- W& MCUXpresso SDK Documentation
Release 25.09.00

NXP

Sep 19, 2025 -

Table of contents

1 MC56F81000-EVK 3
11 OVEIVIEW . . ot e e e e e e e e 3
1.2 Getting Started with MCUXpresso SDKPackage 3

1.2.1 Getting Started with Package, 3
1.3 Getting Started with MCUXpresso SDKGitHub 13
1.3.1 Getting Started with MCUXpresso SDK Repository 13
1.4 Release NOteS i it e e 25
1.41 MCUXpresso SDKReleaseNotes, 25
1.5 Changelog o ittt e e e e e e e e e e e e e e e e e 28
1.5.1 MCUXpresso SDKChangelogo ... 28

2 MC56F81768 43
2.1 CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 43
2.2 TheDriver Change Log i i ittt e e e e e e 78
2.3 CADC Peripheral and Driver OVerview v ittt v i n .. 78
24 Clock Driver o i e e e 78
2.5 DriverChangeLog i i i e e e 93
2.6 CMP: Comparator DIivVer v ittt it et e e e e e et e et et e e e 93
2.7 TheDriver Change Log i i i it it e e e e e 102
2.8 CMP Peripheral and Driver Overview v, 102
2.9 COP: Computer Operating Properly(Watchdog) Driver 102
2.10 The Driver Change Log i i i e e e e e 106
2.11 COP Peripheral and Driver Overviewottt it ... 106
2.12 CRC: Cyclic Redundancy Check Driver, 106
2.13 The Driver Change Log i i i it e e e e e e et e e 110
2.14 CRC Peripheral and Driver OVerview v v i vttt v o n o 110
2.15 DAC: 12-bit Digital-to-Analog Converter Driver 110
2.16 The Driver Change Log i i et e 120
2.17 DAC Peripheral and Driver Overview oottt n ... 120
2.18 DMAMUX: DMA Channel Multiplexer Driver 120
2.19 The Driver Change Log i i et 121
2.20 DMAMUZX Peripheral and Driver Overviewt 121
2.21 The Driver Change Log it e e e e 121
2.22 EDMA: Enhanced Direct Memory Access Driver« 121
2.23 The Driver Change Log i i i i i it e e e e e e et e i e 142
2.24 EDMA Peripheral and Driver Overview, 142
2.25 EVTG: Event Generator Driver it ittt e e 142
2.26 The Driver Change Log it e e e e 148
2.27 EVTG Peripheral and Driver OVEIVIEW v v v v v v v e e e e e e e e e e e e e s 148
2.28 EWM: External Watchdog Monitor Drivero vt v i v . 149
2.29 The Driver Change Log i i i it i it e e e e e e et e et 151
2.30 EWM Peripheral and Driver OVerview o v vt vttt o n oo 151
2.31 GPIO: General-Purpose Input/Output Driver 151
2.32 The Driver Change Log it e e e e 163
2.33 GPIO Peripheral and Driver OVerview vttt 163
2.34 INTC: Interrupt Controller Driver 163

2.35 The Driver Change Log i i vt i it i e et e e e e e et e et e et 165
2.36 INTC Peripheral and Driver Overview 165
237 Common Driver e 166
2.38 LPI2C: Low Power Inter-Integrated Circuit Driver 180
2.39 The Driver Change Log i i e e e e e e 209
2.40 LPI2C_EDMA: EDMA based LPI2CDriver 209
2.41 LPI2C Peripheral and Driver Overview. 211
2.42 MCM: Miscellaneous Control Module Driver 211
243 The Driver Change Log i i e 220
2.44 MCM Peripheral and Driver OVerviewottt ittt n e ... 220
2.45 OPAMP: Operational Amplifier Driver 220
246 TheDriver Change Log i i i i i it it e e e e e e e e et e et e e 226
2.47 OPAMP Peripheral and Driver Overview 226
2.48 PIT: Periodic Interrupt Timer (PIT) Driver 226
249 The Driver Change Log i it e e e e e 232
2.50 PIT Peripheral and Driver Overviewt iv i .. 232
2.51 PMC: Power Management Controller Driver 232
2.52 The Driver Change Log i i i i i it e e e e e e et e et e e e 234
2.53 PMC Peripheral and Driver Overview, 234
2.54 eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 234
2.55 The Driver Change Log it e et e 272
2.56 eFlexPWM Peripheral and Driver Overviewt 272
2.57 QDC: Quadrature Decoder DIivVer v v v it vt ittt e e et oo e 272
2.58 QDC Peripheral and Driver Overview, 285
2.59 QSCI: Queued Serial Communications Interface Driver 285
2.60 The Driver Change Log i i i e e e e et e 300
2.61 QSCI_EDMA: EDMAbased QSCIDriver v i it ittt it et e e 300
2.62 QSCI Peripheral and Driver Overview, 303
2.63 QSPIL: Queued SPIDIIVEr. v i it e e e e e e e e e e e e e e e 304
2.64 QSPI Peripheral and Driver Overview, 322
2.65 QSPI_EDMA: EDMADbased QSPIDriver ottt 322
2.66 QTMR: Quad Timer DIiver v v it ittt et e et e et et e et et et 325
2.67 TheDriver Change Log v i it i it it et e e e e e et e et e e et 349
2.68 QTMR Peripheral and Driver Overviewt n... 349
2.69 The Driver Change Log i et e 349
2.70 SIM: System Integration Module Driver 349
2.71 The Driver Change Log i e e e e e e e 349
2.72 SIM Peripheral and Driver OVEIVIEW v v v v i it e e e et e et et e e e e s 361
2.73 XBAR: Inter-Peripheral Crossbar Switch Driver 361
2.74 The Driver Change Log i i i i i it e e e e e e et e et 365
2.75 XBAR Peripheral and Driver Overview i it v i i 365
Middleware 367
RTOS 369
4.1 FreeRTOS . . . o oo e e 369

41.1 FreeRTOSKkernel 369

4.1.2 FreeRTOSArIVErS i i ittt e ettt 369

4.1.3 backoffalgorithm 369

414 corehttpo e e e e 369

7 T o0 i -1) o O 369

4.1.6 CoremMQlt. . . . v v i e e e e e e e e e e e e e e e 370

4.1.7 coremqtt-agent e e e e e e e e e e e 370

4.1.8 corepkesIl 370

4.1.9 freertos-plus-tCpo e e 370

ii

MCUXpresso SDK Documentation, Release 25.09.00

This documentation contains information specific to the mc56£81000evk board.

Table of contents 1

MCUXpresso SDK Documentation, Release 25.09.00

2 Table of contents

Chapter 1

MC56F81000-EVK

1.1 Overview

The MC56F81000-EVK is an ultra-low-cost development platform for digital signal controller
MC56F81xxx MCU.

* The kit is form-factor compatible with the Arduino™ R3 pin layout and features ROM boot-
loader supporting SCI and LPIIC.

* The MC56F81000-EVK features onboard debugger(multilink) circuit enabling debugging
and programming with CodeWarrior.

* Peripherals enable rapid prototyping, including a 6-axis digital accelerometer and magne-
tometer to create full eCompass capabilities, 6 buffered LEDs including PWM signals, 4 user
LEDs, 4 user push_buttons for direct interaction, two OPAMP external feedback circuits, an
SPI interfaced Flash memory and a USB to UART bridge circuit.

MCU device and part on board is shown below:
* Device: MC56F81768
* PartNumber: MC56F81768LVLH

1.2 Getting Started with MCUXpresso SDK Package

1.2.1 Getting Started with Package
Overview

The NXP MCUXpresso software and tools offer comprehensive development solutions designed
to optimize, ease, and help accelerate embedded system development of applications based on
general purpose, crossover, and Bluetooth-enabled MCUs from NXP. The MCUXpresso SDK in-
cludes a flexible set of peripheral drivers designed to speed up and simplify development of

MCUXpresso SDK Documentation, Release 25.09.00

embedded applications. Along with the peripheral drivers, the MCUXpresso SDK provides an ex-
tensive and rich set of example applications covering everything from basic peripheral use case
examples to full demo applications. The MCUXpresso SDK contains optional RTOS integrations
such as FreeRTOS and Azure RTOS, and various other middleware to support rapid development.

For supported toolchain versions, see MCUXpresso SDK Release Notes (document MCUXSDKRN).
For more details about MCUXpresso SDK, see MCUXpresso Software Development Kit (SDK).

Application Code

Stacks and Middleware
(Connectivity, Security, Board Support
DA, Filesystem, etc,)

Peripheral Drivers

CMSIS-CORE and CMSIS-DSP

(Device Header Files: Core Access Functions, Intrinsics, Peripheral & Interrupt Definitions, DSF Library)

Microcontroller Hardware

Build and run SDK example on codewarrior

Install CodeWarrior Take below codewarrior specific combination as example
* CodeWarrior Development Studio v11.2 + CodeWarrior for DSC v11.2 SP1 (Service Pack 1)
Steps to install CodeWarrior

* Download the following packages from CodeWarrior for 56800 Digital Signal Controller
v11.2, and ensure to keep them in the same folder.

- CodeWarrior for DSCv11.2: CW_MCU_v11.2 b221206.exe.

— DSC support package: com.freescale.mcull_ 2.dsc.updatesite.zip.

— DSC device ServicePackl: com.freescale.mcull_2.DSC_ devices.win.sp.v1.0.26.zip.
* Install CodeWarrior for DSC v11.2.

» Install ServicePackl within CodeWarrior from the menu. Click the Help
menu -> select Install new software -> Add -> Archive -> select the down-
loaded SP1 -> open -> check MCU v11.2 DSC Service Packs -> click Next.

4 Chapter 1. MC56F81000-EVK

http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK
https://www.nxp.com/design/design-center/software/development-software/codewarrior-development-tools/codewarrior-legacy/codewarrior-for-56800-digital-signal-controller-v11-2:CW-DSC
https://www.nxp.com/design/design-center/software/development-software/codewarrior-development-tools/codewarrior-legacy/codewarrior-for-56800-digital-signal-controller-v11-2:CW-DSC

MCUXpresso SDK Documentation, Release 25.09.00

File Edit Source Refactor Search Project MOXTools Processor Expert Run W .;\
=hde X {Active) vi& £~ pre S v@BH G T YD v Quick Access o | BC/CH+ ¥ Debug
B CodeWarrior Projects o = 8 startup_clock_node_config h 1 =
Py - - Jal edits made to this file
File Nat
=he pvailable Software S
=
Select a site or enter the location of a site .
Work with: | type or select a site -
type fifter text
Name Name: Local
Select All Deselect All REEHOR hitpu/
Details P Repository archive X
< Show only the latest versions of available software ?
N ™ « CW_install > CW for MCU 11.2 » SP_4all » v1.0.26 v [3] Search v1.0.26
s Comna [/] Group items by category
~ Proj{[] show only software applicable to target environment Organize © New folder =- m @
= :"“ Contact all update sites during install to find required software| CW 112 221129 A Name) Date modified
mg © “
s CW 112221206 .
e Img i O Treescale.mcu11_2.DSC_devices win sp.v1.0 26219 2023/12/8 17:35
Ney nevis3B0_SP
TBub SP_4all
% il @ I
. V1.026 m=~-o
¢ Cle
% Debug 0items i com fraocealamant1 Y < >
Description
~ Settings File name: H V‘ * jar;* zip i
W Project settings =
% Build settings T open D Concel
% Debug settings
Writable Smart Insert 15:1

NOTE
* CodeWarrior for DSC only support Windows.

* Check the corresponding board release note for specific requirement of codewarrior and
service pack version.

Build an example application To build the hello_world example application, perform the fol-
lowing example steps:

1. Launch CodeWarrior and in the workspace launcher, choose a
workspace which holds the projects to wuse. If the dialogue box does
not pop up, enter a workspace folder and create one workspace.
F Workspace Launcher X

Select a workspace

CodeWarrior Development Studio stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

o]y <ok o= C:\CW workspace ~ Browse...

[] Use this as the default and do not ask again

OK Cancel

Then the CodeWarrior Development Studio workspace with empty projects appears.

1.2. Getting Started with MCUXpresso SDK Package 5

MCUXpresso SDK Documentation, Release 25.09.00

P C/C++ - CodeWarrior Development Studio - O X
File Edit Source Refactor Search Project MQX Tools Processor Expert Run Window Help
i~ | &> [actver v & v wHFvyivy Lviw > - Quick Access ‘ Df‘ ®C/C++
T CodeWarrior Projects ¥ =1 ==
F =R - | i
File Name Build
Commander 52 x ¥ =0
~ Project Creation ~ Settings
&4 Import project
5 Import example project
23 Import MCU executable file *
£ New MCU project ~ Miscellaneous
~ Build/Debug @ Welcome screen s Eroblous = °
& Quick access batems =
Flash programmer Description Resource Path Location Typ
< 2 | e 3
d}r‘

2. Import the project into the workspace.

Click Import project in the Com-

mander pane. A form pops up. Click Browse to the SDK install direc-

tory. Take TWR-MC56F8400 SDK as an example,
are shown. Select the hello_world project

all available demo projects
the list and click Finish.

Chapter 1. MC56F81000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

B import O X

Import Projects D
Select a directory to search for existing Eclipse projects. o

(@ Select root directory: |C:\SDK_2_10_0_TWR-MC56F8400 ‘ Browse...

(O Select archive file: Browse..

Projects:

D gpio_button_toggle_led (C\SDK_2_10_0_TWR-MC56F8400\boards\twr ~ Select All
hello_world (C\SDK_2_10_0_TWR-MC56F8400\boards\twrmc568400\
[i2c_dma_b2b_transfer_master (CASDK_2_10.0_TWR-MC56F8400\boarc | | 2eselect Al
D i2c_dma_b2b_transfer_slave (C\SDK_2_10_0_TWR-MC56F8400\boards\ Refresh

D i2c_interrupt (C\SDK_2_10_0_TWR-MC56F8400\boards\twrmc56f8400\
D i2c_interrupt_b2b_transfer_master (C\SDK_2_10_0_TWR-MC56F8400\b
D i2c_interrupt_b2b_transfer_slave (C\SDK_2_10_0_TWR-MC56F8400\boe
[]i2c_polling_b2b_transfer_master (CASDK_2_10_0_TWR-MCS56F8400\bo:

[1i?¢c nolling b?h transfer slave (CASDK 2 10 0 TWR-MCSAF8400 hoan ¥
L4 >

@ojects into wo@
e DO NOT check it

[[] Add project to working sets

Select...

@ < Back Next > [Finish Cancel

NOTE

¢ If you already know the project location, navigate to the folder when clicking Browse,
and only one project can be seen. To locate most example application workspace files,
use the following path

<install _dir>/boards/<board_ name>/<example_ type>/<application_name> /codewarrior

Take TWR-MC56F8400 SDK as an example, the hello_ world workspace is located in

<install dir>/boards/twrmc56f8400/demo_ apps/hello_world /codewarrior

3. Select the desired build target from the drop-down menu.
For this example, select hello_world - flash_sdm_lpm_debug

1.2. Getting Started with MCUXpresso SDK Package 7

MCUXpresso SDK Documentation, Release 25.09.00

¥5 ¢/C++ - CodeWarrior Development Studio - a X
it Source Refactor Search Project MQXTools Processor Expert Run Window Help

Fv 0w

|Quick Access B | Bc/cr+ %5 Debug

0|3 |
‘

S =5

& MCS6F34789
MC56F84789_Internal_PFlash_LDM.cmd
MCS56F84789_Internal_PFlash_SDM.cmd

& source

Co startup
Co utilities

Problens ©Console 4 Search

No search results available. Start a search from the search dialog.

4. To build the demo application, click Build (All) in the Commander pane.

5. The build completes without errors.

Board debugger setup Board debugger info:
» Default debugger is multilink.
* Onboard debugger USB port is J12, which set the debugger port.
* Onboard USB UART bridge USB port is J26, which set the COM port.
To download and run the application, perform the following steps:
* Connect USB cable between the host PC and the debugger USB port.
* Connect USB cable between the host PC and the USB UART bridge USB port.

¢ Install the debugger driver as PC hint if it is the first time you run it on the PC. The debugger
driver are provided by CodeWarrior by default.

* Install the USB UART bridge driver as PC hint if it is the first time you run it on the PC. The
USB to UART bridge (CP2102) driver may be found on SILICON LAB.

Run an example application To download and run the application, perform the following
steps:

1. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug COM port (see How to determine COM port). Configure the terminal with these set-
tings:

* 115200, defined by BOARD_DEBUG_UART BAUDRATE in the board.h file
* No parity
« 8 data hits

8 Chapter 1. MC56F81000-EVK

https://www.silabs.com/

MCUXpresso SDK Documentation, Release 25.09.00

[~ Session ' Basic options for your PuTTY session ‘
H ngghg Specify the destination you want to connect to
= Teminal
i Senal line Speed
Keyboard
- Bel COoMm16 115200
Features echon type:
= Window “)Raw () Telnet () Riogin () SSH | @ Seral
mm Load. save or delete a stored session
- Translation Saved Sessions
Selection Debug

[=- Connection -

§{f
s

~ Telnet
Riogn
+1- SSH
Seviel Close window on ext:
JAways (Never @ Onlyon clean exi
| ot || Hep | [_Open [Goncs |

* 1stop bit

2. For this example(TWR-MC56F8400 hello_world), click Debug in the Commander pane,
and select the hello_ world_flash_sdm_Ipm__debug_ OSJTAG launch configuration. Then the

application is downloaded onto target board and automatically runs to the main() func-
odeWarrior Development Studio

MQX Tools Processor Expert Run Window Help
gv e, ﬁ(@v?_ﬁ_giv{rlv“.@v.v|-f

| [€ hello vorld. c &2
Name ~§=| * copyright (c)

013 - 2015, Freescale Semiconduc

#include "fsl devicewegisters.h"

#include "fSl:dEl:llg_EDl S
#include "board.h" " ¥
#include "app.h" Debug” button

tion.

1.2. Getting Started with MCUXpresso SDK Package 9

MCUXpresso SDK Documentation, Release 25.09.00

ﬁ' Debug Configurations
Create. manage. and run configurations E
Debug or run an application to a target.
& En
ER ‘ B> Name: | hello_world_flash_sdm_Ipm_debug_OSITAG
type filter text [E] Main = Arguments| % Debugger| %~ Source| B8 Environment| = Common| &' Trace and Profile
~ [£] CodeWarrior Debug session type
[E] hello_world_flash_ldm_Ipm_debug_OSITAG Choose a predefined debug session type or custom type for maximum flexibility
[©] hello_world_flash_ldm_|pm_debug_PnE U-MultiLink @ Download O Connect
[=] hello_world_flash_ldm_lpm_release_OSJTAG O Attach O Custom
[€] hello_world_flash_ldm_Ipm_release_PnE U-MultiLink —
(2] hello_world_flash_sdm_Ipm_debug_OSITAG ~ €/C++ application
[=] hello_world_flash_sdm_Ipm_debug_PnE U-MultiLink Project: ‘hellc_warld Browse.
[€] hello_world_flash_sdm_lpm _release_OSITAG N . ‘h Py — debug/hell aarl 5 r— 5 p—
51 hello_world_flash_sdm Ipm release.PnE U-Multilink pplication: uild/flash_sdm_lpm_debug/hello_world.e earch Project... rOWSe... ariables...
b+ Launch Group » Build (if required) before launching
~ Target settings
Connection: = hello_world_OSITAG v Edit. New..
Execute reset sequence
Execute initialization script(s)
Filter matched 10 of 10 items
Filter by Project:
= hello_world
Apply Revert
® Close
Note:

* Generally there are four build
flash_sdm_ lpm_ debug,
flash_ldm_ Ipm_ release.

configurations for
flash_sdm_ lpm_ release,

DSC SDK examples:
flash_ldm_ lpm_ debug, and

— *_debug: uses optimization level 1

* _release: uses optimization level 4

sdm: small data memory model

ldm: large data memory model

lpm: large program memory model
* Select corresponding launch configuration based on build target and debugger type.

* Some examples may require specific hardware settings, check each demo readme doc-
ument, which includes detail instructions for HW and SW settings.

CodeWarrior Development Studio
t MQXTools RTCS MQX PEMicro Run Window Help

¥y P

D G| ¢

v b\u'—'.l-ﬁzlf%Ii!-_IUt?\ 4 » & w0 &

m -

U-MultiLink [CodeWarrior]

3. Torunthe code, click Run on the toolbar. Run” button

4. The hello_world application is now running and a banner is displayed on the terminal.

10 Chapter 1. MC56F81000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

Project template for a specific DSC part

For device with specific part number, the easiest way to set up customer own project based on
MCUZXpresso DSC SDK peripheral driver, is the project_template. MCUXpresso Config Tool is used
to generate the project_template.

The project_template provides basic MCUXpresso DSC SDK software framework, including
startup, linker file, device header file, debug setting, peripheral driver, FreeMASTER, and so on.

Steps to generate the project_template for specific derivative part number by MCUXpresso Config
Tool

1. Download the specific device SDK package and unzip it. note: The project template requires
FreeMASTER, middleware FreeMASTER selection is a must when downloading DSC SDK from
nxp website

2. Use MCUXpresso Config Tool to create a project_template project as below(take

Create a new configuration

Create a new configuration and project based on an SDK example or hello world project

Clone project(s): praject_template_MC56F84442

SDK Path SDK Example
CA\SDK_2_10_0_MC56F84442 v | [Browse..
SDK can be downloaded from http://kex-stage.nxp.com v TWR-N

Toolchain

CodeWarrior Development Studio v

SDK Project

(O Create "hello_world" project for TWR-MC56F8400 board
O Clone selected example for board or kit

(O Create new project for device MC56F84789

Base project directory (workspace)
CA\Usersy

Project name

project_template_MC56F84442

< Back Einish

MC56F84442 as example).

3. Import the generated template_project into CodeWarrior IDE and start the development.
NOTE

1.2. Getting Started with MCUXpresso SDK Package 11

MCUXpresso SDK Documentation, Release 25.09.00

* The default created project template by Config Tool is project_template_ {part_number}.
User could modify the default name in Project name textbox.

» All peripheral drivers files are included in the generated project_template project. They
are same as the peripheral drivers within SDK package. If some drivers are not used or
required, users may delete them in CodeWarrior, or delete them directly under folder
${project_path}/drivers.

How to determine COM port

This section describes the steps necessary to determine the debug COM port number of your NXP
hardware development platform. All NXP boards ship with a factory programmed, onboard de-
bug interface, whether it is based on MCU-Link or the legacy OpenSDA, LPC-Link2, P&E Micro
OSJTAG interface. To determine what your specific board ships with, see Default debug inter-
faces.

1. Linux: The serial port can be determined by running the following command after the USB
Serial is connected to the host:

$ dmesg | grep "ttyUSB”
[503175.307873] usb 3-12: cp210x converter now attached to ttyUSBO
[503175.309372] usb 3-12: c¢p210x converter now attached to ttyUSB1

There are two ports, one is for core0 debug console and the other is for corel.

2. Windows: To determine the COM port open Device Manager in the Windows operating
system. Click the Start menu and type Device Manager in the search bar.

In the Device Manager, expand the Ports (COM & LPT) section to view the available ports.
The COM port names are different for all the NXP boards.

1. CMSIS-DAP/mbed/DAPLIink interface:
4 73" Ports (COM &L LPT)
v W Ports (COM & LPT) - 05 mbed Serial Port (COMA41)

E' MCL-Link WCom Part (COM7)
2. P&E Micro:
,.? Ports (COM & LPT)
. L.75 OpenSDA - CDC Serial Port (http://www.pemicro.com/opensda) (COM22)
3. J-Link:
4 75 Ports (COM & LPT)
P 5" JLink CDC UART Port (COM12)

4. P&E Micro OSJTAG:

473" Ports (COM & LPT)

5. MRB-KW01:
4 7% Ports (COM & LPT)

12 Chapter 1. MC56F81000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

1.3 Getting Started with MCUXpresso SDK GitHub

1.3.1 Getting Started with MCUXpresso SDK Repository

Installation

NOTE

If the installation instruction asks/selects whether to have the tool installation path added to
the PATH variable, agree/select the choice. This option ensures that the tool can be used in any
terminal in any path. Verify the installation after each tool installation.

Install Prerequisites with MCUXpresso Installer The MCUXpresso Installer offers a quick
and easy way to install the basic tools needed. The MCUXpresso Installer can be obtained from
https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Dependency-Installation. The MCUX-
presso Installer is an automated installation process, simply select MCUXpresso SDK Developer
from the menu and click install. If you prefer to install the basic tools manually, refer to the next
section.

MCUXpresso Installer v24.09 O

MCUXpresso Installer < & & =

Choose one or more categortes from the list below: Install

Software Kits

MCUXpresso SDK Developer

é' N ¢ DET| Wil install:

. macos-homebrew - Homebrew, package mang
. CMake - Open-source system that manages th
. Ninja - Small build system with a focus on spej
. Git - Free and open source distributed version
. Arm GNU Toolchain - Toolchain for Arm Archit
b. libncurses5 - Library managing an application’
. Arm GNU Toolchain add-ons - Additional NXP
. Arm GNU Toolchain Standalone add-ons - Ad
. Python - Pr mming language support.
Arm GNU Toolchain 10. pip - Package installer for Python.

11. west - Manage multiple Git repositories unde
Arm GNU 1ain an d r.:ld arto 5 DG T T

Standalone Toolchain Add-ons

Zephyr Developer

Ne ols for a Zephyr de

1
2
4
5

o]

Al

Matter Developer
Ne for a Ma

=

(o]

ARM components

[N}

Alternative: Manual Installation

Basic tools

Git Git is a free and open source distributed version control system. Git is designed to handle
everything from small to large projects with speed and efficiency. To install Git, visit the official

1.3. Getting Started with MCUXpresso SDK GitHub 13

MCUXpresso SDK Documentation, Release 25.09.00

Git website. Download the appropriate version(you may use the latest one) for your operating
system (Windows, macOS, Linux). Then run the installer and follow the installation instructions.

User git --version to check the version if you have a version installed.

Then configure your username and email using the commands:

git config --global user.name ”Your Name”
git config --global user.email ”youremail@example.com”

Python Install python 3.10 or latest. Follow the Python Download guide.

Use python --version to check the version if you have a version installed.

West Please use the west version equal or greater than 1.2.0

Note: you can add option '--default-timeout=1000" if you meet connection issue. Or you may set a different,

—source using option '-i'.
for example, in China you could try: pip install -U west -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install -U west

Build And Configuration System

CMake Itis strongly recommended to use CMake version equal or later than 3.30.0. You can get
latest CMake distributions from the official CMake download page.

For Windows, you can directly use the .msi installer like cmake-3.31.4-windows-x86_64.msi to
install.

For Linux, CMake can be installed using the system package manager or by getting binaries from
the official CMake download page.

After installation, you can use cmake --version to check the version.

Ninja Please use the ninja version equal or later than 1.12.1.

By default, Windows comes with the Ninja program. If the default Ninja version is too old, you
can directly download the ninja binary and register the ninja executor location path into your
system path variable to work.

For Linux, you can use your system package manager or you can directly download the ninja
binary to work.

After installation, you can use ninja --version to check the version.

Kconfig MCUXpresso SDK uses Kconfig python implementation. We customize it based on our
needs and integrate it into our build and configuration system. The Kconfiglib sources are placed
under mcuxsdk/scripts/kconfig folder.

Please make sure python environment is setup ready then you can use the Kconfig.

Ruby Our build system supports IDE project generation for iar, mdk, codewarrior and xtensa
to provide OOBE from build to debug. This feature is implemented with ruby. You can follow
the guide ruby environment setup to setup the ruby environment. Since we provide a built-in
portable ruby, it is just a simple one cmd installation.

If you only work with CLI, you can skip this step.

14 Chapter 1. MC56F81000-EVK

https://git-scm.com/
https://wiki.python.org/moin/BeginnersGuide/Download
https://cmake.org/download/
https://github.com/Kitware/CMake/releases/download/v3.31.4/cmake-3.31.4-windows-x86_64.msi
https://cmake.org/download/
https://github.com/ninja-build/ninja/releases
https://github.com/ninja-build/ninja/wiki/Pre-built-Ninja-packages
https://github.com/ninja-build/ninja/releases
https://github.com/ninja-build/ninja/releases

MCUXpresso SDK Documentation, Release 25.09.00

Toolchain MCUXpresso SDK supports all mainstream toolchains for embedded development.
You can install your used or interested toolchains following the guides.

Toolchain Download and Installation Guide Note
Armgcc Arm GNU Toolchain Install Guide ARMGCC is default
toolchain
IAR IAR Installation and Licensing quick ref-
erence guide
MDK MDK Installation
Armclang Installing Arm Compiler for Embedded
Zephyr Zephyr SDK
Codewarrior NXP CodeWarrior
Xtensa Tensilica Tools

NXP S32Compiler RISC-
V Zen-V

NXP Website

After you have installed the toolchains, register them in the system environment variables. This
will allow the west build to recognize them:

Toolchain Environ- Example Cmd
ment Line Ar-
Variable gument
Armgcc AR- C:\armgcc for windows/usr for Linux. Typically -
MGCC_DIR arm-none-eabi-* is installed under /usr/bin toolchain
armgcc
IAR IAR DIR C:\iar\ewarm-9.60.3 for =~ Windows/opt/iarsystems/ -
bxarm-9.60.3 for Linux toolchain
iar
MDK MDK DIR C:\Keil_v5 for Windows.MDK IDE is not officially sup- -
ported with Linux. toolchain
mdk
Armclang ARM- C:\ArmCompilerforEmbedded6.22 for Windows/opt/ -
CLANG_DIF ArmCompilerforEmbedded6.21 for Linux toolchain
mdk
Zephyr ZEPHYR SL c:\NXP\zephyr-sdk-<version> for windows/opt/ -
zephyr-sdk-<version> for Linux toolchain
zephyr
CodeWar- CW_DIR C:\Freescale\CW MCU v11.2 for windowsCodeWarrioris -
rior not supported with Linux toolchain
code-
warrior

Xtensa XCC_DIR

NXP RISCVL-
S32Compiler LVM_DIR
RISC-V

Zen-V

C:\xtensa\XtDevTools\install\tools\RI-2023.11-win32\ =
XtensaTools for windows/opt/xtensa/XtDevTools/ toolchain
install/tools/RI-2023.11-Linux/XtensaTools for Linux Xtensa

C:\riscv-llvm-win32_b298 b298 2024.08.12 for Win- -

dows/opt/riscv-llvim-Linux-x64_b298 b298 2024.08.12 toolchain

for Linux riscvl-
Ivm

1.3. Getting Started with MCUXpresso SDK GitHub 15

https://learn.arm.com/install-guides/gcc/arm-gnu/
https://www.iar.com/siteassets/knowledge/support/tech-notes/qr_lms2.pdf
https://www.iar.com/siteassets/knowledge/support/tech-notes/qr_lms2.pdf
https://developer.arm.com/documentation/109350/v6/Installation?lang=en
https://developer.arm.com/documentation/100748/0618/Getting-Started/Installing-Arm-Compiler-for-Embedded
https://docs.zephyrproject.org/latest/develop/toolchains/zephyr_sdk.html
https://www.nxp.com/design/design-center/software/development-software/codewarrior-development-tools:CW_HOME
https://tensilicatools.com/platforms/
https://www.nxp.com/search?keyword=NXP%2520S32Compiler%2520RISC-V&start=0

MCUXpresso SDK Documentation, Release 25.09.00

* The <toolchain>_ DIR is the root installation folder, not the binary location folder. For IAR,
it is directory containing following installation folders:

arm
common
install-info

* MDK IDE using armclang toolchain only officially supports Windows. In Linux, please di-
rectly use armclang toolchain by setting ARMCLANG_ DIR. In Windows, since most Keil
users will install MDK IDE instead of standalone armclang toolchain, the MDK_ DIR has
higher priority than ARMCLANG_ DIR.

» For Xtensa toolchain, please set the XTENSA__CORE environment variable. Here’s an ex-

ample list:
Device Core XTENSA CORE
RT500 fusion1 nxp_ rt500__RI23_11_newlib
RT600 hifi4 nxp_ rt600 RI23 11 newlib
RT700 hifil rt700 hifil RI23 11 nlib
RT700 hifi4 t700_ hifi4 RI23 11 nlib

1.MX8ULP fusionl fusion nxp02_dsp_ prod

* In Windows, the short path is used in environment variables. If any toolchain is using
the long path, you can open a command window from the toolchain folder and use below
command to get the short path: for %i in (.) do echo %-~fsi

Tool installation check Once installed, open a terminal or command prompt and type the
associated command to verify the installation.

If you see the version number, you have successfully installed the tool. Else, check whether the
tool’s installation path is added into the PATH variable. You can add the installation path to the
PATH with the commands below:

* Windows: Open command prompt or powershell, run below command to show the user
PATH variable.

reg query HKEY CURRENT USER\Environment /v PATH

The tool installation path should be C:\Users\xxx\AppData\Local\Programs\Git\cmd. If the
path is not seen in the output from above, append the path value to the PATH variable with
the command below:

reg add HKEY_ CURRENT__USER\ Environment /v PATH /d "%PATH%;C:\ Users\xxx\AppData\
< Local\Programs\Git\cmd”
Then close the command prompt or powershell and verify the tool command again.
e Linux:
1. Open the $HOME/ .bashrc file using a text editor, such as vim.
2. Go to the end of the file.

3. Add the line which appends the tool installation path to the PATH variable and export
PATH at the end of the file. For example, export PATH="/Directory1:$PATH".

4, Save and exit.

16 Chapter 1. MC56F81000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

5. Execute the script with source .bashre or reboot the system to make the changes live. To
verify the changes, run echo $PATH.

* macOS:
1. Open the $SHOME/.bash_ profile file using a text editor, such as nano.
2. Go to the end of the file.

3. Add the line which appends the tool installation path to the PATH variable and export
PATH at the end of the file. For example, export PATH="/Directory1:$PATH".

4. Save and exit.

5. Execute the script with source .bash_profile or reboot the system to make the changes
live. To verify the changes, run echo $PATH.

Get MCUXpresso SDK Repo

Establish SDK Workspace To get the MCUXpresso SDK repository, use the west tool to clone
the manifest repository and checkout all the west projects.

Initialize west with the manifest repository
west init -m https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/ mcuxpresso-sdk

Update the west projects
cd mcuxpresso-sdk
west update

Allow the usage of west extensions provided by MCUXpresso SDK
west config commands.allow__extensions true

Install Python Dependency(If do tool installation manually) To create a Python virtual en-
vironment in the west workspace core repo directory mcuxsdk, follow these steps:

1. Navigate to the core directory:

cd mcuxsdk

2. [Optional] Create and activate the virtual environment: If you don’t want to use the python
virtual environment, skip this step. We strongly suggest you use venv to avoid conflicts
with other projects using python.

python -m venv .venv

For Linux/MacOS
source .venv/bin/activate

For Windows

.\.venv\Scripts\activate

If you are using powershell and see the issue that the activate script cannot be run.

You may fix the issue by opening the powershell as administrator and run below command:
powershell Set-ExecutionPolicy RemoteSigned

then run above activate command again.

Once activated, your shell will be prefixed with (.venv). The virtual environment can be
deactivated at any time by running deactivate command.

Remember to activate the virtual environment every time you start working in this
directory. If you are using some modern shell like zsh, there are some powerful plugins to
help you auto switch venv among workspaces. For example, zsh-autoswitch-virtualenv.

3. Install the required Python packages:

1.3. Getting Started with MCUXpresso SDK GitHub 17

https://github.com/MichaelAquilina/zsh-autoswitch-virtualenv

MCUXpresso SDK Documentation, Release 25.09.00

Note: you can add option '--default-timeout=1000" if you meet connection issue. Or you may set a,
—different source using option '-i'.

for example, in China you could try: pip3 install -r mcuxsdk/scripts/requirements.txt -i https://pypi.
—tuna.tsinghua.edu.cn/simple

pip install -r scripts/requirements.txt

Explore Contents

This section helps you build basic understanding of current fundamental project content and
guides you how to build and run the provided example project in whole SDK delivery.

Folder View The whole MCUXpresso SDK project, after you have done the west init and west
update operations follow the guideline at Getting Started Guide, have below folder structure:

Folder Description

mani- Manifest repo, contains the manifest file to initialize and update the west

fests workspace.

mcuxsdk The MCUXpresso SDK source code, examples, middleware integration and script
files.

All the projects record in the Manifest repo are checked out to the folder mcuxsdk/, the layout of
mcuxsdk folder is shown as below:

Folder Description

arch Arch related files such as ARM CMSIS core files, RISC-V files and the build files related
to the architecture.

cmake The cmake modules, files which organize the build system.

com- Software components.

po-

nents

de- Device support package which categorized by device series. For each device, header

vices file, feature file, startup file and linker files are provided, also device specific drivers
are included.

docs Documentation source and build configuration for this sphinx built online documen-

tation.
drivers Peripheral drivers.
ex- Various demos and examples, support files on different supported boards. For each
am- board support, there are board configuration files.
ples
mid- Middleware components integrated into SDK.
dle-
ware

rtos Rtos components integrated into SDK.

scripts Script files for the west extension command and build system support.

svd Svd files for devices, this is optional because of large size. Customers run west manifest
config group.filter +optional and west update mcux-soc-svd to get this folder.

Examples Project The examples project is part of the whole SDK delivery, and locates in the
folder mcuxsdk/examples of west workspace.

Examples files are placed in folder of <example_ category>, these examples include (but are not
limited to)

18 Chapter 1. MC56F81000-EVK

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests

MCUXpresso SDK Documentation, Release 25.09.00

* demo_apps: Basic demo set to start using SDK, including hello_world and led_blinky.

* driver_examples: Simple applications that show how to use the peripheral drivers for a
single use case. These applications typically only use a single peripheral but there are cases
where multiple peripherals are used (for example, SPI transfer using DMA).

Board porting layers are placed in folder of boards/<board name> which aims at providing the
board specific parts for examples code mentioned above.

Run a demo using MCUXpresso for VS Code

This section explains how to configure MCUXpresso for VS Code to build, run, and debug example
applications. This guide uses the hello_ world demo application as an example. However, these
steps can be applied to any example application in the MCUXpresso SDK.

Build an example application This section assumes that the user has already obtained the
SDK as outlined in Get MCUXpresso SDK Repo.

To build an example application:

1. Import the SDK into your workspace. Click Import Repository from the QUICKSTART
PANEL.

File Edit Selection WView Go Run Terminal Help

MCUXP) FOR WS CODE

~ QUICKSTART PANEL @ o [0 £
-+ Import Repository

1% Import Example from ReposMry Import Local/Remote Repository

B+8 Import Project

pen Online Documentation

~ IMPORTED REPOSITORIES

Note: You can import the SDK in several ways. Refer to MCUXpresso for VS Code Wiki for
details.

Select Local if you’ve already obtained the SDK as seen in Get MCUXpresso SDK Repo. Select
your location and click Import.

£ Import Repository X

Import Repository

Location: c\Repos\ymaouxsdk

Import

2. Click Import Example from Repository from the QUICKSTART PANEL.

1.3. Getting Started with MCUXpresso SDK GitHub 19

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Working-with-MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.09.00

MCU } WS CODE

~ QUICKSTART PAMNEL

~+ Import Repository

% Import Example from Repository h
8+8 Import Project
T3 MNew Project

In the dropdown menu, select the MCUXpresso SDK, the Arm GNU Toolchain, your board,
template, and application type. Click Import.

£ Import Example from Repository X
Import Example from Repository
Repository: c\Repos\mouxsdk
Toolchain: (Arm GNU Toolchain 13.2.rel1 (Build arm-13.73) 13.2.1 20231009 ©

Board: FRDM-M

. FRDM-MCXC444

Template: demo_apps/hello_world

The Helloworld demo prints the "Hello World" string to the terminal using the SDK UART dnivers and repeat what user
input. The purpose of this demo is to show how to use the UART, and to provide a simple project for debugging and
further development.

Please refer to README file for more details.

App type: Freestanding application

MName; frdmmexc444_hello_world

Location: c\nxp_examples

Note: Path doesn't exist. Folder(s) will be created.

Open readme file after project is imported

import

Note: The MCUXpresso SDK projects can be imported as Repository applications or Free-
standing applications. The difference between the two is the import location. Projects im-
ported as Repository examples will be located inside the MCUXpresso SDK, whereas Free-
standing examples can be imported to a user-defined location. Select between these by
designating your selection in the App type dropdown menu.

3. VS Code will prompt you to confirm if the imported files are trusted. Click Yes.
4. Navigate to the PROJECTS view. Find your project and click the Build Project icon.

20

Chapter 1. MC56F81000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

~ PROJECTS
» frdmmexc444 hello world M

1_debug_console.c.obj
51_clock.c.obj

Building C ob;
Linking C e
egion
m_interrupts:
m_flash_config:
m_text:
m_data:
build finished successfully
n Terminal will be reused by tasks, press any key to close it.

Run an example application Note: for full details on MCUXpresso for VS Code debug probe
support, see MCUXpresso for VS Code Wiki.

1. Open the Serial Monitor from the VS Code’s integrated terminal. Select the VCom Port for
your device and set the baud rate to 115200.

Monitor \ v Text Port COMA40 - MCU-Link VCom Port (COM40) O Baudrate 115200 °
Line ending CR D> Start Monitoring = #a NI &

2. Navigate to the PROJECTS view and click the play button to initiate a debug session.

~ PROJECTS
» frdmmexc444 hello world M

The debug session will begin. The debug controls are initially at the top.

1.3. Getting Started with MCUXpresso SDK GitHub 21

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/DebugK

MCUXpresso SDK Documentation, Release 25.09.00

hello world.c X

main(

ch;

BOARD InitHardware();
PRINTF("hello

while
ch = GETCHAR
PUTCHAR(ch) ;

3. Click Continue on the debug controls to resume execution of the code. Observe the output
on the Serial Monitor.

SERIAL MOMIT
—+ Open an additional menitor
Monitor Mode View Mode ' Port COMA40 - MCU-Link VCom Port (COM40)

¢y

[stop Monitoring = & [@ (1]

tark

---- Opened the serial port COM4@ ----
hello world.

Running a demo using ARMGCC CLI/IAR/MDK

Supported Boards Use the west extension west list_project to understand the board support
scope for a specified example. All supported build command will be listed in output:

west list__project -p examples/demo__apps/hello_world [-t armgcc]

INFO: [1][west build -p always examples/demo_apps/hello world --toolchain armgcc --config release -b,

—evk9mimx8ulp -Dcore_ id=cm33]

INFO: [2|[west build -p always examples/demo_ apps/hello_ world --toolchain armgcc --config release -b,

—evkbimxrt1050]

INFO: | 3][west build -p always examples/demo__apps/hello_ world --toolchain armgcc --config release -b,
(continues on next page)

22 Chapter 1. MC56F81000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
—evkbmimxrt1060]
INFO: [4][west build -p always examples/demo__apps/hello_ world --toolchain armgcc --config release -b,
—evkbmimxrt1170 -Dcore_ id=cm4]
INFO: [5][west build -p always examples/demo__apps/hello_ world --toolchain armgcc --config release -b,
—evkbmimxrt1170 -Dcore_id=cm7]
INFO: [6][west build -p always examples/demo_ apps/hello_world --toolchain armgcc --config release -b,
—evkemimxrt1060]
INFO: [7|[west build -p always examples/demo_ apps/hello_ world --toolchain armgcc --config release -b,
—evkmecimx7ulp]

The supported toolchains and build targets for an example are decided by the example-self exam-
ple.yml and board example.yml, please refer Example Toolchains and Targets for more details.

Build the project Use west build -h to see help information for west build command. Compared
to zephyr’s west build, MCUXpresso SDK’s west build command provides following additional
options for mcux examples:

* —toolchain: specify the toolchain for this build, default armgce.

* —-config: value for CMAKE_BUILD_TYPE. If not provided, build system will get all the ex-
ample supported build targets and use the first debug target as the default one. Please refer
Example Toolchains and Targets for more details about example supported build targets.

Here are some typical usages for generating a SDK example:

Generate example with default settings, default used device is the mainset MK22F51212
west build -b frdmk22f examples/demo_apps/hello_ world

Just print cmake commands, do not execute it
west build -b frdmk22f examples/demo_ apps/hello_ world --dry-run

Generate example with other toolchain like iar, default armgcc
west build -b frdmk22f examples/demo_ apps/hello_ world --toolchain iar

Generate example with other config type
west build -b frdmk22f examples/demo_ apps/hello_ world --config release

Generate example with other devices with --device
west build -b frdmk22f examples/demo_ apps/hello_ world --device MK22F12810 --config release

For multicore devices, you shall specify the corresponding core id by passing the command line
argument -Dcore__id. For example

west build -b evkbmimxrt1170 examples/demo__apps/hello_ world --toolchain iar -Dcore_id=cm?7 --config, ,
—flexspi__nor__ debug

For shield, please use the --shield to specify the shield to run, like

west build -b mimxrt700evk --shield a8974 examples/issdk examples/sensors/fx1s8974cf/fx1s8974cf poll -
—Dcore_id=cm33__core0

Syshuild(System build) To support multicore project building, we ported Sysbuild from
Zephyr. It supports combine multiple projects for compilation. You can build all projects by
adding --sysbuild for main application. For example:

west build -b evkbmimxrt1170 --sysbuild ./examples/multicore_examples/hello_world /primary -Dcore__
—id=cm7 --config flexspi nor_ debug --toolchain=armgcc -p always

For more details, please refer to System build.

1.3. Getting Started with MCUXpresso SDK GitHub 23

MCUXpresso SDK Documentation, Release 25.09.00

Config a Project Example in MCUXpresso SDK is configured and tested with pre-defined con-
figuration. You can follow steps blow to change the configuration.

1. Run cmake configuration

west build -b evkbmimxrt1170 examples/demo_ apps/hello_ world -Dcore_id=cm7 --cmake-only -p

Please note the project will be built without --cmake-only parameter.

2. Run guiconfig target

west build -t guiconfig

Then you will get the Kconfig GUI launched, like

) Hello World - O ot

Save Save as.. || 5ave minimal (advanced]... Open... Jump to...

[] Show name [] Showall [] Single-menu mode

(Top)
Board Boot Header s
Project Segrments
Device Boot Header
=l Device MIMXRT1176 Part (Device part MIMXRTT1760YVIMAAL)
@Device part MIMXRT1176DVIMAL
ODevice part MIMERT1176AVIMEA
ODevice part MIMERT11TECVIMEA
B Device specific drivers
K |Use driver clock
EUse driver iormuxe
:|U5e driver mipi csi2rx
:|U5E driver mipi dsi
EUEE driver anatop_ai
E'Use driver memory
:|U5e driver nic301
E'Use driver dedc
EUse driver gpc
EUse driver pgrmc
EUEE driver prmu
EUEE driver src W

Econfig definition., with parent deps. propagated to " depends on’

4t D fedk_next/mouxsdkydevicesh.. /devices/ET/RT1170/NIMET11 76 \drivers/Kconfig: B
Included wia D: fadk_next/mouxsdk/examples/demo_appsfhello_world/Econfiz: 6 —>

D: fedk_next/mouzsdk/Koconfig. mouxpreszo: @ —» D fedk_next/mouxsdk\devices/Econfig: 1
= I f=dk_next/mouxsdkydevicesh.. fdevices/RT/RT1170,/ NIMET11 76,/ Econfig: &

Merm path: (Topd

memi “Device specific driwers”

You can reconfigure the project by selecting/deselecting Kconfig options.

After saving and closing the Kconfig GUI, you can directly run west build to build with the new
configuration.

24 Chapter 1. MC56F81000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

Flash Note: Please refer Flash and Debug The Example to enable west flash/debug support.
Flash the hello_world example:

west flash -r linkserver

Debug Start a gdb interface by following command:

west debug -r linkserver

Work with IDE Project The above build functionalities are all with CLI If you want to use
the toolchain IDE to work to enjoy the better user experience especially for debugging or you
are already used to develop with IDEs like IAR, MDK, Xtensa and CodeWarrior in the embedded
world, you can play with our IDE project generation functionality.

This is the cmd to generate the evkbmimxrt1170 hello_world IAR IDE project files.

west build -b evkbmimxrt1170 examples/demo__apps/hello_ world --toolchain iar -Dcore_id=cm?7 --config, |
—flexspi_nor__debug -p always -t guiproject

By default, the IDE project files are generated in mcuxsdk/build/<toolchain> folder, you can open
the project file with the IDE tool to work:

k-next\mcu-sdk-3.0
N-3¢) rc west build frdmk64f . \exampl

Note, please follow the Installation to setup the environment especially make sure that ruby has
been installed.

1.4 Release Notes

1.4.1 MCUXpresso SDK Release Notes
Overview

The MCUXpresso SDK is a comprehensive software enablement package designed to simplify
and accelerate application development with Arm Cortex-M-based devices from NXP, including
its general purpose, crossover and Bluetooth-enabled MCUs. MCUXpresso SW and Tools for DSC

1.4. Release Notes 25

MCUXpresso SDK Documentation, Release 25.09.00

further extends the SDK support to current 32-bit Digital Signal Controllers. The MCUXpresso
SDK includes production-grade software with integrated RTOS (optional), integrated enabling
software technologies (stacks and middleware), reference software, and more.

In addition to working seamlessly with the MCUXpresso IDE, the MCUXpresso SDK also supports
and provides example projects for various toolchains. The Development tools chapter in the
associated Release Notes provides details about toolchain support for your board. Support for
the MCUXpresso Config Tools allows easy cloning of existing SDK examples and demos, allowing
users to leverage the existing software examples provided by the SDK for their own projects.

Underscoring our commitment to high quality, the MCUXpresso SDK is MISRA compliant and
checked with Coverity static analysis tools. For details on MCUXpresso SDK, see MCUXpresso-
SDK: Software Development Kit for MCUXpresso.

MCUXpresso SDK

As part of the MCUXpresso software and tools, MCUXpresso SDK is the evolution of Kinetis SDK,
includes support for LPC, DSC,PN76, and i.MX System-on-Chip (SoC). The same drivers, APIs, and
middleware are still available with support for Kinetis, LPC, DSC, and i.MX silicon. The MCUX-
presso SDK adds support for the MCUXpresso IDE, an Eclipse-based toolchain that works with
all MCUXpresso SDKs. Easily import your SDK into the new toolchain to access to all of the avail-
able components, examples, and demos for your target silicon. In addition to the MCUXpresso
IDE, support for the MCUXpresso Config Tools allows easy cloning of existing SDK examples and
demos, allowing users to leverage the existing software examples provided by the SDK for their
own projects.

In order to maintain compatibility with legacy Freescale code, the filenames and source code in
MCUXpresso SDK containing the legacy Freescale prefix FSL has been left as is. The FSL prefix
has been redefined as the NXP Foundation Software Library.

Development tools

The MCUXpresso SDK was tested with following development tools. Same versions or above are
recommended.

* CodeWarrior Development Studio v11.2 with CodeWarrior for DSC v11.2 SP1 (Service Pack
1)

Supported development systems

This release supports board and devices listed in following table. The board and devices in bold
were tested in this release.

De- MCU devices
vel-

op-

ment

board:

MC56] MC56F81643LVLC, MCS56F81646LVLE, MC56F81648LVLH, MCS56F81663LVLC,

EVK MC56F81666LVLE, MCS56F81668LVLH, MC56F81743LVLC, MC56F81746LMLE,
MC56F81746LVLE, MC56F81748LMLH, MC56F81748LVLH, MC56F81763LVLC,
MC56F81766AMLFA, MCS56F81766LMLE, MC56F81766LVLE, MC56F81768AMLHA,
MC56F81768LMLH, MC56F81768LVLH

26 Chapter 1. MC56F81000-EVK

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.09.00

Release contents

Table 1 provides an overview of the MCUXpresso DSC SDK release package contents and loca-
tions.

Deliverable Location

Boards <install _dir>/boards

Demo applications <install_dir>/boards/<board_name>/
demo__apps

Driver examples <install _dir>/boards/<board_name>/
driver__examples

Documentation <install dir>/docs

Driver, SoC header files, extension header files and <install_dir>/devices/<device_name>
feature header files

Peripheral Drivers <install _dir>/devices/<device name>/
drivers

Utilities such as debug console <install dir>/devices/<device name>/
utilities

Middleware <install_dir>/middleware

MCUXpresso SDK release package

The MCUXpresso SDK release package content is aligned with the silicon subfamily it supports.
This includes the boards, CMSIS, devices, middleware, and RTOS support.

Device support The device folder contains the whole software enablement available for the
specific System-on-Chip (SoC) subfamily. This folder includes clock-specific implementation,
device register header files, device register feature header files, and the system configuration
source files. Included with the standard SoC support are folders containing peripheral drivers,
toolchain support, and a standard debug console. The device-specific header files provide a di-
rect access to the microcontroller peripheral registers. The device header file provides an overall
SoC memory mapped register definition. The folder also includes the feature header file for each
peripheral on the microcontroller. The toolchain folder contains the startup code and linker files
for each supported toolchain. The startup code efficiently transfers the code execution to the
main() function.

Board support The boards folder provides the board-specific demo applications, driver exam-
ples, and middleware examples.

Demo application and other examples The demo applications demonstrate the usage of the
peripheral drivers to achieve a system level solution. Each demo application contains a readme
file that describes the operation of the demo and required setup steps. The driver examples
demonstrate the capabilities of the peripheral drivers. Each example implements a common
use case to help demonstrate the driver functionality.

Middleware

Motor Control Software (ACIM, BLDC, PMSM) Motor control examples.

FreeMASTER FreeMASTER communication driver for 32-bit platforms.

1.4. Release Notes 27

MCUXpresso SDK Documentation, Release 25.09.00

Known Issues

This section lists the known issues, limitations, and/or workarounds.

PRINTF issue for program address space When project is compiled with SDM, print the ad-
dress in program address space malfunction.

* Failed example when SDM

— PRINTF(”%p”, main); Root cause: in SDM, %p is treated as 16-bit value, however main
in program address space is still considered as 32-bit.

* Workaround(compliant with SDM and LDM)
— PRINTF(”0x%Ix”, (uint32__t)main);

1.5 ChangeLog

1.5.1 MCUXpresso SDK Changelog
Board Support Files

board

[25.06.00]

 Initial version
clock_config

[25.06.00]

 Initial version
pin_mux

[25.06.00]

 Initial version

CADC

[2.2.0]
* New Features

* Supported platforms which don’t have ANA4 expansion MUX.

28 Chapter 1. MC56F81000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.0]

* Improvements

* Added some APIs to support some devices that equipped expansion mux.

[2.0.1]

* Bug Fixes

* Fixed the bug that channel mode set to wrong value.

 Fixed the bug that independent parallel mode set to wrong value.

» TFixed violations of the MISRA C-2012 rules.

[2.0.0]

 Initial version.

CLOCK

[2.2.0]

* Update to support silicon revision 1

[2.1.0]
* Accumulated bug fix
* MISRA warning fix

[2.0.0]

 Initial version.

CMP

[2.0.1]

* Improvements

* Supported MC56F82xxxx and MC56F84xxXXX.

— Bug Fixes
» Tixed violations of the MISRA C-2012 rules.

[2.0.0]

 Initial version.

1.5. ChangeLog

29

MCUXpresso SDK Documentation, Release 25.09.00

COMMON

[2.6.0]
* Bug Fixes
— Fix CERT-C violations.

[2.5.0]
* New Features

— Added new APIs InitCriticalSectionMeasurementContext, DisableGlobalIRQEx and En-
ableGloballRQEX so that user can measure the execution time of the protected sections.

[2.4.3]
* Improvements

— Enable irgs that mount under irgsteer interrupt extender.

[2.4.2]
* Improvements

— Add the macros to convert peripheral address to secure address or non-secure address.

[2.4.1]
* Improvements

— Improve for the macro redefinition error when integrated with zephyr.

[2.4.0]
* New Features
— Added EnableIRQWithPriority, IRQ_SetPriority, and IRQ_ClearPendingIRQ for ARM.
— Added MSDK_EnableCpuCycleCounter, MSDK_GetCpuCycleCount for ARM.

[2.3.3]
* New Features
— Added NETC into status group.

[2.3.2]
* Improvements

— Make driver aarch64 compatible

[2.3.1]
* Bug Fixes
— Fixed MAKE_VERSION overflow on 16-bit platform:s.

30 Chapter 1. MC56F81000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

[2.3.0]
* Improvements

— Split the driver to common part and CPU architecture related part.

[2.2.10]
* Bug Fixes

- Fixed the ATOMIC macros build error in cpp files.

[2.2.9]
* Bug Fixes
- Fixed MISRA C-2012 issue, 5.6, 5.8, 8.4, 8.5, 8.6, 10.1, 10.4, 17.7, 21.3.

— Fixed SDK_Malloc issue that not allocate memory with required size.

[2.2.8]
* Improvements
— Included stddef.h header file for MDK tool chain.
* New Features:

— Added atomic modification macros.

[2.2.7]
* Other Change
— Added MECC status group definition.

[2.2.6]
* Other Change
— Added more status group definition.
* Bug Fixes
— Undef __ VECTOR_TABLE to avoid duplicate definition in cmsis_clang.h

[2.2.5]
* Bug Fixes
— Fixed MISRA C-2012 rule-15.5.

[2.2.4]
* Bug Fixes
- Fixed MISRA C-2012 rule-10.4.

1.5. ChangeLog 31

MCUXpresso SDK Documentation, Release 25.09.00

[2.2.3]
* New Features

— Provided better accuracy of SDK_DelayAtLeastUs with DWT, wuse macro
SDK_DELAY USE_DWT to enable this feature.

— Modified the Cortex-M7 delay count divisor based on latest tests on RT series boards,
this setting lets result be closer to actual delay time.

[2.2.2]
* New Features
— Added include RTE_Components.h for CMSIS pack RTE.

[2.2.1]
* Bug Fixes
— Fixed violation of MISRA C-2012 Rule 3.1, 10.1, 10.3,10.4, 11.6, 11.9.
[2.2.0]

* New Features

— Moved SDK_DelayAtLeastUs function from clock driver to common driver.

[2.1.4]
* New Features
— Added OTFAD into status group.

[2.1.3]
* Bug Fixes
— MISRA C-2012 issue fixed.
% Fixed the rule: rule-10.3.
[2.1.2]

* Improvements

— Add SUPPRESS_FALL_THROUGH_WARNING() macro for the usage of suppressing
fallthrough warning.

[2.1.1]
* Bug Fixes

— Deleted and optimized repeated macro.

32 Chapter 1. MC56F81000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.0]
* New Features
— Added IRQ operation for XCC toolchain.
— Added group IDs for newly supported drivers.

[2.0.2]
* Bug Fixes
— MISRA C-2012 issue fixed.
* Fixed the rule: rule-10.4.
[2.0.1]

* Improvements
— Removed the implementation of LPC8XX Enable/DisableDeepSleepIRQ() function.

— Added new feature macro switch “FSL. FEATURE_HAS NO_NONCACHEABLE_SECTION”
for specific SoCs which have no noncacheable sections, that helps avoid an unneces-
sary complex in link file and the startup file.

— Updated the align(x) to attribute(aligned(x)) to support MDK v6 armclang compiler.

[2.0.0]

 Initial version.

Ccop

[2.2.3]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 10.3.

[2.2.2]
* Bug Fixes

* Added configuration of CWP bits in COP_Init, fixed write protection bEnableWriteProtect
cannot be configured as part of cop_config_t.

[2.2.1]
* Bug Fixes
» Tixed violations of the MISRA C-2012 rules.

[2.2.0]
* Improvements
* Updated cop_config_t member naming.
* Deleted COP_Disable API, added COP_Enable to enable/disable COP.

1.5. ChangeLog 33

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.0]
* Improvements

» APl interface changes:

— Renamed “COP_EnableInterrupts/COP_DisableInterrupts” to
“COP_EnableInterrupt/COP_DisableInterrupt” and remove unnecessary parame-

ter.
— New Features
» Added APIs to enable/disable the COP COP Loss of Reference counter.

[2.0.0]

 Initial version.

CRC

[2.0.1]
* Bug Fixes
» TFixed violations of the MISRA C-2012 rules.

[2.0.0]

 Initial version.

DAC

[2.0.1]
* Improvements
* Supported MC56F82xxx and MC56F84xxx.
— Bug Fixes
* Fixed violations of the MISRA C-2012 rules.

[2.0.0]

 Initial version.

DMAMUX

[2.0.0]

 Initial version.

34 Chapter 1

. MC56F81000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

EDMA

[2.0.3]
* Fixed the MISRA-2012 violations.
» Fixed rule 10.3.

[2.0.2]
» Fixed the MISRA-2012 violations.
» Fixed rule 5.8, 9.2, 10.3, 10.4, 11.6.

[2.0.1]

» Code modification for SDM compliance

[2.0.0]

 Initial version.

EVTG

[2.0.0]

 Initial version.

EWM

[2.0.2]
* Bug Fixes
» TFixed violations of MISRA C-2012 rule 10.3.

[2.0.1]
* Bug Fixes
» Tixed violations of the MISRA C-2012 rules.

[2.0.0]

 Initial version.

FLASH

[3.0.0]

* Initial version — Basic FTFx IP command support

1.5. ChangeLog 35

MCUXpresso SDK Documentation, Release 25.09.00

GPIO

[2.0.1]
* Bug Fixes
» Fixed violations of the MISRA C-2012 rules.

[2.0.0]

 Initial version.

INTC

[2.0.1]
* Improvements

* Added doxygen comments.

[2.0.0]

« Initial version.

LPI2C

[2.0.2]
* Bug Fixes

* Fixed bug in eDMA transfer for SoCs whose rx and tx have different eDMA requests.

[2.0.1]
* Bug Fixes
» Fixed the MISRA-2012 violations.

[2.0.0]

 Initial version.

MCM

[2.0.1]
* Improvements
* Supported MC56F82xxx and MC56F84xxx.

36 Chapter 1. MC56F81000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.0]

 Initial version.

OPAMP

[2.0.0]

« Initial version.

PIT

[2.3.1]
* Bug Fixes
» Fixed violations of MISRA C-2012 rule 10.3.

[2.3.0]

* Improvements

Filtered Preset input to reset PIT counter.

Support SYNC_OUT output stretch and toggle mode.

Added PIT_SetPresetFiltConfig() to set FILT register configurations.
Added PIT_SetSyncOutConfig() to set SYNC register configurations.

[2.2.1]
* Bug Fixes
» Fixed violations of the MISRA C-2012 rules.

[2.2.0]
* Improvements
» Updated pit_config_t member naming.

* Removed some APIs for prescaler and clock source selection.

[2.1.0]

* Improvements

Updated PIT clock source and PIT prescaler with more meaningful comments.

Updated PIT_SetTimerPeriod() and PIT_GetCurrentTimerCount() with 16-bit parameter.

Deleted mask parameter for PIT_ClearStatusFlags/PIT_EnableInterrupts/PIT_DisableInterrupts.

Added PIT_SetTimerClockSource() API to configure clock source.
Added PIT_EnableSlaveMode() API to configure slave mode.

1.5. ChangeLog 37

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.1]
* New Features

» Added PIT_SetTimerPrescaler() API to configure clock prescaler value.

[2.0.0]

 Initial version.

PMC

[2.1.0]
* Improvements
* Added PMC_SetVrefTrim() and PMC_SetVcapTrim() APIs to support MC56F80xxx.

[2.0.0]

« Initial version.

eFlexPWM

[2.2.0]
* New Features
* Supported capture PWM input filter.
* Supported different PWM deadtime count register width.
— Bug Fixes

* Fixed wrong pwm_sm_pwm_out_t enum order issue.

[2.1.1]
* Bug Fixes

 Fixed build error when soc not support Capture A/B features.

[2.1.0]
* Improvements
* Supported MC56F80xxx.

[2.0.2]
* Bug Fixes

* Fixed clear status flags API doesn’t work issue.

38 Chapter 1. MC56F81000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.1]
* Improvements
* Supported MC56F82xxx and MC56F84xxX .
— Bug Fixes
* Fixed violations of the MISRA C-2012 rules.

[2.0.0]

¢ Initial version.

QDC

[2.1.0]
* New Features
* Supported input filter prescaler.

» Supported the feature that the position counter to be initialized by Index Event Edge Mark.

[2.0.1]
* Improvements
* Supported MC56F84xxx.

[2.0.0]

 Initial version.

QscI

[2.0.4]
* Bug Fixes

» Fixed DMA transfer blocking issue by enabling tx idle interrupt after DMA transmission
finishes, and invoke completion callback after tx idle interrupt occurs.

[2.0.3]
* Bug Fixes
 Fixed violations of the MISRA C-2012 rules.

[2.0.2]
* Improvements

» Supported QSCI which has 13-bit integer and 3-bit fractional baud rate selection.

1.5. ChangeLog 39

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.1]

* Bug Fixes

» Fixed bug that when starting the non-blocking receive, the rx idle interrupt is not enabled,

and when receiving is done the rx idle interrupt is not disabled.

[2.0.0]

 Initial version.

QTMR

[2.0.1]
* Improvements
* Supported to get TMR capture register address.
— Bug Fixes
* Fixed violations of the MISRA C-2012 rules.

[2.0.0]

 Initial version.

Queued SPI

[2.1.1]
* Bug Fixes

* Fixed wrong baudrate calculation method.

[2.1.0]
* Bug Fixes
 Fixed wrong definitions of interrupt enable/disable masks.
 Fixed wrong usage of QSPI_DisableInterrupts.

* Fixed wrong type casts.

Fixed bug for master blocking transfer of rx FIFO overflow.

[2.0.0]

 Initial version.

SIM

[2.2.0]
» Use dedicated SIM driver for MC56F81xxx

40 Chapter 1

. MC56F81000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.0]
* Improvements
* Updated support for MC56F82xxx and MC56F84xxx.
— Bug Fixes
* Fixed violations of the MISRA C-2012 rules.

[2.0.0]

¢ Initial version.

DSC_XBARA

[2.0.1]
* Bug Fixes
» Tixed violations of the MISRA C-2012 rules.

[2.0.0]

 Initial version.

1.5. ChangeLog 1

MCUXpresso SDK Documentation, Release 25.09.00

42 Chapter 1. MC56F81000-EVK

Chapter 2

MC56F81768

2.1 CADC: 12-bit Cyclic Analog-to-Digital Converter Driver

void CADC_ Init(ADC_Type *base, const cadc_config t *psConfig)

Initializes the CADC module, such as scan mode, DMA trigger source, interrupt mask and
SO on.

This function is to make the initialization for using CADC module. The operations are:
* Enable the clock for CADC.
* Set power up delay and Idle work mode.
» Set DMA trigger source.

* Enable the interrupts(Including High/Low limit interrupt, zero crossing interrupt in-
terrupt, end of scan interrupt and each sample slot’s scan interrupt).

* Set scan mode.

* Set disabled sample slot for the scan.
* Set scan control options.

* Set selected channels’ mode.

* Set gain for each channel.

* Config conterA and converterB.

Note: The high limit value, low limit value, offset value and zerocrossing mode of each
sample slot will not be configured in this function, to set those options, the APIs in “Sample
Slot Control Interfaces” function group can be used.

Parameters
* base — CADC peripheral base address.
* psConfig — Pointer to configuration structure. See cadc_config_t.

void CADC_ GetDefaultConfig(cadc_config_t *psConfig)
Gets an available pre-defined options(such as scan mode, DMA trigger source, interrupt
mask and so on) for module’s configuration.

This function initializes the module’s configuration structure with an available settings.
The default value are:

43

MCUXpresso SDK Documentation, Release 25.09.00

psConfig->eDMATriggerSource = kKCADC_ DM ATrigSrcEndofScan;
psConfig->eldleWorkMode = kCADC_ IdleKeepNormal;
psConfig-s>ul6PowerUpDelay = 26U;

psConfig->u32EnabledInterruptMask = 0U;

psConfig->eScanMode = kCADC_ ScanModeTriggeredParallelSimultaneous;
psConfig->uDisabledSampleSlot.u32SampleDisVal = 0xFFOFOUL;
psConfig->uScanControl.u32ScanCtrlVal = 0x0UL;
psConfig->eChannelGain[x] = kCADC__SignalGainX1;
psConfig->sampleSlotScanInterrupt EnableMask = kCADC_ NonSampleSlotMask;
For the default setting of converter, please see CADC__ GetConverterDefaultConfig().

Parameters
 psConfig — Pointer to configuration structure. See cadc_config_t.

void CADC_ Deinit(ADC_Type *base)

De-initializes the CADC module, including power down both converter and disable the
clock(Optional).

This function is to make the de-initialization for using CADC module. The operations are:
* Power down both converter.
* Disable the clock for CADC.

Parameters
* base — CADC peripheral base address.
static inline void CADC__SetScanMode(ADC_Type *base, cadc_scan_mode_t eScanMode)

Sets the scan mode(such as Sequential scan mode, Simultaneous parallel scan mode, Inde-
pendent parallel scan

mode) of dual converters.

Parameters
* base — CADC peripheral base address.

* eScanMode — Dual converters’ scan mode, please see cadc_scan_mode_t for
details.

static inline void CADC_SetScanControl(ADC_Type *base, cadc_scan_control_t uScanControl)
The function provides the ability to pause and await new sync in the conversion sequence.

Parameters
* base — CADC peripheral base address.

* uScanControl — The scan control value, please refer to cadc_scan_control_t
for details.

void CADC_ SetChannelMode(ADC_Type *base, cadc_channel mode_t eChannelMode)

Sets mode for the specific channel(Each channel can be set as single-end, fully differential
and unipolar differential(Optional) mode).

Parameters
* base — CADC peripheral base address.

* eChannelMode - The channel mode to be set, please refer to
cadc_channel_mode_t for details.

44 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

void CADC_ SetChannelGain(ADC_Type *base, cadc_channel_number_t eChannelNumber,
cadc_channel _gain_t eChannelGain)

Sets the gain(Supports X1, X2, X4) of selected channel.
Parameters
* base — CADC peripheral base address.

* eChannelNumber - The number of channel, please refer to
cadc_channel number _t.

* eChannelGain — The gain amplification, please refer to cadc_channel_gain_t
for details.

void CADC_ GetSampleSlotDefaultConfig(cadc_sample_slot_config_t *psConfig)
Gets sample slot default configuration including zero crossing mode, high limit value, low
limit value and offset value.

psConfig->eZeroCrossingMode = kCADC__ZeroCrossingDisabled;
psConfig->ul6HighLimitValue = 0x7FF8U;
psConfig->ul6LowLimitValue = 0x0U;

psConfig->ul60ffsetValue = 0x0U;
Parameters
* psConfig - Pointer to configuration structure. See

cadc_sample_slot_config_t.

void CADC_ SetSampleSlotConfig(ADC_Type *base, cadc_sample_slot_index_t eSampleIndex,
const cadc_sample_slot_config t *psConfig)

Configures the options(including zero crossing mode, high limit value, low limit value and
offset value) for sample slot.

Note: This function can be used to set high limit value, low limit value, offset value and
zerocrossing mode of the sample slot.

Parameters
* base — CADC peripheral base address.

* eSamplelndex — Index of sample slot in conversion sequence. Please refer
to cadc_sample_slot_index_t.

* psConfig - Pointer to configuration structure. See
cadc_sample_slot_config_t.

void CADC_ SetSampleSlotZeroCrossingMode(ADC_Type *base, cadc_sample_slot_index_t
eSamplelndex,
cadc_sample_slot_zero_crossing_mode_t
eZeroCrossingMode)

Sets zero-crossing mode for the selected sample slot.
Parameters
* base — CADC peripheral base address.

* eSampleIndex — The index of sample slot. Please refer to
cadc_sample_slot_index_t for details.

» eZeroCrossingMode — Zero crossing mode, please refer to
cadc_sample_slot_zero_crossing_mode_t for details.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 45

MCUXpresso SDK Documentation, Release 25.09.00

void CADC_ RouteChannelToSampleSlot(ADC_Type *base, cadc_sample_slot_index_t
eSamplelndex, cadc_channel number._t
eChannelNumber)

Routes the channel to the sample slot.
Parameters
* base — CADC peripheral base address.

» eSampleIndex - The index of sample slot, please refer to
cadc_sample_slot_index_t for details.

* eChannelNumber — Sample channel number, please refer to
cadc_channel_number_t for details.

static inline void CADC__SetSampleSlotLowLimitValue(ADC_Type *base,

cadc_sample_slot_index_t eSampleIndex,
uint16_t ul6LowLimitValue)

Sets the low limit value(-32768 ~ 32767 with lower three bits of fixed value 0) for the specific
sample slot.

Parameters
* base — CADC peripheral base address.

» eSampleIndex — The index of sample slot. Please refer to
cadc_sample_slot_index_t for details.

* ul6LowLimitValue — Low limit value(-32768 ~ 32767 with lower three bits of
fixed value 0). Original value formation as hardware register, with 3-bits
left shifted.

static inline void CADC__SetSampleSlotHighLimitValue(ADC_Type *base,

cadc_sample_slot_index_t eSampleIndex,
uint16_t ul6HighLimitValue)

Sets the high limit value(-32768 ~ 32767 with lower three bits of fixed value 0) for the specific
sample slot.

Parameters
* base — CADC peripheral base address.

» eSampleIndex — The index of sample slot. Please refer to
cadc_sample_slot_index_t for details.

* ul6HighLimitValue — High limit value(-32768 ~ 32767 with lower three bits
of fixed value 0). Original value formation as hardware register, with 3-
bits left shifted.

static inline void CADC__SetSampleSlotOffset Value(ADC_Type *base, cadc_sample_slot_index_t
eSampleIndex, uint16_t ul60ffsetValue)

Sets the offset value(-32768 ~ 32767 with lower three bits of fixed value 0) for the specific
sample slot.

Parameters
* base — CADC peripheral base address.

» eSampleIndex — The index of sample slot. Please refer to
cadc_sample_slot_index_t for details.

* ul60ffsetValue — Offset value(-32768 ~ 32767 with lower three bits of fixed

value 0). Original value formation as hardware register, with 3-bits left
shifted.

46 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint16_t CADC_ GetSampleSlotResultValue(ADC_Type *base,
cadc_sample_slot_index_t eSampleIndex)

Gets the sample result value.

This function is to get the sample result value. The returned value keeps it original forma-
tion just like in hardware result register. It includes the sign bit as the MSB and 3-bit left
shifted value.

Parameters
* base — CADC peripheral base address.

* eSampleIndex — Index of sample slot. For the counts of sample slots, please
refer to cadc_sample_slot_index_t for details.

Returns
Sample’s conversion value.

void CADC_ GetConverterDefaultConfig(cadc_converter_config t *psConfig)

Gets available pre-defined settings(such as clock divisor, reference voltage source, and so
on) for each converter’s configuration.

This function initializes each converter’s configuration structure with an available settings.
The default value are:

psConfig->ul6ClockDivisor = 4U;(ADC clock = Peripheral clock / 5)
psConfig->eSpeedMode = kCADC_ SpeedMode0; (Chip specific)
psConfig->eHighReferenceVoltageSource = kCADC_ ReferenceVoltageVrefPad;
psConfig->eLowReferenceVoltageSource = kCADC__ReferenceVoltageVrefPad;
psConfig->ul6SampleWindowCount = 0U; (Chip specific)
psConfig->bEnableDMA = false;

psConfig->bPowerUp = false;

psConfig->bScanlnitBySync = true;

Parameters
* psConfig — Pointer to configuration structure. See cadc_converter_config_t.

void CADC_ SetConverterConfig(ADC_Type *base, cadc_converter_id _t eConverterld, const
cadc_converter_config_t *psConfig)

Configures the options(such as clock divisor, reference voltage source, and so on) for the
converter.

This function can be used to configure the converter The operations are:
* Set clock divisor;
 Set reference voltage source
* Enable/Disable DMA

* Power-up/power-down converter

Parameters
* base — CADC peripheral base address.
* eConverterld — The converter Id. See cadc_converter_id_t.
* psConfig— Pointer to configuration structure. See cadc_converter_config_t.

static inline void CADC__EnableConverter(ADC_Type *base, cadc_converter_id_t eConverterld,
bool bEnable)

Changes the converter to stop mode or normal mode.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 47

MCUXpresso SDK Documentation, Release 25.09.00

The conversion should only be launched after the converter is in normal mode. When in
stop mode, the current scan is stopped and no further scans can start. All the software
trigger and hardware trigger are ignored.

Parameters
* base — CADC peripheral base address.
* eConverterld — The converter Id. See cadc_converter_id_t.
* bEnable — Used to change the operation mode.
— true Changed to normal mode.
- false Changed to stop mode

static inline void CADC_ EnableConverterSyncInput(ADC_Type *base, cadc_converter_id_t
eConverterld, bool bEnable)

Enables/Disables the external sync input pulse to initiate a scan.

Note: When in “Once” scan mode, this gate would be off automatically after an available
sync is received. User needs to enable the input again manually if another sync signal is
wanted.

Parameters
* base — CADC peripheral base address.
* eConverterld — The converter Id. See cadc_converter_id_t.
* bEnable — Enable the feature or not.
— true Used a SYNC input pulse or START command to initiate a scan.
— false Only use the START command to initiate a scan.

static inline void CADC_ DoSoftwareTriggerConverter(ADC_Type *base, cadc_converter_id_t
eConverterld)

Uses software trigger to start a conversion sequence.

This function is to do the software trigger to the converter. The software trigger can used
to start a conversion sequence.

Parameters
* base — CADC peripheral base address.

e eConverterld — The ID of the converter to be started. See
cadc_converter_id_t.

static inline void CADC__SetConverterClockDivisor(ADC_Type *base, cadc_converter_id_t
eConverterld, uint16_t u16ClockDivisor)

Sets clock divisor(Range from 0 to 63) for converterA and conveter B.
Parameters
* base — CADC peripheral base address.
* eConverterld — The converter Id. See cadc_converter_id_t.

* ul6ClockDivisor — Converter’s clock divisor for the clock source.Available
setting range is 0-63.

— When the clockDivisor is 0, the divisor is 2.

— For all other clockDivisor values, the divisor is 1 more than the decimal
value of clockDivisor: clockDivisor + 1

48 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

void CADC_ SetConverterReferenceVoltageSource(ADC_Type *base, cadc_converter_id_t
eConverterld, cadc_reference_voltage_source_t
eHighReferenceVoltage,
cadc_reference_voltage_source_t
eLowReferenceVoltage)

Sets converter’s reference voltage source(Including high reference voltage source and low
reference voltage

source).

Parameters
* base — CADC peripheral base address.
* eConverterld — The converter Id. See cadc_converter_id_t.

* eHighReferenceVoltage — High voltage reference source, please refer to
cadc_reference_voltage_source_t.

* eLowReferenceVoltage — Low voltage reference source, please refer to
cadc_reference_voltage_source_t.

void CADC_ EnableConverterPower(ADC_Type *base, cadc_converter_id_t eConverterld, bool
bEnable)

Powers up/down the specific converter.

This function is to enable the power for the converter. The converter should be powered
up before the conversion. Once this API is called to power up the converter, the con-
verter would be powered on after a few moment (so-called power up delay, the function
CADC_SetPowerUpDelay() can be used to set the power up delay), so that the power would
be stable.

Parameters
* base — CADC peripheral base address.
* eConverterld — The converter to be powered. See cadc_converter_id_t.
* bEnable — Powers up/down the converter.
- true Power up the specific converter.
- false Power down the specific converter.

static inline void CADC__EnableConverterDMA (ADC_Type *base, cadc_converter_id_t
eConverterld, bool bEnable)

Enables/Disables the converter’s DMA feature.
Parameters
* base — CADC peripheral base address.
* eConverterld — The converter id. See cadc_converter_id_t.
* bEnable — Enables/Disables the DMA.
— true Enable the converter’s DMA.
- false Disable the converter’s DMA.

void CADC_ SetConverterMuxAuxConfig(ADC_Type *base, cadc_converter_id_t eConverterld,
const cadc_exp_mux_aux_config_t *psMuxAuxConfig)

Configures selected converter’s expansion mux and aux settings.
Parameters

* base — ADC peripheral base address.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 49

MCUXpresso SDK Documentation, Release 25.09.00

* eConverterld — The converter id, see cadc_converter_id_t.
» psMuxAuxConfig — Pointer to cadc_exp_mux_aux_config_t structure.

static inline void CADC_ ResetConverterExpMuxScan(ADC_Type *base, cadc_converter_id_t
eConverterld)
Resets selected converter’s expansion mux scan.

Parameters
* base — ADC peripheral base address.
* eConverterld — The converter id, see cadc_converter_id_t.

static inline void CADC _SetConverterExpansionMuxOperateMode(ADC_Type *base,

cadc_converter_id_t

eConverterld,
cadc_expansion_mux_operate_mode_t
eOperateMode)

Sets selected converter’s expansion mux operate mode.
Parameters
* base — ADC peripheral base address.
* eConverterld — The converter id, see cadc_converter_id_t.
* eOperateMode — Used to set expansion mux operate mode.

static inline void CADC__ SetConverter AuxiliaryControl(ADC_Type *base, cadc_converter_id_t
eConverterld, uint16_t ul6AuxControl)
Sets selected converter’s auxiliary control set.

Parameters
* base — ADC peripheral base address.
* eConverterld — The converter id, see cadc_converter_id_t.

* ul6AuxControl — The mask of auxiliary control, should be the OR’ed value
of cadc_auxiliary_control_t.

static inline void CADC__SetConverterMuxChannels(ADC_Type *base, cadc_converter._id_t
eConverterld, uint32_t
u32MuxChannelMask)

Sets selected converter’s mux channels.
Parameters
* base — ADC peripheral base address.
* eConverterld — The converter id, see cadc_converter_id_t.

* u32MuxChannelMask — The mask of mux selection of all mux solts, should
be the OR’ed value of cadc_expansion_mux_selection_t.

static inline void CADC _SetExpansionMuxAuxDisabledSlot(ADC_Type *base, cadc_converter_id_t
eConverterld,

cadc_expansion_disabled_mux_slot_t
eDisabledMuxSlot)

Set selected converter’s mux and aux disabled slot.

Parameters
* base — ADC peripheral base address.

* eConverterld — The converter id, see cadc_converter_id_t.

50 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

* eDisabledMuxSlot — The mux slot to disabled, please refer to
cadc_expansion_disabled_mux_slot_t.

static inline void CADC__SetPowerUpDelay(ADC_Type *base, uint16_t ul6PowerUpDelay)

Sets power up delay(The number of ADC clocks to power up the converters before allowing

a scan to start).
Parameters
* base — CADC peripheral base address.

* ul6PowerUpDelay — The number of ADC clocks to power up an ADC con-
verter. Ranges from 0 to 63.

static inline void CADC__EnableAutoPowerDownMode(ADC_Type *base, bool bEnable)
Enables/Disables auto-powerdown converters when the module is not in use for a scan.

Parameters
* base — CADC peripheral base address.
* bEnable — Enable/Disable auto-powerdown mode.

— true Enable auto-powerdown mode, so when the module is not in use,
it will auto-powerdown.

— false Disable auto-powerdown mode, so when the module is not in use,
the power will still on.

static inline void CADC_ SetDMATriggerSource(ADC_Type *base, cadc_dma_trigger_source_t
eDMATriggerSource)

Sets DMA trigger source(available selections are “End of scan” and “Sample Ready”).
Parameters
* base — CADC peripheral base address.

* eDMATriggerSource — DMA trigger source. Please refer to
cadc_dma_trigger_source_t for details.

static inline void CADC__EnableInterrupts(ADC_Type *base, uint32_t u32Mask)

Enables the interrupts(such as high/low limit interrupts, end of scan interrupts, and so on).

Parameters
* base — CADC peripheral base address.

* u32Mask — Mask value for converters interrupt events. Should be the OR’ed
value of _cadc_interrupt_enable.

static inline void CADC_ DisableInterrupts(ADC_Type *base, uint32_t u32Mask)

Disables the interrupts(such as high/low limit interrupts, end of scan interrupts, and so on).

Parameters
* base — CADC peripheral base address.

* u32Mask — Mask value for converts interrupt events. Should be the OR’ed
value of _cadc_interrupt_enable.

static inline uint16_t CADC_ GetMiscStatusFlags(ADC_Type *base)

Gets Miscellaneous status flags, such as end of scan status flag, high/low limit interrupt flags

and so on.

Note: This API will return the current status of the ADC module, includ-
ing high limit interrupt status, low limit status flag, zero crossing interrupt sta-
tus, End of scan interrupt status, conversion in progress status. But some sta-
tus flags are not included in this function. To get sample slot ready status flag,

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver

MCUXpresso SDK Documentation, Release 25.09.00

please invoking CADC_GetSampleSlotReadyStatusFlags(), to get sample slot limit vi-
olations status please invoking CADC_ClearSampleSlotLowLimitStatusFlags() and
CADC_GetSampleSlotHighLimitStatusFlags(), to get zerocrossing status please invok-
ing CADC_GetSampleSlotZeroCrossingStatusFlags(). To get converters’ power status please
invoke CADC_GetPowerStatusFlag().

Parameters
* base — CADC peripheral base address.

Returns
Mask value for the event flags. See _cadc_misc_status_flags.

static inline void CADC__ ClearMiscStatusFlags(ADC_Type *base, uint16_t ul6Flags)
Clears Miscellaneous status flags(Only for “end of scan” status flags).

Note: Only kCADC_ConverterAEndOfScanFlag and kCADC_ConverterBEndOfScanFlag

can be cleared. And sample slot related status flags can not be
cleared in this function. To clear the status flags of limit viola-
tions, please invoking CADC_ClearSampleSlotLowLimitStatusFlags() and

CADC_ClearSampleSlotHighLimitStatusFlags(), to clear the status flags of zero cross-
ing mode, please invoking CADC_ClearSampleSlotZeroCrossingStatusFlags().

Parameters

* base — CADC peripheral base address.

* ul6Flags - Mask value for the event flags to Dbe
cleared. See _cadc_misc_status_flags. Only the
enumeration kCADC_ConverterAEndOfScanFlag and

kCADC_ConverterBEndOfScanFlag are useful.

static inline uint32_t CADC_ GetSampleSlotReadyStatusFlags(ADC_Type *base)

Gets sample slots ready status flag, those status flags are cleared by reading the correspond-
ing sample slots’ result.

Parameters
* base — CADC peripheral base address.

static inline uint32_t CADC__ GetSampleSlotLowLimitStatusFlags(ADC_Type *base)
Gets sample slot low limit status flags(Each bit represents one sample slot).

Parameters
* base — CADC peripheral base address.

Returns
The value of all sample slots’ low limit status. Each bit represents one sample
slot.

static inline void CADC__ClearSampleSlotLowLimitStatusFlags(ADC_Type *base, uint32_t
u32SampleMask)

Clears sample slot’s low limit status flags(Each bit represents one sample slot).
Parameters
* base — CADC peripheral base address.

* u32SampleMask — Mask value of sample slots. This parameter should be the
OR’ed value of cadc_sample_slot_mask_t.

52 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t CADC_ GetSampleSlotHighLimitStatusFlags(ADC_Type *base)
Gets sample slot high limit status flags(Each bit represents one sample slot).

Parameters
* base — CADC peripheral base address.

Returns
The value of all sample slots’ high limit status. Each bit represents each sample
slot.

static inline void CADC__ClearSampleSlotHighLimitStatusFlags(ADC_Type *base, uint32_t
u32SampleMask)

Clears sample slot’s high limit status flags(Each bit represents one sample slot).
Parameters
* base — CADC peripheral base address.

» u32SampleMask — Mask value of sample slots. This parameter should be the
OR’ed value of cadc_sample_slot_mask_t.

static inline uint32_t CADC_ GetSampleSlotZeroCrossingStatusFlags(ADC_Type *base)
Gets sample slot zero crossing status flags(Each bit represents one sample slot).

Parameters
* base — CADC peripheral base address.

Returns
The value of all sample slots’ zero crossing status. Each bit represents each
sample slot.

static inline void CADC __ClearSampleSlotZeroCrossingStatusFlags(ADC_Type *base, uint32_t
u32SampleMask)

Clears sample slot’s zero crossing status flags(Each bit represents one sample slot).
Parameters
* base — CADC peripheral base address.

* u32SampleMask — Mask value of sample slots. This parameter should be the
OR’ed value of cadc_sample_slot_mask_t.

static inline uint16_t CADC_ GetPowerStatusFlags(ADC_Type *base)
Gets converters power status(Those power status can not be cleared).

Parameters
* base — CADC peripheral base address.

Returns
The mask value of the converterss power status flag, see
_cadc_converter_power_status_flags.

static inline uint16_t CADC_ GetConverterExpMuxChannelScanCompStatusFlags(ADC_Type *base)
Gets converter’s expansion mux channel scan complete status flags.

Parameters
* base — CADC peripheral base address.

Returns
uint16_t The mask value of converters’ expansion mux channel scan status
flags, see _cadc_expansion_mux_status_flags.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 33

MCUXpresso SDK Documentation, Release 25.09.00

static inline void CADC__ClearConverterExpMuxChannelScanCompStatusFlags(ADC_Type *base,
uint16_t
ul6FlagMask)

Clears converter’s expansion mux channel scan complete status flags.
Parameters
* base — CADC peripheral base address.
* ul6FlagMask — The mask value of _cadc_expansion_mux_status_{flags.

