- W& MCUXpresso SDK Documentation
Release 25.09.00

NXP

Sep 19, 2025 -

Table of contents

1 MC56F80000-EVK 3
11 OVEIVIEW . . ot e e e e e e e e 3
1.2 Getting Started with MCUXpresso SDKPackage 3

1.2.1 Getting Started with Package, 3
1.3 Getting Started with MCUXpresso SDKGitHub 13
1.3.1 Getting Started with MCUXpresso SDK Repository 13
1.4 Release NOteS i it e e 25
1.41 MCUXpresso SDKReleaseNotes, 25
1.5 Changelog o ittt e e e e e e e e e e e e e e e e e 28
1.5.1 MCUXpresso SDKChangelogo ... 28

2 MC56F80748 41
2.1 CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 41
2.2 TheDriver Change Log i i ittt e e e e e e 76
2.3 CADC Peripheral and Driver OVerview v ittt v i n .. 76
24 Clock Driver o i e e e 76
2.5 DriverChangeLog i i i e e e 89
2.6 CMP: Comparator DIivVer v ittt it et e e e e e et e et et e e e 89
2.7 TheDriver Change Log i i i it it e e e e e 98
2.8 CMP Peripheral and Driver Overview v, 98
2.9 COP: Computer Operating Properly(Watchdog) Driver 98
2.10 The Driver Change Log i i i e e e e e 102
2.11 COP Peripheral and Driver Overviewottt it ... 102
2.12 CRC: Cyclic Redundancy Check Driver, 102
2.13 The Driver Change Log i i i it e e e e e e et e e 106
2.14 CRC Peripheral and Driver OVerview v v i vttt v o n o 106
2.15 DMAMUX: DMA Channel Multiplexer Driver 106
2.16 The Driver Change Log i i et e 107
2.17 DMAMUKX Peripheral and Driver Overview 107
2.18 The Driver Change Log i i i i i it e e e e e e e e e e e e 107
2.19 EDMA: Enhanced Direct Memory Access Driver 107
2.20 The Driver Change Log i it e e e e e 128
2.21 EDMA Peripheral and Driver Overview 128
2.22 EQDC: Enhanced Quadrature Decoder Driver. 128
2.23 EQDC Peripheral and Driver Overviewottt i n .. 145
2.24 EVTG: Event Generator Driver 145
2.25 The Driver Change Log i i it e e e e 152
2.26 EVTG Peripheral and Driver Overviewo ittt it i u .. 152
2.27 EWM: External Watchdog Monitor Driver v v v v v i i it et e e 152
2.28 The Driver Change Log o i i it it it e e e et e e e et e et 154
2.29 EWM Peripheral and Driver Overview o it iienn... 154
2.30 CO0TFSFlash DIiver it i vttt e e e e e e e e e 154
231 ftfxadapter. e e e e 154
232 ftfxcontrollero i e 154
233 ftfxfeature e 164
234 FtItX FLASHDIIVET ottt i e e e e e e e e e e e e e e e e e e 164

235 ftfxutilities e 172
2.36 GPIO: General-Purpose Input/Output Driver 173
2.37 The Driver Change Log i et 185
2.38 GPIO Peripheral and Driver Overview 185
2.39 INTC: Interrupt Controller Driver it 185
240 TheDriver Change Log v v v i vt i it i e et e e e e e et e et e e et 187
2.41 INTC Peripheral and Driver Overview, 187
242 Common DIivVer e 187
2.43 LPI2C: Low Power Inter-Integrated Circuit Driver 202
2.44 The Driver Change Log i it e e e e e 231
2.45 LPI2C_EDMA: EDMA based LPI2CDrivert iiv ... 231
2.46 LPI2C Peripheral and Driver Overview.t .. 233
2.47 MCM: Miscellaneous Control Module Driver 233
248 The Driver Change Log o i i i it e e e e e 242
2.49 MCM Peripheral and Driver OVerviewot i vt vttt e n .. 242
2.50 OPAMP: Operational Amplifier Driver 242
2.51 TheDriver Change Log i i v i i it it et e et e e et e et e et et 248
2.52 OPAMP Peripheral and Driver Overview 248
2.53 PIT: Periodic Interrupt Timer (PIT) Driver 248
2.54 The Driver Change Log i it i e e e 254
2.55 PIT Peripheral and Driver Overviewt iv i .. 254
2.56 PMC: Power Management Controller Driver 254
2.57 The Driver Change Log o i i i i it it e e e e et e et e et 256
2.58 PMC Peripheral and Driver Overview, 256
2.59 eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 256
2.60 The Driver Change Log i i i e e e e et e 294
2.61 eFlexPWM Peripheral and Driver Overview 294
2.62 QSCI: Queued Serial Communications Interface Driver 294
2.63 The Driver Change Log i i i it i it e e e e e et e it 310
2.64 QSCI_EDMA: EDMA based QSCIDriver o v v ittt e .. 310
2.65 QSCI Peripheral and Driver Overviewt iv i, 313
2.66 QSPIL: Queued SPIDIIVer. . . . v v i it et et e et e e e e e e e e 313
2.67 QSPI Peripheral and Driver Overview, 331
2.68 QSPI_EDMA: EDMA based QSPIDriver 331
2.69 QTMR: Quad Timer Driver ittt 334
2.70 The Driver Change Log it i it it i e e e e 358
2.71 QTMR Peripheral and Driver Overview 358
2.72 The Driver Change Log v i i i i it i e et e e e e e et e et e et 358
2.73 SIM: System Integration Module Driver 358
2.74 The Driver Change Log i i i i i it e e e e e e et e et 358
2.75 SIM Peripheral and Driver Overview ittt 371
2.76 XBAR: Inter-Peripheral Crossbar Switch Driver 371
2.77 The Driver Change Log it e e e e 375
2.78 XBAR Peripheral and Driver Overview v 375
Middleware 377
RTOS 379
4.1 FreeRTOS e e 379

4.1.1 FreeRTOSKkernel e 379

4.1.2 FreeRTOSArIVEIS vt ittt i e e e e 379

4.1.3 backoffalgorithm e 379

414 corenttp o e e e e e e e e 379

415 COTEJSOIM .« v v v v vt e e e e e e e e e e e e e e e e 379

4.1.6 coremQit. . . . v v vt e e e e e e e e e e 380

4.1.7 coremqtt-agent e e e e e e 380

4.1.8 corepkesTl . .. e e e e e e e e e 380

4.1.9 freertos-plus-tCp v v v i e e e e e e e e e 380

ii

MCUXpresso SDK Documentation, Release 25.09.00

This documentation contains information specific to the mc56f80000evk board.

Table of contents 1

MCUXpresso SDK Documentation, Release 25.09.00

2 Table of contents

Chapter 1

MC56F80000-EVK

1.1 Overview

The MC56F80000-EVK is an ultra-low-cost development platform for Digital Signal Controller
MC56F80xxx MCU.

» Form-factor compatible with the Arduino R3 pin layout.

* On board debugger(multilink) circuit enabling debugging and programming with Code-
Warrior, it also enable a virtual series port.

* Peripherals enable rapid prototyping, including a 3-axis MEMS accelerometer, 6 PWM and 3
user LEDs, 4 user push buttons for direct interaction, two OPAMP external feedback circuits,
a SPI interfaced Flash memory and 3 resistor dividers for ADC test.

MCU device and part on board is shown below:
* Device: MC56F80748
* PartNumber: MC56F80748VLH

1.2 Getting Started with MCUXpresso SDK Package

1.2.1 Getting Started with Package
Overview

The NXP MCUXpresso software and tools offer comprehensive development solutions designed
to optimize, ease, and help accelerate embedded system development of applications based on
general purpose, crossover, and Bluetooth-enabled MCUs from NXP. The MCUXpresso SDK in-
cludes a flexible set of peripheral drivers designed to speed up and simplify development of
embedded applications. Along with the peripheral drivers, the MCUXpresso SDK provides an ex-
tensive and rich set of example applications covering everything from basic peripheral use case

MCUXpresso SDK Documentation, Release 25.09.00

examples to full demo applications. The MCUXpresso SDK contains optional RTOS integrations
such as FreeRTOS and Azure RTOS, and various other middleware to support rapid development.

For supported toolchain versions, see MCUXpresso SDK Release Notes (document MCUXSDKRN).
For more details about MCUXpresso SDK, see MCUXpresso Software Development Kit (SDK).

Application Code

Stacks and Middleware
(Connectivity, Security, Board Support
DMA, Filesystem, etc,)

Peripheral Drivers

CMSIS-CORE ¢

[Device Header Files: Core Access Functions, Intrin

Microcontroller Hardware

Build and run SDK example on codewarrior

Install CodeWarrior Take below codewarrior specific combination as example
* CodeWarrior Development Studio v11.2 + CodeWarrior for DSC v11.2 SP1 (Service Pack 1)
Steps to install CodeWarrior

* Download the following packages from CodeWarrior for 56800 Digital Signal Controller
v11.2, and ensure to keep them in the same folder.

— CodeWarrior for DSC v11.2: CW_MCU_v11.2 b221206.exe.

— DSC support package: com.freescale.mcull_ 2.dsc.updatesite.zip.

— DSC device ServicePackl: com.freescale.mcull 2.DSC _devices.win.sp.v1.0.26.zip.
* Install CodeWarrior for DSC v11.2.

 Install ServicePackl within CodeWarrior from the menu. Click the Help
menu -> select Install new software -> Add -> Archive -> select the down-
loaded SP1 -> open -> check MCU v11.2 DSC Service Packs -> click Next.

4 Chapter 1. MC56F80000-EVK

http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK
https://www.nxp.com/design/design-center/software/development-software/codewarrior-development-tools/codewarrior-legacy/codewarrior-for-56800-digital-signal-controller-v11-2:CW-DSC
https://www.nxp.com/design/design-center/software/development-software/codewarrior-development-tools/codewarrior-legacy/codewarrior-for-56800-digital-signal-controller-v11-2:CW-DSC

MCUXpresso SDK Documentation, Release 25.09.00

File Edit Source Refactor Search Project MOXTools Processor Expert Run W .;\
=hde X {Active) vi& £~ pre S v@BH G T YD v Quick Access o | BC/CH+ ¥ Debug
B CodeWarrior Projects o = 8 startup_clock_node_config h 1 =
Py - - Jal edits made to this file
File Nat
=he pvailable Software S
=
Select a site or enter the location of a site .
Work with: | type or select a site -
type fifter text
Name Name: Local
Select All Deselect All REEHOR hitpu/
Details P Repository archive X
< Show only the latest versions of available software ?
N ™ « CW_install > CW for MCU 11.2 » SP_4all » v1.0.26 v [3] Search v1.0.26
s Comna [/] Group items by category
~ Proj{[] show only software applicable to target environment Organize © New folder =- m @
= :"“ Contact all update sites during install to find required software| CW 112 221129 A Name) Date modified
mg © “
s CW 112221206 .
e Img i O Treescale.mcu11_2.DSC_devices win sp.v1.0 26219 2023/12/8 17:35
Ney nevis3B0_SP
TBub SP_4all
% il @ I
. V1.026 m=~-o
¢ Cle
% Debug 0items i com fraocealamant1 Y < >
Description
~ Settings File name: H V‘ * jar;* zip i
W Project settings =
% Build settings T open D Concel
% Debug settings
Writable Smart Insert 15:1

NOTE
* CodeWarrior for DSC only support Windows.

* Check the corresponding board release note for specific requirement of codewarrior and
service pack version.

Build an example application To build the hello_world example application, perform the fol-
lowing example steps:

1. Launch CodeWarrior and in the workspace launcher, choose a
workspace which holds the projects to wuse. If the dialogue box does
not pop up, enter a workspace folder and create one workspace.
F Workspace Launcher X

Select a workspace

CodeWarrior Development Studio stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

o]y <ok o= C:\CW workspace ~ Browse...

[] Use this as the default and do not ask again

OK Cancel

Then the CodeWarrior Development Studio workspace with empty projects appears.

1.2. Getting Started with MCUXpresso SDK Package 5

MCUXpresso SDK Documentation, Release 25.09.00

P C/C++ - CodeWarrior Development Studio - O X
File Edit Source Refactor Search Project MQX Tools Processor Expert Run Window Help
i~ | &> [actver v & v wHFvyivy Lviw > - Quick Access ‘ Df‘ ®C/C++
T CodeWarrior Projects ¥ =1 ==
F =R - | i
File Name Build
Commander 52 x ¥ =0
~ Project Creation ~ Settings
&4 Import project
5 Import example project
23 Import MCU executable file *
£ New MCU project ~ Miscellaneous
~ Build/Debug @ Welcome screen s Eroblous = °
& Quick access batems =
Flash programmer Description Resource Path Location Typ
< 2 | e 3
d}r‘

2. Import the project into the workspace.

Click Import project in the Com-

mander pane. A form pops up. Click Browse to the SDK install direc-

tory. Take TWR-MC56F8400 SDK as an example,
are shown. Select the hello_world project

all available demo projects
the list and click Finish.

Chapter 1. MC56F80000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

B import O X

Import Projects D
Select a directory to search for existing Eclipse projects. o

(@ Select root directory: |C:\SDK_2_10_0_TWR-MC56F8400 ‘ Browse...

(O Select archive file: Browse..

Projects:

D gpio_button_toggle_led (C\SDK_2_10_0_TWR-MC56F8400\boards\twr ~ Select All
hello_world (C\SDK_2_10_0_TWR-MC56F8400\boards\twrmc568400\
[i2c_dma_b2b_transfer_master (CASDK_2_10.0_TWR-MC56F8400\boarc | | 2eselect Al
D i2c_dma_b2b_transfer_slave (C\SDK_2_10_0_TWR-MC56F8400\boards\ Refresh

D i2c_interrupt (C\SDK_2_10_0_TWR-MC56F8400\boards\twrmc56f8400\
D i2c_interrupt_b2b_transfer_master (C\SDK_2_10_0_TWR-MC56F8400\b
D i2c_interrupt_b2b_transfer_slave (C\SDK_2_10_0_TWR-MC56F8400\boe
[]i2c_polling_b2b_transfer_master (CASDK_2_10_0_TWR-MCS56F8400\bo:

[1i?¢c nolling b?h transfer slave (CASDK 2 10 0 TWR-MCSAF8400 hoan ¥
L4 >

@ojects into wo@
e DO NOT check it

[[] Add project to working sets

Select...

@ < Back Next > [Finish Cancel

NOTE

¢ If you already know the project location, navigate to the folder when clicking Browse,
and only one project can be seen. To locate most example application workspace files,
use the following path

<install _dir>/boards/<board_ name>/<example_ type>/<application_name> /codewarrior

Take TWR-MC56F8400 SDK as an example, the hello_ world workspace is located in

<install dir>/boards/twrmc56f8400/demo_ apps/hello_world /codewarrior

3. Select the desired build target from the drop-down menu.
For this example, select hello_world - flash_sdm_lpm_debug

1.2. Getting Started with MCUXpresso SDK Package 7

MCUXpresso SDK Documentation, Release 25.09.00

¥5 ¢/C++ - CodeWarrior Development Studio - a X
it Source Refactor Search Project MQXTools Processor Expert Run Window Help

Fv 0w

| B C/Cr+ 35 Debug

0|3 |
‘
0

S =5

& MCS6F34789
MC56F84789_Internal_PFlash_LDM.cmd
MCS56F84789_Internal_PFlash_SDM.cmd

‘o source

Co startup

Co utilities

Problens © Console 4 Search 5 Y v =g

No search results available. Start a search from the search dialog.

4. To build the demo application, click Build (All) in the Commander pane.

5. The build completes without errors.

Board debugger setup Board debugger info:

» Default debugger is multilink.

* Onboard debugger USB port is J12, which set the debugger and COM port.
To download and run the application, perform the following steps:

* Connect USB cable between the host PC and the debugger USB port.

* Install the debugger driver and USB CDC driver as PC hint if it is the first time you run it on
the PC. The debugger and USB CDC driver are provided by CodeWarrior by default.

Run an example application To download and run the application, perform the following
steps:

1. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug COM port (see How to determine COM port). Configure the terminal with these set-
tings:

* 115200, defined by BOARD_DEBUG_UART BAUDRATE in the board.h file
* No parity
« 8 data hits

8 Chapter 1. MC56F80000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

[~ Session ' Basic options for your PuTTY session ‘
H ngghg Specify the destination you want to connect to
= Teminal
i Senal line Speed
Keyboard
- Bel COoMm16 115200
Features echon type:
= Window “)Raw () Telnet () Riogin () SSH | @ Seral
mm Load. save or delete a stored session
- Translation Saved Sessions
Selection Debug

[=- Connection -

§{f
s

~ Telnet
Riogn
+1- SSH
Seviel Close window on ext:
JAways (Never @ Onlyon clean exi
| ot || Hep | [_Open [Goncs |

* 1stop bit

2. For this example(TWR-MC56F8400 hello_world), click Debug in the Commander pane,
and select the hello_ world_flash_sdm_Ipm__debug_ OSJTAG launch configuration. Then the

application is downloaded onto target board and automatically runs to the main() func-
odeWarrior Development Studio

MQX Tools Processor Expert Run Window Help
gv e, ﬁ(@v?_ﬁ_giv{rlv“.@v.v|-f

| [€ hello vorld. c &2
Name ~§=| * copyright (c)

013 - 2015, Freescale Semiconduc

#include "fsl devicewegisters.h"

#include "fSl:dEl:llg_EDl S
#include "board.h" " ¥
#include "app.h" Debug” button

tion.

1.2. Getting Started with MCUXpresso SDK Package 9

MCUXpresso SDK Documentation, Release 25.09.00

ﬁ' Debug Configurations
Create. manage. and run configurations E
Debug or run an application to a target.
& En
ER ‘ B> Name: | hello_world_flash_sdm_Ipm_debug_OSITAG
type filter text [E] Main = Arguments| % Debugger| %~ Source| B8 Environment| = Common| &' Trace and Profile
~ [£] CodeWarrior Debug session type
[E] hello_world_flash_ldm_Ipm_debug_OSITAG Choose a predefined debug session type or custom type for maximum flexibility
[©] hello_world_flash_ldm_|pm_debug_PnE U-MultiLink @ Download O Connect
[=] hello_world_flash_ldm_lpm_release_OSJTAG O Attach O Custom
[€] hello_world_flash_ldm_Ipm_release_PnE U-MultiLink —
(2] hello_world_flash_sdm_Ipm_debug_OSITAG ~ €/C++ application
[=] hello_world_flash_sdm_Ipm_debug_PnE U-MultiLink Project: ‘hellc_warld Browse.
[€] hello_world_flash_sdm_lpm _release_OSITAG N . ‘h Py — debug/hell aarl 5 r— 5 p—
51 hello_world_flash_sdm Ipm release.PnE U-Multilink pplication: uild/flash_sdm_lpm_debug/hello_world.e earch Project... rOWSe... ariables...
b+ Launch Group » Build (if required) before launching
~ Target settings
Connection: = hello_world_OSITAG v Edit. New..
Execute reset sequence
Execute initialization script(s)
Filter matched 10 of 10 items
Filter by Project:
= hello_world
Apply Revert
® Close
Note:

* Generally there are four build
flash_sdm_ lpm_ debug,
flash_ldm_ Ipm_ release.

configurations for
flash_sdm_ lpm_ release,

DSC SDK examples:
flash_ldm_ lpm_ debug, and

— *_debug: uses optimization level 1

* _release: uses optimization level 4

sdm: small data memory model

ldm: large data memory model

lpm: large program memory model
* Select corresponding launch configuration based on build target and debugger type.

* Some examples may require specific hardware settings, check each demo readme doc-
ument, which includes detail instructions for HW and SW settings.

CodeWarrior Development Studio
t MQXTools RTCS MQX PEMicro Run Window Help

¥y P

D G| ¢

v b\u'—'.l-ﬁzlf%Ii!-_IUt?\ 4 » & w0 &

m -

U-MultiLink [CodeWarrior]

3. Torunthe code, click Run on the toolbar. Run” button

4. The hello_world application is now running and a banner is displayed on the terminal.

10 Chapter 1. MC56F80000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

Project template for a specific DSC part

For device with specific part number, the easiest way to set up customer own project based on
MCUZXpresso DSC SDK peripheral driver, is the project_template. MCUXpresso Config Tool is used
to generate the project_template.

The project_template provides basic MCUXpresso DSC SDK software framework, including
startup, linker file, device header file, debug setting, peripheral driver, FreeMASTER, and so on.

Steps to generate the project_template for specific derivative part number by MCUXpresso Config
Tool

1. Download the specific device SDK package and unzip it. note: The project template requires
FreeMASTER, middleware FreeMASTER selection is a must when downloading DSC SDK from
nxp website

2. Use MCUXpresso Config Tool to create a project_template project as below(take

Create a new configuration

Create a new configuration and project based on an SDK example or hello world project

Clone project(s): praject_template_MC56F84442

SDK Path SDK Example
CA\SDK_2_10_0_MC56F84442 v | [Browse..
SDK can be downloaded from http://kex-stage.nxp.com v TWR-N

Toolchain

CodeWarrior Development Studio v

SDK Project

(O Create "hello_world" project for TWR-MC56F8400 board
O Clone selected example for board or kit

(O Create new project for device MC56F84789

Base project directory (workspace)
CA\Usersy

Project name

project_template_MC56F84442

< Back Einish

MC56F84442 as example).

3. Import the generated template_project into CodeWarrior IDE and start the development.
NOTE

1.2. Getting Started with MCUXpresso SDK Package 11

MCUXpresso SDK Documentation, Release 25.09.00

* The default created project template by Config Tool is project_template_ {part_number}.
User could modify the default name in Project name textbox.

» All peripheral drivers files are included in the generated project_template project. They
are same as the peripheral drivers within SDK package. If some drivers are not used or
required, users may delete them in CodeWarrior, or delete them directly under folder
${project_path}/drivers.

How to determine COM port

This section describes the steps necessary to determine the debug COM port number of your NXP
hardware development platform. All NXP boards ship with a factory programmed, onboard de-
bug interface, whether it is based on MCU-Link or the legacy OpenSDA, LPC-Link2, P&E Micro
OSJTAG interface. To determine what your specific board ships with, see Default debug inter-
faces.

1. Linux: The serial port can be determined by running the following command after the USB
Serial is connected to the host:

$ dmesg | grep "ttyUSB”
[503175.307873] usb 3-12: cp210x converter now attached to ttyUSBO
[503175.309372] usb 3-12: c¢p210x converter now attached to ttyUSB1

There are two ports, one is for core0 debug console and the other is for corel.

2. Windows: To determine the COM port open Device Manager in the Windows operating
system. Click the Start menu and type Device Manager in the search bar.

In the Device Manager, expand the Ports (COM & LPT) section to view the available ports.
The COM port names are different for all the NXP boards.

1. CMSIS-DAP/mbed/DAPLIink interface:
4 73" Ports (COM &L LPT)
v W Ports (COM & LPT) - 05 mbed Serial Port (COMA41)

E' MCL-Link WCom Part (COM7)
2. P&E Micro:
,.? Ports (COM & LPT)
. L.75 OpenSDA - CDC Serial Port (http://www.pemicro.com/opensda) (COM22)
3. J-Link:
4 75 Ports (COM & LPT)
P 5" JLink CDC UART Port (COM12)

4. P&E Micro OSJTAG:

473" Ports (COM & LPT)

5. MRB-KW01:
4 7% Ports (COM & LPT)

12 Chapter 1. MC56F80000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

1.3 Getting Started with MCUXpresso SDK GitHub

1.3.1 Getting Started with MCUXpresso SDK Repository

Installation

NOTE

If the installation instruction asks/selects whether to have the tool installation path added to
the PATH variable, agree/select the choice. This option ensures that the tool can be used in any
terminal in any path. Verify the installation after each tool installation.

Install Prerequisites with MCUXpresso Installer The MCUXpresso Installer offers a quick
and easy way to install the basic tools needed. The MCUXpresso Installer can be obtained from
https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Dependency-Installation. The MCUX-
presso Installer is an automated installation process, simply select MCUXpresso SDK Developer
from the menu and click install. If you prefer to install the basic tools manually, refer to the next
section.

MCUXpresso Installer v24.09 O

MCUXpresso Installer < & & =

Choose one or more categortes from the list below: Install

Software Kits

MCUXpresso SDK Developer

é' N ¢ DET| Wil install:

. macos-homebrew - Homebrew, package mang
. CMake - Open-source system that manages th
. Ninja - Small build system with a focus on spej
. Git - Free and open source distributed version
. Arm GNU Toolchain - Toolchain for Arm Archit
b. libncurses5 - Library managing an application’
. Arm GNU Toolchain add-ons - Additional NXP
. Arm GNU Toolchain Standalone add-ons - Ad
. Python - Pr mming language support.
Arm GNU Toolchain 10. pip - Package installer for Python.

11. west - Manage multiple Git repositories unde
Arm GNU 1ain an d r.:ld arto 5 DG T T

Standalone Toolchain Add-ons

Zephyr Developer

Ne ols for a Zephyr de

1
2
4
5

o]

Al

Matter Developer
Ne for a Ma

=

(o]

ARM components

[N}

Alternative: Manual Installation

Basic tools

Git Git is a free and open source distributed version control system. Git is designed to handle
everything from small to large projects with speed and efficiency. To install Git, visit the official

1.3. Getting Started with MCUXpresso SDK GitHub 13

MCUXpresso SDK Documentation, Release 25.09.00

Git website. Download the appropriate version(you may use the latest one) for your operating
system (Windows, macOS, Linux). Then run the installer and follow the installation instructions.

User git --version to check the version if you have a version installed.

Then configure your username and email using the commands:

git config --global user.name ”Your Name”
git config --global user.email ”youremail@example.com”

Python Install python 3.10 or latest. Follow the Python Download guide.

Use python --version to check the version if you have a version installed.

West Please use the west version equal or greater than 1.2.0

Note: you can add option '--default-timeout=1000" if you meet connection issue. Or you may set a different,

—source using option '-i'.
for example, in China you could try: pip install -U west -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install -U west

Build And Configuration System

CMake Itis strongly recommended to use CMake version equal or later than 3.30.0. You can get
latest CMake distributions from the official CMake download page.

For Windows, you can directly use the .msi installer like cmake-3.31.4-windows-x86_64.msi to
install.

For Linux, CMake can be installed using the system package manager or by getting binaries from
the official CMake download page.

After installation, you can use cmake --version to check the version.

Ninja Please use the ninja version equal or later than 1.12.1.

By default, Windows comes with the Ninja program. If the default Ninja version is too old, you
can directly download the ninja binary and register the ninja executor location path into your
system path variable to work.

For Linux, you can use your system package manager or you can directly download the ninja
binary to work.

After installation, you can use ninja --version to check the version.

Kconfig MCUXpresso SDK uses Kconfig python implementation. We customize it based on our
needs and integrate it into our build and configuration system. The Kconfiglib sources are placed
under mcuxsdk/scripts/kconfig folder.

Please make sure python environment is setup ready then you can use the Kconfig.

Ruby Our build system supports IDE project generation for iar, mdk, codewarrior and xtensa
to provide OOBE from build to debug. This feature is implemented with ruby. You can follow
the guide ruby environment setup to setup the ruby environment. Since we provide a built-in
portable ruby, it is just a simple one cmd installation.

If you only work with CLI, you can skip this step.

14 Chapter 1. MC56F80000-EVK

https://git-scm.com/
https://wiki.python.org/moin/BeginnersGuide/Download
https://cmake.org/download/
https://github.com/Kitware/CMake/releases/download/v3.31.4/cmake-3.31.4-windows-x86_64.msi
https://cmake.org/download/
https://github.com/ninja-build/ninja/releases
https://github.com/ninja-build/ninja/wiki/Pre-built-Ninja-packages
https://github.com/ninja-build/ninja/releases
https://github.com/ninja-build/ninja/releases

MCUXpresso SDK Documentation, Release 25.09.00

Toolchain MCUXpresso SDK supports all mainstream toolchains for embedded development.
You can install your used or interested toolchains following the guides.

