
e struct rndis_reset_cmplt_struct_t
Define message structure for REMOTE_NDIS_RESET_CMPLT. More...
* struct rndis_indicate_status_msg_struct_t
Define message structure for REMOTE_NDIS_INDICATE_STATUS_MSG. More...
* struct rndis_keepalive_msg_struct_t
Define message structure for REMOTE_NDIS_KEEPALIVE_MSG. More...
* struct rndis_keepalive_cmplt_struct_t
Define message structure for REMOTE_NDIS_KEEPALIVE_CMPLT. More...
* struct rndis_packet_msg_struct_t
Define message structure for RNDIS_PACKET_MSG. More...
¢ struct usb_device_cdc_rndis_struct_t
Define structure for CDC RNDIS device. More...
e struct usb_device_cdc_rndis_config_struct_t
Define structure for CDC RNDIS device. More...
* struct usb_device_cdc_rndis_request_param_struct_t
Define parameters for CDC RNDIS request. More...

Macros

* #define USB_DEVICE_CONFIG_CDC_RNDIS_MAX_INSTANCE (1U)

The maximum number of USB CDC RNDIS device instance.
 #define RNDIS_DF_CONNECTIONLESS (0x00000001U)

The Miniport driver type is connectionless.

* #define RNDIS_DF_CONNECTION_ORIENTED (0x00000002U)

The Miniport driver type is connection-oriented.

e #define RNDIS_SINGLE_PACKET_TRANSFER (0x00000001U)

The number of RNDIS data messages that the device can handle in a single transfer.

* #define RNDIS_PACKET_ALIGNMENT_FACTOR (0x00000003U)

The byte alignment that the device expects for each RNDIS message that is part of a multimessage transfer.
 #define RNDIS_NUM_OIDS_SUPPORTED (25U)

The number of OIDs the RNDIS device supported.
e #define RNDIS_VENDOR_ID (0OxFFFFFFU)

The vendor ID of the RNDIS device.
» #define RNDIS_NIC_IDENTIFIER_VENDOR (0x01U)

A single byte that the vendor assigns to identify a particular NIC.
» #define RNDIS_MAX_EXPECTED_COMMAND_SIZE (76U)

DatalLength : Data length of communication feature.

» #define RNDIS_MAX_EXPECTED_RESPONSE_SIZE (RNDIS_RESPONSE_QUERY_MSG._-
SIZE + (RNDIS_NUM_OIDS_SUPPORTED << 2U))
This is the maximum observed command size we get on control endpoint — Memory for commands is
allocated at initialization, instead of being dynamically allocated when command is received to avoid
memory fragmentation.

* #define RNDIS_ETHER_ADDR_SIZE (6U)

Size of Ethernet address.
 #define RNDIS_USB_HEADER_SIZE (44U)

-
USB CDC Class driver

Size of USB header for RNDIS packet.
» #define RNDIS_MULTICAST_LIST_SIZE (0U)

Maximum size of multicast address list.

Enumerations

* enum ndis_physical_medium_enum_t
Physical Medium Type definitions.

e enum rndis_state_enum_t {
RNDIS_UNINITIALIZED = 0U,
RNDIS_INITIALIZED,
RNDIS_DATA_INITIALIZED }

Define RNDIS device state.

e enum rndis_event_enum_t {
kUSB_DeviceCdcEventAppGetLinkSpeed,
kUSB_DeviceCdcEventAppGetSendPacketSize,
kUSB_DeviceCdcEventAppGetRecvPacketSize,
kUSB_DeviceCdcEventAppGetMacAddress,
kUSB_DeviceCdcEventAppGetLinkStatus,
kUSB_DeviceCdcEventAppGetMaxFrameSize }

Define RNDIS event.

RNDIS Control Message Type

See MSDN for details.

#define RNDIS_PACKET_MSG (0x00000001U)
#define RNDIS_INITIALIZE_MSG (0x00000002U)
#define RNDIS_HALT_ MSG (0x00000003U)

#define RNDIS_QUERY_MSG (0x00000004U)

#define RNDIS_SET_MSG (0x00000005U)

#define RNDIS_RESET_MSG (0x00000006U)

#define RNDIS_INDICATE_STATUS_MSG (0x00000007U)
#define RNDIS_KEEPALIVE_MSG (0x00000008U)
#define RNDIS_INITIALIZE_CMPLT (0x80000002U)
#define RNDIS_QUERY_CMPLT (0x80000004U)
#define RNDIS_SET_CMPLT (0x80000005U)

#define RNDIS_RESET_CMPLT (0x80000006U)
#define RNDIS_KEEPALIVE_CMPLT (0x80000008U)

Object Identifiers used by NdisRequest Query/Set Information

See MSDN for details.

#define NDIS_OID_GEN_SUPPORTED_LIST (0x00010101U)

#define NDIS_OID_GEN_HARDWARE_STATUS (0x00010102U)
#define NDIS_OID_GEN_MEDIA_SUPPORTED (0x00010103U)
#define NDIS_OID_GEN_MEDIA_IN_USE (0x00010104U)

#define NDIS_OID_GEN_MAXIMUM_LOOKAHEAD (0x00010105U)

|
USB CDC Class driver

#define NDIS_OID_GEN_MAXIMUM_FRAME_SIZE (0x00010106U)
#define NDIS_OID_GEN_LINK_SPEED (0x00010107U)

#define NDIS_OID_GEN_TRANSMIT_BUFFER_SPACE (0x00010108U)
#define NDIS_OID_GEN_RECEIVE_BUFFER_SPACE (0x00010109U)
#define NDIS_OID_GEN_TRANSMIT BLOCK_SIZE (0x0001010AU)
#define NDIS_OID_GEN_RECEIVE_BLOCK_SIZE (0x0001010BU)
#define NDIS_OID_GEN_VENDOR_ID (0x0001010CU)

#define NDIS_OID_GEN_VENDOR_DESCRIPTION (0x0001010DU)
#define NDIS_OID_GEN_CURRENT_PACKET_FILTER (0x0001010EU)
#define NDIS_OID_GEN_CURRENT_LOOKAHEAD (0x0001010FU)
#define NDIS_OID_GEN_DRIVER_VERSION (0x00010110U)

#define NDIS_OID_GEN_MAXIMUM_TOTAL_SIZE (0x000101110U)
#define NDIS_OID_GEN_PROTOCOL_OPTIONS (0x00010112U)

#define NDIS_OID_GEN_MAC_OPTIONS (0x00010113U)

#define NDIS_OID_GEN_MEDIA_CONNECT_STATUS (0x00010114U)
#define NDIS_OID_GEN_MAXIMUM_SEND_PACKETS (0x00010115U)
#define NDIS_OID_GEN_XMIT_OK (0x00020101U)

#define NDIS_OID_GEN_RCV_OK (0x00020102U)

#define NDIS_OID_GEN_XMIT_ERROR (0x00020103U)

#define NDIS_OID_GEN_RCV_ERROR (0x00020104U)

#define NDIS_OID_GEN_RCV_NO_BUFFER (0x00020105U)

#define NDIS_OID_GEN_DIRECTED_BYTES_XMIT (0x00020201U)
#define NDIS_OID_GEN_DIRECTED_FRAMES_XMIT (0x00020202U)
#define NDIS_OID_GEN_MULTICAST_BYTES_XMIT (0x00020203U)
#define NDIS_OID_GEN_MULTICAST FRAMES_XMIT (0x00020204U)
#define NDIS_OID_GEN_BROADCAST_BYTES_XMIT (0x00020205U)
#define NDIS_OID_GEN_BROADCAST_FRAMES_XMIT (0x00020206U)
#define NDIS_OID_GEN_DIRECTED_BYTES_RCYV (0x00020207U)
#define NDIS_OID_GEN_DIRECTED_FRAMES_RCYV (0x00020208U)
#define NDIS_OID_GEN_MULTICAST _BYTES_RCYV (0x00020209U)
#define NDIS_OID_GEN_MULTICAST_FRAMES_RCYV (0x0002020AU)
#define NDIS_OID_GEN_BROADCAST _BYTES_RCYV (0x0002020BU)
#define NDIS_OID_GEN_BROADCAST_FRAMES_RCYV (0x0002020CU)
#define NDIS_OID_GEN_RCV_CRC_ERROR (0x0002020DU)

#define NDIS_OID_GEN_TRANSMIT_QUEUE_LENGTH (0x0002020EU)
#define NDIS_OID_GEN_GET_TIME_CAPS (0x0002020FU)

#define NDIS_OID_GEN_GET_NETCARD_TIME (0x00020210U)

#define NDIS_OID_802_3 PERMANENT_ADDRESS (0x01010101U)
#define NDIS_OID_802_3 CURRENT_ADDRESS (0x01010102U)

#define NDIS_OID_802_3 MULTICAST_LIST (0x01010103U)

#define NDIS_OID_802_3 MAXIMUM_LIST_SIZE (0x01010104U)
#define NDIS_OID_802_3 MAC_OPTIONS (0x01010105U)

#define NDIS_802_3 MAC_OPTION_PRIORITY (0x00000001U)

#define NDIS_OID_802_3 RCV_ERROR_ALIGNMENT (0x01020101U)
#define NDIS_OID_802_3 XMIT_ONE_COLLISION (0x01020102U)
#define NDIS_OID_802_3 XMIT_MORE_COLLISIONS (0x01020103U)
#define NDIS_OID_802_3 XMIT_DEFERRED (0x01020201U)

#define NDIS_OID_802_3_XMIT_MAX_ COLLISIONS (0x01020202U)
#define NDIS_OID_802_3 RCV_OVERRUN (0x01020203U)

#define NDIS_OID_802_3 XMIT_UNDERRUN (0x01020204U)

#define NDIS_OID_802_3 XMIT_HEARTBEAT_FAILURE (0x01020205U)
#define NDIS_OID_802_3 XMIT_TIMES_CRS_LOST (0x01020206U)
#define NDIS_OID_802_3 XMIT_LATE_COLLISIONS (0x01020207U)
#define NDIS_OID_GEN_VENDOR_DRIVER_VERSION (0x00010116U)
#define NDIS_OID_GEN_SUPPORTED_GUIDS (0x00010117U)

#define NDIS_OID_GEN_NETWORK_LAYER_ADDRESSES (0x00010118U) /* Set only */

-
USB CDC Class driver

#define NDIS_OID_GEN_TRANSPORT_HEADER_OFFSET (0x00010119U) /* Set only */
#define NDIS_OID_GEN_MACHINE_NAME (0x0001021AU)

#define NDIS_OID_GEN_RNDIS_CONFIG_PARAMETER (0x0001021BU) /* Set only */
#define NDIS_OID_GEN_VLAN_ID (0x0001021CU)

#define NDIS_OID_GEN_MEDIA_CAPABILITIES (0x00010201U)

#define NDIS_OID_GEN_PHYSICAL_MEDIUM (0x00010202U)

NDIS Hardware status codes for OID_ GEN_HARDWARE_STATUS

See MSDN for details.
¢ #define NDIS_ HARDWARE_STATUS_READY (0x00000000U)

Available and capable of sending and receiving data over the wire.

#define NDIS_ HARDWARE_STATUS_INITIALIZING (0x00000001U)
Initializing.
#define NDIS_ HARDWARE_STATUS_RESET (0x00000002U)

Resetting.
#define NDIS_HARDWARE_STATUS_CLOSING (0x00000003U)

Closing.
#define NDIS_HARDWARE_STATUS_NOT_READY (0x00000004U)
Not ready.

NDIS media types that the NIC can support

See MSDN for details.

 #define NDIS_MEDIUMS802_3 (0x00000000U)
Ethernet (802.3) is not supported for NDIS 6.0 drivers.

#define NDIS_MEDIUMS802_5 (0x00000001U)
Token Ring (802.5) is not supported for NDIS 6.0 drivers.

#define NDIS_MEDIUM_FDDI (0x00000002U)
FDDI is not supported on Windows® Vista.

#define NDIS_MEDIUM_WAN (0x00000003U)
WAN.

#define NDIS_MEDIUM_LOCAL_TALK (0x00000004U)
LocalTalk.

#define NDIS_ MEDIUM_DIX (0x00000005U)
DEC/Intel/Xerox (DIX) Ethernet.

#define NDIS_MEDIUM_ARCNET_RAW (0x00000006U)
ARCNET (raw) is not supported on Windows Vista.

#define NDIS_MEDIUM_ARCNETS878_2 (0x00000007U)
ARCNET (878.2) is not supported on Windows Vista.

#define NDIS_MEDIUM_ATM (0x00000008U)
ATM is not supported for NDIS 6.0 drivers.

#define NDIS_MEDIUM_NATIVES802_11 (0x00000009U)
Native 802.11.

#define NDIS_MEDIUM_WIRELESS_WAN (0x0000000AU)
Various types of NdisWirelessXxx media Note This media type is not available for use beginning with

Windows Vista.
#define NDIS_MEDIUM_IRDA (0x0000000BU)

|
USB CDC Class driver

Infrared (IrDA)
#define NDIS_ MEDIUM_COWAN (0x0000000CU)

Connection-oriented WAN.

#define NDIS_MEDIUM1394 (0x0000000DU)

IEEE 1394 (firewire) bus.
#define NDIS_MEDIUM_BPC (0x0000000EU)

Broadcast PC network.
#define NDIS_MEDIUM_INFINI_BAND (0x0000000FU)

InfiniBand network.
#define NDIS_MEDIUM_TUNNEL (0x00000010U)

Tunnel network.

#define NDIS_MEDIUM_LOOPBACK (0x00000011U)
NDIS loopback network.

NDIS Packet Filter Bits for OID_GEN_CURRENT_PACKET_FILTER.

See MSDN for details.

e #define NDIS_PACKET_TYPE_DIRECTED (0x0001U)

Directed packets.
 #define NDIS_PACKET_TYPE_MULTICAST (0x0002U)

Multicast address packets sent to addresses in the multicast address list.

 #define NDIS_PACKET_TYPE_ALL_MULTICAST (0x0004U)

All multicast address packets, not just the ones enumerated in the multicast address list.

* #define NDIS_PACKET_TYPE_BROADCAST (0x0008U)

Broadcast packets.

* #define NDIS_PACKET_TYPE_SOURCE_ROUTING (0x0010U)

All source routing packets.

e #define NDIS_PACKET_TYPE_PROMISCUOUS (0x0020U)

Specifies all packets.
* #define NDIS_PACKET_TYPE_SMT (0x0040U)

SMT packets that an FDDI NIC receives.
 #define NDIS_PACKET_TYPE_ALL_LOCAL (0x0080U)

All packets sent by installed protocols and all packets indicated by the NIC that is identified by a given

NdisBindingHandle.
* #define NDIS_PACKET_TYPE_MAC_FRAME (0x8000U)

NIC driver frames that a Token Ring NIC receives.
* #define NDIS_PACKET_TYPE_FUNCTIONAL (0x4000U)

Functional address packets sent to addresses included in the current functional address.

 #define NDIS_PACKET_TYPE_ALL_FUNCTIONAL (0x2000U)

All functional address packets, not just the ones in the current functional address.

* #define NDIS_PACKET_TYPE_GROUP (0x1000U)

Packets sent to the current group address.

RNDIS status values

See MSDN for details.
e #define RNDIS_STATUS_SUCCESS (0x00000000U)

USB CDC Class driver

The requested operation completed successfully.

#define RNDIS_STATUS_NOT_RECOGNIZED (0x00010001U)

The underlying driver does not support the requested operation.

#define RNDIS_STATUS_NOT_SUPPORTED (0xC00000BBU)

Unsupported request error (equivalent to STATUS_NOT_SUPPORTED,).
#define RNDIS_STATUS_NOT_ACCEPTED (0x00010003U)

The underlying driver attempted the requested operation, usually a set, on its NIC but it was aborted by

the Netcard.
#define RNDIS_STATUS_FAILURE (0xC0000001U)

This value usually is a non specific default, returned when none of the more specific NDIS_STATUS_XXX
causes the underlying driver to fail the request.

#define RNDIS_STATUS_RESOURCES (0xC000009AU)

The request can’t be satisfied due to a resource shortage.

#define RNDIS_STATUS_CLOSING (0xC0010002U)

The underlying driver failed the requested operation because a close is in progress.

#define RNDIS_STATUS_CLOSING_INDICATING (0xC001000EU)

The underlying driver failed the requested operation because indicating a close is in progress.

#define RNDIS_STATUS_RESET_IN_PROGRESS (0xC001000DU)

The underlying NIC driver cannot satisfy the request at this time because it is currently resetting the

Netcard.
#define RNDIS_STATUS_INVALID_LENGTH (0xC0010014U)

The value specified in the InformationBufferLength member of the NDIS_REQUEST-structured buffer at

NdisRequest does not match the requirements for the given OID_XXX code.
#define RNDIS_STATUS_BUFFER_TOO_SHORT (0xC0010016U)

The information buffer is too small.

#define RNDIS_STATUS_INVALID_DATA (0xC0010015U)
The data supplied at InformationBuffer in the given NDIS_REQUEST structure is invalid for the given

OID XXX code.
#define RNDIS_STATUS_INVALID_OID (0xC0010017U)

The OID_XXX code specified in the OID member of the NDIS_REQUEST-structured buffer at NdisRequest
is invalid or unsupported by the underlying driver.

#define RNDIS_STATUS_MEDIA_CONNECT (0x4001000BU)

Device is connected to network medium.

#define RNDIS_STATUS_MEDIA_DISCONNECT (0x4001000CU)

Device is disconnected from network medium.

RNDIS Response sizes

Definitions of the size of response of various message types.

#define RNDIS_RESPONSE_INITIALIZE _MSG_SIZE (520)

Response size of INITIALIZE_MSG.
#define RNDIS_RESPONSE_QUERY_MSG_SIZE (24U)

Response size of QUERY_MSG.
#define RNDIS_RESPONSE_SET_MSG_SIZE (16U)

Response size of SET_MSG.
#define RNDIS_RESPONSE_RESET_MSG_SIZE (16U)

Response size of RESET_MSG.
#define RNDIS_RESPONSE_KEEPALIVE_MSG_SIZE (16U)

Response size of KEEPALIVE_MSG.

|
USB CDC Class driver

RNDIS device connection status

Definitions of the status value of NIC connection.

e #define NDIS_MEDIA_STATE_CONNECTED (0x00000000U)

The network connection has been lost.

 #define NDIS_MEDIA_STATE_DISCONNECTED (0x00000001U)

The network connection has been restored.

* #define NDIS_MEDIA_STATE_UNKNOWN (0OxFFFFFFFFU)

The initial value of the connection status.

Reserved for connection oriented devices. Set value to zero.

* #define RNDIS_AF_LIST_OFFSET (0x00000000U)
* #define RNDIS_AF_LIST_SIZE (0x00000000U)

USB CDC ACM Class Driver

e usb_status_t USB_DeviceCdcRndisInit (class_handle_t classHandle, usb_device cdc_rndis_-
config_struct_t xconfig, usb_device_cdc_rndis_struct_t *xhandle)

Initializes the USB CDC RNDIS device.
e usb_status_t USB_DeviceCdcRndisDeinit (usb_device_cdc_rndis_struct_t xhandle)

Deinitializes the USB CDC RNDIS device.
* usb_status_t USB_DeviceCdcRndisMessageSet (usb_device_cdc_rndis_struct_t xhandle, uint8_-

t sxxmessage, uint32_t xlen)
Responds to kUSB_DeviceCdcEventSendEncapsulatedCommand.
* usb_status_t USB_DeviceCdcRndisMessageGet (usb_device_cdc_rndis_struct_t xhandle, uint8_-
t sxmessage, uint32_t xlen)
Responds to kUSB_DeviceCdcEventGetEncapsulatedResponse.
e usb_status_t USB_DeviceCdcRndisResetCommand (usb_device_cdc_rndis_struct_t xhandle,
uint8_t *+xmessage, uint32_t xlen)
Soft reset the RNDIS device.
e usb_status_t USB_DeviceCdcRndisHaltCommand (usb_device_cdc_rndis_struct_t xhandle)
Halts the RNDIS device.

-
USB CDC Class driver

3.6.4.5 Data Structure Documentation
3.6.4.5.1 struct rndis_init_msg_struct_t
3.6.4.5.2 struct rndis_init_cmplt_struct_t
3.6.4.5.3 struct rndis_halt_msg_struct_t
3.6.4.5.4 struct rndis_query_msg_struct_t
3.6.4.5.5 struct rndis_query_cmplt_struct_t
3.6.4.5.6 struct rndis_set_msg_struct_t

3.6.4.5.7 struct rndis_set_cmplt_struct_t
3.6.4.5.8 struct rndis_reset_msg_struct_t
3.6.4.5.9 struct rndis_reset_cmplt_struct_t
3.6.4.5.10 struct rndis_indicate_status_msg_struct_t
3.6.4.5.11 struct rndis_keepalive_msg_struct_t
3.6.4.5.12 struct rndis_keepalive_cmplt_struct_t
3.6.4.5.13 struct rndis_packet_msg_struct_t
3.6.4.5.14 struct usb_device_cdc_rndis_struct_t

Data Fields

e class_handle_t cdcAcmHandle

USB CDC ACM class handle.
e uint8_t * rndisCommand
The pointer to the buffer of the RNDIS request.
e uint8_t * responseData
The pointer to the buffer of the RNDIS response.
* uint32_t rndisHostMaxTxSize
The maximum transmit size in byte of the host.
* uint32_t rndisDevMaxTxSize
The maximum transmit size in byte of the device.
e uint32_t rndisHwState
The hardware state of the RNDIS device.
¢ uint32_t rndisPacketFilter
The packet filter of the RNDIS device.
e uint32_t rndisMediaConnectStatus
The media connection status of the RNDIS device.

|
USB CDC Class driver

e uint32_t numFramesTxOk

The number of the frames sent successfully.
e uint32_t numFramesRxOk

The number of the frames received successfully.
e uint32_t numFramesTxError

The number of the frames sent failed.
e uint32_t numFramesRxError

The number of the frames received failed.
e uint32_t numRecvFramesMissed

The number of the frames missed to receive.
 uint32_t numRecvFramesAlignmentError

The number of the frames received that has alignment error.
e uint32_t numFramesTxOneCollision

The number of the frames sent that has one collision.
 uint32_t numFramesTxManyCollision

The number of the frames sent that has many collision.
e uint8_t rndisDeviceState

The RNDIS device state.
¢ osa_mutex_handle_t statusMutex

The mutex to guarantee the consistent access to the device state.
* usb_status_t(x rndisCallback)(class_handle_t handle, uint32_t event, void *param)

The callback function provided by application for the RNDIS request.

-
USB CDC Class driver

3.6.4.5.14.1 Field Documentation

3.6.4.5.14.1.1 class_handle_t usb_device_cdc_rndis_struct t::cdcAcmHandle

3.6.4.5.14.1.2 uint8_tx usb_device _cdc_rndis_struct_t::rndisCommand

3.6.4.5.14.1.3 uint8_tx usb_device_cdc_rndis_struct_t::responseData

3.6.4.5.14.1.4 uint32_t usb_device cdc _rndis_struct_t::rndisHostMaxTxSize

3.6.4.5.14.1.5 uint32_t usb _device cdc rndis_struct_t::rndisDevMaxTxSize

3.6.4.5.14.1.6 uint32_t usb_device_cdc_rndis_struct_t::rndisHwState

3.6.4.5.14.1.7 uint32_t usb_device_cdc_rndis_struct_t::rndisPacketFilter

3.6.4.5.14.1.8 uint32_t usb_device _cdc_rndis_struct_t::rndisMediaConnectStatus

3.6.4.5.14.1.9 uint32_t usb_device _cdc_rndis_struct_t::numFramesTxOk

3.6.4.5.14.1.10 uint32_t usb_device _cdc_rndis_struct_t::numFramesRxOk

3.6.4.5.14.1.11 uint32_t usb_device cdc _rndis_struct_t::numFramesTxError

3.6.4.5.14.1.12

3.6.4.5.14.1.13

3.6.4.5.14.1.14

3.6.4.5.14.1.15

3.6.4.5.14.1.16

3.6.4.5.14.1.17

3.6.4.5.14.1.18

3.6.4.5.14.1.19

uint32_t usb_device_cdc_rndis_struct_t::
uint32_t usb_device_cdc_rndis_struct_t::
uint32_t usb_device _cdc_rndis_struct_t::
uint32_t usb_device cdc_rndis_struct t::

uint32_t usb_device cdc _rndis_struct t::

numFramesRxError
numRecvFramesMissed
numRecvFramesAlignmentError
numFramesTxOneCollision

numFramesTxManyCollision

uint8_t usb_device cdc_rndis_struct_t::rndisDeviceState

osa_mutex_handle t usb device cdc rndis_struct_t::statusMutex

usb_status_t(x usb_device_cdc_rndis_struct_t::rndisCallback)(class_handle_t

handle, uint32_t event, void xparam)

3.6.4.5.15 struct usb_device_cdc_rndis_config_struct_t

Data Fields

e uint32_t devMaxTxSize

The maximum transmit size in byte of the device.
* usb_status_t(* rndisCallback)(class_handle_t handle, uint32_t event, void *param)

The callback function provided by application for the RNDIS request.

|
USB CDC Class driver

3.6.4.5.15.1 Field Documentation
3.6.4.5.15.1.1 uint32_t usb_device_cdc_rndis_config_struct_t::devMaxTxSize
This value is configured by application.

3.6.4.5.15.1.2 usb_status_t(x usb_device_cdc_rndis_config_struct_t::rndisCallback)(class_-
handle_t handle, uint32_t event, void «param)

3.6.4.5.16 struct usb_device cdc_rndis_request_param_struct_t

Data Fields

e uint8_t * buffer

The pointer to the buffer for RNDIS request.
e uint32_t length

The length of the buffer for RNDIS request.
3.6.4.5.16.1 Field Documentation
3.6.4.5.16.1.1 uint8_tx usb_device_cdc_rndis_request_param_struct_t::buffer
3.6.4.5.16.1.2 uint32_t usb_device_cdc_rndis_request_param_struct_t::length

3.6.4.6 Macro Definition Documentation

3.6.4.6.1 #define NDIS_MEDIUM802_3 (0x00000000U)

Note NDIS 5.x Miniport drivers that conform to the IEEE® 802.11 interface must use this media type.
For more information about the 802.11 interface, see 802.11 Wireless LAN Miniport Drivers.

3.6.4.6.2 #define NDIS_MEDIUM802_5 (0x00000001U)
3.6.4.6.3 #define NDIS_MEDIUM_FDDI (0x00000002U)
3.6.4.6.4 #define NDIS_MEDIUM_ARCNET_RAW (0x00000006U)
3.6.4.6.5 #define NDIS_MEDIUM_ARCNET878_2 (0x00000007U)
3.6.4.6.6 #define NDIS_MEDIUM_ATM (0x00000008U)

3.6.4.6.7 #define NDIS_MEDIUM_NATIVE802_11 (0x00000009U)

This media type is used by Miniport drivers that conform to the Native 802.11 interface. For more in-
formation about this interface, see Native 802.11 Wireless LAN Miniport Drivers. Note: Native 802.11
interface is supported in NDIS 6.0 and later versions

-
USB CDC Class driver

3.6.4.6.8 #define NDIS_MEDIUM_BPC (0x0000000EU)

3.6.4.6.9 #define NDIS_MEDIUM_INFINI_BAND (0x0000000FU)
3.6.4.6.10 #define NDIS_MEDIUM_TUNNEL (0x00000010U)
3.6.4.6.11 #define NDIS_MEDIUM_LOOPBACK (0x00000011U)
3.6.4.6.12 #define NDIS_PACKET_TYPE_DIRECTED (0x0001U)

Directed packets contain a destination address equal to the station address of the NIC.

3.6.4.6.13 #define NDIS_PACKET_TYPE_MULTICAST (0x0002U)
A protocol driver can receive Ethernet (802.3) multicast packets or Token Ring (802.5) functional address

packets by specifying the multicast or functional address packet type. Setting the multicast address list or
functional address determines which multicast address groups the NIC driver enables.

3.6.4.6.14 #define NDIS_PACKET _TYPE_BROADCAST (0x0008U)
3.6.4.6.15 #define NDIS_PACKET_TYPE_SOURCE_ROUTING (0x0010U)

If the protocol driver sets this bit, the NDIS library attempts to act as a source routing bridge.

3.6.4.6.16 #define NDIS_PACKET_TYPE_PROMISCUOUS (0x0020U)
3.6.4.6.17 #define NDIS_PACKET_TYPE_SMT (0x0040U)

3.6.4.6.18 #define NDIS_PACKET_TYPE_MAC_FRAME (0x8000U)
3.6.4.6.19 #define NDIS_PACKET_TYPE_GROUP (0x1000U)

3.6.4.6.20 #define RNDIS_STATUS_SUCCESS (0x00000000U)
3.6.4.6.21 #define RNDIS_STATUS_NOT_RECOGNIZED (0x00010001U)
3.6.4.6.22 #define RNDIS_STATUS_NOT_SUPPORTED (0xC00000BBU)

3.6.4.6.23 #define RNDIS_STATUS_NOT_ACCEPTED (0x00010003U)

For example, an attempt to set too many multicast addresses might cause the return of this value.

|
USB CDC Class driver

3.6.4.6.24 #define RNDIS_STATUS_RESOURCES (0xC000009AU)

Usually, this return indicates that an attempt to allocate memory was unsuccessful, but it does not neces-
sarily indicate that the same request, submitted later, it is aborted for the same reason.

3.6.4.6.25 #define RNDIS_STATUS_CLOSING (0xC0010002U)
3.6.4.6.26 #define RNDIS_STATUS_CLOSING_INDICATING (0xC001000EU)
3.6.4.6.27 #define RNDIS_STATUS_INVALID_LENGTH (0xC0010014U)

If the information buffer is too small, the BytesNeeded member contains the correct value for Information-

BufferLength on return from NdisRequest.

3.6.4.6.28

3.6.4.6.29

3.6.4.6.30

3.6.4.6.31

3.6.4.6.32

3.6.4.6.33

3.6.4.6.34

3.6.4.6.35

3.6.4.6.36

3.6.4.6.37

3.6.4.6.38

3.6.4.6.39

3.6.4.6.40

3.6.4.6.41

#define RNDIS_STATUS_BUFFER_TOO_SHORT (0xC0010016U)
#define RNDIS_STATUS_MEDIA_CONNECT (0x4001000BU)
#define RNDIS_STATUS_MEDIA_DISCONNECT (0x4001000CU)
#define RNDIS_RESPONSE_INITIALIZE_MSG_SIZE (52U)
#define RNDIS_RESPONSE_QUERY_MSG_SIZE (24U)

#define RNDIS_RESPONSE_SET_MSG_SIZE (16U)

#define RNDIS_RESPONSE_RESET_MSG_SIZE (16U)

#define RNDIS_RESPONSE_KEEPALIVE_MSG_SIZE (16U)
#define RNDIS_DF_CONNECTIONLESS (0x00000001U)

#define RNDIS_DF_CONNECTION_ORIENTED (0x00000002U)
#define RNDIS_SINGLE_PACKET_TRANSFER (0x00000001U)
#define RNDIS_PACKET_ALIGNMENT_FACTOR (0x00000003U)
#define RNDIS_NUM_OIDS_SUPPORTED (25U)

#define RNDIS_VENDOR_ID (OxFFFFFFU)

Vendors without an IEEE-registered code should use the value OxFFFFFF.

3.6.4.6.42

3.6.4.6.43

3.6.4.6.44

3.6.4.6.45

3.6.4.6.46

3.6.4.6.47

3.6.4.6.48

USB CDC Class driver
#define NDIS_MEDIA_STATE_CONNECTED (0x00000000U)
#define NDIS_MEDIA_STATE_DISCONNECTED (0x00000001U)
#define NDIS_MEDIA_STATE_UNKNOWN (0xFFFFFFFFU)
#define RNDIS_MAX_EXPECTED_COMMAND_SIZE (76U)
#define RNDIS_ETHER_ADDR_SIZE (6U)
#define RNDIS_USB_HEADER_SIZE (44U)

#define RNDIS_MULTICAST _LIST SIZE (0U)

3.6.4.7 Enumeration Type Documentation

3.6.4.7.1

enum ndis_physical_medium_enum_t

Used with OID_GEN_PHYSICAL_MEDIUM.

3.6.4.7.2 enum rndis_state_enum_t

See MSDN for details.

Enumerator

RNDIS _UNINITIALIZED Following bus-level initialization, the device is said to be in the RN-
DIS-uninitialized state. If the device receives a REMOTE_NDIS _HALT MSG, a bus-level
disconnects, or a hard-reset at any time, it forces the device to the RNDIS-uninitialized state.

RNDIS INITIALIZED After the device receives a REMOTE_NDIS_INITIALIZE MSG and re-
sponds with a REMOTE_NDIS_INITIALIZE_CMPLT with a status of RNDIS_STATUS_S-
UCCESS, the device enters the RNDIS-initialized state. If the device is in the RNDIS-data-
initialized state when it receives a REMOTE_NDIS_SET_MSG specifying a zero filter value
for OID_GEN_CURRENT_PACKET_ FILTER, this event forces the device back to the RNDI-
S-initialized state.

RNDIS DATA_INITIALIZED 1If the device receives a REMOTE_NDIS_SET_MSG that specifies
a non-zero filter value for OID_GEN_ CURRENT PACKET_FILTER, the device enters the R-
NDIS-data-initialized state.

3.6.4.7.3 enum rndis_event_enum_t

Enumerator

kUSB_DeviceCdcEventAppGetLinkSpeed This event indicates to get the link speed of the Ethernet.

|
USB CDC Class driver

kUSBTDeviceCchventAppGetSemlPacketSize This event indicates to get the USB send packet
kUSBSj;.eviceCchventAppGetRechacketSize This event indicates to get the USB receive packet
kUSBSiZS(‘eviceCchventAppGetMacAddress This event indicates to get the mac address of the de-
kUSl;]j;fe;viceCchventAppGetLinkStatus This event indicates to get the link status of the Ethernet.

kUSB_DeviceCdcEventAppGetMaxFrameSize This event indicates to get the Ethernet maximum
frame size.

3.6.4.8 Function Documentation

3.6.4.8.1 usb_status_t USB_DeviceCdcRndislInit (class_handle_t classHandle,
usb_device_cdc_rndis_config_struct_t x config, usb_device_cdc_rndis_struct_t xx
handle)

This function sets the initial value for RNDIS device state, hardware state and media connection status,
configures the maximum transmit size and the RNDIS request callback according to the user configuration
structure. It also creates the mutex for accessing the device state.

Parameters

classHandle | The class handle of the CDC ACM class.

config | The configure structure of the RNDIS device.

handle | This is a out parameter. It points to the address of the USB CDC RNDIS device
handle.

Returns

A USB error code or kStatus_ USB_ Success.

Return values

kStatus_USB_Success | Initialize the RNDIS device successfully.

kStatus_USB_Error | Fails to allocate for the RNDIS device handle.

3.6.4.8.2 usb_status_t USB_DeviceCdcRndisDeinit (usb_device_cdc_rndis_struct_t « handle)

This function destroys the mutex of the device state and frees the RNDIS device handle.

Parameters

USB CDC Class driver

handle | This is a pointer to the USB CDC RNDIS device handle.

Returns

A USB error code or kStatus_ USB_ Success.

Return values

kStatus_ USB_Success

De-Initialize the RNDIS device successfully.

kStatus_USB_Error

Fails to free the RNDIS device handle.

kStatus_USB_Invalid-
Handle

The RNDIS device handle is invalid.

3.6.4.8.3 usb_status_t USB_DeviceCdcRndisMessageSet (usb_device_cdc_rndis_struct_t *
handle, uint8_t xx message, uint32_t x len)

This function checks the message length to see if it exceeds the maximum of the RNDIS request size and
sets the device state or prepares notification for various message type accordingly.

Parameters

handle | This is a pointer to the USB CDC RNDIS device handle.

message | This is a pointer to the address of the RNDIS request buffer.

len | This is a pointer to the variable of data size for the RNDIS request.

Returns

A USB error code or kStatus_ USB_ Success.

Return values

kStatus_ USB_Success

Responds to the host successfully.

kStatus_USB_Error

The message length exceeds the maximum of the RNDIS request.

kStatus_ USB_Invalid-
Handle

The RNDIS device handle is invalid.

|
USB CDC Class driver

3.6.4.8.4 usb_status_t USB_DeviceCdcRndisMessageGet (usb_device_cdc_rndis_struct_t x
handle, uint8_t xx message, uint32_t x« len)

This function prepares the response for various message type which is stored in SendEncapsulated-
Command.

-
USB CDC Class driver

Parameters

handle | This is a pointer to the USB CDC RNDIS device handle.

message | This is an out parameter. It is a pointer to the address of the RNDIS response buffer.

len | This is an out parameter. It is a pointer to the variable of data size for the RNDIS
response.

Returns

A USB error code or kStatus_ USB_ Success.

Return values

kStatus_USB_Success | Prepares for the response to the host successfully.

kStatus_USB_Invalid- | The message type is not supported.
Request

kStatus_USB_Invalid- | The RNDIS device handle is invalid.
Handle

3.6.4.8.5 usb_status_t USB_DeviceCdcRndisResetCommand (usb_device_cdc_rndis_struct_t x
handle, uint8_t xx message, uint32_t x len)

This function is called to soft reset the RNDIS device.

Parameters

handle | This is a pointer to the USB CDC RNDIS device handle.

message | This is an out parameter. It is a pointer to the address of the RNDIS response buffer.

len | This is an out parameter. It is a pointer to the variable of data size for the RNDIS
response.

Returns

A USB error code or kStatus_ USB_ Success.

Return values

|
USB CDC Class driver

kStatus_USB_Success | Prepares for the response to the host successfully.

kStatus_USB_Invalid- | The RNDIS device handle is invalid.
Handle

3.6.4.8.6 usb_status_t USB_DeviceCdcRndisHaltCommand (usb_device_cdc_rndis_struct_t *
handle)

This function is called to halt the RNDIS device.

Parameters

handle | This is a pointer to the USB CDC RNDIS device handle.

Returns

A USB error code or kStatus_USB_Success.

Return values

kStatus_USB_Success | Halt the RNDIS device successfully.

kStatus_USB_Invalid- | The RNDIS device handle is invalid.
Handle

-
USB DFU Class driver

3.7 USB DFU Class driver
3.7.1 Overview

Data Structures

e struct usb_device_dfu_struct_t
The DFU device class status structure. More...

Macros

* #define USB_DEVICE_CONFIG_DFU_CLASS_CODE (0xFEU)

The class code of the DFU class.
* #define USB_DEVICE_DFU_DETACH (0x00U)

DFU class request.

Enumerations

e enum usb_device_dfu_event_t {
kUSB_DeviceDfuEventDetach = 0x01U,
kUSB_DeviceDfuEventDownLoad,
kUSB_DeviceDfuEventUpLoad,
kUSB_DeviceDfuEventGetStatus,
kUSB_DeviceDfuEventClearStatus,
kUSB_DeviceDfuEventGetState,
kUSB_DeviceDfuEventAbort }

Available common EVENT types in dfu class callback.

Functions

* usb_status_t USB_DeviceDfulnit (uint8_t controllerld, usb_device_class_config_struct_t xconfig,
class_handle_t xhandle)

Initialize the dfu class.
e usb_status_t USB_DeviceDfuDeinit (class_handle_t handle)

De-initialize the device dfu class.
* usb_status_t USB_DeviceDfuEvent (void xhandle, uint32_t event, void *param)

Handle the event passed to the dfu class.

|
USB DFU Class driver

3.7.2 Data Structure Documentation

3.7.2.1 struct usb_device _dfu_struct _t

Data Fields

¢ usb_device handle handle

The device handle.
* usb_device_class_config_struct_t *x configStruct

The configuration of the class.
3.7.2.1.0.1 Field Documentation

3.7.2.1.0.1.1 usb_device_class_config_struct_t« usb_device_dfu_struct_t::configStruct

3.7.3 Enumeration Type Documentation

3.7.3.1 enum usb_device dfu_event_t

Enumerator

kUSB_DeviceDfuEventDetach Detach request.
kUSB_DeviceDfuEventDownLoad Download request.
kUSB_DeviceDfuEventUpLoad Upload request.
kUSB_DeviceDfuEventGetStatus Get status request.
kUSB_DeviceDfuEventClearStatus Clear status request.
kUSB_DeviceDfuEventGetState Get state request.
kUSB_DeviceDfuEventAbort Abort request.

3.7.4 Function Documentation

3.7.4.1 usb_status_t USB_DeviceDfulnit (uint8_t controllerld, usb_device_class_config_-
struct_t x config, class_handle_t x handle)

This function is used to initialize the dfu class. This function only can be called by USB_DeviceClasslInit.

Parameters

in controllerld | The controller id of the USB IP. Please refer to the enumeration usb_-
controller_index_t.

USB DFU Class driver
in config | The class configuration information.
out handle | Itis out parameter, is used to return pointer of the dfu class handle to the
caller.
Returns

A USB error code or kStatus_ USB_ Success.

3.7.4.2 usb_status_t USB_DeviceDfuDeinit (class_handle_t handle)

The function de-initializes the device dfu class. This function only can be called by USB_DeviceClass-
Deinit.

Parameters
in handle | The dfu class handle got from usb_device_class_config_struct_t::class-
Handle.
Returns

A USB error code or kStatus_ USB_ Success.

3.7.4.3 usb_status_t USB_DeviceDfuEvent (void x handle, uint32_t event, void x param)

This function handles the event passed to the dfu class. This function can only be called by USB_Device-
ClassEvent.

Parameters
in handle | The dfu class handle, got from the usb_device_class_config_struct_t-
::classHandle.
in event | The event codes. Please refer to the enumeration usb_device_class_-
event_t.
in, out param | The param type is determined by the event code.
Returns

A USB error code or kStatus_USB_ Success.

|
USB DFU Class driver

Return values

kStatus_USB_Success | Free device handle successfully.

kStatus_USB_Invalid- | The device handle not be found.
Parameter

kStatus_USB_Invalid- | The request is invalid, and the control pipe will be stalled by the caller.
Request

-
USB AUDIO Class driver

3.8 USB AUDIO Class driver
3.8.1 Overview

The MCUXpresso SDK USB stack provides support for USB Audio Class 1.0 and USB Audio Class 2.0.

Data Structures

* struct usb_device_audio_entity_struct_t

The audio device class-specific information. More...
* struct usb_device_audio_entities_struct_t

The audio device class-specific information list. More...
e struct usb_device_audio_struct_t

The audio device class status structure. More...

Enumerations

e enum usb_device_audio_event_t {
kUSB_DeviceAudioEventStreamSendResponse = 0x01U,
kUSB_DeviceAudioEventStreamRecvResponse,
kUSB_DeviceAudioEventControlSendResponse }

Available common EVENT types in audio class callback.

USB Audio class codes

#define USB_DEVICE_CONFIG_AUDIO_CLASS_CODE (0x01U)
Audio device class code.
e #define USB_DEVICE_AUDIO_STREAM_SUBCLASS (0x02U)
Audio device subclass code.
¢ #define USB_DEVICE_AUDIO_CONTROL_SUBCLASS (0x01U)
e #define USB_DESCRIPTOR_TYPE_AUDIO_CS_INTERFACE (0x24U)

Audio device class-specific descriptor type.
 #define USB_DESCRIPTOR_TYPE_AUDIO_CS_ENDPOINT (0x25U)
* #define USB_DESCRIPTOR_SUBTYPE_AUDIO_CONTROL_HEADER (0x01U)

Audio device class-specific control interface descriptor subtype.

