- Nxa MCUXpresso SDK Documentation
Release 25.12.00-pvw1

NXP

Oct 20, 2025 -

Table of contents

1 Middleware 3
1.1 BOOU . .t e e e e e e e e e 3
1.1.1 MCUZXpresso SDK : mcuxsdk-middleware-mcuboot_opensource 3

1.1.2 MCUDOOt. . . . o e e e e 4

1.2 CONMECtiVILY v ittt e et e e e e e e e e e e e e e e e e 5
121 IWIP. . o e 5

1.3 el . oo e e e e 6
131 elQ . oot e e e e e 6

1.4 File System it e e e e e e e e e e e e e e e e e 34
141 FatFs o e e e e e e e e e e 34

1.5 Motor Control o e e e e e e e e 36
1.5.1 FreeMASTER e e 36

1.6 Multimedia oo e e e e 74
1.6.1 AudioVOICE . . . v v vt it e e e e e e e e e e e e e e e e 74

1.7 WIreless . . . o v e e e e e e e e e e e e 157
1.7.1 NXP Wireless Frameworkand Stacks 157

1.7.2 EdgeFastBluetooth 210

2 RTOS 287
2.1 FreeRTOS e e e e e e 287
2.1.1 FreeRTOSkernel e 287

2.1.2 FreeRTOS Arivers it it it it et et e 293

2.1.3 backoffalgorithm e 293

214 corehttpo e e e e 296

215 COTEJSOM . v v v v i e 298

21,6 coremqtt. e e e 301

217 corepkesll e e 304

2.1.8 freertos-plus-tCp o o i i e e 307

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

This documentation contains information specific to the evkmimxrt1064 board.

Table of contents 1

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

2 Table of contents

Chapter 1

Middleware

1.1 Boot

1.1.1 MCUXpresso SDK : mcuxsdk-middleware-mcuboot_opensource
Overview

This repository is a fork of MCUboot (https://github.com/mcu-tools/mcuboot) for MCUXpresso
SDK delivery and it contains the components officially provided in NXP MCUXpresso SDK. This
repository is part of the MCUXpresso SDK overall delivery which is composed of several sub-
repositories/projects. Navigate to the top/parent repository (mcuxsdk-manifests) for the com-
plete delivery of MCUXpresso SDK.

Documentation

Overall details can be reviewed here: MCUXpresso SDK Online Documentation

Visit MCUboot - Documentation to review details on the contents in this sub-repo.

Setup

Instructions on how to install the MCUXpresso SDK provided from GitHub via west manifest
Getting Started with SDK - Detailed Installation Instructions

Contribution

Contributions are not currently accepted. If the intended contribution is not related to NXP spe-
cific code, consider contributing directly to the upstream MCUboot project. Once this MCUboot
fork is synchronized with the upstream project, such contributions will end up here as well. If
the intended contribution is a bugfix or improvement for NXP porting layer or for code added
or modified by NXP, please open an issue or contact NXP support.

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://docs.mcuboot.com/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

NXP Fork

This fork of MCUboot contains specific modifications and enhancements for NXP MCUXpresso
SDK integration.

See changelog for details.

1.1.2 MCUboot

() sim [passing {) Mynewt |passing {) Espressif [passing

{) imgtool [passing

This is MCUboot version 2.2.0

MCUboot is a secure bootloader for 32-bits microcontrollers. It defines a common infrastructure
for the bootloader and the system flash layout on microcontroller systems, and provides a secure
bootloader that enables easy software upgrade.

MCUboot is not dependent on any specific operating system and hardware and relies on hard-
ware porting layers from the operating system it works with. Currently, MCUboot works with
the following operating systems and SoCs:

* Zephyr

* Apache Mynewt
* Apache NuttX

* RIOT

* Mbed OS

» Espressif

* Cypress/Infineon

RIOT is supported only as a boot target. We will accept any new port contributed by the commu-
nity once it is good enough.

MCUboot How-tos

See the following pages for instructions on using MCUboot with different operating systems and
SoCs:

* Zephyr

* Apache Mynewt
* Apache NuttX

* RIOT

* Mbed OS

» Espressif

* Cypress/Infineon

There are also instructions for the Simulator.

4 Chapter 1. Middleware

https://github.com/mcu-tools/mcuboot/actions?query=workflow:Sim
https://github.com/mcu-tools/mcuboot/actions?query=workflow:Mynewt
https://github.com/mcu-tools/mcuboot/actions?query=workflow:Espressif
https://github.com/mcu-tools/mcuboot/actions?query=workflow:imgtool
https://www.zephyrproject.org/
https://mynewt.apache.org/
https://nuttx.apache.org/
https://www.riot-os.org/
https://os.mbed.com/
https://www.espressif.com/
https://www.cypress.com/

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Roadmap

The issues being planned and worked on are tracked using GitHub issues. To give your input,
visit MCUboot GitHub Issues.

Source files

You can find additional documentation on the bootloader in the source files. For more informa-
tion, use the following links:

* boot/bootutil - The core of the bootloader itself.

boot/boot_serial - Support for serial upgrade within the bootloader itself.

boot/zephyr - Port of the bootloader to Zephyr.

* boot/mynewt - Bootloader application for Apache Mynewt.

* boot/nuttx - Bootloader application and port of MCUboot interfaces for Apache NuttX.
* boot/mbed - Port of the bootloader to Mbed OS.

* boot/espressif - Bootloader application and MCUboot port for Espressif SoCs.

* boot/cypress - Bootloader application and MCUboot port for Cypress/Infineon SoCs.

* imgtool - A tool to securely sign firmware images for booting by MCUboot.

* sim - A bootloader simulator for testing and regression.

Joining the project

Developers are welcome!
Use the following links to join or see more about the project:
* Our developer mailing list

* Our Discord channel Get your invite

1.2 Connectivity

1.2.1 1wIP

This is the NXP fork of the IwIP networking stack.
» For details about changes and additions made by NXP, see CHANGELOG.
* For details about the NXP porting layer, see The NXP IwIP Port.

» For usage and API of IwIP, use official documentation at http://www.nongnu.org/lwip/.

The NXP IwIP Port

Below is description of possible settings of the port layer and an overview of a few helper func-
tions.

The best place for redefinition of any mentioned macro is Iwipopts.h.

The declaration of every mentioned function is in ethernetif.h. Please check the doxygen com-
ments of those functions before.

1.2. Connectivity)

https://github.com/mcu-tools/mcuboot/issues
https://github.com/mcu-tools/mcuboot/tree/main/boot/bootutil
https://github.com/mcu-tools/mcuboot/tree/main/boot/boot_serial
https://github.com/mcu-tools/mcuboot/tree/main/boot/zephyr
https://github.com/mcu-tools/mcuboot/tree/main/boot/mynewt
https://github.com/mcu-tools/mcuboot/tree/main/boot/nuttx
https://github.com/mcu-tools/mcuboot/tree/main/boot/mbed
https://github.com/mcu-tools/mcuboot/tree/main/boot/espressif
https://github.com/mcu-tools/mcuboot/tree/main/boot/cypress
https://github.com/mcu-tools/mcuboot/tree/main/scripts/imgtool.py
https://github.com/mcu-tools/mcuboot/tree/main/sim
https://groups.io/g/MCUBoot
https://discord.com/channels/1106321706588577904/1106322802308550716
https://discord.com/invite/5PpXhvda5p
https://savannah.nongnu.org/projects/lwip/
http://www.nongnu.org/lwip/

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Link state Physical link state (up/down) and its speed and duplex must be read out from PHY
over MDIO bus. Especially link information is useful for IwIP stack so it can for example send
DHCP discovery immediately when a link becomes up.

To simplify this port layer offers a function ethernetif probe_ link() which reads those data from
PHY and forwards them into IwIP stack.

In almost all examples this function is called every ETH_LINK_ POLLING_ INTERVAL_MS
(1500ms) by a function probe_ link_cyclic().

By setting ETH LINK_ POLLING INTERVAL_MS to 0 polling will be disabled. On FreeRTOS,
probe_link_ cyclic() will be then called on an interrupt generated by PHY. GPIO port and pin for
the interrupt line must be set in the ethernetifConfig struct passed to ethernetif init(). On bare
metal interrupts are not supported right now.

Rx task To improve the reaction time of the app, reception of packets is done in a dedicated
task. The rx task stack size can be set by ETH_RX TASK STACK_ SIZE macro, its priority by
ETH_RX_TASK_PRIO.

If you want to save memory you can set reception to be done in an interrupt by setting
ETH DO_RX IN_SEPARATE TASK macro to 0.

Disabling Rx interrupt when out of buffers If ETH_ DISABLE_RX_INT WHEN_OUT_OF_BUFFERS
is set to 1, then when the port gets out of Rx buffers, Rx enet interrupt will be disabled for a
particular controller. Everytime Rx buffer is freed, Rx interrupt will be enabled.

This prevents your app from never getting out of Rx interrupt when the network is flooded with
traffic.

ETH_DISABLE_RX_INT_WHEN_OUT_OF_BUFFERS is by default turned on, on FreeRTOS
and off on bare metal.

Limit the number of packets read out from the driver at once on bare metal. You may
define macro ETH._MAX_ RX_PKTS_ AT ONCE to limit the number of received packets read
out from the driver at once.

In case of heavy Rx traffic, lowering this number improves the realtime behaviour of an app.
Increasing improves Rx throughput.

Setting it to value < 1 or not defining means “no limit”.

Helper functions If your application needs to wait for the link to become up you can use one
of the following functions:

* ethernetif wait_ linkup()- Blocks until the link on the passed netif is not up.

* ethernetif_wait_linkup_ array() - Blocks until the link on at least one netif from the passed
list of netifs becomes up.

If your app needs to wait for the IPv4 address on a particular netif to become different than
“ANY” address (255.255.255.255) function ethernetif wait_ipv4_ valid() does this.

1.3 elQ

1.3.1 elQ

6 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

elQ TensorFlow Lite for Micro Library User Guide

* Overview
» TensorFlow Lite for Microcontrollers
* Build Status
— Official Builds
— Community Supported TFLM Examples
— Community Supported Kernels and Unit Tests

* Contributing

Getting Help

Additional Documentation
* RFCs

Overview TensorFlow Lite is an open source software library for running machine learning
models on mobile and embedded devices. For more information, see www.tensorflow.org/lite.

For memory constrained devices, the library contains TensorFlow Lite for Microcontrollers. For
more information, see www.tensorflow.org/lite/microcontrollers.

The MCUXpresso Software Development Kit (MCUXpresso SDK) provides a comprehensive soft-
ware package with a pre-integrated TensorFlow Lite for Microcontrollers based on version 25-
04-08 (from the 8th of April 2025 with commit). This document describes the steps required to
download and start using the library. Additionally, the document describes the steps required
to create an application for running pre-trained models.

Note: The document also assumes knowledge of machine learning frameworks for model train-
ing.

TensorFlow Lite for Microcontrollers TensorFlow Lite for Microcontrollers is a port of Ten-
sorFlow Lite designed to run machine learning models on DSPs, microcontrollers and other de-
vices with limited memory.

Additional Links:
» Tensorflow github repository

* TFLM at tensorflow.org

Build Status
» GitHub Status

Official Builds

Build Type Status

{) R - i
CI (Linux) _J Run-Cl passing

{") Sync from Upstream TF passing

Code Sync

1.3. elQ 7

http://www.tensorflow.org/lite
https://github.com/tensorflow/tflite-micro/commit/bc68d362d6f3ac93ce11d8712974d05b1d6a8305
https://github.com/tensorflow/tensorflow/
https://www.tensorflow.org/lite/microcontrollers
https://www.githubstatus.com/
https://github.com/tensorflow/tflite-micro/actions/workflows/run_ci.yml
https://github.com/tensorflow/tflite-micro/actions/workflows/sync.yml

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Community Supported TFLM Examples This table captures platforms that TFLM has been
ported to. Please see New Platform Support for additional documentation.

Platform Status

. I "no status Arduino examples tests [no status
Arduino

Coral Dev Board Micro TFLM + EdgeTPU Examples for Coral Dev Board Micro
Cl passing

Espressif ~ Systems Dev
Boards

Renesas Boards TFLM Examples for Renesas Boards
Silicon Labs Dev Kits TFLM Examples for Silicon Labs Dev Kits

r

Texas Instruments Dev
Boards

Community Supported Kernels and Unit Tests This is a list of targets that have optimized
kernel implementations and/or run the TFLM unit tests using software emulation or instruction
set simulators.

Build Type Status

i ol ce
Cortex-M Cortex-M Fpassing
Hexagon Run-Hexagon |passing
RISC-V RISC-V [passing
Xtensa

Generate Integration Tests

Generate Integration Test

Contributing See our contribution documentation.

Getting Help A Github issue should be the primary method of getting in touch with the Ten-
sorFlow Lite Micro (TFLM) team.

The following resources may also be useful:

1. SIG Micro email group and monthly meetings.

2. SIG Micro gitter chat room.

3. For questions that are not specific to TFLM, please consult the broader TensorFlow project,

e.g.:

* Create a topic on the TensorFlow Discourse forum
* Send an email to the TensorFlow Lite mailing list
* Create a TensorFlow issue

* Create a Model Optimization Toolkit issue

8 Chapter 1. Middleware

https://github.com/tensorflow/tflite-micro-arduino-examples/actions/workflows/ci.yml
https://github.com/antmicro/tensorflow-arduino-examples/actions/workflows/test_examples.yml
https://coral.ai/products/dev-board-micro
https://github.com/google-coral/coralmicro
https://github.com/espressif/tflite-micro-esp-examples/actions/workflows/ci.yml
https://github.com/renesas/tflite-micro-renesas
https://github.com/SiliconLabs/tflite-micro-efr32-examples
https://github.com/advaitjain/tflite-micro-sparkfun-edge-examples/actions/workflows/ci.yml
https://github.com/tensorflow/tflite-micro/actions/workflows/cortex_m.yml
https://github.com/tensorflow/tflite-micro/actions/workflows/run_hexagon.yml
https://github.com/tensorflow/tflite-micro/actions/workflows/riscv.yml
https://github.com/tensorflow/tflite-micro/actions/workflows/run_xtensa.yml
https://github.com/tensorflow/tflite-micro/actions/workflows/generate_integration_tests.yml
https://github.com/tensorflow/tflite-micro/issues/new/choose
https://groups.google.com/a/tensorflow.org/g/micro
http://doc/1YHq9rmhrOUdcZnrEnVCWvd87s2wQbq4z17HbeRl-DBc
https://gitter.im/tensorflow/sig-micro
https://discuss.tensorflow.org
https://groups.google.com/a/tensorflow.org/g/tflite
https://github.com/tensorflow/tensorflow/issues/new/choose
https://github.com/tensorflow/model-optimization

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Additional Documentation
* Continuous Integration
* Benchmarks
* Profiling
* Memory Management
* Logging
* Porting Reference Kernels from TfLite to TFLM

* Optimized Kernel Implementations

New Platform Support

Platform/IP support

— Arm IP support
* Software Emulation with Renode
* Software Emulation with QEMU
» Python Dev Guide
» Automatically Generated Files

* Python Interpreter Guide

RFCs
1. Pre-allocated tensors

2. TensorFlow Lite for Microcontrollers Port of 16x8 Quantized Operators

Deployment The eIQ TensorFlow Lite for Microcontrollers library is part of the eIQ machine
learning software package, which is an optional middleware component of MCUXpresso SDK.
The eIQ component is integrated into the MCUXpresso SDK Builder delivery system available on
mcuxpresso.nxp.com. To include eIQ machine learning into the MCUXpresso SDK package, the
elQ middleware component is selected in the software component selector on the SDK Builder
page when building a new package. See Figure 1.

1.3. eIQ 9

https://mcuxpresso.nxp.com

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

< [& mcuxpresso.nxp.com/en/builder

NXO MCUXpress K Builder

A SDK Dashboard SDK Builder

Generate a downloadable SDK archive for use with desktop MCUXpresso Tools.
GENERAL

Developer Environment Settings

I & Select Board Selections here will impact files and examples projects included in the 30K and Generated Projects

Q Explore Toolchain / IDE Host 0S

All toolchains ~ Windows -
ADMIMISTRATION

A Notifications Embedded real-time operating system

Bare-iMetal -
0 Preferences
Filter by Name, Category, or Descriptior Select All Unselect All
DOWNLOADS
- Name * Category® Description Dependencies
@ MCUXpresso IDE gory P P
&& MCUXpresso C_MSIS DsSP ClﬂSIS CMSIS DSF’
Config Tools Library DSP Lib Software Library
B Ofiine data |:| canopen Middleware canopen library
@ MCUXpresso elQ machine
Secure Provisioning lzarning SDK
Tool : containing: - ARM
el Middleware CMSIS-NN library
(neural network
INTERNAL kern... (more)
i Deployed Releases 0 Embedded Middieware | EMbedded Wizard
Wizard GUI GUI
? Hardware in Releases
') emin graphics
; i emwin Middleware
L Analytics D library
FAT File System
[FatFs Middleware . | Y v

Once the MCUXpresso SDK package is downloaded, it can be extracted on a local machine or
imported into the MCUXpresso IDE. For more information on the MCUXpresso SDK folder struc-
ture, see the Getting Started with MCUXpresso SDK User’s Guide (document: MCUXSDKGSUG).
The package directory structure is similar to Figure 2. The eIQ TensorFlow Lite library directories
are highlighted in red.

10 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

SDK_2_15_000_EVKB-IMXRT1050
boards
evkbimxrt1050
cmsis_driver_examples
component_examples
demo_apps
driver_examples
elg_examples
deepviewrt_camera_label_image
deepviewrt_image_detection
deepviewrt_labelimage
glow_cifar10
glow_cifar10_camera
glow_lenet_mnist
glow_lenet_mnist_camera
tfim_cifar10
tfim_kws
tfim_label_image
tfim_lib
littlefs_examples
lwip_examples
project_template
sdmme_examples
Xip
CMSIS
components
devices

docs

middleware
bm
cjson
eiq
deepviewrt
doc
glow
mpp
tensorflow-lite
lib
signal
tensorflow

third_party

1.3. elQ

11

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

MIMXRT700-EVK
arch
boards
mimxrt700evk
eiq_examples
mpp_static_Limage_mobilenet_view
mpp_static_image_ultraface_view_tflm
tflm_cifar10
tflm_cifar10_hifi4
tflm_lows
tfim_label_image
tflim_label_image_ext_mem
tfim_label_image_hifi4
tflm_lib
tflm_modelrunner
flash_config
project_template
CMSIS
components
devices
docs
merged_data
middleware
aws_iot
bm
dsp
eig
doc
mpp
tensorflow-lite
lib
signal
tensorflow
third_party
cmsis_nn
fft2d
flatbuffers
gemmlowp
kissfft
neutron
commaon
driver
rt700
ruy

xa nnlib hifi4

12

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

The boards directory contains example application projects for supported toolchains. For the
list of supported toolchains, see the MCUXpresso SDK Release Notes. The middleware directory
contains the elQ library source code and example application source code and data.

Example applications The elQ TensorFlow Lite library is provided with a set of example appli-
cations. For details, see Table 1. The applications demonstrate the usage of the library in several

use cases.

Name Description Availability
tflm_ ¢ CIFAR-10 classification of 32 x 32 RGB pixel im- MCX-N947-EVK (no camera and
ages into 10 categories using a small Convolu- display support) MCX-N947-

tional Neural Network (CNN).

FRDM (no camera and display
support) MCX-N547-EVK (no
camera and display support)
MIMXRT700-EVK (no camera and
display support)

tflm_1 Keyword spotting application using a neural net- MCX-N947-EVK (no audio sup-
work for word detection in pre-processed audio port) MCX-N947-FRDM (no audio
input. support) MCX-N547-EVK (no au-
dio support) MIMXRT700-EVK (no
audio support)
tflm_1 Image recognition application using a MobileNet MCX-N947-EVK (no camera and
model architecture to classify 128 x 128 RGB pixel display support) MCX-N947-
imagesinto 1000 categorieswith eIQ Neutron NPU. FRDM (no camera and display
support) MCX-N547-EVK (no
camera and display support)
MIMXRT700-EVK (no camera and
display support)
tflm_1 Image recognition application using a MobileNet MIMXRT700-EVK (no camera and
model architecture to classify 224 x 224 RGB pixel display support)
images into 1000 categorieswith eIQ Neutron NPU.
In this example, it demonstrates how to fetch
model’s weight from external memory(xSPI flash)
to internal SRAM for Neutron NPU execution.
tflm_ ¢ CIFAR-10 classification of 32 x 32 RGBpixel images MIMXRT700-EVK (no camera and
into 10 categories using a small Convolutional display support)
Neural Network. In this example, M33 core0 starts
HiFi4 DSP core with HiFi4 DSP image. HiFi4 DSP
does the inference for CIFAR-10 classification.
tflm_1 Image recognition application using a MobileNet MIMXRT700-EVK (no camera and

model architecture to classify 128 x 128 RGB pixel
images into 1000 categories. In this example, M33
coreO starts HiFi4 DSP core with HiFi4 DSP image.
HiFi4 DSP does the inference for image recogni-
tion application.

display support)

For details on how to build and run the example applications with supported toolchains, see
Getting Started with MCUXpresso SDK User’s Guide (document: MCUXSDKGSUG). When using
MCUZXpresso IDE, the example applications can be imported through the SDK Import Wizard as
shown in Figure 1.

1.3. eIQ 13

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

3 soK Import Wizard

(1) You have selected 1 project to impert: "evkmimxrt1170_tflm_label_image_cm7".

=

. Import projects

Project name prefic | evkmirmert1170

* | Project name suffi:

[] Use default location

Location: | Chnxp

Browse

Project Type
C Project (@) C++ Project C Static Library

Project Options

-+ Static Library SDK Debug Console @) Semihost (J) UART
[JCopy sources
Import other files

Example default

Examples 2T | M 3/* | =
| |
Marne Description Yersion 2

v [m] £ eig_examples

[= deepviewrt_camera_label_image_cm7 DeepViewRT Camera Label Image example shows the demon...

[0 = deepviewrt_image_detection_cm7 DeepViewRT Image Detection example shows the demonstra...

[] = deepviewrt_labelimage_cm7 DeepViewRT Labellmage is as a basic "labelimage” example f...

[= glow_cifarl0_camera_cm7 Cifar10 example for Glow with camera and LCD

[] = glow_lenet_mnist_camera_cm7 Lenet MNIST example for Glow with camera and LCD

[= glow_lenet_mnist_cm7 LeMet MMIST example for Glow MM compiler

[= tflm_cifarl0_em7 CIFAR-10 example for TensorFlow Lite Micro

[= tfim_kws_cm7 Keyword spotting example for TensorFlow Lite Micro

& tfim_label_image_cm7 Label image example for TensorFlow Lite Micro

[1 = tflm_multicore_cméd elC multicore for TensorFlow Lite Micro Keyword spotting ex...

[= tflm_multicore_cm7 : Linked to: tflm_multicore_cr elQ multicore for TensorFlow Lite Micro Label image example ¥
@ Mext = Cancel

14

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

. Import projects

Project name prefix: ‘mimxr‘tTDDevk * | Project name suffix:

Use default location

CAUsers\nxa22946\Documents\MCUXpressolDE_11.10.0_3088_alpha\workspace\mimxrt700evk Browse...
Project Type Project Options
C Project C++ Project C Static Library C++ Static Library SDK Debug Console . Semihost UART Example default

Copy sources
Import other files

Examples £ | % | =

|t;me to filter ‘

MName Description Version 2
» [] £ dsp_examples
~ [] E eig_examples
[] = mpp_static_image_mobilenet_view_tflm Object classification with TensorFlow Lite Micro Example
[= tfim_cifar10 CIFAR-10 example for TensorFlow Lite Micro
[] = tfim_cifar10_hifi4_cm33 CIFAR-10 example for TensorFlow Lite Micro
[= tfim_kws Keyword spotting example for TensorFlow Lite Micro
[1 = tfim_label_image Label image example for TensorFlow Lite Micro
|:| tflm_label_image_hifi4_cm33 Label image example for TensorFlow Lite Micro
[= tfim_lib Library build of TensorFlow Lite Micro
[] £ els_pkc_examples
[€ emwin_examples
[] € ezhv_examples
[E freertos_examples
[] E littlefs_examples
[1 E Ival examples ¥
@- < Back Next > Finish Cancel

After building the example application and downloading it to the target, the execution stops in
the main function. When the execution resumes, an output message displays on the connected
terminal. For example, Figure 2 shows the output of the tlm_ label_image_cm7" *tflm_ label_image
example application printed to the MCUXpresso IDE Console window when semihosting debug
console is selected in the SDK Import Wizard.

[Install.. [Propert... [® Proble.. & Console 3 @Terminal g Image ... EDEbug... =, Offline ... = 8

] | &R EFE =B -0~
evkmimxrt1170_tflm_label_image_cm7 LinkServer Release [C/C++ (NXP Semiconductors) MCU Application]
[MCUXpresso Semihosting Telnet console for 'evkmimxrtl117@ tflm label image cm7 LinkServer Releasta

Label image example using a TensorFlow Lite Micro model.
Detection threshold: 23%
Model: mobilenet_vl @.25 123 quant_int3

Static data processing:

Inference time: 44 ms
Detected: stopwatch (87%)

Camera data processing:

Data for inference are ready

Inference time: 45 ms
Detected: No label detected (@8%)

1.3. eIQ 15

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Label unage example uswng a TensorFlow Lite Micro model.
Detection threshold: 23%
Model: mobilenet v1 0.25 128 quant_int8 npu

Static data processing:

Inference time: 3987 us
Detected: stopwatch (87%)

Model Conversion to TensorFlow Lite Format The eIQ® Toolkit provides a comprehensive
end-to-end environment for machine learning (ML) model development and deployment. De-
signed for NXP EdgeVerse processors, the toolkit includes both an intuitive GUI-based tool (eIQ
Portal) and command-line utilities for advanced workflows.

One key component, the eIQ ModelTool, enables seamless conversion of ML models from pop-
ular formats such as TensorFlow, PyTorch, and ONNX into the TensorFlow Lite (TFLite) format.
These converted models can be further optimized and deployed on NXP platforms for inference
acceleration.

Model Conversion for NXP eIQ Neutron NPU To leverage the NXP eIQ Neutron NPU for hard-
ware acceleration, models must undergo additional processing using the Neutron Converter
Tool. This tool transforms standard quantized TensorFlow Lite models into a format optimized
for execution on the Neutron NPU.

The key steps involved in this process are as follows:

1. Convert to Quantized TensorFlow Lite Model: Ensure the model is in a quantized TFLite
format before running the Neutron Converter.

2. Run the Neutron Converter Tool: The Neutron Converter analyzes the TFLite model, iden-
tifies supported operators, and replaces them with specialized NPU-compatible nodes. Un-
supported operations are executed using fallback mechanisms, such as:

* CMSIS-NN for optimized CPU execution
» Reference Operators for unsupported cases

3. Execute on Target Platform: The converted model runs efficiently on the Neutron NPU using
a custom TFLite Micro-operator implementation.

Example: Converting a Quantized TensorFlow Lite Model for Neutron NPU The following
is a sample command-line invocation for the Neutron Converter tool:

neutron-converter —-input mobilenet_ vl_0.25 128 quant.tflite \
--output mobilenet_v1_0.25 128 quant_npu.tflite \
—-target imxrt700 \
--dump-header-file-output

Note: This will convert the source tflite model to neutron compatable model, meanwhile, it will

dump the model as one headfile name as “mobilenet_v1_0.25_128_quant_npu.h”.

Run and debug eIQ HiFi4 and HiFil DSP examples using Xplorer IDE This section lists the
steps to Prepare CM33 Core for the examples and Prepare DSP core for the examples.

16 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Prepare CM33 Core for the examples

1. The tfim_ cifar10_hifi4 and tAm_ label image hifi4 examples consist of two separate applica-
tions that run on the CM33 core0 and DSP core. The CM33 core0 application initializes the
DSP core and starts it.

To debug the application:
1. Set up and execute the CM33 application using an environment of your choice.
2. Build and execute the examples located in:
<SDK_ROOT> /boards/mimxrt700evk/eiq examples/tflm_cifar10_hifi4/cm33/
<SDK_ROOT>/ boards/mimxrt700evk/eiq examples/tflm_label image hifi4/cm33/

2. The tfim_ cifar10_hifil example consists of three separate applications that run on the CM33
core0, CM33 corel, and DSP core. The CM33 core0 application initializes the CM33 corel
core and starts it. The CM33 corel application initializes the DSP core and starts it.

To debug the application:
1. Set up and build the CM33 corel application using an environment of your choice.
2. Set up and execute the CM33 core0 application using an environment of your choice.
3. Build and execute the example located in:
<SDK__ROOT> /boards/mimxrt700evk/eiq_examples/tflm_ cifar10_hifil/cm33_corel/
<SDK_ROOT> /boards/mimxrt700evk/eiq examples/tflm_ cifar10_hifil/cm33_ core0/

Note: ARMGCC toolchain and IAR Embedded Workbench are both supported. To en-
able compatibility with RT700, IAR Embedded Workbench may require a patch. There
are default DSP core images in the SDK. For details on how to build the examples, refer
to Prepare DSP core for the examples.

Parent topic:Run and debug eIQ HiFi4 and HiFil DSP examples using Xplorer IDE

Prepare DSP core for the examples The projects for different supported toolchains are built.
The “xcc” project builds on the command line and the “xtensa” directory is an Xplorer IDE
project.

To run the tflm_ cifar10_ hifi4 example, import the SDK sources into the Xplorer IDE.

1. Select File > Import > General > Existing Projects into Workspace.

1.3. elQ 17

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Import O X
Select \g
Create new projects from an archive file or directory. H

Select an import wizard:

type filter text

v = General
A& Archive File
1-# Existing Projects into Workspace
(2 File System
[l Preferences
2 Projects from Folder or Archive
> = Install
> = Run/Debug
» = Team
v [= Xtensa Xplorer
& Import Xtensa Xplorer Workspace

@ < Back MNext = Finish Cancel

2. Click Next.

3. Select the SDK directory/boards/mimxrt700evk/eiq_examples/tflm_ cifar10_ hifi4/hifi4/xtensa
as the root directory.

18 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

eiq examples > tflm cifar10_hifi4 > hifi4

1%

N B

binary
doc
gdbio
min-rt
source
XCC

xtensa

L I 4

4. Click Select Folder.

5. Leave all the other options check boxes blank.

1.3. eIQ 19

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Import O >
Import Projects "":
Select a directory to search for existing Eclipse projects. : d
@ Select root directory: |C:\Users\ \Downloads\bo. - Browse...
() Select archive file: Browse...
Projects:
tflm_cifar10_hifi4 (C:\Users\ \Downloads\board | Select All
Deselect All
Refresh
< >
Options

[_]Search for nested projects

[_| Copy projects into workspace

[_]Close newly imported projects upon completion
[Hide projects that already exist in the workspace

Working sets

[_] Add project to working sets New...
Select...
@:} = Back Next = Finish Cancel

Once imported, the tfim_cifar10_hifi4 example appears in the Project Explorer.

6. To make a build selection for the project and hardware target configuration, use the drop-
down buttons on the menu bar.

20 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

workspace - Xtensa Xplorer
File Edit Source Refactor Navigate Search Project Run Tools Window Help

g w03 % B InstruMode: None v P:tflm_cifar10_hifi4 ¥ C:rt700_hifi4 RI23_11 nlib ¥ T:Release ¥ Build Active ¥ . Run +

&5 Project Explarer &2 BT § =0

0 dsp_hello_world_usart_hifi4
B< Helloworld
~ B tflm_cifar10_hifi4
¥ Binaries
& Includes
= bin
e board
(= component
n device
& drivers
= eiq
(& source
& utilities
& Makefile
= Makefile.include
= tflm_cifar10_hifi4 debug jlink.launch

7. To build the DSP application image for the CM33 application, select the Release target op-
tion in the Xplorer IDE as below.
h Project Run Tools Window Help
r P:tflm _cifar10_hifi4 ~ C:rt700 hifi4 RI23 11 nlib > T:Release ¥ Build Active ¥ . Run ~ Profile

Build Active
Clean Active
Rebuild Active

Compare Active

8. Three DSP binaries are generated and are loaded into different TCM or SRAM address seg-
ments:

* <SDK_ROOT/>/boards/mimxrt700evk/eiq examples/tflm_cifar10_hifi4/hifi4/binary/
dsp_data_ release.bin

* <SDK_ROOT/>/boards/mimxrt700evk/eiq_examples/tflm__ cifar10_hifi4 /hifi4/binary/
dsp_ literal release.bin

* <SDK_ ROOT/>/boards/mimxrt700evk/eiq examples/tflm cifar10_hifi4/hifi4 /binary/
dsp__text_ release.bin

Parent topic:Run and debug eIQ HiFi4 and HiFil DSP examples using Xplorer IDE

Running an inference After converting the model to the TensorFlow Lite format, it is con-
verted into a C language array to include it in the application source code. The xxd utility
can be used for this purpose (distributed with the Vim editor for many platforms on https:
/[www.vim.org/) as shown in Converting a model to a C language header file. The utility con-
verts a TensorFlow Lite model into a C header file with an array definition containing the binary
image of the model and a variable containing the data size.

Converting a model to a C language header file {#fEXAMPLE 4 .section}
xxd -i mobilenet_ vl _0.25 128 quant.tflite > mobilenet v1 0.25 128 quant_ model.h

1.3. elQ 21

https://www.vim.org/
https://www.vim.org/

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

After the header file is generated, the type of the array is changed from unsigned char to const
char to match the library API input parameters and the default array name can be changed to a
more convenient one. The user must align the buffer to at least 64-bit boundary (the size of a
double-precision floating-point number) to avoid misaligned memory access. The alignment can
be achieved by using the ALIGNED(16) macro from the cmsis_ compiler.h header file (available
in the MCUXpresso SDK) in the array declaration before the data assignment.

The easiest way to create an application with the proper configuration is to copy and modify an
existing example application. To learn where to find the example applications and how to build
them, see the Example applications.

Running an inference using TensorFlow Lite for Microcontrollers involves several steps (shown
for quantized model with signed 8-bit values as input and 32-floating point values as output):

1. Include the necessary eIQ TensorFlow Lite Micro library header files and the converted

model.
Including header files
#include "tensorflow/lite/micro/micro_error reporter.h”

#include tensorflow/lite/micro/micro_interpreter.h”
#include tensorflow/lite/micro/all_ops_ resolver.h”
#include "mobilenet_v1_0.25 128 quant_ model.h”

2. Allocate a static memory buffer for input and output tensors and intermediate arrays.
Load the FlatBuffer model image (assuming the mobilenet_v1_0.25 128 quant_model.h file
generated in Converting a model to a C language header file defines an array named mo-
bilenet_model and a size variable named mobilenet_model_len), build the interpreter ob-
ject and allocate memory for tensors.

Loading the FlatBuffer model

constexpr int kTensorArenaSize = 1024 * 1024;

static uint8 t tensorArenalkTensorArenaSize];

const tflite::Model™ model = tflite:: GetModel(mobilenet model);

// TODO: Report an error if model->version() !|= TFLITE SCHEMA VERSION

static tflite:: AllOpsResolver microOpResolver;

static tflite::MicroErrorReporter microErrorReporter;

static tflite::Microlnterpreter interpreter(model,
microOpResolver, tensorArena, kTensorArenaSize,
microErrorReporter);

interpreter->AllocateTensors();

// TODO: Check return value for kTfLiteOk

3. Fillhe input data into the input tensor. For example, if a speech recognition model, image
data from a camera or audio data from a microphone. The dimensions of the input data
must be the same as the dimensions of the input tensor. These dimensions were specified
when the model was created.

Fill-in input data

// Get access to the input tensor data

TfLiteTensor* inputTensor = interpreter->input(0);

// Copy the input tensor data from an application buffer

for (int i = 0; i < inputTensor->bytes; i++)
inputTensor->data.int8[i] = input_ datali];

4. Run the inference and read the output data from the output tensor. The dimensions of the
output data must be the same as the dimensions of the output tensor. These dimensions
were specified when the model was created.

Running inference and reading output data

22 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

// Run the inference

interpreter->Invoke();

// TODO: Check the return value for TfLiteOk

// Get access to the output tensor data

TfLiteTensor™ outputTensor = interpreter->output(0);

// Copy the output tensor data to an application buffer

for (int i = 0; i < outputTensor->bytes / sizeof(float32); i++)
output_ data[i] = outputTensor->data.f[i];

NPU inference {#npu_infer .section} Running an inference using a model converted for the
NPU requires registration of a custom operator implementation. First the header file with the
custom operator implementation interface must be included.

#include "tensorflow/lite/micro/kernels/micro_ops.h”
#include tensorflow/lite/micro/all_ops_ resolver.h”
#include "tensorflow/lite/micro/kernels/neutron/neutron.h”

Next, the specialized implemetation has to be registered in the operator resolver object.

static tflite:: AllOpsResolver microOpResolver;
microOpResolver.AddCustom (tflite:: GetString. NEUTRON__GRAPH(),
tflite::Register NEUTRON__GRAPH());

The specialized NPU nodes from the converted model are the executed using this newly regis-
tered implementation.

Adjusting the tensor arena size {#adjust_arena .section} The tensor arena isa static memory
buffer used for intermediate tensor and scratch buffer allocation. The size of the tensor arena
buffer is set by the kTensorArenaSize constant in the example above. The value depends on the
tensor sizes used in the model and on the hardware-specific implementations of kernels, which
may require various sizes of scratch buffers for intermediate computations. The value can be
determined experimentally by running an inference with a small value, so the library fails with
an insufficient tensor memory error and prints the missing amount. Continue adjusting the size
until the error stops being reported. If the target hardware changes, readjust the value.

Code size optimization Typically, models do not use all the operators that are available in
TensorFlow Lite. However, because of the default operator registration mechanism used in the
library, the toolchain linker is not able to remove the code of unused operators. In order to reduce
code size, it is possible to only register the specific operators used by a model. To determine
which operators are used by a particular model, a model visualizer tool like Netron can be used.
Then a mutable operator resolver object can be created that only registers the operators that are
used by the model being inferenced.

Use the tflite::MicroMutableOpResolver object template, which is later passed to the
tflite::MicroInterpreter object. Depending on the list of used operators, the result should be
similar to the following code snippet. Make sure to update the MicroMutableOpResolver
template parameter to reflect the number of operators that need to be registered.

Register only used operators in TensorFlow Lite Micro {#SECTION_SS1_DJQ_QPB .section}

#include “tensorflow/lite/micro/kernels/micro_ ops.h”
#include "tensorflow /lite/micro/micro_mutable_op_ resolver.h”
tflite::MicroMutableOpResolver<6> microOpResolver;
microOpResolver. Add AveragePool2D();
microOpResolver. AddConv2D();
microOpResolver. AddDepthwiseConv2D();

(continues on next page)

1.3. elQ 23

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

(continued from previous page)
microOpResolver. AddDequantize();
microOpResolver. AddReshape();
microOpResolver. AddSoftmax();
static tflite::Microlnterpreter interpreter(
model, microOpResolver, tensorArena, kTensorArenaSize, microErrorReporter);

Note about the source code in the document Example code shown in this document has the
following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

elQ ExecuTorch Library User Guide

Overview ExecuTorch is an end-to-end solution for enabling on-device inference capabilities
across mobile and edge devices including wearables, embedded devices and microcontrollers.
It is part of the PyTorch Edge ecosystem and enables efficient deployment of PyTorch models to
edge devices. For more information, see https://pytorch.org/executorch-overview.

The MCUXpresso Software Development Kit (MCUXpresso SDK) provides a comprehensive soft-
ware package with a pre-integrated ExecuTorch based on version v0.5.0 with initial support for
Neutron Backend. Neutron Backend enables acceleration of ML models on the eIQ® Neutron
Neural Processing Unit (NPU).

This document describes the steps required to download and start using the ExecuTorch. Ad-
ditionally, the document describes the steps required to create an application for running pre-
trained models.

Note: The document also assumes knowledge of machine learning frameworks for model train-
ing.

Supported platforms:
* L.MX RT700

24 Chapter 1. Middleware

https://www.nxp.com/applications/technologies/ai-and-machine-learning/eiq-neutron-npu:EIQ-NEUTRON-NPU
https://www.nxp.com/applications/technologies/ai-and-machine-learning/eiq-neutron-npu:EIQ-NEUTRON-NPU
https://www.nxp.com/products/i.MX-RT700

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Installation The ExecuTorch, with the Neutron Backend consists of:
» ExecuTorch with Neutron Backend for Ahead of Time ML Model Compilation
* Neutron Converter
* MCUXpresso SDK

Here we briefly describe each components purpose and steps to install them.

The ExecuTorch AoT and Neutron Converter are needed to convert a PyTorch model to Execu-
Torch and Delegate it to eIQ Neutron NPU using the Neutron Backend. The MCUXpresso SDK
provides project to build the ExecuTorch Runtime Library, the example application with simple
CNN, toolchains and other middleware libraries to build and deploy the application on the target
platform.

If you want run to prepared example application on the i MX RT700 platform, and skip the model
preparation phase continue with the MCUXpresso SDK Part.

ExecuTorch for Ahead of Time model preparation The ExecuTorch enables to deploy Py-
Torch models on edge devices. For this purpose the PyTorch model must be processed and con-
verter by the ExecuTorch Ahead of Time (AoT) part. You can obtain the full ExecuTorch including
the AoT part aligned with this version of MCUX SDK from the mcuxsdk-middleware-executorch
release/mcux-full branch.

Installation Prerequisities:
* x86 Linux Machine with GLIBC-2.29 or higher (e.g. Ubuntu 20.04 or higher)
* Python 3.10, 3.11 or 3.12

To build and install the ExecuTorch follow these steps:

1. (Optional) Setup python virtual environment on desired location and activate it.

$ python3 -m venv venv
$ source venv/bin/activate

2. Clone the ExecuTorch from mcuxsdk-middleware-executorch

$ git clone --branch release/mcux-full https://github.com/nxp-mcuxpresso/mcuxsdk-middleware-executorch.git
$ cd mcuxsdk-middleware-executorch
$ git submodule update --init --recursive

3. Build and install the ExecuTorch and its dependencies:

$./install requirements.sh

['WARNING] The install_requirements.sh installs the CPU version of torch from https://
download.pytorch.org/whl/cpu. If you are behind corporate proxy, it might have issues
accessing it and you will see warnings like:

WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None,
—status=None)) after connection broken by 'SSLError(SSLCertVerificationError(1, '[SSL:
—CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer
—certificate (_ssl.c:1006)"))": /whl/test/cpu/torch/

In this case the CUDA version of torch is installed and the install requirements.sh script
fails with:

PyTorch: CUDA cannot be found. Depending on whether you are building

Make sure the pip can access the https://download.pytorch.org/whl/cpu PyPI.

1.3. elQ 25

https://github.com/nxp-mcuxpresso/mcuxsdk-middleware-executorch/tree/release/mcux-full
https://github.com/nxp-mcuxpresso/mcuxsdk-middleware-executorch/tree/release/mcux-full

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Next continue with installation of the Neutron Converter

Neutron Converter The elQ Neutron Backend uses the Neutron Converter to convert the Ex-
ecuTorch program to the eIQ Neutron NPU microcode.

Installation The Neutron Converter is available as a Python package and can be installed by
the pip command from eiq.nxp.com/repository:

pip install --index-url https://eiq.nxp.com/repository neutron_ converter SDK_ 25 09==1.0.0

The Neutron Converter is used internally by the ExecuTorch, and it is tied to the particular BSP
you are using - the suffix of the python package name. In the code snippet above the flavor is
the SDK_ 25 09. In the aot_neutron_convert.py example script by the --neutron_ converter_ flavor
parameter.

MCUXpresso SDK The MCUXpresso SDK is used to build, debug and deploy the application
using the ExecuTorch on the target platform.

You can obtain the MCUXpresso SDK from MCUXpresso SDK Builder including the IDE. See the
getting mcuxpress for details.

In the MCUXpresso SDK, there are 2 projects available related to ExecuTorch:
* executorch_lib
» executorch_cifarnet

For more details see example_applications. Here you will find the details to run build and run
the demo applications.

Getting the MCUXpresso SDK with eIQ ExecuTorch The elQ ExecuTorch library is part of
the eIQ machine learning software package, which is an optional middleware component of
MCUZXpresso SDK. The eIQ component is integrated into the MCUXpresso SDK Builder delivery
system available on mcuxpresso.nxp.com. To include eIQ machine learning into the MCUXpresso
SDK package, the eIQ middleware component is selected in the software component selector on
the SDK Builder page when building a new package. See Figure 1.

26 Chapter 1. Middleware

https://mcuxpresso.nxp.com/en
https://mcuxpresso.nxp.com

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

A SDK Dashboard SDK Builder

Generate a downloadable SDK archive for use with desktop MCUXpresso Tools.

GENERAL

Developer Environment Settings

I 8 Select Board Selections here will impact files and examples projects included in the SDK and Generated Projects

Q Explore Toolchain / IDE Host 08

All toolchains « Windows -
ADMINISTRATION

A Notifications Embedded real-time operating system

Bare-Metal -
0 Preferences
Filter by Name, Category, or Descriptior Select All Unselect All
DOWNLOADS
- Name $ Category® Description Dependencies
(B mMCUXpresso IDE gory P P
£& MCUXpresso C.MSIS DSP ClﬂSIS CMSIS DSF’
Config Tools Library DSP Lib Software Library
B Offine data |:| canopen Middleware canopen library
@ MCUXpresso elQ machine
Secure Provisioning learning SDK
Tool : containing: - ARM
v ela Middleware
CMSIS-NN library
{neural network
INTERNAL kern... (mare)
i Deployed Releases 0 Embedded Middleware EMPedded Wizard
Wizard GUI GuUl
? Hardware in Releases
)) emWin graphics
I i emwin Middleware
L Analytics D library
FAT File System
M FatFs Middleware . | Y v

Once the MCUXpresso SDK package is downloaded, it can be extracted on a local machine or
imported into the MCUXpresso IDE. For more information on the MCUXpresso SDK folder struc-
ture, see the Getting Started with MCUXpresso SDK User’s Guide (document: MCUXSDKGSUG).
The package directory structure is similar to Figure 2.

1.3. elQ 27

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

v MIMXRT700-EVK
arch
v boards
b mimxrt700evk
v eiq_examples

executorch_cifarnet
executorch_lib
mpp
tflm_cifar10
tflm_cifar10_hifi4
tflm_kws
tflim_label_image
tflm_label_image_ext_mem
tflm_label_image_hifi4
tflm_lib

tflm_modelrunner

The boards directory contains example application projects for supported toolchains. For the
list of supported toolchains, see the MCUXpresso SDK Release Notes. The middleware directory
contains the elQ library source code and example application source code and data.

PyTorch Model Conversion to ExecuTorch Format In this guideline we will show how to use
the ExecuTorch AoT part to convert a PyTorch model to ExecuTorch format and delegate the
model computation to eIQ Neutron NPU using the eIQ Neutron Backend.

First we will start with an example script converting the model. This example show the CifarNet
model preparation. It is the same model which is part of the example_ cifarnet

The steps are expected to be executed from the executorch root folder, in our case the
mcuxsdk-middleware-executorch

1. After building the ExecuTorch you shall have the libquantized__ops_aot_lib.so located in the
pip-out folder. We will need this library when generating the quantized cifarnet ExecuTorch
model. So as first step we will find it:

$ find ./pip-out -name 'libquantized__ops_aot_lib.so'

./pip-out/temp.linux-x86_ 64-cpython-310/cmake-out/kernels/quantized /libquantized_ ops_ aot_ lib.so
./pip-out/lib.linux-x86_ 64-cpython-310/executorch/kernels/quantized/libquantized ops aot_lib.so

2. Now run the aot_ neutron_ compile.py example with the cifar10 model

28 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

$ python examples/nxp/aot_ neutron_ compile.py \

--quantize --so__library ./pip-out/lib.linux-x86_ 64-cpython-310/executorch/kernels/quantized /libquantized__
—ops_aot_lib.so \

--delegate --neutron__converter_ flavor SDK_ 25 09 -m cifar10

3. It will generate you cifarl0_nxp_ delegate.pte file which can be used with the MXUXpresso
SDK cifarnet_ example project.

The generated PTE file is used in the executorch_cifarnet example application, see exam-
ple_application.

MCUXpresso SDK Example applications The MCUXpresso SDK provides a set of projects and
example application with the eIQ ExecuTorch. For details, see Table 1.

The eIQ ExecuTorch library is provided with a set of example applications. For details, see Table
1. The applications demonstrate the usage of the library in several use cases.

Name Description Availability

ex- This project contains the ExecuTorch Runtime Library source code and MIMXRT700-

ecu- is used to build the ExecuTorch Runtime Library. The library is further EVK (no

torch_ used to build a full application using the leveraging ExecuTorch. camera and
display sup-
port)

ex- Example application demonstrating the use of the ExecuTorch running MIMXRT700-

ecu- a CifarNet classification model accelerated on the eIQ Neutron NPU. EVK (no

torch The Cifarnet is a small Convolutional Neural Network (CNN), trained camera and
on CIFAR-10 [1] dataset. The model clasifies the input images into 10 display sup-
caterories. port)

For details on how to build and run the example applications with supported toolchains, see
Getting Started with MCUXpresso SDK User’s Guide (document: MCUXSDKGSUG).

How to build and run executorch_ cifarnet example The example needs ExecuTorch Runtime
Library and Neutron Libraries.

ExecuTorch Runtime Library:
* middleware/eiq/executorch/lib/cm33/armgcc/libexecutorch.a

Neutron Libraries:
* middleware/eiq/executorch/third-party /neutron/rt700/libNeutronDriver.a and
* middleware/eiq/executorch/third-party /neutron/rt700/libNeutronFirmware.a

In the example the model and the input image is already embedded into the program and ready
to build and deploy to i.MX RT700, so you can continue right to the building and deployment
section.

Convert the model and example input to Carray Inthissection we describe where the model
and example input is located in the example application sources, and how it was generated.

The cifarl0 model ExecuTorch model is stored in boards/mimxrt700evk/eiq examples/
executorch_ cifarnet/cm33_ core0/model pte.h. and was generated from the cifar10_nxp_ delegate.
pte (see convert_model).

We use the xxd command to get the C array containing the model data and array size:

1.3. elQ 29

https://www.cs.toronto.edu/~kriz/cifar.html

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

$ xxd -i cifar10_nxp_ delegate.pte > model_pte_data.h

then use the array data and size in the model_ pte.h.

As input image we use the image from CIFAR-10 dataset [1]. After preprocessing and
normalization it is converted to bytes and located here boards/mimxrt700evk/eiq examples/
executorch__cifarnet/cm33__core0/image_data.h. The preprocessing is performed as follows:

import torch
import torchvision
import numpy as np

batch_size = 1

transform = torchvision.transforms.Compose(|
torchvision.transforms.ToTensor|(),
torchvision.transforms. Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

D

test_set = torchvision.datasets. CIFAR10(root="./data', train=False, download=True, transform=transform)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_ size, shuffle=False, num_ workers=0)

index = 0
num__images = 10
for data in test loader:
images, labels = data
for image, label in zip(images,labels):
arr = image.numpy().astype(np.float32)
arr.tofile("img” + str(index) + 77 + str(int(label)) + ”.bin”)
index = index + 1
if index >= num__images:
break
if index >= num_ images:
break

This generates the num_ images count of images from Cifar10 dataset, as input tensors for the
cifar10 model and store them in corresponding .bin files. Then we use the xxd command to get
the C array data and size:

$ xxd -1 img0_ 3.bin > image_data_ base.h

and again copy the array data and size in the image_data.h

Note, the img0 is the image picturing a cat, what is a class number 3.

Build, Deploy and Run

1. When using ARMGCC toolchain, the example application can be built as below. After build-
ing the example application, download it to the target with JLink as shown in Figure 3, an
output message displays on the connected terminal as Figure 4.

$ boards/mimxrt700evk/eiq examples/executorch cifarnet/cm33_ core0/armgcc$./build flash release.sh

30 Chapter 1. Middleware

https://www.cs.toronto.edu/~kriz/cifar.html

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

ase: 2.558s, Program: 13.212s, Verify: 1.392s, Restore: @

ia SYSRESETREQ & VECTRESET bit

Mudel PTE fllE luaded Size: 99376 bytes.
Model buffer loaded, has 1 methods
Running method forward

Setting up planned buffer 0, size 53760.
Method loaded.

Preparing inputs...

Input prepared.

Starting the model execution...

Model executed successfully.

Inference time: 11950 us

1 outputs:

Output :
Output [1]:
Output [2]:
Output [3]:
Output [4]:
Output [5]:
Output [6]:
Output [7]:
Output [8]:
Output [9]:
Program complete, exiting.

clojoooNoNolNolNolo)

2. When using MCUXpresso IDE, the example applications can be imported through the SDK
Import Wizard as shown in Figure 5.

1.3. elQ 31

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

[sDK Import Wizard

+ % You have selected 2 projects to import.
| The source from the SDK will be copied into the workspace. If you want to use linked files, please unzip the

. Import projects

Project name prefoc mimxrt700evk

B use default location

Project Type

C Project C++ Project C Static Library

XO &

X Project name suffix:

CAUsers\nxal5450\Documents\MCUXpressol DE_24.12.148\workspace\executorch\mimxrt700evk Browse...

Project Options

C++ Static Library SDK Debug Console () Semihost () UART @ Example default

Copy sources
B Import other files

Examples &% m e
type to filter
Description Version

I Name
~ @ & eig_examples

‘ x executorch_cifarnet_cm33_coreD

executorch_lib_cm33_core0
tflm_cifar10_cm33_cored
tflm_cifar10_hifid_cm33_coreD
tfim_kws_cm33_core0
tflm_label_image_cm33_core0
tflm_label image_ext_mem_cm33_core0
tflm_label_image_hifi4_cm33_corel
tflm_lib_em33_corel
tflm_modelrunner_cm33_coreD

CIFARMET example for ExecuTorch

Library build project for ExecuTorch

CIFAR-10 example for TensorFlow Lite Micro

The tflm_cifar10_hifi4 demo application demonstrates starting
Keyword spotting example for TensorfFlow Lite Micro

Label image example for TensorFlow Lite Micro

Label image external memory example for TensorFlow Lite Mia
The tflm_label_image_hifid demo application demonstrates sta
Library build project for TensorFlow Lite Micro

ModelRunner for TFlite

e
@

< Back Mext > Finish Cancel

After building the example application and downloading it to the target, the execution stops in
the main function. When the execution resumes, an output message displays on the connected
terminal. For example, Figure 6 shows the output of the executorch_ cifarnet example application.

32

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Model PTE file loaded. Size: 99376 bytes.
Model buffer loaded, has 1 methods
Running method forward

Setting up planned buffer 0, size 53760.
Method loaded.

Preparing uwnputs...

Input prepared.

Starting the model execution...

Model executed successfully.

Inference time: 14855 us

1 outputs:

Output [0]:
Output 11
Output [2]:
Output (31
Output [41]:
Output [51]:
Output [6]:
Output e
Output [8]:
Output [9]:
Program complete, exiting.

.996094

(<o B <o B <o i <= B <= i <= [<= i = [= [=

In case of missing probabilities in the printed output, add PRINTF_FLOAT_ENABLE=1 to the Pre-
processor settings for C++ and C compiler:

1.3. elQ 33

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

m Properties for mimxrt700evl_executorch_cifarnet_cm33_corel] *

| type filter text Settings -5 v B

Resource
Builders
w C/C++ Build
Build Variables
Environment
Legging
MCU settings
Settings
Tool Chain Editor
C/C++ General
MCUXpresso Config Tools
Project Natures
Project References
Run/Debug Settings
Task Tags
Validation
WikiText

Configuration: Debug [Active]

%3 Tool Settings | & Build Steps

~ | | Manage Configurations...

Build Artifact Binary Parsers| €@ Error Parsers

~ 183 MCU C++ Compiler
(% Dialect
[Preprocessor
@ Includes
Optimization
(2 Debugging
@ Warnings
2 Miscellaneous
@ Architecture
@ TrustZone

w % MCU C Compiler
@ Dialect
(# Preprocessor
= Includes
=5 Optimization

[Do not search systemn directories (-nostding)
O Preprocess only (-E)

Defined symbols (-0

88 8 &l &

CPU_MIMXRT7925GFOA
CPU_MIMXRT7985GFOA_cm33
CPU_MIMXRT7985GFOA_cm33_cored
MCUXPRESSO_SDK
SDK_DEBUGCONSOLE_UART
ARM_MATH_CM33
_FPU_PRESENT=1
PRINTF_ADVANCED_ENABLE=1
SDK_DEBUGCONSOLE=1
MCUX_META_BUILD
BOOT_HEADER_ENABLE=1
NO_HEAP_USAGE=1

(8 Debugging _MCUXPRESSO
= Warnings EEUBSJECMSE
(2 Miscellaneous NEWLIE
@ Architecture - -
@ TrustZone
w 3 MCU Assembler Undefined symbaols (-U) 4

@ General

@ Architecture & Headers
w B33 MCU C++ Linker

@ General

@ Libraries

2 Miscellaneous

How to build executorch_lib example If you want to build a new ExecuTorch Runtime Library,
follow the commands as below and use the new library to replace the default Runtime library
middleware/eiq/executorch/lib/cm33/armgcc/libexecutorch.a.

1. When using ARMGCC toolchain, the example application can be built as below.

$ boards/mimxrt700evk/eiq examples/executorch lib/cm33_ core0/armgcc$./build_ release.sh
$ boards/mimxrt700evk/eiq examples/executorch lib/cm33_ core0/armgcc$ cp release/libexecutorch lib
—cm33_corel.a.a ../../../../../../middleware/eiq/executorch/lib/cm33/armgcc/libexecutorch.a

2. When using MCUXpresso IDE, the example applications can be imported through the SDK
Import Wizard as shown in the above Figure 5.

After building the example application, copy the new library
mimxrt700evk__executorch_lib_cm33_ core0\Debug)\libmimxrt700evk_executorch_lib_cm33_ core0.a
to replace the default Runtime library mimxrt700evk_executorch_ cifarnet_cm33_ core0\eiq\
executorch\lib\em33\armgcc\libexecutorch.a.

[1] Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, 2009

1.4 File System

1.4.1 FatFs

34 Chapter 1. Middleware

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

MCUXpresso SDK : mcuxsdk-middleware-fatfs

Overview This repository is for FatFs middleware delivery and it contains the components of-
ficially provided in NXP MCUXpresso SDK. This repository is part of the MCUXpresso SDK over-
all delivery which is composed of several sub-repositories/projects. Navigate to the top/parent
repository (mcuxsdk-manifests) for the complete delivery of MCUXpresso SDK.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit FatFs - Documentation to review details on the contents in this sub-repo.

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution Contributions are not currently accepted. Guidelines to contribute will be posted
in the future.

Repo Specific Content Thisis MCUXpresso SDK fork of FatFs (FAT file system created by ChaN).
Official documentation is available at http://elm-chan.org/fsw/ff/

MCUZXpresso version is extending original content by following hardware specific porting layers:
» mmc_disk
* nand_disk
e ram_disk
» sd_disk
* sdspi_disk
* usb_disk

Changelog FatFs
All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog

[RO.15_rev0]
» Upgraded to version 0.15
 Applied patches from http://elm-chan.org/fsw/ff/patches.html

[R0.14b_rev1]
» Applied patches from http://elm-chan.org/fsw/ff/patches.html

[R0.14b _rev0]
» Upgraded to version 0.14b

1.4. File System 35

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/fatfs/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation
http://elm-chan.org/fsw/ff/
https://keepachangelog.com/en/1.1.0/

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

[RO.14a_rev0]
* Upgraded to version 0.14a
» Applied patch ff14a_p1.diff and ff14a_p2.diff

[R0.14 revO0]
* Upgraded to version 0.14
 Applied patch ff14_p1.diff and ff14_p2.diff

[R0.13c_rev0]
» Upgraded to version 0.13c
» Applied patches ff_13c_p1.diff,ff 13c_p2.diff, ff 13c_p3.diff and ff_13c_p4.diff.

[R0.13b_rev0]
» Upgraded to version 0.13b

[RO.13a_rev0]
» Upgraded to version 0.13a. Added patch ff_13a_p1.diff.

[RO.12c_rev1]
* Add NAND disk support.

[R0.12c_revO0]
» Upgraded to version 0.12c and applied patches ff_12c_p1.diff and ff_12c_p2.diff.

[R0.12b_revO0]
» Upgraded to version 0.12b.

[RO.11a]
* Added glue functions for low-level drivers (SDHC, SDSPI, RAM, MMC). Modified diskio.c.
Added RTOS wrappers to make FatFs thread safe. Modified syscall.c.

* Renamed ffconf.h to ffconf_template.h. Each application should contain its own ffconf.h.

Included ffconf.h into diskio.c to enable the selection of physical disk from ffconf.h by macro
definition.

Conditional compilation of physical disk interfaces in diskio.c.

1.5 Motor Control

1.5.1 FreeMASTER

Communication Driver User Guide

36 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Introduction

What is FreeMASTER? FreeMASTER is a PC-based application developed by NXP for NXP cus-
tomers. It is a versatile tool usable as a real-time monitor, visualization tool, and a graphical
control panel of embedded applications based on the NXP processing units.

This document describes the embedded-side software driver which implements an interface be-
tween the application and the host PC. The interface covers the following communication:

 Serial UART communication either over plain RS232 interface or more typically over a
USB-to-Serial either external or built in a debugger probe.

USB direct connection to target microcontroller
* CAN bus

TCP/IP network wired or WiFi

» Segger J-Link RTT

JTAG debug port communication

+ ...and all of the above also using a Zephyr generic drivers.

The driver also supports so-called “packet-driven BDM” interface which enables a protocol-based
communication over a debugging port. The BDM stands for Background Debugging Module
and its physical implementation is different on each platform. Some platforms leverage a semi-
standard JTAG interface, other platforms provide a custom implementation called BDM. Regard-
less of the name, this debugging interface enables non-intrusive access to the memory space
while the target CPU is running. For basic memory read and write operations, there is no com-
munication driver required on the target when communicating with the host PC. Use this driver
to get more advanced FreeMASTER protocol features over the BDM interface. The driver must be
configured for the packet-driven BDM mode, in which the host PC uses the debugging interface
to write serial command frames directly to the target memory buffer. The same method is then
used to read response frames from that memory buffer.

Similar to “packet-driven BDM”, the FreeMASTER also supports a communication over
[J-Link RTT]((https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-
transfer/) interface defined by SEGGER Microcontroller GmbH for ARM CortexM-based micro-
controllers. This method also uses JTAG physical interface and enables high-speed real time
communication to run over the same channel as used for application debugging.

Driver version 3 This document describes version 3 of the FreeMASTER Communication
Driver. This version features the implementation of the new Serial Protocol, which significantly
extends the features and security of its predecessor. The new protocol internal number is v4 and
its specification is available in the documentation accompanying the driver code.

Driver V3 is deployed to modern 32-bit MCU platforms first, so the portfolio of supported plat-
forms is smaller than for the previous V2 versions. Itis recommended to keep using the V2 driver
for legacy platforms, such as S08, S12, ColdFire, or Power Architecture. Reach out to FreeMAS-
TER community or to the local NXP representative with requests for more information or to port
the V3 driver to legacy MCU devices.

Thanks to a layered approach, the new driver simplifies the porting of the driver to new UART,
CAN or networking communication interfaces significantly. Users are encouraged to port the
driver to more NXP MCU platforms and contribute the code back to NXP for integration into
future releases. Existing code and low-level driver layers may be used as an example when
porting to new targets.

Note: Using the FreeMASTER tool and FreeMASTER Communication Driver is only allowed in
systems based on NXP microcontroller or microprocessor unit. Use with non-NXP MCU platforms
is not permitted by the license terms.

1.5. Motor Control 37

https://www.nxp.com/freemaster
https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster
https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Target platforms The driver implementation uses the following abstraction mechanisms
which simplify driver porting and supporting new communication modules:

* General CPU Platform (see source code in the src/platforms directory). The code in
this layer is only specific to native data type sizes and CPU architectures (for example;
alignment-aware memory copy routines). This driver version brings two generic imple-
mentations of 32-bit platforms supporting both little-endian and big-endian architectures.
There are also implementations customized for the 56F800E family of digital signal con-
trollers and S12Z MCUs. Zephyr is treated as a specific CPU platform as it brings unified
user configuration (Kconfig) and generic hardware device drivers. With Zephyr, the trans-
port layer and low-level communication layers described below are configured automati-
cally using Kconfig and Device Tree technologies.

» Transport Communication Layer - The Serial, CAN, Networking, PD-BDM, and other meth-
ods of transport logic are implemented as a driver layer called FMSTR_TRANSPORT with a
uniform API. A support of the Network transport also extends single-client modes of oper-
ation which are native for Serial, USB and CAN by a concept of multiple client sessions.

* Low-level Communication Driver - Each type of transport further defines a low-level
API used to access the physical communication module. For example, the Serial trans-
port defines a character-oriented APIimplemented by different serial communication mod-
ules like UART, LPUART, USART, and also USB-CDC. Similarly, the CAN transport defines a
message-oriented API implemented by the FlexCAN or MCAN modules. Moreover, there
are multiple different implementations for the same kind of communication peripherals.
The difference between the implementation is in the way the low-level hardware regis-
ters are accessed. The mcuxsdk folder contains implementations which use MCUXpresso
SDK drivers. These drivers should be used in applications based on the NXP MCUXpresso
SDK. The “ampsdk” drivers target automotive-specific MCUs and their respective SDKs.
The “dreg” implementations use a plain C-language access to hardware register addresses
which makes it a universal and the most portable solution. In this case, users are encour-
aged to add more drivers for other communication modules or other respective SDKs and
contribute the code back to NXP for integration.

The low-level drivers defined for the Networking transport enable datagram-oriented UDP
and stream TCP communication. This implementation is demonstrated using the IwIP soft-
ware stack but shall be portable to other TCP/IP stacks. It may sound surprisingly, but also
the Segger J-Link RTT communication driver is linked to the Networking transport (RTT is
stream oriented communication handled similarly to TCP).

Replacing existing drivers For all supported platforms, the driver described in this document
replaces the V2 implementation and also older driver implementations that were available sep-
arately for individual platforms (PC Master SCI drivers).

Clocks, pins, and peripheral initialization The FreeMASTER communication driver is only
responsible for runtime processing of the communication and must be integrated with an user
application code to function properly. The user application code is responsible for general initial-
ization of clock sources, pin multiplexers, and peripheral registers related to the communication
speed. Such initialization should be done before calling the FMSTR_ Init function.

It is recommended to develop the user application using one of the Software Development Kits
(SDKs) available from third parties or directly from NXP, such as MCUXpresso SDK, MCUXpresso
IDE, and related tools. This approach simplifies the general configuration process significantly.

MCUXpresso SDK The MCUXpresso SDK s a software package provided by NXP which contains
the device initialization code, linker files, and software drivers with example applications for the
NXP family of MCUs. The MCUXpresso Config Tools may be used to generate the clock-setup and
pin-multiplexer setup code suitable for the selected processor.

38 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

The MCUXpresso SDK also contains this FreeMASTER communication driver as a “middle-
ware” component which may be downloaded along with the example applications from https:
//mcuxpresso.nxp.com/en/welcome.

MCUXpresso SDK on GitHub The FreeMASTER communication driver is also released as one
of the middleware components of the MCUXpresso SDK on the GitHub. This release enables
direct integration of the FreeMASTER source code Git repository into a target applications in-
cluding Zephyr applications.

Related links:
* The official FreeMASTER middleware repository.

e Online version of this document

FreeMASTER in Zephyr The FreeMASTER middleware repository can be used with MCUX-
presso SDK as well as a Zephyr module. Zephyr-specific samples which include examples of
Kconfig and Device Tree configurations for Serial, USB and Network communications are avail-
able in separate repository. West manifest in this sample repository fetches the full Zephyr pack-
age including the FreeMASTER middleware repository used as a Zephyr module.

Example applications

MCUX SDK Example applications There are several example applications available for each
supported MCU platform.

* fmstr_uart demonstrates a plain serial transmission, typically connecting to a computer’s
physical or virtual COM port. The typical transmission speed is 115200 bps.

» fmstr_can demonstrates CAN bus communication. This requires a suitable CAN interface
connected to the computer and interconnected with the target MCU using a properly ter-
minated CAN bus. The typical transmission speed is 500 kbps. A FreeMASTER-over-CAN
communication plug-in must be used.

fmstr_usb_cdc uses an on-chip USB controller to implement a CDC communication class.
It is connected directly to a computer’s USB port and creates a virtual COM port device. The
typical transmission speed is above 1 Mbps.

fmstr_net demonstrates the Network communication over UDP or TCP protocol. Existing
examples use IwIP stack to implement the communication, but in general, it shall be possi-
ble to use any other TCP/IP stack to achieve the same functionality.

fmstr_wifi is the fmstr_net application modified to use a WiFi network interface instead of
a wired Ethernet connection.

fmstr_rtt demonstrates the communication over SEGGER J-Link RTT interface. Both fm-
str_net and fmstr_rtt examples require the FreeMASTER TCP/UDP communication plug-in
to be used on the PC host side.

fmstr_eonce uses the real-time data unit on the JTAG EOnCE module of the 56F800E family
to implement pseudo-serial communication over the JTAG port. The typical transmission
speed is around 10 kbps. This communication requires FreeMASTER JTAG/EOnCE commu-
nication plug-in.

fmstr_pdbdm uses JTAG or BDM debugging interface to access the target RAM directly
while the CPU is running. Note that such approach can be used with any MCU applica-
tion, even without any special driver code. The computer reads from and writes into the
RAM directly without CPU intervention. The Packet-Driven BDM (PD-BDM) communication
uses the same memory access to exchange command and response frames. With PD-BDM,

1.5. Motor Control 39

https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/user_guide/user_guide.html#multi-session-support

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

the FreeMASTER tool is able to go beyond basic memory read/write operations and ac-
cesses also advanced features like Recorder, TSA, or Pipes. The typical transmission speed
is around 10 kbps. A PD-BDM communication plug-in must be used in FreeMASTER and
configured properly for the selected debugging interface. Note that this communication
cannot be used while a debugging interface is used by a debugger session.

fmstr_any is a special example application which demonstrates how the NXP MCUXpresso
Config Tools can be used to configure pins, clocks, peripherals, interrupts, and even the
FreeMASTER “middleware” driver features in a graphical and user friendly way. The user
can switch between the Serial, CAN, and other ways of communication and generate the
required initialization code automatically.

Zephyr sample spplications Zephyr sample applications demonstrate Kconfig and Device
Tree configuration which configure the FreeMASTER middleware module for a selected com-
munication option (Serial, CAN, Network or RTT).

Refer to readme.md files in each sample directory for description of configuration options re-
quired to implement FreeMASTER connectivity.

Description

This section shows how to add the FreeMASTER Communication Driver into application and how
to configure the connection to the FreeMASTER visualization tool.

Features The FreeMASTER driver implements the FreeMASTER protocol V4 and provides the
following features which may be accessed using the FreeMASTER visualization tool:

Read/write access to any memory location on the target.
Optional password protection of the read, read/write, and read/write/flash access levels.
Atomic bit manipulation on the target memory (bit-wise write access).

Optimal size-aligned access to memory which is also suitable to access the peripheral reg-
ister space.

Oscilloscope access—real-time access to target variables. The sample rate may be limited
by the communication speed.

Recorder— access to the fast transient recorder running on the board as a part of the
FreeMASTER driver. The sample rate is only limited by the MCU CPU speed. The length
of the data recorded depends on the amount of available memory.

Multiple instances of Oscilloscopes and Recorders without the limitation of maximum num-
ber of variables.

Application commands—high-level message delivery from the PC to the application.