FSL CADC_DRIVER VERSION
CADC driver version.

enum _cadc_misc_status_ flags

CADC miscellaneous status flags used to tell peripheral’s miscellaneous status, such as ze-
rocrossing, end of scan flags.

Values:

enumerator kCADC_ ZeroCrossinglnterruptFlag
Zero crossing encountered. IRQ pending if enabled Zero Crossing Interrupt.

enumerator kCADC__HighLimitInterruptFlag
High limit exceeded flag. IRQ pending if enabled high limit interrupt.

enumerator kCADC_ LowLimitInterruptFlag
Low limit exceeded flag. IRQ pending if enabled low limit interrupt.

enumerator kCADC_ Converter AInProgressFlag
Conversion in progress, converter A.

enumerator kCADC_ ConverterBInProgressFlag
Conversion in progress, converter B.

enumerator kCADC_ Converter AEndOfScanFlag
End of scan, converter A.

enumerator kCADC_ ConverterBEndOfScanFlag
End of scan, converter B.

enumerator kCADC_StatusAllFlags

enum _ cadc_ converter_ power_status_ flags
The enumeration of converter power status.
Values:

enumerator kCADC__ ConverterAPowerDownFlag
The converterA is powered down.

enumerator kCADC_ConverterBPowerDownFlag
The converterB is powered down.

enum _ cadc_expansion_mux_ status_flags
The enumeration of expansion mux channel scan complete interrupt request status flag.

Values:

enumerator kCADC__ANA4ExpMuxAuxScanComplnterruptFlag
ANA4 Expansion MUX Channel Scan Complete Interrupt flag.

enumerator kCADC__ANB4ExpMuxAuxScanComplnterruptFlag
ANB4 Expansion MUX Channel Scan Complete Interrupt flag.

54 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enum _ cadc__interrupt__enable
CADC Interrupts enumeration.

Values:

enumerator kCADC_ SampleOScanInterruptEnable
If sample0 is converted, generate the scan interrupt.

enumerator kCADC__SamplelScanInterruptEnable
If samplel is converted, generate the scan interrupt.

enumerator kCADC_ Sample2ScanInterruptEnable
If sample2 is converted, generate the scan interrupt.

enumerator kCADC__ Sample3ScanInterruptEnable
If sample3 is converted, generate the scan interrupt.

enumerator kCADC_ Sample4ScanInterruptEnable
If sample4 is converted, generate the scan interrupt.

enumerator kCADC_ Sampleb5ScanInterruptEnable
If sample5 is converted, generate the scan interrupt.

enumerator kCADC_ Sample6ScanInterruptEnable
If sample6 is converted, generate the scan interrupt.

enumerator kCADC_ Sample7ScanInterruptEnable
If sample7 is converted, generate the scan interrupt.

enumerator kCADC_ Sample8ScanInterruptEnable
If sample8 is converted, generate the scan interrupt.

enumerator kCADC_ Sample9ScanInterruptEnable
If sample9 is converted, generate the scan interrupt.

enumerator kCADC_ SamplelOScanInterruptEnable
If sample10 is converted, generate the scan interrupt.

enumerator kCADC__Samplel1ScanInterruptEnable
If samplel1 is converted, generate the scan interrupt.

enumerator kCADC_ Samplel2ScanInterruptEnable
If sample12 is converted, generate the scan interrupt.

enumerator kCADC_ Samplel3ScanInterruptEnable
If sample13 is converted, generate the scan interrupt.

enumerator kCADC_ Samplel4ScanInterruptEnable
If sample14 is converted, generate the scan interrupt.

enumerator kCADC_ Samplel5ScanInterruptEnable
If samplel5 is converted, generate the scan interrupt.

enumerator kCADC__ ANA4ExpMuxScanCompletelnterruptEnable
If ANA4 expansion MUX channel scan complete, generate the interrupt.

enumerator kCADC__ ANB4ExpMuxScanCompletelnterruptEnable
If ANB4 expansion MUX channel scan complete, generate the interrupt.

enumerator kCADC_ HighLimitInterruptEnable
If the result value is greater than the high limit value, generate high limit interrupt.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 35

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCADC_ LowLimitInterruptEnable
If the result value is less than the low limit value, generate low limit interrupt.
enumerator kCADC_ ZeroCrossingInterruptEnable

If the current value has a sign change from the previous result in the selected zero
crossing mode, generate the zero crossing mode

enumerator kCADC__ ConversionCompletelnterruptOEnable

Upon the completion of the scan, generate the end of scan interrupt, when the scan
mode is selected as sequential mode or simultaneous parallel mode. For looping scan
mode, the interrupt will trigger after the completion of each iteration of loop.

enumerator kCADC_ ConversionCompletelnterrupt1Enable

When the scan mode is independent parallel mode, up the completion of the converter
scan, generate te end of scan interrupt. For looping scan mode, the interrupt will trig-
ger after the completion of each iteration of loop.

enumerator kCADC__ALLInterruptEnable
enum cadc converter id

CADC Converter identifier.

Values:

enumerator kCADC_ConverterA
Converter A.

enumerator kCADC_ConverterB
Converter B.

enum _cadc_idle work mode
The enumeration of work mode when the module is not used.

Values:

enumerator kCADC_ IdleKeepNormal
Keep normal.

enumerator kCADC IdleAutoPowerDown
Fall into power down mode automatically.

enum _ cadc_dma_ trigger source
The enumeration of DMA trigger source.

Values:

enumerator kCADC_DMATrigSrcEndofScan
DMA trigger source is end of scan interrupt.

enumerator kCADC__ DMATrigSrcSampleReady
DMA trigger source is RDY bits.

enum cadc_scan_mode

The enumeration of dual converter’s scan mode.
Values:

enumerator kCADC__ScanModeOnceSequential
Once (single) sequential.

enumerator kCADC__ScanModeOnceParallelIndependent
Once parallel independently.

56 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCADC__ScanModeLoopSequential
Loop sequential.

enumerator kCADC__ScanModeLoopParallelIndependent
Loop parallel independently.
enumerator kCADC__ScanModeTriggeredSequential
Triggered sequential.
enumerator kCADC__ScanModeTriggeredParallelIndependent
Triggered parallel independently.
enumerator kCADC_ ScanModeOnceParallelSimultaneous
Once parallel simultaneously.
enumerator kCADC_ ScanModeLoopParallelSimultaneous
Loop parallel simultaneously.
enumerator kCADC__ScanModeTriggeredParallelSimultaneous
Triggered parallel simultaneously.
enum _ cadc_reference voltage source
The enumeration of converter’s reference voltage source.
Values:
enumerator kCADC_ReferenceVoltageVrefPad
VREF pin.
enumerator kCADC_ ReferenceVoltageChannelPad
ANX2 or ANx3 pin.
enum _ cadc_ channel gain
The enumeration of sample slot connected channel gain.
Values:
enumerator kCADC_ SignalGainX1
Gain x1.
enumerator kCADC_ SignalGainX2
Gain x2.
enumerator kCADC _SignalGainX4
Gain x4.
enum cadc channel mode
The enumeration of all channels’ channel mode.
Values:
enumerator kCADC__ANAQ_1_ SingleEnd
ANAO and ANA1 both configured as single ended inputs.

enumerator kCADC__ANAO_1_FullyDifferential
ANAO configured as fully differential positive input, ANA1 configured as fully differ-
ential negative input.

enumerator kCADC ANAO 1 UnipolarDifferential
ANAO configured as unipolar differential positive input, ANA1 configured as unipolar
differential negative input.

enumerator kCADC ANA2 3 SingleEnd
ANA2 and ANA3 both configured as single ended inputs.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 57

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCADC__ANA2 3 _FullyDifferential
ANA2 configured as fully differential positive input, ANA3 configured as fully differ-
ential negative input.

enumerator kCADC_ANA2 3 UnipolarDifferential
ANA2 configured as unipolar differential positive input, ANA3 configured as unipolar
differential negative input.

enumerator kCADC__ANBO_1_SingleEnd
ANBO and ANB1 both configured as single ended inputs.

enumerator kCADC__ANBO_1_ FullyDifferential
ANBO configured as fully differential positive input, ANB1 configured as fully differ-
ential negative input.

enumerator kCADC__ANBO_1_ UnipolarDifferential
ANBO configured as unipolar differential positive input, ANB1 configured as unipolar
differential negative input.

enumerator kCADC__ANB2 3 SingleEnd
ANB2 and ANB3 both configured as single ended inputs.

enumerator kCADC__ANB2_ 3 FullyDifferential
ANB2 configured as fully differential positive input, ANB3 configured as fully differ-
ential negative input.

enumerator kCADC__ANB2_ 3 UnipolarDifferential
ANB2 configured as unipolar differential positive input, ANB3 configured as unipolar
differential negative input.

enumerator kCADC_ANA4 5 SingleEnd
ANA4 and ANAS both configured as single ended inputs.

enumerator kCADC__ANA4 5 FullyDifferential
ANA4 configured as fully differential positive input, ANA5 configured as fully differ-
ential negative input.

enumerator kCADC_ANA4 5 UnipolarDifferential
ANAA4 configured as unipolar differential positive input, ANAS configured as unipolar
differential negative input.

enumerator kCADC _ANAG_7 SingleEnd
ANAG6 and ANA7 both configured as single ended inputs.

enumerator kCADC__ANAG_7_FullyDifferential
ANAG configured as fully differential positive input, ANA7 configured as fully differ-
ential negative input.

enumerator kCADC_ANAG_7 UnipolarDifferential
ANAG configured as unipolar differential positive input, ANA7 configured as unipolar
differential negative input.

enumerator kCADC__ANB4 5 SingleEnd
ANB4 and ANB5 both configured as single ended inputs.

enumerator kCADC__ANB4_5_FullyDifferential
ANBA4 configured as fully differential positive input, ANB5 configured as fully differ-
ential negative input.

enumerator kCADC__ANB4 5 UnipolarDifferential

ANB4 configured as unipolar differential positive input, ANB5 configured as unipolar
differential negative input.

38

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCADC__ANB6_7_ SingleEnd
ANBG6 and ANB7 both configured as single ended inputs.

enumerator kCADC__ANB6_7_ FullyDifferential
ANBG6 configured as fully differential positive input, ANB7 configured as fully differ-
ential negative input.

enumerator kCADC__ANB6_ 7 UnipolarDifferential
ANBS6 configured as unipolar differential positive input, ANB7 configured as unipolar
differential negative input.

enum cadc_channel number
The enumerator of all channels that can be routed to the specific sample slot.

Values:

enumerator kCADC_ SingleEndANAO_ Diff ANAOpANA1n

Single Endned ANAO Signal Or Differential ANAO+, ANA1- signal.
enumerator kCADC_SingleEndANA1 DiffANAOpANA1n

Single Endned ANA1 Signal Or Differential ANAO+, ANA1- signal.
enumerator kCADC_ SingleEndANA2_DiffANA2pANA3n

Single Endned ANAZ2 Signal Or Differential ANA2+, ANA3- signal.
enumerator kCADC_ SingleEndANA3_DiffANA2pANA3n

Single Endned ANA3 Signal Or Differential ANA2+, ANA3- signal.

enumerator kCADC_ SingleEndANA4_DiffANA4pANA5n
Single Endned ANAA4 Signal Or Differential ANA4+, ANAS5- signal.

enumerator kCADC_ SingleEndANA5_DiffANA4pANAb5n

Single Endned ANAS Signal Or Differential ANA4+, ANAS5- signal.
enumerator kCADC_SingleEndANA6_DiffANAG6pANATn

Single Endned ANASG Signal Or Differential ANA6+, ANA7- signal.
enumerator kCADC_ SingleEndANA7_DiffANA6pANAT7Tn

Single Endned ANA7 Signal Or Differential ANA6+, ANA7- signal.
enumerator kCADC_ SingleEnd ANBO_ Diff ANBOpANB1n

Single Endned ANBO Signal Or Differential ANBO+, ANB1- signal.

enumerator kCADC_ SingleEndANB1_ Diff ANBOpANB1n
Single Endned ANB1 Signal Or Differential ANBO+, ANB1- signal.

enumerator kCADC_ SingleEndANB2_ Diff ANB2pANB3n
Single Endned ANB2 Signal Or Differential ANB2+, ANB3- signal.

enumerator kCADC_ SingleEnd ANB3_ DiffANB2pANB3n
Single Endned ANB3 Signal Or Differential ANB2+, ANB3- signal.

enumerator kCADC_ SingleEndANB4_ Diff ANB4pANBb5Hn

Single Endned ANB4 Signal Or Differential ANB4+, ANB5- signal.
enumerator kCADC_ SingleEndANB5_ Diff ANB4pANB5n

Single Endned ANBS5 Signal Or Differential ANB4+, ANB5- signal.
enumerator kCADC_SingleEnd ANB6_ Diff ANB6pANBTn

Single Endned ANBS6 Signal Or Differential ANB6+, ANB7- signal.

enumerator kCADC_ SingleEndANB7_ Diff ANB6pANB7n
Single Endned ANB?7 Signal Or Differential ANB6+, ANB7- signal.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 39

MCUXpresso SDK Documentation, Release 25.09.00

enum _ cadc_sample_ slot_ mask
The enumeration of sample slot mask.

Values:

enumerator kCADC_ NonSampleSlotMask

enumerator kCADC_ SampleSlotOMask
The mask of sample slot0.
enumerator kCADC__ SampleSlot1Mask
The mask of sample slot1.
enumerator kCADC__SampleSlot2Mask
The mask of sample slot2.
enumerator kCADC_ SampleSlot3Mask
The mask of sample slot3.
enumerator kCADC_ SampleSlot4Mask
The mask of sample slot4.
enumerator kCADC__ SampleSlot5Mask
The mask of sample slot5.
enumerator kCADC__ SampleSlot6Mask
The mask of sample slot6.
enumerator kCADC__ SampleSlot7Mask
The mask of sample slot7.
enumerator kCADC_ SampleSlot8Mask
The mask of sample slot8.
enumerator kCADC_ SampleSlot9Mask
The mask of sample slot9.
enumerator kCADC_ SampleSlot10Mask
The mask of sample slot10.
enumerator kCADC_ SampleSlot11Mask
The mask of sample slot11.
enumerator kCADC_ SampleSlot12Mask
The mask of sample slot12.
enumerator kCADC_ SampleSlot13Mask
The mask of sample slot13.
enumerator kCADC__ SampleSlot14Mask
The mask of sample slot14.
enumerator kCADC__ SampleSlot15Mask
The mask of sample slot15.
enumerator kCADC__AllSampleSlotsMask
The mask of all sample slots.
enum _ cadc_sample_slot_ index
The enumeration of sample slot index.

Values:

60

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCADC__SampleSlotOIndex
The index of sample slot0.

enumerator kCADC__SampleSlot1Index
The index of sample slot1.
enumerator kCADC__SampleSlot2Index
The index of sample slot2.
enumerator kCADC__SampleSlot3Index
The index of sample slot3.
enumerator kCADC_ SampleSlot4Index
The index of sample slot4.
enumerator kCADC__SampleSlot5Index
The index of sample slot5.
enumerator kCADC__SampleSlot6Index
The index of sample slot6.
enumerator kCADC__SampleSlot7Index
The index of sample slot7.
enumerator kCADC__SampleSlot8Index
The index of sample slot8.
enumerator kCADC__SampleSlot9Index
The index of sample slot9.
enumerator kCADC_ SampleSlot10Index
The index of sample slot10.
enumerator kCADC_ SampleSlot11Index
The index of sample slot11.
enumerator kCADC_ SampleSlot12Index
The index of sample slot12.
enumerator kCADC_ SampleSlot13Index
The index of sample slot13.
enumerator kCADC_SampleSlot14Index
The index of sample slot14.
enumerator kCADC_ SampleSlot15Index
The index of sample slot15.
enum _ cadc_sample_slot_ sequential mode disabled
The enumeration for the sample slot to be disabled in sequential mode.
Values:
enumerator kCADC_ SampleODisabled
Disable Sample slot0, the scan will stop at sample slot0 in sequential scan mode
enumerator kCADC_ SamplelDisabled
Disable Sample slot1, the scan will stop at sample slotl in sequential scan mode

enumerator kCADC_Sample2Disabled
Disable Sample slot2, the scan will stop at sample slot2 in sequential scan mode

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver

61

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCADC_ Sample3Disabled
Disable Sample slot3, the scan will stop at sample slot3 in sequential scan mode

enumerator kCADC__Sample4Disabled
Disable Sample slot4, the scan will stop at sample slot4 in sequential scan mode

enumerator kCADC_ Sample5Disabled
Disable Sample slot5, the scan will stop at sample slot5 in sequential scan mode

enumerator kCADC_ Sample6Disabled
Disable Sample slot6, the scan will stop at sample slot6 in sequential scan mode

enumerator kCADC_ Sample7Disabled
Disable Sample slot7, the scan will stop at sample slot7 in sequential scan mode

enumerator kCADC_ Sample8Disabled
Disable Sample slot8, the scan will stop at sample slot8 in sequential scan mode

enumerator kCADC_ Sample9Disabled
Disable Sample slot9, the scan will stop at sample slot9 in sequential scan mode

enumerator kCADC_Samplel0Disabled
Disable Sample slot10, the scan will stop at sample slot10 in sequential scan mode

enumerator kCADC__Samplel1Disabled
Disable Sample slot11, the scan will stop at sample slotl1 in sequential scan mode

enumerator kCADC__Samplel2Disabled
Disable Sample slot12, the scan will stop at sample slot12 in sequential scan mode

enumerator kCADC_Samplel3Disabled
Disable Sample slot13, the scan will stop at sample slot13 in sequential scan mode

enumerator kCADC_ Samplel4Disabled
Disable Sample slot14, the scan will stop at sample slot14 in sequential scan mode

enumerator kCADC__Samplel5Disabled
Disable Sample slot15, the scan will stop at sample slot15 in sequential scan mode

enum _ cadc_sample_slot_ simultParallel _mode_ disabled

The enumeration for the sample slot to be disabled in simultaneous parallel mode.
Values:

enumerator kCADC__Sample0_ 8Disabled
Disable Sample slot0 and Sample Slot 8, in the simultaneous parallel mode the con-
verter A and converter B will stop at Sample slot0 and Sample slot 8.

enumerator kCADC_Samplel 9Disabled
Disable Sample slotl and Sample Slot 9, in the simultaneous parallel mode the con-
verter A and converter B will stop at Sample slot1 and Sample slot 9.

enumerator kCADC__Sample2_10Disabled
Disable Sample slot2 and Sample Slot 10, in the simultaneous parallel mode the con-
verter A and converter B will stop at Sample slot2 and Sample slot 10.

enumerator kCADC_ Sample3_ 11Disabled
Disable Sample slot3 and Sample Slot 11, in the simultaneous parallel mode the con-
verter A and converter B will stop at Sample slot3 and Sample slot 11.

enumerator kCADC_Sample4 12Disabled

Disable Sample slot4 and Sample Slot 12, in the simultaneous parallel mode the con-
verter A and converter B will stop at Sample slot4 and Sample slot 12.

62

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCADC__Sample5_ 13Disabled

Disable Sample slot5 and Sample Slot 13, in the simultaneous parallel mode the con-
verter A and converter B will stop at Sample slot5 and Sample slot 13.

enumerator kCADC__Sample6_ 14Disabled

Disable Sample slot6 and Sample Slot 14, in the simultaneous parallel mode the con-
verter A and converter B will stop at Sample slot7 and Sample slot 14.

enumerator kCADC_ Sample7_ 15Disabled

Disable Sample slot7 and Sample Slot 15, in the simultaneous parallel mode the con-
verter A and converter B will stop at Sample slot7 and Sample slot 15.

enum _ cadc_sample_slot_ independentParallel _mode convA_ disabled

The enumeration for the sample slot to be disabled for the converter A in independent
parallel mode.

Values:
enumerator kCADC__ConvASampleODisabled

Disable Sample slot0, the scan will stop at sample slot0 in sequential scan mode
enumerator kCADC__ConvASamplelDisabled

Disable Sample slot1, the scan will stop at sample slot1 in sequential scan mode
enumerator kCADC_ ConvASample2Disabled

Disable Sample slot2, the scan will stop at sample slot2 in sequential scan mode
enumerator kCADC_ ConvASample3Disabled

Disable Sample slot3, the scan will stop at sample slot3 in sequential scan mode
enumerator kCADC_ ConvASample4Disabled

Disable Sample slot4, the scan will stop at sample slot4 in sequential scan mode
enumerator kCADC_ ConvASample5Disabled

Disable Sample slot5, the scan will stop at sample slot5 in sequential scan mode
enumerator kCADC_ ConvASample6Disabled

Disable Sample slot6, the scan will stop at sample slot6 in sequential scan mode
enumerator kCADC_ ConvASample7Disabled

Disable Sample slot7, the scan will stop at sample slot7 in sequential scan mode
enumerator kCADC_ ConvASampleReserved

Reserved

enum _ cadc_sample_slot_indParallel _mode_ convB_ disabled

The enumeration for the sample slot to be disabled for the converter B in independent
parallel mode.

Values:
enumerator kCADC_ ConvBSample8Disabled
Disable Sample slot8, the scan will stop at sample slot8 in sequential scan mode

enumerator kCADC_ ConvBSample9Disabled

Disable Sample slot9, the scan will stop at sample slot9 in sequential scan mode
enumerator kCADC_ ConvBSamplel0Disabled

Disable Sample slot10, the scan will stop at sample slot10 in sequential scan mode

enumerator kCADC__ ConvBSamplel1Disabled
Disable Sample slot11, the scan will stop at sample slotl1 in sequential scan mode

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 63

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCADC__ConvBSamplel2Disabled
Disable Sample slot12, the scan will stop at sample slot12 in sequential scan mode

enumerator kCADC__ConvBSamplel3Disabled
Disable Sample slot13, the scan will stop at sample slot13 in sequential scan mode
enumerator kCADC__ConvBSamplel4Disabled
Disable Sample slot14, the scan will stop at sample slot14 in sequential scan mode
enumerator kCADC__ConvBSamplel5Disabled
Disable Sample slot15, the scan will stop at sample slot15 in sequential scan mode
enumerator kCADC_ConvBSampleReserved
Reserved
enum _ cadc_sample_slot_ zero_ crossing mode
The enumeration for the sample slot’s zero crossing event.
Values:
enumerator kCADC_ ZeroCrossingDisabled
Zero Crossing disabled.
enumerator kCADC_ ZeroCrossingForPtoNSign
Zero Crossing enabled for positive to negative sign change.
enumerator kCADC__ ZeroCrossingForNtoPSign
Zero Crossing enabled for negative to positive sign change.
enumerator kCADC_ ZeroCrossingFor AnySignChanged
Zero Crossing enabled for any sign change.
enum _ cadc_expansion__mux_ operate_mode
The enumeration for expansion multiplexer.
Values:
enumerator kCADC_ExpMuxManualMode
MUX channel feeding to ANA4/ANB4 is selected as MUXSELDO.
enumerator kCADC__ExpMuxScanMode0
The sample completion of ANA4/ANB4 enableds subsequent selected channel.
enumerator kCADC_ExpMuxScanModel
The sample completion of ANA7/ANB7 enableds subsequent selected channel.

enumerator kCADC__ExpMuxScanMode2
The sample completion of ANA4/ANB4 or ANA7/ANB7 enableds subsequent selected
channel.
enum _ cadc_ auxiliary__control
The enumeration of conveter’s auxiliary control.

Values:

enumerator kCADC__ AuxSel0_ Config0
Auxiliary select 0 controls AUX_SELO = 0, AUX_SEL1 =0.

enumerator kCADC__AuxSel0__Configl
Auxiliary select 0 controls AUX_SELO = 1, AUX_SEL1 =0.

enumerator kCADC__AuxSel0__Config2
Auxiliary select 0 controls AUX_SELO = 0, AUX_SEL1 =1.

64 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCADC__AuxSel0_ Config3
Auxiliary select 0 controls AUX_SELO = 1, AUX_SEL1 = 1.

enumerator kCADC__AuxSell_ Config0
Auxiliary select 1 controls AUX_SELO = 0, AUX_SEL1 =0.

enumerator kCADC__AuxSell_ Configl
Auxiliary select 1 controls AUX_SELO = 1, AUX_SEL1 = 0.

enumerator kCADC__AuxSell_ Config2

Auxiliary select 1 controls AUX_SELO = 0, AUX_SEL1 =1.
enumerator kCADC__AuxSell__Config3

Auxiliary select 1 controls AUX_SELO = 1, AUX_SEL1 =1.
enumerator kCADC__AuxSel2_ Config0

Auxiliary select 2 controls AUX_SELO = 0, AUX_SEL1 =0.
enumerator kCADC__AuxSel2_ Configl

Auxiliary select 2 controls AUX_SELO = 1, AUX_SEL1 =0.
enumerator kCADC__AuxSel2_ Config2

Auxiliary select 2 controls AUX_SELO = 0, AUX_SEL1 =1.
enumerator kCADC__AuxSel2_ Config3

Auxiliary select 2 controls AUX_SELO = 1, AUX_SEL1 =1.
enumerator kCADC__ AuxSel3_ Config0

Auxiliary select 3 controls AUX_SELO = 0, AUX_SEL1 =0.
enumerator kCADC__AuxSel3_ Configl

Auxiliary select 3 controls AUX_SELO = 1, AUX_SEL1 =0.
enumerator kCADC__AuxSel3__Config2

Auxiliary select 3 controls AUX_SELO = 0, AUX_SEL1 =1.
enumerator kCADC__AuxSel3_ Config3

Auxiliary select 3 controls AUX_SELO = 1, AUX_SEL1 =1.
enumerator kCADC__AuxSel4d_ Config0

Auxiliary select 4 controls AUX_SELO = 0, AUX_SEL1 =0.
enumerator kCADC__AuxSel4_ Configl

Auxiliary select 4 controls AUX_SELO = 1, AUX_SEL1 =0.
enumerator kCADC__AuxSel4_ Config2

Auxiliary select 4 controls AUX_SELO = 0, AUX_SEL1 =1.
enumerator kCADC__AuxSel4d_ Config3

Auxiliary select 4 controls AUX_SELO = 1, AUX_SEL1 =1.
enumerator kCADC__ AuxSel5_ Config0

Auxiliary select 5 controls AUX_SELO = 0, AUX_SEL1 =0.
enumerator kCADC__AuxSel5_ Configl

Auxiliary select 5 controls AUX_SELO = 1, AUX_SEL1 =0.
enumerator kCADC__AuxSel5_ Config2

Auxiliary select 5 controls AUX_SELO = 0, AUX_SEL1 =1.

enumerator kCADC__ AuxSel5_ Config3
Auxiliary select 5 controls AUX_SELO =1, AUX_SEL1 =1.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 65

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCADC__AuxSel6_ Config0
Auxiliary select 6 controls AUX_SELO = 0, AUX_SEL1 = 0.

enumerator kCADC__AuxSel6_ Configl
Auxiliary select 6 controls AUX_SELO = 1, AUX_SEL1 =0.
enumerator kCADC__AuxSel6_ Config2
Auxiliary select 6 controls AUX_SELO = 0, AUX_SEL1 = 1.
enumerator kCADC__AuxSel6_ Config3
Auxiliary select 6 controls AUX_SELO = 1, AUX_SEL1 =1.
enumerator kCADC__AuxSel7__Config0
Auxiliary select 7 controls AUX_SELO = 0, AUX_SEL1 =0.
enumerator kCADC__AuxSel7_Configl
Auxiliary select 7 controls AUX_SELO = 1, AUX_SEL1 =0.
enumerator kCADC__AuxSel7__Config2
Auxiliary select 7 controls AUX_SELO = 0, AUX_SEL1 =1.
enumerator kCADC__AuxSel7_Config3
Auxiliary select 7 controls AUX_SELO = 1, AUX_SEL1 =1.
enum _ cadc_expansion_ disabled__mux_ slot
The enumeration for the expansion mux slot to be disabled.
Values:
enumerator kCADC__ExpaMuxNoDisable
Expansion mux scan not disabled.
enumerator kCADC_ ExpMux0Disable
Expansion mux slot 0.
enumerator kCADC_ExpMux1Disable
Expansion mux slot 1.
enumerator kCADC__ ExpMux2Disable
Expansion mux slot 2.
enumerator kCADC__ExpMux3Disable
Expansion mux slot 3.
enumerator kCADC__ ExpMux4Disable
Expansion mux slot 4.
enumerator kCADC__ExpMux5Disable
Expansion mux slot 5.
enumerator kCADC_ExpMux6Disable
Expansion mux slot 6.
enumerator kCADC__ExpMux7Disable
Expansion mux slot 7.
enum _ cadc__expansion_mux_ selection
The enumeration of expanssion mux selection.
Values:

enumerator kCADC MuxSel0 Channel0
MUX’s channel 0 for MUXSELDO.

66 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCADC MuxSel0_ Channell
MUX’s channel 1 for MUXSELDO.

enumerator kCADC MuxSel0_ Channel2
MUX’s channel 2 for MUXSELDO.

enumerator kCADC MuxSel0_ Channel3
MUX’s channel 3 for MUXSELDO.

enumerator kCADC MuxSel0 Channel4
MUX’s channel 4 for MUXSELDO.

enumerator kCADC MuxSel0 Channel5
MUX’s channel 5 for MUXSELDO.

enumerator kCADC MuxSel0 Channel6
MUX’s channel 6 for MUXSELDO.

enumerator kCADC_MuxSel0 Channel7
MUX’s channel 7 for MUXSELDO.

enumerator kCADC_MuxSell Channel0
MUX’s channel 0 for MUXSEL1.

enumerator kCADC_MuxSell Channell
MUX’s channel 1 for MUXSEL1.

enumerator kCADC_MuxSell Channel2
MUX’s channel 2 for MUXSEL1.

enumerator kCADC_MuxSell Channel3
MUX’s channel 3 for MUXSEL1.

enumerator kCADC_MuxSell Channel4
MUX’s channel 4 for MUXSEL1.

enumerator kCADC_MuxSell Channelb
MUX’s channel 5 for MUXSEL1.

enumerator kCADC_MuxSell Channel6
MUX’s channel 6 for MUXSEL1.

enumerator kCADC_MuxSell Channel7
MUX’s channel 7 for MUXSEL1.

enumerator kCADC_MuxSel2 Channel0
MUX’s channel 0 for MUXSEL2.

enumerator kCADC_MuxSel2 Channell
MUX’s channel 1 for MUXSEL2.

enumerator kCADC_MuxSel2 Channel2
MUX’s channel 2 for MUXSEL2.

enumerator kCADC_MuxSel2 Channel3
MUX’s channel 3 for MUXSEL2.

enumerator kCADC_MuxSel2 Channel4
MUX’s channel 4 for MUXSEL2.

enumerator kCADC_MuxSel2 Channelb
MUX’s channel 5 for MUXSEL?2.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 67

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCADC MuxSel2 Channel6
MUX’s channel 6 for MUXSEL2.

enumerator kCADC MuxSel2 Channel?
MUX’s channel 7 for MUXSEL2.

enumerator kCADC MuxSel3 Channel0
MUX’s channel 0 for MUXSEL3.

enumerator kCADC MuxSel3 Channell
MUX’s channel 1 for MUXSEL3.

enumerator kCADC MuxSel3 Channel2
MUX’s channel 2 for MUXSEL3.

enumerator kCADC MuxSel3 Channel3
MUX’s channel 3 for MUXSEL3.

enumerator kCADC_MuxSel3 Channel4
MUX’s channel 4 for MUXSEL3.

enumerator kCADC_MuxSel3 Channelb
MUX’s channel 5 for MUXSEL3.

enumerator kCADC_MuxSel3 Channel6
MUX’s channel 6 for MUXSEL3.

enumerator kCADC_MuxSel3 Channel7
MUX’s channel 7 for MUXSEL3.

enumerator kCADC_MuxSel4 Channel0
MUX’s channel 0 for MUXSELA4.

enumerator kCADC_MuxSel4 Channell
MUX’s channel 1 for MUXSELA4.

enumerator kCADC_MuxSel4 Channel2
MUX’s channel 2 for MUXSELA4.

enumerator kCADC_MuxSel4 Channel3
MUX’s channel 3 for MUXSELA4.

enumerator kCADC_MuxSel4 Channel4
MUX’s channel 4 for MUXSELA4.

enumerator kCADC_MuxSel4 Channelb
MUX’s channel 5 for MUXSELA4.

enumerator kCADC_MuxSel4 Channel6
MUX’s channel 6 for MUXSELA4.

enumerator kCADC_MuxSel4 Channel7
MUX’s channel 7 for MUXSELA4.

enumerator kCADC_MuxSel5 Channel0
MUX’s channel 0 for MUXSELS5.

enumerator kCADC_MuxSel5 Channell
MUX’s channel 1 for MUXSELS5.

enumerator kCADC_MuxSel5 Channel2
MUX’s channel 2 for MUXSELS5.

68

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCADC MuxSel5 Channel3
MUX’s channel 3 for MUXSELS5.

enumerator kCADC MuxSel5 Channel4
MUX’s channel 4 for MUXSELS5.

enumerator kCADC MuxSel5 Channelb
MUX’s channel 5 for MUXSELS5.

enumerator kCADC MuxSel5 Channel6
MUX’s channel 6 for MUXSELS5.

enumerator kCADC MuxSel5 Channel?
MUX’s channel 7 for MUXSELS5.

enumerator kCADC MuxSel6_ Channel0
MUX’s channel 0 for MUXSELS6.

enumerator kCADC_MuxSel6 Channell
MUX’s channel 1 for MUXSELS6.

enumerator kCADC_MuxSel6 Channel?2
MUX’s channel 2 for MUXSELS6.

enumerator kCADC_MuxSel6_ Channel3
MUX’s channel 3 for MUXSELS6.

enumerator kCADC_MuxSel6 Channel4
MUX’s channel 4 for MUXSELS6.

enumerator kCADC_MuxSel6 Channelb
MUX’s channel 5 for MUXSELS6.

enumerator kCADC_MuxSel6_Channel6
MUX’s channel 6 for MUXSELS6.

enumerator kCADC_MuxSel6 Channel7
MUX’s channel 7 for MUXSELS6.

enumerator kCADC_MuxSel7 Channel0
MUX’s channel 0 for MUXSEL?7.

enumerator kCADC_MuxSel7 Channell
MUX’s channel 1 for MUXSEL?7.

enumerator kCADC_MuxSel7 Channel2
MUX’s channel 2 for MUXSEL?7.

enumerator kCADC_MuxSel7 Channel3
MUX’s channel 3 for MUXSEL?7.

enumerator kCADC_MuxSel7 Channel4
MUX’s channel 4 for MUXSEL?7.

enumerator kCADC_MuxSel7 Channelb
MUX’s channel 5 for MUXSEL?7.

enumerator kCADC_MuxSel7 Channel6
MUX’s channel 6 for MUXSEL?7.

enumerator kCADC_MuxSel7 Channel7
MUX’s channel 7 for MUXSEL?7.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 69

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _cadc_converter_id cadc_ converter__id_t
CADC Converter identifier.

typedef enum _cadc_idle_work_mode cadc_idle_work_mode_t
The enumeration of work mode when the module is not used.

typedef enum _cadc_dma_trigger_source cadc_dma_ trigger_source_t
The enumeration of DMA trigger source.

typedef enum _cadc_scan_mode cadc_scan_mode_ t
The enumeration of dual converter’s scan mode.

typedef enum _cadc_reference_voltage_source cadc_ reference voltage source_ t
The enumeration of converter’s reference voltage source.

typedef enum _cadc_channel_gain cadc_ channel gain_t
The enumeration of sample slot connected channel gain.

typedef enum _cadc_channel_mode cadc_ channel mode_ t
The enumeration of all channels’ channel mode.

typedef enum _cadc_channel_number cadc_channel number_ t
The enumerator of all channels that can be routed to the specific sample slot.

typedef enum _cadc_sample_slot_mask cadc_sample_ slot_ mask_ t
The enumeration of sample slot mask.

typedef enum _cadc_sample_slot_index cadc_sample_slot_index_ t
The enumeration of sample slot index.
typedef enum _cadc_sample_slot_sequential mode_disabled
cadc__sample_slot_sequential mode disabled_t
The enumeration for the sample slot to be disabled in sequential mode.
typedef enum _cadc_sample_slot_simultParallel mode_disabled
cadc_sample_ slot_ simultParallel _mode_ disabled_t
The enumeration for the sample slot to be disabled in simultaneous parallel mode.
typedef enum _cadc_sample_slot_independentParallel mode_convA_disabled
cadc_sample_slot_independentParallel mode convA_ disabled t
The enumeration for the sample slot to be disabled for the converter A in independent
parallel mode.
typedef enum _cadc_sample_slot_indParallel mode_convB_disabled
cadc_sample_ slot_independentParallel _mode_convB_ disabled_t
The enumeration for the sample slot to be disabled for the converter B in independent
parallel mode.
typedef enum _cadc_sample_slot_zero_crossing mode cadc_sample_slot_ zero_ crossing _mode_t
The enumeration for the sample slot’s zero crossing event.

typedef enum _cadc_expansion_mux_operate_mode cadc__expansion_mux_ operate_mode_t
The enumeration for expansion multiplexer.

typedef struct _cadc_sample_slot_independentParallel mode_disabled
cadc_sample_ slot_independentParallel _mode_ disabled_t

The structure of the disabled sample slots in independent parallel mode.

typedef union _cadc_sample_slot_disabled cadc_sample_slot_ disabled_t
The union of disabled sample slot for each scan mode.

70 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _cadc_sample_config cadc_sample_slot_ config_t
The structure for configuring the sample slot.

typedef struct _cadc_scan_ctrl_sequential mode cadc_scan_ctrl_seq_mode_t
Cadc scan control for sequential scan mode.

Note: Each member of this structure represent one bit of the word. Asserted the structure’s
member means delay sample until a new sync input occurs. Cleared the structure’s member
means perform sample immediately after the completion of the current sample.

typedef struct _cadc_scan_ctrl simultParallel mode cadc_scan_ ctrl_simultParallel mode_t
Cadc scan control for simultaneous parallel scan mode.

Note: Each member of this structure represent one bit of the word. Asserted the structure’s
member means delay sample until a new sync input occurs. Cleared the structure’s member
means perform sample immediately after the completion of the current sample.

typedef struct _cadc_scan_ctrl_independent_parallel_ mode_converterA
cadc_scan__ctrl_independent_ parallel _mode_converterA_t

The scan ctrl struture for converterA in independent scan mode.

typedef struct _cadc_scan_ctrl_independent_parallel_mode_converterB
cadc_scan_ ctrl_independent_ parallel mode converterB_t

The scan ctrl struture for converterB in independent scan mode.

typedef union _cadc_scan_ctrl_independent_parallel_mode
cadc_scan_ ctrl_independent_ parallel _mode_t

The union for converters in independent parallel mode.

typedef union _cadc_scan_control cadc_scan_ control_t
The union of the scan control for each scan mode.

typedef enum _cadc_auxiliary_control cadc_ auxiliary control_t
The enumeration of conveter’s auxiliary control.

typedef enum _cadc_expansion_disabled_mux_slot cadc_ expansion_ disabled mux_ slot_t
The enumeration for the expansion mux slot to be disabled.

typedef enum _cadc_expansion_mux_selection cadc_ expansion_mux_ selection_ t
The enumeration of expanssion mux selection.

typedef struct _cadc_exp_mux_aux_config cadc_exp_mux_aux_ config_t
The structure for configuring Cyclic ADC’s expansion setting.

typedef struct _cadc_converter_config cadc_ converter config t
The structure for configuring each converter.

typedef struct _cadc_config cadc_config t

The structure for configuring the Cyclic ADC’s setting.
CADC_SAMPLE_SLOTS_COUNT

Macro for CADC sample slot count.

struct _ cadc_sample_slot_ independentParallel _mode disabled

#include <fsl_cadc.h> The structure of the disabled sample slots in independent parallel
mode.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 71

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

cadc_sample_slot_independentParallel mode_convA_disabled_t eConverter A
The sample slot to be disabled for the converter A, when the scan mode is set as inde-
pendent parallel mode.

cadc_sample_slot_independentParallel mode_convB_disabled_t eConverterB
The sample slot to be disabled for the converter B, when the scan mode is set as inde-
pendent parallel mode.

union cadc_sample_slot disabled
#include <fsl_cadc.h> The union of disabled sample slot for each scan mode.

Public Members

uint32_t u32SampleDisVal
The 32 bits width of disabled sample slot value. This member used to get the disabled
sample slot which sets in different scan modes in word type. This member is not rec-
ommended to be used to set the disabled sample slot. This member is designed to be
used in driver level only, the application should not use this member.
cadc_sample_slot_sequential_ mode_disabled_t eSequentialModeDisSample

If the scan mode is selected as sequential mode, the application must use this member
to set the disabled sample slot. This member is used to set disabled sample slot when
the scan mode is selected as sequential mode. The scan will stop at the first disabled
sample slot in that mode. So for the application, this member should be set as one
sample slot index that the scan will stop.

cadc_sample_slot_simultParallel_ mode_disabled_t eSimultParallelModeDisSample

In simultaneous parallel scan mode, the application must use this member to set the
disabled sample slot. In that scan mode, the scan will stop when either converter en-
counters a disabled sample.

cadc_sample_slot_independentParallel mode_disabled_t sIndependentParallelModeDisSample

In independent parallel scan mode, the application must use this member to set the
disabled sample slot. In that scan mode, the converter will stop scan when it encoun-
ters a disabled sample slot. In this mode, the disabled sample slot for converterA and
converterB may different.

struct _ cadc_sample_ config
#include <fsl_cadc.h> The structure for configuring the sample slot.

Public Members
cadc_sample_slot_zero_crossing_mode_t eZeroCrossingMode
Zero crossing mode.
uint16_t ul6HighLimitValue
High limit value. Original value formation as hardware register, with 3-bits left shifted.
uint16_t ul6LowLimitValue
Low limit value. Original value formation as hardware register, with 3-bits left shifted.

uint16_t ul60ffsetValue
Offset value. Original value formation as hardware register, with 3-bits left shifted.

72 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

struct _ cadc_scan_ ctrl_sequential _mode
#include <fsl_cadc.h> Cadc scan control for sequential scan mode.

Note: Each member of this structure represent one bit of the word. Asserted the structure’s
member means delay sample until a new sync input occurs. Cleared the structure’s member
means perform sample immediately after the completion of the current sample.

Public Members
uint32_t bitSample0

Control whether delay sample0 until a new sync input occurs.
uint32_t bitSamplel

Control whether delay samplel until a new sync input occurs.
uint32_t bitSample2

Control whether delay sample2 until a new sync input occurs.
uint32_t bitSample3

Control whether delay sample3 until a new sync input occurs.
uint32_t bitSample4

Control whether delay sample4 until a new sync input occurs.
uint32_t bitSampleb

Control whether delay sample5 until a new sync input occurs.
uint32_t bitSample6

Control whether delay sample6 until a new sync input occurs.
uint32_t bitSample7

Control whether delay sample7 until a new sync input occurs.
uint32_t bitSample8

Control whether delay sample8 until a new sync input occurs.
uint32_t bitSample9

Control whether delay sample9 until a new sync input occurs.
uint32_t bitSamplel0

Control whether delay sample10 until a new sync input occurs.
uint32_t bitSamplell

Control whether delay sample11 until a new sync input occurs.
uint32_t bitSamplel2

Control whether delay sample12 until a new sync input occurs.
uint32_t bitSamplel3

Control whether delay sample13 until a new sync input occurs.
uint32_t bitSamplel4

Control whether delay sample14 until a new sync input occurs.
uint32_t bitSamplel5

Control whether delay sample15 until a new sync input occurs.

uint32_t bitsReserved
Reserved 16 bits.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 73

MCUXpresso SDK Documentation, Release 25.09.00

struct cadc_scan ctrl simultParallel mode

#include <fsl_cadc.h> Cadc scan control for simultaneous parallel scan mode.

Note: Each member of this structure represent one bit of the word. Asserted the structure’s
member means delay sample until a new sync input occurs. Cleared the structure’s member
means perform sample immediately after the completion of the current sample.

Public Members
uint32_t bitSample0 8

Control whether delay sample0 and sample8 until a new sync input occurs.
uint32_t bitSamplel 9

Control whether delay samplel and sample9 until a new sync input occurs.
uint32_t bitSample2 10

Control whether delay sample2 and sample10 until a new sync input occurs.
uint32_t bitSample3 11

Control whether delay sample3 and sample11 until a new sync input occurs.
uint32_t bitsReservedl

Reserved 4 bits.
uint32_t bitSample4 12

Control whether delay sample4 and sample12 until a new sync input occurs.
uint32_t bitSample5_ 13

Control whether delay sample5 and sample13 until a new sync input occurs.
uint32_t bitSample6 14

Control whether delay sample6 and sample14 until a new sync input occurs.
uint32_t bitSample7 15

Control whether delay sample7 and sample15 until a new sync input occurs.
uint32_t bitsReserved2

Reserved 4 bits.

uint32_t bitsReserved3
Reserved 16 bits.

struct _cadc_scan_ ctrl independent_parallel mode_converterA

#include <fsl_cadc.h> The scan ctrl struture for converterA in independent scan mode.

Public Members
uint32_t bitSample0

Control whether delay converterA’s sample0 until a new sync input occurs.
uint32_t bitSamplel

Control whether delay converterA’s samplel until a new sync input occurs.

uint32_t bitSample2
Control whether delay converterA’s sample2 until a new sync input occurs.

uint32_t bitSample3
Control whether delay converterA’s sample3 until a new sync input occurs.

74

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t bitsReservedl
Reserved 4 bits.

uint32_t bitSample4

Control whether delay converterA’s sample4 until a new sync input occurs.
uint32_t bitSample5

Control whether delay converterA’s sample5 until a new sync input occurs.
uint32_t bitSample6

Control whether delay converterA’s sample6 until a new sync input occurs.
uint32_t bitSample?

Control whether delay converterA’s sample7 until a new sync input occurs.
uint32_t bitsReserved?2

Reserved 4 bits
uint32_t bitsReserved3

Reserved 16 bits.

struct _ cadc_scan_ ctrl_independent_ parallel _mode_converterB
#include <fsl_cadc.h> The scan ctrl struture for converterB in independent scan mode.

Public Members
uint32_t bitsReservedl

Reserved 4 bits.
uint32_t bitSample8

Control whether delay converterB’s sample8 until a new sync input occurs.
uint32_t bitSample9

Control whether delay converterB’s sample9 until a new sync input occurs.
uint32_t bitSamplel0

Control whether delay converterB’s sample10 until a new sync input occurs.
uint32_t bitSamplell

Control whether delay converterB’s samplel11 until a new sync input occurs.
uint32_t bitsReserved?2

Reserved 4 bits.
uint32_t bitSamplel2

Control whether delay converterB’s sample12 until a new sync input occurs.
uint32_t bitSamplel3

Control whether delay converterB’s sample13 until a new sync input occurs.
uint32_t bitSamplel4

Control whether delay converterB’s sample14 until a new sync input occurs.
uint32_t bitSamplel5

Control whether delay converterB’s sample15 until a new sync input occurs.
uint32_t bitsReserved3

Reserved 16 bits.

union _ cadc_scan_ ctrl_independent_ parallel_mode
#include <fsl_cadc.h> The union for converters in independent parallel mode.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 75

MCUXpresso SDK Documentation, Release 25.09.00

Public Members
cadc_scan_ctrl_independent_parallel_mode_converterA_t sConverter A
Scan control for converterA.

cadc_scan_ctrl independent_parallel_mode_converterB_t sConverterB
Scan control for converterB.

union cadc scan_ control
#include <fsl_cadc.h> The union of the scan control for each scan mode.

Public Members
uint32_t u32ScanCtrlVal
The 32 bits value of the scan control value.

cadc_scan_ctrl_seq_mode_t sSequential
Scan control for sequential scan mode.

cadc_scan_ctrl_simultParallel mode_t sSimultParallel
Scan control for simultaneous parallel scan mode.

cadc_scan_ctrl_independent_parallel mode_t ulndependentParallel
Scan control for independent scan mode.

struct _ cadc_ exp_ mux_ aux_ config
#include <fsl_cadc.h> The structure for configuring Cyclic ADC’s expansion setting.

Public Members
uint16_t ul6AuxControl
The mask of auxiliary control, should be the OR’ed value of cadc_auxiliary_control_t.

uint32_t u32MuxChannelMask

The mask of mux selection of all mux solts, should be the ORed value of
cadc_expansion_mux_selection_t.

cadc_expansion_disabled_mux_slot_t disabledMuxSlot
mux slot to disabled in the scan.

struct _ cadc__converter_ config
#include <fsl_cadc.h> The structure for configuring each converter.

Public Members
uint16_t ul6ClockDivisor
Converter’s clock divisor for the clock source. Available setting range is 0-63.
* When the clockDivisor is 0, the divisor is 2.

» Tor all other clockDivisor values, the divisor is 1 more than the decimal value of
clockDivisor: clockDivisor + 1

cadc_reference_voltage_source_t eHighReferenceVoltageSource
High voltage reference source.

cadc_reference_voltage_source_t eLowReferenceVoltageSource
Low reference voltage source.

76 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

bool bEnableDMA
Enable/Disable DMA.

bool bPowerUp
Power up or power down the converter.

bool bScanInitBySync
The member user to control the initiate method of the scan.
* true Use a SYNC input pulse or START command to initiate a scan.
» false Scan is initiated by the assertion of START command only.
cadc_exp_mux_aux_config_t muxAuxConfig
Configuration of expansion mux and auxiliary control.

struct _ cadc_ config
#include <fsl_cadc.h> The structure for configuring the Cyclic ADC’s setting.

Public Members

cadc_idle_ work_mode_t eldleWorkMode
Idle work mode for the module.

cadc_dma_trigger_source_t eDMATriggerSource
Selects the dma trigger source for the module.
uint16_t ul6PowerUpDelay

The number of ADC clocks to power up the converters (if powered up), before allowing
a scan to start. The available range is 0 to 63 .

uint32_t u32EnabledInterruptMask

The mask of the interrupts to be enabled, should be the ORed value of
_cadc_interrupt_enable.

cadc_scan_mode_t eScanMode
The scan mode of the module.

cadc_sample_slot_disabled_t uDisabledSampleSlot

The member used to config the which sample slot is disabled for the scan. The scan
will continue until the first disabled sample slot is encountered.

cadc_scan_control_t uScanControl

Scan control provides the ability to pause and await a new sync signal while current
sample completed.

uint32_t u32ChannelModeMask
The mask of each channel’s mode, should be the OR’ed value of cadc_channel_mode_t.
Each channel supports single-end and differential(Fully differentail and Unipolar
differential). Some devices also support alternate source mode.

cadc_channel_gain_t eChannelGain[(ADC_RSLT_COUNT)]

The gain value for each channel. Each element of the array represents the gain of the
channel. E.g. eChannelGain[0] means channel gain of channel0O, which is ANAO.

cadc_channel_number_t eSampleSlot[(ADC_RSLT_COUNT)]

The channel assigned to each sample slot. The index of the array represents sample
slot index.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 77

MCUXpresso SDK Documentation, Release 25.09.00

cadc_converter_config_t sConverterA
The configuration for converterA.

cadc_converter_config_t sConverterB
The configuration for converterB.

2.2 The Driver Change Log
2.3 CADC Peripheral and Driver Overview

2.4 Clock Driver

enum _ clock ip_name
List of IP clock name.

Values:

enumerator kCLOCK GPIOF
GPIOF clock

enumerator kCLOCK GPIOE
GPIOE clock

enumerator kCLOCK GPIOD
GPIOD clock

enumerator kCLOCK GPIOC
GPIOC clock

enumerator kCLOCK GPIOB
GPIOB clock

enumerator kCLOCK _GPIOA
GPIOA clock

enumerator kCLOCK_ TA3
Timer A3 clock

enumerator kCLOCK_TA2
Timer A2 clock

enumerator kCLOCK_ TA1
Timer A1l clock

enumerator kCLOCK_TAO0
Timer AO clock

enumerator kCLOCK_LPI2C0
LPI2CO clock

enumerator kCLOCK_ LPI2C1
LPI2C1 clock

enumerator kCLOCK QSPIO0
QSPIO clock

enumerator kCLOCK__QSCI1
QSCI1 clock

78

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK__QSCIO0
QSCIO clock

enumerator kCLOCK_DAC
DAC clock

enumerator kCLOCK_PIT1
PIT 1 clock

enumerator kCLOCK_ PITO0
PIT O clock

enumerator kCLOCK_QDC
QDC clock

enumerator kCLOCK__CRC
CRC clock

enumerator kCLOCK_CYCADC
Cyclic ADC clock

enumerator kCLOCK__CMPD
Comparator D clock

enumerator kCLOCK_CMPC
Comparator C clock

enumerator kCLOCK_CMPB
Comparator B clock

enumerator kCLOCK__CMPA
Comparator A clock

enumerator kCLOCK_PWMACH3
Enhanced Flexible PWM A3 clock

enumerator kCLOCK_PWMACH?2
Enhanced Flexible PWM A2 clock

enumerator kCLOCK_PWMACH1
Enhanced Flexible PWM A1 clock

enumerator kCLOCK_PWMACHO0
Enhanced Flexible PWM AO clock

enumerator kCLOCK_ROM
ROM clock

enumerator kCLOCK_OPAMPB
OPAMP B clock

enumerator kCLOCK__OPAMPA
OPAMP A clock

enumerator kCLOCK_NOGATE
Peripheral without clock gate control

enumerator kCLOCK_EDMA

enumerator kCLOCK EWM

enumerator kCLOCK_ XBARA

2.4. Clock Driver 79

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_NUM
Total IP clock number

enum _clock name
List of system-level clock name.
Values:
enumerator kCLOCK Mstr2xClk
Master 2x clock which feed to core and peripheral
enumerator kCLOCK__ SysClk
MCU system/core clock
enumerator kCLOCK_ BusClk
Bus clock
enumerator kCLOCK_ Bus2xClk
Bus 2x clock
enumerator kCLOCK_ FlashClk
Flash clock
enumerator kCLOCK_ FastIrcClk
Fast internal RC oscillator, 8M/2M
enumerator kCLOCK _SlowIrcClk
Slow internal RC oscillator, 200K
enumerator kCLOCK_ CrystalOscClk
Crystal oscillator
enumerator kCLOCK_ ExtClk
The selected external clock, it could be crystal oscillator, clkin0, clkinl
enumerator kCLOCK_ MstrOscClk
The selected master oscillator clock
enumerator kCLOCK_ PlIDiv2Clk
PLL output divide 2
enum _ clock crystal osc_mode
Crystal oscillator mode.
Values:
enumerator kCLOCK_ CrystalOscModeFSP
Full swing pierce, high power mode
enumerator kCLOCK_ CrystalOscModeLCP
Loop controlled pierce, low power mode
enum clock ext clk src
List of external clock source.
Values:
enumerator kCLOCK__ExtClkSrcCrystalOsc
External clock source is crystal oscillator

enumerator kCLOCK ExtClkSrcClkin
External clock source is clock in

80 Chapter 2

. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enum _clock ext clkin sel
List of clock-in source.
Values:
enumerator kCLOCK__SelClkInO
Clock in 0 is selected as CLKIN
enumerator kCLOCK_SelClkIn1
Clock in 1 is selected as CLKIN
enum _clock mstr osc_clk src
List of master oscillator source.
Values:
enumerator kCLOCK__MstrOscClkSrcFirc
8M/2M, fast internal RC oscillator
enumerator kCLOCK__ MstrOscClkSrcExt
External clock
enumerator kCLOCK__MstrOscClkSrcSirc
200K, slow internal RC oscillator
enum clock mstr 2x clk src
List of master 2x clock source.
Values:
enumerator kCLOCK __Mstr2xClkSrcMstrOsc
Master oscillator clock
enumerator kCLOCK __Mstr2xClkSrcPIIDiv2
PLL output divide 2
enum _ clock output_ clk_src
List of output clock source.
Values:
enumerator kCLOCK_ OutputClkSrc_ Sys
MCU system/core clock
enumerator kCLOCK__ OutputClkSrc_ Mstr2x
Master 2x clock
enumerator kCLOCK__ OutputClkSrc_ BusDiv2
Bus clock div 2
enumerator kCLOCK__OutputClkSrc_ MstrOSC
Master oscillator clock
enumerator kCLOCK__OutputClkSrc_ Firc
Fast IRC clock, 8M/2M
enumerator kCLOCK__OutputClkSrc_ Sirc
Slow IRC clock, 200K
enum _ clock output_ clk_div
List of output clock divider.

Values:

2.4. Clock Driver

81

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_ OutputDivl
output clock = selectedClock/1U

enumerator kCLOCK_ OutputDiv2
output clock = selectedClock/2U
enumerator kCLOCK_ OutputDiv4
output clock = selectedClock/4U
enumerator kCLOCK_ OutputDiv8
output clock = selectedClock/8U
enumerator kCLOCK__OutputDiv16
output clock = selectedClock/16U
enumerator kCLOCK__OutputDiv32
output clock = selectedClock/32U
enumerator kCLOCK__OutputDiv64
output clock = selectedClock/64U
enumerator kCLOCK__OutputDiv128
output clock = selectedClock/128U
enum _ clock_ protection
List of clock register protection mode.
Values:
enumerator kCLOCK_ Protection_ Off
No protection, and could be changed any time
enumerator kCLOCK_Protection_ On
Protected, and could be changed any time
enumerator kCLOCK _Protection OffLock
No protection and get locked until chip reset
enumerator kCLOCK_Protection OnLock
Protected and get locked until chip reset
enum _clock ip_clk_src
List of specific IP’s clock source.
Values:
enumerator kCLOCK__IPClkSrc_ BusClk
Bus clock
enumerator kCLOCK_IPClkSrc_ Bus2xClk
Bus 2x clock
enum _clock firc sel
Fast IRC selection.
Values:
enumerator kCLOCK _ FircSel 8M
FIRC normal mode, output 8M

enumerator kCLOCK _ FircSel 2M
FIRC standby mode, output 2M

82

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enum _clock mode
MCU working mode selection.

Values:
enumerator kCLOCK_ Mode_ Normal
Normal mode, core:bus clock rate = 1:1
enumerator kCLOCK_ Mode_Fast
Fast mode, core:bus clock rate = 2:1
enum _ clock postscale
Mstr 2x clock postscale divider.
Values:
enumerator kCLOCK_ PostscaleDiv1
Mast 2X clock = clkSrc/ 1
enumerator kCLOCK_ PostscaleDiv2
Mast 2X clock = clkSrc/ 2
enumerator kCLOCK_ PostscaleDiv4
Mast 2X clock = clkSrc / 4
enumerator kCLOCK_ PostscaleDiv8
Mast 2X clock = clkSrc/ 8
enumerator kCLOCK _PostscaleDiv16
Mast 2X clock = clkSrc/ 16
enumerator kCLOCK __PostscaleDiv32
Mast 2X clock = clkSrc / 32
enumerator kCLOCK __PostscaleDiv64
Mast 2X clock = clkSrc / 64
enumerator kCLOCK _PostscaleDiv128
Mast 2X clock = clkSrc /128
enumerator kCLOCK __PostscaleDiv256
Mast 2X clock = clkSrc / 256
enum _ clock_pll__monitor_type
PLL monitor type structure.
Values:
enumerator kCLOCK_PlIMonitorUnLockCoarse
PLL coarse unlock, due to loss of reference clock, power unstable...etc.
enumerator kCLOCK __PlIMonitorUnLockFine
PLL fine unlock, due to loss of reference clock, power unstable...etc.
enumerator kCLOCK PllMonitorLostofReferClk
PLL lost reference clock.
enumerator kCLOCK__PlIMonitorAll
All PLL monitor type.
enum _ pit_ count_ clock source
Describes PIT clock source.

Values:

2.4. Clock Driver 83

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPIT CountClockSource0
PIT count clock sourced from IP bus clock

enumerator kPIT CountClockSourcel
PIT count clock sourced from alternate clock 1

enumerator kPIT CountClockSource2
PIT count clock sourced from alternate clock 2

enumerator kPIT CountClockSource3
PIT count clock sourced from alternate clock 3

enumerator kPIT CountBusClk
PIT count clock sourced from bus clock

enumerator kPIT_ CountCrystalOscClk
PIT count clock sourced from crystal clock

enumerator kPIT CountFircClk
PIT count clock sourced from fast IRC(8M/2M) clock

enumerator kPIT CountSircClk
PIT count clock sourced from slow IRC(200KHz) clock

enum __ewm_ Ipo_ clock_source
Describes EWM clock source.

Values:

enumerator kEWM__ LpoClockSource0

EWM clock sourced from lpo_clk[0]
enumerator kEWM__ LpoClockSourcel

EWM clock sourced from lpo_clk[1]
enumerator kEWM _LpoClockSource2

EWM clock sourced from lpo_clk[2]
enumerator kEWM__LpoClockSource3

EWM clock sourced from lpo_clk[3]
enumerator kEWM_ Lpo8MHz2MHzIRCClock

EWM clock sourced from 8MHz/2MHz IRC clock
enumerator kEWM_ LpoCrystalClock

EWM clock sourced from crystal clock
enumerator kEWM_ LpoBusClock

EWM clock sourced from IP Bus clock
enumerator kEWM_ Lpo200KHzIRCClock

EWM clock sourced from 200KHz IRC clock

typedef enum _clock_ip_name clock_ip_ name_t
List of IP clock name.
typedef enum _clock_name clock_name_t

List of system-level clock name.

typedef enum _clock_crystal_osc_mode clock_crystal_osc_mode_t
Crystal oscillator mode.

84

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _clock_ext_clk_src clock__ext_ clk_src_t
List of external clock source.

typedef enum _clock_ext_clkin_sel clock__ext_ clkin_sel_t
List of clock-in source.

typedef enum _clock_mstr_osc_clk_src clock_mstr_osc_clk_src_t
List of master oscillator source.

typedef enum _clock_mstr_2x_clk_src clock_mstr_2x_clk_src_t
List of master 2x clock source.

typedef enum _clock_output_clk_src clock_output_clk_src_t
List of output clock source.

typedef enum _clock_output_clk_div clock output_clk div_t
List of output clock divider.

typedef enum _clock_protection clock protection_ t
List of clock register protection mode.

typedef enum _clock_ip_clk_src clock_ip_clk_src_t
List of specific IP’s clock source.

typedef enum _clock_firc_sel clock_ firc_sel t
Fast IRC selection.

typedef enum _clock_mode clock_mode_ t
MCU working mode selection.

typedef enum _clock_postscale clock_postscale_ t
Mstr 2x clock postscale divider.

typedef struct _clock_protection_config clock protection_ config t
Clock register protection configuration.

typedef struct _clock_output_config clock output_ config t
Clock output configuration.

typedef struct _clock_config clock_config_t
mcu clock configuration structure.

This is the key configuration structure of clock driver, which define the system clock be-
havior. The function CLOCK_SetClkConfig deploy this configuration structure onto SOC.

typedef enum _clock_pll_monitor_type clock_pll_monitor_type_t
PLL monitor type structure.

typedef enum _pit_count_clock_source pit_ count_ clock_source_ t
Describes PIT clock source.

typedef enum _ewm_Ipo_clock_source ewm_ lpo_ clock source_t
Describes EWM clock source.

static inline void CLOCK_ EnableClock(clock_ip_name_t eIpClkName)
Enable IPs clock.

Parameters

 eIlpClkName — IP clock name.

2.4. Clock Driver 85

MCUXpresso SDK Documentation, Release 25.09.00

static inline void CLOCK_ DisableClock(clock_ip_name_t eIpClkName)
Disable IPs clock.

Parameters
* elpClkName — IP clock name.

static inline void CLOCK __EnableClockInStopMode(clock_ip_name_t eIpClkName)
Enable IPs clock in STOP mode.

Parameters
¢ eIpClkName — IP clock name.

static inline void CLOCK DisableClockInStopMode(clock_ip_name_t eIpClkName)
Disable IPs clock in STOP mode.

Parameters
* eIlpClkName — IP clock name.

static inline void CLOCK__ConfigQsciClockSrc(clock_ip_name_t eQsciClkName, clock_ip_clk_src_t
eClkSrc)

Configure QSCI clock source.
QSCI clock could be bus or bus_2x clock. Default is bus clock.
Parameters
* eQsciClkName — IP(only QSCI is valid) clock name.
* eClkSrc — Clock source.

static inline void CLOCK_ConfigQtimerClockSrc(clock_ip_clk_src_t eClkSrc)
Configure Qtimer clock source.

Qtimer clock could be bus or bus_2x clock. Default is bus clock.
Parameters
* eClkSrc — Clock source.

static inline void CLOCK_ ConfigPWMClockSrc(clock_ip_clk_src_t eClkSrc)
Configure PWM clock source.

PWM clock could be bus or bus_2x clock. Default is bus clock.
Parameters
* eClkSrc — Clock source.

static inline void CLOCK_ Configl2¢ClockSrc(clock_ip_name_t eLpi2cClkName, clock_ip_clk_src_t
eClkSrc)

Configure LPI2C clock source.
LPI2C clock could be bus or bus_2x clock. Default is bus clock.
Parameters
* eLpi2cClkName — IP(only LPI2C is valid) clock name.
* eClkSrc — Clock source.

static inline void CLOCK_ ConfigQDCClockSrc(clock_ip_clk_src_t eCIkSrc)
Configure QDC clock source.

QDC clock could be bus or bus_2x clock. Default is bus clock.
Parameters

* eClkSrc - Clock source.

86 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

static inline void CLOCK_ SetSlowIrcTrim(uint16_t u16Trim)
Set trim value to 200K slow internal RC oscillator.

The factory trim value is loaded during reset. User may call this function to fine tune the
200K IRC oscillator.

Parameters
* ul6Trim — Slow internal RC oscillator trim value.

static inline void CLOCK_ SetFastIrc8MTrim(uint16_t u16Trim)
Set trim value to fast internal RC 8M oscillator.

The factory trim value is loaded during reset. User may call this function to fine tune the
FIRC 8M oscillator.

Parameters

* ul6Trim - Fast internal 8M RC oscillator trim value. Check OSCTL3 register
for u16Trim format.

static inline void CLOCK_ SetFastIrc2MTrim(uint16_t u16Trim)
Set trim value to fast internal RC 2M oscillator.

The factory trim value is loaded during reset. User may call this function to fine tune the
FIRC 2M oscillator.

Parameters

* ul6Trim — Fast internal 2M RC oscillator trim value. Check OSCTL4 register
for u16Trim format.

static inline bool CLOCK_GetCrystalOscFailureStatus(void)
Get crystal oscillator failure status.

Note: This function should be called only when crystal osc is on and its moni-
tor(MON_ENABLE in OSCTL2 register) is enabled.

Returns
Crystal oscillator status. true: Crystal oscillator frequency is below
680KHz(typical). false: No clock failure or crystal oscillator is off.

static inline void CLOCK_ SetPllLossofReferernt TripPoint(uint8_t u8Trip)
Set PLL loss of reference trip point.

The trip point default value is 2.
Parameters
» u8Trip — Trip point for loss of reference.

static inline void CLOCK _ ClearPLLMonitorFlag(clock_pll_monitor_type_t eType)
Clear PLL monitor flag.

Parameters
* ¢Type — PLL monitor type.

static inline void CLOCK__EnableFircOutput(bool bEnable)
Enable/Disable FIRC output.

Note: It is not allowed to disable FIRC output when FIRC is selected as master osc clock
source. Note: Disable FIRC output doesn’t turn off FIRC, FIRC still works but its output is
cut off. Note: For the case FIRC is powered on and output disabled, enable FIRC output
doesn’t require startup time.

2.4. Clock Driver 87

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* bEnable — Enable or disable output.

static inline void CLOCK_ DisableFirc8MMonitor(void)
Disable IRC8M monitor.

static inline void CLOCK _EnableFirc8MMonitorInterrupt(bool bEnable)
Enable/Disable IRC8M monitor interrupt.

Parameters
* bEnable — Enable or disable FIRC 8M monitor interrupt.

static inline bool CLOCK_ GetFirc8MMonitorInterruptFlag(void)
Get IRC8M monitor interrupt flag.

Returns
IRC8M monitor interrupt flag. true: 8M monitor failed, result exceeds thresh-
old. false: 8M monitor works normal or be turned off.

static inline void CLOCK_ClearFirc8MMonitorInterruptFlag(void)
Clear IRC8M monitor interrupt flag.

uint32_t CLOCK_ GetFreq(clock_name_t eClkName)
Get system-level clock frequency.

Parameters
* eClkName — System-level clock name.

Returns
The required clock’s frequency in Hz.

uint32_t CLOCK_ GetIpClkSrcFreq(clock_ip_name_t eIpClkName)
Get IP clock frequency.

Parameters
¢ eIpClkName — IP clock name.

Returns
The required IP clock’s frequency in Hz.

void CLOCK _SetClkinOFreq(uint32_t u32Freq)
Set Clock IN 0 frequency.

It is a must to call this function in advance if system is operated by clkin0.
Parameters
* u32Freq — Clock IN 0 frequency in Hz.

void CLOCK_SetClkinlFreq(uint32_t u32Freq)
Set Clock IN 1 frequency.

It is a must to call this function in advance if system is operated by clkinl.
Parameters
* u32Freq — Clock IN 1 frequency in Hz.

void CLOCK_SetXtalFreq(uint32_t u32Freq)
Set crystal oscillator frequency.

It is a must to call this function in advance if system is operated by crystal oscillator.
Parameters

* u32Freq — Crystal oscillator frequency in Hz.

88 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

void CLOCK_SetProtectionConfig(clock_protection_config_t *psConfig)
Config clock register access protection mode.

Parameters
* psConfig — Pointer for protection configuration.
void CLOCK_SetOutputClockConfig(clock_output_config t *psConfig)
Config output clock.
Parameters
* psConfig — Pointer for clock output configuration.

void CLOCK_SetClkConfig(clock_config t *psConfig)
Config mcu operation clock.

It is recommended to set the multilink debug shift freq to 100KHz or lower when debug
the 2M FIRC setting, otherwise the multilink may can’t connect to device. Below is a valid
FIRC 2M clock setting demo, clock path: FIRC(2M)->MSTR OSC->DIV1->MSTR 2X .bCrys-
talOscEnable = false; .bFircEnable = true; .bSircEnable = false; .bPllEnable = false; .eFirc-
Sel = kCLOCK FircSel _2M; .eMstrOscClkSrc = kKCLOCK_MstrOscClkSrcFirc; .eMstr2xClkSrc =
kCLOCK_SysClkSrcMstrOsc; .eMstr2xClkPostScale = kCLOCK_PostscaleDiv1;

If set the SIRC(200KHz) as Mstr2x clock, the debugger can’t connect to the device. So
be careful to set the SIRC clock configuration, because it’s difficult to debug. Below is a
valid SIRC 200K clock setting demo, clock path: SIRC->MSTR OSC->DIV1->MSTR 2X .bCrys-
talOscEnable = false; .bFircEnable = false; .bSircEnable = true; .bPllEnable = false; .eM-
strOscClkSrc = KCLOCK_MstrOscClkSrcSirc; .eMstr2xClkSrc = KCLOCK_SysClkSrcMstrOsc;
.eMstr2xClkPostScale = kCLOCK_PostscaleDiv1;

Parameters
* psConfig — Pointer for clock configuration.

void CLOCK_SetClockMode(clock_mode_t eClkMode)
Set clock mode, normal or fast mode.

Note: This function will do software reset if setting mode differs current mode, otherwise
it does nothing.

Parameters
* eClkMode — Setting clock mode.

uint32_t CLOCK_ EvaluateExtClkFreq(void)
Evaluate external clock frequency and return its frequency in Hz.

This function should be called only when internal FIRC is on and 8M is selected. The eval-
uated result accuracy depends on:

a. FIRC accuracy, now it is +/-3% for full temperature range.
b. Truncation error, because the external clock and FIRC is not synchronised.
c. External clock frequency, low accuracy for lower external clock frequency.
d. MCU mstr 2x clock.
For example, for namely 8M external clock, evaluated result may be range in 8M+/-7%.

Returns
Evaluated external frequency in Hz.

void CLOCK __EnablePLLMonitorInterrupt(clock_pll_monitor_type_t eType, bool bEnable)
Enable/Disable PLL monitor interrupt.

2.4. Clock Driver 89

MCUXpresso SDK Documentation, Release 25.09.00

This function should be called only when PLL is on and its reference clock is external clock.
This function is for safety purpose when external clock is lost due to HW failure. The normal

flow to call this function:
a. Call CLOCK SetClkConfig to enable PLL and external clock to feed the PLL.
b. Call CLOCK_ClearPLLMonitorFlag.

c. Call CLOCK SetPllLossofRefererntTripPoint (optional, setting value
kCLOCK_PlIMonitorLostofReferClk type).

d. Call this function.
e. Enable OCCS interrupt with highest priority 3.

f. When OCCS interrupt occurs, recover clock from the disaster
OCCS_DrivelSRHandler function. Such kind of clock recovery is application de-

pendent, and a demo OCCS_DriveISRHandler has been shown in fsl_clock.c

Parameters
* ¢Type — PLL monitor type.
* bEnable — Enable or disable.

void CLOCK_EnableFirc8MMonitor(uint16_t ul6LowThre, uint16_t ul16HighThre)
Enable IRC8M monitor.

Note: : It requires IRC8M and IRC200K to be enabled.

Parameters
* ul6LowThre — Low threshold
* ul6HighThre — High threshold.

bool CLOCK TRC8MMonitorOnce(void)
IRC8M monitor usage.

This function demos the usage of IRC8M monitor via clock driver API.

Returns

IRC8M monitor test result. true: 8M monitor failed, result exceeds threshold,

+/-10% false: 8M monitor result is within threshold, +/-10%
FSL_ CLOCK_DRIVER VERSION
CLOCK driver version 2.2.0.

SDK_DEVICE MAXIMUM_ CPU_CLOCK_FREQUENCY
Definition for delay API in clock driver, users can redefine it.

GPIO_CLOCKS

Clock ip name array for GPIO.
TMR_CLOCKS

Clock ip name array for quad timer.
LPI2C_CLOCKS

Clock ip name array for LPI2C.

QSPI_CLOCKS
Clock ip name array for queued SPIL

90 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

QSCI_CLOCKS
Clock ip name array for queued SCI.

DAC_CLOCKS

Clock ip name array for DAC.
PIT CLOCKS

Clock ip name array for PIT.
QDC_CLOCKS

Clock ip name array for QDC.
CRC_CLOCKS

Clock ip name array for CRC.
CADC_CLOCKS

Clock ip name array for cyclic ADC.
CMP__CLOCKS

Clock ip name array for CMP.

PWM__ CLOCKS

Clock ip name array for PWM.
ROM_CLOCKS

Clock ip name array for ROM.
OPAMP__CLOCKS

Clock ip name array for OPAMP.
EDMA_CLOCKS

Clock ip name array for EDMA.
EWM_ CLOCKS

Clock ip name array for EWM.
XBARA__CLOCKS

Clock ip name array for XBARA.

CLK_GATE_GET REG_INDEX(X)
CLK_GATE_GET_ BIT_ INDEX(X)
clock_protection_t eFrqEP

FRQEP bit field in OCCS PROT register, protect COD & ZSRC.

clock_protection_t eOscEP
OSCEP bit field in OCCS PROT register, protect OSCTL1, OSCTL2, OSCTL3, OSCTL4, PRECS.

clock_protection_t ePIIEP
PLLEP bit field in OCCS PROT register, protect PLLDP, LOCIE, LORTP, PLLDB bitfield.

bool bClkOutOEn
Clock output 0 enable, CLKDISO bit field in SIM CLKOUT register

bool bClkOut1En
Clock output 1 enable, CLKDIS1 bit field in SIM CLKOUT register

clock_output_clk_src_t eClkOut0Src
Clock output 0 clock source, CLKOSELO bit field in SIM CLKOUT register

clock_output_clk_src_t eClkOut1Src
Clock output 1 clock source, CLKOSEL1 bit field in SIM CLKOUT register

2.4. Clock Driver 91

MCUXpresso SDK Documentation, Release 25.09.00

clock_output_clk_div_t eClkDiv
Clock output divider, CLKODIV bit field in SIM CLKOUT register ,it apply to clkout0 & clkout1

bool bCrystalOscEnable
Crystal oscillator enable, COPD bit field in OCCS OSCTL2 register

bool bFircEnable
Fast internal RC oscillator enable, ROPD bhit field in OCCS OSCTL1 register

bool bSircEnable
Slow internal RC oscillator enable, ROPD200K bit field in OCCS OSCTL2 register

bool bPllEnable
PLL enable, PLLPD bit field in OCCS CTRL register

bool bCrystalOscMonitorEnable
Crystal oscillator monitor enable, MON_ENABLE bit field in OCCS OSCTL2 register

clock_firc_sel _t eFircSel
Fast IRC mode selection, 8M or 2M, ROSB bit field in OCCS OSCTL1 register

clock_crystal_osc_mode_t eCrystalOscMode
Crystal oscillator mode, COHL bit field in OCCS OSCTL1 register

clock_ext_clk_src_t eExtClkSrc
External clock source, EXT_SEL bit field in OCCS OSCTL1 register

clock_ext_clkin_sel t eClkInSel
Clock IN selection(0 or 1), CLKINSEL bit field in SIM MISCO register

clock_mstr_osc_clk_src_t eMstrOscClkSrc

Master oscillator selection, PRECS bit field in OCCS CTRL register. When selected
kCLOCK_MstrOscClkSrcExt, make sure corresponding pins(crystal osc or clkin pin) has
been configured.

clock_mstr_2x_clk_src_t eMstr2xClkSrc
Master 2x clock selection, ZSRC bit field in OCCS CTRL register

clock_postscale_t eMstr2xClkPostScale
Master 2x clock post scale, COD bit field in OCCS DIVBY register

uint32_t u32P1IClkFreq
Required PLL output frequency before divide 2
FSL_SDK_DISABLE_DRIVER_ CLOCK_CONTROL
Configure whether driver controls clock.

When set to 0, peripheral drivers will enable clock in initialize function and disable clock in
de-initialize function. When set to 1, peripheral driver will not control the clock, application
could control the clock out of the driver.

Note: All drivers share this feature switcher. If it is set to 1, application should handle
clock enable and disable for all drivers.

struct _ clock_protection_ config

#include <fsl_clock.h> Clock register protection configuration.
struct _ clock_output_ config

#include <fsl_clock.h> Clock output configuration.

92 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

struct _ clock_ config
#include <fsl_clock.h> mcu clock configuration structure.

This is the key configuration structure of clock driver, which define the system clock be-
havior. The function CLOCK_SetClkConfig deploy this configuration structure onto SOC.

2.5 Driver Change Log

2.6 CMP: Comparator Driver

void CMP__GetDefaultConfig(cmp_config_t *psConfig)
Initializes the CMP user configuration structure.

This function initializes the user configuration structure to the default values. It is corre-
sponding to the continuous mode configurations.

Parameters
* psConfig — pointer of cmp_config _t.

void CMP_ Init(CMP_Type *base, const cmp_config t *psConfig)
Initializes the CMP.

This function initializes the CMP module. The operations included are as follows.
* Enable the clock for CMP module.

* Configure the comparator according to the CMP configuration structure.

Parameters
* base — CMP peripheral base address.
* psConfig — Pointer to the configuration structure.
void CMP_ Deinit(CMP_Type *base)
De-initializes the CMP module.
This function de-initializes the CMP module. The operations included are as follows.
* Disabling the CMP module.
* Disabling the clock for CMP module.

Parameters
* base — CMP peripheral base address.

static inline void CMP_ Enable(CMP_Type *base, bool bEnable)
Enables/disables the CMP module.

Parameters
* base — CMP peripheral base address.
* bEnable — Enables or disables the module.

static inline void CMP_ SetInputChannel(CMP_Type *base, cmp_input_mux_t ePlusChannel,
cmp_input_mux_t eMinusChannel)

Sets the input channels for the comparator.

This function sets the input channels for the comparator. Note that two input channels
cannot be set the same way in the application. When the user selects the same input from
the analog mux to the positive and negative port, the comparator is disabled automatically.

2.5. Driver Change Log 93

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* base — CMP peripheral base address.
* ePlusChannel — Plus side input channel number.
* eMinusChannel - Minus side input channel number.

static inline void CMP_ SelectOutputSource(CMP_Type *base, cmp_output_source_t
eOutputSource)

Select comparator output source.
Parameters
* base — CMP peripheral base address.

* eOutputSource — The output signal to be set, please reference
cmp_output_source_t for details.

static inline void CMP_ EnableOuputPin(CMP_Type *base, bool bEnable)
Enable/Disable Comparator output pin.

Parameters
* base — CMP peripheral base address.

* bEnable — Enable/Disable comparator output pin. true — CMPO is
available on the associate CMPO output pin. false — CMPO is not
available on the associate CMPO output pin.

static inline uint8_t CMP_ GetComparatorOutput(CMP_Type *base)
Get Comparator output.

Parameters
* base — CMP peripheral base address.

Return values
current — analog comparator output 0 or 1

static inline void CMP_ SetHysteresisLevel(CMP_Type *base, cmp_hysteresis_level t
eHysteresisLevel)

Sets hysteresis level.
Parameters
* base — CMP peripheral base address.

* eHysteresisLevel — The programmable hysteresis level to be set, please refer
to cmmp_hysteresis_level_t for details.

static inline void CMP_ SetComparasionSpeedMode(CMP_Type *base,
cmp_comparasion_speed_mode_t
eComparatorSpeedMode)

Sets comparison speed mode.
Parameters
* base — CMP peripheral base address.

* eComparatorSpeedMode — The comparison speed mode, please reference
cmp_comparasion_speed_mode_t for details.

static inline void CMP_ EnablelnvertOutput(CMP_Type *base, bool bEnable)
Enable/Disable comparator invert feature.

Parameters

* base — CMP peripheral base address.

94 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

* bEnable — Enable/Disable comparator invert feature. true — Inverts
the comparator output. false — Does not invert the comparator out-
put.

static inline void CMP_ EnableWindow(CMP_Type *base, bool bEnable)
Enable the window function.

Parameters
* base — CMP peripheral base address.
* bEnable — true is enable, false is disable.

static inline void CMP_ SetWindowOutputMode(CMP_Type *base, cmp_window_output_mode_t
eWindowOutputMode)

Set the window output mode.
Parameters
* base — CMP peripheral base address.
* eWindowOutputMode — cmp_window_output_mode_t.

static inline void CMP_ EnableExternalSampleMode(CMP_Type *base, bool bEnable)
Enable/Disable external Sample mode.

Parameters
* base — CMP peripheral base address.

* bEnable — true is using external sample mode, false is using interface sam-
ple mode.

static inline void CMP_ SetExternalSampleCount(CMP_Type *base, cmp_external sample_count _t
eSampleCount)

Sets external sample count.
Parameters
* base — CMP peripheral base address.

* eSampleCount — The number of consecutive samples that must agree
prior to the comparator output filter accepting a new output state,
cmp_external_sample_count_t.

static inline void CMP_ SetInternalFilterCount(CMP_Type *base, cmp_filter_count_t eFilterCount)
Sets internal filter count.

Parameters
* base — CMP peripheral base address.

¢ eFilterCount — The number of consecutive samples that must agree
prior to the comparator output filter accepting a new output state,
cmp_filter_count_t.

static inline void CMP_ SetInternalFilterPeriod(CMP_Type *base, uint8_t u8FilterPeriod)
Sets the internal filter period. It is used as the divider to bus clock.

Parameters
* base — CMP peripheral base address.

* u8FilterPeriod - Filter Period. The divider to the bus clock. Available range
is 0-255.

2.6. CMP: Comparator Driver 95

MCUXpresso SDK Documentation, Release 25.09.00

void CMP__SetDACConfig(CMP_Type *base, const cmp_dac_config_t *psConfig)
Configures the internal DAC.

Parameters
* base — CMP peripheral base address.
* psConfig — Pointer to the configuration structure.

static inline void CMP_ SetDACOutputVoltage(CMP_Type *base, uint8_t
u80utputVoltageDivider)

Sets DAC output voltage.
Parameters
* base — CMP peripheral base address.

* u80utputVoltageDivider — The digital value which is related to the desired
DAC output voltage,

static inline void CMP_ EnableInternal DAC(CMP_Type *base, bool bEnable)
Enable/Disable internal DAC.

Parameters
* base — CMP peripheral base address.

* bEnable — Enable/Disable internal DAC. true — Enable internal DAC.
false — Disable internal DAC.

static inline void CMP_ SetDACReferenceVoltageSource(CMP_Type *base, cmp_dac_vref source_t
eDACVrefSource)

Sets internal DAC’s reference voltage source.
Parameters
* base — CMP peripheral base address.
» eDACVrefSource — reference voltage source, please cmp_dac_vref_source_t

static inline void CMP_ Enablelnterrupt(CMP_Type *base, cmp_interrupt_request_t
elnterruptRequest)

Interrupt request to enable.
Parameters
* base — CMP peripheral base address.

* elnterruptRequest - Mask value for interrupts. See
cmp_interrupt_request_t.

static inline cmp_output_flag t CMP_ GetStatusFlags(CMP_Type *base)
Gets the status flags.

Parameters
* base — CMP peripheral base address.

Return values
Mask — value for the asserted flags. cmp_output_flag_t.

static inline void CMP__ClearStatusFlags(CMP_Type *base, cmp_output_flag t eOutputFlag)
Clears the status flags.

Parameters
* base — CMP peripheral base address.
* eOutputFlag — Mask value for the output flags, cmp_output_flag t

96 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

static inline void CMP_ EnableDMA (CMP_Type *base, cmp_dma_request_t eDMARequestType)

Enables CMP DMA request.
Parameters
* base — CMP peripheral base address.
* eDMARequestType — eDMA request type, cmp_dma_request_t

static inline uint32_t CMP_ GetComparatorResultRegister Address(CMP_Type *base)

Get CMP result register address for DMA access.
Parameters
* base — CMP peripheral base address.

Returns
The CMP result register address.

FSL CMP_DRIVER_ VERSION
CMP driver version.

enum _ cmp__interrupt_ request
CMP Interrupt request type definition.
Values:

enumerator kCMP__ InterruptRequestDisabled
interrupt disabled
enumerator kCMP_ InterruptRequestEnableOutputRisingEdge
Comparator interrupt request enable rising edge.
enumerator kCMP__ InterruptRequestEnableOutputFallingEdge
Comparator interrupt request enable falling edge.
enumerator kCMP_ InterrruptRequestEnableAll
comparator interrupt request enable on rising edge or falling edge
enum _ cmp_ dma_ request
CMP DMA request type definition.
Values:
enumerator kCMP_ DM ARequestDisabled
DMA disabled
enumerator kCMP_ DMARequestEnableOutputRisingEdge
Comparator dma request enable on rising edge.

enumerator kCMP_ DMARequestEnableOutputFallingEdge
Comparator dnma request enable on falling edge.

enumerator kCMP_ DMARequestEnableAll
comparator dma request enable on rising edge or falling edge

enum _cmp_ output_ flag
CMP output flags’ mask.

Values:

enumerator kCMP_ OutputFlagRisingEdge

Rising-edge on the comparison output has occurred.
enumerator kCMP_ OutputFlagFallingEdge

Falling-edge on the comparison output has occurred.

2.6. CMP: Comparator Driver

97

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCMP_ OutputFlagBothEdge
Rising-edge and Falling-edge on the comparison output has occurred.

enum _ cmp_ hysteresis_ level
CMP Hysteresis level.

Values:

enumerator kCMP_ HysteresisLevel(
Hysteresis level 0.

enumerator kCMP_ HysteresisLevell
Hysteresis level 1.

enumerator kCMP_ HysteresisLevel2
Hysteresis level 2.

enumerator kCMP_ HysteresisLevel3
Hysteresis level 3.

enum _ cmp_ comparasion_speed__mode
CMP compassion speed mode enumerator.

Values:

enumerator kCMP_ ComparsionModeLowSpeed
Low-Speed Comparison mode has lower current consumption

enumerator kCMP_ ComparsionModeHighSpeed
High-Speed Comparison mode has higher current consumption.

enum _cmp_dac_vref source
CMP DAC Voltage Reference source.

Values:

enumerator kCMP_ DACVrefSourceVinl
Vin1 is selected as a resistor ladder network supply reference Vin.

enumerator kCMP_ DACVrefSourceVin2
Vin2 is selected as a resistor ladder network supply reference Vin.

enum _ cmp_ window__output_ mode
CMP output value of window.

Values:

enumerator kCMP_ WindowOuputLastLatched Value

When WINDOW signal changes from 1 to 0, COUTA output holds the last latched value
before WINDOW signal falls to 0

enumerator kCMP_ WindowOutputZeroValue
When WINDOW signal changes from 1 to 0, COUTA output is forced to 0

enum _ cmp_ filter count
CMP filter count.

Values:

enumerator kCMP_ FilterCountDisable
filter is disabled

enumerator kCMP_ FilterCount1
1 sample must agrees, the comparator output is simply sampled

98 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCMP_ FilterCount2
2 consecutive samples must agrees

enumerator kCMP_ FilterCount3
3 consecutive samples must agrees

enumerator kCMP_ FilterCount4
4 consecutive samples must agrees

enumerator kCMP_ FilterCountb
5 consecutive samples must agrees

enumerator kCMP_ FilterCount6
6 consecutive samples must agrees

enumerator kCMP_ FilterCount7
7 consecutive samples must agrees

enum _ cmp_ external_sample count
CMP external sample count.