Toolchain Download and Installation Guide Note
Armgcc Arm GNU Toolchain Install Guide ARMGCC is default
toolchain
IAR IAR Installation and Licensing quick ref-
erence guide
MDK MDK Installation
Armclang Installing Arm Compiler for Embedded
Zephyr Zephyr SDK
Codewarrior NXP CodeWarrior
Xtensa Tensilica Tools

NXP S32Compiler RISC-
V Zen-V

NXP Website

After you have installed the toolchains, register them in the system environment variables. This
will allow the west build to recognize them:

Toolchain Environ- Example Cmd
ment Line Ar-
Variable gument
Armgcc AR- C:\armgcc for windows/usr for Linux. Typically -
MGCC_DIR arm-none-eabi-* is installed under /usr/bin toolchain
armgcc
IAR IAR DIR C:\iar\ewarm-9.60.3 for =~ Windows/opt/iarsystems/ -
bxarm-9.60.3 for Linux toolchain
iar
MDK MDK DIR C:\Keil_v5 for Windows.MDK IDE is not officially sup- -
ported with Linux. toolchain
mdk
Armclang ARM- C:\ArmCompilerforEmbedded6.22 for Windows/opt/ -
CLANG_DIF ArmCompilerforEmbedded6.21 for Linux toolchain
mdk
Zephyr ZEPHYR SL c:\NXP\zephyr-sdk-<version> for windows/opt/ -
zephyr-sdk-<version> for Linux toolchain
zephyr
CodeWar- CW_DIR C:\Freescale\CW MCU v11.2 for windowsCodeWarrioris -
rior not supported with Linux toolchain
code-
warrior

Xtensa XCC_DIR

NXP RISCVL-
S32Compiler LVM_DIR
RISC-V

Zen-V

C:\xtensa\XtDevTools\install\tools\RI-2023.11-win32\ =
XtensaTools for windows/opt/xtensa/XtDevTools/ toolchain
install/tools/RI-2023.11-Linux/XtensaTools for Linux Xtensa

C:\riscv-llvm-win32_b298 b298 2024.08.12 for Win- -

dows/opt/riscv-llvim-Linux-x64_b298 b298 2024.08.12 toolchain

for Linux riscvl-
Ivm

1.3. Getting Started with MCUXpresso SDK GitHub 15

https://learn.arm.com/install-guides/gcc/arm-gnu/
https://www.iar.com/siteassets/knowledge/support/tech-notes/qr_lms2.pdf
https://www.iar.com/siteassets/knowledge/support/tech-notes/qr_lms2.pdf
https://developer.arm.com/documentation/109350/v6/Installation?lang=en
https://developer.arm.com/documentation/100748/0618/Getting-Started/Installing-Arm-Compiler-for-Embedded
https://docs.zephyrproject.org/latest/develop/toolchains/zephyr_sdk.html
https://www.nxp.com/design/design-center/software/development-software/codewarrior-development-tools:CW_HOME
https://tensilicatools.com/platforms/
https://www.nxp.com/search?keyword=NXP%2520S32Compiler%2520RISC-V&start=0

MCUXpresso SDK Documentation, Release 25.09.00

* The <toolchain>_ DIR is the root installation folder, not the binary location folder. For IAR,
it is directory containing following installation folders:

arm
common
install-info

* MDK IDE using armclang toolchain only officially supports Windows. In Linux, please di-
rectly use armclang toolchain by setting ARMCLANG_ DIR. In Windows, since most Keil
users will install MDK IDE instead of standalone armclang toolchain, the MDK_ DIR has
higher priority than ARMCLANG_ DIR.

» For Xtensa toolchain, please set the XTENSA__CORE environment variable. Here’s an ex-

ample list:
Device Core XTENSA CORE
RT500 fusion1 nxp_ rt500__RI23_11_newlib
RT600 hifi4 nxp_ rt600 RI23 11 newlib
RT700 hifil rt700 hifil RI23 11 nlib
RT700 hifi4 t700_ hifi4 RI23 11 nlib

1.MX8ULP fusionl fusion nxp02_dsp_ prod

* In Windows, the short path is used in environment variables. If any toolchain is using
the long path, you can open a command window from the toolchain folder and use below
command to get the short path: for %i in (.) do echo %-~fsi

Tool installation check Once installed, open a terminal or command prompt and type the
associated command to verify the installation.

If you see the version number, you have successfully installed the tool. Else, check whether the
tool’s installation path is added into the PATH variable. You can add the installation path to the
PATH with the commands below:

* Windows: Open command prompt or powershell, run below command to show the user
PATH variable.

reg query HKEY CURRENT USER\Environment /v PATH

The tool installation path should be C:\Users\xxx\AppData\Local\Programs\Git\cmd. If the
path is not seen in the output from above, append the path value to the PATH variable with
the command below:

reg add HKEY_ CURRENT__USER\ Environment /v PATH /d "%PATH%;C:\ Users\xxx\AppData\
< Local\Programs\Git\cmd”
Then close the command prompt or powershell and verify the tool command again.
e Linux:
1. Open the $HOME/ .bashrc file using a text editor, such as vim.
2. Go to the end of the file.

3. Add the line which appends the tool installation path to the PATH variable and export
PATH at the end of the file. For example, export PATH="/Directory1:$PATH".

4, Save and exit.

16 Chapter 1. MC56F80000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

5. Execute the script with source .bashre or reboot the system to make the changes live. To
verify the changes, run echo $PATH.

* macOS:
1. Open the $SHOME/.bash_ profile file using a text editor, such as nano.
2. Go to the end of the file.

3. Add the line which appends the tool installation path to the PATH variable and export
PATH at the end of the file. For example, export PATH="/Directory1:$PATH".

4. Save and exit.

5. Execute the script with source .bash_profile or reboot the system to make the changes
live. To verify the changes, run echo $PATH.

Get MCUXpresso SDK Repo

Establish SDK Workspace To get the MCUXpresso SDK repository, use the west tool to clone
the manifest repository and checkout all the west projects.

Initialize west with the manifest repository
west init -m https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/ mcuxpresso-sdk

Update the west projects
cd mcuxpresso-sdk
west update

Allow the usage of west extensions provided by MCUXpresso SDK
west config commands.allow__extensions true

Install Python Dependency(If do tool installation manually) To create a Python virtual en-
vironment in the west workspace core repo directory mcuxsdk, follow these steps:

1. Navigate to the core directory:

cd mcuxsdk

2. [Optional] Create and activate the virtual environment: If you don’t want to use the python
virtual environment, skip this step. We strongly suggest you use venv to avoid conflicts
with other projects using python.

python -m venv .venv

For Linux/MacOS
source .venv/bin/activate

For Windows

.\.venv\Scripts\activate

If you are using powershell and see the issue that the activate script cannot be run.

You may fix the issue by opening the powershell as administrator and run below command:
powershell Set-ExecutionPolicy RemoteSigned

then run above activate command again.

Once activated, your shell will be prefixed with (.venv). The virtual environment can be
deactivated at any time by running deactivate command.

Remember to activate the virtual environment every time you start working in this
directory. If you are using some modern shell like zsh, there are some powerful plugins to
help you auto switch venv among workspaces. For example, zsh-autoswitch-virtualenv.

3. Install the required Python packages:

1.3. Getting Started with MCUXpresso SDK GitHub 17

https://github.com/MichaelAquilina/zsh-autoswitch-virtualenv

MCUXpresso SDK Documentation, Release 25.09.00

Note: you can add option '--default-timeout=1000" if you meet connection issue. Or you may set a,
—different source using option '-i'.

for example, in China you could try: pip3 install -r mcuxsdk/scripts/requirements.txt -i https://pypi.
—tuna.tsinghua.edu.cn/simple

pip install -r scripts/requirements.txt

Explore Contents

This section helps you build basic understanding of current fundamental project content and
guides you how to build and run the provided example project in whole SDK delivery.

Folder View The whole MCUXpresso SDK project, after you have done the west init and west
update operations follow the guideline at Getting Started Guide, have below folder structure:

Folder Description

mani- Manifest repo, contains the manifest file to initialize and update the west

fests workspace.

mcuxsdk The MCUXpresso SDK source code, examples, middleware integration and script
files.

All the projects record in the Manifest repo are checked out to the folder mcuxsdk/, the layout of
mcuxsdk folder is shown as below:

Folder Description

arch Arch related files such as ARM CMSIS core files, RISC-V files and the build files related
to the architecture.

cmake The cmake modules, files which organize the build system.

com- Software components.

po-

nents

de- Device support package which categorized by device series. For each device, header

vices file, feature file, startup file and linker files are provided, also device specific drivers
are included.

docs Documentation source and build configuration for this sphinx built online documen-

tation.
drivers Peripheral drivers.
ex- Various demos and examples, support files on different supported boards. For each
am- board support, there are board configuration files.
ples
mid- Middleware components integrated into SDK.
dle-
ware

rtos Rtos components integrated into SDK.

scripts Script files for the west extension command and build system support.

svd Svd files for devices, this is optional because of large size. Customers run west manifest
config group.filter +optional and west update mcux-soc-svd to get this folder.

Examples Project The examples project is part of the whole SDK delivery, and locates in the
folder mcuxsdk/examples of west workspace.

Examples files are placed in folder of <example_ category>, these examples include (but are not
limited to)

18 Chapter 1. MC56F80000-EVK

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests

MCUXpresso SDK Documentation, Release 25.09.00

* demo_apps: Basic demo set to start using SDK, including hello_world and led_blinky.

* driver_examples: Simple applications that show how to use the peripheral drivers for a
single use case. These applications typically only use a single peripheral but there are cases
where multiple peripherals are used (for example, SPI transfer using DMA).

Board porting layers are placed in folder of boards/<board name> which aims at providing the
board specific parts for examples code mentioned above.

Run a demo using MCUXpresso for VS Code

This section explains how to configure MCUXpresso for VS Code to build, run, and debug example
applications. This guide uses the hello_ world demo application as an example. However, these
steps can be applied to any example application in the MCUXpresso SDK.

Build an example application This section assumes that the user has already obtained the
SDK as outlined in Get MCUXpresso SDK Repo.

To build an example application:

1. Import the SDK into your workspace. Click Import Repository from the QUICKSTART
PANEL.

File Edit Selection WView Go Run Terminal Help

MCUXP) FOR WS CODE

~ QUICKSTART PANEL @ o [0 £
-+ Import Repository

1% Import Example from ReposMry Import Local/Remote Repository

B+8 Import Project

pen Online Documentation

~ IMPORTED REPOSITORIES

Note: You can import the SDK in several ways. Refer to MCUXpresso for VS Code Wiki for
details.

Select Local if you’ve already obtained the SDK as seen in Get MCUXpresso SDK Repo. Select
your location and click Import.

£ Import Repository X

Import Repository

Location: c\Repos\ymaouxsdk

Import

2. Click Import Example from Repository from the QUICKSTART PANEL.

1.3. Getting Started with MCUXpresso SDK GitHub 19

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Working-with-MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.09.00

MCU } WS CODE

~ QUICKSTART PAMNEL

~+ Import Repository

% Import Example from Repository h
8+8 Import Project
T3 MNew Project

In the dropdown menu, select the MCUXpresso SDK, the Arm GNU Toolchain, your board,
template, and application type. Click Import.

£ Import Example from Repository X
Import Example from Repository
Repository: c\Repos\mouxsdk
Toolchain: (Arm GNU Toolchain 13.2.rel1 (Build arm-13.73) 13.2.1 20231009 ©

Board: FRDM-M

. FRDM-MCXC444

Template: demo_apps/hello_world

The Helloworld demo prints the "Hello World" string to the terminal using the SDK UART dnivers and repeat what user
input. The purpose of this demo is to show how to use the UART, and to provide a simple project for debugging and
further development.

Please refer to README file for more details.

App type: Freestanding application

MName; frdmmexc444_hello_world

Location: c\nxp_examples

Note: Path doesn't exist. Folder(s) will be created.

Open readme file after project is imported

import

Note: The MCUXpresso SDK projects can be imported as Repository applications or Free-
standing applications. The difference between the two is the import location. Projects im-
ported as Repository examples will be located inside the MCUXpresso SDK, whereas Free-
standing examples can be imported to a user-defined location. Select between these by
designating your selection in the App type dropdown menu.

3. VS Code will prompt you to confirm if the imported files are trusted. Click Yes.
4. Navigate to the PROJECTS view. Find your project and click the Build Project icon.

20

Chapter 1. MC56F80000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

~ PROJECTS
» frdmmexc444 hello world M

1_debug_console.c.obj
51_clock.c.obj

Building C ob;
Linking C e
egion
m_interrupts:
m_flash_config:
m_text:
m_data:
build finished successfully
n Terminal will be reused by tasks, press any key to close it.

Run an example application Note: for full details on MCUXpresso for VS Code debug probe
support, see MCUXpresso for VS Code Wiki.

1. Open the Serial Monitor from the VS Code’s integrated terminal. Select the VCom Port for
your device and set the baud rate to 115200.

Monitor \ v Text Port COMA40 - MCU-Link VCom Port (COM40) O Baudrate 115200 °
Line ending CR D> Start Monitoring = #a NI &

2. Navigate to the PROJECTS view and click the play button to initiate a debug session.

~ PROJECTS
» frdmmexc444 hello world M

The debug session will begin. The debug controls are initially at the top.

1.3. Getting Started with MCUXpresso SDK GitHub 21

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/DebugK

MCUXpresso SDK Documentation, Release 25.09.00

hello world.c X

main(

ch;

BOARD InitHardware();
PRINTF("hello

while
ch = GETCHAR
PUTCHAR(ch) ;

3. Click Continue on the debug controls to resume execution of the code. Observe the output
on the Serial Monitor.

SERIAL MOMIT
—+ Open an additional menitor
Monitor Mode View Mode ' Port COMA40 - MCU-Link VCom Port (COM40)

¢y

[stop Monitoring = & [@ (1]

tark

---- Opened the serial port COM4@ ----
hello world.

Running a demo using ARMGCC CLI/IAR/MDK

Supported Boards Use the west extension west list_project to understand the board support
scope for a specified example. All supported build command will be listed in output:

west list__project -p examples/demo__apps/hello_world [-t armgcc]

INFO: [1][west build -p always examples/demo_apps/hello world --toolchain armgcc --config release -b,

—evk9mimx8ulp -Dcore_ id=cm33]

INFO: [2|[west build -p always examples/demo_ apps/hello_ world --toolchain armgcc --config release -b,

—evkbimxrt1050]

INFO: | 3][west build -p always examples/demo__apps/hello_ world --toolchain armgcc --config release -b,
(continues on next page)

22 Chapter 1. MC56F80000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
—evkbmimxrt1060]
INFO: [4][west build -p always examples/demo__apps/hello_ world --toolchain armgcc --config release -b,
—evkbmimxrt1170 -Dcore_ id=cm4]
INFO: [5][west build -p always examples/demo__apps/hello_ world --toolchain armgcc --config release -b,
—evkbmimxrt1170 -Dcore_id=cm7]
INFO: [6][west build -p always examples/demo_ apps/hello_world --toolchain armgcc --config release -b,
—evkemimxrt1060]
INFO: [7|[west build -p always examples/demo_ apps/hello_ world --toolchain armgcc --config release -b,
—evkmecimx7ulp]

The supported toolchains and build targets for an example are decided by the example-self exam-
ple.yml and board example.yml, please refer Example Toolchains and Targets for more details.

Build the project Use west build -h to see help information for west build command. Compared
to zephyr’s west build, MCUXpresso SDK’s west build command provides following additional
options for mcux examples:

* —toolchain: specify the toolchain for this build, default armgce.

* —-config: value for CMAKE_BUILD_TYPE. If not provided, build system will get all the ex-
ample supported build targets and use the first debug target as the default one. Please refer
Example Toolchains and Targets for more details about example supported build targets.

Here are some typical usages for generating a SDK example:

Generate example with default settings, default used device is the mainset MK22F51212
west build -b frdmk22f examples/demo_apps/hello_ world

Just print cmake commands, do not execute it
west build -b frdmk22f examples/demo_ apps/hello_ world --dry-run

Generate example with other toolchain like iar, default armgcc
west build -b frdmk22f examples/demo_ apps/hello_ world --toolchain iar

Generate example with other config type
west build -b frdmk22f examples/demo_ apps/hello_ world --config release

Generate example with other devices with --device
west build -b frdmk22f examples/demo_ apps/hello_ world --device MK22F12810 --config release

For multicore devices, you shall specify the corresponding core id by passing the command line
argument -Dcore__id. For example

west build -b evkbmimxrt1170 examples/demo__apps/hello_ world --toolchain iar -Dcore_id=cm?7 --config, ,
—flexspi__nor__ debug

For shield, please use the --shield to specify the shield to run, like

west build -b mimxrt700evk --shield a8974 examples/issdk examples/sensors/fx1s8974cf/fx1s8974cf poll -
—Dcore_id=cm33__core0

Syshuild(System build) To support multicore project building, we ported Sysbuild from
Zephyr. It supports combine multiple projects for compilation. You can build all projects by
adding --sysbuild for main application. For example:

west build -b evkbmimxrt1170 --sysbuild ./examples/multicore_examples/hello_world /primary -Dcore__
—id=cm7 --config flexspi nor_ debug --toolchain=armgcc -p always

For more details, please refer to System build.

1.3. Getting Started with MCUXpresso SDK GitHub 23

MCUXpresso SDK Documentation, Release 25.09.00

Config a Project Example in MCUXpresso SDK is configured and tested with pre-defined con-
figuration. You can follow steps blow to change the configuration.

1. Run cmake configuration

west build -b evkbmimxrt1170 examples/demo_ apps/hello_ world -Dcore_id=cm7 --cmake-only -p

Please note the project will be built without --cmake-only parameter.

2. Run guiconfig target

west build -t guiconfig

Then you will get the Kconfig GUI launched, like

) Hello World - O ot

Save Save as.. || 5ave minimal (advanced]... Open... Jump to...

[] Show name [] Showall [] Single-menu mode

(Top)
Board Boot Header s
Project Segrments
Device Boot Header
=l Device MIMXRT1176 Part (Device part MIMXRTT1760YVIMAAL)
@Device part MIMXRT1176DVIMAL
ODevice part MIMERT1176AVIMEA
ODevice part MIMERT11TECVIMEA
B Device specific drivers
K |Use driver clock
EUse driver iormuxe
:|U5e driver mipi csi2rx
:|U5E driver mipi dsi
EUEE driver anatop_ai
E'Use driver memory
:|U5e driver nic301
E'Use driver dedc
EUse driver gpc
EUse driver pgrmc
EUEE driver prmu
EUEE driver src W

Econfig definition., with parent deps. propagated to " depends on’

4t D fedk_next/mouxsdkydevicesh.. /devices/ET/RT1170/NIMET11 76 \drivers/Kconfig: B
Included wia D: fadk_next/mouxsdk/examples/demo_appsfhello_world/Econfiz: 6 —>

D: fedk_next/mouzsdk/Koconfig. mouxpreszo: @ —» D fedk_next/mouxsdk\devices/Econfig: 1
= I f=dk_next/mouxsdkydevicesh.. fdevices/RT/RT1170,/ NIMET11 76,/ Econfig: &

Merm path: (Topd

memi “Device specific driwers”

You can reconfigure the project by selecting/deselecting Kconfig options.

After saving and closing the Kconfig GUI, you can directly run west build to build with the new
configuration.

24 Chapter 1. MC56F80000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

Flash Note: Please refer Flash and Debug The Example to enable west flash/debug support.
Flash the hello_world example:

west flash -r linkserver

Debug Start a gdb interface by following command:

west debug -r linkserver

Work with IDE Project The above build functionalities are all with CLI If you want to use
the toolchain IDE to work to enjoy the better user experience especially for debugging or you
are already used to develop with IDEs like IAR, MDK, Xtensa and CodeWarrior in the embedded
world, you can play with our IDE project generation functionality.

This is the cmd to generate the evkbmimxrt1170 hello_world IAR IDE project files.

west build -b evkbmimxrt1170 examples/demo__apps/hello_ world --toolchain iar -Dcore_id=cm?7 --config, |
—flexspi_nor__debug -p always -t guiproject

By default, the IDE project files are generated in mcuxsdk/build/<toolchain> folder, you can open
the project file with the IDE tool to work:

k-next\mcu-sdk-3.0
N-3¢) rc west build frdmk64f . \exampl

Note, please follow the Installation to setup the environment especially make sure that ruby has
been installed.

1.4 Release Notes

1.4.1 MCUXpresso SDK Release Notes
Overview

The MCUXpresso SDK is a comprehensive software enablement package designed to simplify
and accelerate application development with Arm Cortex-M-based devices from NXP, including
its general purpose, crossover and Bluetooth-enabled MCUs. MCUXpresso SW and Tools for DSC

1.4. Release Notes 25

MCUXpresso SDK Documentation, Release 25.09.00

further extends the SDK support to current 32-bit Digital Signal Controllers. The MCUXpresso
SDK includes production-grade software with integrated RTOS (optional), integrated enabling
software technologies (stacks and middleware), reference software, and more.

In addition to working seamlessly with the MCUXpresso IDE, the MCUXpresso SDK also supports
and provides example projects for various toolchains. The Development tools chapter in the
associated Release Notes provides details about toolchain support for your board. Support for
the MCUXpresso Config Tools allows easy cloning of existing SDK examples and demos, allowing
users to leverage the existing software examples provided by the SDK for their own projects.

Underscoring our commitment to high quality, the MCUXpresso SDK is MISRA compliant and
checked with Coverity static analysis tools. For details on MCUXpresso SDK, see MCUXpresso-
SDK: Software Development Kit for MCUXpresso.

MCUXpresso SDK

As part of the MCUXpresso software and tools, MCUXpresso SDK is the evolution of Kinetis SDK,
includes support for LPC, DSC,PN76, and i.MX System-on-Chip (SoC). The same drivers, APIs, and
middleware are still available with support for Kinetis, LPC, DSC, and i.MX silicon. The MCUX-
presso SDK adds support for the MCUXpresso IDE, an Eclipse-based toolchain that works with
all MCUXpresso SDKs. Easily import your SDK into the new toolchain to access to all of the avail-
able components, examples, and demos for your target silicon. In addition to the MCUXpresso
IDE, support for the MCUXpresso Config Tools allows easy cloning of existing SDK examples and
demos, allowing users to leverage the existing software examples provided by the SDK for their
own projects.

In order to maintain compatibility with legacy Freescale code, the filenames and source code in
MCUXpresso SDK containing the legacy Freescale prefix FSL has been left as is. The FSL prefix
has been redefined as the NXP Foundation Software Library.

Development tools

The MCUXpresso SDK was tested with following development tools. Same versions or above are
recommended.

* CodeWarrior Development Studio v11.2 with CodeWarrior for DSC v11.2 SP1 (Service Pack
1)

Supported development systems

This release supports board and devices listed in following table. The board and devices in bold
were tested in this release.

De- MCU devices
velop-

ment

boards

MC56F: MC56F80623VLC, MC56F80626VLE, MC56F80643VLC, MC56F80646VLE,

EVK MC56F80648VLH, MCS56F80723VLC, MC56F80726VLE, MCS56F80733VEM,
MCS56F80736VLE, MC56F80738VLH, MC56F80743VEM, MCS56F80743VLC,
MC56F80746MLFE, MC56F80746VLE, MC56F80748MLH, MC56F80748VLH

26 Chapter 1. MC56F80000-EVK

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.09.00

Release contents

Table 1 provides an overview of the MCUXpresso DSC SDK release package contents and loca-
tions.

Deliverable Location

Boards <install _dir>/boards

Demo applications <install_dir>/boards/<board_name>/
demo__apps

Driver examples <install _dir>/boards/<board_name>/
driver__examples

Documentation <install dir>/docs

Driver, SoC header files, extension header files and <install_dir>/devices/<device_name>
feature header files

Peripheral Drivers <install _dir>/devices/<device name>/
drivers

Utilities such as debug console <install dir>/devices/<device name>/
utilities

Middleware <install_dir>/middleware

MCUXpresso SDK release package

The MCUXpresso SDK release package content is aligned with the silicon subfamily it supports.
This includes the boards, CMSIS, devices, middleware, and RTOS support.

Device support The device folder contains the whole software enablement available for the
specific System-on-Chip (SoC) subfamily. This folder includes clock-specific implementation,
device register header files, device register feature header files, and the system configuration
source files. Included with the standard SoC support are folders containing peripheral drivers,
toolchain support, and a standard debug console. The device-specific header files provide a di-
rect access to the microcontroller peripheral registers. The device header file provides an overall
SoC memory mapped register definition. The folder also includes the feature header file for each
peripheral on the microcontroller. The toolchain folder contains the startup code and linker files
for each supported toolchain. The startup code efficiently transfers the code execution to the
main() function.

Board support The boards folder provides the board-specific demo applications, driver exam-
ples, and middleware examples.

Demo application and other examples The demo applications demonstrate the usage of the
peripheral drivers to achieve a system level solution. Each demo application contains a readme
file that describes the operation of the demo and required setup steps. The driver examples
demonstrate the capabilities of the peripheral drivers. Each example implements a common
use case to help demonstrate the driver functionality.

Middleware

Motor Control Software (ACIM, BLDC, PMSM) Motor control examples.

FreeMASTER FreeMASTER communication driver for 32-bit platforms.

1.4. Release Notes 27

MCUXpresso SDK Documentation, Release 25.09.00

Known Issues

This section lists the known issues, limitations, and/or workarounds.

PRINTF issue for program address space When project is compiled with SDM, print the ad-
dress in program address space malfunction.

* Failed example when SDM

— PRINTF(”%p”, main); Root cause: in SDM, %p is treated as 16-bit value, however main
in program address space is still considered as 32-bit.

* Workaround(compliant with SDM and LDM)
— PRINTF(”0x%Ix”, (uint32__t)main);

1.5 ChangeLog

1.5.1 MCUXpresso SDK Changelog
Board Support Files

board

[25.06.00]

 Initial version
clock_config

[25.06.00]

 Initial version
pin_mux

[25.06.00]

 Initial version

CADC

[2.2.0]
* New Features

* Supported platforms which don’t have ANA4 expansion MUX.

28 Chapter 1. MC56F80000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.0]
* Improvements

* Added some APIs to support some devices that equipped expansion mux.

[2.0.1]
* Bug Fixes
* Fixed the bug that channel mode set to wrong value.
* Fixed the bug that independent parallel mode set to wrong value.
* Fixed violations of the MISRA C-2012 rules.

[2.0.0]

 Initial version.

CLOCK

[2.0.0]

« Initial version.

CMP

[2.0.1]
* Improvements
» Supported MC56F82xxxx and MC56F84xxXXX.
— Bug Fixes
* Fixed violations of the MISRA C-2012 rules.

[2.0.0]

 Initial version.

COMMON

[2.6.0]
* Bug Fixes
— Fix CERT-C violations.

[2.5.0]
* New Features

— Added new APIs InitCriticalSectionMeasurementContext, DisableGlobalIRQEx and En-
ableGloballRQEx so that user can measure the execution time of the protected sections.

1.5. ChangeLog 29

MCUXpresso SDK Documentation, Release 25.09.00

[2.4.3]
* Improvements

— Enable irgs that mount under irgsteer interrupt extender.

[2.4.2]
* Improvements

— Add the macros to convert peripheral address to secure address or non-secure address.

[2.4.1]
* Improvements

— Improve for the macro redefinition error when integrated with zephyr.

[2.4.0]
* New Features
— Added EnableIRQWithPriority, IRQ_SetPriority, and IRQ_ClearPendingIRQ for ARM.
— Added MSDK_EnableCpuCycleCounter, MSDK_GetCpuCycleCount for ARM.

[2.3.3]
* New Features

— Added NETC into status group.

[2.3.2]
* Improvements

— Make driver aarch64 compatible

[2.3.1]
* Bug Fixes
— Fixed MAKE_VERSION overflow on 16-bit platforms.
[2.3.0]

* Improvements

— Split the driver to common part and CPU architecture related part.

[2.2.10]
* Bug Fixes

— Fixed the ATOMIC macros build error in cpp files.

30 Chapter 1. MC56F80000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

[2.2.9]
* Bug Fixes
- Fixed MISRA C-2012 issue, 5.6, 5.8, 8.4, 8.5, 8.6, 10.1, 10.4, 17.7, 21.3.
— Fixed SDK_Malloc issue that not allocate memory with required size.
[2.2.8]

* Improvements
— Included stddef.h header file for MDK tool chain.
* New Features:

— Added atomic modification macros.

[2.2.7]
* Other Change
— Added MECC status group definition.

[2.2.6]
* Other Change
— Added more status group definition.
* Bug Fixes
— Undef __VECTOR_TABLE to avoid duplicate definition in cmsis_clang.h

[2.2.5]
* Bug Fixes
— Fixed MISRA C-2012 rule-15.5.

[2.2.4]
* Bug Fixes
- Fixed MISRA C-2012 rule-10.4.

[2.2.3]
* New Features

- Provided better accuracy of SDK_DelayAtLeastUs with DWT,
SDK_DELAY_USE_DWT to enable this feature.

use Imacro

— Modified the Cortex-M7 delay count divisor based on latest tests on RT series boards,

this setting lets result be closer to actual delay time.

[2.2.2]
* New Features
— Added include RTE_Components.h for CMSIS pack RTE.