TSA tables—describing the data types, variables, files, or hyperlinks exported by the target
application. The TSA newly supports also non-memory mapped resources like external
EEPROM or SD Card files.

Pipes—enabling the buffered stream-oriented data exchange for a general-purpose
terminal-like communication, diagnostic data streaming, or other data exchange.

The FreeMASTER driver features:

Full FreeMASTER protocol V4 implementation with a new V4 style of CRC used.
Layered approach supporting Serial, CAN, Network, PD-BDM, and other transports.

Layered low-level Serial transport driver architecture enabling to select UART, LPUART,
USART, and other physical implementations of serial interfaces, including USB-CDC.

40

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

* Layered low-level CAN transport driver architecture enabling to select FlexCAN, msCAN,
MCAN, and other physical implementations of the CAN interface.

» Layered low-level Networking transport enabling to select TCP, UDP or J-Link RTT commu-
nication.

* TSA support to write-protect memory regions or individual variables and to deny the access
to the unsafe memory.

» The pipe callback handlers are invoked whenever new data is available for reading from
the pipe.

* Two Serial Single-Wire modes of operation are enabled. The “external” mode has the RX
and TX shorted on-board. The “true” single-wire mode interconnects internally when the
MCU or UART modules support it.

The following sections briefly describe all FreeMASTER features implemented by the driver. See
the PC-based FreeMASTER User Manual for more details on how to use the features to monitor,
tune, or control an embedded application.

Board Detection The FreeMASTER protocol V4 defines the standard set of configuration values
which the host PC tool reads to identify the target and to access other target resources properly.
The configuration includes the following parameters:

* Version of the driver and the version of the protocol implemented.

* MTU as the Maximum size of the Transmission Unit (for example; communication buffer
size).

* Application name, description, and version strings.

* Application build date and time as a string.

» Target processor byte ordering (little/big endian).

* Protection level that requires password authentication.
* Number of the Recorder and Oscilloscope instances.

* RAM Base Address for optimized memory access commands.

Memory Read This basic feature enables the host PC to read any data memory location by
specifying the address and size of the required memory area. The device response frame must
be shorter than the MTU to fit into the outgoing communication buffer. To read a device memory
of any size, the host uses the information retrieved during the Board Detection and splits the
large-block request to multiple partial requests.

The driver uses size-aligned operations to read the target memory (for example; uses proper
read-word instruction when an address is aligned to 4 bytes).

Memory Write Similarly to the Memory Read operation, the Memory Write feature enables to
write to any RAM memory location on the target device. A single write command frame must be
shorter than the MTU to fit into the target communication buffer. Larger requests must be split
into smaller ones.

The driver uses size-aligned operations to write to the target memory (for example; uses proper
write-word instruction when an address is aligned to 4 bytes).

1.5. Motor Control 1

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Masked Memory Write Toimplement the write access to a single bit or a group of bits of target
variables, the Masked Memory Write feature is available in the FreeMASTER protocol and it is
supported by the driver using the Read-Modify-Write approach.

Be careful when writing to bit fields of volatile variables that are also modified in an application
interrupt. The interrupt may be serviced in the middle of a read-modify-write operation and it
may cause data corruption.

Oscilloscope The protocol and driver enables any number of variables to be read at once with
a single request from the host. This feature is called Oscilloscope and the FreeMASTER tool uses
it to display a real-time graph of variable values.

The driver can be configured to support any number of Oscilloscope instances and enable simul-
taneously running graphs to be displayed on the host computer screen.

Recorder The protocol enables the host to select target variables whose values are then period-
ically recorded into a dedicated on-board memory buffer. After such data sampling stops (either
on a host request or by evaluating a threshold-crossing condition), the data buffer is downloaded
to the host and displayed as a graph. The data sampling rate is not limited by the speed of the
communication line, so it enables displaying the variable transitions in a very high resolution.

The driver can be configured to support multiple Recorder instances and enable multiple
recorder graphs to be displayed on the host screen. Having multiple recorders also enables set-
ting the recording point differently for each instance. For example; one instance may be record-
ing data in a general timer interrupt while another instance may record at a specific control
algorithm time in the PWM interrupt.

TSA With the TSA feature, data types and variables can be described directly in the application
source code. Such information is later provided to the FreeMASTER tool which may use it instead
of reading symbol data from the application ELF executable file.

The information is encoded as so-called TSA tables which become direct part of the application
code. The TSA tables contain descriptors of variables that shall be visible to the host tool. The
descriptors can describe the memory areas by specifying the address and size of the memory
block or more conveniently using the C variable names directly. Different set of TSA descriptors
can be used to encode information about the structure types, unions, enumerations, or arrays.

The driver also supports special types of TSA table entries to describe user resources like external
EEPROM and SD Card files, memory-mapped files, virtual directories, web URL hyperlinks, and
constant enumerations.

TSA Safety When the TSA is enabled in the application, the TSA Safety can be enabled and
validate the memory accesses directly by the embedded-side driver. When the TSA Safety is
turned on, any memory request received from the host is validated and accepted only if it belongs
to a TSA-described object. The TSA entries can be declared as Read-Write or Read-Only so that
the driver can actively deny the write access to the Read-Only objects.

Application commands The Application Commands are high-level messages that can be de-
livered from the PC Host to the embedded application for further processing. The embedded
application can either poll the status, or be called back when a new Application Command ar-
rives to be processed. After the embedded application acknowledges that the command is han-
dled, the host receives the Result Code and reads the other return data from memory. Both the
Application Commands and the Result Codes are specific to a given application and it is user’s
responsibility to define them. The FreeMASTER protocol and the FreeMASTER driver only imple-
ment the delivery channel and a set of API calls to enable the Application Command processing
in general.

42 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Pipes The Pipes enable buffered and stream-oriented data exchange between the PC Host and
the target application. Any pipe can be written to and read from at both ends (either on the
PC or the MCU). The data transmission is acknowledged using the special FreeMASTER protocol
commands. It is guaranteed that the data bytes are delivered from the writer to the reader in a
proper order and without losses.

Serial single-wire operation The MCU Serial Communication Driver natively supports normal
dual-wire operation. Because the protocol is half-duplex only, the driver can also operate in two
single-wire modes:

+ “External” single-wire operation where the Receiver and Transmitter pins are shorted on
the board. This mode is supported by default in the MCU driver because the Receiver and
Transmitter units are enabled or disabled whenever needed. It is also easy to extend this
operation for the RS485 communication.

* “True” single-wire mode which uses only a single pin and the direction switching is made
by the UART module. This mode of operation must be enabled by defining the FM-
STR_SERIAL_SINGLEWIRE configuration option.

Multi-session support With networking interface it is possible for multiple clients to access
the target MCU simultaneously. Reading and writing of target memory is processed atomically
so there is no risk of data corruption. The state-full resources such as Recorders or Oscilloscopes
are locked to a client session upon first use and access is denied to other clients until lock is
released..

Zephyr-specific

Dedicated communication task FreeMASTER communication may runisolated in a dedicated
task. The task automates the FMSTR_Init and FMSTR_Poll calls together with periodic activities
enabling the FreeMASTER UI to fetch information about tasks and CPU utilization. The task can
be started automatically or manually, and it must be assigned a priority to be able to react on
interrupts and other communication events. Refer to Zephyr FreeMASTER sample applications
which all use this communication task.

Zephyr shell and logging over FreeMASTER pipe FreeMASTER implements a shell backend
which may use FreeMASTER pipe as a I/O terminal and logging output. Refer to Zephyr FreeMAS-
TER sample applications which all use this feature.

Automatic TSA tables TSA tables can be declared as “automatic” in Zephyr which make them
automatically registered in the table list. This may be very useful when there are many TSA
tables or when the tables are defined in different (often unrelated) libraries linked together. In
this case user does not need to build a list of all tables manually.

Driver files The driver source files can be found in a top-level src folder, further divided into
the sub-folders:

* src/platforms platform-specific folder—one folder exists for each supported processor
platform (for example; 32-bit Little Endian platform). Each such folder contains a platform
header file with data types and a code which implements the potentially platform-specific
operations, such as aligned memory access.

» src¢/common folder—contains the common driver source files shared by the driver for all
supported platforms. All the .c files must be added to the project, compiled, and linked
together with the application.

1.5. Motor Control 43

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

— freemasterh - master driver header file, which declares the common data types,

macros, and prototypes of the FreeMASTER driver API functions.

- freemaster_cfg.h.example - this file can serve as an example of the FreeMASTER driver

configuration file. Save this file into a project source code folder and rename it to
freemaster_cfg.h. The FreeMASTER driver code includes this file to get the project-
specific configuration options and to optimize the compilation of the driver.

— freemaster_defcfg.h - defines the default values for each FreeMASTER configuration

option if the option is not set in the freemaster_cfg.h file.

— freemaster_protocol.h - defines the FreeMASTER protocol constants used internally by

the driver.

— freemaster_protocol.c - implements the FreeMASTER protocol decoder and handles the

basic Get Configuration Value, Memory Read, and Memory Write commands.

— freemaster_rec.c - handles the Recorder-specific commands and implements the

Recorder sampling and triggering routines. When the Recorder is disabled by the
FreeMASTER driver configuration file, this file only compiles to empty API functions.

— freemaster_scope.c - handles the Oscilloscope-specific commands. If the Oscilloscope is

disabled by the FreeMASTER driver configuration file, this file compiles as void.

— freemaster_pipes.c - implements the Pipes functionality when the Pipes feature is en-

abled.

— freemaster_appcmd.c - handles the communication commands used to deliver and exe-

cute the Application Commands within the context of the embedded application. When
the Application Commands are disabled by the FreeMASTER driver configuration file,
this file only compiles to empty API functions.

— freemaster_tsa.c - handles the commands specific to the TSA feature. This feature en-

ables the FreeMASTER host tool to obtain the TSA memory descriptors declared in the
embedded application. If the TSA is disabled by the FreeMASTER driver configuration
file, this file compiles as void.

— freemaster_tsa.h - contains the declaration of the macros used to define the TSA mem-

ory descriptors. This file is indirectly included into the user application code (via
freemaster.h).

— freemaster_sha.c - implements the SHA-1 hash code used in the password authentica-

tion algorithm.

— freemaster_private.h - contains the declarations of functions and data types used in-

ternally in the driver. It also contains the C pre-processor statements to perform the
compile-time verification of the user configuration provided in the freemaster_cfg.h
file.

— freemaster_serial.c - implements the serial protocol logic including the CRC, FIFO queu-

ing, and other communication-related operations. This code calls the functions of the
low-level communication driver indirectly via a character-oriented API exported by
the specific low-level driver.

— freemaster_serial.h - defines the low-level character-oriented Serial AP

— freemaster_can.c - implements the CAN protocol logic including the CAN message

preparation, signalling using the first data byte in the CAN frame, and other
communication-related operations. This code calls the functions of the low-level com-
munication driver indirectly via a message-oriented API exported by the specific low-
level driver.

— freemaster_can.h - defines the low-level message-oriented CAN APIL.

— freemaster_net.c - implements the Network protocol transport logic including multiple

session management code.

44

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

— freemaster_net.h - definitions related to the Network transport.

— freemaster_pdbdm.c - implements the packet-driven BDM communication buffer and
other communication-related operations.

— freemaster_utils.c - aligned memory copy routines, circular buffer management and
other utility functions

— freemaster_utils.h - definitions related to utility code.

* src/drivers/[sdk]/serial - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

— freemaster_serial XXX.c and .h - implement low-level access to the communication pe-
ripheral registers. Different files exist for the UART, LPUART, USART, and other kinds
of Serial communication modules.

* src/drivers/[sdk]/can - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

— freemaster_XXX.c and .h - implement low-level access to the communication peripheral
registers. Different files exist for the FlexCAN, msCAN, MCAN, and other kinds of CAN
communication modules.

* src/drivers/[sdk]/network - contains low-level code adapting the FreeMASTER Network
transport to an underlying TCP/IP or RTT stack.

— freemaster_net_lwip_tcp.c and _udp.c - default networking implementation of TCP and
UDP transports using IwIP stack.

— freemaster_net_segger_rtt.c - implementation of network transport using Segger J-Link
RTT interface

Driver configuration The driver is configured using a single header file (freemaster._cfg.h).
Create this file and save it together with other project source files before compiling the driver
code. All FreeMASTER driver source files include the freemaster_cfg.h file and use the macros
defined here for the conditional and parameterized compilation. The C compiler must locate the
configuration file when compiling the driver files. Typically, it can be achieved by putting this
file into a folder where the other project-specific included files are stored.

As a starting point to create the configuration file, get the freemaster_cfg.h.example file, rename
it to freemaster_cfg.h, and save it into the project area.

Note: It is NOT recommended to leave the freemaster_cfg.h file in the FreeMASTER driver source
code folder. The configuration file must be placed at a project-specific location, so that it does not
affect the other applications that use the same driver.

Configurable items This section describes the configuration options which can be defined in
freemaster_cfg.h.

Interrupt modes

#define FMSTR_LONG_INTR [0[1]
#define FMSTR_SHORT INTR [0[1]
#define FMSTR_POLL_DRIVEN [0[1]

Value Type boolean (0 or 1)

1.5. Motor Control 45

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Description Exactly one of the three macros must be defined to non-zero. The others must be
defined to zero or left undefined. The non-zero-defined constant selects the interrupt mode of
the driver. See Driver interrupt modes.

* FMSTR_LONG_INTR — long interrupt mode
* FMSTR_SHORT_ INTR — short interrupt mode
* FMSTR,_ POLL_DRIVEN — poll-driven mode

Note: Some options may not be supported by all communication interfaces. For example, the
FMSTR_SHORT_INTR option is not supported by the USB_CDC interface.

Protocol transport
#define FMSTR,_ TRANSPORT [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER source
code. Specify one of existing instances to make use of the protocol transport.

Description Use one of the pre-defined constants, as implemented by the FreeMASTER code.
The current driver supports the following transports:

* FMSTR_SERIAL - serial communication protocol

* FMSTR_CAN - using CAN communication

* FMSTR_PDBDM - using packet-driven BDM communication

* FMSTR_NET - network communication using TCP or UDP protocol

Serial transport This section describes configuration parameters used when serial transport
is used:

#define FMSTR_TRANSPORT FMSTR__SERIAL

FMSTR_SERIAL_DRV Select what low-level driver interface will be used when implementing
the Serial communication.

#define FMSTR_SERIAL DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing serial driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/serial implementation):

* FMSTR_SERIAL_MCUX_UART - UART driver
FMSTR_SERIAL_MCUX_LPUART - LPUART driver
FMSTR_SERIAL_MCUX_USART - USART driver
FMSTR_SERIAL_MCUX_ MINIUSART - miniUSART driver
FMSTR_SERIAL_MCUX_QSCI - DSC QSCI driver

FMSTR_SERIAL_MCUX_USB - USB/CDC class driver (also see code in the /sup-
port/mcuxsdk_usb folder)

46 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

* FMSTR_SERIAL_56F800E_EONCE - DSC JTAG EOnCE driver

Other SDKs or BSPs may define custom low-level driver interface structure which may be used
as FMSTR_SERIAL_DRV. For example:

* FMSTR_SERIAL_DREG_UART - demonstrates the low-level interface implemented without
the MCUXpresso SDK and using direct access to peripheral registers.

FMSTR_SERIAL_BASE
#define FMSTR _SERIAL BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the UART, LPUART, USART, or other serial peripheral
module to be used for the communication. This value is not defined by default. User application
should call FMSTR_ SetSerialBaseAddress() to select the peripheral module.

FMSTR_COMM_BUFFER SIZE
#define FMSTR.__ COMM_BUFFER_ SIZE [number]

Value Type 0 or a value in range 32...255

Description Specify the size of the communication buffer to be allocated by the driver.
Default value, which suits all driver features, is used when this option is defined as 0.

FMSTR_COMM_RQUEUE_SIZE
#define FMSTR,__ COMM__ RQUEUE_ SIZE [number]

Value Type Value inrange 0...255

Description Specify the size of the FIFO receiver queue used to quickly receive and store char-
acters in the FMSTR_SHORT_INTR interrupt mode.
The default value is 32 B.

FMSTR_SERIAL_SINGLEWIRE
#define FMSTR_ SERIAL_SINGLEWIRE [0[1]

Value Type Boolean O or 1.

Description Set to non-zero to enable the “True” single-wire mode which uses a single MCU
pin to communicate. The low-level driver enables the pin direction switching when the MCU
peripheral supports it.

1.5. Motor Control 47

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

CAN Bus transport This section describes configuration parameters used when CAN transport
is used:

#define FMSTR_ TRANSPORT FMSTR,__CAN

FMSTR_CAN_DRV Select what low-level driver interface will be used when implementing the
CAN communication.

#define FMSTR_CAN_ DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing CAN driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/can implementation):

* FMSTR_CAN_MCUX_FLEXCAN - FlexCAN driver
FMSTR_CAN_MCUX_MCAN - MCAN driver
FMSTR_CAN_MCUX_MSCAN - msCAN driver
FMSTR_CAN_MCUX _DSCFLEXCAN - DSC FlexCAN driver
FMSTR_CAN_MCUX _DSCMSCAN - DSC msCAN driver

Other SDKs or BSPs may define the custom low-level driver interface structure which may be
used as FMSTR_CAN_DRV.

FMSTR_CAN_BASE
#define FMSTR,_ CAN_ BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the FlexCAN, msCAN, or other CAN peripheral module
to be used for the communication. This value is not defined by default. User application should
call FMSTR, SetCanBaseAddress() to select the peripheral module.

FMSTR_CAN_CMDID
#define FMSTR,_ CAN__ CMDID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for FreeMASTER commands (direction from PC Host
tool to target application). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Default value is 0x7AA.

FMSTR_CAN_RSPID
#define FMSTR_CAN_RSPID [number]

48 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for responding messages (direction from target ap-
plication to PC Host tool). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Note that both CMDID and RSPID values may be the same. Default value
is OX7AA.

FMSTR_FLEXCAN_TXMB
#define FMSTR_FLEXCAN TXMB [number]

Value Type Number in range of 0..N where N is number of CAN message-buffers supported by
HW module.

Description Onlyused when the FlexCAN low-level driver is used. Define the FlexCAN message
buffer for CAN frame transmission. Default value is 0.

FMSTR_FLEXCAN_RXMB
#define FMSTR,_FLEXCAN__RXMB [number]

Value Type Number in range of 0..N where N is number of CAN message-buffers supported by
HW module.

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN mes-
sage buffer for CAN frame reception. Note that the FreeMASTER driver may also operate with a
common message buffer used by both TX and RX directions. Default value is 1.

Network transport This section describes configuration parameters used when Network
transport is used:

#define FMSTR_TRANSPORT FMSTR,_NET

FMSTR_NET_DRV Select network interface implementation.

#define FMSTR_NET DRV [identifier]

Value Type Identifiers are structure instance names defined in FreeMASTER drivers code.
Specify one of existing NET driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/network implementation):

« FMSTR_NET_LWIP_TCP - TCP communication using IwIP stack
* FMSTR_NET_LWIP_UDP - UDP communication using IlwIP stack
* FMSTR_NET_SEGGER_RTT - Communication using SEGGER J-Link RTT interface

1.5. Motor Control 49

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Other SDKs or BSPs may define the custom networking interface which may be used as FM-
STR_CAN_DRV.

Add another row below:

FMSTR_NET_PORT
#define FMSTR_NET PORT [number]

Value Type TCP or UDP port number (short integer)

Description Specifies the server port number used by TCP or UDP protocols.

FMSTR_NET BLOCKING_TIMEOUT
#define FMSTR,_ NET_BLOCKING__TIMEOUT [number]

Value Type Timeout as number of milliseconds

Description This value specifies a timeout in milliseconds for which the network socket op-
erations may block the execution inside FMSTR_Poll. This may be set high (e.g. 250) when a
dedicated RTOS task is used to handle FreeMASTER protocol polling. Set to a lower value when
the polling task is also responsible for other operations. Set to 0 to attempt to use non-blocking
socket operations.

FMSTR_NET_AUTODISCOVERY
#define FMSTR_ NET _AUTODISCOVERY [0]1]

Value Type BooleanOor 1.

Description This option enables the FreeMASTER driver to use a separate UDP socket to broad-
cast auto-discovery messages to network. This helps the FreeMASTER tool to discover the target
device address, port and protocol options.

Debugging options

FMSTR_DISABLE
#define FMSTR_DISABLE [0[1]

Value Type boolean (0 or 1)

Description Define as non-zero to disable all FreeMASTER features, exclude the driver code
from build, and compile all its API functions empty. This may be useful to remove FreeMASTER
without modifying any application source code. Default value is 0 (false).

50 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

FMSTR_DEBUG_TX
#define FMSTR_ DEBUG_ TX [0|1]

Value Type BooleanOor 1.

Description Define as non-zero to enable the driver to periodically transmit test frames out on
the selected communication interface (SCI or CAN). With the debug transmission enabled, it is
simpler to detect problems in the baudrate or other communication configuration settings.

The test frames are transmitted until the first valid command frame is received from the PC Host
tool. The test frame is a valid error status frame, as defined by the protocol format. On the serial
line, the test frame consists of three printable characters (+©W) which are easy to capture using
the serial terminal tools.

This feature requires the FMSTR_Poll() function to be called periodically. Default value is 0 (false).

FMSTR_APPLICATION_STR
#define FMSTR APPLICATION STR

Value Type String.

Description Name of the application visible in FreeMASTER host application.

Memory access

FMSTR_USE_READMEM
#define FMSTR. USE_READMEM [0[1]

Value Type BooleanOor 1.

Description Define as non-zero to implement the Memory Read command and enable
FreeMASTER to have read access to memory and variables. The access can be further restricted
by using a TSA feature.

Default value is 1 (true).

FMSTR_USE_WRITEMEM
#define FMSTR, USE_ WRITEMEM [0|1]

Value Type Boolean O or 1.

Description Define as non-zero to implement the Memory Write command.
The default value is 1 (true).

Oscilloscope options

1.5. Motor Control 51

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

FMSTR_USE_SCOPE
#define FMSTR_USE_SCOPE [number]

Value Type Integer number.

Description Number of Oscilloscope instances to be supported. Set to 0 to disable the Oscillo-
scope feature.
Default value is 0.

FMSTR_MAX SCOPE_VARS
#define FMSTR,_ MAX_ SCOPE_ VARS [number]

Value Type Integer number larger than 2.

Description Number of variables to be supported by each Oscilloscope instance.
Default value is 8.

Recorder options

FMSTR _USE_RECORDER
#define FMSTR,_ USE_RECORDER [number]

Value Type Integer number.

Description Number of Recorder instances to be supported. Set to 0 to disable the Recorder
feature.
Default value is 0.

FMSTR_REC_BUFF _SIZE
#define FMSTR_REC_BUFF_SIZE [number]

Value Type Integer number larger than 2.

Description Defines the size of the memory buffer used by the Recorder instance #0.
Default: not defined, user shall call ‘FMSTR_RecorderCreate()* API function to specify this pa-
rameter in run time.

FMSTR_REC_TIMEBASE
#define FMSTR,_ REC_TIMEBASE [time specification]

Value Type Number (nanoseconds time).

52 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Description Defines the base sampling rate in nanoseconds (sampling speed) Recorder in-
stance #0.

Use one of the following macros:
« FMSTR_ REC_BASE_SECONDS(x)
* FMSTR_REC_BASE_MILLISEC(x)
« FMSTR_REC_BASE_MICROSEC(x)
* FMSTR. REC_BASE NANOSEC(x)

Default: not defined, user shall call ‘FMSTR_RecorderCreate()* API function to specify this pa-
rameter in run time.

FMSTR_REC_FLOAT_TRIG
#define FMSTR_REC_FLOAT TRIG [0]1]

Value Type Boolean O or 1.

Description Define as non-zero to implement the floating-point triggering. Be aware that
floating-point triggering may grow the code size by linking the floating-point standard library.

Default value is 0 (false).

Application Commands options

FMSTR_USE_APPCMD
#define FMSTR_USE_APPCMD [0|1]

Value Type Boolean O or 1.

Description Define as non-zero to implement the Application Commands feature.
Default value is 0 (false).

FMSTR_APPCMD_BUFF_SIZE
#define FMSTR__APPCMD_ BUFF_SIZE [size]

Value Type Numeric buffer size in range 1..255

Description The size of the Application Command data buffer allocated by the driver. The
buffer stores the (optional) parameters of the Application Command which waits to be processed.

FMSTR_MAX_APPCMD_CALLS
#define FMSTR, MAX_APPCMD_ CALLS [number]

Value Type Number in range 0..255

1.5. Motor Control 53

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Description The number of different Application Commands that can be assigned a callback
handler function using FMSTR_ RegisterAppCmdCall(). Default value is 0.

TSA options

FMSTR_USE_TSA
#define FMSTR._USE_TSA [0|1]

Value Type Boolean O or 1.

Description Enable the FreeMASTER TSA feature to be used. With this option enabled, the TSA
tables defined in the applications are made available to the FreeMASTER host tool.
Default value is 0 (false).

FMSTR_USE_TSA_SAFETY
#define FMSTR_USE_TSA_SAFETY [0|1]

Value Type Boolean O or 1.

Description Enable the memory access validation in the FreeMASTER driver. With this option,
the host tool is not able to access the memory which is not described by at least one TSA descrip-
tor. Also a write access is denied for objects defined as read-only in TSA tables.

Default value is 0 (false).

FMSTR_USE_TSA_INROM
#define FMSTR.__USE_TSA_INROM [0|1]

Value Type BooleanOor 1.

Description Declare all TSA descriptors as const, which enables the linker to put the data into
the flash memory. The actual result depends on linker settings or the linker commands used in
the project.

Default value is 0 (false).

FMSTR_USE_TSA_DYNAMIC
#define FMSTR_USE_TSA_DYNAMIC [0[1]

Value Type Boolean O or 1.

Description Enable runtime-defined TSA entries to be added to the TSA table by the FM-
STR,_ SetUpTsaBuff() and FMSTR, TsaAddVar() functions.
Default value is 0 (false).

54 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Pipes options

FMSTR_USE_PIPES
#define FMSTR._USE_ PIPES [0]1]

Value Type Boolean O or 1.

Description Enable the FreeMASTER Pipes feature to be used.
Default value is 0 (false).

FMSTR_MAX PIPES_COUNT
#define FMSTR_ MAX_ PIPES COUNT [number]

Value Type Number in range 1..63.

Description The number of simultaneous pipe connections to support.
The default value is 1.

Driver interrupt modes To implement the communication, the FreeMASTER driver handles
the Serial or CAN module’s receive and transmit requests. Use the freemaster_cfg.h configuration
file to select whether the driver processes the communication automatically in the interrupt
service routine handler or if it only polls the status of the module (typically during the application
idle time).

This section describes each of the interrupt mode in more details.

Completely Interrupt-Driven operation Activated using:

#define FMSTR _LONG_INTR 1

In this mode, both the communication and the FreeMASTER protocol decoding is done in the
FMSTR_Seriallsr, FMSTR_Canlsr, or other interrupt service routine. Because the protocol execu-
tion may be a lengthy task (especially with the TSA-Safety enabled) it is recommended to use this
mode only if the interrupt prioritization scheme is possible in the application and the FreeMAS-
TER interrupt is assigned to a lower (the lowest) priority.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_Seriallsr or FM-
STR_CanlIsr functions from that handler.

Mixed Interrupt and Polling Modes Activated using:

#define FMSTR_SHORT_ INTR 1

In this mode, the communication processing time is split between the interrupt routine and the
main application loop or task. The raw communication is handled by the FMSTR_Seriallsr;, FM-
STR_Canlsr, or other interrupt service routine, while the protocol decoding and execution is han-
dled by the FMSTR Poll routine. Call FMSTR _Poll during the idle time in the application main
loop.

1.5. Motor Control 55

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

The interrupt processing in this mode is relatively fast and deterministic. Upon a serial-receive
event, the received character is only placed into a FIFO-like queue and it is not further processed.
Upon a CAN receive event, the received frame is stored into a receive buffer. When transmitting,
the characters are fetched from the prepared transmit buffer.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR Seriallsr or FM-
STR_Canlsr functions from that handler.

When the serial interface is used as the serial communication interface, ensure that the FM-
STR_Poll function is called at least once per N character time periods. N is the length of the
FreeMASTER FIFO queue (FMSTR_COMM_RQUEUE_SIZE) and the character time is the time
needed to transmit or receive a single byte over the SCI line.

Completely Poll-driven
#define FMSTR,_ POLL_ DRIVEN 1

In this mode, both the communication and the FreeMASTER protocol decoding are done in the
FMSTR_Pollroutine. No interrupts are needed and the FMSTR_Seriallsr, FMSTR_Canlsr, and sim-
ilar handlers compile to an empty code.

When using this mode, ensure that the FMSTR_Poll function is called by the application at least
once per the serial “character time” which is the time needed to transmit or receive a single
character.

In the latter two modes (FMSTR_SHORT_INTR and FMSTR_POLI_DRIVEN), the protocol handling
takes place in the FMSTR_Poll routine. An application interrupt can occur in the middle of the
Read Memory or Write Memory commands’ execution and corrupt the variable being accessed
by the FreeMASTER driver. In these two modes, some issues or glitches may occur when using
FreeMASTER to visualize or monitor volatile variables modified in interrupt servicing code.

The same issue may appear even in the full interrupt mode (FMSTR_LONG_INTR), if volatile vari-
ables are modified in the interrupt code with a priority higher than the priority of the commu-
nication interrupt.

Data types Simple portability was one of the main requirements when writing the FreeMAS-
TER driver. This is why the driver code uses the privately-declared data types and the vast ma-
jority of the platform-dependent code is separated in the platform-dependent source files. The
data types used in the driver API are all defined in the platform-specific header file.

To prevent name conflicts with the symbols used in the application, all data types, macros, and
functions have the FMSTR_ prefix. The only global variables used in the driver are the transport
and low-level API structures exported from the driver-implementation layer to upper layers.
Other than that, all private variables are declared as static and named using the fmstr_ prefix.

Communication interface initialization The FreeMASTER driver does not perform neither
the initialization nor the configuration of the peripheral module that it uses to communicate. It
is the application startup code responsibility to configure the communication module before the
FreeMASTER driver is initialized by the FMSTR_Init call.

When the Serial communication module is used as the FreeMASTER communication interface,
configure the UART receive and transmit pins, the serial communication baud rate, parity (no-
parity), the character length (eight bits), and the number of stop bits (one) before initializing the
FreeMASTER driver. For either the long or the short interrupt modes of the driver (see Driver
interrupt modes), configure the interrupt controller and register an application-specific inter-
rupt handler for all interrupt sources related to the selected serial peripheral module. Call the
FMSTR_Seriallsr function from the application handler.

56 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

When a CAN module is used as the FreeMASTER communication interface, configure the CAN re-
ceive and transmit pins and the CAN module bit rate before initializing the FreeMASTER driver.
For either the long or the short interrupt modes of the driver (see Driver interrupt modes), con-
figure the interrupt controller and register an application-specific interrupt handler for all in-
terrupt sources related to the selected CAN peripheral module. Call the FMSTR_Canlsr function
from the application handler.

Note: Itis not necessary to enable or unmask the serial nor the CAN interrupts before initializing
the FreeMASTER driver. The driver enables or disables the interrupts and communication lines,
as required during runtime.

FreeMASTER Recorder calls When using the FreeMASTER Recorder in the application (FM-
STR_USE_RECORDER > 0), call the FMSTR_RecorderCreate function early after FMSTR_Init to set
up each recorder instance to be used in the application. Then call the FMSTR_Recorder func-
tion periodically in the code where the data recording should occur. A typical place to call the
Recorder routine is at the timer or PWM interrupts, but it can be anywhere else. The exam-
ple applications provided together with the driver code call the FMSTR_Recorder in the main
application loop.

In applications where FMSTR_Recorder is called periodically with a constant period, specify the
period in the Recorder configuration structure before calling FMSTR_RecorderCreate. This set-
ting enables the PC Host FreeMASTER tool to display the X-axis of the Recorder graph properly
scaled for the time domain.

Driver usage Start using or evaluating FreeMASTER by opening some of the example applica-
tions available in the driver setup package.

Follow these steps to enable the basic FreeMASTER connectivity in the application:

» Make sure that all *c files of the FreeMASTER driver from the
src/commony/platforms/[your_platform] folder are a part of the project. See Driver files
for more details.

* Configure the FreeMASTER driver by creating or editing the freemaster_cfg.h file and by
saving it into the application project directory. See Driver configuration for more details.

* Include the freemaster.h file into any application source file that makes the FreeMASTER
API calls.

* Initialize the Serial or CAN modules. Set the baud rate, parity, and other parameters of
the communication. Do not enable the communication interrupts in the interrupt mask
registers.

* For the FMSTR_LONG_INTR and FMSTR_SHORT_INTR modes, install the application-
specific interrupt routine and call the FMSTR_Seriallsr or FMSTR_Canlsr functions from
this handler.

* Call the FMSTR_Init function early on in the application initialization code.

e Call the FMSTR_RecorderCreate functions for each Recorder instance to enable the
Recorder feature.

* In the main application loop, call the FMSTR_Poll API function periodically when the appli-
cation is idle.

* For the FMSTR_SHORT_INTR and FMSTR_LONG_INTR modes, enable the interrupts globally
so that the interrupts can be handled by the CPU.

Communication troubleshooting The most common problem that causes communication is-
sues is a wrong baud rate setting or a wrong pin multiplexer setting of the target MCU. When

1.5. Motor Control 57

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

a communication between the PC Host running FreeMASTER and the target MCU cannot be es-
tablished, try enabling the FMSTR_DEBUG_TX option in the freemaster_cfg.h file and call the FM-
STR_Poll function periodically in the main application task loop.

With this feature enabled, the FreeMASTER driver periodically transmits a test frame through
the Serial or CAN lines. Use a logic analyzer or an oscilloscope to monitor the signals at the
communication pins of the CPU device to examine whether the bit rate and signal polarity are
configured properly.

Driver API

This section describes the driver Application Programmers’ Interface (API) needed to initialize
and use the FreeMASTER serial communication driver.

Control API There are three key functions to initialize and use the driver.

FMSTR_Init

Prototype
FMSTR,_ BOOL FMSTR, Init(void);

* Declaration: freemasterh

* Implementation: freemaster_protocol.c

Description This function initializes the internal variables of the FreeMASTER driver and en-
ables the communication interface. This function does not change the configuration of the se-
lected communication module. The hardware module must be initialized before the FMSTR_Init
function is called.

A call to this function must occur before calling any other FreeMASTER driver API functions.

FMSTR _Poll

Prototype
void FMSTR.__Poll(void);

* Declaration: freemasterh

* Implementation: freemaster_protocol.c

Description In the poll-driven or short interrupt modes, this function handles the protocol
decoding and execution (see Driver interrupt modes). In the poll-driven mode, this function also
handles the communication interface with the PC. Typically, the FMSTR_Poll function is called
during the “idle” time in the main application task loop.

To prevent the receive data overflow (loss) on a serial interface, make sure that the FMSTR_Poll
function is called at least once per the time calculated as:

N * Tchar

where:

58 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

* N is equal to the length of the receive FIFO queue (configured by the FM-
STR_COMM_RQUEUE_SIZE macro). N is 1 for the poll-driven mode.

* Tchar is the character time, which is the time needed to transmit or receive a single byte
over the SCI line.

Note: In the long interrupt mode, this function typically compiles as an empty function and can
still be called. It is worthwhile to call this function regardless of the interrupt mode used in
the application. This approach enables a convenient switching between the different interrupt
modes only by changing the configuration macros in the freemaster_cfg.h file.

FMSTR Seriallsr /| FMSTR_Canlsr

Prototype
void FMSTR,_ Seriallsr(void);
void FMSTR,__ Canlsr(void);
* Declaration: freemaster.h

» Implementation: hw-specific low-level driver C file

Description This function contains the interrupt-processing code of the FreeMASTER driver.
In long or short interrupt modes (see Driver interrupt modes), this function must be called from
the application interrupt service routine registered for the communication interrupt vector. On
platforms where the communication module uses multiple interrupt vectors, the application
should register a handler for all vectors and call this function at each interrupt.

Note: In a poll-driven mode, this function is compiled as an empty function and does not have
to be used.

Recorder API

FMSTR_RecorderCreate

Prototype
FMSTR,_ BOOL FMSTR,_ RecorderCreate(FMSTR_ INDEX recIndex, FMSTR,_ REC_ BUFF* buffCfg);

* Declaration: freemasterh

* Implementation: freemaster_rec.c

Description This function registers a recorder instance and enables it to be used by the PC
Host tool. Call this function for all recorder instances from 0 to the maximum number de-
fined by the FMSTR_USE_RECORDER configuration option (minus one). An exception to this
requirement is the recorder of instance 0 which may be automatically configured by FM-
STR_Init when the freemaster_cfg.h configuration file defines the FMSTR_REC_BUFF _SIZE and
FMSTR_REC_TIMEBASE options.

For more information, see Configurable items.

FMSTR_Recorder

1.5. Motor Control 59

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Prototype
void FMSTR_ Recorder(FMSTR_INDEX recIndex);

* Declaration: freemasterh

 Implementation: freemaster_rec.c

Description This function takes a sample of the variables being recorded using the FreeMAS-
TER Recorder instance recIndex. If the selected Recorder is not active when the FMSTR_Recorder
function is being called, the function returns immediately. When the Recorder is active, the val-
ues of the variables being recorded are copied into the recorder buffer and the trigger conditions
are evaluated.

If a trigger condition is satisfied, the Recorder enters the post-trigger mode, where it counts down
the follow-up samples (number of FMSTR_Recorder function calls) and de-activates the Recorder
when the required post-trigger samples are finished.

The FMSTR_Recorder function is typically called in the timer or PWM interrupt service routines.
This function can also be called in the application main loop (for testing purposes).

FMSTR_RecorderTrigger

Prototype
void FMSTR,_ RecorderTrigger(FMSTR__INDEX recIndex);

* Declaration: freemaster.h

« Implementation: freemaster_rec.c

Description This function forces the Recorder trigger condition to happen, which causes the
Recorder to be automatically deactivated after the post-trigger samples are sampled. Use this
function in the application code for programmatic control over the Recorder triggering. This
can be useful when a more complex triggering conditions need to be used.

Fast Recorder API The Fast Recorder feature is not available in the FreeMASTER driver version
3. This feature was heavily dependent on the target platform and it was only available for the
56F8xxxx DSCs.

TSA Tables When the TSA is enabled in the FreeMASTER driver configuration file (by setting
the FMSTR_USE_TSA macro to a non-zero value), it defines the so-called TSA tables in the appli-
cation. This section describes the macros that must to be used to define the TSA tables.

There can be any number of TSA tables spread across the application source files. There must
be always exactly one TSA Table List defined, which informs the FreeMASTER driver about the
active TSA tables.

When there is at least one TSA table and one TSA Table List defined in the application, the TSA
information automatically appears in the FreeMASTER symbols list. The symbols can then be
used to create FreeMASTER variables for visualization or control.

60 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

TSA table definition The TSA table describes the static or global variables together with their
address, size, type, and access-protection information. If the TSA-described variables are of a
structure type, the TSA table may also describe this type and provide an access to the individual
structure members of the variable.

The TSA table definition begins with the FMSTR_TSA_TABLE_BEGIN macro with a table_id iden-
tifying the table. The table_id shall be a valid C-langiage symbol.

FMSTR,_ TSA_TABLE_BEGIN(table_ id)

After this opening macro, the TSA descriptors are placed using these macros:

/* Adding variable descriptors */
FMSTR,_TSA_RW_ VAR(name, type) /* read/write variable entry */
FMSTR,__ TSA_RO_ VAR(name, type) /* read-only variable entry */

/* Description of complex data types */
FMSTR_TSA_STRUCT(struct_name) /* structure or union type entry */
FMSTR,_ TSA_MEMBER(struct_name, member_ name, type) /* structure member entry */

/* Memory blocks */
FMSTR,_ TSA_RW_ MEM (name, type, address, size) /* read/write memory block */
FMSTR,_ TSA_RO_ MEM(name, type, address, size) /* read-only memory block */

The table is closed using the FMSTR_TSA_TABLE_END macro:

FMSTR_TSA_TABLE_END()

TSA descriptor parameters The TSA descriptor macros accept these parameters:

* name — variable name. The variable must be defined before the TSA descriptor references
it.

* type — variable or member type. Only one of the pre-defined type constants may be used
(see below).

* struct_name — structure type name. The type must be defined (typedef) before the TSA
descriptor references it.

*» member_name — structure member name.

Note: The structure member descriptors (FMSTR_TSA_MEMBER) must immediately follow the
parent structure descriptor (FMSTR_TSA_STRUCT) in the table.

Note: To write-protect the variables in the FreeMASTER driver (FMSTR_TSA_RO_VAR), enable
the TSA-Safety feature in the configuration file.

TSA variable types The table lists type identifiers which can be used in TSA descriptors:

1.5. Motor Control 61

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Constant

Description

FMSTR_TSA_UINTn
FMSTR_TSA_SINTn
FMSTR_TSA_FRACn
FMSTR_TSA_FRAC_Q(m,n)
FMSTR_TSA_FRAC_UQ(m,n)

Unsigned integer type of size n bits (n=8,16,32,64)

Signed integer type of size n bits (n=8,16,32,64)

Fractional number of size n bits (n=16,32,64).

Signed fractional number in general Q form (m+n+1 total bits)
Unsigned fractional number in general UQ form (m+n total

bits)

4-byte standard IEEE floating-point type

8-byte standard IEEE floating-point type

Generic pointer type defined (platform-specific 16 or 32 bit)
Structure or union type declared with FMSTR_TSA_STRUCT
record

FMSTR_TSA_FLOAT
FMSTR_TSA_DOUBLE
FMSTR_TSA_POINTER

FM-
STR_TSA_USERTYPE(name)

TSA table list There shall be exactly one TSA Table List in the application. The list contains
one entry for each TSA table defined anywhere in the application.

The TSA Table List begins with the FMSTR_TSA_TABLE_LIST BEGIN macro and continues with
the TSA table entries for each table.

FMSTR_TSA TABLE_ LIST BEGIN()

FMSTR_TSA_TABLE(table_id)
FMSTR._ TSA_TABLE(table_id2)
FMSTR_TSA_TABLE(table_id3)

The list is closed with the FMSTR_TSA_TABLE_LIST END macro:

FMSTR_TSA_TABLE_LIST END()

TSA Active Content entries FreeMASTER v2.0 and higher supports TSA Active Content, en-
abling the TSA tables to describe the memory-mapped files, virtual directories, and URL hyper-
links. FreeMASTER can access such objects similarly to accessing the files and folders on the
local hard drive.

With this set of TSA entries, the FreeMASTER pages can be embedded directly into the target
MCU flash and accessed by FreeMASTER directly over the communication line. The HTML-coded
pages rendered inside the FreeMASTER window can access the TSA Active Content resources
using a special URL referencing the fmstr: protocol.

This example provides an overview of the supported TSA Active Content entries:

FMSTR,_ TSA_TABLE_BEGIN(files_and_ links)

/* Directory entry applies to all subsequent MEMFILE entries */
FMSTR_TSA DIRECTORY(”/text files”) /* entering a new virtual directory */

/* The readme.txt file will be accessible at the fmstr://text_files/readme.txt URL */
FMSTR,_ TSA_MEMFILE("readme.txt”, readme_ txt, sizeof(readme_ txt)) /* memory-mapped file */

/* Files can also be specified with a full path so the DIRECTORY entry does not apply */
FMSTR,_ TSA_MEMFILE(”/index.htm”, index, sizeof(index)) /* memory-mapped file */
FMSTR,_ TSA_MEMFILE(”/prj/demo.pmp”, demo_ pmp, sizeof(demo_ pmp)) /* memory-mapped file */

/* Hyperlinks can point to a local MEMFILE object or to the Internet */
FMSTR,_ TSA_HREF(”Board's Built-in Welcome Page”, ”/index.htm”)
FMSTR,__TSA_HREF("FreeMASTER Home Page”, "http://www.nxp.com /freemaster”)

(continues on next page)

62 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

(continued from previous page)

/* Project file links simplify opening the projects from any URLs */
FMSTR,_ TSA_PROJECT(”Demonstration Project (embedded)”, ”/prj/demo.pmp”)
FMSTR_TSA_PROJECT(”Full Project (online)”, "http://mycompany.com/prj/demo.pmp”)

FMSTR_TSA_TABLE_END()

TSA API

FMSTR_SetUpTsaBuff

Prototype
FMSTR,_ BOOL FMSTR, SetUpTsaBuff(FMSTR_ADDR buffAddr, FMSTR_ SIZE buffSize);

* Declaration: freemasterh

* Implementation: freemaster_tsa.c

Arguments
* buffAddr [in] - address of the memory buffer for the dynamic TSA table

* buffSize [in] - size of the memory buffer which determines the maximum number of TSA
entries to be added in the runtime

Description This function must be used to assign the RAM memory buffer to the TSA subsystem
when FMSTR_USE_TSA_DYNAMIC is enabled. The memory buffer is then used to store the TSA
entries added dynamically to the runtime TSA table using the FMSTR_TsaAddVar function call.
The runtime TSA table is processed by the FreeMASTER PC Host tool along with all static tables
as soon as the communication port is open.

The size of the memory buffer determines the number of TSA entries that can be added dynam-
ically. Depending on the MCU platform, one TSA entry takes either 8 or 16 bytes.

FMSTR_TsaAddVar

Prototype

FMSTR,_BOOL FMSTR_ TsaAddVar(FMSTR_TSATBL_STRPTR tsaName, FMSTR_ TSATBL_STRPTR,,
—tsaType,
FMSTR_TSATBL_VOIDPTR varAddr, FMSTR_ SIZE32 varSize,
FMSTR_ SIZE flags);
* Declaration: freemasterh

 Implementation: freemaster_tsa.c

Arguments
* tsaName [in] - name of the object
* tsaType [in] - name of the object type
* varAddr [in] - address of the object

1.5. Motor Control 63

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

* varSize [in] - size of the object

* flags [in] - access flags; a combination of these values:
— FMSTR_TSA_INFO_RO_VAR — read-only memory-mapped object (typically a variable)
— FMSTR_TSA_INFO_RW_VAR — read/write memory-mapped object

— FMSTR_TSA INFO_NON_VAR — other entry, describing structure types, structure
members, enumerations, and other types

Description This function can be called only when the dynamic TSA table is enabled by the
FMSTR_USE_TSA_DYNAMIC configuration option and when the FMSTR_SetUpTsaBuff function
call is made to assign the dynamic TSA table memory. This function adds an entry into the dy-
namic TSA table. It can be used to register a read-only or read/write memory object or describe
an item of the user-defined type.

See TSA table definition for more details about the TSA table entries.

Application Commands API

FMSTR_GetAppCmd

Prototype
FMSTR,_ APPCMD__CODE FMSTR,_ GetAppCmd(void);

* Declaration: freemasterh

* Implementation: freemaster_appcmd.c

Description This function can be used to detect if there is an Application Command waiting
to be processed by the application. If no command is pending, this function returns the FM-
STR_APPCMDRESULT NOCMD constant. Otherwise, this function returns the code of the Appli-
cation Command that must be processed. Use the FMSTR_AppCmdAck call to acknowledge the
Application Command after it is processed and to return the appropriate result code to the host.

The FMSTR_GetAppCmd function does not report the commands for which a callback handler
function exists. If the FMSTR_GetAppCmd function is called when a callback-registered com-
mand is pending (and before it is actually processed by the callback function), this function re-
turns FMSTR_APPCMDRESULT_NOCMD.

FMSTR_GetAppCmdData

Prototype
FMSTR,_ APPCMD_ PDATA FMSTR,_ GetAppCmdData(FMSTR_ SIZE* dataLen);

* Declaration: freemasterh

* Implementation: freemaster_appcmd.c

Arguments

* dataLen [out] - pointer to the variable that receives the length of the data available in the
buffer. It can be NULL when this information is not needed.

64 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Description This function can be used to retrieve the Application Command data when the
application determines that an Application Command is pending (see FMSTR_GetAppCmd).

There is just a single buffer to hold the Application Command data (the buffer length is FM-
STR_APPCMD_BUFF_SIZE bytes). If the data are to be used in the application after the command
is processed by the FMSTR_AppCmdAck call, copy the data out to a private buffer.

FMSTR_AppCmdAck

Prototype
void FMSTR,_AppCmdAck(FMSTR__ APPCMD__ RESULT resultCode);

 Declaration: freemaster.h

* Implementation: freemaster_appcmd.c

Arguments

» resultCode [in] - the result code which is to be returned to FreeMASTER

Description This function is used when the Application Command processing finishes in the
application. The resultCode passed to this function is returned back to the host and the driver is
re-initialized to expect the next Application Command.

After this function is called and before the next Application Command arrives, the return value
of the FMSTR_GetAppCmd function is FMSTR_APPCMDRESULT _NOCMD.

FMSTR_AppCmdSetResponseData

Prototype
void FMSTR,__ AppCmdSetResponseData(FMSTR,__ADDR resultDataAddr, FMSTR, SIZE resultDatalLen);

* Declaration: freemasterh

* Implementation: freemaster_appcmd.c

Arguments

* resultDataAddr [in] - pointer to the data buffer that is to be copied to the Application Com-
mand data buffer

* resultDataLen [in] - length of the data to be copied. It must not exceed the FM-
STR_APPCMD_BUFF_SIZE value.

Description This function can be used before the Application Command processing finishes,
when there are data to be returned back to the PC.

The response data buffer is copied into the Application Command data buffer, from where it is
accessed when the host requires it. Do not use FMSTR_GetAppCmdData and the data buffer after
FMSTR_AppCmdSetResponseData is called.

Note: The current version of FreeMASTER does not support the Application Command response
data.

1.5. Motor Control 65

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

FMSTR_RegisterAppCmdcCall

Prototype
FMSTR,_ BOOL FMSTR_ RegisterAppCmdCall(FMSTR_ APPCMD_ CODE appCmdCode, FMSTR__
—PAPPCMDFUNC callbackFunc);

* Declaration: freemasterh

* Implementation: freemaster_appcmd.c

Arguments
* appCmdCode [in] - the Application Command code for which the callback is to be registered

* callbackFunc [in] - pointer to the callback function that is to be registered. Use NULL to
unregister a callback registered previously with this Application Command.

Return value This function returns a non-zero value when the callback function was success-
fully registered or unregistered. It can return zero when trying to register a callback function
for more than FMSTR_MAX_APPCMD_CALLS different Application Commands.

Description This function can be used to register the given function as a callback handler for
the Application Command. The Application Command is identified using single-byte code. The
callback function is invoked automatically by the FreeMASTER driver when the protocol decoder
obtains a request to get the application command result code.

The prototype of the callback function is

FMSTR__APPCMD__RESULT HandlerFunction(FMSTR__APPCMD_ CODE nAppcmd,
FMSTR_APPCMD_ PDATA pData, FMSTR_ SIZE nDatalLen);
Where:
* nAppcmd -Application Command code
* pData —points to the Application Command data received (if any)
* nDataLen —information about the Application Command data length

The return value of the callback function is used as the Application Command Result Code and
returned to FreeMASTER.

Note: The FMSTR_MAX_APPCMD_CALLS configuration macro defines how many different Appli-
cation Commands may be handled by a callback function. When FMSTR_MAX_APPCMD_CALLS
is undefined or defined as zero, the FMSTR_RegisterAppCmdcCall function always fails.

Pipes API

FMSTR_PipeOpen

Prototype
FMSTR,_HPIPE FMSTR_PipeOpen(FMSTR_PIPE PORT pipePort, FMSTR_PPIPEFUNC pipeCallback,

FMSTR__ADDR pipeRxBuff, FMSTR_PIPE_ SIZE pipeRxSize,
FMSTR_ ADDR pipeTxBuff, FMSTR_ PIPE_SIZE pipeTxSize,
FMSTR_ U8 type, const FMSTR,__ CHAR *name);

66 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

* Declaration: freemasterh

* Implementation: freemaster_pipes.c

Arguments
* pipePort [in] - port number that identifies the pipe for the client

* pipeCallback [in] - pointer to the callback function that is called whenever a pipe data status
changes

* pipeRxBuff [in] - address of the receive memory buffer
* pipeRxSize [in] - size of the receive memory buffer

* pipeTxBuff [in] - address of the transmit memory buffer
* pipeTxSize [in] - size of the transmit memory buffer

* type [in] - a combination of FMSTR_PIPE_MODE_xxx and FMSTR_PIPE_SIZE_xxx constants
describing primary pipe data format and usage. This type helps FreeMASTER decide how
to access the pipe by default. Optional, use 0 when undetermined.

* name [in] - user name of the pipe port. This name is visible to the FreeMASTER user when
creating the graphical pipe interface.

Description This function initializes a new pipe and makes it ready to accept or send the data
to the PC Host client. The receive memory buffer is used to store the received data before they are
read out by the FMSTR_PipeRead call. When this buffer gets full, the PC Host client denies the
data transmission into this pipe until there is enough free space again. The transmit memory
buffer is used to store the data transmitted by the application to the PC Host client using the
FMSTR_PipeWrite call. The transmit buffer can get full when the PC Host is disconnected or
when it is slow in receiving and reading out the pipe data.

The function returns the pipe handle which must be stored and used in the subsequent calls to
manage the pipe object.

The callback function (if specified) is called whenever new data are received through the pipe
and available for reading. This callback is also called when the data waiting in the transmit
buffer are successfully pushed to the PC Host and the transmit buffer free space increases. The
prototype of the callback function provided by the user application must be as follows. The
PipeHandler name is only a placeholder and must be defined by the application.

void PipeHandler(FMSTR__HPIPE pipeHandle);

FMSTR_PipeClose
Prototype
void FMSTR,_ PipeClose(FMSTR,__HPIPE pipeHandle);

* Declaration: freemaster.h

* Implementation: freemaster_pipes.c

Arguments

* pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

1.5. Motor Control 67

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Description This function de-initializes the pipe object. No data can be received or sent on the
pipe after this call.

FMSTR_PipeWrite

Prototype
FMSTR_PIPE_SIZE FMSTR,_ PipeWrite(FMSTR,_HPIPE pipeHandle, FMSTR,_ ADDR pipeData,
FMSTR,_ PIPE_ SIZE pipeDataLen, FMSTR_ PIPE_ SIZE writeGranularity);
* Declaration: freemasterh

* Implementation: freemaster_pipes.c

Arguments
* pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call
* pipeData [in] - address of the data to be written
* pipeDataLen [in] - length of the data to be written

» writeGranularity [in] - size of the minimum unit of data which is to be written

Description This function puts the user-specified data into the pipe’s transmit memory buffer
and schedules it for transmission. This function returns the number of bytes that were success-
fully written into the buffer. This number may be smaller than the number of the requested
bytes if there is not enough free space in the transmit buffer.

The writeGranularity argument can be used to split the data into smaller chunks, each of the
size given by the writeGranularity value. The FMSTR_PipeWrite function writes as many data
chunks as possible into the transmit buffer and does not attempt to write an incomplete chunk.
This feature can prove to be useful to avoid the intermediate caching when writing an array of
integer values or other multi-byte data items. When making the nGranularity value equal to the
nLength value, all data are considered as one chunk which is either written successfully as a
whole or not at all. The nGranularity value of 0 or 1 disables the data-chunk approach.

FMSTR_PipeRead

Prototype
FMSTR_PIPE_SIZE FMSTR,_ PipeRead(FMSTR,_HPIPE pipeHandle, FMSTR,_ADDR pipeData,
FMSTR,_ PIPE_ SIZE pipeDataLen, FMSTR_ PIPE_ SIZE readGranularity);
* Declaration: freemasterh

* Implementation: freemaster_pipes.c

Arguments
* pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call
* pipeData [in] - address of the data buffer to be filled with the received data
* pipeDataLen [in] - length of the data to be read

* readGranularity [in] - size of the minimum unit of data which is to be read

68 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Description This function copies the data received from the pipe from its receive buffer to the
user buffer for further processing. The function returns the number of bytes that were success-
fully copied to the buffer. This number may be smaller than the number of the requested bytes
if there is not enough data bytes available in the receive buffer.

The readGranularity argument can be used to copy the data in larger chunks in the same way as
described in the FMSTR_PipeWrite function.

API data types This section describes the data types used in the FreeMASTER driver. The infor-
mation provided here can be useful when modifying or porting the FreeMASTER Communication
Driver to new NXP platforms.

Note: The licensing conditions prohibit use of FreeMASTER and the FreeMASTER Communica-
tion Driver with non-NXP MPU or MCU products.

Public common types The table below describes the public data types used in the FreeMASTER
driver API calls. The data types are declared in the freemasterh header file.

1.5. Motor Control 69

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Type name

Description

FM-
STR_ADDR
For exam-
ple, this
type is
defined as
long inte-
ger on the
56F8xxx
platform
where
the 24-bit
addresses
must be
supported,
but the
C-pointer
may be
only 16
bits wide
in some
compiler
configura-
tions.
FM-

STR SIZE
It is re-
quired
that this
type is un-
signed and
at least 16
bits wide
integer.
FM-
STR_BOOL
This type
is used
only in
zero/non-
Zero con-
ditions in
the driver
code.
FM-

STR_APPCM.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCM.
Generally,
this is an
unsigned
8-bit value.
FM-
T

Data type used to hold the memory address. On most platforms, this is normally
a C-pointer, but it may also be a pure integer type.

Data type used to hold the memory block size.

Data type used as a general boolean type.

Data type used to hold the Application Command code.

Data type used to create the Application Command data buffer.

Data type used to hold the Application Command result code.

7

STR_APPCM:
enerally,
this is an
unsigned
8-bit value.

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Public TSA types The table describes the TSA-specific public data types. These types are de-
clared in the freemaster_tsa.h header file, which is included in the user application indirectly by
the freemaster:h file.

FM- Data type used to hold a descriptor index in the TSA table or a table index in the
STR_TSA_TII list of TSA tables.

By default,

this is

defined

as FM-

STR_SIZE.

EM- Data type used to hold a memory block size, as used in the TSA descriptors.
STR TSA_TS.

By default,

this is

defined

as FM-

STR_SIZE.

Public Pipes types The table describes the data types used by the FreeMASTER Pipes API:

EFM- Pipe handle that identifies the open-pipe object.
STR_HPIPE

Generally,

this is a

pointer

to a void

type.

FM- Integer type required to hold at least 7 bits of data.
STR_PIPE_P(

Generally,

this is an

unsigned

8-bit or

16-hit type.

FM- Integer type required to hold at least 16 bits of data.
STR_PIPE_SI

This is

used to

store the

data buffer

sizes.

FM- Pointer to the pipe handler function.
STR_PPIPEFi

See FM-

STR_PipeOpen

for more

details.

Internal types The table describes the data types used internally by the FreeMASTER driver.
The data types are declared in the platform-specific header file and they are not available in the
application code.

1.5. Motor Control 71

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

FMSTR_US8
On the vast
majority of
platforms,
this is an
unsigned
8-bit inte-
ger.

On the
56F8xx
DSP plat-
form, this
is defined
as an un-
signed
16-bit inte-
ger.

FM-

STR U16
FM-

STR U32
FMSTR_S8
FM-

STR S16
FM-
STR_S32
FM-
STR_FLOAT
FM-
STR_FLAGS
FM-
STR_SIZES8
FM-
STR_INDEX
FM-
STR_BCHR
Typically,
this is
an 8-bit
unsigned
integer,
except for
the DSP
platforms
where it
is a 16-bit
integer.
FM-

STR BPTR

The smallest memory entity.

Unsigned 16-bit integer.
Unsigned 32-bit integer.

Signed 8-bit integer.
Signed 16-bit integer.

Signed 32-bit integer.

4-byte standard IEEE floating-point type.

Data type forming a union with a structure of flag bit-fields.
Data type holding a general size value, at least 8 bits wide.
General for-loop index. Must be signed, at least 16 bits wide.

A single character in the communication buffer.

A pointer to the communication buffer (an array of FMSTR_BCHR).

Document references

Links

* This document online: https:/mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/
freemaster/doc/index.html

72

Chapter 1. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

FreeMASTER tool home: www.nxp.com/freemaster

* FreeMASTER community area: community.nxp.com/community/freemaster

FreeMASTER GitHub code repo: https://github.com/nxp-mcuxpresso/mcux-freemaster
* MCUXpresso SDK home: www.nxp.com/mcuxpresso

* MCUXpresso SDK builder: mcuxpresso.nxp.com/en

Documents
» FreeMASTER Usage Serial Driver Implementation (document AN4752)

o Integrating FreeMASTER Time Debugging Tool With CodeWarrior For Microcontrollers v10.X
Project (document AN4771)

* Flash Driver Library For MC56F847xx And MC56F827xx DSC Family (document AN4860)

Revision history This Table summarizes the changes done to this document since the initial
release.

1.5. Motor Control 73

https://www.nxp.com/freemaster
https://community.nxp.com/community/freemaster
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://www.nxp.com/mcuxpresso
https://mcuxpresso.nxp.com/en
http://www.nxp.com/doc/AN4752
http://www.nxp.com/doc/AN4771
http://www.nxp.com/doc/AN4860

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Revi- Date Description

sion

1.0 03/2006 Limited initial release

2.0 09/2007 Updated for FreeMASTER version. New Freescale doc-
ument template used.

2.1 12/2007 Added description of the new Fast Recorder feature and
its APIL.

2.2 04/2010 Added support for MPC56xx platform, Added new API
for use CAN interface.

2.3 04/2011 Added support for Kxx Kinetis platform and MQX oper-
ating system.

24 06/2011 Serial driver update, adds support for USB CDC inter-
face.

2.5 08/2011 Added Packet Driven BDM interface.

2.7 12/2013 Added FLEXCAN32 interface, byte access and isr call-
back configuration option.

2.8 06/2014 Removed obsolete license text, see the software pack-
age content for up-to-date license.

2.9 03/2015 Update for driver version 1.8.2 and 1.9: FreeMAS-

TER Pipes, TSA Active Content, LIN Transport Layer
support, DEBUG-TX communication troubleshooting,
Kinetis SDK support.

3.0 08/2016 Update for driver version 2.0: Added support for
MPC56xx, MPC57xx, KEAxx and S32Kxx platforms.
New NXP document template as well as new license
agreement used. added MCAN interface. Folders struc-
ture at the installation destination was rearranged.

4.0 04/2019 Update for driver released as part of FreeMASTER v3.0
and MCUXpresso SDK 2.6. Updated to match new V4
serial communication protocol and new configuration
options. This version of the document removes sub-
stantial portion of outdated information related to S08,
S12, ColdFire, Power and other legacy platforms.

41 04/2020 Minor update for FreeMASTER driver included in
MCUXpresso SDK 2.8.
4.2 09/2020 Added example applications description and informa-

tion about the MCUXpresso Config Tools. Fixed the
pipe-related API description.

4.3 10/2024 Added description of Network and Segger J-Link RTT in-
terface configuration. Accompanying the MCUXpresso
SDK version 24.12.00.

44 04/2025 Added Zephyr-specific information. Accompanying the

MCUZXpresso SDK version 25.06.00.

1.6 Multimedia

1.6.1 Audio Voice
Audio Voice Components

MCUXpresso SDK : audio-voice-components

74 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Overview This repository is for MCUXpresso SDK audio-voice-components middleware deliv-
ery and it contains the components officially provided in NXP MCUXpresso SDK. This repos-
itory is part of the MCUXpresso SDK overall delivery which is composed of several sub-
repositories/projects. Navigate to the top/parent repository (mcuxsdk-manifests) for the com-
plete delivery of MCUXpresso SDK.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit Audio Voice Components - Documentation to review details on the contents in this sub-repo.

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution Contributions are not currently accepted. Guidelines to contribute will be posted
in the future.

Overview This repository allows users to add additional functionality to the Maestro Audio
framework. This structure is designed for integration with Maestro and is not intended for stan-
dalone use. For information on the use of individual components, please refer to the Maestro
programmer’s guide.

This repository acts as Zephyr module, to be able to use these libraries in Zephyr build system.

Content
* asrc - Libraries and public files of Asynchronous Sample Rate Converter, version 1.0.0
* ssrc - Libraries and public files of Synchronous Sample Rate Converter, version 1.0.0
* opus - Source files of Opus decoder and encoder, version 1.3.1
* opusfile - Source files for Opus streams in the Ogg container, version 0.12
* 0gg - Source files of Ogg container, version 1.3.5
* decoders - Libraries and public files of following audio decoders:
— aac - AAC decoder, version 1.0.0
— flac - FLAC decoder, version 1.0.0
— mp3 - MP3 decoder, version 1.0.0
— wav - WAV decoder, version 1.0.0
 zephyr/ - Files allowing usage of the libraries in Zephyr build

Following table contains information about libraries and source files availability:

Asynchronous Sample Rate Converter The Asynchronous Sample Rate Converter (ASRC) soft-
ware module compensates the drift between two mono audio signals. This is not a frequency
converter and so the nominal signal frequency is the same before and after the ASRC. More de-
tails about ASRC are available in the User Guide, which is located in asrc\doc\.

1.6. Multimedia 75

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/audio_voice/components/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation
https://github.com/nxp-mcuxpresso/maestro
https://github.com/nxp-mcuxpresso/maestro
https://github.com/nxp-mcuxpresso/maestro/blob/main/doxygen/ProgrammersGuide.md

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Synchronous Sample Rate Converter The Synchronous Sample Rate Converter (SSRC) soft-
ware module converts an audio signal (mono or stereo) with a certain sampling frequency to
an audio signal with another sampling frequency. More details about SSRC are available in the
User Guide.

Opus For Opus decoder and encoder documentation please see following link: opus.

Opus File The Opus File provides a API for decoding and basic manipulation of Opus streams
in Ogg container and depends on Opus and Ogg libraries. For Opus File documentation please
see following link: opusfile.

Ogg Container For Ogg container documentation please see following link: ogg.

Decoders Each decoder contains libraries for supported processor and toolchain (see table
above), corresponding Public API file and documentation folder.

AAC For decoder features please see aacdec, for API Usage please see aacd_ug.

FLAC For decoder features please see flacdec, for API Usage please see flacd_ug.

MP3 For decoder features please see mp3dec, for API Usage please see mp3d_ug.

WAV For decoder features please see wavdec, for API Usage please see wavd_ug.

Zephyr build To add library into the Zephyr build, add CON-
FIG_NXP_AUDIO_VOICE_COMPONENTS_* for specific libraries into your prj.conf. For
all configuration options, see zephyr/Kconfig.

List of supported libraries in Zephyr:
* Decoders:
- AAC
- FLAC
- MP3
- FLAC
- OPUS
» Encoders
- OPUS

AAC decoder

76 Chapter 1. Middleware

https://opus-codec.org/docs/opus_api-1.3.1/
https://opus-codec.org/docs/opusfile_api-0.12/index.html
https://xiph.org/ogg/doc/

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

AAC decoder features
» The AAC decoder implementation supports the following:
* Supported profile : AAC-LC

* Sampling rate : 8 kHz, 11.025 kHz, 12 kHz, 16 kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, 48
kHz

* Channel : stereo and mono
* Bits per samples : 16 bit
* Container format : (MPEG-2 Style)AAC transport format - ADTS and ADIF.

Specification and reference
Performance
Memory information The memory usage of the decoder in bytes is:

* Code/flash = 26332 + 19264 = 45596
* Data/RAM = 26832

Section Size
.text 26332
.ro &.const 19264
.bss 26832
CPU usage
* CPU core clock in MHz: 20.97.
Track type Duration of track in sec- Frame size in Performance MIPS of codec (in
ond bytes MHz)
48 kHz, 38s 4096 12.2 MHz

stereo

API Usage of AAC Decoder

Overview

» This section describes the integration steps to call AAC decoder APIs by the application code.
During each step, the used data structures and functions are explained. All CCI public APIs
are defined in aac_cci.h header file. This file is located at \decoders\aac.

Configuration

Build Options AAC Decoder library is built with the following defined/enabled macros.

» There is no macro or define used to build the AAC decoder.

1.6. Multimedia 77

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Buffer Allocation

* The AAC decoder does not perform dynamic memory allocation. The application calls
the function AACDecoderGetMemorySize() to get the decoder memory requirements. This
function must be called before all other decoder functions are invoked.

» The application first gets the required memory size for the decoder, then allocates mem-
ory for the decoder structures. Structures contain Main Decoder parameters and decoder
information parameters.

* This function populates the required memory for the decoder and returns the required
memory size in bytes.

Initialization

* AACDecoderInit() function must be called before decode API. This API allocates the memory
to decoder main structure and also initializes the decoder main structure parameters.

* It also registers the call back functions to the decoder, which is used by the decoder to read
or seek the input stream.

Decoding

* AACDecoderDecode() function is main decoding API of the decoder. This API decodes the
encoded input stream and fills the PCM output samples into decoder output PCM buffer.

 This API gives the information about the number of samples produced by the decoder and
also provides the pointer to the decoder output PCM samples buffer.

Seeking

* AACDecoderSeek() function calculates the actual frame boundary align offset from the un-
align seek offset and returns the actual seek offset. It also resets the decoder internal states
and variables.

Callback Usage All the callback functions are assigned to the respective pointers before the
codec initialization is called. Callback APIs are described below.

Read Callback API AAC Decoder read call back API reads the bytes from the input stream and
fills them into decoder internal bit stream buffer. It returns the number of bytes read from the
input stream.

Seek Callback API This call back API is for the seek operation.

Get File Position Callback API This call back API gives the current file position.

FLAC decoder

78 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

FLAC decoder features
* The FLAC decoder implementation support the following:
» Sampling rate: 8 kHz, 11.05 kHz, 12 kHz, 16 kHz, 22.05 kHz, 32 kHz, 44.1 kHz, and 48 kHz.
* Channel : stereo and mono

* Bits per samples : 16 bits

Specification and reference

Official website
* FLAC lossless audio codec is at https://xiph.org/flac.

Inbound licensing

* For licensing information please refer to FLACs official website:
https://xiph.org/flac/license.html.

Performance
Memory information The memory usage of the decoder in bytes is:

* Code/flash = 15744 + 2080 = 17824
» Data/RAM = 27936

Section Size
.text 15744
0o & .const 2080
.bss 27936
CPU usage
* Output frame size: 16384 bytes.
* CPU core clock in MHz: 20.97.
Track type Duration of track in second Performance MIPS of codec (in MHz)
48 kHz, stereo 76 s 30.7 MHz
32 kHz, stereo 765 20.3 MHz
8 kHz, stereo 37s 5.34 MHz

Following test cases are performed:
* Audio format listening test
* Audio quality test

For all above test cases, test tracks are played through the end without any distortion, glitching,
hanging, or crashing.

1.6. Multimedia 79

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

API Usage of FLAC Decoder

Overview

 This section describes the integration steps to call FLAC decoder APIs by the application
code. During each step the used data structures and functions are explained. All cci public
APIs are defined in flac_cci.h header file. This file is located at \decoders\flac\include.

Configuration

Build Options
* SUPPORT_16_BITS_ONLY :- This macro is used to enable 16bits per sample flac decoder.

* ASM :- This macro is used to enable ARM assembly macros for 24bits per sample flac de-
coder.

Buffer Allocation

* The FLAC decoder does not perform dynamic memory allocation. The application calls
the function FLACDecoderGetMemorySize() to get the decoder memory requirements. This
function must be called before all other decoder functions are invoked.

» The application first gets the required memory size for the decoder and then allocates mem-
ory for the decoder structures. Structures contain Main Decoder parameters and decoder
information parameters.

* This function populates the required memory for the decoder and returns the required
memory size in bytes.

Initialization

» FLACDecoderInit() function must be called before decode API This API allocates the mem-
ory to decoder main structure and also initializes the decoder main structure parameters.

* It alsoregisters the call back functions to the decoder, which will be used by decoder to read
or to seek the input stream.

Decoding

* FLACDecoderDecode() function is main decoding API of the decoder. This API decodes the
encoded input stream and fills the PCM output samples into decoder output PCM buffer.