* #define USB_DESCRIPTOR_SUBTYPE_AUDIO_ CONTROL _INPUT_TERMINAL (0x02-
U)

* #define USB_DESCRIPTOR_SUBTYPE_AUDIO_CONTROL_OUTPUT_TERMINA-

L (0x03U)

#define USB_DESCRIPTOR_SUBTYPE_AUDIO_CONTROL_MIXER_UNIT (0x04U)

#define USB_DESCRIPTOR_SUBTYPE_AUDIO_CONTROL_SELECTOR_UNIT (0x05U)

#define USB_DESCRIPTOR_SUBTYPE_AUDIO_CONTROL_FEATURE_UNIT (0x06U)

#define USB_DESCRIPTOR_SUBTYPE_AUDIO_CONTROL_PROCESSING_UNIT (0x07-

U)

¢ #define USB_DESCRIPTOR_SUBTYPE_AUDIO_CONTROL_EXTENSION_UNIT (0x08U)

* #define USB_DESCRIPTOR_AUDIO_CONTROL_PROCESSING_UNIT_UPDOWNMIX_PR-

OCESS_TYPE (0x01U)

|
USB AUDIO Class driver

Audio device class-specific control interface effect unit effect typ

* #define USB_DESCRIPTOR_AUDIO_CONTROL PROCESSING _UNIT_DOLBY_PROL-

OGIC_PROCESS_TYPE (0x02U)
¢ #define USB_DESCRIPTOR_AUDIO_CONTROL_PROCESSING_UNIT_STEREO_EXTE-

NDER_PROCESS_TYPE (0x03U)
¢ #define USB_DESCRIPTOR_AUDIO_CONTROL_PROCESSING_UNIT_REVERBERATI-

ON_PROCESS_TYPE (0x04U)
 #define USB_DESCRIPTOR_AUDIO_CONTROL_PROCESSING_UNIT_CHORUS_PRO-

CESS_TYPE (0x05U)
* #define USB_DESCRIPTOR_AUDIO_CONTROL_PROCESSING_UNIT_DYN_RANGE._-

COMP_PROCESS_TYPE (0x06U)
* #define USB_DESCRIPTOR_SUBTYPE_AUDIO_STREAMING_AS_GENERAL (0x01U)

Audio device class-specific stream interface descriptor subtype.
* #define USB_DESCRIPTOR_SUBTYPE_AUDIO_STREAMING_FORMAT_TYPE (0x02U)
* #define USB_DESCRIPTOR_SUBTYPE_AUDIO_STREAMING_FORMAT_SPECIFI-

C (0x03U)
¢ #define USB_AUDIO_FORMAT_TYPE_UNDEFINED (0x00U)

Audio device Format Type Codes.
#define USB_AUDIO_FORMAT_TYPE_I (0x01U)
#define USB_AUDIO_FORMAT_TYPE_II (0x02U)
#define USB_AUDIO_FORMAT_TYPE_III (0x03U)
#define USB_DEVICE_AUDIO_SET_CUR_REQUEST (0x01U)

Audio device class-specific stream interface Encoder/Decoder Type Codes.
#define USB_DEVICE_AUDIO_GET_CUR_REQUEST (0x81U)
#define USB_DEVICE_AUDIO_SET_MIN_REQUEST (0x02U)
#define USB_DEVICE_AUDIO_GET_MIN_REQUEST (0x82U)
#define USB_DEVICE_AUDIO_SET_MAX_REQUEST (0x03U)
#define USB_DEVICE_AUDIO_GET_MAX_REQUEST (0x83U)
#define USB_DEVICE_AUDIO_SET_RES_REQUEST (0x04U)
#define USB_DEVICE_AUDIO_GET_RES_REQUEST (0x84U)
#define USB_DEVICE_AUDIO_SET_MEM_REQUEST (0x05U)
#define USB_DEVICE_AUDIO_GET_MEM_REQUEST (0x85U)
#define USB_DEVICE_AUDIO_FU_MUTE_CONTROL_SELECTOR (0x01U)

Commands for USB device AUDIO control feature unit control selector.
#define USB_DEVICE_AUDIO_FU_VOLUME_CONTROL_SELECTOR (0x02U)
#define USB_DEVICE_AUDIO_FU_BASS_CONTROL_SELECTOR (0x03U)
#define USB_DEVICE_AUDIO_FU_MID_CONTROL_SELECTOR (0x04U)
#define USB_DEVICE_AUDIO_FU_TREBLE_CONTROL_SELECTOR (0x05U)
#define USB_DEVICE_AUDIO_FU_GRAPHIC_EQUALIZER_CONTROL_SELECTO-

R (0x06U)
 #define USB_DEVICE_AUDIO_FU_AUTOMATIC_GAIN_CONTROL_SELECTOR (0x07-
U)
#define USB_DEVICE_AUDIO_FU_DELAY_CONTROL_SELECTOR (0x08U)
#define USB_DEVICE_AUDIO_FU_BASS_BOOST_CONTROL_SELECTOR (0x09U)
#define USB_DEVICE_AUDIO_FU_LOUDNESS_CONTROL_SELECTOR (0x0AU)
#define USB_DEVICE_AUDIO_PU_UD_ENABLE_CONTROL (0x01U)
Commands for USB device AUDIO control Up/Down-mix Processing Unit Control Selectors.
#define USB_DEVICE_AUDIO_PU_UD_MODE_SELECT_CONTROL (0x02U)
* #define USB_DEVICE_AUDIO_PU_DP_ENABLE_CONTROL (0x01U)
Commands for USB device AUDIO control Dolby Prologic Processing Unit Control Selectors.
* #define USB_DEVICE_AUDIO_PU_DP_MODE_SELECT_CONTROL (0x02U)
 #define USB_DEVICE_AUDIO_PU_3D_ENABLE_CONTROL (0x01U)

Commands for USB device AUDIO control (3D,audio 1.0) Stereo Extender Processing Unit Control Se-

-
USB AUDIO Class driver

lectors.

¢ #define USB_DEVICE_AUDIO_PU_SPACIOUSNESS_CONTROL (0x03U)
#define USB_DEVICE_AUDIO_PU_RV_ENABLE_CONTROL (0x01U)

Commands for USB device AUDIO control Reverberation Processing Unit Control Selectors.
#define USB_DEVICE_AUDIO_PU_RV_LEVEL_CONTROL (0x02U)
#define USB_DEVICE_AUDIO_PU_RV_TIME_CONTROL (0x03U)
#define USB_DEVICE_AUDIO_PU_RV_FEEDBACK_CONTROL (0x04U)
#define USB_DEVICE_AUDIO_PU_CH_ENABLE_CONTROL (0x01U)

Commands for USB device AUDIO control Chorus Processing Unit Control Selectors.
#define USB_DEVICE_AUDIO_PU_CH_LEVEL_CONTROL (0x02U)
#define USB_DEVICE_AUDIO_PU_CH_RATE_CONTROL (0x03U)
#define USB_DEVICE_AUDIO_PU_CH_DEPTH_CONTROL (0x04U)
#define USB_DEVICE_AUDIO_PU_DR_ENABLE_CONTROL (0x01U)

Commands for USB device AUDIO control Dynamic Range Compressor Processing Unit Control Selec-
fors.

#define USB_DEVICE_AUDIO_PU_DR_COMPRESSION_RATE_CONTROL (0x02U)
#define USB_DEVICE_AUDIO_PU_DR_MAXAMPL_CONTROL (0x03U)

#define USB_DEVICE_AUDIO_PU_DR_THRESHOLD_CONTROL (0x04U)

#define USB_DEVICE_AUDIO_PU_DR_ATTACK_TIME (0x05U)

#define USB_DEVICE_AUDIO_PU_DR_RELEASE_TIME (0x06U)

#define USB_DEVICE_AUDIO_MP_DUAL_CHANNEL_CONTROL (0x01U)

Commands for USB device AUDIO streaming MPEG control selector.
#define USB_DEVICE_AUDIO_MP_SECOND_STEREO_CONTROL (0x02U)
#define USB_DEVICE_AUDIO_MP_MULTILINGUAL_CONTROL (0x03U)
#define USB_DEVICE_AUDIO_MP_DYN_RANGE_CONTROL (0x04U)
#define USB_DEVICE_AUDIO_MP_SCALING_CONTROL (0x05U)
#define USB_DEVICE_AUDIO_MP_HILO_SCALING_CONTROL (0x06U)
#define USB_DEVICE_AUDIO_AC_MODE_CONTROL (0x01U)

Commands for USB device AUDIO streaming AC-3 Control Selectors.
#define USB_DEVICE_AUDIO_AC_DYN_RANGE_CONTRO (0x02U)
#define USB_DEVICE_AUDIO_AC_SCALING_CONTROL (0x03U)
#define USB_DEVICE_AUDIO_AC_HILO_SCALING_CONTROL (0x04U)
#define USB_DEVICE_AUDIO_EP_CONTROL_UNDEFINED (0x00U)

Commands for USB device AUDIO streaming endpoint control selector.
#define USB_DEVICE_AUDIO_EP_SAMPLING_FREQ_CONTROL_SELECTOR (0x01U)
#define USB_DEVICE_AUDIO_EP_PITCH_CONTROL_SELECTOR (0x02U)
#define USB_DEVICE_AUDIO_TE_CONTROL_UNDEFINED (0x00U)
#define USB_DEVICE_AUDIO_TE_COPY_PROTECT_CONTROL (0x01U)
#define USB_DEVICE_AUDIO_FU_GET_CUR_MUTE_CONTROL (0x8101U)
Audio device class-specific FU GET CUR COMMAND.
#define USB_DEVICE_AUDIO_FU_GET_CUR_VOLUME_CONTROL (0x8102U)
#define USB_DEVICE_AUDIO_FU_GET_CUR_BASS_CONTROL (0x8103U)
#define USB_DEVICE_AUDIO_FU_GET_CUR_MID_CONTROL (0x8104U)
#define USB_DEVICE_AUDIO_FU_GET_CUR_TREBLE_CONTROL (0x8105U)
#define USB_DEVICE_AUDIO_FU_GET_CUR_GRAPHIC_EQUALIZER_CONTRO-

L (0x8106U)
 #define USB_DEVICE_AUDIO_FU_GET_CUR_AUTOMATIC_GAIN_CONTROL (0x8107-
U)
#define USB_DEVICE_AUDIO_FU_GET_CUR_DELAY_CONTROL (0x8108U)
#define USB_DEVICE_AUDIO_FU_GET_CUR_BASS_BOOST_CONTROL (0x8109U)
#define USB_DEVICE_AUDIO_FU_GET_CUR_LOUDNESS_CONTROL (0x810AU)
#define USB_DEVICE_AUDIO_FU_GET_MIN_VOLUME_CONTROL (0x8202U)

Audio device class-specific FU GET MIN COMMAND.

 #define USB_DEVICE_AUDIO_FU_GET_MIN_BASS_CONTROL (0x8203U)

|
USB AUDIO Class driver

* #define USB_DEVICE_AUDIO_FU_GET_MIN_MID_CONTROL (0x8204U)
* #define USB_DEVICE_AUDIO_FU_GET_MIN_TREBLE_CONTROL (0x8205U)
* #define USB_DEVICE_AUDIO_FU_GET_MIN_GRAPHIC_EQUALIZER_CONTRO-

L (0x8206U)
* #define USB_DEVICE_AUDIO_FU_GET_MIN_DELAY_CONTROL (0x8208U)
 #define USB_DEVICE_AUDIO_FU_GET_MAX_VOLUME_CONTROL (0x8302U)
Audio device class-specific FU GET MAX COMMAND.
#define USB_DEVICE_AUDIO_FU_GET_MAX_BASS_CONTROL (0x8303U)
#define USB_DEVICE_AUDIO_FU_GET_MAX_MID_CONTROL (0x8304U)
#define USB_DEVICE_AUDIO_FU_GET_MAX_TREBLE_CONTROL (0x8305U)
#define USB_DEVICE_AUDIO_FU_GET_MAX_GRAPHIC_EQUALIZER_CONTRO-

L (0x8306U)
#define USB_DEVICE_AUDIO_FU_GET_MAX_DELAY_CONTROL (0x8308U)
#define USB_DEVICE_AUDIO_FU_GET_RES_VOLUME_CONTROL (0x8402U)
Audio device class-specific FU GET RES COMMAND.
#define USB_DEVICE_AUDIO_FU_GET_RES_BASS_CONTROL (0x8403U)
#define USB_DEVICE_AUDIO_FU_GET_RES_MID_CONTROL (0x8404U)
#define USB_DEVICE_AUDIO_FU_GET_RES_TREBLE_CONTROL (0x8405U)
#define USB_DEVICE_AUDIO_FU_GET_RES_GRAPHIC_EQUALIZER_CONTRO-

L (0x8406U)
#define USB_DEVICE_AUDIO_FU_GET_RES_DELAY_CONTROL (0x8408U)
#define USB_DEVICE_AUDIO_FU_SET_CUR_MUTE_CONTROL (0x0101U)

Audio device class-specific FU SET CUR COMMAND.
#define USB_DEVICE_AUDIO_FU_SET_CUR_VOLUME_CONTROL (0x0102U)
#define USB_DEVICE_AUDIO_FU_SET_CUR_BASS_CONTROL (0x0103U)
#define USB_DEVICE_AUDIO_FU_SET_CUR_MID_CONTROL (0x0104U)
#define USB_DEVICE_AUDIO_FU_SET_CUR_TREBLE_CONTROL (0x0105U)
#define USB_DEVICE_AUDIO_FU_SET_CUR_GRAPHIC_EQUALIZER_CONTRO-

L (0x0106U)
 #define USB_DEVICE_AUDIO_FU_SET_CUR_AUTOMATIC_GAIN_CONTROL (0x0107-
U)
#define USB_DEVICE_AUDIO_FU_SET_CUR_DELAY_CONTROL (0x0108U)
#define USB_DEVICE_AUDIO_FU_SET_CUR_BASS_BOOST_CONTROL (0x0109U)
#define USB_DEVICE_AUDIO_FU_SET_CUR_LOUDNESS_CONTROL (0x010AU)
#define USB_DEVICE_AUDIO_FU_SET_MIN_VOLUME_CONTROL (0x0202U)

Audio device class-specific FU SET MIN COMMAND.

#define USB_DEVICE_AUDIO_FU_SET_MIN_BASS_CONTROL (0x0203U)
#define USB_DEVICE_AUDIO_FU_SET_MIN_MID_CONTROL (0x0204U)
#define USB_DEVICE_AUDIO_FU_SET_MIN_TREBLE_CONTROL (0x0205U)
#define USB_DEVICE_AUDIO_FU_SET_MIN_GRAPHIC_EQUALIZER_CONTRO-

L (0x0206U)

#define USB_DEVICE_AUDIO_FU_SET_MIN_DELAY_CONTROL (0x0208U)

#define USB_DEVICE_AUDIO_FU_SET_MAX_VOLUME_CONTROL (0x0302U)
Audio device class-specific FU SET MAX COMMAND.

#define USB_DEVICE_AUDIO_FU_SET_MAX_BASS_CONTROL (0x0303U)

#define USB_DEVICE_AUDIO_FU_SET_MAX_MID_CONTROL (0x0304U)

#define USB_DEVICE_AUDIO_FU_SET_MAX_TREBLE_CONTROL (0x0305U)

#define USB_DEVICE_AUDIO_FU_SET_MAX_GRAPHIC_EQUALIZER_CONTRO-

L (0x0306U)

#define USB_DEVICE_AUDIO_FU_SET_MAX_DELAY_CONTROL (0x0308U)

 #define USB_DEVICE_AUDIO_FU_SET_RES_VOLUME_CONTROL (0x0402U)

Audio device class-specific FU SET RES COMMAND.
* #define USB_DEVICE_AUDIO_FU_SET_RES_BASS_CONTROL (0x0403U)

-
USB AUDIO Class driver

* #define USB_DEVICE_AUDIO_FU_SET_RES_MID_CONTROL (0x0404U)
* #define USB_DEVICE_AUDIO_FU_SET_RES_TREBLE_CONTROL (0x0405U)
* #define USB_DEVICE_AUDIO_FU_SET_RES_GRAPHIC_EQUALIZER_CONTRO-

L (0x0406U)
 #define USB_DEVICE_AUDIO_FU_SET_RES_DELAY_CONTROL (0x0408U)
 #define USB_DEVICE_AUDIO_EP_SET_CUR_PITCH_CONTROL (0x0120U)
Audio device class-specific ENDP SET CUR COMMAND.
 #define USB_DEVICE_AUDIO_EP_SET_CUR_SAMPLING_FREQ_CONTROL (0x0121U)
 #define USB_DEVICE_AUDIO_EP_SET_MIN_SAMPLING_FREQ_CONTROL (0x0220U)

Audio device class-specific ENDP SET MIN COMMAND.
* #define USB_DEVICE_AUDIO_EP_SET_MAX_SAMPLING_FREQ_CONTROL (0x0320U)

Audio device class-specific ENDP SET MAX COMMAND.
 #define USB_DEVICE_AUDIO_EP_SET_RES_SAMPLING_FREQ_CONTROL (0x0420U)

Audio device class-specific ENDP SET RES COMMAND.
 #define USB_DEVICE_AUDIO_EP_GET_CUR_SAMPLING_FREQ_CONTROL (0x8120U)

Audio device class-specific ENDP GET CUR COMMAND.
» #define USB_DEVICE_AUDIO_EP_GET_MIN_SAMPLING_FREQ_CONTROL (0x8220U)

Audio device class-specific ENDP GET MIN COMMAND.
 #define USB_DEVICE_AUDIO_EP_GET_MAX_SAMPLING_FREQ_CONTROL (0x8320U)

Audio device class-specific ENDP GET MAX COMMAND.
 #define USB_DEVICE_AUDIO_EP_GET_RES_SAMPLING_FREQ_CONTROL (0x8420U)

Audio device class-specific ENDP GET RES COMMAND.
 #define USB_DEVICE_AUDIO_TE_GET_CUR_COPY_PROTECT_CONTROL (0x8150U)

Audio device class-specific TE GET CUR COMMAND.
e #define USB_DEVICE_AUDIO_TE_SET_CUR_COPY_PROTECT_CONTROL (0x0150U)

Audio device class-specific TE SET CUR COMMAND.

USB Audio class setup request types

#define USB_DEVICE_AUDIO_SET_REQUEST_INTERFACE (0x21U)

Audio device class setup request set type.
#define USB_DEVICE_AUDIO_SET_REQUEST_ENDPOINT (0x22U)
#define USB_DEVICE_AUDIO_GET REQUEST INTERFACE (0xA1U)

Audio device class setup request get ty

#define USB_DEVICE_AUDIO_ GET _REQUEST_ENDPOINT (0xA2U)

USB Audio Class Driver

usb_status_t USB_DeviceAudiolnit (uint8_t controllerld, usb_device_class_config_struct_-
t xconfig, class_handle_t xhandle)

Initializes the USB audio class.
usb_status_t USB_DeviceAudioDeinit (class_handle_t handle)

Deinitializes the USB audio class.
* usb_status_t USB_DeviceAudioEvent (void xhandle, uint32_t event, void *param)

Handles the USB audio class event.
usb_status_t USB_DeviceAudioSend (class_handle_t handle, uint8_t ep, uint8_t xbuffer, uint32_t

length)

Primes the endpoint to send a packet to the host.

|
USB AUDIO Class driver

* usb_status_t USB_DeviceAudioRecv (class_handle_t handle, uint8_t ep, uint8_t xbuffer, uint32_t
length)

Primes the endpoint to receive a packet from the host.

3.8.2 Data Structure Documentation

3.8.2.1 struct usb_device_audio_entity_struct_t

The structure is used to pass the audio entity information filled by application. Such as entity id (unit or
terminal ID), entity type (unit or terminal type), and terminal type if the entity is a terminal.

3.8.2.2 struct usb_device audio entities_struct_t

The structure is used to pass the audio entity informations filled by the application. The type of each entity
is usb_device_audio_entity_struct_t. The structure pointer is kept in the usb_device_interface_struct_t-
::classSpecific, such as, if there are three entities (an out terminal, camera terminal, and processing unit),
the value of the count field is 3 and the entity field saves the every entity information.

3.8.2.3 struct usb_device audio_struct t

Data Fields

¢ usb_device _handle handle

The device handle.
* usb_device_class_config_struct_t * configStruct

The configuration of the class.
¢ usb_device_interface_struct_t * controllnterfaceHandle

Current control interface handle.
¢ usb_device_interface_struct_t * streamInterfaceHandle

Current stream interface handle.
* uint8_t configuration

Current configuration.
¢ uint8_t controllnterfaceNumber

The control interface number of the class.
e uint8_t controlAlternate

Current alternate setting of the control interface.
e uint8_t streamInterfaceNumber

The stream interface number of the class.
¢ uint8_t streamAlternate

Current alternate setting of the stream interface.
* uint8_t streamInPipeBusy

Stream IN pipe busy flag.
* uint8_t streamOutPipeBusy

Stream OUT pipe busy flag.

-
USB AUDIO Class driver

3.8.2.3.0.2 Field Documentation
3.8.2.3.0.2.1 usb_device_class_config_struct_t« usb_device_audio_struct_t::configStruct

3.8.3 Macro Definition Documentation

3.8.3.1 #define USB_DESCRIPTOR_AUDIO_CONTROL_PROCESSING_UNIT_UPDOWNMI-
X_PROCESS_TYPE (0x01U)

Audio device class-specific control interface processing unit process type

3.8.3.2 #define USB_DEVICE_AUDIO_SET_CUR_REQUEST (0x01U)

Commands for USB device AUDIO Class specific request codes

3.8.4 Enumeration Type Documentation

3.8.4.1 enum usb_device_audio _event_ t
Enumerator

kUSB_DeviceAudioEventStreamSendResponse Send data completed or cancelled etc in stream
pipe.

kUSB_DeviceAudioEventStreamRecvResponse Data received or cancelled etc in stream pipe.

kUSB_DeviceAudioEventControlSendResponse Send data completed or cancelled etc in audio con-
trol pipe.

3.8.5 Function Documentation

3.8.5.1 usb_status_t USB_DeviceAudiolnit (uint8_t controllerid, usb_-
device_class_config_struct_t x config, class_handle_t « handle

)

This function obtains a USB device handle according to the controller ID, initializes the audio class with
the class configuration parameters, and creates the mutex for each pipe.

Parameters

|
USB AUDIO Class driver

controllerld | The ID of the controller. The value can be chosen from the kUSB_ControllerKhciO,
kUSB_ControllerKhcil, kUSB_ControllerEhciO, or kUSB_ControllerEhcil.

config | The user configuration structure of type usb_device_class_config_struct_t. The user
populates the members of this structure and passes the pointer of this structure into
this function.

handle | An out parameter. The class handle of the audio class.

Returns

A USB error code or kStatus_ USB_Success.

Return values

kStatus_USB_Success | The audio class is initialized successfully.

kStatus_USB_Busy | No audio device handle available for allocation.

kStatus_USB_Invalid- | The audio device handle allocation failure.
Handle

kStatus_USB_Invalid- | The USB device handle allocation failure.
Parameter

3.8.5.2 usb_status_t USB_DeviceAudioDeinit (class_handle_t handle)

This function destroys the mutex for each pipe, deinitializes each endpoint of the audio class, and frees
the audio class handle.

Parameters

handle | The class handle of the audio class.

Returns

A USB error code or kStatus_USB_Success.

Return values

kStatus_USB_Success | The audio class is deinitialized successfully.

-
USB AUDIO Class driver

kStatus_USB_Error | The endpoint deinitialization failure.

kStatus_USB_Invalid- | The audio device handle or the audio class handle is invalid.
Handle

kStatus_USB_Invalid- | The endpoint number of the audio class handle is invalid.
Parameter

3.8.5.3 usb_status_t USB_DeviceAudioEvent (void x handle, uint32_t event, void x
param)

This function responds to various events including the common device events and the class-specific events.
For class-specific events, it calls the class callback defined in the application to deal with the class-specific
event.

Parameters

handle | The class handle of the audio class.

event | The event type.

param | The class handle of the audio class.

Returns

A USB error code or kStatus_USB_ Success.

Return values

kStatus_USB_Success | The audio class is deinitialized successfully.

kStatus_USB_Error | The configure structure of the audio class handle is invalid.

kStatus_USB_Invalid- | The audio device handle or the audio class handle is invalid.
Handle

kStatus_USB_Invalid- | The endpoint number of the audio class handle is invalid.
Parameter

Others | The error code returned by class callback in application.

3.8.5.4 usb_status_t USB_DeviceAudioSend (class_handle_t handle, uint8_t ep, uint8_t
x buffer, uint32_t length)

This function checks whether the endpoint is sending packet, then it primes the endpoint with the buffer
address and the buffer length if the pipe is not busy. Otherwise, it ignores this transfer by returning an
error code.

|
USB AUDIO Class driver

Parameters

handle | The class handle of the audio class.

ep | The endpoint number of the transfer.

buffer | The pointer to the buffer to be transferred.

length | The length of the buffer to be transferred.

Returns

A USB error code or kStatus_USB_Success.

Return values

kStatus_USB_Success | Prime to send packet successfully.

kStatus_USB_Busy | The endpoint is busy in transferring.

kStatus_USB_Invalid- | The audio device handle or the audio class handle is invalid.
Handle

kStatus_USB_Controller- | The controller interface is invalid.
NotFound

Note

The function can only be called in the same context.

3.8.5.5 usb_status_t USB_DeviceAudioRecv (class_handle_t handle, uint8_t ep, uint8_t
x buffer, uint32_t length)

This function checks whether the endpoint is receiving packet, then it primes the endpoint with the buffer
address and the buffer length if the pipe is not busy. Otherwise, it ignores this transfer by returning an
error code.

Parameters

handle | The class handle of the audio class.

ep | The endpoint number of the transfer.

-
USB AUDIO Class driver

buffer | The pointer to the buffer to be transferred.

length | The length of the buffer to be transferred.

Returns

A USB error code or kStatus_ USB_ Success.

Return values

kStatus_USB_Success | Prime to receive packet successfully.

kStatus_USB_Busy | The endpoint is busy in transferring.

kStatus_USB_Invalid- | The audio device handle or the audio class handle is invalid.
Handle

kStatus_USB_Controller- | The controller interface is invalid.
NotFound

Note

The function can only be called in the same contexct.

|
USB MTP Class driver

3.9 USB MTP Class driver
3.9.1 Overview

Data Structures

e struct usb_device_mtp_container_t

MTP generic container structure. More...
* struct usb_device_mtp_event_container_t

MTP asynchronous event interrupt data format. More...
* struct usb_device_mtp_device_status_t

MTP format of get device status request data. More...
e struct usb_device_mtp_cancel_request_t

MTP format of cancel request data. More...
* struct usb_device_mtp_extended_event_data_t

MTP format of get extended event data request. More...
* struct usb_device_mtp_cmd_data_struct_t

MTP command callback structure. More...
* struct usb_device_mtp_response_struct_t

MTP response callback structure. More...
* struct usb_device_mtp_event_struct_t

MTP event callback structure. More...
* struct usb_device_mtp_extended_event_struct_t

MTP get extended event callback structure. More...
* struct usb_device_mtp_struct_t

The MTP device structure. More...

Macros

* #define USB_DEVICE_CONFIG_MTP_CLASS_CODE (0x06U)

The class code of the MTP class.
 #define USB_DEVICE_MTP_CANCEL_REQUEST (0x64U)

Cancel Request (class-specific request)

e #define USB_DEVICE_MTP_GET_EXTENDED_EVENT_DATA (0x65U)

Get Extended Event Data (class-specific request)
* #define USB_DEVICE_MTP_DEVICE_RESET_REQUEST (0x66U)

Device Reset Request (class-specific request)

* #define USB_DEVICE_MTP_GET_DEVICE_STATUS_REQUEST (0x67U)

Device Reset Request (class-specific request)

* #define USB_DEVICE_MTP_MINIMUM_CONTAINER_LENGTH (12U)

Minimum container length.

* #define USB_DEVICE_MTP_COMMAND_LENGTH (32U)

Command container length.

e #define USB_DEVICE_MTP_MAX_UINT32_VAL (0xFFFFFFFFU)

Default invalid value, parameter in the operation or maximum container length.

 #define USB_DEVICE_MTP_MAX_UINT64_V AL (0OxFFFFFFFFFFFFFFFFU)
Default invalid value is used to support >4GB file transfer.

-
USB MTP Class driver

Enumerations

* enum usb_device_mtp_callback_event_t {
kUSB_DeviceMtpEventlnvalid = OU,
kUSB_DeviceMtpEventOpenSession,
kUSB_DeviceMtpEventCloseSession,
kUSB_DeviceMtpEventGetDevicelnfo,
kUSB_DeviceMtpEventGetDevicePropDesc,
kUSB_DeviceMtpEventGetObjPropsSupported,
kUSB_DeviceMtpEventGetStoragelDs,
kUSB_DeviceMtpEventGetStoragelnfo,
kUSB_DeviceMtpEventGetObjHandles,
kUSB_DeviceMtpEventGetObjPropDesc,
kUSB_DeviceMtpEventGetObjPropList,
kUSB_DeviceMtpEventGetObjlnfo,
kUSB_DeviceMtpEventGetObyj,
kUSB_DeviceMtpEventSendObjlnfo,
kUSB_DeviceMtpEventSendObyj,
kUSB_DeviceMtpEventDeleteObj,
kUSB_DeviceMtpEventGetDevicePropVal,
kUSB_DeviceMtpEventSetDevicePropVal,
kUSB_DeviceMtpEventGetObjPropVal,
kUSB_DeviceMtpEventSetObjPropVal,
kUSB_DeviceMtpEventGetObjReferences,
kUSB_DeviceMtpEventMoveObyj,
kUSB_DeviceMtpEventCopyObj,
kUSB_DeviceMtpEventSendResponseError,
kUSB_DeviceMtpEventSendResponseSuccess,
kUSB_DeviceMtpEventDeviceResetRequest,
kUSB_DeviceMtpEventGetExtendedEventData }

MTP callback event.

Functions

* usb_status_t USB_DeviceMtplnit (uint8_t controllerld, usb_device_class_config_struct_t *config,
class_handle_t xhandle)

Initializes the MTP class.
* usb_status_t USB_DeviceMtpDeinit (class_handle_t handle)

Deinitializes the device MTP class.
* usb_status_t USB_DeviceMtpEvent (void xhandle, uint32_t event, void xparam)

Handles the event passed to the MTP class.

|
USB MTP Class driver

USB MTP current phase

#define USB_DEVICE_MTP_PHASE_COMMAND (1U)
#define USB_DEVICE_MTP_PHASE_DATA (2U)

#define USB_DEVICE_MTP_PHASE_RESPONSE (3U)
#define USB_DEVICE_MTP_PHASE_CANCELLATION (4U)

USB MTP container type

#define USB_DEVICE_MTP_CONTAINER_TYPE_UNDEFINED (0U)
#define USB_DEVICE_MTP_CONTAINER _TYPE_COMMAND (1U)
#define USB_DEVICE_MTP_CONTAINER_TYPE_DATA (2U)
#define USB_DEVICE_MTP_CONTAINER_TYPE_RESPONSE (3U)
#define USB_DEVICE_MTP_CONTAINER_TYPE_EVENT (4U)

USB device MTP class APIs

* usb_status_t USB_DeviceMtpEventSend (class_handle_t handle, usb_device_mtp_event_struct_-
t xevent)

Send event through interrupt in endpoint.
* usb_status_t USB_DeviceMtpResponseSend (class_handle_t handle, usb_device_mtp_response_-

struct_t xresponse)

Send response through bulk in endpoint.
* usb_status_t USB_DeviceMtpCancelCurrentTransaction (class_handle_t handle)

Cancel current transacion.

USB MTP data type code

#define MTP_TYPE_UNDEFINED 0x0000U
Undefined.
e #define MTP_TYPE_INTS 0x0001U
Signed 8-bit integer.
e #define MTP_TYPE_UINTS8 0x0002U

Unsigned 8-bit integer.
* #define MTP_TYPE_INT16 0x0003U

Signed 16-bit integer.
e #define MTP_TYPE_UINT16 0x0004U

Unsigned 16-bit integer.
e #define MTP_TYPE_INT32 0x0005U

Signed 32-bit integer.
* #define MTP_ TYPE _UINT32 0x0006U

Unsigned 32-bit integer.

e #define MTP_TYPE_INT64 0x0007U
Signed 64-bit integer.

 #define MTP_TYPE_UINT64 0x0008U

Unsigned 64-bit integer.
e #define MTP_TYPE_INT128 0x0009U

-
USB MTP Class driver

Signed 128-bit integer.

 #define MTP_TYPE_UINT128 0x000AU
Unsigned 128-bit integer.

e #define MTP_TYPE_AINTS 0x4001U
Array of signed 8-bit integers.

o #define MTP_TYPE_AUINTS 0x4002U

Array of unsigned 8-bit integers.
 #define MTP_TYPE_AINT16 0x4003U

Array of signed 16-bit integers.
» #define MTP_TYPE_AUINTI16 0x4004U

Array of unsigned 16-bit integers.

» #define MTP_TYPE_AINT32 0x4005U
Array of signed 32-bit integers.

 #define MTP_TYPE_AUINT32 0x4006U

Array of unsigned 32-bit integers.
o #define MTP_TYPE_AINT64 0x4007U

Array of signed 64-bit integers.
 #define MTP_TYPE_ AUINT64 0x4008U

Array of unsigned 64-bit integers.
» #define MTP_TYPE_AINT128 0x4009U

Array of signed 128-bit integers.
» #define MTP_TYPE_AUINTI128 0x400AU

Array of unsigned 128-bit integers.
» #define MTP_TYPE_STR O0xFFFFU

Variable-length Unicode string.

USB MTP functional mode

#define MTP_FUNCTIONAL_MODE_STANDARD_MODE 0x0000U

#define MTP_FUNCTIONAL_MODE_SLEEP_MODE 0x0001U

#define MTP_FUNCTIONAL_MODE_NON_RESPONSIVE_PLAYBACK 0xC001U
#define MTP_FUNCTIONAL_MODE_RESPONSIVE_PLAYBACK 0xC002U

USB MTP format code

#define MTP_FORMAT UNDEFINED 0x3000U
#define MTP_FORMAT ASSOCIATION 0x3001U
#define MTP_FORMAT_ SCRIPT 0x3002U

#define MTP_FORMAT_EXECUTABLE 0x3003U
#define MTP_FORMAT TEXT 0x3004U

#define MTP_FORMAT HTML 0x3005U

#define MTP_FORMAT_ DPOF 0x3006U

#define MTP_FORMAT_AIFF 0x3007U

#define MTP_FORMAT_ WAY 0x3008U

#define MTP_FORMAT MP3 0x3009U

#define MTP_FORMAT_ AVI 0x300AU

#define MTP_FORMAT_ MPEG 0x300BU

#define MTP_FORMAT ASF 0x300CU

#define MTP_FORMAT UNDEFINED IMAGE 0x3800U
#define MTP_FORMAT_ EXIF JPEG 0x3801U

|
USB MTP Class driver

#define MTP_FORMAT TIFF_EP 0x3802U

#define MTP_FORMAT_FLASHPIX 0x3803U

#define MTP_FORMAT BMP 0x3804U

#define MTP_FORMAT _CIFF 0x3805U

#define MTP_FORMAT UNDEFINED 1 0x3806U

#define MTP_FORMAT _GIF 0x3807U

#define MTP_FORMAT JFIF 0x3808U

#define MTP_FORMAT _CD 0x3809U

#define MTP_FORMAT _ PICT 0x380AU

#define MTP_FORMAT PNG 0x380BU

#define MTP_FORMAT UNDEFINED 2 0x380CU

#define MTP_FORMAT _TIFF 0x380DU

#define MTP_FORMAT _ TIFF IT 0x380EU

#define MTP_FORMAT JP2 0x380FU

#define MTP_FORMAT JPX 0x3810U

#define MTP_FORMAT UNDEFINED FIRMWARE 0xB802U
#define MTP_FORMAT_ WBMP 0xB803U

#define MTP_FORMAT _ JPEG_XR 0xB804U

#define MTP_FORMAT WINDOWS IMAGE _FORMAT 0xB881U
#define MTP_FORMAT UNDEFINED_ AUDIO 0xB900U

#define MTP_FORMAT_WMA 0xB901U

#define MTP_FORMAT_OGG 0xB902U

#define MTP_FORMAT_ AAC 0xB903U

#define MTP_FORMAT_ AUDIBLE 0xB904U

#define MTP_FORMAT_FLAC 0xB906U

#define MTP_FORMAT_QCELP 0xB907U

#define MTP_FORMAT_ AMR 0xB908U

#define MTP_FORMAT UNDEFINED_ VIDEO 0xB980U

#define MTP_FORMAT_WMY 0xB981U

#define MTP_FORMAT MP4 CONTAINER 0xB982U

#define MTP_FORMAT MP2 0xB983U

#define MTP_FORMAT 3GP_CONTAINER 0xB984U

#define MTP_FORMAT_3GP2 0xB985U

#define MTP_FORMAT_AVCHD 0xB986U

#define MTP_FORMAT ATSC_TS 0xB987U

#define MTP_FORMAT DVB_TS 0xB988U

#define MTP_FORMAT_ UNDEFINED_COLLECTION 0xBAOOU
#define MTP_FORMAT ABSTRACT MULTIMEDIA_ALBUM 0xBAO1U
#define MTP_FORMAT ABSTRACT IMAGE_ALBUM 0xBAO2U
#define MTP_FORMAT_ ABSTRACT_AUDIO_ALBUM 0xBA0O3U
#define MTP_FORMAT ABSTRACT_VIDEO_ALBUM 0xBA04U
#define MTP_FORMAT ABSTRACT_AUDIO_VIDEO_PLAYLIST 0xBAO5U
#define MTP_FORMAT ABSTRACT_CONTACT_GROUP 0xBA0O6U
#define MTP_FORMAT_ABSTRACT_MESSAGE_FOLDER 0xBAO7U
#define MTP_FORMAT ABSTRACT_CHAPTERED PRODUCTION 0xBAO8U
#define MTP_FORMAT ABSTRACT_AUDIO_PLAYLIST 0xBAO9U
#define MTP_ FORMAT ABSTRACT VIDEO PLAYLIST 0xBAOAU
#define MTP_FORMAT_ ABSTRACT_MEDIACAST 0xBAOBU
#define MTP_FORMAT WPL PLAYLIST 0xBA10U

#define MTP_FORMAT M3U_PLAYLIST 0xBA11U

#define MTP_FORMAT MPL_PLAYLIST OxBA12U

#define MTP_FORMAT ASX PLAYLIST 0xBA13U

#define MTP_FORMAT PLS PLAYLIST 0xBA14U

#define MTP_FORMAT UNDEFINED DOCUMENT 0xBA80OU
#define MTP_FORMAT_ABSTRACT_DOCUMENT 0xBA81U
#define MTP_FORMAT XML DOCUMENT 0xBA82U

-
USB MTP Class driver

#define MTP_FORMAT_MICROSOFT_WORD_DOCUMENT 0xBA83U
#define MTP_FORMAT_MHT_COMPILED_HTML_DOCUMENT 0xBA84U
#define MTP_FORMAT_MICROSOFT_EXCEL_SPREADSHEET 0xBA85U
#define MTP_FORMAT_MICROSOFT_POWERPOINT_PRESENTATION 0xBA86U
#define MTP_FORMAT_UNDEFINED_MESSAGE 0xBBOOU

#define MTP_FORMAT_ABSTRACT_MESSSAGE 0xBBO1U

#define MTP_FORMAT_UNDEFINED BOOKMARK 0xBB10U

#define MTP_FORMAT_ABSTRACT_BOOKMARK 0xBB11U

#define MTP_FORMAT_UNDEFINED_APPOINTMENT 0xBB20U

#define MTP_FORMAT_ABSTRACT_APPOINTMENT 0xBB21U

#define MTP_FORMAT_VCALENDAR_1_0 0xBB22U

#define MTP_FORMAT_UNDEFINED_TASK 0xBB40U

#define MTP_FORMAT_ABSTRACT_TASK 0xBB41U

#define MTP_FORMAT_ICALENDAR 0xBB42U

#define MTP_FORMAT_UNDEFINED_CONTACT 0xBB80U

#define MTP_FORMAT_ABSTRACT_CONTACT 0xBB81U

#define MTP_FORMAT_VCARD_2 0xBB82U

#define MTP_FORMAT_VCARD_3 0xBB83U

USB MTP object property code

#define MTP_OBJECT_PROPERTY_STORAGE_ID 0xDC01U

#define MTP_OBJECT_PROPERTY_OBJECT_FORMAT 0xDC02U

#define MTP_OBJECT_PROPERTY_PROTECTION_STATUS 0xDC03U

#define MTP_OBJECT_PROPERTY_OBJECT_SIZE 0xDC04U

#define MTP_OBJECT_PROPERTY_ASSOCIATION_TYPE 0xDC0O5U

#define MTP_OBJECT_PROPERTY_ASSOCIATION_DESC 0xDC06U

#define MTP_OBJECT_PROPERTY_OBJECT_FILE_NAME 0xDC07U

#define MTP_OBJECT_PROPERTY_DATE_CREATED 0xDCO8U

#define MTP_OBJECT_PROPERTY_DATE_MODIFIED 0xDC09U

#define MTP_OBJECT_PROPERTY_KEYWORDS 0xDCOAU

#define MTP_OBJECT_PROPERTY_PARENT_OBJECT 0xDCOBU

#define MTP_OBJECT_PROPERTY_ALLOWED FOLDER_CONTENTS 0xDCOCU
#define MTP_OBJECT_PROPERTY_HIDDEN 0xDCODU

#define MTP_OBJECT_PROPERTY_SYSTEM_OBJECT 0xDCOEU

#define MTP_OBJECT_PROPERTY_PERSISTENT_UID 0xDC41U

#define MTP_OBJECT_PROPERTY_SYNC_ID 0xDC42U

#define MTP_OBJECT_PROPERTY_PROPERTY_BAG 0xDC43U

#define MTP_OBJECT_PROPERTY_NAME 0xDC44U

#define MTP_OBJECT_PROPERTY_CREATED_BY 0xDC45U

#define MTP_OBJECT_PROPERTY_ARTIST 0xDC46U

#define MTP_OBJECT_PROPERTY_DATE_AUTHORED 0xDC47U

#define MTP_OBJECT_PROPERTY_DESCRIPTION 0xDC48U

#define MTP_OBJECT_PROPERTY_URL_REFERENCE 0xDC49U

#define MTP_OBJECT_PROPERTY_LANGUAGE_LOCALE 0xDC4AU

#define MTP_OBJECT_PROPERTY_COPYRIGHT_INFORMATION 0xDC4BU
#define MTP_OBJECT_PROPERTY_SOURCE 0xDC4CU

#define MTP_OBJECT_PROPERTY_ORIGIN_LOCATION 0xDC4DU

#define MTP_OBJECT_PROPERTY_DATE_ADDED 0xDC4EU

#define MTP_OBJECT_PROPERTY_NON_CONSUMABLE 0xDC4FU

#define MTP_OBJECT_PROPERTY_CORRUPT_UNPLAYABLE 0xDC50U
#define MTP_OBJECT_PROPERTY_PRODUCER_SERIAL_NUMBER 0xDC51U
#define MTP_OBJECT_PROPERTY_REPRESENTATIVE_SAMPLE_FORMAT 0xDC81U
#define MTP_OBJECT_PROPERTY_REPRESENTATIVE_SAMPLE_SIZE 0xDC82U

|
USB MTP Class driver

* #define MTP_OBJECT_PROPERTY_REPRESENTATIVE_SAMPLE_HEIGHT 0xDC83U
* #define MTP_OBJECT_PROPERTY_REPRESENTATIVE_SAMPLE_WIDTH 0xDC84U
#define MTP_OBJECT_PROPERTY_REPRESENTATIVE_SAMPLE_DURATION 0xD-

C85U

#define MTP_OBJECT_PROPERTY_REPRESENTATIVE_SAMPLE_DATA 0xDC86U
#define MTP_OBJECT_PROPERTY_WIDTH 0xDC87U

#define MTP_OBJECT_PROPERTY_HEIGHT 0xDC88U

#define MTP_OBJECT_PROPERTY_DURATION 0xDC89U

#define MTP_OBJECT_PROPERTY_RATING 0xDC8AU

#define MTP_OBJECT_PROPERTY_TRACK 0xDC8BU

#define MTP_OBJECT_PROPERTY_GENRE 0xDC8CU

#define MTP_OBJECT_PROPERTY_CREDITS 0xDC8DU

#define MTP_OBJECT_PROPERTY_LYRICS 0xDC8EU

#define MTP_OBJECT_PROPERTY_SUBSCRIPTION_CONTENT_ID 0xDC8FU
#define MTP_OBJECT_PROPERTY_PRODUCED_BY 0xDC90U

#define MTP_OBJECT_PROPERTY_USE_COUNT 0xDC91U

#define MTP_OBJECT_PROPERTY_SKIP_COUNT 0xDC92U

#define MTP_OBJECT_PROPERTY_LAST_ACCESSED 0xDC93U

#define MTP_OBJECT_PROPERTY_PARENTAL_RATING 0xDC94U
#define MTP_OBJECT_PROPERTY_META_GENRE 0xDC95U

#define MTP_OBJECT_PROPERTY_COMPOSER 0xDC96U

#define MTP_OBJECT_PROPERTY_EFFECTIVE_RATING 0xDC97U
#define MTP_OBJECT_PROPERTY_SUBTITLE 0xDC98U

#define MTP_OBJECT_PROPERTY_ORIGINAL_RELEASE_DATE 0xDC99U
#define MTP_OBJECT_PROPERTY_ALBUM_NAME 0xDC9AU

#define MTP_OBJECT_PROPERTY_ALBUM_ARTIST 0xDC9BU

#define MTP_OBJECT_PROPERTY_MOOD 0xDCOCU

#define MTP_OBJECT_PROPERTY_DRM_STATUS 0xDC9DU

#define MTP_OBJECT_PROPERTY_SUB_DESCRIPTION 0xDC9EU
#define MTP_OBJECT_PROPERTY_IS_CROPPED 0xDCD1U

#define MTP_OBJECT_PROPERTY_IS_COLOUR_CORRECTED 0xDCD2U
#define MTP_OBJECT_PROPERTY_IMAGE_BIT_DEPTH 0xDCD3U
#define MTP_OBJECT_PROPERTY_FNUMBER 0xDCD4U

#define MTP_OBJECT_PROPERTY_EXPOSURE_TIME 0xDCD5U

#define MTP_OBJECT_PROPERTY_EXPOSURE_INDEX 0xDCD6U
#define MTP_OBJECT_PROPERTY_TOTAL_BITRATE 0xDE91U

#define MTP_OBJECT_PROPERTY_BITRATE_TYPE 0xDE92U

#define MTP_OBJECT_PROPERTY_SAMPLE_RATE 0xDE93U

#define MTP_OBJECT_PROPERTY_NUMBER_OF_CHANNELS 0xDE94U
#define MTP_OBJECT_PROPERTY_AUDIO_BIT_DEPTH 0xDE95U
#define MTP_OBJECT_PROPERTY_SCAN_TYPE 0xDE97U