Values:

enumerator kCMP__ExternalSampleCount1
1 sample must agrees, the comparator output is simply sampled

enumerator kCMP__ExternalSampleCount2
2 consecutive samples must agrees

enumerator kCMP__ExternalSampleCount3
3 consecutive samples must agrees

enumerator kCMP__ExternalSampleCount4
4 consecutive samples must agrees

enumerator kCMP__ExternalSampleCount5
5 consecutive samples must agrees

enumerator kCMP__ ExternalSampleCount6
6 consecutive samples must agrees

enumerator kCMP__ExternalSampleCount7
7 consecutive samples must agrees

enum _ cmp_ output_ source
CMP output source enumerator.

Values:

enumerator kCMP_ OutputSourceFromFilterCOUT
Set the filtered comparator output to equal COUT.

enumerator kCMP_ OutputSourceFromUnfiltered COUTA
Set the unfiltered comparator output to equal COUTA.

enum _ cmp_work mode
CMP work mode definition.

Values:

enumerator kCMP_ WorkModeWindowBypassAndNoExternalSample
window block bypassed, external sampling mode disabled

2.6. CMP: Comparator Driver

99

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCMP_ WorkModeWindowBypassAndExternalSample
window block bypassed, external SAMPLE mode enable

enumerator kCMP_ WorkModeWindowEnabledAndNoExternalSample
window block enabled, external sampling mode disabled
typedef enum _cmp_interrupt_request cmp__interrupt_ request__t
CMP Interrupt request type definition.
typedef enum _cmp_dma_request cmp_ dma_ request_t
CMP DMA request type definition.
typedef enum _cmp_output _flag cmp_output_flag t
CMP output flags’ mask.
typedef enum _cmp_hysteresis_level cmp_ hysteresis_level t
CMP Hysteresis level.
typedef enum _cmp_comparasion_speed_mode cmp__comparasion_speed_mode_ t
CMP compassion speed mode enumerator.
typedef enum _cmp_dac_vref source cmp_ dac_ vref source_t
CMP DAC Voltage Reference source.
typedef enum _cmp_window_output_mode cmp_ window__output_ mode_ t
CMP output value of window.
typedef enum _cmp_filter_count cmp_ filter _count_t
CMP filter count.
typedef enum _cmp_external sample_count cmp_ external_sample_ count_ t
CMP external sample count.
typedef enum _cmp_output_source cmp_ output_source_t
CMP output source enumerator.
typedef enum _cmp_work_mode cmp_ work__mode_ t
CMP work mode definition.
typedef struct _cmp_dac_config cmp_ dac_ config t
CMP internal DAC configuration structure.
typedef union _cmp_dma_interrupt_config cmp_ dma_ interrupt_ config t
CMP dma/interrupt configure union.

Note: , the interrupt request and dma request cannot be used at the same time, that is
to say When DMA support is enabled by setting SCRIDMAEN] and the interrupt is enabled
by setting SCRIIER], SCR[IEF], or both, the corresponding change on COUT forces a DMA
transfer request rather than a CPU interrupt instead

typedef struct _cmp_config cmp_ config_t
CMP configuration structure.

struct _cmp_ dac_ config
#include <fsl_cmp.h> CMP internal DAC configuration structure.

Public Members

100 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

cmp_dac_vref source_t eDACVrefSource
DAC reference voltage source.

uint8_t u8DACOutputVoltageDivider
divider Value for the DAC Output Voltage, DAC output voltage = (VREF / 256) *
(u8DACOutputVoltageDivider + 1).

bool bEnableInternal DAC
flag to control if the internal DAC need to be enabled

union _cmp_ dma_ interrupt_ config
#include <fsl_cmp.h> CMP dma/interrupt configure union.

Note: |, the interrupt request and dma request cannot be used at the same time, that is
to say When DMA support is enabled by setting SCRIDMAEN] and the interrupt is enabled
by setting SCR[IER], SCR[IEF], or both, the corresponding change on COUT forces a DMA
transfer request rather than a CPU interrupt instead

Public Members
cmp_dma_request_t eDMARequest
dma request type

cmp_interrupt_request_t eInterruptRequest
interrupt request type

struct _cmp_ config
#include <fsl_cmp.h> CMP configuration structure.

Public Members

cmp_hysteresis_level t eHysteresisLevel
CMP hysteresis leveL

cmp_comparasion_speed_mode_t eComparasionSpeedMode
CMP comparison speed mode

cmp_work_mode_t eWorkMode
CMP work mode

cmp_input_mux_t ePlusInput

CMP plus input mux, the definition of this enum is in soc header file
cmp_input_mux_t eMinusInput

CMP minus input mux, the definition of this enum is in soc header file

cmp_dac_config t sDacConfig
CMP internal DAC configuration structure cmp_dac_config_t

bool bInvertComparatorOutputPolarity
Inverted comparator output polarity.

cmp_window_output_mode_t eWindowOutputMode
only works when crmp work mode is kCMP_WorkModeWindowEnabledAndNoExternalSample

cmp_filter_count_t eFilterCount

Filter Count.Available range is 0-7, 0 is disable internal filter can be used in internal
sampling mode only.

2.6. CMP: Comparator Driver 101

MCUXpresso SDK Documentation, Release 25.09.00

uint8_t uSFilterPeriod

Filter Period. The divider to the bus clock. Available range is 0-255, can be used in
internal sampling mode. When the filter clock from internal divided bus clock, setting
the sample period to 0 will disable the filter

cmp_external_sample_count_t eExternalSampleCount
Available range is 1 - 7, used in external sampling mode only

cmp_output_source_t eOutputSource
cmp Output source

bool bEnableOutputPin
the comparator output(CMPO) is driven out on the associated CMPO output pin

cmp_dma_interrupt_config_t uDmalnterruptConfig
CMP interrupt/dma configuration

bool bCMPEnable
flag to control if CMP module start immediately when the configuration is done

2.7 The Driver Change Log
2.8 CMP Peripheral and Driver Overview

2.9 COP: Computer Operating Properly(Watchdog) Driver

void COP_ Init(COP_Type *base, const cop_config t *psConfig)
Initializes the COP module with input configuration.

Call this function to do initialization configuration for COP module. The configurations are:
* COP configuration write protect enablement
* Clock source selection for COP module
* Prescaler configuration to the input clock source
* Counter timeout value
* Window value
* WAIT/STOP work mode enablement
 Interrupt enable/disable and interrupt timing value
* Loss of reference counter enablement
* COP enable/disable

note: Once set bEnableWriteProtect=true, the CTRL, INTVAL, WINDOW and TOUT registers
are read-only.

Parameters
* base — COP peripheral base address.
* psConfig — The pointer to COP configuration structure, cop_config_t.

void COP_ GetDefaultConfig(cop_config_t *psConfig)
Prepares an available pre-defined setting for module’s configuration.

This function initializes the COP configuration structure to default values.

102 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

psConfig->bEnableWriteProtect = false;
psConfig->bEnableWait = false;
psConfig->bEnableStop = false;
psConfig->bEnableLossOfReference = false;
psConfig->bEnablelnterrupt = false;
psConfig->bEnableCOP = false;
psConfig->ePrescaler = kCOP__ClockPrescalerDividel;
psConfig->ul6TimeoutCount = OxFFFEU;
psConfig->ul6WindowCount = O0xFFFEFU;
psConfig->ul6lnterruptCount = 0xFEU;
psConfig->eClockSource = kCOP_ RoscClockSource;

Parameters
* psConfig — Pointer to the COP configuration structure, cop_config_t.

static inline void COP_ Enable(COP_Type *base, bool bEnable)
Enable/Disable the COP module.

This function disables the COP Watchdog. @ To disable the COP Watchdog, call
COP_Enable(base, false).

Parameters
* base — COP peripheral base address.
* bEnable — Enable the feature or not.

static inline void COP__EnableLossOfReferenceCounter(COP_Type *base, bool bEnable)
Enables or disables the COP Loss of Reference counter.

This function writes a value into the COP_CTRL register to enable or disable the COP Loss
of Reference counter.

Parameters
* base — COP peripheral base address.
* bEnable — Enable the feature or not.

static inline void COP_ SetTimeoutCount(COP_Type *base, uint16_t ul6TimeoutCount)
Sets the COP timeout value.

This function sets the COP timeout value, if psConfig->bEnableWriteProtect is set to true
for calling WDOG_Init, the set does not take effect. It should be ensured that the time-out
value for the COP is always greater than interrupt time + 40 bus clock cycles. This function
writes a value into COP_TOUT register, when COP count down to zero from the timeout
count value, COP_RST_B signal will be asserted. There are some considerations for setting
the timeout count afer COP is enabled:

* The recommended procedure for changing TIMEOUT is to disable the COP by invoking
COP_Enable(), then call the function COP_SetTimeoutCount, and then re-enable the by
invoking COP_Enable() again.

 Alternatively, call the function COP_SetTimeoutCount, then feed the COP by invoking
COP_Refresh() to reload the timeout.
Parameters
* base — COP peripheral base address

* ul6TimeoutCount — COP timeout value, count of COP clock tick. Use macro
definition MSEC_TO_COUNT to convert value in ms to count of ticks, the
COP clock rate is source clock divide prescaler.

2.9. COP: Computer Operating Properly(Watchdog) Driver 103

MCUXpresso SDK Documentation, Release 25.09.00

static inline void COP__SetInterruptCount(COP_Type *base, uint16_t ul6InterruptCount)
Sets the COP interrupt value.

This function sets the COP interrupt value, if psConfig->bEnableWriteProtect is set to true
for calling WDOG_Init, the set does not take effect. This function writes a value into
COP_INTVAL register, if COP interrupt is enabled and COP count down to the interrupt
value configured, an interrupt will be triggered. Ensure the COP counter is disabled while
the function is called.

Parameters
* base — COP peripheral base address

* ul6InterruptCount — COP interrupt value, count of COP clock tick. Use
macro definition MSEC_TO_COUNT to convert value in ms to count of ticks,
the COP clock rate is source clock divide prescaler.

static inline void COP_ SetWindowCount(COP_Type *base, uint16_t ul6WindowCount)
Sets the COP window value.

This function sets the COP window value, if psConfig->bEnableWriteProtect is set to true
for calling WDOG_Init, the set does not take effect. This function writes a value into
COP_WINDOW register. Ensure the COP counter is disabled while the function is called.

Parameters
* base — COP peripheral base address

* ul6WindowCount — COP window value, count of COP clock tick. Use macro
definition MSEC_TO_COUNT to convert value in ms to count of ticks, the
COP clock rate is source clock divide prescaler.

void COP_ Refresh(COP_Type *base)
Refreshes the COP timer.

This function feeds/services the COP.
Parameters
* base — COP peripheral base address.

static inline void COP__EnableInterrupt(COP_Type *base)

Enables the COP interrupt, if psConfig->bEnableWriteProtect is set to true for calling
WDOG_Init, the operation does not take effect.

This function writes a value into the COP_CTRL register to enable the COP interrupt.
Parameters
* base — COP peripheral base address

static inline void COP_ DisableInterrupt(COP_Type *base)

Disables the COP interrupt, if psConfig->bEnableWriteProtect is set to true for calling
WDOG_Init, the operation does not take effect.

This function writes a value into the COP_CTRL register to disable the COP interrupt.
Parameters
* base — COP peripheral base address

FSL COP_DRIVER VERSION
COP driver version.

COP_FIRST_ _WORD_OF_REFRESH
COP refresh key word.

First word of refresh sequence

104 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

COP_SECOND_WORD_OF REFRESH
Second word of refresh sequence

enum _ cop_ clock_source
enumeration for COP clock source selection.

Values:

enumerator kCOP_ RoscClockSource
COP clock sourced from Relaxation oscillator (ROSC)

enumerator kCOP_ CoscClockSource
COP clock sourced from Crystal oscillator (COSCs)

enumerator kCOP_ BusClockSource
COP clock sourced from IP Bus clock

enumerator kCOP_ LpoClockSource
COP clock sourced from Low speed oscillator

enum _ cop_ clock_prescaler
enumeration for COP clock prescaler to input source clock.

Values:

enumerator kCOP__ ClockPrescalerDividel
Divided by 1

enumerator kCOP__ ClockPrescalerDividel6
Divided by 16

enumerator kCOP__ClockPrescalerDivide256
Divided by 256

enumerator kCOP_ ClockPrescalerDivide1024
Divided by 1024

typedef enum _cop_clock_source cop_ clock_source_t
enumeration for COP clock source selection.

typedef enum _cop_clock_prescaler cop_ clock_prescaler_t
enumeration for COP clock prescaler to input source clock.

typedef struct _cop_config cop_ config_t
structure for COP module initialization configuration.

struct _ cop_ config
#include <fsl_cop.h> structure for COP module initialization configuration.

Public Members
bool bEnableWriteProtect
Set COP Write protected

bool bEnableStop

Enable or disable COP in STOP mode
bool bEnableWait

Enable or disable COP in WAIT mode

bool bEnableLossOfReference
Enable or disable COP loss of reference counter

2.9. COP: Computer Operating Properly(Watchdog) Driver 105

MCUXpresso SDK Documentation, Release 25.09.00

bool bEnableInterrupt
Enables or disables COP interrupt

bool bEnableCOP
Enables or disables COP module

cop_clock_source_t eClockSource
Set COP clock source

cop_clock_prescaler_t ePrescaler
Set COP clock prescaler

uint16_t ul6TimeoutCount

Timeout count in clock cycles, Use macro definition MSEC_TO_COUNT to convert value
in ms to count of ticks, the COP clock rate is source clock divide prescaler.

uint16_t u16WindowCount

Window count in clock cycles, Use macro definition MSEC_TO_COUNT to convert value
in ms to count of ticks, the COP clock rate is source clock divide prescaler.

uint16_t ul6InterruptCount

Interrupt count in clock cycles, Use macro definition MSEC_TO_COUNT to convert
value in ms to count of ticks, the COP clock rate is source clock divide prescaler.

2.10 The Driver Change Log
2.11 COP Peripheral and Driver Overview

2.12 CRC: Cyclic Redundancy Check Driver

void CRC_ Init(CRC_Type *base, const crc_config_t *psConfig)
Enables and configures the CRC peripheral module.

This function enables the clock gate in the SIM module for the CRC peripheral. It also con-
figures the CRC module and starts a checksum computation by writing the seed.

Parameters
* base — CRC peripheral address.
* psConfig — CRC module configuration structure.
void CRC_ Deinit(CRC_Type *base)
Disables the CRC peripheral module.
This function disables the clock gate in the SIM module for the CRC peripheral.
Parameters
* base — CRC peripheral address.

static inline void CRC__GetDefaultConfig(crc_config t *psConfig, crc_protocol type_t
eCrcProtocol)

Provide default CRC protocol configuration.

The purpose of this API is to initialize the configuration structure to default value for
CRC_Init to use. Provides the configuration of commonly used CRC protocols. refer to
crc_protocol_type_t.

This is an example:

106 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

crc__configt sConfig;

//LoadCRC-16/MAXIM protocol configuration.
CRC__GetDefaultConfig(&sConfig, kCRC_ Crcl6);
CRC_ Init(CRC, &sConfig);

Parameters
* psConfig — CRC protocol configuration structure.
¢ eCrcProtocol — CRC protocol type. refer to crc_protocol_type_t

static inline void CRC__SetSeedValue(CRC_Type *base, uint32_t u32CrcSeedValue)
Set the CRC seed value.

This function is help to write a 16/32 bit CRC seed value.
Parameters
* base — CRC peripheral address.
* u32CrcSeedValue — The value of seed.

static inline void CRC__SetPolynomial(CRC_Type *base, uint32_t u32CrcPolynomial)
Set the value of the polynomial for the CRC calculation.

Write a 16-bit or 32-bit polynomial to CRC Polynomial register for the CRC calculation.
Parameters
* base — CRC peripheral address.
* u32CrcPolynomial — The CRC polynomial.

static inline void CRC__SetWriteTransposeType(CRC_Type *base, crc_transpose_type_t
eTransposeln)

Set CRC type of transpose of write data.
This function help to configure CRC type of transpose of write data.
Parameters
* base — CRC peripheral address.
* eTransposeln — Type Of transpose for input. See crc_transpose_type_t

static inline void CRC__SetReadTransposeType(CRC_Type *base, crc_transpose_type_t
eTransposeOut)

Set CRC type of transpose of read data.
This function help to configure CRC type of transpose of read data.
Parameters
* base — CRC peripheral address.
* eTransposeOut — Type Of transpose for output. See crc_transpose_type_t

static inline void CRC__EnableComplementChecksum(CRC_Type *base, bool bEnable)
Enable/Disable complement of read CRC checksum.

Set complement of read CRC checksum. Some CRC protocols require the final checksum to
be XORed with OXFFFFFFFF or OXFFFF.

Parameters
* base — CRC peripheral address.

* bEnable— True or false. True if the result shall be complement of the actual
checksum.

2.12. CRC: Cyclic Redundancy Check Driver 107

MCUXpresso SDK Documentation, Release 25.09.00

static inline void CRC__SetProtocolWidth(CRC_Type *base, crc_bits_t eCrcBits)
Set bit width of CRC protocol.

Selects 16-bit or 32-bit CRC protocol.
Parameters
* base — CRC peripheral address.
* eCreBits — 16 or 32 bit CRC protocol. See crc_bits_t

void CRC_ WriteData(CRC_Type *base, const uint8_t *pu8Data, uint32_t u32DataSize)
Writes data to the CRC module.

Writes input data buffer bytes to the CRC data register. The configured type of transpose is
applied.

Parameters
* base — CRC peripheral address.
* pu8Data — Input data stream, MSByte in data[0].
* u32DataSize — Size in bytes of the input data buffer.

static inline uint32_t CRC_ Get32bitResult(CRC_Type *base)
Reads the 32-bit checksum from the CRC module.

Reads the CRC data register (either an intermediate or the final checksum). The configured
type of transpose and complement is applied.

Parameters
* base — CRC peripheral address.

Returns
An intermediate or the final 32-bit checksum, after transpose and complement
operations configured.

uint16_t CRC_Get16bitResult(CRC_Type *base)
Reads a 16-bit checksum from the CRC module.

Reads the CRC data register (either an intermediate or the final checksum). The configured
type of transpose and complement is applied.

Parameters
* base — CRC peripheral address.

Returns
Anintermediate or the final 16-bit checksum, after transpose and complement
operations configured.

FSL CRC_DRIVER_VERSION
CRC driver version. Version.

enum _ crc_ protocol_type
CRC protocol type.

Values:

enumerator kCRC_ Crcl6
CRC-16/MAXIM protocol.

enumerator kCRC_ Crc16CCITT
CRC-16-CCITT protocol.

108 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCRC Crcl6Kermit
CRC-16/KERMIT protocol.

enumerator kCRC Cre32
CRC-32 protocol.

enumerator kCRC Cre32Posix
CRC-32/POSIX protocol.

enum _crc_ bits
CRC protocol bit width.

Values:

enumerator kCRC Bits16
Generate 16-bit CRC code.

enumerator kCRC_Bits32
Generate 32-bit CRC code.

enum _ crc__transpose__type
CRC type of transpose of read/write data.

Values:

enumerator kCRC_ TransposeNone
No transpose.

enumerator kCRC_ TransposeBits
Transpose bits in bytes.

enumerator kCRC_ TransposeBitsAndBytes
Transpose bytes and bits in bytes.

enumerator kCRC_ TransposeBytes
Transpose bytes.

typedef enum _crc_protocol_type crc_protocol _type_t
CRC protocol type.

typedef enum _crc_bits crc_ bits_t
CRC protocol bit width.

typedef enum _crc_transpose_type crc__transpose_ type_t
CRC type of transpose of read/write data.

typedef struct _crc_config crc_ config_t
CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

struct _ crc_ config
#include <fsl_crc.h> CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

Public Members

uint32_t u32CrcPolynomial

CRC Polynomial, MSBit first. Example polynomial: 0x1021 = 1_0000_0010_0001 =
XA12+xA5+1

2.12. CRC: Cyclic Redundancy Check Driver 109

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t u32CrcSeedValue
Starting checksum value

bool bEnableComplementChecksum
Enable/Disable complement of read CRC checksum.

crc_transpose_type_t eTransposeln
Select type of transpose of input data.

crc_transpose_type_t eTransposeOut
Select type of transpose of output data.

crc_bits_t eCrcBits
Select 16-bit or 32-bit CRC protocol.

2.13 The Driver Change Log
2.14 CRC Peripheral and Driver Overview

2.15 DAC: 12-bit Digital-to-Analog Converter Driver

void DAC_ Init(DAC_Type *base, const dac_config_t *psConfig)
Initializes the DAC resource, including data format, sync signal, operation mode, etc.

Parameters
* base — DAC peripheral base address.
* psConfig — The pointer to dac_config t.

void DAC_ Deinit(DAC_Type *base)
De-initializes the DAC resource, the clock and power will be gated off.

Invoking this function to power down the analog portion of DAC and disable the DAC clock.
Parameters
* base — DAC peripheral base address.

void DAC_ GetDefaultConfig(dac_config_t *psConfig)
Gets the default DAC configs, such as operation mode, watermark level, sync signal, etc.

psConfig->eOperationMode = kDAC_ NormalOperationMode;
psConfig->uOperationConfig.sNormalModeConfig.ul6DataFIFO = 0U;

psConfig->bEnableDMA = false;
psConfig->eWatermarkLevel = kDAC WatermarkValue2;
psConfig->eSynclnputEdge = kDAC_ RisingEdge;
psConfig->eSpeedMode = kDAC__HighSpeedMode;
psConfig->eDataFormat = kDAC_ DataWordRightJustified;
psConfig->eSyncSignal = kDAC__ InternalClockSignal;
psConfig->bEnableAnalogPortion = false;
psConfig- >bEnableGlitchFilter = true;
psConfig->u8GlitchFilterCount = 29U;

Parameters

* psConfig — The pointer to dac_config t.

110 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

static inline void DAC_ SetSyncEdge(DAC_Type *base, dac_sync_input_edge_t eSyncEdge)
Selects which SYNC input edge is used for updates, available selections are “no active edge”,
“falling edge”, “rising edge”, “both edge”.
Parameters
* base — DAC peripheral base address.

* eSyncEdge — The input edge to be set, please refer to dac_sync_input_edge_t
for details.

static inline void DAC_SetLDOK(DAC_Type *base)

Updates the buffered value of stepSize, minValue ,and maxValue at the active edge of the
SYNC_IN signal.

Note: Allows new values of minimum, maximum, and step value to be updated by active
edge of SYNC_IN. This function should be invoked once new values of these buffered reg-
isters have been written by software. The LDOK bit will be cleared by an active edge of
SYNC_IN.

Note: This function is only useful when the operation mode is selected as Automatic op-
eration mode.

Parameters
* base — DAC peripheral base address.

static inline bool DAC__GetLDOKValue(DAC_Type *base)
Gets the value of load Okay bit field.

Note: When the SYNC signal is selected as external SYNC_IN signal, the load okay bit will
be cleared by an active edge of the SYNC_IN signal. This function can be used to check
whether the active edge of the SYNC_IN signal has reached.

Note: This function is only useful when the operation mode is selected as Automatic op-
eration mode.

Parameters
* base — DAC peripheral base address.
Returns

* true The active edge of SYNC_IN signal has not reached when the SYNC
signal is selected as external SYNC_IN signal.

« false The active edge of SYNC_IN signal has reached when the SYNC signal
is selected as external SYNC_IN signal

static inline void DAC_ EnableOneShot(DAC_Type *base, bool bEnable)

Enables/Disables Oneshot feature, oneshot feature used to determines whether automatic
waveform generation creates one waveform or a repeated waveform within the period
defined by the active SYNC edges.

2.15. DAC: 12-bit Digital-to-Analog Converter Driver 111

MCUXpresso SDK Documentation, Release 25.09.00

Note: This function only useful when the operation mode is selected as automatic opera-
tion mode.

Parameters
* base — DAC peripheral base address.
* bEnable — Enable/Disable oneshot feature.

— true Automatic waveform generation logic will create a single pattern
and stop at the final value.

- false Automatic waveform generation logic will create a repeated (con-
tinuous) waveform upon receiving an active SYNC edge.
static inline void DAC_ WriteDataFIFO(DAC_Type *base, uint16_t ul6Data)
Writes DAC buffered data value based on the data format when the DAC is in normal oper-
ation mode.
Parameters
* base — DAC peripheral base address.

» ul6Data — The DAC data to be converted to analog. If the data format is
set as kDAC_DataWordRightJustified then ul6Data should range from 0 to
4095, which means the higher 4 bits is useless. If the data format is set as
kDAC_DataWordLeftJustified, then the ul6Data should range from 16 to
65520, which means the lower 4 bits is useless.

static inline void DAC_ WriteStepSize(DAC_Type *base, uint16_t ul6StepSize)
Writes Step size based on the data format when the DAC is in automatic operation mode.

Note: This function only useful when the operation mode is selected as automatic opera-
tion mode.

Parameters
* base — DAC peripheral base address.

* ul6StepSize — The step value to be added to or subtracted from the cur-
rent value. If the data format is set as KDAC_DataWordRightJustified then
u16StepSize should range from 0 to 4095, which means the higher 4 bits is
useless. If the data format is set as KDAC_DataWordLeftJustified, then the
u16StepSize should range from 16 to 65520, which means the lower 4 bits
is useless.

static inline void DAC_ WriteMinValue(DAC_Type *base, uint16_t ul6MinValue)

Writes the minium value based on the data format when the DAC is in automatic operation
mode.

Note: This function only useful when the operation mode is selected as automatic opera-
tion mode. If DAC input data is less than the minium value, output is limited to the minium
value during automatic waveform generation.

Parameters

* base — DAC peripheral base address.

112 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

* ul6MinValue — The lower range limit during automatic waveform gen-
eration. If the data format is set as kDAC_DataWordRightJustified then
ul6MinValue should range from 0 to 4095, which means the higher 4 bits
is useless. If the data format is set as KDAC_DataWordLeftJustified, then
the ul6MinValue should range from 16 to 65520, which means the lower
4 bits is useless.

static inline void DAC_ WriteMaxValue(DAC_Type *base, uint16_t ul6MaxValue)

Writes the maximum value based on the data format when the DAC is in automatic opera-
tion mode.

Note: This function only useful when the operation mode is selected as automatic opera-
tion mode. If DAC input data is greater than maximum value, output is limited to maximum
value during automatic waveform generation.

Parameters
* base — DAC peripheral base address.

* ul6MaxValue — The upper range limit during automatic waveform gen-
eration. If the data format is set as kDAC_DataWordRightJustified then
ul6MaxValue should range from 0 to 4095, which means the higher 4 bits
is useless. If the data format is set as KDAC_DataWordLeftJustified, then
the ul6MaxValue should range from 16 to 65520, which means the lower
4 hits is useless.

static inline void DAC_ ConfigRefreshFrequency(DAC_Type *base, uint16_t ul6CompareValue)

Sets refresh frequency that used to decide when the automatically generated waveform
value is updated.

Note: This function only useful when the operation mode is selected as automatic opera-
tion mode.

Parameters
* base — DAC peripheral base address.
* ul6CompareValue — The compare value(0~65535).

- ul6CompareValue=0 The generated waveform will be updated every
clock cycle.

- ul6CompareValue=N(N!=0) The generated waveform will be updated
every N+1 clock cycles.
static inline void DAC_ EnableDMA (DAC_Type *base, bool bEnable)

Enables/Disables DMA request that to be generated when the FIFO is below the watermark
level.

Note: This function is only useful when the operation mode is selected as Normal mode.

Parameters
* base — DAC peripheral base address.
* bEnable — Enable/Disable DMA support.
- true Enable DMA support.

2.15. DAC: 12-bit Digital-to-Analog Converter Driver 113

MCUXpresso SDK Documentation, Release 25.09.00

- false Disable DMA support.

static inline void DAC__SetWatermarkLevel(DAC_Type *base, dac_watermark_level t
eWatermarkLevel)

Sets watermark level which is used for asserting a DMA request.

Note: When the level of FIFO is less than or equal to the Watermark level, a DMA request
will be sent. This function is only useful when the operation mode is selected as Normal
mode.

Parameters
* base — DAC peripheral base address.

» eWatermarkLevel — The watermark level of FIFO, please refer to
dac_watermark_level t for details.

static inline void DAC_ EnableGlitchFilter(DAC_Type *base, bool bEnable)
Enables/Disables Glitch filter.

Parameters
* base — DAC peripheral base address.
* bEnable — Enable/Disable Glitch filter.
- true Enable glitch filter.
— false Disable glitch filter.

static inline void DAC_ SetGlitchFilterCount(DAC_Type *base, uint8_t u8FilterCount)

Sets glitch filter count value(ranges from 0 to 63) that represents the number of clock cycles
for which the DAC outputis held unchanged after new data is presented to the analog DAC’s
inputs.

Parameters
* base — DAC peripheral base address.

* u8FilterCount — The count of glitch filter. This count represents the number
of clock cycles for which the DAC output is held unchanged after new data
is presented to the analog DAC’s inputs.

static inline void DAC_ SetSpeedMode(DAC_Type *base, dac_speed_mode_t eSpeedMode)
Selects speed mode, high speed mode uses more power and low speed mode saves power.
Parameters
* base — DAC peripheral base address.

* eSpeedMode — The speedMode to be set, please refer to dac_speed_mode_t
for details.

static inline void DAC_ EnableAnalogPortion(DAC_Type *base, bool bEnable)
Enables/Disables the operation of the analog portion of the DAC.

The function controls the power-up of the analog portion of the DAC. If powered up the
analog portion, the DAC module will output the value currently presented to the Data reg-
ister. The analog portion should be powered up when the DAC is in use. If power down the
analog portion, the output of the DAC module will be pulled low. The analog portion should
be powered down when the DAC is not in use.

Parameters

* base — DAC peripheral base address.

114 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

* bEnable — Power up/down the analog portion of the DAC.

- true Power up the analog portion of the DAC, and the DAC will output
the value currently presented to its inputs.

— false Power down the analog portion of the DAC, and its output will be
pulled down.

static inline uint16_t DAC_ GetFIFOStatusFlags(DAC_Type *base)
Gets the fifo status flag of selected DAC instance.
Parameters
* base — DAC peripheral base address.

Returns

The status flags of DAC module, should be the ORed value of
_dac_fifo_status_flags.

FSL_DAC_ DRIVER_VERSION
DAC driver version.
enum _dac_fifo_status_ flags

The enumeration of DAC status flags, including FIFO full status flag and FIFO empty status
flag.

Values:

enumerator kDAC_FIFOFullStatusFlag
Indicate the FIFO is full.

enumerator kDAC _FIFOEmptyStatusFlag
Indicate the FIFO is empty.
enum _ dac_ operation_mode

The enumeration of DAC operation mode, including normal operation mode and automatic
operation mode.

Values:
enumerator kDAC NormalOperationMode
Normal Mode to generate an analog representation of digital words.
enumerator kDAC AutomaticOperationMode
Automatic Mode to generate waveform without requiring CPU or core assistance.
enum _ dac_sync_ signal selection

The enumeration of DAC sync signal mode, including internal clock signal and external
SYNC_IN signal.

Values:

enumerator kDAC_InternalClockSignal

Internal Clock signal is selected as SYNC signal, data written to the buffered registers
is used on the next clock cycle

enumerator kDAC__ExternalSyncInSignal

Peripheral external signal is selected as SYNC signal, the update occurs on the active
edge of SYNC_IN signal.

enum _ dac_ waveform__type
The enumeration of waveform type, such as square waveform, triangle waveform, etc.

Values:

2.15. DAC: 12-bit Digital-to-Analog Converter Driver 115

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kDAC__RepeatSawtoothWaveform0

DAC generates repeated sawtooth waveform0. The automatic waveform generation
logic will create a repeated sawtooth waveform0 upon receiving an active SYNC edge,
and the waveform repeats when it reaches its minimum and maximum value. The
waveform increases from starting value to max value firstly. Like this following
shown:

/NI
Awawaw

/11

/107

enumerator kDAC RepeatSawtoothWaveform1

DAC generates sawtooth waveform1. The automatic waveform generation logic will
create a repeated sawtooth waveform1 upon receiving an active SYNC edge, and the
waveform repeats when it reaches its minimum and maximum value. The waveform
decreases from starting value to min value firstly. Like this following shown:

NN NN
AN AN ANA
NEANTAT AT
AL AL AL A

enumerator kDAC_ RepeatTriangle Waveform0O

The automatic waveform generation logic will create a repeated triangle waveform0
upon receiving an active SYNC edge, and the waveform repeats when it reaches its
minimum and maximum value. In this type the generated triangle waveform rises
from the starting value. Like this following shown:

A ANVAN
/N /N SN
/N NN
AV VARV,

enumerator kDAC__RepeatTriangleWaveform1

The automatic waveform generation logic will create a repeated triangle waveform1
upon receiving an active SYNC edge, and the waveform repeats when it reaches its
minimum and maximum value. In this type the generated triangle waveform drops
from the starting value. Like this following shown:

A ANEAN
NN SN N
NN N
VooV

enumerator kDAC OneShotSawtoothWaveformO

Automatic waveform generation logic will create a single pattern and stop at the final
value. It will remain at the finial value until a new active edge occurs on the SYNC
input, and then the waveform will be repeated. Like this following shown:

/I
/1 /]
/| ‘/ |

enumerator kDAC OneShotSawtoothWaveform1

Automatic waveform generation logic will create a single pattern and stop at the final
value. It will remain at the finial value until a new active edge occurs on the SYNC
input, and then the waveform will be repeated. Like this following shown:

116 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enum _ dac_sync_input_ edge

The enumeration of sync input edge that used for updates buffered registers, such as Falling
edge, etc.

Values:

enumerator kDAC_NoActiveEdge

No active edge is selected, it means the SYNC input is ignored.
enumerator kDAC_ FallingEdge

Updates occur on the falling edge of the SYNC input.
enumerator kDAC_ RisingEdge

Updates occur on the rising edge of the SYNC input.
enumerator kDAC_ BothEdges

Updates occur on both edges of the SYNC input.

enum _ dac_speed__mode

The enumeration of DAC speed mode, including high speed mode and low speed mode.
Values:

enumerator kDAC__HighSpeedMode

In High Speed Mode, the setting time of the DAC module is 1us, but the DAC module
uses more power.

enumerator kDAC_LowSpeedMode
In Low Speed Mode, the DAC module uses less power but takes more time to settle.

enum _dac_watermark level
The enumeration of FIFO watermark level.

Values:

enumerator kDAC WatermarkValueQ
Watermark value is 0.

enumerator kDAC WatermarkValue2
Watermark value is 2.

enumerator kDAC WatermarkValue4
Watermark value is 4.

enumerator kDAC _WatermarkValue6
Watermark value is 6

enum _dac_data_ format
The enumeration of DAC data format, inclding right right-justified and left-justified.

Values:

enumerator kDAC_DataWordRightJustified
The 12 bits data is right-justified.

enumerator kDAC DataWordLeftJustified
The 12 bits data iss left-justified.

2.15. DAC: 12-bit Digital-to-Analog Converter Driver 117

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _dac_operation_mode dac_ operation_mode_t
The enumeration of DAC operation mode, including normal operation mode and automatic
operation mode.

typedef enum _dac_sync_signal_selection dac_sync_ signal selection_ t
The enumeration of DAC sync signal mode, including internal clock signal and external
SYNC_IN signal.

typedef enum _dac_waveform_type dac_ waveform_ type_t
The enumeration of waveform type, such as square waveform, triangle waveform, etc.

typedef enum _dac_sync_input_edge dac_sync_input_edge t
The enumeration of sync input edge that used for updates buffered registers, such as Falling
edge, etc.

typedef enum _dac_speed_mode dac_ speed__mode_t
The enumeration of DAC speed mode, including high speed mode and low speed mode.

typedef enum _dac_watermark_level dac_ watermark_level t
The enumeration of FIFO watermark level.

typedef enum _dac_data_format dac_ data_ format_t
The enumeration of DAC data format, inclding right right-justified and left-justified.

typedef struct _dac_normal_mode_config dac_ normal_mode_ config_t
The structure of configuration when the operation mode is selected are normal operation
mode.

typedef struct _dac_automatic_mode_config dac_automatic_mode_ config_t
The structure of configuration when the operation mode is selected as automatic operation
mode.

typedef union _dac_operation_config dac_ operation_ config u
The union of operation modes’ configuration.

typedef struct _dac_config dac_config t
The structure for configuring the DAC.
This structure is used to config the DAC module, to initialize the DAC module, user must set
the member of this structure. This structure will cost 20 Byte memory space.

struct _dac_normal mode_config

#include <fsl_dac.h> The structure of configuration when the operation mode is selected are
normal operation mode.

Public Members

bool bEnableDMA
Enable/Disable DMA support.

* true Enable DMA support.
» false Disable DMA support.

uint16_t ul6DataFIFO

The FIFO watermark level, if the level of FIFO is less than or equal to the watermark
level field, a DMA request should be sent. The DAC data to be converted to analog. If
the data format is set as KDAC_DataWordRightJustified then u16DataFIFO should range
from 0 to 4095, which means the higher 4 bits is useless. If the data format is set as
kDAC_DataWordLeftJustified, then the ul6DataFIFO should range from 16 to 65520,
which means the lower 4 bits is useless.

118 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

struct _dac_automatic_mode_ config

#include <fsl_dac.h> The structure of configuration when the operation mode is selected as
automatic operation mode.

Public Members

dac_waveform_type_t eWaveformType
The type of waveform to be generated.

uint16_t ul6MinValue
The step size to be added to or subtracted from the current value. If the data
format is set as kDAC_DataWordRightJustified then u16StepSize should range from
0 to 4095, which means the higher 4 bits is useless. If the data format is set as

kDAC_DataWordLeftJustified , then the ul6StepSize should range from 16 to 65520,
which means the lower 4 bits is useless.

The minimum value is the lower range limit during automatic waveform generation.
If the data format is set as KDAC_DataWordRightJustified then ul6MinValue should
range from 0 to 4095, which means the higher 4 bits is useless. If the data format is set
as KDAC_DataWordLeftJustified, then the ul6MinValue should range from 16 to 65520,
which means the lower 4 bits is useless.

uint16_t ul6MaxValue

The maximum value is the upper range limit during automatic waveform generation.
If the data format is set as kDAC_DataWordRightJustified then ul6MaxValue should
range from 0 to 4095, which means the higher 4 bits is useless. If the data format is set
as KDAC_DataWordLeftJustified, then the ul6MaxValue should range from 16 to 65520,
which means the lower 4 bits is useless.

uint16_t ul6StartValue
The start value of the wavefrom, should larger than the minium value and smaller
than the maximum value.

uint16_t ul6CompareValue
The compare value that used to decide the frequency of REFRESH signal. The available
range is 0 ~ 65535.

* ul6CompareValue=0 The REFRESH signal’s frequency is equal to the clock’s fre-
quency so that the generated waveform will be updated every clock cycle.

* ul6CompareValue=N(N!=0) The REFRESH signal’s frequency is equal to clock’s fre-
quency divided N+1 so that the generated waveform will be updated every N+1
clock cycles

union _ dac_ operation_ config
#include <fsl_dac.h> The union of operation modes’ configuration.

Public Members

dac_normal_mode_config_t sNormalModeConfig
The configuration of normal operation mode, such as buffered data, watermark level,
etc.

dac_automatic_mode_config_t sAutomaticModeConfig

The configuration of automatic operation mode, such as step size, minimum value,
maximum value, etc.

2.15. DAC: 12-bit Digital-to-Analog Converter Driver 119

MCUXpresso SDK Documentation, Release 25.09.00

struct _dac_ config

#include <fsl_dac.h> The structure for configuring the DAC.

This structure is used to config the DAC module, to initialize the DAC module, user must set
the member of this structure. This structure will cost 20 Byte memory space.

Public Members

dac_operation_mode_t eOperationMode
The operation mode. The available selections are kDAC_NormalOperationMode and
kDAC_AutomaticOperationMode.
dac_sync_signal _selection_t eSyncSignal
The selected sync signal that used to update buffered data, the available selections are
kDAC_InternalClockSignal and kDAC_ExternalSyncInSignal
dac_sync_input_edge_t eSyncInputEdge
The SYNC input edge used to update buffered registers. The buffered value will be
updated at the selected active edge of SYNC_IN signal.
dac_data_format_t eDataFormat
The data format of DAC instance. The available selections are
kDAC_DataWordRightJustified and kDAC_DataWordLeftJustified
dac_operation_config_u uOperationConfig
The configuration of operation mode.

bool bEnableGlitchFilter
Enable/Disable glitch suppression filter.
* true Enable glitch filter.
« false Disable glitch filter.

uint8_t u8GlitchFilterCount

The count(ranges from 0 to 63) represents the number of clock cycles for which the
DAC output is held unchanged after new data is presented to the analog DAC’s inputs.

dac_speed_mode_t eSpeedMode

The speed mode of DAC instance. The available selections are kDAC_HighSpeedMode
and kDAC_LowSpeedMode.

bool bEnableAnalogPortion
Power up/down the analog portion.

 true Power up the analog portion of the DAC, and the DAC will output the value
currently presented to its inputs.

» false Power down the analog portion of the DAC, and its output will be pulled
down.

2.16 The Driver Change Log

2.17 DAC Peripheral and Driver Overview

2.18 DMAMUX: DMA Channel Multiplexer Driver

120

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

static inline void DMAMUZX_ ConnectChannel ToTriggerSource(DMAMUX_Type *base,
dmamux_dma_channel_t eChannel,
dma_request_source_t eSource)

Connect the DMAMUX channel to trigger source.
This function will connnect a source to the specify dma channel and enable that channel
Parameters
* base - DMAMUX peripheral base address.
* ¢Channel - DMAMUX channel index, dmamux_dma_channel_t.
* eSource — DMA request source.

static inline void DMAMUX__ DisconnectChannelFromTriggerSource(DMAMUX_Type *base,
dmamux_dma_channel _t
eChannel)

Disconnect the DMAMUX channel.
This function will disable the specified channel and reset the channel source.
Parameters
* base — DMAMUZX peripheral base address.
* eChannel - DMAMUX channel index, dmamux_dma_channel_t.

FSL DMAMUX DRIVER._ VERSION
DMAMUZX driver version.

enum dmamux_dma_channel
List of Dmamux dma channels.

Values:

enumerator kDMAMUX DMAChannelO
Dmamux dma channel 0

enumerator kDMAMUX DMAChannell
Dmamux dma channel 1

enumerator kDMAMUX DMAChannel2
Dmamux dma channel 2

enumerator kDMAMUX DMAChannel3
Dmamux dma channel 3

typedef enum _dmamux_dma_channel dmamux_ dma_ channel_t
List of Dmamux dma channels.

2.19 The Driver Change Log
2.20 DMAMUX Peripheral and Driver Overview
2.21 The Driver Change Log

2.22 EDMA: Enhanced Direct Memory Access Driver

2.19. The Driver Change Log 121

MCUXpresso SDK Documentation, Release 25.09.00

void EDMA_ GetDefaultConfig(edma_config_t *psConfig)
Get default edma peripheral configuration.

Note: This function will reset all of the configuration structure members to zero firstly,
then apply default configurations to the structure.

Parameters

 psConfig — pointer to user’s eDMA config structure, see edma_config_t for
detail.

void EDMA_ Init(DMA_Type *base, edma_config_t *psConfig)
EDMA initialization.
Parameters
* base — eDMA peripheral base address.

* psConfig - pointer to wuser’s eDMA config structure, see
edma_transfer_config_t for detail.

void EDMA_ Deinit(DMA_Type *base)
EDMA De-initialization.
Parameters
* base — eDMA peripheral base address.

static inline void EDMA_ EnableContinuousChannelLinkMode(DMA_Type *base, bool bEnable)

Enable/Disable arbitration before the channel been activate by minor loop link trigger from
itself.

A minor loop channel link made to itself does not go through channel arbitration before
being activated again. Upon minor loop completion, the channel activates again if that
channel has a minorloop channellink enabled and the link channel is itself. This effectively
applies the minor loop offsets and restarts the next minor loop.

Note: Do not use continuous link mode with a channel linking to itself if there is only
one minor loop iteration per service request, for example, if the channel’s NBYTES value
is the same as either the source or destination size. The same data transfer profile can
be achieved by simply increasing the NBYTES value, which provides more efficient, faster
processing.

Parameters
* base — EDMA peripheral base address.

* bEnable — true is channel link to itself without arbitration false is channel
link to itself with arbitration

static inline void EDMA_ EnableMinorLoopMapping(DMA_Type *base, bool bEnable)
Enable/Disable redefine the minor loop bytes register.

The TCDn.word?2 is redefined to include individual enable fields, an offset field and the
NBYTES field, the offset will be applied to source/destination address after minor loop com-
plete

Parameters

* base —- EDMA peripheral base address.

122 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

* bEnable — true is minor loop bytes register redefined to individual en-
able/offset/minor loop bytes fields. false is minor loop bytes register de-
fined as minor loop bytes fields only.

static inline void EDMA__EnableHaltOnError(DMA_Type *base, bool bEnable)
Enable/Disable the eDMA halt when error occur feature.

Any error causes the HALT bit to set will cause the EDMA halt. Subsequently, all service
requests are ignored until the HALT bit is cleared

Parameters
* base — EDMA peripheral base address.

* bEnable—true is Stall the start of any new channels when error occur. false
is eDMA service request operation normal when error occur.
static inline void EDMA_ SetArbitration(DMA_Type *base, edma_arbitration_type_t eArbitration)
set EDMA arbitration type to fixed priority or round robin.

Parameters
* base — EDMA peripheral base address.

* eArbitration - Arbitration by priority or round robin,
edma_arbitration_type_t.

void EDMA_ GetChannelDefault TransferConfig(edma_channel_transfer_config t *psTransfer,
uint32_t u32SrcAddr, uint32_t u32DstAddr,
uint32_t u32BytesEachRequest, uint32_t
u32TotalBytes, edma_channel_transfer_width _t
eTransferWidth, edma_channel_transfer_type_t
eTransferType)

Get channel default transfer configuration.

Note: 1. This function will reset all of the configuration structure members to zero firstly,
then apply default configurations to the structure.

a. No interrupt enabled by this function by default, if application would like to use
DMA interrupt please enable it manually by psTransfer->ul6EnabledInterruptMask
=_edma_channel_interrupt

Parameters

* psTransfer — pointer to user’s eDMA channel configure structure, see
edma_channel_transfer_config_t for detail.

* u32SrcAddr — source address, must be byte address.
* u32DstAddr — destination address, must be byte address.

* u32BytesEachRequest — bytes to be transferred in each request(namely, in
each minor loop).

* u32TotalBytes — total bytes to be transferred.

* eTransferWidth — it represents how many bits are transferred in each
read/write.

¢ cTransferType — eDMA channel transfer type.

void EDMA_ SetChannelTransferConfig(DMA_Type *base, edma_channel_t eChannel,
edma_channel_transfer_config t *psTransfer)

EDMA set channel transfer configurations.

2.22. EDMA: Enhanced Direct Memory Access Driver 123

MCUXpresso SDK Documentation, Release 25.09.00

Note: 1.This function must not be called while the channel transfer is ongoing or it causes
unpredictable results. 2.The psLinkTCD must be configured before invoke this API if scat-
ter/gather function is needed 3.The edma channel request may be enabled after the channel
transfer configure done according to the transfer configurations.

Parameters
* base — eDMA peripheral base address.
* eChannel - eDMA channel number.

* psTransfer — pointer to user’s eDMA channel configure structure, see
edma_channel_transfer_config_t for detail.

void EDMA__SetChannelMinorLoopOffset(DMA_Type *base, edma_channel_t eChannel, bool
bEnableSrcMinorLoopOffset, bool
bEnableDestMinorLoopOffset, int32_t
i32MinorLoopOfifset)

Configures the eDMA channel minor loop offset value.

The minor offset means that the signed-extended value is added to the source address or
destination address after each minor loop.

Parameters
* base — eDMA peripheral base address.
* ¢Channel — eDMA channel number.

* bEnableSrcMinorLoopOffset — True is enable source address minor offset,
otherwise is disable

* bEnableDestMinorLoopOffset — True is enable source address minor offset,
otherwise is disable

* i32MinorLoopOffset — Minor loop offset value.

void EDMA_SetChannelPreemption(DMA_Type *base, edma_channel t eChannel, bool
bSuspendedByHighPriorityChannel, bool
bSuspendLowPriorityChannel, uint8_t u8Priority)

Configures the eDMA channel preemption configurations.

This function configures the channel preemption attribute and the priority of the channel.

Note: , this function is used only in fixed-priority channel arbitration mode.

Parameters
* base — eDMA peripheral base address.
* ¢Channel — eDMA channel number

* bSuspendedByHighPriorityChannel — True is the channel can be suspended
by high priority channel, otherwise cannot.

* bSuspendLowPriorityChannel — True is the channel can suspend low priority
channel, otherwise cannot.

* u8Priority — Channel priority.

124 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

void EDMA_ EnableMinorLoopChannelLink(DMA_Type *base, edma_channel_t eChannel,
edma_channel_t eLinkChannel)

Enable the minor loop channel link and configure the linked channel number.

This function configures the minor link mode. The minor link means that the channel link
is triggered every time that the minor loop bytes transferred complete.

Note: Users should ensure that DONE flag is cleared before calling this interface, or the
configuration is invalid.

Parameters
* base — eDMA peripheral base address.
* eChannel - eDMA channel number.
* eLinkChannel — The linked channel number.

static inline void EDMA_ DisableMinorLoopChannelLink(DMA_Type *base, edma_channel t
eChannel)

Disable the minor loop channel link for the eDMA transfer.
Parameters
* base — eDMA peripheral base address.
* eChannel - eDMA channel number.

void EDMA_ EnableMajorLoopChannelLink(DMA_Type *base, edma_channel_t eChannel,
edma_channel_t eLinkChannel)

Enable the major loop channel link and configure the linked channel number.

This function configures the major link mode. The major link means that the channel link
is triggered when the CITER is exhausted.

Note: Users should ensure that DONE flag is cleared before calling this interface, or the
configuration is invalid.

Parameters
* base — eDMA peripheral base address.
* ¢Channel - eDMA channel number.
* eLinkChannel — The linked channel number.

static inline void EDMA_ DisableMajorLoopChannelLink(DMA_Type *base, edma_channel t
eChannel)

Disable the major loop channel link for the eDMA transfer.
Parameters
* base — eDMA peripheral base address.
* eChannel - eDMA channel number.

void EDMA_ SetChannelBandWidth(DMA_Type *base, edma_channel_t eChannel,
edma_channel_bandwidth_t eBandWidth)

Sets the edma channel stall cycles after each R/W.

Because the eDMA processes the minor loop, it continuously generates read/write se-
quences until the minor count is exhausted. The bandwidth forces the eDMA to stall after

2.22. EDMA: Enhanced Direct Memory Access Driver 125

MCUXpresso SDK Documentation, Release 25.09.00

the completion of each read/write access to control the bus request bandwidth seen by the
crossbar switch.

Note: : 1.Ifthe source and destination sizes are equal, this field is ignored between the first
and second transfers and after the last write of each minor loop. This behavior is a side
effect of reducing start-up latency. 2.When executing a large, zero wait-stated memory-
to-memory transfer, insert bandwidth control using the TCD_CSR[BWC(] bits to avoid: *
Starvation of another master accessing the memory. * Any delay in writing a TCD duloop
the transfer.

Parameters
* base — eDMA peripheral base address.
* eChannel — eDMA channel number.

* eBandWidth — A bandwidth setting, which can be one of the
edma_channel bandwidth_t

void EDMA_SetChannelModulo(DMA_Type *base, edma_channel_t eChannel,
edma_channel_modulo_t eSrcModulo, edma_channel_modulo_t
eDestModulo)

Sets the source address range and the destination address range for the eDMA transfer.

This function defines a specific address range of source/destination address, after the
source/destination address hits the range boundary, source/destination address will wrap
to origin value.

Setting this field provides the ability to implement a circular data queue easily. For data
queues require loop power-of-2 size bytes, the queue should start at a 0-modulo-size ad-
dress and the SMOD field should be set to the appropriate value for the queue, freezing the
desired number of upper address bits. The value programmed into this field specifies the
number of lower address bits allowed to change

Parameters
* base — eDMA peripheral base address.
* eChannel - eDMA channel number.
* eSrcModulo — A source modulo value.
* eDestModulo — A destination modulo value.

static inline void EDMA_ EnableChannelAsyncRequestInStopMode(DMA_Type *base,
edma_channel_t eChannel,
bool bEnable)

Enables the edma channel async request in stop mode.

The EARS register is used to enable or disable the DMA requests in Enable Request Register
(ERQ) by AND’ing the bits of these two registers in stop mode only.

Parameters
* base — eDMA peripheral base address.
* eChannel - eDMA channel number.
* bEnable — The command to enable (true) or disable (false).

static inline void EDMA_ EnableChannelAutoStopRequest(DMA_Type *base, edma_channel_t
eChannel, bool bEnable)

Enables the edma channel auto disable request after major loop complete.

126 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

The eDMA hardware automatically clears the corresponding ERQ bit when the current ma-
jor iteration count reaches zero.

Parameters
* base — eDMA peripheral base address.
* eChannel - eDMA channel number.
* bEnable — The command to enable (true) or disable (false).

void EDMA_SetChannelMajorLoopOffset(DMA_Type *base, edma_channel_t eChannel, int32_t
132SourceOffset, int32_t i32DestOffset)

Configures the eDMA channel major loop offset feature.

Adjustment value added to the source/destination address at the completion of the major
iteration count

Parameters
* base — eDMA peripheral base address.
* ¢Channel — edma channel number.
* i32SourceOffset — source address offset.
¢ i32DestOffset — destination address offset.

static inline void EDMA_ EnableChannelRequest(DMA_Type *base, edma_channel t eChannel,
bool bEnable)

Enable/disable the eDMA hardware channel request.
This function enables the hardware channel request.
Parameters
* base — eDMA peripheral base address.
* ¢Channel - eDMA channel number.
* bEnable — true is start, false is stop.

static inline void EDMA_ SoftwareTriggerChannelStart(DMA_Type *base, edma_channel t
eChannel)

Starts the eDMA transfer by using the software trigger.

This function starts a minor loop transfer only, the channel will halt when minor loop com-
plete, so application should re-call the function to start the transfer again.

Parameters
* base — eDMA peripheral base address.
* ¢Channel — eDMA channel number.

uint32_t EDMA_ GetChannelRemainingMajorLoopCount(DMA_Type *base, edma_channel_t
eChannel)

Gets the remaining major loop count from the eDMA current channel TCD.

This function checks the TCD (Transfer Control Descriptor) status for a specified eDMA
channel and returns the number of major loop count that has not finished.

Note: 1. This function can only be used to get unfinished major loop count of transfer
without the next TCD, or it might be inaccuracy.

a. The unfinished/remaining transfer bytes cannot be obtained directly from registers
while the channel is running. Because to calculate the remaining bytes, the initial
NBYTES configured in DMA_TCDn_NBYTES_MLNO register is needed while the eDMA
IP does not support getting it while a channel is active. In another word, the NBYTES

2.22. EDMA: Enhanced Direct Memory Access Driver 127

MCUXpresso SDK Documentation, Release 25.09.00

value reading is always the actual (decrementing) NBYTES value the dma_engine is
working with while a channel is running. Consequently, to get the remaining transfer
bytes, a software-saved initial value of NBYTES (for example copied before enabling
the channel) is needed. The formula to calculate it is shown below: RemainingBytes =
RemainingMajorLoopCount * NBYTES(initially configured)

Parameters
* base — eDMA peripheral base address.
* eChannel - eDMA channel number.

Return values
Major — loop count which has not been transferred yet for the current TCD.

void EDMA_ EnableChannellnterrupts(DMA_Type *base, edma_channel_t eChannel, uint16_t
ul6InterruptsMask, bool bEnable)

Enables the edma channel interrupts according to a provided mask, the mask is a logical
OR of enumerator members _edma_channel_interrupt_enable.

Parameters
* base — eDMA peripheral base address.
* eChannel — eDMA channel number.

* ul6InterruptsMask — the mask is a logical OR of enumerator members
_edma_channel_interrupt_enable.

* bEnable — true is enable, false is disable.

uint16_t EDMA_ GetChannelStatusFlags(DMA_Type *base, edma_channel t eChannel)
Gets the eDMA channel status flags.

Note: if the function return error status, application can call EDMA_GetErrorStatusFlags
for the detail error status.

Parameters
* base — eDMA peripheral base address.
* eChannel - eDMA channel number.

Return values
The - mask of channel status flags. Users need to use the
_edma_channel_status_flags type to decode the return variables.

void EDMA__ ClearChannelStatusFlags(DMA_Type *base, edma_channel_t eChannel, uint16_t
ul6StatusFlags)

Clears the eDMA channel status flags.
Parameters
* base — eDMA peripheral base address.
* eChannel - eDMA channel number.

* ul6StatusFlags — The mask of channel status to be cleared. Users need to
use the defined _edma_channel_status_flags type.

static inline uint32_t EDMA__GetErrorStatusFlags(DMA_Type *base)
Gets the eDMA channel error status flags.

Parameters

128 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

* base — eDMA peripheral base address.

Returns
The mask of error status flags. Users need to use the _edma_error_status_flags
type to decode the return variables.

void EDMA_ ConfigChannelSoftwareTCD(edma_channel_tcd_t *psTcd,
edma_channel_transfer_config t *psTransfer)

Sets TCD fields according to the user’s channel transfer configuration structure,
edma_channel_transfer_config_t.

Application should be careful about the TCD pool buffer storage class,
* For the platform has cache, the software TCD should be put in non cache section

* The TCD pool buffer should have a consistent storage class.

Note: Application should be careful when using the minor loop offset fea-
ture with this function, please make sure the EMLM bit is asserted, although
EDMA_InitChannel will set this bit by default, if the bit is cleared, application can use
EDMA_EnableMinorLoopMapping to enable the feature.

Note: This function enables the auto stop request feature.

Parameters
* psTcd — Pointer to the TCD structure.
¢ psTransfer — channel transfer configuration pointer.

void EDMA_ InstallChannelSoftwareTCD(DMA_Type *base, edma_channel_t eChannel,
edma_channel_tcd_t *psTcd)

Push content of software TCD structure into hardware TCD register.
Parameters
* base — EDMA peripheral base address.
* ¢Channel - EDMA channel number.
* psTed — Point to TCD structure.

void EDMA_ TransferCreateHandle(DMA_Type *base, edma_handle_t *psHandle, edma_channel_t
eChannel, edma_channel_tcd_t *psTcdPool, uint32_t
u32TcdCount, edma_transfer_callback_t pfCallback, void
*pUserData)

Creates the eDMA channel handle.

This function is called if using the transactional API for eDMA. This function initializes the
internal state of the eDMA handle.

Parameters
* base — eDMA peripheral base address.

* psHandle — eDMA handle pointer. The eDMA handle stores callback func-
tion and parameters.

* eChannel - eDMA channel number.

* psTedPool — A memory pool to store TCDs. It must be 32 bytes aligned.
* u32TcdCount — The number of TCD slots.

* pfCallback — eDMA callback function pointer.

2.22. EDMA: Enhanced Direct Memory Access Driver 129

MCUXpresso SDK Documentation, Release 25.09.00

* pUserData — A parameter for the callback function.

status_t EDMA_ TransferSubmitSingleTransfer(edma_handle_t *psHandle,

edma_channel_transfer_config_t *psTransfer)
Submits the eDMA single transfer configuration.
Application can submit single transfer when

a. channel is idle, the transfer request will be submitted to eDMA channel TCD register
directly

b. channel is idle, a previous transfer request is pending, the new transfer request will
be submitted to the installed TCD pool and linked to the pending one.

c. channel is active, the transfer request will be submitted to the installed TCD pool and
linked to previous one.

It is suggest that application should check the return value of this function to make sure
that the transfer request is submitted successfully.

Note: , 1.Please be aware of that tcd pool maintain is unprotect by de-
fault, that is to say, the behavior of multiple task trying to access the same
channel is undefine, application can protect the channel by itself or overwrite
EDMA_ENTER_CRITICAL_SECTION/EDMA_LEAVE_CRITICAL_SECTION to have edma
driver protect the TCD pool maintain. 2.Since the destination major loop offset feature
register is reused as scatter gather tcd address, so the two features cannot be used together,
if the destination major loop offset feature is used, then the transfer request will be submit
hardware TCD directly.

Parameters
* psHandle — eDMA handle pointer.

* psTransfer — pointer to user’s eDMA channel configure structure, see
edma_channel_transfer_config_t for detail.

Return values
* kStatus_ Success — It means submit transfer request succeed.

* kStatus. EDMA_ChannelQueueFull — It means TCD queue is full. Submit
transfer request is not allowed.

status_t EDMA_ TransferSubmitLoopTransfer(edma_handle_t *psHandle,

edma_channel_transfer_config_t *psTransfer,
uint32_t transferLoopCount)

Submits the eDMA scatter gather transfer configurations.

The function is target for submit loop transfer request, the ring transfer request means that
the transfer request TAIL is link to HEAD, such as, A->B->C->D->A, or A->A

To use the ring transfer feature, the application should allocate several transfer object, such
as

edma_channel transfer config t transfer[2];
EDMA_ TransferSubmitLoopTransfer(psHandle, &transfer, 2U);

Then eDMA driver will link transfer[0] and transfer[1] to each other

Note: Application should check the return value of this function to avoid transfer request
submit failed

130

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* psHandle — eDMA handle pointer

* psTransfer — pointer to user’s eDMA channel configure structure, see
edma_channel transfer_config_t for detail

¢ transferLoopCount — the count of the transfer ring, if loop count is 1, that
means that the one will link to itself.

Return values
* kStatus_ Success — It means submit transfer request succeed
* kStatus. EDMA_ ChannelBusy — channel is in busy status

* kStatus_ EDMA__ChannelQueueFull — It means TCD pool is not len enough
for the ring transfer request

void EDMA _TransferStart(edma_handle_t *psHandle)
eDMA starts transfer.

This function enables the channel request. Users can call this function after submitting the
transfer request or before submitting the transfer request.

Parameters
* psHandle — eDMA handle pointer.
void EDMA _TransferStop(edma_handle_t *psHandle)
eDMA stops transfer.

This function disables the channel request to pause the transfer. Users can call
EDMA_StartTransfer() again to resume the transfer.

Parameters
* psHandle — eDMA handle pointer.

void EDMA_ TransferAbort(edma_handle_t *psHandle)
eDMA aborts transfer.

This function disables the channel request and clear transfer status bits. Users can submit
another transfer after calling this API.

Parameters
* psHandle — DMA handle pointer.

void EDMA _TransferHandleIRQ(edma_handle_t *psHandle)
eDMA IRQ handler for the current major loop transfer completion.

This function clears the channel major interrupt flag and calls the callback function if it is
not NULL.

Note: For the case using TCD queue, when the major iteration count is exhausted, additional
Interfaces are performed. These include the final address adjustments and reloading of
the BITER field into the CITER. Assertion of an optional interrupt request also occurs at this
time, as does a possible fetch of a new TCD from memory using the scatter/gather address
pointer included in the descriptor (if scatter/gather is enabled).

For instance, when the time interrupt of TCD[0] happens, the TCD[1] has already been
loaded into the eDMA engine. As sga and sga_index are calculated based on the DLAST_SGA
bit field lies in the TCD_CSR register, the sga_index in this case should be 2 (DLAST_SGA of
TCD[1] stores the address of TCD[2]). Thus, the “tcdUsed” updated should be (tcdUsed - 2U)
which indicates the number of TCDs can be loaded in the memory pool (because TCD[O0]
and TCD[1] have been loaded into the eDMA engine at this point already.).

2.22. EDMA: Enhanced Direct Memory Access Driver 131

MCUXpresso SDK Documentation, Release 25.09.00

For the last two continuous ISRs in a scatter/gather process, they both load the last TCD (The
last ISR does not load a new TCD) from the memory pool to the eDMA engine when major
loop completes. Therefore, ensure that the header and tcdUsed updated are identical for
them. tcdUsed are both 0 in this case as no TCD to be loaded.

See the “eDMA basic data flow” in the eDMA Functional description section of the Reference
Manual for further details.

Parameters

* psHandle — eDMA handle pointer.

FSL_EDMA_ DRIVER_ VERSION

EDMA driver version.

_edma_transfer_status eDMA transfer status The enumerator used for transactional inter-
face only.

Values:

enumerator kStatus_ EDMA_ ChannelQueueFull
TCD queue is full.

enumerator kStatus. EDMA__ChannelBusy
Channel is busy and can’t handle the transfer request.

enum _ edma_ channel_transfer type

eDMA transfer type
Values:

enumerator kEDMA__Channel TransferMemoryToMemory
Transfer type from memory to memory assume that the both source and destination
address are incremental

enumerator kEDMA__ Channel TransferPeripheral ToMemory
Transfer type peripher to memory assume that the source address is fixed

enumerator kEDMA_ Channel TransferMemoryToPeripheral
Transfer type from memory to peripheral assume that the destination address is fixed

enumerator kEDMA_ Channel TransferPeripheral ToPeripheral

Transfer type from Peripheral to peripheral assume that both source and destination
address are fixed

enum _ edma_ channel interrupt_ enable

eDMA interrupt source

The eDMA peripheral support generate interrupt when half of the total request bytes trans-
ferred or all of the request bytes transferred.

Values:

enumerator kEDMA_ ChannelErrorInterruptEnable
Enable error interrupt

enumerator kEDMA__ChannelMajorLoopCompletelnterruptEnable
Enable interrupt while major count exhausted.

enumerator kEDMA_ ChannelMajorLoopHalfCompletelnterruptEnable
Enable interrupt while major count to half value.

enumerator kEDMA_ChannelAlllnterruptEnable
Enable all the interrupt.

132

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enum _edma_ channel status_ flags
_edma_channel_status_flags eDMA channel status flags.

Values:

enumerator kEDMA__ChannelStatusErrorFlag
eDMA error flag, an error occurred in a transfer

enumerator kEDMA__ChannelStatusMajorLoopCompleteFlag
Major loop complete flag, set while transfer finished, CITER value exhausted

enumerator kEDMA__ChannelStatusMajorLoopHalfCompleteFlag

Major loop half complete flag

enum _edma,_ error_status_ flags

_edma_error_status_flags eDMA channel detail error status flags.

Values:

enumerator kEDMA_ ChannelDestinationBusErrorFlag
Bus error on destination address

enumerator kEDMA_ ChannelSourceBusErrorFlag
Bus error on the source address

enumerator kEDMA_ ChannelScatterGatherErrorFlag

Error on the Scatter/Gather address, not 32byte aligned.

enumerator kEDMA_ ChannelNbytesErrorFlag
NBYTES/CITER configuration error

enumerator kEDMA_ ChannelDestinationOffsetErrorFlag
Destination offset not aligned with destination size

enumerator kEDMA_ ChannelDestinationAddressErrorFlag

Destination address not aligned with destination size

enumerator kEDMA_ ChannelSourceOffsetErrorFlag
Source offset not aligned with source size

enumerator kEDMA_ ChannelSourceAddressErrorFlag
Source address not aligned with source size

enumerator kEDMA_ ChannelErrorChannelFlag

Error channel number of the canceled channel number

enumerator kEDMA_ ChannelPriorityErrorFlag
Channel priority is not unique.

enumerator kEDMA_ Channel TransferCanceledFlag
Transfer canceled

enumerator kEDMA_ChannelValidFlag
No error occurred, this bit is 0. Otherwise, it is 1.

enum _ edma_ arbitration_ type
eDMA arbitration type

Values:

enumerator kEDMA __ArbitrationFixedPriority
channel arbitration by fixed priority

2.22. EDMA: Enhanced Direct Memory Access Driver

133

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kEDMA_ ArbitrationRoundRobin
Channel arbitration by round robin

enum edma_channel

edma channel index
Values:

enumerator kEDMA_ChannelQ
EDMA channel 0

enumerator kEDMA_Channell
EDMA channel 1

enumerator kEDMA Channel2
EDMA channel 2

enumerator kEDMA_Channel3
EDMA channel 3

enum _edma_channel transfer width

eDMA transfer width configuration
Values:

enumerator kEDMA_ChannelTransferWidth8Bits
Source/Destination data transfer width is 1 byte every time

enumerator kEDMA_ChannelTransferWidth16Bits
Source/Destination data transfer width is 2 bytes every time

enumerator kEDMA ChannelTransfer Width32Bits
Source/Destination data transfer width is 4 bytes every time

enumerator kEDMA ChannelTransfer Width128Bits
Source/Destination data transfer size is 16 bytes every time

enum edma channel modulo

eDMA channel modulo configuration

The eDMA modulo feature can be used to specify the address
source/destination address, it is useful to implement a circular data queue.

Values:

enumerator kEDMA__ChannelModuloDisable
Disable modulo

enumerator kEDMA_ ChannelModulo2bytes
Circular buffer size is 2 bytes.

enumerator kEDMA_ ChannelModulo4bytes
Circular buffer size is 4 bytes.

enumerator kEDMA_ ChannelModulo8bytes
Circular buffer size is 8 bytes.

enumerator kEDMA_ChannelModulol6bytes
Circular buffer size is 16 bytes.

enumerator kEDMA_ChannelModulo32bytes
Circular buffer size is 32 bytes.

range of the

134

Chapter 2

. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kEDMA_ChannelModulo64bytes
Circular buffer size is 64 bytes.

enumerator kEDMA_ChannelModulo128bytes
Circular buffer size is 128 bytes.
enumerator kEDMA_ChannelModulo256bytes
Circular buffer size is 256 bytes.
enumerator kEDMA_ChannelModulo512bytes
Circular buffer size is 512 bytes.
enumerator kEDMA_ChannelModulo1Kbytes
Circular buffer size is 1 K bytes.
enumerator kEDMA_ChannelModulo2Kbytes
Circular buffer size is 2 K bytes.
enumerator kEDMA_ChannelModulo4Kbytes
Circular buffer size is 4 K bytes.
enumerator kEDMA_ChannelModulo8Kbytes
Circular buffer size is 8 K bytes.
enumerator kEDMA_ChannelModulo16Kbytes
Circular buffer size is 16 K bytes.
enumerator kEDMA_ChannelModulo32Kbytes
Circular buffer size is 32 K bytes.
enumerator kEDMA_ChannelModulo64Kbytes
Circular buffer size is 64 K bytes.
enumerator kEDMA_ChannelModulo128Kbytes
Circular buffer size is 128 K bytes.
enumerator kEDMA_ChannelModulo256Kbytes
Circular buffer size is 256 K bytes.
enumerator kEDMA_ChannelModulo512Kbytes
Circular buffer size is 512 K bytes.
enumerator kEDMA_ChannelModulo1lMbytes
Circular buffer size is 1 M bytes.
enumerator kEDMA_ChannelModulo2Mbytes
Circular buffer size is 2 M bytes.
enumerator kEDMA_ChannelModulo4Mbytes
Circular buffer size is 4 M bytes.
enumerator kEDMA__ChannelModulo8Mbytes
Circular buffer size is 8 M bytes.
enumerator kEDMA_ChannelModulo16Mbytes
Circular buffer size is 16 M bytes.
enumerator kEDMA__ChannelModulo32Mbytes
Circular buffer size is 32 M bytes.

enumerator kEDMA_ChannelModulo64Mbytes
Circular buffer size is 64 M bytes.

2.22. EDMA: Enhanced Direct Memory Access Driver 135

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kEDMA_ChannelModulo128Mbytes
Circular buffer size is 128 M bytes.

enumerator kEDMA_ChannelModulo256Mbytes
Circular buffer size is 256 M bytes.

enumerator kEDMA_ ChannelModulo512Mbytes
Circular buffer size is 512 M bytes.

enumerator kEDMA_ChannelModulo1Gbytes
Circular buffer size is 1 G bytes.

enumerator kEDMA_ChannelModulo2Gbytes
Circular buffer size is 2 G bytes.

enum edma_channel bandwidth
edma channel Bandwidth control

Generally, as the eDMA processes the minor loop, it continuously generates read/write se-
quences until the minor count is exhausted. This bandwidth field forces the eDMA to stall
after the completion of each read/write access to control the bus request bandwidth.

The default configuration is KEDMA_BandwidthStallNone.
Values:
enumerator kEDMA_ChannelBandwidthStallNone
No eDMA engine stalls.
enumerator kEDMA_ChannelBandwidthStall4Cycle
eDMA engine stalls for 4 cycles after each read/write.
enumerator kEDMA_ChannelBandwidthStall8Cycle
eDMA engine stalls for 8 cycles after each read/write.
typedef enum _edma_channel_transfer_type edma_ channel transfer type t
eDMA transfer type
typedef enum _edma_arbitration_type edma_ arbitration_ type_t
eDMA arbitration type
typedef enum _edma_channel edma_ channel_t
edma channel index
typedef enum _edma_channel_transfer_width edma_ channel transfer width_ t
eDMA transfer width configuration
typedef enum _edma_channel modulo edma_ channel modulo_ t
eDMA channel modulo configuration

The eDMA modulo feature can be used to specify the address range of the
source/destination address, it is useful to implement a circular data queue.

typedef enum _edma_channel bandwidth edma_ channel bandwidth_t
edma channel Bandwidth control

Generally, as the eDMA processes the minor loop, it continuously generates read/write se-
quences until the minor count is exhausted. This bandwidth field forces the eDMA to stall
after the completion of each read/write access to control the bus request bandwidth.

The default configuration is KEDMA_BandwidthStallNone.

typedef struct _edma_channel Preemption_config edma_ channel Preemption_ config_t
eDMA channel priority configuration, useful to the fixed priority arbitration type

136 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _edma_channel_tcd edma_ channel _ted_t
edma channel software tcd definition

typedef struct _edma_channel_transfer_config edma_ channel__transfer__config_ t
edma channel transfer configuration

The transfer configuration structure support full feature configuration of the transfer con-
trol descriptor.

1.To perform a simple transfer, below members should be initialized at least .u32SrcAddr -
source address .u32DstAddr - destination address .eSrcWidthOfEachTransfer - data width
of source address .eDstWidthOfEachTransfer - data width of destination address, nor-
mally it should be as same as eSrcWidthOfEachTransfer .u32BytesEachRequest - bytes
to be transferred in each DMA request .u32TotalBytes - total bytes to be transferred
.116SrcOffsetOfEachTransfer - offset value in bytes unit to be applied to source address as
each source read is completed .i16DstOffsetOfEachTransfer - offset value in bytes unit to be
applied to destination address as each destination write is completed bEnableChannelRe-
quest - channel request can be enabled together with transfer configure submission

2.The transfer configuration structure also support advance feature: Programmable
source/destination address range(MODULO) Programmable minor loop offset Pro-
grammable major loop offset Programmable channel chain feature Programmable channel
transfer control descriptor link feature

Note: User should pay attention to the transfer size alignment limitation

a. the u32BytesEachRequest should align with the eSrcWidthOfEachTransfer and the
eDstWidthOfEachTransfer that is to say u32BytesEachRequest % eSrcWidthOfEach-
Transfer should be 0

b. the i16SrcOffsetOfEachTransfer and i16DstOffsetOfEachTransfer must be aligne with
transfer width

the u32TotalBytes should align with the u32BytesEachRequest

the u32SrcAddr should align with the eSrcWidthOfEachTransfer

e. the u32DstAddr should align with the eDstWidthOfEachTransfer

the u32SrcAddr should align with eSrcAddrModulo if modulo feature is enabled

g. the u32DstAddr should align with eDstAddrModulo if modulo feature is enabled If any-
one of above condition can not be satisfied, the edma interfaces will generate assert
error.

2 o

s

typedef struct _edma_config edma_ config_t
edma configuration structure

This structure target for whole edma module configurations.

typedef struct _edma_handle edma_ handle_ t
handler for eDMA

typedef void (*edma_ transfer callback t)(edma_handle_t *psHandle, void *pUserData, bool
bTransferDone, uint32_t u32Tcds)

Define callback function for eDMA.

This callback function is called in the EDMA interrupt handler function. In normal
mode, running into callback function means the transfer users need is done. In scat-
ter gather mode, run into callback function means a transfer control block (tcd) is fin-
ished. Not all transfer finished, users can get the finished tcd numbers using interface
EDMA_GetUnusedTCDNumber.

2.22. EDMA: Enhanced Direct Memory Access Driver 137

MCUXpresso SDK Documentation, Release 25.09.00

Param handle
EDMA handle pointer, users shall not touch the values inside.

Param userData
The callback user parameter pointer. Users can use this parameter to involve
things users need to change in EDMA callback function.

Param transferDone
If the current loaded transfer done. In normal mode it means if all transfer
done. In scatter gather mode, this parameter shows is the current transfer
block in EDMA register is done. As the load of core is different, it will be dif-
ferent if the new tcd loaded into EDMA registers while this callback called. If
true, it always means new tcd still not loaded into registers, while false means
new tcd already loaded into registers.

Param tcds
How many tcds are done from the last callback. This parameter only used in
scatter gather mode. It tells user how many tcds are finished between the last
callback and this.

EDMA_ENTER_ CRITICAL_SECTIONY()

edma transactional tcd pool resource protection lock definition Application should over-
write below two macros if multi task trying to access the same channel.

EDMA_LEAVE CRITICAL_SECTIONY()

struct _edma_ channel Preemption_ config

#include <fsl_edma.h> eDMA channel priority configuration, useful to the fixed priority ar-
bitration type

Public Members
bool bSuspendedByHighPriority Channel
a channel can be suspended by other channel with higher priority

bool bSuspendLowPriorityChannel
a channel can suspend other channel with low priority

uint8_t u8ChannelPriority
Channel priority

struct _edma,_ channel transfer_ config

#include <fsl_edma.h> edma channel transfer configuration

The transfer configuration structure support full feature configuration of the transfer con-
trol descriptor.

1.To perform a simple transfer, below members should be initialized at least .u32SrcAddr -
source address .u32DstAddr - destination address .eSrcWidthOfEachTransfer - data width
of source address .eDstWidthOfEachTransfer - data width of destination address, nor-
mally it should be as same as eSrcWidthOfEachTransfer .u32BytesEachRequest - bytes
to be transferred in each DMA request .u32TotalBytes - total bytes to be transferred
.116SrcOffsetOfEachTransfer - offset value in bytes unit to be applied to source address as
each source read is completed .i16DstOffsetOfEachTransfer - offset value in bytes unit to be
applied to destination address as each destination write is completed bEnableChannelRe-
quest - channel request can be enabled together with transfer configure submission

2.The transfer configuration structure also support advance feature: Programmable
source/destination address range(MODULO) Programmable minor loop offset Pro-
grammable major loop offset Programmable channel chain feature Programmable channel
transfer control descriptor link feature

138

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

Note: User should pay attention to the transfer size alignment limitation

a. the u32BytesEachRequest should align with the eSrcWidthOfEachTransfer and the
eDstWidthOfEachTransfer that is to say u32BytesEachRequest % eSrcWidthOfEach-
Transfer should be 0

b. the i116SrcOffsetOfEachTransfer and i16DstOffsetOfEachTransfer must be aligne with
transfer width

]

the u32TotalBytes should align with the u32BytesEachRequest

the u32SrcAddr should align with the eSrcWidthOfEachTransfer

e. the u32DstAddr should align with the eDstWidthOfEachTransfer

the u32SrcAddr should align with eSrcAddrModulo if modulo feature is enabled

g. the u32DstAddr should align with eDstAddrModulo if modulo feature is enabled If any-
one of above condition can not be satisfied, the edma interfaces will generate assert
error.

e

™

Public Members

uint32_t u32SrcAddr
source address
uint32_t u32DstAddr
destination address
edma_channel_transfer_width_t eSrcWidthOfEachTransfer
source width of each transfer
edma_channel_transfer_width_t eDstWidthOfEach Transfer
destination width of each transfer

uint32_t u32BytesEachMinorLoop
bytes in each minor loop or each request range: 1 - (2230 -1) when minor loop mapping
is enabled range: 1- (2710 - 1) when minor loop mapping is enabled and source or dest
minor loop offset is enabled range: 1 - (2732 - 1) when minor loop mapping is disabled
uint16_t ul6MinorLoopCountsEachMajorLoop

minor loop counts in each major loop, should be 1 at least for each transfer
range: (0 - (2715 - 1)) when minor loop channel link is disabled range: (0 -
(279 - 1)) when minor loop channel link is enabled total bytes in a transfer =
ul6MinorLoopCountsEachMajorLoop * u32BytesEachMinorLoop

uint16_t ul6EnabledInterruptMask
channel interrupt to enable, can be OR’ed value of _edma_channel_interrupt_enable

int16_t i16SrcOffset OfEachTransfer

Sign-extended offset value in byte unit applied to the current source address to form
the next-state value as each source read is completed

edma_channel_modulo_t eSrcAddrModulo
source circular data queue range
int32_t i32SrcMajorLoopOffset
source major loop offset

2.22. EDMA: Enhanced Direct Memory Access Driver 139

MCUXpresso SDK Documentation, Release 25.09.00

int16_t i16DstOffset OfEachTransfer

Sign-extended offset value in byte unit applied to the current destination address to
form the next-state value as each destination write is completed.

edma_channel modulo_t eDstAddrModulo
destination circular data queue range
int32_t i32DstMajorLoopOffset
destination major loop offset
bool bEnableSrcMinorLoopOffset
enable source minor loop offset
bool bEnableDstMinorLoopOffset
enable dest minor loop offset
int32_t i32MinorLoopOffset
burst offset, the offset will be applied after minor loop update
bool bEnableChannelMajorLoopLink
channel link when major loop complete
edma_channel_t eMajorLoopLinkChannel
major loop link channel number
bool bEnableChannelMinorLoopLink
channel link when minor loop complete
edma_channel_t eMinorLoopLinkChannel
minor loop link channel number
edma_channel_bandwidth_t eChannelBandWidth
channel bandwidth
bool bDisableRequest AfterMajorLoopComplete
the channel’s ERQ bit can be cleared after the major loop complete automatically
bool bEnableChannelRequest
enable the channel request signal
edma_channel_tcd_t *psLinkTCD
pointer to the link transfer control descriptor
struct edma_channel ted
#include <fsl_edma.h> eDMA software Transfer control descriptor structure.

This structure is same as eDMA hardware channel TCD registers, user doesn’t need to un-
derstand the structures, since eDMA driver will responsible for configure it.

The software TCD is useful to configure a software TCD which is linked by the channel
hardware TCD to have scatter/gather feature without using transactional interface.

Public Members
IO uint32_t u32SADDR
SADDR register, used to save source address

IO uintl6_t ul6SOFF
SOFF register, offset bytes added to source address every transfer

IO uintl6_t ul6ATTR
ATTR register, source/destination transfer size and modulo

140 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

~ TO uint32_t u32NBYTES
Nbytes register, minor loop length in bytes

IO uint32_t u32SLAST
SLAST register, adjustment value added to the source address at the completion of the
major loop
__ 10 uint32_t u32DADDR
DADDR register, used for destination address
__ 10 uint16_t ul6DOFF
DOFF register, offset bytes added to destination address every transfer
IO uintl6_t ul6CITER
CITER register, current minor loop numbers, for unfinished minor loop.
_ IO uint32_t u32DLAST_SGA
DLASTSGA register, next tcd address used in scatter-gather mode
__ IO uint16_t ul6CSR
CSR register, for TCD control status
IO uintl6_t ul6BITER
BITER register, begin minor loop count.

struct _edma_ config
#include <fsl_edma.h> edma configuration structure

This structure target for whole edma module configurations.

Public Members

bool bEnableContinuousLinkMode

Enable (true) continuous link mode. Upon minor loop completion, the channel acti-
vates again if that channel has a minor loop channel link enabled and the link channel
is itself.

bool bEnableHaltOnError

Enable (true) transfer halt on error. Any error causes the HALT bit to set. Subsequently,
all service requests are ignored until the HALT bit is cleared.

bool bEnableDmalnDebugMode

Enable(true) eDMA debug mode. When in debug mode, the eDMA stalls the start of a
new channel. Executing channels are allowed to complete.

bool bEnableMinorLoopMapping

TCDn.word2 is redefined to include individual enable fields, an offset field, and the
NBYTES field. The individual enable fields allow the minor loop offset to be applied
to the source address, the destination address, or both. The NBYTES field is reduced
when either offset is enabled

edma_arbitration_type_t eArbitrationType
Enable (true) round robin channel arbitration method or fixed priority arbitration is
used for channel selection

edma_channel_Preemption_config t sChannelPreemptionConfig[1]
channel preemption configuration

edma_channel_transfer_config_t *psChannel TransferConfig[1]
channel transfer configuration pointer

struct _edma_ handle
#include <fsl_edma.h> eDMA transfer handle structure

2.22. EDMA: Enhanced Direct Memory Access Driver 141

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

edma_transfer_callback_t pfCallback
Callback function for major count exhausted.

void *pUserData

Callback function parameter.
DMA_Type *psBase

eDMA peripheral base address.

edma_channel_tcd_t *psTcdPool
Pointer to memory stored TCDs.

edma_channel_t eChannel
eDMA channel number.

volatile uint8_t u8Header
The first TCD index. Should point to the next TCD to be loaded into the eDMA engine.

volatile uint8_t u8Tail
The last TCD index. Should point to the next TCD to be stored into the memory pool.

volatile uint8_t u8TcdUsed
The number of used TCD slots. Should reflect the number of TCDs can be used/loaded
in the memory.

volatile uint8_t u8TcdSize
The total number of TCD slots in the queue.

2.23 The Driver Change Log

2.24 EDMA Peripheral and Driver Overview

2.25 EVTG: Event Generator Driver

void EVTG Init(EVTG_Type *base, evtg index_t eEvtgIndex, evtg config t *psConfig)

Initialize EVTG with a user configuration structure.
Parameters
* base — EVTG base address.
* cEvtgIndex — EVTG instance index.

» psConfig — EVTG initial configuration structure pointer.

static inline void EVTG_ GetDefaultConfig(evtg_config t *psConfig, evtg flipflop_mode_t

eFlipflopMode)
Loads default values to the EVTG configuration structure.

The purpose of this API is to initialize the configuration structure to default value for
EVTG_Init() to use. The Flip-Flop can be configured as Bypass mode, RS trigger mode, T-
FF mode, D-FF mode, JK-FF mode, Latch mode. Please check RM INTC chapter for more
details.

Parameters

* psConfig — EVTG initial configuration structure pointer.

142

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

¢ eFlipflopMode — EVTG flip flop mode. see @ ref _evtg_flipflop_mode

static inline void EVTG_ ForceFlipflopInitOutput(EVTG_Type *base, evtg index_t eEvtgIndex,

evtg flipflop_init_output_t
eFlipflopInitOutputValue)

Force Flip-flop initial output value to be presented on flip-flop positive output.
Parameters
* base — EVTG base address.
* eEvtgIndex — EVTG instance index.

¢ eFlipflopInitOutputValue — EVTG flip-flop initial output control. see
evtg_flipflop_init_output_t

static inline void EVTG_ SetProductTermInput(EVTG_Type *base, evtg index_t eEvtgIndex,
evtg aol _index_t eAOIIndex,
evtg aoi_product_term_t eProductTerm,
evtg input_index_t eInputindex,
evtg aoi_input_config_t eInput)

Configure each input value of AOI product term. Each selected input term in each product
term can be configured to produce a logical 0 or 1 or pass the true or complement of the
selected event input. Adapt to some simple aoi expressions.

Parameters
* base — EVTG base address.
* eEvtgIndex — EVTG instance index.
* eAOIIndex — EVTG AOI index. see enum ref evtg_aoi_index_t
* eProductTerm — EVTG product term index.
* elnputIndex — EVTG input index.
* elnput — EVTG input configuration with enum evtg_aoi_input_config_t.

void EVTG_ ConfigAOIProductTerm(EVTG_Type *base, evtg_index_t eEvtglndex, evtg aoi_index_t
eAOIIndex, evtg aoi _product_term_t eProductTerm,
evtg_aoi_product_term_config_t *psProductTermConfig)

Configure AOI product term by initializing the product term configuration structure.
Parameters
* base — EVTG base address.
* cEvtgIndex — EVTG instance index.
* eAOIIndex — EVTG AOI index. see enum evtg_aoi_index_t
* eProductTerm — EVTG AOI product term index.

¢ psProductTermConfig — Pointer to EVTG product term configuration struc-
ture. see ref _evtg_aoi_product_term_config

FSL EVTG DRIVER VERSION
EVTG driver version.

enum _ evtg index
EVTG instance index.

Values:

enumerator kEVTG_ Index0
EVTG instance index 0.

2.25. EVTG: Event Generator Driver 143

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kEVTG_Indexl1
EVTG instance index 1.

enumerator kEVTG_Index2
EVTG instance index 2.

enumerator kEVTG_Index3
EVTG instance index 3.

enum _ evtg_input_index
EVTG input index.

Values:

enumerator kEVTG_ InputA
EVTG input A.

enumerator kEVTG_ InputB
EVTG input B.

enumerator kEVTG_ InputC
EVTG input C.

enumerator kEVTG_ InputD
EVTG input D.

enum _ evtg aoi_index
EVTG AOI index.