* This API gives the information about the number of samples produced by the decoder and
also provides the pointer to the decoder output PCM samples buffer.

Seeking

* FLACDecoderSeek() function calculates the actual frame boundary align offset from the
unalign seek offset and returns the actual seek offset. It also resets the decoder internal
states and variables.

Callback Usage All the callback functions will be assigned to the respective pointers before the
codec initialization is called. Callback APIs are described below.

80 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Read Callback API FLAC Decoder read call back API reads the bytes from the input stream and
fills them into decoder internal bit stream buffer. It returns the number of bytes read from the
input stream.

Seek Callback API This call back API is for the seek operation.

Get File Position Callback API This call back API gives the current file position.

MP3 decoder

MP3 decoder features
* MP3 decoder supports mpeg-1, mpeg-2, mpeg-2.5.

» All MP3 features supported , including joint stereo, mid-side stereo, intensity stereo, and
dual channel.

* Supported sampling rate: 8 kHz, 11.025 kHz, 12 kHz, 16 kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1
kHz and 48 kHz.

* Supported channel: stereo and mono
» Supported bits per samples: 16 hit

* Supported bit rate: 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, 176, 192, 224, 256,
320, 384, 416, and 448.

Performance

Memory information The memory usage of the decoder (data obtained from IAR compiler) in
bytes is:

» Code/flash = 26884 + 18372 = 45256

* RAM = 16200
Section Size
text 26884
o & .const 18372
.bss 16200

CPU usage The performance of the decoder was measured using the real hardware platform
(RT1060).

e CPU core clock in MHz: 600.

Track type Duration of track in Frame size in Performance MIPS of codec
second bytes (in MHz)

320 Kbps, 44.1 kHz, 358s 2304 ~24 MHz

stereo

192 Kbps, 48 kHz, 10s 2304 ~18 MHz

stereo

1.6. Multimedia 81

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

API Usage of MP3 Decoder

Overview

» This section describes the integration steps to call MP3 decoder APIs by the application code.
During each step the used data structures and functions are explained. All cci public APIs
are defined in mp3_cci.h header file. This file is located at \decoders\mp3.

Configuration

Build Options MP3 Decoder library is built with the following defined/enabled macros.

» There is no macro or define used to build the MP3 decoder.

Buffer Allocation

* The MP3 decoder does not perform dynamic memory allocation. The application calls
the function MP3DecoderGetMemorySize() to get the decoder memory requirements. This
function must be called before all other decoder functions are invoked.

» The application first gets the required memory size for the decoder and then allocates mem-
ory for the decoder structures. Structures contain Main Decoder parameters and decoder
information parameters.

» This function populates the required memory for the decoder and returns the required
memory size in bytes.

Initialization

* MP3DecoderInit() function must be called before decode API. This API allocates the memory
to decoder main structure and also initializes the decoder main structure parameters.

* It alsoregisters the call back functions to the decoder, which will be used by decoder to read
or to seek the input stream.

Decoding

* MP3DecoderDecode() function is main decoding API of the decoder. This API decodes the
encoded input stream and fills the PCM output samples into decoder output PCM buffer.

» This API gives the information about the number of samples produced by the decoder and
also provides the pointer to the decoder output PCM samples buffer.

Seeking

* MP3DecoderSeek() function calculates the actual frame boundary align offset from the un-
align seek offset and returns the actual seek offset. It also resets the decoder internal states
and variables.

Callback Usage Allthe callback functions will be assigned to the respective pointers before the
codec initialization is called. Callback APIs are described below.

Read Callback API MP3 Decoder read call back API reads the bytes from the input stream and
fills them into decoder internal bit stream buffer. It returns the number of bytes read from the
input stream.

82 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Seek Callback API This call back API is for the seek operation.
Get File Position Callback API This call back API gives the current file position.
WAV decoder

WAV decoder features
* The WAV decoder implementation support the following:
» Sampling rate: 8 kHz, 11.025kHz, 16 kHz, 22.05 kHz, 32 kHz, 44.1 kHz, and 48 kHz.
* Channel: stereo and mono
* PCM format with 8/16/24 bits per sample.

Performance

Memory information The memory usage of the decoder in bytes is:
*» Code/flash = 6260 + 342 = 6602
» Data/RAM = 16 + 20696 = 20712

Section Size
text 6260
.ro & .const 342
.bss 20696
.data 16

CPU usage The performance of the decoder was measured using the decoder standalone unit
test.

* CPU core clock in MHz: 20.97 MHz.

Track type Duration of track in Frame size in Performance MIPS of codec (in
second bytes MHz)

48 kHz, stereo, 12s 4096 9.68 MHz

PCM

Following test cases were performed:
* Audio format listening test
* Audio quality test

For all above test cases, test tracks are played through the end without any distortion, glitching,
hanging, or crashing.

API Usage of WAV Decoder

1.6. Multimedia 83

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Overview

» This section describes the integration steps to call MP3 decoder APIs by the application code.
During each step the used data structures and functions are explained. All cci public APIs
are defined in wav_cci.h header file. This file is located at \decoders\wav.

Configuration

Build Options WAV Decoder library is built with the following defined/enabled macros.

» There is no macro or define used to build the WAV decoder.

Buffer Allocation

* The WAV decoder does not perform dynamic memory allocation. The application calls
the function WAVDecoderGetMemorySize() to get the decoder memory requirements. This
function must be called before all other decoder functions are invoked.

» The application first gets the required memory size for the decoder and then allocates mem-
ory for the decoder structures. Structures contain Main Decoder parameters and decoder
information parameters.

* This function populates the required memory for the decoder and returns the required
memory size in bytes.

Initialization

* WAVDecoderInit() function must be called before decode API. This API allocates the mem-
ory to decoder main structure and also initializes the decoder main structure parameters.

* It alsoregisters the call back functions to the decoder, which will be used by decoder to read
or to seek the input stream.

Decoding

* WAVDecoderDecode() function is main decoding API of the decoder. This API decodes the
encoded input stream and fills the PCM output samples into decoder output PCM buffer.

» This API gives the information about the number of samples produced by the decoder and
also provides the pointer to the decoder output PCM samples buffer.

Seeking

* WAVDecoderSeek() function calculates the actual frame boundary align offset from the un-
align seek offset and returns the actual seek offset. It also resets the decoder internal states
and variables.

Callback Usage Allthe callback functions will be assigned to the respective pointers before the
codec initialization is called. Callback APIs are described below.

Read Callback API WAV Decoder read call back API reads the bytes from the input stream and
fills them into decoder internal bit stream buffer. It returns the number of bytes read from the
input stream.

Seek Callback API This call back API is for the seek operation.

84 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Get File Position Callback API This call back API gives the current file position.

Synchronous Sample Rate Converter

Introduction The Synchronous Sample Rate Converter (SSRC) software module converts a
mono or stereo audio signal with a certain sampling frequency to an audio signal with a differ-
ent sampling frequency. The sample rate converter works synchronously, meaning that input
and output sampling rates are exactly known for a mutual clock reference.

To accomplish a professional sampling conversion quality and minimal system footprint, the
SRC SW module contains highly optimized components.

The SSRC module supports the following features.
* Multiple instances of the sample rate converter can run at the same time.

* Supported sampling frequencies: 32 kHz, 44.1 kHz, and 48 kHz plus the halves and the quar-
ters of these three sample rates. The input and output sample rates are freely selectable out
of the supported sampling rates

Selectable Mono/Stereo Input/Output.

Selectable quality level: high quality/ very high quality.

Acronyms Table 1 lists the acronyms used in this document.

Acror Description

Fs Sampling Frequency

Fs- Lowest sample rate used for the conversion Note: Input sample rate for up sampling

LOW(and the output sample rate for down sampling

FSIN Input sample rate

FsOU Output sample rate

MIPS Million Instructions Per Second

SSRC Synchronous sample rate converter

THD+ Total Harmonic Distortion plus Noise Note: The THD+N is defined as the total power of
the unwanted signal divided by the power of the wanted signal. The wanted signal is
defined as a full scale, 1 kHz sine wave.

Parent topic:Introduction

Performance figures The Total Harmonic Distortion Plus Noise (THD+N) of the converted sig-
nals is below - 76 (high-quality mode) and - 85 (very high-quality mode) for signal frequencies
below 0.45*FSLOW (=90 % of the Nyquist range of the lowest sample clock)

Table 1 and Table 2 give the THD+N performance (FsSIN on the vertical axis and FsOUT on the
horizontal axis) for the two supported quality levels. The numbers in the tables give the worst-
case THD+N measured for signal frequencies below 0.45*FsLOW. For each conversion ratio, 100
THD+N measurements were executed with signal frequencies linearly spread over the complete
Nyquist range.

1.6. Multimedia 85

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

FSIN/ FSOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000

8000 -921 -79.7 -80.1 -801 -796 -80.2 -794 -79.1 -79.2
11025 -79 -92.9 -80 -79.9 -80.2 -798 -799 -79.5 -789
12000 -79 -79.2 927 -801 -79.8 -80.3 -79.8 -79.8 -79.5
16000 -81.7 -788 -80.2 -93 -783 777 -783 -783 -77.9
22050 -77.5 -81.8 -782 -79 -93 -79.9 -79.8 -80.3 -79.9
24000 -774 -779 812 -791 -79.2 925 -80.1 -79.8 -79.9
32000 -81 -77.5 -789 -81.2 -787 -801 -929 -79.7 -79.2
44100 -79.1 -81.2 -76.7 -77.8 -82 -782 -791 93 -79.7
48000 -78.7 -788 -811 776 -779 -81.8 -79.1 -79.3 -93

FSIN/ FsSOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000

8000 -921 -866 -886 -91.5 -864 -89 -89.7 -89.3 -89.3
11025 -89.1 929 -863 -863 -91.6 -86.3 -86.5 -89.7 -89.3
12000 914 -884 927 -896 -86.6 915 -86.8 -86.6 -89.7
16000 -93.1 -884 -904 93 -86.6 -88.8 -91.5 -86.5 -89.4
22050 -90.7 -935 -89.7 -893 -93 -86.5 -86.3 -91.5 -86.6
24000 -93.8 905 -935 -91.7 -84 925 -89.7 -86.6 -91.5
32000 -93.8 91 -91.2 933 -84 -90.5 -929 -86.7 -89

44100 -93.7 936 915 -90.6 -93.8 -89.8 -89.3 -93 -86.5
48000 -941 -926 -94 -94 -90.1 937 -91.8 -884 -93

Parent topic:/ntroduction

Resource usage This section lists the memory and processing requirements for the SSRC mod-
ule.

Memory requirements The following are the memory requirements for the SSRC module.

Memory item Size in bytes
Instance memory (persistent) 548

Scratch memory (non-persistent) 15.536 1
Program memory for Arm9E and XScale 14k
Program memory for Arm7 15k

Parent topic:Resource usage

1 Worst case number for I/O buffers of 40 ms. If smaller I/O buffers are used, this number is
smaller. The required scratch memory is roughly equal to 2 times the buffer size on the highest
sample rate.

Processingrequirements The following tables give the MIPS performance of the SSRC module.
The cycles are measured with zero wait state memory and for I/O buffers of 40 ms.

Note: The user processing 32-bit processing must refer to the very high-quality MIPS results.

On Arm7 and Arm9

86 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

FSIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000

8000 0.13 4.77 5.17 1.84 6.75 7.33 3.55 9.1 9.89
11025 542 0.18 5.58 6.84 2.53 7.75 9.71 4.89 10.31
12000 5.85 6.39 0.2 7.01 8.97 2.76 9.89 12.94 5.32
16000 1.69 7.74 7.99 0.26 9.54 10.33 3.68 13.5 14.65
22050 7.2 2.33 10.09 10.83 0.36 11.17 13.67 5.07 15.49
24000 7.79 8.33 2.53 11.7 12.78 0.39 14.03 1794 5.51
32000 3.12 10.32 10.58 3.38 15.48 1598 0.52 19.08 20.66
44100 9.96 43 13.65 144 4.65 20.18 21.67 0.72 22.34
48000 10.8 11.34 4.68 15.58 16.67 5.06 23.4 25.56 0.78

FSIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000

8000 0.07 771 8.24 2.28 10.5 11.28 441 13.44 1448
11025 819 01 8.96 11.04 3.14 12 15.09 6.08 15.2
12000 8.76 9.52 0.1 11.3 14.48 3.41 15.36 20.07 6.61
16000 214 1173 12.01 0.14 1541 1648 4.55 21 22.56
22050 10.78 2.94 15.39 16.38 0.19 1792 22.08 6.27 24
24000 11.57 1234 3.2 17.51 19.04 0.21 22.61 28.97 6.83
32000 419 1548 15.77 4.27 2346 2401 0.28 30.83 32.96
44100 14.78 5.77 20.56 21.56 5.89 30.77 32.75 0.38 35.83
48000 15.92 16.7 6.28 23.15 2469 641 35.02 38.08 0.42

FSIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000

8000 0.13 13.61 14.52 4.43 19.03 2043 8.8 25.06 26.99
11025 14.85 0.18 1591 1947 6.1 21.82 27.35 1213 28.38
12000 15.84 17.36 0.2 19.97 254 6.64 27.85 36.26 13.21
16000 4.25 21.24 2179 0.26 27.22 29.03 8.86 38.07 40.85
22050 20.02 5.85 27.72 29.7 0.36 31.81 38.94 122 43.63
24000 2145 2298 6.37 31.68 34.71 0.39 3994 50.8 13.28
32000 839 2874 29.29 85 4248 43.58 0.52 54.43 58.07
44100 28.11 11.57 38.05 40.03 11.71 5543 594 0.72 63.62
48000 30.19 31.71 1259 429 4596 12.74 63.36 6942 0.78

Parent topic:Processing requirements

On Arm9e and XScale

FsSIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000

8000 0.03 1.14 1.25 0.54 1.95 2.14 1.04 3.85 4.23
11025 1.31 0.05 1.36 1.62 0.75 2.23 2.78 144 4.38
12000 143 1.57 0.05 1.68 2.13 0.82 2.84 3.72 1.57
16000 0.5 1.86 1.93 0.07 2.27 2.5 1.09 3.9 4.29
22050 219 0.69 2.42 2.61 0.1 2.72 3.24 1.5 4.46
24000 2.4 2.52 0.75 2.86 3.15 0.1 3.35 4.25 1.63
32000 0.92 3.12 3.18 1.01 3.72 3.86 0.14 4.55 4.99
44100 4.28 1.27 4.15 4.37 1.39 4.83 5.23 0.19 5.43
48000 4.7 4.9 1.39 4.8 5.03 1.51 5.72 6.3 0.21

1.6. Multimedia 87

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

FSIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000

8000 0.06 1.87 2.02 1.07 3.09 3.36 2.07 6.09 6.63
11025 2.27 0.09 2.25 2.66 1.47 3.56 4.4 2.85 7.01
12000 245 2.76 0.09 2.75 3.43 1.6 4.5 5.83 3.1

16000 0.99 3.23 3.36 0.13 3.73 4.05 2.14 6.17 6.72
22050 3.69 1.36 4.14 4.55 0.17 4.51 5.31 2.95 7.13
24000 4.01 4.28 1.48 4.9 5.51 0.19 5.51 6.85 3.21
32000 1.83 5.26 5.39 1.98 6.46 6.71 0.25 7.47 8.09
44100 7.22 252 6.94 7.38 2.72 8.27 9.1 0.35 9.02
48000 7.85 8.33 2.74 8.02 8.57 2.97 9.81 11.03 0.38

FSIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000

8000 0.03 1.21 1.33 0.61 2.08 2.29 1.17 4.1 4.51
11025 147 0.05 1.44 1.72 0.84 2.38 2.97 1.61 4.66
12000 1.62 1.76 0.05 1.78 2.26 0.91 3.03 3.98 1.75
16000 0.55 21 2.17 0.07 2.42 2.65 1.22 4.16 4.57
22050 249 0.76 2.73 2.95 0.1 2.88 3.45 1.68 4.75
24000 2.75 2.86 0.83 3.23 3.52 0.1 3.56 4.53 1.83
32000 1 3.56 3.63 1.11 4.2 4.34 0.14 4.84 5.3

44100 4.86 1.38 4.74 4.98 1.53 5.46 5.89 0.19 5.75
48000 5.38 5.55 1.5 5.5 5.71 1.66 6.47 7.05 0.21

FSIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000

8000 0.06 2.11 2.29 1.2 3.55 3.86 2.31 6.99 7.61
11025 2.62 0.09 2.52 3.01 1.66 4.07 5.07 3.19 8

12000 285 3.15 0.09 3.11 3.9 1.81 5.17 6.75 3.47
16000 1.09 3.73 3.85 0.13 4.22 4.57 241 7.1 7.72
22050 432 1.5 4.79 5.23 0.17 5.05 6.02 3.32 8.15
24000 474 4.99 1.64 5.69 6.3 0.19 6.22 7.8 3.61
32000 198 6.18 6.3 2.18 7.45 7.71 0.25 8.44 9.14
44100 843 272 8.18 8.64 3.01 9.59 1047 0.35 10.1
48000 9.26 9.66 2.97 9.49 9.97 3.27 11.39 1259 0.38

Parent topic:Processing requirements

On Cortex-A8 for worst case of 48000 Hz to 44100 Hz

Mode MIPs
Mono at High Quality 3.13
Stereo at High Quality 3.61

Mono at Very High Quality 4.13
Stereo at Very High Quality 6.52

Parent topic:Processing requirements
Parent topic:Resource usage

Parent topic:/ntroduction

Application programmers interface (API) This section describes the application program-
ming interface (API) libraries of the SSRC module.

88 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Type definitions This section describes the type definitions of the SSRC module.

Types for allocation of instance and scratch memory The instance memory is the memory
that contains the state of one instance of the SSRC module. Multiple instances of the SSRC mod-
ule can exist, each with it is own instance memory. S memory is the memory that is only used
temporarily by the process function of the SSRC module. This memory can be used as scratch
memory by any other function running in the same thread as the SSRC module. Different threads
cannot share the scratch memories.

The application must allocate both the instance and the scratch memory. The SSRC module does
not allocate memory.

There is a data type available for both the instance and the scratch memory, namely
SSRC_Instance t and SSRC_ Scratch t. The instance type is defined as structures of the correct
size in the SSRC header file. Both the instance and the scratch memory must be 4 bytes aligned.

Parent topic:Type definitions

LVM_Fs _en Definition:

typedef enum

{
LVM_FS_ 8000 =0,
LVM_FS_11025
LVM_FS_ 12000
LVM_FS_ 16000 =
LVM_FS_22050 =
LVM__FS_ 24000
LVM_FS_ 32000
LVM_FS_ 44100
LVM_FS_ 48000

} LVM_Fs_en;

CO J O U i W N =

Description:
Used to pass the input and the output sample rate to the SSRC.

Parent topic:Type definitions

LVM_Format_en Definition:

typedef enum

LVM_STEREO =0,

LVM_MONOINSTEREO =1,

LVM_MONO =
} LVM_ Format__en;

[\V]

Description:
The LVM_ Format_ en enumerated type is used to set the value of the SSRC data format.

The SSRC supports input data in two formats Mono and Stereo. For an input buffer of NumSamples
= N (meaning N sample pairs for Stereo and MonoInStereo or N samples for Mono), the format
of data in the buffer is as listed in Table 1:

1.6. Multimedia 89

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Sample Number Stereo MonolInStereo Mono

0 Left(0) Mono(0) Mono(0)

1 Right(0) Mono(0) Mono(1)

2 Left(1) Mono(1) Mono(2)

3 Right(1) Mono(1) Mono(3)

4 Left(2) Mono(2) Mono(4)
N-2 Left(N/2-1) Mono(N/2-1) Mono(N-2)
N-1 Right(N/2-1) Mono(N/2-1) Mono(N-1)
N Left(N/2) Mono(N/2) Not Used
N+1 Right(N/2) Mono(N/2) Not Used
N+2 Left(N/2+1) Mono(N/2+1) Not Used
N+3 Right(N/2+1) Mono(N/2+1) Not Used

« « « Not Used

« « « Not Used
2*N-2 Left(N-1) Mono(N-1) Not Used

Parent topic:Type definitions

SSRC_Quality_en Definition:

typedef enum

SSRC_QUALITY__HIGH =0,
SSRC_QUALITY_VERY_HIGH
SSRC_QUALITY_DUMMY

} SSRC__Quality__en;

= 1
= LVM__MAXENUM

Description:

Used to select the quality level of the SSRC. For details, see Performance figures. Selecting the
highest-quality level, comes with a cost in the SSRC processing requirements. Therefore, it should
only be done for critical applications.

Parent topic:Type definitions

Instance parameters Definition:

typedef struct

{
SSRC_Quality_en Quality;
LVM_Fs en SSRC_Fs_ In;
LVM_Fs_en SSRC_Fs_ Out;
LVM_Format en SSRC__ NrOfChannels;
short NrSamplesIn;
short NrSamplesOut;

} SSRC_ Params__t;

Description:

Used to pass the SSRC instance parameters to the SSRC module. It is a structure that contains the
members for input sample rate, output sample rate, the number of channels, and the number of
samples on the input and output audio stream.

Parent topic:Type definitions

90 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Nr of samples mode Definition:

typedef enum

SSRC_NR_SAMPLES DEFAULT =0,
SSRC_NR_SAMPLES MIN = 1,
SSRC_NR_SAMPLES DUMMY = LVM_MAXENUM

} SSRC_NR_SAMPLES MODE_ en;

Description:

The SSRC__NR_SAMPLES MODE_en enumerated type specifies the two different modes that
can be used to retrieve the number of samples using the SSRC__GetNrSamples function.

Parent topic:Type definitions

Function return status Definition:

typedef enum

{
SSRC_OK =0,
SSRC_INVALID FS ="
SSRC_INVALID NR_CHANNELS = 2,

SSRC_NULL_ POINTER =3,
SSRC_WRONG__NR_SAMPLES =4,
SSRC_ALLINGMENT ERROR ="
SSRC_INVALID MODE =6,
SSRC_INVALID VALUE =T,
SSRC_ALLINGMENT_ ERROR — s}

LVXXX RETURNSTATUS DUMMY = LVM_MAXENUM
} SSRC__ReturnStatus__en;

Description:

The SSRC_ ReturnStatus_en enumerated type specifies the different error codes returned by the
API functions. For the exact meaning, see the individual function descriptions.

Parent topic:Type definitions

Parent topic:Application programmers interface (API)

Functions This section lists all the API functions of the SSRC module and explains their param-
eters.

SSRC_GetNrSamples Prototype:

SSRC__ReturnStatus_en SSRC__ GetNrSamples
(SSRC_NR_SAMPLES_MODE_en Mode,
SSRC_Params_t* pSSRC_ Params);

Description:

This function retrieves the number of samples or sample pairs for stereo used as an input and
as an output of the SSRC module.

1.6. Multimedia 91

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Nanm Type Description

Mod SSRC_N. There are two modes: - SSRC NR SAMPLES DEFAULT: In this
mode, the function returns the number of samples for 40 ms blocks -
SSRC_NR_SAMPLES MIN: the function returns the minimal number of sam-
ples supported for this conversion ratio. The SSRC_Init function accepts each
integer multiple of this ratio. Formula: blocksize (ms) = 1/gcd(Fs_In,Fs_ Out)

pSSE SSRC_P: Pointer to the instance parameters. The application fills in the values of the in-
put sample rate, the output sample rate, and the number of channels. Based on
this input, the SSRC__ GetNrSamples fills in the values for the number of samples
for the input and the output audio stream.

Returns:
SSRC_OK When the function call succeeds.
SSRC_INVALID_FS When the requested input or output sampling rates are in-

valid.

SSRC_INVALID NR_CHANN When the channel format is not equal to LVM_MONO or
LVM__STEREO.

SSRC_NULL_ POINTER When pSSRC_ Params is a NULL pointer.

SSRC_INVALID_ MODE When mode is not a valid setting.

Note: The SSRC_GetNrSamples function returns the values from the following tables. Instead of
calling the SSRC_GetNrSamples function, use the values from these tables directly.

Sample rate Nr of samples

8000 320
11025 441
12000 480
16000 640
22050 882
24000 960
32000 1280
44100 1764
48000 1920

In/Out 8000 11025 12000 16000 22050 24000 32000 44100 48000

8000 11 320441 23 12 160441 13 14 80441 16
11025 441320 11 147160 441640 12 147320 4411280 14 147640
12000 32 160147 11 34 80147 12 38 40147 14
16000 21 640441 43 11 320441 23 12 160441 13
22050 441160 21 14780 441320 11 147160 441640 12 147320
24000 31 320147 21 32 160147 11 34 80147 12
32000 41 1280441 83 21 640441 43 11 320441 23
44100 44180 41 14740 441160 21 14780 441320 11 147160
48000 61 640147 41 31 320147 21 32 160147 11

Parent topic:Functions

SSRC_GetScratchSize Prototype:

92 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

SSRC__ReturnStatus_en SSRC_GetScratchSize
(SSRC_Params_t* pSSRC_ Params,
LVM_ INT32* pScratchSize);

Description:

This function retrieves the scratch size for a given conversion ratio and for given buffer sizes at
the input and at the output.

Name Type Description
pSSRC_ Par. SSRC_Param Pointer to the instance parameters. All members should have a
valid value.
pScratch- LVM_ INT32* Pointer to the scratch size. The SSRC_ GetScratchSize function fills
Size in the correct value (in bytes).
|
Returns:
SSRC_OK When the function call succeeds.
SSRC_INVALID_FS When the requested input or output sampling rates are in-
valid.

SSRC_INVALID NR_CHANN When the channel format is not equal to LVM_MONO or
LVM_ STEREO.

SSRC_NULL_ POINTER When pSSRC_ Params or pScratchSize is a NULL pointer.
SSRC_WRONG_NR_SAMPL! When the number of samples on the input or on the output are
incorrect.

Parent topic:Functions

SSRC_Init Prototype:

SSRC__ ReturnStatus_en SSRC_ Init
(SSRC__Instance_t* pSSRC_ Instance,
SSRC_ Scratch_t* pSSRC_ Scratch,
SSRC_ Params_t* pSSRC_ Params,
LVM_INT16** ppInputInScratch,
LVM_ INT16** ppOutputInScratch);

Description:

The SSRC Init function initializes an instance of the SSRC module.

1.6. Multimedia 93

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Name Type

Description

pSSRC. SSRC__
pSSRC. SSRC__
pSSRC. SSRC__
ppln- LVM I
putln-

Scratch

ppOut- LVM_ I

Pointer to the instance of the SSRC. This application must allocate the memory
before calling the SSRC_ Init function.

Pointer to the scratch memory. The pointer is saved inside the instance and is
used by the SSRC_ Process function. The application must allocate the scratch
memory before calling the SSRC_ Init function.

Pointer to the instance parameters.

The SSRC module can be called with the input samples located in scratch.
This pointer points to a location that holds the pointer to the location in the
scratch memory that can be used to store the input samples. For example, to
save memory.

The SSRC module can store the output samples in the scratch memory. This

putIn- pointer points to a location that holds the pointer to the location in the scratch
Scratch memory that can be used to store the output samples. For example, to save
memory.
Returns:

SSRC_OK When the function call succeeds.

SSRC_INVALID_FS When the requested input or output sampling rates are in-
valid.

SSRC_INVALID NR_CHANN When the channel format is not equal to LVM_MONO or
LVM_STEREO.

SSRC_NULL_ POINTER When pSSRC_ Params or pScratchSize is a NULL pointer.

SSRC_WRONG_NR_ SAMPLI When the number of samples on the input or on the output are

incorrect.

SSRC_ALIGNMENT _ERROR When the instance memory or the scratch memory is not 4

bytes aligned.

Parent topic:Functions

SSRC_SetGains

Prototype:

SSRC_ ReturnStatus _en SSRC _SetGains
(SSRC__Instance_t* pSSRC_ Instance,

LVM_Mode en
LVM_ Mode en
LVM_INT16

Description:

bHeadroomGainEnabled,
bOutputGainEnabled,
OutputGain);

This function sets headroom gain and the post gain of the SSRC. The SSRC__SetGains function is
an optional function that should be used only in rare cases. Preferably, use the default settings.

94

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Name Type Description

pSSRC SSRC. Pointer to the instance of the SSRC.

bHead- LVM_ Parameter to enable or disable the headroom gain of the SSRC. The default

room- value is LVM__MODE_ON. LVM_MODE_OFF can be used if it can be guaran-

GainEr teed that the input level is below - 6 in all cases (the default headroom is -6 dB).

abled

bOut- LVM_ Parameter to enable or disable the output gain. The default value is

put- LVM__MODE_ ON.

GainEr

abled

Out- LVM_ The value of the output gain. The output gain is a linear gain value. 0x7FFF

put- is equal to +6 dB and 0x0000 corresponds to -inf dB. By default, a 3 dB gain is

Gain applied (OutputGain = 23197), resulting in an overall gain of -3 dB (-6 dB head-
room +3 dB output gain). Unit Q format Data Range Default value Linear gain
Q1.14 [0;32767] 23197

Returns:
SSRC_OK When the function call succeeds

SSRC_NULL_POINT When pSSRC_ Instance is a NULL pointer
SSRC_INVALID MO Wrong value used for the bHeadroomGainEnabled or the OutputGainEn-

abled parameters.

SSRC_INVALID_ VAI When OutputGain is out of the range [0;32767].

Parent topic:Functions

SSRC_Process Prototype:

SSRC_ ReturnStatus_en SSRC_ Process
(SSRC__Instance_t* pSSRC_ Instance,

LVM_INT16*
LVM_INT16*

Description:

pSSRC__Audioln,
pSSRC__AudioOut);

Process function for the SSRC module. The function takes pointers as input and output audio

buffers.

The sample format used for the input and output buffers is 16-bit little-endian. Stereo buffers
are interleaved (L1, R1, L2, R2, and so on), mono buffers are deinterleaved (L1, L2, and so on).

Name Type Description

pSSRC__Instance SSRC Instance t* Pointer to the instance of the SSRC.
pSSRC__ Audioln LVM_INT16* Pointer to the input samples.
pSSRC_ AudioOut LVM_INT16* Pointer to the output samples.

Returns:

1.6. Multimedia 95

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

SSRC_OK When the function call succeeds.
SSRC_NULL_ POINTE] When one of pSSRC_ Instance, pSSRC__Audioln, or pSSRC_ AudioOut is
NULL.

Parent topic:Functions

SSRC_Process_D32 Prototype:

SSRC_ReturnStatus__en SSRC Process D32
(SSRC__Instance_t* pSSRC_ Instance,
LVM_ INT32* pSSRC__Audioln,
LVM_ INT32* pSSRC__AudioOut);

Description:

Process function for the SSRC module. The function takes pointers as input and output audio
buffers.

The sample format used for the input and output buffers is 32-bit little-endian. Stereo buffers
are interleaved (L1, R1, L2, R2, and so on), mono buffers are deinterleaved (L1, L2, and so on).

Name Type Description

pSSRC Instance SSRC Instance t* Pointer to the instance of the SSRC.
pSSRC__Audioln LVM__INT32* Pointer to the input samples.
pSSRC__ AudioOut LVM_INT32* Pointer to the output samples.

Returns:

|SSRC_OK|When the function call succeeds.| |SSRC_NULL_POINTER|When one of
pSSRC_ Instance, pSSRC__Audioln, or pSSRC__AudioOut is NULL. |

Parent topic:Functions

Parent topic:Application programmers interface (API)

Dynamic function usage This chapter explains how and when the SSRC functions are or can
be used.

Define the number of samples to be used on input and output Call the function
SSRC__ GetNrSamples. Each integer multiple of the returned number of samples can be used.

Parent topic:Dynamic function usage

Allocate scratch memory To calculate the required size of the scratch memory, call the
SSRC__GetScratchSize function. Allocate memory for the returned size.

Parent topic:Dynamic function usage

Initialize the SSRC instance Call the SSRC Init function.

Parent topic:Dynamic function usage

96 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Process samples The SSRC_ Process function can now be called any number of times.

Parent topic:Dynamic function usage

Destroy the SSRC instance When the processing is completed, the allocated memory for the
instance and the scratch can be freed.

Parent topic:Dynamic function usage

Parent topic:Application programmers interface (API)

Reentrancy None of the SSRC functions are re-entrant.

Parent topic:Application programmers interface (API)

Additional user information This section provides information on the Attenuation of the sig-
nal and Notes on integration.

Attenuation of the signal When a fully saturated or clipped input is applied to an SRC module,
the aliases after the sample rate conversion, although sufficiently suppressed, can still result in
a clipped output. To prevent clipped output, the output of the SSRC module is by default atten-
uated with 3 dB. Although not advised, this gain value can be changed using the SSRC_SetGains
function.

Parent topic:Additional user information

Notes onintegration Although the sample rate converter module works with audio signals on
different sampling rates, it is a synchronous module. The module takes a block of input samples,
consumes the input completely, and produces a full buffer with output samples. As a result, the
SSRC only accepts a limited number of input and output block sizes. To flush last, incomplete,
block of an audio stream, the block is padded with zeros until it is full before the SSRC processes
it.

Parent topic:Additional user information

Example application The source code of the example application can be found in the .
\EX_APP\APP_FileIO\SRC directory of the release package. The \EX_ APP\APP_FileIO\
MAKE directory contains a make file that can be used to build the example application. When
building the application, an executable is generated in the \EX_APP\APP_ FileIO\EXE direc-

tory.
The example application takes as command-line input parameters:

1. The path toward the input PCM file. It assumes raw 16 bit signed little-endian put. Stereo
input samples should be interleaved (L1, L2 R1, R2,...), mono samples should be deinter-
leaved (L1, L2, and so on).

. The path toward the output PCM file.
. The input sample rate.

. The output sample rate.

g s W N

. The channel format (mono or stereo).

1.6. Multimedia 97

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Integration test A correct integration of the SSRC module can be verified in two ways.
* Bit accurate test

e THD+N measurement

Bit accurate test The TestFiles directory of the release package contains a test input (sampled
at 44,100 Hz) and several expected output files (sample rates from 8000 Hz to 48,000 Hz). If the
same test input file is applied to the SRC after integration in the target platform, the output is bit
accurate with the expected output file that matches the output-sample rate

Parent topic:Integration test

THD+N measurement Produce a swept sine and feed it through the SSRC module. Do a THD+N
measurement on the obtained output signal. The THD+N of the converted signals should be
below - 77 in the interval [0 - 0.45] FSLOW.

Parent topic:/ntegration test

Maestro Audio Framework

MCUXpresso SDK : Maestro

Overview This repository is for MCUXpresso SDK maestro middleware delivery and it contains
the components officially provided in NXP MCUXpresso SDK. This repository is part of the MCUX-
presso SDK overall delivery which is composed of several sub-repositories/projects. Navigate to
the top/parent repository (mcuxsdk-manifests) for the complete delivery of MCUXpresso SDK.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit Maestro - Documentation to review details on the contents in this sub-repo.

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution We welcome and encourage the community to submit patches directly to the
Maestro project placed on github. Contributing can be managed via pull-requests.

Introduction Maestro audio framework intends to enable chaining of basic audio processing
blocks, called elements. These blocks then form stream processing objects, called pipeline. This
pipeline can be used for multiple audio processing use cases.

The processing blocks can include (but are not limited to) different audio sources (for exam-
ple file or microphone), decoders or encoders, filters or effects, and audio sinks. Framework
overview is depicted in the following picture:

98 Chapter 1. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/audio_voice/maestro/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Application
Audio source | Media codec || Voice processing|—| Post processing |+ Audio sink
Microphone(s) MP3 decoder ‘ VIT or 3 party ‘ SSRC or 3 ™ party Speaker(s)
Filesystem Opus decoder ASRC or 3™ party Filesystem
Network / ring Opus encoder Memory
WAV decoder USB audio cl

MEI’T‘IDFy dudlo Class

io cl Flac decoder
USB audio class AAC decoder

OS Abstraction Layer
FreeRTOS Zephyr*

*not all elements and libraries are supported in Zephyr port. For more information, see Maestro
on Zephyr

The Maestro audio framework is an open-source component developed by NXP Semiconductors
and released under the BSD-compatible license. It is running on RTOS (Zephyr or FreeRTOS),
abstracted by OSA layer.

For detailed description of the audio Maestro framework, please refer to the programmer’s guide.

To see what is new, see changelog.

Maestro on Zephyr Getting started guide and further information for Maestro on Zephyr may
be found here.

Maestro on FreeRTOS Maestro on FreeRTOS is supported in NXP’s SDK. To get started, see
mcuxsdk doc.

Supported examples The current version of the Maestro audio framework supports several
optional features, some of which are used in these examples:

* maestro_playback

e maestro_record

* maestro_usb_mic

* maestro_usb_speaker
* maestro_sync

The examples can be found in the audio_examples folder of the desired board. The demo ap-
plications are based on FreeRTOS and use multiple tasks to form the application functionality.

Example applications overview To set up the audio framework properly, it is necessary to
create a streamer with streamer_ create APL It is also essential to set up the desired hardware
peripherals using the functions described in streamer_ pcm.h. The Maestro example projects con-
sist of several files regarding the audio framework. The initial file is main.c with code to create
multiple tasks. For features including SD card (in the maestro_playback examples, reading a
file from SD card is supported and in maestro_record writing to SD card is currently supported)
the APP__SDCARD_ Task is created. The command prompt and connected functionalities are
handled by APP_ Shell_ Task.

1.6. Multimedia 99

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/index.html

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

One of the most important parts of the configuration is the streamer_pcm.c where the initial-
ization of the hardware peripherals, input and output buffer management can be found. For
further information please see also streamer pcm.h

In the Maestro USB examples (maestro_usb_mic and maestro_usb_speaker), the USB configura-
tion islocated in the usb_ device_ descriptor.c, audio_ microphone.c and audio_ speaker.c files. For fur-
ther information please see also usb_ device_descriptor.h, audio__microphone.h and audio__speaker.h.

In order to be able to get the messages from the audio framework, it is necessary to create a
thread for receiving the messages from the streamer, which is usually called a Message Task. The
message thread is placed in the app_ streamer.c file, reads the streamer message queue, and reacts
to the following messages:

« STREAM_MSG_ERROR - stops the streamer and exits the message thread
STREAM_MSG_EOS - stops the streamer and exits the message thread
STREAM_MSG_UPDATE_DURATION - prints info about the stream duration
STREAM_MSG_UPDATE_POSITION - prints info about current stream position
STREAM_MSG_CLOSE_TASK - exits the message thread

File structure

Folder Description

src Maestro audio framework sources

src/inc Maestro include files

src/core Maestro core sources

src/cci Common decoder interface sources

src/cei Common encoder interface sources

src/elements Maestro elements sources

src/devices External audio devices implementation (audio source & audio sink ele-
ments)

src/utils Helper utilities utilized by Maestro

docs Generated documentation

doxygen Documentation sources

components Glue for audio libraries, so they can be used in elements

tests Maestro tests

zephyr/ Zephyr related files

zephyr/samples/ Zephyr samples

zephyr/tests/ Zephyr tests

zephyr/audioTracks, Audio tracks for testing

zephyr/wrappers/ Zephyr NXP SDK Wrappers
zephyr/doc/ Zephyr documentation configuration for Sphinx
zephyr/scripts/ Zephyr helper scripts, mostly for testing

Maestro Audio Framework Programmer’s Guide

Introduction Maestro audio framework provides instruments for playback and capture of dif-
ferent audio streams. In order to do that the framework uses API for creating various audio and
voice pipelines with the support of media and track information. This document describes the
framework in its detail, and the usage of API for pipeline creation using different elements. The
framework needs an operating system in order to create different tasks for audio processing and
communication with the application.

100 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Architecture overview A high-level block diagram of the streamer used in Maestro is shown
below. An element is the most important class of objects in the streamer (see streamer_ element.c).
A chain of elements will be created and linked together when a pipeline is created. Data flows
through this chain of elements in form of data buffers. An element has one specific function,
which can be the reading of data from a file, decoding of this data, or outputting this data to
a sink device. By chaining together several such elements, a pipeline is created that can do a
specific task, for example, the playback.

Audio source —{ Media codec [+ Voice processing|—{ Post processing |+ Audio sink

Microphone(s) MP3 decoder VIT or 3 party SSRC or 3 ™ party Speaker(s)
Filesystem Opus decoder ASRC or 3 " party Filesystem
Network / ring Opus encoder Memory
Memory WAV decoder USB audio class

USB audio class

OS Abstraction Layer

FreeRTOS

Pipeline

The pipeline is created within the streamer create API using the streamer create pipeline call.
In the example applications provided in the MCUXpresso SDK the pipeline is created in the
app__streamer.c file. In order to create a pipeline user needs to provide a PipelineElements struc-
ture consisting of array of element indexes ElementIndex and the number of elements in the
pipeline. Then the pipeline is built automatically and user can specify the properties of the
elements using the streamer_set_ property API. All the element properties can be found in the
streamer_element_ properties.h file.

The streamer can handle up to two pipelines within a single task. The first pipeline with
index 0 can be created using the streamer create function as described above. Then the
streamer__create__pipeline function should be used to create the second pipeline (pipeline with in-
dex 1). An example creation can be found in the app_ streamer.c file in the maestro_sync_example.
Both pipelines are processed sequentially, so after the first pipeline is processed, the second
pipeline is processed.

After the pipeline is sucessfully created, all elements and entire pipeline are in STATE_NULL
state. A user can start the streamer by setting the pipeline state to STATE_PLAYING using the
streamer__set_state function. The pipeline can also be paused or stopped using the same function.
Use the STATE_PAUSED to pause and use STATE__NULL to stop. The function changes the state
of each element thatisin the pipeline in turn, and after all the elements have obtained the desired
state, the state of entire pipeline is changed.

Elements The current version of the Maestro framework supports several types of elements
(StreamElementType). In each pipeline should be used one source element (elements with the
~ SRC suffix) and one sink element (elements with the SINK suffix). A decoder, encoder or au-
dio_ proc element can be connected between these two elements. The audio_ proc element can be
used more than once within the same pipeline.

Each element type (StreamElement Type) has several functions that are determined by a unique el-
ement index (ElementIndex). These indexes are used to create a pipeline, and each element index
can only be used once in the same pipeline. The type_lookup_ table shows which StreamElement-
Type supports which ElementIndex.

Each element index (ElementIndex) has its own properties and a list of these properties can be
found in the streamer_element_ properties.h file. These properties are divided into groups and each
group is identified by a property mask (e.g. for speaker it is PROP_SPEAKER_MASK). Then
the property_lookup_ table in the streamer_msg.c file determines which property group relates to

1.6. Multimedia 101

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

which element index (ElementIndex). When an element is created and added to the pipeline, its
properties are set to their defalut values. Default values can be seen in the initialization function
of a particular element. The initialization functions are specified in the element_ list array in the
streamer__element.c file (e.g. for the audio_ proc element it is the audio_ proc_ init_ element function).
The user can get the value of the property using the streamer_get_ property function or change its
value using the streamer_set_ property function.

The source code of the elements can be found in the middleware\audio_ voice\maestro\src\elements\
folder.

Add a new element type The user can add a new element type (StreamElementType) to the
Maestro audio framework. For this, the following steps need to be done.

* Add a new element type to the StreamElementType enum type in the streamer_api.h.

* Create a new *c and *h files for the new element type in the middleware\audio_ voice\
maestro\src\elements\ folder. All necessary structures and functions (functions for src pads,
sink pads and element itself) needs to be defined in these files. Inspiration can be found in
other elements.

* Link the initialization function to the element type in the element_ list array in the
streamer element.c file. To do this, a new definition that enables the element needs to be
created (e.g. there is a STREAMER_ENABLE__AUDIO_ PROC definition for the audio_ proc
element).

* Associate the newly created element type with an element index (ElementIndex) by adding
a new pair to the type_lookup__table in the streamer.c file.

* If the user wants to use the newly created element in an application, the definiton that
enables the element must be defined at the project level.

Mostly the user doesn’t need to create a new element type, but just create an element index.

Add a new element index To create a new element index in the Maestro audio framework,
follow these steps:

* Add a new element index to the ElementIndex enum type in the streamer_ api.h.

* Create the required properties for the newly created element index in the
streamer__element_ properties.h file.

* Associate the newly created property group with newly created element index by adding a
new pair to the property_lookup_ table in the streamer_msg.c file.

» Associate the newly created element index with an element type (StreamElementType) by
adding a new pair to the type_lookup_table in the streamer.c file.

* Add support for the created properties to functions of the associated element type. These
functions are defined in files that correspond to a particular element type. The files are
located in the middleware\audio_ voice\maestro\src\elements\ folder.

It is important to know that each element type (StreamElementType) can be associated with
more than one element index (ElementIndex), but each element index (ElementIndex) can be
associated with only one element type (StreamElementType).

Pads Pads are elements’ inputs and outputs. A pad can be viewed as a “plug” or “port” on an
element where links may be made with other elements, and through which data can flow to or
from those elements. Data flows out of an element through a source pad, and elements accept
incoming data through a sink pad. Source and sink elements have only source and sink pads,
respectively. For detailed information about pads, please see the API reference from pad.c.

102 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Application

Streamer Pipeline

Source element Processing element Sink element
Source pad Sink pad Source pad Sink pad
link link
I Data flow

Internal communication The streamer (the core of the framework) provides several mecha-
nisms for communication and data exchange between the application, a pipeline, and pipeline
elements:

* Buffers are objects for passing streaming data between elements in the pipeline. Buffers
always travel from sources to sinks (downstream).

» Messages are objects sent from the application to the streamer task to construct, configure,
and control a streamer pipeline.

* Callbacks are used to transmit information such as errors, tags, state changes, etc. from the
pipeline and elements to the application.

* Events are objects sent between elements. Events can travel upstream and downstream.
Events may also be sent to the application

* Queries allow applications to request information such as duration or current playback
position from the pipeline. Elements can also use queries to request information from their
peer elements (such as the file size or duration). They can be used both ways within a
pipeline, but upstream queries are more common

1.6. Multimedia 103

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Application

Streamer Pipeline

Source element — Processing element | Sink element

Source pad 0 Sink pad Source pad
link link

==

Sink pad

¢

- Data flow

Decoders and encoders Maestro framework uses a common codec interface for decoding pur-
poses and a common encoder interface for encoding. Those interfaces encapsulate the usage
of specific codecs. Reference codecs are available in audio-voice-components repository which
should be in \middleware\audio_ voice\components\ folder.

Common codec interface The Common Codec Interface is the intended interface for all used
decoders. The framework will integrate a CCI decoder element into the streamer to interface
with all decoders.

Using the CCI to interface with Metadata

* cci_extract_meta_data must be called before any other Codec Interface APIs. This
API extracts the metadata information of the codec and fills this information in the
file_meta_data_t structure. The file_meta_data_t structure must be allocated by the appli-
cation.

» This function first extracts the input file extension and based on that it calls the specific
codec’s metadata extraction function. If it finds an invalid extension or unsupported ex-
tension then it returns with META_DATA_FILE_NOT_SUPPORTED code for any unsupported
file format.

« If this API finds the valid metadata then it returns with META_DATA FOUND code. If this
API does not find any metadata information then it returns with META_DATA_NOT_FOUND
code. It also returns with META_DATA_FILE_NOT_SUPPORTED code for any unsupported
file format.

Using the CCI to interface with Decoders

* codec__get_mem__info gets the memory requirement based on the specific decoder stream
type. It returns the size in bytes of the specific codec. The user of the decoders must al-
locate memory of this size and this memory is used by the initialization API. The user or
application must pass this allocated memory pointer to the init API.

104 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

* codec_init must be called before the codec’s decode API. This API calls the codec-specific
initialization function based on the codec stream type. This API allocates the memory to
the codec main structure and also initializes the codec main structure parameters. It also
registers the call back functions to the codec which will be used by the codec to read or seek
the input stream.

* codec__decode is the main decoding API of the codec. This API calls the codec-specific decod-
ing function based on the codec stream type. This API decodes the input raw stream and
fills the PCM output samples into codec output PCM buffer. This API gives the information
about the number of samples produced by the codec and also gives the pointer of the codec
output PCM samples buffer.

e codec_ get_pcm_samples must be called after the codec’s decode API. This API calls the codec
specific Get PCM Sample API based on the codec stream type. This API gets the PCM samples
from the codec in constant block size and fills them into the output PCM buffer. It returns
the number of samples get from the codec and also gives the pointer of the output PCM
buffer.

* codec_ reset calls the codec specific reset API base on stream type and resets the codec.

* codec_seek accepts the seek bytes offset converted from the time by application. This API
calls the decoder’s internal seek API to calculate the actual seek offset which frame bound-
ary aligns. This API returns the actual seek offset.

The basic sequence to use a decoder with the CCI is shown below:

Start Codec Test I

FAILURE - Open 1/0 Files

!

SUCCESS

.

MMetadata Extraction

l

SUCCESS

}

Get Codec Memory
Reguirements & Allocate
remaory

I |

Init Failure le— CodecInitialization haore Data Required

!

Init Done

}

End Of Decode < Codec Decode

I

Write Output Data

FAILURE

¥

Critical Error

v

&

Close 1/0 Files

l

EI{ End Codec Test]
"\

1.6. Multimedia 105

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Adding new decoders to the CCI This section explains how to integrate a new decoder in the
Common Codec Interface. The CCI assumes the decoder library to be used is in the \middleware\
audio_ voice\audiocomponents\decoders\ *decoder*\libs\ folder of the maestro framework. The CCI
is just a wrapper around a specific implementation. The decoder is expected to be extended as
needed to meet the APIs described above.

* Register Decoder Top level APIs in Common Codec Interface
— Place the decoder lib in libs folder.

— Add prototypes of the decoder top level APIs in codec_interface.h file (located at
maestro\src\cci\inc\ folder).

— In codec_interface.c file (located at maestro\src\cci\src\), add top level Decoder APIs in
decoder function table.

— Pseudo code for this is as described below.

const codec__interface_function_table_t g codec_ function_table[STREAM_TYPE_COUNT] = {
#ifdef VORBIS CODEC

{
& VORBISDecoderGetMemorySize,

& VORBISDecoderlInit,

& VORBISDecoderDecode,

NULL,

NULL,

&VORBISDecoderSeek,

& VORBISDecoderGetIOFrameSize,

i
Felse

NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,

}
#endif

b
* Enable or Disable Decoder
— Define VORBIS_ CODEC macro in audio_cfg.h file.

— Comment this macro if you want to disable VORBIS Decoder otherwise keep it defined
in order to enable the decoder.

o Add Extract Metadata API for the decoder

- Add extract metadata API source file for the decoder at
streamer/cci/metadata/src/vorbis folder.

— Add this code in extract metadata lib project space.
— Build the extract metadata lib and copy that lib to libs folder.

— Add the desired stream type into ccidec_ extract_ meta_ data API (in codecextractmeta-
data.c file) to call VORBIS Decoder extract metadata API.

* Add stream type of the new decoder in the stream type enum audio_stream_type_t in
codec_interface_public_api.h

— Stream type of the decoder in stream type enum and decoder APIs in decoder function
table must be in the same sequence.

106 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Common encoder interface Please see the following section about the cei.

Maestro performance

Memory information The memory usage of the framework components using reference
codecs (data obtained from GNU ARM compiler) in bytes is:

text data bss component

48790 2752 4 aac decoder
4348 16400 212 asrc

15512 0 4 flac decoder
76462 16 5013 maestro
34211 O 4 mp3 decoder
211974 O 0 opus

65446 0 4 ssrc

5850 16 12 wav decoder

Maestro framework uses dynamic allocation of audio buffers. The total amount of memory al-
located for the pipeline depends on the following parameters:

* Number of elements in the pipeline
* Element types
* Audio stream properties

— Sampling rate

- Bit width

— Channel number

— Frame size

CPU usage The performance of the pipeline was measured using the real hardware platform
(RT1060).

* CPU core clock in MHz: 600.

Pipeline type Performance MIPS of pipeline (in MHz)
audio source -> audio sink ~10.26 MHz
audio source -> file sink ~9.84 MHz

file source (8-channel PCM) -> audio sink ~16.5 MHz

For performance details about the supported codecs please see audio-voice-components reposi-
tory documentation.

CEIencoder The Maestro streamer contains an element adapting an extensible set of audio en-
coders in the form of functions conforming to the CEI (Common Encoder Interface). This element
enables the user to choose and configure a suitable encoder at runtime.

1.6. Multimedia 107

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Header files CElitself and the CEI encoders are using following header files, in which you may
be interested:

* cei.h - contains types used by the element itself and an encoder implementing the CEI

* cei_enctypes.h - contains a list of possible encoders and types used for interfacing with a CEI
encoder

* cei_table.h - contains a table of functions implementing integrated CEI encoders

Instantiating the element This element’sindex is ELEMENT_ENCODER_INDEX and its type
is TYPE_ELEMENT_ENCODER, as defined in streamer_api.h. It has one source pad (data in-
put) and one sink pad (data output). It is initialized like any other element, meaning that
it is instantiated and inserted into the pipeline using the create_element, add__element_ pipeline
and link_elements functions. Inversely, for destroying the element, the unlink_elements, re-
move__element_ pipeline and destroy_element are used. This element alone does not depend on
any additional software layers other than these required by the Maestro streamer itself, so no
pre-initialization before this element instantiation is necessary.

Element properties Use Maestro streamer property API (streamer set property and
streamer__get_ property) for setting or getting these. The constants are defined in
streamer__element_ properties.h.

* PROP_ENCODER_CHUNK_ SIZE

— Synopsis: Determines the length of a chunk pulled from the sibling of the source pad
and essentially influences the size of allocated buffers. If the actual amount of data
pulled is smaller, the rest is zero-filled.

— Type: unsigned 32-bit integer
— Default value: 1920
— Constraints:
* Must be bigger than zero, otherwise STREAM_ERR,_INVALID ARGS is returned.

% Cannot be changed if the actual encoder has been created. If done so,
STREAM_ERR_ELEMENT_BAD_STATUS is returned.

* PROP_ENCODER_TYPE
— Synopsis: Determines the exact encoder (CEI implementation) to be used.
— Type: CeiEncoderType (cei_enctypes.h)
— Default value: CEIENC_LAST
— Constraints:

% Must not be equal to CEIENC_ LAST, otherwise STREAM_ERR,_ INVALID ARGS
will be returned.

* Selected encoder must be implemented, otherwise
STREAM ERR INVALID ARGS will be returned.

% Cannot be changed if the actual encoder has been created. If done so,
STREAM_ERR_ELEMENT BAD_ STATUS will be returned.

— Behaviour influenced: The encoder element process function will return
FLOW__ERROR if this property isn’t set.

* PROP_ENCODER_ CONFIG
— Synopsis: Determines encoder-specific configuration (application, bitrate, ...).

- Type: Pointer to the encoder-specific configuration structure.

108 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

— Default value: Determined by the encoder.
- Constraints:

* The encoder has to be configurable. If it is not, STREAM_ERR_ERR_GENERAL
will be returned on any access.

The structure has to conform to the encoder requirements. If the encoder returns
an error code, STREAM__ERR__ GENERAL will be returned.

* PROP_ENCODER_ BITSTREAMINFO

— Synopsis: Specifies information about the incoming bitstream (sample rate, sample
depth, ...).

— Type: Pointer to CeiBitstreamInfo (cei_enctypes.h).

— Default value:

(CeiBitstreamInfo) {
.sample_rate = 0,
.num__channels = 0,
.endian = AF_LITTLE_ENDIAN,
.sign = TRUE,
.sample_size = 0,
.interleaved = TRUE
}

— Constraints:

% Cannot be changed if the actual encoder has been created. If done so,
STREAM ERR ELEMENT BAD STATUS will be returned.

* As of now, only bitstreams containing 16-bit interleaved (if 2 or more channels will
be encoded) samples are supported. If anything else was set to the sample_ size and
interleaved members, STREAM_ERR_INVALID ARGS will be returned.

— Behaviour influenced:

* Given the characteristics of some elements available, different packets of data
(header and payload, referred to as “chunk” above) may be pulled by this element.
Each packet can contain a different header, which may or may not contain useful
information about the bitstream. If a packet with the AudioPacketHeader (todofile.h)
is pulled at first and any other iteration of the streamer pipeline, the bitstream pa-
rameters configured by this property are implicitly available and are not expected
to be specified by the user. Other packet header types (such as RawPacketHeader)
don’t contain any bitstream parameters and require the user to specify the param-
eters manually using this property. Failure to do so will result in the element’s
process function returning FLOW__ERROR. Same situation will occur if a packet
with the AudioPacketHeader is received and its contents differ from the already ac-
quired bitstream parameters.

* As of now, CEI is defined to work with 16-bit signed little-endian (s16le) samples,
which are interleaved if the bitstream contains more than one channels. This ele-
ment handles endianness and unsigned to signed conversion.

CEI definition - implementing your own encoder The CEI defines following function pointer
types:

* CeiFnGetMemorySize: Returns number of bytes required for encoder state for a given num-
ber of channels.

* CeiFnEncoderInit: Initialize an encoder for a given sample rate and channel count.

* CeiFnEncoderGetConfig: Copy current or default configuration to a given structure pointer.

1.6. Multimedia 109

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

* CeiFnEncoderSetConfig: Configure the encoder from a given structure pointer.
* CeiFnEncode: Encode a given buffer to a given output buffer.

Detailed descriptions of function behaviour, parameters and expected return values are avail-
able as docblocks in the cei.h file.

Each encoder is implemented as a set of pointers pointing to functions conforming to these types,
grouped in the CeiEncoderFunctions structure. Specifying the CeiEncoderGetConfig fnGetConfig and
CeiFnEncoderSetConfig fnSetConfig members is optional, as an encoder does not have to be con-
figurable. If so desired, specify NULL. Implementation of the remaining functions is mandatory,
however. If at least one of these functions isn’t implemented and NULL is specified instead, the
encoder will be considered as not implemented.

To register an implemented encoder with the element, add a new entry to the CeiEncoderType
enum and add the CeiEncoderFunctions struct value to the table CeiEncoderFunctions ceiEncTable]]
located in the cei table.h header file. Note and match the order of items in that table, as a CeiEn-
coderType value is used as an index. Same goes for the size t ceiEncConfigSizeTable|]. If configura-
tion is not applicable, specify 0 at the appropriate index. If configuration is applicable, describe
the configuration structure in the cei_enctypes.h header file and add its size to that table.

Maestro playback example

Table of content
* Qverview
* Hardware requirements
* Hardware modifications
* Preparation
* Running the demo
* Example configuration
* Functionality
» States
* Commands in detail

* Processing Time

Overview The Maestro playback example demonstrates audio processing on the ARM cortex
core utilizing the Maestro Audio Framework library.

The application is controlled by commands from a shell interface using serial console and the
audio files are read from the SD card.

Depending on target platform or development board there are different modes and features of
the demo supported.

» Standard - The mode demonstrates playback of encoded files from an SD card with up to 2
channels, up to 48 kHz sample rate and up to 16 bit width. This mode is enabled by default.

* Multi-channel - The mode demonstrates playback of raw PCM files from an SD card with 2
or 8 channels, 96kHz sample rate and 32 bit width. The decoders and synchronous sample
rate converter are not supported in this mode. The Multi-channel mode is only supported
on selected platforms, see the table below. The Example configuration section contains in-
formation on how to enable it.

110 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

As shown in the table below, the application is supported on several development boards and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow to use of an audio expansion board. Therefore, please
check the supported features and Hardware modifications or Example configuration sections be-
fore running the demo.

Limitations:
* Note:
— LPCXPresso55s69 - MCUXpresso IDE project default debug console is semihost
* Decoder:
- AAC:
* The reference decoder is supported only in the MCUXpresso IDE and ARMGCC.
- FLAC:

* LPCXpresso55s69 - When playing FLAC audio files with too small frame size (block
size), the audio output may be distorted because the board is not fast enough.

- OPUS:

% LPCXpresso55s69 - The decoder is disabled due to insufficient memory may be dis-
torted because the board is not fast enough.

+ Sample rate converter:
— SSRC:

% LPCXpresso55s69 - When a memory allocation ERROR occurs, it is necessary to
disable the SSRC element due to insufficient memory.

Known issues:
* Decoder:
- MP3:

* The reference decoder has issues with some of the files. One of the channels can
be sometimes distorted or missing parts of the signal.

- OPUS:

* The decoder doesn’t support all the combinations of frame sizes and sample rates.
The application might crash when playing an unspupported file.

More information about supported features can be found on the Supported features page.

Hardware requirements
* Desired development board
* Micro USB cable
* Headphones with 3.5 mm stereo jack
* SD card with supported audio files

* Personal computer

Optional:
— Audio expansion board AUD-EXP-42448 (REV B)

1.6. Multimedia 111

https://www.nxp.com/part/AUD-EXP-42448#/

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Hardware modifications Some development boards need some hardware modifications to
run the application. If the development board is not listed here, its default setting is required.

» EVKB-MIMXRT1170:
1. Please remove below resistors if on board wifi chip is not DNP:
- R228, R229, R232, R234
2. Please make sure R136 is weld for GPIO card detect.

Preparation

1. Connect a micro USB cable between the PC host and the debug USB port on the development
board.

2. Open a serial terminal with the following settings:
* 115200 baud rate
» 8 data bits
* No parity
* One stop hit
* No flow control
3. Download the program to the target board.

4. Insert the headphones into the Line-Out connector (headphone jack) on the development
board.

5. Either press the reset button on your development board or launch the debugger in your
IDE to begin running the demo.

Running the demo When the example runs successfully, you should see similar output on the
serial terminal as below:

Maestro audio playback demo start
Sk ok 3k >k Sk ok sk >k sk ok ok ok sk Skoskosk sk skoskok sk skoskosk sk skoskok sk sk kokok

[APP_ Main_ Task]| started
Copyright 2022 NXP
[APP_SDCARD_ Task] start
[APP_ Shell Task] start

>> [APP_SDCARD_ Task] SD card drive mounted

Type help to see the command list. Similar description will be displayed on serial console (If
multi-channel playback mode is enabled, the description is slightly different):

>> help

“help”: List all the registered commands
“exit”: Exit program

“version”: Display component versions

"file”: Perform audio file decode and playback

USAGE: file [stop|pause|volume|seek|play|list|info]
(continues on next page)

112 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

(continued from previous page)

stop Stops actual playback.

pause Pause actual track or resume if already paused.

volume <volume> Set volume. The volume can be set from 0 to 100.

seek <seek time> Seek currently paused track. Seek time is absolute time in milliseconds.
play <filename> Select audio track to play.

list List audio files available on mounted SD card.

info Prints playback info.

Details of commands can be found here.

Example configuration The example can be configured by user. Before configuration, please
check the table to see if the feature is supported on the development board.

* Enable Multi-channel mode:
— Add the MULTICHANNEL_ EXAMPLE symbol to preprocessor defines on project level.
— Connect AUD-EXP-42448 (see the point below).
* Connect AUD-EXP-42448:
- EVKC-MIMXRT1060:
1. Disconnect the power supply for safety reasons.

2. Insert AUD-EXP-42448 into J19 to be able to use the CS42448 codec for multichannel
output.

3. Uninstall J99.
4, Set the DEMO__CODEC_WMS8962 macro to 0 in the app_ definitions.h file
5. Set the DEMO_ CODEC__(CS42448 macro to 1 in the app_ definitions.h file.

Functionality The file play <filename> command calls the STREAMER. file Create or
STREAMER_ PCM_ Create function from the app_ streamer.c file depending on the selected mode.

* When the Standard mode is enabled, the command calls the STREAMER, file Create func-
tion that creates a pipeline with the following elements:

— ELEMENT_FILE_SRC_INDEX
— ELEMENT_DECODER_INDEX
— ELEMENT_SRC_INDEX (If SSRC_PROC is defined)
— ELEMENT_SPEAKER_INDEX

* When the Multi-channel mode is enabled, the command calls STREAMER PCM _Create
function, which creates a pipeline with the following elements:

— ELEMENT_FILE_SRC_INDEX (PCM format only)
— ELEMENT_SPEAKER_INDEX
— Note:

% If the input file is an 8 channel PCM file, output to all 8 channels is available. The
properties of the PCM file are set in the app_ streamer.c file using file source prop-
erties sent to the streamer:

- PROP_FILESRC_SET SAMPLE_ RATE - default value is 96000 [Hz]
- PROP_FILESRC_SET NUM_CHANNELS - default value is 8
- PROP_FILESRC_SET BIT WIDTH - default value is 32

1.6. Multimedia 113

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Playback itself can be started with the STREAMER__Start function.

Each of the elements has several properties that can be accessed using the streamer_ get_ property
or streamer_set_ property function. These properties allow a user to change the values of the
appropriate elements. The list of properties can be found in streamer_element_ properties.h. See
the example of setting property value in the following piece of code from the app_ streamer.c file:

ELEMENT PROPERTY_ T prop;

EXT_PROCESS_DESC_T ssrc_proc = {SSRC_ Proc_ Init, SSRC_ Proc_ Execute, SSRC_ Proc_ Deinit,
—&get__app_ data()->proc_args};

prop.prop = PROP_SRC_PROC_FUNCPTR;
prop.val = (uintptr_t)&ssrc_ proc;

if (streamer_set_ property(streamer, 0, prop, true) = 0)

{

return -1;

}

prop.prop = PROP__AUDIOSINK_SET_VOLUME;

prop.val = volume;
streamer__set_ property(streamer, 0, prop, true);

Some of the predefined values can be found in the streamer__api.h.

States The application can be in 3 different states:
 Idle
* Running
» Paused

In each state, each command can have a different behavior. For more information, see Com-
mands in detail section.

Commandsindetail The applicatinis controlled by commands from the shell interface and the
available commands for the selected mode can be displayed using the help command. Commands
are processed in the cmd.c file.

s help, version
* file stop
* file pause
s file volume <volume>
* file seek <seek_time>
* file play <filename>
o file list
s file info
Legend for diagrams:

flowchart TD
classDef function fill: #69CA00
classDef condition fil:#0EAFEQ
classDef state fill: #F9B500

114 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

classDef error fill: #F54D4D

A((State)):::state
B{Condition}:::condition
C[Error messagel:::error
D[Process function]:::function

help, version

flowchart TD
classDef function fill:#69CA00
classDef condition fill:#0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

A((Idle)):::state --> D[Write help or version]:::function
B((Running)):::state --> D

C((Paused)):::state --> D

D-->E((No state

change)):::state

file stop

flowchart TD
classDef function fill: #69CA00
classDef condition fil:#0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

B((Idle)):::state --> B
C((Running)):::state -->E((Idle)):::state
D((Paused)):::state -->E

file pause

flowchart TD
classDef function fill: #69CA00
classDef condition fill: #0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

B((Idle)):::state --> B
C((Running)):::state -->E((Paused)):::state
D((Paused)):::state -->F((Running)):::state

file volume <volume>

flowchart TD
classDef function fill:#69CA00
classDef condition fill: #0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

B((Idle)):::state --> M|[Error: Play a track first]:::error
C((Running)):::state --> G{Volume
parameter

1.6. Multimedia 115

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

empty?}::condition
D((Paused)):::state --> G

G -- Yes -->H[Error: Enter volume parameter]:::error
G -- No -->I{Volume

in range?}:::condition

I -- No -->J[Error: invalid value]:::error
I -- Yes -->K]Set volume]:::function

J --> L((No state

change)):::state

K->L

H->L

file seek <seek_time> The seek argument is only supported in the Standard mode.

flowchart TD
classDef function fill:#69CA00
classDef condition fill: #0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

B((Idle)):::state --> E[Error: First select
an audio track to play]:::error

E-->B

C((Running)):::state --> F[Error: First
pause the track]:::error

F-->C

D((Paused)):::state --> G{Seck
parameter

empty?}::condition

G --No --> H{AAC file?}:::condition
G --Yes --> I[Error: Enter

a seek time value]:::error
I-->N((Paused)):::state;

H --Yes -->J[Error: The AAC decoder
does not support

the seek command]:::error

J-->N

H --No -->K{Seek

parameter

positive? }:::condition

K --No -->L[Error: The seek

time must be

a positive value]:::error

L->N

K --Yes -->M]Seek the file]:::function
M-->N

file play <filename>

flowchart TD
classDef function fill:#69CA00
classDef condition fill: #0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

C((Running)):::state --> Z[Error: First stop
current track]:::error

116 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

D((Paused)):::state --> Z
B((Idle)):::state --> E{SD Card
inserted?}:::condition

E -- No -->F[Error: Insert SD
card]:::error

E -- Yes -->G{File

name

empty?}:::condition

G -- Yes -->H[Error: Enter

file name]:::error

G -- No -->I{File exists?}:::condition
I -- No -->OlError: File

doesn't exist]:::error

I -- Yes -->J{Supported
format?}:::condition

J -- Yes -->K[Play the track]:::function
J -- No -->L[Error: Unsupported
file]:::error

K -->M((Running)):::state

L --> W((No state
change)):::state

0O-->W

H->W

F->W

Z-->W

file list

flowchart TD
classDef function fill:#69CA00
classDef condition fill: #0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

B((Idle)):::state --> G{SD Card
inserted?}:::condition

C((Running)):::state --> G
D((Paused)):::state --> G

G -- Yes -->H][List supported files]:::function
G -- No -->I[Error: Insert SD card]:::error

I --> J((No state

change)):::state

H->1J

file info

flowchart TD
classDef function fill:#69CA00
classDef condition fill: #0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

B((Idle)):::state -->E[Write file infol:::function
C((Running)):::state -->E
D((Paused)):::state -->E
E --> F((No state
change)):::state

1.6. Multimedia 117

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Processing Time Typical streamer pipeline execution times and their individual elements for
the EVKC-MIMXRT1060 development board are presented in the following tables. The time spent
on output buffers is not included in the traversal measurements. However, file reading time
is accounted for. In the case of the WAV codec, the audio file was accessed in every pipeline
run. Therefore, during each run, the file was read from the SD card. However, for the MP3
codec, where data must be processed in complete MP3 frames, the file was not read in every
run. Instead, it was read periodically only when the codec buffer did not contain a complete
frame of data.

For further details, please refer to the Processing Time document.

WAV streamer file_src codec SSRC_proc speaker

48kHz 1.1 ms 850 us 150 pus 70 ps 40 us

44kHz 1.75ms 850pus 180 us 670 ys 40 ys
MP3 streamer file_src codec SSRC_proc speaker
48 kHz with file read 2.9 ms 23us 450us 60 yus 50 ys
48 kHz without fileread 0.5 ms X 400 us 40 ys 40 ys
44 kHz with file read 3.2ms 2.3pus 440 pus 400 us 50 ys
44 kHz without fileread 0.9 ms X 440 us 390 ps 40 ys

Maestro record example

Table of content
* Qverview
* Hardware requirements
* Hardware modifications
* Preparation
* Running the demo
* Example configuration
* Functionality
* States
* Commands in detail

* Processing Time

Overview The Maestrorecord example demonstrates audio processing on the ARM cortex core
utilizing the Maestro Audio Framework library.

The application is controlled by commands from a shell interface using serial console.

Depending on target platform or development board there are different modes and features of
the demo supported.

* Loopback - The application demonstrates a loopback from the microphone to the speaker
without any audio processing. Mono, stereo or multichannel mode can be used, depending
on the hardware, see table below.

* File recording - The application takes audio samples from the microphone inputs and
stores them to an SD card as an PCM file. The PCM file has following parameters:

118 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

— Mono and stereo : 2 channels, 16kHz, 16bit width
— Multi-channel (AUD-EXP-42448): 6 channels, 16kHz, 32bit width

* Voice control - The application takes audio samples from the microphone input and uses
the VIT library to recognize wake words and voice commands. If a wake word or a voice
command is recognized, the application write it to the serial terminal.

* Encoding - The application takes PCM samples from memory and sends them to the Opus
encoder. The encoded data is stored in memory and compared to a reference. The result of
the comparison is finally written into the serial terminal.