#define MTP_OBJECT_PROPERTY_AUDIO_WAVE_CODEC 0xDE99U
#define MTP_OBJECT_PROPERTY_AUDIO_BITRATE 0xDE9AU

#define MTP_OBJECT_PROPERTY_VIDEO_FOURCC_CODEC 0xDE9BU
#define MTP_OBJECT_PROPERTY_VIDEO_BITRATE 0xDE9CU

#define MTP_OBJECT_PROPERTY_FRAMES_PER_THOUSAND_SECONDS 0xDE9DU
#define MTP_OBJECT_PROPERTY_KEYFRAME_DISTANCE 0xDE9EU
#define MTP_OBJECT_PROPERTY_BUFFER_SIZE 0xDE9FU

#define MTP_OBJECT_PROPERTY_ENCODING_QUALITY 0xDEAOU
#define MTP_OBJECT_PROPERTY_ENCODING_PROFILE 0xDEA1U
#define MTP_OBJECT_PROPERTY_DISPLAY_NAME 0xDCEOU

#define MTP_OBJECT_PROPERTY_BODY_TEXT 0xDCE1U

#define MTP_OBJECT_PROPERTY_SUBJECT 0xDCE2U

#define MTP_OBJECT_PROPERTY_PRIORITY 0xDCE3U

#define MTP_OBJECT_PROPERTY_GIVEN_NAME 0xDD0O0OU

#define MTP_OBJECT_PROPERTY_MIDDLE_NAMES 0xDD0O1U

-
USB MTP Class driver

#define MTP_OBJECT_PROPERTY_FAMILY_NAME 0xDD02U

#define MTP_OBJECT_PROPERTY_PREFIX 0xDDO03U

#define MTP_OBJECT_PROPERTY_SUFFIX 0xDD04U

#define MTP_OBJECT_PROPERTY_PHONETIC_GIVEN_NAME 0xDD05U

#define MTP_OBJECT_PROPERTY_PHONETIC_FAMILY_NAME 0xDD06U

#define MTP_OBJECT_PROPERTY_EMAIL_PRIMARY 0xDD07U

#define MTP_OBJECT_PROPERTY_EMAIL_PERSONAL_1 0xDD08U

#define MTP_OBJECT_PROPERTY_EMAIL_PERSONAL_2 0xDD09U

#define MTP_OBJECT_PROPERTY_EMAIL_BUSINESS 1 0xDDOAU

#define MTP_OBJECT_PROPERTY_EMAIL_BUSINESS_2 0xDDOBU

#define MTP_OBJECT_PROPERTY_EMAIL_OTHERS 0xDDOCU

#define MTP_OBJECT_PROPERTY_PHONE_NUMBER_PRIMARY 0xDDODU

#define MTP_OBJECT_PROPERTY_PHONE_NUMBER PERSONAL O0xDDOEU
#define MTP_OBJECT_PROPERTY_PHONE_NUMBER_PERSONAL_2 0xDDOFU
#define MTP_OBJECT_PROPERTY_PHONE_NUMBER_BUSINESS 0xDD10U

#define MTP_OBJECT_PROPERTY_PHONE_NUMBER _BUSINESS_2 0xDDI11U
#define MTP_OBJECT_PROPERTY_PHONE_NUMBER MOBILE 0xDD12U

#define MTP_OBJECT_PROPERTY_PHONE_NUMBER_MOBILE_ 2 0xDD13U

#define MTP_OBJECT_PROPERTY_FAX NUMBER_PRIMARY 0xDD14U

#define MTP_OBJECT_PROPERTY_FAX NUMBER_PERSONAL 0xDD15U

#define MTP_OBJECT_PROPERTY_FAX NUMBER_BUSINESS 0xDD16U

#define MTP_OBJECT_PROPERTY_PAGER_NUMBER 0xDD17U

#define MTP_OBJECT_PROPERTY_PHONE_NUMBER_OTHERS 0xDD18U

#define MTP_OBJECT_PROPERTY_PRIMARY_WEB_ADDRESS 0xDD19U

#define MTP_OBJECT_PROPERTY_PERSONAL_WEB_ADDRESS 0xDD1AU

#define MTP_OBJECT_PROPERTY_BUSINESS WEB_ADDRESS 0xDD1BU

#define MTP_OBJECT_PROPERTY_INSTANT_MESSANGER_ADDRESS 0xDD1CU
#define MTP_OBJECT_PROPERTY_INSTANT MESSANGER_ADDRESS_2 0xDD1DU
#define MTP_OBJECT_PROPERTY_INSTANT MESSANGER_ADDRESS_3 0xDD1EU
#define MTP_OBJECT_PROPERTY_POSTAL_ADDRESS PERSONAL_FULL 0xDD1FU
#define MTP_OBJECT_PROPERTY_POSTAL_ADDRESS_PERSONAL_LINE_1 0xDD20-

U
 #define MTP_OBJECT_PROPERTY_POSTAL_ADDRESS_PERSONAL_LINE_2 0xDD21-

U
 #define MTP_OBJECT_PROPERTY_POSTAL_ADDRESS PERSONAL_CITY 0xDD22U
* #define MTP_OBJECT_PROPERTY_POSTAL_ADDRESS_PERSONAL_REGION 0xD-

D23U
* #define MTP_OBJECT_PROPERTY_POSTAL_ADDRESS_PERSONAL_POSTAL_COD-

E 0xDD24U
* #define MTP_OBJECT_PROPERTY_POSTAL_ADDRESS_PERSONAL_COUNTRY 0xD-

D25U

#define MTP_OBJECT_PROPERTY_POSTAL_ADDRESS_BUSINESS_FULL 0xDD26U
#define MTP_OBJECT_PROPERTY_POSTAL_ADDRESS_BUSINESS_LINE_1 0xDD27U
#define MTP_OBJECT_PROPERTY_POSTAL_ADDRESS_BUSINESS_LINE_2 0xDD28U
#define MTP_OBJECT_PROPERTY_POSTAL_ADDRESS_BUSINESS_CITY 0xDD29U
#define MTP_OBJECT_PROPERTY_POSTAL_ADDRESS_BUSINESS_REGION 0xDD2A-

U

* #define MTP_OBJECT_PROPERTY_POSTAL_ADDRESS_BUSINESS_POSTAL_COD-
E 0xDD2BU

* #define MTP_OBJECT_PROPERTY_POSTAL_ADDRESS_BUSINESS_COUNTRY O0xD-

D2CU
* #define MTP_OBJECT_PROPERTY_POSTAL_ADDRESS_OTHER_FULL 0xDD2DU
* #define MTP_OBJECT_PROPERTY_POSTAL_ADDRESS OTHER_LINE_1 0xDD2EU
* #define MTP_OBJECT_PROPERTY_POSTAL_ADDRESS_OTHER_LINE_2 0xDD2FU

|
USB MTP Class driver

 #define MTP_OBJECT_PROPERTY_POSTAL_ADDRESS _OTHER_CITY 0xDD30U
* #define MTP_OBJECT_PROPERTY_POSTAL_ADDRESS_OTHER_REGION 0xDD31U
#define MTP_OBJECT_PROPERTY_POSTAL_ADDRESS_OTHER_POSTAL_CODE O0x-

DD32U

#define MTP_OBJECT_PROPERTY_POSTAL_ADDRESS_OTHER_COUNTRY 0xDD33U
#define MTP_OBJECT_PROPERTY_ORGANIZATION_NAME 0xDD34U

#define MTP_OBJECT_PROPERTY_PHONETIC_ORGANIZATION_NAME 0xDD35U
#define MTP_OBJECT_PROPERTY_ROLE 0xDD36U

#define MTP_OBJECT_PROPERTY_BIRTHDATE 0xDD37U

#define MTP_OBJECT_PROPERTY_MESSAGE_TO 0xDD40U

#define MTP_OBJECT_PROPERTY_MESSAGE_CC 0xDD41U

#define MTP_OBJECT_PROPERTY_MESSAGE_BCC 0xDD42U

#define MTP_OBJECT_PROPERTY_MESSAGE_READ 0xDD43U

#define MTP_OBJECT_PROPERTY_MESSAGE_RECEIVED_TIME 0xDD44U

#define MTP_OBJECT_PROPERTY_MESSAGE_SENDER 0xDD45U

#define MTP_OBJECT_PROPERTY_ACTIVITY_BEGIN_TIME 0xDD50U

#define MTP_OBJECT_PROPERTY_ACTIVITY_END_TIME 0xDD51U

#define MTP_OBJECT_PROPERTY_ACTIVITY_LOCATION 0xDD52U

#define MTP_OBJECT_PROPERTY_ACTIVITY_REQUIRED_ATTENDEES 0xDD54U
#define MTP_OBJECT_PROPERTY_ACTIVITY_OPTIONAL_ATTENDEES 0xDD55U
#define MTP_OBJECT_PROPERTY_ACTIVITY_RESOURCES 0xDD56U

#define MTP_OBJECT_PROPERTY_ACTIVITY_ACCEPTED 0xDD57U

#define MTP_OBJECT_PROPERTY_ACTIVITY_TENTATIVE 0xDD58U

#define MTP_OBJECT_PROPERTY_ACTIVITY_DECLINED 0xDD59U

#define MTP_OBJECT_PROPERTY_ACTIVITY_REMAINDER_TIME 0xDD5AU
#define MTP_OBJECT_PROPERTY_ACTIVITY_OWNER 0xDD5BU

#define MTP_OBJECT_PROPERTY_ACTIVITY_STATUS 0xDD5CU

#define MTP_OBJECT_PROPERTY_OWNER 0xDD5DU

#define MTP_OBJECT_PROPERTY_EDITOR 0xDD5SEU

#define MTP_OBJECT_PROPERTY_WEBMASTER 0xDD5FU

#define MTP_OBJECT_PROPERTY_URL_SOURCE 0xDD60U

#define MTP_OBJECT_PROPERTY_URL_DESTINATION 0xDD61U

#define MTP_OBJECT_PROPERTY_TIME_BOOKMARK 0xDD62U

#define MTP_OBJECT_PROPERTY_OBJECT_BOOKMARK 0xDD63U

#define MTP_OBJECT_PROPERTY_BYTE_BOOKMARK 0xDD64U

#define MTP_OBJECT_PROPERTY_LAST BUILD_DATE 0xDD70U

#define MTP_OBJECT_PROPERTY_TIME_TO_LIVE 0xDD71U

#define MTP_OBJECT_PROPERTY_MEDIA_GUID 0xDD72U

USB MTP device property code

#define MTP_DEVICE_PROPERTY_UNDEFINED 0x5000U

#define MTP_DEVICE_PROPERTY_BATTERY_LEVEL 0x5001U

#define MTP_DEVICE_PROPERTY_FUNCTIONAL_MODE 0x5002U
#define MTP_DEVICE_PROPERTY_IMAGE_SIZE 0x5003U

#define MTP_DEVICE_PROPERTY_COMPRESSION_SETTING 0x5004U
#define MTP_DEVICE_PROPERTY_WHITE_BALANCE 0x5005U

#define MTP_DEVICE_PROPERTY_RGB_GAIN 0x5006U

#define MTP_DEVICE_PROPERTY_F_NUMBER 0x5007U

#define MTP_DEVICE_PROPERTY_FOCAL_LENGTH 0x5008U

#define MTP_DEVICE_PROPERTY_FOCUS_DISTANCE 0x5009U

#define MTP_DEVICE_PROPERTY_FOCUS_MODE 0x500AU

#define MTP_DEVICE_PROPERTY_EXPOSURE_METERING_MODE 0x500BU
#define MTP_DEVICE_PROPERTY_FLASH_MODE 0x500CU

-
USB MTP Class driver

#define MTP_DEVICE_PROPERTY_EXPOSURE_TIME 0x500DU

#define MTP_DEVICE_PROPERTY_EXPOSURE_PROGRAM_MODE 0x500EU
#define MTP_DEVICE_PROPERTY_EXPOSURE_INDEX 0x500FU

#define MTP_DEVICE_PROPERTY_EXPOSURE_BIAS_COMPENSATION 0x5010U
#define MTP_DEVICE_PROPERTY_DATETIME 0x5011U

#define MTP_DEVICE_PROPERTY_CAPTURE_DELAY 0x5012U

#define MTP_DEVICE_PROPERTY_STILL_CAPTURE_MODE 0x5013U

#define MTP_DEVICE_PROPERTY_CONTRAST 0x5014U

#define MTP_DEVICE_PROPERTY_SHARPNESS 0x5015U

#define MTP_DEVICE_PROPERTY_DIGITAL_ZOOM 0x5016U

#define MTP_DEVICE_PROPERTY_EFFECT_MODE 0x5017U

#define MTP_DEVICE_PROPERTY_BURST_NUMBER 0x5018U

#define MTP_DEVICE_PROPERTY_BURST_INTERVAL 0x5019U

#define MTP_DEVICE_PROPERTY_TIMELAPSE_NUMBER 0x501AU

#define MTP_DEVICE_PROPERTY_TIMELAPSE_INTERVAL 0x501BU

#define MTP_DEVICE_PROPERTY_FOCUS_METERING_MODE 0x501CU

#define MTP_DEVICE_PROPERTY_UPLOAD_URL 0x501DU

#define MTP_DEVICE_PROPERTY_ARTIST 0x501EU

#define MTP_DEVICE_PROPERTY_COPYRIGHT_INFO 0x501FU

#define MTP_DEVICE_PROPERTY_SYNCHRONIZATION_PARTNER 0xD401U
#define MTP_DEVICE_PROPERTY_DEVICE_FRIENDLY_NAME 0xD402U

#define MTP_DEVICE_PROPERTY_VOLUME 0xD403U

#define MTP_DEVICE_PROPERTY_SUPPORTED_FORMATS_ORDERED 0xD404U
#define MTP_DEVICE_PROPERTY_DEVICE_ICON 0xD405U

#define MTP_DEVICE_PROPERTY_PLAYBACK_RATE 0xD410U

#define MTP_DEVICE_PROPERTY_PLAYBACK_OBJECT 0xD411U

#define MTP_DEVICE_PROPERTY_PLAYBACK_CONTAINER_INDEX 0xD412U
#define MTP_DEVICE_PROPERTY_SESSION_INITIATOR_VERSION_INFO 0xD406U
#define MTP_DEVICE_PROPERTY_PERCEIVED_DEVICE_TYPE 0xD407U

USB MTP operation code

#define MTP_OPERATION_GET_DEVICE_INFO 0x1001U

#define MTP_OPERATION_OPEN_SESSION 0x1002U

#define MTP_OPERATION_CLOSE_SESSION 0x1003U

#define MTP_OPERATION_GET_STORAGE_IDS 0x1004U

#define MTP_OPERATION_GET_STORAGE_INFO 0x1005U
#define MTP_OPERATION_GET_NUM_OBJECTS 0x1006U

#define MTP_OPERATION_GET_OBJECT_HANDLES 0x1007U
#define MTP_OPERATION_GET_OBJECT_INFO 0x1008U

#define MTP_OPERATION_GET_OBJECT 0x1009U

#define MTP_OPERATION_GET_THUMB 0x100AU

#define MTP_OPERATION_DELETE_OBJECT 0x100BU

#define MTP_OPERATION_SEND_ OBJECT_INFO 0x100CU

#define MTP_OPERATION_SEND_OBJECT 0x100DU

#define MTP_OPERATION_INITIATE_CAPTURE 0x100EU

#define MTP_OPERATION_FORMAT_STORE 0x100FU

#define MTP_OPERATION_RESET_DEVICE 0x1010U

#define MTP_OPERATION_SELF_TEST 0x1011U

#define MTP_OPERATION_SET_OBJECT_PROTECTION 0x1012U
#define MTP_OPERATION_POWER_DOWN 0x1013U

#define MTP_OPERATION_GET_DEVICE_PROP_DESC 0x1014U
#define MTP_OPERATION_GET_DEVICE_PROP_VALUE 0x1015U
#define MTP_OPERATION_SET_DEVICE_PROP_VALUE 0x1016U

|
USB MTP Class driver

#define MTP_OPERATION_RESET_DEVICE_PROP_VALUE 0x1017U
#define MTP_OPERATION_TERMINATE_OPEN_CAPTURE 0x1018U
#define MTP_OPERATION_MOVE_OBJECT 0x1019U

#define MTP_OPERATION_COPY_OBJECT 0x101AU

#define MTP_OPERATION_GET_PARTIAL_OBJECT 0x101BU

#define MTP_OPERATION_INITIATE_OPEN_CAPTURE 0x101CU

#define MTP_OPERATION_GET_OBJECT_PROPS_SUPPORTED 0x9801U
#define MTP_OPERATION_GET_OBJECT_PROP_DESC 0x9802U

#define MTP_OPERATION_GET_OBJECT_PROP_VALUE 0x9803U
#define MTP_OPERATION_SET_OBJECT_PROP_VALUE 0x9804U

#define MTP_OPERATION_GET_OBJECT_PROP_LIST 0x9805U

#define MTP_OPERATION_SET_OBJECT_PROP_LIST 0x9806U

#define MTP_OPERATION_GET_INTERDEPENDENT_PROP_DESC 0x9807U
#define MTP_OPERATION_SEND_OBJECT_PROP_LIST 0x9808U

#define MTP_OPERATION_GET_OBJECT_REFERENCES 0x9810U
#define MTP_OPERATION_SET_OBJECT_REFERENCES 0x9811U

#define MTP_OPERATION_SKIP 0x9820U

USB MTP response code

#define MTP_RESPONSE_UNDEFINED 0x2000U

#define MTP_RESPONSE_OK 0x2001U

#define MTP_RESPONSE_GENERAL_ERROR 0x2002U

#define MTP_RESPONSE_SESSION_NOT_OPEN 0x2003U

#define MTP_RESPONSE _INVALID_ TRANSACTION_ID 0x2004U

#define MTP_RESPONSE_OPERATION_NOT_SUPPORTED 0x2005U
#define MTP_RESPONSE_PARAMETER_NOT_SUPPORTED 0x2006U
#define MTP_RESPONSE_INCOMPLETE_TRANSFER 0x2007U

#define MTP_RESPONSE_INVALID _STORAGE_ID 0x2008U

#define MTP_RESPONSE_INVALID_OBJECT_HANDLE 0x2009U

#define MTP_RESPONSE_DEVICE_PROP_NOT_SUPPORTED 0x200AU
#define MTP_RESPONSE_INVALID_OBJECT_FORMAT_CODE 0x200BU
#define MTP_RESPONSE_STORAGE_FULL 0x200CU

#define MTP_RESPONSE_OBJECT_WRITE_PROTECTED 0x200DU
#define MTP_RESPONSE_STORE_READ_ONLY 0x200EU

#define MTP_RESPONSE_ACCESS_DENIED 0x200FU

#define MTP_RESPONSE_NO_THUMBNAIL_PRESENT 0x2010U

#define MTP_RESPONSE_SELF_TEST_FAILED 0x2011U

#define MTP_RESPONSE_PARTIAL_DELETION 0x2012U

#define MTP_RESPONSE_STORE_NOT_AVAILABLE 0x2013U

#define MTP_RESPONSE_SPECIFICATION_BY_FORMAT_UNSUPPORTED 0x2014U
#define MTP_RESPONSE_NO_VALID_OBJECT_INFO 0x2015U

#define MTP_RESPONSE_INVALID_CODE_FORMAT 0x2016U

#define MTP_RESPONSE_UNKNOWN_VENDOR_CODE 0x2017U

#define MTP_RESPONSE_CAPTURE_ALREADY_TERMINATED 0x2018U
#define MTP_RESPONSE_DEVICE_BUSY 0x2019U

#define MTP_RESPONSE_INVALID_PARENT_OBJECT 0x201AU

#define MTP_RESPONSE_INVALID DEVICE _PROP_FORMAT 0x201BU
#define MTP_RESPONSE_INVALID_DEVICE_PROP_VALUE 0x201CU
#define MTP_RESPONSE_INVALID_PARAMETER 0x201DU

#define MTP_RESPONSE_SESSION_ALREADY_OPEN 0x201EU

#define MTP_RESPONSE_TRANSACTION_CANCELLED 0x201FU
#define MTP_RESPONSE_SPECIFICATION_OF_DESTINATION_UNSUPPORTED 0x2020-

-
USB MTP Class driver

#define MTP_RESPONSE_INVALID_OBJECT_PROP_CODE 0xA801U

#define MTP_RESPONSE_INVALID_OBJECT_PROP_FORMAT 0xA802U

#define MTP_RESPONSE_INVALID_OBJECT_PROP_VALUE 0xA803U

#define MTP_RESPONSE_INVALID_OBJECT_REFERENCE 0xA804U

#define MTP_RESPONSE_GROUP_NOT_SUPPORTED 0xA805U

#define MTP_RESPONSE_INVALID_DATASET 0xA806U

#define MTP_RESPONSE_SPECIFICATION_BY_GROUP_UNSUPPORTED 0xA807U
#define MTP_RESPONSE_SPECIFICATION_BY_DEPTH_UNSUPPORTED 0xA808U
#define MTP_RESPONSE_OBJECT_TOO_LARGE 0xA809U

#define MTP_RESPONSE_OBJECT_PROP_NOT_SUPPORTED 0xA80AU

USB MTP event code

#define MTP_EVENT_UNDEFINED 0x4000U

#define MTP_EVENT_CANCEL_TRANSACTION 0x4001U

#define MTP_EVENT_OBJECT_ADDED 0x4002U

#define MTP_EVENT_OBJECT_REMOVED 0x4003U

#define MTP_EVENT_STORE_ADDED 0x4004U

#define MTP_EVENT_STORE_REMOVED 0x4005U

#define MTP_EVENT_DEVICE_PROP_CHANGED 0x4006U

#define MTP_EVENT_OBJECT_INFO_CHANGED 0x4007U

#define MTP_EVENT_DEVICE_INFO_CHANGED 0x4008U

#define MTP_EVENT_REQUEST_OBJECT_TRANSFER 0x4009U
#define MTP_EVENT_STORE_FULL 0x400AU

#define MTP_EVENT_DEVICE_RESET 0x400BU

#define MTP_EVENT_STORAGE_INFO_CHANGED 0x400CU
#define MTP_EVENT_CAPTURE_COMPLETE 0x400DU

#define MTP_EVENT_UNREPORTED_STATUS 0x400EU

#define MTP_EVENT_OBJECT_PROP_CHANGED 0xC801U
#define MTP_EVENT_OBJECT_PROP_DESC_CHANGED 0xC802U
#define MTP_EVENT_OBJECT_REFERENCES_CHANGED 0xC803U

USB MTP property form flag

#define MTP_FORM_FLAG_NONE 0x00U

#define MTP_FORM_FLAG_RANGE 0x01U

#define MTP_FORM_FLAG_ENUMERATION 0x02U

#define MTP_FORM_FLAG_DATA_TIME 0x03U

#define MTP_FORM_FLAG_FIXED LENGTH_ARRAY 0x04U
#define MTP_FORM_FLAG_REGULAR_EXPRESSION 0x05U
#define MTP_FORM_FLAG_BYTE_ARRAY 0x06U

#define MTP_FORM_FLAG_LONG_STRING 0xFFU

USB MTP storage type

#define MTP_STORAGE_FIXED_ROM 0x0001U
#define MTP_STORAGE_REMOVABLE_ROM 0x0002U
#define MTP_STORAGE_FIXED_ RAM 0x0003U
#define MTP_STORAGE_REMOVABLE_RAM 0x0004U

|
USB MTP Class driver

USB MTP file system

#define MTP_STORAGE_UNDEFINED 0x0000U

#define MTP_STORAGE_FILESYSTEM_GENERIC_FLAT 0x0001U

#define MTP_STORAGE_FILESYSTEM_GENERIC_HIERARCHICAL 0x0002U
#define MTP_STORAGE_FILESYSTEM_DCF 0x0003U

USB MTP access capability

* #define MTP_STORAGE_READ_WRITE 0x0000U
 #define MTP_STORAGE_READ_ONLY_WITHOUT_DELETE 0x0001U
* #define MTP_STORAGE_READ_ONLY_WITH_DELETE 0x0002U

3.9.2 Data Structure Documentation

3.9.2.1 struct usb_device_mtp_container_t

The structure is used as a header to transfer data in the bulk pipe, and only used by the class driver.

3.9.2.2 struct usb_device_mtp_event_container_t

The structure is used by the class driver to notify the host of occurrence of certain events.

3.9.2.3 struct usb_device_mtp_device_status_t

The structure is used by the class driver to transfer the status and protocol state of device to the host.

3.9.2.4 struct _usb_device_mtp_cancel_request

The structure is used by the class driver to receive the cancel request data from the host.

3.9.2.5 struct usb_device_mtp_extended_event_data_t

The structure is used by the class driver to transfer the extended information regarding an asynchronous
event or vendor condition to the host.

3.9.2.6 struct usb_device_mtp_cmd_data_struct_t

Data Fields

* uint8_t * buffer
[IN] The memory address to hold the data need to be transferred.

-
USB MTP Class driver

e uint32_t curSize

[IN] In the command or data phase, used to save currently how many bytes need to be transferred.
e uint64_t totalSize

[IN] In total how many bytes need to be sent.
e uint64_t curPos

[OUT] The number of bytes has been transferred.
* uint32_t param [5]

[OUT] In the command phase, used to save command parameter.
e uintl6_t code

[IN] response code
* uintl16_t curPhase

[OUT] In the command phase, equals to USB_DEVICE_MTP_PHASE_COMMAND.
3.9.2.6.0.3 Field Documentation
3.9.2.6.0.3.1 uint8_t« usb_device_mtp_cmd_data_struct_t::buffer
3.9.2.6.0.3.2 uint32_t usb_device_mtp_cmd_data_struct_t::curSize
[IN] In the response phase, used to save the number of response parameter
3.9.2.6.0.3.3 uint64_t usb_device_mtp_cmd_data_struct_t::totalSize
[OUT] In total how many bytes need to be received.
3.9.2.6.0.3.4 uint64_t usb_device_mtp_cmd_data_struct_t::curPos
3.9.2.6.0.3.5 uint32_t usb_device_mtp_cmd_data_struct_t::param[5]
[IN] In the repsonse phase, used to save response parameter.

3.9.2.6.0.3.6 uint16_t usb_device_mtp_cmd_data_struct_t::curPhase

[OUT] In the data phase, equals to USB_DEVICE_MTP_PHASE_DATA. [OUT] In the response phase,
equals to USB_DEVICE_MTP_PHASE_RESPONSE. [OUT] When host or device cancels the current
transaction, equals to USB_DEVICE_MTP_PHASE_CANCELLATION.

3.9.2.7 struct usb_device_mtp_response_struct_t

Data Fields

* uintl6_t code
MTP response code, such as MTP_RESPONSE_OK, MTP_RESPONSE_SESSION_NOT _OPEN, etc.
* uintl16_t paramNumber
The number of parameter.
uint32_t paraml
This field contains the 1st parameter associated with the event if needed.
uint32_t param?2

This field contains the 2nd parameter associated with the event if needed.
uint32_t param3

|
USB MTP Class driver

This field contains the 3rd parameter associated with the event if needed.
* uint32_t param4

This field contains the 4th parameter associated with the event if needed.
e uint32_t param5

This field contains the 5th parameter associated with the event if needed.
3.9.2.7.0.4 Field Documentation
3.9.2.7.0.4.1 uint16_t usb_device_mtp_response_struct_t::code
For more response codes, please refer to Media Transfer Protocol Rev 1.1, Appendix F - Responses.
3.9.2.7.0.4.2 uint16_t usb_device_mtp_response_struct_t::paramNumber
3.9.2.7.0.4.3 uint32_t usb_device_mtp_response_struct_t::param1
3.9.2.7.0.4.4 uint32_t usb_device_mtp_response_struct_t::param2
3.9.2.7.0.4.5 uint32_t usb_device_mtp_response_struct_t::param3
3.9.2.7.0.4.6 uint32_t usb_device_mtp_response_struct_t::param4

3.9.2.7.0.4.7 uint32_t usb_device_mtp_response_struct_t::param5

3.9.2.8 struct usb_device_mtp_event_struct_t

Data Fields

e uintl6_t code

MTP event code, such as MTP_EVENT _OBJECT _ADDED, MTP_EVENT OBJECT _REMOVED, etc.
uint16_t paramNumber

The number of parameter.
uint32_t param1

This field contains the st parameter associated with the event if needed.
uint32_t param?2

This field contains the 2nd parameter associated with the event if needed.
uint32_t param3

This field contains the 3rd parameter associated with the event if needed.

3.9.2.8.0.5 Field Documentation

3.9.2.8.0.5.1 uint16_t usb_device_mtp_event_struct_t::code

For more event codes, please refer to Media Transfer Protocol Rev 1.1, Appendix G - Events.

-
USB MTP Class driver

3.9.2.8.0.5.2 uint16_t usb_device_mtp_event_struct_t::paramNumber
3.9.2.8.0.5.3 uint32_t usb_device_mtp_event_struct_t::param1
3.9.2.8.0.5.4 uint32_t usb_device_mtp_event_struct_t::param2
3.9.2.8.0.5.5 uint32_t usb_device_mtp_event_struct_t::param3

3.9.2.9 struct usb_device_mtp_extended_event_struct_t

Data Fields

e uint8_t * buffer

The memory address to hold the data need to be sent.
e uint32_t length

The data length need to be sent.
3.9.2.9.0.6 Field Documentation
3.9.2.9.0.6.1 uint8_tx usb_device_mtp_extended_event_struct_t::buffer

User needs to organize the buffer according to USB Still Image Capture Device Definition Rev 1.0, Table
5.2-4.

3.9.2.9.0.6.2 uint32_t usb_device_mtp_extended_event_struct_t::length

3.9.2.10 struct usb_device_mtp_struct_t

Data Fields

e usb_device_handle handle
The device handle.
* usb_device_class_config_struct_t * configurationStruct
The configuration of the class.
e usb_device_interface_struct_t * interfaceHandle
Current interface handle.
e uint32_t sessionlD
MTP session ID.
e uint32_t transactionID
MTP transaction ID.
e uint8_t * transferBuffer
Data buffer.
e uint64_t transferTotal
The total length of data to be transferred.
e uint64_t transferDone
The length of data transferred.
e uint32_t transferOffset
Transfer backward offset.
 uint32_t transferLength

Transfer forward offset.
* usb_device_mtp_container_t *« mtpContainer

|
USB MTP Class driver

Command or Response structure.
* usb_device_mtp_event_container_t * eventContainer

Event structure.
* usb_device_mtp_device_status_t * deviceStatus

Device status request.
* usb_device_mtp_cancel_request_t * cancelRequest

Cancel request.

e uintl6_t bulkInMaxPacketSize

Max packet size in bulk in endpoint.
e uintl16_t bulkOutMaxPacketSize

Max packet size in bulk out endpoint.
* uint8_t mtpState

Internal referenced MTP state.
* uint8_t bulkInStallFlag

Bulk IN endpoint stall flag.
* uint8_t bulkOutStallFlag

Bulk OUT endpoint stall flag.
* uint8_t interruptInStallFlag

Interrupt IN endpoint stall flag.
* uint8_t interruptinBusy

Interrupt IN endpoint busy flag.
e uint8_t isHostCancel

Host cancels current transaction.
* uint8_t bulkInEndpoint

Bulk IN endpoint number.
* uint8_t bulkOutEndpoint

Bulk OUT endpoint number.
* uint8_t interruptInEndpoint

Interrupt IN endpoint number.
e uint8_t alternate

Current alternate setting of the interface.
* uint8_t configuration

Current configuration.
* uint8_t interfaceNumber

The interface number of the class.

3.9.3 Enumeration Type Documentation

3.9.3.1 enum usb_device_mtp_callback_event_t

Enumerator

kUSB_DeviceMtpEventInvalid Invalid value.

kUSB_DeviceMtpEventOpenSession OpenSession command.
kUSB_DeviceMtpEventCloseSession CloseSession command.
kUSB_DeviceMtpEventGetDevicelnfo GetDevicelnfo command.
kUSB_DeviceMtpEventGetDevicePropDesc GetDevicePropDesc command.
kUSB_DeviceMtpEventGetObjPropsSupported GetObjectPropsSupported command.
kUSB_DeviceMtpEventGetStorageIDs GetStorageIDs command.

-
USB MTP Class driver

kUSB_DeviceMtpEventGetStoragelnfo GetStoragelnfo command.
kUSB_DeviceMtpEventGetObjHandles GetObjectHandles command.
kUSB_DeviceMtpEventGetObjPropDesc GetObjectPropDesc command.
kUSB_DeviceMtpEventGetObjPropList GetObjectPropList command.
kUSB_DeviceMtpEventGetObjInfo GetObjectInfo command.
kUSB_DeviceMtpEventGetObj GetObject command.
kUSB_DeviceMtpEventSendObjInfo SendObjectInfo command.
kUSB_DeviceMtpEventSendObj SendObject command.
kUSB_DeviceMtpEventDeleteObj DeleteObject command.
kUSB_DeviceMtpEventGetDevicePropVal GetDevicePropVal command.
kUSB_DeviceMtpEventSetDevicePropVal SetDevicePropVal command.
kUSB_DeviceMtpEventGetObjPropVal GetObjectPropVal command.
kUSB_DeviceMtpEventSetObjPropVal SetObjectPropVal command.
kUSB_DeviceMtpEventGetObjReferences GetObjectReferences command.
kUSB_DeviceMtpEventMoveObj MoveObject command.
kUSB_DeviceMtpEventCopyObj CopyObject command.
kUSB_DeviceMtpEventSendResponseError The result of asynchronous event notification.
kUSB_DeviceMtpEventSendResponseSuccess The result of asynchronous event notification.
kUSB_DeviceMtpEventDeviceResetRequest Class specific request callback.
kUSB_DeviceMtpEventGetExtendedEventData Class specific request callback.

3.9.4 Function Documentation

3.9.4.1 usb_status_t USB_DeviceMtplnit (uint8_t controllerld, usb_device_class_config_-
struct_t x config, class_handle_t « handle)

This function is used to initialize the MTP class.

Parameters

controllerld | The controller ID of the USB IP. See the enumeration usb_controller_index_t.

config | The class configuration information.

handle | A parameter used to return pointer of the MTP class handle to the caller.

Returns

A USB error code or kStatus_ USB_ Success.

3.9.4.2 usb_status_t USB_DeviceMtpDeinit (class_handle_t handle)

The function deinitializes the device MTP class.

|
USB MTP Class driver

Parameters

handle | The MTP class handle received from usb_device_class_config_struct_t::classHandle.

Returns

A USB error code or kStatus_ USB_ Success.

3.9.4.3 usb_status_t USB_DeviceMtpEvent (void x handle, uint32_t event, void x param
)

This function handles the event passed to the MTP class. This function only can be called by USB_-
DeviceClassEvent.

Parameters
in handle | The MTP class handle received from the usb_device_class_config_-
struct_t::classHandle.
in event | The event codes. See the enumeration usb_device_class_event_t.
in, out param | The parameter type is determined by the event code.
Returns

A USB error code or kStatus_ USB_ Success.

Return values

kStatus_USB_Success | Free device handle successfully.

kStatus_USB_Invalid- | The device handle not be found.
Parameter

kStatus_USB_Invalid- | The request is invalid, and the control pipe is stalled by the caller.
Request

3.9.4.4 usb_status_t USB_DeviceMtpEventSend (class_handle_t handle,
usb_device_mtp_event_struct_t « event)

The function is used to send event through interrupt in endpoint. The function calls USB_DeviceSend-
Request internally.

-
USB MTP Class driver

Parameters

handle | The MTP class handle got from usb_device_class_config_struct_t::classHandle.

event | Please refer to the structure usb_device_mtp_event_struct_t.

Returns

A USB error code or kStatus_ USB_ Success.

Note

The return value just means if the sending request is successful or not; the transfer done is notified by
USB_DeviceMtplnterruptln. Currently, only one transfer request can be supported for one specific
endpoint. If there is a specific requirement to support multiple transfer requests for one specific
endpoint, the application should implement a queue in the application level. The subsequent transfer
could begin only when the previous transfer is done (get notification through the endpoint callback).

3.9.4.5 usb_status_t USB_DeviceMtpResponseSend (class_handle_t handle,
usb_device_mtp_response_struct_t x response)

The function is used to send response through bulk in endpoint. The function calls USB_DeviceSend-
Request internally.

Parameters

handle | The MTP class handle got from usb_device_class_config_struct_t::classHandle.

response | Please refer to the structure usb_device_mtp_response_struct_t.

Returns

A USB error code or kStatus_ USB_ Success.

Note

The function is used to asynchronously send response to the host. Some operations may consume
a lot of time to handle current transaction, such as CopyObject or DeleteObject, which causes the
subsequent USB event cannot be responded in time. In this case, a separated task is needed to handle
these operations. When the process is complete, a response needs to be sent to the host by calling
this function.

3.9.4.6 usb_status_t USB_DeviceMtpCancelCurrentTransaction (class_handle_t handle)

The function is used to cancel current transaction in the bulk in, bulk out and interrupt in endpoints. The
function calls USB_DeviceCancel internally.

|
USB MTP Class driver

Parameters

handle | The MTP class handle got from usb_device_class_config_struct_t::classHandle.

Returns

A USB error code or kStatus_ USB_ Success.

-
USB CCID Class driver

3.10 USB CCID Class driver
3.10.1 Overview

Data Structures

¢ struct usb_device_ccid_common_command._t

Common command structure of the command message in the bulk-out pipe. More...
* struct usb_device_ccid_power_on_command_t

ICC power on command structure of the command message in the bulk-out pipe. More...
* struct usb_device_ccid_power_off_command_t

ICC power off command structure of the command message in the bulk-out pipe. More...
* struct usb_device_ccid_get_slot_status_command_t

Gets the slot status command structure of the command message in the bulk-out pipe. More...
¢ struct usb_device_ccid_transfer block _command_t

Transfer data block command structure of the command message in the bulk-out pipe. More...
* struct usb_device_ccid_get_parameters_command_t

Gets the ICC parameter command structure of the command message in the bulk-out pipe. More...
* struct usb_device_ccid_reset_parameters_command_t

Resets the ICC parameter command structure of the command message in the bulk-out pipe. More...
* struct usb_device_ccid_set_parameters_command_t

Sets the ICC parameter command structure of the command message in the bulk-out pipe. More...
e struct usb_device_ccid_set_parameters_t0_command_t

Sets the ICC(T=0) parameter command structure of the command message in the bulk-out pipe. More...
* struct usb_device_ccid_set_parameters_t1_command_t

Sets the ICC(T=1) parameter command structure of the command message in the bulk-out pipe. More...
* union usb_device_ccid_set_parameters_command_common_t

Sets the ICC parameter command union of the command message in the bulk-out pipe. More...
* struct usb_device_ccid_escape_command_t

Escape command structure of the command message in the bulk-out pipe. More...
* struct usb_device_ccid_clock_command_t

Controls the ICC clock command structure of the command message in the bulk-out pipe. More...
e struct usb_device_ccid_t0_apdu_command_t

Controls the ICC clock command structure of the command message in the bulk-out pipe. More...
¢ struct usb_device_ccid_secure_command_t

Secures the command structure of the command message in the bulk-out pipe. More...
e struct usb_device_ccid_secure_pin_operation_command_t

Secures the PIN operation command structure of the command message in the bulk-out pipe. More...
* struct usb_device_ccid_seucre_pin_verification_command_t

Secures the PIN verification operation command structure of the command message in the bulk-out pipe.

More...
* struct usb_device_ccid_secure_pin_modification_command_t

Secures the PIN modification operation command structure of the command message in the bulk-out pipe.

More...
¢ struct usb_device_ccid_mechanical command_t

Manages the motorized type CCID functionality command structure of the command message in the bulk-

out pipe. More...
e struct usb_device_ccid_abort_command_t

Aborts the command structure of the command message in the bulk-out pipe. More...
* struct usb_device_ccid_set_data_rate_and_clock_frequency_command_t

Sets data rate and clock frequency command structure of the command message in the bulk-out pipe.

|
USB CCID Class driver

More...
* struct usb_device_ccid_common_response_t

Common response structure to respond a command message in the bulk-in pipe. More...
* struct usb_device_ccid_data_block_response_t

Data block response structure to respond a command message in the bulk-in pipe. More...
* struct usb_device_ccid_slot_status_response_t

Sends a slot status response structure to respond a command message in the bulk-in pipe. More...
e struct usb_device_ccid_parameters_response_t

ICC parameter response structure to respond a command message in the bulk-in pipe. More...
* struct usb_device_ccid_parameters_TO_response_t

ICC TO parameter response structure to respond a command message in the bulk-in pipe. More...
* struct usb_device_ccid_parameters_T1_response_t

ICC T1 parameter response structure to response a command message in the bulk-in pipe. More...
* union usb_device_ccid_parameters_response_common_t

ICC parameter response union to response a command message in the bulk-in pipe. More...
* struct usb_device_ccid_escape_response_t

Response structure to respond the "PC_to_RDR_Escape" command message in the bulk-in pipe. More...
* struct usb_device_ccid_data_rate_and_clock_frequency_response_t

Response structure to respond the "PC_to_RDR_SetDataRateAndClockFrequency" command message in

the bulk-in pipe. More...
* struct usb_device_ccid_notify_slot_chnage_notification_t

Notification structure to notify Host the CCID device slot changed. More...
¢ struct usb_device_ccid_hardware_error_notification_t

Notification structure to notify Host a hardware error happened in the CCID device. More...
e struct usb_device_ccid_transfer_struct_t

USB device CCID transfer structure. More...
* struct usb_device_ccid_control_request_struct_t

The structure is used to get data rates or clock frequencies if the event is kUSB_DeviceCcidEventGet-

ClockFrequencies or kUSB_DeviceCcidEventGetDataRate. More...
¢ struct usb_device_ccid_notification_struct_t

The structure is used to keep the transferred buffer and transferred length if the event is kUSB_Device-

CcidEventSlotChangeSent or kUSB_DeviceCcidEventHardwareErrorSent. More...
¢ struct usb_device_ccid_command_struct_t

The structure is used to keep the command data and length and get response data and length if the event

is kUSB_DeviceCcidEventCommandReceived. More...
e struct usb_device_ccid_slot_status_struct_t

The structure is used to get the slot status if the event is kUSB_DeviceCcidEventGetSlotStatus. More...
¢ struct usb_device_ccid_struct_t

The CCID device class status structure. More...

Macros

#define USB_DEVICE_CCID_CLASS_CODE (0x0BU)

CCID device class code.
#define USB_DEVICE_CCID_SUBCLASS_CODE (0x00U)

CCID device subclass code.
#define USB_DEVICE_CCID_PROTOCOL_CODE (0x00U)

CCID device protocol code.
#define USB_DEVICE_CCID_ABORT (0x01U)

CCID device class-specific control pipe requests.

-
USB CCID Class driver

* #define USB_DEVICE_CCID_PC_TO_RDR_ICCPOWERON (0x62U)

The message type of CCID device class-specific bulk-out pipe (Command pipe)
* #define USB_DEVICE_CCID_RDR_TO_PC_DATABLOCK (0x80U)

The message type of CCID device class-specific bulk-in pipe (Response pipe)
 #define USB_DEVICE_CCID_RDR_TO_PC_NOTIFYSLOTCHANGE (0x50U)

The message type of CCID device class-specific interrupt-in pipe.
 #define USB_DEVICE_CCID_SLOT_ERROR_COMMAND_NOT_SUPPORTED (0x00U)

Reporting slot error and slot status registers in bulk-in messages.

* #define USB_DEVICE_CCID_COMMAND_HEADER _LENGTH (0x0AU)

The command header length of the bulk-out pipe message.
 #define USB_DEVICE_CCID_RESPONSE_ HEADER LENGTH (0x0AU)

The response header length of the bulk-in pipe message.
» #define USB_DEVICE_CCID_BUFFER_4BYTE_ALIGN(n) (((n - 1U) & OxFFFFFFFCU) +

0x00000004U)
The definition to make the length aligned to 4-bytes.

Enumerations

e enum usb_device_ccid_event_t {
kUSB_DeviceCcidEventCommandReceived = 0x01U,
kUSB_DeviceCcidEventResponseSent,
kUSB_DeviceCcidEventGetSlotCount,
kUSB_DeviceCcidEventGetSlotStatus,
kUSB_DeviceCcidEventCommandAbort,
kUSB_DeviceCcidEventGetClockFrequencies,
kUSB_DeviceCcidEventGetDataRate,
kUSB_DeviceCcidEventSlotChangeSent,
kUSB_DeviceCcidEventHardwareErrorSent }

Available common EVENT types in CCID class callback.
e enum usb_device_ccid_slot_state_t {

kUSB_DeviceCcidSlotStateNoPresent = 0x00U,
kUSB_DeviceCcidSlotStatePresent = 0x01U }

Slot status, present or not.
e enum usb_device_ccid_hardware_error_t { kUSB_DeviceCcidHardwareErrorOverCurrent = 0x01-

U}

Hardware error status.