Values:

enumerator kEVTG_AOIO
EVTG AOI index 0.

enumerator kEVTG_AOI1
EVTG AOI index 1.

enum _evtg aoi_ product_ term
EVTG AOI product term index.

Values:

enumerator kEVTG_ ProductTerm0
EVTG AOI product term index O.

enumerator kEVTG_ ProductTerm1
EVTG AOI product term index 1.

enumerator kEVTG_ ProductTerm?2
EVTG AOI product term index 2.

enumerator kEVTG_ ProductTerm3
EVTG AOI product term index 3.

enum _evtg aoi_input_ config
EVTG input configuration.

Values:

enumerator kEVTG_ Input_ LogicZero
Force input in product term to a logical zero.

enumerator KEVTG_ Input_ DirectPass
Pass input in product term.

144 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kEVTG_ Input_ Complement
Complement input in product term.

enumerator kEVTG_ Input_ LogicOne
Force input in product term to a logical one.

enum _evtg aoi_ outfilter count
EVTG AOI Output Filter Sample Count.

Values:

enumerator kKEVTG__AOIOutFilter SampleCount3
EVTG AOI output filter sample count is 3.
enumerator kKEVTG__AOIOutFilter SampleCount4
EVTG AOI output filter sample count is 4.
enumerator kKEVTG__AOIOutFilter_ SampleCount5
EVTG AOI output filter sample count is 5.
enumerator kKEVTG__AOIOutFilter_ SampleCount6
EVTG AOI output filter sample count is 6.
enumerator kEVTG__AOIOutFilter SampleCount?
EVTG AOI output filter sample count is 7.
enumerator kEVTG__AOIOutFilter_ SampleCount8
EVTG AOI output filter sample count is 8.
enumerator kEVTG__AOIOutFilter_ SampleCount9
EVTG AOI output filter sample count is 9.
enumerator kEVTG__AOIOutFilter SampleCount10
EVTG AOI output filter sample count is 10.
enum _evtg outfdbk override input

EVTG output feedback override control mode. When FF is configured as JK-FF mode, need
EVTG_OUTA feedback to EVTG input and replace one of the four inputs.

Values:

enumerator kEVTG__ Output_ OverrideInputA
Replace input A.

enumerator kEVTG__ Output_ OverrideInputB
Replace input B.

enumerator kEVTG__Output_ OverrideInputC
Replace input C.

enumerator kEVTG__Output_ OverrideInputD
Replace input D.

enum _evtg flipflop_ mode

EVTG flip flop mode configuration.

Values:

enumerator kEVTG__FFMode_ Bypass

Bypass mode (default).In this mode, user can choose to enable or disable input sync
logic and filter function.

2.25. EVTG: Event Generator Driver 145

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kEVTG__FFMode_ RSTrigger

RS trigger mode. In this mode, user can choose to enable or disable input sync logic
and filter function.

enumerator kEVTG_FFMode TFF

T-FF mode. In this mode, input sync or filter has to be enabled to remove the possible
glitch.

enumerator kEVTG_FFMode_ DFF

D-FF mode. In this mode, input sync or filter has to be enabled to remove the possible
glitch.

enumerator kEVTG_FFMode JKFF

JK-FF mode. In this mode, input sync or filter has to be enabled to remove the possible
glitch.

enumerator kEVTG FFMode Latch

Latch mode. In this mode, input sync or filter has to be enabled to remove the possible
glitch.

enum _evtg flipflop_initoutput

EVTG flip-flop initial value.

Values:

enumerator kEVIG_FF InitOut0
Configure the positive output of flip-flop as 0.

enumerator kEVTG_FF InitOutl

Configure the positive output of flip-flop as 1.

typedef enum _evtg index evtg index_t

EVTG instance index.

typedef enum _evtg input_index evtg_input_index t

EVTG input index.

typedef enum _evtg aoi_index evtg aoi_index_t

EVTG AOI index.

typedef enum _evtg aoi_product_term evtg_aoi_ product_ term_ t

EVTG AOI product term index.

typedef enum _evtg aoi_input_config evtg aoi_input_ config t

EVTG input configuration.

typedef enum _evtg aoi_outfilter_count evtg_aoi_outfilter_ count_ t

EVTG AOI Output Filter Sample Count.

typedef enum _evtg outfdbk_override_input evtg_outfdbk_override input_ t

EVTG output feedback override control mode. When FF is configured as JK-FF mode, need
EVTG_OUTA feedback to EVTG input and replace one of the four inputs.

typedef enum _evtg flipflop_mode evtg_flipflop_ mode_ t

EVTG flip flop mode configuration.

typedef enum _evtg flipflop_initoutput evtg_flipflop_init_output_t

EVTG flip-flop initial value.

146

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _evtg aoi outfilter_config evtg_aoi_outfilter_ config_t
The structure for configuring an AOI output filter sample.
AOI output filter sample count represent the number of consecutive samples that must
agree prior to the AOI output filter accepting an transition. AOI output filter sample pe-

riod represent the sampling period (in IP bus clock cycles) of the AOI output signals. Each
AOI output is sampled multiple times at the rate specified by this period.

For the modes with Filter function enabled, filter delay is “(FILT_CNT + 3) x FILT_PER + 2”.

typedef struct _evtg aoi product_term_config evtg aoi_ product_term_ config t
The structure for configuring an AOI product term.
typedef struct _evtg aoi_config evtg_aoi_ config t
EVTG AOI configuration structure.
typedef struct _evtg config evtg_config_t
EVTG configuration covering all configurable fields.
struct _evtg aoi_outfilter config
#include <fsl_evtg.h> The structure for configuring an AOI output filter sample.

AOI output filter sample count represent the number of consecutive samples that must
agree prior to the AOI output filter accepting an transition. AOI output filter sample pe-
riod represent the sampling period (in IP bus clock cycles) of the AOI output signals. Each
AOI output is sampled multiple times at the rate specified by this period.

For the modes with Filter function enabled, filter delay is “(FILT_CNT + 3) x FILT PER + 2”.

Public Members
evtg_aot_outfilter_count_t eSampleCount
EVTG AOI output filter sample count. refer to evtg_aoi_outfilter_count_t.

uint8_t u8SamplePeriod

EVTG AOI output filter sample period, within 0~255. If sample period value is 0x00
(default), then the input filter is bypassed.

struct _evtg aoi_product_ term_ config
#include <fsl_evtg.h> The structure for configuring an AOI product term.

Public Members
evtg_aol_input_config_t eAlnput
Input A configuration.
evtg_aoi_input_config t eBlnput
Input B configuration.
evtg aoi_input_config t eClnput
Input C configuration.
evtg_aot_input_config_t eDInput
Input D configuration.

struct _evtg aoi_ config
#include <fsl_evtg.h> EVTG AOI configuration structure.

2.25. EVTG: Event Generator Driver 147

MCUXpresso SDK Documentation, Release 25.09.00

Public Members
evtg aoi outfilter_config t sAOIOutFilterConfig
EVTG AOI output filter sample configuration structure.

evtg_aoi_product_term_config_ t sProductTerm0
Configure AOI product termO.

evtg_aoi_product_term_config t sProductTerm1
Configure AOI product term1.

evtg_aoi_product_term_config t sProductTerm?2
Configure AOI product term2.

evtg_aoi_product_term_config t sProductTerm3
Configure AOI product term3.

struct _evtg config
#include <fsl_evtg.h> EVTG configuration covering all configurable fields.

Public Members
bool bEnableInput ASync

Enable/Disable EVTG A input synchronous with bus clk.
bool bEnableInputBSync

Enable/Disable EVTG B input synchronous with bus clk.
bool bEnableInputCSync

Enable/Disable EVTG C input synchronous with bus clk.
bool bEnableInputDSync

Enable/Disable EVTG D input synchronous with bus clk.
evtg_outfdbk_override_input_t eOutfdbkOverideinput

EVTG output feedback to EVTG input and replace one of the four inputs.

evtg flipflop_mode_t eFlipflopMode

Flip-Flop can be configured as one of Bypass mode, RS trigger mode, T-FF mode, D-FF
mode, JK-FF mode, Latch mode.

bool bEnableFlipflopInitOutput
Flip-flop initial output value enable/disable.

evtg flipflop_init_output_t eFlipflopInitOutputValue
Flip-flop initial output value configuration.

evtg aoi_config t sAOI0Config
Configure EVTG AOIO.

evtg aoi_config t sAOI1Config
Configure EVTG AOI1.

2.26 The Driver Change Log

2.27 EVTG Peripheral and Driver Overview

148 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

2.28 EWM: External Watchdog Monitor Driver

void EWM_ Init(EWM_Type *base, const ewm_config_t *psConfig)
Initializes the EWM peripheral.

This function is used to initialize the EWM. After calling, the EWM runs immediately ac-
cording to the configuration.

This is an example.

ewm_ config t psConfig;
EWM__GetDefaultConfig(&psConfig);
psConfig.compareHighValue = 0xAAU;
EWM__Init(ewm_ base,&psConfig);

Note: Except for the interrupt enable control bit, other control bits and registers are write
once after a CPU reset. Modifying them more than once generates a bus transfer error.

Parameters
* base - EWM peripheral base address
¢ psConfig — The configuration of the EWM
void EWM_ Deinit(EWM_Type *base)
Deinitializes the EWM peripheral.
This function is used to shut down the EWM.
Parameters
* base —- EWM peripheral base address
void EWM_ GetDefaultConfig(ewm_config_t *psConfig)
Initializes the EWM configuration structure.

This function initializes the EWM configuration structure to default values. The default
values are as follows.

ewmConfig- >bEnableEWM = true;
ewmConfig->bEnableEWMInput = false;
ewmConfig->elnputAssertState = KEWM__EwmInZeroAssert;
ewmConfig- >bEnablelnterrupt = false;

ewmConfig- >eClockSource = KEWM__LpoClockSource0;
ewmConfig- >u8ClockDivder = 0;

ewmConfig- >u8CompareLow Value = 0;

ewmConfig- >u8CompareHighValue = 0xFEU;

See also:

ewm_config_t

Parameters
* psConfig — Pointer to the EWM configuration structure.

static inline void EWM__Enablelnterrupt(EWM_Type *base)
Enables the EWM interrupt.

This function enables the EWM interrupt.

2.28. EWM: External Watchdog Monitor Driver 149

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* base —- EWM peripheral base address

static inline void EWM__DisableInterrupt(EWM_Type *base)
Disables the EWM interrupt.

This function disables the EWM interrupt.
Parameters
* base —- EWM peripheral base address

void EWM_ Refresh(EWM_Type *base)
Services the EWM.

This function resets the EWM counter to zero.
Parameters
* base - EWM peripheral base address

FSL EWM_DRIVER,_ VERSION
EWM driver version.

enum _ewm_ input_ assert_ state
Assert pin voltage configuration.

Values:

enumerator kEWM EwmlInZeroAssert
EWM-in assert with low-voltage logic

enumerator kEWM_EwmInOneAssert
EWM-in assert with high-voltage logic

typedef enum _ewm_input_assert_state ewm_ input_ assert_state_t
Assert pin voltage configuration.

typedef struct _ewm_config ewm_ config_t
Data structure for EWM configuration.

This structure is used to configure the EWM.

struct _ewm_ config
#include <fsl_ewm.h> Data structure for EWM configuration.

This structure is used to configure the EWM.

Public Members
uint8_t bEnableEWM
Enable EWM module

uint8_t bEnableEWMInput
Enable EWM_in input

uint8_t bEnableInterrupt
Enable EWM interrupt

ewm_input_assert_state_t elnputAssertState
EWM_in signal assertion state select

ewm_lpo_clock_source_t eClockSource
Clock source select

150 Chapter 2

. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

uint8_t u8ClockDivder
EWM counter clock is clockSource/(clockDivder+1)

uint8_t u8CompareLow Value
Compare low-register value

uint8_t u8CompareHighValue
Compare high-register value, maximum setting is OXFE

2.29 The Driver Change Log
2.30 EWM Peripheral and Driver Overview

2.31 GPIO: General-Purpose Input/Output Driver

void GPIO_ Pinlnit(GPIO_Type *base, gpio_pin_t ePin, const gpio_config_t *psConfig)

Initializes a GPIO pin with provided structure gpio_config t covering all configuration
fields.

To initialize the GPIO, define a pin configuration, as either input or output, in the user file.
Then, call the GPIO_PinInit() function.

This is function to configure all GPIO Pin configurable fields.

gpio_ config_t sConfig = {

.eDirection = kGPIO_ DigitalOutput,
.eMode = kGPIO_ ModeGpio,
.eOutMode = kGPIO_ OutputOpenDrain,
.eSlewRate = kGPIO_ SlewRateFast,
.eOutLevel = kGPIO_ OutputLow,
.eDriveStrength = kGPIO_ DriveStrengthLow,
.ePull = kGPIO_ PullDisable,

.eInterruptMode = kGPIO_ InterruptDisable,

}
GPIO_ PinInit(GPIOA, kGPIO_ Pinl, &psConfig);

Note: If GPIO glitch is critical for your application, do not use this API instead using the
API in GPIO pin configuration interfaces to do with the glitch during GPIO mode transition
in accordance to your board design.

Parameters
* base — GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

* ePin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

* psConfig — GPIO pin configuration pointer

static inline void GPIO_ PinSetPeripheralMode(GPIO_Type *base, gpio_pin_t ePin,

gpio_peripheral mode_t eMode)
Configure the GPIO Pin as Peripheral mode or GPIO mode for one pin.

Configure GPIO can be configured as Peripheral mode or GPIO mode for one pin.

2.29. The Driver Change Log 151

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* base — GPIO peripheral base pointer

* ¢Pin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

* eMode - Peripheral mode or GPIO mode for this pin. See
gpio_peripheral_mode_t

static inline void GPIO_ PinSetPeripheralMux(gpio_peripheral_mux_t eMux)
Configure the multiplexing of GPIO pins to different peripheral.

Configure the MUX of GPIO pins to different peripheral functionality.

Note: User still need to call the GPIO_PinSetPeripheralMode.

Parameters
* eMux — GPIO peripheral MUX when configured as peripheral mode.

static inline void GPIO_ PinSetDirection(GPIO_Type *base, gpio_pin_t ePin, gpio_direction_t
eDirection)

Configure the GPIO pin as Input or Output for one pin.
Configure the GPIO pin as Input or Output for one pin.
Parameters
* base — GPIO peripheral base pointer

* ePin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

* eDirection — Direction of GPIO pin. gpio_direction_t

static inline void GPIO_ PinSetOutputMode(GPIO_Type *base, gpio_pin_t ePin,
gpio_output_mode_t eOutMode)

Configure GPIO pin output as Push-Pull or Open-Drain for one pin.

Configure GPIO pin output as Push-Pull or Open-Drain. This function applies while pin is
configured as output. See gpio_direction_t and API GPIO_PinSetDirection.

Parameters
* base — GPIO peripheral base pointer

* ePin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

* ¢OutMode — Push-Pull/Open-Drain output mode. See gpio_output_mode_t.

static inline void GPIO_ PinSetDriveStrength(GPIO_Type *base, gpio_pin_t ePin,
gpio_output_drive_strength_t eDriveStrength)

Configure High/Low drive strength when Pin is configured as output for one pin.

Configure High/Low drive strength when Pin is configured as output. See gpio_direction_t
and API GPIO_PinSetDirection.

Parameters
* base — GPIO peripheral base pointer

* e¢Pin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

152 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

* eDriveStrength - High/Low driver strength. See
gpio_output_drive_strength_t

static inline void GPIO_ PinSetSlewRate(GPIO_Type *base, gpio_pin_t ePin,
gpio_output_slew_rate_t eSlewRate)

Configure GPIO pin Fast/Slow slew rate when pin is configured as output.

Configure GPIO pin Fast/Slow slew rate when pin is configured as output. See
gpio_direction_t and API GPIO_PinSetDirection.

Parameters
* base — GPIO peripheral base pointer

* ¢Pin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

* eSlewRate — Fast/Slow slewrate. See gpio_output_slew_rate_t

static inline void GPIO_ PinSetPullResistorMode(GPIO_Type *base, gpio_pin_t ePin,
gpio_pull_ mode_t ePullMode)

Configure Pull resistor for GPIO pin to Disable/Pull-Up/Pull-Down.
Configure Pull resistor for GPIO pin to Disable/Pull-Up/Pull-Down.
Parameters
* base — GPIO peripheral base pointer

* ¢Pin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

* ePullMode - Pull Mode as Disable/Pull-Up/Pull-Down. See
gpio_pull_mode_t

static inline void GPIO_ PinWrite(GPIO_Type *base, gpio_pin t ePin, gpio_output_level t
eOutput)

Set GPIO Pin as High/Low voltage level on Output.
Set GPIO Pin as High/Low voltage level on Output.
Parameters
* base — GPIO peripheral base pointer

* ePin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

* ¢Output — Output as High level or Low Level. See gpio_output_level t.

static inline void GPIO_ PortSet(GPIO_Type *base, uint16_t u16Pins)
Set GPIO multiple pins output High voltage level without impact pins.

Set GPIO multiple pins output High voltage level without impact other pins. Multiple pins
are configured by OR enumerator from gpio_pin_t

Parameters
* base — GPIO peripheral base pointer

* ul6Pins — GPIO pins which is ORed by gpio_pin_t. # kGPIO_PinO | kG-
PIO_Pin3 means Pin 0 and Pin 3.

static inline void GPIO_ PinSet(GPIO_Type *base, gpio_pin_t ePin)
Output High voltage level for GPIO Pin when configured as Output.

Output High voltage level for GPIO Pin when configured as Output.

Parameters

2.31. GPIO: General-Purpose Input/Output Driver 153

MCUXpresso SDK Documentation, Release 25.09.00

* base — GPIO peripheral base pointer

* ¢Pin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

static inline void GPIO_ PortClear(GPIO_Type *base, uint16_t ul6Pins)

Set GPIO multiple pins belong to same PORT output Low voltage level when these pins are
configured as output.

Set GPIO multiple pins belong to same PORT output Low voltage level when these pins are
configured as output. Multiple pins are configured by ORing enumerators from gpio_pin_t

Parameters
* base — GPIO peripheral base pointer

* ul6Pins — GPIO pins which is ORed by gpio_pin_t. # kGPIO_Pin0 | kG-
PIO_Pin3 means Pin 0 and Pin 3.

static inline void GPIO_ PinClear(GPIO_Type *base, gpio_pin_t ePin)
Output Low voltage level for GPIO Pin when configured as Output.

Output Low voltage level for GPIO Pin when configured as Output.
Parameters
* base — GPIO peripheral base pointer

* ¢Pin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

static inline void GPIO_ PortToggle(GPIO_Type *base, uint16_t ul6Pins)
Toggle GPIO multiple pins belong to same PORT when these pins are configured as output.

Toggle GPIO multiple pins belong to same PORT when these pins are configured as output.
Multiple pins are configured by ORing enumerators from gpio_pin_t

Parameters
* base — GPIO peripheral base pointer

* ul6Pins — GPIO pins which is ORed by gpio_pin_t. # kKGPIO_Pin0O | kG-
PIO_Pin3 means Pin 0 and Pin 3.

static inline void GPIO_ PinToggle(GPIO_Type *base, gpio_pin_t ePin)
Toggle the GPIO output voltage level when configured as Output.

Toggle the GPIO output voltage level when configured as Output.

Note: GPIO peripheral register do not get register to toggle directly. It is implemented by
read back the GPIO output level and write to the register with reverted level.

Parameters
* base — GPIO peripheral base pointer

* ¢Pin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

static inline uint16_t GPIO_ PortRead(GPIO_Type *base)
Read High/Low voltage level for multiple GPIO pins from the pin or the data bus.

Read High/Low voltage level for multiple GPIO pins from the pin if the pin is configured
as input or the data bus. When the device comes out of reset, GPIO pins are configured as
inputs with internal pull disabled. As a result, the reset value of this pin is undefined. For
different PORT, the available pins number is different. User need use the return value to
OR with the gpio_pin_t to decide whether that pin is logic high or low.

154 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

if (GPIO_ PortRead(GPIOA) & (uint16_t)kGPIO_Pin0)
{

}

else

//GPIOA Pin 0 is High

//GPIOA Pin 0 is Low
}

Parameters
* base — GPIO peripheral base pointer

Returns
Voltage level for multiple GPIO pins from the pin or the data bus.

static inline uint8_t GPIO_ PinRead(GPIO_Type *base, gpio_pin_t ePin)
Read High/Low voltage level for one GPIO pin from the pin or the data bus.

Read High/Low voltage level from the pin if the pin is configured as input or the data bus.

Note: When the device comes out of reset, GPIO pins are configured as inputs with internal
pull disabled. As a result, the reset value of this pin is undefined.

Parameters
* base — GPIO peripheral base pointer

¢ ePin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

Return values
* 1-Voltage level for one GPIO pin from the pin or the data bus is high.
» 0 - Voltage level for one GPIO pin from the pin or the data bus is low.

static inline uint16_t GPIO_ PortReadRawData(GPIO_Type *base)
Read Raw voltage high/low level data from the pins or peripheral bus for multiple pins
belong to same PORT.

Read Raw voltage high/low level data from the pins or peripheral bus. Values are not
clocked and are subject to change at any time. Read several times to ensure a stable value.
The reset value of this register depends on the default PIN state. User need use the return
value to OR with the gpio_pin_t to decide whether that pin is logic high or low.

if (GPIO__PortReadRawData(GPIOA) & (uint16_t)kGPIO_ Pin0)

//GPIOA Pin 0 is High
}

else

//GPIOA Pin 0 is Low
}

Parameters
* base — GPIO peripheral base pointer

Returns
Voltage high/low level data from the pins or peripheral bus for multiple pins
belong to same PORT.

2.31. GPIO: General-Purpose Input/Output Driver 155

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint8_t GPIO_ PinReadRawData(GPIO_Type *base, gpio_pin_t ePin)
Read Raw logic level data from the pins or peripheral bus for one pin.

Read Raw voltage high/low level data from the pins or peripheral bus. Values are not
clocked and are subject to change at any time. Read several times to ensure a stable value.
The reset value of this register depends on the default PIN state.

Parameters
* base — GPIO peripheral base pointer

* ¢Pin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

Return values
» 1—Raw voltage level data from the pins or peripheral bus is high.
* 0—Raw voltage level data from the pins or peripheral bus is low.

static inline void GPIO_ PinSetInterruptConfig(GPIO_Type *base, gpio_pin _t ePin,
gpio_interrupt_mode_t eIntConfig)

Configure GPIO Pin interrupt detection condition.
Configure GPIO Pin interrupt detection condition
Parameters
* base — GPIO peripheral base pointer

* ¢Pin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

* eIntConfig — Interrupt detection condition for rising edge/down edge or no
detection. See gpio_interrupt_mode_t

static inline void GPIO_ PortAssertSWlnterrupts(GPIO_Type *base, uint16_t ul6Pins)

Assert software interrupt for multiple pins belong to same port which will generate inter-
rupt.

This API is only for software testing of a software interrupt capability. When the software
interrupt is asserted, an interrupt is generated. The interrupt is generated continually until
this software interrupt is de-asserted.

Parameters
* base — GPIO peripheral base pointer

* ul6Pins — GPIO pins which is ORed by gpio_pin_t. # kGPIO_PinO | kG-
PIO_Pin3 means Pin 0 and Pin 3.

static inline void GPIO_ PortDeassertSWinterrupts(GPIO_Type *base, uint16_t u16Pins)

De-Assert software interrupt for multiple pins belong to same port which will stop gener-
ating interrupt.

This API is only for software testing of a software interrupt capability.
Parameters
* base — GPIO peripheral base pointer

* ul6Pins — GPIO pins which is ORed by gpio_pin_t. # kGPIO_PinO | kG-
PIO_Pin3 means Pin 0 and Pin 3.
static inline void GPIO_ PinAssertSWInterrupt(GPIO_Type *base, gpio_pin_t ePin)
Assert software interrupt for one pin which will generate interrupt.
This API is only for software testing of a software interrupt capability. When the software

interrupt is asserted, an interrupt is generated. The interrupt is generated continually until
this software interrupt is de-asserted.

156 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* base — GPIO peripheral base pointer

* ¢Pin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

static inline void GPIO_ PinDeassertSWinterrupt(GPIO_Type *base, gpio_pin_t ePin)
De-Assert software interrupt for one pin which will stop generating interrupt.

This API is only for software testing of a software interrupt capability.
Parameters
* base — GPIO peripheral base pointer

¢ ePin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

static inline void GPIO_ PortEnablelnterrupts(GPIO_Type *base, uint16_t ul6Pins)
Enable interrupt detection for multiple pins belong to same port.

This API is to enable interrupt detection on rising edge or falling edge.
Parameters
* base — GPIO peripheral base pointer

* ul6Pins — GPIO pins which is ORed by gpio_pin_t. # kKGPIO_PinO | kG-
PIO_Pin3 means Pin 0 and Pin 3.

static inline void GPIO_ PortDisablelnterrupts(GPIO_Type *base, uint16_t ul6Pins)
Disable interrupt detection for multiple pins belong to same port.

This API is to disable interrupt detection on rising edge or falling edge.
Parameters
* base — GPIO peripheral base pointer

* ul6Pins — GPIO pins which is ORed by gpio_pin_t. # kGPIO_PinO | kG-
PIO_Pin3 means Pin 0 and Pin 3.

static inline void GPIO_ PinEnablelnterrupt(GPIO_Type *base, gpio_pin_t ePin)
Enable interrupt detection for one pin.

This API is to enable interrupt detection on rising edge or falling edge.
Parameters
* base — GPIO peripheral base pointer

* ePin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

static inline void GPIO_ PinDisableInterrupt(GPIO_Type *base, gpio_pin_t ePin)
Disable interrupt detection for one pin.

This API is to disable interrupt detection on rising edge or falling edge.
Parameters
* base — GPIO peripheral base pointer

* ¢Pin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

2.31. GPIO: General-Purpose Input/Output Driver 157

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint16_t GPIO_ PortGetInterruptPendingStatusFlags(GPIO_Type *base)
Get interrupt pending status flags all pins belong to same port.
Get interrupt pending status flags for all pins belong to same port. User need to use the

gpio_pin_t to OR with the return value, if the result is not 0, this flag is set. otherwise, this
flag is not set.

Note: this flags can only be cleared by calling GPIO_PortClearEdgeDetectedStatusFlag if it
is caused by edge detected or by calling GPIO_PortEnableSWinterrupt if it is caused by SW
interrupt.

if (GPIO_ PortGetlInterruptPendingStatusFlags(GPIOA) & (uint16_t)kGPIO_ Pin0)

//Interrupt occurred on GPIOA Pin 0.

}

else

//No Interrupt on GPIOA Pin 0.
}

Parameters
* base — GPIO peripheral base pointer

Returns
Interrupt pending status flags all pins belong to same port.

static inline uint16_t GPIO_ PinGetInterruptPendingStatusFlags(GPIO_Type *base, gpio_pin t
ePin)

Get interrupt pending status flags for one pin.

Get interrupt pending status flags for one pin.

Note: this flags can only be cleared by calling GPIO_PortClearEdgeDetectedStatusFlag if it
is caused by edge detected or by calling GPIO_PortEnableSWInterrupt if it is caused by SW
interrupt.

Parameters
* base — GPIO peripheral base pointer

* ¢Pin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

Return values
* 1-Interrupt occurred.
* 0—No Interrupt.

static inline uint16_t GPIO_ PortGetEdgeDetectedStatusFlags(GPIO_Type *base)
Get Edge detected status flags for all pins belong to same port.

Get edge detected status flags for all pins in the PORT. This status flag can only
be detected when interrupt detection is enabled by GPIO_PortEnablelnterrupt or
GPIO_PinEnablelnterrupt.

if (GPIO_ PortGetEdgeDetectedStatusFlags(GPIOA) & (uintl6_t)kGPIO_ Pin0)

//An edge detected on GPIOA Pin 0.
(continues on next page)

158 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)

}

else

{
//No edge detected on GPIOA Pin 0.

Parameters
* base — GPIO peripheral base pointer

Returns
Detected edge status flags for all pins belong to same port.

static inline uint8_t GPIO_ PinGetEdgeDetectedStatusFlag(GPIO_Type *base, gpio_pin_t ePin)
Get Edge detected status flags for one pin.

Get edge detected status flags for one pin. This status flag can only be detected when inter-
rupt detection is enabled by GPIO_PortEnableInterrupt or GPIO_PinEnablelnterrupt.

Parameters
* base — GPIO peripheral base pointer

* ¢Pin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

Return values
* 1-An edge detected.
* 0—No edge detected.

static inline void GPIO_ PortClearEdgeDetectedStatusFlags(GPIO_Type *base, uint16_t u16Pins)
Clear Edge detected status flags for multiple pins belong to same port.

Clear Edge Detected status flags for multiple pins belong to same port.
Parameters
* base — GPIO peripheral base pointer

* ul6Pins — GPIO pins which is ORed by gpio_pin_t. # kGPIO_PinO | kG-
PIO_Pin3 means Pin 0 and Pin 3.

static inline void GPIO_ PinClearEdgeDetectedStatusFlags(GPIO_Type *base, gpio_pin_t ePin)
Clear Edge detected status flags for one pin.

Clear Edge Detected status flags for one pin.
Parameters
* base — GPIO peripheral base pointer

¢ ePin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

FSL GPIO_DRIVER_ VERSION
GPIO driver version.

enum _ gpio_ pin
GPIO Pin identifier with each pin get a unique bit thus they can be ORed.

Values:

enumerator kGPIO Pin0
GPIO PORT Pin 0.

2.31. GPIO: General-Purpose Input/Output Driver 159

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kGPIO Pinl
GPIO PORT Pin 1.

enumerator kGPIO Pin2
GPIO PORT Pin 2.

enumerator kGPIO Pin3
GPIO PORT Pin 3.

enumerator kGPIO Pin4
GPIO PORT Pin 4.

enumerator kGPIO Pinb
GPIO PORT Pin 5.

enumerator kGPIO Pin6
GPIO PORT Pin 6.

enumerator kGPIO_Pin7
GPIO PORT Pin 7.

enumerator kGPIO_Pin8
GPIO PORT Pin 8.

enumerator kGPIO_Pin9
GPIO PORT Pin 9.

enumerator kGPIO_Pinl0
GPIO PORT Pin 10.

enumerator kGPIO_Pinll
GPIO PORT Pin 11.

enumerator kGPIO_ Pinl12
GPIO PORT Pin 12.

enumerator kGPIO_ Pinl3
GPIO PORT Pin 13.

enumerator kGPIO_ Pinl4
GPIO PORT Pin 14.

enumerator kGPIO_Pinl5
GPIO PORT Pin 15.

enum _gpio_ peripheral mode
GPIO Pin peripheral/gpio mode option.

Values:

enumerator kGPIO_ ModeGpio
Set GPIO pin as GPIO Mode.

enumerator kGPIO_ ModePeripheral
Set GPIO pin as Peripheral Mode.

enum _ gpio_ direction
GPIO Pin input/output direction option.

Values:

enumerator kGPIO_ Digitallnput
Set GPIO pin as digital input.

160 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kGPIO_ DigitalOutput
Set GPIO pin as digital output.

enum _ gpio_ pull_mode
GPIO Pin pull resistor mode option.

Values:

enumerator kGPIO PullDown
Internal pull-down resistor is enabled.

enumerator kGPIO_PullUp
Internal pull-up resistor is enabled.

enumerator kGPIO_PullDisable
Internal pull-up/down resistor is disabled.

enum _ gpio_ output_mode
GPIO Pin output mode option.

Values:

enumerator kGPIO_ OutputOpenDrain
Open drain output mode.

enumerator kGPIO_ OutputPushPull
Push pull output mode.

enum _ gpio_output_ level
GPIO Pin output High/Low level option.

Values:

enumerator kGPIO_ OutputLow
Set GPIO pin output low voltage level.

enumerator kGPIO_ OutputHigh
Set GPIO pin output high voltage level.

enum _ gpio_ output_ slew_ rate
GPIO Pin output Fast/Slow slew rate option.

Values:

enumerator kGPIO_SlewRateFast
Set GPIO pin output Fast slew rate.

enumerator kGPIO_SlewRateSlow
Set GPIO pin output Slow slew rate.

enum _ gpio_output_ drive_strength
GPIO Pin output High/Low drive strength option.

Values:

enumerator kGPIO_ DriveStrengthLow
Set GPIO pin output Low-drive strength.

enumerator kGPIO_ DriveStrengthHigh
Set GPIO pin output High-drive strength.

enum _ gpio_ interrupt_ mode
GPIO Pin interrupt detect option.

Values:

2.31. GPIO: General-Purpose Input/Output Driver 161

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kGPIO_ InterruptRisingEdge
Interrupt on rising edge.

enumerator kGPIO_ InterruptFallingEdge
Interrupt on falling edge.
enumerator kGPIO_ InterruptDisable
Interrupt is disabled.
typedef enum _gpio_pin gpio_pin_t
GPIO Pin identifier with each pin get a unique bit thus they can be ORed.
typedef enum _gpio_peripheral mode gpio_ peripheral mode_ t
GPIO Pin peripheral/gpio mode option.
typedef enum _gpio_direction gpio_ direction_t
GPIO Pin input/output direction option.
typedef enum _gpio_pull mode gpio_pull_mode_t
GPIO Pin pull resistor mode option.
typedef enum _gpio_output_mode gpio_output_mode_t
GPIO Pin output mode option.
typedef enum _gpio_output_level gpio_ output_level t
GPIO Pin output High/Low level option.
typedef enum _gpio_output_slew_rate gpio_output_slew_rate_t
GPIO Pin output Fast/Slow slew rate option.
typedef enum _gpio_output_drive_strength gpio_output_ drive_strength_t
GPIO Pin output High/Low drive strength option.
typedef enum _gpio_interrupt_mode gpio_ interrupt_ mode_ t
GPIO Pin interrupt detect option.

typedef struct _gpio_config gpio_ config t

GPIO Pin configuration covering all configurable fields when GPIO is configured in GPIO
mode.

GPIO_MUX_ENUM_TO_PORT INDEX(emux)

Helper MACRO function to extract Port Index. (GPIOA, GPIOB, GPIOC, and so on.) The fields
located in bit 8 - bit 11.

GPIO_MUX_ ENUM_TO_PIN_INDEX(emux)
Helper MACRO function to extract Pin Index. The fields located in bit 4 - bit 7.

GPIO_MUX_ ENUM_TO_REG_VALUE(emux)

Helper MACRO function to extract Pin mux config register value. The fields located in bit 0
- bit 1.

GPIO_MUX_ENUM_TO_PIN_MASK(emux)
Helper MACRO function to extract Pin mux config mask.

GPIO_MUX_ENUM_TO_PIN_VALUE(emux)
Helper MACRO function to extract Pin mux config register value on a GPIO Pin.

struct _ gpio_ config

#include <fsl_gpio.h> GPIO Pin configuration covering all configurable fields when GPIO is
configured in GPIO mode.

162 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

Public Members
gpio_direction_t eDirection
GPIO direction, input or output

gpio_peripheral mode_t eMode
GPIO mode as peripheral or GPIO

gpio_peripheral_ mux_t eMux
Set the peripheral type if GPIO is configured as peripheral

gpio_output_mode_t eOutMode
GPIO Open-Drain/Push-Pull output mode.

gpio_output_slew_rate_t eSlewRate
GPIO Fast/Slow slew rate output mode.

gpio_output_level t eOutLevel
GPIO Output High/Low level.

gpio_output_drive_strength_t eDriveStrength
GPIO output Drive strength High/Low.

gpio_pull mode_t ePull
GPIO Pull resistor mode configuration.

gpio_interrupt_mode_t elnterruptMode
GPIO interrupt detection condition configuration.

2.32 The Driver Change Log
2.33 GPIO Peripheral and Driver Overview

2.34 INTC: Interrupt Controller Driver

static inline void INTC_ SetIRQPriorityNum(IRQn_Type elrq, uint8_t u8PriorityNum)
Disable IRQ or Enable IRQ with priority.

There are similar function in fsl_common:
* EnableIRQWithPriority,
* DisableIRQ,
* EnablelRQ,
* IRQ_SetPriority.

This function is faster and simpler than those in fsl_common. Generally, this function and
IRQ functions in fsl_common are either-or, don’t use them together for same IRQn type, but
feasible that different IRQn type use them simultaneously, for example: It is OK OCCS_IRQn
use INTC_SetIRQPriorityLevel, and ADC12_CC1_IRQn use EnableIRQWithPriority. It is NOT
OK that OCCS_IRQn use INTC_SetIRQPriorityLevel and EnableIRQWithPriority simultane-
ously.

Note: Please note a none-zero priority number does directly map to priority level, simple
summary is as below, you could check RM INTC chapter for more details.

2.32. The Driver Change Log 163

MCUXpresso SDK Documentation, Release 25.09.00

» Some IPs have priority level 1~3, maps priority number 1 to priority 1, 2 to priority 2,
3 to priority 3.

* Some IPs have priority level 0~2, maps priority number 1 to priority 0, 2 to priority 1,
3 to priority 2.

Parameters
* elrq — The IRQ number.
* u8PriorityNum — IRQ interrupt priority number.
— 0: disable IRQ.

- 1-3: enable IRQ and set its priority, 3 is the highest priority for this IRQ
and 1 is the lowest priority.

static inline void INTC_ SetVectorBaseAddress(uint32_t u32VectorBaseAddr)

Set the base address vector table. The value in INTC_VBA is used as the upper 13 bits of the
interrupt vector VAB[20:0].

Parameters

* u32VectorBaseAddr — Vector table base address. The address requires 256
words (512 bytes) aligned. Take the vector table in MC56F83xxx_Vectors.c
as example for how to implement this table.

static inline void INTC_SetFastIRQVectorHandlerO(vector_type_t eVector, fast_irq_handler
pfHandler)

Set the IRQ handler for fast IRQO. The INTC takes the vector address from the appropriate
FIVALO and FIVAHO registers, instead of generating an address that is an offset from the
vector base address (VBA).

Parameters
* eVector — The vector number.

 pfHandler — Pointer to the fast IRQ handler function, see fast_irq_handler
definition for more info.

static inline void INTC _SetFastIRQVectorHandler1(vector_type_t eVector, fast_irq_handler
pfHandler)

Set the IRQ handler for fast IRQ1. The INTC takes the vector address from the appropriate
FIVAL1 and FIVAH1 registers, instead of generating an address that is an offset from the
vector base address (VBA).

Parameters
* eVector — The eVector number.

» pfHandler — Pointer to the fast IRQ handler function, see @ ref
fast_irq_handler definition for more info.

static inline uint8_t INTC_ GetIRQPermittedPriorityLevel(void)

Get IRQ permitted priority levels. Interrupt exceptions may be nested to allow the servicing
of an IRQ with higher priority than the current exception.

The return value indicate the priority level needed for a new IRQ to interrupt the current
interrupt being sent to the Core.

Return values
* 0 —Required nested exception priority levels are 0, 1, 2, or 3.
* 1-Required nested exception priority levels are 1, 2, or 3.

* 2 - Required nested exception priority levels are 2 or 3.

164 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

* 3—Required nested exception priority level is 3.

static inline bool INTC__ GetPendingIRQ(vector_type_t eVector)

Check if IRQ is pending for execution. Before the ISR is entered, IRQ is pending. After the
ISR is entered, the IRQ is not pending.

Parameters
* eVector — The IRQ vector number.

Return values
True — if interrupt is pending, otherwise return false.
static inline uint16_t INTC_ GetLatestRespondedVectorNumber(void)

Get the latest responded IRQ’s vector number. It shows the Vector Address Bus used at the
time the last IRQ was taken.

Note: Return value of the function call could be different according to where the function
call is invoked.

* when called in normal ISR handler, it returns current ISR’s vector number defined in
vector_type_t.

* when called in fast IRQ handler; it returns the lower address bits of the jump address.

* when called in none ISR handler code, it returns previous responded IRQ vector num-
ber defined in vector_type_t or fast IRQ low address bits.

Returns
The latest vector number.

FSL_INTC_DRIVER_ VERSION
INTC driver version.
typedef void (*fast_irq handler)(void)
The handle of the fast irq handler function.

Normally this function should be guarded by: #pragma interrupt fast and #pragma inter-
rupt off.

INTC_ DisableIRQ(X)

Macro to disable the IRQ.
INTC_PEND_ REG_INDEX(X)

Helper Macro function to extract IRQ pending register index comparing to INTC_IRQPO.
INTC_PEND_BIT INDEX(X)

Helper Macro function to extract pending IRQs bit index.
INTC_TYPE_REG_INDEX(X)

Helper Macro function to extract IRQ priority register index comparing to INTC_IRPO.

INTC_TYPE_BIT_INDEX(X)
Helper Macro function to extract IRQs priority bit index.

2.35 The Driver Change Log

2.36 INTC Peripheral and Driver Overview

2.35. The Driver Change Log 165

MCUXpresso SDK Documentation, Release 25.09.00

2.37 Common Driver

status_t EnableIRQWithPriority (IRQn_Type irq, uint8_t priNum)

Enable the IRQ, and also set the interrupt priority.

* Some IPs maps 1 to priority 1, 2 to priority 2, 3 to priority 3
* Some IPs maps 1 to priority 0, 2 to priority 1, 3 to priority 2
User should check chip’s RM to get its corresponding interrupt priority.

When priNum set as 0, then SDK_DSC_DEFAULT_INT_PRIO is set instead. When priNum set
as number larger than 3, then only the 2 LSB take effect, for example, setting priNum to 5 is
the same with setting it to 1.

This function configures INTC module, application could call the INTC driver directly for
the same purpose.

Note: The parameter priNum is range in 1~3, and its value is NOT directly map to interrupt
priority.

Parameters
* irq — The IRQ to enable.

* priNum - Priority number set to interrupt controller register. Larger num-
ber means higher priority. The allowed range is 1~3, and its value is
NOT directly map to interrupt priority. In other words, the same pri-
ority number means different interrupt priority levels for different IRQ,
please check reference manual for the relationship. When pass in 0, then
SDK_DSC_DEFAULT_INT_PRIO is set to priority register.

Returns
Currently only returns kStatus_Success, will enhance in the future.

status_t DisableIRQ(IRQn_Type irq)

Disable specific interrupt.

This function configures INTC module, application could call the INTC driver directly for
the same purpose.

Parameters
¢ irq — The IRQ to disable.

Returns
Currently only returns kStatus_Success, will enhance in the future.

status_t EnableIRQ(IRQn_Type irq)

Enable specific interrupt.

The recommended workflow is calling IRQ_SetPriority first, then call EnableIRQ. If
IRQ_SetPriority is not called first, then the interrupt is enabled with default priority value
SDK_DSC_DEFAULT_INT_PRIO.

Another recommended workflow is calling EnableIRQWithPriority directly, it is the same
with calling IRQ_SetPriority + EnableIRQ.

This function configures INTC module, application could call the INTC driver directly for
the same purpose.

Parameters

166

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

* irq — The IRQ to enable.

Returns
Currently only returns kStatus_Success, will enhance in the future.

status_t TRQ_ SetPriority(IRQn_Type irq, uint8_t priNum)
Set the IRQ priority.

* Some IPs maps 1 to priority 1, 2 to priority 2, 3 to priority 3
* Some IPs maps 1 to priority 0, 2 to priority 1, 3 to priority 2
User should check chip’s RM to get its corresponding interrupt priority

When priNum set as 0, then SDK_DSC_DEFAULT_INT_PRIO is set instead. When priNum set
as number larger than 3, then only the 2 LSB take effect, for example, setting priNum to 5 is
the same with setting it to 1.

This function configures INTC module, application could call the INTC driver directly for
the same purpose.

Note: The parameter priNum is range in 1~3, and its value is NOT directly map to interrupt
priority.

Parameters
* irq — The IRQ to set.

* priNum - Priority number set to interrupt controller register. Larger num-
ber means higher priority, 0 means disable the interrupt. The allowed
range is 0~3, and its value is NOT directly map to interrupt priority. In
other words, the same priority number means different interrupt priority
levels for different IRQ, please check reference manual for the relation-
ship.

Returns
Currently only returns kStatus_Success, will enhance in the future.
FSL COMMON_DRIVER_ VERSION
common driver version.

DEBUG_CONSOLE_DEVICE_TYPE_NONE
No debug console.

DEBUG_CONSOLE_DEVICE_TYPE_UART
Debug console based on UART.

DEBUG_CONSOLE_DEVICE_TYPE_LPUART
Debug console based on LPUART.

DEBUG_CONSOLE_DEVICE_TYPE_LPSCI
Debug console based on LPSCI.

DEBUG_CONSOLE_DEVICE_TYPE_USBCDC
Debug console based on USBCDC.

DEBUG_CONSOLE_DEVICE_TYPE_FLEXCOMM
Debug console based on FLEXCOMM.

DEBUG_CONSOLE_DEVICE_TYPE_IUART
Debug console based on i.MX UART.

2.37. Common Driver 167

MCUXpresso SDK Documentation, Release 25.09.00

DEBUG CONSOLE DEVICE TYPE VUSART
Debug console based on LPC_VUSART.

DEBUG_CONSOLE_DEVICE_TYPE_MINI_USART

Debug console based on LPC_USART.
DEBUG_CONSOLE_DEVICE_TYPE_SWO

Debug console based on SWO.
DEBUG_CONSOLE_DEVICE_TYPE_ QSCI

Debug console based on QSCI.
MIN(a, b)

Computes the minimum of a and b.
MAX(a, b)

Computes the maximum of a and b.
UINT16__MAX

Max value of uint16_t type.
UINT32_ MAX

Max value of uint32_t type.
USEC_TO_COUNT(us, clockFreqInHz)

Macro to convert a microsecond period to raw count value
COUNT_TO_USEC(count, clockFreqInHz)

Macro to convert a raw count value to microsecond
MSEC_TO_COUNT(ms, clockFreqInHz)

Macro to convert a millisecond period to raw count value
COUNT_TO_MSEC(count, clockFreqInHz)

Macro to convert a raw count value to millisecond
SDK__ALIGN(var, alignbytes)

Macro to define a variable with alignbytes alignment
AT NONCACHEABLE_SECTION(var)

AT _NONCACHEABLE_SECTION__ALIGN(var, alignbytes)
AT NONCACHEABLE_SECTION_INIT(var)
AT NONCACHEABLE SECTION ALIGN_INIT(var, alignbytes)
enum _ status__groups
Status group numbers.
Values:

enumerator kStatusGroup_ Generic
Group number for generic status codes.

enumerator kStatusGroup_ FLASH
Group number for FLASH status codes.

enumerator kStatusGroup_ LPSPI
Group number for LPSPI status codes.

enumerator kStatusGroup_ FLEXIO_ SPI
Group number for FLEXIO SPI status codes.

168

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_ DSPI

Group number for DSPI status codes.
enumerator kStatusGroup_ FLEXIO__UART

Group number for FLEXIO UART status codes.
enumerator kStatusGroup_ FLEXIO_I2C

Group number for FLEXIO I2C status codes.
enumerator kStatusGroup_ LPI2C

Group number for LPI2C status codes.
enumerator kStatusGroup_ UART

Group number for UART status codes.
enumerator kStatusGroup_ I12C

Group number for UART status codes.
enumerator kStatusGroup_ LPSCI

Group number for LPSCI status codes.
enumerator kStatusGroup_LPUART

Group number for LPUART status codes.
enumerator kStatusGroup_ SPI

Group number for SPI status code.
enumerator kStatusGroup_ XRDC

Group number for XRDC status code.
enumerator kStatusGroup_ SEMA42

Group number for SEMA42 status code.
enumerator kStatusGroup_ SDHC

Group number for SDHC status code
enumerator kStatusGroup_ SDMMC

Group number for SDMMC status code
enumerator kStatusGroup_ SAI

Group number for SAI status code
enumerator kStatusGroup_ MCG

Group number for MCG status codes.
enumerator kStatusGroup_ SCG

Group number for SCG status codes.
enumerator kStatusGroup_ SDSPI

Group number for SDSPI status codes.
enumerator kStatusGroup_ FLEXIO_ 128

Group number for FLEXIO I2S status codes
enumerator kStatusGroup_ FLEXIO__MCULCD

Group number for FLEXIO LCD status codes
enumerator kStatusGroup_ FLASHIAP

Group number for FLASHIAP status codes
enumerator kStatusGroup_ FLEXCOMM_ 12C

Group number for FLEXCOMM I2C status codes

2.37. Common Driver 169

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_ I2S
Group number for I2S status codes

enumerator kStatusGroup_ IUART

Group number for IUART status codes
enumerator kStatusGroup_ CSI

Group number for CSI status codes
enumerator kStatusGroup_ MIPI__DSI

Group number for MIPI DSI status codes
enumerator kStatusGroup_ SDRAMC

Group number for SDRAMC status codes.
enumerator kStatusGroup_ POWER

Group number for POWER status codes.
enumerator kStatusGroup_ ENET

Group number for ENET status codes.
enumerator kStatusGroup_ PHY

Group number for PHY status codes.
enumerator kStatusGroup_ TRGMUX

Group number for TRGMUX status codes.
enumerator kStatusGroup_ SMARTCARD

Group number for SMARTCARD status codes.
enumerator kStatusGroup_ LMEM

Group number for LMEM status codes.
enumerator kStatusGroup_ QSPI

Group number for QSPI status codes.
enumerator kStatusGroup_ DMA

Group number for DMA status codes.
enumerator kStatusGroup_ EDMA

Group number for EDMA status codes.
enumerator kStatusGroup_ DMAMGR

Group number for DMAMGR status codes.
enumerator kStatusGroup_ FLEXCAN

Group number for FlexCAN status codes.
enumerator kStatusGroup_LTC

Group number for LTC status codes.
enumerator kStatusGroup_ FLEXIO_CAMERA

Group number for FLEXIO CAMERA status codes.
enumerator kStatusGroup_ LPC__SPI

Group number for LPC_SPI status codes.
enumerator kStatusGroup_ LPC__USART

Group number for LPC_USART status codes.

enumerator kStatusGroup_ DMIC
Group number for DMIC status codes.

170 Chapter 2

. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_ SDIF
Group number for SDIF status codes.

enumerator kStatusGroup_ SPIFI

Group number for SPIFI status codes.
enumerator kStatusGroup_ OTP

Group number for OTP status codes.
enumerator kStatusGroup_ MCAN

Group number for MCAN status codes.
enumerator kStatusGroup_ CAAM

Group number for CAAM status codes.
enumerator kStatusGroup_ ECSPI

Group number for ECSPI status codes.
enumerator kStatusGroup_ USDHC

Group number for USDHC status codes.
enumerator kStatusGroup_LPC_12C

Group number for LPC_I2C status codes.
enumerator kStatusGroup_ DCP

Group number for DCP status codes.
enumerator kStatusGroup_ MSCAN

Group number for MSCAN status codes.
enumerator kStatusGroup_ ESAIT

Group number for ESAI status codes.
enumerator kStatusGroup_ FLEXSPI

Group number for FLEXSPI status codes.
enumerator kStatusGroup_ MMDC

Group number for MMDC status codes.
enumerator kStatusGroup_ PDM

Group number for MIC status codes.
enumerator kStatusGroup_ SDMA

Group number for SDMA status codes.
enumerator kStatusGroup_ ICS

Group number for ICS status codes.
enumerator kStatusGroup_ SPDIF

Group number for SPDIF status codes.
enumerator kStatusGroup_ LPC__MINISPI

Group number for LPC_MINISPI status codes.
enumerator kStatusGroup_ HASHCRYPT

Group number for Hashcrypt status codes
enumerator kStatusGroup_ LPC__SPI_SSP

Group number for LPC_SPI_SSP status codes.

enumerator kStatusGroup_ I13C
Group number for I3C status codes

2.37. Common Driver 171

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_LPC_I12C 1
Group number for LPC_I2C_1 status codes.

enumerator kStatusGroup_ NOTIFIER

Group number for NOTIFIER status codes.
enumerator kStatusGroup_ DebugConsole

Group number for debug console status codes.
enumerator kStatusGroup_ SEMC

Group number for SEMC status codes.
enumerator kStatusGroup__ApplicationRangeStart

Starting number for application groups.
enumerator kStatusGroup_TAP

Group number for IAP status codes
enumerator kStatusGroup_ SFA

Group number for SFA status codes
enumerator kStatusGroup_SPC

Group number for SPC status codes.
enumerator kStatusGroup_ PUF

Group number for PUF status codes.
enumerator kStatusGroup_ TOUCH__PANEL

Group number for touch panel status codes
enumerator kStatusGroup_ VBAT

Group number for VBAT status codes
enumerator kStatusGroup_ XSPI

Group number for XSPI status codes
enumerator kStatusGroup_ PNGDEC

Group number for PNGDEC status codes
enumerator kStatusGroup_JPEGDEC

Group number for JPEGDEC status codes
enumerator kStatusGroup_ AUDMIX

Group number for AUDMIX status codes
enumerator kStatusGroup_ HAL GPIO

Group number for HAL GPIO status codes.
enumerator kStatusGroup_ HAL_ UART

Group number for HAL UART status codes.
enumerator kStatusGroup_ HAL_TIMER

Group number for HAL TIMER status codes.
enumerator kStatusGroup_ HAL_SPI

Group number for HAL SPI status codes.
enumerator kStatusGroup_ HAL_12C

Group number for HAL I2C status codes.

enumerator kStatusGroup_ HAL_FLASH
Group number for HAL FLASH status codes.

172 Chapter 2

. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_ HAL_PWM
Group number for HAL PWM status codes.

enumerator kStatusGroup_ HAL_RNG

Group number for HAL RNG status codes.
enumerator kStatusGroup_ HAL_ 12S

Group number for HAL I2S status codes.
enumerator kStatusGroup_ HAL_ADC_SENSOR

Group number for HAL ADC SENSOR status codes.
enumerator kStatusGroup_ TIMERMANAGER

Group number for TIMER MANAGER status codes.
enumerator kStatusGroup_ SERTALMANAGER

Group number for SERIAL MANAGER status codes.
enumerator kStatusGroup_ LED

Group number for LED status codes.
enumerator kStatusGroup_ BUTTON

Group number for BUTTON status codes.
enumerator kStatusGroup_ EXTERN_EEPROM

Group number for EXTERN EEPROM status codes.
enumerator kStatusGroup_ SHELL

Group number for SHELL status codes.
enumerator kStatusGroup_ MEM__MANAGER

Group number for MEM MANAGER status codes.
enumerator kStatusGroup_ LIST

Group number for List status codes.
enumerator kStatusGroup_ OSA

Group number for OSA status codes.
enumerator kStatusGroup_ COMMON__ TASK

Group number for Common task status codes.
enumerator kStatusGroup_ MSG

Group number for messaging status codes.
enumerator kStatusGroup_ SDK_OCOTP

Group number for OCOTP status codes.
enumerator kStatusGroup_ SDK_FLEXSPINOR

Group number for FLEXSPINOR status codes.
enumerator kStatusGroup_ CODEC

Group number for codec status codes.
enumerator kStatusGroup_ ASRC

Group number for codec status ASRC.
enumerator kStatusGroup_ OTFAD

Group number for codec status codes.

enumerator kStatusGroup_ SDIOSLV
Group number for SDIOSLV status codes.

2.37. Common Driver 173

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_ MECC
Group number for MECC status codes.

enumerator kStatusGroup_ ENET__QOS

Group number for ENET_QOS status codes.
enumerator kStatusGroup_ LOG

Group number for LOG status codes.
enumerator kStatusGroup_ I3CBUS

Group number for I3CBUS status codes.
enumerator kStatusGroup_ QSCI

Group number for QSCI status codes.
enumerator kStatusGroup_ ELEMU

Group number for ELEMU status codes.
enumerator kStatusGroup_ QUEUEDSPI

Group number for QSPI status codes.
enumerator kStatusGroup_ POWER_MANAGER

Group number for POWER_MANAGER status codes.
enumerator kStatusGroup_ IPED

Group number for IPED status codes.
enumerator kStatusGroup_ ELS PKC

Group number for ELS PKC status codes.
enumerator kStatusGroup_ CSS_PKC

Group number for CSS PKC status codes.
enumerator kStatusGroup_ HOSTIF

Group number for HOSTIF status codes.
enumerator kStatusGroup_ CLIF

Group number for CLIF status codes.
enumerator kStatusGroup_ BMA

Group number for BMA status codes.
enumerator kStatusGroup_ NETC

Group number for NETC status codes.
enumerator kStatusGroup_ ELE

Group number for ELE status codes.
enumerator kStatusGroup_ GLIKEY

Group number for GLIKEY status codes.
enumerator kStatusGroup_ AON_POWER

Group number for AON_POWER status codes.
enumerator kStatusGroup_ AON__COMMON

Group number for AON_COMMON status codes.
enumerator kStatusGroup_ ENDAT3

Group number for ENDAT3 status codes.

enumerator kStatusGroup_ HIPERFACE
Group number for HIPERFACE status codes.

174 Chapter 2

. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_ NPX
Group number for NPX status codes.

enumerator kStatusGroup_ELA_CSEC
Group number for ELA_CSEC status codes.

enumerator kStatusGroup_ FLEXIO_T FORMAT
Group number for T-format status codes.

enumerator kStatusGroup_ FLEXIO_A_FORMAT
Group number for A-format status codes.

Generic status return codes.
Values:

enumerator kStatus_ Success
Generic status for Success.

enumerator kStatus_Fail
Generic status for Fail.

enumerator kStatus_ ReadOnly
Generic status for read only failure.

enumerator kStatus_ OutOfRange
Generic status for out of range access.

enumerator kStatus_ Invalid Argument
Generic status for invalid argument check.

enumerator kStatus_ Timeout
Generic status for timeout.

enumerator kStatus_ NoTransferInProgress
Generic status for no transfer in progress.

enumerator kStatus_ Busy
Generic status for module is busy.

enumerator kStatus_ NoData
Generic status for no data is found for the operation.

typedef int32_t status_t
Type used for all status and error return values.

uint8 t bool
void *SDK_ Malloc(size_t size, size_t alignbytes)
Allocate memory with given alignment and aligned size.
This is provided to support the dynamically allocated memory used in cache-able region.
Parameters
* size — The length required to malloc.
* alignbytes — The alignment size.

Return values
The — allocated memory.

2.37. Common Driver 175

MCUXpresso SDK Documentation, Release 25.09.00

void SDK_ Free(void *ptr)
Free memory.
Parameters
* ptr — The memory to be release.

void SDK_ DelayAtLeastUs(uint32_t delayTime_us, uint32_t coreClock_Hz)

Delay at least for some time. Please note that, this API uses while loop for delay, different
run-time environments make the time not precise, if precise delay count was needed, please
implement a new delay function with hardware timer.

Parameters
* delayTime_ us — Delay time in unit of microsecond.
* coreClock__Hz — Core clock frequency with Hz.

static inline uint32_t DisableGlobalIRQ(void)
Disable the global IRQ.

static inline void EnableGloballRQ(uint32_t irqSts)
Enable the global IRQ.

static inline bool isTRQAllowed(void)
Check if currently core is able to response IRQ.

void SDK_ DelayCoreCycles(uint32_t u32Num)

Delay core cycles. Please note that, this API uses software loop for delay, the actual delayed
time depends on core clock frequency, where the function is located (ram or flash), flash
clock, possible interrupt.

Parameters
* u32Num — Number of core clock cycle which needs to be delayed.

uint32_t SDK_ CovertUsToCount(uint32_t u32Us, uint32_t u32Hz)
Covert us to count with fixed-point calculation.

Note: u32Us must not be greater than 4294

Parameters
* u32Us - Time in us
* u32Hz - Clock frequency in Hz

Returns
The count value

uint32_t SDK_ CovertCountToUs(uint32_t u32Count, uint32_t u32Hz)
Covert count to us with fixed-point calculation.

Note: u32Hz must not be greater than 429496729UL(OXFFFFFFFFUL/10UL)

Parameters
* u32Count — Count value
* u32Hz - Clock frequency in Hz

Returns
The us value

176 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t SDK_ CovertMsToCount(uint32_t u32Ms, uint32_t u32Hz)
Covert ms to count with fixed-point calculation.

Note: u32Ms must not be greater than 42949UL @ u32Hz = 100M

Parameters
* u32Ms — Time in us
* u32Hz - Clock frequency in Hz

Returns
The count value

uint32_t SDK_ CovertCountToMs(uint32_t u32Count, uint32_t u32Hz)
Covert count to ms with fixed-point calculation.

Note: u32Hz must not be greater than 429496729UL(OXFFFFFFFFUL/10UL)

Parameters
* u32Count — Count value
* u32Hz - Clock frequency in Hz

Returns
The us value

void SDK_ DelayAtLeastMs(uint32_t delayTime_ms, uint32_t coreClock_Hz)

Delay at least for some time in millisecond unit. Please note that, this API uses while loop
for delay, different run-time environments make the time not precise, if precise delay count
was needed, please implement a new delay function with hardware timer.

Parameters
* delayTime_ms — Delay time in unit of millisecond.
¢ coreClock__Hz — Core clock frequency with Hz.

FSL_DRIVER_TRANSFER_ DOUBLE_WEAK_TRQ

Macro to use the default weak IRQ handler in drivers.
MAKE_STATUS(group, code)

Construct a status code value from a group and code number.
MAKE_ VERSION(major, minor, bugfix)

Construct the version number for drivers.

The driver version is a 32-bit number, for both 32-bit platforms(such as Cortex M) and 16-bit

platforms(such as DSC).
| Unused || Major Version || Minor Version || Bug Fix |
31 25 24 17 16 9 8 0

ARRAY _SIZE(X)

Computes the number of elements in an array.
UINT64_H(X)

Macro to get upper 32 bits of a 64-bit value

2.37. Common Driver 177

MCUXpresso SDK Documentation, Release 25.09.00

UINT64_L(X)
Macro to get lower 32 bits of a 64-bit value
SUPPRESS_FALL_ THROUGH_WARNING()

For switch case code block, if case section ends without “break;” statement, there wil be
fallthrough warning with compiler flag -Wextra or -Wimplicit-fallthrough=n when using
armgcc. To suppress this warning, “SUPPRESS_FALL_THROUGH_WARNING();” need to be
added at the end of each case section which misses “break;”statement.

true
false
SDK_ISR_EXIT_ BARRIER
SDK__DSC_DEFAULT_INT_PRIO
Default DSC interrupt priority number.

SetIRQBasePriority(X)

Set base core IRQ priority, that core will response the interrupt request with priority >=
base IRQ priority.

PeriphReadReg(reg)
Read register value.

Example: val = PeriphReadReg(OCCS->0OSCTL2);
Parameters
* reg — Register name.

Returns
The value of register.

PeriphWriteReg(reg, data)
Write data to register.

Example: PeriphWriteReg(OCCS->0OSCTL2, 0x278U);
Parameters
* reg — Register name.
* data — Data wrote to register.

PeriphSetBits(reg, bitMask)
Set specified bits in register.

Example: PeriphSetBits(OCCS->0OSCTL2, 0x12U);
Parameters
* reg — Register name.

* bitMask — Bits mask, set bits will be set in the register.

PeriphClearBits(reg, bitMask)
Clear specified bits in register.

Example: PeriphClearBits(OCCS->OSCTL2, 0x12U);

Parameters
* reg — Register name.

* bitMask — Bits mask, set bits will be cleared in the register.

178 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

PeriphInvertBits(reg, bitMask)
Invert specified bits in register.

Example: PeriphInvertBits(OCCS->OSCTL2, 0x120);
Parameters
* reg — Register name.
* bitMask — Bits mask, set bits will be inverted in the register.

PeriphGetBits(reg, bitMask)
Get specified bits in register.

Example: val = PeriphGetBits(OCCS->OSCTL2, 0x23U);
Parameters
* reg — Register name.
* bitMask — Bits mask, specify the getting bits.

Returns
The value of specified bits.

PeriphWriteBitGroup(reg, bitMask, bitValue)
Write group of bits to register.

Example: PeriphWriteBitGroup(OCCS->DIVBY, OCCS_DIVBY_COD_MASK,
OCCS_DIVBY_COD(23U)); PeriphWriteBitGroup(OCCS->DIVBY, OCCS_DIVBY_COD_MASK |
OCCS_DIVBY_PLLDB_MASK, \ OCCS_DIVBY_COD(23U) | OCCS_DIVBY_PLLDB(49U));

Parameters
* reg — Register name.
* bitMask — Bits mask, mask of the group of bits.

* bitValue — This value will be written into the bit group specified by param-
eter bitMask.

PeriphSafeClearFlags(reg, allFlagsMask, flagMask)
Clear (acknowledge) flags which are active-high and are cleared-by-write-one.

This macro is useful when a register is comprised by normal read-write bits
and cleared-by-write-one bits. Example: PeriphSafeClearFlags(PWMA->FAULT[0].FSTS,
PWM_FSTS_FFLAG_MASK, PWM_FSTS_FFLAG(2));

Parameters
* reg — Register name.

* allFlagsMask — Mask for all flags which are active-high and are cleared-by-
write-one.

» flagMask — The selected flags(cleared-by-write-one) which are supposed to
be cleared.

PeriphSafeClearBits(reg, allFlagsMask, bitMask)

Clear selected bits without modifying (acknowledge) bit flags which are active-high and are
cleared-by-write-one.

This macro is useful when a register is comprised by normal read-write bits
and cleared-by-write-one bits. Example: PeriphSafeClearBits(PWMA->FAULT[0].FSTS,
PWM_FSTS_FFLAG_MASK, PWM_FSTS_FHALF(2));

Parameters

* reg — Register name.

2.37. Common Driver 179

MCUXpresso SDK Documentation, Release 25.09.00

* allFlagsMask — Mask for all flags which are active-high and are cleared-by-
write-one.

* bitMask — The selected bits which are supposed to be cleared.

PeriphSafeSetBits(reg, allFlagsMask, bitMask)

Set selected bits without modifying (acknowledge) bit flags which are active-high and are
cleared-by-write-one.

This macro is useful when a register is comprised by normal read-write bits
and cleared-by-write-one bits. = Example: PeriphSafeSetBits(PWMA->FAULT[0].FSTS,
PWM_FSTS_FFLAG_MASK, PWM_FSTS_FHALF(2));

Parameters
* reg — Register name.

¢ allFlagsMask — Mask for all flags which are active-high and are cleared-by-
write-one.

* bitMask — The selected bits which are supposed to be set.

PeriphSafeWriteBitGroup(reg, allFlagsMask, bitMask, bitValue)

Write group of bits without modifying (acknowledge) bit flags which are active-high and
are cleared-by-write-one.

This macro is useful when a register is comprised by normal read-write bits and
cleared-by-write-one bits. Example: PeriphSafeWriteBitGroup(PWMA->FAULT[0].FSTS,
PWM_FSTS_FFLAG_MASK, PWM_FSTS_FHALF_MASK, PWM_FSTS_FHALF(3U));
PeriphSafeWriteBitGroup(PWMA->FAULT[0].FSTS, PWM_FSTS_FFLAG_MASK,
PWM_FSTS_FHALF_MASK | PWM_FSTS_FFULL_MASK, \ PWM_FSTS_FHALF(3U) |
PWM_FSTS_FFULL(2U));

Parameters
* reg — Register name.

* allFlagsMask — Mask for all flags which are active-high and are cleared-by-
write-one.

* bitMask — Bits mask, mask of the group of bits.

* bitValue — This value will be written into the bit group specified by param-
eter bitMask.

SDK__GET_REGISTER_BYTE_ADDR(ipType, ipBase, regName)
Get IP register byte address with uint32_t type.

This macro is useful when a register byte address is required, especially in SDM mode.
Example: SDK_GET_REGISTER_BYTE_ADDR(ADC_Type, ADC, RSLT[0]);

Parameters
* ipType — IP register mapping struct type.
* ipBase — IP instance base pointer, WORD address.
* regName — Member register name of IP register mapping struct.
MSDK_REG_SECURE_ADDR(X)

MSDK_REG_NONSECURE__ADDR(X)

2.38 LPI2C: Low Power Inter-Integrated Circuit Driver

180 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enum _ lpi2c_ master_status_ flags
LPI2C master peripheral flags.

The following status register flags can be cleared:
* kLPI2C_MasterEndOfPacketInterruptFlag
KkLPI2C_MasterStopDetectInterruptFlag
KLPI2C_MasterNackDetectInterruptFlag
KLPI2C_MasterArbitrationLostInterruptFlag
KkLPI2C_MasterFifoErrInterruptFlag

KkLPI2C_MasterPinLowTimeoutInterruptFlag
KLPI2C_MasterDataMatchInterruptFlag

All flags except KLPI2C_MasterBusyFlag and kLPI2C_MasterBusBusyFlag can be enabled as
interrupts.

Note: These enums are meant to be OR’d together to form a bit mask.

Values:

enumerator kLPI2C_ MasterTxReadyInterruptFlag
Transmit data interrupt flag

enumerator kLPI2C_ MasterRxReadyInterruptFlag
Receive data interrupt flag

enumerator kLPI2C_ MasterEndOfPacketInterruptFlag
End Packet interrupt flag

enumerator kLPI2C_ MasterStopDetectInterruptFlag
Stop detect interrupt flag

enumerator kLPI2C_ MasterNackDetectInterruptFlag
NACK detect interrupt flag

enumerator kLPI2C_ MasterArbitrationLostInterruptFlag
Arbitration lost interrupt flag

enumerator kLPI2C_ MasterFifoErrInterruptFlag
FIFO error interrupt flag

enumerator kLPI2C_ MasterPinLowTimeoutInterruptFlag
Pin low timeout interrupt flag

enumerator kLPI2C_ MasterDataMatchInterruptFlag
Data match interrupt flag

enumerator kLPI2C_ MasterBusyFlag
Master busy flag

enumerator kLPI2C_ MasterBusBusyFlag
Bus busy flag All flags

enumerator kLPI2C_ MasterStatusAllFlags

enumerator kLPI2C_ MasterClearInterruptFlags
All flags which are cleared by the driver upon starting a transfer.

2.38. LPI2C: Low Power Inter-Integrated Circuit Driver 181

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kLPI2C_ MasterIrqFlags
IRQ sources enabled by the non-blocking transactional API.

enumerator kLPI2C_ MasterErrorInterruptFlags
Errors to check for.

enum _ lpi2c_slave_status_ flags
LPI2C slave peripheral flags.

The following status register flags can be cleared:
* KLPI2C_SlaveRepeatedStartDetectInterruptFlag
* kLPI2C_SlaveStopDetectInterruptFlag
» KLPI2C_SlaveBitErrInterruptFlag
« kLPI2C_SlaveFifoErrinterruptFlag

All flags except kL.PI2C_SlaveBusyFlag and kL.PI2C_SlaveBusBusyFlag can be enabled as in-
terrupts.

Note: These enumerations are meant to be OR’d together to form a bit mask.

Values:

enumerator kLPI2C_ SlaveTxReadylInterruptFlag
Transmit data interrupt flag

enumerator kLPI2C_ SlaveRxReadyInterruptFlag
Receive data interrupt flag

enumerator kLPI2C_ SlaveAddressValidInterruptFlag
Address valid interrupt flag

enumerator kLPI2C_ SlaveTransmitAckInterruptFlag
Transmit ACK interrupt flag

enumerator kLPI2C_ SlaveRepeatedStartDetectInterruptFlag
Repeated start detect interrupt flag

enumerator kLPI2C_ SlaveStopDetectInterruptFlag
Stop detect interrupt flag

enumerator kLPI2C_ SlaveBitErrInterruptFlag
Bit error interrupt flag

enumerator kLPI2C_ SlaveFifoErrInterruptFlag
FIFO error interrupt flag

enumerator kLPI2C_ SlaveAddressMatchOInterruptFlag
Address match 0 interrupt flag

enumerator kLPI2C_ SlaveAddressMatchlInterruptFlag
Address match 1 interrupt flag

enumerator kLPI2C_ SlaveGeneralCalllnterruptFlag
General call interrupt flag

enumerator kLPI2C_ SlaveSmbusAlertRespInterruptFlag
SMBus alert response interrupt flag

182 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kLPI2C_ SlaveBusyFlag
Master busy flag

enumerator kLPI2C_ SlaveBusBusyFlag
Bus busy flag All flags

enumerator kLPI2C_ SlaveStatusAllFlags
enumerator kLPI2C_ SlaveClearInterruptFlags
All flags which are cleared by the driver upon starting a transfer.

enumerator kLPI2C_ SlavelrqFlags

IRQ sources enabled by the non-blocking transactional API.
enumerator kLPI2C_ SlaveErrorInterruptFlags

Errors to check for.

static inline uint16_t LPI2C_ MasterGetStatusFlags(LPI2C_Type *base)
Gets the LPI2C master status flags.

A bit mask with the state of all LPI2C master status flags is returned. For each flag, the

corresponding bit in the return value is set if the flag is asserted.

See also:

_lpi2c_master_status_{flags

Parameters
* base — The LPI2C peripheral base address.

Returns
State of the status flags:

* 1: related status flag is set.

* 0: related status flag is not set.

static inline void LPI2C_ MasterClearStatusFlags(LPI2C_Type *base, uint16_t ul6StatusFlags)

Clears the LPI2C master status flag state.

The following status register flags can be cleared:
* kLPI2C_MasterEndOfPacketInterruptFlag

KLPI2C_MasterStopDetectInterruptFlag

KkLPI2C_MasterNackDetectInterruptFlag

KLPI2C_MasterArbitrationLostInterruptFlag

KkLPI2C_MasterFifoErrinterruptFlag

KkLPI2C_MasterPinLowTimeoutInterruptFlag
KLPI2C_MasterDataMatchInterruptFlag

Attempts to clear other flags has no effect.

See also:

_lpi2c_master_status_flags.

Parameters

* base — The LPI2C peripheral base address.

2.38. LPI2C: Low Power Inter-Integrated Circuit Driver

183

MCUXpresso SDK Documentation, Release 25.09.00

» ul6StatusFlags — A bitmask of status flags that are to be cleared. The mask
is composed of _lpi2c_master_status_flags enumerators OR’d together. You
may pass the result of a previous call to LPI2C_MasterGetStatusFlags().

static inline uint16_t LPI2C_ SlaveGetStatusFlags(LPI2C_Type *base)
Gets the LPI2C slave status flags.

A bit mask with the state of all LPI2C slave status flags is returned. For each flag, the corre-
sponding bit in the return value is set if the flag is asserted.

See also:

_lpi2c_slave_status_flags

Parameters
* base — The LPI2C peripheral base address.

Returns
State of the status flags:

* 1: related status flag is set.
* 0: related status flag is not set.

static inline void LPI2C_ SlaveClearStatusFlags(LPI2C_Type *base, uint16_t ul6StatusFlags)
Clears the LPI2C status flag state.

The following status register flags can be cleared:
* KLPI2C_SlaveRepeatedStartDetectInterruptFlag
* KLPI2C_SlaveStopDetectInterruptFlag
* kLPI2C_SlaveBitErrIinterruptFlag
o kKLPI2C_SlaveFifoErrinterruptFlag

Attempts to clear other flags has no effect.

See also:

_lpi2c_slave_status_{flags.

Parameters
* base — The LPI2C peripheral base address.

* ul6StatusFlags — A bitmask of status flags that are to be cleared. The mask
is composed of _lpi2c_slave_status_flags enumerators OR’d together. You
may pass the result of a previous call to LPI2C_SlaveGetStatusFlags().

enum _ lpi2c_ master_ pin_ config
LPI2C pin configuration.
Values:

enumerator kLPI2C_ 2PinOpenDrain
LPI2C Configured for 2-pin open drain mode

enumerator kLPI2C_ 2PinOutputOnly
LPI2C Configured for 2-pin output only mode (ultra-fast mode)

enumerator kLPI2C_ 2PinPushPull
LPI2C Configured for 2-pin push-pull mode

184 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kLPI2C_ 4PinPushPull
LPI2C Configured for 4-pin push-pull mode

enumerator kLPI2C_ 2PinOpenDrainWithSeparateSlave
LPI2C Configured for 2-pin open drain mode with separate LPI2C slave

enumerator kLPI2C_ 2PinOutputOnlyWithSeparateSlave

LPI2C Configured for 2-pin output only mode(ultra-fast mode) with separate LPI2C
slave

enumerator kKLPI2C_ 2PinPushPullWithSeparateSlave
LPI2C Configured for 2-pin push-pull mode with separate LPI2C slave

enumerator kKLPI2C__4PinPushPullWithInvertedOutput
LPI2C Configured for 4-pin push-pull mode(inverted outputs)

enum _ Ipi2c_ host_ request_ source
LPI2C master host request selection.

Values:

enumerator kKLPI2C__HostRequestExternalPin
Select the LPI2C_HREQ pin as the host request input

enumerator kLPI2C_ HostRequestInputTrigger
Select the input trigger as the host request input

enum _ Ipi2c_ host_request_ polarity
LPI2C master host request pin polarity configuration.

Values:

enumerator kLPI2C_ HostRequestPinActiveLow
Configure the LPI2C_HREQ pin active low

enumerator kLPI2C_ HostRequestPinActiveHigh
Configure the LPI2C_HREQ pin active high

enum _ lpi2c_data_ match_config mode
LPI2C master data match configuration modes.

Values:

enumerator kLPI2C MatchDisabled
LPI2C Match Disabled

enumerator kLPI2C_ 1stWordEqualsM0OrM1

LPI2C Match Enabled and 1st data word equals MATCHO OR MATCH1
enumerator kLPI2C_ AnyWordEqualsM0OrM1

LPI2C Match Enabled and any data word equals MATCHO OR MATCH1
enumerator kLPI2C_ 1stWordEqualsM0And2nd WordEqualsM 1

LPI2C Match Enabled and 1st data word equals MATCHO, 2nd data equals MATCH1
enumerator kLPI2C__ AnyWordEqualsM0OAndNextWordEqualsM 1

LPI2C Match Enabled and any data word equals MATCHO, next data equals MATCH1
enumerator kLPI2C_ 1stWordAndM1EqualsMOAndM1

LPI2C Match Enabled and 1st data word and MATCHO equals MATCHO and MATCH1

enumerator kLPI2C_ AnyWord AndM1EqualsM0AndM1
LPI2C Match Enabled and any data word and MATCHO equals MATCHO and MATCH1

2.38. LPI2C: Low Power Inter-Integrated Circuit Driver 185

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _Ipi2c_master_pin_config lpi2c_ master_ pin_ config_t
LPI2C pin configuration.

typedef enum _Ipi2c_host_request_source Ipi2c__host_request__source__t
LPI2C master host request selection.

typedef enum _Ipi2c_host_request_polarity 1pi2c__host__request__polarity_t
LPI2C master host request pin polarity configuration.

typedef enum _Ipi2c_data_match_config mode lpi2c_ data_ match_ config__mode_ t
LPI2C master data match configuration modes.

typedef struct _Ipi2c_match_config Ipi2c_ data_match_ config_t
LPI2C master data match configuration structure.

void LPI2C_ MasterSetBaudRate(LPI2C_Type *base, uint32_t u32SrcClockHz, uint32_t
u32BaudRateBps)

Sets the I12C bus frequency for master transactions.

The LPI2C master is automatically disabled and re-enabled as necessary to configure the
baud rate. Do not call this function during a transfer, or the transfer is aborted.

Note: Please note that the second parameter is the clock frequency of LPI2C module, the
third parameter means user configured bus baudrate, this implementation is different from
other I2C drivers which use baudrate configuration as second parameter and source clock
frequency as third parameter.

Parameters
* base — The LPI2C peripheral base address.
* u32SrcClockHz — LPI2C functional clock frequency in Hertz.
» u32BaudRateBps — Requested bus frequency in Hertz.

void LPI2C_ MasterSetGlitchFilter(LPI2C_Type *base, uint32_t u32SdaFilterWidthNs, uint32_t
u32SclFilterWidthNs, uint32_t u32SrcClockHz)

Sets the LPI2C master glitch filter width.

After the LPI2C module is initialized as master, user can call this function to change the
glitch filter width.

Parameters
* base — The LPI2C peripheral base address.
* u32SdaFilterWidthNs — The SDA glitch filter length in nano seconds.
* u32SclFilterWidthNs — The SCL glitch filter length in nano seconds.
* u32SrcClockHz — LPI2C peripheral clock frequency in Hz

void LPI2C_ MasterSetDataMatch(LPI2C_Type *base, const lpi2c_data _match_config_t *psConfig)
Configures LPI2C master data match feature.

Parameters
* base — The LPI2C peripheral base address.
* psConfig — Settings for the data match feature.

static inline void LPI2C_ MasterReset(LPI2C_Type *base)
Performs a software reset.

Restores the LPI2C master peripheral to reset conditions.

186 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* base — The LPI2C peripheral base address.
static inline void LPI2C MasterEnable(LPI2C_Type *base, bool bEnable)
Enables or disables the LPI2C module as master.
Parameters
* base — The LPI2C peripheral base address.

* bEnable — Pass true to enable or false to disable the specified LPI2C as mas-
ter.

static inline void LPI2C_MasterSetWatermarks(LPI2C_Type *base, uint16_t u16TxWords,
uint16_t ul6RxWords)

Sets the watermarks for LPI2C master FIFOs.
Parameters
* base — The LPI2C peripheral base address.

* ul6TxWords — Transmit FIFO watermark value in words. The
kLPI2C_MasterTxReadyInterruptFlag flag is set whenever the num-
ber of words in the transmit FIFO is equal or less than ul6TxWords.
Writing a value equal or greater than the FIFO size is truncated.

* ul6RxWords - Receive FIFO watermark value in words. The
kLPI2C_MasterRxReadyInterruptFlag flag is set whenever the num-
ber of words in the receive FIFO is greater than ul6RxWords. Writing a
value equal or greater than the FIFO size is truncated.

static inline void LPI2C_ MasterGetFifoCounts(LPI2C_Type *base, uint16_t *pul6RxCount,
uint16_t *pul6TxCount)

Gets the current number of words in the LPI2C master FIFOs.
Parameters
* base — The LPI2C peripheral base address.

* pul6RxCount — Pointer through which the current number of words in the
transmit FIFO is returned. Pass NULL if this value is not required.

* pul6TxCount — Pointer through which the current number of words in the
receive FIFO is returned. Pass NULL if this value is not required.

enum _ Ipi2c_slave address match
LPI2C slave address match options.
Values:

enumerator kLPI2C Match7BitAddress0
Match only 7 bit address 0.

enumerator kLPI2C_Match10BitAddressO
Match only 10 bit address 0.

enumerator kLPI2C Match7BitAddress0Or7BitAddressl
Match either 7 bit address 0 or 7 bit address 1.

enumerator kLPI2C_Match10BitAddressOOr10BitAddressl
Match either 10 bit address 0 or 10 bit address 1.

enumerator kLPI2C _Match7BitAddress0Or10BitAddressl
Match either 7 bit address 0 or 10 bit address 1.

2.38. LPI2C: Low Power Inter-Integrated Circuit Driver 187

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kLPI2C Match10BitAddress0Or7BitAddress1
Match either 10 bit address 0 or 7 bit address 1.

enumerator kLPI2C_ Match7Bit AddressOThrough7Bit Address1
Match a range of slave addresses from 7 bit address 0 through 7 bit address 1.

enumerator kLPI2C_Match10BitAddress0Through10Bit Addressl
Match a range of slave addresses from 10 bit address 0 through 10 bit address 1.

typedef enum _Ipi2c_slave_address_match Ipi2c_slave_address match_ t
LPI2C slave address match options.

void LPI2C_ SlaveSetGlitchFilter(LPI2C_Type *base, uint32_t u32SdaFilterWidthNs, uint32_t
u32SclFilterWidthNs, uint32_t u32SrcClockHz)

Sets the LPI2C slave glitch filter width.

After the LPI2C module is initialized as slave, user can call this function to change the glitch
filter width.

Parameters
* base — The LPI2C peripheral base address.
*» u32SdaFilterWidthNs — The SDA glitch filter length in nano seconds.
¢ u32SclFilterWidthNs — The SCL glitch filter length in nano seconds.
* u32SrcClockHz — LPI2C peripheral clock frequency in Hz

void LPI2C_ SlaveSetAddressingMode(LPI2C_Type *base, lpi2c_slave_address_match_t
eAddressMatchMode, uint16_t u16Address0, uint16_t
ul6Addressi)

Configure the slave addressing mode.

After the LPI2C module is initialized as slave, user can call this function to change the con-
figuration of slave addressing mode.

Parameters
* base — The LPI2C peripheral base address.
* eAddressMatchMode — The slave addressing match mode.

* ul6AddressO — LPI2C slave address 0. For 7-bit address low 7-bit is used, for
10-bit address low 10-bit is used.

* ul6Addressl — LPI2C slave address 1. For 7-bit address low 7-bit is used, for
10-bit address low 10-bit is used.

static inline void LPI2C_ SlaveReset(LPI2C_Type *base)
Performs a software reset of the LPI2C slave peripheral.

Parameters
* base — The LPI2C peripheral base address.

static inline void LPI2C_ SlaveEnable(LPI2C_Type *base, bool bEnable)
Enables or disables the LPI2C module as slave.

Parameters
* base — The LPI2C peripheral base address.
* bEnable—Pass true to enable or false to disable the specified LPI2C as slave.

enum _ lpi2c_ data_ direction
Direction of master and slave transfers.

Values:

188 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kLPI2C Write
Master transmit.

enumerator kLPI2C Read
Master receive.

typedef enum _Ipi2c_data_direction lpi2c_ data_ direction_t
Direction of master and slave transfers.
status_t LP12C_ MasterCheckAndClearError(LPI2C_Type *base, uint16_t ul6Status)

status_t LP12C_ MasterCheckForBusyBus(LPI2C_Type *base)

status_t LPI2C_ MasterStartInternal(LPI2C_Type *base, uint8_t u8Address, lpi2c_data_direction_t
eDir, bool bIsRepeatedStart)

static inline status_t LPI2C_ MasterStart(LPI2C_Type *base, uint8_t u8Address,
lpi2¢_data_direction_t eDir)
Sends a START signal and slave address on the I12C bus.

This function is used to initiate a new master mode transfer. First, the bus state is checked
to ensure that another master is not occupying the bus. Then a START signal is transmitted,
followed by the 7-bit address specified in the address parameter. Note that this function
does not actually wait until the START and address are successfully sent on the bus before
returning.

Parameters
* base — The LPI2C peripheral base address.
* u8Address — 7-bit slave device address, in bits [6:0].

* eDir — Master transfer direction, either KLPI2C_Read or kLPI2C_WTrite. This
parameter is used to set the R/w bit (bit 0) in the transmitted slave address.

Return values

* kStatus_ Success — START signal and address were successfully enqueued in
the transmit FIFO.

* kStatus_ LPI2C_ Busy — Another master is currently utilizing the bus.

static inline status_t LPI2C_ MasterRepeatedStart(LPI2C_Type *base, uint8_t u8Address,
lpi2¢_data_direction_t eDir)

Sends a repeated START signal and slave address on the I12C bus.

This function is used to send a Repeated START signal when a transfer is already in progress.
Like LPI2C_MasterStart(), it also sends the specified 7-bit address.

Note: This function exists primarily to maintain compatible APIs between LPI2C and 12C
drivers, as well as to better document the intent of code that uses these APIs.

Parameters
* base — The LPI2C peripheral base address.
* u8Address — 7-bit slave device address, in bits [6:0].

* eDir — Master transfer direction, either KLPI2C_Read or KLPI2C_Write. This
parameter is used to set the R/w bit (bit 0) in the transmitted slave address.

Return values

* kStatus_Success— Repeated START signal and address were successfully en-
queued in the transmit FIFO.

2.38. LPI2C: Low Power Inter-Integrated Circuit Driver 189

MCUXpresso SDK Documentation, Release 25.09.00

* kStatus_ LPI2C_ Busy — Another master is currently utilizing the bus.

status_t LP12C_ MasterStop(LPI2C_Type *base)
Sends a STOP signal on the I2C bus.

This function does not return until the STOP signal is seen on the bus, or an error occurs.
Parameters
* base — The LPI2C peripheral base address.
Return values

* kStatus_ Success — The STOP signal was successfully sent on the bus and the
transaction terminated.

* kStatus_ LPI2C_ Busy — Another master is currently utilizing the bus.

* kStatus_ LPI2C_ Nak — The slave device sent a NAK in response to a byte.
* kStatus_ LPI2C_ FifoError — FIFO under run or overrun.

* kStatus LPI2C ArbitrationLost — Arbitration lost error.

* kStatus_ LPI2C_ PinLowTimeout — SCL or SDA were held low longer than
the timeout.

status_t LP12C_ MasterSend(LPI2C_Type *base, void *pTxBuff, uint16_t u16TxSize, bool
bPecEnable)

Performs a polling send transfer on the 12C bus.

Sends up to u16TxSize number of bytes to the previously addressed slave device. The slave
may reply with a NAK to any byte in order to terminate the transfer early. If this happens,
this function returns kStatus_LPI2C_Nak.

Parameters
* base — The LPI2C peripheral base address.
» pTxBuff — The pointer to the data to be transferred.
* ul6TxSize — The length in bytes of the data to be transferred.
* bPecEnable — It decides whether one byte PEC is needed to send.
Return values
* kStatus_ Success — Data was sent successfully.
* kStatus_ LPI2C_ Busy — Another master is currently utilizing the bus.
* kStatus_ LPI2C_ Nak — The slave device sent a NAK in response to a byte.
* kStatus LPI2C FifoError — FIFO under run or over run.
* kStatus_ LPI2C_ ArbitrationLost — Arbitration lost error.