As shown in the table below, the application is supported on several development boards, and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow to use of an audio expansion board. Therefore, please
check the supported features and Hardware modifications or Example configuration sections be-
fore running the demo.

Limitations:
* Note:
— LPCXPresso55s69 - MCUXpresso IDE project default debug console is semihost
* Addition labraries
- VIT:
* The VIT is supported only in the MCUXpresso IDE and ARMGCC.

* LPCXpresso55s69 - The VIT is disabled by default due to insufficient memory. To
enable it, see the Example configuration section.

% EVK-MCXN5XX - Some VIT models can’t fit into memory. In order to free some
space it is necessary to disable SD card handling and opus encoder. To disable it,
see the Example configuration section.

- VoiceSeeker:
* The VoiceSeeker is supported only in the MCUXpresso IDE and ARMGCC.
* Encoder
- OPUS:
* LPCXpresso55s69 - The encoder is not supported due to insufficient memory.

* The File recording mode is not supported on RW612BGA development board due to missing
SD card slot.

Known issues:

» EVKB-MIMXRT1170 - After several tens of runs (the number of runs is not deterministic),
the development board restarts because a power-up sequence is detected on the RESET pin
(due to a voltage drop).

More information about supported features can be found on the Supported features page.

Hardware requirements
* Desired development board
* Micro USB cable
* Headphones with 3.5 mm stereo jack
* Personal computer
* Optional:
— SD card for file output

1.6. Multimedia 119

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

— Audio expansion board AUD-EXP-42448 (REV B)
* LPCXpresso55s69:

— Source of sound with 3.5 mm stereo jack connector

Hardware modifications Some development boards need some hardware modifications to
run the application. If the development board is not listed here, its default setting is required.

» EVKB-MIMXRT1170:
1. Please remove below resistors if on board wifi chip is not DNP:
- R228, R229, R232, R234
2. Please make sure R136 is weld for GPIO card detect.
* EVK-MCXN5XX:
— Short: JP7 2-3, JP8 2-3, JP10 2-3, JP11 2-3
* RW612BGA:
— Connect: JP50; Disconnect JP9, JP11

Preparation

1. Connect amicro USB cable between the PC host and the debug USB port on the development
board

2. Open a serial terminal with the following settings:
* 115200 baud rate
» 8 data bits
* No parity
* One stop hit
* No flow control
3. Download the program to the target board.

4. Insert the headphones into the Line-Out connector (headphone jack) on the development
board.

5. LPCXpresso55s69:

* Insert source of sound to audio Line-In connector (headphone jack) on the develop-
ment board.

6. Either press the reset button on your development board or launch the debugger in your
IDE to begin running the demo.

Running the demo When the example runs successfully, you should see similar output on the
serial terminal as below:

Maestro audio record demo start
Sk >k sk >k sk >k sk skosk sk sk sk sk skosk skosk skosk sk skosk skoskoskosk skosk skoksk

Copyright 2022 NXP
[APP_SDCARD_ Task] start
[APP_ Shell Task] start

>> [APP_SDCARD_ Task] SD card drive mounted

120 Chapter 1. Middleware

https://www.nxp.com/part/AUD-EXP-42448#/

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Type help to see the command list. Similar description will be displayed on serial console:

>> help

“help”: List all the registered commands
“exit”: Exit program

“version”: Display component versions

“record__mic”: Record MIC audio and perform one (or more) of following actions:
- playback on codec

- perform VoiceSeeker processing

- perform voice recognition (VIT)

- store samples to a file.

USAGE: record mic [audio|file|<file name>|vit] 20 [<language>]
The number defines length of recording in seconds.

Please see the project defined symbols for the languages supported.

Then specify one of: en/cn/de/es/fr/it/ja/ko/pt/tr as the language parameter.

For voice recognition say supported WakeWord and in 3s frame supported command.
Please note that this VIT demo is near-field and uses 1 on-board microphone.

NOTES: This command returns to shell after the recording is finished.
To store samples to a file, the "file” option can be used to create a file
with a predefined name, or any file name (without whitespaces) can be specified
instead of the "file” option.

“opus__encode”: Initializes the streamer with the Opus memory-to-memory pipeline and
encodes a hardcoded buffer.

Details of commands can be found here.

Example configuration The example canbe configured by user. There are several options how
to configure the example settings, depending on the environment. For configuration using west
and Kconfig, please follow the instructions here. Before configuration, please check the table to
see if the feature is supported on the development board.

* Connect AUD-EXP-42448:
— EVKC-MIMXRT1060:
1. Disconnect the power supply for safety reasons.

2. Insert AUD-EXP-42448 into J19 to be able to use the CS42448 codec for multichannel
output.

3. Uninstall J99.
4. Set the DEMO__CODEC_WMS8962 macro to 0 in the app_ definitions.h file
5. Set the DEMO_CODEC_(CS42448 macro to 1 in the app_ definitions.h file.
6. Enable VoiceSeeker, see point bellow.
— Note:
* The audio stream is as follows:
- Stereo INPUT 1 (J12) -> LINE 1&2 OUTPUT (J6)
- Stereo INPUT 2 (J15) -> LINE 3&4 OUTPUT (J7)
- MIC1 & MIC2 (P1, P2) -> LINE 5&6 OUTPUT (J8)

- Insert the headphones into the different line outputs to hear the inputs.

1.6. Multimedia 121

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/develop/build_system/Configuration_System.html

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

- To use the Stereo INPUT 1, 2, connect an audio source LINE IN jack.
* Enable VoiceSeeker:

— On some development boards the VoiceSeeker is enabled by default, see the table
above.

— If more than one channel is used and VIT is enabled, the VoiceSeeker that combines
multiple channels into one must be used, as VIT can only work with mono signal.

— Using MCUXPresso IDE:

% Itis necessary to add VOICE_SEEKER,_PROC symbol to preprocessor defines on
project level:

- (Project -> Properties -> C/C++ Build -> Settings -> MCU C Compiler -> Preproces-
sor)

— Using Kconfig:
* Enable the VoiceSeeker in the guiconfig using MCUX_PRJSEG_ middleware.

audio_ voice.components.voice__seeker
* Enable VIT:
— LPCXpresso55s69 and MCX-N5XX:
* In MCUXPresso IDE (SDK package):

1. Remove SD_ENABLED and STREAMER, ENABLE_FILE_ SINK symbols from
preprocessor defines on project level.

2. Add VIT_PROC symbol to preprocessor defines on project level:

- (Project -> Properties -> C/C++ Build -> Settings -> MCU C Compiler -> Prepro-
cessor)

* In armgcc in SDK package:

1. Remove SD__ENABLED and STREAMER,_ ENABLE_ FILE_ SINK symbols from
preprocessor defines in flags.cmake file.

2. Remove OPUS_ENCODE=1 and STREAMER,_ENABLE_ENCODER prepro-
cessor defines in flags.cmake file.

3. Add VIT_PROC symbol to preprocessor defines in flags.cmake file.
4. Remove sdmmc_config.c,.h files from CMakeLists.txt file.
* In Kconfig:

1. Disable File sink MCUX COMPONENT middleware.audio voice.maestro.
element.file sink.enable

2. Make sure SD card support is disabled MCUX_COMPONENT __middleware.
sdmmec.sd and MCUX_COMPONENT middleware.sdmmec.host.usdhc

3. Make sure sdmmc_config files (.c, .h) is excluded from project build

- remove mcux_add_ source function that adds the sources in reconfig.cmake
in maestro_record/cm33_core0 folder

4. Disable fatfs MCUX_ COMPONENT middleware.fatfs and
MCUX COMPONENT middleware.fatfs.sd

5. Disable file wutils MCUX COMPONENT middleware.audio voice.maestro.
file utils.enable

6. Make sure Opus encoder is disabled MCUX COMPONENT middleware.
audio_voice.maestro.element.encoder.opus.enable

7. Make sure VIT_PROC symbol is defined

122 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

- remove mcux_ remove_ macro function that removes the VIT_PROC preproces-
sor definition in reconfig.cmake in maestro_record folder

8. Make sure VIT processing is enabled MCUX_ PRJSEG_ middleware.audio__voice.
components.vit

* VIT model generation:

— For custom VIT model generation (defining own wake words and voice commands)
please use https://vit.nxp.com/

* Disable SD card handling:
— In MCUXPresso IDE:

* Remove SD_ENABLED and STREAMER_ ENABLE_ FILE_SINK symbols from
preprocessor defines on project level:

- (Project -> Properties -> C/C++ Build -> Settings -> MCU C Compiler -> Preproces-
sor)

— In armgcc in SDK package:

* Remove SD ENABLED and STREAMER ENABLE FILE SINK symbols from
preprocessor defines in flags.cmake file.

— In Kconfig:

1. Disable File sink MCUX_ COMPONENT middleware.audio voice.maestro.element.
file sink.enable

2. Make sure SD card support is disabled MCUX_COMPONENT__middleware.sdmmc.
sd

Functionality The record_mic or opus_encode command calls the STREAMER_ mic_ Create or
STREAMER_ opusmem?2mem__Create function from the app_ streamer.c file depending on the se-
lected mode.

* When the Loopback mode is selected, the command calls the STREAMER, mic_ Create func-
tion that creates a pipeline with the following elements:

— ELEMENT_MICROPHONE_INDEX
— ELEMENT_SPEAKER_INDEX

* When the File recording mode is selected, the command calls the STREAMER_ mic_ Create
function that creates a pipeline with the following elements: - ELE-
MENT_MICROPHONE_INDEX - ELEMENT _FILE_SINK_INDEX

* When the Voice control mode is selected, the command calls the
STREAMER_mic_Create function that creates a pipeline with the following el-

ements: - ELEMENT MICROPHONE_INDEX - ELEMENT_VOICESEEKER_INDEX (If
VOICE SEEKER PROC is defined) - ELEMENT _VIT_INDEX
* When the Encoding mode is selected, the command calls the

STREAMER_ opusmem2mem_ Create function that creates a pipeline with the fol-
lowing elements: - ELEMENT _MEM_SRC_INDEX - ELEMENT_ENCODER_INDEX - ELE-
MENT_MEM_SINK_INDEX

Recording itself can be started with the STREAMER, Start function.

Each of the elements has several properties that can be accessed using the streamer_ get_ property
or streamer set_property function. These properties allow a user to change the values of the
appropriate elements. The list of properties can be found in streamer_ element_ properties.h. See
the example of setting property value in the following piece of code from the app_ streamer.c file:

1.6. Multimedia 123

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

ELEMENT_PROPERTY_ T prop;

prop.prop = PROP_ MICROPHONE_SET_ NUM__CHANNELS;
prop.val = DEMO_MIC_CHANNEL_NUM;
streamer__set_ property(handle->streamer, 0, prop, true);

prop.prop = PROP_ MICROPHONE_SET_BITS PER_SAMPLE;
prop.val = DEMO__AUDIO_BIT_WIDTH;
streamer__set_ property(handle->streamer, 0, prop, true);

prop.prop = PROP_ MICROPHONE_SET_FRAME_MS;
prop.val = DEMO_MIC_FRAME_ SIZE;
streamer__set_ property(handle->streamer, 0, prop, true);

prop.prop = PROP_ MICROPHONE_SET_SAMPLE_RATE;
prop.val = DEMO__AUDIO_ SAMPLE_RATE;
streamer__set_ property(handle->streamer, 0, prop, true);

Some of the predefined values can be found in the streamer_api.h.

States The application can be in 2 different states:
 Idle

* Running

Commands in detail
* help, version
* record_mic audio <time>
* record_mic file <time>
» record_mic <file_name> <time>
» record_mic vit <time> <language>
* opus_encode
Legend for diagrames:

flowchart TD
classDef function fill:#69CA00
classDef condition fill: #0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

A((State)):::state
B{Condition}:::condition
C[Error message]:::error
D[Process function]:::function

help, version

flowchart TD
classDef function fill:#69CA00
classDef condition fill: #0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

A((Idle)):::state --> C[Write help or version]:::function

124 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

B((Running)):::state --> C
C --> E((No state
change)):::state

record_mic audio <time>

flowchart TD
classDef function fill: #69CA00
classDef condition fill: #0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

B((Idle)):::state --> D{time

> 0 ?}::condition

D -- Yes --> F[recording]:::function
D -- No --> E[Error: Record length
must be greater than 0]:::error
E->B

F --> C((Running)):::state

C -->G{time

expired?}:::condition
G--No-->C

G -- Yes-> B

record_mic file <time>/record_mic <file name> <time>

flowchart TD
classDef function fill: #69CA00
classDef condition fill: #0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

B((Idle)):::state --> C{time

> 0 ?}:::condition

C -- Yes --> D{SD card
inserted?}:::condition

C -- No --> E[Error: Record length
must be greater than 0]:::error
E-->B

D -- Yes --> G{Custom

file name?}:::condition

G -- Yes --> H[Create custom
file name]:::function

G -- No --> I|Create default
file name]:::function

H --> J[Recording]:::function
I->1]

J --> K((Running)):::state

K -->L{time
expired?}:::condition
L--No->K

L - Yes--> B

D -- No --> F[Error: Insert SD
card first]:::error

F->B

1.6. Multimedia 125

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

record_mic vit <time> <language>

flowchart TD
classDef function fill:#69CA00
classDef condition fil:#0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

B((Idle)):::state --> C{time

> 0 ?}:::condition

C -- Yes --> E{Selected
language?}:::condition

C -- No --> D[Error: Record length
must be greater than 0]:::error
D-->B

E -- Yes --> G{Supported
language?}:::condition

E -- No --> F[Error: Language
not selected]:::error

F-->B

G -- Yes -->I[Recording with
voice recognition]:::function

G -- No -->H[Error: Language not supported]:::error
H-->B

I --> J((Running)):::state

J -->K{time

expired? }:::condition
K--No->1]

K--Yes--> B

opus_encode

flowchart TD
classDef function fill: #69CA00
classDef condition fil:#0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

B((Idle)):::state -->C[Encode file]:::function
C -->D|[Check result]:::function
D-->B

Processing Time Typical execution times of the streamer pipeline for the EVKC-MIMXRT1060
development board are detailed in the following table. The duration spent on output buffers
and reading from the microphone is excluded from traversal measurements. Three measured
pipelines were considered. The first involves a loopback from microphone to speaker, support-
ing both mono and stereo configurations. The second pipeline is a mono voice control setup,
comprising microphone and VIT blocks. The final pipeline is a stereo voice control setup, inte-
grating microphone, voice seeker, and VIT blocks.

For further details of execution times on individual elements, please refer to the Processing Time
document.

126 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

streamer

microphone -> speaker 1 channel 40 ys

microphone -> speaker 2 channels 115 ps
microphone -> VIT 7.4 ms
microphone -> voice seeker -> VIT 9.9 ms

Maestro sync example

Table of content
* Overview
* Hardware requirements
* Hardware modifications
* Preparation
* Running the demo
» Example configuration
» Functionality
 States

e Commands in detail

Overview The Maestro sync example demonstrates the use of synchronous pipelines (Tx and
Rx in this case) processing in a single streamer task on the ARM cortex core utilizing the Maestro
Audio Framework library.

The application is controlled by commands from a shell interface using serial console.

The feature is useful for testing the latency of the pipeline or implementing algorithms requiring
reference signals such as echo cancellation. The VoiceSeeker library available in this example
is not featuring AEC (Acoustic Echo Cancellation), but NXP is offering it in the premium version
of the library. More information about the premium version can be found at VoiceSeeker. page.
The demo uses two pipelines running synchronously in a single streamer task:

1. Playback (Tx) pipeline:

* Playback of audio data in PCM format stored in flash memory to the audio Line-Out
connector (speaker).

2. Recording (Rx) pipline:
* Record audio data using a microphone.
* VoiceSeeker processing.
* Wake words + voice commands recognition.
» Save the VoiceSeeker output to the voiceseeker_output.pcm file on the SD card.

As shown in the table below, the application is supported on several development boards, and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow to use of an audio expansion board. Therefore, please
check the supported features and Hardware modifications or Example configuration sections be-
fore running the demao.

Limitations:

1.6. Multimedia 127

https://nxp.com/voiceseeker

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

* Addition labraries
- VIT:
* The VIT is supported only in the MCUXpresso IDE.
— VoiceSeeker:
* The VoiceSeeker is supported only in the MCUXpresso IDE.
Known issues:
* No known issues.

More information about supported features can be found on the Supported features page.

Hardware requirements
* Desired development board
* Micro USB cable
» Speaker with 3.5 mm stereo jack
* Personal computer
* Optional:
— SD card for file output

Hardware modifications Some development boards need some hardware modifications to
run the application. If the development board is not listed here, its default setting is required.

* EVKC-MIMXRT1060:
1. Please make sure resistors below are removed to be able to use SD-Card.
— R368, R347, R349, R365, R363

2. Please Make sure J99 is installed.

Preparation

1. Connect amicro USB cable between the PC host and the debug USB port on the development
board

2. Open a serial terminal with the following settings:
* 115200 baud rate
» 8 data bits
* No parity
* One stop hit
* No flow control
Download the program to the target board.
Insert the speaker into the Line-Out connector (headphone jack) on the development board.

Optional: Insert an SD card into the SD card slot to record to the VoiceSeeker output.

ISER N

Either press the reset button on your development board or launch the debugger in your
IDE to begin running the demo.

128 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Running the demo When the example runs successfully, you should see similar output on the
serial terminal as below:

ok ok ok ok ok ok ok ok ok ok ok ok ok R R ok ok ok ok ok KKk ok ok

Maestro audio sync demo start
Sk ok 3k 3k 3k ok ok 3k sk Sk ok ok sk skookosk R skoskok R skoskok R sk skokok

Copyright 2022 NXP
[APP_SDCARD_ Task] start
[APP_ Shell Task] start

>> [APP_SDCARD_ Task] SD card drive mounted

Type help to see the command list. Similar description will be displayed on serial console:

>> help

"help”: List all the registered commands
“exit”: Exit program

“version”: Display component versions

"start [nosdcard|”: Starts a streamer task.
- Initializes the streamer with the Memory->Speaker pipeline and with
the Microphone->VoiceSeeker->VIT->SDcard pipeline.
- Runs repeatedly until stop command.
nosdcard - Doesn't use SD card to store data.

"stop”: Stops a running streamer:

“debug [on|off]”: Starts / stops debugging.
- Starts / stops saving VoiceSeeker input data (reference and microphone data)
to SDRAM.
- After the stop command, this data is transferred to the SD card.

Details of commands can be found here.

Example configuration The example can be configured by user. Before configuration, please
check the table to see if the feature is supported on the development board.

* Enable the premium version of VoiceSeeker:

— The premium version of the VoiceSeeker library with AEC is API compatible with this
example.

— To get the premium version, please visit VoiceSeeker page.

— The following steps are required to run this example with the VoiceSeeker&AEC li-
brary.

* Link the voiceseeker.a library instead of voiceseeker_no_ aec.a.
* Setthe RDSP ENABLE AEC definition to 1U in the voiceseeker.h file
* VIT model generation:

— For custom VIT model generation (defining own wake words and voice commands)
please use https://vit.nxp.com/

Functionality The start <nosdcard> command calls the STREAMER_ Create function from the
app_ streamer.c file that creates pipelines with the following elements:

* Playback pipeline:

1.6. Multimedia 129

https:%5Cwww.nxp.com%5Cvoiceseeker

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

- ELEMENT MEM_SRC_INDEX
— ELEMENT_SPEAKER_INDEX
* Record pipeline:

- ELEMENT_MICROPHONE_INDEX

— ELEMENT_VOICESEEKER_INDEX

— ELEMENT_VIT_PROC_INDEX

— ELEMENT_FILE_SINK_INDEX (If the nosdcard argument is not used)

Processing itself can be started with the STREAMER,_ Start function.

Each of the elements has several properties that can be accessed using the streamer_ get_property
or streamer_set_property function. These properties allow a user to change the values of the
appropriate elements. The list of properties can be found in streamer_element_ properties.h. See
the example of setting property value in the following piece of code from the app_ streamer.c file:

ELEMENT PROPERTY T prop;

MEMSRC_SET_BUFFER_T buf;
buflocation = (int8 t *)TESTAUDIO_DATA,;
buf.size = TESTAUDIO__LEN;

prop.prop = PROP_MEMSRC_SET_ BUFF;
prop.val = (uintptr_t)&buf;
if (STREAM_ OK != streamer_set_ property(handle->streamer, 0, prop, true))

{
}

prop.prop = PROP. MEMSRC SET MEM TYPE;
prop.val = AUDIO_DATA;
if (STREAM__OK != streamer_set_ property (handle->streamer, 0, prop, true))

{
}

prop.prop = PROP_ MEMSRC_SET_SAMPLE_RATE;
prop.val = DEMO_SAMPLE_RATE;
if (STREAM_ OK != streamer_set_ property(handle->streamer, 0, prop, true))

{
}

return kStatus_ Fail;

return kStatus_ Fail;

return kStatus_ Fail;

Some of the predefined values can be found in the streamer_ api.h.

States The application can be in 2 different states:
* Idle

* Running

Commands in detail
* help, version
* start [nosdcard]
* stop
* debug [on|off]

130 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Legend for diagrams:

flowchart TD
classDef function fill:#69CA00
classDef condition fil:#0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

A((State)):::state
B{Condition}:::condition
C[Error messagel:::error
D[Process function]:::function

help, version

flowchart TD
classDef function fill:#69CA00
classDef condition fill:#0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

A((Idle)):::state --> C[Write help or version]:::function
B((Running)):::state --> C

C --> E((No state

change)):::state

start [nosdcard]

flowchart TD
classDef function fill:#69CA00
classDef condition fill: #0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

A((Idle)):::state --> B{nosdcard
parameter? }:::condition
B -- Yes --> CHJPlaying to Line-out and
recording]:::function
CH --> L((Running)):::state
B -- No --> C{Is SD card
inserted?}:::condition
C -- Yes --> E[Playing to Line-out and
recording to SD card]:::function
E --> F((Running)):::state
F --> G{Debugging
is enabled?}:::condition
G--No->F
G -- Yes --> H[Save reference and
microphone data to SDRAM]:::function
H-->F
C -- No --> D[Error: Insert SD

card first]:::error
D->A
J((Running)):::state --> K[Error: The streamer task is
already running]:::error
K->1J

1.6. Multimedia 131

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

stop

flowchart TD
classDef function fill:#69CA00
classDef condition fil:#0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

A((Idle)):::state --> A

B((Running)):::state --> C{Is debugging

enabled?}:::condition
C --Yes -->E|[Copy reference and
microphone data to
the SD card]:::function
E --> G((Idle)):::state
C--No->G

debug [on | off]

flowchart TD
classDef function fill: #69CA00
classDef condition fill: #0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

A((Idle)):::state --> B[Error: First, start

the streamer task]:::error
C((Running)):::state --> D{Any
parameter? }:::condition

D -- Yes --> F{Started with
nosdcard

parameter? }:::condition

F -- No --> HJ[Set debugging]:::function

H-->C

F --Yes --> GJError: Debugging cannot be used]:::error

G->C

D -- No --> E[Error: Use the parameter

either on or OH]ZZZGI‘I‘OI‘

E->C

Maestro USB microphone example

Table of content
» Overview
* Hardware requirements
* Hardware modifications
* Preparation
* Running the demo
* Example configuration
* Functionality
» States

 Commands in detail

132

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Overview The Maestro USB microphone example demonstrates audio processing on the ARM
cortex core utilizing the Maestro Audio Framework library.

The application is controlled by commands from a shell interface using serial console.

The development board will be enumerated as a USB audio class 2.0 device on the USB host. The
application takes audio samples from the microphone inputs and sends them to the USB host
via the USB bus. User will see the volume levels obtained from the USB host but this is only an
example application. To leverage the volume values, the demo has to be modified.

As shown in the table below, the application is supported on several development boards, and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow to use of an audio expansion board. Therefore, please
check the supported features and Hardware modifications or Example configuration sections be-
fore running the demo.

Limitations:
* Note:

1. When connected to MacBook, change the PCM format from (0x02,0x00,) to (0x01,0x00,
)inthe g_config_descriptor[CONFIG_DESC_SIZE] in the usb_ descriptor.c file. Otherwise,
it can’t be enumerated and noise is present when recording with the QuickTime player
because the sampling frequency and bit resolution do not match.

2. When device functionality is changed, please uninstall the previous PC driver to make
sure the device with changed functionality can run normally.

3. If you’re having audio problems on Windows 10 for recorder, please disable signal
enhancement as the following if it is enabled and have a try again.

Known issues:
* No known issues.

More information about supported features can be found on the Supported features page.

Hardware requirements
* Desired development board
* 2X Micro USB cable
* Personal Computer
* LPCXpresso55s69:

— Source of sound with 3.5 mm stereo jack connector

Hardware modifications Some development boards need some hardware modifications to
run the application. If the development board is not listed here, its default setting is required.

Preparation

1. Connect the first micro USB cable between the PC host and the debug USB port on the de-
velopment board

2. Open a serial terminal with the following settings:
* 115200 baud rate
8 data bits
* No parity
* One stop hit

1.6. Multimedia 133

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

* No flow control
3. Download the program to the target board.
4. LPCXpresso55s69:

* Insert source of sound to Audio Line-In connector (headphone jack) on the develop-
ment board.

5. Connect the second micro USB cable between the PC host and the USB port on the develop-
ment board.

6. Either press the reset button on your development board or launch the debugger in your
IDE to begin running the demo.

Running the demo When the example runs successfully, you should see similar output on the
serial terminal as below:

Maestro audio USB microphone solutions demo start
Sk ok >k >k sk ok sk ok sk Sk sk sk sk sk sk sk sk sk sk sk sk sk skoskosk sk sk skosk sk sk skosk sk sk skookosk sk sk ko ok koskokosk sk k

Copyright 2022 NXP
[APP__Shell Task] start

>> usb_mic -1

Starting maestro usb microphone application
The application will run until the board restarts
[STREAMER] Message Task started

Starting recording

[STREAMER)] start usb microphone

Set Cur Volume : 1f00

Type help to see the command list. Similar description will be displayed on serial console:
>> help
"help”: List all the registered commands
“exit”: Exit program
“version”: Display component versions

“usb__mic”: Record MIC audio and playback to the USB port as an audio 2.0
microphone device.

USAGE: usb_mic <seconds>
<seconds> Time in seconds how long the application should run.
When you enter a negative number the application will
run until the board restarts.
EXAMPLE: The application will run for 20 seconds: usb_ mic 20

Details of commands can be found here.

Example configuration The example only supports one mode and do not support any addi-
tional libraries, so the example can’t be configured by user.

Functionality The wusb_mic command calls the STREAMER_mic_Create function
from the app_streamer.cfile that creates pipeline with the following elements: - ELE-
MENT_MICROPHONE_INDEX - ELEMENT_USB_SINK_INDEX

134 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Recording itself can be started with the STREAMER_ Start function.

Each of the elements has several properties that can be accessed using the streamer_ get_ property
or streamer_set_ property function. These properties allow a user to change the values of the
appropriate elements. The list of properties can be found in streamer_element_ properties.h. See
the example of setting property value in the following piece of code from the app_ streamer.c file:

ELEMENT_PROPERTY_T prop;

prop.prop = PROP_ MICROPHONE_SET_SAMPLE_RATE;
prop.val = AUDIO SAMPLING RATE;

streamer__set_ property(handle->streamer, 0, prop, true);

prop.prop = PROP_ MICROPHONE_SET_ NUM_CHANNELS;
prop.val = 1;

streamer__set_ property(handle->streamer, 0, prop, true);

prop.prop = PROP_ MICROPHONE_SET_FRAME_MS;
prop.val = 1;

streamer__set__property(handle->streamer, 0, prop, true);

Some of the predefined values can be found in the streamer_ api.h.

States The application can be in 2 different states:
 Idle

* Running

Commands in detail

* help, version

e usb_mic <seconds>
Legend for diagrames:

flowchart TD
classDef function fill:#69CA00
classDef condition fill: #0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

A((State)):::state
B{Condition}:::condition
C[Error message]:::error
D[Process function]:::function

help, version

flowchart TD
classDef function fill:#69CA00
classDef condition fill: #0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

A((Idle)):::state --> C[Write help or version]:::function
B((Running)):::state --> C

1.6. Multimedia 135

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

C --> E((No state
change)):::state

usbh_mic <seconds>

flowchart TD
classDef function fill:#c6d22c
classDef condition fill:#7cb2de
classDef state fill:#fcb415
classDef error fill: #FF999C

B((Idle)):::state -->C{seconds

== 07}:::condition

C -- No --> E{seconds

< 07}:::condition

C -- Yes --> DIError: Incorrect
command parameter]:::error
D-->B

E -- Yes --> Glrecording]:::function
G --> H((Running)):::state
H->H

E -- No --> F[recording]:::function
F --> I((Running)):::state

I --> J{seconds
expired?}:::condition

J -- No -->I

J--Yes --> B

Maestro USB speaker example

Table of content
* Overview
* Hardware requirements
* Hardware modifications
* Preparation
* Running the demo
* Example configuration
* Functionality
» States

* Commands in detail

Overview The Maestro USB speaker example demonstrates audio processing on the ARM cor-
tex core utilizing the Maestro Audio Framework library.

The application is controlled by commands from a shell interface using serial console.

The development board will be enumerated as a USB audio class 2.0 device on the USB host.
The application takes audio samples from the USB host and sends them to the audio Line-Out
port. User will see the volume levels obtained from the USB host but this is only an example
application. To leverage the volume values, the demo has to be modified.

136 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Depending on target platform or development board there are different modes and features of
the demo supported.

» Standard - The mode demonstrates playback with up to 2 channels, up to 48 kHz sample
rate and up to 16 bit width. This mode is enabled by default.

e Multi-Channel - In this mode the device is enumerated as a UAC 5.1. This mode is disabled
by default. See the Example configuration section to see how to enable the mode.

— When playing an 5.1 audio file, the example sends only the front-left and front-right
channels to the audio Line-Out port (the other channels are ignored), since this exam-
ple only supports on-board codecs with stereo audio output.

As shown in the table below, the application is supported on several development boards, and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow to use of an audio expansion board. Therefore, please
check the supported features and Hardware modifications or Example configuration sections be-
fore running the demo.

Limitations:
* Note:

— If the USB device audio speaker example uses an ISO IN feedback endpoint, please
attach the device to a host like PC which supports feedback function. Otherwise, there
might be attachment issue or other problems.

Known issues:
* No known issues.

More information about supported features can be found on the Supported features page.

Hardware requirements
* Desired development board
* 2X Micro USB cable
* Personal Computer

* Headphones with 3.5 mm stereo jack

Hardware modifications Some development boards need some hardware modifications to
run the application. If the development board is not listed here, its default setting is required.

Preparation

1. Connect the first micro USB cable between the PC host and the debug USB port on the de-
velopment board

2. Open a serial terminal with the following settings:
* 115200 baud rate
8 data bits
* No parity
* One stop hit
* No flow control
3. Download the program to the target board.

4. Connect the second micro USB cable between the PC host and the USB port on the develop-
ment board.

1.6. Multimedia 137

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

5. Insert the headphones into Line-Out connector (headphone jack) on the development
board.

6. Either press the reset button on your development board or launch the debugger in your
IDE to begin running the demo.

Running the demo When the example runs successfully, you should see similar output on the
serial terminal as below:

Maestro audio USB speaker solutions demo start

Copyright 2022 NXP
[APP_ Shell Task] start

>> usb_ speaker -1

Starting maestro usb speaker application

The application will run until the board restarts
[STREAMER] Message Task started

Starting playing

[STREAMER] start usb speaker

Set Cur Volume : fbdb

Type help to see the command list. Similar description will be displayed on serial console:

>> help

“help”: List all the registered commands
“exit”: Exit program

“version”: Display component versions

"usb__speaker”: Play data from the USB port as an audio 2.0
speaker device.

USAGE: usb__speaker <seconds>

<seconds> Time in seconds how long the application should run.
When you enter a negative number the application will
run until the board restarts.

EXAMPLE: The application will run for 20 seconds: usb__speaker 20

Details of commands can be found here.

Example configuration The example can be configured by user. Before configuration, please
check the table to see if the feature is supported on the development board.

* Enable Multi-channel mode:

— The feature can be enabled by set the USB_ AUDIO_ CHANNEL5_ 1 macro to 1U in the
usb_device descriptor.h file.

— Note: When device functionality is changed, such as UAC 5.1, please uninstall the pre-
vious PC driver to make sure the device with changed functionality can run normally.

Functionality The Usb_speaker command calls the STREAMER_ speaker Create function
from the app_streamer.cfile that creates pipeline with the following elements: - ELE-
MENT_USB_SRC_INDEX - ELEMENT_SPEAKER_INDEX

138 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Playback itself can be started with the STREAMER__Start function.

Each of the elements has several properties that can be accessed using the streamer_ get_ property
or streamer_set_ property function. These properties allow a user to change the values of the
appropriate elements. The list of properties can be found in streamer_element_ properties.h. See
the example of setting property value in the following piece of code from the app_ streamer.c file:

ELEMENT_PROPERTY_T prop;

prop.prop = PROP_USB_SRC_SET SAMPLE_RATE;
prop.val = AUDIO SAMPLING RATE;

streamer__set_ property(handle->streamer, 0, prop, true);

prop.prop = PROP_USB_SRC_SET_NUM__ CHANNELS;
prop.val = 2;

streamer__set_ property(handle->streamer, 0, prop, true);

prop.prop = PROP__USB_SRC_SET_ FRAME_ MS;
prop.val = 1;

streamer__set__property(handle->streamer, 0, prop, true);

Some of the predefined values can be found in the streamer_ api.h.

States The application can be in 2 different states:
 Idle

* Running

Commands in detail

* help, version

* usb_speaker <seconds>
Legend for diagrames:

flowchart TD
classDef function fill:#69CA00
classDef condition fill: #0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

A((State)):::state
B{Condition}:::condition
C[Error message]:::error
D[Process function]:::function

help, version

flowchart TD
classDef function fill:#69CA00
classDef condition fill: #0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

A((Idle)):::state --> C[Write help or version]:::function
B((Running)):::state --> C

1.6. Multimedia 139

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

C --> E((No state
change)):::state

usb_speaker <seconds>

flowchart TD
classDef function fill:#c6d22c
classDef condition fill:#7cb2de
classDef state fill:#fcb415
classDef error fill: #FF999C

B((Idle)):::state -->C{Duration
== 07}:::condition

C -- No --> E{Duration

< 07}:::condition

C -- Yes --> DIError: Incorrect
command parameter]:::error
D-->B

E -- Yes --> Glplaying]:::function
G --> H((Running)):::state
H->H

E -- No --> F[playing]:::function
F --> I((Running)):::state

I --> J{Duration
expired?}:::condition

J -- No -->I

J--Yes --> B

Supported features The current version of the audio framework supports several optional
features. These can be limited to some MCU cores or development boards variants. More infor-
mation about support can be found on the specific example page:

* maestro_playback

e maestro_record

e maestro_usb_mic

* maestro_usb_speaker

* maestro_sync

Some features are delivered as prebuilt library and the binaries can be found in the \middleware\
audio_ voice\components*component*\libs folder. The source code of some features can be found

in the \middleware\audio_ voice\maestro\src folder.

Decoders Supported decoders and its options are:

Decoder Sample rates [kHz] Number of channels Bit depth
AAC 8,11.025, 12, 16, 22.05, 24, 32, 44.1,48 1, 2 (mono/stereo) 16

FLAC 8,11.025, 12, 16, 22.05, 32, 44.1, 48 1, 2 (mono/stereo) 16

MP3 8,11.025, 12, 16, 22.05, 24, 32,44.1, 48 1, 2 (mono/stereo) 16

OPUS 8, 16, 24, 48 1, 2 (mono/stereo) 16

WAV 8,11.025, 16, 22.05, 32, 44.1, 48 1, 2 (mono/stereo) 8,16, 24

For more details about the reference decoders please see audio-voice-components repository

documentation \middleware\audio_ voice\components\.

140

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Encoders

* OPUS encoder - The current verion of the audio framework only supports a OPUS encoder.
For more details about the encoder please see the following link.

Sample rate converters

* SSRC - Synchronous sample rate converter. More details about SSRC are available in the
User Guide, which is located in middleware\audio_ voice\components\ssrc\doc\.

* ASRC - Asynchronous sample rate converter is not used in our examples, but it is part of the
maestro middleware and can be enabled. To enable ASRC, the maestro framework asrc and
CMSIS_DSP_ Library_Source components must be added to the project. Furthermore, it is
necessary to switch from Redlib to Newlib (semihost) library and add a platform definition
to the project (e.g. for RT1170: PLATFORM_ RT1170 CORTEXMY). Supported platforms
can be found in the PL_ platformTypes.h file. More details about ASRC are available in the
User Guide, which is located in middleware\audio_ voice\components\asrc\doc\.

Additional libraries

* VIT - Voice Intelligent Technology (VIT) Wake Word and Voice Command Engines pro-
vide free, ready to use voice Ul enablement for developers. It enables customer-defined
wake words and commands using free online tools. More details about VIT are available
in the VIT package, which is located in middleware\audio_ voice\components\vit\{platform}\
Doc\(depending on the platform) or via following link.

* VoiceSeeker - VoiceSeeker is a multi-microphone voice control audio front-end signal pro-
cessing solution. More details about VoiceSeeker are available in the VoiceSeeker pack-
age, which is located in middleware\audio_ voice\components\voice_seeker\{platform}\Doc\
(depending on the platform) or via following link.

Processing Time

Table of content
* Maestro playback example
* Maestro record example

The individual time measurements were conducted using a logic analyzer by monitoring
changes in the GPIO port levels on the EVKC-MIMXRT1060 development board. These measure-
ments were executed for each individual pipeline run, capturing the timing at each correspond-
ing element, and, when relevant, the interconnections between these elements.

Maestro playback example For the Maestro playback example the following reference audio
file was used: test_48khz_16bit_2ch.wav. In this example, the pipeline depicted in the diagram
was considered. Media codecs WAV and MP3 were taken into account. To compare the times
spent on the SSRC block, sampling rates for both codecs were selected: 44.1 kHz and 48 kHz.

Streamer pipeline

Filesystem — WAV / MP3 decoder— SSRC — Speaker

T

1.6. Multimedia 141

https://opus-codec.org/docs/opus_api-1.3.1/
https://nxp.com/vit
https://nxp.com/voiceseeker

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

The measurement of streamer pipeline run started at the beginning of
streamer__process_ pipelines(): streamer.c and ended in the function streamer_pcm_ write():
streamer__pcm.c just before the output buffer.

In the scenario involving the WAV codec, the audio file was accessed in every iteration of the
streamer pipeline. Meaning, during each run, the file was read directly from the SD card. How-
ever, in the case of the MP3 codec, where data processing necessitates complete MP3 frames,
the file wasn’t read during every run. Rather, it was accessed periodically, triggered when the
codec buffer lacked a complete MP3 frame of data. The total time spent on codec processing
varies significantly depending on the type and implementation of the codec. For certain types of
codecs, like FLAC, there may be multiple file accesses during a single pipeline run. The provided
values are specific to the reference implementation. For details about the codecs please see see
audio-voice-components documentation middleware\audio_ voice\components\.

The duration of the streamer pipeline illustrates that with a sampling frequency of 48 kHz, there
is no resampling occurring at the SSRC element. Consequently, the overall pipeline time is lower
than in the case of 44.1 kHz audio, where resampling takes place.

To enhance comprehension of the system’s behavior, histograms of the pipeline run times and
its elements are included. The greater time variance with the MP3 codec is precisely due to
the absence of file reads in every run. In clusters with shorter times, there are no file accesses,
while in clusters with longer times, file reads occur. This indicates that the majority of runs do
not involve file access.

WAV 48 WAV 44 MP3 48 kHz MP3 48 kHzw/o MP3 44 kHz MP3 44 kHz w/o

kHz kHz file read file read file read file read
mear 1.11ms 1.76 ms 2.87 ms 0.51 ms 3.22 ms 0.89 ms
min 1.03ms 1.60ms 2.74 ms 0.41 ms 2.33 ms 0.74 ms
max 1.29ms 2.23ms 3.24 ms 1.83 ms 3.73 ms 1.12 ms

Histograms of playback streamer runs

80 WAV 48kHz WAV 44.1kHz MP3 48kHz 250 MP3 44.1kHz

60 300

60 200

40 200 150
100

20 20 100 - [
{ J -L L oLin i .

40

Time on each element In the tables and histograms below, the timings for individual elements
and their connections are provided. Given that the file reading function was invoked during the
codec’s operation, the tables for individual elements display the total time on the codec element,
the time on the codec element before the file read, and the time on the codec element after the
file read. The individual blocks in the tables are as follows:

» streamer - total time of one pipeline run without time on output buffers
 codec start - time on decoder before file read

* codec end - time on decoder after file read

» codec total - codec_start+codec_end

+ file_src - file reading time

* SSRC_proc - time on SSRC element

* audio_sink - time on audio sink without ouput buffers

142 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

* pcm_write - time on output buffers

* link - time on element links

The start times of the time intervals for individual blocks and their respective links were mea-
sured by altering the GPIO pin level in the following functions:

* streamer - streamer__process_ pipelines():streamer.c

* codec - decoder_sink pad_process_handler():decoder_pads.c

o file_src - filesrc_read():file_src_ rtos.c

* SSRC_proc - SSRC_ Proc_ Execute():ssrc_ proc.c

* audio_sink - audiosink_sink__pad_ chain__handler():audio_sink.c

* pcm_write - streamer pcm_ write():streamer _pcm.c

¢ link - pad_ push():pad.c

WAV strean codec codec file_sr codec link SSRC_ link SSRC- au- pcm_write
48kHz total start end codec- audio_sink dio_sin
SSRC
mean 1.119 152 31us 0.843 120 5 us 64 us 2 s 40 us 20.228
ms us ms us ms
min 1.026 125 21ps 0.773 104 <1 us 47 us <luys 30 us 19.805
ms us ms us ms
max 1.290 193 49us 1.311 144 23 us 93 us 14 us 91 us 20.324
ms us ms us ms
WAV strean codec codec file_sr codec link SSRC_ g link SSRC- au- pcm_write
44kHz total start end codec- audio_sink dio_sin
SSRC
mean 1.765 178 44 us 0.853 134 5 us 671 3 us 42 us 21.472
ms us ms us us ms
min 1.604 145 33us 0.770 112 <1 us 574 <1 us 33us 18.163
ms us ms us us ms
max 2.233 218 57us 1.335 161 18 us 715 5 us 89 us 21.746
ms us ms us us ms
WAV 48kHz - histograms of streamer runs
" codec total 30 codec_start file_src 2 codec_end & link codec-SSRC SSRC link SSRC-audio_sink audio_sink 80 pem_write
30t 20} 100 { 30 1 60f [| GOlmMA 60f
0 "":l:L 1JJ’1};B 020 40 v 08 ’-H; 1.2 QDI}J{{» 120% 00 10 20 0 50 60 70 80 90 GO M‘ 10 0 40 60 80 QQE 20 202

ps us

codec total codec_start

file_src

codec_end

s ps
WAV 44kHz - histograms of streamer runs

link codec-SSRC

ps ns

ps

audio_sink

ms

pem_write

25 25
20 20
15 15
10 10
5 5
0

35 40 45 50 55
s "s

100

50

60

40 40|

20 20|

0

0.8

:

s

12

120 140 160

0
0 5 10 15
s s

0
600 650 700

link SSRC-audio_sink
= 80

30
60

20
40

10 20

100

50

0
12 3 45

s s

40 60 80

s

0
1

8 20
ms

1.6. Multimedia

143

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

MP348kHz strear codec codec file_sr codec link SSRC_| link SSRC- au- pcm_write
w/ file read total start end codec- audio_sink dio_sir
SSRC
mean 2.871 441 279 2.271 162 6uys 56us 3 us 50us 11.019
ms us us ms us ms
min 2.739 353 74 us 1.353 26 <1 us 40us <1 upus 34us 10.091
ms us ms us ms
max 3.244 570 409 2.728 467 18 us 80us 14 us 62 us 12.910
ms us us ms us ms
MP3 48 strear codec codec file_s codec link SSRC_| link SSRC- au- pcm_write
kHz w/o file total start end codec- audio_sink dio_sir
read SSRC
mean 0.508 403 X X X 8 us 39us 3uyus 36 us 11.326
ms us ms
min 0.407 208 X X X <1 us 25pus <lps 21pus 7.715
ms us ms
max 1.834 563 X X X 41 ps 69us 16 us 104 12.941
ms us us ms
MP3 48kHz - histograms of streamer runs with file read
codec total s codec_start file_src 20 codec_end link codec-SSRC 5 SSRC 2I(i)nk SSRC-audio_sink audio_sink 20 pcm_write
. 6 " 15 . : 15 4 15
z 2 10 5 2 j 5 2 5
VEN SRR Y
" " ":IPS 48kHz - hi;tsograms of str(;;mer runs wiir;;ul file read " " "
codec link codec-SSRC SSRC link SSRC-audio_sink audio_sink pcm_write
- 00 250 100
60 . 60 200{ | 150
40 " 40 150 5o 100
100
20 20 50
ML il “
0 0 0 no pUllimedl e 0]
200 400 0 20 40 30 40 50 60 70 0 5 10 15 50 100 8 10 12
MS 1S S 1S 1S ms
MP344kHz strear codec codec file_sr codec link SSRC_| link SSRC- au- pcm_write
w/ file read total start end codec- audio_sink dio_sir
SSRC
mean 3.217 436 367 2.300 66 7 us 403 3us 51us 12.188
ms us us ms us us ms
min 2.329 383 73 us 1411 26 2 us 318 <1 us 35us 9.119
ms us ms us us ms
max 3.726 547 464 2.801 441 27 us 454 12 s 65us 12.529
ms us us ms us us ms
144 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

MP3 44 strear codec codec file_s codec link SSRC_| link SSRC- au- pcm_write
kHz w/o file total start end codec- audio_sink dio_sir
read SSRC
mean 0.891 437 X X X 9 us 388 3 us 38us 11.934
ms us us ms
min 0.738 268 X X X <1 us 290 <1 us 22 us 8.964
ms us us msS
max 1.115 620 X X X 45 ps 438 17 ps 92 us 12.624
ms us us ms
MP3 44kHz - histograms of streamer runs with file read
codec total codec_start 25 file_src 5 codec_end link codec-SSRC SSRC link SSRC-audio_sink 6 audio_sink pem_write
10 20 20 6 10 10 30
4 15 15 4 20
5 10 10 5 5
2 2 10
5 5
o] 0 0 0 0 0 0 o] 0
400 500 200 400 15 2 25 0 200 400 0 10 20 350 400 450] 5 10 40 50 60 10 12
g : MP3 44kHz - hi;tograms of str;amer runs witr;;:ut file read " g
codec link codec-SSRC SSRC link SSRC-audio_sink audio_sink pcm_write
150 150
80 60
60
100 40 100
40
50 50
20 20
0 0 0 0
40 300 350 400 0 5 10 15 20 40 60 80 10 12
us it s ms

Maestro record example Typical execution times of the streamer pipeline and its individ-
ual elements for the EVKC-MIMXRT1060 development board are detailed in the following ta-
bles. The duration spent on output buffers and reading from the microphone is excluded
from traversal measurements. Three measured pipelines are depicted in the figure below.
The first involves a loopback from microphone to speaker, supporting both mono and stereo
configurations. The second pipeline is a mono voice control setup, comprising microphone
and VIT blocks. The final pipeline is a stereo voice control setup, integrating microphone,
voice seeker, and VIT blocks. The measurement of streamer pipeline run started at the begin-
ning of streamer_ process_ pipelines():streamer.c and ended in the function streamer_pcm_ write():
streamer_pcm.c just before the output buffer.

Streamer pipeline Streamer pipeline Streamer pipeline
Microphone— Speaker Microphone— VIT Microphone— Voice seeker — VIT

Histograms of record streamer runs

mic->speaker 1 channel mic->speaker 2 channels 250 mic->VIT mic->voice seeker->VIT
100 100 200
100
150
50 50 100 50
50
0 0 0 0
30 40 50 60 100 120 140 4 6 8 6 8 10
us us ms ms

The individual blocks in the tables are as follows:

1.6. Multimedia 145

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

» streamer - total time of one pipeline run without time on output buffers and without time
reading from the microphone

* audio_src_start - time on audio src before reading from the microphone

* audio_src_end - time on audio src after reading from the microphone

* pcm_read - reading from the microphone

» voiceseeker - time on voice seeker element

 vit - time on VIT element

* audio_sink - time on audio sink without ouput buffers

* pcm_write - time on output buffers

 link - time on element links

The start times of the time intervals for individual blocks and their respective links were mea-
sured by altering the GPIO pin level in the following functions:

* streamer - streamer__process_ pipelines():streamer.c

* audio_src - audiosrc_ src_ process():audio_ src.c

* pcm_read - streamer__pcm_read():streamer__pem.c

» voiceseeker - audio_ proc_sink pad_ chain_handler():audio_ proc.c

* Vit - vitsink_sink_pad_ chain_ handler():vit_ sink.c

* audio_sink - audiosink_sink pad_ chain_handler():audio_ sink.c

* pcm_write - streamer__pem__write():streamer__pem.c

¢ link - pad_ push():pad.c

Pipeline Microphone -> Speaker

microphone -> stream au- pcm_re au- link audio_src- au- pcm_write
speaker mono dio_src_ste dio_src_er audio_sink dio_sink
mean 43 us 3 s 29.938 29 us <1 us 10pus 18 pus
ms
min 26 us <1uyus 29.350 19 pus <1 us 5 us 12 us
ms
max 72 us 12 s 29.957 44 ps 1us 1Sus 25 pus
ms
microphone -> stream au- pcm_re au- link audio_src- au- pcm_write
speaker stereo dio_src_ste dio_src_er audio_sink dio_sink
mean 115 S us 29.861 54 pus 2 us SSus 23 s
us ms
min 94 us <1uyus 29.768 43 pus <1 us 50us 12 pus
ms
max 154 14 ps 29.880 67 us 8 us 65us 49 pus
us ms
146 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

i 1 channel - hi: of runs
audio_src start+end audio_src start 600 pcem_read audio_src end link audio_src-audio_sink audio_sink 100 pem_write
80 150 80 300 80
60 100 400 60 250 60
") 40 40 =
20 % 0 20 100 20
% a0 40 50 % 5 10 004 296 208 "0 30 40 04 0608 1 12 :.4 5 10 15 s 20 25
s Hs ms ns s Hs s
P 2 of runs
audio_src start+end audio_src start 250 pem_read audio_src end link audio_src-audio_sink audio_sink pem_write
100 100 200 100 300 100 "
150 200 100
50 50 100 50 50
100 50
50
" % e 10 % 5 10 2976 296 2084 2088 45 50 55 60 65 % 2 2 & 8 %% s 60 65 P T
us us ms us us s us
Pipeline Microphone -> VIT
microphone -> streamer au- pcm_read au- link audio_src- vit
VIT dio_src_start dio_src_end it
mean 7.380 30 us 22.624 78 us 2 us 7.261
ms msS ms
min 2.641 10 ys 2.2265 58 us <1 s 2.559
ms ms ms
max 7.780 42 us 2.7341 94 us S us 7.624
ms msS ms
mic->VIT - histograms of streamer runs
audio_src start+end audio_src start pcm_read audio_src end link audio_src-VIT VIT
250 300
100 200 %
& 60, 100 200
150
* 5 10 40 50 100
20, 50 20
90 100 110 120 130 20 30 40 22 24 2 0 70 80 90 % 2 4 0 4 6 8
us s ms ns s ms
Pipeline Microphone -> Voice seeker -> VIT
microphone -> strean au- pcm_r au- link voic- link vit
voice seeker -> dio_src_s dio_src_¢ audio_src- e- voiceseeke
VIT voiceseeker seeker Vvit
mean 9.916 22 us 20.084 84 us 4 us 2.386 13 us 7.407
ms ms ms ms
min 4.983 19 s 19.738 72 us <1 us 2.228 2 s 2.662
ms ms ms ms
max 10.423 34 ps 24.777 100 us 7 us 2.522 31ys 7.729
ms ms ms ms
mic->voice seeker->VIT - histograms of streamer runs
audio_src start+end audio_src start pem_read audio_src end link audio_src-voice seeker. voice seeker link voice seeker-VIT VIT
30 0 30 0 100
40 80 30
20 30 60 20 20
20
20 40 50
10 © 20 10 10 10
100 120 % 25. 30 20 %5 %75 60 85 %0 95 0 %5 24 25 5 10 15 20 25 34 56 7

s

ms

ns

ns

s

ms

1.6. Multimedia

147

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Maestro on Zephyr
* Based on and tested with Zephyr version, given by tag v4.0.0
* Tested with Zephyr SDK version 16.4

* To see the pre-built documentation, see: README.html. Also see the documentation section.

Maestro sample for recording data from microphone to RAM

Description This sample records data from microphone (alias dmic0 in devicetree) and stores
them to a buffer in RAM.

Currently one PDM channel with fixed 16 kHz sample rate and 16 bit sample width is supported.
For configuration options, see Kconfig and prj.conf.

User Input/Output
* Input:
None.
* Output:
UART Output:
— Demo result: OK if everything went OK

— Demo result: FAIL otherwise

Supported platforms Currently tested for:
* RD_RW612_BGA.

Maestro voice detection sample using VIT

Description Records data from microphone (alias dmic0 in devicetree) and detects voice com-
mands from selected language model. Detected commands are printed via UART.

Language model may be changed via Kconfig using CONFIG_ MAESTRO_EXAMPLE VIT LANGUAGE
selection. For other configuration options, see example’s Kconfig and prj.conf.

This project requires an NXP board supported by the VIT library.

The example has to be modified if a new board needs to be added. Please create an issue in that
case.

User Input/Output
* Input:
None.
* Output:
UART Output:
— List of voice commands the model can detect (printed immediately after start)
— <Specific voice command> if voice command was detected

— Demo result: FAIL otherwise

148 Chapter 1. Middleware

doc/doc/README.html

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Dependencies

o VIT library: https://www.nxp.com/design/design-center/software/embedded-software/
voice-intelligent-technology-wake-word-and-voice-command-engines:
VOICE-INTELLIGENT-TECHNOLOGY

Supported platforms Currently tested for:
* RD_RW612_BGA.

Maestro decoder sample

Description Tests and demonstrates decoder functionality in Maestro pipeline.
Supported decoders:
* MP3
* WAV
* AAC
* FLAC
OPUS with OGG envelop
* (RAW OPUS - TBD)
Data Input:

» Prepared encoded audio data (part of Maestro repository, folder zephyr/audioTracks)

» Prepared decoded audio data (RAW PCM format, part of Maestro repository, folder zephyr/
audioTracks)

Function:
1. Loads encoded data into source buffer stored in RAM
2. Decodes audio data using selected decoder and stores data in RAM
3. Compares prepared data with decoded data to check if its the same
4. Prints Demo result: OK or Demo result: FAIL via UART

User Input/Output
* Input:
None
* Output:
UART Output
— Demo result: OK if everything went OK

— Demo result: FAIL otherwise

Dependencies

* Audio voice component library (pulled in by Maestro’s west), containing Decoder libraries

1.6. Multimedia 149

https://www.nxp.com/design/design-center/software/embedded-software/voice-intelligent-technology-wake-word-and-voice-command-engines:VOICE-INTELLIGENT-TECHNOLOGY
https://www.nxp.com/design/design-center/software/embedded-software/voice-intelligent-technology-wake-word-and-voice-command-engines:VOICE-INTELLIGENT-TECHNOLOGY
https://www.nxp.com/design/design-center/software/embedded-software/voice-intelligent-technology-wake-word-and-voice-command-engines:VOICE-INTELLIGENT-TECHNOLOGY

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Configuration
* See prj.conf for user input sections

— Selecting decoder may be done by enabling CONFIG_ MAESTRO_EXAMPLE_DECODER_ SELECTEL
in prj.conf file. When no decoder is selected, default one (WAV) is used instead.

— System settings should be modified (stack size, heap size) based on selected decoder
and system capabilities/requirements in prj.conf.

* For other configuration options, see example’s Kconfig and prj.conf.

Supported platforms Currently tested for:
* RD_RW612_BGA - Working decoders: FLAC, WAV, OPUS 0GG

Maestro encoder sample

Description Tests and demonstrates encoder functionality in Maestro pipeline.
Supported encoders:
* OPUS with OGG envelop - TBD
* RAW OPUS - TBD
Input:
* Prepared decoded audio data (RAW PCM format, part of Maestro repository)
* Prepared encoded audio data (part of Maestro repository)
Function:
1. Loads RAW data into source buffer stored in RAM
2. Encodes audio data using selected encoder and stores data in RAM
3. Compares prepared data with decoded data if same
4. Prints Demo result: OK or Demo result: FAIL via UART

Dependencies

* Audio voice component library (pulled in by Maestro’s west), containing Encoder libraries

User Input/Output Input:
* None
Output:
* UART Output
— Demo result: OK if everything went OK

— Demo result: FAIL otherwise

150 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Configuration
* See prj.conf for user input sections

— Selecting encoder may be done by enabling CONFIG_ MAESTRO EXAMPLE_ ENCODER_SELECTEL
in prj.conf file. When no encoder is selected, default one (OPUS) is used instead.

— System settings should be modified (stack size, heap size) based on selected encoder
and system capabilities/requirements in prj.conf file.

* For other configuration options, see example’s Kconfig and prj.conf.

Supported platforms Currently tested for:
* RD_RW612_BGA - Working encoders: None.

Maestro mem2mem sample

Description Tests basic memory to memory pipeline.

Function:
1. Moves generated data with fixed size of 256B from memory source to memory sink.
2. Compares copied data to check if they’re the same.
3. Returns Demo result: OK or Demo result: FAIL via UART.

* Maestro environment setup
* Build and run Maestro example
— Using command line
— Using MCUXpresso for VS Code
* Folder structure
* Supported elements and libraries
* Examples support

* Creating your own example

* Documentation
« FAQ

Maestro environment setup Follow these steps to set up a Maestro development environment
on your machine.

1. Ifyouhaven’t already, please follow this guide to set up a Zephyr development environment
and its dependencies first:

* Cmake

* Python

* Devicetree compiler
* West

» Zephyr SDK bundle

1.6. Multimedia 151

https://docs.zephyrproject.org/latest/develop/getting_started/index.html

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

2. Get Maestro. You can pick either of the options listed below. If you need help deciding
which option is the best fit for your needs, please see the FAQ.

 Freestanding Maestro - This option pulls in only Maestro’s necessary dependencies.

Run:

1. west init -m <maestro repository url> --mr <revision> --mf west-freestanding.yml
- <foldername >

2. c¢d <foldername>

3. west update

* Maestro as a Zephyr module

To include Maestro into Zephyr, update Zephyr’s west.yml file:

projects:

name: maestro

url: <maestro repository url>

revision: <revision with Zephyr support>
path: modules/audio/maestro

import: west.yml

Then run west update maestro command.

Build and run Maestro example These steps will guide you through building and running
Maestro samples. You can use either the command line utilizing Zephyr’s powerful west tool or
you can use VS Code’s GUI. Detailed steps for both options are listed below.

Using command line See Zephyr’s Building, Flashing and Debugging guide if you aren’t famil-
iar with it yet.

1. To build a project, run:

west build -b <board> -d <output build directory> <path to example> -p

For example, this compiles VIT example for rd_rw612_bga board:

1. cd maestro/zephyr
2. west build -b rd_rw612_ bga -d build samples/vit -p

2. To run a project, run:
west flash -d <directory>
e.g.
west flash -d build

3. To debug a project, run:
west debug -d <directory>

e.g.
west debug -d build

Using MCUXpresso for VS Code For this you have to have NXP’s MCUXpresso for VS Code
extension installed.

1. Import your topdir as a repository to MCUXPresso for VS Code:

152 Chapter 1. Middleware

https://docs.zephyrproject.org/latest/develop/west/build-flash-debug.html
https://github.com/nxp-mcuxpresso/vscode-for-mcux
https://github.com/nxp-mcuxpresso/vscode-for-mcux

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

* Open the MCUXpresso Extension. In the Quickstart Panel click Import Repository.
* In the displayed menu click LOCAL tab and select the folder location of your topdir.
¢ Click Import.

* The repository is successfully added to the Installed Repositories view once the import
is successful.

2. To import any project from the imported repository:
* In the Quickstart Panel click Import Example from Repository.
» For Repository select your imported repository.
* For Zephyr SDK the installed Zephyr SDK is selected automatically. If not, select one.
* For Board select your board (make sure you’ve selected the correct revision).
* For Template select the folder path to your project.
Click the Create button.

3. Build the project by clicking the Build Selected icon (displayed on hover) in the extension’s
Projects view. After the build, the debug console window displays the memory usage (or
compiler errors if any).

4. Debug the project by clicking the Debug (play) icon (displayed on hover) in the extension’s
Projects view.

5. The execution will pause. To continue execution click Continue on the debug options.

6. In the SERIAL MONITOR tab of your console panel, the application prints the Zephyr boot
banner during startup and then prints the test results.

Folder structure

maestro/

zephyr/ All Zephyr related files
samples/ Sample examples
tests/ Tests
audioTracks/ Audio tracks for testing
doc/ Documentation configuration for Sphinx
wrappers/ NXP SDK Wrappers
scripts/ Helper scripts, mostly for testing
module.yml Defines module name, Cmake and Kconfig locations
CMakeList.txt Defines module's build process
Kconfig Defines module's configuration

osa/ Deprecated. OSA port for Zephyr

Supported elements and libraries Here is the list of all features currently supported in Mae-
stro on Zephyr. Our goal is to support all features in Maestro on Zephyr that are already sup-
ported in Maestro on NXP’s SDK and to extend them further.

Supported elements:
* Memory source
* Memory sink
* Audio source
* Audio sink

* Process sink

1.6. Multimedia 153

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

* Decoder

* Encoder
Supported decoders:

+ WAV

* MP3

* FLAC

» OPUS OGG

* AAC
Supported encoders:

* OPUS RAW
Supported libraries:

o VIT

Examples support All included examples use UART as output. Examples are located in zephyr/
tests and zephyr/samples directories.

List of included examples:
* Maestro sample for recording data from microphone to RAM
* Maestro voice detection sample using VIT
* Maestro encoder sample
* Maestro decoder sample
* Maestro mem2mem sample

Examples support for specific boards:

Example = RDRW612BGA LPCx- MIMXRT1060EVKE MIMXRT1170EVKB
presso55s69

Record YES TO BE TESTED TO BE TESTED TO BE TESTED

VIT YES TO BETESTED TO BE TESTED TO BE TESTED

Encoder Inprogress: OPUSRAW TO BE TESTED TO BE TESTED TO BE TESTED

Decoder ~ YES - WAV, FLAC, OPUS TO BE TESTED TO BE TESTED TO BE TESTED

OGG
Mem2mem YES

TO BE TESTED

TO BE TESTED

TO BE TESTED

Creating your own example There are two ways to create your own example - you can either
one of the included examples as a reference or you can create your own example from scratch
by hand.

When creating your own example from scratch, set CONFIG_ MAESTRO_AUDIO_ FRAMEWORK=y
in your prj.conf file. Then you can start enabling specific elements by setting CON-
FIG_MAESTRO_ELEMENT <NAME> ENABLE=y.

However, the recommended way to edit config options is to open gui-config (or menuconfig) by
calling west build -t guiconfig. Then you can use the graphical interface to interactively turn on/off
the features you need.

154 Chapter 1. Middleware

https://www.nxp.com/design/design-center/software/embedded-software/voice-intelligent-technology-wake-word-and-voice-command-engines:VOICE-INTELLIGENT-TECHNOLOGY

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Documentation Please note, Maestro documentation is under reconstruction. It is currently
mixing several tools and formats.

To see the pre-generated Maestro Zephyr documentation, see zephyr/doc/doc/README.html

To generate the Zephyr documentation, go under zephyr/doc folder and execute make html.
Sphinx version sphinx-build 8.1.3 must be installed. Open doc/doc/html/README.hml afterwards.

To see Maestro core documentation, go to the Maestro top directory and see README.md.

FAQ

1. Should I choose the freestanding version of Maestro or should integrate it into my west
instead?

* Freestanding version of Maestro pulls in all the dependencies it needs including
Zephyr itself.

* Integrating it as a module is easier if you already have your Zephyr environment set
up.

Maestro Audio Framework changelog

2.0.1

* Fixed filesrc buffer alignment

2.0.0 (newest)
* Added Zephyr port, see Zephyr README.
— Possible to use standalone version, pulling its own Zephyr and dependencies

— Possible to import it as a module in your Zephyr project

Changed build system - newly uses Kconfig and Cmake
Supports NXP MCUXSDK (previously 2.x)

Changed folder structure and names to improve readability (description may be found in
README)

* Removed audio libraries and placed into audio-voice-components repository

Added libraries are pulled into the build via Kconfig and Cmake

Changed Maestro library core - minor changes

1.8.0
* New platforms support: MCX-N5XX-EVK, FRDMMCXN236 and RD-RW612-BGA
* Fixed compilation warnings
* Documentation improvements and updates
— Added section with processing time information
— Added application state diagrams

* Various updates and fixes

1.6. Multimedia 155

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

1.7.0
» Removed EAP support for future SDK releases

* Created new API for audio_sink and audio_src to support USB source, sink

ASRC library integrated
* License changed to BSD 3-Clause
* Improved pipeline creation API

* Fixed compilation warnings in Opus

Various other improvements and bug fixes

1.6.0
» Up to 2 parallel pipelines supported
* Synchronous Sample Rate Converter support Added

* Various improvements and bug fixes

1.5.0
* Enabled switching from 2 to 4 channel output during processing
* PadReturn type has been replaced by FlowReturn
» Support of AAC, WAV, FLAC decoders
* Renamed eap element to audio_proc element
* Added audio_proc to VIT pipeline to support VoiceSeeker

* Minor bug fixes

1.4.0
* Use Opusfile lib for Ogg Opus decoder
» Refactor code, fix issues found in unit tests

* Various bug fixes

1.3.0
* Make Maestro framework open source (except mp3 and wav decoder)

» Refactor code, remove unused parts, add comments

1.2.0
¢ Unified buffering in audio source, audio sink

* Various improvements and bug fixes

1.0 rev0

* Initial version of framework with support for Cortex-M7 platforms

156 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

1.7 Wireless

1.7.1 NXP Wireless Framework and Stacks
Wi-Fi, Bluetooth, 802.15.4

Application notes
» Link AN12918-Wi-Fi-Tx-Power-Table-and-Channel-Scan-Management-for-i. MX-RT-SDK.pdf
* Link TN00066-WFA-Derivative-Certification-Process.pdf

User manuals

* Link UM11441-Getting-Started-with-NXP-based-Wireless-Modules-and-i.MX-RT-
Platforms.pdf

» UM11442-NXP-Wi-Fi-and-Bluetooth-Demo-Applications-for-i. MX-RT-Platforms.pdf

* Link UM11443-NXP-Wi-Fi-and-Bluetooth-Debug-Feature-Configuration-Guide-for-i. MX-RT-
Platforms.pdf

e Link UM11567-WFA-Certification-Guide-for-NXP-based-Wireless-Modules-on-i. MX-RT-
Platform-Running-RTOS.pdf

Release notes

Wireless SoC features and release notes for FreeRTOS

About this document This document provides information about the supported features, re-
lease versions, fixed and/or known issues, performance of the Wi-Fi, Bluetooth/802.15.4 radios,
including the coexistence.

The SDK release version 25.12.00-pvw1 has been tested for the wireless SoCs listed in Supported
products.

Supported products
» 88W8987
» TW416
w6111
* TW6122
AW6113
* RW610
* RW612
Parent topic:About this document

[1]: The support of IW611 is enabled in i.MX RT1170 EVKB and i.MX RT1060 EVKC. [2]: The sup-
port of IW612 is enabled in i.MX RT1170 EVKB and i.MX RT1060 EVKC. [3]: AW611 module sup-
port is available only in i MX RT1180 EVKA

Features

1.7. Wireless 157

https://www.nxp.com/docs/en/application-note/AN12918.pdf
https://www.nxp.com/docs/en/application-note/TN00066.pdf
https://www.nxp.com/docs/en/user-manual/UM11441.pdf
https://www.nxp.com/docs/en/user-manual/UM11441.pdf
https://www.nxp.com/docs/en/user-manual/UM11443.pdf
https://www.nxp.com/docs/en/user-manual/UM11443.pdf
https://www.nxp.com/docs/en/user-manual/UM11567.pdf
https://www.nxp.com/docs/en/user-manual/UM11567.pdf

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Wi-Fi radio

Client mode

Features

Sub features

802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput

802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput

802.11ax - High efficiency
802.11ax - High efficiency
802.11ax - High efficiency
802.11ax - High efficiency
802.11ax - High efficiency
802.11ax - High efficiency
802.11ax - High efficiency
802.11ax - High efficiency
802.11ax - High efficiency
802.11ax - High efficiency
802.11ax - High efficiency
802.11ax - High efficiency
802.11ax - High efficiency
802.11ax - High efficiency
802.11ax - High efficiency
802.11ax - High efficiency
802.11a/b/g features
802.11a/b/g features
802.11a/b/g features
802.11a/b/g features
802.11a/b/g features
802.11d

802.11e QoS

802.11i security

2.4 GHz band operation supported channel bandwidth: 20 I
2.4 GHz band supported channel bandwidth: 40 MHz

5 GHz band supported channel bandwidth: 20 MHz

5 GHz band supported channel bandwidth: 40 MHz
Short/long guard interval (400 ns/800 ns)

Data rates up to 72 Mbit/s (MCS 0 to MCS 7)

Data rates up to 150 Mbit/s (MCS 0 to MCS 7)

1 spatial stream (1x1)

HT protection mechanisms

Aggregated MAC protocol data unit (AMPDU) TX and RX sug
Aggregated MAC service data unit (AMSDU) 4k TX and RX st
TX MCS rate adaptation (BGN)

RX low density parity check (LDPC) 1x1 20 MHz and 40 MH:
HT Beamformee (explicit)

2.4 GHz band supported channel bandwidth: 20MHz

5 GHz band supported channel bandwidth: 20 MHz

5 GHz band supported channel bandwidth: 40 MHz

5 GHz band supported channel bandwidth: 80 MHz

Data rates up to 86.7 Mbps (MCSO to MCS 8)

Data rates up to 433.3 Mbps (MCS 0 to MCS 9) - 1x1
MU-MIMO Beamformee (Explicit and Implicit)

RTS/CTS with BW signaling

Operation mode notification

Backward compatibility with non-VHT devices

TX VHT MCS rate adaptation

Low density parity check (LDPC)

2.4 GHz band supported channel bandwidth: 20MHz

5 GHz band supported channel bandwidth: 20 MHz

5 GHz band supported channel bandwidth: 40 MHz

5 GHz band supported channel bandwidths: 80 MHz
OFDMA (UL/DL, 106 RU)

OFDMA (UL/DL, 484 RU)

1024 QAM

Target wake time (TWT)

256 QAM modulation — MCS8 and MCS9

1024 QAM modulation - MCS10 and MCS11, 2.4 GHz

1024 QAM modulation - MCS10 and MCS11, 5 GHz

DCM

DCM

ER (extended range)

SU Beamforming

OMI (operating mode indication)

802.11b/g data rates up to 54 Mbit/s

802.11a data rates up to 54 Mbit/s

TX rate adaptation (BG)

Fragmentation/defragmentation

ERP protection, slot time, preamble

802.11d - Regulatory domain/operating class/country info
EDCA [enhanced distributed channel access] / WMM (wirele¢
Opensource WPA Supplicant Support

158

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Table 1 - continued from

Features

Sub features

802.11i security
802.11i security
802.11i security
802.11i security
802.11i security
802.11i security
802.11i security
802.11i security
802.11i security
802.11i security
802.11i security
802.11i security
802.11i security
802.11i security
802.11i security
Power save mode
Power save mode
Power save mode
Power save mode
Power save mode
802.11w - PMF (protected management frames)
802.11w - PMF (protected management frames)
802.11w - PMF (protected management frames)
802.11w - PMF (protected management frames)
802.11w - PMF (protected management frames)
DPP functionality
General features
General features
General features
General features
General features
General features
General features
General features
General features
General features
General features
General features
General features
General features
General features
General features
General features
General features
General features
General features
General features
General features
General features
General features
General features
General features
General features

WPA2-PSK AES | WPA Supplicant

WPAS3-SAE (Simultaneous Authentication of Equals) | WPA
WPA2+WPA3 PSK Mixed Mode (WPA3 Transition Mode) | W
Wi-Fi Enhanced Open - OWE (Opportunistic Wireless Encry
802.1x EAP Authentication Methods3 | WPA Supplicant
WPA2-Enterprise Mixed Mode3 | WPA Supplicant
WPA3-Enterprise3 (Suite-B) | National Security Algorithm (C
802.11w - PMF (Protected Management Frames) | WPA Sup;
Embedded Supplicant Support

WPA2-PSK AES | Embedded Supplicant

WPA+WPA2 PSK Mixed Mode | Embedded Supplicant
WPAS3-SAE (Simultaneous Authentication of Equals) | Embe
802.11w - PMF (Protected Management Frames) | Embedde
Wi-Fi Roaming

WPA3 Enterprise3

Deep sleep

IEEE power save

Host sleep/WoWLAN (inband)3

Host sleep/WoWLAN (outband)3

U-APSD

PMF require and capable

Unicast management frames - Encryption/decryption - usin
Broadcast management frames - Encryption/decryption - us
SA query request/response

PMF support using embedded supplicant

Wi-Fi easy connect3

Embedded supplicant

Host sleep packet filtering

Host-based supplicant

Embedded MLME

EDMAC - EU adaptivity support (ETSI certification)
External coexistence

IPv6 NS offload

FIPS

TKIP1

RF test mode

802.11k

802.11v

DFS radar detection in peripheral mode (follow AP)5
Embedded roaming based on RSSI threshold beacon loss
ARP offload

Cloud keep alive

UNII-4 channel support

ClockSync using TSF

Auto reconnect

CSI (channel state information)3

Ambient Motion Index (AMI)3

Independent reset (in-band)3

Independent reset (out-band)3

Wi-Fi agile multiband

Network co-processor (NCP) mode

802.11mc - WLS (Wi-Fi location service)3

802.11az3

Parent topic:Wi-Fi radio

1.7. Wireless

159

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

[1] As per Wi-Fi specification, connecting in TKIP security in non 802.11n mode is allowed.
[2] Support available in host-base supplicant.