1.5. ChangeLog

31

MCUXpresso SDK Documentation, Release 25.09.00

[2.2.1]
* Bug Fixes
- Fixed violation of MISRA C-2012 Rule 3.1, 10.1, 10.3, 10.4, 11.6, 11.9.
[2.2.0]

* New Features

— Moved SDK_DelayAtLeastUs function from clock driver to common driver.

[2.1.4]
* New Features
— Added OTFAD into status group.

[2.1.3]
* Bug Fixes
— MISRA C-2012 issue fixed.
% Fixed the rule: rule-10.3.
[2.1.2]

* Improvements

— Add SUPPRESS_FALL_THROUGH_WARNING(macro for the usage of suppressing
fallthrough warning.

[2.1.1]
* Bug Fixes
— Deleted and optimized repeated macro.
[2.1.0]

* New Features
— Added IRQ operation for XCC toolchain.
— Added group IDs for newly supported drivers.

[2.0.2]
* Bug Fixes
— MISRA C-2012 issue fixed.

% Fixed the rule: rule-10.4.

32 Chapter 1. MC56F80000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.1]
* Improvements
— Removed the implementation of LPC8XX Enable/DisableDeepSleepIRQ() function.

— Added new feature macro switch “FSL,. FEATURE_HAS NO_NONCACHEABLE_SECTION”
for specific SoCs which have no noncacheable sections, that helps avoid an unneces-
sary complex in link file and the startup file.

— Updated the align(x) to attribute(aligned(x)) to support MDK v6 armclang compiler.

[2.0.0]

 Initial version.

cop

[2.2.3]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 10.3.

[2.2.2]
* Bug Fixes

* Added configuration of CWP bits in COP_Init, fixed write protection bEnableWriteProtect
cannot be configured as part of cop_config_t.

[2.2.1]
* Bug Fixes
» TFixed violations of the MISRA C-2012 rules.

[2.2.0]
* Improvements
» Updated cop_config_t member naming.
* Deleted COP_Disable API, added COP_Enable to enable/disable COP.

[2.1.0]
* Improvements

* APl interface changes:

— Renamed “COP_Enablelnterrupts/COP_DisableInterrupts” to
“COP_EnableInterrupt/COP_DisableInterrupt” and remove unnecessary parame-
ter.

— New Features
» Added APIs to enable/disable the COP COP Loss of Reference counter.

1.5. ChangeLog 33

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.0]

 Initial version.

CRC

[2.0.1]
* Bug Fixes
» Tixed violations of the MISRA C-2012 rules.

[2.0.0]

 Initial version.

DMAMUX

[2.0.0]

« Initial version.

EDMA

[2.0.3]
* Fixed the MISRA-2012 violations.
» Fixed rule 10.3.

[2.0.2]
* Tixed the MISRA-2012 violations.
» Tixed rule 5.8, 9.2, 10.3, 10.4, 11.6.

[2.0.1]

» Code modification for SDM compliance

[2.0.0]

« Initial version.

34

Chapter 1. MC56F80000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

EQDC

[2.0.0]
e Initial version.
* Supported MC56F80xxx.

EVTG

[2.0.0]

¢ Initial version.

EWM

[2.0.2]
* Bug Fixes
» Fixed violations of MISRA C-2012 rule 10.3.

[2.0.1]
* Bug Fixes
 Fixed violations of the MISRA C-2012 rules.

[2.0.0]

¢ Initial version.

FLASH

[3.0.0]

* Initial version — Basic FTFx IP command support

GPIO

[2.0.1]
* Bug Fixes
» Tixed violations of the MISRA C-2012 rules.

[2.0.0]

 Initial version.

1.5. ChangeLog 35

MCUXpresso SDK Documentation, Release 25.09.00

INTC

[2.0.1]
* Improvements

* Added doxygen comments.

[2.0.0]

 Initial version.

LPI2C

[2.0.2]

* Bug Fixes

* Fixed bug in eDMA transfer for SoCs whose rx and tx have different eDMA requests.

[2.0.1]
* Bug Fixes
* Fixed the MISRA-2012 violations.

[2.0.0]

 Initial version.

MCM

[2.0.1]

* Improvements

* Supported MC56F82xxx and MC56F84xxx.

[2.0.0]

 Initial version.

OPAMP

[2.0.0]

 Initial version.

36

Chapter 1. MC56F80000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

PIT

[2.3.1]
* Bug Fixes
» Fixed violations of MISRA C-2012 rule 10.3.

[2.3.0]
* Improvements
* Filtered Preset input to reset PIT counter.

* Support SYNC_OUT output stretch and toggle mode.

Added PIT_SetPresetFiltConfig() to set FILT register configurations.

Added PIT_SetSyncOutConfig() to set SYNC register configurations.

[2.2.1]
* Bug Fixes
» Fixed violations of the MISRA C-2012 rules.

[2.2.0]
* Improvements
» Updated pit_config_t member naming.

* Removed some APIs for prescaler and clock source selection.

[2.1.0]

* Improvements

Updated PIT clock source and PIT prescaler with more meaningful comments.

Updated PIT_SetTimerPeriod() and PIT_GetCurrentTimerCount() with 16-bit parameter.
* Deleted mask parameter for PIT_ClearStatusFlags/PIT_EnableInterrupts/PIT_DisableInterrupts.

Added PIT_SetTimerClockSource() API to configure clock source.
Added PIT_EnableSlaveMode() API to configure slave mode.

[2.0.1]
* New Features

» Added PIT_SetTimerPrescaler() API to configure clock prescaler value.

[2.0.0]

« Initial version.

1.5. ChangeLog 37

MCUXpresso SDK Documentation, Release 25.09.00

PMC

[2.1.0]

* Improvements

* Added PMC_SetVrefTrim() and PMC_SetVcapTrim() APIs to support MC56F80xxx.

[2.0.0]

 Initial version.

eFlexPWM

[2.2.0]
* New Features
* Supported capture PWM input filter.
* Supported different PWM deadtime count register width.
— Bug Fixes

* Fixed wrong pwm_sm_pwm_out_t enum order issue.

[2.1.1]
* Bug Fixes

* Fixed build error when soc not support Capture A/B features.

[2.1.0]
* Improvements
* Supported MC56F80xxx.

[2.0.2]
* Bug Fixes

* Fixed clear status flags API doesn’t work issue.

[2.0.1]
* Improvements
* Supported MC56F82xxx and MC56F84xxX .
— Bug Fixes
* Fixed violations of the MISRA C-2012 rules.

[2.0.0]

« Initial version.

38 Chapter 1

. MC56F80000-EVK

MCUXpresso SDK Documentation, Release 25.09.00

QscI

[2.0.4]
* Bug Fixes

» Fixed DMA transfer blocking issue by enabling tx idle interrupt after DMA transmission
finishes, and invoke completion callback after tx idle interrupt occurs.

[2.0.3]
* Bug Fixes
» Fixed violations of the MISRA C-2012 rules.

[2.0.2]
* Improvements

» Supported QSCI which has 13-bit integer and 3-bit fractional baud rate selection.

[2.0.1]
* Bug Fixes

* Fixed bug that when starting the non-blocking receive, the rx idle interrupt is not enabled,
and when receiving is done the rx idle interrupt is not disabled.

[2.0.0]

« Initial version.

QTMR

[2.0.1]
* Improvements
* Supported to get TMR capture register address.
— Bug Fixes
* Fixed violations of the MISRA C-2012 rules.

[2.0.0]

 Initial version.

Queued SPI

[2.1.1]
* Bug Fixes

* Fixed wrong baudrate calculation method.

1.5. ChangeLog 39

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.0]
* Bug Fixes
* Fixed wrong definitions of interrupt enable/disable masks.
» Fixed wrong usage of QSPI_DisableInterrupts.
* Fixed wrong type casts.

* Fixed bug for master blocking transfer of rx FIFO overflow.

[2.0.0]

« Initial version.

SIM

[2.0.0]

 Initial version.

DSC_XBARA

[2.0.1]
* Bug Fixes
» Fixed violations of the MISRA C-2012 rules.

[2.0.0]

« Initial version.

40 Chapter 1. MC56F80000-EVK

Chapter 2

MC56F80748

2.1 CADC: 12-bit Cyclic Analog-to-Digital Converter Driver

void CADC_ Init(ADC_Type *base, const cadc_config t *psConfig)

Initializes the CADC module, such as scan mode, DMA trigger source, interrupt mask and
SO on.

This function is to make the initialization for using CADC module. The operations are:
* Enable the clock for CADC.
* Set power up delay and Idle work mode.
» Set DMA trigger source.

* Enable the interrupts(Including High/Low limit interrupt, zero crossing interrupt in-
terrupt, end of scan interrupt and each sample slot’s scan interrupt).

* Set scan mode.

* Set disabled sample slot for the scan.
* Set scan control options.

* Set selected channels’ mode.

* Set gain for each channel.

* Config conterA and converterB.

Note: The high limit value, low limit value, offset value and zerocrossing mode of each
sample slot will not be configured in this function, to set those options, the APIs in “Sample
Slot Control Interfaces” function group can be used.

Parameters
* base — CADC peripheral base address.
* psConfig — Pointer to configuration structure. See cadc_config_t.

void CADC_ GetDefaultConfig(cadc_config_t *psConfig)
Gets an available pre-defined options(such as scan mode, DMA trigger source, interrupt
mask and so on) for module’s configuration.

This function initializes the module’s configuration structure with an available settings.
The default value are:

41

MCUXpresso SDK Documentation, Release 25.09.00

psConfig->eDMATriggerSource = kKCADC_ DM ATrigSrcEndofScan;
psConfig->eldleWorkMode = kCADC_ IdleKeepNormal;
psConfig-s>ul6PowerUpDelay = 26U;

psConfig->u32EnabledInterruptMask = 0U;

psConfig->eScanMode = kCADC_ ScanModeTriggeredParallelSimultaneous;
psConfig->uDisabledSampleSlot.u32SampleDisVal = 0xFFOFOUL;
psConfig->uScanControl.u32ScanCtrlVal = 0x0UL;
psConfig->eChannelGain[x] = kCADC__SignalGainX1;
psConfig->sampleSlotScanInterrupt EnableMask = kCADC_ NonSampleSlotMask;
For the default setting of converter, please see CADC__ GetConverterDefaultConfig().

Parameters
 psConfig — Pointer to configuration structure. See cadc_config_t.

void CADC_ Deinit(ADC_Type *base)

De-initializes the CADC module, including power down both converter and disable the
clock(Optional).

This function is to make the de-initialization for using CADC module. The operations are:
* Power down both converter.
* Disable the clock for CADC.

Parameters
* base — CADC peripheral base address.
static inline void CADC__SetScanMode(ADC_Type *base, cadc_scan_mode_t eScanMode)

Sets the scan mode(such as Sequential scan mode, Simultaneous parallel scan mode, Inde-
pendent parallel scan

mode) of dual converters.

Parameters
* base — CADC peripheral base address.

* eScanMode — Dual converters’ scan mode, please see cadc_scan_mode_t for
details.

static inline void CADC_SetScanControl(ADC_Type *base, cadc_scan_control_t uScanControl)
The function provides the ability to pause and await new sync in the conversion sequence.

Parameters
* base — CADC peripheral base address.

* uScanControl — The scan control value, please refer to cadc_scan_control_t
for details.

void CADC_ SetChannelMode(ADC_Type *base, cadc_channel mode_t eChannelMode)

Sets mode for the specific channel(Each channel can be set as single-end, fully differential
and unipolar differential(Optional) mode).

Parameters
* base — CADC peripheral base address.

* eChannelMode - The channel mode to be set, please refer to
cadc_channel_mode_t for details.

42 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

void CADC_ SetChannelGain(ADC_Type *base, cadc_channel_number_t eChannelNumber,
cadc_channel _gain_t eChannelGain)

Sets the gain(Supports X1, X2, X4) of selected channel.
Parameters
* base — CADC peripheral base address.

* eChannelNumber - The number of channel, please refer to
cadc_channel number _t.

* eChannelGain — The gain amplification, please refer to cadc_channel_gain_t
for details.

void CADC_ GetSampleSlotDefaultConfig(cadc_sample_slot_config_t *psConfig)
Gets sample slot default configuration including zero crossing mode, high limit value, low
limit value and offset value.

psConfig->eZeroCrossingMode = kCADC__ZeroCrossingDisabled;
psConfig->ul6HighLimitValue = 0x7FF8U;
psConfig->ul6LowLimitValue = 0x0U;

psConfig->ul60ffsetValue = 0x0U;
Parameters
* psConfig - Pointer to configuration structure. See

cadc_sample_slot_config_t.

void CADC_ SetSampleSlotConfig(ADC_Type *base, cadc_sample_slot_index_t eSampleIndex,
const cadc_sample_slot_config t *psConfig)

Configures the options(including zero crossing mode, high limit value, low limit value and
offset value) for sample slot.

Note: This function can be used to set high limit value, low limit value, offset value and
zerocrossing mode of the sample slot.

Parameters
* base — CADC peripheral base address.

* eSamplelndex — Index of sample slot in conversion sequence. Please refer
to cadc_sample_slot_index_t.

* psConfig - Pointer to configuration structure. See
cadc_sample_slot_config_t.

void CADC_ SetSampleSlotZeroCrossingMode(ADC_Type *base, cadc_sample_slot_index_t
eSamplelndex,
cadc_sample_slot_zero_crossing_mode_t
eZeroCrossingMode)

Sets zero-crossing mode for the selected sample slot.
Parameters
* base — CADC peripheral base address.

* eSampleIndex — The index of sample slot. Please refer to
cadc_sample_slot_index_t for details.

» eZeroCrossingMode — Zero crossing mode, please refer to
cadc_sample_slot_zero_crossing_mode_t for details.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 43

MCUXpresso SDK Documentation, Release 25.09.00

void CADC_ RouteChannelToSampleSlot(ADC_Type *base, cadc_sample_slot_index_t
eSamplelndex, cadc_channel number._t
eChannelNumber)

Routes the channel to the sample slot.
Parameters
* base — CADC peripheral base address.

» eSampleIndex - The index of sample slot, please refer to
cadc_sample_slot_index_t for details.

* eChannelNumber — Sample channel number, please refer to
cadc_channel_number_t for details.

static inline void CADC__SetSampleSlotLowLimitValue(ADC_Type *base,

cadc_sample_slot_index_t eSampleIndex,
uint16_t ul6LowLimitValue)

Sets the low limit value(-32768 ~ 32767 with lower three bits of fixed value 0) for the specific
sample slot.

Parameters
* base — CADC peripheral base address.

» eSampleIndex — The index of sample slot. Please refer to
cadc_sample_slot_index_t for details.

* ul6LowLimitValue — Low limit value(-32768 ~ 32767 with lower three bits of
fixed value 0). Original value formation as hardware register, with 3-bits
left shifted.

static inline void CADC__SetSampleSlotHighLimitValue(ADC_Type *base,

cadc_sample_slot_index_t eSampleIndex,
uint16_t ul6HighLimitValue)

Sets the high limit value(-32768 ~ 32767 with lower three bits of fixed value 0) for the specific
sample slot.

Parameters
* base — CADC peripheral base address.

» eSampleIndex — The index of sample slot. Please refer to
cadc_sample_slot_index_t for details.

* ul6HighLimitValue — High limit value(-32768 ~ 32767 with lower three bits
of fixed value 0). Original value formation as hardware register, with 3-
bits left shifted.

static inline void CADC__SetSampleSlotOffset Value(ADC_Type *base, cadc_sample_slot_index_t
eSampleIndex, uint16_t ul60ffsetValue)

Sets the offset value(-32768 ~ 32767 with lower three bits of fixed value 0) for the specific
sample slot.

Parameters
* base — CADC peripheral base address.

» eSampleIndex — The index of sample slot. Please refer to
cadc_sample_slot_index_t for details.

* ul60ffsetValue — Offset value(-32768 ~ 32767 with lower three bits of fixed

value 0). Original value formation as hardware register, with 3-bits left
shifted.

44 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint16_t CADC_ GetSampleSlotResultValue(ADC_Type *base,
cadc_sample_slot_index_t eSampleIndex)

Gets the sample result value.

This function is to get the sample result value. The returned value keeps it original forma-
tion just like in hardware result register. It includes the sign bit as the MSB and 3-bit left
shifted value.

Parameters
* base — CADC peripheral base address.

* eSampleIndex — Index of sample slot. For the counts of sample slots, please
refer to cadc_sample_slot_index_t for details.

Returns
Sample’s conversion value.

void CADC_ GetConverterDefaultConfig(cadc_converter_config t *psConfig)

Gets available pre-defined settings(such as clock divisor, reference voltage source, and so
on) for each converter’s configuration.

This function initializes each converter’s configuration structure with an available settings.
The default value are:

psConfig->ul6ClockDivisor = 4U;(ADC clock = Peripheral clock / 5)
psConfig->eSpeedMode = kCADC_ SpeedMode0; (Chip specific)
psConfig->eHighReferenceVoltageSource = kCADC_ ReferenceVoltageVrefPad;
psConfig->eLowReferenceVoltageSource = kCADC__ReferenceVoltageVrefPad;
psConfig->ul6SampleWindowCount = 0U; (Chip specific)
psConfig->bEnableDMA = false;

psConfig->bPowerUp = false;

psConfig->bScanlnitBySync = true;

Parameters
* psConfig — Pointer to configuration structure. See cadc_converter_config_t.

void CADC_ SetConverterConfig(ADC_Type *base, cadc_converter_id _t eConverterld, const
cadc_converter_config_t *psConfig)

Configures the options(such as clock divisor, reference voltage source, and so on) for the
converter.

This function can be used to configure the converter The operations are:
* Set clock divisor;
 Set reference voltage source
* Enable/Disable DMA

* Power-up/power-down converter

Parameters
* base — CADC peripheral base address.
* eConverterld — The converter Id. See cadc_converter_id_t.
* psConfig— Pointer to configuration structure. See cadc_converter_config_t.

static inline void CADC__EnableConverter(ADC_Type *base, cadc_converter_id_t eConverterld,
bool bEnable)

Changes the converter to stop mode or normal mode.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 45

MCUXpresso SDK Documentation, Release 25.09.00

The conversion should only be launched after the converter is in normal mode. When in
stop mode, the current scan is stopped and no further scans can start. All the software
trigger and hardware trigger are ignored.

Parameters
* base — CADC peripheral base address.
* eConverterld — The converter Id. See cadc_converter_id_t.
* bEnable — Used to change the operation mode.
— true Changed to normal mode.
- false Changed to stop mode

static inline void CADC_ EnableConverterSyncInput(ADC_Type *base, cadc_converter_id_t
eConverterld, bool bEnable)

Enables/Disables the external sync input pulse to initiate a scan.

Note: When in “Once” scan mode, this gate would be off automatically after an available
sync is received. User needs to enable the input again manually if another sync signal is
wanted.

Parameters
* base — CADC peripheral base address.
* eConverterld — The converter Id. See cadc_converter_id_t.
* bEnable — Enable the feature or not.
— true Used a SYNC input pulse or START command to initiate a scan.
— false Only use the START command to initiate a scan.

static inline void CADC_ DoSoftwareTriggerConverter(ADC_Type *base, cadc_converter_id_t
eConverterld)

Uses software trigger to start a conversion sequence.

This function is to do the software trigger to the converter. The software trigger can used
to start a conversion sequence.

Parameters
* base — CADC peripheral base address.

e eConverterld — The ID of the converter to be started. See
cadc_converter_id_t.

static inline void CADC__SetConverterClockDivisor(ADC_Type *base, cadc_converter_id_t
eConverterld, uint16_t u16ClockDivisor)

Sets clock divisor(Range from 0 to 63) for converterA and conveter B.
Parameters
* base — CADC peripheral base address.
* eConverterld — The converter Id. See cadc_converter_id_t.

* ul6ClockDivisor — Converter’s clock divisor for the clock source.Available
setting range is 0-63.

— When the clockDivisor is 0, the divisor is 2.

— For all other clockDivisor values, the divisor is 1 more than the decimal
value of clockDivisor: clockDivisor + 1

46 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

void CADC_ SetConverterReferenceVoltageSource(ADC_Type *base, cadc_converter_id_t
eConverterld, cadc_reference_voltage_source_t
eHighReferenceVoltage,
cadc_reference_voltage_source_t
eLowReferenceVoltage)

Sets converter’s reference voltage source(Including high reference voltage source and low
reference voltage

source).

Parameters
* base — CADC peripheral base address.
* eConverterld — The converter Id. See cadc_converter_id_t.

* eHighReferenceVoltage — High voltage reference source, please refer to
cadc_reference_voltage_source_t.

* eLowReferenceVoltage — Low voltage reference source, please refer to
cadc_reference_voltage_source_t.

void CADC_ EnableConverterPower(ADC_Type *base, cadc_converter_id_t eConverterld, bool
bEnable)

Powers up/down the specific converter.

This function is to enable the power for the converter. The converter should be powered
up before the conversion. Once this API is called to power up the converter, the con-
verter would be powered on after a few moment (so-called power up delay, the function
CADC_SetPowerUpDelay() can be used to set the power up delay), so that the power would
be stable.

Parameters
* base — CADC peripheral base address.
* eConverterld — The converter to be powered. See cadc_converter_id_t.
* bEnable — Powers up/down the converter.
- true Power up the specific converter.
- false Power down the specific converter.

static inline void CADC__EnableConverterDMA (ADC_Type *base, cadc_converter_id_t
eConverterld, bool bEnable)

Enables/Disables the converter’s DMA feature.
Parameters
* base — CADC peripheral base address.
* eConverterld — The converter id. See cadc_converter_id_t.
* bEnable — Enables/Disables the DMA.
— true Enable the converter’s DMA.
- false Disable the converter’s DMA.

void CADC_ SetConverterMuxAuxConfig(ADC_Type *base, cadc_converter_id_t eConverterld,
const cadc_exp_mux_aux_config_t *psMuxAuxConfig)

Configures selected converter’s expansion mux and aux settings.
Parameters

* base — ADC peripheral base address.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 47

MCUXpresso SDK Documentation, Release 25.09.00

* eConverterld — The converter id, see cadc_converter_id_t.
» psMuxAuxConfig — Pointer to cadc_exp_mux_aux_config_t structure.

static inline void CADC_ ResetConverterExpMuxScan(ADC_Type *base, cadc_converter_id_t
eConverterld)
Resets selected converter’s expansion mux scan.

Parameters
* base — ADC peripheral base address.
* eConverterld — The converter id, see cadc_converter_id_t.

static inline void CADC _SetConverterExpansionMuxOperateMode(ADC_Type *base,

cadc_converter_id_t

eConverterld,
cadc_expansion_mux_operate_mode_t
eOperateMode)

Sets selected converter’s expansion mux operate mode.
Parameters
* base — ADC peripheral base address.
* eConverterld — The converter id, see cadc_converter_id_t.
* eOperateMode — Used to set expansion mux operate mode.

static inline void CADC__ SetConverter AuxiliaryControl(ADC_Type *base, cadc_converter_id_t
eConverterld, uint16_t ul6AuxControl)
Sets selected converter’s auxiliary control set.

Parameters
* base — ADC peripheral base address.
* eConverterld — The converter id, see cadc_converter_id_t.

* ul6AuxControl — The mask of auxiliary control, should be the OR’ed value
of cadc_auxiliary_control_t.

static inline void CADC__SetConverterMuxChannels(ADC_Type *base, cadc_converter._id_t
eConverterld, uint32_t
u32MuxChannelMask)

Sets selected converter’s mux channels.
Parameters
* base — ADC peripheral base address.
* eConverterld — The converter id, see cadc_converter_id_t.

* u32MuxChannelMask — The mask of mux selection of all mux solts, should
be the OR’ed value of cadc_expansion_mux_selection_t.

static inline void CADC _SetExpansionMuxAuxDisabledSlot(ADC_Type *base, cadc_converter_id_t
eConverterld,

cadc_expansion_disabled_mux_slot_t
eDisabledMuxSlot)

Set selected converter’s mux and aux disabled slot.

Parameters
* base — ADC peripheral base address.

* eConverterld — The converter id, see cadc_converter_id_t.

48 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

* eDisabledMuxSlot — The mux slot to disabled, please refer to
cadc_expansion_disabled_mux_slot_t.

static inline void CADC__SetPowerUpDelay(ADC_Type *base, uint16_t ul6PowerUpDelay)

Sets power up delay(The number of ADC clocks to power up the converters before allowing

a scan to start).
Parameters
* base — CADC peripheral base address.

* ul6PowerUpDelay — The number of ADC clocks to power up an ADC con-
verter. Ranges from 0 to 63.

static inline void CADC__EnableAutoPowerDownMode(ADC_Type *base, bool bEnable)
Enables/Disables auto-powerdown converters when the module is not in use for a scan.

Parameters
* base — CADC peripheral base address.
* bEnable — Enable/Disable auto-powerdown mode.

— true Enable auto-powerdown mode, so when the module is not in use,
it will auto-powerdown.

— false Disable auto-powerdown mode, so when the module is not in use,
the power will still on.

static inline void CADC_ SetDMATriggerSource(ADC_Type *base, cadc_dma_trigger_source_t
eDMATriggerSource)

Sets DMA trigger source(available selections are “End of scan” and “Sample Ready”).
Parameters
* base — CADC peripheral base address.

* eDMATriggerSource — DMA trigger source. Please refer to
cadc_dma_trigger_source_t for details.

static inline void CADC__EnableInterrupts(ADC_Type *base, uint32_t u32Mask)

Enables the interrupts(such as high/low limit interrupts, end of scan interrupts, and so on).

Parameters
* base — CADC peripheral base address.

* u32Mask — Mask value for converters interrupt events. Should be the OR’ed
value of _cadc_interrupt_enable.

static inline void CADC_ DisableInterrupts(ADC_Type *base, uint32_t u32Mask)

Disables the interrupts(such as high/low limit interrupts, end of scan interrupts, and so on).

Parameters
* base — CADC peripheral base address.

* u32Mask — Mask value for converts interrupt events. Should be the OR’ed
value of _cadc_interrupt_enable.

static inline uint16_t CADC_ GetMiscStatusFlags(ADC_Type *base)

Gets Miscellaneous status flags, such as end of scan status flag, high/low limit interrupt flags

and so on.

Note: This API will return the current status of the ADC module, includ-
ing high limit interrupt status, low limit status flag, zero crossing interrupt sta-
tus, End of scan interrupt status, conversion in progress status. But some sta-
tus flags are not included in this function. To get sample slot ready status flag,

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver

MCUXpresso SDK Documentation, Release 25.09.00

please invoking CADC_GetSampleSlotReadyStatusFlags(), to get sample slot limit vi-
olations status please invoking CADC_ClearSampleSlotLowLimitStatusFlags() and
CADC_GetSampleSlotHighLimitStatusFlags(), to get zerocrossing status please invok-
ing CADC_GetSampleSlotZeroCrossingStatusFlags(). To get converters’ power status please
invoke CADC_GetPowerStatusFlag().

Parameters
* base — CADC peripheral base address.

Returns
Mask value for the event flags. See _cadc_misc_status_flags.

static inline void CADC__ ClearMiscStatusFlags(ADC_Type *base, uint16_t ul6Flags)
Clears Miscellaneous status flags(Only for “end of scan” status flags).

Note: Only kCADC_ConverterAEndOfScanFlag and kCADC_ConverterBEndOfScanFlag

can be cleared. And sample slot related status flags can not be
cleared in this function. To clear the status flags of limit viola-
tions, please invoking CADC_ClearSampleSlotLowLimitStatusFlags() and

CADC_ClearSampleSlotHighLimitStatusFlags(), to clear the status flags of zero cross-
ing mode, please invoking CADC_ClearSampleSlotZeroCrossingStatusFlags().

Parameters

* base — CADC peripheral base address.

* ul6Flags - Mask value for the event flags to Dbe
cleared. See _cadc_misc_status_flags. Only the
enumeration kCADC_ConverterAEndOfScanFlag and

kCADC_ConverterBEndOfScanFlag are useful.

static inline uint32_t CADC_ GetSampleSlotReadyStatusFlags(ADC_Type *base)

Gets sample slots ready status flag, those status flags are cleared by reading the correspond-
ing sample slots’ result.

Parameters
* base — CADC peripheral base address.

static inline uint32_t CADC__ GetSampleSlotLowLimitStatusFlags(ADC_Type *base)
Gets sample slot low limit status flags(Each bit represents one sample slot).

Parameters
* base — CADC peripheral base address.

Returns
The value of all sample slots’ low limit status. Each bit represents one sample
slot.

static inline void CADC__ClearSampleSlotLowLimitStatusFlags(ADC_Type *base, uint32_t
u32SampleMask)

Clears sample slot’s low limit status flags(Each bit represents one sample slot).
Parameters
* base — CADC peripheral base address.

* u32SampleMask — Mask value of sample slots. This parameter should be the
OR’ed value of cadc_sample_slot_mask_t.