Functions

 usb_status_t USB_DeviceCcidlInit (uint8_t controllerld, usb_device_class_config_struct_t xconfig,
class_handle_t xhandle)

Initialize the CCID class.
* usb_status_t USB_DeviceCcidDeinit (class_handle_t handle)

Deinitializes the device CCID class.
* usb_status_t USB_DeviceCcidEvent (void xhandle, uint32_t event, void *param)

Handles the event passed to the CCID class.

|
USB CCID Class driver

USB CCID device class configuration

#define USB_DEVICE_CONFIG_CCID_SLOT_MAX (1U)

MAX slot number of the CCID device.
#define USB_DEVICE_CONFIG_CCID_TRANSFER_COUNT (4U)

MAX transfer entity number of the CCID device.
#define USB_DEVICE_CONFIG_CCID_MAX_MESSAGE_LENGTH (271U)

MAX maximum message length of the CCID device.

USB CCID device class descriptor

#define USB_DEVICE_CCID_DESCRIPTOR_LENGTH (0x36U)

#define USB_DEVICE_CCID_DESCRIPTOR_TYPE (0x21U)

#define USB_DEVICE_CCID_DESCRIPTOR_VOLTAGE_SUPPORT_BM_5V (0x01U)
#define USB_DEVICE_CCID_DESCRIPTOR_VOLTAGE_SUPPORT_BM_3V (0x02U)
#define USB_DEVICE_CCID_DESCRIPTOR_VOLTAGE_SUPPORT_BM_1V8 (0x04U)
#define USB_DEVICE_CCID_DESCRIPTOR_PROTOCOLS_BM_T0 (0x00000001U)
#define USB_DEVICE_CCID_DESCRIPTOR_PROTOCOLS_BM_T1 (0x00000002U)
#define USB_DEVICE_CCID_DESCRIPTOR_MECHANICAL_BM_NO (0x00000000U)
#define USB_DEVICE_CCID_DESCRIPTOR_MECHANICAL_BM_ACCEPT (0x00000001-

U)

#define USB_DEVICE_CCID_DESCRIPTOR_MECHANICAL_BM_EJECTION (0x00000002-
U)

#define USB_DEVICE_CCID_DESCRIPTOR_MECHANICAL_BM_CAPTURE (0x00000004-
U)

#define USB_DEVICE_CCID_DESCRIPTOR_MECHANICAL_BM_LOCK_UNLCO-
K (0x00000008U)

#define USB_DEVICE_CCID_DESCRIPTOR_FEATURES_BM_NO (0x00000000U)
#define USB_DEVICE_CCID_DESCRIPTOR_FEATURES_BM_AUTO_CONFIG_BASED-

_ON_ATR (0x00000002U)
#define USB_DEVICE_CCID_DESCRIPTOR_FEATURES_BM_AUTO_ACTIVE_ON_IN-

SERTING (0x00000004U)
#define USB_DEVICE_CCID_DESCRIPTOR_FEATURES_BM_AUTO_VOLTAGE_SEL-

ECTION (0x00000008U)
#define USB_DEVICE_CCID_DESCRIPTOR_FEATURES_BM_AUTO_FREQUENCY_C-
HANGE (0x00000010U)
#define USB_DEVICE_CCID_DESCRIPTOR_FEATURES_BM_AUTO_BAUD_RATE_C-

HANGE (0x00000020U)
#define USB_DEVICE_CCID_DESCRIPTOR_FEATURES_BM_AUTO_NEGOTIATIO-

N (0x00000040U)

#define USB_DEVICE_CCID_DESCRIPTOR_FEATURES_BM_AUTO_PPS (0x00000080-
U)

#define USB_DEVICE_CCID_DESCRIPTOR_FEATURES_BM_CAN_SET_IN_STOP_M-
ODE (0x00000100U)

#define USB_DEVICE_CCID_DESCRIPTOR_FEATURES_BM_NAD_VLAUE (0x00000200-
U)

#define USB_DEVICE_CCID_DESCRIPTOR_FEATURES_BM_AUTO_IFSD_EXCHANG-

E_AS_FIRST (0x00000400U)
#define USB_DEVICE_CCID_DESCRIPTOR_FEATURES_BM_TPDU_LEVEL_EXCHA-

-
USB CCID Class driver

NGES (0x000100000)
¢ #define USB_DEVICE_CCID_DESCRIPTOR_FEATURES_BM_SHORT_APDU_LEVEL _-

EXCHANGES (0x00020000U)
* #define USB_DEVICE_CCID_DESCRIPTOR_FEATURES_BM_SHORT_EXTENDED_A-

PDU_LEVEL_EXCHANGES (0x00040000U)
* #define USB_DEVICE_CCID_DESCRIPTOR_FEATURES_BM_SUPPORT_SUPPEN-

D (0x00100000U)
* #define USB_DEVICE_CCID_DESCRIPTOR_PIN_SUPPORT_BM_NO (0x00U)
 #define USB_DEVICE_CCID_DESCRIPTOR_PIN_SUPPORT_BM_VERIFICATION_SU-

PPORTED (0x01U)
¢ #define USB_DEVICE_CCID_DESCRIPTOR_PIN_SUPPORT_BM_MODIFICATION_SU-

PPORTED (0x02U)

USB device CCID class APIs

* usb_status_t USB_DeviceCcidNotifySlotChange (class_handle_t handle, uint8_t slot, usb_device_-
ccid_slot_state_t state)

Notifies the slot status changed.
 usb_status_t USB_DeviceCcidNotifyHardwareError (class_handle_t handle, uint8_t slot, usb_-

device_ccid_hardware_error_t errorCode)
Notifies the slot status changed.

3.10.2 Data Structure Documentation

3.10.2.1 struct usb_device ccid common_command

Data Fields

* uint8_t bMessageType

The message type.
e uint32_t dwLength

Message-specific data length.
e uint8_t bSlot

Identifies the slot number for this command.

* uint8_t bSeq

Sequence number for command.
e uint8_t bParameterl

Parameterl of the message, message-specific.
* uint8_t bParameter2

Parameter2 of the message, message-specific.
e uint8_t bParameter3

Parameter3 of the message, message-specific.

3.10.2.2 struct _usb_device_ccid_power_on_command

A PC_to_RDR_IccPowerOn message to an inactive slot returns an Answer-To-Reset (ATR) data.

|
USB CCID Class driver

The response to this command message is the RDR_to_PC_DataBlock response message and the data
returned is the Answer To Reset (ATR) data.

Data Fields

* uint8_t bMessageType

The message type.
* uint32_t dwlLength

Message-specific data length.
e uint8_t bSlot

Identifies the slot number for this command.

* uint8_t bSeq

Sequence number for command.
¢ uint8_t bPowerSelect

Voltage that is applied to the ICC.
e uint8_t bRFU [2]

Reserved for Future Use.

3.10.2.3 struct _usb_device_ccid_power_off command

The response to this command message is the RDR_to_PC_SlotStatus response message.

Data Fields

* uint8_t bMessageType

The message type.
uint32_t dwlLength

Message-specific data length.
uint8_t bSlot

Identifies the slot number for this command.

uint8_t bSeq

Sequence number for command.

uint8_t bRFU [3]

Reserved for Future Use.

3.10.2.4 struct _usb_device_ccid_get_slot_status_command

The response to this command message is the RDR_to_PC_SlotStatus response message.

Data Fields

* uint8_t bMessageType
The message type.
e uint32_t dwLength
Message-specific data length.
e uint8_t bSlot

-
USB CCID Class driver

Identifies the slot number for this command.

* uint8_t bSeq

Sequence number for command.

* uint8_t bRFU [3]

Reserved for Future Use.

3.10.2.5 struct _usb_device ccid_transfer_block_command

The block should never exceed the dwMaxCCIDMessageLength-10 in the Class Descriptor. Parameter
bBWTI is only used by CCIDs which use the character level and TPDU level of exchange (as reported in
the dwFeatures parameter in the CCID Functional Descriptor) and only for protocol T=1 transfers.

The response to this command message is the RDR_to_PC_DataBlock response message.

Note

For reference, the absolute maximum block size for a TPDU T=0 block is 260U bytes (5U bytes
command; 255U bytes data), or for a TPDU T=1 block is 259U bytes, or for a short APDU T=1
block is 261U bytes, or for an extended APDU T=1 block is 65544U bytes.

Data Fields

* uint8_t bMessageType

The message type.
e uint32_t dwlLength

Size of abData field of this message.
e uint8_t bSlot

Identifies the slot number for this command.

* uint8_t bSeq

Sequence number for command.

e uint8_t bBWI

Used to extend the CCIDs Block Waiting Timeout for this current transfer.
e uint16_t wLevelParameter

Use changes depending on the exchange level reported by the class descriptor in dwFeatures field.
e uint8_t abData [1]

Data block sent to the CCID.

3.10.2.6 struct _usb_device_ccid_get_parameters_command

The response to this command message is the RDR_to_PC_Parameters response message.

Data Fields

* uint8_t bMessageType

The message type.
e uint32_t dwlLength

Message-specific data length.

|
USB CCID Class driver

* uint8_t bSlot
Identifies the slot number for this command.

* uint8_t bSeq

Sequence number for command.
e uint8_t bRFU [3]

Reserved for Future use.

3.10.2.7 struct _usb_device_ccid_reset_parameters_command

This command resets the slot parameters to their default values.

The response to this command message is the RDR_to_PC_Parameters response message.

Data Fields

* uint8_t bMessageType

The message type.
e uint32_t dwLength

Message-specific data length.
e uint8_t bSlot

Identifies the slot number for this command.

* uint8_t bSeq

Sequence number for command.
* uint8_t bRFU [3]

Reserved for Future Use.

3.10.2.8 struct _usb_device_ccid_set_parameters_command

This command is used to change the parameters for a given slot. A CCID which has no automatic features
(dwFeatures=0, 100h, 200h, or 300h) depends on the driver to send this command to set the protocol and
other parameters to the right values necessary to correctly talk to the ICC located in the selected slot. A
CCID which has automatic features automatically sets the protocol and certain parameters based on data
received from the ICC (ATR, PPS, IFSD, or proprietary algorithms). The level of automatism and design
requirements determines which parameters the CCID allow the driver to change. If this command tries
to change a parameter which is not changeable, then the CCID does not change any parameters and the
RDR_to_PC_GetParameters response returns a Command Failed status and the bError field contains the
offset of the "offending" parameter.

The response to this command message is the RDR_to_PC_Parameters response message.

Data Fields

* uint8_t bMessageType

The message type.
* uint32_t dwLength

Size of abProtocolDataStructure field of this message.
e uint8_t bSlot

-
USB CCID Class driver

Identifies the slot number for this command.

uint8_t bSeq

Sequence number for command.
uint8_t bProtocolNum

Specifies what protocol data structure follows.

uint8_t bRFU [2]

Reserved for Future Use.
uint8_t abProtocolDataStructure [1]

Protocol Data Structure.

3.10.2.8.0.7 Field Documentation

3.10.2.8.0.7.1 uint8_t usb_device_ccid_set_parameters_command_t::bProtocolNum

00h = Structure for protocol T=0, 01h = Structure for protocol T=1

3.10.2.8.0.7.2 uint8_t usb_device_ccid_set_parameters_command_t::abProtocolDataStructure[1]

For T = 0U, see usb_device_ccid_set_parameters_t0_command_t, for T = 1U, see usb_device_ccid_set_-
parameters_t1_command_t.

3.10.2.9 struct _usb_device_ccid_set_parameters_t0_command

Protocol Data Structure for Protocol T=0 (bProtocolNum=0) (dwLength=00000005h).

The response to this command message is the RDR_to_PC_Parameters response message.

Data Fields

* uint8_t bMessageType
The message type.
* uint32_t dwlLength
(dwLength = 0x05U)
* uint8_t bSlot
Identifies the slot number for this command.
* uint8_t bSeq
Sequence number for command.
e uint8_t bProtocolNum
Structure for protocol T=0.
e uint8_t bRFU [2]
Reserved for Future Use.
e uint8_t bmFindexDindex
Bit7~4 - Fi, Bit3~0 - Di.
e uint8_t bmTCCKSTO
Bitl - Convention used(OU for direct, 1U for inverse), other bits is 0.
* uint8_t bGuardTimeTO
Extra guard time between two characters.
* uint8_t bWaitingIntegerTO
WI for T= OU used to define WWT.

|
USB CCID Class driver

* uint8_t bClockStop
ICC Clock Stop Support.

3.10.2.9.0.8 Field Documentation
3.10.2.9.0.8.1 uint8_t usb_device ccid_set parameters_t0_command_t::bmFindexDindex
3.10.2.9.0.8.2 uint8_t usb_device ccid_set parameters_t0_command_t::bGuardTimeT0

3.10.2.10 struct _usb_device_ccid_set_parameters_t1_command

Protocol Data Structure for Protocol T=1 (bProtocolNum=1) (dwLength=00000007h)

The response to this command message is the RDR_to_PC_Parameters response message.

Data Fields

* uint8_t bMessageType
The message type.
e uint32_t dwLength
(dwLength = 0x07U)
e uint8_t bSlot
Identifies the slot number for this command.
* uint8_t bSeq
Sequence number for command.
e uint8_t bProtocolNum
Structure for protocol T=1.
* uint8_t bRFU [2]
Reserved for Future Use.
e uint8_t bmFindexDindex
Bit7~4 - Fi, Bit3~0 - Di.
e uint8_t bmTCCKST1
Bit0 - Checksum type(OU for LRC, 1U for CRC).
e uint8_t bGuardTimeT1
Extra guard time.
* uint8_t bmWaitingIntegersT1
Bit7~4 - BWI(0~9 valid), Bit3~0 - CWI(0~0xF valid)
* uint8_t bClockStop
ICC Clock Stop Support.
* uint8_t bIFSC
Size of negotiated IFSC.
e uint8_t bNadValue
Value = 0x00U if CCID doesn’t support a value other then the default value.

-
USB CCID Class driver

3.10.2.10.0.9 Field Documentation

3.10.2.10.0.9.1 uint8_t usb_device_ccid_set_parameters_t1_command_t::bmFindexDindex
3.10.2.10.0.9.2 uint8_t usb_device_ccid_set_parameters_t1_command_t::bmTCCKST1
Bitl - Convention used(OU for direct, 1U for inverse), Bit7~2 - 0b000100

3.10.2.10.0.9.3 uint8_t usb_device_ccid_set_parameters_t1_command_t::bGuardTimeT1
3.10.2.10.0.9.4 uint8_t usb_device_ccid_set_parameters_t1_command_t::bNadValue

Else value respects ISO/IEC 7816-3,9.4.2.1

3.10.2.11 union usb_device_ccid_set_parameters_command_common_t

Data Fields

* usb_device_ccid_set_parameters_command_t common

Set ICC parameter common Sstructure.
* usb_device_ccid_set_parameters_t0_command_t t0

Set ICC parameter structure for TO.
» usb_device_ccid_set_parameters_t1_command_t tl

Set ICC parameter structure for T1.

3.10.2.12 struct _usb_device_ccid_escape_command

This command allows the CCID manufacturer to define and access extended features. Information sent
via this command is processed by the CCID control logic.

The response to this command message is the RDR_to_PC_Escape response message.

Data Fields

* uint8_t bMessageType

The message type.
uint32_t dwLength

Message-specific data length.
uint8_t bSlot

Identifies the slot number for this command.

uint8_t bSeq

Sequence number for command.

uint8_t bRFU [3]

Reserved for future use.
uint8_t abData [1]

Size of abData field of this message.

|
USB CCID Class driver

3.10.2.13 struct usb_device ccid clock command

This command stops or restarts the clock.

The response to this command message is the RDR_to_PC_SlotStatus response message.

Data Fields

* uint8_t bMessageType

The message type.
e uint32_t dwLength

Message-specific data length.
e uint8_t bSlot

Identifies the slot number for this command.

* uint8_t bSeq

Sequence number for command.
e uint8_t bClockCommand

0x00U - Restart clock, 0x01U - Stop clock in the state shown in the bClockStop field of the PC_to_RDR._-
SetParameters command and RDR_to_PC_Parameters message.

e uint8_t bRFU [2]

Reserved for future use.
3.10.2.13.0.10 Field Documentation
3.10.2.13.0.10.1 uint8_t usb_device ccid_clock_command_t::bClockCommand

3.10.2.14 struct _usb_device_ccid_t0_apdu_command

This command changes the parameters used to perform the transportation of APDU messages by the T=0
protocol. It effects the CLA (class) byte used when issuing a Get Response command or a Envelope
command to the ICC.

This command is slot-specific. It only effects the slot specified in the bSlot field. Slots, when not powered,
do not change back to using the default behaviour defined in the CCID class descriptor. Any newly inserted
ICC has the default behaviour until this command is issued for its slot.

The response to this command message is the RDR_to_PC_SlotStatus response message.

Data Fields

* uint8_t bMessageType

The message type.
uint32_t dwlLength

Message-specific data length.
uint8_t bSlot

Identifies the slot number for this command.

uint8_t bSeq

Sequence number for command.
uint8_t bmChanges

The value is bitwise OR operation.

-
USB CCID Class driver

* uint8_t bClassGetResponse

Value to force the class byte of the header in a get response command.
* uint8_t bClassEnvelope

Value to force the class byte of the header in a envelope command.
3.10.2.14.0.11 Field Documentation
3.10.2.14.0.11.1 uint8_t usb_device_ccid_t0_apdu_command_t::bmChanges

Bit OU is associated with field bClassGetResponse Bit 1U is associated with field bClassEnvelope Other
bits are RFU.

3.10.2.15 struct _usb_device_ccid_secure_command

This is a command message to allow entering the PIN for verification or modification.

The response to this command message is the RDR_to_PC_DataBlock response message.

Data Fields

* uint8_t bMessageType

The message type.
e uint32_t dwLength

Size of abData field of this message.
e uint8_t bSlot

Identifies the slot number for this command.

* uint8_t bSeq

Sequence number for command.
e uint8_t bBWI

Used to extend the CCIDs Block Waiting Timeout for this current transfer.
* uintl6_t wlLevelParameter

Use changes depending on the exchange level reported by CCID in the functional descriptor.
e uint8_t abData [1]

The value depends of wLevelParameters.
3.10.2.15.0.12 Field Documentation
3.10.2.15.0.12.1 uint8_t usb_device_ccid_secure_command_t::abData[1]
When wLevelParameters is 0000h or 0001h abData = abPINOperationDataStructure. For other values of

wLevelParameters this field is the continuation of the previously sent PC_to_RDR_Secure.

3.10.2.16 struct _usb_device_ccid_secure_pin_operation_command

This is a command message to allow entering the PIN for verification or modification.

The response to this command message is the RDR_to_PC_DataBlock response message.

|
USB CCID Class driver

Data Fields

uint8_t bMessageType

The message type.
* uint32_t dwlLength

1U + Size of abPINDataStructure field of this message
e uint8_t bSlot

Identifies the slot number for this command.

* uint8_t bSeq

Sequence number for command.
e uint8_t bBWI

Used to extend the CCIDs Block Waiting Timeout for this current transfer.
e uintl6_t wlLevelParameter

Use changes depending on the exchange level reported by CCID in the functional descriptor.
* uint8_t bPINOperation

Used to indicate the PIN operation: 00h: PIN Verification O1h: PIN Modification 02h: Transfer PIN from
secure CCID buffer 03h: Wait ICC response 04h: Cancel PIN function 05h: Re-send last I-Block, valid
only if T=1.

3.10.2.16.0.13 Field Documentation
3.10.2.16.0.13.1 uint8_t usb_device_ccid_secure_pin_operation_command_t::bPINOperation

06h: Send next part of APDU, valid only T = 1.

3.10.2.17 struct _usb_device_ccid_seucre_pin_verification_command

This is a command message to allow entering the PIN for verification.

The response to this command message is the RDR_to_PC_DataBlock response message.

Data Fields

uint8_t bMessageType

The message type.
* uint32_t dwlLength

12U + Size of abPINApdu field of this message
* uint8_t bSlot

Identifies the slot number for this command.

* uint8_t bSeq

Sequence number for command.

e uint8_t bBWI

Used to extend the CCIDs Block Waiting Timeout for this current transfer.
e uintl6_t wlLevelParameter

Use changes depending on the exchange level reported by CCID in the functional descriptor.
* uint8_t bPINOperation

Used to indicate the PIN operation: 00h: PIN Verification 01h: PIN Modification 02h: Transfer PIN from
secure CCID buffer 03h: Wait ICC response 04h: Cancel PIN function 05h: Re-send last I-Block, valid
only if T=1.

-
USB CCID Class driver

e uint8_t bTimeOut

Number of seconds.
e uint8_t bmFormatString

Several parameters for the PIN format options.

* uint8_t bmPINBlockString

Defines the length in bytes of the PIN block to present in the APDU command.
* uint8_t bmPINLengthFormat

Allows the insertion of the PIN length in the APDU command.
* uint16_t wPINMaxExtraDigit

Bit15~8 - Minimum PIN size in digit, Bit7~0 - Maximum PIN size in digit.
* uint8_t bEntryValidationCondition

The value is a bit wise OR operation.
* uint8_t bNumberMessage

Number of messages to display for the PIN Verification management.
e uintl6_t wLangld

Language used to display the messages.
* uint8_t bMsglndex

Message index in the Reader CCID message table (should be 00h).
* uint8_t bTeoPrologue

T=1 I-block prologue field to use.
* uint8_t abPINApdu [1]
APDU to send to the ICC.
3.10.2.17.0.14 Field Documentation
3.10.2.17.0.14.1 uint8_t usb_device_ccid_seucre_pin_verification_command_t::bPINOperation

06h: Send next part of APDU, valid only T = 1.

3.10.2.17.0.14.2 uint8_t usb_device_ccid_seucre_pin_verification_command_t::bEntryValidation-
Condition

O01h - Maximum size reached, 02h - Validation key pressed, 04h - Timeout occurred

3.10.2.17.0.14.3 uint8_t usb_device_ccid_seucre_pin_verification_command_t::bNumber-
Message

3.10.2.17.0.14.4 uint16_t usb_device_ccid_seucre_pin_verification_command_t::wLangld
3.10.2.17.0.14.5 uint8_t usb_device_ccid_seucre_pin_verification_command_t::bMsglndex
3.10.2.17.0.14.6 uint8_t usb_device_ccid_seucre_pin_verification_command_t::bTeoPrologue

3.10.2.18 struct _usb_device_ccid_secure_pin_modification_command

This is a command message to allow entering the PIN for modification.

The response to this command message is the RDR_to_PC_DataBlock response message.

|
USB CCID Class driver

Data Fields

uint8_t bMessageType

The message type.
* uint32_t dwlLength

20U + Size of abPINApdu field of this message
e uint8_t bSlot

Identifies the slot number for this command.

* uint8_t bSeq

Sequence number for command.
e uint8_t bBWI

Used to extend the CCIDs Block Waiting Timeout for this current transfer.
* uintl6_t wLevelParameter

Use changes depending on the exchange level reported by CCID in the functional descriptor.
* uint8_t bPINOperation

Used to indicate the PIN operation: 00h: PIN Verification O1h: PIN Modification 02h: Transfer PIN from
secure CCID buffer 03h: Wait ICC response 04h: Cancel PIN function 05h: Re-send last I-Block, valid
only if T=1.

* uint8_t bTimeOut

Number of seconds.
e uint8_t bmFormatString

Several parameters for the PIN format options.

* uint8_t bmPINBlockString

Define the length of the PIN to present in the APDU command.
* uint8_t bmPINLengthFormat

Allows the length PIN insertion in the APDU command.
* uint8_t blnsertionOffsetOld

Insertion position offset in byte for the current PIN.
* uint8_t blnsertionOffsetNew

Insertion position offset in byte for the new PIN.
 uintl16_t wPINMaxExtraDigit

Bit15~8 - Minimum PIN size in digit, Bit7~0 - Maximum PIN size in digit.
e uint8_t bConfirmPIN

Indicates if a confirmation is requested before acceptance of a new PIN.
* uint8_t bEntryValidationCondition

The value is a bit wise OR operation.
* uint8_t bNumberMessage

Number of messages to display for the PIN Verification management.
* uintl6_t wLangld

Language used to display the messages.

* uint8_t bMsglndex1

Message index in the Reader message table(should be 00h or 01h).
* uint8_t bMsglIndex2

Message index in the Reader message table(should be 01h or 02h).
* uint8_t bMsglndex3

Message index in the Reader message table(should be 02h).
* uint8_t bTeoPrologue [3]

T=1 I-block prologue field to use.
* uint8_t abPINApdu [1]

APDU to send to the ICC.

-
USB CCID Class driver

3.10.2.18.0.15 Field Documentation
3.10.2.18.0.15.1 uint8_t usb_device_ccid_secure_pin_modification_command_t::bPINOperation
06h: Send next part of APDU, valid only T = 1.

3.10.2.18.0.15.2 uint8_t usb_device_ccid_secure_pin_modification_command_t::bEntry-
ValidationCondition

01h - Maximum size reached, 02h - Validation key pressed, 04h - Timeout occurred

3.10.2.18.0.15.3 uint8_t usb_device_ccid_secure_pin_modification_command_t::bNumber-
Message

3.10.2.18.0.15.4 uint16_t usb_device_ccid_secure_pin_modification_command_t::wLangld
3.10.2.18.0.15.5 uint8_t usb_device_ccid_secure_pin_modification_command_t::bMsgindex1
3.10.2.18.0.15.6 uint8_t usb_device_ccid_secure_pin_modification_command_t::bMsgindex2
3.10.2.18.0.15.7 uint8_t usb_device_ccid_secure_pin_modification_command_t::bMsgindex3
3.10.2.18.0.15.8 uint8_t usb_device_ccid_secure_pin_modification_command_t::bTeoPrologue[3]

3.10.2.19 struct _usb_device_ccid_mechanical_command

This command is used to manage motorized type CCID functionality.

The response to this command message is the RDR_to_PC_SlotStatus response message.

Data Fields

* uint8_t bMessageType

The message type.
e uint32_t dwLength

Message-specific data length.
¢ uint8_t bSlot

Identifies the slot number for this command.

* uint8_t bSeq

Sequence number for command.
e uint8_t bFunction

This value corresponds to the mechanical function being requested.

* uint8_t bRFU [2]

Reserved for Future Use.

3.10.2.20 struct _usb_device_ccid_abort command

This command is used with the control pipe abort request to tell the CCID to stop any current transfer at
the specified slot and return to a state where the slot is ready to accept a new command pipe Bulk-OUT

|
USB CCID Class driver

message.

The response to this command message is the RDR_to_PC_SlotStatus response message.

Data Fields

* uint8_t bMessageType

The message type.
uint32_t dwLength

Message-specific data length.
uint8_t bSlot

Identifies the slot number for this command.

uint8_t bSeq

Sequence number for command.

uint8_t bRFU [3]

Reserved for future use.

3.10.2.21 struct _usb_device_ccid_set_data_rate_and_clock_ frequency_command

This command is used to manually set the data rate and clock frequency of a specific slot.

The response to this command message is the RDR_to_PC_SlotStatus response message.

Data Fields

* uint8_t bMessageType

The message type.
e uint32_t dwLength

Message-specific data length(8U bytes)
e uint8_t bSlot

Identifies the slot number for this command.
* uint8_t bSeq

Sequence number for command.
* uint8_t bRFU [3]

Reserved for Future Use.
* uint32_t dwClockFrequency

ICC clock frequency in kHz.
e uint32_t dwDataRate

ICC data rate in BPD.
3.10.2.21.0.16 Field Documentation

3.10.2.21.0.16.1 uint32_t usb_device_ccid_set_data_rate_and_clock_frequency_command_t::dw-
ClockFrequency

This is an integer value

-
USB CCID Class driver

3.10.2.22 struct _usb_device_ccid_common_response

Data Fields

* uint8_t bMessageType

The message type.
* uint32_t dwlLength

Message-specific data length.
e uint8_t bSlot

Identifies the slot number for this command.

* uint8_t bSeq

Sequence number for the corresponding command.
e uint8_t bStatus

Slot status register.
e uint8_t bError

Slot error register.
¢ uint8_t bParameterl

Parameterl of the message, message-specific.

3.10.2.23 struct _usb_device_ccid_data_block_response

The device in response to the following command messages: "PC_to_RDR_IccPowerOn", "PC_to_RDR-
_Secure" and "PC_to_RDR_XfrBlock" sends this response message. For "PC_to_RDR_IccPowerOn" this
response message is the answer to reset (ATR) data associated with the ICC power on. In other use cases,
the response message has the following format: the response data contains the optional data returned by
the ICC, followed by the 2U byte-size status words SW1-SW2.

Data Fields

* uint8_t bMessageType

The message type.
* uint32_t dwlLength

Message-specific data length.
* uint8_t bSlot

Identifies the slot number for this command.

* uint8_t bSeq

Sequence number for the corresponding command.
e uint8_t bStatus

Slot status register.
e uint8_t bError

Slot error register.
e uint8_t bChainParameter

Use changes depending on the exchange level reported by the class descriptor in dwFeatures field.
e uint8_t abData [1]

This field contains the data returned by the CCID.

|
USB CCID Class driver

3.10.2.23.0.17 Field Documentation
3.10.2.23.0.17.1 uint8_t usb_device_ccid_data_block_response_t::abData[1]

3.10.2.24 struct _usb_device_ccid_slot_status_response

The device in response to the following command messages: "PC_to_RDR_IccPowerOff", "PC_to_R-
DR_GetSlotStatus", "PC_to_RDR_IccClock", "PC_to_RDR_TOAPDU" and, "PC_to_RDR_Mechanical"
sends this response message. Also, the device sends this response message when it has completed aborting
a slot after receiving both the Class Specific ABORT request and PC_to_RDR_Abort command message.

Data Fields

* uint8_t bMessageType

The message type.
e uint32_t dwLength

Message-specific data length.
e uint8_t bSlot

Identifies the slot number for this command.

* uint8_t bSeq

Sequence number for the corresponding command.
* uint8_t bStatus

Slot status register.
* uint8_t bError

Slot error register.
e uint8_t bClockStatus
0x00U - Clock running, Ox01U - Clock stopped in L, 0x02U - clock stopped in H, and 0x03U
3.10.2.24.0.18 Field Documentation
3.10.2.24.0.18.1 uint8_t usb_device_ccid_slot_status_response_t::bClockStatus

* clock stopped in an unknown state.

3.10.2.25 struct _usb_device_ccid_parameters_response

The device in response to the following command messages: "PC_to_RDR_GetParameters", "PC_to_R-
DR_ResetParameters", and, "PC_to_RDR_SetParameters" sends this response message.

Data Fields

* uint8_t bMessageType

The message type.
e uint32_t dwLength

Size of abProtocolDataStructure field of this message.
e uint8_t bSlot

Identifies the slot number for this command.

-
USB CCID Class driver

* uint8_t bSeq

Sequence number for the corresponding command.
e uint8_t bStatus

Slot status register.
e uint8_t bError

Slot error register.
e uint8_t bProtocolNum

0x00U = Structure for protocol T=0, 0x01U = Structure for protocol T=1
e uint8_t abProtocolDataStructure [1]

Protocol Data Structure.

3.10.2.26 struct _usb_device_ccid_parameters_TO_ response

The device in response to the following command messages: "PC_to_RDR_GetParameters", "PC_to_R-
DR_ResetParameters", and, "PC_to_RDR_SetParameters" sends this response message.

Data Fields

uint8_t bMessageType
The message type.

e uint32_t dwLength

The value is 0x05U.
¢ uint8_t bSlot

Identifies the slot number for this command.
* uint8_t bSeq

Sequence number for the corresponding command.
* uint8_t bStatus

Slot status register.
e uint8_t bError

Slot error register.
e uint8_t bProtocolNum

0x00U = Structure for protocol T=0
e uint8_t bmFindexDindex

Bit7~4 - Fi, Bit3~0 - Di.
* uint8_t bmTCCKSTO

Bitl - Convention used(0OU for direct, 1U for inverse), other bits is 0.
* uint8_t bGuardTimeTO

Extra guard time between two characters.
* uint8_t bWaitingIntegerTO

WI for T= OU used to define WWT.
e uint8_t bClockStop
ICC Clock Stop Support.

|
USB CCID Class driver

3.10.2.26.0.19 Field Documentation
3.10.2.26.0.19.1 uint8_t usb_device_ccid_parameters_TO0_response_t::bmFindexDindex
3.10.2.26.0.19.2 uint8_t usb_device_ccid_parameters_T0_response_t::bGuardTimeT0

3.10.2.27 struct _usb_device_ccid_parameters_T1_response

The device in response to the following command messages: "PC_to_RDR_GetParameters", "PC_to_R-
DR_ResetParameters", and, "PC_to_RDR_SetParameters" sends this response message.

Data Fields

* uint8_t bMessageType

The message type.
* uint32_t dwLength

The value is 0x07U.
e uint8_t bSlot

Identifies the slot number for this command.

* uint8_t bSeq

Sequence number for the corresponding command.
¢ uint8_t bStatus

Slot status register.
e uint8_t bError

Slot error register.
* uint8_t bProtocolNum

0x00U = Structure for protocol T=1
e uint8_t bmFindexDindex

Bit7~4 - Fi, Bit3~0 - Di.
e uint8_t bmTCCKSTI

Bit0 - Checksum type(OU for LRC, 1U for CRC).
e uint8_t bGuardTimeT1

Extra guard time.
* uint8_t bmWaitingIntegersT1

Bit7~4 - BWI(0~9 valid), Bit3~0 - CWI(0~0xF valid)
* uint8_t bClockStop

ICC Clock Stop Support.
* uint8_t bIFSC

Size of negotiated IFSC.
e uint8_t bNadValue
Value = 0x00U if CCID doesn’t support a value other then the default value.
3.10.2.27.0.20 Field Documentation

3.10.2.27.0.20.1 uint8_t usb_device_ccid_parameters_T1_response_t::bmFindexDindex

3.10.2.27.0.20.2 uint8_t usb_device_ccid_parameters_T1_response_t::bmTCCKST1

Bitl - Convention used(OU for direct, 1U for inverse), Bit7~2 - 0b000100

-
USB CCID Class driver

3.10.2.27.0.20.3 uint8_t usb_device_ccid_parameters_T1_response_t::bGuardTimeT1
3.10.2.27.0.20.4 uint8_t usb_device_ccid_parameters_T1_response_t::bNadValue

Else value respects ISO/IEC 7816-3,9.4.2.1

3.10.2.28 union usb_device_ccid_parameters_response_common_t

Data Fields

* usb_device_ccid_parameters_response_t common

Response ICC parameter common structure.
* usb_device_ccid_parameters_TO_response_t tO

Response ICC parameter structure for T0.
* usb_device_ccid_parameters_T1_response_t tl

Response ICC parameter structure for T1.

3.10.2.29 struct _usb_device_ccid_escape_response

The device in response to the following command messages: "PC_to_RDR_Escape" sends this response
message.

Data Fields

* uint8_t bMessageType

The message type.
e uint32_t dwlLength

Size of abData field of this message.
e uint8_t bSlot

Identifies the slot number for this command.

* uint8_t bSeq

Sequence number for the corresponding command.
* uint8_t bStatus

Slot status register.
e uint8_t bError

Slot error register.

e uint8_t bRFU

Reserved for Future Use.
e uint8_t abData [1]

Data sent from CCID.

3.10.2.30 struct _usb_device_ccid_data_rate_and_clock_frequency_response

The device in response to the following command messages: "PC_to_RDR_SetDataRateAndClock-
Frequency" sends this response message.

|
USB CCID Class driver

Data Fields

* uint8_t bMessageType

The message type.
* uint32_t dwlLength

Message-specific data length.
e uint8_t bSlot

Identifies the slot number for this command.

* uint8_t bSeq

Sequence number for the corresponding command.
e uint8_t bStatus

Slot status register.
* uint8_t bError

Slot error register.

* uint8_t bRFU

Reserved for Future Use.
* uint32_t dwClockFrequency

Current setting of the ICC clock frequency in KHz.
e uint32_t dwDataRate
Current setting of the ICC data rate in bps.
3.10.2.30.0.21 Field Documentation

3.10.2.30.0.21.1 uint32_t usb_device_ccid_data_rate_and_clock_frequency_response_t::dw-
ClockFrequency

This is an integer value

3.10.2.30.0.21.2 uint32_t usb_device_ccid_data_rate_and_clock_frequency_response_t::dwData-
Rate

This is an integer value

3.10.2.31 struct _usb_device_ccid_notify_slot_chnage_notification

Data Fields

* uint8_t bMessageType

The message type.
e uint8_t bmSlotICCState [1]

This field is reported on byte granularity.

-
USB CCID Class driver

3.10.2.31.0.22 Field Documentation
3.10.2.31.0.22.1 uint8_t usb_device_ccid_notify_slot_chnage_notification_t::bmSlotiICCState[1]

3.10.2.32 struct usb_device_ccid_hardware_error_notification

Data Fields

* uint8_t bMessageType

The message type.
uint8_t bSlot

Identifies the slot number for this command.

uint8_t bSeq

Sequence number of bulk out command when the hardware error occurred.
uint8_t bHardwareErrorCode

0x01U - Over current.

3.10.2.32.0.23 Field Documentation
3.10.2.32.0.23.1 uint8_t usb_device_ccid_hardware_error_notification_t::bHardwareErrorCode

3.10.2.33 struct usb_device_ccid_transfer_struct_t

Data Fields

* struct
_usb_device ccid_transfer_struct * next

Next transfer pointer.
uint8_t * buffer

The transfer buffer address need to be sent.
uint32_t length

The transfer length.
usb_device_ccid_slot_status_response_t response

Response buffer is used when dwLength = 0.

3.10.2.33.0.24 Field Documentation

3.10.2.33.0.24.1 usb_device_ccid_slot_status_response_t usb_device_ccid_transfer_struct_t-
::response

3.10.2.34 struct usb_device_ccid_control_request_struct_t

Data Fields

e uint8_t * buffer

The buffer address.
e uint32_t length

The data length.

|
USB CCID Class driver

3.10.2.35 struct usb_device ccid notification_struct _t

Data Fields

e uint8_t * buffer

The transferred buffer address.
e uint32_t length

The transferred data length.

3.10.2.36 struct usb_device ccid command_struct t

Data Fields

e uint8_t * commandBuffer

The buffer address kept the command from host.
uint32_t commandLength

The command length from host.
uint8_t * responseBuffer

The response data need to be sent to host.
uint32_t responseLength

The response data length.

3.10.2.37 struct usb_device ccid_slot_status struct _t

Data Fields

e uint8_t slot

The slot number need to get.
* uint8_t present

Is present or not.
e uint8_t clockStatus

The clock status.

3.10.2.38 struct usb_device ccid_struct t

Data Fields

¢ usb_device _handle handle

The device handle.
usb_device_class_config_struct_t * configStruct

The configuration of the class.
usb_device_interface_struct_t * interfaceHandle

Current interface handle.
usb_device_ccid_transfer_struct_t * transferHead

Transfer queue for busy.
usb_device_ccid_transfer_struct_t * transferFree

Transfer queue for idle.

-
USB CCID Class driver

* uint8_t commandBuffer [USB_DEVICE_CCID_BUFFER_4BYTE_ALIGN(USB_DEVICE_CO-
NFIG_CCID_MAX_MESSAGE_LENGTH)]

Command buffer for getting command data from host.

e usb_device_ccid_transfer_struct_t transfers [USB_DEVICE_CONFIG_CCID_TRANSFER_COU-
NT]

Transfer entity.

¢ uint8_t slotsChangeBuffer [(USB_DEVICE_CONFIG_CCID_SLOT_MAX %2-1U)/8+1U+1U]

The buffer for saving slot status.
* uint8_t slotsSendingChangeBuffer [(USB_DEVICE_CONFIG_CCID_SLOT_MAX *2-1U)/8+1-

U+1U]

The buffer is used to notify host the slot status changed.
* uint8_t slotsSequenceNumber [USB_DEVICE_CONFIG_CCID_SLOT_MAX]

Save each slot sequence number.
e usb_device ccid_hardware_error_notification_t hardwareError

The buffer is used to notify host the hardware error happened.
* uint8_t configuration

Current configuration.
e uint8_t interfaceNumber

The interface number of the class.
e uint8_t alternate

Current alternate setting of the interface.
* uint8_t endpointInterruptin

The endpoint number of the interrupt IN pipe.
* uint8_t endpointBulkln

The endpoint number of the bulk IN pipe.
* uint8_t endpointBulkOut

The endpoint number of the bulk OUT pipe.
* uint8_t slots

The slot number of the application.
e uint8_t bulkInBusy

The bulk IN pipe is busy or not.
e uint8_t interruptinBusy

The interrupt IN pipe is busy or not.
* uint8_t slotsChanged

The slot status changed.

|
USB CCID Class driver

3.10.2.38.0.25 Field Documentation
3.10.2.38.0.25.1 usb_device_class_config_struct_t« usb_device_ccid_struct_t::configStruct
3.10.2.38.0.25.2 uint8_t usb_device_ccid_struct_t::bulkinBusy

3.10.2.38.0.25.3 uint8_t usb_device_ccid_struct_t::interruptinBusy

3.10.3 Macro Definition Documentation

3.10.3.1 #define USB_DEVICE_CONFIG_CCID_SLOT_MAX (1U)

3.10.3.2 #define USB_DEVICE_CONFIG_CCID_TRANSFER_COUNT (4U)

3.10.3.3 #define USB_DEVICE_CONFIG_CCID_MAX_MESSAGE_LENGTH (271U)
3.10.3.4 #define USB_DEVICE_CCID_COMMAND_HEADER_LENGTH (0x0AU)
3.10.3.5 #define USB_DEVICE_CCID_RESPONSE_HEADER_LENGTH (0x0AU)

3.10.4 Enumeration Type Documentation

3.10.4.1 enum usb_device ccid_event t

Enumerator

kUSB_DeviceCcidEventCommandReceived Command received or cancelled in BULK OUT pipe.
kUSB_DeviceCcidEventResponseSent Response sent in BULK IN pipe.
kUSB_DeviceCcidEventGetSlotCount Get the slot count.

kUSB_DeviceCcidEventGetSlotStatus Get the slot status, including clock status, ICC present.
kUSB_DeviceCcidEventCommandAbort Command abort request received from control pipe.
kUSB_DeviceCcidEventGetClockFrequencies Get the clock frequencies.
kUSB_DeviceCcidEventGetDataRate Get the data rate.

kUSB_DeviceCcidEventSlotChangeSent Slot changed notification send completed.
kUSB_DeviceCcidEventHardwareErrorSent Hardware error notification send completed.

3.10.4.2 enum usb_device_ccid_slot_state t

Enumerator

kUSB_DeviceCcidSlotStateNoPresent Not present.
kUSB_DeviceCcidSlotStatePresent Present.

-
USB CCID Class driver

3.10.4.3 enum usb_device _ccid_hardware_error_t

Enumerator

kUSB_DeviceCcidHardwareErrorOverCurrent Over current.

3.10.5 Function Documentation

3.10.5.1 usb_status_t USB_DeviceCcidlnit (uint8_t controllerid, usb_-
device_class_config_struct_t « config, class_handle_t x handle

)

This function is used to initialize the CCID class. This function only can be called by USB_DeviceClass-
Init.

Parameters
in controllerld | The controller ID of the USB IP. See the enumeration usb_controller_-
index_t.
in config | The class configuration information.
out handle | An out parameter used to return pointer of the video class handle to the
caller.
Returns

A USB error code or kStatus_ USB_Success.

3.10.5.2 usb_status_t USB_DeviceCcidDeinit (class_handle_t handle)

The function deinitializes the device CCID class. This function can only be called by USB_DeviceClass-
Deinit.

Parameters
in handle | The CCID class handle received from usb_device_class_config_struct-
_t::classHandle.
Returns

A USB error code or kStatus_ USB_ Success.

|
USB CCID Class driver

3.10.5.3 usb_status_t USB_DeviceCcidEvent (void x handle, uint32_t event, void x
param)

This function handles the event passed to the CCID class. This function can only be called by USB_-
DeviceClassEvent.

USB CCID Class driver
Parameters
in handle | The CCID class handle, received from the usb_device_class_config_-
struct_t::classHandle.
in event | The event codes. See the enumeration usb_device_class_event_t.
in, out param | The parameter type is determined by the event code.
Returns

A USB error code or kStatus_ USB_ Success.

Return values

kStatus_USB_Success | Free device handle successfully.

kStatus_USB_Invalid- | The device handle not be found.
Parameter

kStatus_USB_Invalid- | The request is invalid and the control pipe is stalled by the caller.
Request

3.10.5.4 usb_status_t USB_DeviceCcidNotifySlotChange (class_handle_t handle, uint8_t
slot, usb_device_ccid_slot_state_t state)

The function is used to notify that the slot status changed. This is a non-blocking function. The event
kUSB_DeviceCcidEventSlotChangeSent is asserted when the transfer completed.

The slot status may not be sent to the host if the interrupt IN pipe is busy. The status is saved internally
and sent to the host when the interrupt IN pipe callback called. So, the event kUSB_DeviceCcidEvent-
SlotChangeSent happened times does not equal to the function call times of this function.

Parameters
in handle | The CCID class handle received from usb_device_class_config_struct-
_t::classHandle.
in slot | The changed slot number.
in state | The changed slot status.
Returns

A USB error code or kStatus_ USB_ Success.

|
USB CCID Class driver

3.10.5.5 usb_status_t USB_DeviceCcidNotifyHardwareError (class_handle_t handle,
uint8_t slot, usb_device_ccid_hardware_error_t errorCode)

The function is used to notify the hardware error. This is a non-blocking function. The event kUSB_-
DeviceCcidEventHardwareErrorSent is asserted when the transfer completed.