[3] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for the
macro to enable the feature and the impact on the memory when enabling the feature.

[4] Read more about NCP feature in References. [5] To enable the feature, CONFIG_ECSA = 1 must
be defined in wifi_config.h (does not apply to RW610 and RW612).

AP mode

Features

Sub features

802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ax - High efficiency
802.11ax — High efficiency
802.11ax - High efficiency
802.11ax - High efficiency
802.11ax - High efficiency
802.11d

802.11e -QoS

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

2.4 GHz band operation supported channel bandwidth: 201
2.4 GHz band supported channel bandwidth: 40 MHz

5 GHz band supported channel bandwidth: 20 MHz

5 GHz band supported channel bandwidth: 40 MHz
Short/long guard interval (400 ns/800 ns)

Data rates up to 72 Mbit/s (MCS 0 to MCS 7)

Data rates up to 150 Mbit/s (MCS 0 to MCS 7)

1 spatial stream (1x1)

HT protection mechanisms

Aggregated MAC protocol data unit (AMPDU) Rx support
Aggregated MAC service data unit (AMSDU) -4k RX support
Max client support (up to 8 devices)

TX MCS rate adaptation (BGN)

RX low density parity check (LDPC)

5 GHz band supported channel bandwidth: 20 MHz

5 GHz band supported channel bandwidth: 40 MHz

5 GHz band supported channel bandwidth: 80MHz
Short/long guard interval (400ns/800ns)

Data rates up to 86.7 Mbps (MCS0 to MCS 8)

Data rates up to 433.3 Mbps (MCS 0 to MCS 9)

Single user- Aggregated MAC protocol data unit (SU-AMPDU
RTS/CTS with BW signaling

Backward compatibility with non-VHT devices

TX VHT MCS rate adaptation

MU-MIMO Beamformee (explicit and implicit)

Operation mode notification

2.4 GHz band operation (20 MHz channel bandwidth)

2.4 GHz band operation (40 MHz channel bandwidth)

5 GHz band operation (20MHz channel bandwidth)

5 GHz band operation (40MHz channel bandwidth)

5 GHz band operation (80 MHz channel bandwidth)
802.11d - Regulatory domain/operating class/country info
EDCA [enhanced distributed channel access] / WMM (wirele
Hostapd Support

WPA2-PSK AES | hostapd

WPAS3-SAE (Simultaneous Authentication of Equals) | Hosta
WPA2+WPA3 PSK Mixed Mode (WPA3 Transition Mode) | H
Wi-Fi Enhanced Open - OWE (Opportunistic Wireless Encry
802.1x EAP Authentication Methods | Hostapd
WPA2-Enterprise Mixed Model | Hostapd
WPA3-Enterprise (Suite-B)1 |National Security Algorithm (C
802.11w - PMF (Protected Management Frames) | Hostapd
Embedded Authenticator

WPA2-PSK AES | Embedded Supplicant

160

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Table 2 - continued from prev

Features

Sub features

802.11i security

802.11i security

802.11i security

802.11y

802.11w - protected management frames (PMF)
802.11w - protected management frames (PMF)
802.11w - protected management frames (PMF)
802.11w - protected management frames (PMF)
General features

General features

General features

General features

General features

General features

General features

General features

General features

General features

General features

WPA+WPA2 PSK Mixed Mode | Embedded Supplicant
WPAS3-SAE (Simultaneous Authentication of Equals) | Embe
802.11w - PMF (Protected Management Frames) | Embedde
Extended channel switch announcement (ECSA)

PMF require and capable

Unicast management frames -Encryption/decryption - using
Broadcast management frames -encryption/decryption - usi
SA query request/response

Embedded authenticator

Embedded MLME

EU adaptivity support

Automatic channel selection (ACS)

External coexistence (software interface)

Independent reset (in-band)1

Network co-processor (NCP) mode2

Vendor specific IE (custom IE)

Hidden SSID (broadcast SSID disabled)

MAC address filter

Multiple external STA support

Parent topic:Wi-Fi radio

[1] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for the
macro to enable the feature and the impact on the memory. [2] Read more about NCP feature in

References.
AP-STA mode
Features Sub features 88W8¢ 1w41 IW611/IVv RW610/R\ IW61 AW611
Simultaneous AP-STA oper- AP-STA func- Y Y Y Y Y Y
ation (same channel) tionality
SAD Software an- Y Y Y Y Y Y
tenna diver-
sityl

Parent topic:Wi-Fi radio

[1] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for the
macro to enable the feature and the impact on the memory when enabling the feature.

Parent topic:Features

Wi-Fi Generic features

1.7. Wireless

161

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Fea- Sub features 88W89¢ IW41¢ IW611/IWE RW610/RWI IW61(AW611

tures

Generic Firmware download (paral- Y Y Y N N Y
leD1

Generic Secure boot N N Y Y Y Y

Generic Kconfig memory optimizer3 Y Y Y Y Y Y

Generit Firmware Compression2 N Y N N N N

Generil u-AP intra-BSS Y N Y Y Y Y

Generic Net Monitor Mode N N N Y Y N

Generic Net Monitor Mode with packet N N N Y Y N
transmission

Generit In-Channel Net Monitor mode N N N N N N

Parent topic:Wi-Fi radio

[1] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for the
macro to enable the feature and the impact on the memory when enabling the feature. [2] The
feature is used to compress the Wi-Fi Bluetooth firmware and optimize the flashing of the host
[3] Refer to 10.

Wi-Fi direct/P2P

Features Sub features 88W898 IW416 IW611/IW6 RW610/RWE IW610 AW6113
P2P basic func- P2P Auto GO Y Y Y Y Y Y
tionality1

P2P basic func- P2P GO Y Y Y Y Y Y
tionality1

P2P basic func- P2P GC Y Y Y Y Y Y
tionality1

P2P basic func- P2P Persistent Y Y Y Y Y Y
tionality1 Group

P2P basic func- P2P Invitation Y Y Y Y Y Y
tionality1

P2P basic func- P2P Device Dis- Y Y Y Y Y Y
tionality1 covery

P2P basic func- P2P Provision Y Y Y Y Y Y
tionality1 Discovery

Parent topic:Wi-Fi radio

[1] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for
the macro to enable the feature and the impact on the memory when enabling the feature. [2]
This is an experimental software release for this feature for IW416. [3] Contact your support
representative to use this feature for.

Bluetooth radio

162 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Bluetooth classic

Feature Sub feature 88W¢e IW4° IW611/ RW610/ IW6" AW611
General fea- Bluetooth Class 1.5 and Class 2 sup- Y Y Y N N Y
tures port
General fea- Scatternet support Y Y Y N N Y
tures
General fea- Maximum of seven simultaneous Y Y Y N N Y
tures ACL connections — Central links
General fea- Automatic packet type selection Y Y Y N N Y
tures
General fea- Bluetooth - 2.1 to 5.0 specification Y Y Y N N Y
tures support
General fea- Low power sniff Y Y Y N N Y
tures
General fea- Deep sleep using out-of-band Y Y N N N N
tures
General fea- Wake on Bluetooth (SoC to host) Y Y Y N N Y
tures
General fea- Independent reset (in-band)1 Y Y Y Y N Y
tures
General fea- Independentreset (out-band)1l Y Y N N N N
tures
General fea- Firmware download (parallel)1 Y Y N N N N
tures
General fea- RF testmode Y Y Y N N Y
tures
Bluetooth ACL (DM1, DH1, DM3, DH3, DM5, Y Y Y N N Y
packet type DHS5, 2-DH1, 2-DH3, 2-DHS5, 3-DH1,
supported 3-DH3, 3-DH5)
Bluetooth SCO (HV1, HV3) Y Y Y N N Y
packet type
supported
Bluetooth eSCO (EV3, EV4, EV5, 2EV3, 3EV3, Y Y Y N N Y
packet type 2EVS5, 3EV5)
supported
Bluetooth A2DP source/sink Y Y Y N N Y
profiles sup-
ported
Bluetooth AVRCP target/controller Y Y Y N N Y
profiles sup-
ported
Bluetooth HFP Dev/AG Y Y Y N N Y
profiles sup-
ported
Bluetooth OPP server/client Y Y Y N N Y
profiles sup-
ported
Bluetooth SPP server/client Y Y Y N N Y
profiles sup-
ported
Bluetooth HID target/device Y Y Y N N Y
profiles sup-
ported
Bluetooth au- PCM NBS central/peripheral Y Y Y N N Y
dio features
Bluetooth au- PCM WABS central/peripheral Y Y Y N N Y
dio features

1.7. Wireless 163

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Parent topic:Bluetooth radio

[1] Experimental feature intended for evaluation/early development only and not production.
Incomplete mandatory certification.

Bluetooth LE

Features

Sub features

Generic features

Generic features

Generic features

Generic features

Bluetooth profile support
Bluetooth profile support
Bluetooth profile support
Bluetooth LE 4.0 support
Bluetooth LE 4.0 support
Bluetooth LE 4.0 support
Bluetooth LE 4.0 support
Bluetooth 4.1 support
Bluetooth 4.1 support
Bluetooth 4.1 support
Bluetooth 4.1 support
Bluetooth 4.2 support
Bluetooth 4.2 support
Bluetooth 4.2 support
Bluetooth 4.2 support
Bluetooth 5.0 support
Bluetooth 5.0 support
Bluetooth 5.0 support
Bluetooth 5.0 support
Bluetooth 5.0 support
Bluetooth 5.2 support
Bluetooth LE audio support1 2
Bluetooth LE audio support1 2
Bluetooth LE audio support1 2
Bluetooth LE audio supportl 2
Bluetooth LE audio supportl 2
Bluetooth LE audio supportl 2
Bluetooth LE audio support1 2
Bluetooth LE audio support1 2
Bluetooth LE audio support1 2
Bluetooth LE audio supportl 2
Bluetooth LE audio supportl 2
Bluetooth LE audio support1 2
Bluetooth LE audio support1 2
Bluetooth LE audio support1 2
Bluetooth LE audio support1 2
Bluetooth LE audio supportl 2
Bluetooth LE audio support1 2
Bluetooth LE audio support1 2
Bluetooth LE audio support1 2
Bluetooth LE audio supportl 2
Bluetooth LE audio support1 2
Bluetooth LE audio supportl 2
Bluetooth LE audio support1 2

Maximum 16 Bluetooth LE connections (central role)

Deep sleep using out-of-band

Wake on Bluetooth LE (SoC to Host)

RF Test mode

Bluetooth LE GATT

Bluetooth LE HID over GATT

Bluetooth LE GAP

Low Energy physical layer

Low Energy link layer

Enhancements to HCI for Low Energy
Low energy direct test mode

Low duty cycle directed advertising
Bluetooth LE dual mode topology
Bluetooth LE privacy v1.1

Bluetooth LE link layer topology
Bluetooth LE secure connection
Bluetooth LE link layer privacy v1.2
Bluetooth LE data length extension

Link layer extended scanner filter policies
Bluetooth LE 2 Mbps support

High duty cycle directed advertising
Low Energy advertising extension

Low Energy long range

Low Energy periodic advertisement
Low Energy power control

Isochronous channel

Broadcast LE Audio BIS source
Broadcast LE Audio BIS sink

Broadcast LE Audio BIG Validation
Broadcast LE Audio Phy: 1M/2M/ coded
Broadcast LE Audio framed mode
Broadcast LE Audio unframed mode
Broadcast LE Audio sequential packing
Broadcast LE Audio: Mono and Stereo
Broadcast LE Audio BIS encrypted audio
Broadcast LE Audio BIS unencrypted audio
Unicast LE Audio CIS source

Unicast LE Audio CIS sink

Unicast LE Audio CIG validation

Unicast LE Audio CIS synchronization
Unicast LE Audio Phy: 1M/2M/ coded
Unicast LE Audio framed mode

Unicast LE Audio unframed mode
Unicast LE Audio sequential packing
Unicast LE Audio: mono and stereo
Unicast LE Audio CIS encrypted audio
Unicast LE Audio CIS unencrypted audio
Unicast LE Audio TX/RX and bidirectional traffic

164

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Table 3 - continued from pre\

Features

Sub features

Bluetooth LE audio supportl 2

Bluetooth LE audio supportl 2

Bluetooth LE audio support1 2

Bluetooth LE audio support1 2

Bluetooth LE audio support1 2

Bluetooth LE audio support1 2

BCA TDM Coexistence mode (shared antenna)
BCA TDM Coexistence mode (shared antenna)
BCA TDM Coexistence mode (shared antenna)
BCA TDM Coexistence mode (shared antenna)
BCA TDM Coexistence mode (shared antenna)
BCA TDM Coexistence mode (shared antenna)
BCA TDM coexistence mode (separate antenna)
BCA TDM coexistence mode (separate antenna)
BCA TDM coexistence mode (separate antenna)
BCA TDM coexistence mode (separate antenna)
BCA TDM coexistence mode (separate antenna)
BCA TDM coexistence mode (separate antenna)

ISO interval for LE Audio: 7.5ms 10ms 20ms 30ms
Sampling frequency for LE Audio: 8kHz 16kHz 24kHz, 32kE
LE Audio Auracast use cases: Auracast streaming 2 BISes
LE Audio Unicast use cases: Unicast streaming 2 CISes
LE Audio Unicast Use cases: Unicast streaming 4 CISes
A2DP + Auracast/Unicast Bridge use cases — CIS/BIS

STA + Bluetooth coexistence

STA + Bluetooth LE coexistence

STA + Bluetooth + Bluetooth LE coexistence

AP + Bluetooth coexistence

AP + Bluetooth LE coexistence

AP + Bluetooth + Bluetooth LE coexistence

STA + Bluetooth coexistence

STA + Bluetooth LE coexistence

STA + Bluetooth + Bluetooth LE coexistence

AP + Bluetooth coexistence

AP + Bluetooth LE coexistence

AP + Bluetooth + Bluetooth LE coexistence

Note: Details of the tested Bluetooth LE Audio use cases:

e Number of streams:

— 1-CIG | upto 4-CIS with 1 LE ACL (for 4-CIS: execute only mono UCs, SDU Int: 10ms)

— 1-CIG | upto 4-CIS with 4 separate LE ACL (for 4-CIS: SDU Size= Max 100 Oct, PHY=2M,
RTN=1, SDU Int: 10ms only) (execute only mono UCs for 4-CIS)

— 1-BIG | upto 4-BIS (for 4-BIS: execute only mono UCs, SDU Int: 10ms only)

PHY: 2M and 1M

* Audio mode: mono (for 1 to 4 streams) and stereo (for 1 stream)

» Packing: sequential and interleaved

* Bit rate: maximum 96kbps

— For 1-CIG with upto 3-CIS: maximum bit rate 96kbps
— For 1-CIG with 4-CIS: maximum bit rate 80kbps
— For 1-BIG with 4-BIS: maximum bit rate 80kbps

— For 2-CIG cases: maximum bit rate 80kbps

* Mode: unframed mode

* 48_5 and 48_6 mono and stereo configurations are not supported.

Details of the tested Bluetooth coexistence (Bluetooth + Bluetooth LE Audio) use cases:

» Bluetooth + Bluetooth LE Audio

* A2DP + Bluetooth LE Audio bridging support

* A2DP sink link (central) -> LEA 2-CIS (SDU Int: 10ms only | A2DP only with SBC Codec |

PHY: 2M)

Parent topic:Bluetooth radio

[1] Experimental feature intended for evaluation/early development only and not production.

Incomplete mandatory certification.

[2] LE audio feature is supported for standalone scenarios only and not for BR/EDR and Wi-Fi co-
existence scenarios such as LE audio + BR/EDRlink or LE audio + Wi-Filink. From the perspective

1.7. Wireless

165

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

of NXP Edgefast Bluetooth host stack, LE audio feature can be disabled by the CONFIG_BT_AUDIO
macro without impact on any other features. LE audio feature can be tested by the user, using
their own supported host stack.

Parent topic:Features

802.15.4 radio

Features Sub features IW612 IW610 RW612
General fea- Spinel over SPI Y N N
tures

General fea- OpenThread RCP Mode implementing Thread1.3 Y N N
tures

General fea- 802.15.4-2015 MAC/PHY as required by Thread Y Y Y
tures 1.3

General fea- OpenThread Border Router (OTBR) v1.1 Y Y Y
tures

General fea- Direct/indirect transmission with/without ACK Y Y Y
tures

General fea- 802.15.4 CSL parent feature implementation Y Y Y
tures

General fea- Enhanced Frame Pending Y Y Y
tures

General fea- Enhanced keep alive Y Y Y
tures

General fea- Router Y Y Y
tures

General fea- Leader Y Y Y
tures

General fea- Router Eligible End Device (REED) Y Y Y
tures

General fea- End Device (FED, MED) Y Y Y
tures

Zigbee features Coordinator

Zigbee features Router

Zigbee features End Device (RX ON)
Zigbee features R23

Zigbee features OTA Client

Zighee features OTA server

Matter features Matter over Wi-Fi
Matter features Matter over Thread

KRKZzZ22z222Z2Z
Z2zzzz2z2z22Z
HKZHKKKKAX

Parent topic:Features

Coexistence

166 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Wi-Fi and Bluetooth/802.15.4 coexistence

Features Sub features IW6’ IW6" RW612
BCA_TDM separate antennal (lower and higher STA + Bluetooth Y N N
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4

shared)

BCA_TDM separate antennal (lower and higher Mobile AP + Bluetooth Y N N
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4

shared)

BCA_TDM separate antennal (lower and higher Bluetooth LE + Wi-Fi Y Y Y
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4

shared)

BCA_TDM separate antennal (lower and higher Bluetooth + Bluetooth Y N N
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4 LE + Wi-Fi

shared)

BCA_TDM separate antennal (lower and higher OpenThread + Blue- Y N N
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4 tooth

shared)

BCA_TDM separate antennal (lower and higher OpenThread + Blue- Y Y Y
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4 tooth LE2

shared)

BCA_TDM separate antennal (lower and higher OpenThread + Blue- Y N N
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4 tooth + Bluetooth LE

shared)

BCA_TDM separate antennal (lower and higher OpenThread + Wi-Fi Y Y Y
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4

shared)

BCA_TDM separate antennal (lower and higher Bluetooth + Y N N
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4 OpenThread + Wi-

shared) Fi

BCA_TDM separate antennal (lower and higher Bluetooth LE + Y Y Y
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4 OpenThread + Wi-

shared) Fi

BCA_TDM separate antennal (lower and higher Bluetooth + Bluetooth Y N N
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4 LE + OpenThread + Wi-

shared) Fi

BCA_TDM separate antennal (lower and higher Single antenna configu- Y Y Y
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4 ration

shared)

BCA_TDM separate antennal (lower and higher External Coexistence N Y Y
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4 PTA

shared)

Parent topic:Coexistence

[1] Experimental feature intended for evaluation/early development only and not production.
Incomplete mandatory certification.

[2] The narrow-band radio can be configured to support Bluetooth LE, 802.15.4, and to time-slice
between Bluetooth LE and 802.15.4.

Parent topic:Features

Feature enable and memory impact

1.7. Wireless 167

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Features Macros to enable the feature Memory
impact
CSI CONTFIG_CSI Flash
- 60K,
RAM -
4K
AMI CONTFIG_CSI_AMI3 Flash -
2032K,
RAM -
772K
DPP CONFIG_WPA_SUPP_DPP Flash -
240K,
RAM -
12K
Independent CONFIG_WIFI_IND_DNLDCONFIG_WIFI_IND_RESET Minimal
reset
Parallel CONTFIG_WIFI_IND DNLD Minimal
firmware
download
Wi-Fi
Parallel CONTFIG_BT_IND_DNLD Minimal
firmware
download
Bluetooth
WPA3 enter- CONFIG_WPA_SUPP_CRYPTO_ENTERPRISE [Macros specific to Flash -
prise EAP-methods included] CONFIG_EAP TLS CONFIG _EAP PEAP 165K,
CONTFIG_EAP_TTLS CONFIG_EAP_FAST CONFIG_EAP_SIM CON- RAM -
FIG_EAP_AKA CONFIG_EAP_AKA_ PRIME 18K
WPA2 enter- CONFIG_WPA_SUPP_CRYPTO_ENTERPRISE [Macros specific to Flash -
prise EAP-methods included] CONFIG_EAP TLS CONFIG_EAP_PEAP 165K,
CONTFIG_EAP_TTLS CONFIG_EAP_FAST CONFIG_EAP_SIM CON- RAM -
FIG_EAP_AKA CONFIG_EAP_AKA_PRIME 18K
Host sleep CONFIG_HOST_SLEEP Minimal
WMM CONFIG_WMM1 Flash
- 10K,
RAM -
57K
802.11mc CONFIG_11MC CONFIG_CSI CONFIG_WLS_CSI_PROC2 CON- Flash:
FIG_11AZ 52.78KB,
RAM :
121.1KB
802.11az CONTFIG_11MC CONFIG_CSI[2] CONFIG_WLS_CSI_PROC2 CON- Flash:
FIG_11AZ 52.78KB,
RAM :
121.1KB
Non- CONFIG_FW_DNLD_ASYNC —
blocking
firmware
download
mechanism
Antenna di- CONFIG_WLAN_CALDATA_2ANT_DIVERSITY -
versity
P2P CONFIG_WPA_SUPP_P2P -
Note:

» For Wi-Fi, the macros are set with the value “0” by default in the file wifi_config_default.h

168

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

located in <SDK_PATH>/middleware/wifi_nxp/incl/ directory.

To enable the features, set the value of the macros to “1*” in the file wifi_config.h located
in*<SDK_Wi-Fi_Example_PATH>/ directory******

* Bluetooth

To enable the features, set the value of the macros to “1” in the file app_bluetooth_config.h
located in <SDK_Bluetooth_Example_PATH>/ directory.

[1] The macro is not used for IW416.
[2] Prerequisite macros for 802.11mc and 802.11az features

[3] Enable PRINTF_FLOAT_ENABLE only for MCUXpresso IDE and specifically for the RT1060-
EVKC and RT1170-EVKB platforms

* Go to project properties > C/C++ Build > Settings > Preprocessor.
» Add PRINTF_FLOAT_ENABLE=1

88W8987 release notes

Package information
* SDK version: 25.12.00-pvw1
Parent topic:88W8987 release notes

Version information
» Wireless SoC: 88W8987
* Wi-Fi and Bluetooth/Bluetooth LE firmware version: 16.92.21.p153.6
— 16 - Major revision
— 92 - Feature pack
— 21 - Release version
— p153.6 - Patch number
Parent topic:88W8987 release notes

Host platform
» All i MX RT platforms running FreeRTOS.
* Host interfaces
— Wi-Fi over SDIO (SDIO 2.0 support, SDIO clock frequency: 50 MHz)
— Bluetooth/Bluetooth LE over UART
* Test tools
— iPerf (version 2.1.9)

Parent topic:88W8987 release notes

Wi-Fi and Bluetooth certification The Wi-Fi and Bluetooth certification is obtained with the
following combinations.

1.7. Wireless 169

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

WFA certifications

STA | 802.11n

STA | 802.11ac

STA | PMF

STA | FFD

STA | SVD

STA | WPA3 SAE (R3)
STA | QTT

Refer to 6.

Note: This release supports STAUT only certifications.

Parent topic:Wi-Fi and Bluetooth certification

Bluetooth controller certification QDID: refer to 4.

Parent topic:Wi-Fi and Bluetooth certification

Parent topic:88W8987 release notes

Wi-Fi throughput

Throughput test setup

Environment: Shield Room - Over the Air
External Access Point: ASUS AX88U

DUT: W8987 Murata (Module: 1ZM M.2) with EVK-MIMXRT1060 EVKC platform

DUT Power Source: External power supply
External Client: Apple MacBook Air
Channel: 6 | 36

Wi-Fi application: wifi_wpa_supplicant
Compiler used to build application: armgcc
Compiler Version: gcc-arm-none-eabi-13.2

iPerf commands used in test:

TCP TX

iperf -

¢ <remote_ip> -t 60

TCP RX

iperf -

S

UDP TX

iperf -

¢ <remote_ip> -t 60 -u -B <local_ip> -b 120

Note: The default rate is 100 Mbps.
UDP RX

170

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

iperf -s -u -B <local__ip>

Note: Read more about the throughput test setup and topology in 2.

Parent topic:Wi-Fi throughput

STA throughput External APs: ASUS AX88U
STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 48 46 60 56
WPA2-AES 48 47 60 55
WPA3-SAE 45 46 60 56

STA mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 62 83 121 124
WPA2-AES 61 82 120 126
WPA3-SAE 60 82 120 126

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 43 52 60 64
WPA2-AES 43 52 61 64
WPA3-SAE 43 52 60 65

STA mode throughput - AN Mode | 5 GHz Band | 40 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 64 87 126 125
WPA2-AES 63 85 125 120
WPA3-SAE 63 80 125 123

STA mode throughput - AC Mode | 5 GHz Band | 20 MHz (VHT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 48 60 73 78
WPA2-AES 47 60 73 77
WPA3-SAE 47 60 73 77

STA mode throughput - AC Mode | 5 GHz Band | 40 MHz (VHT)

1.7. Wireless

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 68 96 161 157
WPA2-AES 69 92 160 155
WPA3-SAE 70 94 160 155

STA mode throughput - AC Mode | 5 GHz Band | 80 MHz (VHT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 81 98 125 228
WPA2-AES 80 96 125 203
WPA3-SAE 80 96 125 203

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple Macbook Air
Mobile AP Mode Throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 50 50 57 60
WPA2-AES 49 50 57 60
WPA3-SAE 49 49 57 60

Mobile AP Mode Throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 66 81 107 121
WPA2-AES 65 80 107 120
WPA3-SAE 65 80 108 120

Mobile AP Mode Throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX X RX
OpenSecurity 44 52 60 61
WPA2-AES 44 51 60 61
WPA3-SAE 44 51 60 61

Mobile AP Mode Throughput - AN Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 70 89 126 103
WPA2-AES 70 87 124 102
WPA3-SAE 70 88 125 103

172 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Mobile AP Mode Throughput - AC Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 49 60 73 76
WPA2-AES 48 59 73 76
WPA3-SAE 48 60 73 76

Mobile AP Mode Throughput - AC Mode | 5 GHz Band | 40 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction X RX X RX
OpenSecurity 77 106 161 102
WPA2-AES 77 104 160 102
WPA3-SAE 77 104 160 111

Mobile AP Mode Throughput - AC Mode | 5 GHz Band | 80 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 103 121 125 217
WPA2-AES 97 117 125 197
WPA3-SAE 98 115 125 173

Parent topic:Wi-Fi throughput

Parent topic:88W8987 release notes

EU conformance tests

» EU Adaptivity test - EN 300 328 v2.1.1 (for 2.4 GHz)
* EU Adaptivity test - EN 301 893 v2.1.1 (for 5 GHz)

Parent topic:88W8987 release notes

Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p64.1 to 16.91.21.p82

Com- Description

po-
nent

Wi- WPA3-R3 enabled APUT beacons does not have RSNXE when configured in H2E mode-
Fi Associated event is received even when connecting using wrong password WFA APUT
Low iperf TCP/UDP Tx throughput with Realtek station

Parent topic:Bug fixes and/or feature enhancements

1.7. Wireless

173

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Firmware version: From 16.91.21.p82 to 16.91.21.p91.6

Compo- Description
nent

Wi-Fi In wrong password scenario, After updating new password the phone is not able
to connect with DUTAP

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p91.6 to 16.91.21.p124

Compo- Description
nent

Wi-Fi Cloud keep alive packets not seen after DUT enters host sleep. DUT is sending QOS
null packets even in host sleep

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p124 to 16.91.21.p133

Com- Description
ponent

Wi-Fi Samsung S24 Ultra and Google Pixel 7 mobiles having Android 14 are not able con-
nect to the DUTAP with WPA3 SAE security.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p133 to 16.91.21.p142.5

Compo- Description

nent

Wi-Fi Fails to encrypt and decrypt data with ccmp 128 and 256 using CLI crypto com-
mands.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p142.5 to 16.91.21.p149.2

Component Description
Wi-Fi DUTSTA does not associate to hidden SSID beaconing in DFS channel.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p149.2 to 16.92.21.p151.7

Compo- Description

nent

Wi-Fi Getting low TCP/UDP TP in DUT-AP 11ac-vht80 mode after hard-reset or wlan-
reset.

174 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p149.2 to 16.92.21.p151.7

Compo- Description

nent

Wi-Fi Getting low TCP/UDP TP in DUT-AP 11ac-vht80 mode after hard-reset or wlan-
reset.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.92.21.p151.7 to 16.92.21.p153.5

Component Description
Wi-Fi Added P2P Persistance and P2P Invitation

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.92.21.p153.5 to 16.92.21.p153.6

Component Description
Wi-Fi Enabled mbedtls 3.x

Parent topic:Bug fixes and/or feature enhancements

Parent topic:88W8987 release notes

Known issues

Compo- Description
nent
Coex The coexistence sample applications included in the SDK are currently not work-

ing as expected.

Parent topic:88W8987 release notes

IW416 release notes

Package information
» SDK version: 25.12.00-pvw1
Parent topic:IW416 release notes

Version information
» Wireless SoC: IW416
* Wi-Fi and Bluetooth/Bluetooth LE firmware version: 16.92.21.p153.6

— 16 - Major revision

1.7. Wireless 175

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

— 92 - Feature pack
— 21 - Release version
— p153.6 - Patch number

Parent topic:/W416 release notes

Host platform
o All i MX RT platforms running FreeRTOS.
* Host interfaces
— Wi-Fi over SDIO (SDIO 2.0 Support, SDIO clock frequency: 50 MHz)
— Bluetooth/Bluetooth LE over UART
* Test tools
— iPerf (version 2.1.9)

Parent topic:/W416 release notes

Wi-Fi and Bluetooth certification The Wi-Fi and Bluetooth certification is obt
following combinations.

WEFA certifications
* STA | 802.11n
STA | PMF
STA | FFD
STA | SVD
STA | WPA3 SAE (R3)
STA | QTT
Refer to 6.

Note: This release supports STAUT only certifications.

Parent topic:Wi-Fi and Bluetooth certification

Bluetooth controller certification QDID: refer to 4.
Note: QDID upgrade to Bluetooth Core Specification Version 5.4 is in progress.
Parent topic:Wi-Fi and Bluetooth certification

Parent topic:IW416 release notes

Wi-Fi throughput

ained with the

176 Chapter 1

. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Throughput test setup
¢ Environment: Shield Room - Over the Air
» Access Point: Asus AX88u

* DUT: IW416 Murata (Module: 1XK M.2) with EVK-MIMXRT1060 EVKC platform

* DUT Power Source: External power supply
* Client: Apple MacBook Air
* Channel: 6 | 36
» Wi-Fi application: wifi_wpa_supplicant
* Compiler used to build application: armgcc
* Compiler Version: gcc-arm-none-eabi-13.2
* iPerf commands used in test:

TCP TX

iperf -c <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

iperf -c <remote_ip> -t 60 -u -B <local_ip> -b 120

Note: The default rate is 100 Mbps.
UDP RX

iperf -s -u -B <local_ip>

Note: Read more about the throughput test setup and topology in 2.
Parent topic:Wi-Fi throughput

STA throughput External AP: Asus AX88u
STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction X RX TX RX
OpenSecurity 40 45 61 55
WPA2-AES 39 43 61 57
WPA3-SAE 39 43 61 57
STA mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 56 59 117 103
WPA2-AES 57 58 115 102
WPA3-SAE 57 56 116 100

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz (HT)

1.7. Wireless

177

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 40 45 61 58
WPA2-AES 40 43 61 57
WPA3-SAE 40 44 61 57
STA mode throughput - AN Mode | 5 GHz Band | 40 MHz (HT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 62 74 118 134
WPA2-AES 58 61 101 118
WPA3-SAE 59 61 103 112
Parent topic:Wi-Fi throughput
Mobile AP throughput External client: Apple MacBook Air
Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 40 43 59 57
WPA2-AES 40 42 59 57
WPA3-SAE 39 42 59 57
Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 62 74 121 118
WPA2-AES 60 64 116 91
WPA3-SAE 60 65 116 91
Mobile AP mode throughput - AN Mode | 5 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction X RX TX RX
OpenSecurity 50 43 55 62
WPA2-AES 42 45 53 62
WPA3-SAE 42 62 53 62
Mobile AP mode throughput - AN Mode | 5 GHz Band | 40 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 66 76 126 103
WPA2-AES 63 68 121 101
WPA3-SAE 63 67 121 101

178

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Parent topic:Wi-Fi throughput
Parent topic:IW416 release notes

EU conformance tests
» EU Adaptivity test - EN 300 328 v2.1.1 (for 2.4 GHz)
* EU Adaptivity test - EN 301 893 v2.1.1 (for 5 GHz)
Parent topic:IW416 release notes

Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p64.1 to 16.91.21.p82

Compo- Description

nent

Wi-Fi WPA3-R3 enabled APUT beacons does not have RSNXE when configured in H2E
mode

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p82 to 16.91.21.p91.6

Component Description
Wi-Fi NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p91.6 to 16.91.21.p124

Compo- Description
nent

Wi-Fi Cloud keep alive packets not seen after DUT enters host sleep. DUT is sending QOS
null packets even in host sleep

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p124 to 16.91.21.p133

Component Description
Wi-Fi NA

Parent topic:Bug fixes and/or feature enhancements

1.7. Wireless 179

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Firmware version: From 16.91.21.p133 to 16.91.21.p133.2

Com- Description
ponent

Wi-Fi DUT STA getting rebooted after 15~20 iterations of 11R-Command based roam-
ing0xa4 command timeout after several hours of stress test

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p133.2 to 16.91.21.p142.5

Component Description

Wi-Fi DUT fails to reconnect after the configured auto-reconnect time interval.
Coex During HFP call, TX side noise is observed with coex CLI

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p142.5 to 16.91.21.p149.4

Component Description
- NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p149.4 to 16.92.21.p151.7

Com- Description
ponent

Wi-Fi Samsung S24 Ultra and Google Pixel 7 mobiles having Android 14 are not able con-
nect to the DUTAP with WPA3 SAE security.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.92.21.p151.7 to 16.92.21.p153.5

Com- Description
ponent
Wi-Fi The DUT encounters a command response timeout during the execution of the wlan-

info command following UDP traffic tests.
Wi-Fi Random hang issue seen when using wlan-p2p-find/stop in succession

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.92.21.p153.5 to 16.92.21.p153.6

Component Description
Wi-Fi Enabled mbedtls 3.x

Parent topic:Bug fixes and/or feature enhancements

Parent topic:/W416 release notes

180 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Known issues

Com- Description

po-
nent

Coex Wi-Ficonnection in 2.4GHz is not stable, observed deauthentication within 10sec. The
coexistence sample applications included in the SDK are currently not working as
expected.

Parent topic:/1W416 release notes

IW611/IW612 release notes Note: The IW611/IW612 support is enabled in . MX RT1170 EVKB
and i.MX RT1060 EVKC.

Package information
* SDKversion: 25.12.00-pvw1
Parent topic:IW611/IW612 release notes

Version information
» Wireless SoC: IW611/IW612
* Wi-Fi and Bluetooth/Bluetooth LE firmware version: 18.99.3.p27.1
— 18 - Major revision
— 99 - Feature pack
— 3 -Release version
— p27.1 - Patch number
Parent topic:/W611/IW612 release notes

Host platform
* i.MX RT1170 EVKB and i.MX RT1060 EVKC Platforms running FreeRTOS
* Host interfaces
— Wi-Fi over SDIO (SDIO 2.0 support, SDIO clock frequency: 50 MHz)
— Bluetooth/Bluetooth LE over UART
- 802.15.4 over SPI IW612 only)
* Test tools
— iPerf (version 2.1.9)
Parent topic:IW611/IW612 release notes

Wi-Fi and Bluetooth certification The Wi-Fi and Bluetooth certification is obtained with the
following combinations.

1.7. Wireless 181

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

WEFA certifications
» STA | 802.11n
» STA | PMF
» STA | FFD
« STA | SVD
» STA | WPA3 SAE (R3)
» STA | 802.11ac
* STA | 802.11ax
« STA | QTT
Refer to 6.
Note: This release supports STAUT only certifications.

Parent topic:Wi-Fi and Bluetooth certification

Bluetooth controller certification QDID: refer to 4.

Note: QDID upgrade to Bluetooth Core Specification Version 5.4 is in progress.

Parent topic:Wi-Fi and Bluetooth certification
Parent topic:/W611/IW612 release notes

Wi-Fi throughput
Throughput test setup

¢ Environment: Shield Room - Over the Air
* Access Point: Asus AX88u

* DUT: IW612 Murata (Module: 2EL M.2) with EVK-MIMXRT1060 EVKC platform

* DUT Power Source: External power supply
* Client: Apple MacBook Air

* Channel: 6 | 36

» Wi-Fi application: wifi_wpa_supplicant

* Compiler used to build application: armgcc
* Compiler Version gcc-arm-none-eabi-13.2

¢ iPerf commands used in test:

TCP TX

iperf -¢ <remote_ip> -t 60
TCP RX

iperf -s

UDP TX

iperf -c <remote_ip> -t 60 -u -B <local ip> -b 120

182

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Note: The default rate is 100 Mbps.
UDP RX

iperf -s -u -B <local_ip>

Note: Read more about the throughput test setup and topology in 2

The throughput numbers are captured with default configurations using wifi wpa_supplicant
sample application.

Parent topic:Wi-Fi throughput

iPerfhost configuration and impact on throughput {#iperf_host_configuration_and_impact_on_throughpu
To get the highest throughput, the throughput values shown in STA throughput and Mobile

AP throughput are measured with the maximum values of the default host configuration

macros. STA and AP throughput captured with the minimum values of the host configuration

macros shows the throughput numbers obtained when using the minimum values of the host

configuration macros. The macro values are defined in lwipopts.h file.

The table below lists the minimum and maximum values of the host configuration macros.

Values of the host configuration macros

Parameter Maximum value Minimum value
TCPIP_MBOX_SIZE 96 32

DEFAULT RAW_RECVMBOX_SIZE 32 12

DEFAULT UDP_RECVMBOX_SIZE 64 12

DEFAULT _TCP_RECVMBOX SIZE 64 12

TCP_MSS 1460 536

TCP_SND _BUF 24 * TCP_MSS 2 * TCP_MSS
MEM_SIZE 319160 41,080
TCP_WND 15 * TCP_MSS 10 * TCP_MSS
MEMP_NUM_PBUF 20 10
MEMP_NUM_TCP_SEG 96 12
MEMP_NUM_TCPIP_MSG_INPKT 80 16
MEMP_NUM_TCPIP_MSG_API 80 8
MEMP_NUM_NETBUF 32 16

STA and AP throughput captured with the minimum values of the host configuration
macros {#sta_and_ap_throughput_captured_with_the_minimum_values_of _the_host_configuration_macr
STA mode throughput - HE Mode | 5 GHz Band | 80 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX

Open Security 7 18 111 124
WPA2-AES 7 18 110 124
WPA3-SAE 6 18 110 124

Mobile AP mode throughput - HE Mode | 5 GHz Band | 80 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open Security 2 19 93 127
WPA2-AES 2 19 105 126
WPA3-SAE 2 19 104 132

1.7. Wireless 183

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Parent topic:iPerf host configuration and impact on throughput

Parent topic:Wi-Fi throughput

STA throughput External AP: Asus AX88u
STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 45 48 61 61
WPA2-AES 44 47 60 60
WPA3-SAE 46 49 62 62

STA mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 66 82 128 131
WPA2-AES 69 82 126 128
WPA3-SAE 65 80 126 129

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz (HT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 39 51 63 65
WPA2-AES 39 50 63 64
WPA3-SAE 44 51 63 64

STA mode throughput - AN Mode | 5 GHz Band | 40 MHz (HT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 64 82 125 133
WPA2-AES 63 83 124 132
WPA3-SAE 64 84 124 132

STA mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz (HT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 48 54 71 72
WPA2-AES 48 54 71 71
WPA3-SAE 45 55 72 70

STA mode throughput - VHT Mode | 2.4 GHz Band | 40 MHz (HT)

184

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 74 92 162 170
WPA2-AES 74 90 160 169
WPA3-SAE 71 91 161 171

STA mode throughput - VHT Mode | 5 GHz Band | 20 MHz (HT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 43 57 76 78
WPA2-AES 42 57 75 77
WPA3-SAE 43 57 75 77

STA mode throughput - VHT Mode | 5 GHz Band | 40 MHz (HT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 70 90 156 177
WPA2-AES 70 91 154 175
WPA3-SAE 70 90 154 175

STA mode throughput - VHT Mode | 5 GHz Band | 80 MHz (HT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 86 94 218 196
WPA2-AES 84 96 219 195
WPA3-SAE 84 95 219 196

STA mode throughput - HE Mode | 2.4 GHz Band | 20 MHz (HT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 62 62 112 114
WPA2-AES 62 63 110 112
WPA3-SAE 56 63 107 114

STA mode throughput - HE Mode | 2.4 GHz Band | 40 MHz (HT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX X RX
OpenSecurity 73 94 193 192
WPA2-AES 76 93 188 191
WPA3-SAE 78 94 190 189

STA mode throughput - HE Mode | 5 GHz Band | 20 MHz (HT)

1.7. Wireless

185

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 54 57 86 125
WPA2-AES 53 58 85 124
WPA3-SAE 53 66 118 123

STA mode throughput - HE Mode | 5 GHz Band | 40 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 77 95 163 198
WPA2-AES 76 95 160 198
WPA3-SAE 75 94 172 197

STA mode throughput - HE Mode | 5 GHz Band | 80 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 88 93 219 197
WPA2-AES 88 95 221 196
WPA3-SAE 85 94 217 195

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple MacBook Air
Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 40 50 58 62
WPA2-AES 40 51 62 62
WPA3-SAE 40 51 62 62

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX X RX
OpenSecurity 64 87 120 131
WPA2-AES 63 87 119 130
WPA3-SAE 63 86 118 130

Mobile AP mode throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 40 52 63 62
WPA2-AES 41 51 62 57
WPA3-SAE 33 51 60 56

186 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Mobile AP mode throughput - AN Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 64 96 120 139
WPA2-AES 71 95 120 132
WPA3-SAE 67 94 121 133

Mobile AP mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction X RX X RX
OpenSecurity 44 60 67 62
WPA2-AES 43 59 67 74
WPA3-SAE 44 59 73 63

Mobile AP mode throughput - VHT Mode | 2.4 GHz Band | 40 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 70 96 124 151
WPA2-AES 70 97 128 165
WPA3-SAE 72 95 124 164

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 45 60 69 71
WPA2-AES 43 59 74 75
WPA3-SAE 44 59 68 64

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 40 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction X RX TX RX
OpenSecurity 70 99 140 137
WPA2-AES 68 98 145 175
WPA3-SAE 72 98 138 157

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 80 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 82 122 186 182
WPA2-AES 82 121 197 179
WPA3-SAE 63 119 174 165

Mobile AP mode throughput - HE Mode | 2.4 GHz Band | 20 MHz

1.7. Wireless

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 47 55 64 78
WPA2-AES 47 54 70 86
WPA3-SAE 45 54 60 53

Mobile AP mode throughput - HE Mode | 2.4 GHz Band | 40 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 66 102 123 178
WPA2-AES 75 100 94 179
WPA3-SAE 75 100 99 127

Mobile AP mode throughput - HE Mode | 5 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 53 61 60 103
WPA2-AES 47 54 77 92
WPA3-SAE 23 28 74 45

Mobile AP mode throughput - HE Mode | 5 GHz Band | 40 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 79 105 140 195
WPA2-AES 78 107 138 174
WPA3-SAE 78 104 129 146

Mobile AP mode throughput - HE Mode | 5 GHz Band | 80 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 89 123 210 188
WPA2-AES 88 122 194 179
WPA3-SAE 80 122 187 188

Parent topic:Wi-Fi throughput
Parent topic:/W611/IW612 release notes

EU conformance tests

* EU Adaptivity test - EN 300 328 v2.1.1 (for 2.4 GHz)
» EU Adaptivity test - EN 301 893 v2.1.1 (for 5 GHz)
Parent topic:/W611/IW612 release notes

Bug fixes and/or feature enhancements

188

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Firmware version: 18.99.2.p7.19

Component Description
- NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.2.p7.19 to 18.99.2.p49.9

Component Description
- NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.2.p49.9 to 18.99.2.p155

Com- Description

po-
nent

Blue- Audio lost occurs due to periodic adv sync lost, during 2 BIS 44.1kHz unencrypted
tooth streams with 1M PHY configuration.BIS sync loss may occur in long audio streaming
sessions.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.2.p155 to 18.99.2.p66.30

Com Description

po-

nent

Wi- 802.11R Fast BSS roaming works only with hostapd and does not work with standard

Fi APs (supporting 11R)

Blue DUT is not able to sustain a connection with the remote device that does extended ad-

tootl vertisement with coded PHY configuration. When 2 CIS streams are active, after the first
device disconnects followed by the second device disconnecting, the second peripheral
device hangs.Audio Play/Pause does not work in BIS case.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.2.p66.30 to 18.99.3.p10.5

Com Description

po-
nent

Wi- STAUT not sending Neighbor Advertisement packet after receiving Neighbor Solicitation

Fi packet from Ex-AP.Antenna selection time exceeds configured evaluation time

Bluer When DUT works as CIS source and CIS Offset is 612us, high packet drops observed

tootl which affects the audio streaming.For BIS Source Use Cases, Periodic Interval and ISO
Interval should be multiple of each other value.In 1-CIS and 2-CIS, Continuous Audio
Glitches are observed with 96 kbps bit rate.

Parent topic:Bug fixes and/or feature enhancements

1.7. Wireless 189

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Firmware version: 18.99.3.p10.5 to 18.99.3.p17.9

Com Description

po-
nent

Wi- After performing independent reset (out-of-band mode), the STAUT fails to connect to

Fi the external AP via wlan-connect command, observed command timeout 0x107 error.

Blue Audio glitches observed with Google Pixel 7 Pro streaming audio after CIS is established

tootl with DUT.During Call Gateway (CG) / Call Terminal (CT) Use Case, the firmware peri-
odically sends NULL PDU, which results in frequent Audio Glitch on both CG and CT
sides.Heavy audio glitches observed with CIS SRC Google Pixel 7 ProContinuous audio
glitches observed in 1 CIS and 2 CIS for 48_3 and 48_4 config.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p17.9 to 18.99.3.p21.154

Compo- Description

nent

Wi-Fi STAUT fail to ping AP backend machine when connected with DFS channel and
DUTSTA went in bad state.

Blue- CIS Sink frequently fails to acknowledge CIS Source TX PDU.

tooth

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p21.154 to 18.99.3.p23.16

Component Description
- NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p23.16 to 18.99.3.p25.11

Component Description

Bluetooth Packet lost observed in CIS case, which causes audio noise.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p25.11 to 18.99.3.p26.10

Com- Description
ponent

Wi-Fi During legacy roaming when the “Link Lost” observed the DUTSTA fails to roam
Wi-Fi During the automated testing of the channel performance, a system hang can occur,
with the error message “.sdio_drv_write failed”.

Parent topic:Bug fixes and/or feature enhancements

190 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Firmware version: 18.99.3.p26.10 to 18.99.3.p27.1

Component Description
Wi-Fi Enabled mbedtls 3.x

Parent topic:Bug fixes and/or feature enhancements
Parent topic:/W611/IW612 release notes

Known issues

Com Description

po-
nent

Blue Sequential Removal of CIS Handles as per current Controller implementation i.e CIS Dis-

tootl connection sequence should be in sequence => CIS - 4,3,2,1While 4-CIS streaming, audio
glitches observed on all CIS SINK with Samsung Galaxy budsWhile 4-CIS streaming, dis-
connection with connection timeout observed on first CIS SINK with Samsung Galaxy
budsOnly two streams (CIS/BIS) with one channel is supported.

Coes The coexistence sample applications included in the SDK are currently not working as
expected.

Parent topic:/W611/IW612 release notes

RW610/RW612 release notes

Package information
* SDKversion: 25.12.00-pvw1
Parent topic:RW610/RW612 release notes

Version information
* Wi-Fi firmware version: 18.99.6.p47
rw61x_sb_wifi a2.bin for A2

18 - Major revision

99 - Feature pack

6 - Release version

— p47 - Patch number
* Bluetooth LE firmware version: 18.25.6.p47
rw61x_sb_ble_a2.bin for A2

18 - Major revision

25 - Feature pack

6 - Release version

p47 - Patch number
* 802.15.4 and Bluetooth LE (up to core 4.1) firmware version: 18.34.6.p47
- rw61x_sb_ble_15d4_combo_a2.bin for A2

— 18 - Major revision

1.7. Wireless 191

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

— 34 - Feature pack
— 6 - Release version
— p47 - Patch number
Parent topic:RW610/RW612 release notes

Host platform
* RW610/RW612 platform running FreeRTOS
* Test tools
— iPerf (version 2.1.9)
Parent topic:RW610/RW612 release notes

Wireless certification The Wi-Fi and Bluetooth certification is obtained with the following
combinations.

WFA certifications
* STA | 802.11n
STA | PMF
STA | FFD
STA | SVD
STA | WPA3 SAE (R3)
STA | 802.11ac
STA | 802.11ax
STA | QTT
Refer to 1.

Note: This release supports STAUT only certifications.

Parent topic:Wireless certification

Bluetooth LE controller certification QDID: Refer to 4.

Parent topic:Wireless certification

Thread Thread group: referto 7.

Product Name: NXP RW612 Wireless MCU with Integrated Tri-Radio
Thread version: V1.3.0

CID #: 13A109

Parent topic:Wireless certification

192 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Matter RW612 certification: refer to 8.

Certificate ID: CSA23C36MAT41746-24

Device type: Root Node, Thermostat

Transport: Matter over Wi-Fi

RW610 certification: refer to 9.

Certificate ID: CSA23C43MAT41753-50

Device type: Root Node, Thermostat

Transport: Matter over Wi-Fi and Matter over Thread
Parent topic:Wireless certification

Parent topic:RW610/RW612 release notes

Wi-Fi throughput

Throughput test setup
* Environment: Shield Room - Over the Air
* Access Point: Asus AX88u

DUT: RW610/RW612

External Client: Intel AX210

Channel: 6 | 36

» Wi-Fi application: wifi_cli

* Compiler used to build application: armgcc
* Compiler version gcc-arm-none-eabi-13.2
* iPerf commands used in test:

TCP TX

iperf -c <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

iperf -¢ <remote_ip> -t 60 -u -B <local ip> -b 120

Note: The default rate is 100 Mbps.
UDP RX

iperf -s -u -B <local_ip>

Note: Read more about the throughput test setup and topology in 3.
Parent topic:Wi-Fi throughput

1.7. Wireless 193

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

STA throughput External AP: Asus AX88u
STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX X RX
OpenSecurity 38 38 62 62
WPA2-AES 37 37 61 63
WPA3-SAE 37 37 60 61

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 39 39 64 64
WPA2-AES 37 38 62 64
WPA3-SAE 39 38 62 64

STA mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 41 41 75 74
WPA2-AES 41 41 73 74
WPA3-SAE 40 41 72 73

STA mode throughput - VHT Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 42 42 76 76
WPA2-AES 42 41 75 75
WPA3-SAE 42 41 75 74

STA mode throughput - HE Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 44 45 97 99
WPA2-AES 43 44 96 98
WPA3-SAE 42 44 97 98

STA mode throughput - HE Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 47 47 100 103
WPA2-AES 45 46 100 101
WPA3-SAE 47 46 100 101

Parent topic:Wi-Fi throughput

194 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Mobile AP throughput External client: Apple MacBook Air
Mobile AP throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction X RX TX RX
OpenSecurity 39 39 62 62
WPA2-AES 39 39 61 61
WPA3-SAE 38 39 61 61

Mobile AP throughput - AN Mode | 5 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction X RX TX RX
OpenSecurity 40 40 63 63
WPA2-AES 39 39 62 61
WPA3-SAE 39 39 62 61

Mobile AP throughput - VHT Mode | 2.4 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 43 43 73 73
WPA2-AES 43 42 72 72
WPA3-SAE 43 42 73 72

Mobile AP throughput - VHT Mode | 5 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 44 44 74 74
WPA2-AES 43 43 74 74
WPA3-SAE 43 43 74 74

Mobile AP throughput - HE Mode | 2.4 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 48 48 95 96
WPA2-AES 47 47 98 95
WPA3-SAE 47 47 97 95

Mobile AP throughput - HE Mode | 5 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 49 49 96 97
WPA2-AES 48 48 101 97
WPA3-SAE 48 48 101 97

Parent topic:Wi-Fi throughput

1.7. Wireless

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Parent topic:RW610/RW612 release notes

Bug fixes and/or feature enhancements

Firmware version: 18.99.6.p34 to 18.99.6.p40

Com- Description
ponent

Zighee Zigbee Coordinator and Router are disconnected during BLE connection pairing and
bonding with a mobile app for the first time.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.6.p40 to 18.99.6.p46

Compo- Description

nent

Wi-Fi Fails to establish a persistent connection when the device attempts to reinvoke the
second stored Persistent Group

Blue- NCP cannot work after flash uart bins for both host and device side

tooth

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.6.p46 to 18.99.6.p47

Component Description
Wi-Fi Enabled mbedtls 3.x

Parent topic:Bug fixes and/or feature enhancements

Parent topic:RW610/RW612 release notes

Known issues

Compo- Description

nent

Wi-Fi —

Bluetooth —

LE

Zigbhee -

Coex The coexistence sample applications included in the SDK are currently not work-
ing as expected.

Parent topic:RW610/RW612 release notes

IW610 release notes

196 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Package information
* SDKversion: 25.12.00-pvw1

Parent topic:/WW610 release notes

Version information
* Wireless SoC: IW610
* Wi-Fi and Bluetooth/Bluetooth LE firmware version: 18.99.5.p79
— 18 - Major revision
— 99 - Feature pack
— 5-Release version
— p79 - Patch number

Parent topic:/WW610 release notes

Host platform
* IW610 platform running FreeRTOS
* Test tools
— iPerf (version 2.1.9)

Parent topic:/WW610 release notes

Wi-Fi and Bluetooth certification The Wi-Fi and Bluetooth certification is obtained with the
following combinations.

WEFA certifications
* STA | 802.11n
STA | PMF
STA | FFD
STA | SVD
STA | WPA3 SAE (R3)
STA | 802.11ac
STA | 802.11ax
e STA | QTT
Refer to 6.

Note: This release supports STAUT only certifications.

Parent topic:Wi-Fi and Bluetooth certification

Bluetooth controller certification QDID: Refer to 4.
Note: QDID upgrade to Bluetooth Core Specification Version 5.4 is in progress.
Parent topic:Wi-Fi and Bluetooth certification

Parent topic:/WW610 release notes

1.7. Wireless 197

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Wi-Fi throughput

Throughput test setup
* Environment: Shield Room - Over the Air
* Access Point: Asus AX88u
* DUT: IW610
* External Client: Intel AX210
* Channel: 6 | 36
» Wi-Fi application: wifi_cli
* Compiler used to build application: armgcc
* Compiler version gcc-arm-none-eabi-13.2
¢ iPerf commands used in test:

TCP TX

iperf -c <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

iperf -¢ <remote_ip> -t 60 -u -B <local ip> -b 120

Note: The default rate is 100 Mbps.
UDP RX

iperf -s -u -B <local ip>

Note: Read more about the throughput test setup and topology in 3.
Parent topic:Wi-Fi throughput

STA throughput External AP: Asus AX88u
STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 37 37 60 62
WPA2-AES 36 37 59 61
WPA3-SAE 36 37 59 61
STA mode throughput - AN Mode | 5 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction X RX TX RX
OpenSecurity 35 40 64 65
WPA2-AES 34 39 62 64
WPA3-SAE 35 39 77 76

198

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

STA mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 41 40 72 72
WPA2-AES 40 40 72 72
WPA3-SAE 40 40 72 71

STA mode throughput - VHT Mode | 5 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction X RX X RX
OpenSecurity 38 42 77 76
WPA2-AES 37 41 75 75
WPA3-SAE 37 40 75 75

STA mode throughput - HE Mode | 2.4 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 45 44 93 96
WPA2-AES 43 43 93 95
WPA3-SAE 44 43 93 96

STA mode throughput - HE Mode | 5 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 42 46 94 100
WPA2-AES 42 45 94 101
WPA3-SAE 41 45 94 101

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple MacBook Air

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 37 40 63 62
WPA2-AES 35 38 58 60
WPA3-SAE 37 39 61 61

Mobile AP mode throughput - AN Mode | 5 GHz Band | 20 MHz

1.7. Wireless

199

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 38 41 62 64
WPA2-AES 38 40 62 64
WPA3-SAE 38 40 62 62

Mobile AP mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 39 43 68 73
WPA2-AES 40 43 71 72
WPA3-SAE 39 43 68 72
Mobile AP mode throughput - VHT Mode | 5 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 42 45 72 74
WPA2-AES 41 44 71 73
WPA3-SAE 41 44 71 73
Mobile AP mode throughput - HE Mode | 2.4 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 44 48 94 94
WPA2-AES 43 46 95 95
WPA3-SAE 43 46 95 95
Mobile AP mode throughput - HE Mode | 5 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 45 49 97 97
WPA2-AES 44 48 97 97
WPA3-SAE 44 48 96 95

Parent topic:Wi-Fi throughput
Parent topic:/WW610 release notes

Bug fixes and/or feature enhancements

200

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Firmware version: 18.99.5.p66 to 18.99.5.p76

Compo- Description
nent

Wi-Fi The P2P client connection fails when an attempt is made to connect after the P2P
Group Owner (P2P-GO) has been stopped.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.5.p76 to 18.99.5.p79

Component Description
Wi-Fi Enabled mbedtls 3.x

Parent topic:Bug fixes and/or feature enhancements

Parent topic:/W610 release notes

Known issues

Compo- Description
nent
Coex The coexistence sample applications included in the SDK are currently not work-

ing as expected.

Parent topic:/W610 release notes

AWG611 release notes Note: The AW611 support is enabled in . MX RT1180 EVKA.

Package information
* SDKversion: 25.12.00-pvw1

Parent topic:AW611 release notes

Version information
» Wireless SoC: AW611
* Wi-Fi and Bluetooth/Bluetooth LE firmware version: 18.99.3.p27.1
— 18 - Major revision
— 99 - Feature pack
— 3 -Release version
— p27.1 - Patch number
Parent topic:AW611 release notes

1.7. Wireless 201

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Host platform
* i.MX RT1180 EVKA Platform running FreeRTOS
* Host interfaces
— Wi-Fi over SDIO (SDIO 2.0 Support, SDIO clock frequency: 50 MHz)
— Bluetooth/Bluetooth LE over UART
* Test tools
— iPerf (version 2.1.9)

Parent topic:AW611 release notes

Wi-Fi and Bluetooth certification The Wi-Fi and Bluetooth certification is obtained with the
following combinations.

WFA certifications
* STA | 802.11n
STA | PMF
STA | FFD
STA | SVD
STA | WPA3 SAE (R3)
STA | 802.11ac
STA | 802.11ax
STA | QTT
Refer to 6.

Note: This release supports STAUT only certifications.

Parent topic:Wi-Fi and Bluetooth certification

Bluetooth controller certification QDID: Refer to 4.
Note: QDID upgrade to Bluetooth Core Specification Version 5.4 is in progress.
Parent topic:Wi-Fi and Bluetooth certification

Parent topic:AW611 release notes

Wi-Fi throughput

Throughput test setup
* Environment: Shield Room - Over the Air
* Access Point: Asus AX88u
DUT: AW611 uBlox (Module: U-BLOX_Jody_W5 M.2) with EVK-MIMXRT1180 EVKA platform
DUT Power Source: External power supply
Client: Apple MacBook Air
Channel: 6 | 36

202 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Wi-Fi application: wifi_wpa_supplicant
* Compiler used to build application: armgcc
* Compiler Version: gcc-arm-none-eabi-13.2
* iPerf commands used in test:

TCP TX

iperf -c <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

iperf -¢ <remote_ip> -t 60 -u -B <local ip> -b 120

Note: The default rate is 100 Mbps.
UDP RX

iperf -s -u -B <local_ip>

Note: Read more about the throughput test setup and topology in 2.

The throughput numbers are captured with default configurations using wifi wpa_supplicant

sample application.

Parent topic:Wi-Fi throughput

STA throughput External AP: Asus AX88u
STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 45 48 61 61
WPA2-AES 44 47 60 60
WPA3-SAE 46 49 62 62

STA mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 66 82 128 131
WPA2-AES 69 82 126 128
WPA3-SAE 65 80 126 129

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz (HT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 39 51 63 65
WPA2-AES 39 50 63 64
WPA3-SAE 44 51 63 64

1.7. Wireless

203

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

STA mode throughput - AN Mode | 5 GHz Band | 40 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 64 82 125 133
WPA2-AES 63 83 124 132
WPA3-SAE 64 84 124 132

STA mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz (HT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction X RX X RX
OpenSecurity 48 54 71 72
WPA2-AES 48 54 71 71
WPA3-SAE 45 55 72 70

STA mode throughput - VHT Mode | 2.4 GHz Band | 40 MHz (HT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 74 92 162 170
WPA2-AES 74 90 160 169
WPA3-SAE 71 91 161 171

STA mode throughput - VHT Mode | 5 GHz Band | 20 MHz (HT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 43 57 76 78
WPA2-AES 42 57 75 77
WPA3-SAE 43 57 75 77

STA mode throughput - VHT Mode | 5 GHz Band | 40 MHz (HT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction X RX TX RX
OpenSecurity 70 90 156 177
WPA2-AES 70 91 154 175
WPA3-SAE 70 90 154 175

STA mode throughput - VHT Mode | 5 GHz Band | 80 MHz (HT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 86 94 218 196
WPA2-AES 84 96 219 195
WPA3-SAE 84 95 219 196

STA mode throughput - HE Mode | 2.4 GHz Band | 20 MHz (HT)

204

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 62 62 112 114
WPA2-AES 62 63 110 112
WPA3-SAE 56 63 107 114

STA mode throughput - HE Mode | 2.4 GHz Band | 40 MHz (HT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 73 94 193 192
WPA2-AES 76 93 188 191
WPA3-SAE 78 94 190 189

STA mode throughput - HE Mode | 5 GHz Band | 20 MHz (HT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 54 57 86 125
WPA2-AES 53 58 85 124
WPA3-SAE 53 66 118 123

STA mode throughput - HE Mode | 5 GHz Band | 40 MHz (HT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 77 95 163 198
WPA2-AES 76 95 160 198
WPA3-SAE 75 94 172 197

STA mode throughput - HE Mode | 5 GHz Band | 80 MHz (HT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 88 93 219 197
WPA2-AES 88 95 221 196
WPA3-SAE 85 94 217 195

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple MacBook Air

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 40 50 58 62
WPA2-AES 40 51 62 62
WPA3-SAE 40 51 62 62

1.7. Wireless

205

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 64 87 120 131
WPA2-AES 63 87 119 130
WPA3-SAE 63 86 118 130

Mobile AP mode throughput - AN Mode | 5 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction X RX X RX
OpenSecurity 40 52 63 62
WPA2-AES 41 51 62 57
WPA3-SAE 33 51 60 56

Mobile AP mode throughput - AN Mode | 5 GHz Band | 40 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 64 96 120 139
WPA2-AES 71 95 120 132
WPA3-SAE 67 94 121 133

Mobile AP mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 44 60 67 62
WPA2-AES 43 59 67 74
WPA3-SAE 44 59 73 63

Mobile AP mode throughput - VHT Mode | 2.4 GHz Band | 40 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction X RX TX RX
OpenSecurity 70 96 124 151
WPA2-AES 70 97 128 165
WPA3-SAE 72 95 124 164

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 45 60 69 71
WPA2-AES 43 59 74 75
WPA3-SAE 44 59 68 64

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 40 MHz

206

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 70 99 140 137
WPA2-AES 68 98 145 175
WPA3-SAE 72 98 138 157
Mobile AP mode throughput - VHT Mode | 5 GHz Band | 80 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 82 122 186 182
WPA2-AES 82 121 197 179
WPA3-SAE 63 119 174 165
Mobile AP mode throughput - HE Mode | 2.4 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 47 55 64 78
WPA2-AES 47 54 70 86
WPA3-SAE 45 54 60 53
Mobile AP mode throughput - HE Mode | 2.4 GHz Band | 40 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 66 102 123 178
WPA2-AES 75 100 94 179
WPA3-SAE 75 100 99 127
Mobile AP mode throughput - HE Mode | 5 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 53 61 60 103
WPA2-AES 47 54 77 92
WPA3-SAE 23 28 74 45
Mobile AP mode throughput - HE Mode | 5 GHz Band | 40 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX X RX
OpenSecurity 79 105 140 195
WPA2-AES 78 107 138 174
WPA3-SAE 78 104 129 146

Mobile AP mode throughput - HE Mode | 5 GHz Band | 80 MHz

1.7. Wireless

207

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 89 123 210 188
WPA2-AES 88 122 194 179
WPA3-SAE 80 122 187 188

Parent topic:Wi-Fi throughput
Parent topic:AW611 release notes

EU conformance tests
* EU Adaptivity test - EN 300 328 v2.1.1 (for 2.4 GHz)
» EU Adaptivity test - EN 301 893 v2.1.1 (for 5 GHz)

Parent topic:AW611 release notes

Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p10.5 to 18.99.3.p17.9

Com Description

po-
nent

Wi- After performing independent reset (out-of-band mode), the STAUT fails to connect to

Fi the external AP via wlan-connect command, observed command timeout 0x107 error.

Blue Audio glitches observed with Google Pixel 7 Pro streaming audio after CIS is established

tootl with DUT.During Call Gateway (CG) / Call Terminal (CT) Use Case, the firmware peri-
odically sends NULL PDU, which results in frequent Audio Glitch on both CG and CT
sides.Heavy audio glitches observed with CIS SRC Google Pixel 7 ProContinuous audio
glitches observed in 1 CIS and 2 CIS for 48_3 and 48_4 config.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p17.9 to 18.99.3.p21.154

Compo- Description

nent

Wi-Fi STAUT fail to ping AP backend machine when connected with DFS channel and
DUTSTA went in bad state.

Blue- CIS Sink frequently fails to acknowledge CIS Source TX PDU.

tooth

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p23.16 to 18.99.3.p25.11

Component Description

Bluetooth Packet lost observed in CIS case, which causes audio noise.

Parent topic:Bug fixes and/or feature enhancements

208 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Firmware version: 18.99.3.p25.11 to 18.99.3.p26.10

Com- Description
ponent

Wi-Fi During legacy roaming when the “Link Lost” observed the DUTSTA fails to roam
Wi-Fi During the automated testing of the channel performance, a system hang can occur,
with the error message “.sdio_drv_write failed”.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p26.10 to 18.99.3.p27.1

Component Description
Wi-Fi Enabled mbedtls 3.x

Parent topic:Bug fixes and/or feature enhancements

Parent topic:AWG611 release notes

Known issues

Com Description

po-
nent

Blue Packet lost would be observed in CIS case which causes audio noise.Sequential Removal

tootl of CIS Handles as per current Controller implementation i.e CIS Disconnection sequence
should be in sequence => CIS - 4,3,2,1While 4-CIS streaming, audio glitches observed on
all CIS SINK with Samsung Galaxy budsWhile 4-CIS streaming, disconnection with con-
nection timeout observed on first CIS SINK with Samsung Galaxy budsOnly two streams
(CIS/BIS) with one channel is supported.

Coes The coexistence sample applications included in the SDK are currently not working as

expected.

Parent topic:AW611 release notes

Abbreviations

Abbreviation

Definition

A2DP
AMPDU
AMSDU
AP

BW
CCMP
CSI

CTS

DL
EDCA
ER

ERP
GATT
HFP

Advanced audio distribution profile
Aggregated MAC protocol data unit
Aggregated MAC service data unit
Access point

Bandwidth

Counter mode CBC-MAC protocol
Channel state information

Clear To Send

Down link

Enhanced distributed channel access
Extended range

Extended rate physical

Generic attribute profile

Hands free profile

continues on next page

1.7. Wireless

209

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Table 4 - continued from previous page

Abbreviation Definition

HID Human interface device

HT High throughput

LDPC Low density parity check

MCS Modulation and coding scheme
MLME Mac layer management entity
OMI Operating mode indication
PMF Protected management frames
RTS Request to send

SAE Simultaneous authentication of equals
STA Station

TWT Target wake time

UL Up link

VHT Very high throughput

WEP Wired equivalent private

WED Wi-Fi direct

WMM Wireless multi-media

WPA Wi-Fi protected access

WPS Wi-Fi protected setup

WSC Wi-Fi Simple Configuration

References

1.

Application note - AN13681 — Wi-Fi Alliance (WFA) Derivative Certification Process (avail-
able in the SDK package)

User manual - UM11442 - NXP Wi-Fi and Bluetooth Demo Applications User Guide for i. MX
RT Platforms (available in the SDK package)

User manual - UM11799 - NXP Wi-Fi and Bluetooth Demo Applications User Guide for
RW61x (available in the SDK package)

Certification — Bluetooth controller - QDID (link)

5. User manual - UM12133 - NXP NCP Application Guide for RW612 with MCU Host

Technical note - TN00066 — Wi-Fi Alliance (WFA) Derivative Certification Process (available
in the SDK package)

7. Web page - Thread certified products (link)

10.