* kStatus_ LPI2C_ PinLowTimeout — SCL or SDA were held low longer than
the timeout.

status_t LP12C_ MasterReceive(LPI2C_Type *base, void *pRxBuff, uint16_t u16RxSize, bool
bPecEnable)

Performs a polling receive transfer on the I12C bus.
Parameters
* base — The LPI2C peripheral base address.
* pRxBuff — The pointer to the data to be transferred.
* ul6RxSize — The length in bytes of the data to be transferred.

bPecEnable — It decides whether one byte PEC is needed to receive.

190 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

Return values
* kStatus_ Success — Data was received successfully.
* kStatus_ LPI2C_ Busy — Another master is currently utilizing the bus.
* kStatus_ LPI2C_Nak — The slave device sent a NAK in response to a byte.
* kStatus_LPI2C_ FifoError — FIFO under run or overrun.
* kStatus_ LPI2C_ ArbitrationLost — Arbitration lost error.

* kStatus_ LPI2C_ PinLowTimeout — SCL. or SDA were held low longer than
the timeout.

enum _ lpi2c_ master_transfer control flags
Transfer option flags.

Note: These enumerations are intended to be OR’d together to form a bit mask of options
for the _lpi2c_master_transfer::u8ControlFlagMask field.

Values:

enumerator kLPI2C_ TransferStartStopFlag
Transfer starts with a start signal, stops with a stop signal.

enumerator kLPI2C_ TransferNoStartFlag
Don’t send a start condition, address, and sub address

enumerator kLPI2C_ TransferRepeatedStartFlag
Send a repeated start condition

enumerator kLLPI2C_ TransferNoStopFlag
Don’t send a stop condition.

typedef struct _Ipi2c_master_transfer lpi2c_ master_ transfer_t
Ipi2c_master_transfer_t forward definition.

typedef struct _Ipi2c_master_transfer_handle Ipi2c_master transfer handle_ t
Ipi2c_master_transfer_handle_t forward definition.

typedef void (*1pi2c_ master transfer callback t)(Ilpi2c_master_transfer_handle_t *psHandle)
Master completion callback function pointer type.

This callback is used only for the non-blocking master transfer API. Specify the callback you
wish to use in the call to LPI2C_MasterTransferCreateHandle().

Param psHandle
Pointer to the LPI2C master driver handle.

status_t LPI2C_MasterTransferBlocking(LPI2C_Type *base, lpi2c_master_transfer_t *psTransfer)
Performs a master polling transfer on the I12C bus.

Note: The API does not return until the transfer succeeds or fails due to error happens
during transfer.

Parameters
* base — The LPI2C peripheral base address.
 psTransfer — Pointer to the transfer structure.

Return values

2.38. LPI2C: Low Power Inter-Integrated Circuit Driver 191

MCUXpresso SDK Documentation, Release 25.09.00

* kStatus_ Success — Data was received successfully.

* kStatus_ LPI2C_ Busy — Another master is currently utilizing the bus.

*» kStatus_ LPI2C_ Nak — The slave device sent a NAK in response to a byte.
* kStatus_ LPI2C_ FifoError — FIFO under run or overrun.

* kStatus_ LPI2C_ ArbitrationLost — Arbitration lost error.

* kStatus_ LPI2C_ PinLowTimeout — SCL or SDA were held low longer than
the timeout.

void LPI2C_ MasterTransferCreateHandle(LPI2C_Type *base, lpi2c_master_transfer_handle_t

*psHandle, lpi2c_master_transfer_callback_t
pfCallback, void *pUserData)

Creates a new handle for the LPI2C master non-blocking APIs.
The creation of a handle is for use with the non-blocking APIs. Once a handle is created,

there is not a corresponding destroy handle. If the user wants to terminate a transfer, the
LPI2C_MasterTransferAbort() API shall be called.

Note: The function also enables the NVIC IRQ for the input LPI2C. Need to notice that on
some SoCs the LPI2C IRQ is connected to INTMUX, in this case user needs to enable the

associated INTMUX IRQ in application.

Parameters
* base — The LPI2C peripheral base address.
e psHandle — Pointer to the LPI2C master driver handle.
* pfCallback — User provided pointer to the asynchronous callback function.
» pUserData — User provided pointer to the application callback data.

status_t LPI2C_MasterTransferNonBlocking(lpi2¢c_master_transfer_handle_t *psHandle,
lpi2c_master_transfer_t *psTransfer)

Performs a non-blocking transaction on the I12C bus.
Parameters
e psHandle — Pointer to the LPI2C master driver handle.
* psTransfer — The pointer to the transfer descriptor.
Return values
* kStatus_ Success — The transaction was started successfully.

* kStatus_ LPI2C_ Busy — Either another master is currently utilizing the bus,
or a non-blocking transaction is already in progress.

status_t LPI2C_MasterTransferGetCount(Ilpi2¢c_master_transfer_handle_t *psHandle, uint16_t
*pul6Count)

Returns number of bytes transferred so far.
Parameters
e psHandle — Pointer to the LPI2C master driver handle.

* pul6Count - Number of bytes transferred so far by the non-blocking trans-
action.

Return values

* kStatus Success —

192 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

* kStatus_ NoTransferInProgress — There is not a non-blocking transaction cur-
rently in progress.

void LPI2C_ MasterTransfer Abort(lpi2c_master_transfer_handle_t *psHandle)
Terminates a non-blocking LPI2C master transmission early.

Note: Itisnot safe to call this function from an IRQ handler that has a higher priority than
the LPI2C peripheral’s IRQ priority.

Parameters

* psHandle — Pointer to the LPI2C master driver handle.
Return values

* kStatus_ Success — A transaction was successfully aborted.

* kStatus_ LPI2C_ Idle — There is not a non-blocking transaction currently in
progress.

void LPI2C_ MasterTransferHandleIRQ(lpi2¢c_master_transfer_handle_t *psHandle)
Reusable routine to handle master interrupts.

Note: This function does not need to be called unless you are reimplementing the non-
blocking APT’s interrupt handler routines to add special functionality.

Parameters
* psHandle — Pointer to the LPI2C master driver handle.
enum _ lpi2c_slave_transfer_event
Set of events sent to the callback for non blocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created by
OR’ing together events is passed to LPI2C_SlaveTransferNonBlocking() in order to specify
which events to enable. Then, when the slave callback is invoked, it is passed the current
event through its transfer parameter.

Note: These enumerations are meant to be OR’d together to form a bit mask of events.

Values:
enumerator kLPI2C SlaveAddressMatchEvent
Received the slave address after a start or repeated start.
enumerator kLPI2C SlaveTransmitEvent
Callback is requested to provide data to transmit (slave-transmitter role).

enumerator kLPI2C SlaveReceiveEvent
Callbackis requested to provide a buffer in which to place received data (slave-receiver
role).

enumerator kLPI2C_SlaveTransmitAckEvent
Callback needs to either transmit an ACK or NACK.

enumerator kLPI2C_ SlaveRepeatedStartEvent
A repeated start was detected.

2.38. LPI2C: Low Power Inter-Integrated Circuit Driver 193

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kLPI2C_ SlaveCompletionEvent
A stop was detected, completing the transfer.

enumerator kLPI2C SlaveAllEvents
Bit mask of all available events.

typedef struct _Ipi2c_slave_transfer Ipi2c_slave_ transfer_t
Ipi2c_slave_transfer_t forward definition.

typedef struct _Ipi2c_slave_transfer_handle lpi2c_ slave_ transfer__handle_t
Ipi2c_slave_transfer_handle_t forward definition.

typedef void (*Ipi2c_slave transfer callback t)(Ipi2¢_slave_transfer_handle_t *psHandle)
Slave event callback function pointer type.

This callback is used only for the slave non-blocking transfer API. To install a callback, use
the LPI2C_SlaveSetCallback() function after you have created a handle.

Param psHandle
Pointer to the LPI2C slave driver handle.

typedef enum _Ipi2c_slave_transfer_event Ipi2c_ slave_transfer_event_t
Set of events sent to the callback for non blocking slave transfers.
These event enumerations are used for two related purposes. First, a bit mask created by
OR’ing together events is passed to LPI2C_SlaveTransferNonBlocking() in order to specify

which events to enable. Then, when the slave callback is invoked, it is passed the current
event through its transfer parameter.

Note: These enumerations are meant to be OR’d together to form a bit mask of events.

void LPI2C_ SlaveTransferCreateHandle(LPI2C_Type *base, lpi2c_slave_transfer_handle_t
*psHandle, Ipi2c_slave_transfer_callback_t pfCallback,
void *pUserData)

Creates a new handle for the LPI2C slave non-blocking APIs.
The creation of a handle is for use with the non-blocking APIs. Once a handle is created,

there is not a corresponding destroy handle. If the user wants to terminate a transfer, the
LPI2C_SlaveTransferAbort() API shall be called.

Note: The function also enables the NVIC IRQ for the input LPI2C. Need to notice that on
some SoCs the LPI2C IRQ is connected to INTMUX, in this case user needs to enable the
associated INTMUX IRQ in application.

Parameters
* base — The LPI2C peripheral base address.
* psHandle — Pointer to the LPI2C slave driver handle.
* pfCallback — User provided pointer to the asynchronous callback function.
*» pUserData — User provided pointer to the application callback data.

status_t LP12C_ SlaveTransferNonBlocking(Ipi2¢_slave_transfer_handle_t *psHandle, uint8_t
u8EventMask)

Starts accepting slave transfers.

Call this API after calling I12C_Slavelnit() and LPI2C_SlaveTransferCreateHandle() to start
processing transactions driven by an I2C master. The slave monitors the I12C bus and pass

194 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

events to the callback that was passed into the call to LPI2C_SlaveTransferCreateHandle().
The callback is always invoked from the interrupt context.

The set of events received by the callback is customizable. To do so, set the
eventMask parameter to the OR’d combination of lpi2c_slave_transfer_event_ t enu-
merators for the events you wish to receive. The KLPI2C_SlaveTransmitEvent and
KkLPI2C_SlaveReceiveEvent events are always enabled and do not need to be included in
the mask. Alternatively, you can pass 0 to get a default set of only the transmit and re-
ceive events that are always enabled. In addition, the KLPI2C_SlaveAllEvents constant is
provided as a convenient way to enable all events.

Parameters

 psHandle — Pointer to lpi2c_slave_transfer_handle_t structure which stores
the transfer state.

* u8EventMask - Bit mask formed by ORing together
Ipi2c_slave_transfer_event_t enumerators to specify which events to
send to the callback. Other accepted values are 0 to get a default set
of only the transmit and receive events, and kLPI2C_SlaveAllEvents to
enable all events.

Return values
* kStatus_ Success — Slave transfers were successfully started.

* kStatus_ LPI2C_ Busy — Slave transfers have already been started on this
handle.

status_t LPI2C_SlaveTransferGetCount(lpi2c_slave_transfer_handle_t *psHandle, uint16_t

*pul6Count)
Gets the slave transfer status during a non-blocking transfer.

Parameters
* psHandle — Pointer to i2c_slave_handle_t structure.

* pul6Count — Pointer to a value to hold the number of bytes transferred.
May be NULL if the count is not required.

Return values
e kStatus_ Success —

* kStatus_NoTransferInProgress —

void LPI2C_ SlaveTransferAbort(lpi2c_slave_transfer_handle_t *psHandle)

Aborts the slave non-blocking transfers.

Note: This API could be called at any time to stop slave for handling the bus events.

Parameters

* psHandle — Pointer to lpi2c_slave_transfer_handle_t structure which stores
the transfer state.

Return values

e kStatus_ Success —

* kStatus_ LPI2C_Idle -

void LPI2C_ SlaveTransferHandleIRQ(IpiZc_slave_transfer_handle_t *psHandle)

Reusable routine to handle slave interrupts.

2.38. LPI2C: Low Power Inter-Integrated Circuit Driver 195

MCUXpresso SDK Documentation, Release 25.09.00

Note: This function does not need to be called unless you are reimplementing the non
blocking API’s interrupt handler routines to add special functionality.

Parameters

 psHandle — Pointer to lpi2c_slave_transfer_handle_t structure which stores
the transfer state.

typedef struct _Ipi2c_master_config lpi2c_ master_config_t
Structure with settings to initialize the LPI2C master module.

This structure holds configuration settings for the LPI2C peripheral. To initialize this struc-
ture to reasonable defaults, call the LPI2C_MasterGetDefaultConfig() function and pass a
pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.
typedef struct _Ipi2c_slave_config pi2¢c_slave config t
Structure with settings to initialize the LPI2C slave module.

This structure holds configuration settings for the LPI2C slave peripheral. To initialize this
structure to reasonable defaults, call the LPI2C_SlaveGetDefaultConfig() function and pass
a pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.
typedef struct _Ipi2c_config lpi2c_ config_t
Structure with settings to initialize the LPI2C module.

This structure holds configuration settings for the LPI2C peripheral. To initialize this struc-
ture to reasonable defaults, call the LPI2C_GetDefaultConfig function and pass a pointer to
your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

void LPI2C_ GetDefaultConfig(lpi2c_config_t *psConfig, uint16_t ul6SlaveAddress, uint32_t
u32SrcClockHz)

Provides a default configuration for the LPI2C peripheral, including master and slave.

This is an example:

Ipi2c__config_t sConfig;

LPI2C_ GetDefaultConfig(&sConfig, ul6SlaveAddress, u32SrcClockHz);
sConfig.u32BaudRateBps = 100000U;

LPI2C_ Init(LPI2C0, &sConfig);

After calling this function, you can override any settings in order to customize the configu-
ration, prior to initializing the driver with LPI2C_Init().
Parameters

» psConfig — User provided configuration structure for default values. Refer
to lpi2c_config_t.

» ul6SlaveAddress — Slave address raw value, driver will shift it.

* u32SrcClockHz — Frequency in Hertz of the LPI2C functional clock. Used to
calculate the baud rate divisors, filter widths, and timeout periods.

void LPI2C_ Init(LPI2C_Type *base, const Ipi2c_config t *psConfig)
Initializes the LPI2C peripheral, including master and slave.

This function enables the peripheral clock and initializes the LPI2C peripheral as described
by the user provided configuration. A software reset is performed prior to configuration.

196 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

This function can enable master and slave together. If only want to use one of them, please
call LPI2C_MasterInit or LPI2C_Slavelnit.

Note: If FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL is enabled by user, the init func-
tion will not ungate 12C clock source before initialization, to avoid hardfault, user has to
manually enable ungate the clock source before calling the API.

Parameters
* base — The LPI2C peripheral base address.

* psConfig - User provided peripheral configuration. Use
LPI2C_GetDefaultConfig to get a set of defaults that you can override.

void LPI2C_ Deinit(LPI2C_Type *base)
Deinitializes the LPI2ZC peripheral, including master and slave.

This function disables the LPI2C peripheral and gates the clock. It also performs a software
reset to restore the peripheral to reset conditions.

Parameters
* base — The LPI2C peripheral base address.

void LPI2C_ MasterGetDefaultConfig(lpi2c_master_config_t *psMasterConfig, uint32_t
u32SrcClockHz)

Provides a default configuration for the LPI2C master peripheral.

This is an example:

Ipi2c__master_ config_ t sConfig;

LPI2C_ MasterGetDefaultConfig(&sConfig, 12000000U);
sConfig.u32BaudRateBps = 100000U;

LPI2C_ MasterInit(LPI2C1, &sConfig);

After calling this function, you can override any settings in order to customize the configu-
ration, prior to initializing the master driver with LPI2C_MasterInit().

Parameters

* psMasterConfig — User provided configuration structure for default values.
Refer to lpi2c_master_config_t.

* u32SrcClockHz — Frequency in Hertz of the LPI2C functional clock. Used to
calculate the baud rate divisors, filter widths, and timeout periods.

void LPI2C_ MasterInit(LPI2C_Type *base, const lpi2c_master_config t *psMasterConfig)
Initializes the LPI2C master peripheral.
This function enables the peripheral clock and initializes the LPI2C master peripheral as
described by the user provided configuration. A software reset is performed prior to con-

figuration. User just needs to call this function to enable LPI2C master if only use I2C master
operation.

Note: If FSL_SDK _DISABLE_DRIVER_CLOCK_CONTROL is enabled by user, the init func-
tion will not ungate 12C clock source before initialization, to avoid hardfault, user has to
manually enable ungate the clock source before calling the API.

Parameters

* base — The LPI2C peripheral base address.

2.38. LPI2C: Low Power Inter-Integrated Circuit Driver 197

MCUXpresso SDK Documentation, Release 25.09.00

* psMasterConfig — User provided peripheral configuration. Use
LPI2C_MasterGetDefaultConfig() to get a set of defaults that you can
override.

void LPI2C_ MasterDeinit(LPI2C_Type *base)
Deinitializes the LPI2C master peripheral.

This function disables the LPI2C master peripheral and gates the clock. It also performs a
software reset to restore the peripheral to reset conditions.

Parameters
* base — The LPI2C peripheral base address.

void LPI2C_ SlaveGetDefaultConfig(lpi2c_slave_config_t *psSlaveConfig, uint16_t
ul6SlaveAddress, uint32_t u32SrcClockHz)

Provides a default configuration for the LPI2C slave peripheral.

This is an example:

Ipi2c_slave__config_t sConfig;
LPI2C_ SlaveGetDefaultConfig(&sConfig, ul6SlaveAddress, u32SrcClockHz);
LPI2C _Slavelnit(LPI2C1, &sConfig);

After calling this function, override any settings to customize the configuration, prior
to initializing the master driver with LPI2C_Slavelnit(). Be sure to override at least the
u8AddressO member of the configuration structure with the desired slave address.

Parameters

» psSlaveConfig — User provided configuration structure that is set to default
values. Refer to lpi2c_slave_config t.

* ul6SlaveAddress — Slave address raw value, driver will shift it.

* u32SrcClockHz — Frequency in Hertz of the LPI2C functional clock. Used to
calculate the filter widths, data valid delay, and clock hold time.
void LPI2C_ Slavelnit(LPI2C_Type *base, const lpi2c_slave_config t *psSlaveConfig)
Initializes the LPI2C slave peripheral.
This function enables the peripheral clock and initializes the LPI2C slave peripheral as de-

scribed by the user provided configuration. User just needs to call this function to enable
LPI2C slave if only use I2C slave operation.

Note: If FSL_SDK _DISABLE_DRIVER_CLOCK_CONTROL is enabled by user, the init func-
tion will not ungate 12C clock source before initialization, to avoid hardfault, user has to
manually enable ungate the clock source before calling the API.

Parameters

* base — The LPI2C peripheral base address.

* psSlaveConfig - User provided peripheral -configuration. Use
LPI2C_SlaveGetDefaultConfig() to get a set of defaults that you can
override.

void LPI2C_ SlaveDeinit(LPI2C_Type *base)
Deinitializes the LPI2C slave peripheral.

This function disables the LPI2C slave peripheral and gates the clock. It also performs a
software reset to restore the peripheral to reset conditions.

Parameters

198 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

* base — The LPI2C peripheral base address.

static inline void LPI2C_ MasterEnableInterrupts(LPI2C_Type *base, uint16_t ul6Interrupts)
Enables the LPI2C master interrupt requests.

All flags except KLPI2C_MasterBusyFlag and KLPI2C_MasterBusBusyFlag can be enabled as
interrupts.

Parameters
* base — The LPI2C peripheral base address.

* ul6Interrupts — Bit mask of interrupts to enable. See
_lpi2c_master_status_flags for the set of constants that should be OR’d
together to form the bit mask.

static inline void LPI2C_ MasterDisableInterrupts(LPI2C_Type *base, uint16_t ul6Interrupts)
Disables the LPI2C master interrupt requests.

All flags except KLPI2C_MasterBusyFlag and KLPI2C_MasterBusBusyFlag can be enabled as
interrupts.

Parameters
* base — The LPI2C peripheral base address.

* ul6Interrupts — Bit mask of interrupts to disable. See
_lpi2c_master_status_flags for the set of constants that should be ORd
together to form the bit mask.

static inline uint16_t LPI2C_ MasterGetEnabledInterrupts(LPI2C_Type *base)
Returns the set of currently enabled LPI2C master interrupt requests.

Parameters
* base — The LPI2C peripheral base address.

Returns
A bitmask composed of _lpi2c_master_status_flags enumerators OR’d together
to indicate the set of enabled interrupts.

static inline void LPI2C_ SlaveEnableInterrupts(LPI2C_Type *base, uint16_t ul6Interrupts)
Enables the LPI2C slave interrupt requests.

All flags except KLPI2C_SlaveBusyFlag and kLPI2C_SlaveBusBusyFlag can be enabled as in-
terrupts.

Parameters
* base — The LPI2C peripheral base address.

» ul6Interrupts - Bit mask of interrupts to enable. See
_lpi2c_slave_status_flags for the set of constants that should be ORd
together to form the bit mask.

static inline void LPI2C _SlaveDisableInterrupts(LPI2C_Type *base, uint16_t ul6Interrupts)
Disables the LPI2C slave interrupt requests.

All flags except kLPI2C_SlaveBusyFlag and kL.PI2C_SlaveBusBusyFlag can be enabled as in-
terrupts.

Parameters
* base — The LPI2C peripheral base address.

* ul6Interrupts — Bit mask of interrupts to disable. See
_lpi2c_slave_status_flags for the set of constants that should be OR’d
together to form the bit mask.

2.38. LPI2C: Low Power Inter-Integrated Circuit Driver 199

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint16_t LPI2C_ SlaveGetEnabledInterrupts(LPI2C_Type *base)
Returns the set of currently enabled LPI2C slave interrupt requests.

Parameters
* base — The LPI2C peripheral base address.

Returns

A bitmask composed of _lpi2c_slave_status_flags enumerators OR’d together
to indicate the set of enabled interrupts.

static inline void LPI2C_MasterEnableDMA(LPI2ZC_Type *base, bool bEnableTx, bool
bEnableRx)

Enables or disables LPI2C master DMA requests.
Parameters
* base — The LPI2C peripheral base address.

* bEnableTx — Enable flag for transmit DMA request. Pass true for enable,
false for disable.

* bEnableRx — Enable flag for receive DMA request. Pass true for enable,
false for disable.

static inline uint32_t LPI2C_ MasterGetTxFifoAddress(LPI2C_Type *base)
Gets LPI2C master transmit data register address for DMA transfer.

Parameters
* base — The LPI2C peripheral base address.

Returns
The LPI2C Master Transmit Data Register address.

static inline uint32_t LPI2C_ MasterGetRxFifoAddress(LPI2ZC_Type *base)
Gets LPI2C master receive data register address for DMA transfer.

Parameters
* base — The LPI2C peripheral base address.

Returns
The LPI2C Master Receive Data Register address.

static inline void LPI2C_ SlaveEnableDMA (LPI2C_Type *base, bool bEnableAddressValid, bool
bEnableRx, bool bEnableTx)

Enables or disables the LPI2C slave peripheral DMA requests.
Parameters
* base — The LPI2C peripheral base address.

* bEnableAddressValid — Enable flag for the address valid DMA request. Pass
true for enable, false for disable. The address valid DMA request is shared
with the receive data DMA request.

* bEnableRx — Enable flag for the receive data DMA request. Pass true for
enable, false for disable.

* bEnableTx — Enable flag for the transmit data DMA request. Pass true for
enable, false for disable.

static inline bool LPI2C__ SlaveGetBusldleState(LPI2C_Type *base)
Returns whether the bus is idle.

Requires the slave mode to be enabled.

Parameters

200 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

* base — The LPI2C peripheral base address.
Return values

* true — Bus is busy.

* false — Bus is idle.

static inline void LPI2C_ SlaveTransmitAck(LPI2C_Type *base, bool bSendAck)
Transmits either an ACK or NAK on the I2C bus in response to a byte from the master.

Use this function to send an ACK or NAK when the kKLPI2C_SlaveTransmitAckInterruptFlag
is asserted. This only happens if you enable the sclStall.enableAck field of the
Ipi2c_slave_config_t configuration structure used to initialize the slave peripheral.

Parameters
* base — The LPI2C peripheral base address.
* bSendAck — Pass true for an ACK or false for a NAK.

static inline uint16_t LPI2C_ SlaveGetReceived Address(LPI2C_Type *base)
Returns the slave address sent by the I2C master.

This function should only be called if the kKLPI2C_SlaveAddressValidInterruptFlag is as-
serted.

Parameters
* base — The LPI2C peripheral base address.

Returns
The 8-bit address matched by the LPI2C slave. Bit 0 contains the R/w direction
bit, and the 7-bit slave address is in the upper 7 bits.

status_t LP12C_SlaveSend(LPI2C_Type *base, void *pTxBuff, uint16_t ul16TxSize, uint16_t
*pul6ActualTxSize)

Performs a polling send transfer on the 12C bus.
Parameters
* base — The LPI2C peripheral base address.
» pTxBuff — The pointer to the data to be transferred.
* ul6TxSize — The length in bytes of the data to be transferred.
* pul6ActualTxSize —

Returns
Error or success status returned by API.

status_t LP12C_SlaveReceive(LPI2C_Type *base, void *pRxBuff, uint16_t ul16RxSize, uint16_t
*pul6ActualRxSize)

Performs a polling receive transfer on the I12C bus.
Parameters
* base — The LPI2C peripheral base address.
» pRxBuff — The pointer to the data to be transferred.
* ul6RxSize — The length in bytes of the data to be transferred.
* pul6ActualRxSize —

Returns
Error or success status returned by APIL.

2.38. LPI2C: Low Power Inter-Integrated Circuit Driver 201

MCUXpresso SDK Documentation, Release 25.09.00

FSL LPI2C DRIVER_ VERSION
LPI2C driver version.

LPI2C status return codes.
Values:

enumerator kStatus_ LPI2C_Busy
The master is already performing a transfer.

enumerator kStatus LPI2C Idle
The slave driver is idle.

enumerator kStatus_ LPI2C_ Nak
The slave device sent a NAK in response to a byte.

enumerator kStatus LPI2C FifoError
FIFO under run or overrun.

enumerator kStatus LPI2C BitError
Transferred bit was not seen on the bus.

enumerator kStatus_ LPI2C_ArbitrationLost
Arbitration lost error.

enumerator kStatus_ LPI2C_PinLowTimeout
SCL or SDA were held low longer than the timeout.

enumerator kStatus_ LPI2C_ NoTransferInProgress

Attempt to abort a transfer when one is not in progress.

enumerator kStatus_ LPI2C__DmaRequestFail
DMA request failed.

enumerator kStatus_ LPI2C_Timeout
Timeout polling status flags.

FSL_SDK_DISABLE_DRIVER_ CLOCK__CONTROL
Clock enable/disable controlled by driver or not.

12C_RETRY_TIMES
Retry times for waiting flag.

I12C_SMBUS ENABLE
Control whether to use SMBus features.

LPI2C_GET_TRANSFER_COMPLETION_STATUS(psHandle)
LPI2C_GET_TRANSFER_USER_DATA (psHandle)
LPI2C_GET_SLAVE TRANSFER_EVENT(psHandle)
LPI2C_GET SLAVE TRANSFER DATA POINTER(psHandle)
LPI2C_GET_SLAVE TRANSFER_DATASIZE(psHandle)
LPI2C_GET_SLAVE TRANSFERRED_COUNT(psHandle)

202

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

struct _lpi2c_ master config
#include <fsl_Ipi2c.h> Structure with settings to initialize the LPI2C master module.

This structure holds configuration settings for the LPI2C peripheral. To initialize this struc-
ture to reasonable defaults, call the LPI2C_MasterGetDefaultConfig() function and pass a
pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members

bool bEnableMaster
Whether to enable master mode.

bool bEnableDoze
Whether master is enabled in doze mode.
bool bDebugEnable
Enable transfers to continue when halted in debug mode.
bool bIgnoreAck
Whether to ignore ACK/NACK.
uint16_t ePinConfig
The pin configuration option chosen from lpi2c_master_pin_config t.
struct _Ilpi2c_master._config hostRequest
Host request options.
uint32_t u32SrcClockHz
Frequency in Hertz of the LPI2C functional clock.
uint32_t u32BaudRateBps
Desired baud rate in Hertz.
uint32_t u32BusldleTimeoutNs
Bus idle timeout in nanoseconds. Set to 0 to disable.
uint32_t u32PinLowTimeoutNs
Pin low timeout in nanoseconds. Set to 0 to disable.
uint32_t u32SdaGlitchFilterWidthNs
Width in nanoseconds of glitch filter on SDA pin. Set to 0 to disable.
uint32_t u32SclGlitchFilterWidthNs
Width in nanoseconds of glitch filter on SCL pin. Set to 0 to disable.
struct _ lpi2c_slave_ config
#include <fsl_lpi2c.h> Structure with settings to initialize the LPI2C slave module.

This structure holds configuration settings for the LPI2C slave peripheral. To initialize this
structure to reasonable defaults, call the LPI2C_SlaveGetDefaultConfig() function and pass
a pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members

bool bEnableSlave
Enable slave mode.

2.38. LPI2C: Low Power Inter-Integrated Circuit Driver 203

MCUXpresso SDK Documentation, Release 25.09.00

bool bFilterDozeEnable
Enable digital glitch filter in doze mode.

bool bFilterEnable
Enable digital glitch filter.

bool bIgnoreAck
Continue transfers after a NACK is detected.

bool bEnableGeneralCall
Enable general call address matching.
bool bEnableSmbusAlert
Enable SMBus Alert.
bool bEnableReceived AddressRead
Enable reading the address received address as the first byte of data.
uint16_t eAddressMatchMode
Address matching options chosen from lpi2c_slave_address_match_t.
uint16_t ul6AddressO
Slave’s 7-bit address.
uint16_t ul6Addressl
Alternate slave 7-bit address.
uint32_t u32SdaGlitchFilterWidthNs
Width in nanoseconds of the digital filter on the SDA signal.
uint32_t u32SclGlitchFilterWidthNs
Width in nanoseconds of the digital filter on the SCL signal.
uint32_t u32DataValidDelayNs
Width in nanoseconds of the data valid delay.
uint32_t u32ClockHold TimeNs
Width in nanoseconds of the clock hold time.

uint32_t u32SrcClockHz
Frequency in Hertz of the LPI2C functional clock.

struct _lpi2c_ config

#include <fsl_lpi2c.h> Structure with settings to initialize the LPI2C module.

This structure holds configuration settings for the LPI2C peripheral. To initialize this struc-
ture to reasonable defaults, call the LPI2C_GetDefaultConfig function and pass a pointer to
your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members
bool bEnableMaster
< Master configuration. Whether to enable master mode.

bool bEnableDoze
Whether master is enabled in doze mode.

bool bDebugEnable
Enable transfers to continue when halted in debug mode.

204

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

bool bMasterIgnoreAck
Whether to ignore ACK/NACK.

uint16_t ePinConfig
The pin configuration option chosen from lpi2c_master_pin_config_t.
struct _Ipi2c_config hostRequest
Host request options.
uint32_t u32BaudRateBps
Desired baud rate in Hertz.
uint32_t u32BusldleTimeoutNs
Bus idle timeout in nanoseconds. Set to 0 to disable.
uint32_t u32PinLowTimeoutNs
Pin low timeout in nanoseconds. Set to 0 to disable.
uint32_t u32MasterSdaGlitchFilterWidthNs
Width in nanoseconds of glitch filter on SDA pin. Set to 0 to disable.
uint32_t u32MasterSclGlitchFilterWidthNs
Width in nanoseconds of glitch filter on SCL pin. Set to 0 to disable. Slave configuration.
bool bEnableSlave
Enable slave mode.
bool bFilterDozeEnable
Enable digital glitch filter in doze mode.
bool bFilterEnable
Enable digital glitch filter.
bool bSlavelgnoreAck
Continue transfers after a NACK is detected.
bool bEnableGeneralCall
Enable general call address matching.
bool bEnableSmbusAlert
Enable SMBus Alert.
bool bEnableReceived AddressRead
Enable reading the address received address as the first byte of data.
uint16_t eAddressMatchMode
Address matching options chosen from lpi2c_slave_address_match_t.
uint16_t ul6AddressO
Slave’s 7-bit address.
uint16_t ul6Addressl
Alternate slave 7-bit address.
uint32_t u32SlaveSdaGlitchFilterWidthNs
Width in nanoseconds of the digital filter on the SDA signal.
uint32_t u32SlaveSclGlitchFilterWidthNs
Width in nanoseconds of the digital filter on the SCL signal.

uint32_t u32DataValidDelayNs
Width in nanoseconds of the data valid delay.

2.38. LPI2C: Low Power Inter-Integrated Circuit Driver 205

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t u32ClockHold TimeNs
Width in nanoseconds of the clock hold time.

uint32_t u32SrcClockHz
Frequency in Hertz of the LPI2C functional clock.

struct _lpi2c_match_ config
#include <fsl_lpi2c.h> LPI2C master data match configuration structure.

Public Members

Ipi2¢c_data_match_config_ mode_t eMatchMode
Data match configuration setting.
bool bRxDataMatchOnly
When set to true, received data is ignored until a successful match.
uint8_t u8Match0
Match value 0.
uint8_t uS8Matchl
Match value 1.

struct _ lpi2c_ master_ transfer
#include <fsl_lpi2c.h> Non-blocking transfer descriptor structure.

This structure is used to pass transaction parameters to the
LPI2C_MasterTransferNonBlocking() APIL

Public Members

uint8_t u8ControlFlagMask
Bit mask of options for the transfer. See enumeration
_lpi2c_master_transfer_control_flags for available options. Set to 0 or
KLPI2C_TransferStartStopFlag for normal transfers.

uint16_t u8SlaveAddress
The 7-bit slave address.

Ipi2¢_data_direction_t eDirection
Either KLPI2C_Read or KLPI2C_Write.

uint8_t *pu8Command
Pointer to command code.

uint8_t u8CommandSize

Length of sub address to send in bytes.
void *pData

Pointer to data to transfer.
uint16_t ul6DataSize

Number of bytes to transfer.

struct _lpi2c_ master transfer handle
#include <fsl_lpi2c.h> Driver handle for master non-blocking APIs.

Note: The contents of this structure are private and subject to change.

206 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

Public Members
LPI2C_Type *base

The peripheral register address base.
uint8_t u8State

Transfer state machine current state.
uint16_t ul6RemainingBytes

Remaining byte count in current state.
uint8_t *pu8Buf

Buffer pointer for current state.
uint16_t ul6CommandBuffer[7]

LPI2C command sequence.
lpi2¢c_master_transfer_t sTransfer

Copy of the current transfer info.
lpi2¢c_master_transfer_callback_t pfCompletionCallback

Callback function pointer.
status_t completionStatus

Master transfer complete status indicating how the transfer ends.

void *pUserData
Application data passed to callback.

struct _lpi2c_slave transfer

#include <fsl_lpi2c.h> LPI2C slave transfer structure.

Public Members

uint8_t u8EventMask

Mask of enabled events, set correspond bit if user wants to handle this event.

Ipi2c_slave_transfer_event_t eEvent
Reason the callback is being invoked Ipi2c_slave_transfer_event_t.

uint16_t ul6Received Address
Matching address send by master.

uint8_t *pu8Data
Transfer buffer

uint16_t ul6DataSize
Transfer size

status_t completionStatus

Success or error code describing how the transfer completed. Only applies for

KkLPI2C_SlaveCompletionEvent.
uint16_t ul6TransferredCount

Number of bytes actually transferred since start or last repeated start.

struct _ Ipi2c_slave_transfer_handle

#include <fsl_Ipi2c.h> LPI2C slave handle structure.

Note: The contents of this structure are private and subject to change.

2.38. LPI2C: Low Power Inter-Integrated Circuit Driver

207

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

LPI2C_Type *base

The peripheral register address base.
Ipi2c_slave_transfer_t sTransfer

LPI2C slave transfer copy.

bool bIsBusy
Whether transfer is busy.

bool bWasTransmit
Whether the last transfer was a transmit.

uint8_t u8State
A transfer state maintained during transfer.

uint16_t ul6TransferredCount
Count of bytes transferred.
Ipi2c_slave_transfer_callback_t pfCallback
Callback function called at transfer event.

void *pUserData
Callback parameter passed to callback.

struct hostRequest

Public Members

bool bEnable
Whether to enable host request.
uint16_t eSource
Host request source chosen from Ipi2c_host_request_source_t.

uint16_t ePolarity
Host request pin polarity chosen from lpi2c_host_request_polarity_t.

struct sSclStall

Public Members

bool bEnableAck
Enables SCL clock stretching during slave-transmit address byte(s) and slave-receiver
address and data byte(s) to allow software to write the Transmit ACK Register before
the ACK or NACK is transmitted. Clock stretching occurs when transmitting the 9th
bit. When enableAckSCLStall is enabled, there is no need to set either enableRxDataS-
CLStall or enableAddressSCLStall.

bool bEnableTx
Enables SCL clock stretching when the transmit data flag is set during a slave-transmit
transfer.

bool bEnableRx
Enables SCL clock stretching when receive data flag is set during a slave-receive trans-
fer.

bool bEnableAddress
Enables SCL clock stretching when the address valid flag is asserted.

struct hostRequest

208 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

bool bEnable
Whether to enable host request.

uint16_t eSource
Host request source chosen from lpi2c_host_request_source_t.

uint16_t ePolarity
Host request pin polarity chosen from lpi2c_host_request_polarity_t.

struct sSclStall

Public Members

bool bEnableAck
Enables SCL clock stretching during slave-transmit address byte(s) and slave-receiver
address and data byte(s) to allow software to write the Transmit ACK Register before
the ACK or NACK is transmitted. Clock stretching occurs when transmitting the 9th
bit. When enableAckSCLStall is enabled, there is no need to set either enableRxDatasS-
CLStall or enableAddressSCLStall.

bool bEnableTx
Enables SCL clock stretching when the transmit data flag is set during a slave-transmit
transfer.

bool bEnableRx
Enables SCL clock stretching when receive data flag is set during a slave-receive trans-
fer.

bool bEnableAddress
Enables SCL clock stretching when the address valid flag is asserted.

2.39 The Driver Change Log

2.40 LPI2C_EDMA: EDMA based LPI2C Driver

void LPI2C_ MasterCreatetEDMAHandle(LPI2C_Type *base, lpi2c_master_edma_transfer_handle_t
*psHandle, Ipi2c_master_edma_transfer_callback_t
pfcallback, void *pUserData, DMA_Type *edmaBase,
edma_channel_t eEdmaTxChannel, edma_channel t
eEdmaRxChannel)

Create a new handle for the LPI2C master DMA APIs.

The creation of a handle is for use with the DMA APIs. Once a handle is created, there
is not a corresponding destroy handle. If the user wants to terminate a transfer, the
LPI2C_MasterTransferAbortEDMA() API shall be called.

For devices where the LPI2C send and receive DMA requests are OR’d together, the txDma-
Handle parameter is ignored and may be set to NULL.

Parameters
* base — The LPI2C peripheral base address.
e psHandle — Pointer to the LPI2C master driver handle.

* pfcallback — User provided pointer to the asynchronous callback function.

2.39. The Driver Change Log 209

MCUXpresso SDK Documentation, Release 25.09.00

» pUserData — User provided pointer to the application callback data.
* edmaBase — Edma base address.

* eEdmaTxChannel — eDMA channel for master transfer Tx request.

* eEdmaRxChannel — eDMA channel for master transfer Rx request.

status_t LP12C_ MasterTransferEDMA (lpi2c_master_edma_transfer_handle_t *psHandle,
Ipi2¢_master_transfer_t *psTransfer)

Performs a non-blocking DMA-based transaction on the I2C bus.

The callback specified when the handle was created is invoked when the transaction has
completed.

Parameters
* psHandle — Pointer to the LPI2C master driver handle.
* psTransfer — The pointer to the transfer descriptor.
Return values
* kStatus_ Success — The transaction was started successfully.

* kStatus_ LPI2C_ Busy — Either another master is currently utilizing the bus,
or another DMA transaction is already in progress.

status_t LP12C_MasterTransferGetCountEDMA (Ipi2c_master_edma_transfer_handle_t *psHandle,
uint16_t *pul6Count)

Returns number of bytes transferred so far.
Parameters
* psHandle — Pointer to the LPI2C master driver handle.

* pul6Count - Number of bytes transferred so far by the non-blocking trans-
action.

Return values
* kStatus Success —

* kStatus_ NoTransferInProgress — There is not a DMA transaction currently in
progress.

status_t LP12C_ MasterTransferAbortEDMA (Ipi2c_master_edma_transfer_handle_t *psHandle)
Terminates a non-blocking LPI2C master transmission early.

Note: Itisnot safe to call this function from an IRQ handler that has a higher priority than
the eDMA peripheral’s IRQ priority.

Parameters

* psHandle — Pointer to the LPI2C master driver handle.
Return values

* kStatus_ Success — A transaction was successfully aborted.

* kStatus_ LPI2C_1Idle — There is not a DMA transaction currently in
progress.

FSL LPI2C_ _EDMA DRIVER_VERSION
LPI2C EDMA driver version.

typedef struct _Ipi2c_master_edma_transfer_handle 1pi2c_ master edma_ transfer handle_t

210 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

typedef void (*1pi2c_ master__edma_ transfer_ callback_t)(Ipi2c_master_edma_transfer_handle_t
*psHandle)

Master DMA completion callback function pointer type.

This callback is used only for the non-blocking master transfer API. Specify the callback you
wish to use in the call to LPI2C_MasterCreateEDMAHandle().

Param psHandle
Handle associated with the completed transfer.

struct _lpi2c_master edma_ transfer handle
#include <fsl_lpi2¢c_edma.h> Driver handle for master DMA APIs.

Note: The contents of this structure are private and subject to change. This struct address
should be sizeof(edma_channel_tcd_t) aligned.

Public Members
edma_channel_tcd_t sRxTecd[1]
TCD for RX EDMA transfer.

edma_channel tcd_t sTxTed[3]
TCD for TX EDMA transfer.

LPI2C_Type *base
LPI2C base pointer.

bool bIsBusy
Transfer state machine current state.

uint8_t u8Nbytes
eDMA minor byte transfer count initially configured.

uint16_t ul6CommandBuffer[7]
LPI2C command sequence.

Ipi2¢c_master_transfer._t sTransfer
Copy of the current transfer info.

Ipi2¢c_master_edma_transfer_callback_t pfCallback
Callback function pointer.

status_t completionStatus
Either kStatus_Success or an error code describing how the transfer completed.

void *pUserData
Application data passed to callback.

edma_handle_t sRxDmaHandle
Handle for receive DMA channel.

edma_handle_t sTxDmaHandle
Handle for transmit DMA channel.

2.41 LPI2C Peripheral and Driver Overview

2.42 MCM: Miscellaneous Control Module Driver

2.41. LPI2C Peripheral and Driver Overview 211

MCUXpresso SDK Documentation, Release 25.09.00

static inline mem_datapath_width_t MCM__GetDataPathWidth(MCM_Type *base)
Indicates if the datapath is 32 or 64 hits wide.

Parameters
* base — MCM base address.

Returns
The device’s datapath width, please refer to mcm_datapath_width_t.

static inline uint16_t MCM__GetCrossbarSwitchSlaveConfig(MCM_Type *base)

Gets crossbar switch (AXBS) slave configuration that indicates the presence/absence of bus
slave connections to the device’s crossbar switch.

Parameters
* base — MCM base address.

Returns
Crosshar switch (AXBS) slave configuration, each bit in the return value indi-
cates if there is a corresponding connection to the AXBS slave input port. For
example if the result is 0x1, it means a bus slave connection to AXBS input
port 0 is present.

static inline uint16_t MCM_ GetCrossbarSwitchMasterConfig(MCM_Type *base)

Gets crossbar switch (AXBS) master configuration that indicates the presence/absence of
bus master connections to the device’s crosshar switch.

Parameters
* base — MCM base address.

Returns
Crossbar switch (AXBS) master configuration, each bit in the return value in-
dicates if there is a corresponding connection to the AXBS master input port.
For example if the result is 0x1, it means a bus master connection to AXBS
input port 0 is present.

static inline void MCM__ClearFlashControllerCache(MCM_Type *base)
Clears Flash Controller Cache, 1 cycle active.

Parameters
* base — MCM base address.

static inline void MCM _ DisableFlashControllerDataCaching(MCM_Type *base, bool bDisable)
Disables/Enables flash controller data caching.

Parameters
* base — MCM peripheral base address.
* bDisable — Used to enable/disable flash controller data caching.
- true Disable flash controller data caching.
- false Enable flash controller data caching.

static inline void MCM__DisableFlashControllerInstructionCaching(MCM_Type *base, bool
bDisable)

Disables/Enables flash controller instruction caching.
Parameters
* base —- MCM peripheral base address.
* bDisable — Used to enable/disable flash contoller instruction caching.

— true Disable flash controller instruction caching.

212 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

— false Enable flash controller instruction caching.

static inline void MCM__DisableFlashControllerCache(MCM_Type *base, bool bDisable)
Disables/Enables flash controller cache.

Parameters
* base —- MCM peripheral base address.
* bDisable — Used to enable/disable flash controller cache.
- true Disable flash controller cache.
- false Enable flash controller cache.

static inline void MCM __DisableFlashControllerDataSpeculation(MCM_Type *base, bool bDisable)
Disables/Enables flash controller data speculation.

Parameters
* base —- MCM peripheral base address.
* bDisable — Used to enable/disable flash controller data speculation.
— true Disable flash controller data speculation.
— false Enable flash controller data speculation.

static inline void MCM__ DisableFlashControllerSpeculation(MCM_Type *base, bool bDisable)
Disables/Enables flash controller speculation.

Parameters
* base — MCM peripheral base address.
* bDisable — Used to enable/disable flash controller speculation.
— true Disable flash controller speculation.
- false Enable flash controller speculation.

static inline void MCM__DisableDSP56800EX Corelnstructions(MCM_Type *base, bool bDisable)

Disables/Enables the instruction support only by DSP56800EX core, the instructions sup-
ported only by the DSP56800EX core are the BPSC and 32-bit multiply and MAC instructions.

Parameters
* base —- MCM peripheral base address.
* bDisable — Used to enable/disable 32-bit multiply and MAC instructions.
— true BFSC and 32-bit multiply and MAC instructions disabled.
— false BFSC and 32-bit multiply and MAC instructions enabled.

static inline void MCM__DisableCoreReverseCarry(MCM_Type *base, bool bDisable)
Disables/Enables core reverse carry.

Parameters
* base —- MCM peripheral base address.
* bDisable — Used to enable/disable reverse carry.
— true Disable bit-reverse addressing mode.
— false Enable bit-reverse addressing mode.

static inline void MCM_ DisableDSP56800EXNewShadowRegion(MCM_Type *base, bool bDisable)
Disables/Enables the additional AGU shadow registers on the DSP56800EX core.

Parameters

2.42. MCM: Miscellaneous Control Module Driver 213

MCUXpresso SDK Documentation, Release 25.09.00

* base - MCM peripheral base address.

* bDisable — Used to disable/enable the additional AGU shadow register on
the DPS core.

— true Only the AGU shadow registers supported by the DSP56800E core
are enabled.

- false The additional AGU shadow registers on the DSP56800EX core are
also enabled.

static inline void MCM _DisableCorelnstructionBuffer(MCM_Type *base, bool bDisable)
Disables/Enables core instruction buffer.

Parameters
* base —- MCM peripheral base address.
* bDisable — Used to disable/enable core longword instruction buffer.
— true Disable core longword instruction buffer.
— false Enable core longword instruction buffer.

static inline void MCM _ DisableFlashMemoryControllerStallMCM_Type *base, bool bDisable)

Disables/Enables the flash memory controller’s ability to allow flash memory access to ini-
tiate when a flash memory command is executing.

Parameters
* base —- MCM peripheral base address.
* bDisable — Used to disable/enable stall logic.

- true Stalllogicis disabled. While a flash memory command is executing,
an attempted flash memory access causes a bus error.

— false Stall logic is disabled. While a flash memory command is execut-
ing, a flash memory access can occur without causing a bus error. The
flash memory command completes execution, and then the flash mem-
Ory access occurs.

static inline void MCM__Set AxbsDM A ControllerPriority(MCM_Type *base,
mcm_axbs_dma_core_priority_t
ePriority)

Sets the priority of the DMA controller in the AXBS crossbar switch arbitration scheme.
Parameters
* base — MCM base address.

* ePriority — The selected DMA controller priority in Crossbar switch arbitra-
tion scheme, please refer to mcm_axbs_dma_core_priority_t.

static inline uint32_t MCM_ GetCoreFaultAddr(MCM_Type *base)
Gets the address of the last core access terminated with an error response.

Parameters
* base — MCM base address.

Returns
address of the last core access terminated with an error response.

void MCM__GetCoreFaultAttribute(MCM_Type *base, mcm_core_fault_attribute_t *psAttribute)
Gets the processor’s attributes of the last faulted core access to the system bus.

Parameters

* base — MCM peripheral base address.

214 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

* psAttribute — The pointer of structure mcm_core_fault_attribute_t.

static inline mcm_last_fault_access_location_t MCM_ GetCoreFaultLocation(MCM_Type *base)
Gets the location of the last captured fault.

Parameters
* base —- MCM peripheral base address.

Returns
The location of the last captured fault, please refer to
mcm_last_fault_access_location_t.

static inline uint32_t MCM__ GetCoreFaultData(MCM_Type *base)

Gets the data associated with the last faulted processor write data access from the device’s
internal bus.

Parameters
* base — MCM base address.

Returns
The data associated with the last faulted processor write data access.

static inline void MCM__EnableCoreFaultInterrupt(MCM_Type *base, bool bEnable)
Enables/Disables core fault error interrupt.

Parameters
* base - MCM peripheral base address.
* bEnable — Used to enable/disable the core fault error interrupt.

— true Enables core fault error interrupt, so an error interrupt will be gen-
erated to the interrupt controller on a faulted system bus cycle.

- false Disables core fault error interrupt, so an error interrupt will not
be generated to the interrupt controller on a faulted system bus cycle.

static inline uint8_t MCM__GetCoreFaultStatusFlags(MCM_Type *base)

Gets the core fault error status flags, including core fault error interrupt flag and core fault
error data lost flag.

Parameters
* base —- MCM peripheral base address.

Returns
The current status flags, should be the OR’ed value of _mcm_status_flags.

static inline void MCM__ClearCoreFaultStatusFlags(MCM_Type *base, uint8_t u8StatusFlags)

Clears the core fault error status flags, including core fault error interrupt flag and core
fault error data lost flag.

Parameters
* base — MCM peripheral base address.

» u8StatusFlags — The status flags to be cleared, should be the OR’ed value of
_mcm_status_flags.

static inline void MCM__EnableResourceProtection(MCM_Type *base, bool bEnable)
Enables/Disables resource protection.

Parameters
* base — MCM peripheral base address.

* bEnable — Used to enable/disable memory resource protection.

2.42. MCM: Miscellaneous Control Module Driver 215

MCUXpresso SDK Documentation, Release 25.09.00

- true Enable memory resource protection.
— false Disable memory resource protection.

static inline void MCM__LockResourceProtectionRegisters(MCM_Type *base)

Locks the value of the resource protection related registers, after locked the registers’ value
can not be changed until a system reset.

Parameters
* base — MCM peripheral base address.

status_t MCM__SetResourceProtectionConfig(MCM_Type *base, const
mcm_resource_protection_config_t *psConfig)

Sets the configuration of resource protection, including flash base address, ram base ad-
dress, etc.

Parameters
* base —- MCM peripheral base address.
* psConfig — The pointer of structure mcm_resource_protection_config_t.
Return values
* kStatus_ Success — Succeed to setting resource protection related options.
* kStatus_ Fail — Fail to set resource protection related options.

static inline uint32_t MCM__GetResourceProtectionlllegalFaultPC(MCM_Type *base)
Gets the 21-bit illegal faulting PC that only for a resource protection fault.

Parameters
* base —- MCM peripheral base address.

Returns
The resource protection illegal faulting PC.

static inline bool MCM __IsResourceProtectionIllegalFault Valid(MCM_Type *base)
Indicates whether an resource protection illegal PC fault has occurred.

Parameters
* base —- MCM peripheral base address.
Return values
* true — The resource protection illegal PC fault has occurred.
* false — The resource protection illegal PC fault has not occurred.

static inline void MCM __ClearResourceProtectionlllegalFaultValid(MCM_Type *base)
Clears the resource protection illegal fault bit.

Parameters
* base —- MCM peripheral base address.

static inline uint32_t MCM__GetResourceProtectionMisalignedFaultPC(MCM_Type *base)
Gets the 21-bit misaligned faulting PC that only for a resource protection fault.

Parameters
* base — MCM peripheral base address.

Returns
The resource protection misaligned faulting PC.

216 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

static inline bool MCM__IsResourceProtectionMisalignedFault Valid(MCM_Type *base)
Indicates whether an resource protection misaligned PC fault has occurred.

Parameters
* base — MCM peripheral base address.
Return values
* true — The resource protection misaligned PC fault has occurred.
* false — The resource protection misaligned PC fault has not occurred.
static inline void MCM __ ClearResourceProtectionMisalignedFault Valid(MCM_Type *base)
Clears the resource protection misaligned fault bit.
Parameters
* base —- MCM peripheral base address.
FSL_MCM_DRIVER_ VERSION
MCM driver version.

enum _mcm_ status_flags

The enumeration of status flags, including core fault error interrupt flag and core fault
error data lost flag.

Values:

enumerator kMCM__CoreFaultErrorInterruptFlag
A bus error has occurred.
enumerator kMCM__CoreFaultErrorDataLostFlag
A bus error has occurred before the previous error condition was cleared.
enum _mcm_ datapath_width
The enumeration of datapath width, including 32 bits and 64 bits.
Values:
enumerator kMCM_ Datapath32b
Datapath width is 32 bits.
enumerator kMCM_ Datapath64b
Datapath width is 64 bits.
enum _mcm_ axbs dma_ core_ priority
The enumeration of DMA controller priority in the Crossbar switch arbitration scheme.
Values:

enumerator kMCM__AxbsPriorityCoreHigherThanDMA

Fixed-priority arbitration is selected: DSC core has a higher priority than the DMA
Controller’s priority.

enumerator kMCM__AxbsPriorityCoreDMARoundRobin

Round-robin priority arbitration is selected: DMA Controller and DSC core have equal
priority.

enum mcm_last fault access dir
The enumeration of last faulted core access direction.
Values:

enumerator kMCM _CoreRead
Core read access.

2.42. MCM: Miscellaneous Control Module Driver 217

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kMCM_ CoreWrite
Core write access.

enum mcm last fault access size
The enumeration of last faulted core access size.

Values:

enumerator kMCM __ Access8b
Last faulted core access size is 8-bit.

enumerator kMCM_ Access16b
Last faulted core access size is 16-bit.

enumerator kMCM_ Access32b
Last faulted core access size is 32-bit.

enum _mcm_ last_ fault_ access_ type
The enumeration of last faulted core access type.
Values:

enumerator kMCM__ AccessInstruction
Last faulted core access is instruction.

enumerator kMCM__ AccessData
Last faulted core access is data.

enum mcm_last fault access location
The enumeration of last captured fault Location.

Values:

enumerator kMCM _ErrOnlnstructionBus
Error occurred on MO (instruction bus).

enumerator kMCM_ ErrOnOperand ABus
Error occurred on M1 (operand A bus).

enumerator kMCM_ ErrOnOperandBBus
Error occurred on M2 (operand B bus).
typedef enum _mcm_datapath_width mcm_ datapath_ width_t
The enumeration of datapath width, including 32 bits and 64 bits.
typedef enum _mcm_axbs_dma_core_priority mcm_axbs_dma_ core_ priority_t
The enumeration of DMA controller priority in the Crossbar switch arbitration scheme.
typedef enum _mcm _last_fault_access__dir mcm_ last_ fault__access_ dir_t
The enumeration of last faulted core access direction.
typedef enum _mcm_last_fault_access_size mcm_ last_ fault_access_size t
The enumeration of last faulted core access size.
typedef enum _mcm_last_fault_access_type mcm_ last_fault_access_type_t
The enumeration of last faulted core access type.
typedef enum _mcm_last_fault_access_location mem_ last_ fault_access location_ t
The enumeration of last captured fault Location.

typedef struct _mcm_core_fault_attribute mcm_ core_ fault_ attribute_t
The structure of core fault attributes, contains access type, access size, access direction, etc.

218 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _mcm_resource_protection_config mcm__resource_ protection__config_t

The structure of the resource protection config, the set value can be used only when the
resource protection is enabled, and this value can be changed only when the resource pro-
tection is disabled.

struct _mecm_ core_fault attribute

#include <fsl_mcm.h> The structure of core fault attributes, contains access type, access size,
access direction, etc.

Public Members
mcm_last_fault_access_type_t eType
Indicates the last faulted core access type, please refer to mcm_last_fault_access_type_t.

uint8_t bitReservedl
Reserved 1 bit.

bool bBufferable
Indicates if last faulted core access was bufferable.

 true Last faulted core access is bufferable.
 false Last faulted core access is non-bufferable.

uint8_t bitReserved?2

Reserved 1 bit.
mcm_last_fault_access_size_t eSize

Indicates last faulted core access size.
mcem_last_fault_access_dir_t eDirection

Indicates the last faulted core access direction.

struct _mcm_ resource_ protection_ config

#include <fsl_mcm.h> The structure of the resource protection config, the set value can be
used only when the resource protection is enabled, and this value can be changed only
when the resource protection is disabled.

Public Members
bool bEnableResourceProtection
Enable/Disable resource protection.
* true Enable Resource protection.
» false Disable Resource protection.

uint8_t u8FlashBaseAddress

Flash base address for user region, supports 4 KB granularity.
uint8_t uSRamBaseAddress

Program RAM base address for user region, support 256 byte granularity.
uint32_t u32BootRomBaseAddress

Boot ROM base address for user region

uint32_t u32ResourceProtectionOtherSP
Resource protection other stack pointer.

2.42. MCM: Miscellaneous Control Module Driver 219

MCUXpresso SDK Documentation, Release 25.09.00

2.43 The Driver Change Log
2.44 MCM Peripheral and Driver Overview

2.45 OPAMP: Operational Amplifier Driver

void OPAMP_ Init(OPAMP_Type *base, const opamp_config_t *psConfig)
Initializes the OPAMP module.

This function does initialization when using OPAMP module. The operations are:
* Enable the clock for OPAMP.
* Enable the write protection.
* Enable the load completion interrupt.
* Set configuration register for OPAMP.
* Set Positive channel and Negative channel.
* Set the power mode.
* Set the gain value.
* Set the load mode.
* Enable the OPAMP.

Parameters
* base — OPAMP peripheral base address.
» psConfig — Pointer to configuration structure.See opamp_config_t.

void OPAMP_ GetDefaultConfig(opamp_config_t *psConfig)
Gets default configuration for OPAMP.

The default value:

psConfig->bEnableLoad CompletionInterrupt = false;
psConfig->bEnableWriteProtection = false;
psConfig->eLoadMode = kOPAMP__LoadModeDelayLoad;
psConfig->ePowerMode = kOPAMP__PowerModeLowPower;
psConfig->eConfigRegSel = kOPAMP_ ConfigRegSel CFGO;

psConfig->sConfigSet0.eWorkMode = kOPAMP_ WorkModeBufferMode;
psConfig->sConfigSet0.eNegChannel = kOPAMP_ NegChannel0;
psConfig->sConfigSet0.ePosChannel = kOPAMP__PosChannel0;

psConfig->sConfigSet1.eWorkMode = kOPAMP_ WorkModeBufferMode;
psConfig->sConfigSet1.eNegChannel = kOPAMP_ NegChannel0;
psConfig->sConfigSet1.ePosChannel = kOPAMP_ PosChannel0;

psConfig->sConfigSet2.eWorkMode = kOPAMP__ WorkModeBufferMode;
psConfig->sConfigSet2.eNegChannel = kOPAMP_ NegChannel0;
psConfig->sConfigSet2.ePosChannel = kOPAMP_ PosChannel0;

psConfig->sConfigSet3.eWorkMode = kOPAMP__ WorkModeBufferMode;

psConfig->sConfigSet3.eNegChannel = kOPAMP_NegChannel0;
psConfig->sConfigSet3.ePosChannel = kOPAMP__PosChannel0;

Parameters

220 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

* psConfig — Pointer to configuration structure.
void OPAMP_ Deinit(OPAMP_Type *base)
De-initializes the OPAMP module.
This function does de-initialization when using OPAMP module. The operations are:
 Disable the OPAMP.
* Disable the clock for OPAMP.

Parameters
* base — OPAMP peripheral base address.

void OPAMP_ SetOneConfigSet(OPAMP_Type *base, opamp_config set_index_t eIndex, const
opamp_config_set_t *psConfigSet)

Sets configuration set.

This function only sets the configuration set, application should call
OPAMP_EnableConfigload to enable the load after setting all desired configuration
sets.

Parameters
* base — OPAMP peripheral base address.

* eIndex — Index of configuration set,please see opamp_config set_index_t
for details.

» psConfigSet — Pointer to the configure structure,please see
opamp_config_set_t for details.

void OPAMP_ SetConfigSelection(OPAMP_Type *base, opamp_config reg sel t eConfigRegSel)
Changes configuration register selection.

This function can configure the working registers of the software and external signal. When
the configuration set is updated using OPAMP_SetOneConfigSet and the external signal is
not used, the software working register should also select the corresponding software work-
ing register according to the update of the configuration set.

Parameters
* base — OPAMP peripheral base address.

* eConfigRegSel — configuration register selection, please see
opamp_config_reg_sel t for details.

static inline void OPAMP_ EnableOPAMP(OPAMP_Type *base, bool bEnable)
Enables the OPAMP.

Note: Please use function OPAMP_EnableOPAMP to re-enable the OPAMP if it is disabled.
Then load it with function OPAMP_EnableConfigLoad.

Parameters
* base — OPAMP peripheral base address.
* bEnable — Enables/disables the module.

static inline void OPAMP__EnableConfigLoad(OPAMP_Type *base)
Enables the new configuration load.

After configuration load enabled, the new set configuration will be loaded at the
time determined by load mode. Application could monitor the load completion by

2.45. OPAMP: Operational Amplifier Driver 221

MCUXpresso SDK Documentation, Release 25.09.00

OPAMP_CheckLoadCompletionFlag or the interrupt. When the load finishes, the config-
uration load shall be disabled automatically.

Parameters
* base — OPAMP peripheral base address.

static inline void OPAMP_ DisableWriteProtection(OPAMP_Type *base)
Disables write protection.

Write 10b to this field to disable the write protection.
Parameters
* base — OPAMP peripheral base address.

static inline void OPAMP_ SetPowerMode(OPAMP_Type *base, opamp_power_mode_t
ePowerMode)

Changes the power mode.
Parameters
* base — OPAMP peripheral base address.
* ePowerMode — Power mode, please see opamp_power_mode_t for details.

static inline void OPAMP_ SetLoadMode(OPAMP_Type *base, opamp_load_mode_t eLoadMode)
Changes the load mode.

Parameters
* base — OPAMP peripheral base address.
* eLoadMode —load mode, please see opamp_load_mode_t for details.

static inline void OPAMP__EnableLoadCompletionInterrupt(OPAMP_Type *base)
Enables load completion interrupt.

Parameters
* base — OPAMP peripheral base address.

static inline void OPAMP_ DisableLoadCompletionInterrupt(OPAMP_Type *base)
Disables load completion interrupt.

Parameters
* base — OPAMP peripheral base address.

static inline bool OPAMP__ CheckLoadCompletionFlag(OPAMP_Type *base)
Checks the configuration load completion flag status.

Parameters
* base — OPAMP peripheral base address.

Returns
Return true if the flag is set, otherwise return false.

static inline void OPAMP __ ClearLoadCompletionFlag(OPAMP_Type *base)
Clears the configuration load completion flag.

Parameters
* base — OPAMP peripheral base address.

FSL OPAMP_DRIVER_VERSION
OPAMP driver version.

222 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enum _opamp_ config_reg sel

The enumeration lists all options for software controlled opamps and other external signal
controlled opamps.

Values:
enumerator kOPAMP_ ConfigRegSel CFGO

Software work register select CFGO (internal signal).
enumerator kOPAMP__ ConfigRegSelCFG1

Software work register select CFG1 (internal signal).
enumerator kOPAMP__ ConfigRegSelCFG2

Software work register select CFG2 (internal signal).
enumerator kOPAMP__ ConfigRegSelCFG3

Software work register select CFG3 (internal signal).
enumerator kOPAMP__ ConfigRegSelA10rA0Q

External signal cfg_sel_al or cfg_sel_a0 selects configuartion register.
enumerator kOPAMP__ ConfigRegSelA10rB0

External signal cfg_sel_al or cfg_sel b0 selects configuartion register.
enumerator kOPAMP__ ConfigRegSelA10rCO0

External signal cfg_sel_al or cfg_sel_c0 selects configuartion register.
enumerator kOPAMP__configRegSelB10rA0

External signal cfg_sel_b1 or cfg_sel_a0 selects configuartion register.
enumerator kOPAMP_ configRegSelB10rB0

External signal cfg_sel_b1 or cfg_sel_bO0 selects configuartion register.
enumerator kOPAMP__configRegSelB10rC0

External signal cfg_sel_b1 or cfg_sel_c0 selects configuartion register.
enumerator kOPAMP_ ConfigRegSelC10rA0

External signal cfg_sel_c1 or cfg_sel_a0 selects configuartion register.
enumerator kOPAMP_ ConfigRegSelC10rB0

External signal cfg_sel_c1 or cfg_sel_bO0 selects configuartion register.
enumerator kOPAMP__ ConfigRegSelC10rC0

External signal cfg_sel_c1 or cfg_sel_c0 selects configuartion register.

enum _ opamp_load_mode
The enumeration lists the opamp buffer’s loading modes, delay loading and immediately
loading modes.
Values:

enumerator kOPAMP_ LoadModeDelayLoad

The buffer registers are loaded when the next configuration is complete, if
CTRL[LDOK] is set.

enumerator kOPAMP__ LoadModelmmediatelyLoad
The buffer register shall be loaded immediately after CTRL[LDOK] is set.

enum 7opamp7power7mode

The enumeration lists the power modes of the opamp, including low power and high power
modes.

Values:

2.45. OPAMP: Operational Amplifier Driver 223

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kOPAMP PowerModeLowPower

Lower current consumption with slower slew rate and narrower unity gain bandwidth
performance.

enumerator kOPAMP__ PowerModeHighSpeed

Higher current consumption with higher slew rate and wider unity gain bandwidth
performance.

enum _ opamp_ positive_channel
The enumeration of positive input channel selection.
Values:
enumerator kOPAMP_PosChannel0
Positive channel 0.
enumerator kOPAMP_PosChannell
Positive channel 1.
enumerator kOPAMP_PosChannel2
Positive channel 2.
enumerator kOPAMP__ PosChannel3
Positive channel 3.
enum _ opamp_ negative_channel
The enumeration of negative input channel selection.
Values:
enumerator kOPAMP_ NegChannelO
Negative channel 0.
enumerator kOPAMP_ NegChannell
Negative channel 1.
enumerator kOPAMP_ NegChannel2
Negative channel 2.
enumerator kOPAMP__ NegChannel3
Negative channel 3.
enum _opamp_ config_set_ index
The enumeration of configuration set index.
Values:
enumerator kOPAMP__ConfigSet0
Configuration set 0.
enumerator kOPAMP_ ConfigSet1
Configuration set 1.
enumerator kOPAMP_ ConfigSet2
Configuration set 2.
enumerator kOPAMP_ ConfigSet3
Configuration set 3.

enum _ opamp_ work mode

The enumeration lists the operating modes of the opamp, including buffer mode, internal
gain and external gain mode.

Values:

224 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kOPAMP_ WorkModeBufferMode
Buffer mode.
enumerator kOPAMP WorkModelnternalGain2X
Internal gain 2X mode.
enumerator kOPAMP WorkModelnternalGain4X
Internal gain 4X mode.
enumerator kOPAMP_ WorkModelnternalGain8X
Internal gain 8X mode.
enumerator kOPAMP_ WorkModelnternalGain16X
Internal gain 16X mode.
enumerator kOPAMP__WorkModeExternalGain
External gain mode.
typedef enum _opamp_config reg sel opamp_ config_reg sel t
The enumeration lists all options for software controlled opamps and other external signal
controlled opamps.
typedef enum _opamp_load_mode opamp_ load_mode_ t
The enumeration lists the opamp buffer’s loading modes, delay loading and immediately
loading modes.
typedef enum _opamp_power_mode opamp_ power__mode__t
The enumeration lists the power modes of the opamp, including low power and high power
modes.
typedef enum _opamp_positive_channel opamp_ positive_ channel t
The enumeration of positive input channel selection.

typedef enum _opamp_negative_channel opamp_ negative channel t
The enumeration of negative input channel selection.

typedef enum _opamp_config_set_index opamp_ config_set_index_t
The enumeration of configuration set index.

typedef enum _opamp_work_mode opamp_ work_mode_t

The enumeration lists the operating modes of the opamp, including buffer mode, internal
gain and external gain mode.

typedef struct _opamp_config set opamp_ config_set_t
Configuration set information.

typedef struct _opamp_config opamp_ config_t
Configuration structure.

struct _opamp_ config_set
#include <fsl_opamp.h> Configuration set information.

Public Members
opamp_work_mode_t eWorkMode
Opamp work mode.

opamp_negative_channel_t eNegChannel
Negative channel selection.

2.45. OPAMP: Operational Amplifier Driver 225

MCUXpresso SDK Documentation, Release 25.09.00

opamp_positive_channel_t ePosChannel
Positive channel selection.

struct _opamp_ config
#include <fsl_opamp.h> Configuration structure.

Public Members
bool bEnableLoadCompletionInterrupt
Enable load completion interrupt

bool bEnableWriteProtection
Enable write protection.

opamp_load_mode_t eLoadMode
Configuration load mode.

opamp_power_mode_t ePowerMode
Configuration Power mode.

opamp_config_reg_sel t eConfigRegSel
Selects configuration register.

opamp_config_set_t sConfigSet0
Configuration register set 0.

opamp_config_set_t sConfigSet1
Configuration register set 1.

opamp_config_set_t sConfigSet2
Configuration register set 2.

opamp_config_set_t sConfigSet3
Configuration register set 3.

2.46 The Driver Change Log
2.47 OPAMP Peripheral and Driver Overview

2.48 PIT: Periodic Interrupt Timer (PIT) Driver

void PIT_ Init(PIT_Type *base, const pit_config t *psConfig)
Ungates the PIT clock, configures the PIT features. The configurations are:

* Clock source selection for PIT module

* Prescaler configuration to the input clock source
* PIT period interval

* PIT slave mode enable/disable

* Interrupt enable/disable

* PIT timer enable/disable

* Preset Polarity positive edge/negative edge

226 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

Note: This API should be called at the beginning of the application using the PIT driver
and call PIT_StartTimer() API to start PIT timer.

Parameters
* base — PIT peripheral base address
* psConfig — Pointer to the user’s PIT config structure

void PIT_ Deinit(PIT_Type *base)
Gates the PIT clock and disables the PIT module.

Parameters
* base — PIT peripheral base address

void PIT_ GetDefaultConfig(pit_config_t *psConfig)
Fill in the PIT config structure with the default settings.

This function initializes the PIT configuration structure to default values.

psConfig->eClockSource = kPIT__CountClockSource0;
psConfig->bEnableTimer = false;

psConfig->bEnableSlaveMode = false;

psConfig->ePrescaler = kPIT _PrescalerDivBy1;
psConfig->bEnablelnterrupt = false;
psConfig->u32PeriodCount = OxFFFFFFFEFU;
psConfig->bEnableNegativeEdge = false;
psConfig->sPresetFilter.ul6FilterSamplePeriod = 0x0U;
psConfig->sPresetFilter.ul6FilterSampleCount = 0x0U;
psConfig->sPresetFilter.bFilterClock = true;
psConfig->sPresetFilter.eFilterPrescalerPeripheral = kPIT_ PrescalerDivBy1;
psConfig->sSyncSource.u8StretchCount = 0x0U;
psConfig->sSyncSource.eSyncOutSel = kPIT _Syncout_ Default;

Parameters
* psConfig — Pointer to user’s PIT config structure.

static inline void PIT_EnableSlaveMode(PIT_Type *base, bool bEnable)
Enable/Disable PIT slave mode.

Parameters
* base — PIT peripheral base address
* bEnable — enable/disable slave mode

static inline void PIT SetTimerPrescaler(PIT_Type *base, pit_prescaler_value_t ePrescaler)
Sets the PIT clock prescaler.

Parameters
* base — PIT peripheral base address
* ePrescaler — Timer prescaler value

static inline void PIT _SetTimerPeriod(PIT_Type *base, uint32_t u32PeriodCount)
Sets the timer period in units of count.

Timers begin counting from 0 until it reaches the value set by this function, then it generates
an interrupt and counter resumes counting from 0 again.

Note: Users can call the utility macros provided in fsl_common.h to convert to ticks.

2.48. PIT: Periodic Interrupt Timer (PIT) Driver 227

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* base — PIT peripheral base address

* u32PeriodCount — Timer period in units of ticks, use macro definition
MSEC_TO_COUNT to convert value in ms to count of ticks, the PIT clock
rate is source clock divide prescaler.

static inline uint32_t PIT_ GetCurrentTimerCount(PIT_Type *base)
Reads the current timer counting value.

This function returns the real-time timer counting value, in a range from 0 to a timer period.

Note: Users can call the utility macros provided in fsl_common.h to convert ticks to usec
or msec.

Parameters
* base — PIT peripheral base address

Returns
Current timer counting value in ticks, use macro definition COUNT_TO_MSEC
to convert value in ticks to count of millisecond, the PIT clock rate is source
clock divide prescaler.

static inline void PIT _StartTimer(PIT_Type *base)
Starts the timer counting.

After calling this function, timers load period value, count down to 0 and then load the
respective start value again. Each time a timer reaches 0, it generates a trigger pulse and
sets the timeout interrupt flag.

Parameters
* base — PIT peripheral base address

static inline void PIT_ StopTimer(PIT_Type *base)
Stops the timer counting.

This function stops timer counting, and the counter remains at or returns to a 0 value.
Parameters
* base — PIT peripheral base address

static inline void PIT__EnableInterrupt(PIT_Type *base)
Enables the PIT interrupts.

Parameters
* base — PIT peripheral base address

static inline void PIT_ DisableInterrupt(PIT_Type *base)
Disables the selected PIT interrupts.

Parameters
* base — PIT peripheral base address

static inline uint16_t PIT_ GetStatusFlags(PIT_Type *base)
Gets the PIT status flags.

Parameters

* base — PIT peripheral base address

228 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

Returns
The status flags. This is the logical OR of members of the enumeration
_pit_status_flags

static inline void PIT__ClearStatusFlags(PIT_Type *base)
Clears the PIT status flags.

Parameters
* base — PIT peripheral base address

static inline void PIT_ SetPresetFiltConfig(PIT_Type *base, const pit_config filt t psConfig)
Set FILT configurations.

Parameters
* base — PIT peripheral base address
* psConfig — Pointer to user’s PIT FILT config structure

static inline void PIT_SetSyncOutConfig(PIT_Type *base, const pit_config ctrl2_t psConfig)
Set Sync configurations.

Parameters
* base — PIT peripheral base address
* psConfig — Pointer to user’s PIT SYNC config structure

FSL PIT DRIVER VERSION
PIT driver version.

enum _ pit_ prescaler_ value
PIT clock prescaler values.

Values:

enumerator kPIT_ PrescalerDivByl
Clock divided by 1

enumerator kPIT_ PrescalerDivBy2
Clock divided by 2

enumerator kPIT_ PrescalerDivBy4
Clock divided by 4

enumerator kPIT_ PrescalerDivBy8
Clock divided by 8

enumerator kPIT_ PrescalerDivBy16
Clock divided by 16

enumerator kPIT_ PrescalerDivBy32
Clock divided by 32

enumerator kPIT_ PrescalerDivBy64
Clock divided by 64

enumerator kPIT_ PrescalerDivBy128
Clock divided by 128

enumerator kPIT_ PrescalerDivBy256
Clock divided by 256

enumerator kPIT_ PrescalerDivBy512
Clock divided by 512

2.48. PIT: Periodic Interrupt Timer (PIT) Driver 229

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPIT_PrescalerDivBy1024
Clock divided by 1024

enumerator kPIT_ PrescalerDivBy2048
Clock divided by 2048

enumerator kPIT_ PrescalerDivBy4096
Clock divided by 4096

enumerator kPIT_ PrescalerDivBy8192
Clock divided by 8192

enumerator kPIT_PrescalerDivBy16384
Clock divided by 16384

enumerator kPIT_PrescalerDivBy32768
Clock divided by 32768

enum _ pit_ status_ flags
List of PIT status flags.

Values:

enumerator kPIT_ Timer_ RollOverFlag
Timer roll over flag

enum _ pit_ syncout_ mode
List of SYNC_OUT output mode.

Values:

enumerator kPIT Syncout_ Default
SYNC_OUT takes affect when PIT counter equals to the MODULO value (default)
enumerator kPIT_Syncout_ Toggle
SYNC_OUT is in toggle mode
typedef enum _pit_prescaler_value pit_ prescaler value_t
PIT clock prescaler values.
typedef enum _pit_syncout_mode pit_syncout_mode_t
List of SYNC_OUT output mode.
typedef struct _pit_config_filt pit_ config_filt_t
PIT FILT configuration structure.

This structure holds the configuration settings for the PIT FILT register. To initialize this
structure to reasonable defaults, call the PIT_GetDefaultConfig() function and pass a pointer
to your config structure instance.

The configuration structure can be made constant so it resides in flash.

typedef struct _pit_config_ctrl2 pit_ config_ ctrl2_t
PIT CTRL2 configuration structure.

This structure holds the configuration settings for the PIT CTRL2 register. To initialize this
structure to reasonable defaults, call the PIT_GetDefaultConfig() function and pass a pointer
to your config structure instance.

The configuration structure can be made constant so it resides in flash.

230 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _pit_config pit_ config_t
PIT configuration structure.

This structure holds the configuration settings for the PIT peripheral. To initialize this struc-
ture to reasonable defaults, call the PIT_GetDefaultConfig() function and pass a pointer to
your config structure instance.

The configuration structure can be made constant so it resides in flash.

struct _ pit_ config_filt
#include <fsl_pit.h> PIT FILT configuration structure.

This structure holds the configuration settings for the PIT FILT register. To initialize this
structure to reasonable defaults, call the PIT_GetDefaultConfig() function and pass a pointer
to your config structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members
bool bFilterClock
Filter Clock Source selection.

pit_prescaler_value_t eFilterPrescalerPeripheral
Sets the peripheral clock prescaler.

uint8_t ul6FilterSampleCount
Input Filter Sample Count.

uint8_t ul6FilterSamplePeriod
Input Filter Sample Period.

struct _ pit_ config_ ctrl2
#include <fsl_pit.h> PIT CTRL2 configuration structure.

This structure holds the configuration settings for the PIT CTRL2 register. To initialize this
structure to reasonable defaults, call the PIT_GetDefaultConfig() function and pass a pointer
to your config structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members
uint8_t u8StretchCount

The cycle number to be stretched for SYNC_OUT signal.
pit_syncout_mode_t eSyncOutSel

Select the output mode of SYNC_OUT.

struct _ pit_ config
#include <fsl_pit.h> PIT configuration structure.

This structure holds the configuration settings for the PIT peripheral. To initialize this struc-
ture to reasonable defaults, call the PIT_GetDefaultConfig() function and pass a pointer to
your config structure instance.

The configuration structure can be made constant so it resides in flash.

2.48. PIT: Periodic Interrupt Timer (PIT) Driver 231

MCUXpresso SDK Documentation, Release 25.09.00

Public Members
pit_prescaler_value_t ePrescaler
Clock prescaler value

bool bEnablelnterrupt
Enable PIT Roll-Over Interrupt

bool bEnableSlaveMode

Enable the PIT module in slave mode, in which mode the timer will be triggered by
master PIT enable.

bool bEnableTimer
PIT timer enable flag, which is false by default

pit_count_clock_source_t eClockSource
Specify the PIT count clock source

uint32_t u32PeriodCount

Timer period in clock cycles, Use macro definition MSEC_TO_COUNT to convert value
in ms to count of ticks, the COP clock rate is source clock divide prescaler.

bool bEnableNegativeEdge
choose the polarity of Preset input.

pit_config filt_t sPresetFilter
Specify the PIT preset filter source

pit_config_ctrl2_t sSyncSource
Specify the PIT Sync source

2.49 The Driver Change Log
2.50 PIT Peripheral and Driver Overview

2.51 PMC: Power Management Controller Driver

static inline void PMC_ SetBandgapTrim(PMC_Type *base, uint8_t u8TrimValue)
Sets the trim value of the bandgap reference in the regulator.

Parameters
* base — PMC peripheral base address.
* u8TrimValue — The bandgap’s trim value, ranges from 0 to 15.

static inline void PMC_ EnableVoltageReferenceBuffer(PMC_Type *base, bool bEnable)
Enables/Disables a buffer that drivers the 1.2V bandgap reference to the ADC.

If the users want to calibrate the ADC using the 1.2V reference voltage, then the voltage
reference buffer should be enabled. When ADC calibration is not being performed, the
voltage reference buffer should be disabled to save power.

Parameters
* base — PMC peripheral base address.
* bEnable — Used to control the behaviour of voltage reference buffer.

- true Enable voltage reference buffer.

232 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

— false Disable voltage reference buffer.

static inline void PMC_ EnableInterrupts(PMC_Type *base, uint16_t ul6Interrupts)

Enables the interrups, including 2.2V high voltage interrupt, 2.7V/2.65V high voltage inter-
rupt, 2.2V low voltage interrupt, 2.7V/2.65V low voltage interrupt.

Parameters
* base — PMC peripheral base address.

¢ ul6Interrupts — The interupts to be enabled, should be the OR’ed value of
_pmc_interrupt_enable.

static inline void PMC_ DisableInterrupts(PMC_Type *base, uint16_t ul6Interrupts)

Disables the interrups, including 2.2V high voltage interrupt, 2.7V/2.65V high voltage inter-
rupt, 2.2V low voltage interrupt, 2.7V/2.65V low voltage interrupt.

Parameters
* base — PMC peripheral base address.

* ul6Interrupts — The interupts to be disabled, should be the OR’ed value of
_pmc_interrupt_enable.

static inline uint16_t PMC_ GetStatusFlags(PMC_Type *base)

Gets the status flags of PMC module, such as low voltage interrpt flag, small regulator 2.7
active flag, etc.

Parameters
* base — PMC peripheral base address.

Returns
The status flags of PMC module, should be the OR’ed value of
_pmc_status_{flags.

static inline void PMC_ ClearStatusFlags(PMC_Type *base, uint16_t ul6StatusFlags)

Clears the status flags of PMC module, only low voltage interrupt flag, sticky 2.7V/2.65V low
voltage flag, and sticky 2.2V low voltage flag can be cleared.

Parameters
* base — PMC peripheral base address.

* ul6StatusFlags - The status flags to be cleared, should be
the ORed value of kPMC_LowVoltagelnterruptFlag, and
kPMC_Sticky2P7VLowVoltageFlag/kPMC_Sticky2P65VLowVoltageFlag,
and kPMC_Sticky2P2VLowVoltageFlag,

static inline void PMC_ SetVrefTrim(PMC_Type *base, uint16_t ul6TrimValue)
Sets the trim value of the Vref reference in the regulator.

Parameters
* base — PMC peripheral base address.
* ul6TrimValue — The Vref’s trim value, ranges from 0 to 31.

static inline void PMC_ SetVcapTrim(PMC_Type *base, uint16_t ul6TrimValue)
Sets the trim value of the Vacp reference in the regulator.

Parameters
* base — PMC peripheral base address.
* ul6TrimValue — The Vacp’s trim value, ranges from 0 to 15.

FSL PMC DRIVER_ VERSION
PMC driver version.

2.51. PMC: Power Management Controller Driver 233

MCUXpresso SDK Documentation, Release 25.09.00

enum _ pmc__interrupt__enable
The enumeration of PMC voltage detection interrupts.

Values:

enumerator kPMC_ 2P2VLow VoltagelnterruptEnable

If the input supply is currently dropped below the 2.2V level, generate the low voltage
interrupt.

enumerator kPMC_ 2P2VHighVoltagelnterruptEnable

If the input supply is currently raised above the 2.2V level, generate the low voltage
interrupt.

enumerator kPMC_ AlllnterruptsEnable
enum _ pmc_ status_ flags

The enumeration of PMC status flags.

Values:

enumerator kPMC_ SmallRegulator2P7VActiveFlag
The small regulator 2.7V supply is ready to be used.

enumerator kPMC_ Low VoltageInterruptFlag

The low voltage interrupt flag, used to indicate whether the low voltage interrupt is
asserted.

enumerator kPMC_ Sticky2P2VLow VoltageFlag

Input supply has dropped below the 2.2V threshold. This sticky flag indicates that the
input supply dropped below the 2.2V level at some point.

enumerator kPMC_ 2P2VLow VoltageFlag
Input supply is below the 2.2V threshold.

enumerator kPMC__AllStatusFlags

2.52 The Driver Change Log
2.53 PMC Peripheral and Driver Overview

2.54 eFlexPWM: Enhanced Flexible Pulse Width Modulator
Driver

void PWM__Init(PWM_Type *base, const pwm_config_t *psConfig)
Initialization PWM module with provided structure pwm_config_t.

This function can initial one or more submodules of the PWM module.

This examples shows how only initial submodule 0 without fault protection channel.

pwm_ config t sPwmConfig = {0};

pwm_ sm__config t sSPwmSmOConfig;

sPwmConfig. psPwmSubmoduleConfig[0] = &sPwmSmO0Config;
PWM_ GetSmDefaultConfig(&sPwmSmO0Config);

PWM_ Init(PWM, sPwmConfig);

234 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

Note: This API should be called at the beginning of the application using the PWM driver.

Parameters
* base - PWM peripheral base address.
* psConfig — Pointer to PWM module configure structure. See pwm_config_t.

void PWM_ Deinit(PWM_Type *base)
De-initialization a PWM module.

Parameters
* base — PWM peripheral base address

void PWM__GetSMDefaultConfig(pwm_sm_config_t *psConfig)
Gets an default PWM submodule’s configuration.

This function fills in the initialization structure member, which can make submodule gen-
erate 50% duty cycle center aligned PWM_A/B output.

The default effective values are:

psConfig->enableDebugMode = false;

psConfig->enableWaitMode = false;

psConfig->enableRun = false;

psConfig->sCounterConfig.eCountClockSource = kPWM__ClockSrcBusClock;
psConfig->sCounterConfig.eCountClockPrescale = kPWM__ClockPrescaleDividel;
psConfig->sCounterConfig.eCountInitSource = kPWM _ InitOnLocalSync;
psConfig->sReloadConfig.eReloadSignalSelect = kPWM__LocalReloadSignal;
psConfig->sReloadConfig.eLoclReloadEffect Time = kPWM__ TakeEffect AtReloadOportunity;
psConfig->sReloadConfig.eLocalReloadOportunity = kPWM _LoadEveryOportunity;
psConfig->sReloadConfig.bEnableFullCycleReloadOportunity = true;
psConfig->sReloadConfig.bEnableHalfCycleReloadOportunity = false;
psConfig->sValRegisterConfig.ul6CounterlnitialValue = 0xFF00U;
psConfig->sValRegisterConfig.ul6ValRegister0 = 0x0U;
psConfig->sValRegisterConfig.ul6ValRegisterl = 0x00FEFU;
psConfig->sValRegisterConfig.ul6ValRegister2 = 0xFEF80U;
psConfig->sValRegisterConfig.ul6ValRegister3 = 0x80U;
psConfig->sValRegisterConfig.ul6ValRegisterd = 0xFF80U;
psConfig->sValRegisterConfig.ul6 ValRegister5 = 0x80U;
psConfig->sForceConfig.eForceSignalSelect = kPWM __LocalSoftwareForce;
psConfig->sForceConfig.eSoft OutputFor23 = kPWM__SoftwareOutputLow;
psConfig->sForceConfig.eSoft OutputFord5 = kPWM__SoftwareOutputLow;
psConfig->sForceConfig.eForceOutput23 = kPWM__GeneratedPwm;
psConfig->sForceConfig.eForceOutputd5 = kPWM__Generated Pwm;
psConfig->sDead TimeConfig.eMode = kPWM__Independent;
psConfig->sOutputConfig.ePwmXSignalSelect = kPWM_ RawPwmX;
psConfig->sOutputConfig.bEnablePwmxOutput = true;
psConfig->sOutputConfig.bEnablePwmaOutput = true;
psConfig->sOutputConfig.bEnablePwmbOutput = true;
psConfig->sOutputConfig.ePwmxFaultState = kPWM__ OutputLowOnFault;
psConfig->sOutputConfig.ePwmaFaultState = kPWM__OutputLowOnFault;
psConfig->sOutputConfig.ePwmbFaultState = kPWM__ OutputLowOnFault;

Parameters

» psConfig — Pointer to user’s PWM submodule config structure. See
pwm_sm_config _t.

void PWM__GetFaultProtectionDefaultConfig(pwm_fault_protection_config t *psConfig)
Gets an default fault protection channel’s configuration.