50 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t CADC_ GetSampleSlotHighLimitStatusFlags(ADC_Type *base)
Gets sample slot high limit status flags(Each bit represents one sample slot).

Parameters
* base — CADC peripheral base address.

Returns
The value of all sample slots’ high limit status. Each bit represents each sample
slot.

static inline void CADC__ClearSampleSlotHighLimitStatusFlags(ADC_Type *base, uint32_t
u32SampleMask)

Clears sample slot’s high limit status flags(Each bit represents one sample slot).
Parameters
* base — CADC peripheral base address.

» u32SampleMask — Mask value of sample slots. This parameter should be the
OR’ed value of cadc_sample_slot_mask_t.

static inline uint32_t CADC_ GetSampleSlotZeroCrossingStatusFlags(ADC_Type *base)
Gets sample slot zero crossing status flags(Each bit represents one sample slot).

Parameters
* base — CADC peripheral base address.

Returns
The value of all sample slots’ zero crossing status. Each bit represents each
sample slot.

static inline void CADC __ClearSampleSlotZeroCrossingStatusFlags(ADC_Type *base, uint32_t
u32SampleMask)

Clears sample slot’s zero crossing status flags(Each bit represents one sample slot).
Parameters
* base — CADC peripheral base address.

* u32SampleMask — Mask value of sample slots. This parameter should be the
OR’ed value of cadc_sample_slot_mask_t.

static inline uint16_t CADC_ GetPowerStatusFlags(ADC_Type *base)
Gets converters power status(Those power status can not be cleared).

Parameters
* base — CADC peripheral base address.

Returns
The mask value of the converterss power status flag, see
_cadc_converter_power_status_flags.

static inline uint16_t CADC_ GetConverterExpMuxChannelScanCompStatusFlags(ADC_Type *base)
Gets converter’s expansion mux channel scan complete status flags.

Parameters
* base — CADC peripheral base address.

Returns
uint16_t The mask value of converters’ expansion mux channel scan status
flags, see _cadc_expansion_mux_status_flags.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 51

MCUXpresso SDK Documentation, Release 25.09.00

static inline void CADC__ClearConverterExpMuxChannelScanCompStatusFlags(ADC_Type *base,
uint16_t
ul6FlagMask)

Clears converter’s expansion mux channel scan complete status flags.
Parameters
* base — CADC peripheral base address.
* ul6FlagMask — The mask value of _cadc_expansion_mux_status_{flags.

FSL CADC_DRIVER VERSION
CADC driver version.

enum _cadc_misc_status_ flags

CADC miscellaneous status flags used to tell peripheral’s miscellaneous status, such as ze-
rocrossing, end of scan flags.

Values:

enumerator kCADC_ ZeroCrossinglnterruptFlag
Zero crossing encountered. IRQ pending if enabled Zero Crossing Interrupt.

enumerator kCADC__HighLimitInterruptFlag
High limit exceeded flag. IRQ pending if enabled high limit interrupt.

enumerator kCADC_ LowLimitInterruptFlag
Low limit exceeded flag. IRQ pending if enabled low limit interrupt.

enumerator kCADC_ Converter AInProgressFlag
Conversion in progress, converter A.

enumerator kCADC_ ConverterBInProgressFlag
Conversion in progress, converter B.

enumerator kCADC_ Converter AEndOfScanFlag
End of scan, converter A.

enumerator kCADC_ ConverterBEndOfScanFlag
End of scan, converter B.

enumerator kCADC_StatusAllFlags

enum _ cadc_ converter_ power_status_ flags
The enumeration of converter power status.
Values:

enumerator kCADC__ ConverterAPowerDownFlag
The converterA is powered down.

enumerator kCADC_ConverterBPowerDownFlag
The converterB is powered down.

enum _ cadc_expansion_mux_ status_flags
The enumeration of expansion mux channel scan complete interrupt request status flag.

Values:

enumerator kCADC__ANA4ExpMuxAuxScanComplnterruptFlag
ANA4 Expansion MUX Channel Scan Complete Interrupt flag.

enumerator kCADC__ANB4ExpMuxAuxScanComplnterruptFlag
ANB4 Expansion MUX Channel Scan Complete Interrupt flag.

52 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enum _ cadc__interrupt__enable
CADC Interrupts enumeration.

Values:

enumerator kCADC_ SampleOScanInterruptEnable
If sample0 is converted, generate the scan interrupt.

enumerator kCADC__SamplelScanInterruptEnable
If samplel is converted, generate the scan interrupt.

enumerator kCADC_ Sample2ScanInterruptEnable
If sample2 is converted, generate the scan interrupt.

enumerator kCADC__ Sample3ScanInterruptEnable
If sample3 is converted, generate the scan interrupt.

enumerator kCADC_ Sample4ScanInterruptEnable
If sample4 is converted, generate the scan interrupt.

enumerator kCADC_ Sampleb5ScanInterruptEnable
If sample5 is converted, generate the scan interrupt.

enumerator kCADC_ Sample6ScanInterruptEnable
If sample6 is converted, generate the scan interrupt.

enumerator kCADC_ Sample7ScanInterruptEnable
If sample7 is converted, generate the scan interrupt.

enumerator kCADC_ Sample8ScanInterruptEnable
If sample8 is converted, generate the scan interrupt.

enumerator kCADC_ Sample9ScanInterruptEnable
If sample9 is converted, generate the scan interrupt.

enumerator kCADC_ SamplelOScanInterruptEnable
If sample10 is converted, generate the scan interrupt.

enumerator kCADC__Samplel1ScanInterruptEnable
If samplel1 is converted, generate the scan interrupt.

enumerator kCADC_ Samplel2ScanInterruptEnable
If sample12 is converted, generate the scan interrupt.

enumerator kCADC_ Samplel3ScanInterruptEnable
If sample13 is converted, generate the scan interrupt.

enumerator kCADC_ Samplel4ScanInterruptEnable
If sample14 is converted, generate the scan interrupt.

enumerator kCADC_ Samplel5ScanInterruptEnable
If samplel5 is converted, generate the scan interrupt.

enumerator kCADC__ ANA4ExpMuxScanCompletelnterruptEnable
If ANA4 expansion MUX channel scan complete, generate the interrupt.

enumerator kCADC__ ANB4ExpMuxScanCompletelnterruptEnable
If ANB4 expansion MUX channel scan complete, generate the interrupt.

enumerator kCADC_ HighLimitInterruptEnable
If the result value is greater than the high limit value, generate high limit interrupt.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 33

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCADC_ LowLimitInterruptEnable
If the result value is less than the low limit value, generate low limit interrupt.
enumerator kCADC_ ZeroCrossingInterruptEnable

If the current value has a sign change from the previous result in the selected zero
crossing mode, generate the zero crossing mode

enumerator kCADC__ ConversionCompletelnterruptOEnable

Upon the completion of the scan, generate the end of scan interrupt, when the scan
mode is selected as sequential mode or simultaneous parallel mode. For looping scan
mode, the interrupt will trigger after the completion of each iteration of loop.

enumerator kCADC_ ConversionCompletelnterrupt1Enable

When the scan mode is independent parallel mode, up the completion of the converter
scan, generate te end of scan interrupt. For looping scan mode, the interrupt will trig-
ger after the completion of each iteration of loop.

enumerator kCADC__ALLInterruptEnable
enum cadc converter id

CADC Converter identifier.

Values:

enumerator kCADC_ConverterA
Converter A.

enumerator kCADC_ConverterB
Converter B.

enum _cadc_idle work mode
The enumeration of work mode when the module is not used.

Values:

enumerator kCADC_ IdleKeepNormal
Keep normal.

enumerator kCADC IdleAutoPowerDown
Fall into power down mode automatically.

enum _ cadc_dma_ trigger source
The enumeration of DMA trigger source.

Values:

enumerator kCADC_DMATrigSrcEndofScan
DMA trigger source is end of scan interrupt.

enumerator kCADC__ DMATrigSrcSampleReady
DMA trigger source is RDY bits.

enum cadc_scan_mode

The enumeration of dual converter’s scan mode.
Values:

enumerator kCADC__ScanModeOnceSequential
Once (single) sequential.

enumerator kCADC__ScanModeOnceParallelIndependent
Once parallel independently.

54 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCADC__ScanModeLoopSequential
Loop sequential.

enumerator kCADC__ScanModeLoopParallelIndependent
Loop parallel independently.
enumerator kCADC__ScanModeTriggeredSequential
Triggered sequential.
enumerator kCADC__ScanModeTriggeredParallelIndependent
Triggered parallel independently.
enumerator kCADC_ ScanModeOnceParallelSimultaneous
Once parallel simultaneously.
enumerator kCADC_ ScanModeLoopParallelSimultaneous
Loop parallel simultaneously.
enumerator kCADC__ScanModeTriggeredParallelSimultaneous
Triggered parallel simultaneously.
enum _ cadc_reference voltage source
The enumeration of converter’s reference voltage source.
Values:
enumerator kCADC_ReferenceVoltageVrefPad
VREF pin.
enumerator kCADC_ ReferenceVoltageChannelPad
ANX2 or ANx3 pin.
enum _ cadc_ channel gain
The enumeration of sample slot connected channel gain.
Values:
enumerator kCADC_ SignalGainX1
Gain x1.
enumerator kCADC_ SignalGainX2
Gain x2.
enumerator kCADC _SignalGainX4
Gain x4.
enum cadc channel mode
The enumeration of all channels’ channel mode.
Values:
enumerator kCADC__ANAQ_1_ SingleEnd
ANAO and ANA1 both configured as single ended inputs.

enumerator kCADC__ANAO_1_FullyDifferential
ANAO configured as fully differential positive input, ANA1 configured as fully differ-
ential negative input.

enumerator kCADC ANAO 1 UnipolarDifferential
ANAO configured as unipolar differential positive input, ANA1 configured as unipolar
differential negative input.

enumerator kCADC ANA2 3 SingleEnd
ANA2 and ANA3 both configured as single ended inputs.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 35

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCADC__ANA2 3 _FullyDifferential
ANA2 configured as fully differential positive input, ANA3 configured as fully differ-
ential negative input.

enumerator kCADC_ANA2 3 UnipolarDifferential
ANA2 configured as unipolar differential positive input, ANA3 configured as unipolar
differential negative input.

enumerator kCADC__ANBO_1_SingleEnd
ANBO and ANB1 both configured as single ended inputs.

enumerator kCADC__ANBO_1_ FullyDifferential
ANBO configured as fully differential positive input, ANB1 configured as fully differ-
ential negative input.

enumerator kCADC__ANBO_1_ UnipolarDifferential
ANBO configured as unipolar differential positive input, ANB1 configured as unipolar
differential negative input.

enumerator kCADC__ANB2 3 SingleEnd
ANB2 and ANB3 both configured as single ended inputs.

enumerator kCADC__ANB2_ 3 FullyDifferential
ANB2 configured as fully differential positive input, ANB3 configured as fully differ-
ential negative input.

enumerator kCADC__ANB2_ 3 UnipolarDifferential
ANB2 configured as unipolar differential positive input, ANB3 configured as unipolar
differential negative input.

enumerator kCADC_ANA4 5 SingleEnd
ANA4 and ANAS both configured as single ended inputs.

enumerator kCADC__ANA4 5 FullyDifferential
ANA4 configured as fully differential positive input, ANA5 configured as fully differ-
ential negative input.

enumerator kCADC_ANA4 5 UnipolarDifferential
ANAA4 configured as unipolar differential positive input, ANAS configured as unipolar
differential negative input.

enumerator kCADC _ANAG_7 SingleEnd
ANAG6 and ANA7 both configured as single ended inputs.

enumerator kCADC__ANAG_7_FullyDifferential
ANAG configured as fully differential positive input, ANA7 configured as fully differ-
ential negative input.

enumerator kCADC_ANAG_7 UnipolarDifferential
ANAG configured as unipolar differential positive input, ANA7 configured as unipolar
differential negative input.

enumerator kCADC__ANB4 5 SingleEnd
ANB4 and ANB5 both configured as single ended inputs.

enumerator kCADC__ANB4_5_FullyDifferential
ANBA4 configured as fully differential positive input, ANB5 configured as fully differ-
ential negative input.

enumerator kCADC__ANB4 5 UnipolarDifferential

ANB4 configured as unipolar differential positive input, ANB5 configured as unipolar
differential negative input.

56

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCADC__ANB6_7_ SingleEnd
ANBG6 and ANB7 both configured as single ended inputs.

enumerator kCADC__ANB6_7_ FullyDifferential
ANBG6 configured as fully differential positive input, ANB7 configured as fully differ-
ential negative input.

enumerator kCADC__ANB6_ 7 UnipolarDifferential
ANBS6 configured as unipolar differential positive input, ANB7 configured as unipolar
differential negative input.

enum cadc_channel number
The enumerator of all channels that can be routed to the specific sample slot.

Values:

enumerator kCADC_ SingleEndANAO_ Diff ANAOpANA1n

Single Endned ANAO Signal Or Differential ANAO+, ANA1- signal.
enumerator kCADC_SingleEndANA1 DiffANAOpANA1n

Single Endned ANA1 Signal Or Differential ANAO+, ANA1- signal.
enumerator kCADC_ SingleEndANA2_DiffANA2pANA3n

Single Endned ANAZ2 Signal Or Differential ANA2+, ANA3- signal.
enumerator kCADC_ SingleEndANA3_DiffANA2pANA3n

Single Endned ANA3 Signal Or Differential ANA2+, ANA3- signal.

enumerator kCADC_ SingleEndANA4_DiffANA4pANA5n
Single Endned ANAA4 Signal Or Differential ANA4+, ANAS5- signal.

enumerator kCADC_ SingleEndANA5_DiffANA4pANAb5n

Single Endned ANAS Signal Or Differential ANA4+, ANAS5- signal.
enumerator kCADC_SingleEndANA6_DiffANAG6pANATn

Single Endned ANASG Signal Or Differential ANA6+, ANA7- signal.
enumerator kCADC_ SingleEndANA7_DiffANA6pANAT7Tn

Single Endned ANA7 Signal Or Differential ANA6+, ANA7- signal.
enumerator kCADC_ SingleEnd ANBO_ Diff ANBOpANB1n

Single Endned ANBO Signal Or Differential ANBO+, ANB1- signal.

enumerator kCADC_ SingleEndANB1_ Diff ANBOpANB1n
Single Endned ANB1 Signal Or Differential ANBO+, ANB1- signal.

enumerator kCADC_ SingleEndANB2_ Diff ANB2pANB3n
Single Endned ANB2 Signal Or Differential ANB2+, ANB3- signal.

enumerator kCADC_ SingleEnd ANB3_ DiffANB2pANB3n
Single Endned ANB3 Signal Or Differential ANB2+, ANB3- signal.

enumerator kCADC_ SingleEndANB4_ Diff ANB4pANBb5Hn

Single Endned ANB4 Signal Or Differential ANB4+, ANB5- signal.
enumerator kCADC_ SingleEndANB5_ Diff ANB4pANB5n

Single Endned ANBS5 Signal Or Differential ANB4+, ANB5- signal.
enumerator kCADC_SingleEnd ANB6_ Diff ANB6pANBTn

Single Endned ANBS6 Signal Or Differential ANB6+, ANB7- signal.

enumerator kCADC_ SingleEndANB7_ Diff ANB6pANB7n
Single Endned ANB?7 Signal Or Differential ANB6+, ANB7- signal.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 57

MCUXpresso SDK Documentation, Release 25.09.00

enum _ cadc_sample_ slot_ mask
The enumeration of sample slot mask.

Values:

enumerator kCADC_ NonSampleSlotMask

enumerator kCADC_ SampleSlotOMask
The mask of sample slot0.
enumerator kCADC__ SampleSlot1Mask
The mask of sample slot1.
enumerator kCADC__SampleSlot2Mask
The mask of sample slot2.
enumerator kCADC_ SampleSlot3Mask
The mask of sample slot3.
enumerator kCADC_ SampleSlot4Mask
The mask of sample slot4.
enumerator kCADC__ SampleSlot5Mask
The mask of sample slot5.
enumerator kCADC__ SampleSlot6Mask
The mask of sample slot6.
enumerator kCADC__ SampleSlot7Mask
The mask of sample slot7.
enumerator kCADC_ SampleSlot8Mask
The mask of sample slot8.
enumerator kCADC_ SampleSlot9Mask
The mask of sample slot9.
enumerator kCADC_ SampleSlot10Mask
The mask of sample slot10.
enumerator kCADC_ SampleSlot11Mask
The mask of sample slot11.
enumerator kCADC_ SampleSlot12Mask
The mask of sample slot12.
enumerator kCADC_ SampleSlot13Mask
The mask of sample slot13.
enumerator kCADC__ SampleSlot14Mask
The mask of sample slot14.
enumerator kCADC__ SampleSlot15Mask
The mask of sample slot15.
enumerator kCADC__AllSampleSlotsMask
The mask of all sample slots.
enum _ cadc_sample_slot_ index
The enumeration of sample slot index.

Values:

38

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCADC__SampleSlotOIndex
The index of sample slot0.

enumerator kCADC__SampleSlot1Index
The index of sample slot1.
enumerator kCADC__SampleSlot2Index
The index of sample slot2.
enumerator kCADC__SampleSlot3Index
The index of sample slot3.
enumerator kCADC_ SampleSlot4Index
The index of sample slot4.
enumerator kCADC__SampleSlot5Index
The index of sample slot5.
enumerator kCADC__SampleSlot6Index
The index of sample slot6.
enumerator kCADC__SampleSlot7Index
The index of sample slot7.
enumerator kCADC__SampleSlot8Index
The index of sample slot8.
enumerator kCADC__SampleSlot9Index
The index of sample slot9.
enumerator kCADC_ SampleSlot10Index
The index of sample slot10.
enumerator kCADC_ SampleSlot11Index
The index of sample slot11.
enumerator kCADC_ SampleSlot12Index
The index of sample slot12.
enumerator kCADC_ SampleSlot13Index
The index of sample slot13.
enumerator kCADC_SampleSlot14Index
The index of sample slot14.
enumerator kCADC_ SampleSlot15Index
The index of sample slot15.
enum _ cadc_sample_slot_ sequential mode disabled
The enumeration for the sample slot to be disabled in sequential mode.
Values:
enumerator kCADC_ SampleODisabled
Disable Sample slot0, the scan will stop at sample slot0 in sequential scan mode
enumerator kCADC_ SamplelDisabled
Disable Sample slot1, the scan will stop at sample slotl in sequential scan mode

enumerator kCADC_Sample2Disabled
Disable Sample slot2, the scan will stop at sample slot2 in sequential scan mode

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver

39

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCADC_ Sample3Disabled
Disable Sample slot3, the scan will stop at sample slot3 in sequential scan mode

enumerator kCADC__Sample4Disabled
Disable Sample slot4, the scan will stop at sample slot4 in sequential scan mode

enumerator kCADC_ Sample5Disabled
Disable Sample slot5, the scan will stop at sample slot5 in sequential scan mode

enumerator kCADC_ Sample6Disabled
Disable Sample slot6, the scan will stop at sample slot6 in sequential scan mode

enumerator kCADC_ Sample7Disabled
Disable Sample slot7, the scan will stop at sample slot7 in sequential scan mode

enumerator kCADC_ Sample8Disabled
Disable Sample slot8, the scan will stop at sample slot8 in sequential scan mode

enumerator kCADC_ Sample9Disabled
Disable Sample slot9, the scan will stop at sample slot9 in sequential scan mode

enumerator kCADC_Samplel0Disabled
Disable Sample slot10, the scan will stop at sample slot10 in sequential scan mode

enumerator kCADC__Samplel1Disabled
Disable Sample slot11, the scan will stop at sample slotl1 in sequential scan mode

enumerator kCADC__Samplel2Disabled
Disable Sample slot12, the scan will stop at sample slot12 in sequential scan mode

enumerator kCADC_Samplel3Disabled
Disable Sample slot13, the scan will stop at sample slot13 in sequential scan mode

enumerator kCADC_ Samplel4Disabled
Disable Sample slot14, the scan will stop at sample slot14 in sequential scan mode

enumerator kCADC__Samplel5Disabled
Disable Sample slot15, the scan will stop at sample slot15 in sequential scan mode

enum _ cadc_sample_slot_ simultParallel _mode_ disabled

The enumeration for the sample slot to be disabled in simultaneous parallel mode.
Values:

enumerator kCADC__Sample0_ 8Disabled
Disable Sample slot0 and Sample Slot 8, in the simultaneous parallel mode the con-
verter A and converter B will stop at Sample slot0 and Sample slot 8.

enumerator kCADC_Samplel 9Disabled
Disable Sample slotl and Sample Slot 9, in the simultaneous parallel mode the con-
verter A and converter B will stop at Sample slot1 and Sample slot 9.

enumerator kCADC__Sample2_10Disabled
Disable Sample slot2 and Sample Slot 10, in the simultaneous parallel mode the con-
verter A and converter B will stop at Sample slot2 and Sample slot 10.

enumerator kCADC_ Sample3_ 11Disabled
Disable Sample slot3 and Sample Slot 11, in the simultaneous parallel mode the con-
verter A and converter B will stop at Sample slot3 and Sample slot 11.

enumerator kCADC_Sample4 12Disabled

Disable Sample slot4 and Sample Slot 12, in the simultaneous parallel mode the con-
verter A and converter B will stop at Sample slot4 and Sample slot 12.

60

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCADC__Sample5_ 13Disabled

Disable Sample slot5 and Sample Slot 13, in the simultaneous parallel mode the con-
verter A and converter B will stop at Sample slot5 and Sample slot 13.

enumerator kCADC__Sample6_ 14Disabled

Disable Sample slot6 and Sample Slot 14, in the simultaneous parallel mode the con-
verter A and converter B will stop at Sample slot7 and Sample slot 14.

enumerator kCADC_ Sample7_ 15Disabled

Disable Sample slot7 and Sample Slot 15, in the simultaneous parallel mode the con-
verter A and converter B will stop at Sample slot7 and Sample slot 15.

enum _ cadc_sample_slot_ independentParallel _mode convA_ disabled

The enumeration for the sample slot to be disabled for the converter A in independent
parallel mode.

Values:
enumerator kCADC__ConvASampleODisabled

Disable Sample slot0, the scan will stop at sample slot0 in sequential scan mode
enumerator kCADC__ConvASamplelDisabled

Disable Sample slot1, the scan will stop at sample slot1 in sequential scan mode
enumerator kCADC_ ConvASample2Disabled

Disable Sample slot2, the scan will stop at sample slot2 in sequential scan mode
enumerator kCADC_ ConvASample3Disabled

Disable Sample slot3, the scan will stop at sample slot3 in sequential scan mode
enumerator kCADC_ ConvASample4Disabled

Disable Sample slot4, the scan will stop at sample slot4 in sequential scan mode
enumerator kCADC_ ConvASample5Disabled

Disable Sample slot5, the scan will stop at sample slot5 in sequential scan mode
enumerator kCADC_ ConvASample6Disabled

Disable Sample slot6, the scan will stop at sample slot6 in sequential scan mode
enumerator kCADC_ ConvASample7Disabled

Disable Sample slot7, the scan will stop at sample slot7 in sequential scan mode
enumerator kCADC_ ConvASampleReserved

Reserved

enum _ cadc_sample_slot_indParallel _mode_ convB_ disabled

The enumeration for the sample slot to be disabled for the converter B in independent
parallel mode.

Values:
enumerator kCADC_ ConvBSample8Disabled
Disable Sample slot8, the scan will stop at sample slot8 in sequential scan mode

enumerator kCADC_ ConvBSample9Disabled

Disable Sample slot9, the scan will stop at sample slot9 in sequential scan mode
enumerator kCADC_ ConvBSamplel0Disabled

Disable Sample slot10, the scan will stop at sample slot10 in sequential scan mode

enumerator kCADC__ ConvBSamplel1Disabled
Disable Sample slot11, the scan will stop at sample slotl1 in sequential scan mode

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 61

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCADC__ConvBSamplel2Disabled
Disable Sample slot12, the scan will stop at sample slot12 in sequential scan mode

enumerator kCADC__ConvBSamplel3Disabled
Disable Sample slot13, the scan will stop at sample slot13 in sequential scan mode
enumerator kCADC__ConvBSamplel4Disabled
Disable Sample slot14, the scan will stop at sample slot14 in sequential scan mode
enumerator kCADC__ConvBSamplel5Disabled
Disable Sample slot15, the scan will stop at sample slot15 in sequential scan mode
enumerator kCADC_ConvBSampleReserved
Reserved
enum _ cadc_sample_slot_ zero_ crossing mode
The enumeration for the sample slot’s zero crossing event.
Values:
enumerator kCADC_ ZeroCrossingDisabled
Zero Crossing disabled.
enumerator kCADC_ ZeroCrossingForPtoNSign
Zero Crossing enabled for positive to negative sign change.
enumerator kCADC__ ZeroCrossingForNtoPSign
Zero Crossing enabled for negative to positive sign change.
enumerator kCADC_ ZeroCrossingFor AnySignChanged
Zero Crossing enabled for any sign change.
enum _ cadc_expansion__mux_ operate_mode
The enumeration for expansion multiplexer.
Values:
enumerator kCADC_ExpMuxManualMode
MUX channel feeding to ANA4/ANB4 is selected as MUXSELDO.
enumerator kCADC__ExpMuxScanMode0
The sample completion of ANA4/ANB4 enableds subsequent selected channel.
enumerator kCADC_ExpMuxScanModel
The sample completion of ANA7/ANB7 enableds subsequent selected channel.

enumerator kCADC__ExpMuxScanMode2
The sample completion of ANA4/ANB4 or ANA7/ANB7 enableds subsequent selected
channel.
enum _ cadc_ auxiliary__control
The enumeration of conveter’s auxiliary control.

Values:

enumerator kCADC__ AuxSel0_ Config0
Auxiliary select 0 controls AUX_SELO = 0, AUX_SEL1 =0.

enumerator kCADC__AuxSel0__Configl
Auxiliary select 0 controls AUX_SELO = 1, AUX_SEL1 =0.

enumerator kCADC__AuxSel0__Config2
Auxiliary select 0 controls AUX_SELO = 0, AUX_SEL1 =1.

62 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCADC__AuxSel0_ Config3
Auxiliary select 0 controls AUX_SELO = 1, AUX_SEL1 = 1.

enumerator kCADC__AuxSell_ Config0
Auxiliary select 1 controls AUX_SELO = 0, AUX_SEL1 =0.

enumerator kCADC__AuxSell_ Configl
Auxiliary select 1 controls AUX_SELO = 1, AUX_SEL1 = 0.

enumerator kCADC__AuxSell_ Config2

Auxiliary select 1 controls AUX_SELO = 0, AUX_SEL1 =1.
enumerator kCADC__AuxSell__Config3

Auxiliary select 1 controls AUX_SELO = 1, AUX_SEL1 =1.
enumerator kCADC__AuxSel2_ Config0

Auxiliary select 2 controls AUX_SELO = 0, AUX_SEL1 =0.
enumerator kCADC__AuxSel2_ Configl

Auxiliary select 2 controls AUX_SELO = 1, AUX_SEL1 =0.
enumerator kCADC__AuxSel2_ Config2

Auxiliary select 2 controls AUX_SELO = 0, AUX_SEL1 =1.
enumerator kCADC__AuxSel2_ Config3

Auxiliary select 2 controls AUX_SELO = 1, AUX_SEL1 =1.
enumerator kCADC__ AuxSel3_ Config0

Auxiliary select 3 controls AUX_SELO = 0, AUX_SEL1 =0.
enumerator kCADC__AuxSel3_ Configl

Auxiliary select 3 controls AUX_SELO = 1, AUX_SEL1 =0.
enumerator kCADC__AuxSel3__Config2

Auxiliary select 3 controls AUX_SELO = 0, AUX_SEL1 =1.
enumerator kCADC__AuxSel3_ Config3

Auxiliary select 3 controls AUX_SELO = 1, AUX_SEL1 =1.
enumerator kCADC__AuxSel4d_ Config0

Auxiliary select 4 controls AUX_SELO = 0, AUX_SEL1 =0.
enumerator kCADC__AuxSel4_ Configl

Auxiliary select 4 controls AUX_SELO = 1, AUX_SEL1 =0.
enumerator kCADC__AuxSel4_ Config2

Auxiliary select 4 controls AUX_SELO = 0, AUX_SEL1 =1.
enumerator kCADC__AuxSel4d_ Config3

Auxiliary select 4 controls AUX_SELO = 1, AUX_SEL1 =1.
enumerator kCADC__ AuxSel5_ Config0

Auxiliary select 5 controls AUX_SELO = 0, AUX_SEL1 =0.
enumerator kCADC__AuxSel5_ Configl

Auxiliary select 5 controls AUX_SELO = 1, AUX_SEL1 =0.
enumerator kCADC__AuxSel5_ Config2

Auxiliary select 5 controls AUX_SELO = 0, AUX_SEL1 =1.

enumerator kCADC__ AuxSel5_ Config3
Auxiliary select 5 controls AUX_SELO =1, AUX_SEL1 =1.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 63

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCADC__AuxSel6_ Config0
Auxiliary select 6 controls AUX_SELO = 0, AUX_SEL1 = 0.

enumerator kCADC__AuxSel6_ Configl
Auxiliary select 6 controls AUX_SELO = 1, AUX_SEL1 =0.
enumerator kCADC__AuxSel6_ Config2
Auxiliary select 6 controls AUX_SELO = 0, AUX_SEL1 = 1.
enumerator kCADC__AuxSel6_ Config3
Auxiliary select 6 controls AUX_SELO = 1, AUX_SEL1 =1.
enumerator kCADC__AuxSel7__Config0
Auxiliary select 7 controls AUX_SELO = 0, AUX_SEL1 =0.
enumerator kCADC__AuxSel7_Configl
Auxiliary select 7 controls AUX_SELO = 1, AUX_SEL1 =0.
enumerator kCADC__AuxSel7__Config2
Auxiliary select 7 controls AUX_SELO = 0, AUX_SEL1 =1.
enumerator kCADC__AuxSel7_Config3
Auxiliary select 7 controls AUX_SELO = 1, AUX_SEL1 =1.
enum _ cadc_expansion_ disabled__mux_ slot
The enumeration for the expansion mux slot to be disabled.
Values:
enumerator kCADC__ExpaMuxNoDisable
Expansion mux scan not disabled.
enumerator kCADC_ ExpMux0Disable
Expansion mux slot 0.
enumerator kCADC_ExpMux1Disable
Expansion mux slot 1.
enumerator kCADC__ ExpMux2Disable
Expansion mux slot 2.
enumerator kCADC__ExpMux3Disable
Expansion mux slot 3.
enumerator kCADC__ ExpMux4Disable
Expansion mux slot 4.
enumerator kCADC__ExpMux5Disable
Expansion mux slot 5.
enumerator kCADC_ExpMux6Disable
Expansion mux slot 6.
enumerator kCADC__ExpMux7Disable
Expansion mux slot 7.
enum _ cadc__expansion_mux_ selection
The enumeration of expanssion mux selection.
Values:

enumerator kCADC MuxSel0 Channel0
MUX’s channel 0 for MUXSELDO.