If the interrupt IN pipe is busy, the function returns an error kStatus_USB_Error.

Parameters
in handle | The CCID class handle received from usb_device_class_config_struct-
_t::classHandle.
in slot | The changed slot number.
in errorCode | The hardware error code.
Returns

A USB error code or kStatus_ USB_ Success.

-
USB HID Class driver

3.11 USB HID Class driver
3.11.1 Overview

Data Structures

e struct usb_device_hid_report_struct_t

The device HID GET/SET report structure. More...
e struct usb_device_hid_struct_t

The HID device class status structure. More...

Macros

¢ #define USB_DEVICE_CONFIG_HID_CLASS_CODE (0x03U)

The class code of the HID class.
#define USB_DEVICE_HID_REQUEST_GET_REPORT (0x01U)

Request code to get report of HID class.
#define USB_DEVICE_HID_REQUEST_GET_IDLE (0x02U)

Request code to get idle of HID class.
#define USB_DEVICE_HID_REQUEST_GET_PROTOCOL (0x03U)

Request code to get protocol of HID class.
#define USB_DEVICE_HID_REQUEST_SET_REPORT (0x09U)

Request code to set report of HID class.
#define USB_DEVICE_HID_REQUEST_SET_IDLE (0x0AU)

Request code to set idle of HID class.
#define USB_DEVICE_HID_REQUEST_SET_PROTOCOL (0xOBU)

Request code to set protocol of HID class.

Enumerations

e enum usb_device_hid_event_t {
kUSB_DeviceHidEventSendResponse = 0x01U,
kUSB_DeviceHidEventRecvResponse,
kUSB_DeviceHidEventGetReport,
kUSB_DeviceHidEventGetldle,
kUSB_DeviceHidEventGetProtocol,
kUSB_DeviceHidEventSetReport,
kUSB_DeviceHidEventSetldle,
kUSB_DeviceHidEventSetProtocol,
kUSB_DeviceHidEventRequestReportBuffer }

Available common EVENT types in HID class callback.

|
USB HID Class driver

Functions

* usb_status_t USB_DeviceHidInit (uint8_t controllerld, usb_device_class_config_struct_t xconfig,
class_handle_t xhandle)

Initializes the HID class.
e usb_status_t USB_DeviceHidDeinit (class_handle_t handle)

Deinitializes the device HID class.
* usb_status_t USB_DeviceHidEvent (void xhandle, uint32_t event, void xparam)

Handles the event passed to the HID class.

USB device HID class APIs

* usb_status_t USB_DeviceHidSend (class_handle_t handle, uint8_t ep, uint8_t xbuffer, uint32_t
length)

Sends data through a specified endpoint.
* usb_status_t USB_DeviceHidRecv (class_handle_t handle, uint8_t ep, uint8_t xbuffer, uint32_t

length)
Receives data through a specified endpoint.

3.11.2 Data Structure Documentation

3.11.2.1 struct usb_device_hid_report_struct_t

This structure is used to pass data when the event type is kUSB_DeviceHidEventGetReport, kUSB_-
DeviceHidEventSetReport, and kKUSB_DeviceHidEventRequestReportBuffer.

1. kUSB_DeviceHidEventGetReport The structure is used to save the report buffer and report length
got from the application. The reportBuffer is the report data buffer address filled by the application.
The reportLength is the report length. The reportType is the requested report type. The reportld is
the requested report ID.

2. kUSB_DeviceHidEventSetReport The structure is used to pass the report data received from the
host to the application. The reportBuffer is buffer address of the report data received from the host.
The reportLength is the report data length. The reportType is the requested report type. The reportld
is the requested report ID.

3. kUSB_DeviceHidEventRequestReportBuffer The structure is used to get the buffer to save the report
data sent by the host. The reportBuffer is buffer address to receive to report data. It is filled by the
application. The reportLength is the requested report data buffer length. The reportType is the
requested report type. The reportld is the requested report ID.

Data Fields

* uint8_t * reportBuffer

The report buffer address.
 uint32_t reportLength

The report data length.

-
USB HID Class driver

* uint8_t reportType

The report type.
* uint8_t reportld

The report ID.

3.11.2.2 struct usb_device hid_struct_t

Data Fields

¢ usb_device handle handle

The device handle.
* usb_device_class_config_struct_t * configStruct

The configuration of the class.
e usb_device_interface_struct_t * interfaceHandle

Current interface handle.
* uint8_t * interruptInPipeDataBuffer

IN pipe data buffer backup when stall.
* uint32_t interruptInPipeDatal.en

IN pipe data length backup when stall.
* uint8_t * interruptOutPipeDataBuffer

OUT pipe data buffer backup when stall.
* uint32_t interruptOutPipeDatalen

OUT pipe data length backup when stall.
* uint8_t configuration

Current configuration.
e uint8_t interfaceNumber

The interface number of the class.
e uint8_t alternate

Current alternate setting of the interface.
e uint8_t idleRate

The idle rate of the HID device.
* uint8_t protocol

Current protocol.
e uint8_t interruptinPipeBusy

Interrupt IN pipe busy flag.
e uint8_t interruptOutPipeBusy

Interrupt OUT pipe busy flag.
* uint8_t interruptInPipeStall

Interrupt IN pipe stall flag.
* uint8_t interruptOutPipeStall

Interrupt OUT pipe stall flag.

|
USB HID Class driver

3.11.2.2.0.26 Field Documentation
3.11.2.2.0.26.1 usb_device_class_config_struct_tx usb_device_hid_struct_t::configStruct

3.11.3 Macro Definition Documentation

3.11.3.1 #define USB_DEVICE_HID_REQUEST GET_REPORT (0x01U)
3.11.3.2 #define USB_DEVICE_HID_REQUEST_GET _IDLE (0x02U)
3.11.3.3 #define USB_DEVICE_HID_REQUEST GET_PROTOCOL (0x03U)
3.11.3.4 #define USB_DEVICE_HID_REQUEST_SET_REPORT (0x09U)
3.11.3.5 #define USB_DEVICE_HID_REQUEST SET_IDLE (0x0AU)
3.11.3.6 #define USB_DEVICE_HID_REQUEST_SET_PROTOCOL (0x0BU)

3.11.4 Enumeration Type Documentation

3.11.4.1 enum usb_device hid_event t

Enumerator

kUSB_DeviceHidEventSendResponse Send data completed or cancelled etc.
kUSB_DeviceHidEventRecvResponse Data received or cancelled etc.
kUSB_DeviceHidEventGetReport Get report request.

kUSB_DeviceHidEventGetldle Get idle request.

kUSB_DeviceHidEventGetProtocol Get protocol request.

kUSB_DeviceHidEventSetReport Set report request.

kUSB_DeviceHidEventSetldle Set idle request.

kUSB_DeviceHidEventSetProtocol Set protocol request.
kUSB_DeviceHidEventRequestReportBuffer Get buffer to save the data of the set report request.

3.11.5 Function Documentation

3.11.5.1 usb_status_t USB_DeviceHidlInit (uint8_t controllerld, usb_-
device_class_config_struct_t x config, class_handle_t x handle

)

This function is used to initialize the HID class. This function only can be called by USB_DeviceClassInit.

-
USB HID Class driver

Parameters
in controllerld | The controller ID of the USB IP. See the enumeration usb_controller_-
index_t.
in config | The class configuration information.
out handle | An parameter used to return pointer of the HID class handle to the caller.
Returns

A USB error code or kStatus_ USB_ Success.

3.11.5.2 usb_status_t USB_DeviceHidDeinit (class_handle_t handle)

The function deinitializes the device HID class. This function only can be called by USB_DeviceClass-
Deinit.

Parameters
in handle | The HID class handle got from usb_device_class_config_struct_t::class-
Handle.
Returns

A USB error code or kStatus_USB_ Success.

3.11.5.3 usb_status_t USB_DeviceHidEvent (void x handle, uint32_t event, void x param
)

This function handles the event passed to the HID class. This function only can be called by USB_Device-
ClassEvent.

Parameters

in handle | The HID class handle received from the usb_device_class_config_-
struct_t::classHandle.

USB HID Class driver
in event | The event codes. See the enumeration usb_device_class_event_t.
in, out param | The parameter type is determined by the event code.
Returns

A USB error code or kStatus_ USB_ Success.

Return values

kStatus_USB_Success | Free device handle successfully.

kStatus_USB_Invalid- | The device handle not be found.
Parameter

kStatus_USB_Invalid- | The request is invalid, and the control pipe is stalled by the caller.
Request

3.11.5.4 usb_status_t USB_DeviceHidSend (class_handle_t handle, uint8_t ep, uint8_t «
buffer, uint32_t length)

The function is used to send data through a specified endpoint. The function calls USB_DeviceSend-
Request internally.

Parameters
in handle | The HID class handle received from usb_device_class_config_struct_t-
::classHandle.
in ep | Endpoint index.
in buffer | The memory address to hold the data need to be sent.
in length | The data length to be sent.
Returns

A USB error code or kStatus_ USB_ Success.

Note

The function can only be called in the same context.

The return value indicates whether the sending request is successful or not. The transfer done is
notified by usb_device_hid_interrupt_in. Currently, only one transfer request can be supported for
one specific endpoint. If there is a specific requirement to support multiple transfer requests for a
specific endpoint, the application should implement a queue in the application level. The subsequent
transfer can begin only when the previous transfer is done (a notification is received through the
endpoint callback).

-
USB HID Class driver

3.11.5.5 usb_status_t USB_DeviceHidRecv (class_handle_t handle, uint8_t ep, uint8_t x
buffer, uint32_t length)

The function is used to receive data through a specified endpoint. The function calls USB_DeviceRecv-
Request internally.

USB HID Class driver
Parameters
in handle | The HID class handle received from the usb_device_class_config_-
struct_t::classHandle.
in ep | Endpoint index.
in buffer | The memory address to save the received data.
in length | The data length to be received.
Returns

A USB error code or kStatus_USB_ Success.

Note

The function can only be called in the same context.

The return value indicates whether the receiving request is successful or not. The transfer done is
notified by usb_device_hid_interrupt_out. Currently, only one transfer request can be supported for a
specific endpoint. If there is a specific requirement to support multiple transfer requests for a specific
endpoint, the application should implement a queue in the application level. The subsequent transfer
can begin only when the previous transfer is done (a notification is received through the endpoint
callback).

-
USB PHDC C(lass driver

3.12 USB PHDC Class driver
3.12.1 Overview

Data Structures

e struct usb_device_phdc_pipe_t

Definition of pipe structure. More...
* struct usb_device_phdc_struct_t

The PHDC device class status structure. More...

Macros

* #define USB_DEVICE_CONFIG_PHDC_CLASS_CODE (0x0FU)

The class code of the PHDC class.
 #define USB_DEVICE_PHDC_REQUEST_SET_FEATURE (0x03U)

The PHDC class set Meta-data message preamble feature request.
 #define USB_DEVICE_PHDC_REQUEST_CLEAR_FEATURE (0x01U)

The PHDC class clear Meta-data message preamble feature request.

 #define USB_DEVICE_PHDC_REQUEST_GET_STATUS (0x00U)
The PHDC class get data status request.

Enumerations

* enum usb_device_phdc_event_t {
kUSB_DevicePhdcEventInterruptInSendComplete = 0x01,
kUSB_DevicePhdcEventBulkInSendComplete,
kUSB_DevicePhdcEventDataReceived,
kUSB_DevicePhdcEventSetFeature,
kUSB_DevicePhdcEventClearFeature,
kUSB_DevicePhdcEventGetStatus }

Available common EVENT types in PHDC class callback.

Functions

* usb_status_t USB_DevicePhdclInit (uint8_t controllerld, usb_device_class_config_struct_t xconfig,
class_handle_t xhandle)

Initializes the PHDC class.
e usb_status_t USB_DevicePhdcDeinit (class_handle_t handle)

Deinitializes the device PHDC class.
* usb_status_t USB_DevicePhdcEvent (void xhandle, uint32_t event, void *param)

Handles the event passed to the PHDC class.

|
USB PHDC Class driver

USB device PHDC class APIs

* usb_status_t USB_DevicePhdcSend (class_handle_t handle, uint8_t ep, uint8_t xbuffer, uint32_t
length)

Sends data through a specified endpoint.
* usb_status_t USB_DevicePhdcRecv (class_handle_t handle, uint8_t ep, uint8_t xbuffer, uint32_t

length)
Receives data through a specified endpoint.

3.12.2 Data Structure Documentation

3.12.2.1 struct usb_device_phdc_pipe_t

Data Fields

* uint8_t * pipeDataBuffer

pipe data buffer backup when stall
uint32_t pipeDatalLen

pipe data length backup when stall
* uint8_t pipeStall

pipe is stall
uint8_t ep

The endpoint number of the pipe.
uint8_t isBusy

1: The pipe is transferring packet, 0: The pipe is idle.

3.12.2.1.0.27 Field Documentation
3.12.2.1.0.27.1 uint8_t usb_device_phdc_pipe_t::ep
3.12.2.1.0.27.2 uint8_t usb_device_phdc_pipe_t::isBusy

3.12.2.2 struct usb_device_phdc_struct_t

Data Fields

¢ usb_device handle handle
The device handle.

* usb_device_class_config_struct_t * configStruct
The configuration of the class.

e usb_device_interface_struct_t * interfaceHandle
Current interface handle.

* usb_device_phdc_pipe_t bulkln
The bulk in pipe for sending data.

* usb_device_phdc_pipe_t bulkOut
The bulk out pipe for receiving data.

* usb_device_phdc_pipe_t interruptln
The interrupt in pipe for sending data.

* uint8_t configuration

-
USB PHDC C(lass driver

Current configuration.
e uint8_t interfaceNumber

The interface number of the class.
* uint8_t alternate

Current alternate setting of the interface.
3.12.2.2.0.28 Field Documentation

3.12.2.2.0.28.1 usb_device_class_config_struct_tx usb_device_phdc_struct_t::configStruct

3.12.3 Enumeration Type Documentation

3.12.3.1 enum usb_device_phdc_event_t

Enumerator

kUSB_DevicePhdcEventInterruptInSendComplete Send data completed or cancelled etc.
kUSB_DevicePhdcEventBulkInSendComplete Send data completed or cancelled etc.
kUSB_DevicePhdcEventDataReceived Data received or cancelled etc.
kUSB_DevicePhdcEventSetFeature Set feature request.
kUSB_DevicePhdcEventClearFeature Clear feature request.
kUSB_DevicePhdcEventGetStatus Get status request.

3.12.4 Function Documentation

3.12.4.1 usb_status_t USB_DevicePhdclInit (uint8_t controllerid, usb_-
device_class_config_struct_t x config, class_handle_t x handle

)

This function is used to initialize the PHDC class.

Parameters

controllerld | The controller ID of the USB IP. See the enumeration usb_controller_index_t.

config | The class configuration information.

handle | An output parameter used to return pointer of the PHDC class handle to the caller.

Return values

kStatus_USB_Success | The PHDC class is initialized successfully.

|
USB PHDC Class driver

kStatus_USB_Busy | No PHDC device handle available for allocation.

kStatus_USB_Invalid- | The PHDC device handle allocation failure.
Handle

kStatus_USB_Invalid- | The USB device handle allocation failure.
Parameter

3.12.4.2 usb_status_t USB_DevicePhdcDeinit (class_handle_t handle)

The function deinitializes the device PHDC class.

Parameters

handle | The PHDC class handle received from usb_device_class_config_struct_t::class-
Handle.

Return values

kStatus_USB_Invalid- | The device handle is not found.
Handle

kStatus_USB_Success | The PHDC class is de-initialized successful.

3.12.4.3 usb_status_t USB_DevicePhdcEvent (void *x handle, uint32_t event, void x
param)

This function handles the event passed to the PHDC class.

Parameters
in handle | The PHDC class handle received from the usb_device_class_config_-
struct_t::classHandle.
in event | The event codes. See the enumeration usb_device_class_event_t.
in, out param | The parameter type is determined by the event code.

Return values

kStatus_USB_Success | Free device handle successfully.

-
USB PHDC C(lass driver

kStatus_USB_Invalid- | The device handle is not found.
Parameter

kStatus_USB_Invalid- | The request is invalid and the control pipe is stalled by the caller.
Request

3.12.4.4 usb_status_t USB_DevicePhdcSend (class_handle_t handle, uint8_t ep, uint8_t
x buffer, uint32_t length)

The function is used to send data through a specified endpoint. The function calls USB_DeviceSend-
Request internally.

Parameters
in handle | The PHDC class handle received from the usb_device_class_config_-
struct_t::classHandle.
in ep | Endpoint index.
in buffer | The memory address to hold the data to be sent.
in length | The data length to be sent.

Return values

kStatus_USB_Invalid- | The device handle is not found.
Handle

kStatus_USB_Busy | The previous transfer is pending.

kStatus_USB_Success | The sending is successful.

Note

The function can only be called in the same context.

3.12.4.5 usb_status_t USB_DevicePhdcRecv (class_handle_t handle, uint8_t ep, uint8_t
* buffer, uint32_t length)

The function is used to receive data through a specified endpoint. The function calls the USB_Device-
RecvRequest internally.

USB PHDC Class driver
Parameters
in handle | The PHDC class handle received from usb_device_class_config_struct-
_t::classHandle.
in ep | Endpoint index.
in buffer | The memory address to save the received data.
in length | The data length want to be received.

Return values

kStatus_USB_Invalid- | The device handle is not found.
Handle

kStatus_USB_Busy | The previous transfer is pending.

kStatus_USB_Success | The receiving is successful.

Note

The function can only be called in the same context.

-
USB PRINTER Class driver

3.13 USB PRINTER Class driver
3.13.1 Overview

Data Structures

e struct usb_device_printer_struct_t
The printer device class instance structure. More...

Macros

* #define USB_DEVICE_CONFIG_PRINTER_CLASS_CODE (0x07U)

The class code of the printer class.

#define USB_DEVICE_PRINTER_GET_DEVICE_ID (0x00U)

class-specific request GET_DEVICE_ID
#define USB_DEVICE_PRINTER_GET_PORT_STATUS (0x01U)

class-specific request GET_PORT_STATUS
#define USB_DEVICE_PRINTER_SOFT_RESET (0x02U)

class-specific request SOFT_RESET
#define USB_DEVICE_PRINTER_PORT_STATUS_PAPER_EMPTRY_MASK (0x20U)

Paper empty bit mask for GET_PORT_STATUS.
#define USB_DEVICE_PRINTER_PORT_STATUS_SELECT_MASK (0x10U)

Select bit mask for GET_PORT_STATUS.
#define USB_DEVICE_PRINTER_PORT_STATUS_NOT_ERROR_MASK (0x08U)

Error bit mask for GET_PORT_STATUS.

Enumerations

* enum usb_device_printer_event_t {
kUSB_DevicePrinterEventRecvResponse = 0x01U,
kUSB_DevicePrinterEventSendResponse,
kUSB_DevicePrinterEventGetDeviceld,
kUSB_DevicePrinterEventGetPortStatus,
kUSB_DevicePrinterEventSoftReset }

Available common EVENT types in printer class callback.

Functions

» usb_status_t USB_DevicePrinterInit (uint8_t controllerld, usb_device_class_config_struct_-
t xconfig, class_handle_t xhandle)

Initializes the printer class.
 usb_status_t USB_DevicePrinterDeinit (class_handle_t handle)

De-initializes the device printer class.
* usb_status_t USB_DevicePrinterEvent (void xhandle, uint32_t event, void *param)

Handles the event passed to the printer class.

|
USB PRINTER Class driver

USB device printer class APIs

* usb_status_t USB_DevicePrinterSend (class_handle_t handle, uint8_t ep, uint8_t sbuffer, uint32_t
length)
Sends data through a specified endpoint.
* usb_status_t USB_DevicePrinterRecv (class_handle_t handle, uint8_t ep, uint8_t «buffer, uint32_t
length)
Receives data through a specified endpoint.

3.13.2 Data Structure Documentation

3.13.2.1 struct usb_device_printer_struct_t

Data Fields

¢ usb_device _handle deviceHandle

The device handle.
* usb_device_class_config_struct_t * classConfig

The configuration of the class.
e usb_device_interface_struct_t * interfaceHandle

Current interface handle.
* uint8_t * bulkInPipeDataBuffer

IN pipe data buffer backup when stall.
* uint32_t bulkInPipeDatal.en

IN pipe data length backup when stall.
* uint8_t * bulkOutPipeDataBuffer

OUT pipe data buffer backup when stall.
* uint32_t bulkOutPipeDatal.en

OUT pipe data length backup when stall.
* uint8_t configuration

Current configuration.
e uint8_t interfaceNumber

Interface number in the device descriptor.
* uint8_t alternate

Interface alternate value.
e uint8_t bulkInBusy

BULK IN pipe busy flag.
e uint8_t bulkOutBusy

BULK OUT pipe busy flag.
* uint8_t bulkInPipeStall

bulk IN pipe stall flag
* uint8_t bulkOutPipeStall

bulk OUT pipe stall flag

-
USB PRINTER Class driver

3.13.2.1.0.29 Field Documentation

3.13.2.1.0.29.1 usb_device_class_config_struct_tx usb_device_printer_struct_t::classConfig

3.13.3 Enumeration Type Documentation

3.13.3.1 enum usb_device_printer_event_t

Enumerator

kUSB_DevicePrinterEventRecvResponse Data received or cancelled etc.
kUSB_DevicePrinterEventSendResponse Data send done or cancelled etc.
kUSB_DevicePrinterEventGetDeviceld Get device ID request.
kUSB_DevicePrinterEventGetPortStatus Get port status request.
kUSB_DevicePrinterEventSoftReset Soft reset request.

3.13.4 Function Documentation

3.13.4.1 usb_status_t USB_DevicePrinterlnit (uint8_t controllerid, usb-
_device_class_config_struct_t x config, class_handle_t « handle

)

This function is used to initialize the printer class. This function only can be called by USB_DeviceClass-
Init.

Parameters
in controllerld | The controller ID of the USB IP. See the enumeration usb_controller_-
index_t.
in config | The class configuration information.
out handle | A parameter used to return a pointer of the printer class handle to the
caller.
Returns

A USB error code or kStatus_USB_Success.

3.13.4.2 usb_status_t USB_DevicePrinterDeinit (class_handle_t handle)

The function de-initializes the device printer class. This function only can be called by USB_DeviceClass-
Deinit.

|
USB PRINTER Class driver

Parameters
in handle | The printer class handle got from usb_device_class_config_struct_t-
::classHandle.
Returns

A USB error code or kStatus_ USB_ Success.

3.13.4.3 usb_status_t USB_DevicePrinterEvent (void x handle, uint32_t event, void x
param)

This function handles the event passed to the printer class. This function only can be called by USB_-
DeviceClassEvent.

Parameters
in handle | The printer class handle received from the usb_device_class_config_-
struct_t::classHandle.
in event | The event codes. See the enumeration usb_device_class_event_t.
in, out param | The parameter type is determined by the event code.
Returns

A USB error code or kStatus_USB_Success.

Return values

kStatus_USB_Success | Process event successfully.

kStatus_USB_Invalid- | The device handle or parameter is invalid.
Handle

kStatus_USB_Invalid- | The request is invalid, and the control pipe is stalled by the caller.
Request

3.13.4.4 usb_status_t USB_DevicePrinterSend (class_handle_t handle, uint8_t ep,
uint8_t x buffer, uint32_t length)

The function is used to send data through a specified endpoint. The function calls USB_DeviceSend-
Request internally.

-
USB PRINTER Class driver

Parameters
in handle | The printer class handle received from usb_device_class_config_struct-
_t::classHandle.
in ep | Endpoint index.
in buffer | The memory address to hold the data need to be sent.
in length | The data length to be sent.
Returns

A USB error code or kStatus_USB_ Success.

Note

The function can only be called in the same context.

The return value indicates whether the sending request is successful or not. Currently, only one
transfer request can be supported for one specific endpoint. If there is a specific requirement to
support multiple transfer requests for a specific endpoint, the application should implement a queue
in the application level. The subsequent transfer can begin only when the previous transfer is done
(a notification is received through the callback).

3.13.4.5 usb_status_t USB_DevicePrinterRecv (class_handle_t handle, uint8_t ep,
uint8_t x buffer, uint32_t length)

The function is used to receive data through a specified endpoint. The function calls USB_DeviceSend-
Request internally.

Parameters
in handle | The printer class handle received from usb_device_class_config_struct-
_t::classHandle.
in ep | Endpoint index.
in buffer | The memory address to hold the data need to be sent.
in length | The data length to be sent.
Returns

A USB error code or kStatus_ USB_ Success.

|
USB PRINTER Class driver

Note

The function can only be called in the same context.

The return value indicates whether the sending request is successful or not. Currently, only one
transfer request can be supported for one specific endpoint. If there is a specific requirement to
support multiple transfer requests for a specific endpoint, the application should implement a queue
in the application level. The subsequent transfer can begin only when the previous transfer is done
(a notification is received through the callback).

-
USB VIDEO Class driver

3.14 USB VIDEO Class driver
3.14.1 Overview

Data Structures

e struct usb_device_video_mjpeg_payload_header_struct_t

The payload header structure for MJIPEG payload format. More...
* struct usb_device_video_probe_and_commit_controls_struct_t

The Video probe and commit controls structure. More...
* struct usb_device_video_still_probe_and_commit_controls_struct_t

The Video still probe and still commit controls structure. More...
e struct usb_device_video_entity_struct_t

The video device class-specific information. More...
¢ struct usb_device_video_entities_struct_t

The video device class-specific information list. More...
¢ struct usb_device_video_struct_t

The video device class status structure. More...

Macros

* #define USB_DEVICE_VIDEO_STILL_IMAGE_TRIGGER_NORMAL_OPERATION (0x00U)

Video device still image trigger control.

Enumerations

e enum usb_device_video_event_t {
kUSB_DeviceVideoEventStreamSendResponse = 0x01U,
kUSB_DeviceVideoEventStreamRecvResponse,
kUSB_DeviceVideoEventControlSendResponse,
kUSB_DeviceVideoEventClassRequestBuffer }

Available common event types in video class callback.

Functions

» usb_status_t USB_DeviceVideolnit (uint8_t controllerld, usb_device_class_config_struct_-
t xconfig, class_handle_t xhandle)

Initializes the video class.
¢ usb_status_t USB_DeviceVideoDeinit (class_handle_t handle)

Deinitializes the device video class.
* usb_status_t USB_DeviceVideoEvent (void xhandle, uint32_t event, void xparam)

Handles the event passed to the video class.

|
USB VIDEO Class driver

USB Video class codes

#define USB_DEVICE_VIDEO_CC_VIDEO (0x0EU)

Video device class code.

* #define USB_DEVICE_VIDEO_SC_UNDEFINED (0x00U)

Video device subclass code.
#define USB_DEVICE_VIDEO_SC_VIDEOCONTROL (0x01U)
#define USB_DEVICE_VIDEO_SC_VIDEOSTREAMING (0x02U)
#define USB_DEVICE_VIDEO_SC_VIDEO_INTERFACE_COLLECTION (0x03U)
#define USB_DEVICE_VIDEO_PC_PROTOCOL_UNDEFINED (0x00U)

Video device protocol code.

#define USB_DEVICE_VIDEO_PC_PROTOCOL_15 (0x01U)
#define USB_DESCRIPTOR_TYPE_VIDEO_CS_UNDEFINED (0x20U)

Video device class-specific descriptor type.
#define USB_DESCRIPTOR_TYPE_VIDEO_CS_DEVICE (0x21U)
#define USB_DESCRIPTOR_TYPE_VIDEO_CS_CONFIGURATION (0x22U)
#define USB_DESCRIPTOR_TYPE_VIDEO_CS_STRING (0x23U)
#define USB_DESCRIPTOR_TYPE_VIDEO_CS_INTERFACE (0x24U)
#define USB_DESCRIPTOR_TYPE_VIDEO_CS_ENDPOINT (0x25U)
#define USB_DESCRIPTOR_SUBTYPE_VIDEO_VC_DESCRIPTOR_UNDEFINED (0x00U)

Video device class-specific VC interface descriptor subtype.
#define USB_DESCRIPTOR_SUBTYPE_VIDEO_VC_HEADER (0x01U)
#define USB_DESCRIPTOR_SUBTYPE_VIDEO_VC_INPUT_TERMINAL (0x02U)
#define USB_DESCRIPTOR_SUBTYPE_VIDEO_VC_OUTPUT_TERMINAL (0x03U)
#define USB_DESCRIPTOR_SUBTYPE_VIDEO_VC_SELECTOR_UNIT (0x04U)
#define USB_DESCRIPTOR_SUBTYPE_VIDEO_VC_PROCESSING_UNIT (0x05U)
#define USB_DESCRIPTOR_SUBTYPE_VIDEO_VC_EXTENSION_UNIT (0x06U)
#define USB_DESCRIPTOR_SUBTYPE_VIDEO_VC_ENCODING_UNIT (0x07U)
#define USB_DESCRIPTOR_SUBTYPE_VIDEO_VS_UNDEFINED (0x00U)

Video device class-specific VS interface descriptor subtype.
#define USB_DESCRIPTOR_SUBTYPE_VIDEO_VS_INPUT_HEADER (0x01U)
#define USB_DESCRIPTOR_SUBTYPE_VIDEO_VS_OUTPUT_HEADER (0x02U)
#define USB_DESCRIPTOR_SUBTYPE_VIDEO_VS_STILL_IMAGE_FRAME (0x03U)
#define USB_DESCRIPTOR_SUBTYPE_VIDEO_VS_FORMAT_UNCOMPRESSED (0x04-
U)
#define USB_DESCRIPTOR_SUBTYPE_VIDEO_VS_FRAME_UNCOMPRESSED (0x05U)
#define USB_DESCRIPTOR_SUBTYPE_VIDEO_VS_FORMAT_MJPEG (0x06U)
#define USB_DESCRIPTOR_SUBTYPE_VIDEO_VS_FRAME_MJPEG (0x07U)
#define USB_DESCRIPTOR_SUBTYPE_VIDEO_VS_FORMAT_MPEG2TS (0x0AU)
#define USB_DESCRIPTOR_SUBTYPE_VIDEO_VS_FORMAT_DYV (0x0CU)
#define USB_DESCRIPTOR_SUBTYPE_VIDEO_VS_COLORFORMAT (0x0DU)
#define USB_DESCRIPTOR_SUBTYPE_VIDEO_VS_FORMAT_FRAME_BASED (0x10U)
#define USB_DESCRIPTOR_SUBTYPE_VIDEO_VS_FRAME_FRAME_BASED (0x11U)
#define USB_DESCRIPTOR_SUBTYPE_VIDEO_VS_FORMAT_STREAM_BASED (0x12-
U)
 #define USB_DESCRIPTOR_SUBTYPE_VIDEO_VS_FORMAT_H264 (0x13U)
 #define USB_DESCRIPTOR_SUBTYPE_VIDEO_VS_FRAME_H264 (0x14U)
 #define USB_DESCRIPTOR_SUBTYPE_VIDEO_VS_FORMAT_H264_SIMULCAST (0x15-
U)
 #define USB_DESCRIPTOR_SUBTYPE_VIDEO_VS_FORMAT_VP8 (0x16U)
 #define USB_DESCRIPTOR_SUBTYPE_VIDEO_VS_FRAME_VPS8 (0x17U)
 #define USB_DESCRIPTOR_SUBTYPE_VIDEO_VS_FORMAT_VP8_SIMULCAST (0x18-
U)
* #define USB_DESCRIPTOR_SUBTYPE_VIDEO_EP_UNDEFINED (0x00U)

-
USB VIDEO Class driver

Video device class-specific VC endpoint descriptor subtype
#define USB_DESCRIPTOR_SUBTYPE_VIDEO _ EP GENERAL (0x01U)
#define USB_DESCRIPTOR_SUBTYPE_VIDEO_EP_ENDPOINT (0x02U)
#define USB_DESCRIPTOR_SUBTYPE_VIDEO_EP_INTERRUPT (0x03U)
#define USB_DEVICE_VIDEO_REQUEST_CODE_UNDEFINED (0x00U)

Video device class-specific request code.
#define USB_DEVICE_VIDEO_REQUEST_CODE_SET_CUR (0x01U)
#define USB_DEVICE_VIDEO_REQUEST_CODE_SET_CUR_ALL (0x11U)
#define USB_DEVICE_VIDEO_REQUEST_CODE_GET_CUR (0x81U)
#define USB_DEVICE_VIDEO_REQUEST_CODE_GET_MIN (0x82U)
#define USB_DEVICE_VIDEO_REQUEST_CODE_GET_MAX (0x83U)
#define USB_DEVICE_VIDEO_REQUEST_CODE_GET_RES (0x84U)
#define USB_DEVICE_VIDEO_REQUEST_CODE_GET_LEN (0x85U)
#define USB_DEVICE_VIDEO_REQUEST_CODE_GET_INFO (0x86U)
#define USB_DEVICE_VIDEO_REQUEST_CODE_GET_DEF (0x87U)
#define USB_DEVICE_VIDEO_REQUEST_CODE_GET_CUR_ALL (0x91U)
#define USB_DEVICE_VIDEO_REQUEST_CODE_GET_MIN_ALL (0x92U)
#define USB_DEVICE_VIDEO_REQUEST_CODE_GET_MAX_ALL (0x93U)
#define USB_DEVICE_VIDEO_REQUEST_CODE_GET_RES_ALL (0x94U)
#define USB_DEVICE_VIDEO_REQUEST_CODE_GET_DEF_ALL (0x97U)
#define USB_DEVICE_VIDEO_VC_CONTROL_UNDEFINED (0x00U)

Video device class-specific VideoControl interface control selector.
#define USB_DEVICE_VIDEO_VC_VIDEO_POWER_MODE_CONTROL (0x01U)
 #define USB_DEVICE_VIDEO_VC_REQUEST_ERROR_CODE_CONTROL (0x02U)
 #define USB_DEVICE_VIDEO_TE_CONTROL_UNDEFINED (0x00U)

Video device class-specific Terminal control selector.

e #define USB_DEVICE_VIDEO_SU_CONTROL_UNDEFINED (0x00U)

Video device class-specific Selector Unit control selector.

* #define USB_DEVICE_VIDEO_SU_INPUT_SELECT_CONTROL (0x01U)
#define USB_DEVICE_VIDEO_CT_CONTROL_UNDEFINED (0x00U)

Video device class-specific Camera Terminal control selector.
#define USB_DEVICE_VIDEO_CT_SCANNING_MODE_CONTROL (0x01U)
#define USB_DEVICE_VIDEO_CT_AE_MODE_CONTROL (0x02U)
#define USB_DEVICE_VIDEO_CT_AE_PRIORITY_CONTROL (0x03U)
#define USB_DEVICE_VIDEO_CT_EXPOSURE_TIME_ABSOLUTE_CONTROL (0x04U)
#define USB_DEVICE_VIDEO_CT_EXPOSURE_TIME_RELATIVE_CONTROL (0x05U)
#define USB_DEVICE_VIDEO_CT_FOCUS_ABSOLUTE_CONTROL (0x06U)
#define USB_DEVICE_VIDEO_CT_FOCUS_RELATIVE_CONTROL (0x07U)
#define USB_DEVICE_VIDEO_CT_FOCUS_AUTO_CONTROL (0x08U)
#define USB_DEVICE_VIDEO_CT_IRIS_ABSOLUTE_CONTROL (0x09U)
#define USB_DEVICE_VIDEO_CT_IRIS_RELATIVE_CONTROL (0x0AU)
#define USB_DEVICE_VIDEO_CT_ZOOM_ABSOLUTE_CONTROL (0xOBU)
#define USB_DEVICE_VIDEO_CT_ZOOM_RELATIVE_CONTROL (0x0CU)
#define USB_DEVICE_VIDEO_CT_PANTILT_ABSOLUTE_CONTROL (0x0DU)
#define USB_DEVICE_VIDEO_CT_PANTILT_RELATIVE_CONTROL (0xOEU)
#define USB_DEVICE_VIDEO_CT_ROLL_ABSOLUTE_CONTROL (0xOFU)
#define USB_DEVICE_VIDEO_CT_ROLL_RELATIVE_CONTROL (0x10U)
#define USB_DEVICE_VIDEO_CT_PRIVACY_CONTROL (0x11U)
#define USB_DEVICE_VIDEO_CT_FOCUS_SIMPLE_CONTROL (0x12U)
#define USB_DEVICE_VIDEO_CT_WINDOW_CONTROL (0x13U)
#define USB_DEVICE_VIDEO_CT_REGION_OF_INTEREST_CONTROL (0x14U)
#define USB_DEVICE_VIDEO_PU_CONTROL_UNDEFINED (0x00U)

Video device class-specific Processing Unit control selector.
 #define USB_DEVICE_VIDEO_PU_BACKLIGHT_COMPENSATION_CONTROL (0x01U)
* #define USB_DEVICE_VIDEO_PU_BRIGHTNESS_CONTROL (0x02U)

|
USB VIDEO Class driver

#define USB_DEVICE_VIDEO_PU_CONTRAST_CONTROL (0x03U)

#define USB_DEVICE_VIDEO_PU_GAIN_CONTROL (0x04U)

#define USB_DEVICE_VIDEO_PU_POWER_LINE_FREQUENCY_CONTROL (0x05U)
#define USB_DEVICE_VIDEO_PU_HUE_CONTROL (0x06U)

#define USB_DEVICE_VIDEO_PU_SATURATION_CONTROL (0x07U)

#define USB_DEVICE_VIDEO_PU_SHARPNESS_CONTROL (0x08U)

#define USB_DEVICE_VIDEO_PU_GAMMA_CONTROL (0x09U)

#define USB_DEVICE_VIDEO_PU_WHITE_BALANCE_TEMPERATURE_CONTRO-

L (0x0AU)
* #define USB_DEVICE_VIDEO_PU_WHITE_BALANCE_TEMPERATURE_AUTO_CON-

TROL (0x0BU)
* #define USB_DEVICE_VIDEO_PU_WHITE_BALANCE_COMPONENT_CONTROL (0x0-

CU)
 #define USB_DEVICE_VIDEO_PU_WHITE_BALANCE_COMPONENT_AUTO_CONTR-

OL (0xODU)

#define USB_DEVICE_VIDEO_PU_DIGITAL_MULTIPLIER_CONTROL (0xOEU)

#define USB_DEVICE_VIDEO_PU_DIGITAL_MULTIPLIER_LIMIT_CONTROL (0x0OFU)
#define USB_DEVICE_VIDEO_PU_HUE_AUTO_CONTROL (0x10U)

#define USB_DEVICE_VIDEO_PU_ANALOG_VIDEO_STANDARD_CONTROL (0x11U)
#define USB_DEVICE_VIDEO_PU_ANALOG_LOCK_STATUS_CONTROL (0x12U)
#define USB_DEVICE_VIDEO_PU_CONTRAST_AUTO_CONTROL (0x13U)

#define USB_DEVICE_VIDEO_EU_CONTROL_UNDEFINED (0x00U)

Video device class-specific Encoding Unit control selector.
#define USB_DEVICE_VIDEO_EU_SELECT_LAYER_CONTROL (0x01U)
#define USB_DEVICE_VIDEO_EU_PROFILE_TOOLSET_CONTROL (0x02U)
#define USB_DEVICE_VIDEO_EU_VIDEO_RESOLUTION_CONTROL (0x03U)
#define USB_DEVICE_VIDEO_EU_MIN_FRAME_INTERVAL_CONTROL (0x04U)
#define USB_DEVICE_VIDEO_EU_SLICE_MODE_CONTROL (0x05U)
#define USB_DEVICE_VIDEO_EU_RATE_CONTROL_MODE_CONTROL (0x06U)
#define USB_DEVICE_VIDEO_EU_AVERAGE_BITRATE_CONTROL (0x07U)
#define USB_DEVICE_VIDEO_EU_CPB_SIZE_CONTROL (0x08U)
#define USB_DEVICE_VIDEO_EU_PEAK_BIT_RATE_CONTROL (0x09U)
#define USB_DEVICE_VIDEO_EU_QUANTIZATION_PARAMS_CONTROL (0x0AU)
#define USB_DEVICE_VIDEO_EU_SYNC_REF_FRAME_CONTROL (0xOBU)
#define USB_DEVICE_VIDEO_EU_LTR_BUFFER_ CONTROL(0x0CU)
#define USB_DEVICE_VIDEO_EU_LTR_PICTURE_CONTROL (0x0DU)
#define USB_DEVICE_VIDEO_EU_LTR_VALIDATION_CONTROL (0xOEU)
#define USB_DEVICE_VIDEO_EU_LEVEL_IDC_LIMIT_CONTROL (0xOFU)
#define USB_DEVICE_VIDEO_EU_SEI_PAYLOADTYPE_CONTROL (0x10U)
#define USB_DEVICE_VIDEO_EU_QP_RANGE_CONTROL (0x11U)
#define USB_DEVICE_VIDEO_EU_PRIORITY_CONTROL (0x12U)
#define USB_DEVICE_VIDEO_EU_START_OR_STOP_LAYER_CONTROL (0x13U)
#define USB_DEVICE_VIDEO_EU_ERROR_RESILIENCY_CONTROL (0x14U)
#define USB_DEVICE_VIDEO_XU_CONTROL_UNDEFINED (0x00U)

Video device class-specific Extension Unit control selector.

* #define USB_DEVICE_VIDEO_VS_CONTROL_UNDEFINED (0x00U)

Video device class-specific VideoStreaming Interface control selector.
#define USB_DEVICE_VIDEO_VS_PROBE_CONTROL (0x01U)
#define USB_DEVICE_VIDEO_VS_COMMIT_CONTROL (0x02U)
#define USB_DEVICE_VIDEO_VS_STILL_PROBE_CONTROL (0x03U)
#define USB_DEVICE_VIDEO_VS_STILL_COMMIT_CONTROL (0x04U)
#define USB_DEVICE_VIDEO_VS_STILL_IMAGE_TRIGGER_CONTROL (0x05U)
#define USB_DEVICE_VIDEO_VS_STREAM_ERROR_CODE_CONTROL (0x06U)
#define USB_DEVICE_VIDEO_VS_GENERATE_KEY_FRAME_CONTROL (0x07U)

-
USB VIDEO Class driver

* #define USB_DEVICE_VIDEO_VS_UPDATE_FRAME_SEGMENT_CONTROL (0x08U)
¢ #define USB_DEVICE_VIDEO_VS_SYNCH_DELAY_CONTROL (0x09U)

USB Video class terminal types

* #define USB_DEVICE_VIDEO_TT_VENDOR_SPECIFIC (0x0100U)

Video device USB terminal type.
 #define USB_DEVICE_VIDEO_TT_STREAMING (0x0101U)
* #define USB_DEVICE_VIDEO_ITT_VENDOR_SPECIFIC (0x0200U)

Video device input terminal type.
 #define USB_DEVICE_VIDEO_ITT_CAMERA (0x0201U)
 #define USB_DEVICE_VIDEO_ITT_MEDIA_TRANSPORT_INPUT (0x0202U)
e #define USB_DEVICE_VIDEO_OTT_VENDOR_SPECIFIC (0x0300U)

Video device output terminal type.
* #define USB_DEVICE_VIDEO_OTT_DISPLAY (0x0301U)
* #define USB_DEVICE_VIDEO_OTT_MEDIA_TRANSPORT_OUTPUT (0x0302U)
 #define USB_DEVICE_VIDEO_ET_VENDOR_SPECIFIC (0x0400U)

Video device external terminal type.
* #define USB_DEVICE_VIDEO_ET_COMPOSITE_CONNECTOR (0x0401U)
 #define USB_DEVICE_VIDEO_ET_SVIDEO_CONNECTOR (0x0402U)
 #define USB_DEVICE_VIDEO_ET_COMPONENT_CONNECTOR (0x0403U)

USB Video class setup request types

#define USB_DEVICE_VIDEO_SET_REQUEST_INTERFACE (0x21U)

Video device class setup request set type.

#define USB_DEVICE_VIDEO_SET_REQUEST_ENDPOINT (0x22U)
#define USB_DEVICE_VIDEO_GET_REQUEST_INTERFACE (0xA1U)

Video device class setup request get type.