2.54. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 235

MCUXpresso SDK Documentation, Release 25.09.00

The default effective values are:

psConfig->sFaultInput[i].eFaultActiveLevel = kPWM_ Logic0;
psConfig->sFaultInput[i]. bEnableAutoFaultClear = true;
psConfig->sFaultInput[i]. bEnableFaultFullCycleRecovery = true;

Parameters

* psConfig — Pointer to user’s PWM fault protection config structure. See
pwm_fault_protection_config_t.

void PWM__SetupSMConfig(PWM_Type *base, pwm_sm_number._t eSubModule, const
pwm_sm_config_t *psConfig)

Sets up the PWM submodule configure.
Parameters
* base — PWM peripheral base address
* eSubModule - PWM submodule number, see pwm_sm_number_t.

* psConfig - Pointer to submodule configure structure, see
pwm_sm_config_t.

static inline void PWM__SetupCounterConfig(PWM_Type *base, pwm_sm_number_t eSubModule,
const pwm_sm_counter._config_t *psConfig)

Sets up the PWM submodule counter configure.
Parameters
* base — PWM peripheral base address
* eSubModule - PWM submodule number, see pwm_sm_number_t.

* psConfig — Pointer to submodule counter configure structure, see
pwm_sm_counter_config_t.

static inline void PWM__ SetCounterInitialValue(PWM_Type *base, pwm_sm_number._t
eSubModule, uint16_t ul6InitialValue)

Sets the PWM submodule counter initial register value.

This function set the INIT register value, the counter will start counting from INIT register
value when initial signal assert or software force set. This write value will be loaded into
inner set of buffered registers according to reload logic configure.

Parameters
* base — PWM peripheral base address
* eSubModule - PWM submodule number, see pwm_sm_number_t.
* ul6InitialValue — The submodule number counter initialize value.

static inline void PWM__ SetupReloadLogicConfig(PWM_Type *base, pwm_sm_number._t
eSubModule, const
pwm_sm_reload_logic_config t *psConfig)

Sets up the PWM submodule reload logic configure.
Parameters
* base —- PWM peripheral base address.
* eSubModule — PWM submodule number, see pwm_sm_number_t.

* psConfig — Pointer to submodule reload logic configure structure, see
pwm_sm_reload_logic_config_t.

236 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

void PWM__GetValueConfig(pwm_sm_value_register_config_t *psConfig,
pwm_sm_typical_output_mode_t eTypicalOutputMode, uint16_t
ul6PwmPeriod, uint16_t ul6PwmAPulseWidth, uint16_t

ul6PwmBPulseWidth)
Update PWM submodule compare value configuration according to the typical output
mode.
Parameters

¢ psConfig — See pwm_sm_config_t.

* ¢TypicalOutputMode - Typical PWM_A/B output mode. See
pwm_sm_typical_output_mode_t.

* ul6PwmPeriod - PWM output period value in counter ticks. This value can
be got by (main counter clock in Hz) / (wanted PWM signal frequency in
Hz).

* ul6PwmAPulseWidth - PWM_A pulse width value in counter ticks. Can got
by (wanted PWM duty Cycle) * ul16PwmPeriod.

* ul6PwmBPulseWidth - PWM_B pulse width value in counter ticks. Can got
by (wanted PWM duty Cycle) * ul6PwmPeriod.

static inline void PWM__SetupValRegisterConfig(PWM_Type *base, pwm_sm_number._t
eSubModule, const
pwm_sm_value_register_config_t *psConfig)

Sets up the PWM submodule VALn registers logic configure.
Parameters
* base —- PWM peripheral base address.
* eSubModule - PWM submodule number, see pwm_sm_number_t.

* psConfig — Pointer to VALn registers configure structure, see
pwm_sm_value_register_config_t.

static inline void PWM__ SetValueRegister(PWM_Type *base, pwm_sm_number_t eSubModule,
pwm_sm_val_register_t eRegister, uint16_t ul6Value)

Sets the PWM submodule VALn register value.

Note: These write value will be loaded into inner set of buffered registers according to
reload logic configure.

Parameters
* base - PWM peripheral base address.
* eSubModule — PWM submodule number, see pwm_sm_number_t.
* eRegister — Value register index (range in 0~5), see pwm_sm_val_register_t.
* ul6Value — The value for VALn register.

static inline uint16_t PWM_ GetValueRegister(PWM_Type *base, pwm_sm_number_t
eSubModule, pwm_sm_val_register_t eRegister)

Gets the PWM submodule VALn register value.
Parameters
* base - PWM peripheral base address.
* eSubModule - PWM submodule number, see pwm_sm_number_t.

* cRegister — Value register index (range in 0~5), see pwm_sm_val_register_t.

2.54. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 237

MCUXpresso SDK Documentation, Release 25.09.00

Returns
The VALn register value.

static inline void PWM_ SetFracvalRegister(PWM_Type *base, pwm_sm_number_t eSubModule,
pwm_sm_fracval_register_t eRegister, uint16_t
ul6Value)

Sets the PWM submodule fractional value register value.

Note: These write value will be loaded into inner set of buffered registers according to
reload logic configure.

Parameters
* base - PWM peripheral base address.
* eSubModule — PWM submodule number, see pwm_sm_number_t.

* eRegister — Fractional value register index (range in 1~5), see
pwm_sm_val_register_t.

* ul6Value — The value for FRACVALN register.

static inline uint16_t PWM__GetFracvalRegister(PWM_Type *base, pwm_sm_number._t
eSubModule, pwm_sm_fracval_register_t
eRegister)

Sets the PWM submodule fractional value register value.
Parameters
* base —- PWM peripheral base address.

* eSubModule - PWM submodule number, see pwm_sm_number_t.

* cRegister — Fractional value register index (range in 1~5), see
pwm_sm_fracval_register_t.
Returns
The VALn FRACVALN value.

static inline void PWM __SetValueAndFracRegister(PWM_Type *base, pwm_sm_number._t
eSubModule, pwm_sm_fracval_register_t
eRegister, uint32_t u32value)

Set submodule register VALx and its FRAC value with 32bit access.
Parameters
* base —- PWM peripheral base address.
* eSubModule — Submodule ID.

* cRegister — Fractional value register index (range in 1~5), see
pwm_sm_fracval_register_t.

* u32Value — 32bit value for VALx and its FRAC. VALX: BIT16~BIT31. FRAC-
VALX: BIT11~BIT15. RESERVED: BIT10~BITO.

static inline uint32_t PWM_ GetValueAndFracRegister(PWM_Type *base, pwm_sm_number._t
eSubModule, pwm_sm_fracval_register_t
eRegister)

Get submodule register VALx and its FRAC value with 32bit access.
Parameters
* base —- PWM peripheral base address.
* eSubModule — Submodule ID.

238 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

* eRegister — Fractional value register index (range in 1~5), see
pwm_sm_{fracval_register_t.

Returns
The value of submodule register VALx and its FRAC, combined into 32bit.
VALX: BIT16~BIT31. FRACVALX: BIT11~BIT15. RESERVED: BIT10~BITO.

static inline void PWM__SetPwmLdok(PWM_Type *base, uint16_t ul6Mask)
Set the PWM LDOK bit on a single or multiple submodules.
Enable this feature can make buffered CTRL[PRSC] and the INIT, FRACVAL and VAL registers
values take effect after next local load signal assert. The timing of take effect can be the

next PWM reload or immediately. After loading, MCTRL[LDOK] is automatically cleared
and need to enable again before the next register updated.

Note: The VALX, FRACVALX,INIT, and CTRL[PRSC] registers of the corresponding submod-
ule cannot be written while the the corresponding MCTRL[LDOK] bit is set.

Parameters
* base —- PWM peripheral base address

* ul6Mask — PWM submodules to set the LDOK bit, Logical OR of
_pwm_sm_enable.

static inline void PWM__ClearPwmLdok(PWM_Type *base, uint16_t ul6Mask)
Clear the PWM LDOK bit on a single or multiple submodules.

Parameters
* base —- PWM peripheral base address

* ul6Mask — PWM submodules to clear the LDOK bit, Logical OR of
_pwm_sm_enable.

static inline void PWM__SetupForceLogicConfig(PWM_Type *base, pwm_sm_number._t
eSubModule, const pwm_sm_force_logic_config t
*psConfig)

brief Sets up the PWM submodule force logic configure.

param base PWM peripheral base address. param eSubModule PWM submodule number,
see pwm_sm_number_t. param psConfig Poniter to submodule force logic configure struc-
ture, see pwm_sm_force_logic_config_t.

static inline void PWM__SetSoftwareForce(PWM_Type *base, pwm_sm_number._t eSubModule)
Sets up the PWM Sub-Module to trigger a software FORCE_OUT event.

Note: Only works when the CTRL2[FORCE_SEL] select kPWM_ForceOutOnLocalSoftware.

Parameters
* base —- PWM peripheral base address.
* eSubModule — PWM submodule number, see pwm_sm_number_t.

void PWM_ SetupDeadtimeConfig(PWM_Type *base, pwm_sm_number._t eSubModule, const
pwm_sm_deadtime_logic_config_t *psConfig)

Sets up the PWM submodule deadtime logic configure.
Parameters

* base —- PWM peripheral base address.

2.54. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 239

MCUXpresso SDK Documentation, Release 25.09.00

* eSubModule - PWM submodule number, see pwm_sm_number_t.

* psConfig — Pointer to deadtime logic configure structure, see
pwm_sm_deadtime_logic_config_t.

static inline uint16_t PWM_ GetDeadtimeSampleValue(PWM_Type *base, pwm_sm_number._t
eSubModule)

Get the sampled values of the PWM_X input at the end of each deadtime.

When use PWM_A/B in complementary mode and connect to transistor to controls the out-
put voltage. Need insert deadtime to avoid overlap of conducting interval between the top
and bottom transistor. And both transistors in complementary mode are off during dead-
time. Then connect the PWM_X input to complementary transistors output, then it sam-
pling input at the end of deadtime 0 for DT[0] and the end of deadtime 1 for DT[1]. Which
DT value is not 0 indicates that there is a problem with the corresponding deadtime value.
This can help to decide if there need do a deadtime correction for current complementary
PWM output.

Parameters
* base — PWM peripheral base address
* eSubModule - PWM submodule number, see pwm_sm_number_t.

Returns
The PWM_X input sampled values.

void PWM__ SetupFractionalDelayConfig(PWM_Type *base, pwm_sm_number_t eSubModule,
const pwm_sm_fractional_delay_logic_config t *psConfig)

Sets up the PWM submodule fractional delay logic configure.

Note: The fractional delay logic can only be used when the IPBus clock is running at 100
MHz.

Parameters
* base - PWM peripheral base address.
* eSubModule — PWM submodule number, see pwm_sm_number_t.

» psConfig — Pointer to fractional delay logic configure structure, see
pwm_sm_fractional_delay_logic_config_t.

void PWM__SetupOutputConfig(PWM_Type *base, pwm_sm_number._t eSubModule, const
pwm_sm_output_logic_config_t *psConfig)

Sets up the PWM submodule output logic configure.
Parameters
* base —- PWM peripheral base address.
* eSubModule - PWM submodule number, see pwm_sm_number_t.

» psConfig — Pointer to output logic configure structure, see
pwm_sm_output_logic_config_t.

static inline void PWM_ EnableOutput(PWM_Type *base, uint16_t ul6SubModules,
pwm_sm_pwm_out_t eOutput)

Enables the PWM submodule pin output.

This function handles PWMX_EN/PWMA_EN/PWMB_EN bit filed of OUTEN register, whcih
can enable one or more submodule pin in PWMX/A/B.

Parameters

240 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

* base —- PWM peripheral base address

* ul6SubModules — The submodules that enable eOutput output, logical OR
of _pwm_sm_enable.

* eOutput — PWM output pin ID, see pwm_sm_pwm_out_t.

static inline void PWM__ DisableOutput(PWM_Type *base, uint16_t ul6SubModules,
pwm_sm_pwm_out_t eOutput)

Disables the PWM submodule pin output.

This function handles PWMX_EN/PWMA_EN/PWMB_EN bit filed of OUTEN register, whcih
can disable one or more submodule pin in PWMZX/A/B.

Parameters
* base —- PWM peripheral base address

* ul6SubModules — The submodules that disable eOutput output, logical OR
of _pwm_sm_enable.

* eOutput — PWM output pin ID, see pwm_sm_pwm_out_t.

static inline void PWM__EnableCombinedOutput(PWM_Type *base, uint16_t u16XSubModules,
uint16_t ul6ASubModules, uint16_t
ul6BSubModules)

Enables the PWM pin combination output.

This function handles PWMX_EN/PWMA_EN/PWMB_EN bit filed of OUTEN register at the
same time.

Parameters
* base — PWM peripheral base address

* ul6XSubModules — The submodules that enable PWMX output, should be
logical OR of _pwm_sm_enable.

* ul6ASubModules — The submodules that enable PWMA output, should be
logical OR of _pwm_sm_enable.

* ul6BSubModules — The submodules that enable PWMB output, should be
logical OR of _pwm_sm_enable.

static inline void PWM_ DisableCombined Output(PWM_Type *base, uint16_t u16XSubModules,
uint16_t ul16ASubModules, uint16_t
ul6BSubModules)

Disables the PWM pin combination output.

This function handles PWMX_EN/PWMA_EN/PWMB_EN bit filed of OUTEN register at the
same time.

Parameters
* base - PWM peripheral base address

* ul6XSubModules — The submodules that disable PWMX output, should be
logical OR of _pwm_sm_enable.

* ul6ASubModules — The submodules that disable PWMA output, should be
logical OR of _pwm_sm_enable.

* ul6BSubModules — The submodules that disable PWMB output, should be
logical OR of _pwm_sm_enable.

static inline void PWM_ MaskOutput(PWM_Type *base, uint16_t ul6SubModules,
pwm_sm_pwm_out_t eOutput)

2.54. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 241

MCUXpresso SDK Documentation, Release 25.09.00

Mask the PWM pin output.

This function handles MASKA/MASKB/MASKX bit filed of MASK register, which can mask
one or more submodule pin in PWMX/A/B.

Note: The mask bits is buffered and can be updated until a FORCE_OUT event occurs or a
software update command.

Parameters
* base — PWM peripheral base address.

* ul6SubModules — The submodules that mask eOutput output, logical OR of
_pwm_sm_enable.

* eOutput — PWM output pin ID, see pwm_sm_pwm_out_t.

static inline void PWM_ UnmaskOutput(PWM_Type *base, uint16_t ul6SubModules,

pwm_sm_pwm_out_t eOutput)
Unmask the PWM pin output.

This function handles MASKA/MASKB/MASKX bit filed of MASK register, which can mask
one or more submodule pin in PWMZX/A/B.

Note: The mask bits is buffered and can be updated until a FORCE_OUT event occurs or a
software update command.

Parameters
* base —- PWM peripheral base address

* ul6SubModules — The submodules that unmask eOutput output, logical OR
of _pwm_sm_enable.

* eOutput — PWM output pin ID, see pwm_sm_pwm_out_t.

static inline void PWM_ MaskCombinedOutput(PWM_Type *base, uint16_t u16XSubModules,

uint16_t ul6ASubModules, uint16_t
ul6BSubModules)

Mask the PWM pin combination output.
This function handles MASKA/MASKB/MASKX bit filed of MASK register at the same time.

Note: The mask bits is buffered and can be updated until a FORCE_OUT event occurs or a
software update command.

Parameters
* base — PWM peripheral base address

* ul6XSubModules — The submodules that mask PWMX output, should be log-
ical OR of _pwm_sm_enable.

* ul6ASubModules — The submodules that mask PWMA output, should be log-
ical OR of _pwm_sm_enable.

* ul6BSubModules — The submodules that mask PWMB output, should be log-
ical OR of _pwm_sm_enable.

242

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

static inline void PWM_ UnmaskCombinedOutput(PWM_Type *base, uint16_t ul6XSubModules,
uint16_t ul6ASubModules, uint16_t
ul6BSubModules)

Unmask the PWM pin combination output.
This function handles MASKA/MASKB/MASKX bit filed of MASK register at the same time.

Note: The mask bits is buffered and can be updated until a FORCE_OUT event occurs or a
software update command.

Parameters
* base — PWM peripheral base address

* ul6XSubModules — The submodules that unmask PWMX output, should be
logical OR of _pwm_sm_enable.

* ul6ASubModules — The submodules that unmask PWMA output, should be
logical OR of _pwm_sm_enable.

* ul6BSubModules — The submodules that unmask PWMB output, should be
logical OR of _pwm_sm_enable.

static inline void PWM_ UpdateMask(PWM_Type *base, pwm_sm_number._t eSubModule)
Update PWM output mask bits immediately with a software command.

Parameters
* base — PWM peripheral base address
* eSubModule - PWM submodule number, see pwm_sm_number_t.

static inline void PWM__EnablePwmRunInDebug(PWM_Type *base, pwm_sm_number_t
eSubModule, bool bEnable)

Enables/Disables the PWM submodule continue to run while the chip is in DEBUG mode.
Parameters
* base — PWM peripheral base address
* eSubModule - PWM submodule number, see pwm_sm_number_t.
* bEnable — Enable the feature or not.
- true Enable load feature.
— false Disable load feature.

static inline void PWM__EnablePwmRunInWait(PWM_Type *base, pwm_sm_number_t
eSubModule, bool bEnable)

Enables/Disables the PWM submodule continue to run while the chip is in WAIT mode.
Parameters
* base —- PWM peripheral base address
* eSubModule - PWM submodule number, see pwm_sm_number_t.
* bEnable — Enable the feature or not.
— true Enable load feature.

— false Disable load feature.

2.54. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 243

MCUXpresso SDK Documentation, Release 25.09.00

static inline void PWM__EnableCounters(PWM_Type *base, uint16_t ul6Mask)
Starts the PWM submodule counter for a single or multiple submodules.

Sets the Run bit which enables the clocks to the PWM submodule. This function can start
multiple submodules at the same time.

Parameters
* base —- PWM peripheral base address
* ul6Mask - PWM submodules to start run, Logical OR of _pwm_sm_enable.

static inline void PWM__ DisableCounters(PWM_Type *base, uint16_t ul6Mask)
Stops the PWM counter for a single or multiple submodules.

Clears the Run bit which resets the submodule’s counter. This function can stop multiple
submodules at the same time.

Parameters
* base — PWM peripheral base address
* ul6Mask — PWM submodules to start run, Logical OR of _pwm_sm_enable.

static inline uint16_t PWM_ GetCaptureValue(PWM_Type *base, pwm_sm_number._t
eSubModule, pwm_sm_input_capture_register_t
eRegister)

Reads PWM submodule input capture value register.

This function read the CVALn register value, stores the value captured from the submodule

counter.
Parameters
* base — PWM peripheral base address.
* eSubModule - PWM submodule number, see pwm_sm_number_t.
* cRegister — PWM submodule input capture value register, see
pwm_sm_input_capture_register_t.
Returns

The input capture value.

static inline uint16_t PWM_ GetCaptureValueCycle(PWM_Type *base, pwm_sm_number._t
eSubModule,
pwm_sm_input_capture_register_t eRegister)

Reads PWM submodule input capture value cycle register.

This function read the CVALnCYC register value, stores the cycle number corresponding to
the value captured in CVALn. This register is incremented each time the counter is loaded
with the INIT value at the end of a PWM modulo cycle.

Parameters
* base —- PWM peripheral base address.
* eSubModule - PWM submodule number, see pwm_sm_number_t.

* eRegister — PWM submodule input capture value register, see
pwm_sm_input_capture_register_t.

Returns
The input capture register cycle value.

static inline uint16_t PWM_ GetCaptureEdgeCounter Vaule(PWM_Type *base, pwm_sm_number_t
eSubModule,
pwm_sm_input_capture_pin_t
elnputPin)

244 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

Reads the PWM submodule input capture logic edge counter value.

Each input capture logic has a edge counter, which counts both the rising and falling edges
of the input capture signal and it compare signal can select as input capture trigger source.

Parameters
* base —- PWM peripheral base address.
* eSubModule - PWM submodule number, see pwm_sm_number_t.

* elnputPin — PWM submodule input capture pin number, see
pwm_sm_input_capture_pin_t.

void PWM__SetupInputCaptureConfig(PWM_Type *base, pwm_sm_number_t eSubModule,
pwm_sm_input_capture_pin_t eInputPin, const
pwm_sm_input_capture_config_t *psConfig)

Sets up the PWM submodule input capture configure.

Each PWM submodule has 3 pins that can be configured for use as input capture pins. This
function sets up the capture parameters for each pin and enables the input capture opera-
tion.

Parameters
* base —- PWM peripheral base address.
* eSubModule - PWM submodule number, see pwm_sm_number_t.

* elnputPin — PWM submodule input capture pin number, see
pwm_sm_input_capture_pin_t.

* psConfig — Pointer to input capture configure structure, see
pwm_sm_input_capture_config_t.

static inline void PWM__EnableInputCapture(PWM_Type *base, pwm_sm_number._t eSubModule,
pwm_sm_input_capture_pin_t eInputPin)

Enables the PWM submodule input capture operation.

Enables input capture operation will start the input capture process. The enable bit is self-
cleared when in one shot mode and one or more of the enabled capture circuits has had a
capture event.

Parameters
* base —- PWM peripheral base address.
* eSubModule — PWM submodule number, see pwm_sm_number_t.

* elnputPin — PWM submodule input capture pin number, see
pwm_sm_input_capture_pin_t.

static inline void PWM__ DisableInputCapture(PWM_Type *base, pwm_sm_number._t
eSubModule, pwm_sm_input_capture_pin_t
elnputPin)

Disables the PWM submodule input capture operation.
The enable bit can be cleared at any time to disable input capture operation.
Parameters
* base —- PWM peripheral base address.
* eSubModule - PWM submodule number, see pwm_sm_number_t.

* elnputPin — PWM submodule input capture pin number, see
pwm_sm_input_capture_pin_t.

2.54. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 245

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint16_t PWM__ GetInputValue(PWM_Type *base, pwm_sm_number_t eSubModule,
pwm_sm_input_capture_pin_t eInputPin)

Get the logic value currently being driven into the PWM inputs.
Parameters
* base —- PWM peripheral base address
* eSubModule - PWM submodule number, see pwm_sm_number_t.

* elnputPin — PWM submodule input capture pin number, see
pwm_sm_input_capture_pin_t.

Returns
The PWM submodule input capture pin logic value.

void PWM__SetupFaultProtectionConfig(PWM_Type *base, pwm_fault_protection_channel_t
eFaultProtection, const pwm_fault_protection_config t
*psConfig)

Sets up the PWM fault protection channel configure.
Parameters
* base —- PWM peripheral base address.

* eFaultProtection — PWM fault protection channel number, see
pwm_fault_protection_channel t.

» psConfig — Pointer to fault protection channel configure structure, see
pwm_fault_protection_config_t.

static inline void PWM __ SetupSMFaultInputMapping(PWM_Type *base, pwm_sm_number._t
eSubModule, pwm_sm_pwm_out_t
ePwmOutput, const
pwm_sm_fault_input_mapping t
*psMapping)
Mapping fault protection channel fault input status to PWM submodule output,.

Note: Each PWM output can be mapping anyone or more fault inputs. The mapped fault
protection channel inputs can disable PWM output.

Parameters
* base —- PWM peripheral base address.
* eSubModule - PWM submodule number, see pwm_sm_number_t.
* ePwmOutput - PWM submodule output, see pwm_sm_pwm_out_t.

* psMapping - The fault input disable mapping structure, see
pwm_sm_fault_input_mapping_t.

void PWM__ SetupDmaConfig(PWM_Type *base, pwm_sm_number._t eSubModule, const
pwm_sm_dma_config_t *psConfig)

Sets up the PWM submodule DMA configure.
Parameters
* base - PWM peripheral base address.
* eSubModule — PWM submodule number, see pwm_sm_number_t.

* psConfig - Pointer to PWM submodule DMA configure, see
pwm_sm_dma_config_t.

246 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

static inline void PWM__SetEnabledCaptureDmaSource(PWM_Type *base, pwm_sm_number._t
eSubModule,
pwm_sm_capture_dma_source_t
eCaptureDmaSource)

Select the trigger source for enabled capture FIFOs DMA read request.

Note: This function only can be used when the bEnableCaptureDMA be true.

Parameters
* base —- PWM peripheral base address.
* eSubModule - PWM submodule number, see pwm_sm_number_t.
* eCaptureDmaSource — The PWM DMA capture source.

static inline void PWM__EnableSMInterrupts(PWM_Type *base, pwm_sm_number._t eSubModule,
uint16_t ul6Mask)

Enables the PWM submodule interrupts according to a provided mask.

This examples shows how to enable VAL 0 compare interrupt and VAL 1 compare interrupt.

PWM__EnableSMInterrupts(PWM, kPWM__SubModule0, kPWM__CompareValOInterruptEnable |
kPWM__CompareValllnterruptEnable);

Parameters
* base —- PWM peripheral base address
* eSubModule - PWM submodule number, see pwm_sm_number_t.

* ul6Mask — The PWM submodule interrupts to enable. Logical OR of
_pwm_sm_interrupt_enable.

static inline void PWM__ DisbaleSMInterrupts(PWM_Type *base, pwm_sm_number_t eSubModule,
uint16_t ul6Mask)

Disables the PWM submodule interrupts according to a provided mask.

This examples shows how to disable VAL 0 compare interrupt and VAL 1 compare interrupt.

PWM_ DisbaleSMInterrupts(PWM, kPWM__ SubModule0, kPWM__CompareValOInterruptEnable |
kPWM__CompareValllnterruptEnable);

Parameters
* base —- PWM peripheral base address
* eSubModule — PWM submodule number, see pwm_sm_number_t.

* ul6Mask — The PWM submodule interrupts to enable. Logical OR of
_pwm_sm_interrupt_enable.

static inline void PWM__EnableFaultInterrupts(PWM_Type *base,
pwm_fault_protection_channel_t eFaultProtection,
uint16_t ul6Mask)

Enables the PWM fault protection channel interrupt according to a provided mask.

This examples shows how to enable fault pin 0 interrupt and fault pin 1 interrupt.

PWM__EnableFaultInterrupts(PWM, kPWM __ FaultProtection0, kPWM _ FaultOInterruptEnable |
kPWM__ Fault1lInterruptEnable);

Parameters

2.54. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 247

MCUXpresso SDK Documentation, Release 25.09.00

* base —- PWM peripheral base address

* eFaultProtection — PWM fault protection channel number, see
pwm_fault_protection_channel _t.

» ul6Mask — The PWM fault protection channel interrupts to enable. Logical
OR of _pwm_fault_protection_interrupt_enable.

static inline void PWM _ DisableFaultInterrupts(PWM_Type *base,
pwm_fault_protection_channel t
eFaultProtection, uint16_t ul6Mask)

Disables the PWM fault protection channel interrupt according to a provided mask.

This examples shows how to disable fault pin 0 interrupt and fault pin 1 interrupt.

PWM__DisableFaultInterrupts(PWM, kPWM__ FaultProtection0, kPWM__FaultOInterruptEnable |
kPWM_ Fault1lInterruptEnable);

Parameters
* base —- PWM peripheral base address

* eFaultProtection — PWM fault protection channel number, see
pwm_fault_protection_channel_t.

* ul6Mask — The PWM fault protection channel interrupts to disable. Logical
OR of _pwm_fault_protection_interrupt_enable.

static inline uint16_t PWM_ GetSMStatusFlags(PWM_Type *base, pwm_sm_number._t
eSubModule)

Gets the PWM submodule status flags.
This examples shows how to check whether the submodule VALO compare flag set.

if(PWM__GetSMStatusFlags(PWM, kPWM __SubModule0) & kPWM_CompareValOFlag) = 0U)

Parameters
* base — PWM peripheral base address
* eSubModule - PWM submodule number, see pwm_sm_number_t.

Returns
The PWM submodule status flags. This is the logical OR of
pwm_sm_status_flags_t.

static inline void PWM__ClearSMStatusFlags(PWM_Type *base, pwm_sm_number_t eSubModule,
uint16_t ul6Mask)

Clears the PWM submodule status flags.

This examples shows how to clear the submodule VALO compare flag.

PWM__ClearSMStatusFlags(PWM, kPWM__ SubModule0, kPWM__CompareValOFlag);

Note: The kPWM_RegUpdatedFlag can’t be cleared by software.

Parameters

* base — PWM peripheral base address

248 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

* eSubModule - PWM submodule number, see pwm_sm_number_t.

* ul6Mask — The status flags to clear. This is the logical OR of
pwm_sm_status_flags_t.

static inline uint16_t PWM__ GetFaultStatusFlags(PWM_Type *base,
pwm_fault_protection_channel t
eFaultProtection)

Gets the PWM fault protection status flags.

This examples shows how to check whether the fault protection channel fault input pin 0
set.

if(PWM__GetFaultStatusFlags(PWM, kPWM__ FaultProtection0) & kPWM_ FaultPinOFlag) != 0U)

Parameters
* base —- PWM peripheral base address

* cFaultProtection — PWM fault protection channel number, see
pwm_fault_protection_channel _t.

Returns
The PWM fault protection channel status flags. This is the logical OR of
_pwm_fault_protection_status_flags.

static inline void PWM __ClearFaultStatusFlags(PWM_Type *base,
pwm_fault_protection_channel_t eFaultProtection,
uint16_t ul6Mask)

Clears the PWM fault protection status flags according to a provided mask.

This examples shows how to clear the fault protection channel fault 0 flag.

PWM__ClearFaultStatusFlags(PWM, kPWM__FaultProtection0, kPWM__FaultOFlag);

Note: The kPWM_FaultPinOActiveFlag ~ kPWM_FaultPin3ActiveFlag can’t be cleared by
software.

Parameters
* base —- PWM peripheral base address

* eFaultProtection — PWM fault protection channel number, see
pwm_fault_protection_channel t.

» ul6Mask — The PWM fault protection status flags to be clear. Logical OR of
_pwm_fault_protection_status_flags.

FSL PWM_DRIVER_VERSION
PWM driver version.

enum _ pwm_ sm_ number

The enumeration for PWM submodule number.
Values:

enumerator kPWM_ SubModule0
PWM Submodule 0

2.54. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 249

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPWM_ SubModulel
PWM Submodule 1

enumerator kPWM_SubModule2
PWM Submodule 2

enumerator kPWM_ SubModule3
PWM Submodule 3

enum _ pwm_ sm_ enable
The enumeration for PWM submodule enable.

Values:

enumerator kPWM_ SubModuleOEnable
PWM Submodule 0 enable.

enumerator kPWM_SubModulelEnable
PWM Submodule 1 enable.

enumerator kPWM _ SubModule2Enable
PWM Submodule 2 enable.

enumerator kPWM__ SubModule3Enable
PWM Submodule 3 enable.

enumerator kPWM__ALLSubModuleEnable

enum _ pwm_ sm_ count_ clock_source

The enumeration for PWM submodule clock source.

Values:

enumerator kPWM _ClockSrcBusClock
The IPBus clock is used as the source clock

enumerator kPWM _ ClockSrcExternalClock
EXT _CLK s used as the source clock

enumerator kPWM __ ClockSrcSubmodule0Clock

Clock of the submodule 0 (AUX_CLK) is used as the source clock

enum _pwm_sm_ count_ clock_ prescaler

The enumeration for PWM submodule prescaler factor selection for clock source.

Values:

enumerator kPWM __ClockPrescaleDividel
PWM submodule clock frequency = fclk/1

enumerator kPWM __ClockPrescaleDivide2
PWM submodule clock frequency = fclk/2

enumerator kPWM __ ClockPrescaleDivide4
PWM submodule clock frequency = fclk/4

enumerator kPWM_ ClockPrescaleDivide8
PWM submodule clock frequency = fclk/8

enumerator kPWM _ ClockPrescaleDividel6
PWM submodule clock frequency = fclk/16

enumerator kPWM __ ClockPrescaleDivide32
PWM submodule clock frequency = fclk/32

250

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPWM _ ClockPrescaleDivide64
PWM submodule clock frequency = fclk/64

enumerator kPWM __ ClockPrescaleDividel128
PWM submodule clock frequency = fclk/128

enum _ pwm_ sm_ count_ init_ source
The enumeration for PWM submodule counter initialization options.

Values:

enumerator kPWM_ InitOnLocalSync
Local sync causes initialization

enumerator kPWM _ InitOnMasterReload
Master reload from submodule 0 causes initialization

enumerator kPWM_ InitOnMasterSync
Master sync from submodule 0 causes initialization

enumerator kPWM_ InitOnExtSync
EXT_SYNC causes initialization

enum _pwm_ ml2 stretch_count_ clock prescaler

The enumeration for PWM stretch IPBus clock count
mux0_trig/mux1_trig/out0_trig/outl_trig/pwma_trig/pwmb_trig.

Values:

enumerator kPWM __ StretchIPBusClockPrescalerl
Stretch count is zero, no stretch.

enumerator kPWM__ StretchIPBusClockPrescaler2

prescaler for

Stretch mux0_trig/mux1_trig/outQ_trig/outl_trig/pwma_trig/pwmb_trig for 2 IPBus

clock period.
enumerator kPWM __ StretchIPBusClockPrescaler4

Stretch mux0_trig/mux1_trig/out0_trig/outl_trig/pwma_trig/pwmb_trig for 4 IPBus

clock period.
enumerator kPWM __StretchIPBusClockPrescaler8

Stretch mux0_trig/mux1_trig/out0_trig/outl_trig/pwma_trig/pwmb_trig for 8 IPBus

clock period.

enum _pwm_sm_ reload_signal select
The enumeration for PWM submodule local reload take effect timing.

Values:

enumerator kPWM_ LocalReloadSignal
The local RELOAD signal is used to reload buffered-registers.

enumerator kPWM_ MasterReloadSignal

The master RELOAD signal (from submodule 0) is used to reload buffered-registers

(should not be used in submodule 0).

enum _pwm_sm_ local reload_ effect_timing
The enumeration for PWM submodule local reload take effect timing.

Values:

enumerator kPWM_ TakeEffect AtReloadOportunity

Buffered-registers reload after one/more reload opportunities, and a load opportunity

can generate on a PWM half or/and full cycle.

2.54. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver

251

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPWM_ TakeEffectImmediately

Buffered-registers reload with new values as soon as MCTRL[LDOK] bit is set when
choose local reload.

enum _pwm_sm_ local_reload_ oportunity

The enumeration for PWM submodule reload opportunities selection under
kPWM_ReloadWithLocalReloadOportunity.

Values:

enumerator kPWM_ LoadEveryOportunity
Every PWM submodule reload opportunity

enumerator kPWM _ LoadEvery2Oportunity
Every 2 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery3Oportunity
Every 3 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery4Oportunity
Every 4 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery5Oportunity
Every 5 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery60Oportunity
Every 6 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery7Oportunity
Every 7 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery8Oportunity
Every 8 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery9Oportunity
Every 9 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery10Oportunity
Every 10 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery11Oportunity
Every 11 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery12Oportunity
Every 12 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery13Oportunity
Every 13 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery14Oportunity
Every 14 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery150portunity
Every 15 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery160portunity
Every 16 PWM submodule reload opportunities

enum _ pwm_sm_ val_compare_mode
The enumeration for PWM submodule VALn register compare mode.

Values:

252 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPWM__ CompareOnEqual
The VALn registers and the PWM counter are compared using an “equal to” method.

enumerator kPWM__ CompareOnEqualOrGreater

The VALn registers and the PWM counter are compared using an “equal to or

greater than” method.

enum _pwm_ sm_ val_ register

The enumeration for PWM submodule VAL registers.
Values:
enumerator kPWM_ VALO

PWM submodule value register 0.
enumerator kPWM_VAL1

PWM submodule value register 1.
enumerator kPWM_ VAL2

PWM submodule value register 2.
enumerator kPWM_ VAL3

PWM submodule value register 3.
enumerator kPWM_ VAL4

PWM submodule value register 4.

enumerator kPWM_ VALS5
PWM submodule value register 5.

enum _pwm_ sm_ force_signal select

The enumeration for PWM submodule FORCE_OUT source which can trigger force logic
output update.

Values:

enumerator kPWM _ LocalSoftwareForce
The local software force signal CTRL2[FORCE] is used to force updates.

enumerator kPWM__ MasterSoftwareForce
The master software force signal from submodule 0 is used to force updates.

enumerator kPWM _ LocalReloadForce
The local reload signal from this submodule is used to force updates without regard to
the state of LDOK.

enumerator kPWM _ MasterReloadForce
The master reload signal from submodule 0 is used to force updates if LDOK is set,
should not be used in submodule 0.

enumerator kPWM _ LocalSyncForce
The local sync (VAL1 match event) signal from this submodule is used to force updates.

enumerator kPWM_ MasterSyncForce
The master sync signal from submodule0 is used to force updates.

enumerator kPWM__ ExternalForceForce
The external force signal EXT_FORCE, from outside the PWM module causes updates.

enumerator kPWM_ ExternalSyncForce
The external sync signal EXT_SYNC, from outside the PWM module causes updates.

2.54. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 253

MCUXpresso SDK Documentation, Release 25.09.00

enum _pwm_ sm_ force_deadtime_ source
The enumeration for PWM submodule force out logic output (PWM23 and PWM45) source,
which will transfer to output logic when a FORCE_OUT signal is asserted.
Values:

enumerator kPWM__ GeneratedPwm
Generated PWM signal is used as the deadtime logic output.

enumerator kPWM_ InvertedGeneratedPwm
Inverted PWM signal is used as the deadtime logic output.

enumerator kPWM__ SoftwareControlValue
Software controlled value is used as the deadtime logic output.

enumerator kPWM_ UseExternal
PWM_EXTA signal is used as the deadtime logic output.

enum _pwm_sm_ force software output_ value
The enumeration for PWM submodule software controlled force out signal value.

Values:

enumerator kPWM__ SoftwareOutputLow
Alogic 0 is supplied to the deadtime generator when chose Software controlled value
as output source.

enumerator kPWM __ SoftwareOutputHigh
Alogic 1 is supplied to the deadtime generator when chose Software controlled value
as output source.

enum _pwm_ sm_ deadtime_logic_mode

The enumeration for PWM submodule deadtime logic mode, which decide how the dead-

time logic process the force logic output signal.

Values:

enumerator kPWM _ Independent
The PWMA (PWM23) and PWMB (PWM45) signal from force logic transfer to output
logic independent.

enumerator kPWM__ IndependentWithDoubleSwitchPwm
The PWMA (PWM23) and PWMB (PWM45) signals from force logic will XOR first, then
the XOR signal transfer to output logic independent.

enumerator kPWM_ Independent WithSplitDoubleSwitchPwm
The PWMA (PWM23) and PWMB (PWM45) signals from force_out logic will XOR first,
then the XOR signal transfer to output logic independent.

enumerator kPWM__ Complementary WithPwmA
The PWMA (PWM23) signal from force logic will transfer to output logic with comple-
mentary mode.

enumerator kPWM__Complementary WithPwmB
The PWMB (PWM45) signal from force logic will transfer to output logic with comple-
mentary mode.

enumerator kPWM_ Complementary WithDoubleSwitchPwm

The PWMA (PWM23) and PWMB (PWM45) signals from force logic will XOR first, then
the XOR signal transfer to output logic with complementary mode.

254 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enum _pwm_ sm_ fracval register
The enumeration for PWM submodule FRACVAL registers.

Values:
enumerator kPWM_FRACVAL1

PWM submodule fractional value register 1.
enumerator kPWM_FRACVAL2

PWM submodule fractional value register 2.
enumerator kPWM_FRACVALS3

PWM submodule fractional value register 3.
enumerator kPWM_FRACVAL4

PWM submodule fractional value register 4.
enumerator kPWM_FRACVALS5

PWM submodule fractional value register 5.

enum _pwm_sm_ mux_ trigger source

The enumeration for PWM submodule output logic final trigger output port signal.
Values:

enumerator kPWM__ActualCompareEvent
Route the PWM_OUT_TRIG signal (OR of VALX compare signal) to the mux trigger out-
put port.

enumerator kPWM_ PwmOutput
Route the PWM output (after polarity/mask/enable control) to the mux trigger output
port.

enum _pwm_sm_pwm_ output_on_ fault
The enumeration for PWM submodule output logic PWM output fault status.

Values:

enumerator kPWM__ OutputLowOnFault
The output is forced to logic 0 state prior to consideration of output polar-
ity/mask/enable control during fault conditions and STOP mode.

enumerator kPWM_ OutputHighOnFault
The output is forced to logic 1 state prior to consideration of output polar-
ity/mask/enable control during fault conditions and STOP mode.

enumerator kPWM_ OutputTristatedOnFault
The output status be tristated during fault conditions and STOP mode.

enum _ pwm_sm_ pwmx_ signal_select

The enumeration for PWM submodule output logic PwmX signal input source (before out-
put polarity/mask/enable control).

Values:

enumerator kPWM_ RawPwmX
The PWM_X source is raw PwmoO1_fractional_delay signal.

enumerator kPWM__ DoubleSwitch
The PWM_X source is Pwm23_fractional_delay XOR Pwm23_fractional_delay signal.

enum _ pwm_ sm_ pwin_ out
The enumeration for PWM submodule PWM output.

Values:

2.54. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 255

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPWM_ PwmX
The PWM output PWM_X.

enumerator kPWM_ PwmB
The PWM output PWM_B.

enumerator kPWM_ PwmA
The PWM output PWM_A.

enum _pwm_ sm_ input_ capture_ pin
The enumeration for PWM submodule input capture pins.

Values:

enumerator kPWM_ InputCapturePwmX
The input capture pin PwmX, need disable PwmX output when enable input capture.

enumerator kPWM_ InputCapturePwmA
The input capture pin PwmaA, need disable PwmA output when enable input capture.

enumerator kPWM_ InputCapturePwmB
The input capture pin PwmB, need disable PwmB output when enable input capture.

enum _pwm_sm_ input_ capture_ source
The enumeration for PWM submodule input capture source.

Values:

enumerator kPWM_ Rawlnput
The capture source is the raw input signal.

enumerator kPWM_ InputEdgeCounter
The capture source is edge counter which counts rising and falling edges on the raw
input signal.
enum _pwm_ sm_ input_ capture_edge
The enumeration for PWM submodule input capture edge when choose raw input as cap-
ture source.
Values:

enumerator kPWM_ Noedge
Disabled capture on source falling/falling edge.

enumerator kPWM_ FallingEdge
Enable input capture, and capture on source falling edge when chose the raw input
signal as capture source.

enumerator kPWM_ RisingEdge
Enable input capture, and capture on source rising edge when chose the raw input
signal as capture source.

enumerator kPWM_ RiseAndFallEdge
Enable input capture, and capture on source rising or falling edge when chose the raw
input signal as capture source.

enum _ pwm_ sm_ input_ capture_ register
The enumeration for PWM submodule input capture value register.

Values:

enumerator kPWM_ InpCaptureVal0

Stores the value captured from the submodule counter when the PWM_X circuitry 0
logic capture occurs.

256 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPWM_ InpCaptureVall
Stores the value captured from the submodule counter when the PWM_X circuitry 1
logic capture occurs.

enumerator kPWM_ InpCaptureVal2
Stores the value captured from the submodule counter when the PWM_A circuitry 0
logic capture occurs.

enumerator kPWM_ InpCaptureVal3
Stores the value captured from the submodule counter when the PWM_A circuitry 1
logic capture occurs.

enumerator kPWM_ InpCaptureVald
Stores the value captured from the submodule counter when the PWM_B circuitry 0
logic capture occurs.

enumerator kPWM_ InpCaptureVal5

Stores the value captured from the submodule counter when the PWM_B circuitry 1
logic capture occurs.

enum _pwm_ sm_ input_ capture_filter count

The enumeration for input filter count Represent the number of consecutive samples that
must agree prior to the input filter accepting an input transition.

Values:

enumerator kPWM_ InputCaptureFilterCount3Samples
3 samples.

enumerator kPWM_ InputCaptureFilterCount4Samples
4 samples.

enumerator kPWM_ InputCaptureFilterCount5Samples
5 samples.

enumerator kPWM_ InputCaptureFilterCount6Samples
6 samples.

enumerator kPWM_ InputCaptureFilterCount7Samples
7 samples.

enumerator kPWM_ InputCaptureFilterCount8Samples
8 samples.

enumerator kPWM_ InputCaptureFilterCount9Samples
9 samples.

enumerator kPWM_ InputCaptureFilterCount10Samples
10 samples.

enum _pwm_sm_ capture_dma_ source

The enumeration for the source which can trigger the DMA read requests for the capture
FIFOs.

Values:

enumerator kPWM_ FIFOWatermarksORDma
Selected FIFO watermarks are OR’ed together to sets the read DMA request.

enumerator kPWM_ FIFOWatermarksANDDma
Selected FIFO watermarks are AND’ed together to sets the read DMA request.

2.54. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 257

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPWM_ LocalSyncDma
Alocal sync (VAL1 match event) sets the read DMA request.

enumerator kPWM _LocalReloadDma
Alocal reload (STS[RF] being set) sets the read DMA request.

enum _ pwm_ sm__interrupt_ enable
The enumeration for PWM submodule interrupt enable.

Values:

enumerator kPWM__ CompareValOlnterruptEnable
PWM submodule VALO compare interrupt.

enumerator kPWM__ CompareValllnterruptEnable
PWM submodule VAL1 compare interrupt.

enumerator kPWM__CompareVal2InterruptEnable
PWM submodule VAL2 compare interrupt.

enumerator kPWM__ CompareVal3InterruptEnable
PWM submodule VAL3 compare interrupt.

enumerator kPWM_ CompareValdlnterrupt Enable
PWM submodule VAL4 compare interrupt.

enumerator kPWM__ CompareVal5InterruptEnable
PWM submodule VALS5 compare interrupt.

enumerator kPWM__ CaptureXOInterruptEnable
PWM submodule capture X0 interrupt.

enumerator kPWM__ CaptureX1InterruptEnable
PWM submodule capture X1 interrupt.

enumerator kPWM__ CaptureBOInterruptEnable
PWM submodule capture B0 interrupt.

enumerator kPWM__CaptureBlInterruptEnable
PWM submodule capture B1 interrupt.

enumerator kPWM _ CaptureAOInterruptEnable
PWM submodule capture AO interrupt.

enumerator kPWM_ CaptureAllnterruptEnable
PWM submodule capture A1l interrupt.

enumerator kPWM__ ReloadInterruptEnable
PWM submodule reload interrupt.

enumerator kPWM_ ReloadErrorInterruptEnable
PWM submodule reload error interrupt.

enumerator kPWM__ALLSubModulelnterruptEnable
enum _pwm_ sm_ status_flags

The enumeration for PWM submodule status flags.

Values:

enumerator kPWM_ CompareValOFlag
PWM submodule VALO compare flag.

258

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPWM_ CompareVallFlag
PWM submodule VAL1 compare flag.

enumerator kPWM__ CompareVal2Flag
PWM submodule VAL2 compare flag.

enumerator kPWM_ CompareVal3Flag
PWM submodule VAL3 compare flag.

enumerator kPWM__ CompareValdFlag
PWM submodule VAL4 compare flag.

enumerator kPWM__ CompareVal5Flag
PWM submodule VALS compare flag.

enumerator kPWM_ CaptureX0Flag
PWM submodule capture X0 flag.

enumerator kPWM_ CaptureX1Flag
PWM submodule capture X1 flag.

enumerator kPWM_ CaptureBOFlag
PWM submodule capture BO flag.

enumerator kPWM_ CaptureB1Flag
PWM submodule capture B1 flag.

enumerator kPWM_ CaptureAOFlag
PWM submodule capture A0 flag.

enumerator kPWM_ CaptureAlFlag
PWM submodule capture Al flag.

enumerator kPWM_ ReloadFlag
PWM submodule reload flag.

enumerator kPWM_ ReloadErrorFlag
PWM submodule reload error flag.

enumerator kPWM_ RegUpdatedFlag
PWM submodule registers updated flag.

enumerator kPWM__ALLSMStatusFlags

enum _ pwm_ sm_ typical output_mode
The enumeration for some PWM submodule PWM_A/B typical output mode.
Values:

enumerator kPWM__ SignedCenterAligned

Center-aligned PWM with signed compare value.
enumerator kPWM__ CenterAligned

Center-aligned PWM with unsigned compare value.
enumerator kPWM__ SignedEdgeAligned

Edge-aligned PWM with signed compare value.

enumerator kPWM__EdgeAligned
Edge-aligned PWM with signed compare value.

2.54. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 259

MCUXpresso SDK Documentation, Release 25.09.00

enum _ pwm_ fault_ protection_ channel
The enumeration for PWM fault protection channel number.

Values:

enumerator kPWM__ FaultProtection0
PWM fault protection channel 0

enum _pwm_ fault_ protection_ interrupt_ enable
The enumeration for PWM module fault protection channel interrupt enable.

Values:

enumerator kPWM__ FaultOInterruptEnable
Fault protection channel fault 0 interrupt

enumerator kPWM_ FaultlInterruptEnable
Fault protection channel fault 1 interrupt

enumerator kPWM_ Fault2InterruptEnable
Fault protection channel fault 2 interrupt

enumerator kPWM__ Fault3InterruptEnable
Fault protection channel fault 3 interrupt

enumerator kPWM__ ALLfaultInterruptEnable

enum _ pwm_ fault_ protection_ status_flags
The enumeration for PWM module fault protection status flags.

Values:

enumerator kPWM_ FaultOFlag
Fault protection channel fault 0 flag, set within two CPU cycles after a transition to
active on the fault input pin 0.

enumerator kPWM_ Fault1Flag

Fault protection channel fault 1 flag, set within two CPU cycles after a transition to
active on the fault input pin 1.

enumerator kPWM_ Fault2Flag

Fault protection channel fault 2 flag, set within two CPU cycles after a transition to
active on the fault input pin 2.

enumerator kPWM_ Fault3Flag

Fault protection channel fault 3 flag, set within two CPU cycles after a transition to
active on the fault input pin 3.

enumerator kPWM_ FaultPinOActiveFlag
Fault protection channel fault input pin 0 active flag.

enumerator kPWM_ FaultPinlActiveFlag
Fault protection channel fault input pin 1 active flag.

enumerator kPWM_ FaultPin2ActiveFlag
Fault protection channel fault input pin 2 active flag.

enumerator kPWM_ FaultPin3ActiveFlag
Fault protection channel fault input pin 3 active flag.

enumerator kPWM__ALLFaultStatusFlags

260 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enum _pwm_ fault_active_level
The enumeration for PWM fault protection channel number.

Values:

enumerator kPWM_ Logic0
Alogic 0 on the fault input indicates a fault condition.

enumerator kPWM_ Logicl
Alogic 0 on the fault input indicates a fault condition.

typedef enum _pwm_sm_number pwm_sm_number_ t
The enumeration for PWM submodule number.

typedef enum _pwm_sm_count_clock_source pwm_sm__count_ clock_source_t
The enumeration for PWM submodule clock source.

typedef enum _pwm_sm_count_clock_prescaler pwm_sm_ count_ clock_prescaler_t
The enumeration for PWM submodule prescaler factor selection for clock source.

typedef enum _pwm_sm_count_init_source pwm_sm_ count_ init_source_t
The enumeration for PWM submodule counter initialization options.
typedef enum _pwm_ml2_stretch_count_clock_prescaler
pwm_ ml2_stretch count_clock prescaler_t
The enumeration for PWM stretch IPBus clock count prescaler for
mux0_trig/mux1_trig/out0_trig/outl_trig/pwma_trig/pwmb_trig.
typedef struct _pwm_sm_counter_config pwm_sm_ counter_ config_t
The structure for configuring PWM submodule counter logic.

typedef enum _pwm_sm_reload_signal_select pwm_sm_ reload_signal select_t
The enumeration for PWM submodule local reload take effect timing.

typedef enum _pwm_sm_local_reload_effect_timing pwm_sm_ local_reload_ effect_ timing_t
The enumeration for PWM submodule local reload take effect timing.

typedef enum _pwm_sm_local_reload_oportunity pwm_sm_local reload_oportunity_t
The enumeration for PWM submodule reload opportunities selection under
kPWM_ReloadWithLocalReloadOportunity.

typedef struct _pwm_sm_reload_logic_config pwm_sm_ reload logic config t
The structure for configuring PWM submodule reload logic.

typedef enum _pwm_sm_val compare_mode pwm_sm_ val_compare_mode_t
The enumeration for PWM submodule VALn register compare mode.

typedef enum _pwm_sm_val register pwm_sm_ val_register_t
The enumeration for PWM submodule VAL registers.

typedef struct _pwm_sm_value_register_config pwm_sm_ value register config t
The structure for configuring PWM submodule value registers.

typedef enum _pwm_sm_force_signal_select pwm_sm_ force signal select_t
The enumeration for PWM submodule FORCE_OUT source which can trigger force logic
output update.

typedef enum _pwm_sm_force_deadtime_source pwm_sm_ force_ deadtime_source_t
The enumeration for PWM submodule force out logic output (PWM23 and PWM45) source,
which will transfer to output logic when a FORCE_OUT signal is asserted.

typedef enum _pwm_sm_force_software_output_value pwm_sm_ force software_output_value t
The enumeration for PWM submodule software controlled force out signal value.

2.54. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 261

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _pwm_sm_force_logic_config pwm_sm_ force_logic_config_t
The structure for configuring PWM submodule force logic.

typedef enum _pwm_sm_deadtime_logic_mode pwm_sm_ deadtime_logic_mode_t
The enumeration for PWM submodule deadtime logic mode, which decide how the dead-
time logic process the force logic output signal.

typedef struct _pwm_sm_deadtime_value pwm_ sm_ deadtime_ value_t
The structure of the inserted dead time value, applies only to KPWM_Complementaryxxx
mode.

typedef struct _pwm_sm_deadtime_logic_config pwm_sm_ deadtime_ logic_config t
The structure for configuring PWM submodule force out logic, works on the deadtime logic
output.

typedef enum _pwm_sm_fracval register pwm_sm_ fracval_register_t
The enumeration for PWM submodule FRACVAL registers.

typedef struct _pwm_sm_fractional _delay_logic_config pwm_sm_ fractional delay_logic_config_t
The structure for configuring PWM submodule fractional delay logic, works on the dead-
time logic output.

typedef enum _pwm_sm_mux_trigger_source pwm_sm_ mux_ trigger source_t
The enumeration for PWM submodule output logic final trigger output port signal.

typedef enum _pwm_sm_pwm_output_on_fault pwm_sm_pwm_ output_on_ fault_t
The enumeration for PWM submodule output logic PWM output fault status.

typedef enum _pwm_sm_pwmx_signal _select pwm_sm_ pwmx_ signal select_t
The enumeration for PWM submodule output logic PwmX signal input source (before out-
put polarity/mask/enable control).

typedef enum _pwm_sm_pwm_out pwm_sm_pwm_out_t
The enumeration for PWM submodule PWM output.

typedef struct _pwm_sm_output_logic_config t pwm_sm_output_logic config t
The structure for configuring PWM submodule output logic.

typedef enum _pwm_sm_input_capture_pin pwm_sm_ input_ capture_pin_t
The enumeration for PWM submodule input capture pins.

typedef enum _pwm_sm_input_capture_source pwm_ sm__input_ capture_source_t
The enumeration for PWM submodule input capture source.

typedef enum _pwm_sm_input_capture_edge pwm_ sm_ input_ capture_edge_t
The enumeration for PWM submodule input capture edge when choose raw input as cap-
ture source.

typedef enum _pwm_sm_input_capture_register pwm_sm_ input_ capture_register t
The enumeration for PWM submodule input capture value register.

typedef enum _pwm_sm_input_capture_filter_count pwm_sm_ input_ capture_filter count_t

The enumeration for input filter count Represent the number of consecutive samples that
must agree prior to the input filter accepting an input transition.

typedef struct _pwm_sm_input_capture_config pwm_sm_ input_ capture_config_t
The structure for configuring PWM submodule input capture logic.

Note: When choosing kPWM_InputEdgeCounter as circuit 0/1 capture source, the eCir-
cuitOCaptureEdge and eCircuit1CaptureEdge selected trigger edge will be ignored, but still

262 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

need place a value other than kPWM_Noedge in either or both of the eCaptureCircuit0
and/or CaptureCircuitl fields in order to enable one or both of the capture registers.

typedef enum _pwm_sm_capture_dma_source pwm_ sm_ capture_ dma_ source_ t
The enumeration for the source which can trigger the DMA read requests for the capture
FIFOs.

typedef struct _pwm_sm_capture_dma_config pwm_sm__capture__dma_ config_t
The structure for configuring PWM submodule read capture DMA.

typedef struct _pwm_sm_dma_config pwm_sm_ dma_ config_t
The structure for configuring PWM submodule DMA.
typedef struct _pwm_sm_fault_input_mapping pwm_sm_ fault_input_ mapping_ t

The enumeration for PWM submodule output fault enable mask for one fault protection
channel.

The structure for configuring PWM submodule fault input disable mapping.

Note: The channel 0 input 0 and channel 1 input 0 are different pins.

Note: Each PWM output can be mapping anyone or more fault inputs. The mapped fault
protection channel inputs can disable PWM output.

typedef enum _pwm_sm_status_flags pwm_sm_ status_flags t
The enumeration for PWM submodule status flags.

typedef enum _pwm_sm_typical output_mode pwm_ sm_ typical output_mode_t
The enumeration for some PWM submodule PWM_A/B typical output mode.

typedef struct _pwm_sm_config pwm_ sm_ config_t
PWM submodule config structure.
This structure holds the configuration settings for the PWM peripheral. To initialize this
structure to reasonable defaults, call the PWM_GetDefaultConfig() function and pass a
pointer to your config structure instance.

typedef enum _pwm _fault_protection_channel pwm_ fault_ protection_ channel t
The enumeration for PWM fault protection channel number.

typedef enum _pwm_fault_active_level pwm_ fault_input_ active_level t
The enumeration for PWM fault protection channel number.

typedef struct _pwm_fault_protection_input_config pwm_ fault_ protection__input_ config_t

typedef struct _pwm_fault_protection_config pwm_ fault_ protection_ config_t

The structure for configuring PWM fault protection channel, a PWM module can have mul-
tiple fault protection channels, PWM sub-module can choose to mapping any one or more
fault input from fault protection channels.

typedef struct _pwm_config pwm_ config_t

PWM module config structure which contain submodule config structure pointers and fault
protection filter config structure pointers.

2.54. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 263

MCUXpresso SDK Documentation, Release 25.09.00

Note: Need use submodule structure address to init the structure pointers, when the sub-
module or fault protection structure pointers is NULL, it will be ignored by PWM_Init APIL.
This can save stack space when only one or two submodules are used.

struct _pwm_ sm_ counter_ config
#include <fsl_pwm.h> The structure for configuring PWM submodule counter logic.

Public Members

pwm_sm_count_clock_source_t eCountClockSource
Configures PWM submodule counter clock source.

pwm_sm_count_clock_prescaler_t eCountClockPrescaler
Configures PWM submodule counter clock source prescaler.

pwm_sm_count_init_source_t eCountInitSource
Configures PWM submodule counter initial source.

bool bEnableForcelnitial
Enable force-controlled initialization. The assert FORCE_OUT signal can to initialize
the counter without regard to the selected initial source.

uint16_t ul6PhaseDelayValue
Defines the delay from the master sync signal of submodule 0 to this submod-
ule counter (the unit of delay is the PWM clock cycle), only works when chose
kPWM_InitOnMasterSync as initial source.

struct _pwm_ sm_ reload_logic_ config
#include <fsl_ pwm.h> The structure for configuring PWM submodule reload logic.

Public Members

pwm_sm_reload_signal_select_t eReloadSignalSelect
Configures PWM submodule RELOAD signal source to be local reload signal or master
reload signal.

pwm_sm_local_reload_effect_timing _t eLoclReloadEffectTime
Configures PWM submodule local reload signal effective timing when choose it as
RELOAD signal source.

bool bEnableFullCycleReloadOportunity
Enable generate a reload opportunity on PWM half cycle (count from INIT value to
VALO).

bool bEnableHalfCycleReload Oportunity
Enable generate a reload opportunity on PWM full cycle (count from INIT value to
VAL1).

pwm_sm_local_reload_oportunity_t eLocalReloadOportunity
Configures PWM submodule reload frequency when using local reload opportunities
mode .

struct _pwm_ sm_ value_register config
#include <fsl_pwm.h> The structure for configuring PWM submodule value registers.

264 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

uint16_t ul6CounterInitial Value

Configures PWM submodule counter initial value.
uint16_t ul6ValRegister0

Configures PWM submodule value register 0 (VALO) value.
uint16_t ul6ValRegisterl

Configures PWM submodule value register 1 (VAL1) value.
uint16_t ul6ValRegister2

Configures PWM submodule value register 2 (VAL2) value.
uint16_t ul6ValRegister3

Configures PWM submodule value register 3 (VAL3) value.
uint16_t ul6ValRegister4

Configures PWM submodule value register 4 (VAL4) value.
uint16_t ul6ValRegister5

Configures PWM submodule value register 5 (VAL5) value.

struct _pwm_ sm_ force_logic_ config

#include <fsl_pwm.h> The structure for configuring PWM submodule force logic.

Public Members

uint8_t bitPWM23Outputlnitial Vaule
Configures PWM submodule compare output x (PwmX) initial value.

uint8_t bitPWM450utputlnitial Vaule
Configures PWM submodule compare output A (PwmaA) initial value.

uint8_t bitPWMXOutputlnitial Vaule
Configures PWM submodule compare output B (PwmB) initial value.

pwm_sm_force_signal_select_t eForceSignalSelect
Configures PWM submodule force out select update trigger source.

pwm_sm_force_software_output_value_t eSoftOutputFor23
Configures PWM submodule force out PwmA value when select software as output
source.

pwm_sm_force_software_output_value_t eSoftOutputFord5
Configures PWM submodule force out PwmB value when select software as output
source.

pwm_sm_force_deadtime_source_t eForceOutput23
Configures the source of Pwm23, which will be force to deadtime logic.

pwm_sm_force_deadtime_source_t eForceOutput45
Configures the source of Pwm45, which will be force to deadtime logic.

struct _pwm_ sm_ deadtime_ value
#include <fsl pwm.h> The structure of the inserted dead time value, applies only to
KPWM_Complementaryxxx mode.

struct _pwm_ sm_ deadtime_ logic_ config

#include <fsl_pwm.h> The structure for configuring PWM submodule force out logic, works
on the deadtime logic output.

2.54. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 265

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

pwm_sm_deadtime_logic_mode_t eMode
The mode in which Deadtime logic process the force logic output signal.

pwm_sm_deadtime_value_t sDead TimeValue0

Control the deadtime during 0 to 1 transitions of the PWM_23 output (assuming normal
polarity). When disable fractional delays, the maximum value is OX7FF which repre-
sents 2047 cycles of IP bus cycles. When enable fractional delays, the maximum value
is OXFFFF which represents 2047 31/32 cycles cycles of IP bus cycles.

pwm_sm_deadtime_value_t sDead TimeValuel

Control the deadtime during 0 to 1 transitions of the PWM_45 output (assuming normal
polarity). When disable fractional delays, the maximum value is 0x7FF which repre-
sents 2047 cycles of IP bus cycles. When enable fractional delays, the maximum value
is OXFFFF which represents 2047 31/32 cycles cycles of IP bus cycles.

struct _pwm_ sm_ fractional delay_logic_ config

#include <fsl_pwm.h> The structure for configuring PWM submodule fractional delay logic,
works on the deadtime logic output.

Public Members

uint8_t bitsFracValuel
Configures PWM submodule compare register VAL1 fractional delay value, the unit is
1/32 IP bus clock.

bool bEnableVallFractionalDelay
Enable the fractional delay feature of bitsFracValuel.

uint8_t bitsFracValue2

Configures PWM submodule compare register VAL2 fractional delay value, the unit is
1/32 IP bus clock.

uint8_t bitsFracValue3

Configures PWM submodule compare register VAL3 fractional delay value, the unit is
1/32 IP bus clock.

bool bEnableVal23Fractional Delay
Enable the fractional delay feature of bitsFracValue2 and bitsFracValue3.

uint8_t bitsFracValue4

Configures PWM submodule compare register VAL4 fractional delay value, the unit is
1/32 IP bus clock.

uint8_t bitsFracValueb

Configures PWM submodule compare register VAL5 fractional delay value, the unit is
1/32 IP bus clock.

bool bEnableVal45Fractional Delay
Enable the fractional delay feature of bitsFracValue4 and bitsFracValue5.

struct _pwm_ sm_ output_ logic_ config t

#include <fsl_pwm.h> The structure for configuring PWM submodule output logic.

Public Members

bool bVal0TriggerEnable
Enable VALO register compare event trigger.

266

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

bool bVallTriggerEnable
Enable VAL1 register compare event trigger.

bool bVal2TriggerEnable
Enable VALZ2 register compare event trigger.

bool bVal3TriggerEnable
Enable VAL3 register compare event trigger.

bool bVal4TriggerEnable
Enable VAL4 register compare event trigger.

bool bVal5TriggerEnable
Enable VALS5 register compare event trigger.

bool bEnableTriggerPostScaler
True: Trigger outputs are generated only during the final PWM period prior to a reload
opportunity, false : Trigger outputs are generated during every PWM period. Config-
ures PWM submodule mux trigger output signal 0 source.
pwm_sm_mux_trigger_source_t eMuxTrigger0
Configures PWM submodule mux trigger output signal 1 source.

pwm_sm_mux_trigger._source_t eMuxTriggerl
Configures PWM submodule PWM_X output source (before polarity/mask/enable con-
trol).

bool bInvertPwmxOutput
True : invert PWM_X output, false : no invert PWM_X output.

bool bInvertPwmaQutput
True : invert PWM_A output, false : no invert PWM_A output.

bool bInvertPwmbQutput
True : invert PWM_B output, false : no invert PWM_B output.

bool bMaskPwmxOutput
True : PWM_X output masked, false : PWM_X output normal. Mask bit is buffered, and
take effect until FORCE_OUT event or software update command.

bool bMaskPwmaQutput
True : PWM_A output masked, false : PWM_A output normal. Mask bit is buffered, and
take effect until FORCE_OUT event or software update command.

bool bMaskPwmbQOutput
True : PWM_B output masked, false : PWM_B output normal. Mask bit is buffered, and
take effect until FORCE_OUT event or software update command.

bool bEnablePwmxQOutput
True : Enable PWM_X output. false : PWM_Xis disabled and output is tristated.

bool bEnablePwmaQutput
True : Enable PWM_A output. false : PWM_A is disabled and output is tristated.

bool bEnablePwmbOutput

True : Enable PWM_B output. false : PWM_B is disabled and output is tristated. Con-
figures PWM submodule PWM_X output during fault status (only works when fault
status enable).

pwm_sm_pwm_output_on_fault_t ePwmxFaultState

Configures PWM submodule PWM_A output during fault status (only works when fault
status enable).

2.54. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 267

MCUXpresso SDK Documentation, Release 25.09.00

pwm_sm_pwm_output_on_fault_t ePwmaFaultState

Configures PWM submodule PWM_B output during fault status (only works when fault
status enable).

struct _pwm_ sm_ input_ capture_ config

#include <fsl_ pwm.h> The structure for configuring PWM submodule input capture logic.

Note: When choosing kPWM_InputEdgeCounter as circuit 0/1 capture source, the eCir-
cuitOCaptureEdge and eCircuit1CaptureEdge selected trigger edge will be ignored, but still
need place a value other than kPWM_Noedge in either or both of the eCaptureCircuit0
and/or CaptureCircuitl fields in order to enable one or both of the capture registers.

Public Members

bool bEnableInputCapture
True: enable the input capture process, false : disable the input capture process.

pwm_sm_input_capture_source_t elnCaptureSource
Configures capture circuit 0/1 input source

pwm_sm_input_capture_edge_t eCircuitOCaptureEdge
Configures which edge causes a capture for capture circuit 0, will be ignore when use
edge counter as capture source.

pwm_sm_input_capture_edge_t eCircuit1CaptureEdge
Configures which edge causes a capture for capture circuit 1, will be ignore when use
edge counter as capture source.

bool bEnableOneShotCapture
True: Enable one-shot capture mode, the bEnableInputCapture will self-cleared when
one or more of the enabled capture circuits has had a capture event; false: Capture
circuit 0/1 will perform capture continue;

uint8_t bitsCaptureFifoWatermark
Watermark level for circuit 0/1 capture FIFO. The capture flags in the status register
will set if the word count in the circuit 0/1 capture FIFO is greater than this watermark
level

uint8_t u8EdgeCounterCompareValue
Edge counter compare value, used only if edge counter is used as capture circuit 0/1
input source

uint8_t u8FilterPeriod
Sampling period (in IPBus clock cycles) of the input filter, set to 0 to bypass the filter.

pwm_sm_input_capture_filter_count_t eFilterCount
Filter sample count.

struct _pwm_ sm_ capture_ dma,_ config

#include <fsl_pwm.h> The structure for configuring PWM submodule read capture DMA.

Public Members

bool bEnableCaptureDMA
Enables DMA read requests for the Capture FIFOs.

268

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

pwm_sm_capture_dma_source_t eCaptureDMASource
Select the source to enables DMA read requests for the Capture FIFOs. Will be ignored
when bEnableCaptureDMA be false.
struct _pwm_ sm_ dma_ config
#include <fsl_ pwm.h> The structure for configuring PWM submodule DMA.

Public Members

bool bEnableWriteValDMA
STS[RF] set enables DMA write requests for VALX and FRACVALX registers.

bool bEnableReadCaptureX0DMA
STS[CFXO0] set enables DMA read requests for Capture X0 FIFO. And X0 FIFO watermark
is selected for sCaptureDma pwm_sm_capture_dma_config_t.

bool bEnableReadCaptureX1DMA
STS[CFX1] set enables DMA read requests for Capture X1 FIFO. And X1 FIFO watermark
is selected for sCaptureDma pwm_sm_capture_dma_config_t.

bool bEnableReadCaptureAODMA
STS[CFAOQ] set enables DMA read requests for Capture A0 FIFO. And A0 FIFO watermark
is selected for sCaptureDma pwm_sm_capture_dma_config_t.

bool bEnableReadCaptureAIDMA
STS[CFA1] set enables DMA read requests for Capture A1 FIFO. And A1 FIFO watermark
is selected for sCaptureDma pwm_sm_capture_dma_config_t.

bool bEnableReadCaptureBODMA
STS[CFBO] set enables DMA read requests for Capture BO FIFO. And BO FIFO watermark
is selected for sCaptureDma pwm_sm_capture_dma_config_t.

bool bEnableReadCaptureBIDMA
STS[CFB1] set enables DMA read requests for Capture B1 FIFO. And B1 FIFO watermark
is selected for sCaptureDma pwm_sm_capture_dma_config_t.

pwm_sm_capture_dma_config t sCaptureDma
DMA read requests for the capture FIFOs configure.

struct _pwm_ sm_ fault_input_ mapping

#include <fsl_ pwm.h> The enumeration for PWM submodule output fault enable mask for
one fault protection channel.

The structure for configuring PWM submodule fault input disable mapping.

Note: The channel 0 input 0 and channel 1 input 0 are different pins.

Note: Each PWM output can be mapping anyone or more fault inputs. The mapped fault
protection channel inputs can disable PWM output.

Public Members

bool bFaultInputOMapping
Mapping fault input 0 (from fault protection channel 0) to PWM output.

2.54. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 269

MCUXpresso SDK Documentation, Release 25.09.00

bool bFaultInput1Mapping
Mapping fault input 1 (from fault protection channel 0) to PWM output.

bool bFaultInput2Mapping
Mapping fault input 2 (from fault protection channel 0) to PWM output.

bool bFaultInput3Mapping
Mapping fault input 3 (from fault protection channel 0) to PWM output.

bool bFaultInput4Mapping
Mapping fault input 4 (from fault protection channel 1) to PWM output.

bool bFaultInputsMapping
Mapping fault input 5 (from fault protection channel 1) to PWM output.

bool bFaultInput6Mapping
Mapping fault input 6 (from fault protection channel 1) to PWM output.

bool bFaultInput7Mapping
Mapping fault input 7 (from fault protection channel 1) to PWM output.

struct _pwm_ sm_ config
#include <fsl_ pwm.h> PWM submodule config structure.

This structure holds the configuration settings for the PWM peripheral. To initialize this
structure to reasonable defaults, call the PWM_GetDefaultConfig() function and pass a
pointer to your config structure instance.

Public Members

bool enableDebugMode
true: PWM continues to run in debug mode; false: PWM is paused in debug mode.

bool enableWaitMode
true: PWM continues to run in WAIT mode; false: PWM is paused in WAIT mode.

bool enableRun

true: PWM submodule is enabled; false: PWM submodule is disabled. Configures sub-
module value registers compare mode, only can be written one time.

pwm_sm_counter_config_t sCounterConfig
Submodule counter logic config.

pwm_sm_reload_logic_config_t sReloadConfig
Submodule reload control logic config.

pwm_sm_value_register_config_t sValRegisterConfig
Submodule value registers config.

pwm_sm_force_logic_config t sForceConfig
Submodule force out logic config.

pwm_sm_deadtime_logic_config_t sDeadTimeConfig
Submodule deadtime logic config.

pwm_sm_fractional_delay_logic_config t sFracDelayConfig
Submodule fractional logic config.

pwm_sm_output_logic_config_t sOutputConfig
Submodule output logic config.

270 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

pwm_sm_input_capture_config_t sinCaptureConfig[3]
Submodule input capture config for PWM_X/A/B pins.

pwm_sm_dma_config_t sDMAConfig
Submodule DMA config. PWM_X output fault input mapping, determines which fault
inputs can disable PWM_X output.

pwm_sm_fault_input_mapping_t sPwmXFaultInputMapping
PWM_A output fault input mapping, determines which faultinputs can disable PWM_A
output.

pwm_sm_fault_input_mapping_t sPwmAFaultInputMapping
PWM_B output fault input mapping, determines which faultinputs can disable PWM_B
output.

pwm_sm_fault_input_mapping_t sPwmBFaultInputMapping
Submodule interrupt enable mask, logic OR of _pwm_sm_interrupt_enable.

pwm_ml2_stretch_count_clock_prescaler._t eStrBusClock
PWM stretch IPBus clock count prescaler.

struct _pwm_ fault_ protection__input_ config
#include <fsl_pwm.h>

Public Members

pwm_fault_input_active_level_t eFaultActiveLevel
Select the active logic level of the fault input.

bool bEnableAutoFaultClear

True : Enable automatic fault clearing, fault recovery (PWM outputs can re-enable)
occurs when FSTS[FFPINX] is clear , false : Use manual fault clearing, fault recov-
ery (PWM outputs can re-enable) occurs when FSTS[FFLAGX] is manual clear (and
FSTS[FFPINX] is clear).

bool bEnableManualFaultClearSafeMode
True : fault recovery (PWM outputs can re-enable) occurs when FSTS[FFLAGX] is man-
ual clear and FSTS[FFPINX] is clear, false : fault recovery (PWM outputs can re-enable)
occurs when FSTS[FFLAGX] is manual clear.

bool bEnableFaultFullCycleRecovery
Enable full cycle fault recovery, which make PWM outputs are re-enabled at the start
of a half cycle after fault recovery occurs.

bool bEnableFaultHalfCycleRecovery
Enable half cycle fault recovery, which make PWM outputs are re-enabled at the start
of a half cycle after fault recovery occurs.

bool bEnableFaultNoCombinationalPath
True : The fault inputs are combined with the filtered and latched fault signals to dis-
able the PWM outputs, false : the filtered and latched fault signals are used to disable
the PWM outputs.

bool bEnableFaultInterrupt
Enable the fault input interrupt.

struct _pwm_ fault_ protection_ config
#include <fsl_pwm.h> The structure for configuring PWM fault protection channel, a PWM

module can have multiple fault protection channels, PWM sub-module can choose to map-
ping any one or more fault input from fault protection channels.

2.54. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 271

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

bool bEnableFaultGlitchStretch
Fault Glitch Stretch Enable: A logic 1 means that input fault signals will be stretched
to at least 2 IPBus clock cycles.

uint8_t bitsFaultFilterCount
Configures PWM fault protection channel fault filter count.

uint8_t uSFaultFilterPeriod
Configures PWM fault protection channel fault filter period, value of 0 will bypass the
filter.
struct _pwm__config

#include <fsl_pwm.h> PWM module config structure which contain submodule config struc-
ture pointers and fault protection filter config structure pointers.

Note: Need use submodule structure address to init the structure pointers, when the sub-
module or fault protection structure pointers is NULL, it will be ignored by PWM_Init API.
This can save stack space when only one or two submodules are used.

Public Members

pwm_sm_config t *psPwmSubmoduleConfig[1]

<PWM submodule config. PWM fault protection channel config, will take effect for all
submodules.

2.55 The Driver Change Log
2.56 eFlexPWM Peripheral and Driver Overview

2.57 QDC: Quadrature Decoder Driver

void QDC_ Init(QDC_Type *base, const qdc_config_t *psConfig)
Initializes the QDC module.

This function initializes the QDC by:
a. Enable the IP bus clock (optional).

b. Configure module based on the configuration structure.

Parameters
* base — QDC peripheral base address.
* psConfig — Pointer to configuration structure.

void QDC_ GetDefaultConfig(qdc_config t *psConfig)
Gets an available pre-defined configuration.

The default value are:

272 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

psConfig->bEnableReverseDirection = false;

psConfig->eDecoderWorkMode = kQDC_ DecoderQuadratureMode;
psConfig->eHomelnitPosCounterMode = kQDC__HomelnitPosCounterDisabled;
psConfig->elndexInit PosCounterMode = kQDC__IndexInitPosCounterDisabled;

psConfig->bEnableTriggerInitPositionCounter = false;
psConfig->bEnableTriggerClearPositionRegisters = false;
psConfig->bEnableTriggerHoldPositionRegisters = false;

psConfig->bEnableWatchdog = false;
psConfig->ul6WatchdogTimeoutValue = OxFFFFU;
psConfig->eFilterSampleCount = kQDC__Filter3Samples;
psConfig->u8FilterSamplePeriod = 0U;
psConfig->eOutputPulseMode = kQDC__ OutputPulseOnCounterEqualCompare;
psConfig->u32PositionCompareValue = OxFFFFFFFFEU;
psConfig->u32PositionComparel Value = OxFFFFFFFEU;
psConfig->eRevolutionCountCondition = kQDC_ RevolutionCountOnIndexPulse;
psConfig->bEnableModuloCountMode = false;
psConfig->u32PositionModulusValue = 0U;
psConfig->u32PositionInitial Value = 0U;
psConfig->u32PositionCounter Value = 0U;
psConfig->bEnablePeriodMeasurement = false;
psConfig->ePrescaler = kQDC_ Prescalerl;
psConfig->ul6EnabledInterruptsMask = 0U;

Parameters

 psConfig — Pointer to configuration structure.

void QDC_ Deinit(QDC_Type *base)
De-initializes the QDC module.

This function deinitializes the QDC by:
a. Disables the IP bus clock (optional).

Parameters
* base — QDC peripheral base address.

static inline void QDC__EnableWatchdog(QDC_Type *base, bool bEnable)
Enable watchdog for QDC module.

Parameters
* base — QDC peripheral base address
* bEnable — Enables or disables the watchdog

static inline void QDC_SetWatchdogTimeout(QDC_Type *base, uint16_t ul6Timeout)
Set watchdog timeout value.

Parameters

* base — QDC peripheral base address

* ul6Timeout — Number of clock cycles, plus one clock cycle that the watch-

dog timer counts before timing out

static inline uint16_t QDC_ GetStatusFlags(QDC_Type *base)
Get the status flags.

Parameters
* base — QDC peripheral base address.

Returns
Logical OR’ed value of the status flags, _qdc_status_flags.

2.57. QDC: Quadrature Decoder Driver

MCUXpresso SDK Documentation, Release 25.09.00

static inline void QDC__ClearStatusFlags(QDC_Type *base, uint16_t ul6Flags)
Clear the status flags.

Parameters
* base — QDC peripheral base address.
* ul6Flags — Logical OR’ed value of the flags to clear, _qdc_status_flags.

static inline uint16_t QDC_ GetSignalStatusFlags(QDC_Type *base)
Get the signals’ real-time status.

Parameters
* base — QDC peripheral base address.

Returns
Logical OR’ed value of the real-time signal status, _qdc_signal_status.

static inline qdc_count_direction flag t QDC_ GetLastCountDirection(QDC_Type *base)
Get the direction of the last count.

Parameters
* base — QDC peripheral base address.

Returns
Direction of the last count.

static inline void QDC__EnableInterrupts(QDC_Type *base, uint16_t ul6Interrupts)
Enable the interrupts.

Parameters
* base — QDC peripheral base address.

* ul6Interrupts — Logical ORed value of the interrupts,
_qdc_interrupt_enable.

static inline void QDC_ DisableInterrupts(QDC_Type *base, uint16_t ul6Interrupts)
Disable the interrupts.

Parameters
* base — QDC peripheral base address.

* ul6Interrupts — Logical ORed value of the interrupts,
_qdc_interrupt_enable.

static inline void QDC_ DoSoftwareLoadInitialPositionValue(QDC_Type *base)
Load the initial position value to position counter.

Software trigger to load the initial position value (UINIT and LINIT) contents to position
counter (UPOS and LPOS), so that to provide the consistent operation the position counter
registers.

Parameters
* base — QDC peripheral base address.

static inline void QDC_ SetInitialPositionValue(QDC_Type *base, uint32_t u32PositionInitValue)
Set initial position value for QDC module.

Set the position counter initial value (INIT or UINIT, LINIT).
Parameters
* base — QDC peripheral base address

* u32PositionInit Value — Position initial value

274 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

static inline void QDC__SetPositionCounterValue(QDC_Type *base, uint32_t
u32PositionCounterValue)

Set position counter value.
Set the position counter value (POS or UPOS, LPOS).
Parameters
* base — QDC peripheral base address
* u32PositionCounterValue — Position counter value

static inline void QDC__SetPositionModulusValue(QDC_Type *base, uint32_t
u32PositionModulusValue)

Set position counter modulus value.
Set the position counter modulus value (MOD or UMOD, LMOD).
Parameters
* base — QDC peripheral base address
* u32PositionModulusValue — Position modulus value

static inline void QDC_ SetPositionCompareValue(QDC_Type *base, uint32_t
u32PositionCompValue)

Set position counter compare value.
Set the position counter compare value (COMP or UCOMP, LCOMP).
Parameters
* base — QDC peripheral base address
* u32PositionComp Value — Position modulus value

static inline void QDC__SetPositionComparel Value(QDC_Type *base, uint32_t
u32PositionComp1Value)

Set position counter compare 1 value.
Set the position counter compare 1 value (COMP1 or UCOMP1, LCOMP1).
Parameters
* base — QDC peripheral base address
* u32PositionComp1Value — Position modulus value

static inline uint32_t QDC_ GetPosition(QDC_Type *base)
Get the current position counter’s value.

Parameters
* base — QDC peripheral base address.

Returns
Current position counter’s value.

static inline uint32_t QDC_ GetHoldPosition(QDC_Type *base)
Get the hold position counter’s value.

The position counter (POS or UPOS, LPOS) value is loaded to hold position (POSH or UPOSH,
LPOSH) when:

a. Position register (POS or UPOS, LPOS), or position difference register (POSD), or revo-
lution register (REV) is read.

b. TRIGGER happens and TRIGGER is enabled to update the hold registers.

Parameters

2.57. QDC: Quadrature Decoder Driver 275

MCUXpresso SDK Documentation, Release 25.09.00

* base — QDC peripheral base address.

Returns
Hold position counter’s value.

static inline uint16_t QDC_ GetPositionDifference(QDC_Type *base)
Get the position difference counter’s value.

Parameters
* base — QDC peripheral base address.

Returns
The position difference counter’s value.

static inline uint16_t QDC_ GetHoldPositionDifference(QDC_Type *base)
Get the hold position difference counter’s value.

The position difference (POSD) value is loaded to hold position difference (POSDH) when:

a. Position register (POS or UPOS, LPOS), or position difference register (POSD), or revo-
lution register (REV) is read. When Period Measurement is enabled (CTRL3[PMEN] =
1), POSDH will only be udpated when reading POSD.

b. TRIGGER happens and TRIGGER is enabled to update the hold registers.

Parameters
* base — QDC peripheral base address.

Returns
Hold position difference counter’s value.

static inline uint16_t QDC_ GetRevolution(QDC_Type *base)
Get the revolution counter’s value.

Get the revolution counter (REV) value.
Parameters
* base — QDC peripheral base address.

Returns
The revolution counter’s value.

static inline uint16_t QDC_ GetHoldRevolution(QDC_Type *base)
Get the hold revolution counter’s value.
The revolution counter (REV) value is loaded to hold revolution (REVH) when:

a. Position register (POS or UPOS, LPOS), or position difference register (POSD), or revo-
lution register (REV) is read.

b. TRIGGER happens and TRIGGER is enabled to update the hold registers.

Parameters
* base — QDC peripheral base address.

Returns
Hold position revolution counter’s value.

static inline uint16_t QDC_ GetLastEdgeTime(QDC_Type *base)
Get the last edge time.

Last edge time (LASTEDGE) is the time since the last edge occurred on PHASEA or PHASEB.
The last edge time register counts up using the peripheral clock after prescaler. Any edge
on PHASEA or PHASEB will reset this register to 0 and start counting. If the last edge timer
count reaches Oxffff, the counting will stop in order to prevent an overflow.

276 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* base — QDC peripheral base address.

Returns
The last edge time.

static inline uint16_t QDC_ GetHoldLastEdgeTime(QDC_Type *base)
Get the hold last edge time.

The hold of last edge time(LASTEDGEH) is update to last edge time(LASTEDGE) when the
position difference register register (POSD) is read.

Parameters
* base — QDC peripheral base address.

Returns
Hold of last edge time.

static inline uint16_t QDC_ GetPositionDifferencePeriod(QDC_Type *base)
Get the Position Difference Period counter value.

The Position Difference Period counter (POSDPER) counts up using the prescaled periph-
eral clock. When reading the position difference register(POSD), the last edge time (LAST-
EDGE) will be loaded to position difference period counter(POSDPER). If the POSDPER count
reaches Oxffff, the counting will stop in order to prevent an overflow. Counting will con-
tinue when an edge occurs on PHASEA or PHASEB.

Parameters
* base — QDC peripheral base address.

Returns
The position difference period counter value.

static inline uint16_t QDC_ GetBufferedPositionDifferencePeriod(QDC_Type *base)
Get buffered Position Difference Period counter value.

The Bufferd Position Difference Period (POSDPERBFR) value is updated with the position
difference period counter(POSDPER) when any edge occurs on PHASEA or PHASEB.

Parameters
* base — QDC peripheral base address.

Returns
The buffered position difference period counter value.

static inline uint16_t QDC_ GetHoldPositionDifferencePeriod(QDC_Type *base)
Get Hold Position Difference Period counter value.

The hold position difference period(POSDPERH) is updated with the value of buffered posi-
tion difference period(POSDPERBFR) when the position difference(POSD) register is read.

Parameters
* base — QDC peripheral base address.

Returns
The hold position difference period counter value.

FSL_QDC_DRIVER,_ VERSION
QDC driver version.

enum _ qdc_ status_ flags
QDC status flags, these flags indicate the counter’s events. .

Values:

2.57. QDC: Quadrature Decoder Driver 277

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQDC__ HomeTransitionFlag
HOME signal transition occured.

enumerator kQDC_ IndexPulseFlag
INDEX pulse occured.

enumerator kQDC_WatchdogTimeoutFlag
Watchdog timeout occured.

enumerator kQDC_ PositionCompareFlag
Position counter match the COMP value.

enumerator kQDC_ SimultPhaseChangeFlag
Simultaneous change of PHASEA and PHASEB occured.

enumerator kQDC_ PositionRollOverFlag

Position counter rolls over from OXFFFFFFFF to 0, or from MOD value to INIT value.

enumerator kQDC_ PositionRollUnderFlag

Position register roll under from 0 to OXFFFFFFFF, or from INIT value to MOD value.

enumerator kQDC_ PositionComparelFlag
Position counter match the COMP1 value.

enumerator kQDC_ StatusAllFlags

enum _ qdc_ signal_status

Signal status, these flags indicate the raw and filtered input signal status. .

Values:

enumerator kQDC_ SignalStatusRawHome
Raw HOME input.

enumerator kQDC_ SignalStatusRawIndex
Raw INDEX input.

enumerator kQDC_ SignalStatusRawPhaseB
Raw PHASEB input.

enumerator kQDC_ SignalStatusRawPhaseA
Raw PHASEA input.

enumerator kQDC__ SignalStatusFiltered Home
The filtered HOME input.

enumerator kQDC_ SignalStatusFilteredIndex
The filtered INDEX input.

enumerator kQDC_ SignalStatusFilteredPhaseB
The filtered PHASEB input.

enumerator kQDC_ SignalStatusFilteredPhaseA
The filtered PHASEA input.

enumerator kQDC_ SignalStatusAllFlags
enum _ qdc_interrupt_ enable

Interrupt enable/disable mask. .