64 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCADC MuxSel0_ Channell
MUX’s channel 1 for MUXSELDO.

enumerator kCADC MuxSel0_ Channel2
MUX’s channel 2 for MUXSELDO.

enumerator kCADC MuxSel0_ Channel3
MUX’s channel 3 for MUXSELDO.

enumerator kCADC MuxSel0 Channel4
MUX’s channel 4 for MUXSELDO.

enumerator kCADC MuxSel0 Channel5
MUX’s channel 5 for MUXSELDO.

enumerator kCADC MuxSel0 Channel6
MUX’s channel 6 for MUXSELDO.

enumerator kCADC_MuxSel0 Channel7
MUX’s channel 7 for MUXSELDO.

enumerator kCADC_MuxSell Channel0
MUX’s channel 0 for MUXSEL1.

enumerator kCADC_MuxSell Channell
MUX’s channel 1 for MUXSEL1.

enumerator kCADC_MuxSell Channel2
MUX’s channel 2 for MUXSEL1.

enumerator kCADC_MuxSell Channel3
MUX’s channel 3 for MUXSEL1.

enumerator kCADC_MuxSell Channel4
MUX’s channel 4 for MUXSEL1.

enumerator kCADC_MuxSell Channelb
MUX’s channel 5 for MUXSEL1.

enumerator kCADC_MuxSell Channel6
MUX’s channel 6 for MUXSEL1.

enumerator kCADC_MuxSell Channel7
MUX’s channel 7 for MUXSEL1.

enumerator kCADC_MuxSel2 Channel0
MUX’s channel 0 for MUXSEL2.

enumerator kCADC_MuxSel2 Channell
MUX’s channel 1 for MUXSEL2.

enumerator kCADC_MuxSel2 Channel2
MUX’s channel 2 for MUXSEL2.

enumerator kCADC_MuxSel2 Channel3
MUX’s channel 3 for MUXSEL2.

enumerator kCADC_MuxSel2 Channel4
MUX’s channel 4 for MUXSEL2.

enumerator kCADC_MuxSel2 Channelb
MUX’s channel 5 for MUXSEL?2.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 65

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCADC MuxSel2 Channel6
MUX’s channel 6 for MUXSEL2.

enumerator kCADC MuxSel2 Channel?
MUX’s channel 7 for MUXSEL2.

enumerator kCADC MuxSel3 Channel0
MUX’s channel 0 for MUXSEL3.

enumerator kCADC MuxSel3 Channell
MUX’s channel 1 for MUXSEL3.

enumerator kCADC MuxSel3 Channel2
MUX’s channel 2 for MUXSEL3.

enumerator kCADC MuxSel3 Channel3
MUX’s channel 3 for MUXSEL3.

enumerator kCADC_MuxSel3 Channel4
MUX’s channel 4 for MUXSEL3.

enumerator kCADC_MuxSel3 Channelb
MUX’s channel 5 for MUXSEL3.

enumerator kCADC_MuxSel3 Channel6
MUX’s channel 6 for MUXSEL3.

enumerator kCADC_MuxSel3 Channel7
MUX’s channel 7 for MUXSEL3.

enumerator kCADC_MuxSel4 Channel0
MUX’s channel 0 for MUXSELA4.

enumerator kCADC_MuxSel4 Channell
MUX’s channel 1 for MUXSELA4.

enumerator kCADC_MuxSel4 Channel2
MUX’s channel 2 for MUXSELA4.

enumerator kCADC_MuxSel4 Channel3
MUX’s channel 3 for MUXSELA4.

enumerator kCADC_MuxSel4 Channel4
MUX’s channel 4 for MUXSELA4.

enumerator kCADC_MuxSel4 Channelb
MUX’s channel 5 for MUXSELA4.

enumerator kCADC_MuxSel4 Channel6
MUX’s channel 6 for MUXSELA4.

enumerator kCADC_MuxSel4 Channel7
MUX’s channel 7 for MUXSELA4.

enumerator kCADC_MuxSel5 Channel0
MUX’s channel 0 for MUXSELS5.

enumerator kCADC_MuxSel5 Channell
MUX’s channel 1 for MUXSELS5.

enumerator kCADC_MuxSel5 Channel2
MUX’s channel 2 for MUXSELS5.

66

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCADC MuxSel5 Channel3
MUX’s channel 3 for MUXSELS5.

enumerator kCADC MuxSel5 Channel4
MUX’s channel 4 for MUXSELS5.

enumerator kCADC MuxSel5 Channelb
MUX’s channel 5 for MUXSELS5.

enumerator kCADC MuxSel5 Channel6
MUX’s channel 6 for MUXSELS5.

enumerator kCADC MuxSel5 Channel?
MUX’s channel 7 for MUXSELS5.

enumerator kCADC MuxSel6_ Channel0
MUX’s channel 0 for MUXSELS6.

enumerator kCADC_MuxSel6 Channell
MUX’s channel 1 for MUXSELS6.

enumerator kCADC_MuxSel6 Channel?2
MUX’s channel 2 for MUXSELS6.

enumerator kCADC_MuxSel6_ Channel3
MUX’s channel 3 for MUXSELS6.

enumerator kCADC_MuxSel6 Channel4
MUX’s channel 4 for MUXSELS6.

enumerator kCADC_MuxSel6 Channelb
MUX’s channel 5 for MUXSELS6.

enumerator kCADC_MuxSel6_Channel6
MUX’s channel 6 for MUXSELS6.

enumerator kCADC_MuxSel6 Channel7
MUX’s channel 7 for MUXSELS6.

enumerator kCADC_MuxSel7 Channel0
MUX’s channel 0 for MUXSEL?7.

enumerator kCADC_MuxSel7 Channell
MUX’s channel 1 for MUXSEL?7.

enumerator kCADC_MuxSel7 Channel2
MUX’s channel 2 for MUXSEL?7.

enumerator kCADC_MuxSel7 Channel3
MUX’s channel 3 for MUXSEL?7.

enumerator kCADC_MuxSel7 Channel4
MUX’s channel 4 for MUXSEL?7.

enumerator kCADC_MuxSel7 Channelb
MUX’s channel 5 for MUXSEL?7.

enumerator kCADC_MuxSel7 Channel6
MUX’s channel 6 for MUXSEL?7.

enumerator kCADC_MuxSel7 Channel7
MUX’s channel 7 for MUXSEL?7.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 67

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _cadc_converter_id cadc_ converter__id_t
CADC Converter identifier.

typedef enum _cadc_idle_work_mode cadc_idle_work_mode_t
The enumeration of work mode when the module is not used.

typedef enum _cadc_dma_trigger_source cadc_dma_ trigger_source_t
The enumeration of DMA trigger source.

typedef enum _cadc_scan_mode cadc_scan_mode_ t
The enumeration of dual converter’s scan mode.

typedef enum _cadc_reference_voltage_source cadc_ reference voltage source_ t
The enumeration of converter’s reference voltage source.

typedef enum _cadc_channel_gain cadc_ channel gain_t
The enumeration of sample slot connected channel gain.

typedef enum _cadc_channel_mode cadc_ channel mode_ t
The enumeration of all channels’ channel mode.

typedef enum _cadc_channel_number cadc_channel number_ t
The enumerator of all channels that can be routed to the specific sample slot.

typedef enum _cadc_sample_slot_mask cadc_sample_ slot_ mask_ t
The enumeration of sample slot mask.

typedef enum _cadc_sample_slot_index cadc_sample_slot_index_ t
The enumeration of sample slot index.
typedef enum _cadc_sample_slot_sequential mode_disabled
cadc__sample_slot_sequential mode disabled_t
The enumeration for the sample slot to be disabled in sequential mode.
typedef enum _cadc_sample_slot_simultParallel mode_disabled
cadc_sample_ slot_ simultParallel _mode_ disabled_t
The enumeration for the sample slot to be disabled in simultaneous parallel mode.
typedef enum _cadc_sample_slot_independentParallel mode_convA_disabled
cadc_sample_slot_independentParallel mode convA_ disabled t
The enumeration for the sample slot to be disabled for the converter A in independent
parallel mode.
typedef enum _cadc_sample_slot_indParallel mode_convB_disabled
cadc_sample_ slot_independentParallel _mode_convB_ disabled_t
The enumeration for the sample slot to be disabled for the converter B in independent
parallel mode.
typedef enum _cadc_sample_slot_zero_crossing mode cadc_sample_slot_ zero_ crossing _mode_t
The enumeration for the sample slot’s zero crossing event.

typedef enum _cadc_expansion_mux_operate_mode cadc__expansion_mux_ operate_mode_t
The enumeration for expansion multiplexer.

typedef struct _cadc_sample_slot_independentParallel mode_disabled
cadc_sample_ slot_independentParallel _mode_ disabled_t

The structure of the disabled sample slots in independent parallel mode.

typedef union _cadc_sample_slot_disabled cadc_sample_slot_ disabled_t
The union of disabled sample slot for each scan mode.

68 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _cadc_sample_config cadc_sample_slot_ config_t
The structure for configuring the sample slot.

typedef struct _cadc_scan_ctrl_sequential mode cadc_scan_ctrl_seq_mode_t
Cadc scan control for sequential scan mode.

Note: Each member of this structure represent one bit of the word. Asserted the structure’s
member means delay sample until a new sync input occurs. Cleared the structure’s member
means perform sample immediately after the completion of the current sample.

typedef struct _cadc_scan_ctrl simultParallel mode cadc_scan_ ctrl_simultParallel mode_t
Cadc scan control for simultaneous parallel scan mode.

Note: Each member of this structure represent one bit of the word. Asserted the structure’s
member means delay sample until a new sync input occurs. Cleared the structure’s member
means perform sample immediately after the completion of the current sample.

typedef struct _cadc_scan_ctrl_independent_parallel_ mode_converterA
cadc_scan__ctrl_independent_ parallel _mode_converterA_t

The scan ctrl struture for converterA in independent scan mode.

typedef struct _cadc_scan_ctrl_independent_parallel_mode_converterB
cadc_scan_ ctrl_independent_ parallel mode converterB_t

The scan ctrl struture for converterB in independent scan mode.

typedef union _cadc_scan_ctrl_independent_parallel_mode
cadc_scan_ ctrl_independent_ parallel _mode_t

The union for converters in independent parallel mode.

typedef union _cadc_scan_control cadc_scan_ control_t
The union of the scan control for each scan mode.

typedef enum _cadc_auxiliary_control cadc_ auxiliary control_t
The enumeration of conveter’s auxiliary control.

typedef enum _cadc_expansion_disabled_mux_slot cadc_ expansion_ disabled mux_ slot_t
The enumeration for the expansion mux slot to be disabled.

typedef enum _cadc_expansion_mux_selection cadc_ expansion_mux_ selection_ t
The enumeration of expanssion mux selection.

typedef struct _cadc_exp_mux_aux_config cadc_exp_mux_aux_ config_t
The structure for configuring Cyclic ADC’s expansion setting.

typedef struct _cadc_converter_config cadc_ converter config t
The structure for configuring each converter.

typedef struct _cadc_config cadc_config t

The structure for configuring the Cyclic ADC’s setting.
CADC_SAMPLE_SLOTS_COUNT

Macro for CADC sample slot count.

struct _ cadc_sample_slot_ independentParallel _mode disabled

#include <fsl_cadc.h> The structure of the disabled sample slots in independent parallel
mode.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 69

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

cadc_sample_slot_independentParallel mode_convA_disabled_t eConverter A
The sample slot to be disabled for the converter A, when the scan mode is set as inde-
pendent parallel mode.

cadc_sample_slot_independentParallel mode_convB_disabled_t eConverterB
The sample slot to be disabled for the converter B, when the scan mode is set as inde-
pendent parallel mode.

union cadc_sample_slot disabled
#include <fsl_cadc.h> The union of disabled sample slot for each scan mode.

Public Members

uint32_t u32SampleDisVal
The 32 bits width of disabled sample slot value. This member used to get the disabled
sample slot which sets in different scan modes in word type. This member is not rec-
ommended to be used to set the disabled sample slot. This member is designed to be
used in driver level only, the application should not use this member.
cadc_sample_slot_sequential_ mode_disabled_t eSequentialModeDisSample

If the scan mode is selected as sequential mode, the application must use this member
to set the disabled sample slot. This member is used to set disabled sample slot when
the scan mode is selected as sequential mode. The scan will stop at the first disabled
sample slot in that mode. So for the application, this member should be set as one
sample slot index that the scan will stop.

cadc_sample_slot_simultParallel_ mode_disabled_t eSimultParallelModeDisSample

In simultaneous parallel scan mode, the application must use this member to set the
disabled sample slot. In that scan mode, the scan will stop when either converter en-
counters a disabled sample.

cadc_sample_slot_independentParallel mode_disabled_t sIndependentParallelModeDisSample

In independent parallel scan mode, the application must use this member to set the
disabled sample slot. In that scan mode, the converter will stop scan when it encoun-
ters a disabled sample slot. In this mode, the disabled sample slot for converterA and
converterB may different.

struct _ cadc_sample_ config
#include <fsl_cadc.h> The structure for configuring the sample slot.

Public Members
cadc_sample_slot_zero_crossing_mode_t eZeroCrossingMode
Zero crossing mode.
uint16_t ul6HighLimitValue
High limit value. Original value formation as hardware register, with 3-bits left shifted.
uint16_t ul6LowLimitValue
Low limit value. Original value formation as hardware register, with 3-bits left shifted.

uint16_t ul60ffsetValue
Offset value. Original value formation as hardware register, with 3-bits left shifted.

70 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

struct _ cadc_scan_ ctrl_sequential _mode
#include <fsl_cadc.h> Cadc scan control for sequential scan mode.

Note: Each member of this structure represent one bit of the word. Asserted the structure’s
member means delay sample until a new sync input occurs. Cleared the structure’s member
means perform sample immediately after the completion of the current sample.

Public Members
uint32_t bitSample0

Control whether delay sample0 until a new sync input occurs.
uint32_t bitSamplel

Control whether delay samplel until a new sync input occurs.
uint32_t bitSample2

Control whether delay sample2 until a new sync input occurs.
uint32_t bitSample3

Control whether delay sample3 until a new sync input occurs.
uint32_t bitSample4

Control whether delay sample4 until a new sync input occurs.
uint32_t bitSampleb

Control whether delay sample5 until a new sync input occurs.
uint32_t bitSample6

Control whether delay sample6 until a new sync input occurs.
uint32_t bitSample7

Control whether delay sample7 until a new sync input occurs.
uint32_t bitSample8

Control whether delay sample8 until a new sync input occurs.
uint32_t bitSample9

Control whether delay sample9 until a new sync input occurs.
uint32_t bitSamplel0

Control whether delay sample10 until a new sync input occurs.
uint32_t bitSamplell

Control whether delay sample11 until a new sync input occurs.
uint32_t bitSamplel2

Control whether delay sample12 until a new sync input occurs.
uint32_t bitSamplel3

Control whether delay sample13 until a new sync input occurs.
uint32_t bitSamplel4

Control whether delay sample14 until a new sync input occurs.
uint32_t bitSamplel5

Control whether delay sample15 until a new sync input occurs.

uint32_t bitsReserved
Reserved 16 bits.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 71

MCUXpresso SDK Documentation, Release 25.09.00

struct cadc_scan ctrl simultParallel mode

#include <fsl_cadc.h> Cadc scan control for simultaneous parallel scan mode.

Note: Each member of this structure represent one bit of the word. Asserted the structure’s
member means delay sample until a new sync input occurs. Cleared the structure’s member
means perform sample immediately after the completion of the current sample.

Public Members
uint32_t bitSample0 8

Control whether delay sample0 and sample8 until a new sync input occurs.
uint32_t bitSamplel 9

Control whether delay samplel and sample9 until a new sync input occurs.
uint32_t bitSample2 10

Control whether delay sample2 and sample10 until a new sync input occurs.
uint32_t bitSample3 11

Control whether delay sample3 and sample11 until a new sync input occurs.
uint32_t bitsReservedl

Reserved 4 bits.
uint32_t bitSample4 12

Control whether delay sample4 and sample12 until a new sync input occurs.
uint32_t bitSample5_ 13

Control whether delay sample5 and sample13 until a new sync input occurs.
uint32_t bitSample6 14

Control whether delay sample6 and sample14 until a new sync input occurs.
uint32_t bitSample7 15

Control whether delay sample7 and sample15 until a new sync input occurs.
uint32_t bitsReserved2

Reserved 4 bits.

uint32_t bitsReserved3
Reserved 16 bits.

struct _cadc_scan_ ctrl independent_parallel mode_converterA

#include <fsl_cadc.h> The scan ctrl struture for converterA in independent scan mode.

Public Members
uint32_t bitSample0

Control whether delay converterA’s sample0 until a new sync input occurs.
uint32_t bitSamplel

Control whether delay converterA’s samplel until a new sync input occurs.

uint32_t bitSample2
Control whether delay converterA’s sample2 until a new sync input occurs.

uint32_t bitSample3
Control whether delay converterA’s sample3 until a new sync input occurs.

72

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t bitsReservedl
Reserved 4 bits.

uint32_t bitSample4

Control whether delay converterA’s sample4 until a new sync input occurs.
uint32_t bitSample5

Control whether delay converterA’s sample5 until a new sync input occurs.
uint32_t bitSample6

Control whether delay converterA’s sample6 until a new sync input occurs.
uint32_t bitSample?

Control whether delay converterA’s sample7 until a new sync input occurs.
uint32_t bitsReserved?2

Reserved 4 bits
uint32_t bitsReserved3

Reserved 16 bits.

struct _ cadc_scan_ ctrl_independent_ parallel _mode_converterB
#include <fsl_cadc.h> The scan ctrl struture for converterB in independent scan mode.

Public Members
uint32_t bitsReservedl

Reserved 4 bits.
uint32_t bitSample8

Control whether delay converterB’s sample8 until a new sync input occurs.
uint32_t bitSample9

Control whether delay converterB’s sample9 until a new sync input occurs.
uint32_t bitSamplel0

Control whether delay converterB’s sample10 until a new sync input occurs.
uint32_t bitSamplell

Control whether delay converterB’s samplel11 until a new sync input occurs.
uint32_t bitsReserved?2

Reserved 4 bits.
uint32_t bitSamplel2

Control whether delay converterB’s sample12 until a new sync input occurs.
uint32_t bitSamplel3

Control whether delay converterB’s sample13 until a new sync input occurs.
uint32_t bitSamplel4

Control whether delay converterB’s sample14 until a new sync input occurs.
uint32_t bitSamplel5

Control whether delay converterB’s sample15 until a new sync input occurs.
uint32_t bitsReserved3

Reserved 16 bits.

union _ cadc_scan_ ctrl_independent_ parallel_mode
#include <fsl_cadc.h> The union for converters in independent parallel mode.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 73

MCUXpresso SDK Documentation, Release 25.09.00

Public Members
cadc_scan_ctrl_independent_parallel_mode_converterA_t sConverter A
Scan control for converterA.

cadc_scan_ctrl independent_parallel_mode_converterB_t sConverterB
Scan control for converterB.

union cadc scan_ control
#include <fsl_cadc.h> The union of the scan control for each scan mode.

Public Members
uint32_t u32ScanCtrlVal
The 32 bits value of the scan control value.

cadc_scan_ctrl_seq_mode_t sSequential
Scan control for sequential scan mode.

cadc_scan_ctrl_simultParallel mode_t sSimultParallel
Scan control for simultaneous parallel scan mode.

cadc_scan_ctrl_independent_parallel mode_t ulndependentParallel
Scan control for independent scan mode.

struct _ cadc_ exp_ mux_ aux_ config
#include <fsl_cadc.h> The structure for configuring Cyclic ADC’s expansion setting.

Public Members
uint16_t ul6AuxControl
The mask of auxiliary control, should be the OR’ed value of cadc_auxiliary_control_t.

uint32_t u32MuxChannelMask

The mask of mux selection of all mux solts, should be the ORed value of
cadc_expansion_mux_selection_t.

cadc_expansion_disabled_mux_slot_t disabledMuxSlot
mux slot to disabled in the scan.

struct _ cadc__converter_ config
#include <fsl_cadc.h> The structure for configuring each converter.

Public Members
uint16_t ul6ClockDivisor
Converter’s clock divisor for the clock source. Available setting range is 0-63.
* When the clockDivisor is 0, the divisor is 2.

» Tor all other clockDivisor values, the divisor is 1 more than the decimal value of
clockDivisor: clockDivisor + 1

cadc_reference_voltage_source_t eHighReferenceVoltageSource
High voltage reference source.

cadc_reference_voltage_source_t eLowReferenceVoltageSource
Low reference voltage source.

74 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

bool bEnableDMA
Enable/Disable DMA.
bool bPowerUp
Power up or power down the converter.
bool bScanInitBySync
The member user to control the initiate method of the scan.
* true Use a SYNC input pulse or START command to initiate a scan.
» false Scan is initiated by the assertion of START command only.
cadc_exp_mux_aux_config_t muxAuxConfig
Configuration of expansion mux and auxiliary control.
struct _ cadc_ config
#include <fsl_cadc.h> The structure for configuring the Cyclic ADC’s setting.

Public Members

cadc_idle_work_mode_t eldleWorkMode
Idle work mode for the module.
cadc_dma_trigger_source_t eDMATriggerSource
Selects the dma trigger source for the module.
uint16_t ul6PowerUpDelay

The number of ADC clocks to power up the converters (if powered up), before allowing
a scan to start. The available range is 0 to 63 .

uint32_t u32EnabledInterruptMask

The mask of the interrupts to be enabled, should be the ORed value of
_cadc_interrupt_enable.

cadc_scan_mode_t eScanMode
The scan mode of the module.

cadc_sample_slot_disabled_t uDisabledSampleSlot

The member used to config the which sample slot is disabled for the scan. The scan
will continue until the first disabled sample slot is encountered.

cadc_scan_control_t uScanControl

Scan control provides the ability to pause and await a new sync signal while current
sample completed.

uint32_t u32ChannelModeMask
The mask of each channel’s mode, should be the OR’ed value of cadc_channel_mode_t.
Each channel supports single-end and differential(Fully differentail and Unipolar
differential). Some devices also support alternate source mode.

cadc_channel_gain_t eChannelGain[(ADC_RSLT_COUNT)]

The gain value for each channel. Each element of the array represents the gain of the
channel. E.g. eChannelGain[0] means channel gain of channel0O, which is ANAO.

cadc_channel_number_t eSampleSlot[(ADC_RSLT_COUNT)]

The channel assigned to each sample slot. The index of the array represents sample
slot index.

2.1. CADC: 12-bit Cyclic Analog-to-Digital Converter Driver 75

MCUXpresso SDK Documentation, Release 25.09.00

cadc_converter_config_t sConverterA
The configuration for converterA.

cadc_converter_config_t sConverterB
The configuration for converterB.

2.2 The Driver Change Log
2.3 CADC Peripheral and Driver Overview

2.4 Clock Driver

enum _ clock ip_name
List of IP clock name.

Values:

enumerator kCLOCK GPIOF
GPIOF clock

enumerator kCLOCK GPIOE
GPIOE clock

enumerator kCLOCK GPIOD
GPIOD clock

enumerator kCLOCK GPIOC
GPIOC clock

enumerator kCLOCK GPIOB
GPIOB clock

enumerator kCLOCK _GPIOA
GPIOA clock

enumerator kCLOCK_ TA3
Timer A3 clock

enumerator kCLOCK_TA2
Timer A2 clock

enumerator kCLOCK_ TA1
Timer A1l clock

enumerator kCLOCK_TAO0
Timer AO clock

enumerator kCLOCK_LPI2C0
LPI2CO clock

enumerator kCLOCK__QSPIO
QSPIO clock

enumerator kCLOCK QSCI1
QSCI1 clock

enumerator kCLOCK__QSCIO
QSCIO clock

76

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_PIT?2
PIT 2 clock

enumerator kCLOCK_PIT1
PIT 1 clock

enumerator kCLOCK_PITO0
PIT O clock

enumerator kCLOCK__QDC
QDC clock

enumerator kCLOCK_CRC
CRC clock

enumerator kCLOCK_ _CYCADC
Cyclic ADC clock

enumerator kCLOCK__CMPC
Comparator C clock

enumerator kCLOCK_CMPB
Comparator B clock

enumerator kCLOCK__ CMPA
Comparator A clock

enumerator kCLOCK_PWMACH3
Enhanced Flexible PWM A3 clock

enumerator kCLOCK_PWMACH2
Enhanced Flexible PWM A2 clock

enumerator kCLOCK_PWMACH1
Enhanced Flexible PWM A1 clock

enumerator kCLOCK_PWMACHO
Enhanced Flexible PWM AO clock

enumerator kCLOCK_ _OPAMPB
OPAMP B clock

enumerator kCLOCK_OPAMPA
OPAMP A clock

enumerator kCLOCK_NOGATE
Peripheral without clock gate control

enumerator kCLOCK EDMA
enumerator kCLOCK _EWM
enumerator kCLOCK XBARA

enumerator kCLOCK_NUM
Total IP clock number

enum _clock name
List of system-level clock name.

Values:

enumerator kCLOCK Mstr2xClk
Master 2x clock which feed to core and peripheral

2.4. Clock Driver 77

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK__SysClk
MCU system/core clock

enumerator kCLOCK__BusClk
Bus clock
enumerator kCLOCK__Bus2xClk
Bus 2x clock
enumerator kCLOCK _FlashClk
Flash clock
enumerator kCLOCK _ FastIrcClk
Fast internal RC oscillator, 8M/2M
enumerator kCLOCK _SlowlrcClk
Slow internal RC oscillator, 200K
enumerator kCLOCK_ CrystalOscClk
Crystal oscillator
enumerator kCLOCK__ExtClk
The selected external clock, it could be crystal oscillator, clkin0, clkinl
enumerator kCLOCK__ MstrOscClk
The selected master oscillator clock
enumerator kCLOCK__PlIDiv2Clk
PLL output divide 2
enum _ clock crystal_osc_mode
Crystal oscillator mode.
Values:
enumerator kCLOCK_ CrystalOscModeFSP
Full swing pierce, high power mode
enumerator kCLOCK_ CrystalOscModeLCP
Loop controlled pierce, low power mode
enum _clock ext clk src
List of external clock source.
Values:
enumerator kCLOCK__ExtClkSrcCrystalOsc
External clock source is crystal oscillator
enumerator kCLOCK__ExtClkSrcClkin
External clock source is clock in
enum clock ext clkin sel
List of clock-in source.
Values:
enumerator kCLOCK__SelCIkIn0
Clock in 0 is selected as CLKIN

enumerator kCLOCK SelClkInl
Clock in 1 is selected as CLKIN

78 Chapter 2

. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enum _clock mstr osc_clk src
List of master oscillator source.