#define USB_DEVICE_VIDEO_GET_REQUEST_ENDPOINT (0xA2U)

USB Video device class-specific request commands

#define USB_DEVICE_VIDEO_GET_CUR_VC_POWER_MODE_CONTROL (0x8101U)

Video device class-specific request GET CUR COMMAND.
#define USB_DEVICE_VIDEO_GET_CUR_VC_ERROR_CODE_CONTROL (0x8102U)
#define USB_DEVICE_VIDEO_GET_CUR_PU_BACKLIGHT_COMPENSATION_CONT-

ROL (0x8121U)

#define USB_DEVICE_VIDEO_GET_CUR_PU_BRIGHTNESS_CONTROL (0x8122U)
#define USB_DEVICE_VIDEO_GET_CUR_PU_CONTRACT_CONTROL (0x8123U)
#define USB_DEVICE_VIDEO_GET_CUR_PU_GAIN_CONTROL (0x8124U)

#define USB_DEVICE_VIDEO_GET_CUR_PU_POWER_LINE_FREQUENCY_CONTRO-

L (0x81250)

#define USB_DEVICE_VIDEO_GET_CUR_PU_HUE_CONTROL (0x8126U)

#define USB_DEVICE_VIDEO_GET_CUR_PU_SATURATION_CONTROL (0x8127U)
#define USB_DEVICE_VIDEO_GET_CUR_PU_SHARRNESS_CONTROL (0x8128U)
#define USB_DEVICE_VIDEO_GET_CUR_PU_GAMMA_CONTROL (0x8129U)

#define USB_DEVICE_VIDEO_GET_CUR_PU_WHITE_BALANCE_TEMPERATURE_C-

ONTROL (0x812AU)

|
USB VIDEO Class driver

¢ #define USB_DEVICE_VIDEO_GET_CUR_PU_WHITE_BALANCE_TEMPERATURE_A-

UTO_CONTROL (0x812BU)
* #define USB_DEVICE_VIDEO_GET_CUR_PU_WHITE_BALANCE_COMPONENT_CO-

NTROL (0x812CU)
» #define USB_DEVICE_VIDEO_GET_CUR_PU_WHITE_BALANCE_COMPONENT_AU-

TO_CONTROL (0x812DU)
* #define USB_DEVICE_VIDEO_GET_CUR_PU_DIGITAL_MULTIPLIER_CONTRO-

L (0x812EU)
* #define USB_DEVICE_VIDEO_GET_CUR_PU_DIGITAL_MULTIPLIER_LIMIT_CONT-

ROL (0x812FU)
* #define USB_DEVICE_VIDEO_GET_CUR_PU_HUE_AUTO_CONTROL (0x8130U)
* #define USB_DEVICE_VIDEO_GET_CUR_PU_ANALOG_VIDEO_STANDARD_CONTR-

OL (0x8131U)
* #define USB_DEVICE_VIDEO_GET_CUR_PU_ANALOG_LOCK_STATUS_CONTRO-

L (0x81320U)

e #define USB_DEVICE_VIDEO_GET_CUR_CT_SCANNING_MODE_CONTROL (0x8141-
U)

e #define USB_DEVICE_VIDEO_GET_CUR_CT_AE_MODE_CONTROL (0x8142U)

* #define USB_DEVICE_VIDEO_GET_CUR_CT_AE_PRIORITY_CONTROL (0x8143U)

* #define USB_DEVICE_VIDEO_GET_CUR_CT_EXPOSURE_TIME_ABSOLUTE_CONT-

ROL (0x8144U)
« #define USB_DEVICE_VIDEO_GET_CUR_CT_EXPOSURE_TIME_RELATIVE_CONTR-

OL (0x8145U)
¢ #define USB_DEVICE_VIDEO_GET_CUR_CT_FOCUS_ABSOLUTE_CONTROL (0x8146-
U)
¢ #define USB_DEVICE_VIDEO_GET_CUR_CT_FOCUS_RELATIVE_CONTROL (0x8147-
U)
#define USB_DEVICE_VIDEO_GET_CUR_CT_FOCUS_AUTO_CONTROL (0x8148U)
#define USB_DEVICE_VIDEO_GET_CUR_CT_IRIS_ABSOLUTE_CONTROL (0x8149U)
#define USB_DEVICE_VIDEO_GET_CUR_CT_IRIS_RELATIVE_CONTROL (0x814AU)
#define USB_DEVICE_VIDEO_GET_CUR_CT_ZOOM_ABSOLUTE_CONTROL (0x814B-
U)
* #define USB_DEVICE_VIDEO_GET_CUR_CT_ZOOM_RELATIVE_CONTROL (0x814C-
U)
* #define USB_DEVICE_VIDEO_GET_CUR_CT_PANTILT_ABSOLUTE_CONTROL (0x814-
DU)
* #define USB_DEVICE_VIDEO_GET_CUR_CT_PANTILT_RELATIVE_CONTROL (0x814-

EU)
* #define USB_DEVICE_VIDEO_GET_CUR_CT_ROLL_ABSOLUTE_CONTROL (0x814F-
U)
#define USB_DEVICE_VIDEO_GET_CUR_CT_ROLL_RELATIVE_CONTROL (0x8150U)
#define USB_DEVICE_VIDEO_GET_CUR_CT_PRIVACY_CONTROL (0x8151U)
#define USB_DEVICE_VIDEO_GET_CUR_VS_PROBE_CONTROL (0x8161U)
#define USB_DEVICE_VIDEO_GET_CUR_VS_COMMIT_CONTROL (0x8162U)
#define USB_DEVICE_VIDEO_GET_CUR_VS_STILL_PROBE_CONTROL (0x8163U)
#define USB_DEVICE_VIDEO_GET_CUR_VS_STILL_COMMIT_CONTROL (0x8164U)
#define USB_DEVICE_VIDEO_GET_CUR_VS_STILL_IMAGE_TRIGGER_CONTRO-

L (0x8165U)

* #define USB_DEVICE_VIDEO_GET_CUR_VS_STREAM_ERROR_CODE_CONTRO-
L (0x8166U)

* #define USB_DEVICE_VIDEO_GET_CUR_VS_GENERATE_KEY_FRAME_CONTRO-

-
USB VIDEO Class driver

L (0x8167U0)
* #define USB_DEVICE_VIDEO_GET_CUR_VS_UPDATE_FRAME_SEGMENT_CONTR-

OL (0x8168U)
¢ #define USB_DEVICE_VIDEO_GET_CUR_VS_SYNCH_DELAY_CONTROL (0x8169U)
e #define USB_DEVICE_VIDEO_GET_MIN_PU_BACKLIGHT_COMPENSATION_CONTRO-

L (0x8221U)

Video device class-specific request GET MIN COMMAND.
#define USB_DEVICE_VIDEO_GET_MIN_PU_BRIGHTNESS_CONTROL (0x8222U)
#define USB_DEVICE_VIDEO_GET_MIN_PU_CONTRACT_CONTROL (0x8223U)
#define USB_DEVICE_VIDEO_GET_MIN_PU_GAIN_CONTROL (0x8224U)
#define USB_DEVICE_VIDEO_GET_MIN_PU_HUE_CONTROL (0x8226U)
#define USB_DEVICE_VIDEO_GET_MIN_PU_SATURATION_CONTROL (0x8227U)
#define USB_DEVICE_VIDEO_GET_MIN_PU_SHARRNESS_CONTROL (0x8228U)
#define USB_DEVICE_VIDEO_GET_MIN_PU_GAMMA_CONTROL (0x8229U)
#define USB_DEVICE_VIDEO_GET_MIN_PU_WHITE_BALANCE_TEMPERATURE_C-

ONTROL (0x822AU)
« #define USB_DEVICE_VIDEO_GET_MIN_PU_WHITE_BALANCE_COMPONENT_CO-

NTROL (0x822CU)
* #define USB_DEVICE_VIDEO_GET_MIN_PU_DIGITAL_MULTIPLIER_CONTRO-

L (0x822EU)
* #define USB_DEVICE_VIDEO_GET_MIN_PU_DIGITAL_MULTIPLIER_LIMIT_CONT-

ROL (0x822FU)
* #define USB_DEVICE_VIDEO_GET_MIN_CT_EXPOSURE_TIME_ABSOLUTE_CONT-

ROL (0x8244U)

« #define USB_DEVICE_VIDEO_GET_MIN_CT_FOCUS_ABSOLUTE_CONTROL (0x8246-
U)

« #define USB_DEVICE_VIDEO_GET_MIN_CT_FOCUS_RELATIVE_CONTROL (0x8247-
U)

« #define USB_DEVICE_VIDEO_GET_MIN_CT_IRIS_ABSOLUTE_CONTROL (0x8249U)

« #define USB_DEVICE_VIDEO_GET_MIN_CT_ZOOM_ABSOLUTE_CONTROL (0x824B-
U)

« #define USB_DEVICE_VIDEO GET_MIN_CT _ZOOM _RELATIVE_CONTROL (0x824C-
U)

« #define USB_DEVICE_VIDEO _GET _MIN_CT PANTILT ABSOLUTE_CONTROL (0x824-
DU)

« #define USB_DEVICE_VIDEO _GET_MIN_CT PANTILT RELATIVE_CONTROL (0x824-

EU)
« #define USB_DEVICE_VIDEO _GET_MIN_CT_ROLL_ABSOLUTE_CONTROL (0x824F-
U)

#define USB_DEVICE_VIDEO_GET_MIN_CT_ROLL_RELATIVE_CONTROL (0x8250U)
#define USB_DEVICE_VIDEO_GET_MIN_VS_PROBE_CONTROL (0x8261U)

#define USB_DEVICE_VIDEO_GET_MIN_VS_STILL_PROBE_CONTROL (0x8263U)
#define USB_DEVICE_VIDEO_GET_MIN_VS_UPDATE_FRAME_SEGMENT CONTRO-

L (0x8268U)
#define USB_DEVICE_VIDEO_GET_MIN_VS_SYNCH_DELAY_CONTROL (0x8269U)
» #define USB_DEVICE_VIDEO_GET_MAX_PU_BACKLIGHT_COMPENSATION_CONTRO-
L (0x8321U)
Video device class-specific request GET MAX COMMAND.
» #define USB_DEVICE_VIDEO_GET_MAX_PU_BRIGHTNESS_CONTROL (0x8322U)
* #define USB_DEVICE_VIDEO_GET_MAX_PU_CONTRACT_CONTROL (0x8323U)
 #define USB_DEVICE_VIDEO_GET_MAX_PU_GAIN_CONTROL (0x8324U)

|
USB VIDEO Class driver

#define USB_DEVICE_VIDEO_GET_MAX_PU_HUE_CONTROL (0x8326U)

#define USB_DEVICE_VIDEO_GET_MAX_PU_SATURATION_CONTROL (0x8327U)
#define USB_DEVICE_VIDEO_GET_MAX_PU_SHARRNESS_CONTROL (0x8328U)
#define USB_DEVICE_VIDEO_GET_MAX_PU_GAMMA_CONTROL (0x8329U)

#define USB_DEVICE_VIDEO_GET_MAX PU_WHITE_BALANCE_TEMPERATURE._-

CONTROL (0x832AU)
 #define USB_DEVICE_VIDEO_GET_MAX PU_WHITE_BALANCE_COMPONENT_CO-

NTROL (0x832CU)
* #define USB_DEVICE_VIDEO_GET_MAX_PU_DIGITAL_MULTIPLIER_CONTRO-

L (0x832EU)
¢ #define USB_DEVICE_VIDEO_GET_MAX_PU_DIGITAL_MULTIPLIER_LIMIT_CONT-

ROL (0x832FU)
* #define USB_DEVICE_VIDEO_GET_MAX_CT_EXPOSURE_TIME_ABSOLUTE_CONT-

ROL (0x8344U)

* #define USB_DEVICE_VIDEO_GET_MAX_CT_FOCUS_ABSOLUTE_CONTROL (0x8346-
U)

* #define USB_DEVICE_VIDEO_GET_MAX_CT_FOCUS_RELATIVE_CONTROL (0x8347-
U)

¢ #define USB_DEVICE_VIDEO_GET_MAX_CT_IRIS_ABSOLUTE_CONTROL (0x8349U)

* #define USB_DEVICE_VIDEO_GET_MAX_CT_ZOOM_ABSOLUTE_CONTROL (0x834-

BU)

¢ #define USB_DEVICE_VIDEO_GET_MAX_CT_ZOOM_RELATIVE_CONTROL (0x834C-
U)

¢ #define USB_DEVICE_VIDEO_GET_MAX_CT_PANTILT_ABSOLUTE_CONTROL (0x834-
DU)

* #define USB_DEVICE_VIDEO_GET_MAX_CT_PANTILT_RELATIVE_CONTROL (0x834-

EU)

« #define USB_DEVICE_VIDEO_GET MAX_CT_ROLL_ABSOLUTE_CONTROL (0x834F-
U)

« #define USB_DEVICE_VIDEO_GET_MAX_CT_ROLL_RELATIVE_CONTROL (0x8350-
U)

« #define USB_DEVICE_VIDEO_GET_MAX_VS_PROBE_CONTROL (0x8361U)

« #define USB_DEVICE_VIDEO_GET_MAX_VS_STILL_PROBE_CONTROL (0x8363U)

« #define USB_DEVICE_VIDEO GET MAX VS UPDATE_FRAME_SEGMENT CONTR-

OL (0x8368U)
e #define USB_DEVICE_VIDEO_GET_MAX_VS_SYNCH_DELAY_CONTROL (0x8369U)
» #define USB_DEVICE_VIDEO_GET_RES_PU_BACKLIGHT_COMPENSATION_CONTRO-

L (0x8421U)

Video device class-specific request GET RES COMMAND.
#define USB_DEVICE_VIDEO_GET_RES_PU_BRIGHTNESS_CONTROL (0x8422U)
#define USB_DEVICE_VIDEO_GET_RES_PU_CONTRACT_CONTROL (0x8423U)
#define USB_DEVICE_VIDEO_GET_RES_PU_GAIN_CONTROL (0x8424U)
#define USB_DEVICE_VIDEO_GET_RES_PU_HUE_CONTROL (0x8426U)
#define USB_DEVICE_VIDEO_GET_RES_PU_SATURATION_CONTROL (0x8427U)
#define USB_DEVICE_VIDEO_GET_RES_PU_SHARRNESS_CONTROL (0x8428U)
#define USB_DEVICE_VIDEO_GET_RES_PU_GAMMA_CONTROL (0x8429U)
#define USB_DEVICE_VIDEO_GET_RES_PU_WHITE_BALANCE_TEMPERATURE_C-

ONTROL (0x842AU)
* #define USB_DEVICE_VIDEO_GET_RES_PU_WHITE_BALANCE_COMPONENT_CON-

TROL (0x842CU)
* #define USB_DEVICE_VIDEO_GET_RES_PU_DIGITAL_MULTIPLIER_CONTRO-

USB VIDEO Class driver

L (0x842EU)
#define USB_DEVICE_VIDEO_GET_RES_PU_DIGITAL_MULTIPLIER_LIMIT_CONT-

ROL (0x842FU)
#define USB_DEVICE_VIDEO_GET_RES_CT_AE_MODE_CONTROL (0x8442U)
#define USB_DEVICE_VIDEO_GET_RES_CT_EXPOSURE_TIME_ABSOLUTE_CONTR-

OL (0x8444U)

#define USB_DEVICE_VIDEO_GET_RES_CT_FOCUS_ABSOLUTE_CONTROL (0x8446-
U)

#define USB_DEVICE_VIDEO_GET_RES_CT_FOCUS_RELATIVE_CONTROL (0x8447-
U)

#define USB_DEVICE_VIDEO_GET_RES_CT_IRIS_ABSOLUTE_CONTROL (0x8449U)
#define USB_DEVICE_VIDEO_GET_RES_CT_ZOOM_ABSOLUTE_CONTROL (0x844B-
U)

#define USB_DEVICE_VIDEO_GET_RES_CT_ZOOM_RELATIVE_CONTROL (0x844C-
U)

#define USB_DEVICE_VIDEO_GET_RES_CT_PANTILT_ABSOLUTE_CONTROL (0x844-
DU)

#define USB_DEVICE_VIDEO_GET_RES_CT_PANTILT_RELATIVE_CONTROL (0x844-

EU)

#define USB_DEVICE_VIDEO_GET_RES_CT_ROLL_ABSOLUTE_CONTROL (0x844FU)
#define USB_DEVICE_VIDEO_GET_RES_CT_ROLL_RELATIVE_CONTROL (0x8450U)
#define USB_DEVICE_VIDEO_GET_RES_VS_PROBE_CONTROL (0x8461U)

#define USB_DEVICE_VIDEO_GET_RES_VS_STILL_PROBE_CONTROL (0x8463U)
#define USB_DEVICE_VIDEO_GET_RES_VS_UPDATE_FRAME_SEGMENT_CONTRO-

L (0x8468U)
#define USB_DEVICE_VIDEO_GET_RES_VS_SYNCH_DELAY_CONTROL (0x8469U)
#define USB_DEVICE_VIDEO_GET_LEN_VS_PROBE_CONTROL (0x8561U)

Video device class-specific request GET LEN COMMAND.
#define USB_DEVICE_VIDEO_GET_LEN_VS_COMMIT_CONTROL (0x8562U)
#define USB_DEVICE_VIDEO_GET_LEN_VS_STILL_PROBE_CONTROL (0x8563U)
#define USB_DEVICE_VIDEO_GET_LEN_VS_STILL_COMMIT_CONTROL (0x8564U)
#define USB_DEVICE_VIDEO_GET_INFO_VC_POWER_MODE_CONTROL (0x8601U)

Video device class-specific request GET INFO COMMAND.
#define USB_DEVICE_VIDEO_GET_INFO_VC_ERROR_CODE_CONTROL (0x8602U)
#define USB_DEVICE_VIDEO_GET_INFO_PU_BACKLIGHT_COMPENSATION_CON-

TROL (0x8621U)

#define USB_DEVICE_VIDEO_GET_INFO_PU_BRIGHTNESS_CONTROL (0x8622U)
#define USB_DEVICE_VIDEO_GET_INFO_PU_CONTRACT_CONTROL (0x8623U)
#define USB_DEVICE_VIDEO_GET_INFO_PU_GAIN_CONTROL (0x8624U)

#define USB_DEVICE_VIDEO_GET_INFO_PU_POWER_LINE_FREQUENCY_CONTR-

OL (0x8625U)

#define USB_DEVICE_VIDEO_GET_INFO_PU_HUE_CONTROL (0x8626U)

#define USB_DEVICE_VIDEO_GET_INFO_PU_SATURATION_CONTROL (0x8627U)
#define USB_DEVICE_VIDEO_GET_INFO_PU_SHARRNESS_CONTROL (0x8628U)
#define USB_DEVICE_VIDEO_GET_INFO_PU_GAMMA_CONTROL (0x8629U)

#define USB_DEVICE_VIDEO_GET_INFO_PU_WHITE_BALANCE_TEMPERATURE_-

CONTROL (0x862AU)

#define USB_DEVICE_VIDEO_GET_INFO_PU_WHITE_BALANCE_TEMPERATURE_-
AUTO_CONTROL (0x862BU)

#define USB_DEVICE_VIDEO_GET_INFO_PU_WHITE_BALANCE_COMPONENT_CO-
NTROL (0x862CU)

#define USB_DEVICE_VIDEO_GET_INFO_PU_WHITE_BALANCE_COMPONENT_AU-

|
USB VIDEO Class driver

TO_CONTROL (0x862DU)
* #define USB_DEVICE_VIDEO_GET_INFO_PU_DIGITAL_MULTIPLIER_CONTRO-

L (0x862EU)
* #define USB_DEVICE_VIDEO_GET_INFO_PU_DIGITAL_MULTIPLIER_LIMIT_CON-

TROL (0x862FU)
¢ #define USB_DEVICE_VIDEO_GET_INFO_PU_HUE_AUTO_CONTROL (0x8630U)
* #define USB_DEVICE_VIDEO_GET_INFO_PU_ANALOG_VIDEO_STANDARD_CONT-

ROL (0x8631U)
e #define USB_DEVICE_VIDEO_GET_INFO_PU_ANALOG_LOCK_STATUS_CONTRO-

L (0x86320U)

¢ #define USB_DEVICE_VIDEO_GET_INFO_CT_SCANNING_MODE_CONTROL (0x8641-
U)

* #define USB_DEVICE_VIDEO_GET_INFO_CT_AE_MODE_CONTROL (0x8642U)

* #define USB_DEVICE_VIDEO_GET_INFO_CT_AE_PRIORITY_CONTROL (0x8643U)

* #define USB_DEVICE_VIDEO_GET_INFO_CT_EXPOSURE_TIME_ABSOLUTE_CONT-

ROL (0x8644U)
* #define USB_DEVICE_VIDEO_GET_INFO_CT_EXPOSURE_TIME_RELATIVE_CONT-

ROL (0x8645U)

« #define USB_DEVICE_VIDEO_GET_INFO_CT_FOCUS_ABSOLUTE_CONTROL (0x8646-
U)

« #define USB_DEVICE_VIDEO_GET_INFO_CT_FOCUS_RELATIVE_CONTROL (0x8647-

U)

#define USB_DEVICE_VIDEO_GET_INFO_CT_FOCUS_AUTO_CONTROL (0x8648U)

#define USB_DEVICE_VIDEO_GET_INFO_CT_IRIS_ABSOLUTE_CONTROL (0x8649U)

#define USB_DEVICE_VIDEO_GET_INFO_CT_IRIS_ RELATIVE_CONTROL (0x864AU)

#define USB_DEVICE_VIDEO_GET_INFO_CT_ZOOM_ABSOLUTE_CONTROL (0x864-

BU)

« #define USB_DEVICE_VIDEO_GET_INFO_CT_ZOOM_RELATIVE_CONTROL (0x864-
CU)

« #define USB_DEVICE_VIDEO_GET_INFO_CT_PANTILT _ABSOLUTE_CONTROL (0x864-
DU)

« #define USB_DEVICE_VIDEO_GET _INFO_CT_PANTILT RELATIVE_CONTROL (0x864-
EU)

« #define USB_DEVICE_VIDEO_GET_INFO_CT_ROLL_ABSOLUTE_CONTROL (0x864F-
U)

« #define USB_DEVICE_VIDEO_GET_INFO_CT ROLL_RELATIVE_CONTROL (0x8650-

U)

#define USB_DEVICE_VIDEO_GET_INFO_CT_PRIVACY_CONTROL (0x8651U)

#define USB_DEVICE_VIDEO_GET_INFO_VS_PROBE_CONTROL (0x8661U)

#define USB_DEVICE_VIDEO_GET_INFO_VS_COMMIT_CONTROL (0x8662U)

#define USB_DEVICE_VIDEO_GET_INFO_VS_STILL_PROBE_CONTROL (0x8663U)

#define USB_DEVICE_VIDEO_GET_INFO_VS_STILL_COMMIT CONTROL (0x8664U)

#define USB_DEVICE_VIDEO GET INFO VS _STILL IMAGE TRIGGER_CONTRO-

L (0x8665U)

* #define USB_DEVICE_VIDEO_GET_INFO_VS_STREAM_ERROR_CODE_CONTRO-
L (0x8666U)

* #define USB_DEVICE_VIDEO_GET_INFO_VS_GENERATE_KEY_FRAME_CONTRO-
L (0x8667U)

* #define USB_DEVICE_VIDEO_GET_INFO_VS_UPDATE_FRAME_SEGMENT_CONTR-
OL (0x8668U)

¢ #define USB_DEVICE_VIDEO_GET_INFO_VS_SYNCH_DELAY_CONTROL (0x8669U)

USB VIDEO Class driver

#define USB_DEVICE_VIDEO_GET_DEF_PU_BACKLIGHT_COMPENSATION_CONTRO-
L (0x8721U)

Video device class-specific request GET DEF COMMAND.
#define USB_DEVICE_VIDEO_GET_DEF_PU_BRIGHTNESS_CONTROL (0x8722U)
#define USB_DEVICE_VIDEO_GET_DEF_PU_CONTRACT_CONTROL (0x8723U)
#define USB_DEVICE_VIDEO_GET_DEF_PU_GAIN_CONTROL (0x8724U)
#define USB_DEVICE_VIDEO_GET_DEF_PU_POWER_LINE_FREQUENCY_CONTRO-

L (0x8725U)

#define USB_DEVICE_VIDEO_GET_DEF_PU_HUE_CONTROL (0x8726U)

#define USB_DEVICE_VIDEO_GET_DEF_PU_SATURATION_CONTROL (0x8727U)
#define USB_DEVICE_VIDEO_GET_DEF_PU_SHARRNESS_CONTROL (0x8728U)
#define USB_DEVICE_VIDEO_GET_DEF_PU_GAMMA_CONTROL (0x8729U)

#define USB_DEVICE_VIDEO_GET_DEF_PU_WHITE_BALANCE_TEMPERATURE_C-

ONTROL (0x872AU)
#define USB_DEVICE_VIDEO_GET_DEF_PU_WHITE_BALANCE_TEMPERATURE_A-

UTO_CONTROL (0x872BU)
#define USB_DEVICE_VIDEO_GET_DEF_PU_WHITE_BALANCE_COMPONENT_CO-

NTROL (0x872CU)
#define USB_DEVICE_VIDEO_GET_DEF_PU_WHITE_BALANCE_COMPONENT_AUT-

O_CONTROL (0x872DU)
#define USB_DEVICE_VIDEO_GET_DEF_PU_DIGITAL_MULTIPLIER_CONTRO-

L (0x872EU)
#define USB_DEVICE_VIDEO_GET_DEF_PU_DIGITAL_MULTIPLIER_LIMIT_CONT-

ROL (0x872FU)

#define USB_DEVICE_VIDEO_GET_DEF_PU_HUE_AUTO_CONTROL (0x8730U)
#define USB_DEVICE_VIDEO_GET_DEF_CT_AE_MODE_CONTROL (0x8742U)

#define USB_DEVICE_VIDEO_GET_DEF_CT_EXPOSURE_TIME_ABSOLUTE_CONT-

ROL (0x8744U)

#define USB_DEVICE_VIDEO_GET_DEF_CT_FOCUS_ABSOLUTE_CONTROL (0x8746-
U)

#define USB_DEVICE_VIDEO_GET_DEF_CT_FOCUS_RELATIVE_CONTROL (0x8747-
U)

#define USB_DEVICE_VIDEO_GET_DEF_CT_FOCUS_AUTO_CONTROL (0x8748U)
#define USB_DEVICE_VIDEO_GET_DEF_CT_IRIS_ABSOLUTE_CONTROL (0x8749U)
#define USB_DEVICE_VIDEO_GET_DEF_CT_ZOOM_ABSOLUTE_CONTROL (0x874B-
U)

#define USB_DEVICE_VIDEO_GET_DEF_CT_ZOOM_RELATIVE_CONTROL (0x874C-
U)

#define USB_DEVICE_VIDEO_GET_DEF_CT_PANTILT_ABSOLUTE_CONTROL (0x874
DU)

#define USB_DEVICE_VIDEO_GET_DEF_CT_PANTILT_RELATIVE_CONTROL (0x874-

EU)

#define USB_DEVICE_VIDEO_GET_DEF_CT_ROLL_ABSOLUTE_CONTROL (0x874F-
U)

#define USB_DEVICE_VIDEO_GET_DEF_CT_ROLL_RELATIVE_CONTROL (0x8750U)
#define USB_DEVICE_VIDEO_GET_DEF_VS_PROBE_CONTROL (0x8761U)

#define USB_DEVICE_VIDEO_GET_DEF_VS_STILL_PROBE_CONTROL (0x8763U)
#define USB_DEVICE_VIDEO_GET_DEF_VS_UPDATE_FRAME_SEGMENT_CONTRO-

L (0x8768U)
#define USB_DEVICE_VIDEO_GET_DEF_VS_SYNCH_DELAY_CONTROL (0x8769U)
#define USB_DEVICE_VIDEO_SET_CUR_VC_POWER_MODE_CONTROL (0x0101U)

|
USB VIDEO Class driver

Video device class-specific request SET CUR COMMAND.
#define USB_DEVICE_VIDEO_SET_CUR_PU_BACKLIGHT_COMPENSATION_CONT-

ROL (0x0121U)

#define USB_DEVICE_VIDEO_SET_CUR_PU_BRIGHTNESS_CONTROL (0x0122U)
#define USB_DEVICE_VIDEO_SET_CUR_PU_CONTRACT_CONTROL (0x0123U)
#define USB_DEVICE_VIDEO_SET_CUR_PU_GAIN_CONTROL (0x0124U)

#define USB_DEVICE_VIDEO_SET_CUR_PU_POWER_LINE_FREQUENCY_CONTRO-

L (0x01250)

#define USB_DEVICE_VIDEO_SET_CUR_PU_HUE_CONTROL (0x0126U)

#define USB_DEVICE_VIDEO_SET_CUR_PU_SATURATION_CONTROL (0x0127U)
#define USB_DEVICE_VIDEO_SET_CUR_PU_SHARRNESS_CONTROL (0x0128U)
#define USB_DEVICE_VIDEO_SET_ CUR_PU_GAMMA_CONTROL (0x0129U)

#define USB_DEVICE_VIDEO_SET_CUR_PU_WHITE_BALANCE_TEMPERATURE_C-

ONTROL (0x012AU)
#define USB_DEVICE_VIDEO_SET CUR_PU_WHITE_BALANCE_TEMPERATURE_A-

UTO_CONTROL (0x012BU)
#define USB_DEVICE_VIDEO_SET_CUR_PU_WHITE_BALANCE_COMPONENT_CON-

TROL (0x012CU)
#define USB_DEVICE_VIDEO_SET_CUR_PU_WHITE_BALANCE_COMPONENT_AUT-

O_CONTROL (0x012DU)
#define USB_DEVICE_VIDEO_SET_CUR_PU_DIGITAL_MULTIPLIER_CONTRO-

L (0x012EU)
#define USB_DEVICE_VIDEO_SET_CUR_PU_DIGITAL_MULTIPLIER_LIMIT_CONT-

ROL (0x012FU)

#define USB_DEVICE_VIDEO_SET_CUR_PU_HUE_AUTO_CONTROL (0x0130U)

#define USB_DEVICE_VIDEO_SET_CUR_CT_SCANNING_MODE_CONTROL (0x0141-
U)

#define USB_DEVICE_VIDEO_SET_CUR_CT_AE_MODE_CONTROL (0x0142U)

#define USB_DEVICE_VIDEO_SET_CUR_CT_AE_PRIORITY_CONTROL (0x0143U)
#define USB_DEVICE_VIDEO_SET_CUR_CT_EXPOSURE_TIME_ABSOLUTE_CONTR-

OL (0x0144U)
#define USB_DEVICE_VIDEO_SET_CUR_CT_EXPOSURE_TIME_RELATIVE_CONTR-

OL (0x0145U)

#define USB_DEVICE_VIDEO_SET _CUR_CT_FOCUS_ABSOLUTE_CONTROL (0x0146-
U)

#define USB_DEVICE_VIDEO_SET_CUR_CT_FOCUS_RELATIVE_CONTROL (0x0147-
U)

#define USB_DEVICE_VIDEO_SET_CUR_CT_FOCUS_AUTO_CONTROL (0x0148U)
#define USB_DEVICE_VIDEO SET_CUR_CT_IRIS_ ABSOLUTE_CONTROL (0x0149U)
#define USB_DEVICE_VIDEO_SET_CUR_CT_IRIS_RELATIVE_CONTROL (0x014AU)
#define USB_DEVICE_VIDEO_SET_CUR_CT_ZOOM_ABSOLUTE_CONTROL (0x014B-
U)

#define USB_DEVICE_VIDEO_SET_CUR_CT_ZOOM_RELATIVE_CONTROL (0x014C-
U)

#define USB_DEVICE_VIDEO_SET CUR_CT_PANTILT ABSOLUTE_CONTROL (0x014-
DU)

#define USB_DEVICE_VIDEO_SET CUR_CT_PANTILT RELATIVE_CONTROL (0x014-

EU)

#define USB_DEVICE_VIDEO_SET_CUR_CT_ROLL_ABSOLUTE_CONTROL (0x014FU)
#define USB_DEVICE_VIDEO_SET_CUR_CT_ROLL_RELATIVE_CONTROL (0x0150U)
#define USB_DEVICE_VIDEO_SET_CUR_CT_PRIVACY_CONTROL (0x0151U)

#define USB_DEVICE_VIDEO_SET_CUR_VS_PROBE_CONTROL (0x0161U)

-
USB VIDEO Class driver

#define USB_DEVICE_VIDEO_SET_CUR_VS_COMMIT_CONTROL (0x0162U)

#define USB_DEVICE_VIDEO_SET_CUR_VS_STILL_PROBE_CONTROL (0x0163U)
#define USB_DEVICE_VIDEO_SET_CUR_VS_STILL_COMMIT_CONTROL (0x0164U)
#define USB_DEVICE_VIDEO_SET_CUR_VS_STILL_IMAGE_TRIGGER_CONTRO-

L (0x0165U)
* #define USB_DEVICE_VIDEO_SET_CUR_VS_STREAM_ERROR_CODE_CONTRO-

L (0x0166U)

e #define USB_DEVICE_VIDEO_SET_CUR_VS_GENERATE_KEY_FRAME_CONTRO-
L (0x0167U0)

¢ #define USB_DEVICE_VIDEO_SET_CUR_VS_UPDATE_FRAME_SEGMENT_CONTRO-
L (0x0168U)

* #define USB_DEVICE_VIDEO_SET_CUR_VS_SYNCH_DELAY_CONTROL (0x0169U)

USB device video class APIs

* usb_status_t USB_DeviceVideoSend (class_handle_t handle, uint8_t ep, uint8_t xbuffer, uint32_t
length)

Sends data through a specified endpoint.
 usb_status_t USB_DeviceVideoRecv (class_handle_t handle, uint8_t ep, uint8_t xbuffer, uint32_t

length)
Receives data through a specified endpoint.

3.14.2 Data Structure Documentation

3.14.2.1 struct _usb_device_video_mjpeg_payload_header_struct

Data Fields

 uint8_t bHeaderLength

The payload header length.
e uint32_t dwPresentationTime

Presentation time stamp (PTS) field.
e uint8_t bSourceClockReference [6]

Source clock reference (SCR) field.
¢ uint8_t bmheaderInfo

The payload header bitmap field.
e uint8_t frameldentifier: 1U
Frame Identifier.
e uint8_t endOfFrame: 1U
End of Frame.
* uint8_t presentationTimeStamp: 1U
Presentation Time Stamp.
* uint8_t sourceClockReference: 1U

Source Clock Reference.
* uint8_t reserved: 1U

Reserved.
e uint8_t stilllmage: 1U

Still Image.

|
USB VIDEO Class driver

e uint8_t errorBit: 1U

Error Bit.
e uint8_t endOfHeader: 1U

End of Header.
e uint8_t FID: 1U

Frame Identifier.
e uint8_t EOI: 1U

End of Frame.
e uint8_t PTS: 1U

Presentation Time Stamp.

e uint8 t SCR: 1U

Source Clock Reference.

e uint8_t RES: 1U

Reserved.

e uint8_t STI: 1U

Still Image.
e uint8_t ERR: 1U

Error Bit.
e uint®_t EOH: 1U

End of Header.
3.14.2.1.0.30 Field Documentation
3.14.2.1.0.30.1 uint8_t usb_device_video_mjpeg_payload_header_struct_t::bHeaderLength
3.14.2.1.0.30.2 uint8_t usb_device_video_mjpeg_payload_header_struct_t::bmheaderinfo
3.14.2.1.0.30.3 uint8_t usb_device_video_mjpeg_payload_header_struct_t::frameldentifier
This bit toggles at each frame start boundary and stays constant for the rest of the frame.
3.14.2.1.0.30.4 uint8_t usb_device_video_mjpeg_payload_header_struct_t::endOfFrame

This bit indicates the end of a video frame and is set in the last video sample that belongs to a frame.

3.14.2.1.0.30.5 uint8_t usb_device video_mjpeg_payload_header_struct_t::presentationTime-
Stamp

This bit, when set, indicates the presence of a PTS field.

3.14.2.1.0.30.6 uint8_t usb_device_video_mjpeg_payload_header_struct_t::sourceClock-
Reference

This bit, when set, indicates the presence of a SCR field.

3.14.2.1.0.30.7 uint8_t usb_device_video_mjpeg_payload_header_struct_t::reserved

Set to 0.

-
USB VIDEO Class driver

3.14.2.1.0.30.8 uint8_t usb_device_video_mjpeg_payload_header_struct_t::stilllmage
This bit, when set, identifies a video sample that belongs to a still image.

3.14.2.1.0.30.9 uint8_t usb_device_video_mjpeg_payload_header_struct_t::errorBit

This bit, when set, indicates an error in the device streaming.

3.14.2.1.0.30.10 uint8_t usb_device_video_mjpeg_payload_header_struct_t::endOfHeader
This bit, when set, indicates the end of the BFH fields.

3.14.2.1.0.30.11 uint8_t usb_device_video_mjpeg_payload_header_struct_t::FID

This bit toggles at each frame start boundary and stays constant for the rest of the frame.
3.14.2.1.0.30.12 uint8_t usb_device_video_mjpeg_payload_header_struct_t::EOI

This bit indicates the end of a video frame and is set in the last video sample that belongs to a frame.
3.14.2.1.0.30.13 uint8_t usb_device_video_mjpeg_payload_header_struct_t::PTS

This bit, when set, indicates the presence of a PTS field.

3.14.2.1.0.30.14 uint8_t usb_device_video_mjpeg_payload_header_struct t::SCR

This bit, when set, indicates the presence of a SCR field.

3.14.2.1.0.30.15 uint8_t usb_device_video_mjpeg_payload_header_struct_t::RES

Set to 0.

3.14.2.1.0.30.16 uint8_t usb_device_video_mjpeg_payload_header_struct_t::STI

This bit, when set, identifies a video sample that belongs to a still image.

3.14.2.1.0.30.17 uint8_t usb_device_video_mjpeg_payload_header_struct_t::ERR

This bit, when set, indicates an error in the device streaming.

3.14.2.1.0.30.18 uint8_t usb_device_video_mjpeg_payload_header_struct_t::EOH

This bit, when set, indicates the end of the BFH fields.

|
USB VIDEO Class driver

3.14.2.1.0.30.19 uint32_t usb_device_video_mjpeg_payload_header_struct_t::dwPresentation-

Time

3.14.2.1.0.30.20 uint8_t usb_device_video_mjpeg_payload_header_struct_t::bSourceClock-

Reference[6]

3.14.2.2 struct _usb_device_video_probe_and_commit_controls_struct

Data Fields

uint8_t bFormatIndex
Video format index from a format descriptor.
uint8_t bFramelndex
Video frame index from a frame descriptor.
uint32_t dwFramelnterval
Frame interval in 100ns units.
uint16_t wKeyFrameRate
Key frame rate in key-frame per video-frame units.
uint16_t wPFrameRate
PFrame rate in PFrame/key frame units.
uint16_t wCompQuality
Compression quality control in abstract units OU (lowest) to 10000U (highest).
uint16_t wCompWindowSize
Window size for average bit rate control.
uint16_t wDelay
Internal video streaming interface latency in ms from video data capture to presentation on the USB.
uint32_t dwMaxVideoFrameSize
Maximum video frame or codec-specific segment size in bytes.
uint32_t dwMaxPayloadTransferSize
Specifies the maximum number of bytes that the device can transmit or receive in a single payload transfer.
uint32_t dwClockFrequency
The device clock frequency in Hz for the specified format.
uint8_t bmFramingInfo
Bit-field control supporting the following values: DO Frame ID, D1 EOF.
uint8_t bPrefered Version
The preferred payload format version supported by the host or device for the specified bFormatlndex value.
uint8_t bMinVersion
The minimum payload format version supported by the device for the specified bFormatindex value.
uint8_t bMax Version
The maximum payload format version supported by the device for the specified bFormatindex value.
uint8_t bmHint
Bit-field control indicating to the function what fields shall be kept fixed.
uint8_t dwFramelnterval: 1U
dwFramelnterval field.
uint8_t wKeyFrameRate: 1U
wKeyFrameRate field.
uint8_t wPFrameRate: 1U
wPFrameRate field.
uint8_t wCompQuality: 1U
wCompQuality field.
uint8_t wCompWindowSize: 1U

-
USB VIDEO Class driver

wCompWindowSize field.
e uint8_t reserved: 3U

Reserved field.

|
USB VIDEO Class driver

3.14.2.2.0.31

3.14.2.2.0.31.1

3.14.2.2.0.31.2

3.14.2.2.0.31.3

3.14.2.2.0.31.4

3.14.2.2.0.31.5

3.14.2.2.0.31.6

3.14.2.2.0.31.7

3.14.2.2.0.31.8

3.14.2.2.0.31.9

3.14.2.2.0.31.10

3.14.2.2.0.31.11

3.14.2.2.0.31.12

3.14.2.2.0.31.13

3.14.2.2.0.31.14

3.14.2.2.0.31.15

3.14.2.2.0.31.16

3.14.2.2.0.31.17

3.14.2.2.0.31.18

Field Documentation

uint8_t usb_device_video_probe_and_commit_controls_struct_t::
uint8_t usb_device_video_probe_and_commit_controls_struct_t::
uint8_t usb_device_video_probe_and_commit_controls_struct_t::
uint8_t usb_device_video_probe_and_commit_controls_struct_t::
uint8_t usb_device_video_probe_and_commit_controls_struct_t::

uint8_t usb_device_video_probe_and_commit_controls_struct_t::
Size

uint8_t usb_device_video_probe_and_commit_controls_struct_t::
uint8_t usb_device_video_probe_and_commit_controls_struct_t::

uint8_t usb_device_video_probe_and_commit_controls_struct_t::

bmHint
dwFramelnterval
wKeyFrameRate
wPFrameRate
wCompQuality

wCompWindow-

reserved
bFormatindex

bFramelndex

uint32_t usb_device_video_probe_and_commit_controls_struct_t::dwFrame-

Interval

uint16_t usb_device_video_probe_and_commit_controls_struct_t::wKeyFrame-

Rate

uint16_t usb_device_video_probe_and_commit_controls_struct_t::wPFrameRate

uint16_t usb_device_video_probe_and_commit_controls_struct_t::wComp-

Quality

uint16_t usb_device_video_probe_and_commit_controls_struct_t::wComp-

WindowSize

uint16_t usb_device_video_probe_and_commit_controls_struct_t::wDelay

uint32_t usb_device_video_probe_and_commit_controls_struct_t::dwMaxVideo-

FrameSize

uint32_t usb_device_video_probe_and_commit_controls_struct_t::dwMax-

PayloadTransferSize

uint32_t usb_device_video_probe_and_commit_controls_struct_t::dwClock-

Frequency

This specifies the units used for the time information fields in the Video Payload Headers in the data
stream.

-
USB VIDEO Class driver

3.14.2.2.0.31.19 uint8_t usb_device_video_probe_and_commit_controls_struct_t::bmFraminginfo

3.14.2.2.0.31.20 uint8_t usb_device_video_probe_and_commit_controls_struct_t::bPrefered-
Version

3.14.2.2.0.31.21 uint8_t usb_device_video_probe_and_commit_controls_struct_t::bMinVersion
3.14.2.2.0.31.22 uint8_t usb_device_video_probe_and_commit_controls_struct_t::bMaxVersion

3.14.2.3 struct _usb_device_video_still_probe_and_commit_controls_struct

Data Fields

e uint8_t bFormatIndex

Video format index from a format descriptor.
uint8_t bFramelndex

Video frame index from a frame descriptor.
uint8_t bCompressionlndex

Compression index from a frame descriptor.
uint32_t dwMaxVideoFrameSize

Maximum still image size in bytes.
uint32_t dwMaxPayloadTransferSize

Specifies the maximum number of bytes that the device can transmit or receive in a single payload transfer.

3.14.2.3.0.32 Field Documentation

3.14.2.3.0.32.1 uint8_t usb_device _video_still_probe_and_commit_controls_struct_t::bFormat-
Index

3.14.2.3.0.32.2 uint8_t usb_device _video_still_probe_and_commit_controls_struct_t::bFrame-
Index

3.14.2.3.0.32.3 uint8_t usb_device_video_still_probe_and_commit_controls_struct_t::b-
Compressionindex

3.14.2.3.0.32.4 uint32_t usb_device_video_still_ probe_and_commit_controls_struct_t::dwMax-
VideoFrameSize

3.14.2.3.0.32.5 uint32_t usb_device_video_still_probe_and_commit_controls_struct_t::dwMax-
PayloadTransferSize

3.14.2.4 struct usb_device_video_entity_struct_t

The structure is used to pass the video entity information filled by application. Such as entity id (unit or
terminal ID), entity type (unit or terminal type), and terminal type if the entity is a terminal.

|
USB VIDEO Class driver

3.14.2.5 struct usb _device video entities_struct t

The structure is used to pass the video entity informations filled by the application. The type of each entity
is the usb_device_video_entity_struct_t. The structure pointer is kept in the usb_device_interface_struct-
_ticlassSpecific, such as, if there are three entities(out terminal, camera terminal, and processing unit),
the value of the count field is 3U and the entity field saves the every entity information.

3.14.2.6 struct usb_device video struct_t

Data Fields

¢ usb_device_handle handle

The device handle.
* usb_device_class_config_struct_t * configStruct

The configuration of the class.
¢ usb_device_interface_struct_t * controllnterfaceHandle

Current control interface handle.
¢ usb_device_interface_struct_t * streamInterfaceHandle

Current stream interface handle.
* uint8_t configuration

Current configuration.
e uint8_t controllnterfaceNumber

The control interface number of the class.
e uint8_t controlAlternate

Current alternate setting of the control interface.
¢ uint8_t streamInterfaceNumber

The stream interface number of the class.
e uint8_t streamAlternate

Current alternate setting of the stream interface.
* uint8_t streamInPipeBusy

Stream IN pipe busy flag.
* uint8_t streamOutPipeBusy
Stream OUT pipe busy flag.
3.14.2.6.0.33 Field Documentation

3.14.2.6.0.33.1 usb_device_class_config_struct_tx usb_device_video_struct_t::configStruct

3.14.3 Enumeration Type Documentation

3.14.3.1 enum usb_device_video_event_t

Enumerator

kUSB_DeviceVideoEventStreamSendResponse Send data completed or cancelled in stream pipe.

kUSB_DeviceVideoEventStreamRecvResponse Data received or cancelled in stream pipe.

kUSB_DeviceVideoEventControlSendResponse Send data completed or cancelled etc in video con-
trol pipe.