Values:

enumerator kQDC_ HomeTransitionInterruptEnable
HOME signal transition interrupt enable.

278

Chapter 2

. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQDC_ IndexPulselnterruptEnable
INDEX pulse interrupt enable.

enumerator kQDC_ WatchdogTimeoutInterruptEnable
Watchdog timeout interrupt enable.

enumerator kQDC_ PositionComparelnerruptEnable
Position compare interrupt enable.

enumerator kQDC_ SimultPhaseChangelnterruptEnable
Simultaneous PHASEA and PHASEB change interrupt enable.
enumerator kQDC__ PositionRollOverInterrupt Enable
Roll-over interrupt enable.

enumerator kQDC_ PositionRollUnderInterruptEnable
Roll-under interrupt enable.

enumerator kQDC_ PositionComparelInerruptEnable
Position compare 1 interrupt enable.

enumerator kQDC__AlllnterruptEnable

enum _ qdc_home_ init_ pos_ counter_mode
Define HOME signal’s trigger mode.

Values:
enumerator kQDC__HomelnitPosCounterDisabled
Don’t use HOME signal to initialize the position counter.
enumerator kQDC__HomelnitPosCounterOnRisingEdge
Use positive going edge to trigger initialization of position counters.
enumerator kQDC_ HomelnitPosCounterOnFallingEdge
Use negative going edge to trigger initialization of position counters.
enum _ qdc_index_ init_ pos_ counter mode
Define INDEX signal’s trigger mode.
Values:
enumerator kQDC_ IndexInitPosCounterDisabled
INDEX pulse does not initialize the position counter.
enumerator kQDC_ IndexInitPosCounterOnRisingEdge
Use INDEX pulse rising edge to initialize position counter.
enumerator kQDC__IndexInitPosCounterOnFallingEdge
Use INDEX pulse falling edge to initialize position counter.
enum _ qdc_ decoder work mode

Define type for decoder work mode.

In normal work mode uses the standard quadrature decoder with PHASEA and PHASEB.
In signal phase count mode, a positive transition of the PHASEA input generates a count
signal while the PHASEB input and the reverse direction control the counter direction. If
the reverse direction is not enabled, PHASEB = 0 means counting up and PHASEB = 1 means
counting down. If the reverse direction is enabled, PHASEB = 0 means counting down and
PHASEB = 1 means counting up.

Values:

2.57. QDC: Quadrature Decoder Driver 279

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQDC_ DecoderQuadratureMode
Use standard quadrature decoder with PHASEA and PHASEB.

enumerator kQDC_ DecoderSignalPhaseCountMode
PHASEA input generates a count signal while PHASEB input control the direction.

enum _ qdc_ output_ pulse_mode
Define type for the condition of POSMATCH pulses.
Values:

enumerator kQDC__OutputPulseOnCounterEqualCompare

POSMATCH pulses when a match occurs between the position counters (POS) and the
compare value (COMP, COMP1).

enumerator kQDC_ OutputPulseOnReadingPositionCounter

POSMATCH pulses when reading position counter(POS), revolution counter(REV), po-
sition difference counter(POSD).

enum _ qdc_ revolution_ count_ condition

Define type for determining how the revolution counter (REV) is incre-
mented/decremented.

Values:

enumerator kQDC_RevolutionCountOnIndexPulse
Use INDEX pulse to increment/decrement revolution counter.

enumerator kQDC_RevolutionCountOnRollOverModulus
Use modulus counting roll-over/under to increment/decrement revolution counter.

enum _ qdc_ filter_sample_count
Input Filter Sample Count.

The Input Filter Sample Count represents the number of consecutive samples that must
agree, before the input filter accepts an input transition

Values:

enumerator kQDC_ Filter3Samples
3 samples.

enumerator kQDC_ Filter4Samples
4 samples.

enumerator kQDC_ FilterbSamples
5 samples.

enumerator kQDC_ Filter6Samples
6 samples.

enumerator kQDC_ Filter7Samples
7 samples.

enumerator kQDC_ Filter8Samples
8 samples.

enumerator kQDC_ Filter9Samples
9 samples.

enumerator kQDC_ Filter10Samples
10 samples.

280 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enum _ qdc_ filter_prescaler
Prescaler Divide IPBus Clock to filter Clock.

Values:

enumerator kQDC__FilterPrescalerl
Prescaler value 1.

enumerator kQDC_FilterPrescaler2
Prescaler value 2.

enumerator kQDC _ FilterPrescaler4
Prescaler value 4.

enumerator kQDC__FilterPrescaler8
Prescaler value 8.

enumerator kQDC__FilterPrescaler16
Prescaler value 16.

enumerator kQDC__FilterPrescaler32
Prescaler value 32.

enumerator kQDC__FilterPrescaler64
Prescaler value 64.

enumerator kQDC__ FilterPrescaler128
Prescaler value 128.

enum _ qdc_ count_ direction_ flag
Count direction.

Values:

enumerator kQDC_ CountDirectionDown
Last count was in down direction.

enumerator kQDC_ CountDirectionUp
Last count was in up direction.

enum _ qdc_ prescaler

Prescaler used by Last Edge Time (LASTEDGE) and Position Difference Period Counter (POS-
DPER).

Values:

enumerator kQDC_ Prescalerl
Prescaler value 1.
enumerator kQDC_Prescaler2
Prescaler value 2.
enumerator kQDC_ Prescaler4
Prescaler value 4.
enumerator kQDC_ Prescaler8
Prescaler value 8.
enumerator kQDC_Prescaler16
Prescaler value 16.

enumerator kQDC_ Prescaler32
Prescaler value 32.

2.57. QDC: Quadrature Decoder Driver 281

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQDC_ Prescaler64
Prescaler value 64.

enumerator kQDC_ Prescaler128
Prescaler value 128.

enumerator kQDC_ Prescaler256
Prescaler value 256.

enumerator kQDC_ Prescaler512
Prescaler value 512.

enumerator kQDC_ Prescaler1024
Prescaler value 1024.

enumerator kQDC_ Prescaler2048
Prescaler value 2048.

enumerator kQDC_ Prescaler4096
Prescaler value 4096.

enumerator kQDC _Prescaler8192
Prescaler value 8192.

enumerator kQDC_ Prescaler16384
Prescaler value 16384.

enumerator kQDC_ Prescaler32768
Prescaler value 32768.

typedef enum _qdc_home_init_pos_counter_mode qdc_home_ init_ pos_ counter_mode_ t
Define HOME signal’s trigger mode.

typedef enum _qdc_index_init_pos_counter_mode qdc_index_ init_ pos_ counter_mode_ t
Define INDEX signal’s trigger mode.

typedef enum _qdc_decoder_work_mode qdc_ decoder work_mode_ t
Define type for decoder work mode.
In normal work mode uses the standard quadrature decoder with PHASEA and PHASEB.
In signal phase count mode, a positive transition of the PHASEA input generates a count
signal while the PHASEB input and the reverse direction control the counter direction. If
the reverse direction is not enabled, PHASEB = 0 means counting up and PHASEB = 1 means
counting down. If the reverse direction is enabled, PHASEB = 0 means counting down and
PHASEB = 1 means counting up.

typedef enum _qdc_output_pulse_mode qdc_output_ pulse_mode_t
Define type for the condition of POSMATCH pulses.

typedef enum _qdc_revolution_count_condition qdc_ revolution_count_ condition_ t
Define type for determining how the revolution counter (REV) is incre-
mented/decremented.

typedef enum _gqdc_filter_sample_count qdc_ filter_sample__count_t
Input Filter Sample Count.
The Input Filter Sample Count represents the number of consecutive samples that must
agree, before the input filter accepts an input transition

typedef enum _gqdc_filter_prescaler qdc_ filter prescaler_t
Prescaler Divide IPBus Clock to filter Clock.

282 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _qdc_count_direction_flag qdc_ count_ direction_flag_t

Count direction.

typedef enum _qdc_prescaler qdc_ prescaler_t

Prescaler used by Last Edge Time (LASTEDGE) and Position Difference Period Counter (POS-

DPER).
typedef struct _qdc_config qdc_ config_t

Define user configuration structure for QDC module.

QDC_CTRL_WI1C_FLAGS
W1C bits in QDC CTRL registers.

QDC_CTRL2_W1C_FLAGS

W1C bits in QDC CTRLZ2 registers.
QDC_CTRL3_W1C_FLAGS

W1C bits in QDC CTRL3 registers.
QDC_CTRL_INT EN

Interrupt enable bits in QDC CTRL registers.
QDC_CTRL2 INT EN

Interrupt enable bits in QDC CTRL2 registers.
QDC_CTRL3_INT_EN

Interrupt enable bits in QDC CTRL3 registers.
QDC_CTRL_INT_ FLAGS

Interrupt flag bits in QDC CTRL registers.
QDC_CTRL2_INT_FLAGS

Interrupt flag bits in QDC CTRL2 registers.
QDC_CTRL3_INT_FLAGS

Interrupt flag bits in QDC CTRL3 registers.

struct _ qdc_ config

#include <fsl_qdc.h> Define user configuration structure for QDC module.

Public Members

bool bEnableReverseDirection
Enable reverse direction counting.

qdc_decoder_work_mode_t eDecoderWorkMode

Use standard quadrature decoder mode or signal phase count mode.

qdc_home_init_pos_counter_mode_t eHomelnitPosCounterMode
Select how HOME signal used to initialize position counters.

qdc_index_init_pos_counter_mode_t eIndexInitPosCounterMode
Select how INDEX signal used to initialize position counters.

bool bEnableTriggerInitPositionCounter
Initialize position counter with initial register(UINIT, LINIT) value on TRIGGER’s rising
edge.

bool bEnableTriggerClearPositionRegisters

Clear position counter(POS), revolution counter(REV), position difference counter
(POSD) on TRIGGER's rising edge.

2.57. QDC: Quadrature Decoder Driver 283

MCUXpresso SDK Documentation, Release 25.09.00

bool bEnableTriggerHoldPositionRegisters
Load position counter(POS), revolution counter(REV), position difference counter
(POSD) values to hold registers on TRIGGER’s rising edge.

bool bEnablelndexInitPositionCounter
Enables the feature that the position counter to be initialized by Index Event Edge
Mark.

This option works together with eIndexInitPosCounterMode and bEnableReverseDi-
rection. If enabled, the behavior is like this:

When PHA leads PHB (Clockwise): If eIndexInitPosCounterMode is
kQDC_IndexInitPosCounterOnRisingEdge, then INDEX rising edge reset position
counter. If eIndexInitPosCounterMode is kQDC_IndexInitPosCounterOnFallingEdge,
then INDEX falling edge reset position counter. If bEnableReverseDirection is false,
then Reset position counter to initial value. If bEnableReverseDirection is true, then
reset position counter to modulus value.

When PHA lags PHB (Counter Clockwise): If eIndexInitPosCounterMode is
kQDC_IndexInitPosCounterOnRisingEdge, then INDEX falling edge reset position
counter. If eIndexInitPosCounterMode is kQDC_IndexInitPosCounterOnFallingEdge,
then INDEX rising edge reset position counter. If bEnableReverseDirection is false,
then Reset position counter to modulus value. If bEnableReverseDirection is true,
then reset position counter to initial value.

bool bEnableWatchdog

Enable the watchdog to detect if the target is moving or not.

uint16_t ul6WatchdogTimeout Value
Watchdog timeout count value. It stores the timeout count for the quadrature decoder
module watchdog timer.

qdc_filter_prescaler._t eFilterPrescaler
Input signal filter prescaler.

qdc_filter_sample_count_t eFilterSampleCount

Input Filter Sample Count. This value should be chosen to reduce the probability of
noisy samples causing an incorrect transition to be recognized. The value represent
the number of consecutive samples that must agree prior to the input filter accepting
an input transition.

uint8_t u8FilterSamplePeriod

Input Filter Sample Period. This value should be set such that the sampling period is
larger than the period of the expected noise. This value represents the sampling period
(in IPBus clock cycles) of the decoder input signals. The available range is 0 - 255.

qdc_output_pulse_mode_t eOutputPulseMode
The condition of POSMATCH pulses.

uint32_t u32PositionCompareValue

Position compare value. The available value is a 32-bit number.
uint32_t u32PositionComparel Value

Position compare 1 value. The available value is a 32-bit number.
qdc_revolution_count_condition_t eRevolutionCountCondition

Revolution Counter Modulus Enable.

bool bEnableModuloCountMode
Enable Modulo Counting.

284

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t u32PositionModulusValue

Position modulus value. Only used when bEnableModuloCountMode is true. The avail-
able value is a 32-bit number.

uint32_t u32PositionInitialValue
Position initial value. The available value is a 32-bit number.

uint32_t u32PositionCounterValue

Position counter value. When Modulo mode enabled, the u32PositionCounterValue
should be in the range of u32PositionInitialValue and u32PositionModulusValue.

bool bEnablePeriodMeasurement

Enable period measurement. When enabled, the position difference hold register
(POSDH) is only updated when position difference register (POSD) is read.

qdc_prescaler_t ePrescaler
Prescaler.

uint16_t ul6EnabledInterruptsMask
Mask of interrupts to be enabled, should be OR’ed value of _qdc_interrupt_enable.

2.58 QDC Peripheral and Driver Overview

2.59 QSCI: Queued Serial Communications Interface Driver

void QSCI__GetDefaultConfig(gsci_config t *psConfig, uint32_t u32BaudRateBps, uint32_t
u32SrcClockHz)

Sets the QSCI configuration structure to default values.

The purpose of this API is to initialize the configuration structure to default value for
QSCI_Init to use. Use the unchanged structure in QSCI_Init or modify the structure before
calling QSCI_Init. This is an example:

gsci__config_t sConfig;
QSCI_GetDefaultConfig(&sConfig, 115200, 12000000U);
QSCI_ Init(QSCIO, &config);

Parameters
* psConfig — Pointer to configuration structure.
* u32BaudRateBps — Baudrate setting.
* u32SrcClockHz — The clock source frequency for QSCI module.

status_t QSCI_Init(QSCI_Type *base, gsci_config t *psConfig)
Initializes the QSCI instance with a user configuration structure.

This function configures the QSCI module with the customed settings. User can config-
ure the configuration structure manually or get the default configuration by using the
QSCI_GetDefaultConfig function. The example below shows how to use this API to configure
QSCI.

gsci__config _t sConfig;
QSCI_GetDefaultConfig(&sConfig, 115200, 12000000U);
QSCI_ Init(QSCIO, &sConfig);

Parameters

2.58. QDC Peripheral and Driver Overview 285

MCUXpresso SDK Documentation, Release 25.09.00

* base — QSCI peripheral base address.
* psConfig — Pointer to the user-defined configuration structure.
Return values

* kStatus_ QSCI_BaudrateNotSupport — Baudrate is not supported in the cur-
rent clock source.

* kStatus_Success — Set baudrate succeeded.

void QSCI_Deinit(QSCI_Type *base)
Deinitializes a QSCI instance.

This function waits for transmiting complete, then disables TX and RX.
Parameters
* base — QSCI peripheral base address.

static inline uint16_t QSCI_ GetStatusFlags(QSCI_Type *base)
Gets QSCI hardware status flags.

Parameters
* base — QSCI peripheral base address.

Returns
QSCI status flags, can be a single flag or several flags in _gsci_status_flags com-
bined by OR.

void QSCI__ClearStatusFlags(QSCI_Type *base, uint16_t ul6StatusFlags)
Clears QSCI status flags.

This function clears QSCI status flags. Members in kQSCI_GroupOFlags can’t be cleared by
this function, they are cleared or set by hardware.

Parameters
* base — QSCI peripheral base address.

* ul6StatusFlags — The status flag mask, can be a single flag or several flags
in _gsci_status_flags combined by OR.

void QSCI__EnableInterrupts(QSCI_Type *base, uint8_t u8Interrupts)
Enables QSCI interrupts according to the provided mask.

This function enables the QSCI interrupts according to the provided mask. The mask is a
logical OR of enumeration members in _gsci_interrupt_enable.

Parameters
* base — QSCI peripheral base address.

* uInterrupts — The interrupt source mask, can be a single source or several
sources in _qsci_interrupt_enable combined by OR.

void QSCI_ DisableInterrupts(QSCI_Type *base, uint8_t u8Interrupts)
Disables QSCI interrupts according to the provided mask.

This function disables the QSCI interrupts according to the provided mask. The mask is a
logical OR of enumeration members in _gsci_interrupt_enable.

Parameters
* base — QSCI peripheral base address.

» u8Interrupts — The interrupt source mask, can be a single source or several
sources in _qsci_interrupt_enable combined by OR.

286 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

uint8_t QSCI_GetEnabledInterrupts(QSCI_Type *base)
Gets the enabled QSCI interrupts.

This function gets the enabled QSCI interrupts. The enabled interrupts are returned as the
logical OR value of the enumerators _qsci_interrupt_enable.

Parameters
* base — QSCI peripheral base address.

Returns
The interrupt source mask, can be a single source or several sources in
_gsci_interrupt_enable combined by OR.

static inline void QSCI_ Reset(QSCI_Type *base)
Sets the QSCI register value to reset value.

Parameters
* base — QSCI peripheral base address.

static inline void QSCI__EnableTx(QSCI_Type *base, bool bEnable)
Enables or disables the QSCI transmitter.

This function enables or disables the QSCI transmitter.
Parameters
* base — QSCI peripheral base address.
* bEnable — True to enable, false to disable.

static inline void QSCI_ EnableRx(QSCI_Type *base, bool bEnable)
Enables or disables the QSCI receiver.

This function enables or disables the QSCI receiver.
Parameters
* base — QSCI peripheral base address.
* bEnable — True to enable, false to disable.

static inline void QSCI__EnableStopInWait(QSCI_Type *base, bool bEnable)
Enables/disables stop in wait.

Parameters
* base — QSCI peripheral base address.

* bEnable — true to enable, QSCI stops working in wait mode, false to disable,
QSCI keeps working in wait mode

static inline void QSCI__Enable9bitMode(QSCI_Type *base, bool bEnable)
Enables/Disables 9-bit data mode for QSCI.

Parameters
* base — QSCI peripheral base address.
* bEnable — true to enable, false to disable.

static inline void QSCI_ EnableStandbyMode(QSCI_Type *base, bool bEnable)
Enables/Disables standby mode.

When QSCI is in standby mode, further receiver interrupt requests are inhibited waiting
to be wake up. The wakeup mode can be configured by QSCI_SetWakeupMode. Hardware
wakes the receiver by automatically disabling standby.

Parameters

2.59. QSCI: Queued Serial Communications Interface Driver 287

MCUXpresso SDK Documentation, Release 25.09.00

* base — QSCI peripheral base address.
* bEnable — true to enable, false to disable.

static inline void QSCI__EnableLINSlaveMode(QSCI_Type *base, bool bEnable)
Enable/Disable LIN slave mode.

If enabled QSCI is in LIN slave mode. When break is detected, the baudrate register is
automatically adjusted to match the value measured from the sync character that follows.

Parameters
* base — QSCI peripheral base address.
* bEnable — true to enable, false to disable.

static inline void QSCI_ EnableStopHold(QSCI_Type *base, bool bEnable)
Enable/Disable stop mode hold off.

When enabled, if chip level stop mode occurs and transmiter or receiver is still busy, QSCI
will hold off stop mode until both transmiter and receiver are idle.

Parameters
* base — QSCI peripheral base address.
* bEnable — true to enable, false to disable.

static inline void QSCI_SetTransferMode(QSCI_Type *base, gsci_transfer_mode_t
eTransferMode)

Sets the QSCI transfer mode.
Parameters
* base — QSCI peripheral base address.

* eTransferMode — The QSCI tx/rx loop mode, kQSCI_Normal to use nor-
mal transfer, kQSCI_LoopInternal to let internal tx feed back to rx,
kQSCI_SingleWire to use single wire mode using tx pin as tx and rx.

static inline void QSCI_ SetWakeupMode(QSCI_Type *base, gsci wakeup_mode_t eWakeupMode)
Sets wakeup mode for QSCI.

Parameters
* base — QSCI peripheral base address.

* ¢eWakeupMode - Wakeup mode, KkQSCI_WakeupOnldleLine or
kQSCI_WakeupOnAddressMark.

static inline void QSCI_SetPolarityMode(QSCI_Type *base, gsci_polarity_mode_t ePolarityMode)
Sets polarity mode for QSCI.

Parameters
* base — QSCI peripheral base address.

» ePolarityMode - Polarity mode, kQSCI_PolarityNormal or
kQSCI_PolarityInvert.

static inline void QSCI_SetParityMode(QSCI_Type *base, gsci_parity_mode_t eParityMode)
Sets parity mode for QSCI.

Parameters
* base — QSCI peripheral base address.

* eParityMode — Polarity mode, kQSCI_ParityDisabled, kQSCI_ParityEven or
kQSCI_ParityOdd.

288 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

status_t QSCI__SetBaudRate(QSCI_Type *base, uint32_t u32BaudRateBps, uint32_t
u32SrcClockHz)

Sets the QSCI instance baud rate.

This function configures the QSCI module baud rate. This function can be used to update
QSCI module baud rate after the QSCI module is initialized by the QSCI_Init.

Parameters
* base — QSCI peripheral base address.
* u32BaudRateBps — QSCI baudrate to be set.
* u32SrcClockHz — QSCI clock source frequency in Hz.

Return values

* kStatus_ QSCI_ BaudrateNotSupport — Baudrate is not supported in the cur-
rent clock source.

* kStatus Success — Set baudrate succeeded.

static inline void QSCI_ EnableFifo(QSCI_Type *base, bool bEnable)
Enables/Disables transmitter/receiver FIFO.

Parameters
* base — QSCI peripheral base address.
* bEnable — true to enable, false to disable.

static inline void QSCI_ SetTxWaterMark(QSCI_Type *base, gsci_tx_water_t eTxFifoWatermark)
Sets transmitter watermark.

Parameters
* base — QSCI peripheral base address.
» ¢TxFifoWatermark — TX water mark level.

static inline void QSCI_ SetRxWaterMark(QSCI_Type *base, gsci_rx_water_t eRxFifoWatermark)
Sets receiver watermark.

Parameters
* base — QSCI peripheral base address.
* eRxFifoWatermark — RX water mark level.

static inline void QSCI__EnableTxDMA (QSCI_Type *base, bool bEnable)
Enables or disables the QSCI transmitter DMA request.

This function enables or disables CTRL2[TDE], to generate the DMA requests when Tx data
register is empty.

Parameters
* base — QSCI peripheral base address.
* bEnable — True to enable, false to disable.

static inline void QSCI__EnableRxDMA (QSCI_Type *base, bool bEnable)
Enables or disables the QSCI receiver DMA request.

This function enables or disables CTRL2[RDE], to generate DMA requests when receiver
data register is full.

Parameters
* base — QSCI peripheral base address.

* bEnable — True to enable, false to disable.

2.59. QSCI: Queued Serial Communications Interface Driver 289

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t QSCI__GetDataRegister Address(QSCI_Type *base)
Gets the QSCI data register byte address.

This function returns the QSCI data register address, which is mainly used by DMA/eDMA.
Parameters
* base — QSCI peripheral base address.

Returns
QSCI data register byte addresses which are used both by the transmitter and
the receiver.

static inline void QSCI_ WriteByte(QSCI_Type *base, uint8_t u8Data)
Writes to the TX register.

This function writes data to the TX register directly. The upper layer must ensure that the
TX register is empty or TX FIFO has room before calling this function.

Parameters
* base — QSCI peripheral base address.
*» u8Data — The byte to write.

static inline void QSCI_ SendAddress(QSCI_Type *base, uint8_t u8Address)
Sends an address frame in 9-bit data mode.

Parameters
* base — QSCI peripheral base address.
* u8Address — QSCI slave address.

static inline uint8_t QSCI_ReadByte(QSCI_Type *base)
Reads the RX register directly.

This function reads data from the RX register directly. The upper layer must ensure that
the RX register is full or that the TX FIFO has data before calling this function.

Parameters
* base — QSCI peripheral base address.

Returns
The byte read from QSCI data register.

void QSCI_ WriteBlocking(QSCI_Type *base, const uint8_t *pu8Data, uint32_t u32Length)
Writes TX register using a blocking method.

This function polls the TX register, waits TX register to be empty or TX FIFO have room then
writes data to the TX buffer.

Parameters
* base — QSCI peripheral base address.
* pu8Data — Start address of the data to write.
* u32Length — Size of the data to write.

status_t QSCI_ReadBlocking(QSCI_Type *base, uint8_t *pu8Data, uint32_t u32Length)
Reads RX data register using a blocking method.

This function polls the RX register, waits RX register to be full or RX FIFO have data, then
reads data from the RX register.

Parameters

* base — QSCI peripheral base address.

290 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

* pu8Data — Start address of the buffer to store the received data.
* u32Length — Size of the buffer.

Return values
* kStatus_Fail - Receiver error occurred while receiving data.

e kStatus QSCI RxHardwareOverrun — Receiver overrun occurred while re-
ceiving data

* kStatus_ QSCI_ NoiseError — Noise error occurred while receiving data
* kStatus_ QSCI__FramingError — error occurred while receiving data

* kStatus_ QSCI_ ParityError — Parity error occurred while receiving data
* kStatus_ Success — Successfully received all data.

static inline void QSCI_ SendBreak(QSCI_Type *base)
Sends one break character (10 or 11 bits of zeroes).

Parameters
* base — QSCI peripheral base address.

void QSCI_ TransferCreateHandle(QSCI_Type *base, gsci_transfer_handle_t *psHandle,
qsci_transfer_callback_t pfCallback, void *pUserData)

Initializes the QSCI handle.

This function initializes the QSCI handle which can be used for other QSCI transactional
APIs. Usually, for a specified QSCI instance, call this API once to get the initialized handle.

Parameters
* base — QSCI peripheral base address.
* psHandle — QSCI handle pointer.
¢ pfCallback — The callback function.
» pUserData — The parameter of the callback function.

void QSCI_TransferStartRingBuffer(qsci_transfer_handle_t *psHandle, uint8_t *pu8RxRingBuffer,
uint16_t ul6RxRingBufferSize)

Sets up the RX ring buffer.
This function sets up the RX ring buffer to a specific QSCI handle.

When the RX ring buffer is used, data received are stored into the ring buffer even when the
user doesn’t call the QSCI_TransferReceiveNonBlocking() APL If data is already received in
the ring buffer, the user can get the received data from the ring buffer directly.

Note: When using the RX ring buffer, one byte is reserved for internal use. In other words,
if ringBufferSize is 32, only 31 bytes are used for saving data.

Parameters
* psHandle — QSCI handle pointer.

* pu8RxRingBuffer — Start address of the ring buffer for background receiv-
ing. Pass NULL to disable the ring buffer.

* ul6RxRingBufferSize — Size of the ring buffer.

2.59. QSCI: Queued Serial Communications Interface Driver 291

MCUXpresso SDK Documentation, Release 25.09.00

void QSCI_TransferStopRingBuffer(gsci_transfer_handle_t *psHandle)
Aborts the background transfer and uninstalls the ring buffer.

This function aborts the background transfer and uninstalls the ring buffer.
Parameters
¢ psHandle — QSCI handle pointer.

uint16_t QSCI_ TransferGetRxRingBufferLength(gsci_transfer_handle_t *psHandle)
Get the ring buffer valid data length.

Parameters
* psHandle — QSCI handle pointer.

Returns
Valid data length in ring buffer.

status_t QSCI_ TransferSendNonBlocking(gsci_transfer_handle_t *psHandle, gsci_transfer_t
*psTransfer)

Transmits a buffer of data using the interrupt method.

This function sends data using an interrupt method. This is a non-blocking function, which
returns directly without waiting for all data to be written to the TX register. When all data
is sent out, the QSCI driver calls the callback function and passes the kStatus_QSCI_TxIdle
as status parameter.

Parameters

* psHandle — QSCI handle pointer.

¢ psTransfer — QSCI transfer structure. See qsci_transfer_t.
Return values

* kStatus_ Success — Successfully start the data transmission.

* kStatus_ QSCI_TxBusy — Previous transmission still not finished; data not
all written to TX register yet.

void QSCI_TransferAbortSend(gsci_transfer_handle_t *psHandle)
Aborts the interrupt-driven data transmit.

This function aborts the interrupt-driven data sending. The user can get the remainBytes
to find out how many bytes are not sent out.

Parameters
* psHandle — QSCI handle pointer.

status_t QSCI_ TransferGetSendCount(gsci_transfer_handle_t *psHandle, uint32_t *pu32Count)
Gets the number of bytes sent out to bus.

This function gets the number of bytes sent out to bus by using the interrupt method.
Parameters
* psHandle — QSCI handle pointer.
* pu32Count — Send bytes count.
Return values
* kStatus_ NoTransferInProgress — No send in progress.

* kStatus_ Success — Get successfully through the parameter count;

292 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

status_t QSCI_ TransferReceiveNonBlocking(gsci_transfer_handle_t *psHandle, gsci_transfer_t
*psTransfer, uint32_t *pu32ReceivedBytes)

Receives a buffer of data using an interrupt method.

This function receives data using an interrupt method. This is a non-blocking function,
which returns without waiting for all data to be received. If the RX ring buffer is used
and not empty, the data in the ring buffer is copied and the parameter pu32ReceivedBytes
shows how many bytes are copied from the ring buffer. After copying, if the data in the
ring buffer is not enough to read, the receive request is saved by the QSCI driver. When the
new data arrives, the receive request is serviced first. When all data is received, the QSCI
driver notifies the upper layer through a callback function and passes the status parameter
kStatus_QSCI_RxIdle. For example, the upper layer needs 10 bytes but there are only 5 bytes
in the ring buffer. The 5 bytes are copied to the psTransfer->data and this function returns
with the parameter pu32ReceivedBytes set to 5. For the left 5 bytes, newly arrived data is
saved from the psTransfer->data[5]. When 5 bytes are received, the QSCI driver notifies
the upper layer. If the RX ring buffer is not enabled, this function enables the RX and RX
interrupt to receive data to the psTransfer->data. When all data is received, the upper layer
is notified.

Parameters
* psHandle — QSCI handle pointer.
¢ psTransfer — QSCI transfer structure, see qsci_transfer_t.
* pu32ReceivedBytes — Bytes received from the ring buffer directly.
Return values
* kStatus_ Success — Successfully queue the transfer into transmit queue.
* kStatus_ QSCI__RxBusy — Previous receive request is not finished.

void QSCI_ TransferAbortReceive(gsci_transfer_handle_t *psHandle)
Aborts the interrupt-driven data receiving.

This function aborts the interrupt-driven data receiving. The user can get the remainBytes
to know how many bytes are not received yet.

Parameters
* psHandle — QSCI handle pointer.

status_t QSCI_ TransferGetReceivedCount(qsci_transfer_handle_t *psHandle, uint32_t
*pu32Count)

Gets the number of bytes that have been received.
This function gets the number of bytes that have been received.
Parameters
* psHandle — QSCI handle pointer.
* pu32Count — Receive bytes count.
Return values
* kStatus_NoTransferInProgress — No receive in progress.
* kStatus_ InvalidArgument — Parameter is invalid.
* kStatus_ Success — Get successfully through the parameter pu32Count;

FSL__QSCI_DRIVER,_ VERSION
QSCI driver version.

2.59. QSCI: Queued Serial Communications Interface Driver 293

MCUXpresso SDK Documentation, Release 25.09.00

Status codes for the QSCI driver.
Values:

enumerator kStatus_ QSCI_ TxBusy
Transmitter is busy.

enumerator kStatus_ QSCI__RxBusy
Receiver is busy.

enumerator kStatus_ QSCI_TxlIdle
Transmitter is idle.

enumerator kStatus_ QSCI__RxIdle
Receiver is idle.

enumerator kStatus_ QSCI_FlagCannotClearManually
Status flag can’t be manually cleared.

enumerator kStatus_ QSCI_RxRingBufferOverrun
QSCI RX software ring buffer overrun.

enumerator kStatus_ QSCI__RxHardwareOverrun
QSCI receiver hardware overrun.

enumerator kStatus_ QSCI_ NoiseError
QSCI noise error.

enumerator kStatus_ QSCI__FramingFError
QSCI framing error.

enumerator kStatus_ QSCI_ ParityError
QSCI parity error.

enumerator kStatus_ QSCI__BaudrateNotSupport
Baudrate is not supported in current clock source

enumerator kStatus_ QSCI_IdleLineDetected
QSCIIDLE line detected.

enumerator kStatus_ QSCI_Timeout
Timeout happens when waiting for status flags to change.

enum _ gsci_ status_ flags

QSCI hardware status flags.
These enumerations can be ORed together to form bit masks.
Values:

enumerator kQSCI_ TxDataRegEmptyFlag
TX data register empty flag.
enumerator kQSCI_ TxIdleFlag
Transmission idle flag.
enumerator kQSCI_ RxDataRegFullFlag
RX data register full flag.
enumerator kQSCI_ RxIdleLineFlag
Rx Idle line flag.

294

Chapter 2

. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQSCI_ RxOverrunFlag
RX overrun flag.

enumerator kQSCI__RxNoiseFlag
RX detect noise on Rx input.

enumerator kQSCI_ RxFrameErrorFlag

Rx frame error flag, sets if logic 0 was detected for stop bit
enumerator kQSCI_ RxParityErrorFlag

Rx parity error if parity enabled, sets upon parity error detection
enumerator kQSCI_ RxInputEdgeFlag

RX pin active edge interrupt flag, sets when active edge detected
enumerator kQSCI_ LINSyncErrorFlag

Only for LIN mode.
enumerator kQSCI_ TxDMARequestFlag

Tx DMA request is ongoing.
enumerator kQSCI_ RxDMARequestFlag

Rx DMA request is ongoing.
enumerator kQSCI__RxActiveFlag

enumerator kQSCI_ GroupOFlags
Members in kQSCI_GroupOFlags can’t be cleared by QSCI_ClearStatusFlags, they are
handled by HW.

enumerator kQSCI_ GrouplFlags
Whole kQSCI_GrouplFlags will be cleared if trying to clear any member in
kQSCI_Group1Flags or kQSCI_Group2Flags in the mask.

enumerator kQSCI_ Group2Flags
Member in kQSCI_Group2Flags can be cleared individually

enumerator kQSCI_ StatusAllFlags

enum _ gsci_interrupt__enable

QSCI interrupt enable/disable source.
These enumerations can be ORed together to form bit masks.
Values:

enumerator kQSCI_ TxEmptyInterruptEnable
Transmit data register empty interrupt.

enumerator kQSCI_ TxIdleInterruptEnable
Transmission idle interrupt.

enumerator kQSCI_ RxFulllnterruptEnable
Receive data register full interrupt.

enumerator kQSCI_ RxErrorInterruptEnable
Receive error interrupt.

enumerator kQSCI_ RxInputEdgelnterruptEnable
Receive input edge interrupt.

enumerator kQSCI_ RxIdleLinelnterruptEnable
Receive idle interrupt.

2.59. QSCI: Queued Serial Communications Interface Driver 295

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQSCI__AlllnterruptEnable
enum _ gsci_ transfer_mode

QSCI transmiter/receiver loop mode.

Values:

enumerator kQSCI_Normal
Normal mode, 2 signal pins, no loop.

enumerator kQSCI_ LoopInternal

Loop mode with internal TXD fed back to RXD.

enumerator kQSCI_ SingleWire

Use tx pin as input and output half-duplex transfer.

enum _ gsci_ data_ bit_ mode
QSCI data bit count.

Values:

enumerator kQSCI__Data8Bit
1 start bit, 8 data bit, 1 stop bit

enumerator kQSCI_ Data9Bit

1 start bit, 9 data bit, 1 stop bit. This mode actually is not supported yet in driver.

enum _ gsci_ wakeup__mode
QSCI wakeup mode.

Values:

enumerator kQSCI_ WakeupOnldleLine
Idle condition wakes the QSCI module.

enumerator kQSCI_ WakeupOnAddressMark
Address mark wakes the QSCI module.

enum _ gsci_ polarity _mode
QSCI signal polarity mode.

Values:

enumerator kQSCI_ PolarityNormal
Normal mode, no inversion.

enumerator kQSCI_ PolarityInvert
Invert transmit and receive data bits.

enum _ gsci_ parity__mode
QSCI parity mode.

Values:

enumerator kQSCI_ ParityDisabled
Parity disabled

enumerator kQSCI_ ParityEven

Parity enabled, type even, bit setting: PE|PT = 10

enumerator kQSCI_ ParityOdd

Parity enabled, type odd, bit setting: PE|PT = 11

296

. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enum _ gsci_ tx_ water
QSCI transmitter watermark level.
Values:
enumerator kQSCI_ TxWaterOWord
Tx interrupt sets when tx fifo empty.
enumerator kQSCI_ TxWater1Word
Tx interrupt sets when tx fifo has 1 or few word.
enumerator kQSCI_TxWater2Word
Tx interrupt sets when tx fifo has 2 or few words.
enumerator kQSCI_TxWater3Word
Tx interrupt sets when tx fifo not full.
enum _ gsci_ rx_ water
QSCI receiver watermark level.
Values:
enumerator kQSCI_ RxWater1Word
Rx interrupt sets when rx fifo not empty.
enumerator kQSCI_ RxWater2Word
Rx interrupt sets when rx fifo has at least 1 word.
enumerator kQSCI_ RxWater3Word
Rx interrupt sets when rx fifo has at least 2 words.
enumerator kQSCI_ RxWater4dWord
Rx interrupt sets when rx fifo full.
typedef enum _gsci_transfer_mode qsci_ transfer_mode_ t
QSCI transmiter/receiver loop mode.
typedef enum _gsci_data_bit_mode qsci_ data_bit_mode_t
QSCI data bit count.
typedef enum _gsci_wakeup_mode qsci_ wakeup__mode_t
QSCI wakeup mode.
typedef enum _gsci_polarity_mode qsci_ polarity__mode_t
QSCI signal polarity mode.
typedef enum _qsci_parity_mode qsci__parity_mode_t
QSCI parity mode.
typedef enum _qsci_tx_water qsci_tx_ water_t
QSCI transmitter watermark level.
typedef enum _qgsci_rx_water qsci_rx_ water_t
QSCI receiver watermark level.
typedef struct _qgsci_config qsci_config_t
QSCI configuration structure.

typedef struct _qsci_transfer_handle_t gsci_ transfer_handle_t
Forward declaration of the handle typedef.

2.59. QSCI: Queued Serial Communications Interface Driver

297

MCUXpresso SDK Documentation, Release 25.09.00

typedef void (*qsci_transfer_ callback_t)(gsci_transfer_handle_t *psHandle)
QSCI interrupt transfer callback function definition.

Defines the interface of user callback function used in QSCI interrupt transfer using transac-
tional APIs. The callback function shall be defined and declared in application level by user.
Before starting QSCI transmiting or receiving by calling QSCI_TransferSendNonBlocking
or QSCI_TransferReceiveNonBlocking, call QSCI_TransferCreateHandle to install the user
callback. When the transmiting or receiving ends or any bus error like hardware overrun
occurs, user callback will be invoked by driver.

Param psHandle
Transfer handle that contains bus status, user data.

typedef struct _gsci_transfer qsci_transfer_t
QSCI transfer structure.

typedef void (*qsci_isr_t)(void *handle)
qsci_isr_t s_ pfQscilsr
void *s_ psQsciHandles|[]
IRQn_Type const s_ eQsciTXIdleIRQs[]
uint16_t QSCI_GetInstance(QSCI_Type *base)
Get the QSCI instance from peripheral base address.
Parameters

* base — QSCI peripheral base address.

Returns
QSCI instance.

QSCI RETRY TIMES
Retry times when checking status flags.
QSCI_GET_BUS_STATUS(psHandle)
Macros to be used inside user callback.

QSCI_GET_TRANSFER_USER_DATA(psHandle)

struct _ gsci_ config
#include <fsl_gsci.h> QSCI configuration structure.

Public Members
qsci_transfer_mode_t eTransferMode
Transmitter/receiver loop mode.

bool bStopInWaitEnable

Enable/disable module stops working in wait mode.
gsci_data_bit_mode_t eDataBitMode

Number of data bits.
qsci_wakeup_mode_t eWakeupMode

Receiver wakeup mode, idle line or addressmark.

gsci_polarity_mode_t ePolarityMode
Polarity of transmit/receive data.

298 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

qsci_parity_mode_t eParityMode
Parity mode, disabled (default), even, odd.

bool bEnableStopHold
Control the stop hold enable.
bool bEnableTx
Enable TX
bool bEnableRx
Enable RX
bool bEnableFifo
Enable Tx/Rx FIFO
bool bEnableTxDMA
Enable Tx DMA
bool bEnableRxDMA
Enable Rx DMA
qsci_tx_water_t eTxFifoWatermark
TX FIFO watermark
qsci_rx_water_t eRxFifoWatermark
RX FIFO watermark
uint8_t u8Interrupts
Mask of QSCI interrupt sources to enable.
uint32_t u32BaudRateBps
QSCI baud rate
uint32_t u32SrcClockHz
The clock source frequency for QSCI module.

struct _ gsci_ transfer__handle_t
#include <fsl_gsci.h> QSCI transfer handle.

Note: If user wants to use the transactional API to transfer data in interrupt way, one QSCI
instance should and can only be allocated one handle.

Note: The handle is maintained by QSCI driver internally, which means the transfer state
is retained and user shall not modify its state u8TxState or u8RxState in application level.
If user only wish to use transactional APIs without understanding its machanism, it is not
necessary to understand these members.

Public Members
QSCI_Type *base
QSCI base pointer to the instance belongs to this handle.

uint8_t *pu8TxData
Address of remaining data to send.

volatile uint32_t u32TxRemainingSize
Size of the remaining data to send.

2.59. QSCI: Queued Serial Communications Interface Driver 299

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t u32TxDataSize
Size of the data to send out.

uint8_t *pu8RxData
Address of remaining data to receive.

volatile uint32_t u32RxRemainingSize
Size of the remaining data to receive.

uint32_t u32RxDataSize
Size of the data to receive.

uint8_t *pu8RxRingBuffer
Start address of the receiver ring buffer.

uint16_t ul6RxRingBufferSize
Size of the ring buffer.

volatile uint16_t ul6RxRingBufferHead
Index for the driver to store received data into ring buffer.

volatile uint16_t ul6RxRingBufferTail
Index for the user to get data from the ring buffer.

gsci_transfer_callback _t pfCallback
Callback function.

void *pUserData
QSCI callback function parameter.

volatile uint8_t u8TxState
TX transfer state.

volatile uint8_t u8RxState
RX transfer state

status_t busStatus
QSCI bus status.

struct _ gsci_ transfer
#include <fsl_gsci.h> QSCI transfer structure.

Public Members

uint8_t *pu8Data
The buffer pointer of data to be transferred.

uint32_t u32DataSize
The byte count to be transferred.

2.60 The Driver Change Log

2.61 QSCI_EDMA: EDMA based QSCI Driver

300

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

void QSCI_TransferCreateHandleEDMA (QSCI_Type *base, gsci_edma_transfer_handle_t
*psHandle, gsci_edma_transfer_callback_t pfCallback,
void *pUserData, DMA_Type *edmaBase,
edma_channel t eEdmaTxChannel, edma_channel t
eEdmaRxChannel)

Initializes the QSCI edma handle.

This function initializes the QSCI edma handle which can be used for other QSCI transac-
tional APIs. Usually, for a specified QSCI instance, call this API once to get the initialized

handle.
Parameters
* base — QSCI peripheral base address.

* psHandle — Pointer to gsci_edma_transfer_handle_t structure.

pfCallback — Callback function.

* pUserData — User data.

* edmaBase — Edma base address.

* eEdmaTxChannel — eDMA channel for TX transfer.
* eEdmaRxChannel — eDMA channel for RX transfer.

status_t QSCI_ TransferSendEDMA (gsci_edma_transfer_handle_t *psHandle, gsci_transfer._t
*psTransfer)

Initiate data transmit using EDMA.

This function initiates a data transmit process using eDMA. This is a non-blocking function,
which returns right away. When all the data is sent, the send callback function is called.

Parameters

* psHandle — QSCI handle pointer.

¢ psTransfer — QSCI eDMA transfer structure. See gsci_transfer_t.
Return values

* kStatus_ Success — if succeed, others failed.

* kStatus_ QSCI_TxBusy — Previous transfer on going.

* kStatus_ InvalidArgument — Invalid argument.

status_t QSCI__TransferReceiveEDMA (gsci_edma_transfer_handle_t *psHandle, gsci_transfer_t
*psTransfer)

Initiate data receive using EDMA.

This function initiates a data receive process using eDMA. This is a non-blocking function,
which returns right away. When all the data is received, the receive callback function is
called.

Parameters
 psHandle — Pointer to gsci_edma_transfer_handle_t structure.
¢ psTransfer — QSCI eDMA transfer structure, see qsci_transfer_t.
Return values
* kStatus Success — if succeed, others fail.
* kStatus_ QSCI__RxBusy — Previous transfer ongoing.

* kStatus_ InvalidArgument — Invalid argument.

2.61. QSCI_EDMA: EDMA based QSCI Driver 301

MCUXpresso SDK Documentation, Release 25.09.00

void QSCI_TransferAbortSendEDMA (gsci_edma_transfer_handle_t *psHandle)
Aborts the data transmit process using EDMA.

Parameters
 psHandle — Pointer to gsci_edma_transfer_handle_t structure.

void QSCI_ TransferAbortReceiveEDMA (gsci_edma_transfer_handle_t *psHandle)
Aborts the data receive process using EDMA.

Parameters
* psHandle — Pointer to gsci_edma_transfer_handle_t structure.

status_t QSCI__TransferGetReceivedCountEDMA (qsci_edma_transfer_handle_t *psHandle,
uint32_t *pu32Count)

Gets the number of received bytes.
This function gets the number of received bytes.
Parameters
* psHandle — QSCI handle pointer.
* pu32Count — Receive bytes count.
Return values
* kStatus_ NoTransferInProgress — No receive in progress.
* kStatus_ Success — Get successfully through the parameter count;

status_t QSCI_TransferGetSendCountEDMA (qsci_edma_transfer_handle_t *psHandle, uint32_t
*pu32Count)

Gets the number of bytes written to the QSCI TX register.
This function gets the number of bytes written to the QSCI TX register by DMA.
Parameters
* psHandle — QSCI handle pointer.
* pu32Count — Send bytes count.
Return values
* kStatus_ NoTransferInProgress — No send in progress.
* kStatus_ Success — Get successfully through the parameter count;

FSL__QSCI_EDMA_DRIVER_ VERSION
QSCI EDMA driver version.

typedef struct _gsci_edma_transfer_handle qsci__edma_ transfer handle_t
Forward declaration of the gsci edma handle typedef. .

typedef void (*qsci__edma_ transfer callback t)(gsci_edma_transfer_handle_t *psHandle)
QSCI edma transfer callback function definition.

Defines the interface of user callback function used in QSCI edma transfer using transac-
tional APIs. The callback function shall be defined and declared in application level by
user. Before starting QSCI transmiting or receiving by calling QSCI_TransferSendEDMA or
QSCI_TransferReceiveEDMA, call QSCI_TransferCreateHandleEDMA to install the user call-
back. When the transmiting or receiving ends, user callback will be invoked by driver.

Param psHandle
Transfer handle that contains bus status, user data.

302 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

struct _ gsci_edma,_ transfer_handle

#include <fsl_qsci_edma.h> QSCI edma transfer handle.

This struct address should be sizeof(edma_channel_tcd_t) aligned.

Note: If user wants to use the transactional API to transfer data in edma way, one QSCI

instance should and can only be allocated one handle.

Note: The handle is maintained by QSCI driver internally, which means the transfer state
is retained and user shall not modify its state u8TxState or u8RxState in application level.
If user only wish to use transactional APIs without understanding its machanism, it is not

necessary to understand these members.

Public Members

edma_channel_tcd_t sTxTed
TCD for EDMA TX transfer.

edma_channel_tcd_t sRxTcd
TCD for EDMA RX transfer.

QSCI_Type *base

Pointer to the QSCI base that belongs to this handle.

qsci_edma_transfer_callback_t pfCallback
Callback function.

uint32_t u32RxDataSizeAll
Size of the data to receive.
uint32_t u32TxDataSizeAll
Size of the data to send out.
edma_handle_t sTxEdmaHandle
The eDMA TX channel used.
edma_handle_t sRxEdmaHandle
The eDMA RX channel used.
volatile uint8_t u8TxState
TX transfer state.
volatile uint8_t u8RxState
RX transfer state
status_t busStatus
QSCI bus status.

void *pUserData

User configurable pointer to any data, function, structure etc that user wish to use in

the callback

2.62 QSCI Peripheral and Driver Overview

2.62. QSCI Peripheral and Driver Overview

303

MCUXpresso SDK Documentation, Release 25.09.00

2.63 QSPI: Queued SPI Driver

void QSPI_MasterInit(QSPI_Type *base, const gspi_master._config t *psConfig)
Initializes the QUEUEDSPI as Master.

Use helpher function QSPI_MasterGetDefaultConfig to get ready-to-use structure.
Parameters
* base — QUEUEDSPI peripheral address.
* psConfig — Pointer to the structure gspi_master_config_t.

void QSPI_MasterGetDefaultConfig(qspi_master_config_t *psConfig, uint32_t u32ClockFreqHz)
Helper function to create ready-to-user maste init structure.

The purpose of this API is to get the configuration structure initialized for the
QSPI_Masterlnit. Users may use the initialized structure unchanged in the QSPI_MasterInit
or modify the structure before calling the QSPI_MasterInit. Example:

gspi__master_ config t sMasterConfig;
QSPI_MasterGetDefaultConfig(&sMasterConfig);

The default values are: Example:

// Parameter provided by user
psConfig->u32BaudRateBps = u32BaudRateBps;
psConfig->u32ClockFrequencyHz = u32ClockFreqHz;
psConfig->eDataWidth = eDataWidth;

// Default configuration

psConfig->eClkPolarity = kQSPI_ ClockPolarity ActiveRisingEdge;
psConfig->eClkPhase = kQSPI_ ClockPhaseSlaveSelectHighBetweenWords;
psConfig->eShiftDirection = kQSPI_ MsbFirst;
psConfig->ul6DelayBetweenFrameInCLK = 1U;
psConfig->bEnableWiredOrMode = false;
psConfig->bEnableModeFault = false;
psConfig->u8DmaEnableFlags = 0U; // Disable TX/RX Dma
psConfig->bEnableFIFO = false;
psConfig->bEnableStopModeHoldOff = false;
psConfig->u8Interrupts = 0U;

psConfig->bEnableModule = false;

@todo To be added

Parameters
* psConfig — pointer to gspi_master_config_t structure.
* u32ClockFreqHz — Peripheral clock frequency in Hz

void QSPI_Slavelnit(QSPI_Type *base, const gspi_slave_config t *psConfig)
Initializes the QUEUEDSPI as slave.

Use helpher function QSPI_SlaveGetDefaultConfig to get ready-to-use structure.
Parameters
* base — QUEUEDSPI peripheral address.
* psConfig — Pointer to the structure gspi_slave_config_t.

void QSPI_SlaveGetDefaultConfig(qspi_slave_config_t *psConfig)
Set the qspi_slave_config_t structure to default values.

304 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

The purpose of this API is to get the configuration structure initialized for the
QSPI_Slavelnit. Users may use the initialized structure unchanged in the QSPI_Slavelnit
or modify the structure before calling the QSPI_Slavelnit. Example:

gspi_slave_ config_t slaveConfig;
QSPI_SlaveGetDefaultConfig(&slaveConfig);

The default values are: Example:

@todo

Parameters
* psConfig — Pointer to the gspi_slave_config_t structure.

void QSPI_ Deinit(QSPI_Type *base)
De-initialize the QUEUEDSPI peripheral for either Master or Slave.

Parameters
* base — QUEUEDSPI peripheral address.

static inline void QSPI_ EnableInterrupts(QSPI_Type *base, uint8_t u8Interrupts)
Enable one or multiple interrupts.

This function enable one or multiple interrupts.

Note: for TX and RX requests, while enabling the interrupt request the DMA request will
be disabled as well. Do not use this API while QUEUEDSPI is in running state.

Parameters
* base — QUEUEDSPI peripheral address.

» u8lnterrupts — The interrupt mask which is ORed by the
_gspi_interrupt_enable.

static inline void QSPI_DisableInterrupts(QSPI_Type *base, uint8_t u8Interrupts)
Disable one or multiple interrupts.

This function

Parameters
* base — QUEUEDSPI peripheral address.
» u8lnterrupts — The interrupt mask which is ORed by the

_gspi_interrupt_enable.

static inline void QSPI__EnableDMA (QSPI_Type *base, uint8_t u8DmaFlags)
Enable one or multiple DMA.

Note that if the DMA is enabled for Transmit or Receive, make sure the interurpt is disabled
for Transmit or Receive.

Parameters
* base — QUEUEDSPI peripheral address.
* u8DmaFlags — DMA Flags ORed from _gspi_dma_enable_{flags.

static inline void QSPI_DisableDMA(QSPI_Type *base, uint8_t u8DmaFlags)
Enable one or multiple DMA.

Note that if the DMA is enabled for Transmit or Receive, make sure the interurpt is disabled
for Transmit or Receive.

2.63. QSPI: Queued SPI Driver 305

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* base —- QUEUEDSPI peripheral address.
* u8DmaFlags — DMA Flags ORed from _gspi_dma_enable_flags.

static inline uint32_t QSPI_GetTxRegisterAddress(QSPI_Type *base)
Get the QUEUEDSPI transmit data register address for the DMA operation.

Parameters
* base — QUEUEDSPI peripheral address.

Returns
The QUEUEDSPI master PUSHR data register address.

static inline uint32_t QSPI_GetRxRegisterAddress(QSPI_Type *base)
Get the QUEUEDSPI receive data register address for the DMA operation.

Parameters
* base — QUEUEDSPI peripheral address.

Returns
The QUEUEDSPI POPR data register address.

static inline uint16_t QSPI_GetStatusFlags(QSPI_Type *base)
Get the QUEUEDSPI status flag state.

Parameters
* base — QUEUEDSPI peripheral address.

Returns
QUEUEDSPI status.

static inline void QSPI_ ClearStatusFlags(QSPI_Type *base, uint16_t ul6StatusFlags)
Clear the status flag only for the mode fault.

Clear the status flag only for mode fault.

Note: only kQSPI_ModeFaultFlag can be cleared by this API.

Parameters
* base — QUEUEDSPI peripheral address.
* ul6StatusFlags — status flags ORed from _qgspi_status_flags

static inline void QSPI_Enable(QSPI_Type *base, bool bEnable)
Enable or disable the QUEUEDSPI peripheral.

Parameters
* base — QUEUEDSPI peripheral address.
* bEnable — true to enable module, otherwise disable module

uint32_t QSPI_MasterSetBaudRate(QSPI_Type *base, uint32_t u32BaudRateBps, uint32_t
u32SrcClockHz)

Set the QUEUEDSPI baud rate in bits-per-second.

This function takes in the desired baud rate, calculates the nearest possible baud rate, and
returns the calculated baud rate in bits-per-second.

Parameters
* base — QUEUEDSPI peripheral address.

306 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

* u32BaudRateBps — The desired baud rate in bits-per-second.
* u32SrcClockHz — Module source input clock in Hertz.

Returns
The actual calculated baud rate.

static inline void QSPI_ SetMasterSlaveMode(QSPI_Type *base, gspi_master_slave_mode_t
eMode)

Set the QUEUEDSPI as master or slave.
Parameters
* base — QUEUEDSPI peripheral address.
* eMode — Mode setting of type gspi_master_slave_mode_t.

static inline bool QSPI_IsMaster(QSPI_Type *base)
Return whether the QUEUEDSPI module is in master mode.

Parameters
* base —- QUEUEDSPI peripheral address.

Returns
Returns true if the module is in master mode or false if the module is in slave
mode.

static inline void QSPI_SetDataShiftOrder(QSPI_Type *base, qspi_data_shift_direction_t
eDataShiftOrder)

Set Data Shift Order as MSB first or LSB first.
Parameters
* base — QUEUEDSPI peripheral address.
¢ eDataShiftOrder — MSB or LSB first from qspi_data_shift_direction_t
static inline void QSPI_ EnableModeFault(QSPI_Type *base, bool bEnable)
Enable/Disable mode fault detection.

If enable, allows the kQSPI_ModeFaultFlag flag to be set. If the kQSPI_ModeFaultFlag flag is
set, disable the Mod detection does not clear the flag. If the mod detection is disabled, the
level of the SS_B pin does not affect the operation of an enabled SPI configured as a master.
If configured as a master and mod fault detection is enabled, a transaction in progress will
stop if SS_B goes low. For an enabled SPI configured as a slave, having this feature disabled
only prevents the flag from being set. It does not affect any other part of SPI operation

Parameters
* base — QUEUEDSPI peripheral address.
* bEnable — true to enable Mode Fault detection, false to disable

static inline void QSPI_SetClockPolarity(QSPI_Type *base, gspi_clock_polarity_t ePolarity)
Set clock polarity.

Note: module shall be disabled before change the polarity by calling QSPI_Enable.

Parameters
* base — QUEUEDSPI peripheral address.

* ePolarity — clock polarity option

2.63. QSPI: Queued SPI Driver 307

MCUXpresso SDK Documentation, Release 25.09.00

static inline void QSPI_SetClockPhase(QSPI_Type *base, gspi_clock_phase_t eClockPhase)
Set clock phase.
Configure whether get the Slave Select signal toggle high during 2 data frames. Get the SS

toggle high between data frames will lead to SPI to be trigged with transaction for the falling
edge of SS signal. Otherwise, the data transaction is started on the first active SCLK edge.

Note: module shall be disabled before change the polarity by calling QSPI_Enable.

Note: Do not use kQSPI_ClockPhaseSlaveSelectHighBetweenWords in DMA mode.

Parameters
* base — QUEUEDSPI peripheral address.
* eClockPhase — Option for clock phase

static inline void QSPI_EnableWiredORMode(QSPI_Type *base, bool bEnable)

Enable/Disable Wired OR mode for SPI pins which means open-drain when enabled and
push-pull when disabled.

Parameters
* base — QUEUEDSPI peripheral address.

* bEnable — true to configure SPI pins as open-drain, false to configure as
push-pull

static inline void QSPI_SetTransactionDataSize(QSPI_Type *base, gspi_data width_t eDataWidth)
Set the transaction data width.
Parameters
* base — QUEUEDSPI peripheral address.
» eDataWidth — datawidth for bits in each data frame.

static inline void QSPI_ MasterSetWaitDelay(QSPI_Type *base, uint16_t
ul6WaitDelayInPeriClockCount)

For master mode, set wait delay in clock cycle with delay is set value + 1 peripheral bus
clock.

This controls the time between data transactions in master mode. Delay will not be added
if no word is waiting for transmitting.

Parameters
* base — QUEUEDSPI peripheral address.

* ul6WaitDelayInPeriClockCount — Clock count for the delay during data
frames

static inline void QSPI_ EnableStopModeHoldOff (QSPI_Type *base, bool bEnable)

Enable/Disable hold off entry to stop mode is a word is being transmitted/received for Mas-
ter Mode.

When enabled, this bit allows the SPI module to hold off entry to chip level stop mode if
a word is being transmitted or received. Stop mode will be entered after the SPI finishes
transmitting/receiving. This bit does not allow the SPI to wake the chip from stop mode in
any way. The SHEN bit can only delay the entry into stop mode. This bit should not be set
in slave mode because the state of SS_B (which would be controlled by an external master
device) may cause the logic to hold off stop mode entry forever.

308 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* base —- QUEUEDSPI peripheral address.

* bEnable — true to enable hold-off entrying stop mode if there is transmit-
ting/receiving

uint32_t QSPI_ GetlInstance(QSPI_Type *base)
Helper function exported for QSPI DMA driver.
Get the instance index from the base address. User need not understand this function.
Parameters
* base — QUEUEDSPI peripheral address.

Returns
uint32_t Index of the peripheral instance for given base address.

static inline gspi_ss_data_logic_level t QSPI_MasterGetSlaveSelectLogicLevel(QSPI_Type *base)

For master mode, get the SS_B input logic level while true means drive High and false means
drive Low.

Get the value to drive on the SS_B pin. This bit is disabled when SSB_AUTO=1 or SSB_STRB=1.
Only apply for Master mode.

Parameters
* base — QUEUEDSPI peripheral address.

Returns
true SS_B input level High

Returns
false SS_B input level Low

static inline void QSPI_MasterSetSlaveSelectLogicLevel(QSPI_Type *base,
qspi_ss_data_logic_level t eLogicLevel)

for master mode, drive Slave Select pin logic high or low

This feature is disabled if Slave Select automatic mode is enabled or Slave Select Strobe
feature is enabled

Parameters
* base — QUEUEDSPI peripheral address.
* eLogicLevel —logic level

static inline void QSPI_MasterEnableSlaveSelectOpenDrainMode(QSPI_Type *base, bool bEnable)
For master mode, Enable open drain in SSB pad pin.

Enable it means SS_B is configured for high and low drive. This mode is generally used
in single master systems. Disable it means SS_B is configured as an open drain pin (only
drives low output level). This mode is useful for multiple master systems

Parameters
* base — QUEUEDSPI peripheral address.
* bEnable — Enable/Disable option.

static inline void QSPI_MasterEnableSlaveSelect AutomaticMode(QSPI_Type *base, bool bEnable)
For master mode, Enable/Disable Slave Select pin automatic mode.

Parameters
* base — QUEUEDSPI peripheral address.
* bEnable — Enable/Disable option.

2.63. QSPI: Queued SPI Driver 309

MCUXpresso SDK Documentation, Release 25.09.00

static inline void QSPI_ SetSlaveSelectDirection(QSPI_Type *base, gspi_ss_direction_t eDirection)
Set Input/Output mode for SSB signal.

Parameters
* base — QUEUEDSPI peripheral address.
* eDirection — options from qspi_ss_direction_t

static inline void QSPI_MasterEnableSlaveSelectStrobe(QSPI_Type *base, bool bEnable)
For master, set strobe mode for SSB signal.

If enabled, Slave select pulse high during data frames irrespective of Clock Phase configu-
ration

Parameters
* base — QUEUEDSPI peripheral address.
* bEnable — Enable/Disable option.

static inline void QSPI_ EnableSlaveSelectOverride(QSPI_Type *base, bool bEnable)
Enable / Disable SSB signal from Master/Slave configuration or GPIO pin state.

Parameters
* base — QUEUEDSPI peripheral address.
* bEnable — Enable/Disable option.

void QSPI_SetDummyData(QSPI_Type *base, uint8_t u8DummyData)
Set up the dummy data used when there is not transmit data provided.

Parameters
* base —- QUEUEDSPI peripheral address.
* u8DummyData — Data to be transferred when tx buffer is NULL.

uint8_t QSPI_ GetDummyData(QSPI_Type *base)
Get the dummy data for each peripheral.

Parameters
* base —- QUEUEDSPI peripheral base address.

static inline void QSPI_WriteData(QSPI_Type *base, uint16_t data)
Write data into the transmit data register without polling the status of shifting.

Parameters
* base — QUEUEDSPI peripheral address.
* data — The data to send.

static inline uint16_t QSPI_ReadData(QSPI_Type *base)
Read data from the receive data register.

Parameters
* base — QUEUEDSPI peripheral address.

Returns
The data from the receive data register.

static inline void QSPI_ EnableFifo(QSPI_Type *base, bool bEnable)
Enable or disable the QUEUEDSPI FIFOs.

This function allows the caller to disable or enable the TX and RX FIFOs together.

Parameters

310 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

* base — QUEUEDSPI peripheral address.
* bEnable — Pass true to enable, pass false to disable

static inline uint16_t QSPI_ GetTxFIFOCount(QSPI_Type *base)
Get TX FIFO level.

This function gets how many words are in the TX FIFO.
Parameters
* base — QUEUEDSPI peripheral address.

Returns
TX FIFO word count.

static inline uint16_t QSPI_ GetRxFIFOCount(QSPI_Type *base)
Get RX FIFO level.

This function gets how many words are in the RX FIFO.
Parameters
* base — QUEUEDSPI peripheral address.

Returns
RX FIFO word count.

static inline void QSPI_SetFifoWatermarks(QSPI_Type *base, uint16_t txWatermark, uint16_t
rxWatermark)

Set the transmit and receive FIFO watermark values.

Parameters
* base — QUEUEDSPI peripheral address.
* txWatermark - The TX TFIFO watermark value. Refer to

gspi_txfifo_watermark_t for available values.

e rxWatermark - The RX FIFO watermark value. Refer to
gspi_rxfifo_watermark_t for available values.

static inline void QSPI_ GetFifoWatermarks(QSPI_Type *base, uint8_t *pu8TxWatermark, uint8_t
*pu8RxWatermark)

Get the transmit and receive FIFO watermark values.
Parameters
* base — QUEUEDSPI peripheral address.
* pu8TxWatermark — The TX FIFO watermark value.
* pu8RxWatermark — The RX FIFO watermark value.

static inline void QSPI_EmptyRxFifo(QSPI_Type *base)
Empty the QUEUEDSPI RX FIFO.

Parameters
* base —- QUEUEDSPI peripheral address.

void QSPI_MasterTransferCreateHandle(QSPI_Type *base, gspi_master_transfer_handle_t
*psHandle, gspi_master_transfer_callback_t pfCallback,
void *pUserData)

Initialize the QUEUEDSPI master handle.
This function initializes the QUEUEDSPI handle, which can be used for other QUEUEDSPI

transactional APIs. Usually, for a specified QUEUEDSPI instance, call this API once to get
the initialized handle.

2.63. QSPI: Queued SPI Driver 311

MCUXpresso SDK Documentation, Release 25.09.00

Note: If only use the QSPI_MasterTransferBlocking, this API is not necessary be called.

Parameters

* base — QUEUEDSPI peripheral address.

* psHandle — QUEUEDSPI handle pointer to gspi_master_transfer_handle_t.
pfCallback — QUEUEDSPI callback.

* pUserData — Callback function parameter.

status_t QSPI_MasterTransferBlocking(QSPI_Type *base, gspi_transfer_t *psXfer)
Polling method of QUEUEDSPI master transfer.

This function transfers data using a polling method for master. This is a blocking function,
which does not return until all transfers have been completed.

Parameters
* base — QUEUEDSPI peripheral address.
* psXfer — Pointer to the gspi_transfer_t structure.

Returns
status of status_t.

status_t QSPI_MasterTransferNonBlocking(gspi_master_transfer_handle_t *psHandle,
qspi_transfer_t *psXfer)

Interrupt method of QUEUEDSPI master transfer.

This function transfers data using interrupts for master. This is a non-blocking function,
which returns right away. When all data is transferred, the callback function is called.

Parameters
* psHandle — QUEUEDSPI handle pointer to gspi_master_transfer_handle_t.
* psXfer — Pointer to the gspi_transfer_t structure.

Returns
status of status_t.

status_t QSPI_MasterTransferGetCount(qspi_master._transfer_handle_t *psHandle, uint16_t
*pul6Count)

Get the master transfer count.
Parameters
 psHandle — QUEUEDSPI handle pointer to gspi_master_transfer_handle_t.

* pul6Count — The number of bytes transferred by using the non-blocking
transaction.

Returns
status of status_t.

void QSPI_MasterTransfer Abort(gspi_master_transfer_handle_t *psHandle)
Abort a transfer that uses interrupts for master.

Parameters

* psHandle — QUEUEDSPI handle pointer to qspi_master_transfer_handle_t.

312 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

void QSPI_MasterTransferHandleIRQ(gspi_master_transfer_handle_t *psHandle)
QUEUEDSPI Master IRQ handler function.

This function processes the QUEUEDSPI transmit and receive IRQ.
Parameters
* psHandle — QUEUEDSPI handle pointer to qspi_master_transfer_handle_t.

void QSPI_ SlaveTransferCreateHandle(QSPI_Type *base, gspi_slave_transfer_handle_t *psHandle,
gspi_slave_transfer_callback_t pfCallback, void
*pUserData)

Initialize the QUEUEDSPI slave handle.

This function initializes the QUEUEDSPI handle, which can be used for other QUEUEDSPI
transactional APIs. Usually, for a specified QUEUEDSPI instance, call this API once to get
the initialized handle.

Parameters
* base —- QUEUEDSPI peripheral base address.
* psHandle— QUEUEDSPI handle pointer to the qspi_slave_transfer_handle_t.
* pfCallback — QUEUEDSPI callback.
* pUserData — Callback function parameter.

status_t QSPI_SlaveTransferNonBlocking(qspi_slave_transfer_handle_t *psHandle, gspi_transfer._t
*.
psXfer)

Interrupt driven method of QUEUEDSPI slave transfer with completion will be notified by
registered callback.

This function transfers data using interrupts for slave. This is a non-blocking function,
which returns right away. When all data is transferred, the callback function is called.

Parameters

» psHandle — Pointer to the gspi_slave_transfer_handle_t structure which
stores the transfer state.

* psXfer — Pointer to the gspi_transfer_t structure.

Returns
status of status_t.

status_t QSPI_SlaveTransferGetCount(qspi_slave_transfer_handle_t *psHandle, uint16_t
*pul6Count)

Get the slave transfer count already transmitted/received.
Parameters

» psHandle — Pointer to the gspi_slave_transfer_handle_t structure which
stores the transfer state.

* pul6Count — The number of bytes transferred by using the non-blocking
transaction.

Returns
status of status_t.

void QSPI_SlaveTransferAbort(gspi_slave_transfer_handle_t *psHandle)
Abort a transaction.

Parameters

» psHandle — Pointer to the gspi_slave_transfer_handle_t structure which
stores the transfer state.

2.63. QSPI: Queued SPI Driver 313

MCUXpresso SDK Documentation, Release 25.09.00

void QSPI_SlaveTransferHandleIRQ(gspi_slave_transfer_handle_t *psHandle)
QUEUEDSPI slave IRQ handler function.

This function processes the QUEUEDSPI transmit and receive IRQ.
Parameters

» psHandle — Pointer to the gspi_slave_transfer_handle_t structure which
stores the transfer state.

FSL_QSPI_DRIVER_ VERSION
QSPI driver version.

QSPI_TRANSFER_GET_BASE(handle)
Extract Base Address from handle for master or slave handle.

QSPI_TRANSFER_GET_USER_DATA (handle)
Extract user data from handle for master or slave handle.

Status return code for the QUEUEDSPI driver. Only used in transactional layer in this driver.

Values:

enumerator kStatus_ QSPI_Busy
QUEUEDSPI transfer is busy.

enumerator kStatus_ QSPI_Error
QUEUEDSPI driver error.

enumerator kStatus_ QSPI_Idle
QUEUEDSPI is idle.

enumerator kStatus_ QSPI__OutOfRange
QUEUEDSPI transfer out of range.

enum _ gspi_ status_ flags
QUEUEDSPI peripheral status flags.
Values:

enumerator kQSPI_ TxEmptyFlag
Transmitter Empty Flag.

enumerator kQSPI_ModeFaultFlag
Mode Fault Flag.

enumerator kQSPI_ RxOverflowFlag
Receiver Overflow Flag.

enumerator kQSPI_ RxFullFlag
Receiver Full Flag.

enumerator kQSPI__AllStatusFlags

enum _ gspi_ interrupt_ enable
QUEUEDSPI interrupt source.
Values:

enumerator kQSPI_ TxInterruptEnable
SPTE interrupt enable.

314 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQSPI_ RxInterruptEnable
SPRF interrupt enable.

enumerator kQSPI_ RxOverFlowInterruptEnable
Bus error interrupt enable.

enumerator kQSPI_ Alllnterrupts

enum _ gspi_ss_ direction
options for Slave Select (SSB) signal direction.
Values:

enumerator kQSPI__SlaveSelectDirectionInput

SSB signal as input for slave mode or master mode with Mode fault enabled.

enumerator kQSPI__SlaveSelectDIrectionOutput
SSB signal as output.
enum _ gspi_ss_data_ logic_ level
logical level for Slave Select (SSB) signal data
Values:
enumerator kQSPI_SlaveSelectLogicLow
Slave select logic level low
enumerator kQSPI_ SlaveSelectLogicHigh
Slave select logic level high
enum _ gspi_ txfifo_ watermark
QUEUEDSPI Transmit FIFO watermark settings.
Values:
enumerator kQSPI_ TxFifoWatermarkEmpty
Transmit interrupt active when Tx FIFO is empty
enumerator kQSPI_ TxFifoWatermarkOneWord
Transmit interrupt active when Tx FIFO has one or fewer words available
enumerator kQSPI_ TxFifoWatermarkTwoWord
Transmit interrupt active when Tx FIFO has two or fewer words available
enumerator kQSPI_ TxFifoWatermarkThreeWord
Transmit interrupt active when Tx FIFO has three or fewer words available
enum _ gspi_ rxfifo watermark
QUEUEDSPI Receive FIFO watermark settings.
Values:
enumerator kQSPI_ RxFifoWatermarkOneWord
Receive interrupt active when Rx FIFO has at least one word used
enumerator kQSPI_ RxFifoWatermarkTwoWord
Receive interrupt active when Rx FIFO has at least two words used
enumerator kQSPI_ RxFifoWatermarkThreeWord
Receive interrupt active when Rx FIFO has at least three words used

enumerator kQSPI_RxFifowatermarkFull
Receive interrupt active when Rx FIFO is full

2.63. QSPI: Queued SPI Driver

315

MCUXpresso SDK Documentation, Release 25.09.00

enum _ gspi_ data_ width
Transfer data width in each frame.

Values:

enumerator kQSPI_Data2Bits
2 bits data width

enumerator kQSPI_Data3Bits
3 bits data width

enumerator kQSPI_Data4Bits
4 bits data width

enumerator kQSPI_Data5Bits
5 bits data width

enumerator kQSPI_Data6Bits
6 bits data width

enumerator kQSPI_Data7Bits
7 bits data width

enumerator kQSPI_Data8Bits
8 bits data width

enumerator kQSPI_Data9Bits
9 bits data width

enumerator kQSPI_DatalOBits
10 bits data width

enumerator kQSPI_DatallBits
11 bits data width

enumerator kQSPI_ Datal2Bits
12 bits data width

enumerator kQSPI_Datal3Bits
13 bits data width

enumerator kQSPI_Datal4Bits
14 bits data width

enumerator kQSPI_Datal5Bits
15 bits data width

enumerator kQSPI_Datal6Bits
16 bits data width

enum _ gspi_dma_ enable_flags

QUEUEDSPI DMA configuration for Transmit and Receive.

Values:

enumerator kQSPI_DmaRx
Receive DMA Enable Flag.

enumerator kQSPI_DmaTx
Transmit DMA Enable Flag.

enum _ gspi_ master_slave_mode

QUEUEDSPI master or slave mode configuration.

Values:

316

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQSPI_ Slave
QUEUEDSPI peripheral operates in slave mode.

enumerator kQSPI_Master
QUEUEDSPI peripheral operates in master mode.

enum _ gspi_ clock_ polarity
QUEUEDSPI clock polarity configuration.

Values:

enumerator kQSPI_ ClockPolarity ActiveRisingEdge
CPOL=0. Active-high QUEUEDSPI clock (idles low), rising edge of SCLK starts transac-
tion.

enumerator kQSPI_ClockPolarity ActiveFallingEdge
CPOL=1. Active-low QUEUEDSPI clock (idles high), falling edge of SCLK starts transac-
tion.

enum _ gspi_ clock_phase
QUEUEDSPI clock phase configuration.

Values:

enumerator kQSPI_ ClockPhaseSlaveSelectHighBetweenWords
CPHA-=0, Slave Select toggle high during data frames.

enumerator kQSPI_ ClockPhaseSlaveSelect LowBetweenWords
CPHA-=1, Slave Select keep low during data frames.
enum _ gspi_ data_ shift_ direction
QUEUEDSPI data shifter direction options for a given CTAR.

Values:

enumerator kQSPI_ MsbFirst
Data transfers start with most significant bit.

enumerator kQSPI_LsbFirst
Data transfers start with least significant bit.

enum _ gspi_ pcs_ polarity_ config
QUEUEDSPI Peripheral Chip Select Polarity configuration.

Values:

enumerator kQSPI_ PcsActiveHigh
Pcs Active High (idles low).

enumerator kQSPI_ PcsActiveLow
Pcs Active Low (idles high).

enum _ gspi_ master transfer flag
transaction layer configuration options for each transaction

Values:

enumerator kQSPI_MasterPCSContinous
Indicates whether the PCS signal de-asserts during transfer between frames, note this
flag should not be used when CPHA is 0.

enumerator kQSPI_MasterActiveAfterTransfer

Indicates whether the PCS signal is active after the last frame transfer, note 1.
this flag should not be used when CPHA is 0, 2. this flag can only be used when
kQSPI_MasterPCSContinous is used.

2.63. QSPI: Queued SPI Driver 317

MCUXpresso SDK Documentation, Release 25.09.00

enum _ gspi_ transfer_ state
QUEUEDSPI transfer state, used internally for transactional layer.

Values:
enumerator kQSPI_Idle
Nothing in the transmitter/receiver.
enumerator kQSPI_Busy
Transfer queue is not finished.
enumerator kQSPI_ Error
Transfer error.
typedef enum _gspi_ss_direction qspi_ss_ direction_ t
options for Slave Select (SSB) signal direction.
typedef enum _gspi_ss_data_logic_level qspi_ss_ data_logic_level t
logical level for Slave Select (SSB) signal data
typedef enum _gspi_txfifo_watermark qspi_ txfifo watermark_t
QUEUEDSPI Transmit FIFO watermark settings.
typedef enum _gspi_rxfifo_watermark qspi_ rxfifo watermark_t
QUEUEDSPI Receive FIFO watermark settings.
typedef enum _gspi_data_width qspi_ data_ width_t
Transfer data width in each frame.
typedef enum _qgspi_master_slave_mode gspi_ master_slave__mode_ t
QUEUEDSPI master or slave mode configuration.
typedef enum _gspi_clock_polarity qgspi_ clock_polarity t
QUEUEDSPI clock polarity configuration.
typedef enum _gspi_clock_phase gspi_ clock phase t
QUEUEDSPI clock phase configuration.
typedef enum _gspi_data_shift_direction qspi_ data_ shift_ direction_t
QUEUEDSPI data shifter direction options for a given CTAR.
typedef struct _qspi_master_config qspi_ master config_t
QUEUEDSPI master configuration structure with all master configuration fields covered.
typedef struct _qspi_slave_config qspi_ slave_config_t
QUEUEDSPI slave configuration structure with all slave configuration fields covered.
typedef enum _gspi_pcs_polarity_config qspi_pcs_polarity_config_t
QUEUEDSPI Peripheral Chip Select Polarity configuration.
typedef struct _gspi_transfer qspi__transfer_t
QUEUEDSPI master/slave transfer structure.

typedef struct _qspi master_handle qspi_master_transfer handle_t
Forward declaration of the _qspi_master_handle typedefs. .

typedef void (*qspi_ master_transfer_callback t)(qspi_master_transfer_handle_t *psHandle,
status_t eCompletionStatus, void *pUserData)

Completion callback function pointer type.

Param base
QUEUEDSPI peripheral address.

318 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

Param psHandle
Pointer to the handle for the QUEUEDSPI master.

Param eCompletionStatus
Success or error code describing whether the transfer completed.

Param pUserData
Arbitrary pointer-dataSized value passed from the application.

typedef struct _qspi_master_handle qspi_slave_ transfer__handle_t
Forward declaration of the _qspi_master_handle typedefs. .

typedef void (*qspi_slave transfer callback_t)(qspi_slave_transfer_handle_t *psHandle, status_t
eCompletionStatus, void *pUserData)

Completion callback function pointer type.

Param base
QUEUEDSPI peripheral address.

Param handle
Pointer to the handle for the QUEUEDSPI slave.

Param status
Success or error code describing whether the transfer completed.

Param pUserData
Arbitrary pointer-dataSized value passed from the application.

QSPI_DUMMY_DATA
User Configuraiton item dummy data filled into Output signal if there is no Tx data.
Dummy data used for Tx if there is no txData.

struct _ gspi_ master__config

#include <fsl_queued_spi.h> QUEUEDSPI master configuration structure with all master con-
figuration fields covered.

Public Members

uint32_t u32BaudRateBps

Baud Rate for QUEUEDSPI.
qspi_data_width_t eDataWidth

Data width in SPI transfer
qspi_clock_polarity_t eClkPolarity

Clock polarity.
qspi_clock_phase_t eClkPhase

Clock phase.
qspi_data_shift_direction_t eShiftDirection

MSB or LSB data shift direction.

bool bEnableWiredOrMode

SPI pin configuration, when enabled the SPI pins are configured as open-drain drivers
with the pull-ups disabled.

bool bEnableModeFault
Enable/Disable mode fault detect for Slave Select Signal

bool bEnableStrobe
Enable/Disable strobe between data frames irrespective of clock pahse setting

2.63. QSPI: Queued SPI Driver 319

MCUXpresso SDK Documentation, Release 25.09.00

bool bEnableSlaveSelAutoMode
Enable/Disable Slave Select Auto mode.

bool bEnableSlaveSelOpenDrain
Enable the open-drain mode of SPI Pins, otherwise Push-Pull

uint16_t ul6DelayBetweenFrameInCLK
The delay between frame.
bool bEnableFIFO
Enable / Disable FIFO for Transmit/Receive
qspi_txfifo_watermark_t eTxFIFOWatermark
Watermark config for Transmit FIFO
qspi_txfifo_watermark_t eRxFIFOWatermark
Watermark config for Receive FIFO
bool bEnableModule
Enable / Disable module
uint8_t u8Interrupts
Interrupt enabled ORed from _qgspi_interrupt_enable

uint8_t u8DmaEnableFlags
Configure DMA Enable/Disable for Transmit/Receive

struct _ gspi_slave_ config

#include <fsl_queued_spi.h> QUEUEDSPI slave configuration structure with all slave config-
uration fields covered.

Public Members

qspi_data_width_t eDataWidth
Data width in SPI transfer
qspi_clock_polarity_t eClkPolarity
Clock polarity.
qspi_clock_phase_t eClkPhase
Clock phase.
qspi_data_shift_direction_t eShiftDirection
MSB or LSB data shift direction.

bool bEnableWiredOrMode

SPI pin configuration, when enabled the SPI pins are configured as open-drain drivers
with the pull-ups disabled.

bool bEnableModeFault

Enable/Disable mode fault detect for Slave Select Signal
bool bEnableSlaveSelOverride

Enable/Disble override Slave Select (SS) singal with Master/Slave Mode config
bool bEnableFIFO

Enable / Disable FIFO for Transmit/Receive

qspi_txfifo_watermark_t eTxFIFOWatermark
Watermark config for Transmit FIFO

320

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

qspi_txfifo_watermark_t eRxFIFOWatermark
Watermark config for Receive FIFO
bool bEnableModule
Enable/Disable Module
uint8_t u8DmaEnableFlags
Configure DMA Enable/Disable for Transmit/Receive

struct _ gspi_ transfer
#include <fsl_queued_spi.h> QUEUEDSPI master/slave transfer structure.

Public Members

void *pTxData
Transmit buffer.

void *pRxData
Receive buffer.

volatile uint16_t ul6DataSize
Transfer bytes.

uint8_t u8ConfigFlags

Transfer configuration flags; set from _qspi_master_transfer_flag. This is not used in
slave transfer.

struct _ gspi_ master_handle

#include <fsl_queued_spi.h> QUEUEDSPI master transfer handle structure used for transac-
tional API.

Public Members
QSPI_Type *base

Base address for the QSPI peripheral
qspi_data_width_t eDataWidth

The desired number of bits per frame.

volatile bool bIsPcsActiveAfterTransfer
Indicates whether the PCS signal is active after the last frame transfer, This is not used
in slave transfer.

uint8_t *volatile pu8TxData
Send buffer.

uint8_t *volatile pu8RxData
Receive buffer.

volatile uint16_t ul6RemainingSendByteCount
A number of bytes remaining to send.

volatile uint16_t ul6RemainingReceiveByteCount
A number of bytes remaining to receive.

uint16_t ul6TotalByteCount
A number of transfer bytes

volatile uint8_t u8State
QUEUEDSPI transfer state, see _gspi_transfer_state.

2.63. QSPI: Queued SPI Driver 321

MCUXpresso SDK Documentation, Release 25.09.00

qspi_master_transfer_callback_t pfCallback
Completion callback.

void *pUserData
Callback user data.

volatile uint16_t ul6ErrorCount
Error count for slave transfer, this is not used in master transfer.

2.64 QSPI Peripheral and Driver Overview

2.65 QSPI_EDMA: EDMA based QSPI Driver

FSL_QSPI_EDMA_DRIVER_ VERSION
QSPI EDMA driver version.

typedef struct _qspi_master_edma_handle qspi_master edma_handle t
Forward declaration of the _qspi_master_edma_handle typedefs.

typedef struct _qspi_master_edma_handle qspi_slave_edma_handle_t
Forward declaration of the _qspi_master_edma_handle typedefs.

typedef void (*qspi_edma_ transfer_callback_t)(gspi_master_edma_handle_t *psHandle, status_t
eCompletionStatus, void *pUserData)

Completion callback function pointer type.

Param base
QUEUEDSPI peripheral base address.

Param psHandle
Pointer to the handle for the QUEUEDSPI master.

Param eCompletionStatus
Success or error code describing whether the transfer completed.

Param pUserData
Arbitrary pointer-dataSized value passed from the application.

void QSPI_MasterTransferCreateHandleEDMA (QSPI_Type *base, gspi_master_edma_handle_t
*psHandle, gspi_edma_transfer_callback_t
pfCallback, void *pUserData, DMA_Type
*psEdmaBase, edma_channel_t eEdmaTxChannel,
edma_channel_t eEdmaRxChannel)

Initialize the QUEUEDSPI master EDMA handle.

This function initializes the QUEUEDSPI EDMA master handle which can be used for
QUEUEDSPI EDMA master transactional APIs. Usually, for a specified QUEUEDSPI instance,
call this API once to get the initialized handle.

Parameters
* base — QUEUEDSPI peripheral base address.
* psHandle - QUEUEDSPI handle pointer to gspi_master_edma_handle_t.
pfCallback — QUEUEDSPI callback.
*» pUserData — callback function parameter.
* psEdmaBase — base address for the EDMA
* eEdmaTxChannel — Channel of the EDMA used for QSPI Tx

322 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

* eEdmaRxChannel — Channel of the EDMA used for QSPI Rx

status_t QSPI_MasterTransferEDMA (qspi_master_edma_handle_t *psHandle, gspi_transfer._t
%
psXfer)

EDMA method of QUEUEDSPI master transfer.

This function transfers data using EDMA. This is a non-blocking function, which returns
right away. When all data is transferred, the callback function is called.

Note: : The transfer data size should be even, if the transfer data width is larger than 8.

Parameters

 psHandle — pointer to qspi_master_edma_handle_t structure which stores
the transfer state.

* psXfer — pointer to qspi_transfer_t structure.

Returns
status of status_t.

status_t QSPI_MasterTransferGetCountEDMA (qspi_master_edma_handle_t *psHandle, uint16_t
*pul6Count)

Get the master EDMA transfer count.

Parameters

» psHandle — Pointer to the gspi_master_edma_handle_t structure which
stores the transfer state.

* pul6Count — The number of bytes transferred by using the EDMA transac-
tion.

Returns
status of status_t.

void QSPI_MasterTransferAbortEDMA (gspi_master_edma_handle_t *psHandle)
Abort a transfer that uses EDMA for master.
Parameters

* psHandle — Pointer to the gspi_master_edma_handle_t structure which
stores the transfer state.

void QSPI_ SlaveTransferCreateHandleEDMA (QSPI_Type *base, gspi_slave_edma_handle_t
*psHandle, gspi_edma_transfer_callback_t
pfCallback, void *pUserData, DMA_Type
*psEdmaBase, edma_channel_t eEdmaTxChannel,
edma_channel_t eEdmaRxChannel)

Initialize the QUEUEDSPI slave EDMA handle.

This function initializes the QUEUEDSPI EDMA handle which can be used for other
QUEUEDSPI transactional APIs. Usually, for a specified QUEUEDSPI instance, call this API
once to get the initialized handle.

Parameters
* base — QUEUEDSPI peripheral base address.
* psHandle - QUEUEDSPI handle pointer to gspi_slave_edma_handle_t.
* pfCallback — QUEUEDSPI callback.
*» pUserData — callback function parameter.
* psEdmaBase — base address for the EDMA

2.65. QSPI_EDMA: EDMA based QSPI Driver 323

MCUXpresso SDK Documentation, Release 25.09.00

* ¢EdmaTxChannel — Channel of the EDMA used for QSPI Tx
* eEdmaRxChannel — Channel of the EDMA used for QSPI Rx

status_t QSPI_SlaveTransferEDMA (gspi_slave_edma_handle_t *psHandle, gspi_transfer_t
*%.
psXfer)

EDMA method of QUEUEDSPI slave transfer.

This function transfers data using EDMA. This is a non-blocking function, which returns
right away. When all data is transferred, the callback function is called.

Note: : The transfer data size should be even if the transfer data width is larger than 8.