Web page — Connectivity standard alliance (csa) - NXP RW612 Tri-Radio Wireless MCU De-
velopment Platform (link)

Web page — Connectivity standard alliance (csa) - NXP RW610 Wireless MCU Development
Platform (link)

Application note - AN14634 — Kconfig Memory Optimizer (link)

1.7.2 EdgeFast Bluetooth

Currently we provide pdf version of those documentation, later release may convert the pdf
documentation to markdown for better review and aligned format.

» EdgeFast BT PAL API Reference Manual pdf.

210

Chapter 1. Middleware

https:/launchstudio.bluetooth.com/ListingDetails/115533
https://www.threadgroup.org/What-is-Thread/Thread-Benefits
https://csa-iot.org/csa_product/nxp-rw612-tri-radio-wireless-mcu-development-platform
https://csa-iot.org/csa_product/nxp-rw610-wireless-mcu-development-platform/
https://docs.nxp.com/bundle/AN14634/page/topics/about_this_document.html

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

MCUXpressoSDK EdgeFast Bluetooth Protocol Abstraction

Introduction Thisdocument provides an overview of the EdgeFast Bluetooth Protocol Abstrac-
tion Layer stack software based on FreeRTOS OS on the NXP board with variant wireless module
chipsets. This document covers hardware setup, build, and usage of the provided demo applica-
tions.

Stack API Reference EdgeFast Bluetooth Protocol Abstraction Layer is a wrapper layer on top
of the bluetooth host stack. Zephyr Bluetooth host stack API is used as the basis of the EdgeFast
Bluetooth Protocol Abstraction Layer with some enhancement on A2DP/SPP/HFP.

The APIs of the EdgeFast Bluetooth Protocol Abstraction Layer host stack are described in the
EdgeFast Bluetooth Protocol Abstraction Layer RM document.

Note: The online document of the Zephyr Bluetooth Host stack is available here: https://docs.
zephyrproject.org/latest/reference/bluetooth/index.html.

Parent topic:Introduction

Overview The EdgeFast Bluetooth Protocol Abstraction Layer host stack software is built based
on MCUXpresso SDK. The following chapter uses RT1060 as an example, other boards have sim-
ilar folder structure and corresponding document.

Folder structure The following figure shows the EdgeFast Bluetooth examples folder struc-
ture.
boards
evkrnirmxrt1060
edgefast_bluetooth_examples
aZdp_sink
aZdp_source
audio_profile
central_hpc
central_ht
central_ipsp
central_pxm
handsfree
handsfree_ag
peripheral_hps
peripheral_ht
peripheral_ipsp
peripheral_pxr
shell
spp
wifi_provisioning

wireless_uart

The following figure shows the EdgeFast Bluetooth Protocol Abstraction Layer host stack folder
structure.

1.7. Wireless 211

https://docs.zephyrproject.org/latest/reference/bluetooth/index.html
https://docs.zephyrproject.org/latest/reference/bluetooth/index.html

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

v middleware
arm-pelion
canopen
Crank_Software
EAP

v edgefast_bluetooth
include
source

The following table provides information regarding the structure and description.

| Folder

| Description

| | | | |boards/
CMSIS/

devices/

docs/

middleware/

rtos/
tools/
| MCUXpresso SDK directory. Refer to Chapter 5

Release contents of MCUXpresso SDK Release Notes at root/docs/ MCUXpresso SDK Release Notes
for EVK-MIMXRT1060.pdf to know the details

| |boards/<board>/wireless/edgefast_bluetooth_examples

| EdgeFast Bluetooth Protocol Abstraction Layer host stack example projects| |middle-
ware/wireless/edgefast_bluetooth

| EdgeFast Bluetooth Protocol Abstraction Layer host stack source code

|
The EdgeFast Bluetooth folder includes two subfolders:
¢ include: This subfolder includes EdgeFast Bluetooth Protocol Abstraction Layer host stack
headers.
* source: This subfolder includes EdgeFast Bluetooth Protocol Abstraction Layer host stack
source code based on the Ethermind Bluetooth host stack APIs.

Parent topic:Overview

212 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Architecture The figure Architecture of EdgeFast Bluetooth Protocol Abstraction Layer demo
in MCUXpresso SDK below shows that the EdgeFast Bluetooth Protocol Abstraction Layer host
stack is integrated into the MCUXpresso SDK as a middleware component. It leverages the RTOS,
the board support, the peripheral driver/component, and other components in the MCUXpresso
SDK. The Bluetooth application is built on top of the EdgeFast Bluetooth Protocol Abstraction
Layer host stack and supports different peripheral features, Bluetooth features, and different
RTOSes required by the user.

MCUXpresso SDK has the dual-chip architecture defined by EdgeFast Bluetooth Protocol Abstrac-
tion Layer project, the Bluetooth application code, and the EdgeFast Bluetooth Protocol Abstrac-
tion Layer host stack running on the reference board. For example, MIMXRT1060-EVK and the
Linker Layer (LL) run on the Bluetooth modules like AW-AM457-USD, Murata Type 1XK, and Mu-
rata Type 1ZM and has single-chip architecture. Bluetooth Host stack and LL runs on the same
chip, and communicate with Internal Communication Unit IMU).

The communication between the host stack and the LL is implemented via the standard HCI
UART interface and PCM interface for voice, or the IMU interface.

For details about the different components in MCUXpresso SDK, see Getting Started with MCUX-
presso SDK User’s Guide (document MCUXSDKGSUG) at root/docs/Getting Started with MCUX-
presso SDK.pdf. For details on possible hardware rework requirements, see the hardware rework
guide document of the relative board. For example, Hardware Rework Guide for EdgeFast BT

MCUXpresso SDK

RTOS
(FreeRTOS)

Microcontroller Hardware

UART PCM

PAL.

1.7. Wireless 213

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Parent topic:Overview

Features Thissection provides an overview of Bluetooth features, toolchain support, and RTOS
support.

Bluetooth features
* Bluetooth 5.0 compliant
* Protocol support
— L2CAP, GAP, GATT, RFCOMM, SDP, and SM

Note: The Enhanced Attribute (EATT) protocol is not supported in the current version.
However, the support will be available in a future version.

* Classic profile
- SPP, A2DP, and HFP
* LE profile
- HTP, PXP, IPSP, HPS
* Integrated the Fatfs based on USB Host MSD in SDK
* Digital Audio Interface including PCM interface for HFP

Parent topic:Features

Toolchain support
* JAR Embedded Workbench for ARM®
* MCUXpresso IDE
* Keil® MDK/uVision
» Makefiles support with GCC from Arm Embedded

Note: For details on IDE Development tools version details, see Section 3, Development tools
in MCUXpresso SDK Release Notes (document MCUXSDKMIMXRT106XRN). The Release Notes
document is available at root/docs/ MCUXpresso SDK Release Notes for EVK-MIMXRT1060.pdf.

Parent topic:Features

RTOS support
* FreeRTOSTMOS

Note: The FreeRTOS static allocation feature is required by Edgefast Bluetooth. The macro con-
figSUPPORT_STATIC_ALLOCATION needs to be set to enable this feature.

Parent topic:Features

Parent topic:Overview

Examples list

* The following examples are provided. Not all the examples are implemented on all the
boards. See the board package for a list of the implemented examples.

214 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

— central_hpc (central http proxy service client): Demonstrates a basic Bluetooth Low
Energy Central role functionality. The application scans for other Bluetooth Low En-
ergy devices and establishes a connection to the peripheral with the strongest signal.
The application specifically looks for HPS Server and programs a set of characteristics
that configures a Hyper Text Transfer Protocol (HTTP) request, initiates request, and
reads the response once connected.

- central_ht (central health thermometer): Demonstrates a basic Bluetooth Low En-
ergy Central role functionality. The application scans for other Bluetooth Low Energy
devices and establishes a connection to the peripheral with the strongest signal. The
application specifically looks for health thermometer sensor and reports the die tem-
perature readings once connected.

- central_ipsp (central Internet protocol support profile): Demonstrates a basic Blue-
tooth Low Energy Central role functionality. The application scans for other Bluetooth
Low Energy devices and establishes connection to the peripheral with the strongest
signal. The application specifically looks for IPSP Service and communicates between
the devices that support IPSP. Once connected, the communication is done using IPv6
packets over the Bluetooth Low Energy transport.

— central_pxm (central proximity monitor): Demonstrates a basic Bluetooth Low En-
ergy Central role functionality. The application scans for other Bluetooth Low Energy
devices and establishes a connection to the peripheral with the strongest signal. The
application specifically looks for Proximity Reporter.

— peripheral beacon: Demonstrates the Bluetooth Low Energy Peripheral role, This ap-
plication implements types of beacon applications.

* beacon: Demonstrates the Bluetooth Low Energy Broadcaster role functionality
by advertising Company Identifier; Beacon Identifier, UUID, A, B, C, RSSI.

* Eddystone: The Eddystone Configuration Service runs as a GATT service on the
beacon while it is connectable and allows configuration of the advertised data, the
broadcast power levels, and the advertising intervals.

* iBeacon: Demonstrates the Bluetooth Low Energy Broadcaster role functionality
by advertising an Apple iBeacon.

— peripheral_hps (peripheral http proxy service): Demonstrates the Bluetooth Low
Energy Peripheral role. The application specifically exposes the HTTP Proxy GATT Ser-
vice.

— peripheral_ht (peripheral health thermometer): Demonstrates the Bluetooth Low
Energy Peripheral role. The application specifically exposes the HT (Health Ther-
mometer) GATT Service. Once a device connects, it generates dummy temperature
values.

— peripheral _ipsp (peripheral Internet protocol support profile): Demonstrates the
Bluetooth Low Energy Peripheral role. The application specifically exposes the Inter-
net Protocol Support GATT Service.

— peripheral_pxr (peripheral proximity reporter): Demonstrates the Bluetooth Low
Energy Peripheral role. The application specifically exposes the Proximity Reporter
(including LLS, IAS, and TPS) GATT Service.

— wireless uart: The application automatically starts advertising the wireless uart ser-
vice and connects to the wireless uart service after the role switch. The wireless UART
service is a custom service that implements a custom writable ASCII Char characteris-
tic (UUID: 01ff0101-ba5e-f4ee-5cal-eble5e4b1ce0) that holds the character written by
the peer device.

— spp (serial prot profile): Application demonstrates the use of the SPP feature.

- handsfree: Application demonstrating usage of the Hands-free Profile (HFP) feature.

1.7. Wireless 215

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

handsfree_ag: Application demonstrating usage of the Hands-free Profile Audio Gate-
way (HFP-AG) feature.

a2dp_sink: Application demonstrating how to use the a2dp sink feature.

a2dp_source: Application demonstrating how to use the a2dp source feature.

audio_profile: Demonstrates the following functions.

* There are five parts working in the demo: AWS cloud, Android app, audio demo
(running on RT1060), U-disk, and Bluetooth headset.

% With an app running on the smartphone (Android phone), the end user connects
to the AWS cloud and controls the audio demo running on the RT1060 EVK board
through AWS cloud. Some operations like play, play next, and pause are used to
control the media play functionalities.

* Audio demo running on the RT1060 EVK board connects to the AWS through WiFi.
A connection establishes between the RT1060 EVK board and a Bluetooth headset.
To get the media resource (mp3 files) from the U-disk, an HS USB host is enabled,
and a U-disk with mp3 files is connected to RT1060 EVK board via the USB port. The
audio demo searches the root directory of the U-disk for the music files (only mp3
files are supported) and uploads the song file list to AWS. The song list is shown
in the app running on the smartphone. The music can then be played out via the
Bluetooth headset once end user controls the app to play the mps3 file.

— wifi_provisioning: Demonstrates the WiFi provisioning service that safely sends cre-
dential from phone to device over Bluetooth low energy. By default, AWS Wi-Fi pro-
visioning demo starts advertising if the Wi-Fi access point (AP) is not configured and
waits for the Wi-Fi AP configuration. After connecting to the Android APK, the demo
executes the request from cellphone and sends the response. When the Wi-Fi AP is con-
figured, the Shadow demo connects to the AWS via Wi-Fi and publishes the configured
Wi-Fi AP information.

— shell: Shell application demonstrating the shell mode of the simplified Adapter APIs.

Parent topic:Overview

Hardware For dual-chip implementation, the Bluetooth demo runs on a (reference board)
along with the ported EdgeFast Bluetooth Protocol Abstraction Layer API host stack. The Linker
Layer (LL) runs on a wireless module. A standard UART HCI and PCM is used to communicate
between the two boards, the IMU is used to communicate in between. The Bluetooth host and
controller stack run on different boards. The demo hardware requires two different boards; a
development board for host stack and application and a wireless module adapter board for con-
troller running. For example, the evkmimxrt1060 and uSD-15x15 Adapter Board for AW-AM457-
uSD board, or any of the supported Murata modules with the Murata uSD-M.2 adapter. For de-
tails on the board hardware requirement and board setting, see the following documents. For
one-chip implementation, the Bluetooth demo, EdgeFast Bluetooth Protocol Abstraction Layer
APTI host stack, and LL run on one chip and they communicate with IMU.

* Hardware rework guide document of the relative board, Hardware Rework Guide for
MIMXRT1060-EVK and AW-AM457-uSD, or Hardware Interconnection Guide for i. MX RT
EVKs and Murata M.2 modules.

* Readme file of the examples.

Reference boards list
* MIMXRT1170: For details, see the quick start guide of this reference board (MIMXRT1170).

* MIMXRT685-EVK: For details, see the quick start guide of this reference board (MIMXRT685-
EVK).

216 Chapter 1. Middleware

https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt1170-evaluation-kit:MIMXRT1170-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt600-evaluation-kit:MIMXRT685-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt600-evaluation-kit:MIMXRT685-EVK

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

* MIMXRT595-EVK: For details, see the quick start guide of this reference board.
(MIMXRT595-EVK).

* MIMXRT1050-EVKB: For details, see the quick start guide of this reference board
(MIMXRT1050-EVKB).

Parent topic:Hardware

Dual-chip wireless module list

Module HCI

uSD-15x15 Adapter Board for AW-AM457-uSD UART
uSD-15x15 Adapter Board for AW-CM358-uSD UART
uSD-15x15 Adapter Board for AW-AM510-uSD UART
AW-CM358MA UART
AW-CM510MA UART
K32W061 UART

Murata uSD-M.2 Adapter (LBEEOZZ1WE-uSD-M2) and Embedded Artists 1ZM M.2 Mod- UART
ule (EAR00364)
Murata uSD-M.2 Adapter (LBEE0ZZ1WE-uSD-M2) and Embedded Artists 1XK M.2 Mod- UART
ule (EAR00385)

For details on AzureWave module, see the quick start guide of this reference board AW-AM457-
uSD, AW-CM358-uSD, AW-CM358MA, AW-AM510-uSD, AW-CM510MA, and K32W061.

For Murata documentation, refer to the Quick Start Guide and User Guide here.

Note: The boards and wireless module lists are not random combination. For the wireless mod-
ule support list of specific board, see the readme.txt of each example.

Parent topic:Hardware

Demo This topic lists the steps to run a demo application using IAR, steps to run a demo ap-
plication using MCUXpresso IDE, and steps to download LL firmware from the reference board.
The following chapter uses RT1060 and peripheral_ht as an example.

Before you run the example, see the readme.txt in current the peripheral_ht directory and the
Hardware Rework Guide for EdgeFast BT PAL document to set the jumper and connect the wire-
less module with development board.

The uSD type wireless module is similar to the Development board connector in the Run an IAR
example section. If the module is M2 type, connect the module to the onboard M2 interface.

Run a demo application using IAR This document uses EVKRT1060 EdgeFast Bluetooth Proto-
col Abstraction Layer API example to describe the steps to open a project, build an example,
and run a project. For details, see Section 3 in Getting Started with MCUXpresso SDK User’s
Guide(document MCUXSDKGSUG) atroot/docs/Getting Started with MCUXpresso SDK.pdf.

Open an IAR example For the IAR Embedded Workbench, unpack the contents of the archive
to a folder on a local drive.

1. The example projects are available at:
<root>/boards/evkmimxrt1060/edgefast_bluetooth__examples/peripheral ht/iar
2. Open the IAR workspace file. For example, the highlighted *eww format file

1.7. Wireless 217

https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt595-evaluation-kit:MIMXRT595-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt1050-evaluation-kit:MIMXRT1050-EVK
http://www.azurewave.com/img/nxp/uSD-1515%20Adaptor%20Board_User%20guide_C_20200821.pdf
http://www.azurewave.com/img/nxp/uSD-1515%20Adaptor%20Board_User%20guide_C_20200821.pdf
http://www.azurewave.com/img/nxp/uSD-1212%20Adaptor%20Board_User%20guide_G_20210127.pdf
http://www.azurewave.com/img/nxp/AW-CM358MA_DS_DF_C_STD.pdf
https://www.azurewave.com/img/nxp/AW-AM510-uSD_User%20guide_A_210126.pdf
https://www.azurewave.com/img/nxp/AW-AM510MA_DS_DF_C_STD.pdf
https://www.nxp.com/products/wireless/thread/k32w061-41-high-performance-secure-and-ultra-low-power-mcu-for-zigbeethread-and-bluetooth-le-5-0-with-built-in-nfc-option:K32W061_41
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/nxp-imx

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

B ER

File Home Share View ~ @
= Cut = New item ~ L Open ~ Select all
ol moe | B & X =h B R0 [R
Pmat(nmcsl;nrk Copy Paste . Paste shortcut A:Iom:e (;zp‘y Da\'ete Rename fl:\z‘z,— Prop'ar‘ties B History EEInvart selection
Clipboard Organize New Open Select
« v 1 « boards > evkmimxrt1060 > edgefast_bluetooth_examples > peripheral_ht > iar ~ | O £ Search iar
~ Name - Date modified Type Size
3 Quick access
1] MIMXRT1062x0000¢_flexspi_nor.ick 2021/3/1 6:14 ICF File 7KB
fa nxp [peripheral_ntewd 2021/3/1 614 EWD File 395 KB
@ OneDrive - NXP ﬁ peripheral_htewp 2021/3/1 6:14 EWP File 192 KB
© peripheral_hteww 2021/3/1 6:14 EWW File 1KB
= This PC
P 3D Objects
[Desktop
Dacuments
‘ Downloads
) Music
=] Pictures
E Videos
9 0SDisk (C) .
4items 1item selected 956 bytes =

Parent topic:Run a demo application using IAR

Build an IAR example

1. Select flexspi_ nor_debug or flexspi_nor_ release configurations from the drop-down selector
above the project tree in the workspace.

File Edit View Project CMSIS-DAP Tools Window Help

N ORE S L%ELDC

flexspi_nor_debug

flexspi_ror_release
) @ peripheral_ht-flexspi_... +

W board ®
W bt_ble °
M CMSIS

2. Build the EdgeFast Bluetooth Protocol Abstraction Layer project.

218 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

File Edit View Projet CMSIS-DAP Tools Window Help

N0 W@ = KK0 OC

Workspace v 0 X
flexspi_nor_debug -
Files L
SP b eripheral hi—ilcgaem
M board Options...
M bt_ble Mok
M CMSIS ake
M component Compile
= dlevice RebuldAl
W doc -
M drivers
M edgefast C-STAT Static Analysis >
i faifs
M framework Stop Build

Note: Wireless module does not have flash hardware and requires 512 KB image loaded
from board (such as RT1060) on system startup. The 512 KB image is kept on RT1060 side
and only flexspi_nor target is supported for Bluetooth examples. Other targets are not sup-
ported because memory size limit.

Parent topic:Run a demo application using IAR

Run an IAR example This document uses the peripheral_ht as an example to describe the
steps to run an example. For details on other projects and compilers, see the readme file in
the corresponding example directory.

The following figure shows the connection of RT1060 and the uSD wireless module.

1. Connect the USB debug console port to PC. For example, connect J14 of EVKRT1060 to the
PC.

2. Connect a 5V power source to the J1 jack in the Wireless module board.

3. Make the appropriate debugger settings in the project options window, as shown in the
figure below.

1.7. Wireless 219

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Options for node “peripheral_ht"

Category. Factory Settings

General Options
Static Analysis
Runtime Checking
C/C++ Compiler Setup Download Images Multicore Extra Options Plugins
Assembler
Output Converter Driver [Run to
Custom Build CMSIS DAP
Build Actions
Linker Setup macros
() Use mact fle()
Simulator
CADI
CMSIS DAP
GDB Server
I-jet
J-Link/J-Trace
TI Stellaris [1 Ovemide default

= main

Device description file

Mu-Link STOOLKIT_DIRS\CONFIG\debuggeriNXPIMIMXRT1062xxx6A.
PE micro

ST-LINK
Third-Party Driver
TI MSP-FET

TI XDS

Cancel

4. Click the Download and Debug button to flash the executable onto the board, as shown
in the following figure. After the download is complete, if you must test the function of
HFP, stop IAR debugging, and then connect the PCM interface. Reset the target board by

manually.
File Edit View Projet CMSIS-DAP Tools Window Help
Do = XBi.oc < Q25200 QA0 BO-=[0]r D
Workspace v 3 X
© Download and Debug (Ctri+D)
flexspi_nor_debug
Download the application and starf]
Files &G . - the debugger
ER peripheral ht-flexs [v | |
i board
bt ble

5. Linker layer (LL) Firmware running in wireless module loads from EVKRT1060 by SDIO
interface, so need take a bit time to download the LL firmware, “Initialize AW-AM457-uSD
Driver” prints in the debug console. For example, it depends on the firmware. For details,
see readme.txt.

Note: The projects are configured to use “CMSIS DAP” as the default debugger. Ensure that the
OpenSDA chip of the board contains a CMSIS. DAP firmware or that the debugger selection cor-
responds to the physical interface used to interface to the board.

Parent topic:Run a demo application using IAR

Parent topic:Demo

Run a demo application using MCUXpresso IDE This document uses peripheral_ht example
to describe the steps to open a project, build an example, and run a project on MCUXpresso IDE.

220 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

For details, see Section 3 in Getting Started with MCUXpresso SDK User’s Guide (document MCUXS-

DKGSUG) at root/docs/Getting Started with MCUXpresso SDK.pdf and refer to the readme file in
the corresponding demo’s directory.

Open an MCUXpresso IDE example

1. Open MCUXpresso IDE and open an existing or a new workspace location.

. MCUXpresso IDE Launcher

Select a directory as workspace

MCUXpresso IDE uses the workspace directory to store its preferences and development artifacts.

Workspace: y C:\workspace

Browse...

[]Use this as the default and do not ask again
» Recent Workspaces

Launch

Cancel

2. Drag and drop the package archive into the MCUXpresso Installed SDKs area in the lower
right of the main window.

@ Installed SDKs = [Properties X! Problems B Console ¢ Terminal s Image Info & Debugger Console ==
] $<>| =]
@ Installed SDKs

To install an SDK, simply drag and drop an SDK (zip file/folder) into the ‘Installed SDKs' view. [Common 'mcuxpresso’ fi
Installed SDKs . Available Boards| Available Devices

Name SDK Version

Manifest Version Location

3. After the SDK is loaded successfully, select the Import the SDK examples(s)... to add ex-
amples to your workspace.

U Installed SDKs &) [Properties [Problems =g Progress & Console & Terminal G Image Info &} Debugger Console

@i
@ Installed SDKs
O Quickstart Panel 53 - Variables ®e Breakpoints

To install an SDK, simply drag and drop an SDK (zip file/folder) into the ‘Installed SDKs' view. [Common ‘mcuxpresso’ folder]
- MCUXpresso IDE - Quickstart Panel ® Installed SDKs . Available Boards| Available Devices

—*= No project selected Name SDK Version
- Create or import a praject SDK,Z‘x,board,EVK-MIMXRT'\ 60 | 290

Manifest Version Location

380 & \board_EVK-MIMXRT1060.zip

= Ruild vnur nrniact

4. Select the evkmimxrt1060 board and click the Next button to select the desired example(s).

1.7. Wireless

221

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

B soK Import Wizard

O X
® Importing project(s) for device: MIMXRT1062:c0wA using board: EVK-MIMXRT 1060 x @
. Board and/or Device selection page
- SDK MCUs B Available boards [CA N
MCUs from installed SDKs.

Please select an available board for your project.

Please click above or visit |Supported boards for device: MIMXRT 106230004 ‘
Mcuxpresso.nxp.com to obtain

additional SDKs.

NXP MIMXRT10623000¢A
~ MIMXRT1060
MIMXRT1062:000A

uation Kit

|Th|s board is available from the SDK: SDK_2.x_board_EVK-MIMXRT 1060

Selected Device: MIMXRT 1062x0xxA using board: EVK-MIMXRT 1060
Target Core: cm/ Name SDK Versi.. Manifest.. Location

Description: iMX MIMXRT1062 600MHz, 512KB SRAM Microcontrollers 1 SDK_2.x board EVK-N 290 380 € <Commons\board_EVK-MI
(MCUs) based on ARM Cortex-M7 Core - - - - : -

SDKs for selected MCU

@

< Back Finish Cancel

5. Select the evkmimxrt1060 board EdgeFast Bluetooth example. For example, peripheral_ht.

6. Ensure to change SDK debug console from Semihost to UART.
7. Click Finish.

222

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

SDK Import Wi

MIMXRT1060" SDK.

& The source from the SDK will be copied into the workspace. If you want to use linked files, please unzip the 'SDK_2.x_board_EVK-

. Import projects

Project name prefix;| evkmimxrt1060 L Project name suffix: &
Use default location
Location: | CAworkspace\evkmimxrt 1060 Browse...
Project Type Project Options
@ CProject (C++ Project (I C Static Library () C++ Static Library SDK Debug Console () Semihodt @ UART J ' Example default
Copy sources
Import other files
Examples | 4 MR B E
‘type to filter ‘
_lame Description Version
~ [m] = edgefast_bluetooth_examples
[= a2dp_sink The ethermind audio source with simplified application.
[] = a2dp_source The ethermind audio source with simplified application.
[l udio_profile The ethermind audio demo with simplified application.
[= central_hpc The ethermind hpc example with simplified application.
O entral_ht The ethermind hts example with simplified application.
[] = central_ipsp The ethermind ipsp example with simplified application.
[l entral_pxm The ethermind pxm example with simplified application.
[andsfree The ethermind bluetooth handsfree example with simplified application.
[andsfree_ag The ethermind handsfree AG example with simplified application.
O eripheral_hps The ethermind hps example with simplified application.
peripheral_ht The ethermind hts example with simplified application.
[l eripheral_ipsp The ethermind ipsp example with simplified application.
[= peripheral_pxr The ethermind pxr example with simplified application.
O pp The Bluetooth BR SPP example.
[] = wifi_provisioning The wifi provisioning example.
@ < Back Next > Cancel

Parent topic:Run a demo application using MCUXpresso IDE

Build an MCUXpresso IDE example

1. Select desired target for your project.

Build Configurations >
Build Targets >
Index >

I s

CA, A ATR AN

Set Active > |V 1Debug (Debug build)
Manage... 2 Release (Release build)

r_’t‘UUI” o I\f'lt!l'TI(.)l)Ir e
Resild All

2. Build MCUXpresso IDE EdgeFast Bluetooth Protocol Abstraction Layer project.

1.7. Wireless

223

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

workspace - evkmimxrt1060_peripheral_ht/source/main.c - MCUXpresso IDE

Eile Edit Navigate Search Project ConfigTools Run Analysis FreeRTOS Window Help
(=hd ® Y&/ Qiw|mmms SRIpnErRiSe- BN LI HE O QR idS v A o Q iK%
= Outline &2 - Global Variables Wewt=o

) Project Explo.. 22 7 Peripherals+ i Registers #sFaults ~ O [d mainc 2

eslvi s @ § 18 /* A SDK Details
@ bt ble ~ 2 * Copyright 2021 NXP No SDK selected
@ component 3 * ALl rights reserved
& device : . .
5 * SPDX-License-Identifier: BSD-3-Clause
& doc I
5 drivers 7
 edgefast 8 #include "fs1_debug_console.h”
5 ethermind 9
 fatfs 10 #include "FreeRTOS.h"
& framework 11 #include “task.h"
12
5
& freertos 13 #include <peripheral_ht.h>
8 linkscripts 14
@ Iwip 15 #include "pin_mux.h"
& samme 16 #include "clock_config.h"
~ 8 source 17 #include "board.h"
app_configh 18 #include "fsl_adapter_uart.h" .
[edgefast_bluetooth_config.n Tos
 FreeRTOSConfigh = =
Srane @ Installed SDKs &2 [Properties [Problems = Progress Console & Terminal s Image Info @ Debugger Console 8 oM wH &5 =0
2 TR
4 peripheral_itc © Installed SDKs =
B peripheral_hth No search results available.
B semihost_hardfaultc To install an SDK. simply drag and drop an SDK (zip file/folder) into the ‘Installed SDKS view. [Common ‘meuxpresso’ folder] Start a search from the search
Aot Installed SDKs . Available Boards| Available Devices| dalog-
 Quickstart Panel ¢ (- Variables °e Breakpoints 2 | Name SDK Version Manifest Version Location
~ [#[SDK 2x_board_EVK MIMXRT1060 290 380 & \board_EVK-MIMXRT1060.zip

- MCUXpresso IDE - Quickstart Panel
=227 project: evkmimxrt1060_peripheral ht [Debug]

~ Create or import a project

B New project.
B8 import SDK example(s

® Import project(s) from file system.

~ Build your project

en
~ Debug your project E-E-B-

rm ¥ Debug v
O NXP MIMXRT1062000A* (evkmimx..eral ht)

Parent topic:Run a demo application using MCUXpresso IDE

Run an MCUXpresso IDE example For MCUXpresso IDE project running, all steps are similar
to Run an IAR example except the steps of downloading image from compiler.

To download MCUXpresso IDE image to board, click the Debug button to download the exe-
cutable file onto the board.

workspace - evkmimxrt1060_peripheral |
File Edit Source Refactor Navigate Search Project ConfigTools Run Analysis FreeRTOS Window Help

=R¢ |®s~&~ @& Biw BNz opSRdnEARRISIevIBO NS MURS Rel- R g M A o Q sk
[&5 Project Explo... 5% 7 Peripherals+ !l Registers #Faults = O [& mainc &2 = O 8 Outline 2 ®-=Global Variables =8
G784 @ . [Open Elemert
ESY/ &% @~ 18/ . A There is no active editor that provides an outline.

v &5 evkmimxrt1060_peripheral_ht <Debug> ~ 2 * Copyright 2021 NXP

© Project Settings 3 * ALl rights reserved.

2=

>

1 Binaries 5 * SPDX-License-Identifier: BSD-3-Clause

&) Includes el

@ cmsis ;

 board 8 #include "fsl_debug_console.h”

@ boards 9

5 btble 10 #include "FreeRTOS.h"

@ component 11 #include “task.h"

(5 device 13 #include <peripheral_ht.h>
 doc
& drivers 15 #include "pin_mux.h"
5 edgefast 16 #include "clock_config.h"
 ethermind 17 #include "board.h"
& fatfs 18 #include "fsl_adapter_uart.h" .
8 framework s
5 freertos N T — =
@ linkscripts @ Installed SDKs [Properties (2 Problems =g Progress @ Console &3 & Terminal [Image Info @ Debugger Console $OB|BE"&I®O-83=0 gM wH &5 % =
& wip CDT Build Console [evkmimxrt1060_peripheral_ht] 5t
. G NONE - €a01-ECL ~M0SLULLD ~L L: \WOrKSPACE \EVRILIKI {1000 _PEr IpIEral i1t \€ LHErmING\DIUE (00T PFIVATENI 10 ~ALLIKEr ~Tiap= EVKIINKFLIon
@ sdmme Memory region Used Size Region Size %age Used No search results available.
~ @ source . BOARD_FLASH: 988680 B 5568 KB 17.34% :‘a""“ea’(h from the search
B onme andion NVM_region: 64 KB 64 KB 100.00% Galog..
O Quickstart Panel 5 (- Variables ®e Breakpoints =8 SRAM_OC: 315012 B 768 KB 40.17%
N SRAWH_DTC: 15708 B 128 KB 11.98%
I8 MCUXpresso IDE - Quickstart Panel SRAM_TTC: 6 6B 128 k8B 0.60%
Cee) project: evkmimxrt1060_peripheral_ht [Debug] BOARD_SORAM: 0 8 30 1B 0.00%
NCACHE_REGION: 0 GB 2 M 0.00%
~ Create or import a project Finished building target: evkmimxrt1060_peripheral_ht.axf
B New project C:/nxp/MCUXpressoIDE_11.3.0_5149_alpha/ide/plugins/com.nxp.mcuxpresso.tools.win32_11.3.0.202008311133/buildtools/bin/make --no-prim
B import SDK example(s). Performing post-build steps
® import project’s) from file system. arm-none-eabi-size "evkmimxrt1060_peripheral_ht.axf"; # arm-none-eabi-objcopy -v -0 binary "evkmimxrt1060_peripheral ht.axf" “evkmi
)) text data bss dec hex filename
~ Build your project 979768 74448 303756 1357972 14b894 evkmimxrt1060_peripheral_ht.axf
& Build
 Clean 14:14:39 Build Finished. @ errors, © warnings. (took 1m:34s.429ms)
~ Debug your project 5
n ¥ Debug v o< R

O NXP MIMXRT10625000¢A* (evkmimx..eral ht)

Parent topic:Run a demo application using MCUXpresso IDE

Parent topic:Demo

Run a demo application using MDK This document uses peripheral_ht example to describe
the steps to open a project, build an example, and run a project on MDK.

For details, see the related section in the Getting Started with MCUXpresso SDK User’s Guide
(document: MCUXSDKGSUG) in the directory root/docs/ and the readme file in the corresponding
demo’s directory.

224 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Open an MDK project For the IAR Embedded Workbench, unpack the contents of the archive
to a folder on a local drive.

1. The example projects are available at: <root>/boards/evkmimxrt1060/
edgefast_ bluetooth__examples/peripheral ht/mdk.

2. Open the mdk workspace file. For example, the highlighted *uvmpw format file.

dume (D) » test > board_EVE-MIMXRTI080 » boards » evkmimxrt1060 » edgefast_bluetooth_examples » peripheral_ht » mdk

o

Marne Type Size

| evkmimuxrt1060_flexspi_nor.ini Configuration settings KB
_'j MIMARTT 0620 _flexspi_nor File Explorer Command TEB
peripheral_ht.uvmpw E&ision Multi-Project 1KE
| peripheral_ht.uvopt: UVOPTX File 11 KB
peripheral_ht.uvprojx B&isionS Project 313 KB

Parent topic:Run a demo application using MDK

Build an MDK example To build an MDK example:

1. Select flexspi_nor_debug or flexspi_nor._release configurations from the drop-down selector
above the project tree in the workspace.

KA D:\test\board_EVK-MIMXRT1060\boards\evkmimuxrt1060\edgefast,
File Edit View Project Flash Debug Peripherals Tools

F‘lﬁdﬂ\fs-q:s\ﬂ o~ | “.H“IE

Project L X |
= & WorkSpace

> R

2. Click the highlighted icon to build the EdgeFast Bluetooth Protocol Abstraction Layer
project.

KA D:\test\board_EVK-MIMXRT1060\boards\evkmimxrt1060\edgefast
File Edit View Project Flash Debug Peripherals Tools

F‘lﬁdﬂ\ —:&H o | “.H'”R

\-
fon=-

‘xi{,
E.
[
ﬁ
E
3:
=
=
=]
o
m
]
Ei
=
e
B
E
<

Project
SRE? WorkSpace

- PR

1.7. Wireless 225

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Parent topic:Run a demo application using MDK

Run an MDK example For MDK project running, all steps are similar to Run an IAR example
except the steps of downloading image from compiler.

To download the MDK image to the board, click the Debug button. The executable file downloads
to the board.

KA D:test\board_EVK-MIMXRT1060\boards\evimimurt1060\edgefast_bluetooth_examples\peripheral_ht\mdk\peripheral_ht.uvprojx - pVision
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

= o iE iE @ bt_shellTestModelnit B & Q- G &- B~ X
I;I l:l k:é' per\pheral,hﬂlexspl,nmv ,5',\ t % 'Q" A} @
Project I x |
=let) WorkSpace
- Project: peripher:
Parent topic:Run a demo application using MDK

Parent topic:Demo

Run a demo application using Arm GCC This document uses peripheral_ht example to de-
scribe the steps to open a project, build an example, and run a project on MDK.

For details, see the related section in Getting Started with MCUXpresso SDK User’s Guide (docu-
ment: MCUXSDKGSUG) at root/docs/ and the readme file in the corresponding demo’s directory.

Setup tool chains See the section “Run a demo using Arm GCC” of getting start document. For
example, Getting Started with MCUXpresso SDK for MIMXRT1160-EVK.

Parent topic:Run a demo application using Arm GCC

Build a GCC example To build a GCC example:

1. Change the directory to the project directory: <install dir>\boards\evkmimxrt1060\
edgefast_ bluetooth__examples\peripheral _ht\armgcc.

2. Run the build script.
For windows, the script is build_flexspi_nor_debug.bat/ build_flexspi_nor_release.bat.

The build output is shown in the following figure.

Linking executable flexspl nor deb ripheral ht.elf

Parent topic:Run a demo application using Arm GCC

226 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Run a GCC example Refer to the section “Run a demo using Arm GCC” of the getting start
document. For example, see Getting Started with MCUXpresso SDK for MIMXRT1060-EVK. The
peripheral_ht.elf is the target to download.

Parent topic:Run a demo application using Arm GCC

Parent topic:Demo

Download Linker Layer firmware from the reference board Download the Linker Layer
(LL) Firmware from Reference board EVKRT1060 by SDIO interface before running the Bluetooth
Controller stack. The LL download is necessary because wireless module does not support flash.

Parent topic:Demo

Change board-specific parameters There are some board-specific parameters that can be
changed in the application layer for EdgeFast BT PAL.

Change HCI UART parameters Since the controller can support different baud
rates, the demo provides an interface with configurable baud rates. The func-
tioncontroller_hci_uart_get _configuration is used to get HCI UART parameters, including
the instance, default baud rate, which depends on the controller, running baud rate which
defined by macro BOARD_BT_UART_BAUDRATE and so on. If this function returns ‘0’ and the
running baud rate is inconsistent with the default baud rate, EdgeFast BT PAL switches the baud
rate of the controller to the running baud rate.

Parent topic:Change board-specific parameters

Change USB Host stack parameters Since the board supports multiple USB ports, the demo
provides a configurable interface for USB Host stack. The functionUSB_HostGetConfiguration
received the instance of USB for EdgeFast BT PAL. For the case where there is a USBPHY, the
demo configures the properties of the PHY throughUSB_HostPhyGetConfiguration.

Note: There are series of hex bytes printed on the console after the wireless module resets.
However, it does not impact the EdgeFast BT PAL application running.

Parent topic:Change board-specific parameters

Parent topic:Demo

Known issues This section provides a list of known issues in the release package.

Notes This section provides a list of notes to use EdgeFast Bluetooth stack
* the follow configuration items related to resource needs more attention
— CONFIG_BT_MAX_CONN The max connections that can be created.
— CONFIG_BT_MAX_PAIRED The max supported paired devices.

— CONFIG_BT_BUF_EVT_RX_COUNT The max received hci events and acl data packets
at one time if the sys work queue task is blocked. One example is: when LE connec-
tion is created and HCI_LE_Enhanced_Connection_Complete is received, the sys work
queue task is busy with processing the HCI_LE_Enhanced_Connection_Complete. If the
received hci events exceed CONFIG_BT_BUF_EVT_RX_COUNT, it may leads potential is-
sue, please increase value of the macro.

» All the EdgeFast Bluetooth API should be called only after EdgeFast Bluetooth is initialized.

* Don’t send HCI cmd from the sys work queue task or any stack’s callbacks.

1.7. Wireless 227

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

EdgeFast BT PAL configuration documentation CONFIG_BT_BUF_RESERVE
Buffer reserved length, suggested value is 8.

CONFIG_BT_SNOOP

Whether enable bt snoop feature, 0 - disable, 1 - enable.
CONFIG_BT_HCI_CMD_COUNT

Number of HCI command buffers, ranging from 2 to 64. Number of buffers available for HCI
commands Range 2 to 64 is valid.

CONFIG_BT_RX BUF_COUNT

Number of HCI RX buffers, ranging from 2 to 255. Number of buffers available for incoming ACL
packets or HCI events from the controller Range 2 to 255 is valid.

CONFIG_BT_RX BUF_LEN

Maximum supported HCI RX buffer length, ranging from 73 to 2000. Maximum data size for each
HCI RX buffer. This size includes everything starting with the ACL or HCI event headers. Note
that buffer sizes are always rounded up to the nearest multiple of 4, so if this Kconfig value is
something else then there is some wasted space. The minimum of 73 has been taken for LE SC
which has an L2CAP MTU of 65 bytes. On top of this, The L2CAP header (4 bytes) and the ACL
header (also 4 bytes) which yields 73 bytes. Range is 73 to 2000.

CONFIG_BT_HCI_RESERVE

Reserve buffer size for user. Headroom that the driver needs for sending and receiving buffers.
Add a new ‘default’ entry for each new driver.

CONFIG_BT_DISCARDABLE_BUF_COUNT

Number of discardable event buffers, if the macro is set to 0, disable this feature, if greater than
0, this feature is enabled. Number of buffers in a separate buffer pool for events which the
HCI driver considers discardable. Examples of such events could be , for example, Advertising
Reports. The benefit of having such a pool means that if there is a heavy inflow of such events it
does not cause the allocation for other critical events to block and may even eliminate deadlocks
in some cases.

CONFIG_BT_DISCARDABLE_BUF_SIZE

Size of discardable event buffers, ranging from 45 to 257. Size of buffers in the separate discard-
able event buffer pool. The minimum size is set based on the Advertising Report. Setting the
buffer can save memory if with size set differently from that of the CONFIG_BT_RX_BUF_LEN.
range is 45 to 257.

CONFIG_BT_HCI_TX_STACK SIZE

HCI TX task stack size needed for executing bt_send with specified driver, should be no less than
512.

CONFIG_BT HCI_TX_PRIO
HCI TX task priority.
CONFIG_BT_RX_STACK_SIZE

Size of the receiving thread stack. This is the context from which all event callbacks to the appli-
cation occur. The default value is sufficient for basic operation, but if the application needs to
do advanced things in its callbacks that require extra stack space, this value can be increased to
accommodate for that.

CONFIG_BT_RX_PRIO
RX task priority.
CONFIG_BT_PERIPHERAL

228 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Peripheral Role support, if the macro is set to 0, feature is disabled, if 1, feature is enabled. Select
this for LE Peripheral role support.

CONFIG_BT_BROADCASTER

Broadcaster Role support, if the macro is set to 0, feature is disabled, if 1, feature is enabled.
Select this for LE Broadcaster role support.

CONFIG_BT_EXT_ADV

Extended Advertising and Scanning support [EXPERIMENTAL], if the macro is set to 0, feature
is disabled, if 1, feature is enabled. Select this to enable Extended Advertising API support. This
enables support for advertising with multiple advertising sets, extended advertising data, and
advertising on LE Coded PHY. It enables support for receiving extended advertising data as a
scanner, including support for advertising data over the LE coded PHY. It enables establishing
connections over LE Coded PHY.

CONFIG_BT_CENTRAL

Central Role support, if the macro is set to 0, feature is disabled, if 1, feature is enabled. Select
this for LE Central role support.

CONFIG_BT_WHITELIST

Enable whitelist support. This option enables the whitelist API. This takes advantage of the
whitelisting feature of a Bluetooth LE controller. The whitelist is a global list and the same
whitelist is used by both scanner and advertiser. The whitelist cannot be modified while it is
in use. An Advertiser can whitelist which peers can connect or request scan response data. A
scanner can whitelist advertiser for which it generates advertising reports. Connections can be
established automatically for whitelisted peers.

This option deprecates the bt_le_set_auto_conn API in favor of the bt_conn_create_aute_le API.
CONFIG_BT DEVICE NAME

Bluetooth device name. Name can be up to 248 bytes long (excluding NULL termination). Can
be empty string.

CONFIG_BT_DEVICE_APPEARANCE

Bluetooth device appearance. For the list of possible values, see the link:
www.bluetooth.com/specifications/assigned-numbers.

CONFIG_BT_DEVICE_NAME_DYNAMIC

Allow to set Bluetooth device name on runtime. Enabling this option allows for runtime config-
uration of Bluetooth device name.

CONFIG_BT_ID_MAX

Maximum number of local identities, range 1 to 10 is valid. Maximum number of supported
local identity addresses. For most products, this is safe to leave as the default value (1). Range 1
to 10 is valid.

CONFIG_BT_CONN
Connection enablement, if the macro is set to 0, feature is disabled, if 1, feature is enabled.
CONFIG_BT _MAX CONN

it is the max connection supported by host stack. Maximum number of simultaneous Bluetooth
connections supported.

CONFIG_BT_HCI_ACL_FLOW_CONTROL

Controller to host ACL flow control support. Enable support for throttling ACL buffers from the
controller to the host. This is useful when the host and controller are on separate cores, since it
ensures that we do not run out of incoming ACL buffers.

CONFIG_BT_PHY_UPDATE

1.7. Wireless 229

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

PHY Update, if the macro is set to 0, feature is disabled, if 1, feature is enabled. Enable support
for Bluetooth 5.0 PHY Update Procedure.

CONFIG_BT_DATA_LEN_UPDATE

Data Length Update. If the macro is set to 0, feature is disabled, if 1, feature is enabled. Enable
support for Bluetooth v4.2 LE Data Length Update procedure.

CONFIG_BT _CREATE_CONN_TIMEOUT
Timeout for pending LE Create Connection command in seconds.
CONFIG_BT_CONN_PARAM_UPDATE_TIMEOUT

Peripheral connection parameter update timeout in milliseconds, range 1 to 65535 is valid. The
value is a timeout used by peripheral device to wait until it starts the connection parameters
update procedure to change default connection parameters. The default value is set to 5s, to
comply with BT protocol specification: Core 4.2 Vol 3, Part C, 9.3.12.2 Range 1 to 65535 is valid.

CONFIG_BT_CONN_TX_MAX

Maximum number of pending TX buffers. Maximum number of pending TX buffers that have
not yet been acknowledged by the controller.

CONFIG_BT_REMOTE_INFO

Enable application access to remote information. Enable application access to the remote in-
formation available in the stack. The remote information is retrieved once a connection has
been established and the application is notified when this information is available through the
remote_version_available connection callback.

CONFIG_BT_REMOTE_VERSION

Enable fetching of remote version. Enable this to get access to the remote version in the Con-
troller and in the host through bt_conn_get_info(). The fields in question can be then found in
the bt_conn_info struct.

CONFIG_BT_SMP_SC_ONLY

Secure Connections Only Mode. This option enables support for Secure Connection Only Mode.
In this mode device shall only use Security Mode 1 Level 4 with exception for services that only
require Security Mode 1 Level 1 (no security). Security Mode 1 Level 4 stands for authenticated
LE Secure Connections pairing with encryption. Enabling this option disables legacy pairing.

CONFIG_BT_SMP_OOB_LEGACY_PAIR_ONLY

Force Out of Band Legacy pairing. This option disables Legacy and LE SC pairing and forces
legacy OOB.

CONFIG_BT_SMP_DISABLE_LEGACY_JW_PASSKEY

Forbid usage of insecure legacy pairing methods. This option disables Just Works and Passkey
legacy pairing methods to increase security.

CONFIG_BT_PRIVACY

Privacy Feature, if the macro is set to 0, feature is disabled, if 1, feature is enabled. Enable local
Privacy Feature support. This makes it possible to use Resolvable Private Addresses (RPAs).

CONFIG_BT_ECC
Enable ECDH key generation support. This option adds support for ECDH HCI commands.
CONFIG_BT_TINYCRYPT_ECC

Use TinyCrypt library for ECDH. If this option is used to set TinyCrypt library which is used for
emulating the ECDH HCI commands and events needed by e.g. LE Secure Connections. In builds
including the Bluetooth LE host, if don’t set the controller crypto which is used for ECDH and if
the controller doesn’t support the required HCI commands the LE Secure Connections support
will be disabled. In builds including the HCI Raw interface and the Bluetooth LE controller, this

230 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

option injects support for the 2 HCI commands required for LE Secure Connections so that hosts
can make use of those. The option defaults to enabled for a combined build with Zephyr’s own
controller, since it does not have any special ECC support itself (at least not currently).

CONFIG_BT_TINYCRYPT_ECC_PRIORITY
Thread priority of ECC Task.
CONFIG_BT_HCI_ECC_STACK_SIZE
Thread stack size of ECC Task.
CONFIG_BT_RPA

Bluetooth Resolvable Private Address (RPA)
CONFIG_BT_RPA_TIMEOUT

Resolvable Private Address timeout, defaults to 900 seconds. This option defines how often re-
solvable private address is rotated. Value is provided in seconds and defaults to 900 seconds (15
minutes).

CONFIG_BT_SIGNING

Data signing support, if the macro is set to 0, feature is disabled, if 1, feature is enabled. This
option enables data signing which is used for transferring authenticated data in an unencrypted
connection.

CONFIG_BT_SMP_APP_PAIRING_ACCEPT

Accept or reject pairing initiative. When receiving pairing request or pairing response queries,
the application shall either accept proceeding with pairing or not. This is for pairing over SMP
and does not affect SSP, which will continue pairing without querying the application. The ap-
plication can return an error code, which is translated into an SMP return value if the pairing is
not allowed.

CONFIG_BT_SMP_ALLOW_UNAUTH_OVERWRITE

Allow unauthenticated pairing for paired device. This option allows all unauthenticated pairing
attempts made by the peer where an unauthenticated bond already exists. This would enable
cases where an attacker could copy the peer device address to connect and start an unauthen-
ticated pairing procedure to replace the existing bond. When this option is disabled in order to
create a new bond the old bond must be explicitly deleted with bt_unpair.

CONFIG_BT_FIXED_PASSKEY

Use a fixed passkey for pairing, set passkey to fixed or not. With this option enabled, the applica-
tion will be able to call the bt_passkey_set() API to set a fixed passkey. If set, the pairing_confim()
callback will be called for all incoming pairings.

CONFIG_BT_BONDABLE

Bondable Mode, if the macro is set to 0, feature is disabled, if 1, feature is enabled. This op-
tion enables support for Bondable Mode. In this mode, Bonding flag in AuthReq of SMP Pairing
Request/Response is set indicating the support for this mode.

CONFIG_BT_BONDING_REQUIRED

Always require bonding. When this option is enabled remote devices are required to always set
the bondable flag in their pairing request. Any other kind of requests will be rejected.

CONFIG_BT_SMP_ENFORCE_MITM

Enforce MITM protection, if the macro is set to 0, feature is disabled, if 1, feature is enabled. With
this option enabled, the Security Manager is set MITM option in the Authentication Requirements
Flags whenever local I0 Capabilities allow the generated key to be authenticated.

CONFIG_BT_OOB_DATA_FIXED

1.7. Wireless 231

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Use a fixed random number for LESC OOB pairing. With this option enabled, the application
will be able to perform LESC pairing with OOB data that consists of fixed random number and
confirm value. This option should only be enabled for debugging and should never be used in
production.

CONFIG_BT_KEYS_OVERWRITE_OLDEST

Overwrite oldest keys with new ones if key storage is full. With this option enabled, if a pairing
attempt occurs and the key storage is full, then the oldest keys in storage will be removed to free
space for the new pairing keys.

CONFIG_BT_HOST_CCM

Enable host side AES-CCM module. Enables the software-based AES-CCM engine in the host. Will
use the controller’s AES encryption functions if available, or BT_HOST_CRYPTO otherwise.

CONFIG_BT_L2CAP_RX MTU

Maximum supported L2CAP MTU for incoming data, if CONFIG_BT_SMP is set, range is 65 to
1300, otherwise range is 23 to 1300. Maximum size of each incoming L2CAP PDU. Range is 23 to
1300 range is 65 to 1300 for CONFIG_BT_SMP.

CONFIG_BT_L2CAP_TX_BUF_COUNT

Number of buffers available for outgoing L2CAP packets, ranging from 2 to 255. Range is 2 to
255.

CONFIG_BT_L2CAP_TX FRAG_COUNT

Number of L2CAP TX fragment buffers, ranging from 0 to 255. Number of buffers available for
fragments of TX buffers.

Warning: Setting this to 0 means that the application must ensure that queued TX buffers never
need to be fragmented, that is the controller’s buffer size is large enough. If this is not ensured,
and there are no dedicated fragment buffers, a deadlock may occur. In most cases the default
value of 2 is a safe bet. Range is 0 to 255.

CONFIG_BT_L2CAP_TX _MTU

Maximum supported L2CAP MTU for L2CAP TX buffers, if CONFIG_BT_SMP is set, the range is
65 to 2000. Otherwise, range is 23 to 2000. Range is 23 to 2000. Range is 65 to 2000 for CON-
FIG_BT_SMP.

CONFIG_BT_L2CAP_DYNAMIC_CHANNEL

L2CAP Dynamic Channel support. This option enables support for LE Connection oriented Chan-
nels, allowing the creation of dynamic L2CAP Channels.

CONFIG_BT_L2CAP_DYNAMIC_CHANNEL

L2CAP Dynamic Channel support. This option enables support for LE Connection oriented Chan-
nels, allowing the creation of dynamic L2CAP Channels.

Bluetooth BR/EDR support [EXPERIMENTAL] This option enables Bluetooth BR/EDR support.
CONFIG_BT_ATT_PREPARE_COUNT

Number of ATT prepares write buffers, if the macro is set to 0, feature is disabled, if greater
than 1, feature is enabled. Number of buffers available for ATT prepares write, setting this to 0
disables GATT long/reliable writes.

CONFIG_BT_ATT_TX_MAX

Maximum number of queued outgoing ATT PDUs. Number of ATT PDUs that can be at a single
moment queued for transmission. If the application tries to send more than this amount the calls
blocks until an existing queued PDU gets sent. Range is 1 to CONFIG_BT_L2CAP_TX BUF_COUNT.

CONFIG_BT_GATT_SERVICE_CHANGED

232 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

GATT Service Changed support, if the macro is set to 0, feature is disabled, if 1, feature is enabled.
This option enables support for the service changed characteristic.

CONFIG_BT_GATT_DYNAMIC_DB

GATT dynamic database support, if the macro is set to 0, feature is disabled, if 1, feature is en-
abled. This option enables registering/unregistering services at runtime.

CONFIG_BT_GATT_CACHING

GATT Caching support, if the macro is set to 0, feature is disabled, if 1, feature is enabled. This
option enables support for GATT Caching. When enabled the stack registers Client Supported
Features and Database Hash characteristics which is used by clients to detect if anything has
changed on the GATT database.

CONFIG_BT_GATT_CLIENT

GATT client support, if the macro is set to 0, feature is disabled, if 1, feature is enabled. This
option enables support for the GATT Client role.

CONFIG_BT_GATT_READ_MULTIPLE

GATT Read Multiple Characteristic. Values support, if the macro is set to 0, feature is disabled,
if 1, feature is enabled. This option enables support for the GATT Read Multiple Characteristic
Values procedure.

CONFIG_BT_GAP_AUTO_UPDATE_CONN_PARAMS

Automatic Update of Connection Parameters, if the macro is set to 0, feature is disabled, if 1,
feature is enabled. This option, if enabled, allows automatically sending request for connection
parameters update after GAP recommended 5 seconds of connection as peripheral.

CONFIG_BT_GAP_PERIPHERAL PREF PARAMS

Configure peripheral preferred connection parameters. This configures peripheral preferred
connection parameters. Enabling this option results in adding PPCP characteristic in GAP. If
disabled it is up to application to set expected connection parameters.

CONFIG_BT_MAX _PAIRED

Maximum number of paired devices. Maximum number of paired Bluetooth devices. The min-
imum (and default) number is 1.

CONFIG_BT_MAX _SCO_CONN

Maximum number of simultaneous SCO connections. Maximum number of simultaneous Blue-
tooth synchronous connections supported. The minimum (and default) number is 1. Range 1 to
3 is valid.

CONFIG_BT_RFCOMM

Bluetooth RFCOMM protocol support [EXPERIMENTAL], if the macro is set to 0, feature is dis-
abled, if 1, feature is enabled. This option enables Bluetooth RFCOMM support.

CONFIG_BT RFCOMM _L2CAP MTU
L2CAP MTU for RFCOMM frames. Maximum size of L2CAP PDU for RFCOMM frames.
CONFIG BT HFP_HF

Bluetooth Handsfree profile HF Role support [EXPERIMENTAL], if the macro is set to 0, feature
is disabled, if 1, feature is enabled. This option enables Bluetooth HF support.

CONFIG_BT_AVDTP

Bluetooth AVDTP protocol support [EXPERIMENTALY], if the macro is set to 0, feature is disabled,
if 1, feature is enabled. This option enables Bluetooth AVDTP support.

CONFIG_BT_A2DP
Bluetooth A2DP Profile [EXPERIMENTALY]. This option enables the A2DP profile.

1.7. Wireless 233

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

CONFIG_BT_A2DP_SOURCE

Bluetooth A2DP profile source function. This option enables the A2DP profile Source function.
CONFIG_BT_A2DP_SINK

Bluetooth A2DP profile sink function. This option enables the A2DP profile Sink function.
CONFIG_BT_A2DP_TASK_PRIORITY

Bluetooth A2DP profile task priority. This option sets the task priority. The task is used to process
the streamer data and retry command.

CONFIG_BT_A2DP_TASK STACK SIZE
Bluetooth A2DP profile task stack size. This option sets the task stack size.
CONFIG_BT_PAGE_TIMEOUT

Bluetooth Page Timeout. This option sets the page timeout value. Value is selected as (N * 0.625)
ms.

CONFIG_BT_DIS_MODEL

Model name. The device model inside Device Information Service.
CONFIG_BT_DIS_MANUF

Manufacturer name. The device manufacturer inside Device Information Service.
CONFIG_BT_DIS_PNP

Enable PnP_ID characteristic. Enable PnP_ID characteristic in Device Information Service.
CONFIG_BT_DIS_PNP_VID_SRC

Vendor ID source, range 1 - 2. The Vendor ID Source field designates which organization assigned
the value used in the Vendor ID field value. The possible values are:

* 1 Bluetooth SIG, the Vendor ID was assigned by the Bluetooth SIG
» 2 USB IF, the Vendor ID was assigned by the USB IF
CONFIG_BT _DIS_PNP_VID

Vendor ID, range 0 - OXFFFFE. The Vendor ID field is intended to uniquely identify the vendor
of the device. This field is used in conjunction with Vendor ID Source field, which determines
which organization assigned the Vendor ID field value. Note: The Bluetooth Special Interest
Group assigns Device ID Vendor ID, and the USB Implementers Forum assigns Vendor IDs, either
of which can be used for the Vendor ID field value. Device providers should procure the Vendor
ID from the USB Implementers Forum or the Company Identifier from the Bluetooth SIG.

CONFIG_BT_DIS_PNP_PID

Product ID, range 0 - OXFFFF. The Product ID field is intended to distinguish between different
products made by the vendor identified with the Vendor ID field. The vendors themselves man-
age Product ID field values.

CONFIG_BT_DIS_PNP_VER

Product Version, range 0 - OXFFFF. The Product Version field is a numeric expression identify-
ing the device release number in Binary-Coded Decimal. This is a vendor-assigned value, which
defines the version of the product identified by the Vendor ID and Product ID fields. This field
is intended to differentiate between versions of products with identical Vendor IDs and Product
IDs. The value of the field value is 0XJJMN for version J].M.N (J] - major version number, M - minor
version number, N - subminor version number); For example, version 2.1.3 is represented with
value 0x0213 and version 2.0.0 is represented with a value of 0x0200. When upward-compatible
changes are made to the device, it is recommended that the minor version number be incre-
mented. If incompatible changes are made to the device. It is recommended that the major
version number is incremented. The subminor version is incremented for bug fixes.

234 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

CONFIG_BT_DIS_SERIAL_NUMBER

Enable DIS Serial number characteristic, 1 - enable, O - disable. Enable Serial Number character-
istic in Device Information Service.

CONFIG_BT_DIS_SERIAL_NUMBER_STR
Serial Number. Serial Number characteristic string in Device Information Service.
CONFIG_BT_DIS_FW_REV

Enable DIS Firmware Revision characteristic, 1 - enable, 0 - disable. Enable Firmware Revision
characteristic in Device Information Service.

CONFIG_BT_DIS_FW_REV_STR
Firmware revision. Firmware Revision characteristic String in Device Information Service.
CONFIG_BT_DIS_HW_REV

Enable DIS Hardware Revision characteristic, 1 - enable, 0 - disable. Enable Hardware Revision
characteristic in Device Information Service.

CONFIG_BT_DIS_HW_REV_STR
Hardware revision. Hardware Revision characteristic String in Device Information Service.
CONFIG_BT_DIS_SW_REV

Enable DIS Software Revision characteristic, 1 - enable, 0 - disable. Enable Software Revision
characteristic in Device Information Service.

CONFIG_BT_DIS_SW_REV_STR

Software revision Software revision characteristic String in Device Information Service.
CONFIG_SYSTEM_WORKQUEUE_STACK _SIZE

System work queue stack size.
CONFIG_SYSTEM_WORKQUEUE_PRIORITY

System work queue priority.
CONFIG_BT_HCI_TRANSPORT_INTERFACE _TYPE

HCI transport interface type.
CONFIG_BT_HCI_TRANSPORT_INTERFACE_INSTANCE
HCI transport interface instance number.
CONFIG_BT_HCI_TRANSPORT_INTERFACE_SPEED

HCI transport interface rate. Configures the interface speed, for example, the default interface
is h4, the speed to 115200

CONFIG_BT _HCI_TRANSPORT TX THREAD
Whether enable HCI transport TX thread.
CONFIG_BT_HCI_TRANSPORT _RX THREAD
Whether enable HCI transport RX thread.
CONFIG_BT_HCI_TRANSPORT_RX_STACK SIZE
HCI transport RX thread stack size.
CONFIG_BT_HCI_TRANSPORT _TX STACK SIZE
HCI transport TX thread stack size.
CONFIG_BT_HCI_TRANSPORT_TX PRIO

HCI transport TX thread priority.

1.7. Wireless 235

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

CONFIG_BT_HCI_TRANSPORT_RX_PRIO
HCI transport RX thread priority.
CONFIG_BT_MSG_QUEUE_COUNT

Message number in message queue.

Rework Guide for EdgeFast Bluetooth Protocol Abstraction Layer

Hardware Rework Guide for MIMXRT1170-EVKB and Murata M.2 Module This section is a
brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i. MX MIMXRT1170-
EVKB and the Murata’s 1XK, 1ZM, 2EL or 2LL solution - direct M.2 connection to Embedded Artists
EAR00385 (1XK), EAR00364 (1ZM), Rev-A1l (2EL) or EAR00500 (2LL) M.2 modules.

The hardware rework has two parts:
* HCI UART rework

* PCM interface rework

Hardware rework
* HCI UART rework
1. Mount R93, R96.
2. Remove R193.
3. Connect J109, connect 76 2-3.
* PCM interface rework
1. Remove J54 and J55, connect J56 and]57.
2. Remove R220.
3. Connect J103.

Note: When J103 is connected, flash cannot be downloaded. So, remove the connection when
downloading flash and reconnect it after downloading.

236 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Parent topic:Hardware Rework Guide for MIMXRT1060-EVKC and Murata M.2 Module

Hardware Rework Guide for MIMXRT1170-EVKB and Murata 2EL M.2 Module Hardware
Rework Guide for MIMXRT1170-EVKB and Murata

2EL M.2 Module

This section is a brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP
1.MX MIMXRT1170-EVKB and the Murata 2EL M.2 solution - direct M.2 connection to Embedded
Artists’ Rev-Al (2EL) M.2 modules.

The hardware rework has three parts:
* HCI UART rework
* PCM interface rework

* LE Audio Synchronization interface rework (only used on sink side)

Hardware rework
* HCI UART rework
1. Remove resistors R183 and R1816.
2. Solder 0 ohm resistor to R404, R1901, and R1902.

1.7. Wireless 237

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

.

C

S ST
L 3

T
{

6D 40
a0t g caes'!
-

) "
SO Sesesde
et L ELE LT TR Y X
= L] "

2@0000000
[

™

* PCM interface rework
1. Disconnect header J79 and J80.

238 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

2. Connect header J81 and J82.
3. Remove resistors R1985, R1986, R1987, R1988, R1992, R1993, R1994, and R1995.
4. Solder 0 ohm resistor to R228, R229, R232, R234, and R1903.

S T -
gr\w vt o8 8

it E
ill mmi?ﬁz &a b
5

1.7. Wireless 239

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

B TDA9108
-~ LK g
® [< o

5

a
o]
o
o
o
o
o
o]
o]
a
-]

LS
OGN
» ¥~} 2

[T

* LE Audio Synchronization interface rework (only used on sink side)
1. Connect J25-15 with J97.
2. Connect J25-13 with 2EL’s GPIO_27

240 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

MR Ea
v

Reos7" TSRO
—

1.7. Wireless 241

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

‘ ’ Embedded
Artists

2EL M.2 Module,
Based on Murato

Sync_Signal LBDASPL2EL

3
© &

LBESS5PL2EL
SA2022008
000000001

Artists
lihl”LJ”

Parent topic:Hardware Rework Guide for MIMXRT1170-EVKB and Murata 2EL M.2 Adapter

Hardware Rework Guide for MIMXRT685-EVK and AW-AM457-uSD This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i.MX MIMXRT685-EVK
board and AW-AM457-uSD. The AW-AM457-uSD user guide is available here.The hardware re-
work has one part:

* HCI UART rework

Hardware rework HCI UART rework
* R398 move from 1-2 to 2-3
* JP12 2-3

* Connect the pins of two boards as the following table.

242 Chapter 1. Middleware

https://www.azurewave.com/img/nxp/uSD-1515%20Adaptor%20Board_User%20guide_D_20201103.pdf

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Pin Name AW-AM457- i.MXRT685 PIN NAME GPIONAME of i.MX RT685
uSD

UART _TXD]10 (pin 4) J27 (pin 1) US- FC4_RXD_SDA_MOSI_DATA

ART4_RXD

UART RXD J10 (pin 2) J27 (pin 2) USART4_TXD FC4_TXD_SCL_MISO_WS

UART_RTS J10 (pin 6) J47 (pin9) USART4_CTS FC4_CTS_SDA_SSELO

UART_CTS J10 (pin 8) J27 (pin5) USART4_RTS FC4_RTS_SCL_SSEL1

GND J6 (pin 7) J29 (pin 6) GND GND

HEER D Gl

i
N g
©3z019 NxP B.V.

E‘Illlllllml T IIIHIIIIII“TR :
Nx 3 1L LTI
2 M.2 CONN 7 i
L

1.7. Wireless 243

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Jumper Settings:

* Connect J4[2-3] for VIO 3.3 V supply
» Connect J11[2-3] for VIO_SD 3.3 V supply

PCM interface rework

Connect the pins of two boards as the following table.

Pin Name AW-AM457- i.MX PIN NAME of LMX GPIONAME of .MX RT685
usD RT685 RT685

PCM_IN]9 (pin 1) J47 (pin7) 1252_TXD FC2_RXD_SDA_MOSI_DATA

PCM_OUT]9 (pin 2) J28 (pin 4) 12S5_RXD FC5_RXD_SDA_MOSI_DATA

PCM_SYNC]9 (pin 3) J28 (pin 5) 12S5_WS FC5_TXD_SCL_MISO_WS

PCM_CLK]9 (pin 4) J28 (pin 6) 12S5_SCK FC5_SCK

GND]9 (pin 6) J29 (pin7) GND GND

Parent topic:Hardware Rework Guide for MIMXRT685-EVK and AW-AM457-uSD

Hardware Rework Guide for MIMXRT685-EVK and AW-CM358-uSD This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i MX MIMXRT685-EVK
board and AW-CM358-uSD. The AW-CM358-uSD user guide is available here. The hardware re-

work has one part:
* HCI UART rework

Hardware rework HCI UART rework

R398 move from 1-2 to 2-3.

244

Chapter 1. Middleware

http://www.azurewave.com/img/nxp/uSD-1212%20Adaptor%20Board_User%20guide_G_20210127.pdf

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Connect the pins of two boards as the following table.

Pin Name AW-CM358-USD

i.MXRT685

PIN NAME

GPIONAME of RT685

UART_TXD J10 (pin 4)
UART_RXD J10 (pin 2)
UART_RTS J10 (pin 6)
UART_CTS J10 (pin 8)
GND J6 (pin 7)

J27 (pin 1)
]J27 (pin 2)
J47 (pin 9)
J27 (pin 5)
J29 (pin 6)

USART4_RXD
USART4_TXD
USART4_CTS
USART4_RTS
GND

FC4_RXD_SDA_MOSI_DATA
FC4_TXD_SCL_MISO_WS
FC4_CTS_SDA_SSELO
FC4_RTS_SCL_SSEL1

GND

1.7. Wireless

245

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Jumper Setting:
Connect J4[1-2] for VIO 1.8 V supply.

PCM interface rework

Connect the pins of two boards as the following table.

Pin Name AW-CM358- i.MXRT685 PIN NAME of RT685 GPIONAME of RT685

uSD
PCM_IN J11(pin1) J47 (pin7) 1252_TXD FC2_RXD_SDA_MOSI_DATA
PCM_OUT J11 (pin 2) J28 (pin4) 12S5_RXD FC5_RXD_SDA_MOSI_DATA
PCM_SYNC J11 (pin 3) J28 (pin5) 1285_WS FC5_TXD_SCL_MISO_WS
PCM_CLK J11 (pin 4) J28 (pin 6) 1285_SCK FC5_SCK
GND J11 (pin 5) J29 (pin7) GND GND

Parent topic:Hardware Rework Guide for MIMXRT685-EVK and AW-CM358-uSD

Hardware Rework Guide for MIMXRT685-EVK and AW-AMS510-uSD This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i MX MIMXRT685-EVK
board and AW-AM510-uSD. The AW-AM510-uSD user guide is available here. The hardware re-
work has one part:

e HCI UART rework

Hardware rework
* HCI UART rework

246 Chapter 1. Middleware

https://www.azurewave.com/img/nxp/AW-AM510-uSD_User%20guide_A_210126.pdf

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Connect the pins of two boards as the following table.

PinName AW-AM510-uSD i.MXRT685 PIN NAME GPIO NAME of RT685
UART_TXD J10 (pin 4) J27 (pin1) USART4 RXD FC4_RXD_SDA_MOSI_DATA
UART_RXD J10 (pin 2) J27 (pin 2) USART4_TXD FC4_TXD_SCL_MISO_WS
UART_RTS J10 (pin 6) J47 (pin 9) USART4_CTS FC4_CTS_SDA_SSELO
UART_CTS J10 (pin 8) J27 (pin5) USART4_RTS FC4_RTS_SCL_SSEL1

GND J6 (pin 7) J29 (pin 6) GND GND

Jumper Setting:

— Connect J4[2-3] for VIO 3.3 V supply

 PCM interface rework

Connect the pins of two boards as the following table.

PIN NAME ~ AW-AM510- i.MX PIN NAME of GPIONAME of RT685

usD RT685 RT685
PCM_IN J11(pin 1) J47 (pin7) 1282_TXD FC2_RXD_SDA_MOSI_DATA
PCM_OUT J11 (pin 2) J28 (pin4) 12S5_RXD FC5_RXD_SDA_MOSI_DATA
PCM_SYNC J11 (pin 3) J28 (pin5) 12S5_WS FC5_TXD_SCL_MISO_WS
PCM_CLK J11 (pin 4) J28 (pin6) 12S5_SCK FC5_SCK
GND J11 (pin 6) J29 (pin7) GND GND

1.7. Wireless

247

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Parent topic:Hardware Rework Guide for MIMXRT685-EVK and AW-AM510-uSD

Hardware Rework Guide for MIMXRT685-EVK and Murata uSD-M.2 Adapter This section is
a brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i. MX MIMXRT685-
EVK board and the Murata uSD-M.2 adapter. For details on the Murata uSD-M.2 Adapter, see

Murata’s uSD-M.2 webpage.