-
USB VIDEO Class driver

kUSB_DeviceVideoEventClassRequestBuffer Get buffer to save the data of the video class-specific

request.

3.14.4 Function Documentation

3.14.4.1 usb_status_t USB_DeviceVideolnit (uint8_t controllerid, usb-
_device_class_config_struct_t x config, class_handle_t x handle

)

This function is used to initialize the video class. This function can only be called by the USB_Device-
Classlnit.

Parameters
in controllerld | The controller ID of the USB IP. See the enumeration usb_controller_-
index_t.
in config | The class configuration information.
in handle | An parameter used to return pointer of the video class handle to the
caller.
Returns

A USB error code or kStatus_USB_ Success.

3.14.4.2 usb_status_t USB_DeviceVideoDeinit (class_handle_t handle)

The function deinitializes the device video class. This function can only be called by the USB_Device-
ClassDeinit.

Parameters
in handle | The video class handle received from usb_device_class_config_struct_-
t::classHandle.
Returns

A USB error code or kStatus_USB_Success.

3.14.4.3 usb_status_t USB_DeviceVideoEvent (void x handle, uint32_t event, void x
param)

This function handles the event passed to the video class. This function can only be called by the USB_-
DeviceClassEvent.

USB VIDEO Class driver
Parameters
in handle | The video class handle received from the usb_device_class_config_-
struct_t::classHandle.
in event | The event codes. See the enumeration usb_device class_event_t.
in, out param | The parameter type is determined by the event code.
Returns

A USB error code or kStatus_ USB_ Success.

Return values

kStatus_USB_Success | Free device handle successfully.

kStatus_USB_Invalid- | The device handle is not found.
Parameter

kStatus_USB_Invalid- | The request is invalid and the control pipe is stalled by the caller.
Request

3.14.4.4 usb_status_t USB_DeviceVideoSend (class_handle_t handle, uint8_t ep, uint8_t
x buffer, uint32_t length)

The function is used to send data through a specified endpoint. The function calls USB_DeviceSend-
Request internally.

Parameters
in handle | The video class handle received from usb_device_class_config_struct_-
t::classHandle.
in ep | Endpoint index.
in buffer | The memory address to hold the data need to be sent.
in length | The data length to be sent.
Returns

A USB error code or kStatus_USB_Success.

Note

3.14.

USB VIDEO Class driver

The function can only be called in the same context.

The return value indicates whether the sending request is successful or not. The transfer done is no-
tified by USB_DeviceVideoStreamIn or USB_DeviceVideoControlln. Currently, only one transfer
request can be supported for a specific endpoint. If there is a specific requirement to support multiple
transfer requests for a specific endpoint, the application should implement a queue in the application
level. The subsequent transfer can begin only when the previous transfer is done (a notification is
received through the endpoint callback).

4.5 usb_status_t USB_DeviceVideoRecv (class_handle_t handle, uint8_t ep, uint8_t
x buffer, uint32_t length)

The function is used to receive data through a specified endpoint. The function calls the USB_Device-
RecvRequest internally.

Parameters
in handle | The video class handle got from usb_device_class_config_struct_t-
::classHandle.
in ep | Endpoint index.
in buffer | The memory address to save the received data.
in length | The data length want to be received.
Returns

Note

A USB error code or kStatus_USB_ Success.

The function can only be called in the same context.

The return value indicates whether the receiving request is successful or not. The transfer done is
notified by USB_DeviceVideoStreamOut. Currently, only one transfer request can be supported for a
specific endpoint. If there is a specific requirement to support multiple transfer requests for a specific
endpoint. The application should implement a queue in the application level. The subsequent transfer
can begin only when the previous transfer is done (a notification is received through the endpoint
callback).

|
USB VIDEO Class driver

Chapter 4
USB Device driver

4.1 Overview

The USB device provides the device APIs to support the class driver and lite/non-lite application. It
includes the USB controller driver only which consist of the common controller driver and xHCI driver.

Modules

* USB Device Configuration
* USB Device Controller driver
* USB Device Spec Chapter 9 driver

Data Structures

* struct usb_device_endpoint_callback_message_struct_t

Endpoint callback message structure. More...
* struct usb_device_endpoint_callback_struct_t

Endpoint callback structure. More...
* struct usb_device_endpoint_init_struct_t

Endpoint initialization structure. More...
* struct usb_device_endpoint_status_struct_t

Endpoint status structure. More...

Macros
« #define USB_CONTROL_ENDPOINT (0U)

Control endpoint index.

#define USB_CONTROL_MAX_PACKET_SIZE (64U)

Control endpoint maxPacketSize.

#define USB_SETUP_PACKET_SIZE (8U)

The setup packet size of USB control transfer.
#define USB_ENDPOINT_NUMBER_MASK (0xO0FU)

USB endpoint mask.
#define USB_UNINITIALIZED_VAL_32 (OxFFFFFFFFU)

uninitialized value

#define USB_CANCELLED_TRANSFER_LENGTH (0OxFFFFFFFFU)

the endpoint callback length of cancelled transfer
#define USB_INVALID_TRANSFER_BUFFER (OxFFFFFFFEU)

invalid tranfer buffer addresss

Typedefs

* typedef usb_status_t(* usb_device_endpoint_callback_t)(usb_device_handle handle, usb_device_-
endpoint_callback_message_struct_t xmessage, void xcallbackParam)
Endpoint callback function typedef.

Overview

* typedef usb_status_t(x usb_device_callback_t)(usb_device_handle handle, uint32_t callbackEvent,
void xeventParam)
Device callback function typedef.

Enumerations

e enum usb_device_status_t {
kUSB_DeviceStatusTestMode = 1U,
kUSB_DeviceStatusSpeed,
kUSB_DeviceStatusOtg,
kUSB_DeviceStatusDevice,
kUSB_DeviceStatusEndpoint,
kUSB_DeviceStatusDeviceState,
kUSB_DeviceStatusAddress,
kUSB_DeviceStatusSynchFrame,
kUSB_DeviceStatusBus,
kUSB_DeviceStatusBusSuspend,
kUSB_DeviceStatusBusSleep,
kUSB_DeviceStatusBusResume,
kUSB_DeviceStatusRemote Wakeup,
kUSB_DeviceStatusBusSleepResume }

Defines Get/Set status Types.
e enum usb_device_state_t {

kUSB_DeviceStateConfigured = OU,
kUSB_DeviceState Address,
kUSB_DeviceStateDefault,
kUSB_DeviceStateAddressing,
kUSB_DeviceStateTestMode }

Defines USB 2.0 device state.
* enum usb_device_endpoint_status_t {

kUSB_DeviceEndpointStateldle = OU,
kUSB_DeviceEndpointStateStalled }

Defines endpoint state.
e enum usb_device_event_t {

Overview

kUSB_DeviceEventBusReset = 1U,
kUSB_DeviceEventSuspend,
kUSB_DeviceEventResume,
kUSB_DeviceEventSleeped,
kUSB_DeviceEventLPMResume,
kUSB_DeviceEventError,
kUSB_DeviceEventDetach,
kUSB_DeviceEventAttach,
kUSB_DeviceEventSetConfiguration,
kUSB_DeviceEventSetInterface,
kUSB_DeviceEventGetDeviceDescriptor,
kUSB_DeviceEventGetConfigurationDescriptor,
kUSB_DeviceEventGetStringDescriptor,
kUSB_DeviceEventGetHidDescriptor,
kUSB_DeviceEventGetHidReportDescriptor,
kUSB_DeviceEventGetHidPhysicalDescriptor,
kUSB_DeviceEventGetBOSDescriptor,
kUSB_DeviceEventGetDeviceQualifierDescriptor,
kUSB_DeviceEventVendorRequest,
kUSB_DeviceEventSetRemoteWakeup,
kUSB_DeviceEventGetConfiguration,
kUSB_DeviceEventGetInterface }

Available common EVENT types in device callback.

USB device APIs

e usb_status_t USB_Devicelnit (uint8_t controllerld, usb_device_callback_t deviceCallback, usb_-
device_handle xhandle)

Initializes the USB device stack.
e usb_status_t USB_DeviceRun (usb_device_handle handle)

Enables the device functionality.
* usb_status_t USB_DeviceStop (usb_device_handle handle)

Disables the device functionality.
e usb_status_t USB_DeviceDeinit (usb_device_handle handle)

De-initializes the device controller.
* usb_status_t USB_DeviceSendRequest (usb_device_handle handle, uint8_t endpointAddress,
uint8_t xbuffer, uint32_t length)

Sends data through a specified endpoint.
* usb_status_t USB_DeviceRecvRequest (usb_device_handle handle, uint8_t endpointAddress,

uint8_t xbuffer, uint32_t length)

Receives data through a specified endpoint.
* usb_status_t USB_DeviceCancel (usb_device_handle handle, uint8_t endpointAddress)

Cancels the pending transfer in a specified endpoint.
 usb_status_t USB_DevicelnitEndpoint (usb_device_handle handle, usb_device_endpoint_init_-

struct_t xeplnit, usb_device_endpoint_callback_struct_t xepCallback)

Initializes a specified endpoint.
* usb_status_t USB_DeviceDeinitEndpoint (usb_device_handle handle, uint8_t endpointAddress)

Data Structure Documentation

Deinitializes a specified endpoint.
* usb_status_t USB_DeviceStallEndpoint (usb_device_handle handle, uint8_t endpointAddress)

Stalls a specified endpoint.
* usb_status_t USB_DeviceUnstallEndpoint (usb_device_handle handle, uint8_t endpointAddress)

Un-stall a specified endpoint.
* usb_status_t USB_DeviceGetStatus (usb_device_handle handle, usb_device_status_t type, void

xparam)

Gets the status of the selected item.
» usb_status_t USB_DeviceSetStatus (usb_device_handle handle, usb_device_status_t type, void

xparam)

Sets the status of the selected item.
* void USB_DeviceKhcilsrFunction (void xdeviceHandle)

Device KHCI ISR function.
* void USB_DeviceEhcilsrFunction (void *deviceHandle)

Device EHCI ISR function.
* void USB_DeviceLpclp351 1IsrFunction (void xdeviceHandle)

Device LPC USB ISR function.
¢ void USB_DeviceGetVersion (uint32_t xversion)

Gets the device stack version function.
* usb_status_t USB_DeviceUpdateHwTick (usb_device_handle handle, uint64_t tick)

Update the hardware tick.

4.2 Data Structure Documentation
4.2.1 struct usb_device_endpoint_callback_message_struct_t

Data Fields

e uint8_t * buffer

Transferred buffer.
e uint32_t length

Transferred data length.
* uint8_t isSetup

Is in a setup phase.

4.2.2 struct usb_device_endpoint_callback_struct_t

Data Fields

* usb_device_endpoint_callback_t callbackFn

Endpoint callback function.
* void * callbackParam

Parameter for callback function.

Typedef Documentation

4.2.3 struct usb_device_endpoint_init_struct_t

Data Fields

e uintl6_t maxPacketSize
Endpoint maximum packet size.

uint8_t endpointAddress

Endpoint address.

uint8_t transferType

Endpoint transfer type.

uint8_t zIt
ZLT flag.

uint8_t interval

Endpoint interval.

4.2.4 struct usb_device_endpoint_status_struct_t

Data Fields

* uint8_t endpointAddress

Endpoint address.
* uint16_t endpointStatus

Endpoint status : idle or stalled.

4.3 Macro Definition Documentation
4.3.1 #define USB_SETUP_ PACKET_SIZE (8U)

4.4 Typedef Documentation

4.4.1 typedef usb_status_t(x usb_device_endpoint_callback_t)(usb_device_handle
handle, usb_device_endpoint_callback_message_struct_t xmessage, void
xcallbackParam)

This callback function is used to notify the upper layer what the transfer result is. This callback pointer is
passed when a specified endpoint is initialized by calling API USB_DevicelnitEndpoint.

Parameters

handle

The device handle. It equals to the value returned from USB_Devicelnit.

Enumeration Type Documentation

message | The result of a transfer, which includes transfer buffer, transfer length, and whether is
in a setup phase. phase for control pipe.
callbackParam | The parameter for this callback. It is same with usb_device_endpoint_callback_-
struct_t::callbackParam.
Returns

A USB error code or kStatus_ USB_Success.

4.4.2 typedef usb_status_t(x usb_device_callback_t)(usb_device_handle handle,
uint32_t callbackEvent, void xeventParam)

This callback function is used to notify the upper layer that the device status has changed. This callback
pointer is passed by calling API USB_Devicelnit.

Parameters
handle | The device handle. It equals the value returned from USB_Devicelnit.
callbackEvent | The callback event type. See enumeration usb_device_event_t.
eventParam | The event parameter for this callback. The parameter type is determined by the call-
back event.
Returns

A USB error code or kStatus_ USB_ Success.

4.5 Enumeration Type Documentation

4.5.1 enum usb_device_status_t

Enumerator

kUSB_DeviceStatusTestMode Test mode.
kUSB_DeviceStatusSpeed Current speed.
kUSB_DeviceStatusOtg OTG status.
kUSB_DeviceStatusDevice Device status.
kUSB_DeviceStatusEndpoint Endpoint state usb_device_endpoint_status_t.
kUSB_DeviceStatusDeviceState Device state.
kUSB_DeviceStatusAddress Device address.
kUSB_DeviceStatusSynchFrame Current frame.
kUSB_DeviceStatusBus Bus status.
kUSB_DeviceStatusBusSuspend Bus suspend.
kUSB_DeviceStatusBusSleep Bus suspend.

Enumeration Type Documentation

kUSB_DeviceStatusBusResume Bus resume.
kUSB_DeviceStatusRemoteWakeup Remote wakeup state.
kUSB_DeviceStatusBusSleepResume Bus resume.

4.5.2 enum usb_device_state t

Enumerator

kUSB_DeviceStateConfigured Device state, Configured.
kUSB_DeviceStateAddress Device state, Address.
kUSB_DeviceStateDefault Device state, Default.
kUSB_DeviceStateAddressing Device state, Address setting.
kUSB_DeviceStateTestMode Device state, Test mode.

4.5.3 enum usb_device_endpoint_status_t

Enumerator

kUSB_DeviceEndpointStateldle Endpoint state, idle.
kUSB_DeviceEndpointStateStalled Endpoint state, stalled.

4.5.4 enum usb_device event_t

Enumerator

kUSB_DeviceEventBusReset USB bus reset signal detected.

kUSB_DeviceEventSuspend USB bus suspend signal detected.

kUSB_DeviceEventResume USB bus resume signal detected. The resume signal is driven by itself
or a host

kUSB_DeviceEventSleeped USB bus LPM suspend signal detected.

kUSB_DeviceEventLPMResume USB bus LPM resume signal detected. The resume signal is
driven by itself or a host

kUSB_DeviceEventError An error is happened in the bus.

kUSB_DeviceEventDetach USB device is disconnected from a host.

kUSB_DeviceEventAttach USB device is connected to a host.

kUSB_DeviceEventSetConfiguration Set configuration.

kUSB_DeviceEventSetInterface Set interface.

kUSB_DeviceEventGetDeviceDescriptor Get device descriptor.

kUSB_DeviceEventGetConfigurationDescriptor Get configuration descriptor.

kUSB_DeviceEventGetStringDescriptor Get string descriptor.

kUSB_DeviceEventGetHidDescriptor Get HID descriptor.

Function Documentation

kUSB_DeviceEventGetHidReportDescriptor Get HID report descriptor.
kUSB_DeviceEventGetHidPhysicalDescriptor Get HID physical descriptor.
kUSB_DeviceEventGetBOSDescriptor Get configuration descriptor.
kUSB_DeviceEventGetDeviceQualifierDescriptor Get device qualifier descriptor.
kUSB_DeviceEventVendorRequest Vendor request.
kUSB_DeviceEventSetRemoteWakeup Enable or disable remote wakeup function.
kUSB_DeviceEventGetConfiguration Get current configuration index.
kUSB_DeviceEventGetInterface Get current interface alternate setting value.

4.6 Function Documentation

4.6.1 usb_status_t USB_Devicelnit (uint8_t controllerld, usb_device_callback_t
deviceCallback, usb_device_handle x handle)

This function initializes the USB device module specified by the controllerld.

Parameters
in controllerld | The controller ID of the USB IP. See the enumeration usb_controller_-
index_t.
in deviceCallback | Function pointer of the device callback.
out handle | It is an out parameter used to return the pointer of the device handle to
the caller.

Return values

kStatus_USB_Success | The device is initialized successfully.

kStatus_USB_Invalid- | The handle is a NULL pointer.
Handle

kStatus_USB_Busy | Cannot allocate a device handle.

kStatus_USB_Controller- | Cannot find the controller according to the controller id.
NotFound

kStatus_USB_Invalid- | The controller driver interfaces is invalid. There is an empty interface en-
ControllerInterface | tity.

kStatus_ USB_Error | The macro USB_DEVICE_CONFIG_ENDPOINTS is more than the IP’s
endpoint number. Or, the device has been initialized. Or, the mutex or
message queue is created failed.

4.6.2 usb_status_t USB_DeviceRun (usb_device_handle handle)

The function enables the device functionality, so that the device can be recognized by the host when the
device detects that it has been connected to a host.

Function Documentation

Parameters

in handle | The device handle got from USB_Devicelnit.

Return values

kStatus_USB_Success | The device is run successfully.

kStatus USB_Controller- | Cannot find the controller.
NotFound

kStatus_USB_Invalid- | The device handle is a NULL pointer. Or the controller handle is invalid.
Handle

4.6.3 usb_status_t USB_DeviceStop (usb_device_handle handle)

The function disables the device functionality. After this function called, even if the device is detached to
the host, it can’t work.

Parameters

in handle | The device handle received from USB_Devicelnit.

Return values

kStatus_USB_Success | The device is stopped successfully.

kStatus_USB_Controller- | Cannot find the controller.
NotFound

kStatus_USB_Invalid- | The device handle is a NULL pointer or the controller handle is invalid.
Handle

4.6.4 usb_status_t USB_DeviceDeinit (usb_device_handle handle)

The function de-initializes the device controller specified by the handle.

Parameters

in handle | The device handle got from USB_Devicelnit.

|
Function Documentation

Return values

kStatus_USB_Success | The device is stopped successfully.

kStatus_USB_Invalid- | The device handle is a NULL pointer or the controller handle is invalid.
Handle

4.6.5 usb_status_t USB_DeviceSendRequest (usb_device_handle handle, uint8_t
endpointAddress, uint8_t x buffer, uint32_t length)

The function is used to send data through a specified endpoint.

Parameters
in handle | The device handle got from USB_Devicelnit.
in endpoint- | Endpoint index.
Address
in buffer | The memory address to hold the data need to be sent. The function is
not reentrant.
in length | The data length need to be sent.

Return values

kStatus_USB_Success | The send request is sent successfully.

kStatus_USB_Invalid- | The handle is a NULL pointer. Or the controller handle is invalid.
Handle

kStatus_USB_Busy | Cannot allocate DTDS for current transfer in EHCI driver.

kStatus USB_Controller- | Cannot find the controller.
NotFound

kStatus_USB_Error | The device is doing reset.

Note

The return value indicates whether the sending request is successful or not. The transfer done is no-
tified by the corresponding callback function. Currently, only one transfer request can be supported
for one specific endpoint. If there is a specific requirement to support multiple transfer requests
for one specific endpoint, the application should implement a queue on the application level. The
subsequent transfer can begin only when the previous transfer is done (get notification through the
endpoint callback).

Function Documentation

4.6.6 usb_status_t USB_DeviceRecvRequest (usb_device_handle handle, uint8_t
endpointAddress, uint8_t x buffer, uint32_t length)

The function is used to receive data through a specified endpoint. The function is not reentrant.

|
Function Documentation

Parameters
in handle | The device handle got from USB_Devicelnit.
in endpoint- | Endpoint index.
Address
in buffer | The memory address to save the received data.
in length | The data length want to be received.

Return values

kStatus_USB_Success | The receive request is sent successfully.

kStatus_USB_Invalid- | The handle is a NULL pointer. Or the controller handle is invalid.
Handle

kStatus_USB_Busy | Cannot allocate DTDS for current transfer in EHCI driver.

kStatus_USB_Controller- | Cannot find the controller.
NotFound

kStatus_USB_Error | The device is doing reset.

Note

The return value indicates whether the receiving request is successful or not. The transfer done is no-
tified by the corresponding callback function. Currently, only one transfer request can be supported
for one specific endpoint. If there is a specific requirement to support multiple transfer requests
for one specific endpoint, the application should implement a queue on the application level. The
subsequent transfer can begin only when the previous transfer is done (get notification through the
endpoint callback).

4.6.7 usb_status_t USB_DeviceCancel (usb_device_handle handle, uint8_t
endpointAddress)

The function is used to cancel the pending transfer in a specified endpoint.

Parameters

in handle | The device handle got from USB_Devicelnit.

-
Function Documentation

in endpoint- | Endpoint address, bit7 is the direction of endpoint, 1U - IN, and OU -
Address | OUT.

Return values

kStatus_USB_Success | The transfer is cancelled.

kStatus_USB_Invalid- | The handle is a NULL pointer or the controller handle is invalid.
Handle

kStatus_USB_Controller- | Cannot find the controller.
NotFound

4.6.8 usb_status_t USB_DevicelnitEndpoint (usb_device_handle handle,
usb_device_endpoint_init_struct_t « eplnit, usb_device_endpoint_callback_-
struct_t x epCallback)

The function is used to initialize a specified endpoint. The corresponding endpoint callback is also initial-
ized.

Parameters
in handle | The device handle received from USB_Devicelnit.
in eplnit | Endpoint initialization structure. See the structure usb_device_-
endpoint_init_struct_t.
in epCallback | Endpoint callback structure. See the structure usb_device_endpoint_-
callback_struct_t.

Return values

kStatus_USB_Success | The endpoint is initialized successfully.

kStatus_USB_Invalid- | The handle is a NULL pointer. Or the controller handle is invalid.
Handle

kStatus_USB_Invalid- | The eplnit or epCallback is NULL pointer. Or the endpoint number is more
Parameter | than USB_DEVICE_CONFIG_ENDPOINTS.

kStatus_USB_Busy | The endpoint is busy in EHCI driver.

kStatus_USB_Controller- | Cannot find the controller.
NotFound

|
Function Documentation

4.6.9 usb_status_t USB_DeviceDeinitEndpoint (usb_device_handle handle, uint8_t
endpointAddress)

The function is used to deinitializes a specified endpoint.

-
Function Documentation

Parameters
in handle | The device handle got from USB_Devicelnit.
in endpoint- | Endpoint address, bit7 is the direction of endpoint, 1U - IN, and OU -
Address | OUT.

Return values

kStatus_USB_Success | The endpoint is de-initialized successfully.

kStatus_USB_Invalid- | The handle is a NULL pointer. Or the controller handle is invalid.
Handle

kStatus_USB_Invalid- | The endpoint number is more than USB_DEVICE_CONFIG_ENDPOIN-
Parameter | TS.

kStatus_USB_Busy | The endpoint is busy in EHCI driver.

kStatus_ USB_Controller- | Cannot find the controller.
NotFound

4.6.10 usb_status_t USB_DeviceStallEndpoint (usb_device_handle handle, uint8_t
endpointAddress)

The function is used to stall a specified endpoint.

Parameters
in handle | The device handle received from USB_Devicelnit.
in endpoint- | Endpoint address, bit7 is the direction of endpoint, 1U - IN, and OU -
Address | OUT.

Return values

kStatus_USB_Success | The endpoint is stalled successfully.

kStatus_USB_Invalid- | The handle is a NULL pointer. Or the controller handle is invalid.
Handle

kStatus_USB_Invalid- | The endpoint number is more than USB_DEVICE_CONFIG_ENDPOIN-
Parameter | TS.

|
Function Documentation

kStatus_USB_Controller- | Cannot find the controller.
NotFound

4.6.11 usb_status_t USB_DeviceUnstallEndpoint (usb_device_handle handle,
uint8_t endpointAddress)

The function is used to unstall a specified endpoint.

Parameters
in handle | The device handle received from USB_Devicelnit.
in endpoint- | Endpoint address, bit7 is the direction of endpoint, 1U - IN, and OU -
Address | OUT.

Return values

kStatus_USB_Success | The endpoint is un-stalled successfully.

kStatus_USB_Invalid- | The handle is a NULL pointer. Or the controller handle is invalid.
Handle

kStatus_USB_Invalid- | The endpoint number is more than USB_DEVICE_CONFIG_ENDPOIN-
Parameter | TS.

kStatus_USB_Controller- | Cannot find the controller.
NotFound

4.6.12 usb_status_t USB_DeviceGetStatus (usb_device_handle handle,
usb_device_status_t type, void x param)

The function is used to get the status of the selected item.

Parameters
in handle | The device handle got from USB_Devicelnit.
in type | The selected item. See the structure usb_device_status_t.
out param | The parameter type is determined by the selected item.

Return values

Function Documentation

kStatus_USB_Success

Get status successfully.

kStatus_USB_Invalid-
Handle

The handle is a NULL pointer. Or the controller handle is invalid.

kStatus_USB_Invalid-
Parameter

The parameter is NULL pointer.

kStatus_USB_Controller-
NotFound

Cannot find the controller.

kStatus_USB_Error

Unsupported type.

4.6.13 usb_status_t USB_DeviceSetStatus (usb_device_handle handle,
usb_device_status_t type, void x param)

The function is used to set the status of the selected item.

Parameters
in handle | The device handle got from USB_Devicelnit.
in type | The selected item. See the structure usb_device_status_t.
in param | The parameter type is determined by the selected item.

Return values

kStatus_USB_Success

Set status successfully.

kStatus_USB_Invalid-
Handle

The handle is a NULL pointer. Or the controller handle is invalid.

kStatus_USB_Controller-
NotFound

Cannot find the controller.

kStatus_USB_Error

Unsupported type or the parameter is NULL pointer.

4.6.14 void USB_DeviceKhcilsrFunction (void x deviceHandle)

The function is the KHCI interrupt service routine.

Function Documentation

Parameters

in deviceHandle | The device handle got from USB_Devicelnit.

4.6.15 void USB_DeviceEhcilsrFunction (void x deviceHandle)

The function is the EHCI interrupt service routine.

Parameters

in deviceHandle | The device handle got from USB_Devicelnit.

4.6.16 void USB_DeviceLpclp3511lIsrFunction (void *x deviceHandle)

The function is the LPC USB interrupt service routine.

Parameters

in deviceHandle | The device handle got from USB_Devicelnit.

4.6.17 void USB_DeviceGetVersion (uint32_t x version)

The function is used to get the device stack version.

Parameters

out version | The version structure pointer to keep the device stack version.

4.6.18 usb_status_t USB_DeviceUpdateHwTick (usb_device_handle handle,
uint64_t tick)

The function is used to update the hardware tick.

Parameters

in handle | The device handle got from USB_Devicelnit.

in tick | Current hardware tick(uint is ms).

USB Device Controller driver

4.7 USB Device Controller driver
4.7.1 Overview

The interface between KHCI/EHCI etc controller Driver and Common Controller driver.

Modules

¢ USB Device Controller EHCI driver
e USB Device Controller KHCI driver
e USB Device Controller LPC IP3511 driver

Data Structures

* struct usb_device_callback_message_struct_t

Device notification message structure. More...
e struct usb_device_controller_interface_struct_t

USB device controller interface structure. More...
¢ struct usb_device_struct_t

USB device status structure. More...

Macros

¢ #define usb_device_controller_handle usb_device_handle
Macro to define controller handle.

Typedefs

* typedef usb_status_t(x usb_device_controller_init_t)(uint8_t controllerld, usb_device_handle han-
dle, usb_device_controller_handle xcontrollerHandle)

USB device controller initialization function typedef.
* typedef usb_status_t(x usb_device_controller_deinit_t)(usb_device_controller_handle controller-

Handle)
USB device controller de-initialization function typedef.
* typedef usb_status_t(x usb_device_controller_send_t)(usb_device_controller_handle controller-
Handle, uint8_t endpointAddress, uint8_t xbuffer, uint32_t length)

USB device controller send data function typedef.
* typedef usb_status_t(x usb_device_controller_recv_t)(usb_device_controller_handle controller-

Handle, uint8_t endpointAddress, uint8_t +buffer, uint32_t length)

USB device controller receive data function typedef.
* typedef usb_status_t(x usb_device_controller_cancel_t)(usb_device_controller_handle controller-

Handle, uint8_t endpointAddress)

USB device controller cancel transfer function in a specified endpoint typedef.
* typedef usb_status_t(x usb_device_controller_control_t)(usb_device_controller_handle controller-

Handle, usb_device_control_type_t command, void xparam)

USB Device Controller driver

USB device controller control function typedef.

Enumerations

e enum usb_device_notification_t {
kUSB_DeviceNotifyBusReset = 0x10U,
kUSB_DeviceNotifySuspend,
kUSB_DeviceNotifyResume,
kUSB_DeviceNotifyLPMSleep,
kUSB_DeviceNotifyLPMResume,
kUSB_DeviceNotifyError,
kUSB_DeviceNotifyDetach,
kUSB_DeviceNotifyAttach }

Available notify types for device notification.
* enum usb_device_control_type_t {

kUSB_DeviceControlRun = 0U,
kUSB_DeviceControlStop,
kUSB_DeviceControlEndpointlnit,
kUSB_DeviceControlEndpointDeinit,
kUSB_DeviceControlEndpointStall,
kUSB_DeviceControlEndpointUnstall,
kUSB_DeviceControlGetDeviceStatus,
kUSB_DeviceControlGetEndpointStatus,
kUSB_DeviceControlSetDevice Address,
kUSB_DeviceControlGetSynchFrame,
kUSB_DeviceControlResume,
kUSB_DeviceControlSleepResume,
kUSB_DeviceControlSuspend,
kUSB_DeviceControlSleep,
kUSB_DeviceControlSetDefaultStatus,
kUSB_DeviceControlGetSpeed,
kUSB_DeviceControlGetOtgStatus,
kUSB_DeviceControlSetOtgStatus,
kUSB_DeviceControlSetTestMode,
kUSB_DeviceControlGetRemote WakeUp,
kUSB_DeviceControlPreSetDevice Address,
kUSB_DeviceControlUpdateHwTick }
Control type for controller.

Functions

* usb_status_t USB_DeviceNotificationTrigger (void xhandle, void *msg)
Notify the device that the controller status changed.

-
USB Device Controller driver

4.7.2 Data Structure Documentation

4.7.2.1 struct usb_device_callback_message_struct_t

Data Fields

e uint8_t * buffer

Transferred buffer.
uint32_t length

Transferred data length.
uint8_t code

Notification code.
uint8_t isSetup

Is in a setup phase.

4.7.2.2 struct usb_device_controller_interface_struct_t

Data Fields

¢ usb_device_controller_init_t devicelnit

Controller initialization.
e usb_device_controller_deinit_t deviceDeinit

Controller de-initialization.
e usb_device_controller_send_t deviceSend

Controller send data.
e usb_device_controller_recv_t deviceRecv

Controller receive data.
e usb_device_controller_cancel _t deviceCancel

Controller cancel transfer.
e usb_device_controller_control t deviceControl

Controller control.

4.7.2.3 struct usb_device struct t

Data Fields

¢ volatile uint64_t hwTick
Current hw tick(ms)
¢ usb_device_controller_handle controllerHandle

Controller handle.
* const

usb_device_controller_interface_struct_t % controllerInterface

Controller interface handle.
usb_device_callback_t deviceCallback

Device callback function pointer.

usb_device_endpoint_callback_struct_t epCallback [USB_DEVICE_CONFIG_ENDPOINTS< <
1U]

Endpoint callback function structure.

USB Device Controller driver

e uint8_t deviceAddress

Current device address.
e uint8_t controllerld

Controller ID.
e uint8_t state

Current device state.
* uint8_t remotewakeup

Remote wakeup is enabled or not.
* uint8_t isResetting

Is doing device reset or not.

4.7.3 Enumeration Type Documentation

4.7.3.1 enum usb_device_notification_t

Enumerator

kUSB_DeviceNotifyBusReset Reset signal detected.
kUSB_DeviceNotifySuspend Suspend signal detected.
kUSB_DeviceNotifyResume Resume signal detected.
kUSB_DeviceNotifyLPMSleep 1.PM signal detected.
kUSB_DeviceNotifyLPMResume Resume signal detected.
kUSB_DeviceNotifyError Errors happened in bus.
kUSB_DeviceNotifyDetach Device disconnected from a host.
kUSB_DeviceNotifyAttach Device connected to a host.

4.7.3.2 enum usb_device_control_type_t

Enumerator

kUSB_DeviceControlRun Enable the device functionality.

kUSB_DeviceControlStop Disable the device functionality.
kUSB_DeviceControlEndpointlInit Initialize a specified endpoint.
kUSB_DeviceControlEndpointDeinit De-initialize a specified endpoint.
kUSB_DeviceControlEndpointStall Stall a specified endpoint.
kUSB_DeviceControlEndpointUnstall Un-stall a specified endpoint.
kUSB_DeviceControlGetDeviceStatus Get device status.
kUSB_DeviceControlGetEndpointStatus Get endpoint status.
kUSB_DeviceControlSetDeviceAddress Set device address.
kUSB_DeviceControlGetSynchFrame Get current frame.
kUSB_DeviceControlResume Drive controller to generate a resume signal in USB bus.
kUSB_DeviceControlSleepResume Drive controller to generate a LPM resume signal in USB bus.
kUSB_DeviceControlSuspend Drive controller to enter into suspend mode.
kUSB_DeviceControlSleep Drive controller to enter into sleep mode.
kUSB_DeviceControlSetDefaultStatus Set controller to default status.

USB Device Controller driver

kUSB_DeviceControlGetSpeed Get current speed.

kUSB_DeviceControlGetOtgStatus Get OTG status.

kUSB_DeviceControlSetOtgStatus Set OTG status.

kUSB_DeviceControlSetTestMode Drive xCHI into test mode.
kUSB_DeviceControlGetRemoteWakeUp Get flag of LPM Remote Wake-up Enabled by USB host.

kUSB_DeviceControlPreSetDeviceAddress Pre set device address.
kUSB_DeviceControlUpdateHwTick update hardware tick

4.7.4 Function Documentation

4.7.4.1 usb_status_t USB_DeviceNotificationTrigger (void x handle, void x msg)

This function is used to notify the device that the controller status changed.

Parameters

handle | The device handle. It equals the value returned from USB_Devicelnit.

message | The device callback message handle.

Returns

A USB error code or kStatus_ USB_ Success.

USB Device Controller driver

4.7.5 USB Device Controller KHCI driver

4.7.5.1 Overview

Data Structures

* struct usb_device_khci_endpoint_state_struct_t

Endpoint state structure. More...
* struct usb_device_khci_state_struct_t

KHCI state structure. More...

Macros

* #define USB_DEVICE_MAX_FS_ISO_MAX_PACKET_SIZE (1023U)

The maximum value of ISO maximum packet size for FS in USB specification 2.0.
#define USB_DEVICE_MAX_FS_NONE_ISO_MAX_PACKET_SIZE (64U)

The maximum value of non-ISO maximum packet size for FS in USB specification 2.0.

#define USB_KHCI_BDT_SET_ADDRESS(bdt_base, ep, direction, odd, address)

Set BDT buffer address.
#define USB_KHCI_BDT_SET_CONTROL(bdt_base, ep, direction, odd, control)

Set BDT control fields.
#define USB_KHCI_BDT_GET_ADDRESS(bdt_base, ep, direction, odd)

Get BDT buffer address.
#define USB_KHCI_BDT_GET_CONTROL(bdt_base, ep, direction, odd)

Get BDT control fields.

USB device KHCI functions

e usb_status_t USB_DeviceKhcilnit (uint8_t controllerld, usb_device handle handle, usb_device_-
controller_handle xkhciHandle)

Initializes the USB device KHCI instance.
e usb_status_t USB_DeviceKhciDeinit (usb_device_controller_handle khciHandle)

Deinitializes the USB device KHCI instance.
 usb_status_t USB_DeviceKhciSend (usb_device_controller_handle khciHandle, uint8_t endpoint-

Address, uint8_t xbuffer, uint32_t length)

Sends data through a specified endpoint.
* usb_status_t USB_DeviceKhciRecv (usb_device_controller_handle khciHandle, uint8_t endpoint-

Address, uint8_t xbuffer, uint32_t length)

Receives data through a specified endpoint.
* usb_status_t USB_DeviceKhciCancel (usb_device_controller_handle khciHandle, uint8_t ep)

Cancels the pending transfer in a specified endpoint.
e usb_status_t USB_DeviceKhciControl (usb_device_controller_handle khciHandle, usb_device_-

control_type_t type, void xparam)
Controls the status of the selected item.

USB Device Controller driver
4.7.5.2 Data Structure Documentation
4.7.5.2.1 struct usb_device_khci_endpoint_state_struct_t

Data Fields

e uint8_t * transferBuffer

Address of buffer containing the data to be transmitted.
* uint32_t transferLength

Length of data to transmit.
* uint32_t transferDone

The data length has been transferred.
e uint32_t state

The state of the endpoint.
e uint32_t maxPacketSize: 10U

The maximum packet size of the endpoint.

e uint32_t stalled: 1U
The endpoint is stalled or not.

e uint32_t data0: 1U

The data toggle of the transaction.
e uint32_t bdtOdd: 1U

The BDT toggle of the endpoint.
e uint32_t dmaAlign: 1U

Whether the transferBuffer is DMA aligned or not.
e uint32_t transferring: 1U

The endpoint is transferring.

e uint32_tzlt: 1U
Zlt flag

4.7.5.2.1.1 Field Documentation
4.7.5.2.1.1.1 uint32_t usb_device_khci_endpoint_state_struct_t::transferLength

4.7.5.2.2 struct usb_device khci_state struct t

Data Fields

¢ usb_device_struct_t * deviceHandle

Device handle used to identify the device object belongs to.
uint32_t * bdt

BDT buffer address.
USB_Type * registerBase

The base address of the register.
uint8_t setupPacketBuffer [USB_SETUP_PACKET_SIZE «2]

The setup request buffer.
uint8_t * dmaAlignBuffer

This buffer is used to fix the transferBuffer or transferLength does not align to 4-bytes when the function

USB_DeviceKhciRecv is called.
usb_device_khci_endpoint_state_struct_t endpointState [USB_DEVICE_CONFIG_ENDPOINTS

*2]

Endpoint state structures.

USB Device Controller driver

uint8_t isDmaAlignBufferInusing
The dmaAlignBuffer is used or not.
uint8_t isResetting
Is doing device reset or not.
uint8_t controllerld
Controller ID.
uint8_t setupBufferIndex

A valid setup buffer flag.

4.7.5.2.2.1 Field Documentation
4.7.5.2.2.1.1 uint8_tx usb_device_khci_state_struct_t::dmaAlignBuffer

The macro USB_DEVICE_CONFIG_KHCI_DMA_ALIGN is used to enable or disable this feature. If
the feature is enabled, when the transferBuffer or transferLength does not align to 4-bytes, the transfer-
Length is not more than USB_DEVICE_CONFIG_KHCI_DMA_ALIGN_BUFFER_LENGTH, and the
flag isDmaAlignBufferInusing is zero, the dmaAlignBuffer is used to receive data and the flag isDma-
AlignBufferInusing is set to 1. When the transfer is done, the received data, kept in dmaAlignBuffer, is
copied to the transferBuffer, and the flag isDmaAlignBufferInusing is cleared.

4.7.5.3 Function Documentation

4.7.5.3.1 usb_status_t USB_DeviceKhcilnit (uint8_t controllerid, usb_device_handle handle,
usb_device_controller_handle « khciHandle)

This function initializes the USB device KHCI module specified by the controllerId.

Parameters
in controllerld | The controller ID of the USB IP. See the enumeration type usb_-
controller_index_t.
in handle | Pointer of the device handle used to identify the device object belongs
to.
out khciHandle | An out parameter used to return the pointer of the device KHCI handle
to the caller.
Returns

A USB error code or kStatus_ USB_ Success.

4.7.5.3.2 usb_status_t USB_DeviceKhciDeinit (usb_device_controller_handle khciHandle)

This function deinitializes the USB device KHCI module.

USB Device Controller driver

Parameters

in khciHandle | Pointer of the device KHCI handle.

Returns

A USB error code or kStatus_ USB_ Success.

4.7.5.3.3 usb_status_t USB_DeviceKhciSend (usb_device_controller_handle khciHandle, uint8_t
endpointAddress, uint8_t x buffer, uint32_t length)

This function sends data through a specified endpoint.

Parameters
in khciHandle | Pointer of the device KHCI handle.
in endpoint- | Endpoint index.
Address
in buffer | The memory address to hold the data need to be sent.
in length | The data length need to be sent.
Returns

A USB error code or kStatus_ USB_ Success.

Note

The return value indicates whether the sending request is successful or not. The transfer completion
is notified by the corresponding callback function. Currently, only one transfer request can be sup-
ported for a specific endpoint. If there is a specific requirement to support multiple transfer requests
for a specific endpoint, the application should implement a queue in the application level. The sub-
sequent transfer can begin only when the previous transfer is done (a notification is obtained through
the endpoint callback).

4.7.5.3.4 usb_status_t USB_DeviceKhciRecv (usb_device_controller_handle khciHandle, uint8_t
endpointAddress, uint8_t x buffer, uint32_t length)

This function receives data through a specified endpoint.

|
USB Device Controller driver

Parameters
in khciHandle | Pointer of the device KHCI handle.
in endpoint- | Endpoint index.
Address
in buffer | The memory address to save the received data.
in length | The data length to be received.
Returns

A USB error code or kStatus_USB_ Success.

Note

The return value indicates whether the receiving request is successful or not. The transfer com-
pletion is notified by the corresponding callback function. Currently, only one transfer request can
be supported for a specific endpoint. If there is a specific requirement to support multiple transfer
requests for a specific endpoint, the application should implement a queue in the application level.
The subsequent transfer can begin only when the previous transfer is done (a notification is obtained
through the endpoint callback).

4.7.5.3.5 usb_status_t USB_DeviceKhciCancel (usb_device_controller_handle khciHandle,
uint8_tep)

The function is used to cancel the pending transfer in a specified endpoint.

Parameters
in khciHandle | Pointer of the device KHCI handle.
in ep | Endpoint address, bit7 is the direction of endpoint, 1U - IN, abd OU -
OUT.
Returns

A USB error code or kStatus_ USB_ Success.

4.7.5.3.6 usb_status_t USB_DeviceKhciControl (usb_device_controller_handle khciHandle,
usb_device_control_type_t type, void x param)

The function is used to control the status of the selected item.

USB Device Controller driver

Parameters
in khciHandle | Pointer of the device KHCI handle.
in type | The selected item. See enumeration type usb_device_control_type_t.
in, out param | The parameter type is determined by the selected item.
Returns

A USB error code or kStatus_USB_Success.

|
USB Device Controller driver

4.7.6 USB Device Controller EHCI driver

4.7.6.1 Overview

Data Structures

e struct usb_device_ehci_state_struct_t
EHCI state structure. More...

Macros

* #define USB_DEVICE_MAX_HS_ISO_MAX_PACKET_SIZE (1024U)

The maximum value of 1SO type maximum packet size for HS in USB specification 2.0.

* #define USB_DEVICE_MAX_HS_INTERUPT_MAX_PACKET_SIZE (1024U)

The maximum value of interrupt type maximum packet size for HS in USB specification 2.0.

* #define USB_DEVICE_MAX_HS_BULK_MAX_PACKET_SIZE (512U)

The maximum value of bulk type maximum packet size for HS in USB specification 2.0.
 #define USB_DEVICE_MAX_HS_CONTROL_MAX_PACKET_SIZE (64U)

The maximum value of control type maximum packet size for HS in USB specification 2.0.

USB device EHCI functions

e usb_status_t USB_DeviceEhcilnit (uint8_t controllerld, usb_device_handle handle, usb_device_-
controller_handle xehciHandle)

Initializes the USB device EHCI instance.
e usb_status_t USB_DeviceEhciDeinit (usb_device_controller_handle ehciHandle)

Deinitializes the USB device EHCI instance.
* usb_status_t USB_DeviceEhciSend (usb_device_controller_handle ehciHandle, uint8_t endpoint-

Address, uint8_t xbuffer, uint32_t length)

Sends data through a specified endpoint.
* usb_status_t USB_DeviceEhciRecv (usb_device_controller_handle ehciHandle, uint8_t endpoint-

Address, uint8_t xbuffer, uint32_t length)

Receive data through a specified endpoint.
* usb_status_t USB_DeviceEhciCancel (usb_device_controller_handle ehciHandle, uint8_t ep)

Cancels the pending transfer in a specified endpoint.
e usb_status_t USB_DeviceEhciControl (usb_device_controller_handle ehciHandle, usb_device_-

control_type_t type, void xparam)
Controls the status of the selected item.

4.7.6.2 Data Structure Documentation
4.7.6.2.1 struct usb_device ehci_state struct t

Data Fields

* usb_device_struct_t * deviceHandle
Device handle used to identify the device object is belonged to.

USB Device Controller driver

* USBHS_Type * registerBase
The base address of the register.