Parameters

* psHandle — pointer to gspi_slave_edma_handle_t structure which stores the
transfer state.

* psXfer — pointer to qspi_transfer_t structure.

Returns
status of status_t.

status_t QSPI_SlaveTransferGetCountEDMA (gspi_slave_edma_handle_t *psHandle, uint16_t
*pul6Count)

Get the slave EDMA transfer count.
Parameters

* psHandle —Pointer to the gspi_slave_edma_handle_t structure which stores
the transfer state.

* pul6Count — The number of bytes transferred by using the EDMA transac-
tion.

Returns
status of status_t.

void QSPI_SlaveTransferAbortEDMA (gspi_slave_edma_handle_t *psHandle)
Abort a transfer that uses EDMA for slave.

Parameters

* psHandle —Pointer to the qspi_slave_edma_handle_t structure which stores
the transfer state.

struct _ gspi_master edma_ handle

#include <fsl_queued_spi_edma.h> QUEUEDSPI master EDMA transfer handle structure used
for transactional API. This struct should be sizeof(edma_channel_tcd_t) aligned.

Public Members
QSPI_Type *base
Base address of the QSPI Peripheral

volatile uint8_t u8State
QUEUEDSPI transfer state , defined in _gspi_transfer_state.

uint16_t ul6TotalByteCount
A number of transfer bytes.

324 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

qspi_data_width_t eDataWidth

The desired number of bits per frame.
uint16_t ul6TxDummyData

Used if txData is NULL.
uint16_t ul6RxDummyData

Used if rxData is NULL.
edma_handle_t sTxHandle

edma_handle_t handle point used for transmitting data.
edma_handle_t sRxHandle

edma_handle_t handle point used for receiving data.
bool bIsTxInProgress

Indicates whether the transmit is in progress.
bool bIsRxInProgress

Indicates whether the receive is in progress.
qspi_edma_transfer_callback_t pfCallback

Completion callback.
void *pUserData

Callback user data.

volatile bool bIsPcsActiveAfterTransfer

Indicates whether the PCS signal is active after the last frame transfer, This is not used
in slave transfer.

2.66 QTMR: Quad Timer Driver

void QTMR,_ Init(TMR_Type *base, const gtmr_config_t *psConfig)
Initialization Quad Timer module with provided structure.

This function can initial one or more channels of the Quad Timer module.

This examples shows how only initial channel 0.

qtmr_ config_t sConfig = {0};

gtmr__channel config_t sChannel0Config;
sConfig.psChannelConfig[0] = &sChannel0Config;
QTMR_ GetChannelDefaultConfig(&sChannel0Config);
QTMR_ Init(QTMR, sConfig);

Note: This API should be called at the beginning of the application using the Quad Timer
module.

Parameters
* base — Quad Timer peripheral base address.
* psConfig—Pointer to user’s Quad Timer config structure. See qtmr_config_t.

void QTMR,_ Deinit(TMR_Type *base)
De-initialization Quad Timer module.

Parameters

2.66. QTMR: Quad Timer Driver 325

MCUXpresso SDK Documentation, Release 25.09.00

* base — Quad Timer peripheral base address.

void QTMR,_ GetChannelDefaultConfig(gtmr_channel_config_t *psConfig)
Gets an available pre-defined options for Quad Timer channel module’s configuration.

This function initializes the channel configuration structure with a free run 16bit timer
work setting. The default values are:

psConfig->sInputConfig.ePrimarySource = kQTMR_ PrimarySrcIPBusClockDivide2;
psConfig->sInputConfig.eSecondarySource = kQTMR_ SecondarySrcInputPin0;
psConfig->sInputConfig.eSecondarySourceCaptureMode = kQTMR,_ SecondarySrcCaptureNoCapture;
psConfig->sInputConfig.bEnableSecondarySrcFaultFunction = false;
psConfig->sInputConfig.eEnablelnputInvert = false;
psConfig->sCountConfig.eCountMode = kQTMR __CountPrimarySrcRiseEdge;
psConfig->sCountConfig.eCountLength = kQTMR_ CountLengthUntilRollOver;
psConfig->sCountConfig.eCountDir = kQTMR,_ CountDirectionUp;
psConfig->sCountConfig.eCountTimes = kQTMR, CountTimesRepeat;
psConfig->sCountConfig.eCountLoadMode = kQTMR,__ CountLoadNormal;
psConfig->sCountConfig.eCountPreloadl = kQTMR, CountPreloadNoLoad;
psConfig->sCountConfig.eCountPreload2 = kQTMR, CountPreloadNolLoad;
psConfig->sOutputConfig.eOutputMode = kQTMR,__OutputAssert WhenCountActive;
psConfig->sOutputConfig.eOutput ValueOnForce = kQTMR,_ OutputValueClearOnForce;
psConfig->sOutputConfig.bEnableOutputInvert = false;
psConfig->sOutputConfig.bEnableSwForceOutput = false;
psConfig->sOutputConfig.bEnableOutputPin = false;
psConfig->sCooperationConfig.bEnableMasterRelnit = false;
psConfig->sCooperationConfig.bEnableMasterForcecOFLAG = false;
psConfig->sCooperationConfig.bEnableMasterMode = false;

psConfig->eDebugMode = kQTMR__DebugRunNormal;
psConfig->ul6EnabledInterruptMask = 0x0Uj;

psConfig->ul6EnabledDMAMask = 0x0U;

psConfig->ul6Compl = 0x0U;

psConfig->ul6Comp2 = 0x0U;

psConfig->ul6ComplPreload = 0x0U;

psConfig->ul6ComplPreload = 0x0U;

psConfig->ul6Load = 0x0U;

psConfig->ul6Count = 0x0U;

psConfig->bEnableChannel = false;

Parameters

* psConfig — Pointer to user’s Quad Timer channel config structure. See
gtmr_channel_config t.

void QTMR,_ SetupChannleConfig(TMR_Type *base, qtmr_channel number_t eChannelNumber,
const qgtmr_channel_config_t *psConfig)

Setup a Quad Timer channel with provided structure.
Parameters
* base — Quad Timer peripheral base address.

* eChannelNumber - Quad Timer channel number. See
gtmr_channel number _t.

* psConfig — Pointer to user’s Quad Timer channel config structure. See
gtmr_channel_config t.

static inline void QTMR,_ SetPrimaryCountSource(TMR_Type *base, qgtmr_channel_number._t
eChannelNumber,
qtmr_channel_primary_count_source_t
ePrimarySource)

Sets primary input source.

326 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

This function select the primary input source, it can select from “input pin 0~3”, “channel
output

0~3” and “IP bus clock prescaler”.

Parameters
* base — Quad Timer peripheral base address.

¢ ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel_number_t.

* ePrimarySource - The primary input source. See
gtmr_channel_primary_count_source_t.

static inline void QTMR,_SetSecondaryCountSource(TMR_Type *base, gtmr_channel_number._t
eChannelNumber,
qtmr_channel_secondary_count_source_t
source)

Sets secondary input source.
This function select the secondary input source, it can select from “input pin 0~3”.
Parameters
* base — Quad Timer peripheral base address.

* eChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

* source - The Secondary input source. See
gtmr_channel _secondary_count_source_t.

void QTMR,_ SetSecondarySourceInputCaptureMode(TMR_Type *base, gtmr_channel number._t
eChannelNumber,
qtmr_channel_secondary_source_capture_mode_t
eCaptureMode)

Sets secondary input capture mode.

This function select the capture mode for secondary input, it can select from “disable cap-
ture”, “capture on

rising/falling edge” and “capture on both edges”. Need enable capture mode when input
edge interrupt is needed.
Parameters
* base — Quad Timer peripheral base address.

* eChannelNumber - Quad Timer channel number. See
gtmr_channel number _t.

* eCaptureMode - The capture mode of secondary input. See
qtmr_channel_secondary_source_capture_mode_t.

static inline void QTMR,_ EnableSecondarySourceFault(TMR_Type *base, gtmr_channel_number._t
eChannelNumber, bool bEnable)

Enables/Disables secondary input source signal fault feature.

Enable fault feature will make secondary input acts as a fault signal so that the channel
output signal (OFLAG) is cleared when the secondary input is set.

Parameters

* base — Quad Timer peripheral base address.

2.66. QTMR: Quad Timer Driver 327

MCUXpresso SDK Documentation, Release 25.09.00

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel number _t.

* bEnable — Enable the feature or not.
— true Enable secondary source fault feature.
— false Disable secondary source fault feature.

static inline void QTMR, EnableInputInvert(TMR_Type *base, gtmr_channel_number_t
eChannelNumber, bool bEnable)

Enables/Disables input pin signal polarity invert feature.

This function enables/disables input pin signal polarity invert feature.

Note: Invert feature only affects “input pin 0~3”, and acts on the channel input node, not
the input pin, so it only affect current channel and not share by other channel

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel_number_t.

* bEnable — Enable the feature or not.
— true Invert input pin signal polarity.
— false No invert for input pin signal polarity.

static inline void QTMR,_SetInputFilter(TMR_Type *base, gtmr_input_pin_t ePin, uint8_t
u8Count, uint8_t u8Period)

Sets input filter for one input pin.

Sets input filter if the input signal is noisy.

Note: The input filter acts on the input pin directly, so the input filter config will affect all
channels that select this input pin as source. Turning on the input filter(setting FILT PER
to a non-zero value) introduces a latency of ((u8Count + 3) x u8Period) + 2) IP bus clock
periods.

Parameters
* base — Quad Timer peripheral base address.
* ¢Pin — Quad Timer input pin number. See qtmr_input_pin_t.

» u8Count — Range is 0~7, represent the number of consecutive samples that
must agree prior to the input filter accepting an input transition. Actual
consecutive samples numbers is (u8Count + 3).

» u8Period — Represent the sampling period (in IP bus clock cycles) of the
input pin signals. Each input is sampled multiple times at the rate specified
by this field. If u8Period is 0, then the input pin filter is bypassed.

static inline uint16_t QTMR_ GetInputPinValueInSecondarySource(TMR_Type *base,
qtmr_channel_number._t
eChannelNumber)

Gets the external input signal value selected via the secondary input source.

This function read the value of the secondary input source, the input pin IPS and filtering
have been applied to the read back value.

328 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* base — Quad Timer peripheral base address.

* eChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

Returns
The state of the current state of the external input pin selected via the sec-
ondary count source after application of IPS and filtering.

void QTMR,_ SetCountMode(TMR_Type *base, qgtmr_channel_number_t eChannelNumber,
qtmr_channel_count_mode_t eCountMode)

Sets channel count mode.

This function select channel basic count mode which trigger by primary input or/and sec-
ondary input events.

Parameters
* base — Quad Timer peripheral base address.

* eChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

* eCountMode - The mode of operation for the count. See
qtmr_channel_count_mode_t.

static inline void QTMR,_SetCountLength(TMR_Type *base, gtmr_channel_number._t
eChannelNumber, gtmr_channel count_length_t
eLength)

Sets channel count length.

This function select channel single count length from “until roll over” or “until compare”.
“until roll over” means count until 0XFFFF, “until compare” means count until reach COMP1
(for count up) or COMP2 (for count up) value (unless the output signal is in alternating
compare mode, this mode make channel use COMP1 and COMP2 alternately).

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
qtmr_channel_number_t.

* eLength — The channel count length. See qtmr_channel_count_length_t.

static inline void QTMR, SetCountDirection(TMR_Type *base, gtmr_channel number._t
eChannelNumber, gtmr_channel_count_direction_t
eDirection)

Sets channel count direction.

This function select channel count direction from “count up” or “count down”. Under nor-
mal count mode, this function decide the count direction directly, when chose “secondary
specifies direction” count mode, count direction decide by “the secondary input level” XOR
with “the function selection”.

Parameters
* base — Quad Timer peripheral base address.

* eChannelNumber - Quad Timer channel number. See
gtmr_channel number _t.

* eDirection - The channel count direction. See
gtmr_channel_count_direction_t.

2.66. QTMR: Quad Timer Driver 329

MCUXpresso SDK Documentation, Release 25.09.00

static inline gtmr_channel_count_direction_t QTMR,_ GetCountDirection(TMR_Type *base,
qtmr_channel_number_t
eChannelNumber)

Gets channel count direction.

This function read the channel count direction of the last count during quadrature encoded
count mode.

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel_number_t.

Returns
The direction of the last count. Value see qtmr_channel_count_direction_t.

static inline void QTMR, SetCountTimes(TMR_Type *base, gtmr_channel number._t
eChannelNumber, gtmr_channel_count_times_t
eTimes)

Sets channel count times.

This function select channel count times from “once” or “repeatedly”. If select “once” with
“until compare”, channel will stop when reach COMP1 (for count up) or COMP2 (for count
up) (unless the output signal is in alternating compare mode, this mode will make channel
reaching COMP1, re-initializes then count reaching COMP2, and then stops).

Parameters
* base — Quad Timer peripheral base address.

* eChannelNumber - Quad Timer channel number. See
gtmr_channel number _t.

* ¢Times — The channel count times. See gtmr_channel_count_times_t.

static inline void QTMR,_SetCountLoadMode(TMR_Type *base, gtmr_channel number._t
eChannelNumber,
qtmr_channel_count_load_mode_t eLoadMode)

Sets channel count load mode.

This function select channel count re-initialized load mode from “normal” or “alternative”.
“normal” means channel counter re-initialized from LOAD register when compare event,
“alternative” means channel counter can re-initialized from LOAD (count up) or CMPLD2
(count down) when compare event.

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel_number_t.

* eLoadMode - The channel count load mode. See
gtmr_channel _count_load_mode_t.

static inline void QTMR_ SetComparelPreloadControl(TMR_Type *base, qtmr_channel_number._t
eChannelNumber,
qtmr_channel_count_preload_mode_t
ePreloadMode)

Sets channel preload mode for compare register 1.
This function select channel preload mode for compare register 1. Default the COMP1 reg-

ister never preload, when enabled, the COMP1 can preload from CMPLD1 register when
COMP1 or COMP2 compare event.

330 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* base — Quad Timer peripheral base address.

* eChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

* ePreloadMode — The compare register 1 preload mode. See
gtmr_channel _count_preload_mode_t.

static inline void QTMR,_ SetCompare2PreloadControl(TMR_Type *base, qtmr_channel number._t
eChannelNumber,
qtmr_channel_count_preload mode_t
ePreloadMode)

Sets channel preload mode for compare register 2.

This function select channel preload mode for compare register 2. Default the COMP2 reg-
ister never preload, when enabled, the COMP2 can preload from CMPLD2 register when
COMP1 or COMP2 compare event.

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel_number_t.

» ePreloadMode — The compare register 2 preload mode. See
gtmr_channel_count_preload_mode_t.

static inline void QTMR_ SetComparelPreloadValue(TMR_Type *base, gtmr_channel number._t
eChannelNumber, uint16_t
ul6CompiPreload)

Sets channel compare register 1 preload register value.

This function set the CMPLD1 register value. The COMP1 can preload from CMPLD1 register
when preload mode is not “never preload”.

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
qtmr_channel_number_t.

* ul6ComplPreload — Value for Channel compare register 1 preload register.

static inline void QTMR_ SetCompare2PreloadValue(TMR_Type *base, gtmr_channel number._t
eChannelNumber, uint16_t
ul6Comp2Preload)

Sets channel compare register 2 preload register value.

This function set the CMPLD2 register value. The COMP2 can preload from CMPLD2 register
when preload mode is not “never preload”.

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel_number_t.

* ul6Comp2Preload — Value for Channel compare register 2 preload register.

static inline void QTMR_ SetLoadValue(TMR_Type *base, gtmr_channel number._t
eChannelNumber, uint16_t ul6Load)

Sets channel load register value.

2.66. QTMR: Quad Timer Driver 331

MCUXpresso SDK Documentation, Release 25.09.00

This function set the LOAD register value. The channel will re-initialize the counter value
with this register after counter compare or overflow event.

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

* ul6Load — Value used to initialize the counter after counter compare or
overflow event.

static inline void QTMR,_ SetComparel Value(TMR_Type *base, qtmr_channel_number._t
eChannelNumber; uint16_t u16Comp1)

Sets channel count compare register 1.

This function set the COMP1 register value. It use to trigger compare event in count up
mode or alternating compare mode.

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel number _t.

* ul6Compl - Value for Channel compare register 1.

static inline void QTMR,_ SetCompare2Value(TMR_Type *base, qtmr_channel number._t
eChannelNumber, uint16_t u16Comp2)

Sets channel count compare register 2.

This function set the COMP2 register value. It use to trigger compare event in count down
mode or alternating compare mode.

Parameters
* base — Quad Timer peripheral base address.

* eChannelNumber - Quad Timer channel number. See
gtmr_channel_number_t.

* ul6Comp2 — Value for Channel compare register 2.

static inline uint16_t QTMR_ ReadCaptureValue(TMR_Type *base, gtmr_channel number._t
eChannelNumber)

Gets channel capture register value.

This function read the CAPT register value, which store the real-time channel counter value
when input capture event.

Parameters
* base — Quad Timer peripheral base address.

* eChannelNumber - Quad Timer channel number. See
gtmr_channel number _t.

Returns
The value captured from the channel counter.

static inline uint16_t QTMR_ GetHoldValue(TMR_Type *base, gtmr_channel_number._t
eChannelNumber)

Gets channel hold register value.

This function read the HOLD register value, which stores the channel counter’s values of
specific channels whenever any of the four channels within a module is read.

332 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* base — Quad Timer peripheral base address.

* eChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

Returns
The channel counter value when any read operation occurs.

static inline void QTMR,_SetCounterValue(TMR_Type *base, gtmr_channel_number._t
eChannelNumber, uint16_t u16Count)

Sets channel counter register value.

This function set the CNTR register value, the channel will start counting based on this
value.

Parameters
* base — Quad Timer peripheral base address.

* eChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

* u16Count — The channel counter initialize value.

static inline uint16_t QTMR,_ GetCounterValue(TMR_Type *base, qtmr_channel number._t
eChannelNumber)

Reads channel counter register value.

This function read the CNTR register value, which stores the channel real-time channel
counting value. This read operation will trigger HOLD register update.

Note: User can call the utility macros provided in fsl_common.h to convert ticks to usec or

msec.
Parameters
* base — Quad Timer peripheral base address.
* ¢ChannelNumber - Quad Timer channel number. See
qtmr_channel_number_t.
Returns

The real-time channel counter value.

static inline void QTMR_ SetOutputMode(TMR_Type *base, gtmr_channel_number._t
eChannelNumber, gtmr_channel output_mode_t
eOutputMode)

Sets Channel output signal (OFLAG) work mode.

This function select channel output signal (OFLAG) work mode base on different channel
event.

Parameters
* base — Quad Timer peripheral base address.

* eChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

* eOutputMode — The mode of operation for the OFLAG output signal. See
gtmr_channel_output_mode_t.

2.66. QTMR: Quad Timer Driver 333

MCUXpresso SDK Documentation, Release 25.09.00

static inline void QTMR_ SetOutputValueOnForce(TMR_Type *base, gtmr_channel number._t
eChannelNumber,
qtmr_channel_output_value_on_force_t eValue)

Sets the value of output signal when a force event occurs.

This function config the value of output signal when a force event occurs. Force events can
be a software command or compare event from a master channel.

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel_number_t.

* ¢Value — The value of output signal when force event occur. See
gtmr_channel _output_value_on_force_t.

static inline void QTMR,_EnableOutputInvert(TMR_Type *base, gtmr_channel_number._t
eChannelNumber, bool bEnable)

Enables/Disables output signal polarity invert feature.
This function enables/disables the invert feature of output signal (OFLAG).
Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

* bEnable — Enable the feature or not.
— true Invert output signal polarity.
- false No invert for output signal polarity.

static inline void QTMR,__EnableSwForceOutput(TMR_Type *base, qtmr_channel number._t
eChannelNumber)

Enables software triggers a FORCE command to output signal.

This function uses a software command to trigger force event, which can force the current
value of SCTRL[VAL] bit to be written to the OFLAG output.

Note: This function can be called only if the counter is disabled.

QTMR,_SetOutputValueOnForce(QTMR, kQTMR, Channel0, kQTMR,_OutputValueSetOnForce);
QTMR,__EnableSwForceOutput(QTMR, kQTMR,_Channel0);

Parameters
* base — Quad Timer peripheral base address.

* eChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

static inline void QTMR_ EnableOutputPin(TMR_Type *base, gtmr_channel_number._t
eChannelNumber, bool bEnable)

Enables/Disables output signal (OFLAG) drive on the external pin feature.
This function enables/disables output signal (OFLAG) drive on the external pin feature.
Parameters

* base — Quad Timer peripheral base address.

334 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel number _t.

* bEnable — Enable the feature or not.
— true The output signal is driven on the external pin.
— false The external pin is configured as an input.

static inline void QTMR,_EnableMasterMode(TMR_Type *base, qtmr_channel number._t
eChannelNumber, bool bEnable)

Enables/Disables channel master mode.

This function enables/disables channel master mode.

Note: Master channel can broadcast compare event to all channels within the module to
re-initialize channel and/or force channel output signal.

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel_number_t.

* bEnable — Enable the feature or not.
— true Enables channel master mode.
— false Disables channel master mode.

static inline void QTMR,_EnableMasterForcecOFLAG(TMR_Type *base, gtmr_channel_number._t
eChannelNumber, bool bEnable)

Enables/Disables force the channel output signal (OFLAG) state by master channel compare
event.

This function enables/disables the compare event from master channel within the same
module to force the state of this channel OFLAG output signal.

Parameters
* base — Quad Timer peripheral base address.

* eChannelNumber - Quad Timer channel number. See
gtmr_channel number _t.

* bEnable — Enable the feature or not.

- true Enables OFLAG state to be forced by master channel compare
event.

— false Disables OFLAG state to be forced by master channel compare
event.

static inline void QTMR,_EnableMasterReInit(TMR_Type *base, gtmr_channel_number_t
eChannelNumber, bool bEnable)

Enables/Disables channel be re-initialized by master channel compare event feature.

This function enables/disables the compare event from master channel within the same
module to force the re-initialization of this channel.

Parameters
* base — Quad Timer peripheral base address.

o ¢ChannelNumber - Quad Timer channel number See
gtmr_channel number_t.

2.66. QTMR: Quad Timer Driver 335

MCUXpresso SDK Documentation, Release 25.09.00

* bEnable — Enable the feature or not.

- true Enables channel be re-initialized by master channel compare
event.

— false Disables channel be re-initialized by master channel compare
event.

static inline void QTMR,_EnableDma(TMR_Type *base, gtmr_channel_number_t
eChannelNumber, uint16_t ul6Mask)

Enables the Quad Timer DMA request according to a provided mask.

This function enables the Quad Timer DMA request according to a provided mask. The
maskis alogical OR of enumerators members. See _qtmr_channel_dma_enable. This exam-
ples shows how to enable compare 1 register preload DMA request and compare 2 register
preload DMA request.

QTMR_ EnableDma((QTMR, kQTMR_ Channel0,kQTMR,__ComparelPreloadDmaEnable | kQTMR,
—Compare2PreloadDmaEnable);

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel_number_t.

* ul6Mask — The QTMR DMA requests to enable. Logical OR of
_qtmr_channel_dma_enable.

static inline void QTMR, DisableDma(TMR_Type *base, gtmr_channel_number._t
eChannelNumber, uint16_t ul6Mask)

Disables the Quad Timer DMA request according to a provided mask.

This function disables the Quad Timer DMA request according to a provided mask. The
maskis alogical OR of enumerators members. See _qtmr_channel _dma_enable. This exam-
ples shows how to disable compare 1 register preload DMA request and compare 2 register
preload DMA request.

QTMR,_ DisableDma((QTMR, kQTMR_ Channel0, kQTMR_ Comparel PreloadDmaEnable | kQTMR__
—Compare2PreloadDmaEnable);

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

* ul6Mask — The QTMR DMA requests to disable. Logical OR of
_qtmr_channel_dma_enable.

static inline void QTMR_ EnableInterrupts(TMR_Type *base, gtmr_channel number._t
eChannelNumber, uint16_t ul6Mask)

Enables the Quad Timer interrupts according to a provided mask.

This function enables the Quad Timer interrupts according to a provided mask. The mask
is a logical OR of enumerators members. See _qtmr_channel_interrupt_enable. This exam-
ples shows how to enable compare 1 interrupt and compare 2 interrupt.

QTMR,_ Enablelnterrupts((QTMR, kQTMR,_Channel0, kQTMR,_ComparelInterruptEnable |,
—kQTMR_ Compare2InterruptEnable);

Parameters

336 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

* ul6Mask - The QTMR DMA interrupts to enable. Logical OR of
_qtmr_channel_interrupt_enable.

static inline void QTMR_ DisableInterrupts(TMR_Type *base, gtmr_channel number._t
eChannelNumber, uint16_t ul6Mask)

Disables the Quad Timer interrupts according to a provided mask.

This function disables the Quad Timer interrupts according to a provided mask. The mask
is a logical OR of enumerators members. See _qtmr_channel_interrupt_enable. This exam-
ples shows how to disable compare 1 interrupt and compare 2 interrupt.

QTMR_ DisableInterrupts((QTMR, kQTMR,__Channel0, kQTMR__ComparelInterruptEnable |,
—kQTMR_ Compare2InterruptEnable);

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

* ul6Mask — The QTMR DMA interrupts to disable. Logical OR of
_qtmr_channel_interrupt_enable.

static inline uint16_t QTMR_ GetStatusFlags(TMR_Type *base, gtmr_channel number._t
eChannelNumber)

Gets the Quad Timer status flags.

This function gets all QTMR channel status flags. The flags are returned as the logical OR
value of the enumerators _qgtmr_channel_status_flags. To check for a specific status, com-
pare the return value with enumerators in the _qtmr_channel_status_flags. For example,
to check whether the compare flag set.

if((QTMR._ GetStatusFlags(QTMR, kQTMR_ Channel0) & kQTMR_ CompareFlag) = 0U)

Parameters
* base — Quad Timer peripheral base address.

* eChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

Returns
The QTMR status flags which is the logical OR of the enumerators
_qtmr_channel_status_flags.

static inline void QTMR,_ ClearStatusFlags(TMR_Type *base, gtmr_channel number._t
eChannelNumber, uint16_t ul6Mask)

Clears the Quad Timer status flags.
This function clears QTMR channel status flags with a provide mask. The mask is a logical

ORof enumerators _qtmr_channel_status_flags. This examples shows how to clear compare
1 flag and compare 2 flag.

QTMR,_ ClearStatusFlags((QTMR, kQTMR,_Channel0, kQTMR, ComparelFlag | kQTMR,__
—Compare2Flag);

2.66. QTMR: Quad Timer Driver 337

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* base — Quad Timer peripheral base address

* eChannelNumber - Quad Timer channel number. See
gtmr_channel number_t

* ul6Mask — The QTMR status flags to clear. Logical OR of
_gqtmr_channel_status_flags

static inline void QTMR,_SetDebugActions(TMR_Type *base, qtmr_channel number._t
eChannelNumber, gtmr_channel _debug action_t
eDebugMode)

Sets channel debug actions.

This function selects the certain actions which will perform when the chip entering debug
mode.

Parameters
* base — Quad Timer peripheral base address.

* eChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

* eDebugMode — The Quad Timer channel actions in response to the chip en-
tering debug mode. See qtmr_channel_debug_action_t.

static inline void QTMR,_EnableChannels(TMR_Type *base, uint16_t ul6Mask)
Enables the Quad Timer channels according to a provided mask.

This function enables the Quad Timer channels according to a provided mask. The mask
is a logical OR of enumerators _qtmr_channel_enable. This examples shows how to enable
channel 0 and channel 1.

QTMR,_ EnableChannels(QTMR, kQTMR, ChannelOEnable | kQTMR, _ChannellEnable);

Note: If one channel has effective count mode, it will start its counter as soon as the chan-
nel be enabled.

Parameters
* base — Quad Timer peripheral base address.

* ul6Mask — The QTMR channels to enable. Logical OR of
_qtmr_channel enable.

static inline void QTMR_ DisableChannels(TMR_Type *base, uint16_t ul6Mask)
Disables the Quad Timer channels according to a provided mask.

This function disables the Quad Timer channels according to a provided mask. The mask
is alogical OR of enumerators _qtmr_channel_enable. This examples shows how to disable
channel 0 and channel 1.

QTMR,_ DisableChannels(QTMR, kQTMR,__Channel0Enable | kQTMR, ChannellEnable);

Parameters
* base — Quad Timer peripheral base address.

* ul6Mask — The QTMR channels to enable. Logical OR of
_qtmr_channel_enable.

338 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t TMR,_ GetCaptureRegAddr(TMR_Type *base, qtmr_channel number._t
nChannel)

Gets the TMR capture register address. This API is used to provide the transfer address for
TMR capture transfer.

Parameters
* base — TMR base pointer
* nChannel — Quad Timer channel number. See qtmr_channel number _t.

Returns
capture register address

FSL_QTMR_DRIVER_ VERSION
QTMR driver version.

enum _ gtmr_ input_ pin
The enumeration for Quad Timer module input pin source.
Values:
enumerator kQTMR,_ InputPin0
Quad Timer input pin 0.
enumerator kQTMR,_ InputPinl
Quad Timer input pin 1.
enumerator kQTMR,_ InputPin2
Quad Timer input pin 2.
enumerator kQTMR,_ InputPin3
Quad Timer input pin 3.
enum _ gtmr_ channel_number
The enumeration for Quad Timer module channel number.
Values:

enumerator kQTMR, ChannelO
Quad Timer Channel 0.

enumerator kQTMR,_ Channell
Quad Timer Channel 1.

enumerator kQTMR, Channel2
Quad Timer Channel 2.

enumerator kQTMR, Channel3
Quad Timer Channel 3.

enum _ gtmr_channel primary_count_ source

The enumeration for Quad Timer channel primary input source.

Values:

enumerator kQTMR,_ PrimarySrcInputPin0
Quad Timer input pin 0.

enumerator kQTMR,_ PrimarySrcInputPinl
Quad Timer input pin 1.

enumerator kQTMR,_ PrimarySrcInputPin2
Quad Timer input pin 2.

2.66. QTMR: Quad Timer Driver 339

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQTMR,_ PrimarySrcInputPin3
Quad Timer input pin 3.

enumerator kQTMR_ PrimarySrcChannel0Output
Quad Timer channel 0 output.

enumerator kQTMR_ PrimarySrcChannell Output
Quad Timer channel 1 output.

enumerator kQTMR_ PrimarySrcChannel20utput
Quad Timer channel 2 output.

enumerator kQTMR,_ PrimarySrcChannel30utput
Quad Timer channel 3 output.

enumerator kQTMR,_ PrimarySrcIPBusClockDividel
IP bus clock divide by 1.

enumerator kQTMR,_ PrimarySrcIPBusClockDivide2
IP bus clock divide by 2.

enumerator kQTMR,_ PrimarySrcIPBusClockDivide4
IP bus clock divide by 4.

enumerator kQTMR,_ PrimarySrcIPBusClockDivide8
IP bus clock divide by 8.

enumerator kQTMR,_ PrimarySrcIPBusClockDividel6
IP bus clock divide by 16.

enumerator kQTMR,_ PrimarySrcIPBusClockDivide32
IP bus clock divide by 32.

enumerator kQTMR,_ PrimarySrcIPBusClockDivide64
IP bus clock divide by 64.

enumerator kQTMR,_ PrimarySrcIPBusClockDivide128
IP bus clock divide by 128.

enum _ gtmr_ channel_secondary_ count_ source
The enumeration for Quad Timer channel secondary input source.
Values:
enumerator kQTMR.__ SecondarySrcInputPin0
Quad Timer input pin 0.
enumerator kQTMR,_ SecondarySrcInputPinl
Quad Timer input pin 1.
enumerator kQTMR,_ SecondarySrcInputPin2
Quad Timer input pin 2.
enumerator kQTMR,_ SecondarySrcInputPin3
Quad Timer input pin 3.
enum _ gtmr_ channel secondary_ source_ capture_mode
The enumeration for Quad Timer channel secondary input source capture mode.
Values:

enumerator kQTMR,_ SecondarySrcCaptureNoCapture
Secondary source capture is disabled.

340 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQTMR,_ SecondarySrcCaptureRisingEdge
Secondary source capture on rising edge.

enumerator kQTMR,_ SecondarySrcCaptureFallingEdge
Secondary source capture on falling edge.

enumerator kQTMR,_ SecondarySrcCaptureRisingAndFallingEdge
Secondary source capture on both edges.

enumerator kQTMR,_ SecondarySrcCaptureRisingEdgeWithReload
Secondary source capture on rising edge while cause the channel to be reloaded.

enumerator kQTMR,_ SecondarySrcCaptureFallingEdgeWithReload
Secondary source capture on falling edge while cause the channel to be reloaded.

enumerator kQTMR,_ SecondarySrcCaptureRisingAndFallingEdgeWithReload
Secondary source capture on both edges while cause the channel to be reloaded.

enum _ gtmr_ channel count_ mode
The enumeration for Quad Timer channel count mode.
When “channel output 0~3” or “IP bus clock prescaler” is chosen, active edge is the rising
edge. When “input pin 0~3” is chosen, active edge and active level is determined by input
invert feature (IPS). Disable input invert feature means active edge is rising edge, active

level is high level, enable input invert feature means active edge is falling edge, active level
is low level.

Values:

enumerator kQTMR,__ CountNoOperation
No operation.

enumerator kQTMR,_ CountPrimarySrcRiseEdge
Count active edge of primary input source.

enumerator kQTMR,_ CountPrimarySrcRiseAndFallEdge
Count rising and falling edges of primary input source.

enumerator kQTMR__ CountPrimarySrcRiseEdgeSecondarySrcInHigh
Count active edge of primary input source when secondary input is at a active level.

enumerator kQTMR_ CountPrimarySecondarySrcInQuadDecode
Quadrature count mode, uses primary and secondary sources.

enumerator kQTMR__CountPrimarySrcRiseEdgeSecondarySrcDir

Count active edge of primary input source; secondary input source specifies count di-
rection.

enumerator kQTMR_ CountPrimarySrcRiseEdgeSecondarySrcRiseEdgeTrig

The active edge of secondary input source triggers count active edge of primary input
source, and the channel counter will stop upon receiving a second trigger event while
it’s still counting from the first trigger event.

enumerator kQTMR,_ CountCascadeWithOtherChannel

Cascaded count mode, the channel will count as compare events occur in the selected
source chennel (use a special high-speed signal path rather than the OFLAG output sig-
nal). The active edge of secondary input source triggers count active edge of primary
input source, and the channel counter will re-initialized upon receiving a second trig-
ger event while it’s still counting from the first trigger event.

enumerator kQTMR,_ CountPrimarySrcRiseEdgeSecondarySrcRiseEdgeTrigWithRelnit

2.66. QTMR: Quad Timer Driver 311

MCUXpresso SDK Documentation, Release 25.09.00

enum _ gtmr_ channel_count_ length
The enumeration for Quad Timer channel count length.

Values:

enumerator kQTMR,_ CountLengthUntilRollOver
Count until roll over at $FFFF.
enumerator kQTMR,_ CountLengthUntilCompare
Count until compare.
enum _ gtmr_ channel count_ direction
The enumeration for Quad Timer channel count direction.
Values:
enumerator kQTMR_ CountDirectionUp
Count direction up.
enumerator kQTMR,_ CountDirectionDown
Count direction down.
enum _ gtmr_ channel count_ times
The enumeration for Quad Timer channel count times.
Values:

enumerator kQTMR,_ CountTimesRepeat
Count repeatedly.

enumerator kQTMR,_ CountTimesOnce
Count time once.

enum _ gtmr_ channel count_ load mode
The enumeration for Quad Timer channel count load mode.

Values:

enumerator kQTMR,__ CountLoadNormal
Count can be re-initialized only with the LOAD register when match event occurs.

enumerator kQTMR_ CountLoadAlternative
Channel can be re-initialized with the LOAD register when count up and a match with
COMP1 occurs, or with CMPLD2 register when count down and a match with COMP2
occurs.
enum _ gtmr_ channel count_ preload__mode
The enumeration for Quad Timer channel COMP1 & COMP2 preload mode.

Values:

enumerator kQTMR_ CountPreloadNoLoad
Not load CMPLDn into COMPn register when compare event occurs.

enumerator kQTMR_ CountPreloadOnComplCompareEvent
Load CMPLDn register into COMPn when occurs a successful comparison of channel
counter value and the COMP1 register.

enumerator kQTMR,__ CountPreloadOnComp2CompareEvent

Load CMPLDn register into COMPn when occurs a successful comparison of channel
counter value and the COMP2 register.

342 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enum _ gtmr_ channel_output_ mode
The enumeration for Quad Timer channel output signal (OFLAG signal) work mode.

Values:

enumerator kQTMR_ OutputAssert WhenCountActive
OFLAG output assert while counter is active.

enumerator kQTMR,_ OutputClearOnCompare
OFLAG output clear on successful compare.

enumerator kQTMR, OutputSetOnCompare
OFLAG output set on successful compare.

enumerator kQTMR,_ OutputToggleOnCompare
OFLAG output toggle on successful compare.

enumerator kQTMR_ OutputToggleOnAltCompareReg
OFLAG output toggle using alternating compare registers.

enumerator kQTMR,_ OutputSetOnComareClearOnSecSrcActiveEdge
OFLAG output set on compare, clear on secondary source input edge.

enumerator kQTMR,_ OutputSetOnCompareClearOnCountRoll
OFLAG output set on compare, clear on counter rollover.

enumerator kQTMR,_ OutputGateClockOutWhenCountActive
OFLAG output gated while count is active.

enum _ gtmr_ gtmr_ channel output_ value_on_ force
The enumeration for Quad Timer channel output signal (OFLAG) value on force event occur.

Values:

enumerator kQTMR_ OutputValueClearOnForce

OFLAG output clear (low) when software triggers a FORCE command or master chan-
nel force the OFLAG (EEOF need set).

enumerator kQTMR,_ OutputValueSetOnForce

OFLAG output set (high) when software triggers a FORCE command or master channel
force the OFLAG (EEOF need set).

enum _ gtmr_ channel_debug_action
The enumeration for Quad Timer channel run options when the chip entering debug mode.

Values:

enumerator kQTMR_ DebugRunNormal
Continue with normal operation.

enumerator kQTMR,_ DebugHaltCounter
Halt counter.

enumerator kQTMR,_ DebugForceOutToZero
Force output to logic 0.

enumerator kQTMR,_ DebugHaltCountForceOutZero
Halt counter and force output to logic 0.

enum _ gtmr_ channel interrupt_ enable
The enumeration for Quad Timer channel interrupts.

Values:

2.66. QTMR: Quad Timer Driver 343

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQTMR,__ ComparelnterruptEnable
Compare interrupt.

enumerator kQTMR_ ComparellnterruptEnable
Compare 1 interrupt.

enumerator kQTMR_ Compare2Interrupt Enable
Compare 2 interrupt.

enumerator kQTMR,_ OverflowInterruptEnable
Timer overflow interrupt.

enumerator kQTMR,__EdgelnterruptEnable
Input edge interrupt.

enumerator kQTMR__ALLInterruptEnable

enum _ gtmr_channel status_ flags
The enumeration for Quad Timer channel work status.

Values:

enumerator kQTMR_ CompareFlag
Compare flag.

enumerator kQTMR_ ComparelFlag
Compare 1 flag.

enumerator kQTMR_ Compare2Flag
Compare 2 flag.

enumerator kQTMR_ OverflowFlag
Timer overflow flag.

enumerator kQTMR_ EdgeFlag
Input edge flag.

enumerator kQTMR,_ StatusAllFlags

enum _ gtmr_ channel_enable

The enumeration for Quad Timer channel enable.

Values:

enumerator kQTMR, ChannelOEnable
Channel 0 enable.

enumerator kQTMR, ChannellEnable
Channel 1 enable.

enumerator kQTMR, Channel2Enable
Channel 2 enable.

enumerator kQTMR, Channel3Enable
Channel 3 enable.

enumerator kQTMR_ALLChannelEnable

enum _ gtmr_ channel dma_ enable

The enumeration for Quad Timer channel DMA trigger source.

Values:

344

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQTMR,_ InputEdgeFlagDmaEnable
Input edge flag setting will trigger DMA read request for CAPT register.

enumerator kQTMR_ ComparelPreloadDmaEnable
Channelload CMPLD1 register into COMP1 will trigger DMA write request for CMPLD1.

enumerator kQTMR_ Compare2PreloadDmaEnable
Channelload CMPLD2 register into COMP2 will trigger DMA write request for CMPLD2.

enumerator kQTMR__AlIDMAEnable

typedef enum _qgtmr_input_pin qtmr__input_ pin_t
The enumeration for Quad Timer module input pin source.

typedef enum _qtmr_channel number qtmr_ channel number_ t
The enumeration for Quad Timer module channel number.

typedef enum _qtmr_channel_primary_count_source qtmr_ channel primary_ count_ source_t
The enumeration for Quad Timer channel primary input source.

typedef enum _qtmr_channel_secondary_count_source qtmr_channel secondary_count_ source t
The enumeration for Quad Timer channel secondary input source.

typedef enum _qtmr_channel_secondary_source_capture_mode

qtmr__channel secondary_source_ capture_mode_t

The enumeration for Quad Timer channel secondary input source capture mode.

typedef enum _qtmr_channel _count_mode qtmr_ channel count_mode_ t
The enumeration for Quad Timer channel count mode.
When “channel output 0~3” or “IP bus clock prescaler” is chosen, active edge is the rising
edge. When “input pin 0~3” is chosen, active edge and active level is determined by input
invert feature (IPS). Disable input invert feature means active edge is rising edge, active
level is high level, enable input invert feature means active edge is falling edge, active level
is low level.

typedef enum _qgtmr_channel_count_length qtmr_channel count_length_t
The enumeration for Quad Timer channel count length.

typedef enum _qtmr_channel_count_direction qtmr_ channel count_ direction_ t
The enumeration for Quad Timer channel count direction.
typedef enum _qtmr_channel _count_times qtmr_ channel_count_ times_t
The enumeration for Quad Timer channel count times.
typedef enum _qtmr._channel_count_load mode qtmr_ channel count_load_mode_t
The enumeration for Quad Timer channel count load mode.
typedef enum _qgtmr_channel_count_preload_mode qtmr_ channel count_ preload_mode_t
The enumeration for Quad Timer channel COMP1 & COMP2 preload mode.
typedef enum _qtmr_channel_output_mode qtmr_ channel _output_mode_ t
The enumeration for Quad Timer channel output signal (OFLAG signal) work mode.

typedef enum _qgtmr_qtmr_channel_output_value_on_force
qtmr__channel output_ value on_ force_t

The enumeration for Quad Timer channel output signal (OFLAG) value on force event occur.

typedef enum _qtmr_channel _debug_action qtmr_ channel_debug_ action_t
The enumeration for Quad Timer channel run options when the chip entering debug mode.

typedef struct _qtmr_channel_input_config qtmr_ channel input_ config t
The structure for configuring Quad Timer channel input signal.

2.66. QTMR: Quad Timer Driver 345

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _qtmr_channel _count_config qtmr_ channel count_ config_t
The structure for configuring Quad Timer channel counting behaviors.

typedef struct _qtmr_channel_output_config qtmr__channel_output_ config_t
The structure for configuring Quad Timer channel output signal (OFLAG).

typedef struct _qtmr_channel_cooperation_config qtmr_ channel__cooperation__config_t
The structure for configuring Quad Timer channel cooperation mode with other channels.

typedef struct _qtmr_channel_config qtmr_ channel config_t
Quad Timer channel configuration covering all channel configurable fields.

typedef struct _qtmr_input_pin_filter_config qtmr_input_ pin_ filter config t
The structure for configuring Quad Timer module input pin filter.

typedef struct _qtmr_config qtmr_ config_t

Quad Timer module configuration which contain channel config structure pointers and
input pin filter config structure pointers.

Note: Need use channel structure address to init the structure pointers, when the channel
or input pin structure pointers is NULL, it will be ignored by QTMR_Init API. This can save
stack space when only one or two channels are used.

struct _ qtmr_ channel input_ config
#include <fsl_qtmr.h> The structure for configuring Quad Timer channel input signal.

Public Members

qtmr_channel primary_count_source_t ePrimarySource
Specify the primary input source.

qtmr_channel_secondary_count_source_t eSecondarySource
Specify the secondary input source.

bool bEnableSecondarySrcFaultFunction
true: The selected secondary input acts as a fault signal which can clear the channel
output signal when it is set, false: Fault function disabled.
bool eEnableInputInvert
true: Invert input signal value when select input pin as primary or/and secondary
input source false: no operation.
struct _ qtmr_ channel count_ config

#include <fsl_gtmrh> The structure for configuring Quad Timer channel counting behav-
iors.

Public Members
qtmr_channel_count_mode_t eCountMode
Configures channel count mode.

qtmr_channel_count_length_t eCountLength
Configures channel count length.

qtmr_channel_count_direction_t eCountDir
Configures channel count direction.

346 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

qtmr_channel_count_times_t eCountTimes
Configures channel count times.

qtmr_channel _count_load_mode_t eCountLoadMode
Configures channel count load mode.

struct _qtmr_ channel output_ config

#include <fsl_ qtmrh> The structure for configuring Quad Timer channel output signal
(OFLAG).

Public Members

qtmr_channel_output_mode_t eOutputMode
Configures channel output signal work mode.

qtmr_channel output_value_on_force_t eOutputValueOnForce
The value of output signal when force event occur.

bool bEnableOutputInvert
True: the polarity of output signal will be inverted, false: The output signal is not in-
verted.

bool bEnableSwForceOutput
True: forces the current value of eOFLAGValueOnForce to output signal. false: no
operation.

bool bEnableOutputPin

True: the output signal is driven on the external pin. false: the external pin is config-
ured as an input.

struct _ qtmr_ channel cooperation_ config

#include <fsl_qtmr.h> The structure for configuring Quad Timer channel cooperation mode
with other channels.

Public Members

bool bEnableMasterRelnit
true: Master channel within the module can re-initialize this channel when it has a
compare event, false: no operation.

bool bEnableMasterForceOFLAG
true: Master channel within the module can force this channel OFLAG signal when it
has a compare event, false: no operation.

bool bEnableMasterMode

true: This channel is configured as mater channel, it can broadcast compare event to
all channels within the module to re-initialize channel and/or force channel output
signal, false: no operation.

struct _qtmr_channel config

#include <fsl_qtmrh> Quad Timer channel configuration covering all channel configurable
fields.

Public Members

qtmr_channel_input_config_t sinputConfig
Configures channel input signal.

2.66. QTMR: Quad Timer Driver 347

MCUXpresso SDK Documentation, Release 25.09.00

qtmr_channel_count_config_t sCountConfig

Configures channel count work mode.
qtmr_channel_output_config_t sOutputConfig

Configures channel output signal (OFLAG) work mode.
qtmr_channel _debug_action_t eDebugMode

Configures channel operation in chip debug mode.

uint16_t ul6EnabledInterruptMask

The mask of the interrupts to be enabled, should be the ORed of
_qtmr_channel_interrupt_enable.

uint16_t ul6EnabledDMAMask

The mask of the interrupts to be enabled, should be the ORed of
_qtmr_channel_dma_enable.

uint16_t ul6Compl

Value for Channel compare register 1.
uint16_t ul6Comp2

Value for Channel compare register 2.
uint16_t ul6Comp1Preload

Value for Channel compare 1 preload register.
uint16_t ul6Comp2Preload

Value for Channel compare 2 preload register.
uintl6_t ul6Load

Value for Channel load register.

uint16_t ul6Count
Value for Channel counter value register.

bool bEnableChannel

True: enable the channel prescaler (if it is being used) and counter false: disable chan-
nel.

struct _qtmr_input_ pin_ filter config
#include <fsl_qtmrh> The structure for configuring Quad Timer module input pin filter.

Public Members
uint8_t u8Period
Value for input filter sample period.
uint8_t u8Count
Value for input filter sample count (sample count = count +3).

struct _ gtmr_ config

#include <fsl_qtmrh> Quad Timer module configuration which contain channel config struc-
ture pointers and input pin filter config structure pointers.

Note: Need use channel structure address to init the structure pointers, when the channel
or input pin structure pointers is NULL, it will be ignored by QTMR_Init API. This can save
stack space when only one or two channels are used.

348 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

2.67 The Driver Change Log
2.68 QTMR Peripheral and Driver Overview
2.69 The Driver Change Log

2.70 SIM: System Integration Module Driver

FSL SIM_ DRIVER_ VERSION
SIM driver version.

2.71 The Driver Change Log

static inline void SIM__ SetWaitModeOperation(SIM_Type *base, sim_wait_mode_operation_t
eOperation)

Sets the operation of wait mode, enable/disable the entry of wait mode.
Parameters
* base — SIM peripheral base address.

* eOperation — Used to enable/disable the wait mode, please refer to
sim_wait_mode_operation_t.

static inline void SIM__ SetStopModeOperation(SIM_Type *base, sim_stop_mode_operation_t
eOperation)

Sets the operation of stop mode, enable/disable the entry of stop mode.
Parameters
* base — SIM peripheral base address.

* eOperation — Used to enable/disable the stop mode, please refer to
sim_stop_mode_operation_t.

static inline void SIM__EnterLPMode(SIM_Type *base)
Enters into LPMode when the advanced power mode is enabled(register FOPT[1] bit is set).

Note: Please make sure the power mode register is not set as write protected before in-
voking this function.

Note: This function is useful only when the FTFE module’s FOPT[0] bit is set(advanced
power mode is enabled).

Parameters
* base — SIM peripheral base address.

static inline void SIM_ ExitLPMode(SIM_Type *base)
Exits from LPMode when the advanced power mode is enabled(register FOPT[1] bit is set).

2.67. The Driver Change Log 349

MCUXpresso SDK Documentation, Release 25.09.00

Note: Please make sure the power mode register is not set as write protected before in-
voking this function.

Note: This function is useful only when the FTFE module’s FOPT[0] bit is set(advanced
power mode is enabled).

Parameters

* base — SIM peripheral base address.

static inline void SIM_ EnterVLPMode(SIM_Type *base)

Enters into VLPMode when the advanced power mode is enabled(register FOPT[1] bit is
set).

Note: Please make sure the power mode register is not set as write protected before in-
voking this function. If both set to enter LPMode and VLPMode, the VLPMode has higher
priority.

Note: This function is useful only when the FTFE module’s FOPT[0] bit is set(advanced
power mode is enabled).

Parameters

* base — SIM peripheral base address.

static inline void SIM__ExitVLPMode(SIM_Type *base)

Exits from VLPMode when the advanced power mode is enabled(register FOPT[1] bit is set).

Note: Please make sure the power mode register is not set as write protected before in-
voking this function.

Note: This function is useful only when the FTFE module’s FOPT[0] bit is set(advanced
power mode is enabled).

Parameters

* base — SIM peripheral base address.

static inline bool SIM_ IsinL.LPMode(SIM_Type *base)

Indicates whether the chip is in LPMode when the advanced power mode is en-
abled(register FOPT[1] bit is set).

Note: This function is useful only when the FTFE module’s FOPT[0] bit is set(advanced
power mode is enabled).

Parameters
* base — SIM peripheral base address.

Return values

350

Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

* true — The chip is in LPMode.
» false — The chip is not in LPMode.

static inline bool SIM_ IsInVLPMode(SIM_Type *base)

Indicates whether the chip is in VLPMode when the advanced power mode is en-
abled(register FOPT[1] bit is set).

Note: This function is useful only when the FTFE module’s FOPT[0] bit is set(advanced
power mode is enabled).

Parameters

* base — SIM peripheral base address.
Return values

¢ true — The chip is in VLPMode.

* false — The chip is not in VLPMode.

static inline void SIM_ TriggerSoftwareReset(SIM_Type *base)
Triggers the software reset for device.

Parameters
* base — SIM base address.

static inline uint16_t SIM_ GetResetStatusFlags(SIM_Type *base)
Gets the cause of the most recent reset.

Note: Atany given time, the only one reset source is indicated. When multiple reset source
assert simultaneously, the reset source with the highest precedence is indicated. The prece-
dence from highest to lowest is POR, external reset, COP loss of reference reset, COP CPU
time-out reset, software reset, COP window time-out reset. The POR is always set during a
power-on reset. However, POR is cleared and the external reset is set if the external reset
pin is asserted or remains asserted after the power-on reset has de-asserted.

Parameters
* base — SIM peripheral base address.

Returns
The current reset status flags, should be the ORed value of
_sim_reset_status_flags.

static inline void SIM_ TriggerPeripheralSoftwareReset(SIM_Type *base,
sim_swReset_peri_index_t ePerilndex)

Triggers the software reset of specific peripheral.
Parameters
* base — SIM peripheral base address.
* ePerilndex — The index of the peripheral to be reset.

static inline void SIM__EnableResetPadCelllnputFilter (SIM_Type *base, bool bEnable)
Enables/Disables the input filter on external reset padcell.

If the input filter is enabled, the filter will remove transient signals on the input at the
expense of an increased input delay.

2.71. The Driver Change Log 351

MCUXpresso SDK Documentation, Release 25.09.00

Note: If the input filter is enabled, the filter will affect all input functions supported by
that padcell, including GPIO.

Parameters
* base — SIM peripheral base address.
* bEnable — Used to control the behaviour of input filter.
— true Enable the input filter on external input padcell.
- false Disable the input filter on external input padcell.

static inline void SIM__ SetInternalPerilnput(SIM_Type *base, sim_internal_peri_index_t eIndex,
sim_internal_peri_input_t elnput)

Sets internal peripheral inputs, some peripheral inputs have the ability to be connected to
either XBAR outputs or GPIO.

Parameters
* base — SIM base address.
* elndex — The internal peripherals that supply multi-inputs.

* eInput — The specific input that connected to the selected internal periph-
eral.

static inline void SIM__ SetXbarInputAdcTmrSelection(SIM_Type *base,
sim_xbar_input_adc_tmr_index_t eIndex,
sim_xbar_input_adc_tmr_selection_t
eSelection)

Selects the Xbar input from ADC and TMR A/B.
Parameters
* base — SIM base address.
¢ eIndex — SIM ADC and TMR select register field index.
* eSelection — Xbar input ADC and TMR selection.

static inline void SIM__SetSmallRegulator1P2VControlMode(SIM_Type *base,
sim_small_regulator_1P2V_control_mode_t
eControlMode)

Sets the control mode of small regulator 1.2V supply, the available control modes are nor-
mal mode, standby mode, etc.

Note: This function is useful only when the flash module’s FOPT[0] bit is 0.

Parameters
* base — SIM peripheral base address.

* eControlMode — The control mode to be set, please refer to
sim_small_regulator_1P2V_control_mode_t.

static inline void SIM__ SetSmallRegulator2P7VControlMode(SIM_Type *base,
sim_small_regulator_2P7V_control_mode_t
eControlMode)

Sets the control mode of small regulator 2.7 supply, the available control modes are normal
mode, standby mode, etc.

352 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

Note: This function is useful only when the flash module’s FOPT[0] bit is 0.

Parameters
* base — SIM peripheral base address.

* eControlMode - THe control mode to be set, please refer to
sim_small_regulator_2P7V_control_mode_t.

static inline void SIM__ SetLargeRegulatorControlMode(SIM_Type *base,
sim_large_regulator_control_mode_t
eControlMode)

Sets the control mode of large regulator, the available control mode are normal mode,
standby mode, etc.

Note: This function is useful only when the flash module’s FOPT[0] bit is 0.

Parameters
* base — SIM peripheral base address.

* eControlMode — The control mode to be set, please refer to
sim_large_regulator_control_mode_t.

static inline void SIM_ SetRegisterProtectionMode(SIM_Type *base,
sim_write_protection_module_t eModule,
sim_write_protection_mode_t eMode)

Sets the write protection mode of the selected register.
Parameters
* base — SIM peripheral base address.

* eModule - The module to be set, please refer to
sim_write_protection_module_t.

* eMode — The specific write protection mode to be set, please refer to
sim_write_protection_mode_t.

static inline uint32_t SIM_ GetJTAGID(SIM_Type *base)
Gets JTAG ID, the JTAG ID is 32bits width.
Parameters
* base — SIM base address.

Returns
The 32bits width JTAG ID.

static inline void SIM_ SetIOShortAddressValue(SIM_Type *base, uint32_t
u32I0ShortAddressValue)

Sets the I/O short address location value which specifies the memory referenced through
the I/O short address mode.

The I/O short address mode allows the instrution to specify the lower 6 bits of the address.
And the upper 18 bits of the address can be controlled by invoking this function.

Note: The pipeline delay between setting the related register set and using short I/O ad-
drssing with the new value is five cycles.

2.71. The Driver Change Log 353

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* base — SIM base address.

* u32I0ShortAddressValue — The value of I/O short address location, this ad-
dress value should be 24 bits width.

static inline uint16_t SIM_ GetSoftwareControlData(SIM_Type *base,
sim_software_contrl_register_index_t
elndex)

Gets the software control data by the software control register index.
Parameters
* base — SIM base address.
* elndex — SIM software control register index.

Returns
Software control registers value.

static inline void SIM_ SetSoftwareControlData(SIM_Type *base,
sim_software_contrl_register_index_t eIndex,
uint16_t ul6Value)

Sets the software control data by the software contorl register index, the data is for general-
purpose use by software.

Parameters
* base — SIM base address.
* elndex — SIM software control register index.
* ul6Value — Software control registers value.

static inline void SIM_ SetOnCEClockOperationMode(SIM_Type *base,
sim_onceclk_operation_mode_t
eOperationMode)

Sets the operation mode of the OnCE clock, the available operation modes are always en-
abled and enabled when the core TAP is enabled.

Parameters
* base — SIM peripheral base address.

* eOperationMode — The operation mode of OnCE clock, please refer to
sim_onceclk_operation_mode_t.

static inline void SIM_ SetDMAOperationMode(SIM_Type *base, sim_dma_operation_mode_t
eOperationMode)

Sets the operation mode of DMA, such as disabled, enabled in run mode only, etc.
Parameters
* base — SIM peripheral base address.

* eOperationMode — The operation mode to be set, please refer to
sim_dma_operation_mode_t.

static inline sim_boot_mode_t SIM__GetBootMode(SIM_Type *base)
Gets the device’s boot mode, the available boot modes are ROM boot and NVM flash boot.

Parameters
* base — SIM peripheral base address.

Returns
The device’s boot mode, please refer to sim_boot_mode_t.

354 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

static inline void SIM_ SetLPI2C1TriggerSelection(SIM_Type *base, sim_Ipi2c_trigger_selection_t
eTriggerSelection)

Sets the trigger selection of Ipi2c1, the available selections are master trigger and slave
trigger.

This function can be used to selection the LPI2C1 output trigger. If selected as master trigger,
the LPI2C1 master will generate an output trigger that can be connected to other peripherals
on the device. If selected as slave trigger, the LPI2C1 slave will generate an output trigger
that can be connected to other peripherals on the device.

Parameters
* base — SIM peripheral base address.

* eTriggerSelection — The trigger selection to set, please refer to
sim_lpi2c_trigger_selection_t.

static inline void SIM_ SetL.LPI2C0TriggerSelection(SIM_Type *base, sim_Ipi2c_trigger_selection_t
eTriggerSelection)

Sets the trigger selection of 1pi2c0, the available selections are master trigger and slave
trigger.

This function can be used to selection the LPI2CO output trigger. If selected as master trigger,
the LPI2C0O master will generate an output trigger that can be connected to other peripherals
on the device. If selected as slave trigger, the LPI2CO0 slave will generate an output trigger
that can be connected to other peripherals on the device.

Parameters
* base — SIM peripheral base address.

* eTriggerSelection — The trigger selection to set, please refer to
sim_lpi2c_trigger_selection_t.

static inline sim_device_operate_mode_t SIM__GetDeviceOperateMode(SIM_Type *base)

Gets device currently operate mode, the possible result is normal operate mode or fast op-
erate mode.

Parameters
* base — SIM peripheral base address.

Returns
Current device’s operate mode.

static inline void SIM_ SetDeviceOperateMode(SIM_Type *base, sim_device_operate_mode_t
eOperateMode)

Sets device operate mode, including normal operate mode and fast operate mode.

Note: The setting by invoking this function is valid after executing the software reset.
To change the device operation mode, the clock-related settings also need to be changed.
Please use this API with caution.

Parameters
* base — SIM peripheral base address.

* eOperateMode — The operate mode to be set, please refer to
sim_device_operate_mode_t.

static inline void SIM_ EnableADCScanControlReorder(SIM_Type *base, bool bEnable)
Enables/Disables the ADC scan control register reorder feature.

Parameters

2.71. The Driver Change Log 355

MCUXpresso SDK Documentation, Release 25.09.00

* base — SIM peripheral base address.

* bEnable — Used to control the ADC scan control register reorder feature.
— true Enable the re-ordering of ADC scan control bits.
— false ADC scan control register works in normal order.

static inline void SIM_ SetMasterPIT(SIM_Type *base, sim_master_pit_selection_t eMasterPit)
Sets master programmable interval timer.

Parameters
* base — SIM peripheral base address.

* eMasterPit — The master PIT to be selected, please refer to
sim_master_pit_selection_t.

static inline void SIM_ SetBootOverRide(SIM_Type *base, sim_boot_override_mode_t eMode)

Sets the boot over ride mode, this API can be used to determine the boot option in the next
reset excluding POR.

Parameters
* base — SIM peripheral base address.
* eMode — THe boot over ride mode.
static inline void SIM_ ReadDeviceUID(SIM_Type *base, uint16_t *pDevUID)
Reads device UID.
Parameters
* base — SIM peripheral base address.
* pDevUID - The pointer of external data buffer for device UID.
enum _sim_ reset_ status_flags
The enumeration of system reset status flags, such as power on reset, software reset, etc.
Values:
enumerator kSIM_ PowerONResetFlag
The Power on reset caused the most recent reset.

enumerator kSIM__ ExternalResetFlag

The external reset caused the most recent reset, that means the external reset pin was
asserted or remained asserted after the power-on reset de-asserted.

enumerator kSIM__COPLossOfReferenceResetFlag

The computer operating properly module signaled a PLL loss of reference clock reset
caused the most recent reset.

enumerator kSIM_ COPCPUTimeOutResetFlag

The computer operating properly module signaled a CPU time-out reset caused the
most recent reset.

enumerator kSIM__SofwareResetFlag
The previous system reset occurred as a result of a software reset

enumerator kSIM__ COPWindowTimeOutResetFlag
The previous system reset occurred as a result of a cop_window reset.

enum _ sim_ stop_ mode_ operation
The enumeration of stop mode operation can be used to enable/disable stop mode enter.

Values:

356 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSIM__ STOPInstrutionEnterStopMode

Stop mode is entered when the DSC core executes a STOP instruction.
enumerator kSIM__ STOPInstrutionNotEnterStopMode

The DSC core STOP instruction does not cause entry into stop mode.

enumerator kSIM__ STOPInstrutionEnterStopModeWriteProtect

Stop mode is entered when the DSC core executes a STOP instruction, and the realted
register bit field is write protected until the next reset.

enumerator kSIM__ STOPInstructionNot EnterStopModeWriteProtect

The DSC core STOP instruction does not cause entry into stop mode, and the related
register bit field is write protected until the next reset.

enum _sim_ wait_ mode_operation
The enumeration of wait mode operation can be used to enable/disable wait mode enter.

Values:

enumerator kSIM__ WAITInstrutionEnter WaitMode

Wait mode is entered when the DSC core executes a WAIT instruction.
enumerator kSIM__ WAITInstrutionNotEnterWaitMode

The DSC core WAIT instruction does not cause entry into wait mode.

enumerator kSIM__ WAITInstrutionEnter WaitModeWriteProtect

Wait mode is entered when the DSC core executes a WAIT instruction, and the realted
register bit field is write protected until the next reset.

enumerator kSIM_ WAITInstructionNotEnter WaitModeWriteProtect

The DSC core WAIT instruction does not cause entry into wait mode, and the related
register bit field is write protected until the next reset.

enum _ sim_ onceclk_operation_ mode

The enumeration of OnCE clock operation mode, such as enabled when core TAP is enabled
and always enabled.

Values:
enumerator kSIM_ OnCEClkEnabledWhenCoreTapEnabled

The OnCE clock to the DSC core is enabled when the core TAP is enabled.
enumerator kSIM__ OnCECIlkAlwaysEnabled

The OnCE clock to the DSC core is always enabled.

enum _sim_ dma_ operation_mode

The enumeration of dma operation mode, this enumeration can be used to disable/enable
DMA module in different power modes.

Values:
enumerator kSIM_DMA Disable
DMA module is disabled.
enumerator kSIM_ DMAEnableAtRunModeOnly
DMA module is enabled in run mode only.
enumerator kSIM_ DMAEnableAtRunModeWaitMode
DMA module is enabled in run and wait modes only.

enumerator kSIM_DMAEnableAtAllPowerModes
DMA module is enabled in all power modes.

2.71. The Driver Change Log 357

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSIM_DMADisableWriteProtect

DMA module is disabled and the related register bit field is write protected until the
next reset.

enumerator kSIM_ DM AEnableAtRunModeOnly WriteProtect

DMA module is enabled in run mode only and the related bit field is write protected
until the next reset.

enumerator kSIM_ DMAEnableAtRunModeWaitModeWriteProtect

DMA module is enabled in run and wait modes only and the related register bit field
is write protected until the next reset.

enumerator kSIM_ DMAEnableAtAllPowerModesWriteProtect

DMA module is enabled in all low power modes and the related register bit field is
write protected until the next reset.

enum sim_ boot mode
The enumeration of device’s boot mode, including ROM boot and NVM flash boot.
Values:
enumerator kSIM_ BootFromNVMFlash
Indicates the chip is boot from NVM Flash.
enumerator kSIM_ BootFromROM
Indicates the chip is boot from ROM.
enum _ sim_ small_regulator_ 1P2V__control _mode

The enumeration of small regualtor 1P2V control mode, such as normal mode and standby
mode.

Values:

enumerator kSIM__SmallRegulator1P2VInNormalMode
Small regulator 1.2V supply placed in normal mode.

enumerator kSIM_SmallRegulator1P2VInStandbyMode
Small regulator 1.2V supply placed in standby mode.

enumerator kSIM__SmallRegulator1P2VInNormalModeWriteProtect

Small regulator 1.2V supply placed in nomal mode, and the related register bit field is
write protected until the next reset.

enumerator kSIM_ SmallRegulator1P2VInStandbyModeWriteProtect

Small regulator 1.2V supply placed in standby mode, and the related register bit field
is write protected until the next reset.

enum _sim_ small_regulator_ 2P7V__control _mode

The enumeration of small regulator 2P7V control mode, such as normal mode, standby
mode, powerdown mode, etc.

Values:

enumerator kSIM__SmallRegulator2P7VInNormalMode
Small regulator 2.7V supply placed in normal mode.

enumerator kSIM__SmallRegulator2P7VInStandbyMode
Small regulator 2.7V supply placed in standby mode.

enumerator kSIM__SmallRegulator2P7VInPowerdownMode
Small regulator 2.7V supply placed in powerdown mode.

358 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSIM__SmallRegulator2P7VInNormalModeWriteProtect
Small regulator 2.7V supply placed in normal mode and the related bit field is write
protected until chip reset.

enumerator kSIM__SmallRegulator2P7VInStandbyModeWriteProtect
Small regulator 2.7V supply placed in standby mode and the related bit field is write
protected until chip reset.

enumerator kSIM_ SmallRegulator2P7VInPowerdownModeWriteProtect
Small regulator placed in powerdown mode and the related bit field is write protected
until chip reset.

enum _sim_ large regulator control mode
The enumeration of large regulator contorl mode, such as normal mode, standby mode.

Values:

enumerator kSIM_ LargeRegulatorInNormalMode
Large regulator placed in normal mode.

enumerator kSIM_ LargeRegulatorInStandbyMode
Large regulator placed in standby mode.

enumerator kSIM_ LargeRegulatorInNormalModeWriteProtect
Large regulator placed in normal mode, and the related register bit field is write pro-
tected until chip reset.

enumerator kSIM__LargeRegulatorInStandbyModeWriteProtect
Large regulator placed in standby mode, and the related register bit field is write pro-
tected until chip reset.

enum _sim_ write_ protection_module
The enumeration of modules that support various protection mode.

Values:

enumerator kSIM__ GPIOInternalPeripheralSelectProtection
Used to control the protection mode GPSn and IPSn registers in the SIM, all XBAR, EVTG,
GPIOn_PER, GPIOn_PPMODE, GPIOn_DRIVE.

enumerator kSIM_ PeripheralClockEnableProtection
Used to control the protection mode of PCEn, SDn, PSWRn, and PCR register.

enumerator kSIM_ GPIOPortDProtection
Used to control the protection mode of GPIO_D_PER, GPIO_D_PPMODE, and
GPIO_D_DRIVE register.

enumerator kSIM_PowerModeControlWriteProtection
Used to control the protection mode of the PWRMODE register.

enum _ sim_ write_ protection_mode

The enumeration of write protection mode, such as write protection off, write protection
on, etc.

Values:

enumerator kSIM__ WriteProtectionOff
Write protection off.

enumerator kSIM__ WriteProtectionOn
Write protection on.

2.71. The Driver Change Log 359

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSIM_ WriteProtectionOffAndLocked
Write protection off and locked until chip reset.
enumerator kSIM_ WriteProtectionOnAndLocked
Write protection on and locked until chip reset.
enum _sim_ Ipi2c_ trigger_selection
The enumeration of 1pi2c trigger selection, including slave trigger and master trigger.

Values:

enumerator kSIM_ Lpi2cSlaveTrigger
Selects slave trigger.

enumerator kSIM__ Lpi2cMasterTrigger
Selects master trigger.
enum _sim_ device_operate_mode
The enumeration of device operate mode, including normal mode and fast mode.

Values:

enumerator kSIM_ NormalOperateMode
Device in normal operating mode, core:bus frequency as 1:1

enumerator kSIM_ FastOperateMode
Device in fast operate mode, core:bus frequency as 2:1

enum _ sim_ master_ pit_ selection
The enumeration of master pit.

Values:

enumerator kSIM_PITOMasterPIT1Slave
PITO is master PIT and PIT1 is slave PIT.

enumerator kSIM_ PIT1MasterPIT0Slave
PITO is master PIT and PIT1 is slave PIT.

typedef enum _sim_stop_mode_operation sim__stop_ mode_ operation_t
The enumeration of stop mode operation can be used to enable/disable stop mode enter.

typedef enum _sim_wait_mode_operation sim_ wait_ mode_ operation_t
The enumeration of wait mode operation can be used to enable/disable wait mode enter.

typedef enum _sim_onceclk_operation_mode sim__onceclk_operation_mode__t
The enumeration of OnCE clock operation mode, such as enabled when core TAP is enabled
and always enabled.

typedef enum _sim_dma_operation_mode sim_dma_ operation_mode_
The enumeration of dma operation mode, this enumeration can be used to disable/enable
DMA module in different power modes.

typedef enum _sim_boot_mode sim_ boot_ mode_ t
The enumeration of device’s boot mode, including ROM boot and NVM flash boot.

typedef enum _sim_small_regulator_1P2V_control_mode

sim_ small_regulator_ 1P2V_ control mode_t

The enumeration of small regualtor 1P2V control mode, such as normal mode and standby
mode.

360 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _sim_small regulator_2P7V_control_mode
sim_ small_regulator_ 2P7V_ control _mode_t

The enumeration of small regulator 2P7V control mode, such as normal mode, standby
mode, powerdown mode, etc.

typedef enum _sim_large_regulator_control_mode sim_ large_regulator control mode_ t
The enumeration of large regulator contorl mode, such as normal mode, standby mode.

typedef enum _sim_write_protection_module sim_ write protection_module_t
The enumeration of modules that support various protection mode.

typedef enum _sim_write_protection_mode sim_ write_protection_ mode_t

The enumeration of write protection mode, such as write protection off, write protection
on, etc.

typedef enum _sim_Ipi2c_trigger_selection sim_ Ipi2c_trigger selection_t
The enumeration of lpi2c trigger selection, including slave trigger and master trigger.

typedef enum _sim_device_operate_mode sim__device_operate__mode_t
The enumeration of device operate mode, including normal mode and fast mode.

typedef enum _sim_master_pit_selection sim__master__pit__selection__t
The enumeration of master pit.

FSL COMPONENT ID
SIM_RESET STATUS MASK
The macro of REST status bit field mask.

SIM_PWR_ SR27_CONTROL_MODE_MASK
The definition of the short regulator control mode bit field mask.

SIM_ PWR_SR27_CONTROL_MODE_SHIFT
The definition of the short regulator control mode bit field shift.

SIM_PWR_SR27 CONTROL_MODE(X)
The macro that can be used to set the bit field of PWR register’s short regulator bit field.

SIM_PROT_BIT_FIELD_MASK(moduleName)
The definition of the PORT register bit filed mask.

SIM_PORT_ SET MODE_PROTECTION_ MODE(moduleName, protectionMode)
The macro that can be used to set module’s protection mode.

2.72 SIM Peripheral and Driver Overview

2.73 XBAR: Inter-Peripheral Crossbar Switch Driver

void XBARA Init(XBARA_Type *base)
Initializes the XBARA module.

This function un-gates the XBARA clock.
Parameters
* base — XBARA peripheral address.

2.72. SIM Peripheral and Driver Overview 361

MCUXpresso SDK Documentation, Release 25.09.00

void XBARA_ Deinit(XBARA_Type *base)
Shuts down the XBARA module.

This function disables XBARA clock.
Parameters
* base — XBARA peripheral address.

static inline void XBARA_ SetSignalsConnection(XBARA_Type *base, xbar_input_signal_t eInput,
xbar_output_signal_t eOutput)

Sets a connection between the selected XBARA_IN[*] input and the XBARA_OUT[*] output
signal.

This function connects the XBARA input to the selected XBARA output. If more than one
XBARA module is available, only the inputs and outputs from the same module can be con-
nected.

Example:

XBARA_ SetSignalsConnection(XBARA, kXBARA _InputPIT_TRGO, kXBARA
—OutputDMAMUX18);

Parameters
* base — XBARA peripheral address.
* elnput — XBARA input signal.
* eOutput — XBARA output signal.

static inline void XBARA__SetActiveEdgeDetectMode(XBARA_Type *base, xbar_output_signal t
eOutput, xbara_active_edge_t
eActiveEdgeMode)

Sets active edge detection mode for the XBARA_OUT[*] output signal.
Parameters
* base — XBARA peripheral address.
* ¢Output — XBARA output signal.
* eActiveEdgeMode — Active edge mode.

static inline void XBARA_ SetInterruptDMARequestMode(XBARA_Type *base,
xbar_output_signal_t eOutput,
xbara_request_t eRequest)

Sets DMA, Interrupt or disabled request generation mode for the XBARA_OUT[*] output
signal.

Parameters
* base — XBARA peripheral address.
* eOutput — XBARA output signal.
* eRequest — Request type.

void XBARA_ SetOutputSignalConfig(XBARA_Type *base, xbar_output_signal_t eOutput, const
xbara_control_config_t *psControlConfig)

Configures the XBARA output signal edge detection and interrupt/dma featues.

This function configures an XBARA control register. The active edge detection and the
DMA/IRQ function on the corresponding XBARA output can be set.

Example:

362 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

xbara__control config_ t userConfig;

userConfig.activeEdge = kXBARA__EdgeRising;

userConfig.request Type = kXBARA_ RequestInterruptEnable;

XBARA_ SetOutputSignalConfig(XBARA, kXBARA_ OutputDMAMUX18, &userConfig);

Note: Only a subset of the XBARA output signal can be called with this API. On debug mode
code will check whether the output signal eOutput satisfy the requirement.

Parameters
* base — XBARA peripheral address.
* eOutput — XBARA output number.

* psControlConfig — Pointer to structure that keeps configuration of control
register.

uintl16_t XBARA GetStatusFlags(XBARA _Type *base)
Gets the active edge detection status for all XBAR output signal supporting this feature.

This function gets the active edge detect status of all XBARA_OUTs. If the active edge occurs,
the return value is asserted. When the interrupt or the DMA functionality is enabled for
the XBARA_OUTZX, this field is 1 when the interrupt or DMA request is asserted and 0 when
the interrupt or DMA request has been cleared.

Parameters
* base — XBARA peripheral address.

Returns
ORed value from all status flag from xbara_status_flag_t.

static inline void XBARA_ ClearStatusFlags(XBARA_Type *base, uint16_t ul6Flags)
Clear the edge detection status flags of relative mask.
Parameters
* base — XBARA peripheral address.

* ul6Flags — status flags composed from ORed xbara_status_flag_t indicating
flags to be cleared.

FSL_XBAR_DRIVER_VERSION
XBAR driver version.
enum _ xbara_ active edge
XBARA active edge for detection.
Values:
enumerator kXBARA_EdgeNone
Edge detection status bit never asserts.
enumerator kXBARA__EdgeRising
Edge detection status bit asserts on rising edges.
enumerator kXBARA__EdgeFalling
Edge detection status bit asserts on falling edges.

enumerator kXBARA__EdgeRisingAndFalling
Edge detection status bit asserts on rising and falling edges.

2.73. XBAR: Inter-Peripheral Crossbar Switch Driver 363

MCUXpresso SDK Documentation, Release 25.09.00

enum _ xbara_ request

XBARA DMA and interrupt configurations. Note it only apply for a subset of XBARA output
signal.

Values:

enumerator kXBARA_RequestDisable
Interrupt and DMA are disabled.

enumerator kXBARA_ RequestDMAEnable
DMA enabled, interrupt disabled.

enumerator kXBARA_RequestInterruptEnable
Interrupt enabled, DMA disabled.

enum _ xbara_ status_ flag
XBARA status flags.

This provides constants for the XBARA status flags for use in the XBARA functions. The enu-
merator value is designed to make sure Flags in same register can be created with register
value to write/read register.

Values:
enumerator kXBARA__EdgeDetectionOutOFlag

XBAR_OUTO active edge interrupt flag, sets when active edge detected.
enumerator kXBARA_EdgeDetectionOut1Flag

XBAR_OUT1 active edge interrupt flag, sets when active edge detected.
enumerator kXBARA__EdgeDetectionOut2Flag

XBAR_OUT?2 active edge interrupt flag, sets when active edge detected.
enumerator kXBARA__EdgeDetectionOut3Flag

XBAR_OUTS3 active edge interrupt flag, sets when active edge detected.
enumerator kXBARA__AllStatusFlags

typedef enum _xbara_active_edge xbara_ active_edge t
XBARA active edge for detection.
typedef enum _xbara_request xbara_ request_t

XBARA DMA and interrupt configurations. Note it only apply for a subset of XBARA output
signal.

typedef enum _xbara_status_flag xbara_ status_flag_t
XBARA status flags.

This provides constants for the XBARA status flags for use in the XBARA functions. The enu-
merator value is designed to make sure Flags in same register can be created with register
value to write/read register.

typedef struct _xbara_control_config xbara_ control_config_t
Defines the configuration structure of the XBARA control register.

This structure keeps the configuration of XBARA control register for one output. Control
registers are available only for a few outputs. Not every XBARA module has control regis-
ters.

XBARA_SELx(base, output)
Macro function to extract the XBAR select register address for a given xbar output signal.

XBARA__CTRLx(base, output)
Macro function to extract the XBAR Ctrl register address for a given xbar output signal.

364 Chapter 2. MC56F81768

MCUXpresso SDK Documentation, Release 25.09.00

XBARA_SELx_SELn_SHIFT(output)
Macro function to get SELn field shift in XBARA_SELX register for a given output signal.

XBARA_SELx_SELn_MASK(output)

Macro function to get SELn field mask in XBARA_SELX register for a given output signal.
XBARA_SELx_ SELn(output, input_signal)

Macro function to create SELn field value in XBARA_SELX register for given output signal

and input signal value input_signal, see xbar_input_signal_t.
XBARA__CTRLx_DIENn_MASK(output)

Macro function to get DIEND field mask in XBARA_CTRLx register for a given output signal.
XBARA_CTRLx_DIENn_SHIFT(output)

Macro function to get DIENN field shift in XBARA_CTRLx register for a given output signal.
XBARA__CTRLx_DIENn(output, X)

Macro function to create DIENn field value in XBARA_CTRLX register for given output signal
and DMA/Interrupt mode X, see xbara_request_t.

XBARA_ CTRLx EDGEn_MASK (output)

Macro function to get EDGEn field mask in XBARA_CTRLx register for a given output signal.
XBARA_CTRLx_ EDGEn_SHIFT(output)

Macro function to get EDGEn field shift in XBARA_CTRLX register for a given output signal.

XBARA__CTRLx_EDGEn(output, X)

Macro function to create EDGEn field value in XBARA_CTRLX register for given output sig-
nal and edge mode X, see xbara_active_edge_t.

XBARA_CTRLx_STS_ MASK
Macro value for the Status bits in CTRL register.

struct _ xbara_ control_config
#include <fsl_xbara.h> Defines the configuration structure of the XBARA control register.

This structure keeps the configuration of XBARA control register for one output. Control
registers are available only for a few outputs. Not every XBARA module has control regis-
ters.

Public Members

xbara_active_edge_t eActiveEdge
Active edge to be detected.

xbara_request_t eRequestType
Selects DMA/Interrupt request.

2.74 The Driver Change Log

2.75 XBAR Peripheral and Driver Overview

2.74. The Driver Change Log 365

MCUXpresso SDK Documentation, Release 25.09.00

366 Chapter 2. MC56F81768

Chapter 3

Middleware

367

MCUXpresso SDK Documentation, Release 25.09.00

368 Chapter 3. Middleware

Chapter 4

RTOS

4.1 FreeRTOS

4.1.1 FreeRTOS kernel

Open source RTOS kernel for small devices.

FreeRTOS kernel for MCUXpresso SDK Readme
FreeRTOS kernel for MCUXpresso SDK ChangeLog
FreeRTOS kernel Readme

4.1.2 FreeRTOS drivers

This is set of NXP provided FreeRTOS reentrant bus drivers.

4.1.3 backoffalgorithm

Algorithm for calculating exponential backoff with jitter for network retry attempts.

Readme

4.1.4 corehttp

Clanguage HTTP client library designed for embedded platforms.

4.1.5 corejson

JSON parser.

369

MCUXpresso SDK Documentation, Release 25.09.00

Readme

4.1.6 coremqtt

MQTT publish/subscribe messaging library.

4.1.7 coremqtt-agent

The coreMQTT Agent library is a high level API that adds thread safety to the coreMQTT library.

Readme

4.1.8 corepkesil

PKCS #11 key management library.

Readme

4.1.9 freertos-plus-tcp

Open source RTOS FreeRTOS Plus TCP.

Readme

370 Chapter 4. RTOS

	MC56F81000-EVK
	Overview
	Getting Started with MCUXpresso SDK Package
	Getting Started with Package
	Overview
	Build and run SDK example on codewarrior
	Install CodeWarrior
	Build an example application
	Board debugger setup
	Run an example application

	Project template for a specific DSC part
	How to determine COM port

	Getting Started with MCUXpresso SDK GitHub
	Getting Started with MCUXpresso SDK Repository
	Installation
	Install Prerequisites with MCUXpresso Installer
	Alternative: Manual Installation
	Basic tools
	Git
	Python
	West
	Build And Configuration System
	CMake
	Ninja
	Kconfig
	Ruby
	Toolchain
	Tool installation check

	Get MCUXpresso SDK Repo
	Establish SDK Workspace
	Install Python Dependency(If do tool installation manually)

	Explore Contents
	Folder View
	Examples Project

	Run a demo using MCUXpresso for VS Code
	Build an example application
	Run an example application

	Running a demo using ARMGCC CLI/IAR/MDK
	Supported Boards
	Build the project
	Sysbuild(System build)

	Config a Project
	Flash
	Debug
	Work with IDE Project

	Release Notes
	MCUXpresso SDK Release Notes
	Overview
	MCUXpresso SDK
	Development tools
	Supported development systems
	Release contents
	MCUXpresso SDK release package
	Device support
	Board support
	Demo application and other examples

	Middleware
	Motor Control Software (ACIM, BLDC, PMSM)
	FreeMASTER

	Known Issues
	PRINTF issue for program address space

	ChangeLog
	MCUXpresso SDK Changelog
	Board Support Files
	board
	[25.06.00]

	clock_config
	[25.06.00]

	pin_mux
	[25.06.00]

	CADC
	[2.2.0]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	CLOCK
	[2.2.0]
	[2.1.0]
	[2.0.0]

	CMP
	[2.0.1]
	[2.0.0]

	COMMON
	[2.6.0]
	[2.5.0]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.10]
	[2.2.9]
	[2.2.8]
	[2.2.7]
	[2.2.6]
	[2.2.5]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	COP
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.0]

	CRC
	[2.0.1]
	[2.0.0]

	DAC
	[2.0.1]
	[2.0.0]

	DMAMUX
	[2.0.0]

	EDMA
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	EVTG
	[2.0.0]

	EWM
	[2.0.2]
	[2.0.1]
	[2.0.0]

	FLASH
	[3.0.0]

	GPIO
	[2.0.1]
	[2.0.0]

	INTC
	[2.0.1]
	[2.0.0]

	LPI2C
	[2.0.2]
	[2.0.1]
	[2.0.0]

	MCM
	[2.0.1]
	[2.0.0]

	OPAMP
	[2.0.0]

	PIT
	[2.3.1]
	[2.3.0]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	PMC
	[2.1.0]
	[2.0.0]

	eFlexPWM
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	QDC
	[2.1.0]
	[2.0.1]
	[2.0.0]

	QSCI
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	QTMR
	[2.0.1]
	[2.0.0]

	Queued SPI
	[2.1.1]
	[2.1.0]
	[2.0.0]

	SIM
	[2.2.0]
	[2.1.0]
	[2.0.0]

	DSC_XBARA
	[2.0.1]
	[2.0.0]

	MC56F81768
	CADC: 12-bit Cyclic Analog-to-Digital Converter Driver
	The Driver Change Log
	CADC Peripheral and Driver Overview
	Clock Driver
	Driver Change Log
	CMP: Comparator Driver
	The Driver Change Log
	CMP Peripheral and Driver Overview
	COP: Computer Operating Properly(Watchdog) Driver
	The Driver Change Log
	COP Peripheral and Driver Overview
	CRC: Cyclic Redundancy Check Driver
	The Driver Change Log
	CRC Peripheral and Driver Overview
	DAC: 12-bit Digital-to-Analog Converter Driver
	The Driver Change Log
	DAC Peripheral and Driver Overview
	DMAMUX: DMA Channel Multiplexer Driver
	The Driver Change Log
	DMAMUX Peripheral and Driver Overview
	The Driver Change Log
	EDMA: Enhanced Direct Memory Access Driver
	The Driver Change Log
	EDMA Peripheral and Driver Overview
	EVTG: Event Generator Driver
	The Driver Change Log
	EVTG Peripheral and Driver Overview
	EWM: External Watchdog Monitor Driver
	The Driver Change Log
	EWM Peripheral and Driver Overview
	GPIO: General-Purpose Input/Output Driver
	The Driver Change Log
	GPIO Peripheral and Driver Overview
	INTC: Interrupt Controller Driver
	The Driver Change Log
	INTC Peripheral and Driver Overview
	Common Driver
	LPI2C: Low Power Inter-Integrated Circuit Driver
	The Driver Change Log
	LPI2C_EDMA: EDMA based LPI2C Driver
	LPI2C Peripheral and Driver Overview
	MCM: Miscellaneous Control Module Driver
	The Driver Change Log
	MCM Peripheral and Driver Overview
	OPAMP: Operational Amplifier Driver
	The Driver Change Log
	OPAMP Peripheral and Driver Overview
	PIT: Periodic Interrupt Timer (PIT) Driver
	The Driver Change Log
	PIT Peripheral and Driver Overview
	PMC: Power Management Controller Driver
	The Driver Change Log
	PMC Peripheral and Driver Overview
	eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver
	The Driver Change Log
	eFlexPWM Peripheral and Driver Overview
	QDC: Quadrature Decoder Driver
	QDC Peripheral and Driver Overview
	QSCI: Queued Serial Communications Interface Driver
	The Driver Change Log
	QSCI_EDMA: EDMA based QSCI Driver
	QSCI Peripheral and Driver Overview
	QSPI: Queued SPI Driver
	QSPI Peripheral and Driver Overview
	QSPI_EDMA: EDMA based QSPI Driver
	QTMR: Quad Timer Driver
	The Driver Change Log
	QTMR Peripheral and Driver Overview
	The Driver Change Log
	SIM: System Integration Module Driver
	The Driver Change Log
	SIM Peripheral and Driver Overview
	XBAR: Inter-Peripheral Crossbar Switch Driver
	The Driver Change Log
	XBAR Peripheral and Driver Overview

	Middleware
	RTOS
	FreeRTOS
	FreeRTOS kernel
	FreeRTOS kernel for MCUXpresso SDK Readme
	FreeRTOS kernel for MCUXpresso SDK ChangeLog
	FreeRTOS kernel Readme

	FreeRTOS drivers
	backoffalgorithm
	Readme

	corehttp
	corejson
	Readme

	coremqtt
	coremqtt-agent
	Readme

	corepkcs11
	Readme

	freertos-plus-tcp
	Readme