The hardware rework has one part:

* HCI UART rework

Hardware rework HCI UART rework :

. JP12 2-3

* Connect the pins of two boards as the following table using jumper cables included in Mu-

rata’s uSD-M.2 Adapter Kkit.

Pin name uSD-M.2 adapter i.MX RT685

pin

pin

Pin name of GPIO name of RT685
RT685

BT_UART_TXD_HO]9 (pin 1)
BT_UART_RXD_HO]9 (pin 2)
BT_UART_RTS_HO! J8 (pin 3)
BT_UART_CTS_HO! J8 (pin 4)

J27 (pin 1)
J27 (pin 2)
J47 (pin 9)
J27 (pin 5)

USART4_RXD FC4_RXD_SDA_MOSI_DATA
USART4_TXD FC4_TXD_SCL_MISO_WS
USART4_CTS FC4_CTS_SDA_SSELO
USART4_RTS FC4_RTS_SCL_SSEL1

248

Chapter 1. Middleware

https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

J47

127

J13

I

J12

J8

Murata uSD-M.2 jumper settings:
* Both J12 and J13 = 1-2 (WLAN-SDIO = 1.8 V; and BT-UART and WLAN/BT-CTRL = 3.3 V)
* J1 =2-3 (3.3 Vfrom uSD connector)

Parent topic:Hardware Rework Guide for MIMXRT685-EVK and Murata uSD-M.2 Adapter

Hardware Rework Guide for MIMXRT685-AUD-EVK and Murata M.2 Module This section is
a brief hardware rework guidance of the Edgefast Bluetooth PAL on the NXP i MX MIMXRT685-
AUD-EVK board and the Murata’s 1XK, 1ZM, 2EL or 2LL solution - direct M.2 connection to Em-
bedded Artists EAR00385 (1XK), EAR00364 (1ZM), Rev-A1 (2EL) or EAR00500 (2LL) M.2 modules.

The hardware rework has one part:
* HCI UART rework

1.7. Wireless 249

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Hardware rework HCI UART rework:
Mount R300~R305 A-B
Jumper Setting:

* Connect JP41[2-3]

141

J300 - J305

Dzon1 wee vy
MIMXRT685-AUD-EVK

Parent topic:Hardware Rework Guide for MIMXRT685-AUD-EVK and Murata M.2 Module

Hardware Rework Guide for Low Power Feature on MIMXRT595-EVK and Murata 2EL M.2
Module This section is a brief hardware rework guidance of the EdgeFast Bluetooth PAL for
low power feature on the NXP i. MX MIMXRT595-EVK board and the Murata’s 2EL - direct M.2
connection to Embedded Artists’ Rev-Al (2EL) M.2 modules.

The hardware rework has three parts:
* Debug console serial rework
* Host wake-up controller pin rework (H2C)

* Controller wake-up host pin rework (C2H)

Hardware rework
* Debug console serial rework
For details, refer Hardware Rework Guide for MIMXRT595-EVK and Murata M.2 Module.
* Host wake-up controller pin rework:

For details, refer Hardware Rework Guide for Low Power Feature on MIMXRT595-EVK and
Murata 1XK M.2 Module.

* Controller wake-up host pin rework:
1. Remove resistors R709 on MIMXRT595-EVK,
2. Solder OK ohm resistor on R33 of Murata 2EL M.2 Module
3. Solder 10K ohm resistor on the Murata 2EL. M.2 Module between TP1 and TP20.

250 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

O i‘:ﬁb o WP
I:.. .| '1_ N

g 2EL M. 2 “»dl.lh
k Baved on Murd®

§ LBESSPLZEL

HITRIERG |

L

2EL .2 Hndule ey M.
C:IE.urbzdd—d Artlats A8 -ﬁazz
B E."l'haddud.'-.r"rli’r-; |.:r-| —

DESIGMNED iN m:cﬂE_- Ea
COOPERATTCN WITH :‘,'_ tals’

High o % - i
| s g S 1“51""3
Eaz EBL.?!EP

@

rtisis

Parent topic:Hardware Rework Guide for Low Power Feature on MIMXRT595-EVK and Murata
2EL M.2 Module

Hardware Rework Guide for MIMXRT595-EVK and Murata M.2 Module

This section is a

brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i. MX MIMXRT595-
EVK board and the Murata’s 1XK, 1ZM, 2EL or 2LL solution - direct M.2 connection to Embedded

Artists EAR00385 (1XK), EAR00364 (1ZM), Rev-A1 (2EL) or EAR00500 (2LL) M.2 modules.

The hardware rework has one part:

* Debug console serial rework

Hardware rework Debug console serial rework:

No special rework is required, except the following to enable the debug port.

s JP4 1-2.
* J27 1 - TX of USB to serial converter
* J27 2 - RX of USB to serial converter

1.7. Wireless

251

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Parent topic:Hardware Rework Guide for MIMXRT595-EVK and Murata M.2 Module

Hardware Rework Guide for Low Power Feature on MIMXRT595-EVK and Murata 1XK M.2
Module This section is a brief hardware rework guidance of the EdgeFast Bluetooth PAL for
low power feature on the NXP i.MX MIMXRT595-EVK board and the Murata’s 1XK - direct M.2
connection to Embedded Artists EAR00385 (1XK) M.2 modules.

252 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

The hardware rework has three parts:
* Debug console serial rework
» Host wake-up controller pin rework (H2C)

* Controller wake-up host pin rework (C2H)

Hardware rework Debug console serial rework:
For details, refer Hardware Rework Guide for MIMXRT595-EVK and Murata M.2 Module.

Host wake-up controller pin rework:
Connect M.2 (pin 42) to JP26 (pin 4) with a wire.

Controller wake-up host pin rework:
1. Remove resistors R709 on MIMXRT595-EVK.

2. Solder 10K ohm resistor on the Murata 1XK M.2 Module at the location shown in the fol-
lowing figure.

=363 m 2202 8Y sis144y pappaqwi())

0. eolaie
‘-' ﬂﬁ E POGa) 7

:uj
L ™

LBEESCJ1XK
SS1N24009
000033105

50

Parent topic:Hardware Rework Guide for Low Power Feature on MIMXRT595-EVK and Murata
1XK M.2 Module

1.7. Wireless 253

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Hardware Rework Guide for MIMXRT595-EVK and AW-AM510MA This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i. MX MIMXRT595-EVK
board and AW-AM510MA. The AW-AM510MA user guide is available here. The hardware re-
work has one part:

* Debug console serial rework

Hardware rework Debug console serial rework:
No special rework is required, except the following to enable the debug port.
* Connect J39 with external power.
* Connect JP4 1-2.
* J27 1 — TX of USB to serial converter.
* J27 2 — RX of USB to serial converter.

254 Chapter 1. Middleware

https://www.azurewave.com/img/nxp/AW-AM510MA_DS_DF_A_STD.pdf

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

*
i
=

Parent topic:Hardware Rework Guide for MIMXRT595-EVK and AW-AM510MA

Hardware Rework Guide for MIMXRT595-EVK and AW-CM358MA This section is a brief
hardware rework guidance of the Ethermind Bluetooth stack on the NXP i. MX MIMXRT595-EVK
board and AW-CM358MA. The AW-CM358MA user guide is available here. The hardware rework

has one part:
* Debug console serial rework

1.7. Wireless 255

https://www.azurewave.com/img/nxp/AW-CM358MA_DS_DF_E_STD.pdf

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Hardware rework Debug console serial rework:
» Connect J39 with external power.
* JP41-2
* J27 1 - TX of USB to serial converter
* J27 2 - RX of USB to serial converter

Parent topic:Hardware Rework Guide for MIMXRT595-EVK and AW-CM358MA

256

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Hardware Rework Guide for MIMXRT1040-EVK and Murata M.2 Module This section is a
brief hardware rework guidance of the Edgefast Bluetooth PAL on the NXP i. MX MIMXRT1040-
EVK board and the Murata’s 1XK, 1ZM or 2LL solution - direct M.2 connection to Embedded
Artists EAR00385 (1XK), EAR00364 (1ZM) or EAR00500 (2LL) M.2 modules.

The hardware rework has two parts:
* HCI UART rework
* PCM interface rework

* Wake pin rework

Hardware rework
1. HCI UART rework
* Solder R93 and R96
2. PCM interface rework
* Solder R70 and R79; remove R76 and R86; Connect J80.
3. Wake pin rework

* When using 2LL M.2 module, remove R456 and R457 to avoid the module has an impact
on boot configuration.

Note: Make sure to disconnect J80 when debugging. Otherwise, the debugger downloading fails.
Parent topic:Hardware Rework Guide for MIMXRT1040-EVK and Murata M.2 Module

Hardware Rework Guide for MIMXRT1060-EVKC and Murata M.2 Module This section is a
brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i. MX MIMXRT1060-
EVKC and the Murata’s 1XK, 1ZM, 2EL or 2LL solution - direct M.2 connection to Embedded Artists
EAR00385 (1XK), EAR00364 (1ZM), Rev-A1l (2EL) or EAR00500 (2LL) M.2 modules.

The hardware rework has two parts:
* HCI UART rework

* PCM interface rework

Hardware rework
* HCI UART rework
1. Mount R93, R96.
2. Remove R193.
3. Connect J109, connect 76 2-3.
* PCM interface rework
1. Remove J54 and J55, connect J56 and]57.
2. Remove R220.
3. Connect J103.

Note: When J103 is connected, flash cannot be downloaded. So, remove the connection when
downloading flash and reconnect it after downloading.

1.7. Wireless 257

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Parent topic:Hardware Rework Guide for MIMXRT1060-EVKC and Murata M.2 Module

Hardware Rework Guide for MIMXRT1060-EVKC and Murata 2EL M.2 Adapter This sec-
tion is a brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i.MX
MIMXRT1060-EVKC and the Murata 2EL M.2 solution - direct M.2 connection to Embedded Artists’
Rev-Al (2EL) M.2 modules.

The hardware rework has three parts:
* HCI UART rework
* PCM interface rework

* LE Audio Synchronization interface rework (only used on sink side)

Hardware rework
* HCI UART rework
1. Mount R93, R96.
2. Remove R193.
3. Connect J109, connect]J76 2-3.
* PCM interface rework
1. Remove J54 and J55, connect J56, and J57.
2. Remove R220.
3. Connect J103.

Note: When J103 is connected, flash cannot be downloaded. So, remove the connection
when downloading flash and reconnect it after downloading.

258 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

* LE Audio Synchronization interface rework (only used on sink side)
1. Remove J110 jumper cap.
2. Remove R196, R201, R213, and R211.
3. Connect J110-1 (GPT2_CLK) to R2140 (SAI_MCLK).
4. Connect ENET_MDIO (GPT2_CAP1) with J97 (SAI_SW).
5. Connect ENET _MDC (GPT2_CAP2) with 2EL’s GPIO_27 (Sync Signal).

: w2
‘@
e SPDIF_OUT §

QORI

1.7. Wireless 259

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

vPLEOODE e
peeseeR
IIIlI\IJIIII\NIIIIIIIIIIH!ILIHIIMI : s

TR230915

. « J108

t oo e *
1 B0 J57
55 1 pe

1B 56 IS4 §
e

cuopem

cnab

260 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

‘ ’ Embedded
Artists

2EL M.2 Module,
Based on Murato

Sync_Signal LBDASPL2EL

3
© &

LBESS5PL2EL
SA2022008
000000001

Artists
lihl”LJ”

Parent topic:Hardware Rework Guide for MIMXRT1060-EVKC and Murata 2EL M.2 Adapter

Hardware Rework Guide for MCXN547-EVK and Murata M.2 Module This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP MCXN547-EVK board and
the Murata’s 1XK, 1ZM or 2LL solution - direct M.2 connection to Embedded Artists EAR00385
(1XK), EAR00364 (1ZM) or EAR00500 (2LL) M.2 modules.

The hardware rework consists of two parts:
* M.2 UART interface
* M.2 SDIO interface

Hardware rework
* M.2 UART interface rework

1.7. Wireless 261

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

— Mount R835
— Connect JP45 2-3 to supply 1.8V for GPI04
* M.2 SDIO interface rework

— Connect JP47 2-3 to supply 1.8V for GPIO2
— Remove R818, connect R823

— Remove R819, connect R824

— Remove R817, connect R822

— Remove R815, connect R816

— Remove R820, connect R825

— Remove R821, connect R826

Hardware Rework Guide for MCXN947-EVK and Murata M.2 Module This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP MCXN947-EVK board and
the Murata’s 1XK, 1ZM or 2LL solution - direct M.2 connection to Embedded Artists EAR00385
(1XK), EAR00364 (1ZM) or EAR00500 (2LL) M.2 modules.

The hardware rework consists of two parts:
¢ M.2 UART interface
* M.2 SDIO interface

Hardware rework
* M.2 UART interface rework
— Mount R835
— Connect JP45 2-3 to supply 1.8V for GP104
* M.2 SDIO interface rework
— Connect JP47 2-3 to supply 1.8V for GPIO2

262 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

— Remove R818, connect R823
— Remove R819, connect R824
— Remove R817, connect R822
— Remove R815, connect R816
— Remove R820, connect R825

PROTO ONLY |

o not disfrib\.nl

=g

— Remove R821, connect R826

Hardware Rework Guide for IMXRT1050-EVKB and Murata M.2 Module This section is a
brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP IMXRT1050-EVKB
board and the Murata 1XK,1ZM and 2EL solution - direct M.2 connection to Embedded Artists’
EARO00385 (1XK) , EAR00364 (1ZM) or EAR00409 (2EL)M.2 modules. The hardware rework con-
sists of three parts:

¢ Murata uSDM
* HCI UART rework

Hardware rework
* Murata uSD-M.2 jumper settings
- J12 =1-2: WLAN-SDIO & BT-PCM =18V
— J13 =1-2: BT-UART & WLAN/BT-CTRL =3.3V
- J1=2-3: 3.3V from uSD connector
* HCI UART interface rework

Connect the TX/RX/RTS/CTS pins of the two boards as show in Table 1 using the jumper
cables included in the Murata’s uSD-M.2 Adapter kit as shown in the following table.

1.7. Wireless 263

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Pin name uSD-M.2 i.MX RT1050- Pin name of GPIO name of

adapter pin EVKB pin RT1050-EVKB RT1050-EVKB
BT_UART_TXD_]9 (pin 1) J22 (pin 1) LPUART3_RXD GPIO_AD_B1 07
BT_UART_RXD_]9 (pin 2) J22 (pin 2) LPUART3_TXD GPIO_AD_B1_06
BT _UART_RTS_]]J8 (pin 3) J23 (pin 3) LPUART3_CTS GPIO_AD_B1 04
BT_UART_CTS_]]J8 (pin 4) J23 (pin 4) LPUART3_RTS GPIO_AD_B1_05
GND J7 (pin 7) J25 (pin 7) GND GND

Parent topic:Hardware Rework Guide for IMXRT1050-EVKB and Murata M.2 Module

Hardware Rework Guide for MIMXRT1180 and Murata M.2 Module This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP MIMXRT1180 board
and the Murata’s 1XK, 1ZM, 2EL or 2LL solution - direct M.2 connection to Embedded Artists
EARO00385 (1XK), EAR00364 (1ZM), Rev-A1l (2EL) or EAR00500 (2LL) M.2 modules.

The hardware rework consists of two parts:

* HCI UART rework

* PCM interface rework

Hardware rework
* HCI UART rework:
— Remove: R124,R126
- Mount R696, R697
— Connect J57 [2-3], J76 [2-3]
* PCM interface rework
— Mount R699
— Disconnect]J78 J79
— Connect J80 J81

264

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Uy

Hardware Rework Guide for FRDM-MCXN947 and X-FRDM-WIFI-M.2 Adapter This section
is a brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP FRDM-MCXN947
board and X-FRDM-WIFI-M.2 or the Murata’s 2LL EAR00500 (2LL) M.2 modules solution.

The hardware rework consists of one part:

» UART interface rework

Hardware rework

» UART interface rework
— Remove SJ11 1-2, connect SJ11 2-3
— Remove SJ10 1-2, connect J1-3 to J9-26

* X-FRDM-WIFI-M.2 jumper setting
— Connect J8(On X-FRDM-WIFI-M.2) for 1.8V
— Connect J24(On X-FRDM-WIFI-M.2) for 3.3V
— Connect J19(On X-FRDM-WIFI-M.2) for 1.8V
— Connect J25(0On X-FRDM-WIFI-M.2) for 3.3V
— Connect J15(0On X-FRDM-WIFI-M.2) for 1.8V
- Connect J16(On X-FRDM-WIFI-M.2) for 3.3V
— Connect J17(0On X-FRDM-WIFI-M.2) for 1.8V

1.7. Wireless 265

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

SJln {J’

— Connect J18(On X-FRDM-WIFI-M.2) for 3.3V

Hardware Rework Guide for FRDM-MCXN947 and FRDM-IW416-AW-AM510 This section is
a brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP FRDM-MCXN947
board and FRDM-IW416-AW-AM510 board. The hardware rework consists of two parts:

» UART interface rework
e FRDM-IW416-AW-AM510

Hardware rework
* UART interface rework
— Remove SJ11 1-2, connect SJ11 2-3
— Remove SJ10 1-2, connect J1-3 to J9-26
* FRDM-IW416-AW-AM510 jumper setting
— Connect J16 2-3 for 3.3V supply
— Connect J17 2-3 for 3.3V UART voltage level

1
Ao

aﬂua&oeo

oo’ ,-a,‘ ,rs's's.q

5J10

é; () (@om
4 wRIBT 1
0 3

— Connect]7 2-3 for 3.3V SDIO voltage level

266 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

c26 Smcai
R S prpgate
RI3
Raz &
c21

il S =)
il Li? Lt |
1 omr O OE 0

gz 111 |

TPITPS
5 ; Ern 7 RS
'~ o™

.IEI'_EJ,

U4
4]

mmmnn

ol BITTTET

R25
R2T
PP S

(o O W= OO

==k

Enabling Additional EdgeFast Bluetooth Protocol Abstraction Layer Examples on RT1064

Introduction NXP supports Bluetooth/Bluetooth Low Energy on RT1060EVK and RT1060EVKC.
RT1064 has the same MCU die with RT1060EVK and RT1060EVKC and therefore it is possible to
migrate the examples.

This document takes peripheral_ht as an example and describes the steps to migrate EdgeFast
examples from RT1060EVK to RT1064 (based on SDK 2.13.0) and from RT1060EVKC to RT1064
(based on SDK 2.14.0) with different toolchains including IAR, Arm GCC, and MDK.

Migrate examples from RT1060EVK to RT1064 This topic describes the Common steps and
the steps to migrate with the IAR, Arm GCC, and MDKtoolchains.

Common steps
1. Download SDK_2.13.0_EVK-MIMXRT1060 and SDK_2.13.0_EVK-MIMXRT1064.

2. Copy the following folders from RT1060EVK package to RT1064 package: <install dir>/
components/internal_flash/ <install_dir>/middleware/edgefast_ bluetooth/ <install_dir>/
middleware/wireless/.

1.7. Wireless 267

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

3. Create a folder named edgefast_bluetooth__examples/ under <rt1064_install_dir>/boards/
evkmimxrt1064,/.

4. Copy the entire folder from <rt1060evk install dir>/boards/evkmimxrt1060/
edgefast_ bluetooth__examples/peripheral ht/to < rt1064_install dir>/boards/evkmimxrt1064/
edgefast_ bluetooth_examples/.

5. Copy clock_config.[c/h] and board.c from <rt1064__install_dir>/boards/
evkmimxrt1064/demo_apps/hello world/ to <rt1064 installed>/boards/evkmimxrt1064/
edgefast__bluetooth__examples/peripheral _ht/ to replace the previous files.

6. Add #define EDGEFAST_ BT_LITTLEFS MFLASH 1 in <rt1064_install_dir>/boards/
evkmimxrt1064/edgefast_ bluetooth__examples/peripheral ht /app_ config.c.

7. Make the following changes in <rtl064 installed>/boards/evkmimxrt1064/
edgefast_ bluetooth /peripheral ht/board.h.

72 #define BOARD_FLASH SIZE (@x500006L) ¢a 72 #define BOARD_FLASH SIZE (@x400000U)

Parent topic:Migrate examples from RT1060EVK to RT1064

IAR

1. Navigate to <rtl064_install_dir>/boards/evkmimxrt1064/edgefast_ bluetooth__examples/
peripheral ht/iar/.

2. Make the following changes.

File name Previous item New item
peripheral_ht.ewp 1060 1064
1062 1064

3. Rename MIMXRT1062xxxxx_ flexspi_ nor.icf as MIMXRT1064xxxxx_ flexspi_ nor.icf and make
the following changes.

c» 47 define symbol m_interrupts_start = BxbBBE2088; <3 47 define symbol m_interrupts_start = Bx70002000;

| 4 define symbol m_interrupts_end = BxGOBB23FF; | 4 define symbol m_interrupts_end = Bx708823FF;
49 g

o =0 define symbol m_text_start = Bx60e82488; A = define symbol m_text_start = @x78e82488;

| = define symbol _ROM_END_ = @x6857FFFF; | = define symbol _ROM_END_ = @x7817FFFF;

o 2 define exported symbol m_boot_hdr_conf_start = @xceeeeees; <A 5 define exported symbol m_boot_hdr_conf_start = @x7eeeesee;
&7 define symbol m_boot_hdr ivt_start = @xCcBeaLees; 57 define symbol m_boot_hdr_ivt start = Bx708081088;
g2 define symbol m_boot_hdr_boot_data_start = Bx6BeaLez2e; 52 define symbol m_boot_hdr_boot_data_start = Bx70881828;
g2 define symbol m_boot_hdr dcd_data_start = @xcBeaLese; 52 define symbol m_boot_hdr_dcd_data_start = Bx70881838;
55 BT_LITTLEFS_STORAGE_SECTOR_SIZE = @x1@@@; /* 4k flash secto 35 BT_LITTLEFS_STORAGE_SECTOR_SIZE = @xleee; /* 4k flash sect

C» 25 BT_LITTLEFS_STORAGE_MAX_SECTORS = (@x685880808 - EDGEFAST_BT_ <3 %= BT_LITTLEFS_STORAGE_MAX_SECTORS = (@x7848808@8 - EDGEFAST_BIT
T a7 FEry

Parent topic:Migrate examples from RT1060EVK to RT1064

Arm GCC

1. Navigate to <rtl064 install dir>/boards/evkmimxrt1064/edgefast_bluetooth examples/
peripheral ht/armgcc/.

2. Rename the following files.

Path Previous name New name

<rt1064_install dir>/ middleware_edgefast_bluetooth middleware_edgefast_ bluetooth_%k32w061_ contro
middleware /wireless/ cmake cmake

ethermind/

268 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

3. Make following changes.

File name Previous item New item
config.cmake 1060 1064
1062 1064
flags.cmake 1062 1064
CMakeLists.txt 1060 1064
1062 1064

4. mflash is used in RT1064 instead of flash_adaptertherefore, comment in-
clude(component_ flexspi_nor_ flash_adapter_rt1064_ MIMXRT1064) in CMakeLists.txt.

5. Rename MIMXRT1062xxxxx_flexspi nor.ld as MIMXRT1064xxxxx_flexspi nor.ld and make
the following changes.

C» 27 _ROM _START_ - @x50082480; ¢a 27 _ROM_START_ - @x70002480;
| = _ROM_END_ = @x5857FFFF; | 2 _ROM_END_ = @x7817FFFF;
o 50 EDGEFAST_BT_LITTLEFS_STORAGE_MAX_SECTORS = (@x60300008 - EDG | <3 o0 EDGEFAST_BT_LITTLEFS_STORAGE_MAX_SECTORS = (8x70488008 - EDC
1 /*** littleFs configuration End ***/ 1 /*** 1littleFS configuration End ***/
62 2
8¢ HEAP_SIZE = DEFINED{_ heap size_) ? _ heap_size_ : @xle 4 HEAP_SIZE = DEFINED(_ heap_size_) ? _ heap size : Bx1€
85 STACK_SIZE = DEFINED(_ stack size_) ? _ stack _size_ : @x@4 £ STACK_SIZE = DEFINED(_ stack size) ? _ stack size_ : @x@4
&5 VECTOR_RAM SIZE = DEFINED(_ ram_vector table) ? @x@0088480 = VECTOR_RAM_SIZE = DEFINED{_ ram vector_table_) ? @xBoeao4ae
gz /¥ Specify the memory areas */ 2 /* Specify the memory areas */
&% MEMORY 5 MEMORY
0 1 {
o» 71 m_flash_config (RX) : ORIGIN = @x6@000000, LENGTH =] m_flash_config (RX) : ORIGIN = @x70000008, LENGTH
l 7omivt (RX) : ORIGIN = @x6@@e18e8, LENGTH [7 om vt (RX) : ORIGIN - Bx7P@@l0e8, LENGTH
m_interrupts (RX) : ORIGIN = @x6@e@208@, LENGTH m_interrupts (RX) : ORIGIN = @x79@@208@, LENGTH

- e frwn L oARTeT — et —iox 4 rne - _ - e fran L oAmTeT Y

Parent topic:Migrate examples from RT1060EVK to RT1064

MDK

1. Navigate to <rtl064_install dir>/boards/evkmimxrt1064/edgefast_bluetooth__examples/
peripheral ht/mdk/.

2. Make following changes.

File name Previous item New item
peripheral_ht.uvprojx 1060 1064
1062 1064

3. Copy evkmimxrt1064_flexspi_nor.ini from <rt1064_install_dir>/boards/evkmimxrt1064/
demo_apps/helloworld/mdk/ to <rt1064 install dir>/boards/evkmimxrt1064/
edgefast_ bluetooth_examples/peripheral ht/mdk/.

4. Rename MIMXRT1062xxxxx_ flexspi_nor as MIMXRT1064xxxxx_ flexspi_nor and make the
following changes.

C» 43 #define m_flash_config_start BxEBBEEBE8 €A 43 #define m_flash_config_start Bx76BREE6A
50 #define m_flash_config_size cpclclclchlclele] 50 #define m_flash_config_size cpcclclchlelele]
o 5z #define m_ivt_start Bx50601008 <A 5z #define m_ivt_start Bx70601060
53 #define m_ivt_size BxBeEE1868 53 #define m_ivt_size BxPeBA1888
54 54
o» 55 #define m_interrupts_start Bxceee2eea <A 55 #define m_interrupts_start Bx70602000
55 #define m_interrupts_size Bx00e08400 55 #define m_interrupts_size Bx0ee08400
sz #define m_text start Bx58882400 <A = #define m_text start ax7eea24ea
55 #define ROM_END @x6a57FFFF | 5 #define ROM END @x7817FFFF
EDGEFAST_BT_LITTLEFS_STORAGE_START_ADDRESS (_ROM_END_ + 1) 55 EDGEFAST_BT_LITTLEFS_STORAGE_START_ADDRESS (_ROM END_ + 1)
EDGEFAST BT LITTLEFS_STORAGE_END ADDRESS (@x502008808) ¢3 s EDGEFAST BT_LITTLEFS_STORAGE_END_ADDRESS (@x78480000)
EDGEFAST BT LITTLEFS STORAGE SECTOR SIZE (ex1000) 57 EDGEFAST BT LITTLEFS STORAGE SECTOR SIZE (ex1000)

1.7. Wireless 269

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Parent topic:Migrate examples from RT1060EVK to RT1064

Migrate examples from RT1060EVKC to RT1064 This topic describes the Common steps and
the steps to migrate with the IAR, Arm GCC, and MDK toolchains.

Common steps

1.
2.

Download SDK_ 2.14.0_ EVKC-MIMXRT1060 and SDK_ 2.14.0_ EVK-MIMXRT1064.

Copy the following folders from the RT1060EVKC package to the RT1064 package:
<install dir>/middleware/edgefast_bluetooth/ <install dir>/middleware/wireless/ethermind.

Create a new folder named edgefast_bluetooth_examples/ under <rt1064_install_dir>/
boards/evkmimxrt1064/.

Copy the entire folder from <rt1060evke_install dir>/boards/evkemimxrt1060/
edgefast_ bluetooth_examples/peripheral ht/ to <rt1064_install dir>/boards/evkmimxrt1064/
edgefast_ bluetooth__examples/.

. Copy clock__config.[c/h] and board.c from <rt1064__install_dir>/boards/

evkmimxrt1064/demo_apps/hello_world/ to <rt1064_installed>/boards/evkmimxrt1064/
edgefast_ bluetooth__examples/peripheral ht/ to replace the previous files.

Parent topic:Migrate examples from RT1060EVKC to RT1064

IAR
1.

2.

3.

Navigate to <rt1064_install dir>/boards/evkmimxrt1064/edgefast_ bluetooth_examples/
peripheral ht/iar/.

Make the following changes in the listed order.

File name Previous item New item
peripheral _ht.ewp 1062 1064
mflash/evkecmimxrt1060 mflash/mimxrt1064
evkemimxrt1060 evkmimxrt1064

6B 6A

Rename MIMXRT1062xxxxx_ flexspi_nor.icf as MIMXRT1064xxxxx_ flexspi_ nor.icf and make
the following changes.

C» 22 define symbol m_interrupts_start = @x6Bes2eee; 3 22 define symbol m_interrupts_start = @x70002000;

| 4 define symbol m_interrupts_end = @x6B88023FF; | 4 define symbol m_interrupts_end = @x7BO023FF;
4 a

c» 42 define symbol m_text_start = Bx60882400; <A 4z define symbol m_text_start = @x70802460 ;

| 4 define symbol m_text end = @x6B7FFFFF - | 4 define symbol m_text end = @x783FFFFF -

c» 57 define exported symbol m_boot_hdr_conf_start - 8xc0000000; <3 =7 define exported symbol m_boot_hdr_conf_start = @x70000000;
55 define symbol m_boot hdr_ivt start = @x6eealees; 55 define symbol m_boot_hdr ivt start = @x79801008;
52 define symbol m_boot hdr_boot_data_start = Ox60001020; £z define symbol m_boot_hdr_boot_data_start = Bx70001820;
@0 define symbol m_boot hdr dcd data start = BxGRe81030; 20 define symbol m_boot hdr_dcd data_start = Bx76001030;

Parent topic:Migrate examples from RT1060EVKC to RT1064

Arm GCC

1.

Navigate to <rtl064 install dir>/boards/evkmimxrt1064/edgefast bluetooth examples/
peripheral ht/armgcc/.

270

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

2. Copy folder from <rt1060evke install dir>/boards/evkemimxrt1060/

edgefast bluetooth examples/template/ to <rt1064 install dir>/boards/evkmimxrt1064/
edgefast_ bluetooth_examples/ and rename the files.

|Path |Previous name|New name| |<rt1064_install dir>/boards/evkmimxrt1064/

edgefast_ bluetooth__examples/ | middleware__edgefast_ bluetooth_mcux_ linker_template_evkemimxrt1060.
cmake | middleware__edgefast_ bluetooth__mcux_ linker_template_evkmimxrt1064.

cmake | | middleware__edgefast_bluetooth sdio_ template evkemimxrt1060.

cmake | middleware_ edgefast_ bluetooth_ sdio_template evkmimxrt1064.cmake |

. Add the following content to<rt1064_install dir>/devices/MIMXRT1064/all lib_ device.

cmake at appropriate location.

${CMAKE_CURRENT_LIST DIR}/../../boards

${CMAKE CURRENT LIST DIR}/../../boards/evkmimxrt1064/edgefast bluetooth examples/
—template

${CMAKE_CURRENT_LIST_DIR}/../../middleware/edgefast_ bluetooth

${CMAKE CURRENT _ LIST DIR}/../../middleware/wireless/ethermind

include if use(middleware edgefast bluetooth ble ethermind cmTf)
include_if use(middleware_edgefast_bluetooth_ble_ethermind_lib_ cmTf)
include_if use(middleware_edgefast_bluetooth_br_ethermind_ cmTf)
include_if use(middleware_edgefast_ bluetooth_br_ethermind_ lib_ cm?7f)
include_if use(middleware_edgefast_bluetooth_btble_ethermind_cm7f)
include_if use(middleware_edgefast_ bluetooth_btble ethermind_lib_ cm7f)
include_if use(middleware_edgefast_ bluetooth__common_ ethermind)
include_if use(middleware_edgefast_ bluetooth common_ ethermind_ hci)
include_if use(middleware edgefast_bluetooth common_ethermind_hci uart)
include_if use(middleware_edgefast_ bluetooth_config_ethermind)
include_if use(middleware_edgefast_bluetooth_config template)
include_if use(middleware_edgefast_ bluetooth extension_common_ ethermind)
include_if use(middleware__edgefast_ bluetooth_k32w061_ controller)
include_if use(middleware_edgefast_bluetooth mcux_linker template_ evkmimxrt1064)
include_if use(middleware_ edgefast_ bluetooth_pal)
include_if use(middleware_edgefast_ bluetooth_pal_db_ gen_ethermind)
include_if use(middleware_edgefast_bluetooth_pal_ host__msd_fatfs_ethermind)
include_if use(middleware edgefast_bluetooth_pal platform_ethermind)
include_if use(middleware_edgefast_ bluetooth_porting)
include_if use(middleware_edgefast_ bluetooth__porting atomic)
include_if use(middleware_edgefast_ bluetooth porting_ list)
include_if use(middleware_edgefast_ bluetooth_porting net)
include_if use(middleware__edgefast_ bluetooth_porting_toolchain)
include_if use(middleware edgefast_bluetooth_porting work_queue)
include_if use(middleware_edgefast_ bluetooth_profile_ bas)

include_if use(middleware_edgefast_bluetooth_profile dis)

include_if use(middleware_edgefast_ bluetooth_ profile_ fmp)

include_if use(middleware_edgefast_ bluetooth_ profilehps)

include_if use(middleware_edgefast_bluetooth profile hrs)

include_if use(middleware_ edgefast_ bluetooth_ profile_ hts)

include_if use(middleware_edgefast_ bluetooth_ profile_ipsp)

include_if use(middleware_edgefast_bluetooth profile pxr)

include_if use(middleware_edgefast_ bluetooth_ profile_tip)

include_if use(middleware_edgefast_ bluetooth_ profile_ wu)

include_if use(middleware_edgefast_bluetooth sdio_template_evkmimxrt1064)
include_if use(middleware_edgefast_ bluetooth_ shell)

include_if use(middleware_edgefast_ bluetooth_shell ble)

include_if use(middleware_edgefast_bluetooth template)

include_if use(middleware_edgefast_ bluetooth_wifi_nxp_ controller_base)...

. Make the following changes in the listed order.

1.7.

Wireless 271

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

File name Previous New

item item
config.cmake MIMXRT1 MIMXRT1064xxxxA
mflash_evkcmimxrt1060 mflash_rt:
1062 1064
evkemimxrt1060 evk-

mimxrt10
flags.cmake 1062 1064
6B 6A
CMakeLists.txt 1062 1064
<rt1064_install dir>/middleware/edgefast_ bluetooth/ evkemims evk-
middleware__edgefast_ bluetooth_template.cmake mimxrt1064
<rt1064 install dir>/middleware/wireless/ethermind/ 1062 1064
middleware__edgefast_ bluetooth_common_ ethermind_hci_ uart.
cmake
<rt1064_install dir>/middleware/wireless/ethermind/ 1062 1064
middleware_edgefast_ bluetooth_k32w061_ controller.cmake
<rt1064_install _dir>/middleware/wireless/ethermind/ evkemims evk-
middleware__edgefast_ bluetooth_wifi nxp_ controller_base.cmake mimxrt1064
<rt1064_install _dir>/boards/evkmimxrt1064/ 1062 1064
edgefast_ bluetooth_examples/middleware edgefast_bluetooth mcux_ mxrt1064.
cmake
<rt1064_install dir>/boards/evkmimxrt1064/ 1062 1064
edgefast_ bluetooth__examples/middleware_edgefast_ bluetooth_sdio_t {.

cmake

5. Rename MIMXRT1062xxxxx_ flexspi_nor.ld as MIMXRT1064xxxxx_ flexspi_nor.ld and make

the following changes.

= @xcee02480;

o 33 m_text start
| 4 = @xBe7FDCeR -

m_text_size

2 HEAP_SIZE
43 STACK_SIZE =
44 VECTOR_RAM_SIZE =
45
48 /* Specify the memory areas */
47 MEMORY
42
= 43 m_flash_config (RX) : ORIGIN =
l 0 mivt (RX) : ORIGIN =

m_interrupts (RX) : ORIGIN =

LITTLEFS_REGION_SIZE;

= DEFINED(__heap_size) 2 _ heap_size
DEFINED(_ stack_size_) ? _ stack_size_ :
DEFINED(_ ram_vector_table_) ? ©8x20000400 : ©;

: @xleea;
ax0480;

ax600aa000, LENGTH =
8xceee18e8, LENGTH =
@x6ee02008, LENGTH =

iz m_text start
40 m_text_size

—f&

42 HEAP_SIZE

= DEFINED(_ heap size_)
43 STACK_SIZE = DEFINED(_ stack_size_) ? _ stack size_ :
44 VECTOR_RAM SIZE = DEFINED(_ ram vector_table_) ? @x80000400 : 0;

= Bx70002400;

= Bx@@3FDC8d - LITTLEFS_REGION_SIZE;
? _ heap_size_ : @x100@;
OxB400;

4 /* Specify the memory areas */

47 MEMORY

ax60001000 <A s
2xB8001080
Bx60000400

m_ivt
m_interrupts

Parent topic:Migrate examples from RT1060EVKC to RT1064

MDK
1.

Navigate to
peripheral _ht/mdk/.

2. Make the following changes in the listed order.

m_flash_config

(RX) : ORIGIN = 0x70000000, LENGTH - 8x00001000
(RX) : ORIGIN = @x70001000, LENGTH = 8x00001000
(RX) : ORIGIN = @x70002000, LENGTH = 8x00000400

<rt1064_install_dir>/boards/evkmimxrt1064/edgefast_ bluetooth examples/

File name Previous item New item

peripheral_ht.uvprojx 1062 1064
mflash/evkemimxrt1060 mflash/mimxrt1064
evkemimxrt1060 evkemimxrt1064
6B 6A

272

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

3. Copy evkmimxrt1064_flexspi_nor.ini from <rt1064_install_dir>/boards/evkmimxrt1064/
demo_apps/helloworld/mdk/ to <rt1064 install dir>/boards/evkmimxrt1064/
edgefast_ bluetooth__examples/peripheral _ht/mdk/.

4. Rename MIMXRT1062xxxxx_ flexspi_nor as MIMXRT1064xxxxx_ flexspi_nor and make the
following changes.

c» 43 #define m_flash_config start Bxceeeeees <A 43 #define m_flash config start 0x7 3000000
44 #define m_flash_config_size axeee01008 44 #define m_flash config_size axeee01000
45 48
o> 4 #define m_ivt start Bx6ee01000 A 4 #define m_ivt start 0x70001000
47 #define m_ivt size axeeeel000 47 #define m_ivt size axeeoaloas
48 8
C» 43 #define m_interrupts_start BxE8882888 €A 43 #define m_interrupts_start Bx7 6002008
50 #define m_interrupts_size chclclclelhlcle] 50 #define m_interrupts_size GxB2400
o 5z #define m_text_start BxE0802408 <A =z #define m_text_start 07 Be02400
| =2 #define m_text_size Bx@87FDCe8 - LITTLEFS | =2 #define m_text_size Bx@@3FDCe8 - LITTLEFS

Parent topic:Migrate examples from RT1060EVKC to RT1064

Note about the source code in the document Example code shown in this document has the
following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Enabling Additional Edgefast BT PAL Examples on M4 core for RT1170

Introduction RT1170 works with two cores: M7 and M4, on which both all EdgeFast examples
can run. However, all the EdgeFast examples in the release package are enabled on M7. Only the
A2DP source example is enabled on M4.

EdgeFast projects for both the cores share the demo source files but with different project set-
tings. Therefore, the examples can be migrated.

This document describes the steps to migrate EdgeFast examples from M7 to M4 with different
toolchains. There are four main steps required. Additionally, you can also delete the function.

1. Create an M4 project
2. Rearrange source files

3. Rearrange project files

1.7. Wireless 273

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

4. Adjust project settings
5. Delete function

In this document, the peripheral_ht example is used to demonstrate how to enable EdgeFast
examples on M4 core with IAR and ARMGCC.

IAR This section describes the steps to create an M4 project with IAR, rearrange source and
project files, adjust project settings, and delete function.

Create an M4 project To create an M4 project, perform the following steps:

1. Copy the folder cm4 in the directory <install_dir>boards|\evkmimxrt1170\|edgefast_bluetooth_examples|a2dp.
into the folder in which the example should be enabled.
In this case, copy the folder <c¢m4 into the directory <in-
stall_dir>\boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral ht.

2. Openthe folder iar in the directory <install dir>boards\evkmimxrt1170\edgefast_bluetooth_examples|perip}
3. Rename the files. Change the file name name a2dp_source_cm4 to peripheral_ht_cm4 in all
the respective files.

ie(D:) » test » board MIMXRT1170-EVK3 » boards » evkmimxrt1170 » edgefast_bluetooth_examples » peripheral bt » cmd » iar

A

Name Date moedified
aZdp_source_cmd.ewd 2021/4/27 20:02
aZdp_source_cmd.ewp 2021/4/27 20:02

0 aZdp_source_cmd.eww 2021/4/27 20:02

| L MIMXRT1 TRcooo,_omd_flexspi_noricf 2021/4/27 20:02

4. Open the files peripheral_ht_cm4.eww and peripheral_ht_cm4.ewp with a text editor, such as
Notepad, Notepad++, Sublime, or Visual Studio Code.

5. Search and replace all a2dp_source_cm4 with peripheral_ht _cm4, and then save the files.

LT - LB = R B S) | w-— - | - LN ' 1 b ol B L SE e) e | =
H peripheral_ht_cma.eww =] peripheral_ht_cm4.ewp EJ } Replace
774 J] <debug>1</debug>ERK3 Find Replace Find in Files Mark
775 E <option>ERil
776 <name>IlinkLibIOConfig< Find what : ~
777 <state>l</state>[ENila) -
</option>ERNE Replace with : ‘perlpheral_ht e
<option>ERMA []1n selection
<name>XLinkMisraHandle1
<state>0</state b CRTF] I:‘Backward direction
</option>EaNd Match whole word only
<option> @ik [Match case
<name>IlinkInputFileSl: [Wrap around
<state>0</state>ERiAE
</option>ERMNE Search Mode L
<option>@0iNg () Normal

<name>IlinkOutputFile<;, (O)Extended (\n, \r, \t,\0, \x...)

<state>a2dp source cmd. (®) Regular expression |_]. matches newline
</option>ERiNa
<option>ERilI

|
Parent topic:/AR

274 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Rearrange source files To rearrange source files, perform the following steps:

1. Open the folder cm4 in the directory <install_dir> boards|evkmimxrt1170\edgefast_bluetooth_examples|peri
and delete all files with the extensions *.c and *h.

2. Copy the files with the extensions *c and *h from the folder
boards|evkmimxrt1170\edgefast_bluetooth_examples|peripheral htlcm7| to the folder
<install_dir> boards\evkmimxrt1170\edgefast_bluetooth_examples|\peripheral_ht\cm4.

D\ \edgefast_bluetooth_examples\peripheral_ht\cm7 +] |e%] |Di\.\edgefast_bluetooth_examples\peripheral_ht\crnd - I t ud -
MName Size Maodified Name Size Modified

B ar | ar

il armgec il armgec

a1 sdmmc_config.t 4,654 2021/4/27 20.02:06

1 sdmmc_config.c

W readme.txt

B pin_muxh
upin_mux.c

0 peripheral_ht_v3_8.xml

B peripheral_hth

eeRTOSConfig.h

B evkmimxrt1170_connect_cmd_emTside jlinkscript
W evkmimyrt1170_connect_omd_cmdside jlinkscript 2,473 2021/4/27 20:02:06
® edgefast_bluetooth_config.h
mdcdh
Bdcd.c
o clock_conf
u clock_config.c
mboard h
board.c
mapp_config.h
| maZdp_source_cmd_v3_8xm 55,176 2021/4/27 20:02:06
|
Parent topic:/AR

Rearrange project files To rearrange project files, perform the following steps:

1. Open the peripheral_ht _cm7and peripheral_ht _cm4 IAR projects in the directories <in-
stall_dir> boardslevkmimxrt1170|edgefast_bluetooth_examples|peripheral _ht |\cm7\iar and
<install_dir> boards|evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht |\cm4\iar.

1. Compare the whole project directory, find file groups that the cm7 project has but are
missing in the cm4 project. Add the missing file groups from the cm?7 project into the
cm4 project.

2. Compare the difference between the two groups with the same name. Remove files
that do not exist in the cm7 project but exist in the cm4 project. Find files that are
available in the cm7 project but are missing in the cm4 project. Add the missing files
from the cm7 project into the cm4 project.

2. For example, in the following figure, the files in the source group
in the cm4 project must be removed, and the files in the path: <in-
stall_dir>\boards|evkmimxrt1170\edgefast_bluetooth_examples\peripheral ht with the
same name as the files in the cm7 project must be added into the source group.

1.7. Wireless 275

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

¥ 3 3 workspace S
Bescsgn_naon_debug _
| fesspi_ror_debug .
B
Filas . . & = Flen s B
pin_ra
E B sdmme_config ¢ . g :::x_zg r':. .
Bl sdmmc_config h P | .
& o bt_ble & = -hl.hla
- ol CMSIS i CMSIS
—H W compaonent s —& & component -
= i device = mill :daw:e -
@ il doc —@ o doc
5 W drivers . —& . drivers .
—E B edgefast - —d :EdIJEI_-I!BI ™
= ol fatfs s j _ammﬂﬂn .
&]
—H . framewark L] =
= il freeros 3 j :fr:ammtm rk :
D = —H o sdmmc -
whlsovree | ||
rfig.h . _
g:ﬂ;j:m Eluﬂnm config h | — B aZdp_pi_media_48kHz h
B FreeRTOSConégh | F— B app_configh
B main.c s | F2 B app_connectc .
B peripheral_hc . . —_EEI g mp_g?:':::;' nc .
- &) peripheral_hth = E_discwer-h
I starup | L :
shartup_MIMKFT1176_om? s . | = g app_peripheral_htc .
@ o usb . | F— B app_peripheral_hth
mal 0 s | @ B app_shell.c -
il | F— El app_shellk
j =“:m : | — B edgefast_bluetooth_corfig.h
—= -'Il:nlpmn — kI FreeRTOSConfig.h
tE T manc .
¥ T B =imrhe - *
petipheral_ i
[pericieeal_hi_cmd

3. Compare the services group.

The peripheral hts profile is in the services folder. Add the hts.c file to the services group of
the cm4 folder.

276 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

ﬂ' & ! lﬂ' perphensd_k_ormd - 1AR Ernbedded Workbench IDE - Arm 8.50.9
File Ed#t View Projed CMSS.DAP Tool§ fie Es view Projedt CMSS.DAP Toaols Window Helg
LOONS B AN DN NBEe B 4K 9C
Workipace Wedkipace * 0 X mai
Aexspi_nor_debug exspi_nos_detrug i [mai
Files . Files 8 = =~
E @ peripheral_ht - flexspi_nor_debut = @ peripheral_h_cmd - flexspi_n... «
—E B board & B boand
& ol bi_ble @ ol b1_ble
—= -:CHSIS —E W CMSIS
= B component —& W component
- Wl dendce = dervice
—-| -:dI:u: — & doc
= W divers —F W divers
1 iel:lgmuﬂ £ il edgetast
= bustooth B blustooth
B controliar B conrollar
M include . include
o porting
[]
|-@ & adp.c
8 B connc — [a2dp_intemal h &
— [conn_intemal h — [l ath
@ £} crypio.c 8 &l afic
— B crypto_intemnal h — & att_intemal h
—&] gattc — [l awdip_intemal h
— &l gaft_intemal h & £ conn.c
—& & hei_core.c — [l conn_intarmal b
— [hci_core h —& [E] cryplo.c
— [l keysh — [cryoio_intemal i
—E B Bcapc Eecch
— &} Roop_internal b El gattc
& &) monior.c gatt_insemal k
— El maniiorh Ha Flhei corec =
— Bmpah [pespheral_Fi_cmé
— & =mg.h
—& &l smo_null.c Debug Log

Parent topic:/AR

Adjust project settings To adjust the project settings, perform the following steps:

1. Compare the macro in the project settings: Option > C/C++ compiler > Preprocessor.

2. Find the macros that do not exist in the cm4 project but are available in the em7 project.
Delete these macro. The rule is that m7 macro setting should be same with m4.

1.7. Wireless

277

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Options for node "peripheral_ht_cmd”
Categarny: Factom Selings
General Options [T Multi-file Compilation
Static Analysis Dizcard Unused Publics
Runtime Checking
C/C++ Compiler MISRA-C:1998 Encodings Extra Options
Assembler Language 1 Language 2 Code Optimizations Output
Output Converter List Preprocessor Diagnostics MISRA-C:2004
Custom Build
Build Actions [] Ignone standard include directories
IE.::H Additicnal include directones: (one per line)
) ' SPROJ_DIRS.. s
Simulator $PROJ_DIRS/..J..J.J.J.J. Imiddlewarelwifiiwifi_bt_firmware
CADI $PROJ_DIRS/. /. /. /.1 J. imiddlewarsledgefast_blustooth/source/
CMSIS DAP SPROU_DIRS/ /.10 4 J. idevices/MIMXRT1176/drivers
GDB Server $PROJ_DIRS/../..J..J. /1. /devicesMIMXRT1176 v
I-jet Preinclude file:
J-Link/J-Trace $PROJ_DIRS/. /app_config.h
TI Stellaris
MNu-Link Defined symbols: (one per line)
PE micro CONFIG_BT_BREDR=1 - Preprocessor output to file
ST-LINK CONFIG_BET_PERIPHERAL=1 Presane comments
. CONMFIG_BT_CENTRAL=1 Cararatn Hlivs ot
Third-Party Driver Generate Fline directives
CONFIG_EBT_SMP=1 o
TI MSP-FET —
TI ¥DS
Carcel

The macros are in the**peripheral\ _ht__cm4.ewp** file.

['](../images/image7.png "Compare the peripheral ht cmd.ewp file”)

Parent topic:/AR

Delete function As a final step, remove the function “SCB_DisableDCache(); in main.c.

On the completion of the above steps, the M7 project successfully migrates to an M4 project. You
can now download and debug the M4 example project.

Parent topic:/AR

Arm GCC This section describes the steps to create an M4 project with Arm GCC, rearrange
source and project files, adjust project settings, and delete function.

Create an M4 project To create an M4 project, perform the following steps:

1. Copy the folder <install dir> boards\evkmimxrt1170\edgefast_bluetooth_examples|\a2dp_source
lcm4 into another folder in which the example should
be enabled. In this case, copy the folder <install_dir>

278 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

boards|evkmimxrt1170\edgefast_bluetooth_examples\a2dp_source |cm4 into*<install_dir>
boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4*

2. Open the file CMakeLists.txt located in the path: <install _dir>
boards|evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht|\cm4| armgcc.

3. Search and replace all a2dp_source_cm4 with peripheral_ht_cm4, and then save the files.

Parent topic:Arm GCC

Rearrange source files To rearrange source files, perform the following steps:

1. Open the folder <install_dir>boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4
and delete all files with the extensions *.c and *h.

2. Copy the files with the extensions *c and *h in the folder <in-
stall_dir>boardslevkmimxrt1170\edgefast_bluetooth_examples\peripheral hticm7 to the
folder <install dir>boards|evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4.

lhedgelsst bluetooth exampled peripheral hem? T T ¥ schgedadt_blusioath_ecampled\penpheral hityormd L

N

R SHHALLERE

|
Parent topic:Arm GCC

Rearrange project files To rearrange project files, perform the following steps:

1. Open the CMakeLists.txt of the two examples respectively. The two files are in the <in-
stall_dir>boards|\evkmimxrt1170\edgefast_bluetooth_examples\peripheral ht\cm7|armgcc
and <install_dir>boards|evkmimxrt1170\edgefast_bluetooth_examples|peripheral_ht\cm4|\armgcc
folders respectively.

2. Search the section add_executable. Compare the difference between the two sections. Re-
move files that do not exist in the cm7 project but are available in the cm4 project. Add
the files that exist in the cm7 project but are not available in the cm4 project into the cm4
project. For example, in the following figure, the files in the red box should be removed
and the files in the green box must be added into the cm4 project.

1.7. Wireless 279

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

"${ProjDirPath}/../sdmmc_config.h" A~ sjEcgguana;htg /sdmmc_config.h" ~

| . "${ProjDirPath}/../app_a2dp_source.c"H
"${ProjDirPath}/../app_a2dp_source.h"H
“${ProjDirPath}/../app_connect.c"H
"${ProjDirPath}/../app_connect.h"H
"${ProjDirPath}/../app_discover.c"H
"${ProjDirPath}/../app_discover.h"H
"${ProjDirPath}/../app_shell.c"H
"${ProjDirPath}/../app_shell .h"}
“${ProjDirPath}/../a2dp_pl _media_48KHz.h"E

“${ProjDirPath}/ . /main.c" & "${ProjDirPath}/../main.c"

"${ProjDirPath}/../peripheral_ht.q4"H
"${ProjDirPath}/../peripheral_ht.H"H

"${ProjDirPath}/../../../../../../middleware/edgefast_bluetooth/source/porting/atomic_c.c"
"${ProjDirPath}/../../../../../../middleware/edgefast_bluetooth/include/sys/atomic.h"|

'${ProjDirPath}/../../../../../../middleware/edgefast_bluetooth/source/services/hts.c"X
'${ProjDirPath}/../../../../../../middleware/edgefast_bluetooth/include/bluetooth/services/hts.h"H
Parent topic:Arm GCC

Adjust project setting To adjust the project settings, perform the following steps:

1. Open the flags.cmake of the two examples respectively. The two files are in the <in-
stall_dir>boardslevkmimxrt1170\edgefast_bluetooth_examples|peripheral_ht\cm7|armgcc
and <install_dir>boards|evkmimxrt1170\edgefast_bluetooth_examples|peripheral_ht\cm4|\armgcc
folders respectively.

2. Search the CMAKE C FLAGS DEBUG section.
1. Compare the macro between the two sections.

2. Add the macros that do not exist in the cm4 project but are available in the em?7 project
into the cm4 project. The rule is that macro setting should be same.

3. Delete the macros highlighted in the red rectangle.

-DSDK_DEBUGCONSOLE_UART=1"\ : -DSDK_DEBUGCONSOLE_UART=1-\
«++«4-DCONFIG_BT_BREDR=1-\H

-DCONFIG_BT_PERIPHERAL=1-\H

-DCONFIG_BT_CENTRAL=1-\H

-DCONFIG_BT_SMP=1:\H

-DDEBUG_CONSOLE_RX_ENABLE=@+\H

-DOSA_USED=1-\H

-DSHELL_USE_COMMON_TASK=0-\H

-DSHELL_TASK_STACK_SIZE=2048-\X

1 «++{-DSHELL_TASK_PRIORITY=configMAX_PRIORITIES-2-\H

| -DNVM_NO_COMPONNET=1-\ -DNVM_NO_COMPONNET=1"\

|
Parent topic:Arm GCC

Delete function As a final step, remove the function “SCB_DisableDCache() in main.c.

On the completion of the above steps, the M7 project successfully migrates to an M4 project. You
can now download and debug the M4 example project.

Parent topic:Arm GCC

MDK This section describes the steps to create an M4 project with MDK, rearrange source and
project files, adjust project settings, and delete function.

280 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Create an M4 project

1. Copy folder cm4 from <install_dir>boards\evkmimxrt1170\edgefast_bluetooth_examples|a2dp_source|cm4
into the folder in where the example must be enabled. In this case, copy folder cm4 into
directory <install dir>|boards\evkmimxrt1170\edgefast_bluetooth_examples|peripheral_ht.

2. Openfolder mdk from <install_dir>boards|evkmimxrt1170\edgefast_bluetooth_examples|peripheral_ht|\cm4

lume (D) » test » board_MIMXRT1170-EVE » boards » evkmimxrt1170 » edgefast_bluetooth_examples » peripheral_ht » cmd » mdk

-

Mame Date modified Type

E aZdp_source_cmd.uvmpw 2021/8/10 16:02 Fision Multi-Project
UVOPTX File
i&isions Project

a2dp_source_cmduvophe
i azd p_source_cmd.uvprojx
evkmimxrt1170_flexspi_nerini
| MIMART11 7600 _cmd_flexspi_nor

Configuration settings

File Explorer Command

3. Change the filename a2dp_source_cm4 to peripheral_ht_cm4 respectively.

4. Open the files *peripheral_ht_cm4.*uvmpw and peripheral ht_ cm4. uvoptx, periph-
eral_ht_cm4.uvprojxwith a text editor, such as Notepad, Notepad++, Sublime, or Visual Stu-
dio code.

5. Search and replace a2dp_source_cm4 with peripheral_ht _cm4, and then save the files.

L.-‘*El W *

) Ry = 0 # g %= | =1 FEE
& peripheral_ht_cmd. uvprojx = penpheral_ht_cmd. Lnrrnpw (x| |E sripheral_ht_cmd uvoplx |
?xml version="1.0" e ling="UTF-8" standalone="no" ? > iki
_] ‘ProjectWor I- space - xml "http ggwww w3. orgg2001[)mﬂ.Schema—instance" %51 :noN:

<SchemaVersion>2.1< /"‘t“hc:'mn‘ ersion RN

<Header>### uVision Project, (C) K

<Workspa rreName >WorkSpace</Workspac

E . uﬁ@t‘ NCRLF Find Replace Find in Files Find in Projects Mark
<PathAnc Hamz: >a2dp source cmd. uV'p
<NodeIsAc hup >1</NodeIsActive>

</pro -|1=-\ Replace with : peripheral_ht _cm4
</ProjectWorks p'—l e > [

Find what : a2dp_source_am4

|
Parent topic:MDK

Rearrange source files

1. Openfolder cm4 in *<install_dir>*boards|evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4,
and delete all files with the .c and .h file name extension.

2. Copy files with the .c and .h filename extension in folder cm7 with directory <install_dir>
boards|evkmimxrt1170\edgefast_bluetooth_examples|peripheral_ht\cm7to folder cm4 with
directory <install_dir> boards\evkmimxrt1170|edgefast_bluetooth_examples|peripheral_ht\cm4.

1.7. Wireless 281

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

._III.I=_-_I_-III.E!'P_:‘

Parent topic:MDK

Rearrange project files

1. Open the peripheral ht _cm?7 and peripheral_ht_cm4 IAR projects. The two workspaces are
located in *<install_dir>*boardslevkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht
lcm7|\mdk and *<install_dir>*boardslevkmimxrt1170\edgefast_bluetooth_examples|peripheral_ht
|cm4|mdk respectively.

* Compare the whole project directory, find file groups that the cm7 project has but the
cm4 project not and then add these groups into the cm4 project.

* Compare the difference between the two groups with the same name, remove files
that do not exist in the cm7 project but exist in the cm4 project; find files that the cm7
project has but the cm4 project not and then add these files into the cm4 project.

2. For the source group, in this case, the files in the source group in the cm4 project
must be removed, and the files in the path <install dir>|\boards|evkmimxrt1170|
boards|evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4 with the same
name as the files in the cm7 project must be added into the source group.

282 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

NE 4@ %

Project

= Wy

ERE WorkSpace

=%

rue CuiL

| NE 4|

Project
= &3 WorkSpace

view Froject

ridsfl Uewuy

, =
73 J-AJ‘ ‘

— . ~ ProjectiperiphersLhtcmd
=) s .F.'E"Phﬂa'_ht flexspi_nor_debug - 4= peripheral_ht _cm4 flexspi_nor_debug
B 5 source
_ B &5 source

L] FreeRTOSConfig.h _] FreeRTOSConfig.h

Q app_config.h J app_config.h

0 ma?n.r_ J_H app_addp_source.c

3] per!pheral_ht-c 40l app_a2dp_sourceh

] peripheral_ht.h il app_connect.c

|] edgefast_bluetooth_config.h i app_conner:th
3 wifi/wifi_bt_firmware il app_discover.c
® }E] board il app_discover.h
& dgc il app_shell.c
& l;] drwfer: il app_shell.h
E.i device] a2dp_pl_media_d8KHz.h
[startup j main.c
= l;] co‘r?llpnnent/uart _] edgefast_bluetooth_config.h
® E] utilities @ wifi/wifi_bt_firmware

3. Compare the service: group.

FENRNCIdls

|.1

SR AN _1‘ Eg%‘:l peripheral_ht_cm4flex;;|
Lo |

s

Peripheral hts profile is located in “service” folder. Add the hts.c file to the services group
of the cm4 folder.

1.7. Wireless

283

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

roject
=3
=L
R
=3
=3
=3
=3
=3
=3
=3
=
=3
=3
=3
o
=3
=3
CR|
=3
=3
o
(=R
DR
Parent topic:MDK

L

bt_ble/port/pal/mcux/sbc
bt_ble/port/pal/mcux
bt_ble/bluetooth/private/utils/shc
bt_ble/bluetooth/private/lib/confi
bt_ble/bluetooth/export/extension
wififincl

wifi/incl/port/os
wifi/incl/wifidriver
wifi/incl/wlcmgr

wifi/port/os

wifi/wifidriver/incl

wifi/wifidriver
edgefast/bluetooth/source
edgefast/bluetooth/include/bluete
edgefast/bluetooth/include/sys
edgefast/bluetooth/include/zephy
edgefast/bluetooth/porting
edgefast/bluetooth/porting/errmo
edgefast/bluetooth/include/toolch
edgefast/bluetooth/include
edgefast/bluetooth/include/net

edgefast/bluetooth/source/service

\J hts.c

edgefast/bluetooth/include/bluets

Adjust project settings

=3
=3
=L
=03
=3
=L
=03
=3
=
=03
=
=
=3
=L
=3
=3
oE

=3
R

N

A I e e e T B |

bt_ble/bluetooth/private/lib/config
bt_ble/bluetooth/export/extension
wifi/incl

wifi/incl/port/os

wifi/incl/wifidriver

wifi/incl/wlcmgr

wifi/port/os

wifi/wifidriver/incl

wifi/wifidriver
edgefast/bluetooth/source
edgefast/bluetooth/source/a2dp_codec/sbc
edgefast/bluetooth/include/bluetooth
edgefast/bluetooth/include/sys
edgefast/bluetooth/include/zephyr
edgefast/bluetooth/porting
edgefast/bluetooth/porting/errno
edgefast/bluetooth/include/toolchain
edgefast/bluetooth/include
edgefast/bluetooth/include/net

5

edgefast/bluetooth/source/services

\J bas.c
L] hrs.c

=

edgefast/bluetooth/include/bluetooth/services

1. Compare the macro in the project settings: preprocessor symbols.

2. Compare the macro that does exist in the cm4 project but exists in the cm7 project.

3. Delete the following macro. The rule is that m7 macro setting should be same as m4 .

The macro could also be found in be eripheral_ht_cm4.uvprojx.

284

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

K Options for Target ‘peripheral_ht _crmd4 flexspi_nor_debug’ *
Device | Target | Output | Listing | User | C/C++ (ACE) | Asm | Linker | Debug | Luities |
Preprocessor Symbols
Define: |x|P_ExTERNM_FLh5H-1 . XIP_BOOT HEADER_ENABLE=0, DEBUG, CPU_MIMXRT1176DVMAA c
Undefine: |
Language / Code Generation
[~ Execute-only Code Wamings: |ACSdke Wamings v| Language C: [c99 -l
Optimization: |-O1 | I Tum Wamings into Emors Language C++: [ces11]
™ Link-Time Optimization ™ Plain Charis Signed W Short enums /wchar
™ Spit Load and Store Multiple ™ Read-Only Posttion independent ™ use RTTI
¥ One ELF Section per Function [T ReadWrite Posftion Independent [No Auto Includes

"';';: ik A 4 A fmiddiewarewifi/wili_bt_ femware; /7 / /. /. /middeware/edgefast_bluetooth/sourc J

- “.:I |-n::i.n:lc Japp_config h fno-common fdata-sections ffreestanding fno-builtin -mthumb

Compiler |yc sid=c59 -target=am-am-none-eabi mcpu=cortex-m4 mfpu=fpvd-sp-d16 -mfloat-abi=hard < ~
c:ﬁ {no-tti funsigned-char fshort-enums fshort-wchar

ok | cancel | Defauts l-up|

I'](../images/adjust_mdk_ settings2.png "Compare the macro”)

|
Parent topic:MDK

Delete function Remove function SCB_DisableDCache(); in main.c.

On successful completion of the above steps, the M7 project is changed to the M4 project. You
can now download and debug the M4 example project.

Parent topic:MDK

Note The above steps are based on the a2dp_source example and help enable the periph-
eral_ht example on the m4 core. You can use the same steps for other examples and migrate
them from an m7 project to an m4 project.

1.7. Wireless 285

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

286 Chapter 1. Middleware

Chapter 2

RTOS

2.1 FreeRTOS

2.1.1 FreeRTOS kernel

Open source RTOS kernel for small devices.

FreeRTOS kernel for MCUXpresso SDK Readme

FreeRTOS kernel for MCUXpresso SDK

Overview The purpose of this document is to describes the FreeRTOS kernel repo integration
into the NXP MCUXpresso Software Development Kit: mcuxsdk. MCUXpresso SDK provides a
comprehensive development solutions designed to optimize, ease, and help accelerate embed-
ded system development of applications based on MCUs from NXP. This project involves the
FreeRTOS kernel repo fork with:

» cmake and Kconfig support to allow the configuration and build in MCUXpresso SDK ecosys-
tem

* FreeRTOS OS additions, such as FreeRTOS driver wrappers, RTOS ready FatFs file system,
and the implementation of FreeRTOS tickless mode

The history of changes in FreeRTOS kernel repo for MCUXpresso SDK are summarized in
CHANGELOG mcuxsdk.md file.

The MCUXpresso SDK framework also contains a set of FreeRTOS examples which show basic
FreeRTOS OS features. This makes it easy to start a new FreeRTOS project or begin experiment-
ing with FreeRTOS OS. Selected drivers and middleware are RTOS ready with related FreeRTOS
adaptation layer.

FreeRTOS example applications The FreeRTOS examples are written to demonstrate basic
FreeRTOS features and the interaction between peripheral drivers and the RTOS.

List of examples Thelist of freertos_examples, their description and availability for individual
supported MCUXpresso SDK development boards can be obtained here: https://mcuxpresso.nxp.
com/mcuxsdk/latest/html/examples/freertos_examples/index.html

287

https://github.com/FreeRTOS/FreeRTOS
https://github.com/nxp-mcuxpresso/mcuxsdk-manifests
https://github.com/nxp-mcuxpresso/mcux-freertos-drivers
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/examples/freertos_examples/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/examples/freertos_examples/index.html

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Location of examples The FreeRTOS examples are located in mcuxsdk-examples repository,
see the freertos_examples folder.

Once using MCUXpresso SDK zip packages created via the MCUXpresso SDK Builder the FreeRTOS
kernel library and associated freertos_examples are added into final zip package once FreeRTOS
components is selected on the Developer Environment Settings page:

[\ MCUXpresso SDK Builder

#i sDkDashboard Developer Environment Settings
@ Select Board / Processor Selections here (operating host system, toolchain or mtddfewure) will impact files and examples projects included in the SDK and Generated FProjects

Host OS Toolchain [IDE

= Filters

== Windows - 0J: Al Toolchains - Search...
B Middieware
Examples
& Name Description Dependencies
3 Toochains o e g 1 S O 61 T o
:_.—: Processor Parametrics
emWwin emWin graphics library
EXPLORE
Fatfs FAT File System stack
E Expansion Board Hub
— FreeMASTER FreeMASTER communication driver for 32bit platforms
. Application Code Hub
DOWNLOADS FreeRTOS m Real-time operating system for microcontrollers from Amazon
. MCUXpresso IDE LittleFs LittleFs filesystem stack
- MCUXpresso for VS Code lihttp HTTP parser lihttp
MCUXpresso Secure
. Provisioning Tool LVGL (£ LvGLOpen Source Graphics Library
. Lo o @il Tl Iwip [Lightweight IP open-source TCP/IP stack
Offline data
Mbed Crypto Mbed Crypto library
INTERNAL
mbedTLS mbedTLS SSL/TLS library v

The FreeRTOS examples in MCUXpresso SDK zip packages are located in <MCUXpres-
soSDK install_dir>/boards/<board_name>/freertos_examples/ subfolders.

Building a FreeRTOS example application For information how to use the cmake and Kconfig
based build and configuration system and how to build freertos_examples visit: MCUXpresso
SDK documentation for Build And Configuration MCUXpresso SDK Getting Start Guide

Tip: To list all FreeRTOS example projects and targets that can be built via the west build com-
mand, use this west list_project command in mcuxsdk workspace:

west list_ project -p examples/freertos_examples

FreeRTOS aware debugger plugin NXP provides FreeRTOS task aware debugger for GDB. The
plugin is compatible with Eclipse-based (MCUXpressoIDE) and is available after the installation.

s Task List (FreeRTOS) 52 B ® =8
TCBJ;‘ Task Mame Task Handle Task State Pricrity Stack Usage Event Object Runtime
> 1 task_one ol fffeccd [0 Blocked 1(1) 0B/8308B MyCountingSemaphaore (Fx) 00 (0.0%)
b 2 task_two (L FF130 00 Blocked 2(2) O0B/888B MyCountingSemaphore (Rx) O (01%)
> 3 IDLE L £330 B> Running 0/(0] 0B/296 B 0365 (996%)
> 4 Tror Sve Dl ffffobE [0 Blocked 17(17) I 28B/6I2E Tmir() (Rx) 0x3 (0.3%)

FreeRTOS kernel for MCUXpresso SDK ChangeLog

Changelog FreeRTOS kernel for MCUXpresso SDK All notable changes to this project will be
documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

288 Chapter 2. RTOS

https://github.com/nxp-mcuxpresso/mcuxsdk-examples
https://mcuxpresso.nxp.com
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/develop/build_system/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/develop/build_system/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/repo.html#gsd-index
https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

[Unreleased]

Added

» Kconfig added CONFIG_FREERTOS_USE_CUSTOM_CONFIG_FRAGMENT config to op-
tionally include custom FreeRTOSConfig fragment
include file FreeRTOSConfig_frag.h. File must be provided by application.

» Added missing Kconfig option for configUSE_PICOLIBC_TLS.

* Add correct header files to build when configUSE_NEWLIB_REENTRANT and confi-
gUSE_PICOLIBC_TLS is selected in config.

[11.1.0_revO0]

* update amazon freertos version

[11.0.1_revO0]

* update amazon freertos version

[10.5.1_revO0]

 update amazon freertos version

[10.4.3_rev1]
* Apply CM33 security fix from 10.4.3-LTS-Patch-2. See rtos\freertos\freertos_kernel\History.txt
* Apply CM33 security fix from 10.4.3-LTS-Patch-1. See rtos\freertos\freertos_kernel\History.txt

[10.4.3_rev0]

* update amazon freertos version.

[10.4.3_rev0]

 update amazon freertos version.

[9.0.0_rev3]
* New features:
— Tickless idle mode support for Cortex-A7. Add fsl_tickless_epit.c and
fsl_tickless_generic.h in portable/TAR/ARM_CAS9 folder.
— Enabled float context saving in IAR for Cortex-A7. Added confi-
gUSE_TASK_FPU_SUPPORT macros. Modified port.c and portmacro.h in

portable/IAR/ARM_CA9 folder.
» Other changes:

— Transformed ARM_CM core specific tickless low power support into generic form un-
der freertos/Source/portable/low_power_tickless/.