* usb_device_ehci_gh_struct_t x gh
The QH structure base address.

e usb_device_ehci_dtd_struct_t * dtd

The DTD structure base address.
e usb_device_ehci_dtd_struct_t * dtdFree

The idle DTD list head.
e usb_device_ehci_dtd_struct_t x dtdHard [USB_DEVICE_CONFIG_ENDPOINTS %2]

The transferring DTD list head for each endpoint.
e usb_device_ehci_dtd_struct_t x dtdTail [USB_DEVICE_CONFIG_ENDPOINTS x*2]

The transferring DTD list tail for each endpoint.
e uint8_t dtdCount

The idle DTD node count.
* uint8_t endpointCount

The endpoint number of EHCI.
* uint8_t isResetting

Whether a PORT reset is occurring or not.
e uint8_t controllerld

Controller ID.
* uint8_t speed

Current speed of EHCI.
* uint8_t isSuspending
Is suspending of the PORT.

4.7.6.3 Function Documentation

4.7.6.3.1 usb_status_t USB_DeviceEhcilnit (uint8_t controllerid, usb_device_handle handle,
usb_device_controller_handle x ehciHandle)

This function initializes the USB device EHCI module specified by the controllerld.

Parameters
in controllerld | The controller ID of the USB IP. See the enumeration type usb_-
controller_index_t.
in handle | Pointer of the device handle used to identify the device object is be-
longed to.
out ehciHandle | An out parameter used to return the pointer of the device EHCI handle
to the caller.

|
USB Device Controller driver

Returns

A USB error code or kStatus_ USB_ Success.

4.7.6.3.2 usb_status_t USB_DeviceEhciDeinit (usb_device_controller_handle ehciHandle)

This function deinitializes the USB device EHCI module.

-
USB Device Controller driver

Parameters

in ehciHandle | Pointer of the device EHCI handle.

Returns

A USB error code or kStatus_ USB_ Success.

4.7.6.3.3 usb_status_t USB_DeviceEhciSend (usb_device_controller_handle ehciHandle, uint8_t
endpointAddress, uint8_t x buffer, uint32_t length)

This function sends data through a specified endpoint.

Parameters
in ehciHandle | Pointer of the device EHCI handle.
in endpoint- | Endpoint index.
Address
in buffer | The memory address to hold the data need to be sent.
in length | The data length to be sent.
Returns

A USB error code or kStatus_ USB_ Success.

Note

The return value means whether the sending request is successful or not. The transfer completion
is indicated by the corresponding callback function. Currently, only one transfer request can be
supported for a specific endpoint. If there is a specific requirement to support multiple transfer
requests for a specific endpoint, the application should implement a queue in the application level.
The subsequent transfer can begin only when the previous transfer is done (a notification is received
through the endpoint callback).

4.7.6.3.4 usb_status_t USB_DeviceEhciRecv (usb_device_controller_handle ehciHandle, uint8_t
endpointAddress, uint8_t x buffer, uint32_t length)

This function Receives data through a specified endpoint.

USB Device Controller driver

Parameters
in ehciHandle | Pointer of the device EHCI handle.
in endpoint- | Endpoint index.
Address
in buffer | The memory address to save the received data.
in length | The data length want to be received.
Returns

A USB error code or kStatus_USB_ Success.

Note

The return value just means if the receiving request is successful or not; the transfer done is notified
by the corresponding callback function. Currently, only one transfer request can be supported for
one specific endpoint. If there is a specific requirement to support multiple transfer requests for one
specific endpoint, the application should implement a queue in the application level. The subsequent
transfer could begin only when the previous transfer is done (get notification through the endpoint
callback).

4.7.6.3.5 usb_status_t USB_DeviceEhciCancel (usb_device_controller_handle ehciHandle,
uint8_tep)

The function is used to cancel the pending transfer in a specified endpoint.

Parameters

in ehciHandle | Pointer of the device EHCI handle.

in ep | Endpoint address, bit7 is the direction of endpoint, 1U - IN, OU - OUT.
Returns

A USB error code or kStatus_ USB_ Success.

4.7.6.3.6 usb_status_t USB_DeviceEhciControl (usb_device_controller_handle ehciHandle,
usb_device_control_type_t type, void x param)

The function is used to control the status of the selected item.

USB Device Controller driver

Parameters
in ehciHandle | Pointer of the device EHCI handle.
in type | The selected item. See enumeration type usb_device_control_type_t.
in, out param | The parameter type is determined by the selected item.
Returns

A USB error code or kStatus_USB_Success.

|
USB Device Controller driver

4.7.7 USB Device Controller LPC IP3511 driver

4.7.7.1 Overview

Data Structures

* struct usb_device_lpc3511ip_endpoint_state_struct_t

Endpoint state structure. More...
e struct usb_device_lpc3511ip_state_struct_t

LPC USB controller (IP3511) state structure. More...

Macros

* #define USB_DEVICE_IP3511_DOUBLE_BUFFER_ENABLE (1U)

Prime all the double endpoint buffer at the same time, if the transfer length is larger than max packet size.

#define USB_DEVICE_IP3511_USB_RAM_IN_USE_SIZE (3U x 1024U)

Use the macro to represent the USB RAM that has been used.
#define USB_DEVICE_IP3511_ENDPOINT_RESERVED_BUFFER_SIZE (5U % 1024U)

The reserved buffer size, the buffer is for the memory copy if the application transfer buffer is ((not 64

bytes alignment) || (not in the USB RAM) || (HS && OUT && not multiple of the maximum packet size))
#define USB_DEVICE_IP3511_BITS_FOR_RESERVED_BUFFER ((USB_DEVICE_IP3511_E-

NDPOINT_RESERVED_BUFFER_SIZE + 63U) / 64U)

Use one bit to represent one reserved 64 bytes to allocate the buffer by uint of 64 bytes.
#define USB_DEVICE_IP3511_RESERVED_BUFFER_FOR_COPY (USB_DEVICE_CONFIG-

_LPCIP3511FS + USB_DEVICE_CONFIG_LPCIP3511HS)
How many IPs support the reserved buffer.

USB device controller (IP3511) functions

 usb_status_t USB_DeviceLpc35111plnit (uint8_t controllerld, usb_device_handle handle, usb_-
device_controller_handle *controllerHandle)

Initializes the USB device controller instance.
* usb_status_t USB_DeviceLLpc3511IpDeinit (usb_device_controller_handle controllerHandle)

Deinitializes the USB device controller instance.
* usb_status_t USB_DeviceLLpc3511IpSend (usb_device_controller_handle controllerHandle, uint8_t

endpointAddress, uint8_t «buffer, uint32_t length)

Sends data through a specified endpoint.
* usb_status_t USB_DeviceLpc3511IpRecv (usb_device_controller_handle controllerHandle, uint8_t

endpointAddress, uint8_t «buffer, uint32_t length)

Receives data through a specified endpoint.
e usb_status_t USB_DeviceLpc3511IpCancel (usb_device_controller_handle controllerHandle,

uint8_t ep)

Cancels the pending transfer in a specified endpoint.
* usb_status_t USB_DeviceLLpc3511IpControl (usb_device_controller_handle controllerHandle, usb-

_device_control_type_t type, void sparam)
Controls the status of the selected item.

-
USB Device Controller driver

4.7.7.2 Data Structure Documentation
4.7.7.2.1 struct usb_device_Ipc3511ip_endpoint_state_struct_t

Data Fields

e uint8_t * transferBuffer

Address of buffer containing the data to be transmitted.
* uint32_t transferLength

Length of data to transmit.
* uint32_t transferDone

The data length has been transferred.
 uint32_t transferPrimedLength

it may larger than transferLength, because the primed length may larger than the transaction length.
* uint8_t * epPacketBuffer

The max packet buffer for copying.
e uint32_t state

The state of the endpoint.
e uint32_t maxPacketSize: 12U

The maximum packet size of the endpoint.

e uint32_t stalled: 1U

The endpoint is stalled or not.
e uint32_t transferring: 1U

The endpoint is transferring.

e uint32_tzlt: 1U

zlt flag
* uint32_t epPacketCopyed: 1U

whether use the copy buffer
* uint32_t epControlDefault: Su

The EP command/status 26~30 bits.
* uint32_t doubleBufferBusy: 2U

How many buffers are primed, for control endpoint it is not used.

e uint32_t producerOdd: 1U

When priming one transaction, prime to this endpoint buffer.
e uint32_t consumerOdd: 1U

When transaction is done, read result from this endpoint buffer.
4.7.7.2.1.1 Field Documentation
4.7.7.21.1.1 uint32_t usb_device _Ipc3511ip_endpoint_state_struct_t::transferLength
4.7.7.2.1.1.2 uint32_t usb_device_lpc3511ip_endpoint_state struct_t::transferPrimedLength

4.7.7.2.2 struct usb_device_Ipc3511ip_state_struct t

Data Fields

e uint8_t * controlData

< control data buffer, must align with 64
* uint8_t * setupData

4 bytes for zero length transaction, must align with 64

USB Device Controller driver

usb_device_handle deviceHandle

(4 bytes) Device handle used to identify the device object belongs to
USB_LPC35111IP_Type * registerBase

(4 bytes) ip base address
¢ uint8_t controllerld

Controller ID.
uint8_t isResetting

Is doing device reset or not.
uint8_t deviceSpeed

some controller support the HS

4.7.7.2.2.1 Field Documentation
4.7.7.2.2.1.1 uint8_t« usb_device Ipc3511ip_state_struct_t::controlData

8 bytes’ setup data, must align with 64

4.7.7.3 Macro Definition Documentation

4.7.7.3.1 #define USB_DEVICE_IP3511_USB_RAM_IN_USE_SIZE (3U = 1024U)

The remaining USB RAM will be used by the controller driver. If application needs to allocate variables
into the USB RAM, please increase the macro or link may fail. Likewise, if requiring to assign more USB
RAM to the controller driver, please decrease the macro. When USB_DEVICE_IP3511HS_BULK_OU-
T_ONE_TIME_TRANSFER_SIZE_MAX is used, USB_DEVICE_IP3511_USB_RAM_IN_USE_SIZE
can be decreased within a reasonable range to use more USB RAM.

4.7.7.3.2 #define USB_DEVICE_IP3511_BITS_FOR_RESERVED_BUFFER ((USB._-
DEVICE_IP3511_ENDPOINT_RESERVED_BUFFER_SIZE + 63U) /
64U)

4.7.7.4 Function Documentation

4.7.7.4.1 usb_status_t USB_DeviceLpc3511lplnit (uint8_t controllerid, usb_device_handle
handle, usb_device_controller_handle « controllerHandle)

This function initializes the USB device controller module specified by the controllerId.

Parameters

in controllerld | The controller ID of the USB IP. See the enumeration type usb_-
controller_index_t.

-
USB Device Controller driver

in handle | Pointer of the device handle used to identify the device object belongs
to.
out controller- | An out parameter used to return the pointer of the device controller han-
Handle | dle to the caller.

Returns

A USB error code or kStatus_ USB_ Success.

4.7.7.4.2 usb_status_t USB_DeviceLpc3511lpDeinit (usb_device_controller_handle
controllerHandle)

This function deinitializes the USB device controller module.

Parameters
in controller- | Pointer of the device controller handle.
Handle
Returns

A USB error code or kStatus_ USB_ Success.

4.7.7.4.3 usb_status_t USB_DeviceLpc3511IpSend (usb_device_controller_handle
controllerHandle, uint8_t endpointAddress, uint8_t x buffer, uint32_t length)

This function sends data through a specified endpoint.

Parameters
in controller- | Pointer of the device controller handle.
Handle
in endpoint- | Endpoint index.
Address
in buffer | The memory address to hold the data need to be sent.
in length | The data length need to be sent.
Returns

A USB error code or kStatus_ USB_ Success.

|
USB Device Controller driver

Note

The return value indicates whether the sending request is successful or not. The transfer completion
is notified by the corresponding callback function. Currently, only one transfer request can be sup-
ported for a specific endpoint. If there is a specific requirement to support multiple transfer requests
for a specific endpoint, the application should implement a queue in the application level. The sub-
sequent transfer can begin only when the previous transfer is done (a notification is obtained through
the endpoint callback).

4.7.7.4.4 usb_status_t USB_DeviceLpc3511lpRecv (usb_device_controller_handle
controllerHandle, uint8_t endpointAddress, uint8_t x buffer, uint32_t length)

This function receives data through a specified endpoint.

Parameters
in controller- | Pointer of the device controller handle.
Handle
in endpoint- | Endpoint index.
Address
in buffer | The memory address to save the received data.
in length | The data length to be received.
Returns

A USB error code or kStatus_ USB_ Success.

Note

The return value indicates whether the receiving request is successful or not. The transfer com-
pletion is notified by the corresponding callback function. Currently, only one transfer request can
be supported for a specific endpoint. If there is a specific requirement to support multiple transfer
requests for a specific endpoint, the application should implement a queue in the application level.
The subsequent transfer can begin only when the previous transfer is done (a notification is obtained
through the endpoint callback).

4.7.7.4.5 usb_status_t USB_DeviceLpc3511lpCancel (usb_device_controller_handle
controllerHandle, uint8_t ep)

The function is used to cancel the pending transfer in a specified endpoint.

-
USB Device Controller driver

Parameters
in controller- | ointer of the device controller handle.
Handle
in ep | Endpoint address, bit7 is the direction of endpoint, 1U - IN, abd OU -
OUT.
Returns

A USB error code or kStatus_ USB_ Success.

4.7.7.4.6 usb_status_t USB_DeviceLpc3511lpControl (usb_device_controller_handle
controllerHandle, usb_device_control_type_t type, void x param)

The function is used to control the status of the selected item.

Parameters
in controller- | Pointer of the device controller handle.
Handle
in type | The selected item. Please refer to enumeration type usb_device_control-
_type_t.
in, out param | The parameter type is determined by the selected item.
Returns

A USB error code or kStatus_ USB_ Success.

.-
USB Device Spec Chapter 9 driver

4.8 USB Device Spec Chapter 9 driver
4.8.1 Overview

Macros

* #define USB_DEVICE_STATUS_SIZE (0x02U)

Defines USB device status size when the host request to get device status.

#define USB_INTERFACE_STATUS_SIZE (0x02U)

Defines USB device interface status size when the host request to get interface status.

#define USB_ENDPOINT_STATUS_SIZE (0x02U)

Defines USB device endpoint status size when the host request to get endpoint status.

#define USB_CONFIGURE_SIZE (0X01U)

Defines USB device configuration size when the host request to get current configuration.

#define USB_INTERFACE_SIZE (0X01U)

Defines USB device interface alternate setting size when the host request to get interface alternate setting.

#define USB_GET_STATUS_DEVICE_MASK (0x03U)

Defines USB device status mask.
#define USB_GET_STATUS_INTERFACE_MASK (0x03U)

Defines USB device interface status mask.

#define USB_GET_STATUS_ENDPOINT_MASK (0x03U)
Defines USB device endpoint status mask.

Enumerations

* enum usb_device_control_read_write_sequence_t {
kUSB_DeviceControlPipeSetupStage = 0U,
kUSB_DeviceControlPipeDataStage,
kUSB_DeviceControlPipeStatusStage }

Control read and write sequence.

Functions

* usb_status_t USB_DeviceControlPipelnit (usb_device_handle handle, void xparam)
Initializes the control pipes.

4.8.2 Enumeration Type Documentation

4.8.2.1 enum usb_device_control_read_write_sequence_t

Enumerator

kUSB_DeviceControlPipeSetupStage Setup stage.
kUSB_DeviceControlPipeDataStage Data stage.
kUSB_DeviceControlPipeStatusStage status stage

. _J
USB Device Spec Chapter 9 driver

4.8.3 Function Documentation

4.8.3.1 usb_status_t USB_DeviceControlPipelnit (usb_device_handle handle, void x
param)

The function is used to initialize the control pipes. This function should be called when event kUSB_-
DeviceEventBusReset is received.

.-
USB Device Spec Chapter 9 driver

Parameters
in handle | The device handle.
in param | The event parameter.
Returns

A USB error code or kStatus_ USB_ Success.

.
USB Device Configuration

4.9 USB Device Configuration
4.9.1 Overview

Macros

* #define USB_DEVICE_CONFIG_SELF_POWER (1U)

Whether device is self power.

#define USB_DEVICE_CONFIG_ENDPOINTS (4U)

How many endpoints are supported in the stack.
 #define USB_DEVICE_CONFIG_USE_TASK (0U)
Whether the device task is enabled.
 #define USB_DEVICE_CONFIG_MAX_MESSAGES (8U)
How many the notification message are supported when the device task is enabled.
 #define USB_DEVICE_CONFIG_USB20_TEST_MODE (0U)
Whether test mode enabled.
* #define USB_DEVICE_CONFIG_CV_TEST (0U)
Whether device CV test is enabled.
* #define USB_DEVICE_CONFIG_COMPLIANCE_TEST (0U)
Whether device compliance test is enabled.
 #define USB_DEVICE_CONFIG_KHCI_DMA_ALIGN_BUFFER_LENGTH (64U)
The MAX buffer length for the KHCI DMA workaround.
 #define USB_DEVICE_CONFIG_EHCI_MAX_DTD (16U)
How many the DTD are supported.
 #define USB_DEVICE_CONFIG_EHCI_ID_PIN_DETECT (0U)
Whether the EHCI ID pin detect feature enabled.
 #define USB_DEVICE_CONFIG_KEEP_ALIVE_MODE (0U)
Whether the keep alive feature enabled.
* #define USB_DEVICE_CONFIG_BUFFER_PROPERTY_CACHEABLE (0U)

Whether the transfer buffer is cache-enabled or not.

* #define USB_DEVICE_CONFIG_LOW_POWER_MODE (0U)

Whether the low power mode is enabled or not.

 #define USB_DEVICE_CONFIG_REMOTE_WAKEUP (0U)
Whether device remote wakeup supported.

 #define USB_DEVICE_CONFIG_LPM_L1 (0U)
Whether LPM is supported.

* #define USB_DEVICE_CONFIG_DETACH_ENABLE (0U)
Whether the device detached feature is enabled or not.

* #define USB_DEVICE_CONFIG_ERROR_HANDLING (0U)
Whether handle the USB bus error.

 #define USB_DEVICE_CONFIG_SOF_NOTIFICATIONS (0U)
Whether the SOF interrupt is enabled or not.

 #define USB_DEVICE_CONFIG_SELF_POWER (1U)

Whether device is self power.

* #define USB_DEVICE_CONFIG_ENDPOINTS (4U)

How many endpoints are supported in the stack.

* #define USB_DEVICE_CONFIG_USE_TASK (0U)
Whether the device task is enabled.

* #define USB_DEVICE_CONFIG_MAX_MESSAGES (8U)

How many the notification message are supported when the device task is enabled.

* #define USB_DEVICE_CONFIG_USB20_TEST_MODE (0U)

4
USB Device Configuration

Whether test mode enabled.
e #define USB_DEVICE_CONFIG_CV_TEST (0U)

Whether device CV test is enabled.
e #define USB_DEVICE_CONFIG_COMPLIANCE_TEST (0U)

Whether device compliance test is enabled.

* #define USB_DEVICE_CONFIG_KHCI_DMA_ALIGN_BUFFER_LENGTH (64U)

The MAX buffer length for the KHCI DMA workaround.
* #define USB_DEVICE_CONFIG_EHCI_MAX_DTD (16U)

How many the DTD are supported.
 #define USB_DEVICE_CONFIG_EHCI_ID_PIN_DETECT (0U)

Whether the EHCI ID pin detect feature enabled.
 #define USB_DEVICE_CONFIG_KEEP_ALIVE_MODE (0U)

Whether the keep alive feature enabled.
* #define USB_DEVICE_CONFIG_BUFFER_PROPERTY_CACHEABLE (0U)

Whether the transfer buffer is cache-enabled or not.

¢ #define USB_DEVICE_CONFIG_LOW_POWER_MODE (0U)

Whether the low power mode is enabled or not.

¢ #define USB_DEVICE_CONFIG_REMOTE_WAKEUP (0U)

Whether device remote wakeup supported.

* #define USB_DEVICE_CONFIG_LPM_L1 (0U)

Whether LPM is supported.
e #define USB_DEVICE_CONFIG_DETACH_ENABLE (0U)

Whether the device detached feature is enabled or not.

* #define USB_DEVICE_CONFIG_ERROR_HANDLING (0U)

Whether handle the USB bus error.
e #define USB_DEVICE_CONFIG_SOF_NOTIFICATIONS (0U)

Whether the SOF interrupt is enabled or not.
 #define USB_DEVICE_CONFIG_SELF_POWER (1U)

Whether device is self power.
* #define USB_DEVICE_CONFIG_ENDPOINTS (4U)

How many endpoints are supported in the stack.

* #define USB_DEVICE_CONFIG_USE_TASK (0U)

Whether the device task is enabled.
e #define USB_DEVICE_CONFIG_MAX_MESSAGES (8U)

How many the notification message are supported when the device task is enabled.

* #define USB_DEVICE_CONFIG_USB20_TEST_MODE (0U)

Whether test mode enabled.
e #define USB_DEVICE_CONFIG_CV_TEST (0U)

Whether device CV test is enabled.
¢ #define USB_DEVICE_CONFIG_COMPLIANCE_TEST (0U)

Whether device compliance test is enabled.

* #define USB_DEVICE_CONFIG_KHCI_DMA_ALIGN_BUFFER_LENGTH (64U)

The MAX buffer length for the KHCI DMA workaround.
 #define USB_DEVICE_CONFIG_EHCI_MAX_DTD (16U)

How many the DTD are supported.
 #define USB_DEVICE_CONFIG_EHCI_ID_PIN_DETECT (0U)

Whether the EHCI ID pin detect feature enabled.
 #define USB_DEVICE_CONFIG_KEEP_ALIVE_MODE (0U)

Whether the keep alive feature enabled.
* #define USB_DEVICE_CONFIG_BUFFER_PROPERTY_CACHEABLE (0U)

Whether the transfer buffer is cache-enabled or not.

.
USB Device Configuration

¢ #define USB_DEVICE_CONFIG_LOW_POWER_MODE (0U)

Whether the low power mode is enabled or not.

¢ #define USB_DEVICE_CONFIG_REMOTE_WAKEUP (0U)

Whether device remote wakeup supported.

¢ #define USB_DEVICE_CONFIG_LPM_L1 (0U)

Whether LPM is supported.
 #define USB_DEVICE_CONFIG_DETACH_ENABLE (0U)

Whether the device detached feature is enabled or not.
 #define USB_DEVICE_CONFIG_ERROR_HANDLING (0U)

Whether handle the USB bus error.
e #define USB_DEVICE_CONFIG_SOF_NOTIFICATIONS (0U)

Whether the SOF interrupt is enabled or not.
 #define USB_DEVICE_CONFIG_SELF_POWER (1U)

Whether device is self power.
* #define USB_DEVICE_CONFIG_ENDPOINTS (4U)

How many endpoints are supported in the stack.

* #define USB_DEVICE_CONFIG_USE_TASK (0U)

Whether the device task is enabled.
e #define USB_DEVICE_CONFIG_MAX_MESSAGES (8U)

How many the notification message are supported when the device task is enabled.

* #define USB_DEVICE_CONFIG_USB20_TEST_MODE (0U)

Whether test mode enabled.
e #define USB_DEVICE_CONFIG_CV_TEST (0U)

Whether device CV test is enabled.
e #define USB_DEVICE_CONFIG_COMPLIANCE_TEST (0U)

Whether device compliance test is enabled.

* #define USB_DEVICE_CONFIG_KHCI_DMA_ALIGN_BUFFER_LENGTH (64U)

The MAX buffer length for the KHCI DMA workaround.
* #define USB_DEVICE_CONFIG_EHCI_MAX_DTD (16U)

How many the DTD are supported.
 #define USB_DEVICE_CONFIG_EHCI_ID_PIN_DETECT (0U)

Whether the EHCI ID pin detect feature enabled.
 #define USB_DEVICE_CONFIG_KEEP_ALIVE_MODE (0U)

Whether the keep alive feature enabled.
* #define USB_DEVICE_CONFIG_BUFFER_PROPERTY_CACHEABLE (0U)

Whether the transfer buffer is cache-enabled or not.
 #define USB_DEVICE_CONFIG_LOW_POWER_MODE (0U)

Whether the low power mode is enabled or not.

* #define USB_DEVICE_CONFIG_REMOTE_WAKEUP (0U)

Whether device remote wakeup supported.

* #define USB_DEVICE_CONFIG_LPM_L1 (0U)

Whether LPM is supported.
 #define USB_DEVICE_CONFIG_DETACH_ENABLE (0U)

Whether the device detached feature is enabled or not.
 #define USB_DEVICE_CONFIG_ERROR_HANDLING (0U)

Whether handle the USB bus error.
e #define USB_DEVICE_CONFIG_SOF_NOTIFICATIONS (0U)

Whether the SOF interrupt is enabled or not.

4
USB Device Configuration

Hardware instance define

* #define USB_DEVICE_CONFIG_KHCI (0U)

KHCI instance count.

#define USB_DEVICE_CONFIG_EHCI (1U)

EHCI instance count.

#define USB_DEVICE_CONFIG_LPCIP3511FS (0U)

LPC USB IP3511 FS instance count.
#define USB_DEVICE_CONFIG_LPCIP3511HS (0U)

LPC USB IP3511 HS instance count.
#define USB_DEVICE_CONFIG_NUM (USB_DEVICE_CONFIG_KHCI + USB_DEVICE_CO-

NFIG_EHCI + USB_DEVICE_CONFIG_LPCIP3511FS + USB_DEVICE_CONFIG_LPCIP3511-
HS)

Device instance count, the sum of KHCI and EHCI instance counts.

class instance define

* #define USB_DEVICE_CONFIG_HID (0U)

HID instance count.

¢ #define USB_DEVICE_CONFIG_CDC_ACM (0U)

CDC ACM instance count.
e #define USB_DEVICE_CONFIG_CDC_RNDIS (0U)
e #define USB_DEVICE_CONFIG_MSC (0U)

MSC instance count.

* #define USB_DEVICE_CONFIG_AUDIO (0U)

Audio instance count.

* #define USB_DEVICE_CONFIG_PHDC (0U)

PHDC instance count.
¢ #define USB_DEVICE_CONFIG_VIDEO (0U)

Video instance count.

¢ #define USB_DEVICE_CONFIG_CCID (0U)

CCID instance count.

* #define USB_DEVICE_CONFIG_PRINTER (0U)

Printer instance count.

* #define USB_DEVICE_CONFIG_DFU (0U)

DFU instance count.

Hardware instance define

#define USB_DEVICE_CONFIG_KHCI (0U)

KHCI instance count.

#define USB_DEVICE_CONFIG_EHCI (0U)

EHCI instance count.

#define USB_DEVICE_CONFIG_LPCIP3511FS (1U)

LPC USB IP3511 FS instance count.
#define USB_DEVICE_CONFIG_LPCIP3511HS (0U)

LPC USB IP3511 HS instance count.

.
USB Device Configuration

* #define USB_DEVICE_CONFIG_NUM (USB_DEVICE_CONFIG_KHCI + USB_DEVICE_CO-
NFIG_EHCI + USB_DEVICE_CONFIG_LPCIP3511FS + USB_DEVICE_CONFIG_LPCIP3511-
HS)

Device instance count, the sum of KHCI and EHCI instance counts.

class instance define

* #define USB_DEVICE_CONFIG_HID (0U)

HID instance count.

* #define USB_DEVICE_CONFIG_CDC_ACM (0U)

CDC ACM instance count.
¢ #define USB_DEVICE_CONFIG_CDC_RNDIS (0U)
e #define USB_DEVICE_CONFIG_MSC (0U)

MSC instance count.

* #define USB_DEVICE_CONFIG_AUDIO (0U)

Audio instance count.

* #define USB_DEVICE_CONFIG_PHDC (0U)

PHDC instance count.

* #define USB_DEVICE_CONFIG_VIDEO (0U)

Video instance count.

* #define USB_DEVICE_CONFIG_CCID (0U)

CCID instance count.

* #define USB_DEVICE_CONFIG_PRINTER (0U)

Printer instance count.

* #define USB_DEVICE_CONFIG_DFU (0U)

DFU instance count.

Hardware instance define

¢ #define USB_DEVICE_CONFIG_KHCI (0U)

KHCI instance count.
#define USB_DEVICE_CONFIG_EHCI (0U)

EHCI instance count.

#define USB_DEVICE_CONFIG_LPCIP3511FS (0U)

LPC USB IP3511 FS instance count.
#define USB_DEVICE_CONFIG_LPCIP3511HS (1U)

LPC USB IP3511 HS instance count.
#define USB_DEVICE_CONFIG_NUM (USB_DEVICE_CONFIG_KHCI + USB_DEVICE_CO-

NFIG_EHCI + USB_DEVICE_CONFIG_LPCIP3511FS + USB_DEVICE_CONFIG_LPCIP3511-
HS)

Device instance count, the sum of KHCI and EHCI instance counts.

class instance define

* #define USB_DEVICE_CONFIG_HID (0U)

HID instance count.

* #define USB_DEVICE_CONFIG_CDC_ACM (0U)

4
USB Device Configuration

CDC ACM instance count.
 #define USB_DEVICE_CONFIG_CDC_RNDIS (0U)
e #define USB_DEVICE_CONFIG_MSC (0U)

MSC instance count.

* #define USB_DEVICE_CONFIG_AUDIO (0U)

Audio instance count.

* #define USB_DEVICE_CONFIG_PHDC (0U)

PHDC instance count.
e #define USB_DEVICE_CONFIG_VIDEO (0U)

Video instance count.

¢ #define USB_DEVICE_CONFIG_CCID (0U)

CCID instance count.

* #define USB_DEVICE_CONFIG_PRINTER (0U)

Printer instance count.

* #define USB_DEVICE_CONFIG_DFU (0U)

DFU instance count.

Hardware instance define

« #define USB_DEVICE_CONFIG_NUM (USB_DEVICE_CONFIG_KHCI + USB_DEVICE_CO-
NFIG_EHCI + USB_DEVICE_CONFIG_LPCIP3511FS + USB_DEVICE_CONFIG_LPCIP3511-
HS)

KHCI instance count.

class instance define

#define USB_DEVICE_CONFIG_HID (0U)

HID instance count.
e #define USB_DEVICE_CONFIG_CDC_ACM (0U)
CDC ACM instance count.
 #define USB_DEVICE_CONFIG_CDC_RNDIS (0U)
e #define USB_DEVICE_CONFIG_MSC (0U)

MSC instance count.

* #define USB_DEVICE_CONFIG_AUDIO (0U)

Audio instance count.

* #define USB_DEVICE_CONFIG_PHDC (0U)

PHDC instance count.
e #define USB_DEVICE_CONFIG_VIDEO (0U)

Video instance count.

¢ #define USB_DEVICE_CONFIG_CCID (0U)

CCID instance count.

* #define USB_DEVICE_CONFIG_PRINTER (0U)

Printer instance count.

* #define USB_DEVICE_CONFIG_DFU (0U)

DFU instance count.

.
USB Device Configuration

4.9.2 Macro Definition Documentation

4.9.2.1 #define USB_DEVICE_CONFIG_SELF_POWER (1U)

1U supported, OU not supported

4.9.2.2 #define USB_DEVICE_CONFIG_ENDPOINTS (4U)

4.9.2.3 #define USB_DEVICE_CONFIG_USE_TASK (0U)

4.9.2.4 #define USB_DEVICE_CONFIG_MAX_MESSAGES (8U)
4.9.2.5 #define USB_DEVICE_CONFIG_USB20_TEST MODE (0U)
4.9.2.6 #define USB_DEVICE_CONFIG_CV_TEST (0U)

4.9.2.7 #define USB_DEVICE_CONFIG_COMPLIANCE_TEST (0U)

If the macro is enabled, the test mode and CV test macroes will be set.

4.9.2.8 #define USB_DEVICE_CONFIG_KHCI_DMA_ALIGN_BUFFER_LENGTH (64U)
4.9.2.9 #define USB_DEVICE_CONFIG_EHCI_MAX_DTD (16U)

4.9.2.10 #define USB_DEVICE_CONFIG_EHCI_ID_PIN_DETECT (0U)

4.9.2.11 #define USB_DEVICE_CONFIG_KEEP_ALIVE_MODE (0U)

4.9.2.12 #define USB_DEVICE_CONFIG_BUFFER_PROPERTY_CACHEABLE (0U)
4.9.2.13 #define USB_DEVICE_CONFIG_LOW_POWER_MODE (0U)

4.9.2.14 #define USB_DEVICE_CONFIG_REMOTE_WAKEUP (0U)

1U supported, OU not supported

4.9.2.15 #define USB_DEVICE_CONFIG_LPM_L1 (0U)

1U supported, OU not supported

4
USB Device Configuration

4.9.2.16

4.9.2.17

4.9.2.18

4.9.2.19

#define USB_DEVICE_CONFIG_DETACH_ENABLE (0U)
#define USB_DEVICE_CONFIG_ERROR_HANDLING (0U)
#define USB_DEVICE_CONFIG_SOF_NOTIFICATIONS (0U)

#define USB_DEVICE_CONFIG_SELF_POWER (1U)

1U supported, OU not supported

4.9.2.20

4.9.2.21

4.9.2.22

4.9.2.23

4.9.2.24

4.9.2.25

#define USB_DEVICE_CONFIG_ENDPOINTS (4U)

#define USB_DEVICE_CONFIG_USE_TASK (0U)

#define USB_DEVICE_CONFIG_MAX_MESSAGES (8U)
#define USB_DEVICE_CONFIG_USB20_TEST_MODE (0U)
#define USB_DEVICE_CONFIG_CV_TEST (0U)

#define USB_DEVICE_CONFIG_COMPLIANCE_TEST (0U)

If the macro is enabled, the test mode and CV test macroes will be set.

4.9.2.26

4.9.2.27

4.9.2.28

4.9.2.29

4.9.2.30

4.9.2.31

4.9.2.32

#define USB_DEVICE_CONFIG_KHCI_DMA_ALIGN_BUFFER_LENGTH (64U)
#define USB_DEVICE_CONFIG_EHCI_MAX_DTD (16U)

#define USB_DEVICE_CONFIG_EHCI_ID_PIN_DETECT (0U)

#define USB_DEVICE_CONFIG_KEEP_ALIVE_MODE (0U)

#define USB_DEVICE_CONFIG_BUFFER_PROPERTY_CACHEABLE (0U)
#define USB_DEVICE_CONFIG_LOW_POWER_MODE (0U)

#define USB_DEVICE_CONFIG_REMOTE_WAKEUP (0U)

1U supported, OU not supported

4.9.2.33

#define USB_DEVICE_CONFIG_LPM_L1 (0U)

1U supported, OU not supported

4.9.2.34

4.9.2.35

4.9.2.36

4.9.2.37

USB Device Configuration
#define USB_DEVICE_CONFIG_DETACH_ENABLE (0U)
#define USB_DEVICE_CONFIG_ERROR_HANDLING (0U)
#define USB_DEVICE_CONFIG_SOF_NOTIFICATIONS (0U)

#define USB_DEVICE_CONFIG_SELF_POWER (1U)

1U supported, OU not supported

4.9.2.38

4.9.2.39

4.9.2.40

4.9.2.41

4.9.2.42

4.9.2.43

#define USB_DEVICE_CONFIG_ENDPOINTS (4U)

#define USB_DEVICE_CONFIG_USE_TASK (0U)

#define USB_DEVICE_CONFIG_MAX_MESSAGES (8U)
#define USB_DEVICE_CONFIG_USB20_TEST_MODE (0U)
#define USB_DEVICE_CONFIG_CV_TEST (0U)

#define USB_DEVICE_CONFIG_COMPLIANCE_TEST (0U)

If the macro is enabled, the test mode and CV test macroes will be set.

4.9.2.44

4.9.2.45

4.9.2.46

4.9.2.47

4.9.2.48

4.9.2.49

4.9.2.50

#define USB_DEVICE_CONFIG_KHCI_DMA_ALIGN_BUFFER_LENGTH (64U)
#define USB_DEVICE_CONFIG_EHCI_MAX_DTD (16U)

#define USB_DEVICE_CONFIG_EHCI_ID_PIN_DETECT (0U)

#define USB_DEVICE_CONFIG_KEEP_ALIVE_MODE (0U)

#define USB_DEVICE_CONFIG_BUFFER_PROPERTY_CACHEABLE (0U)
#define USB_DEVICE_CONFIG_LOW_POWER_MODE (0U)

#define USB_DEVICE_CONFIG_REMOTE_WAKEUP (0U)

1U supported, OU not supported

4.9.2.51

#define USB_DEVICE_CONFIG_LPM_L1 (0U)

1U supported, OU not supported

4
USB Device Configuration

4.9.2.52

4.9.2.53

4.9.2.54

4.9.2.55

#define USB_DEVICE_CONFIG_DETACH_ENABLE (0U)

#define USB_DEVICE_CONFIG_ERROR_HANDLING (0U)

#define USB_DEVICE_CONFIG_SOF_NOTIFICATIONS (0U)

#define USB_DEVICE_CONFIG_NUM (USB_DEVICE_CONFIG_KHCI +

USB_DEVICE_CONFIG_EHCI + USB_DEVICE_CONFIG_LPCIP3511FS +
USB_DEVICE_CONFIG_LPCIP3511HS)

EHCI instance count
LPC USB IP3511 FS instance count
LPC USB IP3511 HS instance count

Device instance count, the sum of KHCI and EHCI instance counts

4.9.2.56

#define USB_DEVICE_CONFIG_SELF_POWER (1U)

1U supported, OU not supported

4.9.2.57

4.9.2.58

4.9.2.59

4.9.2.60

4.9.2.61

4.9.2.62

#define USB_DEVICE_CONFIG_ENDPOINTS (4U)

#define USB_DEVICE_CONFIG_USE_TASK (0U)

#define USB_DEVICE_CONFIG_MAX_MESSAGES (8U)
#define USB_DEVICE_CONFIG_USB20_TEST_MODE (0U)
#define USB_DEVICE_CONFIG_CV_TEST (0U)

#define USB_DEVICE_CONFIG_COMPLIANCE_TEST (0U)

If the macro is enabled, the test mode and CV test macroes will be set.

4.9.2.63

4.9.2.64

4.9.2.65

4.9.2.66

4.9.2.67

4.9.2.68

4.9.2.69

USB Device Configuration
#define USB_DEVICE_CONFIG_KHCI_DMA_ALIGN_BUFFER_LENGTH (64U)
#define USB_DEVICE_CONFIG_EHCI_MAX_DTD (16U)
#define USB_DEVICE_CONFIG_EHCI_ID_PIN_DETECT (0U)
#define USB_DEVICE_CONFIG_KEEP_ALIVE_MODE (0U)
#define USB_DEVICE_CONFIG_BUFFER_PROPERTY_CACHEABLE (0U)
#define USB_DEVICE_CONFIG_LOW_POWER_MODE (0U)

#define USB_DEVICE_CONFIG_REMOTE_WAKEUP (0U)

1U supported, OU not supported

4.9.2.70

#define USB_DEVICE_CONFIG_LPM_L1 (0U)

1U supported, OU not supported

4.9.2.71

4.9.2.72

4.9.2.73

#define USB_DEVICE_CONFIG_DETACH_ENABLE (0U)

#define USB_DEVICE_CONFIG_ERROR_HANDLING (0U)

#define USB_DEVICE_CONFIG_SOF_NOTIFICATIONS (0U)

4
USB Device Configuration

Chapter 5
USB OS Adapter

Please reference to MCUXpresso SDK API Reference Manual.

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and
software implementers to use NXP products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document.

NXP makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does NXP
assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters
that may be provided in NXP data sheets and/or specifications can and
do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. NXP does
not convey any license under its patent rights nor the rights of others.
NXP sells products pursuant to standard terms and conditions of sale,
which can be found at the following address:
nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products
may be subject to unidentified vulnerabilities. Customers are
responsible for the design and operation of their applications and
products to reduce the effect of these vulnerabilities on customer’s
applications and products, and NXP accepts no liability for any
vulnerability that is discovered. Customers should implement
appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER
WORLD, Freescale, the Freescale logo, Kinetis, Processor Expert, and
Tower are trademarks of NXP B.V. All other product or service names
are the property of their respective owners. Arm, Cortex, Keil, Mbed,
Mbed Enabled, and Vision are trademarks or registered trademarks of
Arm Limited (or its subsidiaries) in the US and/or elsewhere. The
related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are
registered trademarks of Oracle and/or its affiliates. The Power
Architecture and Power.org word marks and the Power and Power.org
logos and related marks are trademarks and service marks licensed by
Power.org.

© 2018 NXP B.V.

	 Overview
	Introduction
	USB Device Callback Work Flow
	USB Device Class-Specific Request Work Flow

	 Definitions and structures
	Overview
	Data Structure Documentation
	struct usb_version_t

	Typedef Documentation
	usb_device_handle

	Enumeration Type Documentation
	usb_status_t
	usb_controller_index_t

	 USB Class driver
	Overview
	Data Structure Documentation
	struct usb_device_endpoint_struct_t
	struct usb_device_endpoint_list_t
	struct usb_device_interface_struct_t
	struct usb_device_interfaces_struct_t
	struct usb_device_interface_list_t
	struct usb_device_class_struct_t
	struct usb_device_class_config_struct_t
	struct usb_device_class_config_list_struct_t
	struct usb_device_control_request_struct_t
	struct usb_device_get_descriptor_common_struct_t
	struct usb_device_get_device_descriptor_struct_t
	struct usb_device_get_device_qualifier_descriptor_struct_t
	struct usb_device_get_configuration_descriptor_struct_t
	struct usb_device_get_bos_descriptor_struct_t
	struct usb_device_get_string_descriptor_struct_t
	struct usb_device_get_hid_descriptor_struct_t
	struct usb_device_get_hid_report_descriptor_struct_t
	struct usb_device_get_hid_physical_descriptor_struct_t
	union usb_device_get_descriptor_common_union_t
	struct usb_device_class_map_t
	struct usb_device_common_class_struct_t

	Enumeration Type Documentation
	usb_device_class_type_t
	usb_device_class_event_t

	Function Documentation
	USB_DeviceClassInit
	USB_DeviceClassDeinit
	USB_DeviceClassGetSpeed
	USB_DeviceClassEvent
	USB_DeviceClassCallback
	USB_DeviceClassGetDeviceHandle

	USB MSC Class driver
	Overview
	USB MSC driver
	USB MSC UFI driver

	USB CDC Class driver
	Overview
	USB CDC ACM Class driver
	USB CDC ECM Class driver
	USB CDC RNDIS driver

	USB DFU Class driver
	Overview
	Data Structure Documentation
	Enumeration Type Documentation
	Function Documentation

	USB AUDIO Class driver
	Overview
	Data Structure Documentation
	Macro Definition Documentation
	Enumeration Type Documentation
	Function Documentation

	USB MTP Class driver
	Overview
	Data Structure Documentation
	Enumeration Type Documentation
	Function Documentation

	USB CCID Class driver
	Overview
	Data Structure Documentation
	Macro Definition Documentation
	Enumeration Type Documentation
	Function Documentation

	USB HID Class driver
	Overview
	Data Structure Documentation
	Macro Definition Documentation
	Enumeration Type Documentation
	Function Documentation

	USB PHDC Class driver
	Overview
	Data Structure Documentation
	Enumeration Type Documentation
	Function Documentation

	USB PRINTER Class driver
	Overview
	Data Structure Documentation
	Enumeration Type Documentation
	Function Documentation

	USB VIDEO Class driver
	Overview
	Data Structure Documentation
	Enumeration Type Documentation
	Function Documentation

	 USB Device driver
	Overview
	Data Structure Documentation
	struct usb_device_endpoint_callback_message_struct_t
	struct usb_device_endpoint_callback_struct_t
	struct usb_device_endpoint_init_struct_t
	struct usb_device_endpoint_status_struct_t

	Macro Definition Documentation
	USB_SETUP_PACKET_SIZE

	Typedef Documentation
	usb_device_endpoint_callback_t
	usb_device_callback_t

	Enumeration Type Documentation
	usb_device_status_t
	usb_device_state_t
	usb_device_endpoint_status_t
	usb_device_event_t

	Function Documentation
	USB_DeviceInit
	USB_DeviceRun
	USB_DeviceStop
	USB_DeviceDeinit
	USB_DeviceSendRequest
	USB_DeviceRecvRequest
	USB_DeviceCancel
	USB_DeviceInitEndpoint
	USB_DeviceDeinitEndpoint
	USB_DeviceStallEndpoint
	USB_DeviceUnstallEndpoint
	USB_DeviceGetStatus
	USB_DeviceSetStatus
	USB_DeviceKhciIsrFunction
	USB_DeviceEhciIsrFunction
	USB_DeviceLpcIp3511IsrFunction
	USB_DeviceGetVersion
	USB_DeviceUpdateHwTick

	USB Device Controller driver
	Overview
	Data Structure Documentation
	Enumeration Type Documentation
	Function Documentation
	USB Device Controller KHCI driver
	USB Device Controller EHCI driver
	USB Device Controller LPC IP3511 driver

	USB Device Spec Chapter 9 driver
	Overview
	Enumeration Type Documentation
	Function Documentation

	USB Device Configuration
	Overview
	Macro Definition Documentation

	 USB OS Adapter