Values:
enumerator kCLOCK_ MstrOscClkSrcFirc
8M/2M, fast internal RC oscillator
enumerator kCLOCK MstrOscClkSrcExt
External clock
enumerator kCLOCK_MstrOscClkSrcSire
200K, slow internal RC oscillator
enum clock mstr 2x clk src
List of master 2x clock source.
Values:
enumerator kCLOCK__Mstr2xClkSrcMstrOsc
Master oscillator clock
enumerator kCLOCK__Mstr2xClkSrcPIlIDiv2
PLL output divide 2
enum _ clock output_ clk src
List of output clock source.
Values:
enumerator kCLOCK__ OutputClkSrc_ Sys
MCU system/core clock
enumerator kCLOCK__ OutputClkSrc_ Mstr2x
Master 2x clock
enumerator kCLOCK_ OutputClkSrc_ BusDiv2
Bus clock div 2
enumerator kCLOCK_ OutputClkSrc_ MstrOSC
Master oscillator clock
enumerator kCLOCK_ OutputClkSrc_ Firc
Fast IRC clock, 8M/2M
enumerator kCLOCK_ OutputClkSrc_ Sirc
Slow IRC clock, 200K
enum _ clock output_ clk div
List of output clock divider.
Values:
enumerator kCLOCK_ OutputDivl
output clock = selectedClock/1U
enumerator kCLOCK_ OutputDiv2
output clock = selectedClock/2U
enumerator kCLOCK__ OutputDiv4
output clock = selectedClock/4U

enumerator kCLOCK_ OutputDiv8
output clock = selectedClock/8U

2.4. Clock Driver

79

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK__ OutputDiv16
output clock = selectedClock/16U

enumerator kCLOCK_ OutputDiv32
output clock = selectedClock/32U
enumerator kCLOCK_ OutputDiv64
output clock = selectedClock/64U
enumerator kCLOCK_ OutputDiv128
output clock = selectedClock/128U
enum _ clock protection
List of clock register protection mode.
Values:
enumerator kCLOCK _Protection_ Off
No protection, and could be changed any time
enumerator kCLOCK_Protection_ On
Protected, and could be changed any time
enumerator kCLOCK_Protection_ OffLock
No protection and get locked until chip reset
enumerator kCLOCK_Protection_ OnLock
Protected and get locked until chip reset
enum _ clock ip_clk_src
List of specific IP’s clock source.
Values:
enumerator kCLOCK__IPClkSrc_ BusClk
Bus clock
enumerator kCLOCK_IPClkSrc_ Bus2xClk
Bus 2x clock
enum _clock firc sel
Fast IRC selection.
Values:
enumerator kCLOCK_ FircSel 8M
FIRC normal mode, output 8M
enumerator kCLOCK_ FircSel 2M
FIRC standby mode, output 2M
enum _clock mode
MCU working mode selection.
Values:
enumerator kCLOCK_ Mode Normal
Normal mode, bus:flash clock rate = 2:1

enumerator kCLOCK_Mode_ Fast
Fast mode, bus:flash clock rate = 4:1

80

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enum _ clock postscale
Mstr 2x clock postscale divider.
Values:
enumerator kCLOCK_ PostscaleDiv1
Mast 2X clock = clkSrc /1
enumerator kCLOCK PostscaleDiv2
Mast 2X clock = clkSrc/ 2
enumerator kCLOCK PostscaleDiv4
Mast 2X clock = clkSrc / 4
enumerator kCLOCK PostscaleDiv8
Mast 2X clock = clkSrc/ 8
enumerator kCLOCK _PostscaleDiv16
Mast 2X clock = clkSrc/ 16
enumerator kCLOCK _PostscaleDiv32
Mast 2X clock = clkSrc / 32
enumerator kCLOCK _PostscaleDiv64
Mast 2X clock = clkSrc / 64
enumerator kCLOCK _PostscaleDiv128
Mast 2X clock = clkSrc /128
enumerator kCLOCK_PostscaleDiv256
Mast 2X clock = clkSrc / 256
enum _ clock_ pll__monitor_ type
PLL monitor type structure.
Values:
enumerator kCLOCK __PliIMonitorUnLockCoarse
PLL coarse unlock, due to loss of reference clock, power unstable...etc.
enumerator kCLOCK __PlIMonitorUnLockFine
PLL fine unlock, due to loss of reference clock, power unstable...etc.
enumerator kCLOCK __PlIMonitorLostofReferClk
PLL lost reference clock.
enumerator kCLOCK __PliMonitorAll
All PLL monitor type.
enum _ pit_ count_ clock source
Describes PIT clock source.
Values:
enumerator kPIT CountClockSource0
PIT count clock sourced from IP bus clock
enumerator kPIT CountClockSourcel
PIT count clock sourced from alternate clock 1

enumerator kPIT CountClockSource2
PIT count clock sourced from alternate clock 2

2.4. Clock Driver

81

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPIT CountClockSource3
PIT count clock sourced from alternate clock 3

enumerator kPIT CountBusClk
PIT count clock sourced from bus clock

enumerator kPIT__CountCrystalOscClk
PIT count clock sourced from crystal clock

enumerator kPIT CountFircClk
PIT count clock sourced from fast IRC(8M/2M) clock

enumerator kPIT CountSircClk
PIT count clock sourced from slow IRC(200KHz) clock

enum _ewm_ lpo_ clock source
Describes EWM clock source.

Values:

enumerator kEWM__ LpoClockSource0
EWM clock sourced from lpo_clk[0]

enumerator kEWM__ LpoClockSourcel
EWM clock sourced from lpo_clk[1]

enumerator kEWM__ LpoClockSource2
EWM clock sourced from lpo_clk[2]

enumerator kEWM__ LpoClockSource3
EWM clock sourced from lpo_clk[3]

enumerator kEWM_ Lpo8MHz2MHzIRCClock
EWM clock sourced from 8MHz/2MHz IRC clock

enumerator kEWM_ LpoCrystalClock
EWM clock sourced from crystal clock

enumerator kEWM _ LpoBusClock
EWM clock sourced from IP Bus clock

enumerator kEWM_ Lpo200KHzIRCClock
EWM clock sourced from 200KHz IRC clock

typedef enum _clock_ip_name clock__ip_name_t
List of IP clock name.

typedef enum _clock_name clock_name_ t
List of system-level clock name.

typedef enum _clock_crystal_osc_mode clock_crystal_osc_mode_t
Crystal oscillator mode.

typedef enum _clock_ext_clk_src clock ext_clk_ src_t
List of external clock source.

typedef enum _clock_ext_clkin_sel clock_ext_ clkin_sel_t
List of clock-in source.

typedef enum _clock_mstr_osc_clk_src clock_mstr_osc_clk_src_t
List of master oscillator source.

82

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _clock_mstr_2x_clk_src clock_mstr_2x_ clk_src_t
List of master 2x clock source.

typedef enum _clock_output_clk_src clock__output_ clk_src_t
List of output clock source.

typedef enum _clock_output_clk_div clock_output_ clk_div_t
List of output clock divider.

typedef enum _clock_protection clock_protection_ t
List of clock register protection mode.

typedef enum _clock_ip_clk_src clock_ip_clk_src_t
List of specific IP’s clock source.

typedef enum _clock_firc_sel clock_firc_sel t
Fast IRC selection.

typedef enum _clock_mode clock_mode_ t
MCU working mode selection.

typedef enum _clock_postscale clock postscale_t
Mstr 2x clock postscale divider.

typedef struct _clock_protection_config clock protection_ config t
Clock register protection configuration.

typedef struct _clock_output_config clock_output_ config t
Clock output configuration.

typedef struct _clock_config clock_ config_t
mcu clock configuration structure.

This is the key configuration structure of clock driver, which define the system clock be-
havior. The function CLOCK_SetClkConfig deploy this configuration structure onto SOC.

typedef enum _clock_pll_monitor_type clock_ pll_monitor_type_t
PLL monitor type structure.

typedef enum _pit_count_clock_source pit_ count_ clock_source_ t
Describes PIT clock source.

typedef enum _ewm_Ipo_clock_source ewm_ lpo_ clock_source_t
Describes EWM clock source.

static inline void CLOCK_ EnableClock(clock_ip_name_t eIpClkName)
Enable IPs clock.

Parameters
¢ elpClkName — IP clock name.

static inline void CLOCK_ DisableClock(clock_ip_name_t eIpClkName)
Disable IPs clock.

Parameters
¢ c¢IpClkName — IP clock name.

static inline void CLOCK _EnableClockInStopMode(clock_ip_name_t eIpClkName)
Enable IPs clock in STOP mode.

Parameters

¢ elpClkName — IP clock name.

2.4. Clock Driver 83

MCUXpresso SDK Documentation, Release 25.09.00

static inline void CLOCK_ DisableClockInStopMode(clock_ip_name_t eIpClkName)
Disable IPs clock in STOP mode.

Parameters
 eIpClkName — IP clock name.

static inline void CLOCK__ ConfigQsciClockSrc(clock_ip_name_t eQsciClkName, clock_ip_clk_src_t
eClkSrc)

Configure QSCI clock source.
QSCI clock could be bus or bus_2x clock. Default is bus clock.
Parameters
* eQsciClkName — IP(only QSCI is valid) clock name.
* ¢ClkSrc — Clock source.

static inline void CLOCK_ Configl2¢ClockSrc(clock_ip_clk_src_t eClkSrc)
Configure LPI2C clock source.

LPI2C clock could be bus or bus_2x clock. Default is bus clock.
Parameters
* ¢ClkSrc — Clock source.

static inline void CLOCK _ SetSlowIrcTrim(uint16_t u16Trim)
Set trim value to 200K slow internal RC oscillator.

The factory trim value is loaded during reset. User may call this function to fine tune the
200K IRC oscillator.

Parameters
* 116Trim — Slow internal RC oscillator trim value.

static inline void CLOCK _ SetFastIrc8MTrim(uint16_t u16Trim)
Set trim value to fast internal RC 8M oscillator.

The factory trim value is loaded during reset. User may call this function to fine tune the
FIRC 8M oscillator.

Parameters

* ul6Trim — Fast internal 8M RC oscillator trim value. Check OSCTL3 register
for u16Trim format.

static inline void CLOCK _ SetFastIrc2MTrim(uint16_t ul6Trim)
Set trim value to fast internal RC 2M oscillator.

The factory trim value is loaded during reset. User may call this function to fine tune the
FIRC 2M oscillator.

Parameters

* ul6Trim - Fast internal 2M RC oscillator trim value. Check OSCTL4 register
for u16Trim format.

static inline bool CLOCK_ GetCrystalOscFailureStatus(void)
Get crystal oscillator failure status.

Note: This function should be called only when crystal osc is on and its moni-
tor(MON_ENABLE in OSCTL2 register) is enabled.

84 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

Returns
Crystal oscillator status. true: Crystal oscillator frequency is below
680KHz(typical). false: No clock failure or crystal oscillator is off.

static inline void CLOCK_SetPllLossofReferernt TripPoint(uint8_t u8Trip)
Set PLL loss of reference trip point.

The trip point default value is 2.
Parameters
* u8Trip — Trip point for loss of reference.

static inline void CLOCK_ ClearPLLMonitorFlag(clock_pll_monitor_type_t eType)
Clear PLL monitor flag.

Parameters
* ¢Type — PLL monitor type.

static inline void CLOCK EnableFircOutput(bool bEnable)
Enable/Disable FIRC output.

Note: It is not allowed to disable FIRC output when FIRC is selected as master osc clock
source. Note: Disable FIRC output doesn’t turn off FIRC, FIRC still works but its output is
cut off. Note: For the case FIRC is powered on and output disabled, enable FIRC output
doesn’t require startup time.

Parameters
* bEnable — Enable or disable output.

uint32_t CLOCK_ GetFreq(clock_name_t eClkName)
Get system-level clock frequency.

Parameters
* eClkName — System-level clock name.

Returns
The required clock’s frequency in Hz.

uint32_t CLOCK_ GetIpClkSrcFreq(clock_ip_name_t eIpClkName)
Get IP clock frequency.

Parameters
¢ eIpClkName — IP clock name.

Returns
The required IP clock’s frequency in Hz.

void CLOCK_SetClkinOFreq(uint32_t u32Freq)
Set Clock IN 0 frequency.

It is a must to call this function in advance if system is operated by clkin0.
Parameters
* u32Freq — Clock IN 0 frequency in Hz.

void CLOCK _SetClkinlFreq(uint32_t u32Freq)
Set Clock IN 1 frequency.

It is a must to call this function in advance if system is operated by clkinl.
Parameters

* u32Freq — Clock IN 1 frequency in Hz.

2.4. Clock Driver 85

MCUXpresso SDK Documentation, Release 25.09.00

void CLOCK_SetXtalFreq(uint32_t u32Freq)

Set crystal oscillator frequency.

It is a must to call this function in advance if system is operated by crystal oscillator.

Parameters

* u32Freq — Crystal oscillator frequency in Hz.

void CLOCK _SetProtectionConfig(clock_protection_config_t *psConfig)

Config clock register access protection mode.
Parameters

* psConfig — Pointer for protection configuration.

void CLOCK _SetOutputClockConfig(clock_output_config_t *psConfig)

Config output clock.
Parameters

* psConfig — Pointer for clock output configuration.

void CLOCK_SetClkConfig(clock_config t *psConfig)

Config mcu operation clock.
Parameters

* psConfig — Pointer for clock configuration.

uint32_t CLOCK_EvaluateExtClkFreq(void)

Evaluate external clock frequency and return its frequency in Hz.

This function should be called only when internal FIRC is on and 8M is selected. The eval-
uated result accuracy depends on:

a. FIRC accuracy, now it is +/-3% for full temperature range.
b. Truncation error, because the external clock and FIRC is not synchronised.
c. External clock frequency, low accuracy for lower external clock frequency.
d. MCU mstr 2x clock.
For example, for namely 8M external clock, evaluated result may be range in 8M+/-7%.

Returns
Evaluated external frequency in Hz.

void CLOCK _EnablePLLMonitorInterrupt(clock_pll_monitor_type_t eType, bool bEnable)

Enable/Disable PLL monitor interrupt.

This function should be called only when PLL is on and its reference clock is external clock.
This function is for safety purpose when external clock islost due to HW failure. The normal
flow to call this function:

a. Call CLOCK SetClkConfig to enable PLL and external clock to feed the PLL.
b. Call CLOCK_ClearPLLMonitorFlag.

c. Call CLOCK SetPllLossofRefererntTripPoint (optional, setting value is for
kCLOCK_PlIMonitorLostofReferClk type).

d. Call this function.
e. Enable OCCS interrupt with highest priority 3.

f. When OCCS interrupt occurs, recover clock from the disaster in
OCCS_DrivelSRHandler function. Such kind of clock recovery is application de-
pendent, and a demo OCCS_DriveISRHandler has been shown in fsl_clock.c

86

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

Parameters

* ¢Type — PLL monitor type.
* bEnable — Enable or disable.

FSL CLOCK DRIVER VERSION
CLOCK driver version 2.0.0.

SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY
Definition for delay API in clock driver, users can redefine it.

GPIO__CLOCKS
Clock ip name array for GPIO.

TMR__CLOCKS
Clock ip name array for quad timer.

LPI2C_CLOCKS
Clock ip name array for LPI2C.

QSPI_CLOCKS
Clock ip name array for queued SPI.

QSCI_CLOCKS
Clock ip name array for queued SCI.

PIT CLOCKS
Clock ip name array for PIT.

QDC_CLOCKS
Clock ip name array for QDC.

CRC_CLOCKS
Clock ip name array for CRC.

CADC_CLOCKS

Clock ip name array for cyclic ADC.
CMP_CLOCKS

Clock ip name array for CMP.
PWM_ CLOCKS

Clock ip name array for PWM.
OPAMP_CLOCKS

Clock ip name array for OPAMP.
EDMA_ CLOCKS

Clock ip name array for EDMA.
EWM_ CLOCKS

Clock ip name array for EWM.
XBARA CLOCKS

Clock ip name array for XBARA.
CLK_GATE_GET REG_INDEX(X)

CLK_GATE_GET_BIT_ INDEX(X)

clock_protection_t eFrqEP

FRQEP hit field in OCCS PROT register, protect COD & ZSRC.

2.4. Clock Driver

87

MCUXpresso SDK Documentation, Release 25.09.00

clock_protection_t eOscEP
OSCEP bit field in OCCS PROT register, protect OSCTL1, OSCTL2, OSCTL3, OSCTL4, PRECS.

clock_protection_t ePIIEP

PLLEP bit field in OCCS PROT register, protect PLLDP, LOCIE, LORTP, PLLDB bitfield.
bool bClkOutOEn

Clock output 0 enable, CLKDISO bit field in SIM CLKOUT register
bool bClkOut1En

Clock output 1 enable, CLKDIS1 bit field in SIM CLKOUT register
clock_output_clk_src_t eClkOutOSrc

Clock output 0 clock source, CLKOSELO bit field in SIM CLKOUT register
clock_output_clk_src_t eClkOut1Src

Clock output 1 clock source, CLKOSEL1 bit field in SIM CLKOUT register
clock_output_clk_div_t eClkDiv

Clock output divider, CLKODIV bit field in SIM CLKOUT register ,it apply to clkout0 & clkout1
bool bCrystalOscEnable

Crystal oscillator enable, COPD bit field in OCCS OSCTL2 register
bool bFircEnable

Fast internal RC oscillator enable, ROPD bit field in OCCS OSCTL1 register
bool bSircEnable

Slow internal RC oscillator enable, ROPD200K bit field in OCCS OSCTL2 register
bool bPllEnable

PLL enable, PLLPD bit field in OCCS CTRL register
bool bCrystalOscMonitorEnable

Crystal oscillator monitor enable, MON_ENABLE bit field in OCCS OSCTL2 register
clock_firc_sel_t eFircSel

Fast IRC mode selection, 8M or 2M, ROSB bit field in OCCS OSCTL1 register
clock_crystal_osc_mode_t eCrystalOscMode

Crystal oscillator mode, COHL bit field in OCCS OSCTL1 register
clock_ext_clk_src_t eExtClkSrc

External clock source, EXT_SEL bit field in OCCS OSCTL1 register
clock_ext_clkin_sel_t eClkInSel

Clock IN selection(0 or 1), CLKINSEL bit field in SIM MISCO register

clock_mstr_osc_clk_src_t eMstrOscClkSrc

Master oscillator selection, PRECS bit field in OCCS CTRL register. When selected
kCLOCK_MstrOscClkSrcExt, make sure corresponding pins(crystal osc or clkin pin) has
been configured.

clock_mstr_2x_clk_src_t eMstr2xClkSrc

Master 2x clock selection, ZSRC bit field in OCCS CTRL register
clock_postscale_t eMstr2xClkPostScale

Master 2x clock post scale, COD bit field in OCCS DIVBY register

uint32_t u32P1IClkFreq
Required PLL output frequency before divide 2

88 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

FSL_SDK_DISABLE_ DRIVER_ CLOCK_CONTROL
Configure whether driver controls clock.
When set to 0, peripheral drivers will enable clock in initialize function and disable clock in

de-initialize function. When set to 1, peripheral driver will not control the clock, application
could control the clock out of the driver.

Note: All drivers share this feature switcher. If it is set to 1, application should handle
clock enable and disable for all drivers.

struct _ clock_ protection_ config
#include <fsl_clock.h> Clock register protection configuration.

struct _ clock_ output_ config
#include <fsl_clock.h> Clock output configuration.

struct _ clock_ config
#include <fsl_clock.h> mcu clock configuration structure.

This is the key configuration structure of clock driver, which define the system clock be-
havior. The function CLOCK_SetClkConfig deploy this configuration structure onto SOC.

2.5 Driver Change Log

2.6 CMP: Comparator Driver

void CMP__GetDefaultConfig(cmp_config_t *psConfig)
Initializes the CMP user configuration structure.

This function initializes the user configuration structure to the default values. It is corre-
sponding to the continuous mode configurations.

Parameters
¢ psConfig — pointer of cmp_config_t.

void CMP__Init(CMP_Type *base, const cmp_config_t *psConfig)
Initializes the CMP.

This function initializes the CMP module. The operations included are as follows.
* Enable the clock for CMP module.

* Configure the comparator according to the CMP configuration structure.

Parameters
* base — CMP peripheral base address.
* psConfig — Pointer to the configuration structure.

void CMP_ Deinit(CMP_Type *base)
De-initializes the CMP module.

This function de-initializes the CMP module. The operations included are as follows.
* Disabling the CMP module.
* Disabling the clock for CMP module.

Parameters

2.5. Driver Change Log 89

MCUXpresso SDK Documentation, Release 25.09.00

* base — CMP peripheral base address.

static inline void CMP_ Enable(CMP_Type *base, bool bEnable)
Enables/disables the CMP module.

Parameters
* base — CMP peripheral base address.
* bEnable — Enables or disables the module.

static inline void CMP_ SetInputChannel(CMP_Type *base, cmp_input_mux_t ePlusChannel,
cmp_input_mux_t eMinusChannel)

Sets the input channels for the comparator.

This function sets the input channels for the comparator. Note that two input channels
cannot be set the same way in the application. When the user selects the same input from
the analog mux to the positive and negative port, the comparator is disabled automatically.

Parameters
* base — CMP peripheral base address.
* ePlusChannel - Plus side input channel number.
» eMinusChannel - Minus side input channel number.

static inline void CMP__SelectOutputSource(CMP_Type *base, cmp_output_source_t
eOutputSource)

Select comparator output source.
Parameters
* base — CMP peripheral base address.

* eOutputSource — The output signal to be set, please reference
cmp_output_source_t for details.

static inline void CMP_ EnableOuputPin(CMP_Type *base, bool bEnable)
Enable/Disable Comparator output pin.

Parameters
* base — CMP peripheral base address.

* bEnable — Enable/Disable comparator output pin. true — CMPO is
available on the associate CMPO output pin. false — CMPO is not
available on the associate CMPO output pin.

static inline uint8_t CMP__GetComparatorOutput(CMP_Type *base)
Get Comparator output.

Parameters
* base — CMP peripheral base address.

Return values
current — analog comparator output 0 or 1

static inline void CMP__ SetHysteresisLevel(CMP_Type *base, cmp_hysteresis_level_t
eHysteresisLevel)

Sets hysteresis level.
Parameters
* base — CMP peripheral base address.

* eHysteresisLevel — The programmable hysteresis level to be set, please refer
to cmmp_hysteresis_level_t for details.

90 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

static inline void CMP_ SetComparasionSpeedMode(CMP_Type *base,
cmp_comparasion_speed_mode_t
eComparatorSpeedMode)

Sets comparison speed mode.
Parameters
* base — CMP peripheral base address.

* eComparatorSpeedMode — The comparison speed mode, please reference
cmp_comparasion_speed_mode_t for details.

static inline void CMP_ EnablelnvertOutput(CMP_Type *base, bool bEnable)
Enable/Disable comparator invert feature.

Parameters
* base — CMP peripheral base address.

* bEnable — Enable/Disable comparator invert feature. true — Inverts
the comparator output. false — Does not invert the comparator out-
put.

static inline void CMP_ EnableWindow(CMP_Type *base, bool bEnable)
Enable the window function.

Parameters
* base — CMP peripheral base address.
* bEnable — true is enable, false is disable.

static inline void CMP_ SetWindowOutputMode(CMP_Type *base, cmp_window_output_mode_t
eWindowOutputMode)

Set the window output mode.
Parameters
* base — CMP peripheral base address.
* eWindowOutputMode — cmp_window_output_mode_t.

static inline void CMP_ EnableExternalSampleMode(CMP_Type *base, bool bEnable)
Enable/Disable external Sample mode.

Parameters
* base — CMP peripheral base address.

* bEnable — true is using external sample mode, false is using interface sam-
ple mode.

static inline void CMP_ SetExternalSampleCount(CMP_Type *base, cmp_external sample_count _t
eSampleCount)

Sets external sample count.
Parameters
* base — CMP peripheral base address.

» eSampleCount — The number of consecutive samples that must agree
prior to the comparator output filter accepting a new output state,
cmp_external_sample_count_t.

static inline void CMP_ SetInternalFilterCount(CMP_Type *base, cmp_filter_count_t eFilterCount)
Sets internal filter count.

Parameters

2.6. CMP: Comparator Driver 91

MCUXpresso SDK Documentation, Release 25.09.00

* base — CMP peripheral base address.

* eFilterCount — The number of consecutive samples that must agree
prior to the comparator output filter accepting a new output state,
cmp_filter_count_t.

static inline void CMP_ SetInternalFilterPeriod(CMP_Type *base, uint8_t u8FilterPeriod)
Sets the internal filter period. It is used as the divider to bus clock.

Parameters
* base — CMP peripheral base address.

* u8FilterPeriod - Filter Period. The divider to the bus clock. Available range
is 0-255.

void CMP__SetDACConfig(CMP_Type *base, const cmp_dac_config_t *psConfig)
Configures the internal DAC.

Parameters
* base — CMP peripheral base address.
» psConfig — Pointer to the configuration structure.

static inline void CMP_ SetDACOutputVoltage(CMP_Type *base, uint8_t
u80utputVoltageDivider)

Sets DAC output voltage.
Parameters
* base — CMP peripheral base address.

* u8OutputVoltageDivider — The digital value which is related to the desired
DAC output voltage,

static inline void CMP_ EnableInternal DAC(CMP_Type *base, bool bEnable)
Enable/Disable internal DAC.

Parameters
* base — CMP peripheral base address.

* bEnable — Enable/Disable internal DAC. true — Enable internal DAC.
false — Disable internal DAC.

static inline void CMP_ SetDACReferenceVoltageSource(CMP_Type *base, cmp_dac_vref source_t
eDACVrefSource)

Sets internal DAC’s reference voltage source.
Parameters
* base — CMP peripheral base address.
» eDACVrefSource — reference voltage source, please cmp_dac_vref_source_t

static inline void CMP_ Enablelnterrupt(CMP_Type *base, cmp_interrupt_request_t
elnterruptRequest)

Interrupt request to enable.
Parameters
* base — CMP peripheral base address.

* elnterruptRequest - Mask value for interrupts. See
cmp_interrupt_request_t.

92 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

static inline cmp_output_flag t CMP__GetStatusFlags(CMP_Type *base)
Gets the status flags.

Parameters
* base — CMP peripheral base address.

Return values
Mask — value for the asserted flags. cmp_output_flag_t.

static inline void CMP__ClearStatusFlags(CMP_Type *base, cmp_output_flag t eOutputFlag)
Clears the status flags.

Parameters
* base — CMP peripheral base address.
* eOutputFlag — Mask value for the output flags, cmp_output_flag t

static inline void CMP_ EnableDMA (CMP_Type *base, cmp_dma_request_t eDMARequestType)
Enables CMP DMA request.

Parameters
* base — CMP peripheral base address.
* eDMARequestType — eDMA request type, cmp_dma_request_t

static inline uint32_t CMP_ GetComparatorResultRegisterAddress(CMP_Type *base)
Get CMP result register address for DMA access.

Parameters
* base — CMP peripheral base address.

Returns
The CMP result register address.

FSL CMP_ DRIVER VERSION
CMP driver version.

enum _ cmp_ interrupt_ request
CMP Interrupt request type definition.

Values:

enumerator kCMP__InterruptRequestDisabled
interrupt disabled

enumerator kCMP__ InterruptRequestEnableOutputRisingEdge
Comparator interrupt request enable rising edge.

enumerator kCMP_ InterruptRequestEnableOutputFallingEdge
Comparator interrupt request enable falling edge.

enumerator kCMP__ InterrruptRequestEnableAll
comparator interrupt request enable on rising edge or falling edge

enum _cmp_dma_ request
CMP DMA request type definition.

Values:

enumerator kCMP_ DMARequestDisabled
DMA disabled

enumerator kCMP_ DM ARequestEnableOutputRisingEdge
Comparator dma request enable on rising edge.

2.6. CMP: Comparator Driver 93

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCMP_ DMARequestEnableOutputFallingEdge
Comparator dnma request enable on falling edge.

enumerator kCMP_ DM ARequestEnableAll
comparator dma request enable on rising edge or falling edge

enum _cmp_ output_ flag
CMP output flags’ mask.