2.1. FreeRTOS 289

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

[9.0.0 rev2]
» New features:

— Enabled MCUXpresso thread aware debugging. Add freertos_tasks_c_additions.h
and configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H and configFR-
TOS_MEMORY_SCHEME macros.

[9.0.0_rev1]
* New features:
— Enabled -flto optimization in GCC by adding attribute((used)) for vTaskSwitchContext.

— Enabled KDS Task Aware Debugger. Apply FreeRTOS patch to enable confi-
gRECORD_STACK_HIGH_ADDRESS macro. Modified files are task.c and FreeRTOS.h.

[9.0.0_rev0]
* New features:
— Example freertos_sem_static.
— Static allocation support RTOS driver wrappers.
* Other changes:

— Tickless idle rework. Support for different timers is in separated files
(fs1_tickless_systick.c, fsl_tickless_lptmr.c).

— Removed configuration option configSYSTICK_USE_LOW_POWER_TIMER. Low power
timer is now selected by linking of apropriate file fsl_tickless_lptmr.c.

— Removed configOVERRIDE_DEFAULT_TICK_CONFIGURATION in RVDS port. Use of at-
tribute((weak)) is the preferred solution. Not same as _weak!

[8.2.3]
* New features:
— Tickless idle mode support.
— Added template application for Kinetis Expert (KEx) tool (template_application).
* Other changes:

— Folder structure reduction. Keep only Kinetis related parts.

FreeRTOS kernel Readme

MCUXpresso SDK: FreeRTOS kernel This repository is a fork of FreeRTOS kernel
(https://github.com/FreeRTOS/FreeRTOS-Kernel)(11.1.0). Modifications have been made to adapt
to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable FreeRTOS kernel repo
sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which is
composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

For more information about the FreeRTOS kernel repo adoption see README_mcuxsdk.md:
FreeRTOS kernel for MCUXpresso SDK Readme document.

(") CMock Unit Tests | passing

290 Chapter 2. RTOS

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/rtos/freertos/freertos-kernel/README_mcuxsdk.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/rtos/freertos/freertos-kernel/README_mcuxsdk.html
https://github.com/FreeRTOS/FreeRTOS-Kernel/actions/workflows/unit-tests.yml?query=branch%3Amain+event%3Apush+workflow%3A%22CMock+Unit+Tests%22++

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Getting started This repository contains FreeRTOS kernel source/header files and kernel ports
only. This repository is referenced as a submodule in FreeRTOS/FreeRTOS repository, which
contains pre-configured demo application projects under FreeRTOS/Demo directory.

The easiest way to use FreeRTOS is to start with one of the pre-configured demo application
projects. That way you will have the correct FreeRTOS source files included, and the correct
include paths configured. Once a demo application is building and executing you can remove
the demo application files, and start to add in your own application source files. See the FreeRTOS
Kernel Quick Start Guide for detailed instructions and other useful links.

Additionally, for FreeRTOS kernel feature information refer to the Developer Documentation,
and API Reference.

Also for contributing and creating a Pull Request please refer to the instructions here.

Getting help If you have any questions or need assistance troubleshooting your FreeRTOS
project, we have an active community that can help on the FreeRTOS Community Support Forum.

To consume FreeRTOS-Kernel

Consume with CMake If using CMake, it is recommended to use this repository using Fetch-
Content. Add the following into your project’s main or a subdirectory’s CMakeLists.txt:

* Define the source and version/tag you want to use:

FetchContent Declare(freertos kernel
GIT_REPOSITORY https://github.com/FreeRTOS/FreeRTOS-Kernel.git
GIT_TAG main #Note: Best practice to use specific git-hash or tagged version

)

In case you prefer to add it as a git submodule, do:

git submodule add https://github.com/FreeRTOS/FreeRTOS-Kernel.git <path of the submodule>
git submodule update --init

* Add a freertos_config library (typically an INTERFACE library) The following assumes the
directory structure:

— include/FreeRTOSConfig.h

add_ library(freertos_ config INTERFACE)

target_ include_ directories(freertos_ config SYSTEM
INTERFACE

include
)

target__compile_ definitions(freertos_config
INTERFACE
projCOVERAGE__TEST=0
)

In case you installed FreeRTOS-Kernel as a submodule, you will have to add it as a subdirectory:

add_ subdirectory(${FREERTOS PATH})

* Configure the FreeRTOS-Kernel and make it available

— this particular example supports a native and cross-compiled build option.

2.1. FreeRTOS 291

https://github.com/FreeRTOS/FreeRTOS
https://www.FreeRTOS.org/FreeRTOS-quick-start-guide.html
https://www.FreeRTOS.org/FreeRTOS-quick-start-guide.html
https://www.FreeRTOS.org/features.html
https://www.FreeRTOS.org/a00106.html
https://forums.freertos.org

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

set(FREERTOS_HEAP ”4” CACHE STRING ”” FORCE)
Select the native compile PORT
set(FREERTOS_PORT "GCC_ POSIX” CACHE STRING ”” FORCE)
Select the cross-compile PORT
if (CMAKE__CROSSCOMPILING)
set(FREERTOS_PORT "GCC_ARM_CA9” CACHE STRING ”” FORCE)
endif()

FetchContent_ MakeAvailable(freertos_ kernel)

* In case of cross compilation, you should also add the following to freertos_ config:

target compile definitions(freertos config INTERFACE ${definitions})
target__compile_options(freertos_ config INTERFACE ${options})

Consuming stand-alone - Cloning this repository To clone using HTTPS:

git clone https://github.com/FreeRTOS /FreeRTOS-Kernel.git

Using SSH:

git clone git@github.com:FreeRTOS/FreeRTOS-Kernel.git

Repository structure

* The root of this repository contains the three files that are common to every port - list.c,
queue.c and tasks.c. The kernel is contained within these three files. croutine.c implements
the optional co-routine functionality - which is normally only used on very memory limited
systems.

» The ./portable directory contains the files that are specific to a particular microcontroller
and/or compiler. See the readme file in the ./portable directory for more information.

* The ./include directory contains the real time kernel header files.

* The ./template configuration directory contains a sample FreeRTOSConfig.h to help jumpstart
a new project. See the FreeRTOSConfig.h file for instructions.

Code Formatting FreeRTOS files are formatted using the “uncrustify” tool. The configuration
file used by uncrustify can be found in the FreeRTOS/CI-CD-GitHub-Actions’s uncrustify.cfg file.

Line Endings File checked into the FreeRTOS-Kernel repository use unix-style LF line endings
for the best compatibility with git.

For optimal compatibility with Microsoft Windows tools, it is best to enable the git autocrlf fea-
ture. You can enable this setting for the current repository using the following command:

git config core.autocrlf true

Git History Optimizations Some commits in this repository perform large refactors which
touch many lines and lead to unwanted behavior when using the git blame command. You can
configure git to ignore the list of large refactor commits in this repository with the following
command:

git config blame.ignoreRevsFile .git-blame-ignore-revs

292 Chapter 2. RTOS

https://github.com/uncrustify/uncrustify
https://github.com/FreeRTOS/CI-CD-Github-Actions
https://github.com/FreeRTOS/CI-CD-Github-Actions/tree/main/formatting

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Spelling and Formatting We recommend using Visual Studio Code, commonly referred to as
VSCode, when working on the FreeRTOS-Kernel. The FreeRTOS-Kernel also uses cSpell as part
of its spelling check. The config file for which can be found at cspell.config.yaml There is addi-
tionally a cSpell plugin for VSCode that can be used as well. .cSpellWords.txt contains words
that are not traditionally found in an English dictionary. It is used by the spellchecker to ver-
ify the various jargon, variable names, and other odd words used in the FreeRTOS code base
are correct. If your pull request fails to pass the spelling and you believe this is a mistake, then
add the word to .cSpellWords.txt. When adding a word please then sort the list, which can be
done by running the bash command: sort -u .cSpellWords.txt -o .cSpellWords.txt Note that only
the FreeRTOS-Kernel Source Files, include, portable/MemMang, and portable/Common files are
checked for proper spelling, and formatting at this time.

2.1.2 FreeRTOS drivers

This is set of NXP provided FreeRTOS reentrant bus drivers.

2.1.3 backoffalgorithm

Algorithm for calculating exponential backoff with jitter for network retry attempts.

Readme

MCUXpresso SDK: backoffAlgorithm Library This repository is a fork of backoffAlgorithm
library (https://github.com/FreeRTOS/backoffalgorithm)(1.3.0). Modifications have been made to
adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable backoffAlgorithm
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

backoffAlgorithm Library This repository contains the backoffAlgorithm library, a utility li-
brary to calculate backoff period using an exponential backoff with jitter algorithm for retry-
ing network operations (like failed network connection with server). This library uses the “Full
Jitter” strategy for the exponential backoff with jitter algorithm. More information about the
algorithm can be seen in the Exponential Backoff and Jitter AWS blog.

The backoffAlgorithm library is distributed under the MIT Open Source License.

Exponential backoff with jitter is typically used when retrying a failed network connection or
operation request with the server. An exponential backoff with jitter helps to mitigate failed
network operations with servers, that are caused due to network congestion or high request
load on the server, by spreading out retry requests across multiple devices attempting network
operations. Besides, in an environment with poor connectivity, a client can get disconnected at
any time. A backoff strategy helps the client to conserve battery by not repeatedly attempting
reconnections when they are unlikely to succeed.

See memory requirements for this library here.
backoffAlgorithm v1.3.0 source code is part of the FreeRTOS 202210.00 LTS release.
backoffAlgorithm v1.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

2.1. FreeRTOS 293

https://code.visualstudio.com
https://cspell.org/
https://marketplace.visualstudio.com/items?itemName=streetsidesoftware.code-spell-checker
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
https://github.com/FreeRTOS/backoffAlgorithm/tree/v1.3.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/backoffAlgorithm/tree/v1.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Reference example The example below shows how to use the backoffAlgorithm library on a
POSIX platform to retry a DNS resolution query for amazon.com.

#include "backoff algorithm.h”
#include <stdlib.h>

#include <string.h>

#include <netdb.h>

#include <unistd.h>

#include <time.h>

/* The maximum number of retries for the example code. */
#define RETRY_ MAX_ ATTEMPTS (5U)

/* The maximum back-off delay (in milliseconds) for between retries in the example. */
#define RETRY MAX_BACKOFF_DELAY MS (5000U)

/* The base back-off delay (in milliseconds) for retry configuration in the example. */
#define RETRY BACKOFF_BASE_MS (500U)

int main()
{
/* Variables used in this example. */
BackoffAlgorithmStatus_ t retryStatus = BackoffAlgorithmSuccess;
BackoffAlgorithmContext_ t retryParams;
char serverAddress|] = "amazon.com”;
uint16_ t nextRetryBackoff = 0;

int32_t dnsStatus = -1;

struct addrinfo hints;

struct addrinfo ** pListHead = NULL;
struct timespec tp;

/* Add hints to retrieve only TCP sockets in getaddrinfo. */
(void) memset(&hints, 0, sizeof(hints));

/* Address family of either IPv4 or IPv6. */
hints.ai_family = AF__ UNSPEC;

/* TCP Socket. */

hints.ai_socktype = (int32_t) SOCK_STREAM;
hints.ai_ protocol = IPPROTO__ TCP;

/* Initialize reconnect attempts and interval. */

BackoffAlgorithm_ InitializeParams(&retryParams,
RETRY_ BACKOFF_BASE MS,
RETRY MAX BACKOFF DELAY MS,
RETRY_MAX_ ATTEMPTS);

/* Seed the pseudo random number generator used in this example (with call to
* rand() function provided by ISO C standard library) for use in backoff period
* calculation when retrying failed DNS resolution. */

/* Get current time to seed pseudo random number generator. */
(void) clock gettime(CLOCK _REALTIME, &tp);

/* Seed pseudo random number generator with seconds. */
srand(tp.tv__sec);

do

/* Perform a DNS lookup on the given host name. */

dnsStatus = getaddrinfo(serverAddress, NULL, &hints, pListHead);

(continues on next page)

294 Chapter 2. RTOS

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

(continued from previous page)

/* Retry if DNS resolution query failed. */
if(dnsStatus !=0)

{

/* Generate a random number and get back-off value (in milliseconds) for the next retry.
* Note: It is recommended to use a random number generator that is seeded with

* device-specific entropy source so that backoff calculation across devices is different

* and possibility of network collision between devices attempting retries can be avoided.
*

* For the simplicity of this code example, the pseudo random number generator, rand|()
* function is used. */
retryStatus = BackoffAlgorithm__GetNextBackoff(&retryParams, rand(), &nextRetryBackoff);

/* Wait for the calculated backoff period before the next retry attempt of querying DNS.
* As usleep() takes nanoseconds as the parameter, we multiply the backoff period by 1000. */
(void) usleep(nextRetryBackoff * 1000U);

}

} while((dnsStatus != 0) && (retryStatus |= BackoffAlgorithmRetriesExhausted));

return dnsStatus;

Building the library A compiler that supports C90 or later such as gcc is required to build the
library.

Additionally, the library uses a header file introduced in ISO C99, stdint.h. For compilers that do
not provide this header file, the source/include directory contains stdint.readme, which can be
renamed to stdint.h to build the backoffAlgorithm library.

For instance, if the example above is copied to a file named example.c, gcc can be used like so:

gee -1 source/include example.c source/backoff algorithm.c -o example
./example

gcc can also produce an output file to be linked:

gce -1 source/include -c¢ source/backoff _algorithm.c

Building unit tests

Checkout Unity Submodule By default, the submodules in this repository are configured with
update=none in .gitmodules, to avoid increasing clone time and disk space usage of other reposi-
tories (like amazon-freertos that submodules this repository).

To build unit tests, the submodule dependency of Unity is required. Use the following command
to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/Unity

Platform Prerequisites
* For running unit tests
— C89 or later compiler like gcc
— CMake 3.13.0 or later

* For running the coverage target, gcov is additionally required.

2.1. FreeRTOS 295

https://github.com/aws/amazon-freertos

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Steps to build Unit Tests

1. Go to the root directory of this repository. (Make sure that the Unity submodule is cloned
as described above.)

Create build directory: mkdir build && cd build
Run cmake while inside build directory: cmake -S ../test
Run this command to build the library and unit tests: make all

The generated test executables will be present in build/bin/tests folder.

S S

Run ctest to execute all tests and view the test run summary.

Contributing See CONTRIBUTING.md for information on contributing.

2.1.4 corehttp

Clanguage HTTP client library designed for embedded platforms.

MCUXpresso SDK: coreHTTP Client Library

This repository is a fork of coreHTTP Client library (https://github.com/FreeRTOS/corehttp)(3.0.0).
Modifications have been made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig
added to enable coreHTTP Client repo sources build in MCUXpresso SDK. It is part of the MCUX-
presso SDK overall delivery which is composed of several sub-repositories/projects. Navigate
to the top/parent repository mcuxsdk-manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-
manifests) for the complete delivery of MCUXpresso SDK.

coreHTTP Client Library

This repository contains a C language HTTP client library designed for embedded platforms. It
has no dependencies on any additional libraries other than the standard C library, llhttp, and
a customer-implemented transport interface. This library is distributed under the MIT Open
Source License.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8. This library has also undergone both static code analysis from
Coverity static analysis, and validation of memory safety and data structure invariance through
the CBMC automated reasoning tool.

See memory requirements for this library here.
coreHTTP v3.0.0 source code is part of the FreeRTOS 202210.00 LTS release.
coreHTTP v2.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

coreHTTP Config File The HTTP client library exposes configuration macros that are required
for building the library. A list of all the configurations and their default values are defined in
core_http_config_defaults.h. To provide custom values for the configuration macros, a custom
config file named core_ http_ config.h can be provided by the user application to the library.

By default, a core_http_config.h custom config is required to build the library. To dis-
able this requirement and build the library with default configuration values, provide
HTTP_DO_NOT_USE_CUSTOM_CONFIG as a compile time preprocessor macro.

The HTTP client library can be built by either:

296 Chapter 2. RTOS

https://github.com/nodejs/llhttp
https://www.gnu.org/software/complexity/manual/complexity.html
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/coreHTTP/tree/v3.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/coreHTTP/tree/v2.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

* Defining a core_http_ config.h file in the application, and adding it to the include directories
for the library build. OR

* Defining the HTTP_ DO_NOT_USE CUSTOM_CONFIG preprocessor macro for the li-
brary build.

Building the Library The httpFilePaths.cmake file contains the information of all source files
and header include paths required to build the HTTP client library.

As mentioned in the previous section, either a custom config file (i.e. core http_config.h) OR
HTTP_DO_NOT_USE_CUSTOM__CONFIG macro needs to be provided to build the HTTP client
library.

For a CMake example of building the HTTP library with the httpFilePaths.cmake file, refer to the
coverity__analysis library target in test/CMakeLists.txt file.

Building Unit Tests

Platform Prerequisites
* For running unit tests, the following are required:
— C90 compiler like gcc
- CMake 3.13.0 or later
— Ruby 2.0.0 or later is required for this repository’s CMock test framework.
 For running the coverage target, the following are required:
- gcov

- lcov

Steps to build Unit Tests
1. Go to the root directory of this repository.
2. Run the cmake command: cmake -S test -B build -DBUILD CLONE_SUBMODULES=0ON
3. Run this command to build the library and unit tests: make -C build all
4. The generated test executables will be present in build/bin/tests folder.
5

. Run cd build && ctest to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material here.
The test/cbme/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Reference examples The AWS IoT Device SDK for Embedded C repository contains demos of
using the HTTP client library here on a POSIX platform. These can be used as reference examples
for the library API.

Documentation

2.1. FreeRTOS 297

https://github.com/ThrowTheSwitch/CMock
https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/http

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Existing Documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location

AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of coreHTTP may differ across repositories.

Generating Documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Contributing See CONTRIBUTING.md for information on contributing.

2.1.5 corejson

JSON parser.

Readme

MCUXpresso SDK: coreJSON Library This repository is a fork of coreJSON library
(https://github.com/FreeRTOS/corejson)(3.2.0). Modifications have been made to adapt to NXP
MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable core]JSON repo sources build
in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which is com-
posed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

coreJSON Library This repository contains the coreJSON library, a parser that strictly enforces
the ECMA-404 JSON standard and is suitable for low memory footprint embedded devices. The
core]JSON library is distributed under the MIT Open Source License.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations from mandatory rules in the MISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis from Coverity static analy-
sis, and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.
coreJSON v3.2.0 source code is part of the FreeRTOS 202210.00 LTS release.
coreJSON v3.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

Reference example

298 Chapter 2. RTOS

https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/coreHTTP/docs/doxygen/output/html/index.html
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/coreJSON/tree/v3.2.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/coreJSON/tree/v3.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

#include <stdio.h>
#include "core_ json.h

int main()

{

// Variables used in this example.

JSONStatus_ t result;

char buffer]] = 7{\”foo\”:\”abc\”,\”bar\”:{\ "foo\":\"xyz\"}}";
size t bufferLength = sizeof(buffer) - 1;

char queryKey|[] = "bar.foo”;

size_t queryKeyLength = sizeof(queryKey) - 1;

char * value;

size_t valueLength;

// Calling JSON_ Validate() is not necessary if the document is guaranteed to be valid.

result = JSON_ Validate(buffer, bufferLength);

if(result == JSONSuccess)
{

result = JSON__Search(buffer, bufferLength, queryKey, queryKeyLength,
&value, &valueLength);
}

if(result == JSONSuccess)
{

// The pointer ”value” will point to a location in the "buffer”.
char save = value[valueLength |;

// After saving the character, set it to a null byte for printing.
value[valueLength | = '"\0';

// "Found: bar.foo -> xyz” will be printed.

printf("Found: %s -> %s\n”, queryKey, value);

// Restore the original character.

value[valueLength | = save;

}

return 0;

}

A search may descend through nested objects when the queryKey contains matching key strings
joined by a separator; .. In the example above, bar has the value {"foo”:”’xyz”}. Therefore, a search
for query key bar.foo would output xyz.

Building coreJ]SON A compiler that supports C90 or later such as gcc is required to build the
library.

Additionally, the library uses 2 header files introduced in ISO C99, stdbool.h and stdint.h. For com-
pilers that do not provide this header file, the source/include directory contains stdbool.readme
and stdint.readme, which can be renamed to stdbool.h and stdint.h respectively.

For instance, if the example above is copied to a file named example.c, gcc can be used like so:

gee -1 source/include example.c source/core_ json.c -o example
./example

gcc can also produce an output file to be linked:

gce -1 source/include -c source/core_json.c

Documentation

2.1. FreeRTOS 299

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Existing documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location

AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of the coreJSON library may differ across repositories.

Generating documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Building unit tests

Checkout Unity Submodule By default, the submodules in this repository are configured with
update=none in .gitmodules, to avoid increasing clone time and disk space usage of other reposi-
tories (like amazon-freertos that submodules this repository).

To build unit tests, the submodule dependency of Unity is required. Use the following command
to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/Unity

Platform Prerequisites
* For running unit tests
— C90 compiler like gcc
— CMake 3.13.0 or later
— Ruby 2.0.0 or later is additionally required for the Unity test framework (that we use).

* For running the coverage target, gcov is additionally required.

Steps to build Unit Tests

1. Go to the root directory of this repository. (Make sure that the Unity submodule is cloned
as described above.)

Create build directory: mkdir build && cd build
Run cmake while inside build directory: cmake -S ../test
Run this command to build the library and unit tests: make all

The generated test executables will be present in build/bin/tests folder.

SEERL S

Run ctest to execute all tests and view the test run summary.

300 Chapter 2. RTOS

https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/coreJSON/docs/doxygen/output/html/index.html
https://github.com/aws/amazon-freertos

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

CBMC To learn more about CBMC and proofs specifically, review the training material here.
The test/cbme/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Contributing See CONTRIBUTING.md for information on contributing.

2.1.6 coremqtt

MQTT publish/subscribe messaging library.

MCUXpresso SDK: coreMQTT Library

This repository is a fork of coreMQTT library (https://github.com/FreeRTOS/coremqtt)(2.1.1).
Modifications have been made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kcon-
fig added to enable coreMQTT repo sources build in MCUXpresso SDK. It is part of the MCUX-
presso SDK overall delivery which is composed of several sub-repositories/projects. Navigate
to the top/parent repository mcuxsdk-manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-
manifests) for the complete delivery of MCUXpresso SDK.

coreMQTT Client Library

This repository contains the coreMQTT library that has been optimized for a low memory foot-
print. The coreMQTT library is compliant with the MQTT 3.1.1 standard. It has no dependencies
on any additional libraries other than the standard C library, a customer-implemented network
transport interface, and optionally a user-implemented platform time function. This library is
distributed under the MIT Open Source License.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations from mandatory rules in the MISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis from Coverity static analy-
sis, and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.
coreMQTT v2.1.1 source code is part of the FreeRTOS 202210.01 LTS release.

MQTT Config File The MQTT client library exposes build configuration macros that are re-
quired for building the library. A list of all the configurations and their default values are de-
fined in core_mgqtt_config_defaults.h. To provide custom values for the configuration macros, a
custom config file named core_mqtt_ config.h can be provided by the application to the library.

By default, a core_mqtt_config.h custom config is required to build the library. To dis-
able this requirement and build the library with default configuration values, provide
MQTT_DO_NOT_USE_CUSTOM_CONFIG as a compile time preprocessor macro.

Thus, the MQTT library can be built by either:

* Defining a core_ mqtt_ config.h file in the application, and adding it to the include directories
list of the library
OR

* Defining the MQTT_DO_NOT_USE_CUSTOM_ CONFIG preprocessor macro for the li-
brary build.

2.1. FreeRTOS 301

https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/coreMQTT/tree/v2.1.1/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.01-LTS

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Sending metrics to AWS IoT When establishing a connection with AWS IoT, users can option-
ally report the Operating System, Hardware Platform and MQTT client version information of
their device to AWS. This information can help AWS IoT provide faster issue resolution and tech-
nical support. If users want to report this information, they can send a specially formatted string
(see below) in the username field of the MQTT CONNECT packet.

Format

The format of the username string with metrics is:

<Actual Username>?SDK=<0OS Name>& Version=<OS _Version>&Platform=<Hardware Platform>&
—MQTTLib=<MQTT_ Library_name>@Q<MQTT__Library_ version>
Where

» <Actual_Username> is the actual username used for authentication, if username and pass-
word are used for authentication. When username and password based authentication is
not used, this is an empty value.

* <OS_Name> is the Operating System the application is running on (e.g. FreeRTOS)
» <0OS_Version> is the version number of the Operating System (e.g. V10.4.3)
» <Hardware_Platform> is the Hardware Platform the application is running on (e.g. Win-
Sim)
* <MQTT_Library_name> is the MQTT Client library being used (e.g. coreMQTT)
* <MQTT_Library_version> is the version of the MQTT Client library being used (e.g. 1.0.2)
Example

* Actual Username = “iotuser”, OS_Name = FreeRTOS, OS_Version = V10.4.3, Hard-
ware_Platform_Name = WinSim, MQTT_Library_Name = coremqtt, MQTT_Library_version
= 2.1.1. If username is not used, then “iotuser” can be removed.

/* Username string:
* jotuser?’SDK=FreeRTOS& Version=v10.4.3&Platform=WinSim&MQTTLib=coremqtt@2.1.1

*/

#define OS_NAME "FreeRTOS”

#define OS_ VERSION ”V10.4.3”

#define HARDWARE PLATFORM_NAME ”WinSim”

#define MQTT__LIB ?coremqtt@2.1.1”

#define USERNAME_STRING “iotuser’SDK=" OS__NAME "&Version=" OS_ VERSION 7”&

—Platform=" HARDWARE_PLATFORM_NAME ”&MQTTLib=" MQTT_LIB
#define USERNAME_STRING_LENGTH ((uint16_t) (sizeof(USERNAME_STRING)- 1))

MQTTConnectInfo_t connectInfo;

connectInfo.pUserName = USERNAME__ STRING;

connectInfo.userNameLength = USERNAME_STRING_LENGTH;

mqttStatus = MQTT__Connect(pMqgttContext, &connectInfo, NULL, CONNACK_RECV_TIMEOUT_MS,,,
—»pSessionPresent);

Upgrading to v2.0.0 and above With coreMQTT versions >=v2.0.0, there are breaking changes.
Please refer to the coreMQTT version >=v2.0.0 Migration Guide.

Building the Library The mgqttFilePaths.cmake file contains the information of all source files
and the header include path required to build the MQTT library.

Additionally, the MQTT library requires two header files that are not part of the ISO C90 stan-
dard library, stdbool.h and stdint.h. For compilers that do not provide these header files, the

302 Chapter 2. RTOS

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

source/include directory contains the files stdbool.readme and stdint.readme, which can be re-
named to stdbool.h and stdint.h, respectively, to provide the type definitions required by MQTT.

As mentioned in the previous section, either a custom config file (i.e. core_mqtt_config.h) OR
MQTT_DO_NOT_USE_CUSTOM__CONFIG macro needs to be provided to build the MQTT li-
brary.

For a CMake example of building the MQTT library with the mqttFilePaths.cmake file, refer to the
coverity analysis library target in test/CMakeLists.txt file.

Building Unit Tests

Checkout CMock Submodule By default, the submodules in this repository are configured
with update=none in .gitmodules to avoid increasing clone time and disk space usage of other
repositories (like amazon-freertos that submodules this repository).

To build unit tests, the submodule dependency of CMock is required. Use the following command
to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/CMock

Platform Prerequisites
* Docker
or the following:
* For running unit tests
— C90 compiler like gcc
— CMake 3.13.0 or later

— Ruby 2.0.0 or later is additionally required for the CMock test framework (that we
use).

« For running the coverage target, gcov and lcov are additionally required.

Steps to build Unit Tests
1. If using docker, launch the container:
1. docker build -t coremqtt .
2. docker run -it -v "$PWD?”: /workspaces/coreMQTT -w /workspaces/coreMQTT coremqtt

2. Go to the root directory of this repository. (Make sure that the CMock submodule is cloned
as described above)

Run the cmake command: cmake -S test -B build
Run this command to build the library and unit tests: make -C build all

The generated test executables will be present in build/bin/tests folder.

o Uk w

Run cd build && ctest to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material here.
The test/cbme/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

2.1. FreeRTOS 303

https://github.com/aws/amazon-freertos
https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Reference examples Please refer to the demos of the MQTT client library in the following
locations for reference examples on POSIX and FreeRTOS platforms:

Plat- Location Transport Interface Implementation

form

POSIX AWS IoT Device SDK for Embed- POSIX sockets for TCP/IP and OpenSSL for TLS
ded C stack

FreeR- FreeRTOS/FreeRTOS FreeRTOS+TCP for TCP/IP and mbedTLS for

TOS TLS stack

FreeR- FreeRTOS AWS Reference Inte- Based on Secure Sockets Abstraction
TOS grations

Documentation

Existing Documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location

AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of coreMQTT may differ across repositories.

Generating Documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Contributing See CONTRIBUTING.md for information on contributing.

2.1.7 corepkesll

PKCS #11 key management library.

Readme

MCUXpresso SDK: corePKCS11 Library This repository is a fork of PKCS #11 key management
library (https://github.com/FreeRTOS/corePKCS11/tree/v3.5.0)(v3.5.0). Modifications have been
made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable corepkes11
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

304 Chapter 2. RTOS

https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/mqtt
https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/mqtt
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo
https://github.com/aws/amazon-freertos/tree/main/demos/coreMQTT
https://github.com/aws/amazon-freertos/tree/main/demos/coreMQTT
https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/coreMQTT/docs/doxygen/output/html/index.html

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

corePKCS11 Library PKCS #11 is a standardized and widely used API for manipulating com-
mon cryptographic objects. It is important because the functions it specifies allow application
software to use, create, modify, and delete cryptographic objects, without ever exposing those
objects to the application’s memory. For example, FreeRTOS AWS reference integrations use a
small subset of the PKCS #11 API to, among other things, access the secret (private) key neces-
sary to create a network connection that is authenticated and secured by the Transport Layer
Security (TLS) protocol — without the application ever ‘seeing’ the key.

The Cryptoki or PKCS #11 standard defines a platform-independent API to manage and use cryp-
tographic tokens. The name, “PKCS #11”, is used interchangeably to refer to the API itself and
the standard which defines it.

This repository contains a software based mock implementation of the PKCS #11 interface (API)
that uses the cryptographic functionality provided by Mbed TLS. Using a software mock enables
rapid development and flexibility, but it is expected that the mock be replaced by an implemen-
tation specific to your chosen secure key storage in production devices.

Only a subset of the PKCS #11 standard is implemented, with a focus on operations involving
asymmetric keys, random number generation, and hashing.

The targeted use cases include certificate and key management for TLS authentication and code-
sign signature verification, on small embedded devices.

corePKCS11 is implemented on PKCS #11 v2.4.0, the full PKCS #11 standard can be found on the
oasis website.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations from mandatory rules in the MISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis from Coverity static analysis
and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.
corePKCS11 v3.5.0 source code is part of the FreeRTOS 202210.00 LTS release.
corePKCS11 v3.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

Purpose Generally vendors for secure cryptoprocessors such as Trusted Platform Module
(TPM), Hardware Security Module (HSM), Secure Element, or any other type of secure hard-
ware enclave, distribute a PKCS #11 implementation with the hardware. The purpose of the
corePKCS11 software only mock library is therefore to provide a non hardware specific PKCS
#11 implementation that allows for rapid prototyping and development before switching to a
cryptoprocessor specific PKCS #11 implementation in production devices.

Since the PKCS #11 interface is defined as part of the PKCS #11 specification replacing this li-
brary with another implementation should require little porting effort, as the interface will not
change. The system tests distributed in this repository can be leveraged to verify the behavior
of a different implementation is similar to corePKCS11.

corePKCS11 Configuration The corePKCS11 library exposes preprocessor macros which must
be defined prior to building the library. A list of all the configurations and their default values
are defined in the doxygen documentation for this library.

Build Prerequisites

Library Usage For building the library the following are required:
* A C99 compiler

2.1. FreeRTOS 305

https://en.wikipedia.org/wiki/PKCS_11
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/corePKCS11/tree/v3.5.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/corePKCS11/tree/v3.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS
https://en.wikipedia.org/wiki/Trusted_Platform_Module
https://en.wikipedia.org/wiki/Hardware_security_module
https://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

* mbedcrypto library from mbedtls version 2.x or 3.x.
» pkecs11 API header(s) available from OASIS or OpenSC

Optionally, variables from the pkcsFilePaths.cmake file may be referenced if your project uses
cmake.

Integration and Unit Tests In order to run the integration and unit test suites the following
are dependencies are necessary:

* C Compiler
CMake 3.13.0 or later
* Ruby 2.0.0 or later required by CMock.

* Python 3 required for configuring mbedtls.
* git required for fetching dependencies.
* GNU Make or Ninja

The mbedtls, CMock, and Unity libraries are downloaded and built automatically using the cmake
FetchContent feature.

Coverage Measurement and Instrumentation The following software is required to run the
coverage target:

» Linux, MacOS, or another POSIX-like environment.

* A recent version of GCC or Clang with support for gcov-like coverage instrumentation.
* gcov binary corresponding to your chosen compiler

* lcov from the Linux Test Project

» perl needed to run the lcov utility.

Coverage builds are validated on recent versions of Ubuntu Linux.

Running the Integration and Unit Tests
1. Navigate to the root directory of this repository in your shell.
2. Run cmake to construct a build tree: cmake -S test -B build

* You may specify your preferred build tool by appending -G'Unix Makefiles' or -GNinja
to the command above.

* You may append -DUNIT__TESTS=0 or -DSYSTEM_ TESTS=0 to disable Unit Tests or
Integration Tests respectively.

3. Build the test binaries: cmake --build ./build --target all

4. Run ctest --test-dir ./build or cmake --build ./build --target test to run the tests without captur-
ing coverage.

5. Run cmake --build ./build --target coverage to run the tests and capture coverage data.

CBMC To learn more about CBMC and proofs specifically, review the training material here.
The test/cbme/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

306 Chapter 2. RTOS

https://github.com/ARMmbed/mbedtls
https://github.com/oasis-tcs/pkcs11
https://github.com/OpenSC/libp11/blob/master/src/pkcs11.h
https://github.com/linux-test-project/lcov
https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Reference examples The FreeRTOS-Labs repository contains demos using the PKCS #11 li-
brary here using FreeRTOS on the Windows simulator platform. These can be used as reference
examples for the library APL

Porting Guide Documentation for porting corePKCS11 to a new platform can be found on the
AWS docs web page.

corePKCS11 is not meant to be ported to projects that have a TPM, HSM, or other hardware for
offloading crypto-processing. This library is specifically meant to be used for development and

prototyping.

Related Example Implementations These projects implement the PKCS #11 interface on real
hardware and have similar behavior to corePKCS11. It is preferred to use these, over coreP-
KCS11, as they allow for offloading Cryptography to separate hardware.

« ARM'’s Platform Security Architecture.
* Microchip’s cryptoauthlib.
* Infineon’s Optiga Trust X.

Documentation

Existing Documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location

AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of corePKCS11 may differ across repositories.

Generating Documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Security See CONTRIBUTING for more information.

License This library is licensed under the MIT-0 License. See the LICENSE file.

2.1.8 freertos-plus-tcp

Open source RTOS FreeRTOS Plus TCP.

2.1. FreeRTOS 307

https://github.com/FreeRTOS/FreeRTOS-Labs/tree/master/FreeRTOS-Plus/Demo/FreeRTOS_Plus_PKCS11_Windows_Simulator/examples
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-pkcs.html
https://github.com/Linaro/freertos-pkcs11-psa
https://github.com/MicrochipTech/cryptoauthlib
https://github.com/aws/amazon-freertos/blob/main/vendors/infineon/secure_elements/pkcs11/iot_pkcs11_trustx.c
https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/corePKCS11/docs/doxygen/output/html/index.html

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Readme

MCUXpresso SDK: FreeRTOS-Plus-TCP Library This repository is a fork of FreeRTOS-Plus-TCP
library (https://github.com/FreeRTOS/freertos-plus-tcp)(4.3.3). Modifications have been made to
adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable FreeRTOS-Plus-TCP
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

FreeRTOS-Plus-TCP Library FreeRTOS-Plus-TCP is a lightweight TCP/IP stack for FreeRTOS. It
provides a familiar Berkeley sockets interface, making it as simple to use and learn as possi-
ble. FreeRTOS-Plus-TCP’s features and RAM footprint are fully scalable, making FreeRTOS-Plus-
TCP equally applicable to smaller lower throughput microcontrollers as well as larger higher
throughput microprocessors.

This library has undergone static code analysis and checks for compliance with the MISRA cod-
ing standard. Any deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. The library is validated for memory safety and data structure invariance through
the CBMC automated reasoning tool for the functions that parse data originating from the net-
work. The library is also protocol tested using Maxwell protocol tester for both IPv4 and IPv6.

FreeRTOS-Plus-TCP Library V4.2.2 source code is part of the FreeRTOS 202406.01 LTS re-
lease.

Getting started The easiest way to use version 4.0.0 and later of FreeRTOS-Plus-TCP is to refer
the Getting started Guide (found here) Another way is to start with the pre-configured IPv4 Win-
dows Simulator demo (found in this directory) or IPv6 Multi-endpoint Windows Simulator demo
(found in this directory). That way you will have the correct FreeRTOS source files included, and
the correct include paths configured. Once a demo application is building and executing you can
remove the demo application files, and start to add in your own application source files. See the
FreeRTOS Kernel Quick Start Guide for detailed instructions and other useful links.

Additionally, for FreeRTOS-Plus-TCP source code organization refer to the Documentation, and
API Reference.

Getting help If you have any questions or need assistance troubleshooting your FreeRTOS
project, we have an active community that can help on the FreeRTOS Community Support Forum.
Please also refer to FAQ for frequently asked questions.

Also see the Submitting a bugs/feature request section of CONTRIBUTING.md for more details.

Note: All the remaining sections are generic and applies to all the versions from V3.0.0 onwards.

Upgrading to V4.3.0 and above For users of STM32 network interfaces:

Starting from version V4.3.0, the STM32 network interfaces have been consolidated into a sin-
gle unified implementation located at source /portable/NetworkInterface/STM32/NetworkInterface.c,
supporting STM32 F4, F7, and H7 series microcontrollers, with newly added support for STM32
H5. The new interface has been tested with the STM32 HAL Ethernet (ETH) drivers, avail-
able at source/portable/NetworkInterface/STM32/Drivers. For compatibility, the legacy interfaces
(STM32Fxx and STM32Hxx) have been retained and relocated to source/portable/NetworkInterface/
STM32/Legacy.

308 Chapter 2. RTOS

https://www.misra.org.uk/
https://www.misra.org.uk/
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/MISRA.md
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/MISRA.md
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/tree/V4.2.2/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202406.01-LTS
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/GettingStarted.md
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/FreeRTOS_Plus_TCP_Minimal_Windows_Simulator
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/FreeRTOS_Plus_TCP_IPv6_Demo/IPv6_Multi_WinSim_demo
https://www.freertos.org/Documentation/01-FreeRTOS-quick-start/01-Beginners-guide/02-Quick-start-guide
http://www.FreeRTOS.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/TCP_Networking_Tutorial.html
https://freertos.org/Documentation/03-Libraries/02-FreeRTOS-plus/02-FreeRTOS-plus-TCP/09-API-reference/01-FreeRTOS-plus-TCP-APIs
https://forums.freertos.org
https://www.freertos.org/Why-FreeRTOS/FAQs
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/.github/CONTRIBUTING.md#submitting-a-bugsfeature-request

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Upgrading to V3.0.0 and V3.1.0 In version 3.0.0 or 3.1.0, the folder structure of FreeRTOS-Plus-
TCP has changed and the files have been broken down into smaller logically separated mod-
ules. This change makes the code more modular and conducive to unit-tests. FreeRTOS-Plus-TCP
V3.0.0 improves the robustness, security, and modularity of the library. Version 3.0.0 adds com-
prehensive unit test coverage for all lines and branches of code and has undergone protocol
testing, and penetration testing by AWS Security to reduce the exposure to security vulnerabili-
ties. Additionally, the source files have been moved to a source directory. This change requires
modification of any existing project(s) to include the modified source files and directories.

FreeRTOS-Plus-TCP V3.1.0 source code(.c .h) is part of the FreeRTOS 202210.00 LTS release.

Generating pre V3.0.0 folder structure for backward compatibility: If you wish to continue
using a version earlier than V3.0.0 i.e. continue to use your existing source code organization, a
script is provided to generate the folder structure similar to this.

Note: After running the script, while the .c files will have same names as the pre V3.0.0 source,
the files in the include directory will have different names and the number of files will differ as
well. This should, however, not pose any problems to most projects as projects generally include
all files in a given directory.

Running the script to generate pre V3.0.0 folder structure: For running the script, you will need
Python version > 3.7. You can download/install it from here.

Once python is downloaded and installed, you can verify the version from your termi-
nal/command window by typing python --version.

To run the script, you should switch to the FreeRTOS-Plus-TCP directory Then run python <Path/
to/the/script>/GenerateOriginalFiles.py.

To consume FreeRTOS+TCP

Consume with CMake If using CMake, it is recommended to use this repository using Fetch-
Content. Add the following into your project’s main or a subdirectory’s CMakeLists.txt:

* Define the source and version/tag you want to use:

FetchContent_ Declare(freertos_plus_ tcp
GIT_ REPOSITORY https://github.com/FreeRTOS/FreeRTOS-Plus-TCP.git
GIT_TAG main #Note: Best practice to use specific git-hash or tagged version
GIT_SUBMODULES ”” # Don't grab any submodules since not latest

)

* Configure the FreeRTOS-Kernel and make it available
— this particular example supports a native and cross-compiled build option.

Select the native compile PORT
set(FREERTOS_PLUS_TCP_NETWORK_IF "POSIX” CACHE STRING ”” FORCE)
Or: select a cross-compile PORT
if (CMAKE__CROSSCOMPILING)
Eg. STM32Hxx version of port
set(FREERTOS_PLUS_TCP_NETWORK_IF "STM32HXX” CACHE STRING ”” FORCE)
endif()

FetchContent_ MakeAvailable(freertos_ plus_ tep)

Consuming stand-alone This repository uses Git Submodules to bring in dependent compo-
nents.

2.1. FreeRTOS 309

https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/tree/V3.1.0
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/tree/f118c8415b4373e3d6e6dbd2d5a116f7eaf27b63
https://www.python.org/downloads/
https://git-scm.com/book/en/v2/Git-Tools-Submodules

MCUXpresso SDK Documentation, Release 25.12.00-pvw1

Note: If you download the ZIP file provided by GitHub UL you will not get the contents of the
submodules. (The ZIP file is also not a valid Git repository)

To clone using HTTPS:

git clone https://github.com/FreeRTOS /FreeRTOS-Plus-TCP git ./FreeRTOS-Plus-TCP
cd ./FreeRTOS-Plus-TCP

git submodule update --checkout —-init --recursive tools/CMock test/FreeRTOS-Kernel
Using SSH:

git clone git@Qgithub.com:FreeRTOS/FreeRTOS-Plus-TCP.git ./FreeRTOS-Plus-TCP
cd ./FreeRTOS-Plus-TCP
git submodule update --checkout —-init --recursive tools/CMock test/FreeRTOS-Kernel

Porting The porting guide is available on this page.

Repository structure This repository contains the FreeRTOS-Plus-TCP repository and a num-
ber of supplementary libraries for testing/PR Checks. Below is the breakdown of what each di-
rectory contains:

* tools

— This directory contains the tools and related files (CMock/uncrustify) required to run
tests/checks on the TCP source code.

* tests

— This directory contains all the tests (unit tests and CBMC) and the dependencies
(FreeRTOS-Kernel/Litani-port) the tests require.

* source/portable

— This directory contains the portable files required to compile the FreeRTOS-Plus-TCP
source code for different hardware/compilers.

* source/include
— The include directory has all the ‘core’ header files of FreeRTOS-Plus-TCP source.
* source

— This directory contains all the [.c] source files.

Note At this time it is recommended to use BufferAllocation_2.c in which case it is essential to
use the heap_4.c memory allocation scheme. See memory management.

Kernel sources The FreeRTOS Kernel Source is in FreeRTOS/FreeRTOS-Kernel repository, and
it is consumed by testing/PR checks as a submodule in this repository.

The version of the FreeRTOS Kernel Source in use could be accessed at ./test/FreeRTOS-Kernel
directory.

CBMC The test/cbme/proofs directory contains CBMC proofs.
To learn more about CBMC and proofs specifically, review the training material here.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

310 Chapter 2. RTOS

https://www.freertos.org/Documentation/03-Libraries/02-FreeRTOS-plus/02-FreeRTOS-plus-TCP/10-Porting/01-FreeRTOS_TCP_Porting
https://github.com/FreeRTOS/FreeRTOS-Kernel
https://github.com/awslabs/aws-build-accumulator
http://www.FreeRTOS.org/a00111.html
https://github.com/FreeRTOS/FreeRTOS-Kernel
https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html

	Middleware
	Boot
	MCUXpresso SDK : mcuxsdk-middleware-mcuboot_opensource
	Overview
	Documentation
	Setup
	Contribution
	NXP Fork

	MCUboot
	MCUboot How-tos
	Roadmap
	Source files
	Joining the project

	Connectivity
	lwIP
	The NXP lwIP Port
	Link state
	Rx task
	Disabling Rx interrupt when out of buffers
	Limit the number of packets read out from the driver at once on bare metal.
	Helper functions

	eIQ
	eIQ
	eIQ TensorFlow Lite for Micro Library User Guide
	Overview
	TensorFlow Lite for Microcontrollers
	Build Status
	Official Builds
	Community Supported TFLM Examples
	Community Supported Kernels and Unit Tests

	Contributing
	Getting Help
	Additional Documentation
	RFCs
	Deployment
	Example applications
	Model Conversion to TensorFlow Lite Format
	Model Conversion for NXP eIQ Neutron NPU
	Example: Converting a Quantized TensorFlow Lite Model for Neutron NPU
	Run and debug eIQ HiFi4 and HiFi1 DSP examples using Xplorer IDE
	Prepare CM33 Core for the examples
	Prepare DSP core for the examples

	Running an inference
	Converting a model to a C language header file {#EXAMPLE_4 .section}
	NPU inference {#npu_infer .section}
	Adjusting the tensor arena size {#adjust_arena .section}

	Code size optimization
	Register only used operators in TensorFlow Lite Micro {#SECTION_SS1_DJQ_QPB .section}

	Note about the source code in the document

	eIQ ExecuTorch Library User Guide
	Overview
	Supported platforms:
	Installation
	ExecuTorch for Ahead of Time model preparation
	Installation
	Neutron Converter
	Installation
	MCUXpresso SDK

	Getting the MCUXpresso SDK with eIQ ExecuTorch
	PyTorch Model Conversion to ExecuTorch Format
	MCUXpresso SDK Example applications
	How to build and run executorch_cifarnet example
	Convert the model and example input to C array
	Build, Deploy and Run
	How to build executorch_lib example

	File System
	FatFs
	MCUXpresso SDK : mcuxsdk-middleware-fatfs
	Overview
	Documentation
	Setup
	Contribution
	Repo Specific Content

	Changelog FatFs
	[R0.15_rev0]
	[R0.14b_rev1]
	[R0.14b_rev0]
	[R0.14a_rev0]
	[R0.14_rev0]
	[R0.13c_rev0]
	[R0.13b_rev0]
	[R0.13a_rev0]
	[R0.12c_rev1]
	[R0.12c_rev0]
	[R0.12b_rev0]
	[R0.11a]

	Motor Control
	FreeMASTER
	Introduction
	What is FreeMASTER?
	Driver version 3
	Target platforms
	Replacing existing drivers
	Clocks, pins, and peripheral initialization
	MCUXpresso SDK
	MCUXpresso SDK on GitHub
	FreeMASTER in Zephyr

	Example applications
	MCUX SDK Example applications
	Zephyr sample spplications

	Description
	Features
	Board Detection
	Memory Read
	Memory Write
	Masked Memory Write
	Oscilloscope
	Recorder
	TSA
	TSA Safety
	Application commands
	Pipes
	Serial single-wire operation
	Multi-session support
	Zephyr-specific
	Dedicated communication task
	Zephyr shell and logging over FreeMASTER pipe
	Automatic TSA tables

	Driver files
	Driver configuration
	Configurable items
	Interrupt modes
	Value Type
	Description
	Protocol transport
	Value Type
	Description
	Serial transport
	FMSTR_SERIAL_DRV
	Value Type
	Description
	FMSTR_SERIAL_BASE
	Value Type
	Description
	FMSTR_COMM_BUFFER_SIZE
	Value Type
	Description
	FMSTR_COMM_RQUEUE_SIZE
	Value Type
	Description
	FMSTR_SERIAL_SINGLEWIRE
	Value Type
	Description
	CAN Bus transport
	FMSTR_CAN_DRV
	Value Type
	Description
	FMSTR_CAN_BASE
	Value Type
	Description
	FMSTR_CAN_CMDID
	Value Type
	Description
	FMSTR_CAN_RSPID
	Value Type
	Description
	FMSTR_FLEXCAN_TXMB
	Value Type
	Description
	FMSTR_FLEXCAN_RXMB
	Value Type
	Description
	Network transport
	FMSTR_NET_DRV
	Value Type
	Description
	FMSTR_NET_PORT
	Value Type
	Description
	FMSTR_NET_BLOCKING_TIMEOUT
	Value Type
	Description
	FMSTR_NET_AUTODISCOVERY
	Value Type
	Description
	Debugging options
	FMSTR_DISABLE
	Value Type
	Description
	FMSTR_DEBUG_TX
	Value Type
	Description
	FMSTR_APPLICATION_STR
	Value Type
	Description
	Memory access
	FMSTR_USE_READMEM
	Value Type
	Description
	FMSTR_USE_WRITEMEM
	Value Type
	Description
	Oscilloscope options
	FMSTR_USE_SCOPE
	Value Type
	Description
	FMSTR_MAX_SCOPE_VARS
	Value Type
	Description
	Recorder options
	FMSTR_USE_RECORDER
	Value Type
	Description
	FMSTR_REC_BUFF_SIZE
	Value Type
	Description
	FMSTR_REC_TIMEBASE
	Value Type
	Description
	FMSTR_REC_FLOAT_TRIG
	Value Type
	Description
	Application Commands options
	FMSTR_USE_APPCMD
	Value Type
	Description
	FMSTR_APPCMD_BUFF_SIZE
	Value Type
	Description
	FMSTR_MAX_APPCMD_CALLS
	Value Type
	Description
	TSA options
	FMSTR_USE_TSA
	Value Type
	Description
	FMSTR_USE_TSA_SAFETY
	Value Type
	Description
	FMSTR_USE_TSA_INROM
	Value Type
	Description
	FMSTR_USE_TSA_DYNAMIC
	Value Type
	Description
	Pipes options
	FMSTR_USE_PIPES
	Value Type
	Description
	FMSTR_MAX_PIPES_COUNT
	Value Type
	Description

	Driver interrupt modes
	Completely Interrupt-Driven operation
	Mixed Interrupt and Polling Modes
	Completely Poll-driven

	Data types
	Communication interface initialization
	FreeMASTER Recorder calls
	Driver usage
	Communication troubleshooting

	Driver API
	Control API
	FMSTR_Init
	Prototype
	Description
	FMSTR_Poll
	Prototype
	Description
	FMSTR_SerialIsr / FMSTR_CanIsr
	Prototype
	Description

	Recorder API
	FMSTR_RecorderCreate
	Prototype
	Description
	FMSTR_Recorder
	Prototype
	Description
	FMSTR_RecorderTrigger
	Prototype
	Description

	Fast Recorder API
	TSA Tables
	TSA table definition
	TSA descriptor parameters
	TSA variable types
	TSA table list
	TSA Active Content entries

	TSA API
	FMSTR_SetUpTsaBuff
	Prototype
	Arguments
	Description
	FMSTR_TsaAddVar
	Prototype
	Arguments
	Description

	Application Commands API
	FMSTR_GetAppCmd
	Prototype
	Description
	FMSTR_GetAppCmdData
	Prototype
	Arguments
	Description
	FMSTR_AppCmdAck
	Prototype
	Arguments
	Description
	FMSTR_AppCmdSetResponseData
	Prototype
	Arguments
	Description
	FMSTR_RegisterAppCmdCall
	Prototype
	Arguments
	Return value
	Description

	Pipes API
	FMSTR_PipeOpen
	Prototype
	Arguments
	Description
	FMSTR_PipeClose
	Prototype
	Arguments
	Description
	FMSTR_PipeWrite
	Prototype
	Arguments
	Description
	FMSTR_PipeRead
	Prototype
	Arguments
	Description

	API data types
	Public common types
	Public TSA types
	Public Pipes types
	Internal types

	Document references
	Links
	Documents
	Revision history

	Multimedia
	Audio Voice
	Audio Voice Components
	MCUXpresso SDK : audio-voice-components
	Overview
	Documentation
	Setup
	Contribution
	Overview
	Content
	Asynchronous Sample Rate Converter
	Synchronous Sample Rate Converter
	Opus
	Opus File
	Ogg Container
	Decoders
	AAC
	FLAC
	MP3
	WAV
	Zephyr build

	AAC decoder
	AAC decoder features
	Specification and reference
	Performance
	Memory information
	CPU usage

	API Usage of AAC Decoder
	Overview
	Configuration
	Build Options
	Buffer Allocation
	Initialization
	Decoding
	Seeking
	Callback Usage
	Read Callback API
	Seek Callback API
	Get File Position Callback API

	FLAC decoder
	FLAC decoder features
	Specification and reference
	Official website
	Inbound licensing
	Performance
	Memory information
	CPU usage
	Following test cases are performed:

	API Usage of FLAC Decoder
	Overview
	Configuration
	Build Options
	Buffer Allocation
	Initialization
	Decoding
	Seeking
	Callback Usage
	Read Callback API
	Seek Callback API
	Get File Position Callback API

	MP3 decoder
	MP3 decoder features
	Performance
	Memory information
	CPU usage

	API Usage of MP3 Decoder
	Overview
	Configuration
	Build Options
	Buffer Allocation
	Initialization
	Decoding
	Seeking
	Callback Usage
	Read Callback API
	Seek Callback API
	Get File Position Callback API

	WAV decoder
	WAV decoder features
	Performance
	Memory information
	CPU usage
	Following test cases were performed:

	API Usage of WAV Decoder
	Overview
	Configuration
	Build Options
	Buffer Allocation
	Initialization
	Decoding
	Seeking
	Callback Usage
	Read Callback API
	Seek Callback API
	Get File Position Callback API

	Synchronous Sample Rate Converter
	Introduction
	Acronyms
	Performance figures
	Resource usage
	Memory requirements
	Processing requirements
	On Arm7 and Arm9
	On Arm9e and XScale
	On Cortex-A8 for worst case of 48000 Hz to 44100 Hz
	Application programmers interface (API)
	Type definitions
	Types for allocation of instance and scratch memory
	LVM_Fs_en
	LVM_Format_en
	SSRC_Quality_en
	Instance parameters
	Nr of samples mode
	Function return status
	Functions
	SSRC_GetNrSamples
	SSRC_GetScratchSize
	SSRC_Init
	SSRC_SetGains
	SSRC_Process
	SSRC_Process_D32
	Dynamic function usage
	Define the number of samples to be used on input and output
	Allocate scratch memory
	Initialize the SSRC instance
	Process samples
	Destroy the SSRC instance
	Reentrancy
	Additional user information
	Attenuation of the signal
	Notes on integration
	Example application
	Integration test
	Bit accurate test
	THD+N measurement

	Maestro Audio Framework
	MCUXpresso SDK : Maestro
	Overview
	Documentation
	Setup
	Contribution
	Introduction
	Maestro on Zephyr
	Maestro on FreeRTOS
	Supported examples
	Example applications overview
	File structure

	Maestro Audio Framework Programmer’s Guide
	Introduction
	Architecture overview
	Pipeline
	Elements
	Add a new element type
	Add a new element index
	Pads
	Internal communication
	Decoders and encoders
	Common codec interface
	Using the CCI to interface with Metadata
	Using the CCI to interface with Decoders
	Adding new decoders to the CCI
	Common encoder interface
	Maestro performance
	Memory information
	CPU usage

	CEI encoder
	Header files
	Instantiating the element
	Element properties
	CEI definition - implementing your own encoder

	Maestro playback example
	Table of content
	Overview
	Hardware requirements
	Hardware modifications
	Preparation
	Running the demo
	Example configuration
	Functionality
	States
	Commands in detail
	help, version
	file stop
	file pause
	file volume <volume>
	file seek <seek_time>
	file play <filename>
	file list
	file info
	Processing Time

	Maestro record example
	Table of content
	Overview
	Hardware requirements
	Hardware modifications
	Preparation
	Running the demo
	Example configuration
	Functionality
	States
	Commands in detail
	help, version
	record_mic audio <time>
	record_mic file <time>/record_mic <file_name> <time>
	record_mic vit <time> <language>
	opus_encode
	Processing Time

	Maestro sync example
	Table of content
	Overview
	Hardware requirements
	Hardware modifications
	Preparation
	Running the demo
	Example configuration
	Functionality
	States
	Commands in detail
	help, version
	start [nosdcard]
	stop
	debug [on|off]

	Maestro USB microphone example
	Table of content
	Overview
	Hardware requirements
	Hardware modifications
	Preparation
	Running the demo
	Example configuration
	Functionality
	States
	Commands in detail
	help, version
	usb_mic <seconds>

	Maestro USB speaker example
	Table of content
	Overview
	Hardware requirements
	Hardware modifications
	Preparation
	Running the demo
	Example configuration
	Functionality
	States
	Commands in detail
	help, version
	usb_speaker <seconds>

	Supported features
	Decoders
	Encoders
	Sample rate converters
	Additional libraries

	Processing Time
	Table of content
	Maestro playback example
	Time on each element
	Maestro record example
	Pipeline Microphone -> Speaker
	Pipeline Microphone -> VIT
	Pipeline Microphone -> Voice seeker -> VIT

	Maestro on Zephyr
	Maestro sample for recording data from microphone to RAM
	Description
	User Input/Output
	Supported platforms
	Maestro voice detection sample using VIT
	Description
	User Input/Output
	Dependencies
	Supported platforms
	Maestro decoder sample
	Description
	User Input/Output
	Dependencies
	Configuration
	Supported platforms
	Maestro encoder sample
	Description
	Dependencies
	User Input/Output
	Configuration
	Supported platforms
	Maestro mem2mem sample
	Description
	Maestro environment setup
	Build and run Maestro example
	Using command line
	Using MCUXpresso for VS Code
	Folder structure
	Supported elements and libraries
	Examples support
	Creating your own example
	Documentation
	FAQ

	Maestro Audio Framework changelog
	2.0.1
	2.0.0 (newest)
	1.8.0
	1.7.0
	1.6.0
	1.5.0
	1.4.0
	1.3.0
	1.2.0
	1.0_rev0

	Wireless
	NXP Wireless Framework and Stacks
	Wi-Fi, Bluetooth, 802.15.4
	Application notes
	User manuals
	Release notes
	Wireless SoC features and release notes for FreeRTOS
	About this document
	Supported products
	Features
	Wi-Fi radio
	Client mode
	AP mode
	AP-STA mode
	Wi-Fi Generic features
	Wi-Fi direct/P2P
	Bluetooth radio
	Bluetooth classic
	Bluetooth LE
	802.15.4 radio
	Coexistence
	Wi-Fi and Bluetooth/802.15.4 coexistence
	Feature enable and memory impact
	88W8987 release notes
	Package information
	Version information
	Host platform
	Wi-Fi and Bluetooth certification
	WFA certifications
	Bluetooth controller certification
	Wi-Fi throughput
	Throughput test setup
	STA throughput
	Mobile AP throughput
	EU conformance tests
	Bug fixes and/or feature enhancements
	Firmware version: From 16.91.21.p64.1 to 16.91.21.p82
	Firmware version: From 16.91.21.p82 to 16.91.21.p91.6
	Firmware version: From 16.91.21.p91.6 to 16.91.21.p124
	Firmware version: From 16.91.21.p124 to 16.91.21.p133
	Firmware version: From 16.91.21.p133 to 16.91.21.p142.5
	Firmware version: From 16.91.21.p142.5 to 16.91.21.p149.2
	Firmware version: From 16.91.21.p149.2 to 16.92.21.p151.7
	Firmware version: From 16.91.21.p149.2 to 16.92.21.p151.7
	Firmware version: From 16.92.21.p151.7 to 16.92.21.p153.5
	Firmware version: From 16.92.21.p153.5 to 16.92.21.p153.6
	Known issues
	IW416 release notes
	Package information
	Version information
	Host platform
	Wi-Fi and Bluetooth certification
	WFA certifications
	Bluetooth controller certification
	Wi-Fi throughput
	Throughput test setup
	STA throughput
	Mobile AP throughput
	EU conformance tests
	Bug fixes and/or feature enhancements
	Firmware version: From 16.91.21.p64.1 to 16.91.21.p82
	Firmware version: From 16.91.21.p82 to 16.91.21.p91.6
	Firmware version: From 16.91.21.p91.6 to 16.91.21.p124
	Firmware version: From 16.91.21.p124 to 16.91.21.p133
	Firmware version: From 16.91.21.p133 to 16.91.21.p133.2
	Firmware version: From 16.91.21.p133.2 to 16.91.21.p142.5
	Firmware version: From 16.91.21.p142.5 to 16.91.21.p149.4
	Firmware version: From 16.91.21.p149.4 to 16.92.21.p151.7
	Firmware version: From 16.92.21.p151.7 to 16.92.21.p153.5
	Firmware version: From 16.92.21.p153.5 to 16.92.21.p153.6
	Known issues
	IW611/IW612 release notes
	Package information
	Version information
	Host platform
	Wi-Fi and Bluetooth certification
	WFA certifications
	Bluetooth controller certification
	Wi-Fi throughput
	Throughput test setup
	iPerf host configuration and impact on throughput {#iperf_host_configuration_and_impact_on_throughput}
	STA and AP throughput captured with the minimum values of the host configuration macros {#sta_and_ap_throughput_captured_with_the_minimum_values_of_the_host_configuration_macros}
	STA throughput
	Mobile AP throughput
	EU conformance tests
	Bug fixes and/or feature enhancements
	Firmware version: 18.99.2.p7.19
	Firmware version: 18.99.2.p7.19 to 18.99.2.p49.9
	Firmware version: 18.99.2.p49.9 to 18.99.2.p155
	Firmware version: 18.99.2.p155 to 18.99.2.p66.30
	Firmware version: 18.99.2.p66.30 to 18.99.3.p10.5
	Firmware version: 18.99.3.p10.5 to 18.99.3.p17.9
	Firmware version: 18.99.3.p17.9 to 18.99.3.p21.154
	Firmware version: 18.99.3.p21.154 to 18.99.3.p23.16
	Firmware version: 18.99.3.p23.16 to 18.99.3.p25.11
	Firmware version: 18.99.3.p25.11 to 18.99.3.p26.10
	Firmware version: 18.99.3.p26.10 to 18.99.3.p27.1
	Known issues
	RW610/RW612 release notes
	Package information
	Version information
	Host platform
	Wireless certification
	WFA certifications
	Bluetooth LE controller certification
	Thread
	Matter
	Wi-Fi throughput
	Throughput test setup
	STA throughput
	Mobile AP throughput
	Bug fixes and/or feature enhancements
	Firmware version: 18.99.6.p34 to 18.99.6.p40
	Firmware version: 18.99.6.p40 to 18.99.6.p46
	Firmware version: 18.99.6.p46 to 18.99.6.p47
	Known issues
	IW610 release notes
	Package information
	Version information
	Host platform
	Wi-Fi and Bluetooth certification
	WFA certifications
	Bluetooth controller certification
	Wi-Fi throughput
	Throughput test setup
	STA throughput
	Mobile AP throughput
	Bug fixes and/or feature enhancements
	Firmware version: 18.99.5.p66 to 18.99.5.p76
	Firmware version: 18.99.5.p76 to 18.99.5.p79
	Known issues
	AW611 release notes
	Package information
	Version information
	Host platform
	Wi-Fi and Bluetooth certification
	WFA certifications
	Bluetooth controller certification
	Wi-Fi throughput
	Throughput test setup
	STA throughput
	Mobile AP throughput
	EU conformance tests
	Bug fixes and/or feature enhancements
	Firmware version: 18.99.3.p10.5 to 18.99.3.p17.9
	Firmware version: 18.99.3.p17.9 to 18.99.3.p21.154
	Firmware version: 18.99.3.p23.16 to 18.99.3.p25.11
	Firmware version: 18.99.3.p25.11 to 18.99.3.p26.10
	Firmware version: 18.99.3.p26.10 to 18.99.3.p27.1
	Known issues
	Abbreviations
	References

	EdgeFast Bluetooth
	MCUXpressoSDK EdgeFast Bluetooth Protocol Abstraction
	Introduction
	Stack API Reference

	Overview
	Folder structure
	Architecture
	Features
	Bluetooth features
	Toolchain support
	RTOS support
	Examples list

	Hardware
	Reference boards list
	Dual-chip wireless module list

	Demo
	Run a demo application using IAR
	Open an IAR example
	Build an IAR example
	Run an IAR example
	Run a demo application using MCUXpresso IDE
	Open an MCUXpresso IDE example
	Build an MCUXpresso IDE example
	Run an MCUXpresso IDE example
	Run a demo application using MDK
	Open an MDK project
	Build an MDK example
	Run an MDK example
	Run a demo application using Arm GCC
	Setup tool chains
	Build a GCC example
	Run a GCC example
	Download Linker Layer firmware from the reference board
	Change board-specific parameters
	Change HCI UART parameters
	Change USB Host stack parameters

	Known issues
	Notes
	EdgeFast BT PAL configuration documentation

	Rework Guide for EdgeFast Bluetooth Protocol Abstraction Layer
	Hardware Rework Guide for MIMXRT1170-EVKB and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT1170-EVKB and Murata 2EL M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT685-EVK and AW-AM457-uSD
	Hardware rework

	Hardware Rework Guide for MIMXRT685-EVK and AW-CM358-uSD
	Hardware rework

	Hardware Rework Guide for MIMXRT685-EVK and AW-AM510-uSD
	Hardware rework

	Hardware Rework Guide for MIMXRT685-EVK and Murata uSD-M.2 Adapter
	Hardware rework

	Hardware Rework Guide for MIMXRT685-AUD-EVK and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for Low Power Feature on MIMXRT595-EVK and Murata 2EL M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT595-EVK and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for Low Power Feature on MIMXRT595-EVK and Murata 1XK M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT595-EVK and AW-AM510MA
	Hardware rework

	Hardware Rework Guide for MIMXRT595-EVK and AW-CM358MA
	Hardware rework

	Hardware Rework Guide for MIMXRT1040-EVK and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT1060-EVKC and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT1060-EVKC and Murata 2EL M.2 Adapter
	Hardware rework

	Hardware Rework Guide for MCXN547-EVK and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for MCXN947-EVK and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for IMXRT1050-EVKB and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT1180 and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for FRDM-MCXN947 and X-FRDM-WIFI-M.2 Adapter
	Hardware rework

	Hardware Rework Guide for FRDM-MCXN947 and FRDM-IW416-AW-AM510
	Hardware rework

	Enabling Additional EdgeFast Bluetooth Protocol Abstraction Layer Examples on RT1064
	Introduction
	Migrate examples from RT1060EVK to RT1064
	Common steps
	IAR
	Arm GCC
	MDK

	Migrate examples from RT1060EVKC to RT1064
	Common steps
	IAR
	Arm GCC
	MDK

	Note about the source code in the document

	Enabling Additional Edgefast BT PAL Examples on M4 core for RT1170
	Introduction
	IAR
	Create an M4 project
	Rearrange source files
	Rearrange project files
	Adjust project settings
	Delete function

	Arm GCC
	Create an M4 project
	Rearrange source files
	Rearrange project files
	Adjust project setting
	Delete function

	MDK
	Create an M4 project
	Rearrange source files
	Rearrange project files
	Adjust project settings
	Delete function

	Note

	RTOS
	FreeRTOS
	FreeRTOS kernel
	FreeRTOS kernel for MCUXpresso SDK Readme
	FreeRTOS kernel for MCUXpresso SDK
	Overview
	FreeRTOS example applications
	List of examples
	Location of examples
	Building a FreeRTOS example application
	FreeRTOS aware debugger plugin

	FreeRTOS kernel for MCUXpresso SDK ChangeLog
	Changelog FreeRTOS kernel for MCUXpresso SDK
	[Unreleased]
	Added
	[11.1.0_rev0]
	[11.0.1_rev0]
	[10.5.1_rev0]
	[10.4.3_rev1]
	[10.4.3_rev0]
	[10.4.3_rev0]
	[9.0.0_rev3]
	[9.0.0_rev2]
	[9.0.0_rev1]
	[9.0.0_rev0]
	[8.2.3]

	FreeRTOS kernel Readme
	MCUXpresso SDK: FreeRTOS kernel
	Getting started
	Getting help
	To consume FreeRTOS-Kernel
	Consume with CMake
	Consuming stand-alone - Cloning this repository
	Repository structure
	Code Formatting
	Line Endings
	Git History Optimizations
	Spelling and Formatting

	FreeRTOS drivers
	backoffalgorithm
	Readme
	MCUXpresso SDK: backoffAlgorithm Library
	backoffAlgorithm Library
	Reference example
	Building the library
	Building unit tests
	Checkout Unity Submodule
	Platform Prerequisites
	Steps to build Unit Tests
	Contributing

	corehttp
	MCUXpresso SDK: coreHTTP Client Library
	coreHTTP Client Library
	coreHTTP Config File
	Building the Library
	Building Unit Tests
	Platform Prerequisites
	Steps to build Unit Tests

	CBMC
	Reference examples
	Documentation
	Existing Documentation
	Generating Documentation

	Contributing

	corejson
	Readme
	MCUXpresso SDK: coreJSON Library
	coreJSON Library
	Reference example
	Building coreJSON
	Documentation
	Existing documentation
	Generating documentation
	Building unit tests
	Checkout Unity Submodule
	Platform Prerequisites
	Steps to build Unit Tests
	CBMC
	Contributing

	coremqtt
	MCUXpresso SDK: coreMQTT Library
	coreMQTT Client Library
	MQTT Config File
	Sending metrics to AWS IoT
	Upgrading to v2.0.0 and above
	Building the Library
	Building Unit Tests
	Checkout CMock Submodule
	Platform Prerequisites
	Steps to build Unit Tests

	CBMC
	Reference examples
	Documentation
	Existing Documentation
	Generating Documentation

	Contributing

	corepkcs11
	Readme
	MCUXpresso SDK: corePKCS11 Library
	corePKCS11 Library
	Purpose
	corePKCS11 Configuration
	Build Prerequisites
	Library Usage
	Integration and Unit Tests
	Coverage Measurement and Instrumentation
	Running the Integration and Unit Tests
	CBMC
	Reference examples
	Porting Guide
	Related Example Implementations
	Documentation
	Existing Documentation
	Generating Documentation
	Security
	License

	freertos-plus-tcp
	Readme
	MCUXpresso SDK: FreeRTOS-Plus-TCP Library
	FreeRTOS-Plus-TCP Library
	Getting started
	Getting help
	Upgrading to V4.3.0 and above
	Upgrading to V3.0.0 and V3.1.0
	Generating pre V3.0.0 folder structure for backward compatibility:
	To consume FreeRTOS+TCP
	Consume with CMake
	Consuming stand-alone
	Porting
	Repository structure
	Note
	Kernel sources
	CBMC