Values:

enumerator kCMP_ OutputFlagRisingEdge
Rising-edge on the comparison output has occurred.

enumerator kCMP_ OutputFlagFallingEdge
Falling-edge on the comparison output has occurred.

enumerator kCMP_ OutputFlagBothEdge
Rising-edge and Falling-edge on the comparison output has occurred.

enum _ cmp_ hysteresis_ level
CMP Hysteresis level.

Values:

enumerator kCMP_ HysteresisLevel0
Hysteresis level 0.

enumerator kCMP_ HysteresisLevell
Hysteresis level 1.

enumerator kCMP_ HysteresisLevel2
Hysteresis level 2.

enumerator kCMP_ HysteresisLevel3
Hysteresis level 3.

enum _ cmp_comparasion_speed_mode
CMP compassion speed mode enumerator.

Values:

enumerator kCMP__ ComparsionModeLowSpeed
Low-Speed Comparison mode has lower current consumption

enumerator kCMP_ ComparsionModeHighSpeed
High-Speed Comparison mode has higher current consumption.

enum _cmp_dac_ vref source
CMP DAC Voltage Reference source.

Values:

enumerator kCMP_ DACVrefSourceVinl
Vin1 is selected as a resistor ladder network supply reference Vin.

enumerator kCMP_DACVrefSourceVin2
Vin2 is selected as a resistor ladder network supply reference Vin.

enum _ cmp_window__output_ mode
CMP output value of window.

Values:

94 Chapter 2

. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCMP_ WindowOuputLastLatchedValue

When WINDOW signal changes from 1 to 0, COUTA output holds the last latched value
before WINDOW signal falls to 0

enumerator kCMP__ WindowOutputZeroValue
When WINDOW signal changes from 1 to 0, COUTA output is forced to 0

enum _cmp_filter count
CMP filter count.

Values:

enumerator kCMP_ FilterCountDisable
filter is disabled

enumerator kCMP_ FilterCountl
1 sample must agrees, the comparator output is simply sampled

enumerator kCMP_ FilterCount2
2 consecutive samples must agrees

enumerator kCMP_ FilterCount3
3 consecutive samples must agrees

enumerator kCMP_ FilterCount4
4 consecutive samples must agrees

enumerator kCMP_ FilterCountbh
5 consecutive samples must agrees

enumerator kCMP__ FilterCount6
6 consecutive samples must agrees

enumerator kCMP_ FilterCount7
7 consecutive samples must agrees

enum _ cmp_ external sample count
CMP external sample count.

Values:

enumerator kCMP_ ExternalSampleCount1
1 sample must agrees, the comparator output is simply sampled

enumerator kCMP_ ExternalSampleCount2
2 consecutive samples must agrees

enumerator kCMP__ ExternalSampleCount3
3 consecutive samples must agrees

enumerator kCMP__ExternalSampleCount4
4 consecutive samples must agrees

enumerator kCMP_ ExternalSampleCount5
5 consecutive samples must agrees

enumerator kCMP__ExternalSampleCount6
6 consecutive samples must agrees

enumerator kCMP__ExternalSampleCount7
7 consecutive samples must agrees

2.6. CMP: Comparator Driver 95

MCUXpresso SDK Documentation, Release 25.09.00

enum _ cmp_ output_ source
CMP output source enumerator.

Values:

enumerator kCMP_ OutputSourceFromFilterCOUT
Set the filtered comparator output to equal COUT.
enumerator kCMP_ OutputSourceFromUnfiltered COUTA
Set the unfiltered comparator output to equal COUTA.
enum _cmp_work mode
CMP work mode definition.
Values:
enumerator kCMP_ WorkModeWindowBypassAndNoExternalSample
window block bypassed, external sampling mode disabled
enumerator kCMP_ WorkModeWindowBypassAndExternalSample
window block bypassed, external SAMPLE mode enable
enumerator kCMP_ WorkModeWindowEnabled AndNoExternalSample
window block enabled, external sampling mode disabled
typedef enum _cmp_interrupt_request cmp__interrupt_ request_t
CMP Interrupt request type definition.
typedef enum _cmp_dma_request cmp_ dma_ request_t
CMP DMA request type definition.
typedef enum _cmp_output _flag cmp_output_flag_t
CMP output flags’ mask.
typedef enum _cmp_hysteresis_level cmp_ hysteresis_level t
CMP Hysteresis level.
typedef enum _cmp_comparasion_speed_mode cmp__comparasion_speed__mode_ t
CMP compassion speed mode enumerator.
typedef enum _cmp_dac_vref source cmp_ dac_ vref _source_t
CMP DAC Voltage Reference source.
typedef enum _cmp_window_output_mode cmp_ window__output_ mode_ t
CMP output value of window.
typedef enum _cmp_filter_count cmp_ filter _count_t
CMP filter count.
typedef enum _cmp_external sample_count cmp_ external__sample_count_t
CMP external sample count.
typedef enum _cmp_output_source cmp_ output_ source_ t
CMP output source enumerator.
typedef enum _cmp_work_mode cmp_ work__mode__t
CMP work mode definition.

typedef struct _cmp_dac_config cmp_ dac_ config_t
CMP internal DAC configuration structure.

96 Chapter 2

. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

typedef union _cmp_dma_interrupt_config cmp_ dma_ interrupt_ config_t
CMP dma/interrupt configure union.

Note: , the interrupt request and dma request cannot be used at the same time, that is
to say When DMA support is enabled by setting SCRIDMAEN] and the interrupt is enabled
by setting SCRI[IER], SCR[IEF], or both, the corresponding change on COUT forces a DMA
transfer request rather than a CPU interrupt instead

typedef struct _cmp_config cmp_ config_t
CMP configuration structure.
struct _cmp_ dac_ config
#include <fsl_cmp.h> CMP internal DAC configuration structure.

Public Members

cmp_dac_vref source_t eDACVrefSource
DAC reference voltage source.

uint8_t u8DACOutputVoltageDivider

divider Value for the DAC Output Voltage, DAC output voltage = (VREF / 256) *
(u8DACOutputVoltageDivider + 1).

bool bEnableInternal DAC
flag to control if the internal DAC need to be enabled

union _cmp_ dma,__interrupt__config
#include <fsl_cmp.h> CMP dma/interrupt configure union.

Note: , the interrupt request and dma request cannot be used at the same time, that is
to say When DMA support is enabled by setting SCRIDMAEN] and the interrupt is enabled
by setting SCRI[IER], SCR[IEF], or both, the corresponding change on COUT forces a DMA
transfer request rather than a CPU interrupt instead

Public Members
cmp_dma_request_t eDMARequest
dma request type

cmp_interrupt_request_t eInterruptRequest
interrupt request type

struct _cmp_ config
#include <fsl_cmp.h> CMP configuration structure.

Public Members

cmp_hysteresis_level t eHysteresisLevel
CMP hysteresis leveL

cmp_comparasion_speed_mode_t eComparasionSpeedMode
CMP comparison speed mode

2.6. CMP: Comparator Driver 97

MCUXpresso SDK Documentation, Release 25.09.00

cmp_work_mode_t eWorkMode
CMP work mode

cmp_input_mux_t ePlusInput
CMP plus input mux, the definition of this enum is in soc header file

cmp_input_mux_t eMinusInput
CMP minus input mux, the definition of this enum is in soc header file

cmp_dac_config t sDacConfig
CMP internal DAC configuration structure cmp_dac_config_t

bool bInvertComparatorOutputPolarity
Inverted comparator output polarity.

cmp_window_output_mode_t eWindowOutputMode
only works when cmp work mode is kCMP_WorkModeWindowEnabledAndNoExternalSample

cmp_filter_count _t eFilterCount

Filter Count.Available range is 0-7, 0 is disable internal filter can be used in internal
sampling mode only.

uint8_t u8FilterPeriod

Filter Period. The divider to the bus clock. Available range is 0-255, can be used in
internal sampling mode. When the filter clock from internal divided bus clock, setting
the sample period to 0 will disable the filter

cmp_external_sample_count_t eExternalSampleCount
Available range is 1 - 7, used in external sampling mode only

cmp_output_source_t eOutputSource
cmp output source

bool bEnableOutputPin
the comparator output(CMPO) is driven out on the associated CMPO output pin

cmp_dma_interrupt_config_t uDmalnterruptConfig
CMP interrupt/dma configuration

bool bCMPEnable
flag to control if CMP module start immediately when the configuration is done

2.7 The Driver Change Log
2.8 CMP Peripheral and Driver Overview

2.9 COP: Computer Operating Properly(Watchdog) Driver

void COP_ Init(COP_Type *base, const cop_config_t *psConfig)
Initializes the COP module with input configuration.

Call this function to do initialization configuration for COP module. The configurations are:
* COP configuration write protect enablement
* Clock source selection for COP module

* Prescaler configuration to the input clock source

98 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

Counter timeout value
* Window value
WAIT/STOP work mode enablement

* Interrupt enable/disable and interrupt timing value

* Loss of reference counter enablement
* COP enable/disable

note: Once set bEnableWriteProtect=true, the CTRL, INTVAL, WINDOW and TOUT registers
are read-only.

Parameters
* base — COP peripheral base address.
» psConfig — The pointer to COP configuration structure, cop_config_t.

void COP_ GetDefaultConfig(cop_config_t *psConfig)
Prepares an available pre-defined setting for module’s configuration.

This function initializes the COP configuration structure to default values.

psConfig->bEnableWriteProtect = false;
psConfig->bEnableWait = false;
psConfig->bEnableStop = false;
psConfig->bEnableLossOfReference = false;
psConfig->bEnablelnterrupt = false;
psConfig->bEnableCOP = false;
psConfig->ePrescaler = kCOP__ClockPrescalerDividel;
psConfig->ul6TimeoutCount = OxFFFFU;
psConfig->ul6WindowCount = 0xFFFFU;
psConfig->ul6IlnterruptCount = O0xFEU;
psConfig->eClockSource = kCOP__RoscClockSource;

Parameters
* psConfig — Pointer to the COP configuration structure, cop_config_t.

static inline void COP_ Enable(COP_Type *base, bool bEnable)
Enable/Disable the COP module.

This function disables the COP Watchdog. To disable the COP Watchdog, call
COP_Enable(base, false).

Parameters
* base — COP peripheral base address.
* bEnable — Enable the feature or not.

static inline void COP__EnableLossOfReferenceCounter(COP_Type *base, bool bEnable)
Enables or disables the COP Loss of Reference counter.

This function writes a value into the COP_CTRL register to enable or disable the COP Loss
of Reference counter.

Parameters
* base — COP peripheral base address.

* bEnable — Enable the feature or not.

2.9. COP: Computer Operating Properly(Watchdog) Driver 99

MCUXpresso SDK Documentation, Release 25.09.00

static inline void COP__SetTimeoutCount(COP_Type *base, uint16_t ul6TimeoutCount)
Sets the COP timeout value.
This function sets the COP timeout value, if psConfig->bEnableWriteProtect is set to true
for calling WDOG_Init, the set does not take effect. It should be ensured that the time-out
value for the COP is always greater than interrupt time + 40 bus clock cycles. This function
writes a value into COP_TOUT register, when COP count down to zero from the timeout

count value, COP_RST_B signal will be asserted. There are some considerations for setting
the timeout count afer COP is enabled:

* The recommended procedure for changing TIMEOUT is to disable the COP by invoking
COP_Enable(), then call the function COP_SetTimeoutCount, and then re-enable the by
invoking COP_Enable() again.

* Alternatively, call the function COP_SetTimeoutCount, then feed the COP by invoking
COP_Refresh() to reload the timeout.
Parameters
* base — COP peripheral base address

* ul6TimeoutCount — COP timeout value, count of COP clock tick. Use macro
definition MSEC_TO_COUNT to convert value in ms to count of ticks, the
COP clock rate is source clock divide prescaler.

static inline void COP__SetInterruptCount(COP_Type *base, uint16_t ul6InterruptCount)
Sets the COP interrupt value.

This function sets the COP interrupt value, if psConfig->bEnableWriteProtect is set to true
for calling WDOG_Init, the set does not take effect. This function writes a value into
COP_INTVAL register, if COP interrupt is enabled and COP count down to the interrupt
value configured, an interrupt will be triggered. Ensure the COP counter is disabled while
the function is called.

Parameters
* base — COP peripheral base address

¢ ul6InterruptCount — COP interrupt value, count of COP clock tick. Use
macro definition MSEC_TO_COUNT to convert value in ms to count of ticks,
the COP clock rate is source clock divide prescaler.

static inline void COP__SetWindowCount(COP_Type *base, uint16_t ul6WindowCount)
Sets the COP window value.

This function sets the COP window value, if psConfig->bEnableWriteProtect is set to true
for calling WDOG_Init, the set does not take effect. This function writes a value into
COP_WINDOW register. Ensure the COP counter is disabled while the function is called.

Parameters
* base — COP peripheral base address

* ul6WindowCount — COP window value, count of COP clock tick. Use macro
definition MSEC_TO_COUNT to convert value in ms to count of ticks, the
COP clock rate is source clock divide prescaler.

void COP_ Refresh(COP_Type *base)
Refreshes the COP timer.

This function feeds/services the COP.
Parameters

* base — COP peripheral base address.

100 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

static inline void COP__EnableInterrupt(COP_Type *base)

Enables the COP interrupt, if psConfig->bEnableWriteProtect is set to true for calling
WDOG_Init, the operation does not take effect.

This function writes a value into the COP_CTRL register to enable the COP interrupt.
Parameters
* base — COP peripheral base address

static inline void COP_ DisableInterrupt(COP_Type *base)

Disables the COP interrupt, if psConfig->bEnableWriteProtect is set to true for calling
WDOG_Init, the operation does not take effect.

This function writes a value into the COP_CTRL register to disable the COP interrupt.
Parameters
* base — COP peripheral base address

FSL COP_DRIVER_ VERSION
COP driver version.

COP_FIRST_WORD_OF_REFRESH
COP refresh key word.

First word of refresh sequence

COP_SECOND_WORD_ OF_REFRESH
Second word of refresh sequence

enum _ cop_ clock_source
enumeration for COP clock source selection.

Values:

enumerator kCOP__ RoscClockSource
COP clock sourced from Relaxation oscillator (ROSC)

enumerator kCOP__ CoscClockSource
COP clock sourced from Crystal oscillator (COSCs)

enumerator kCOP_ BusClockSource
COP clock sourced from IP Bus clock

enumerator kCOP__LpoClockSource
COP clock sourced from Low speed oscillator

enum _ cop_ clock prescaler
enumeration for COP clock prescaler to input source clock.

Values:

enumerator kCOP_ ClockPrescalerDividel
Divided by 1

enumerator kCOP__ ClockPrescalerDividel6
Divided by 16

enumerator kCOP_ ClockPrescalerDivide256
Divided by 256

enumerator kCOP_ ClockPrescalerDivide1024
Divided by 1024

2.9. COP: Computer Operating Properly(Watchdog) Driver 101

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _cop_clock_source cop_ clock_source_t
enumeration for COP clock source selection.

typedef enum _cop_clock_prescaler cop_ clock_prescaler__t
enumeration for COP clock prescaler to input source clock.

typedef struct _cop_config cop_ config_t
structure for COP module initialization configuration.

struct _ cop_ config
#include <fsl_cop.h> structure for COP module initialization configuration.

Public Members
bool bEnableWriteProtect
Set COP Write protected

bool bEnableStop
Enable or disable COP in STOP mode

bool bEnableWait
Enable or disable COP in WAIT mode

bool bEnableLossOfReference
Enable or disable COP loss of reference counter

bool bEnablelnterrupt
Enables or disables COP interrupt

bool bEnableCOP
Enables or disables COP module

cop_clock_source_t eClockSource
Set COP clock source

cop_clock_prescaler_t ePrescaler
Set COP clock prescaler

uint16_t ul6TimeoutCount

Timeout count in clock cycles, Use macro definition MSEC_TO_COUNT to convert value
in ms to count of ticks, the COP clock rate is source clock divide prescaler.

uint16_t ul16WindowCount

Window count in clock cycles, Use macro definition MSEC_TO_COUNT to convert value
in ms to count of ticks, the COP clock rate is source clock divide prescaler.

uint16_t ul6InterruptCount

Interrupt count in clock cycles, Use macro definition MSEC_TO_COUNT to convert
value in ms to count of ticks, the COP clock rate is source clock divide prescaler.

2.10 The Driver Change Log
2.11 COP Peripheral and Driver Overview

2.12 CRC: Cyclic Redundancy Check Driver

102 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

void CRC_Init(CRC_Type *base, const crc_config_t *psConfig)
Enables and configures the CRC peripheral module.

This function enables the clock gate in the SIM module for the CRC peripheral. It also con-
figures the CRC module and starts a checksum computation by writing the seed.

Parameters
* base — CRC peripheral address.
* psConfig — CRC module configuration structure.

void CRC_ Deinit(CRC_Type *base)
Disables the CRC peripheral module.

This function disables the clock gate in the SIM module for the CRC peripheral.
Parameters
* base — CRC peripheral address.

static inline void CRC_ GetDefaultConfig(crc_config t *psConfig, crc_protocol type_t
eCrcProtocol)

Provide default CRC protocol configuration.

The purpose of this API is to initialize the configuration structure to default value for
CRC_Init to use. Provides the configuration of commonly used CRC protocols. refer to
crc_protocol_type_t.

This is an example:

crc__config_t sConfig;

//LoadCRC-16/MAXIM protocol configuration.
CRC__GetDefaultConfig(&sConfig, kCRC_ Crcl6);
CRC_Init(CRC, &sConfig);

Parameters
» psConfig — CRC protocol configuration structure.
* eCrcProtocol — CRC protocol type. refer to crc_protocol_type_t

static inline void CRC__SetSeedValue(CRC_Type *base, uint32_t u32CrcSeedValue)
Set the CRC seed value.

This function is help to write a 16/32 bit CRC seed value.
Parameters
* base — CRC peripheral address.
* u32CrcSeedValue — The value of seed.

static inline void CRC__SetPolynomial(CRC_Type *base, uint32_t u32CrcPolynomial)
Set the value of the polynomial for the CRC calculation.

Write a 16-bit or 32-bit polynomial to CRC Polynomial register for the CRC calculation.
Parameters
* base — CRC peripheral address.
* u32CrcPolynomial — The CRC polynomial.

static inline void CRC__SetWriteTransposeType(CRC_Type *base, crc_transpose_type_t
eTransposeln)

Set CRC type of transpose of write data.

This function help to configure CRC type of transpose of write data.

2.12. CRC: Cyclic Redundancy Check Driver 103

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* base — CRC peripheral address.
* eTransposeln — Type Of transpose for input. See crc_transpose_type_t

static inline void CRC__SetReadTransposeType(CRC_Type *base, crc_transpose_type_t
eTransposeOut)

Set CRC type of transpose of read data.
This function help to configure CRC type of transpose of read data.
Parameters
* base — CRC peripheral address.
* eTransposeOut — Type Of transpose for output. See crc_transpose_type_t

static inline void CRC__EnableComplementChecksum(CRC_Type *base, bool bEnable)
Enable/Disable complement of read CRC checksum.

Set complement of read CRC checksum. Some CRC protocols require the final checksum to
be XORed with OXFFFFFFFF or OXFFFF.

Parameters
* base — CRC peripheral address.

* bEnable— True or false. True if the result shall be complement of the actual
checksum.

static inline void CRC_ SetProtocolWidth(CRC_Type *base, crc_bits_t eCrcBits)
Set bit width of CRC protocol.

Selects 16-bit or 32-bit CRC protocol.
Parameters
* base — CRC peripheral address.
* eCrcBits — 16 or 32 bit CRC protocol. See crc_bits_t

void CRC_ WriteData(CRC_Type *base, const uint8_t *pu8Data, uint32_t u32DataSize)
Writes data to the CRC module.

Writes input data buffer bytes to the CRC data register. The configured type of transpose is
applied.

Parameters
* base — CRC peripheral address.
* pu8Data — Input data stream, MSByte in data[0].
* u32DataSize — Size in bytes of the input data buffer.

static inline uint32_t CRC__ Get32bitResult(CRC_Type *base)
Reads the 32-bit checksum from the CRC module.

Reads the CRC data register (either an intermediate or the final checksum). The configured
type of transpose and complement is applied.

Parameters
* base — CRC peripheral address.

Returns
Anintermediate or the final 32-bit checksum, after transpose and complement
operations configured.

104 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

uint16_t CRC_ Get16bitResult(CRC_Type *base)
Reads a 16-bit checksum from the CRC module.

Reads the CRC data register (either an intermediate or the final checksum). The configured
type of transpose and complement is applied.

Parameters
* base — CRC peripheral address.

Returns
Anintermediate or the final 16-bit checksum, after transpose and complement
operations configured.

FSL CRC_DRIVER_ VERSION
CRC driver version. Version.

enum _ crc_ protocol type
CRC protocol type.

Values:

enumerator kCRC Crcl6
CRC-16/MAXIM protocol.

enumerator kCRC Crcl6CCITT
CRC-16-CCITT protocol.

enumerator kCRC Crcl6Kermit
CRC-16/KERMIT protocol.

enumerator kCRC Cre32
CRC-32 protocol.

enumerator kCRC Cre32Posix
CRC-32/POSIX protocol.

enum _crc_ bits
CRC protocol bit width.

Values:

enumerator kCRC_Bits16
Generate 16-bit CRC code.

enumerator kCRC_Bits32
Generate 32-bit CRC code.

enum _ crc__transpose__type
CRC type of transpose of read/write data.

Values:

enumerator kCRC_ TransposeNone
No transpose.

enumerator kCRC_ TransposeBits
Transpose bits in bytes.

enumerator kCRC_ TransposeBitsAndBytes
Transpose bytes and bits in bytes.

enumerator kCRC_ TransposeBytes
Transpose bytes.

2.12. CRC: Cyclic Redundancy Check Driver 105

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _crc_protocol_type crc_protocol _type_t

CRC protocol type.

typedef enum _crc_bits crc_bits_t

CRC protocol bit width.

typ edef enum crc_ transpose_type crc_transpose_type_ t

CRC type of transpose of read/write data.

typedef struct _crc_config crc_ config_t

CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

struct _ crc_ config

#include <fsl_crc.h> CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

Public Members

uint32_t u32CrcPolynomial
CRC Polynomial, MSBit first. Example polynomial: 0x1021 = 1_0000_0010_0001 =
XA12+xXA5+1

uint32_t u32CrcSeed Value
Starting checksum value

bool bEnableComplementChecksum
Enable/Disable complement of read CRC checksum.

crc_transpose_type_t eTransposeln
Select type of transpose of input data.

crc_transpose_type_t eTransposeOut
Select type of transpose of output data.

crc_bits_t eCrcBits
Select 16-bit or 32-bit CRC protocol.

2.13 The Driver Change Log

2.14 CRC Peripheral and Driver Overview

2.15 DMAMUX: DMA Channel Multiplexer Driver

static inline void DMAMUZX_ ConnectChannel ToTriggerSource(DMAMUX_Type *base,

dmamux_dma_channel_t eChannel,
dma_request_source_t eSource)

Connect the DMAMUX channel to trigger source.
This function will connnect a source to the specify dma channel and enable that channel
Parameters
* base - DMAMUX peripheral base address.

¢ ¢Channel - DMAMUX channel index, dmamux_dma_channel_t.

106

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

* eSource — DMA request source.

static inline void DMAMUX _ DisconnectChannelFromTriggerSource(DMAMUX_Type *base,
dmamux_dma_channel_t
eChannel)

Disconnect the DMAMUX channel.
This function will disable the specified channel and reset the channel source.
Parameters
* base - DMAMUX peripheral base address.
¢ ¢Channel - DMAMUX channel index, dmamux_dma_channel_t.

FSL DMAMUX_ DRIVER_ VERSION
DMAMUX driver version.

enum dmamux_dma_ channel
List of Dmamux dma channels.

Values:

enumerator kDMAMUX DMAChannelQ
Dmamux dma channel 0

enumerator kDMAMUX DMAChannell
Dmamux dma channel 1

enumerator kDMAMUX DMAChannel2
Dmamux dma channel 2

enumerator kDMAMUX DMAChannel3
Dmamux dma channel 3

typedef enum _dmamux_dma_channel dmamux_ dma_ channel_t
List of Dmamux dma channels.

2.16 The Driver Change Log
2.17 DMAMUX Peripheral and Driver Overview
2.18 The Driver Change Log

2.19 EDMA: Enhanced Direct Memory Access Driver

void EDMA GetDefaultConfig(edma_config t *psConfig)
Get default edma peripheral configuration.

Note: This function will reset all of the configuration structure members to zero firstly,
then apply default configurations to the structure.

Parameters

* psConfig — pointer to user’s eDMA config structure, see edma_config_t for
detail.

2.16. The Driver Change Log 107

MCUXpresso SDK Documentation, Release 25.09.00

void EDMA_ Init(DMA_Type *base, edma_config_t *psConfig)
EDMA initialization.
Parameters
* base — eDMA peripheral base address.

» psConfig - pointer to wuser’s eDMA config structure, see
edma_transfer_config_t for detail.
void EDMA_Deinit(DMA_Type *base)
EDMA De-initialization.

Parameters
* base — eDMA peripheral base address.

static inline void EDMA __ EnableContinuousChannelLinkMode(DMA_Type *base, bool bEnable)

Enable/Disable arbitration before the channel been activate by minor loop link trigger from
itself.

A minor loop channel link made to itself does not go through channel arbitration before
being activated again. Upon minor loop completion, the channel activates again if that
channel has a minorloop channellink enabled and the link channel isitself. This effectively
applies the minor loop offsets and restarts the next minor loop.

Note: Do not use continuous link mode with a channel linking to itself if there is only
one minor loop iteration per service request, for example, if the channel’s NBYTES value
is the same as either the source or destination size. The same data transfer profile can
be achieved by simply increasing the NBYTES value, which provides more efficient, faster
processing.

Parameters
* base — EDMA peripheral base address.

* bEnable — true is channel link to itself without arbitration false is channel
link to itself with arbitration

static inline void EDMA_ EnableMinorLoopMapping(DMA_Type *base, bool bEnable)
Enable/Disable redefine the minor loop bytes register.

The TCDn.word?2 is redefined to include individual enable fields, an offset field and the
NBYTES field, the offset will be applied to source/destination address after minor loop com-
plete

Parameters
* base — EDMA peripheral base address.

* bEnable — true is minor loop bytes register redefined to individual en-
able/offset/minor loop bytes fields. false is minor loop bytes register de-
fined as minor loop bytes fields only.

static inline void EDMA__EnableHaltOnError(DMA_Type *base, bool bEnable)
Enable/Disable the eDMA halt when error occur feature.

Any error causes the HALT bit to set will cause the EDMA halt. Subsequently, all service
requests are ignored until the HALT bit is cleared

Parameters
* base — EDMA peripheral base address.

* bEnable—true is Stall the start of any new channels when error occur. false
is eDMA service request operation normal when error occur.

108 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

static inline void EDMA_ SetArbitration(DMA_Type *base, edma_arbitration_type_t eArbitration)
set EDMA arbitration type to fixed priority or round robin.

Parameters
* base — EDMA peripheral base address.

* eArbitration - Arbitration by priority or round robin,
edma_arbitration_type_t.

void EDMA_ GetChannelDefault TransferConfig(edma_channel _transfer_config t *psTransfer,
uint32_t u32SrcAddr, uint32_t u32DstAddr,
uint32_t u32BytesEachRequest, uint32_t
u32TotalBytes, edma_channel_transfer_width_t
eTransferWidth, edma_channel_transfer_type_t
eTransferType)

Get channel default transfer configuration.

Note: 1. This function will reset all of the configuration structure members to zero firstly,
then apply default configurations to the structure.

a. No interrupt enabled by this function by default, if application would like to use
DMA interrupt please enable it manually by psTransfer->ul6EnabledInterruptMask
=_edma_channel_interrupt

Parameters

* psTransfer — pointer to user’s eDMA channel configure structure, see
edma_channel_transfer_config_t for detail.

* u32SrcAddr — source address, must be byte address.
* u32DstAddr — destination address, must be byte address.

* u32BytesEachRequest — bytes to be transferred in each request(namely, in
each minor loop).

* u32TotalBytes — total bytes to be transferred.

* eTransferWidth — it represents how many bits are transferred in each
read/write.

* eTransferType — eDMA channel transfer type.

void EDMA_ SetChannelTransferConfig(DMA_Type *base, edma_channel_t eChannel,
edma_channel_transfer_config_t *psTransfer)

EDMA set channel transfer configurations.

Note: 1.This function must not be called while the channel transfer is ongoing or it causes
unpredictable results. 2.The psLinkTCD must be configured before invoke this API if scat-
ter/gather function is needed 3.The edma channel request may be enabled after the channel
transfer configure done according to the transfer configurations.

Parameters
* base — eDMA peripheral base address.
* eChannel - eDMA channel number.

 psTransfer — pointer to user’s eDMA channel configure structure, see
edma_channel_transfer_config_t for detail.

2.19. EDMA: Enhanced Direct Memory Access Driver 109

MCUXpresso SDK Documentation, Release 25.09.00

void EDMA_SetChannelMinorLoopOffset(DMA_Type *base, edma_channel t eChannel, bool
bEnableSrcMinorLoopOffset, bool
bEnableDestMinorLoopOffset, int32_t
i32MinorLoopOffset)

Configures the eDMA channel minor loop offset value.

The minor offset means that the signed-extended value is added to the source address or
destination address after each minor loop.

Parameters
* base — eDMA peripheral base address.
* eChannel — eDMA channel number.

e bEnableSrcMinorLoopOffset — True is enable source address minor offset,
otherwise is disable

* bEnableDestMinorLoopOffset — True is enable source address minor offset,
otherwise is disable

* i32MinorLoopOffset — Minor loop offset value.

void EDMA_SetChannelPreemption(DMA_Type *base, edma_channel t eChannel, bool
bSuspendedByHighPriorityChannel, bool
bSuspendLowPriorityChannel, uint8_t u8Priority)

Configures the eDMA channel preemption configurations.

This function configures the channel preemption attribute and the priority of the channel.

Note: , this function is used only in fixed-priority channel arbitration mode.

Parameters
* base — eDMA peripheral base address.
* eChannel - eDMA channel number

* bSuspendedByHighPriorityChannel — True is the channel can be suspended
by high priority channel, otherwise cannot.

* bSuspendLowPriorityChannel — True is the channel can suspend low priority
channel, otherwise cannot.

* u8Priority — Channel priority.

void EDMA_ EnableMinorLoopChannelLink(DMA_Type *base, edma_channel_t eChannel,
edma_channel _t eLinkChannel)

Enable the minor loop channel link and configure the linked channel number.

This function configures the minor link mode. The minor link means that the channel link
is triggered every time that the minor loop bytes transferred complete.

Note: Users should ensure that DONE flag is cleared before calling this interface, or the
configuration is invalid.

Parameters
* base — eDMA peripheral base address.
* eChannel - eDMA channel number.

* eLinkChannel — The linked channel number.

110 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

static inline void EDMA_ DisableMinorLoopChannelLink(DMA_Type *base, edma_channel t

eChannel)
Disable the minor loop channel link for the eDMA transfer.

Parameters
* base — eDMA peripheral base address.

* ¢Channel — eDMA channel number.

void EDMA_ EnableMajorLoopChannelLink(DMA_Type *base, edma_channel_t eChannel,

edma_channel_t eLinkChannel)
Enable the major loop channel link and configure the linked channel number.

This function configures the major link mode. The major link means that the channel link
is triggered when the CITER is exhausted.

Note: Users should ensure that DONE flag is cleared before calling this interface, or the
configuration is invalid.

Parameters
* base — eDMA peripheral base address.
* eChannel - eDMA channel number.

* eLinkChannel — The linked channel number.

static inline void EDMA_ DisableMajorLoopChannelLink(DMA_Type *base, edma_channel t

eChannel)
Disable the major loop channel link for the eDMA transfer.

Parameters
* base — eDMA peripheral base address.

* ¢Channel — eDMA channel number.

void EDMA_ SetChannelBandWidth(DMA_Type *base, edma_channel t eChannel,

edma_channel_bandwidth_t eBandWidth)
Sets the edma channel stall cycles after each R/W.

Because the eDMA processes the minor loop, it continuously generates read/write se-
quences until the minor count is exhausted. The bandwidth forces the eDMA to stall after
the completion of each read/write access to control the bus request bandwidth seen by the
crossbar switch.

Note: : 1.Ifthe source and destination sizes are equal, this field is ignored between the first
and second transfers and after the last write of each minor loop. This behavior is a side
effect of reducing start-up latency. 2.When executing a large, zero wait-stated memory-
to-memory transfer, insert bandwidth control using the TCD_CSR[BW(C] bits to avoid: *
Starvation of another master accessing the memory. * Any delay in writing a TCD duloop
the transfer.

Parameters
* base — eDMA peripheral base address.
* ¢Channel — eDMA channel number.

* eBandWidth — A bandwidth setting, which can be one of the
edma_channel bandwidth_t

2.19. EDMA: Enhanced Direct Memory Access Driver 111

MCUXpresso SDK Documentation, Release 25.09.00

void EDMA_SetChannelModulo(DMA_Type *base, edma_channel_t eChannel,
edma_channel_modulo_t eSrcModulo, edma_channel _modulo_t
eDestModulo)

Sets the source address range and the destination address range for the eDMA transfer.

This function defines a specific address range of source/destination address, after the
source/destination address hits the range boundary, source/destination address will wrap
to origin value.

Setting this field provides the ability to implement a circular data queue easily. For data
queues require loop power-of-2 size bytes, the queue should start at a 0-modulo-size ad-
dress and the SMOD field should be set to the appropriate value for the queue, freezing the
desired number of upper address bits. The value programmed into this field specifies the
number of lower address bits allowed to change

Parameters
* base — eDMA peripheral base address.
* ¢Channel - eDMA channel number.
* eSrcModulo — A source modulo value.
* eDestModulo — A destination modulo value.

static inline void EDMA__EnableChannel AsyncRequestInStopMode(DMA_Type *base,
edma_channel _t eChannel,
bool bEnable)

Enables the edma channel async request in stop mode.

The EARS register is used to enable or disable the DMA requests in Enable Request Register
(ERQ) by AND’ing the bits of these two registers in stop mode only.

Parameters
* base — eDMA peripheral base address.
* eChannel - eDMA channel number.
* bEnable — The command to enable (true) or disable (false).

static inline void EDMA_ EnableChannel AutoStopRequest(DMA_Type *base, edma_channel t
eChannel, bool bEnable)

Enables the edma channel auto disable request after major loop complete.

The eDMA hardware automatically clears the corresponding ERQ bit when the current ma-
jor iteration count reaches zero.

Parameters
* base — eDMA peripheral base address.
* ¢Channel - eDMA channel number.
* bEnable — The command to enable (true) or disable (false).

void EDMA__SetChannelMajorLoopOffset(DMA_Type *base, edma_channel_t eChannel, int32_t
132SourceOffset, int32_t i32DestOffset)

Configures the eDMA channel major loop offset feature.

Adjustment value added to the source/destination address at the completion of the major
iteration count

Parameters
* base — eDMA peripheral base address.

* eChannel — edma channel number.

112 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

* i32SourceOffset — source address offset.
* i32DestOffset — destination address offset.

static inline void EDMA_ EnableChannelRequest(DMA_Type *base, edma_channel t eChannel,
bool bEnable)

Enable/disable the eDMA hardware channel request.
This function enables the hardware channel request.
Parameters
* base — eDMA peripheral base address.
* ¢Channel - eDMA channel number.
* bEnable — true is start, false is stop.

static inline void EDMA_ SoftwareTriggerChannelStart(DMA_Type *base, edma_channel t
eChannel)

Starts the eDMA transfer by using the software trigger.

This function starts a minor loop transfer only, the channel will halt when minor loop com-
plete, so application should re-call the function to start the transfer again.

Parameters
* base — eDMA peripheral base address.
* eChannel - eDMA channel number.

uint32_t EDMA_ GetChannelRemainingMajorLoopCount(DMA_Type *base, edma_channel t
eChannel)

Gets the remaining major loop count from the eDMA current channel TCD.

This function checks the TCD (Transfer Control Descriptor) status for a specified eDMA
channel and returns the number of major loop count that has not finished.

Note: 1. This function can only be used to get unfinished major loop count of transfer
without the next TCD, or it might be inaccuracy.

a. The unfinished/remaining transfer bytes cannot be obtained directly from registers
while the channel is running. Because to calculate the remaining bytes, the initial
NBYTES configured in DMA_TCDn_NBYTES_MLNO register is needed while the eDMA
IP does not support getting it while a channel is active. In another word, the NBYTES
value reading is always the actual (decrementing) NBYTES value the dma_engine is
working with while a channel is running. Consequently, to get the remaining transfer
bytes, a software-saved initial value of NBYTES (for example copied before enabling
the channel) is needed. The formula to calculate it is shown below: RemainingBytes =
RemainingMajorLoopCount * NBYTES(initially configured)

Parameters
* base — eDMA peripheral base address.
* eChannel - eDMA channel number.

Return values
Major — loop count which has not been transferred yet for the current TCD.

void EDMA_ EnableChannellnterrupts(DMA_Type *base, edma_channel_t eChannel, uint16_t
ul6InterruptsMask, bool bEnable)

Enables the edma channel interrupts according to a provided mask, the mask is a logical
OR of enumerator members _edma_channel_interrupt_enable.

2.19. EDMA: Enhanced Direct Memory Access Driver 113

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* base — eDMA peripheral base address.
* ¢Channel — eDMA channel number.

* ul6InterruptsMask — the mask is a logical OR of enumerator members
_edma_channel_interrupt_enable.

* bEnable — true is enable, false is disable.

uint16_t EDMA_ GetChannelStatusFlags(DMA_Type *base, edma_channel t eChannel)
Gets the eDMA channel status flags.

Note: if the function return error status, application can call EDMA_GetErrorStatusFlags
for the detail error status.

Parameters
* base — eDMA peripheral base address.
* eChannel - eDMA channel number.

Return values
The - mask of channel status flags. Users need to use the
_edma_channel_status_flags type to decode the return variables.

void EDMA__ ClearChannelStatusFlags(DMA_Type *base, edma_channel_t eChannel, uint16_t
ul6StatusFlags)

Clears the eDMA channel status flags.
Parameters
* base — eDMA peripheral base address.
* eChannel - eDMA channel number.

* ul6StatusFlags — The mask of channel status to be cleared. Users need to
use the defined _edma_channel_status_flags type.

static inline uint32_t EDMA_ GetErrorStatusFlags(DMA_Type *base)
Gets the eDMA channel error status flags.

Parameters
* base — eDMA peripheral base address.

Returns
The mask of error status flags. Users need to use the _edma_error_status_flags
type to decode the return variables.

void EDMA_ ConfigChannelSoftware TCD (edma_channel_tcd_t *psTcd,
edma_channel_transfer_config t *psTransfer)

Sets TCD fields according to the user’s channel transfer configuration structure,
edma_channel_transfer_config_t.

Application should be careful about the TCD pool buffer storage class,
* For the platform has cache, the software TCD should be put in non cache section

* The TCD pool buffer should have a consistent storage class.

Note: Application should be careful when using the minor loop offset fea-
ture with this function, please make sure the EMLM bit is asserted, although

114 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

EDMA_InitChannel will set this bit by default, if the bit is cleared, application can use
EDMA_EnableMinorLoopMapping to enable the feature.

Note: This function enables the auto stop request feature.

Parameters
* psTcd — Pointer to the TCD structure.
¢ psTransfer — channel transfer configuration pointer.

void EDMA_ InstallChannelSoftwareTCD(DMA_Type *base, edma_channel_t eChannel,
edma_channel_tcd_t *psTcd)

Push content of software TCD structure into hardware TCD register.
Parameters
* base — EDMA peripheral base address.
* eChannel - EDMA channel number.
e psTcd — Point to TCD structure.

void EDMA_ TransferCreateHandle(DMA_Type *base, edma_handle_t *psHandle, edma_channel_t
eChannel, edma_channel_tcd_t *psTcdPool, uint32_t
u32TcdCount, edma_transfer_callback_t pfCallback, void
*pUserData)

Creates the eDMA channel handle.

This function is called if using the transactional API for eDMA. This function initializes the
internal state of the eDMA handle.

Parameters
* base — eDMA peripheral base address.

» psHandle — eDMA handle pointer. The eDMA handle stores callback func-
tion and parameters.

* ¢Channel - eDMA channel number.

¢ psTedPool — A memory pool to store TCDs. It must be 32 bytes aligned.
* u32TcdCount — The number of TCD slots.

¢ pfCallback — eDMA callback function pointer.

» pUserData — A parameter for the callback function.

status_t EDMA_ TransferSubmitSingleTransfer(edma_handle_t *psHandle,
edma_channel_transfer_config t *psTransfer)

Submits the eDMA single transfer configuration.
Application can submit single transfer when

a. channel is idle, the transfer request will be submitted to eDMA channel TCD register
directly

b. channel is idle, a previous transfer request is pending, the new transfer request will
be submitted to the installed TCD pool and linked to the pending one.

c. channel is active, the transfer request will be submitted to the installed TCD pool and
linked to previous one.

2.19. EDMA: Enhanced Direct Memory Access Driver 115

MCUXpresso SDK Documentation, Release 25.09.00

It is suggest that application should check the return value of this function to make sure
that the transfer request is submitted successfully.

Note: , 1.Please be aware of that tcd pool maintain is unprotect by de-
fault, that is to say, the behavior of multiple task trying to access the same
channel is undefine, application can protect the channel by itself or overwrite
EDMA_ENTER_CRITICAL_SECTION/EDMA_LEAVE_CRITICAL_SECTION to have edma
driver protect the TCD pool maintain. 2.Since the destination major loop offset feature
register is reused as scatter gather tcd address, so the two features cannot be used together,
if the destination major loop offset feature is used, then the transfer request will be submit
hardware TCD directly.

Parameters
 psHandle — eDMA handle pointer.

* psTransfer — pointer to user’s eDMA channel configure structure, see
edma_channel_transfer_config_t for detail.

Return values
* kStatus_ Success — It means submit transfer request succeed.

* kStatus. EDMA_ ChannelQueueFull — It means TCD queue is full. Submit
transfer request is not allowed.

status_t EDMA_ TransferSubmitLoopTransfer(edma_handle_t *psHandle,

edma_channel_transfer_config t *psTransfer,
uint32_t transferLoopCount)

Submits the eDMA scatter gather transfer configurations.

The function is target for submit loop transfer request, the ring transfer request means that
the transfer request TAIL is link to HEAD, such as, A->B->C->D->A, or A->A

To use the ring transfer feature, the application should allocate several transfer object, such
as

edma_ channel_transfer_config_t transfer[2];
EDMA_ TransferSubmitLoopTransfer(psHandle, &transfer, 2U);

Then eDMA driver will link transfer[0] and transfer[1] to each other

Note: Application should check the return value of this function to avoid transfer request
submit failed

Parameters
* psHandle — eDMA handle pointer

* psTransfer — pointer to user’s eDMA channel configure structure, see
edma_channel_transfer_config_t for detail

* transferLoopCount — the count of the transfer ring, if loop count is 1, that
means that the one will link to itself.

Return values
* kStatus_ Success — It means submit transfer request succeed

* kStatus_ EDMA_ ChannelBusy — channel is in busy status

116

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

* kStatus_ EDMA_ ChannelQueueFull — It means TCD pool is not len enough
for the ring transfer request

void EDMA_ TransferStart(edma_handle_t *psHandle)
eDMA starts transfer.

This function enables the channel request. Users can call this function after submitting the
transfer request or before submitting the transfer request.

Parameters
* psHandle — eDMA handle pointer.
void EDMA_ TransferStop(edma_handle_t *psHandle)
eDMA stops transfer.

This function disables the channel request to pause the transfer. Users can call
EDMA_StartTransfer() again to resume the transfer.

Parameters
 psHandle — eDMA handle pointer.
void EDMA_ TransferAbort(edma_handle_t *psHandle)
eDMA aborts transfer.

This function disables the channel request and clear transfer status bits. Users can submit
another transfer after calling this APL

Parameters
* psHandle - DMA handle pointer.

void EDMA_ TransferHandleIRQ(edma_handle_t *psHandle)
eDMA IRQ handler for the current major loop transfer completion.

This function clears the channel major interrupt flag and calls the callback function if it is
not NULL.

Note: For the case using TCD queue, when the major iteration count is exhausted, additional
Interfaces are performed. These include the final address adjustments and reloading of
the BITER field into the CITER. Assertion of an optional interrupt request also occurs at this
time, as does a possible fetch of a new TCD from memory using the scatter/gather address
pointer included in the descriptor (if scatter/gather is enabled).

For instance, when the time interrupt of TCD[0] happens, the TCD[1] has already been
loaded into the eDMA engine. As sga and sga_index are calculated based on the DLAST_SGA
bit field lies in the TCD_CSR register, the sga_index in this case should be 2 (DLAST_SGA of
TCD[1] stores the address of TCD[2]). Thus, the “tcdUsed” updated should be (tcdUsed - 2U)
which indicates the number of TCDs can be loaded in the memory pool (because TCD[O]
and TCD[1] have been loaded into the eDMA engine at this point already.).

For the last two continuous ISRs in a scatter/gather process, they both load the last TCD (The
last ISR does not load a new TCD) from the memory pool to the eDMA engine when major
loop completes. Therefore, ensure that the header and tcdUsed updated are identical for
them. tcdUsed are both 0 in this case as no TCD to be loaded.

See the “eDMA basic data flow” in the eDMA Functional description section of the Reference
Manual for further details.

Parameters
 psHandle — eDMA handle pointer.

FSL EDMA_ DRIVER_VERSION
EDMA driver version.

2.19. EDMA: Enhanced Direct Memory Access Driver 117

MCUXpresso SDK Documentation, Release 25.09.00

_edma_transfer_status eDMA transfer status The enumerator used for transactional inter-
face only.

Values:

enumerator kStatus_ EDMA_ ChannelQueueFull
TCD queue is full.

enumerator kStatus_ EDMA_ ChannelBusy
Channel is busy and can’t handle the transfer request.

enum _ edma_ channel transfer_ type
eDMA transfer type

Values:

enumerator kEDMA_ Channel TransferMemory ToMemory

Transfer type from memory to memory assume that the both source and destination
address are incremental

enumerator kEDMA_ChannelTransferPeripheral ToMemory
Transfer type peripher to memory assume that the source address is fixed

enumerator kEDMA_ChannelTransferMemoryToPeripheral
Transfer type from memory to peripheral assume that the destination address is fixed

enumerator kEDMA_ChannelTransferPeripheral ToPeripheral

Transfer type from Peripheral to peripheral assume that both source and destination
address are fixed

enum _ edma_ channel interrupt_ enable
eDMA interrupt source

The eDMA peripheral support generate interrupt when half of the total request bytes trans-
ferred or all of the request bytes transferred.

Values:

enumerator kEDMA_ ChannelErrorInterruptEnable
Enable error interrupt

enumerator kEDMA_ChannelMajorLoopCompletelnterrupt Enable
Enable interrupt while major count exhausted.

enumerator kEDMA_ChannelMajorLoopHalfCompletelnterruptEnable
Enable interrupt while major count to half value.

enumerator kEDMA_ChannelAlllnterruptEnable
Enable all the interrupt.

enum _edma_ channel status_ flags
_edma_channel_status_flags eDMA channel status flags.

Values:

enumerator kEDMA_ChannelStatusErrorFlag
eDMA error flag, an error occurred in a transfer

enumerator kEDMA__ChannelStatusMajorLoopCompleteFlag
Major loop complete flag, set while transfer finished, CITER value exhausted

enumerator kEDMA__ChannelStatusMajorLoopHalfCompleteFlag
Major loop half complete flag

118 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enum _edma,_ error_status_ flags

_edma_error_status_flags eDMA channel detail error status flags.

Values:

enumerator kEDMA__ ChannelDestinationBusErrorFlag
Bus error on destination address

enumerator kEDMA_ChannelSourceBusErrorFlag
Bus error on the source address

enumerator kEDMA _ChannelScatterGatherErrorFlag

Error on the Scatter/Gather address, not 32byte aligned.

enumerator kEDMA__ChannelNbytesErrorFlag
NBYTES/CITER configuration error

enumerator kEDMA_ ChannelDestinationOffsetErrorFlag
Destination offset not aligned with destination size

enumerator kEDMA_ ChannelDestinationAddressErrorFlag
Destination address not aligned with destination size

enumerator kEDMA__ChannelSourceOffsetErrorFlag
Source offset not aligned with source size

enumerator kEDMA_ ChannelSourceAddressErrorFlag
Source address not aligned with source size

enumerator kEDMA__ ChannelErrorChannelFlag
Error channel number of the canceled channel number

enumerator kEDMA__ ChannelPriorityErrorFlag
Channel priority is not unique.

enumerator kEDMA_ Channel TransferCanceledFlag
Transfer canceled

enumerator kEDMA_ChannelValidFlag
No error occurred, this bit is 0. Otherwise, it is 1.

enum _ edma,_ arbitration_ type
eDMA arbitration type

Values:

enumerator kEDMA__ ArbitrationFixedPriority
channel arbitration by fixed priority

enumerator kEDMA _ArbitrationRoundRobin
Channel arbitration by round robin

enum edma_channel
edma channel index

Values:

enumerator kEDMA_ChannelQ
EDMA channel 0

enumerator kEDMA_ Channell
EDMA channel 1

2.19. EDMA: Enhanced Direct Memory Access Driver

119

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kEDMA Channel2
EDMA channel 2

enumerator kEDMA Channel3
EDMA channel 3

enum edma_channel transfer width

eDMA transfer width configuration

Values:

enumerator kEDMA Channel Transfer Width8Bits
Source/Destination data transfer width is 1 byte every time

enumerator kEDMA Channel TransferWidth16Bits
Source/Destination data transfer width is 2 bytes every time

enumerator kEDMA Channel Transfer Width32Bits
Source/Destination data transfer width is 4 bytes every time

enumerator kEDMA ChannelTransferWidth128Bits
Source/Destination data transfer size is 16 bytes every time

enum _edma_ channel modulo

eDMA channel modulo configuration

The eDMA modulo feature can be used to specify the address
source/destination address, it is useful to implement a circular data queue.

Values:
enumerator kEDMA ChannelModuloDisable
Disable modulo
enumerator kEDMA__ChannelModulo2bytes
Circular buffer size is 2 bytes.
enumerator kEDMA_ChannelModulo4bytes
Circular buffer size is 4 bytes.
enumerator kEDMA_ChannelModulo8bytes
Circular buffer size is 8 bytes.
enumerator kEDMA_ChannelModulol6bytes
Circular buffer size is 16 bytes.
enumerator kEDMA_ChannelModulo32bytes
Circular buffer size is 32 bytes.
enumerator kEDMA_ChannelModulo64bytes
Circular buffer size is 64 bytes.
enumerator kEDMA__ChannelModulo128bytes
Circular buffer size is 128 bytes.
enumerator kEDMA_ ChannelModulo256bytes
Circular buffer size is 256 bytes.
enumerator kEDMA_ ChannelModulo512bytes
Circular buffer size is 512 bytes.

enumerator kEDMA__ChannelModulo1Kbytes
Circular buffer size is 1 K bytes.

range of the

120

Chapter 2

. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kEDMA_ChannelModulo2Kbytes
Circular buffer size is 2 K bytes.

enumerator kEDMA_ChannelModulo4Kbytes
Circular buffer size is 4 K bytes.
enumerator kEDMA_ChannelModulo8Kbytes
Circular buffer size is 8 K bytes.
enumerator kEDMA_ChannelModulo16Kbytes
Circular buffer size is 16 K bytes.
enumerator kEDMA_ChannelModulo32Kbytes
Circular buffer size is 32 K bytes.
enumerator kEDMA_ChannelModulo64Kbytes
Circular buffer size is 64 K bytes.
enumerator kEDMA_ChannelModulo128Kbytes
Circular buffer size is 128 K bytes.
enumerator kEDMA_ChannelModulo256Kbytes
Circular buffer size is 256 K bytes.
enumerator kEDMA__ChannelModulo512Kbytes
Circular buffer size is 512 K bytes.
enumerator kEDMA_ChannelModulolMbytes
Circular buffer size is 1 M bytes.
enumerator kEDMA_ChannelModulo2Mbytes
Circular buffer size is 2 M bytes.
enumerator kEDMA_ChannelModulo4Mbytes
Circular buffer size is 4 M bytes.
enumerator kEDMA_ChannelModulo8Mbytes
Circular buffer size is 8 M bytes.
enumerator kEDMA_ChannelModulo16Mbytes
Circular buffer size is 16 M bytes.
enumerator kEDMA_ChannelModulo32Mbytes
Circular buffer size is 32 M bytes.
enumerator kEDMA_ChannelModulo64Mbytes
Circular buffer size is 64 M bytes.
enumerator kEDMA_ChannelModulo128Mbytes
Circular buffer size is 128 M bytes.
enumerator kEDMA_ChannelModulo256Mbytes
Circular buffer size is 256 M bytes.
enumerator kEDMA_ChannelModulo512Mbytes
Circular buffer size is 512 M bytes.
enumerator kEDMA__ChannelModulo1Gbytes
Circular buffer size is 1 G bytes.

enumerator kEDMA__ChannelModulo2Gbytes
Circular buffer size is 2 G bytes.

2.19. EDMA: Enhanced Direct Memory Access Driver 121

MCUXpresso SDK Documentation, Release 25.09.00

enum _edma_channel bandwidth
edma channel Bandwidth control

Generally, as the eDMA processes the minor loop, it continuously generates read/write se-
quences until the minor count is exhausted. This bandwidth field forces the eDMA to stall
after the completion of each read/write access to control the bus request bandwidth.

The default configuration is KEDMA_BandwidthStallNone.
Values:

enumerator kEDMA_ChannelBandwidthStallNone
No eDMA engine stalls.

enumerator kEDMA_ChannelBandwidthStall4Cycle
eDMA engine stalls for 4 cycles after each read/write.

enumerator kEDMA_ChannelBandwidthStall8Cycle
eDMA engine stalls for 8 cycles after each read/write.

typedef enum _edma_channel_transfer_type edma_ channel transfer type_ t
eDMA transfer type

typedef enum _edma_arbitration_type edma_ arbitration_ type_t
eDMA arbitration type

typedef enum _edma_channel edma_ channel t
edma channel index

typedef enum _edma_channel _transfer_width edma_ channel transfer_ width_t
eDMA transfer width configuration

typedef enum _edma_channel modulo edma_ channel _modulo_ t
eDMA channel modulo configuration
The eDMA modulo feature can be used to specify the address range of the
source/destination address, it is useful to implement a circular data queue.
typedef enum _edma_channel bandwidth edma_ channel bandwidth_t
edma channel Bandwidth control
Generally, as the eDMA processes the minor loop, it continuously generates read/write se-

quences until the minor count is exhausted. This bandwidth field forces the eDMA to stall
after the completion of each read/write access to control the bus request bandwidth.

The default configuration is KEDMA_BandwidthStallNone.

typedef struct _edma_channel Preemption_config edma_ channel Preemption_config_t
eDMA channel priority configuration, useful to the fixed priority arbitration type

typedef struct _edma_channel _tcd edma_ channel ted_t
edma channel software tcd definition

typedef struct _edma_channel_transfer_config edma_ channel transfer config t
edma channel transfer configuration

The transfer configuration structure support full feature configuration of the transfer con-
trol descriptor.

1.To perform a simple transfer, below members should be initialized at least .u32SrcAddr -
source address .u32DstAddr - destination address .eSrcWidthOfEachTransfer - data width
of source address .eDstWidthOfEachTransfer - data width of destination address, nor-
mally it should be as same as eSrcWidthOfEachTransfer .u32BytesEachRequest - bytes
to be transferred in each DMA request .u32TotalBytes - total bytes to be transferred

122 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

.116SrcOffsetOfEachTransfer - offset value in bytes unit to be applied to source address as
each source read is completed .i16DstOffsetOfEachTransfer - offset value in bytes unit to be
applied to destination address as each destination write is completed bEnableChannelRe-
quest - channel request can be enabled together with transfer configure submission

2The transfer configuration structure also support advance feature: Programmable
source/destination address range(MODULO) Programmable minor loop offset Pro-
grammable major loop offset Programmable channel chain feature Programmable channel
transfer control descriptor link feature

Note: User should pay attention to the transfer size alignment limitation

a. the u32BytesEachRequest should align with the eSrcWidthOfEachTransfer and the
eDstWidthOfEachTransfer that is to say u32BytesEachRequest % eSrcWidthOfEach-
Transfer should be 0

b. the i16SrcOffsetOfEachTransfer and i16DstOffsetOfEachTransfer must be aligne with
transfer width

o

the u32TotalBytes should align with the u32BytesEachRequest

the u32SrcAddr should align with the eSrcWidthOfEachTransfer

e. the u32DstAddr should align with the eDstWidthOfEachTransfer

the u32SrcAddr should align with eSrcAddrModulo if modulo feature is enabled

g. the u32DstAddr should align with eDstAddrModulo if modulo feature is enabled If any-
one of above condition can not be satisfied, the edma interfaces will generate assert
error.

e

=

typedef struct _edma_config edma_ config_t
edma configuration structure

This structure target for whole edma module configurations.

typedef struct _edma_handle edma_handle_ t
handler for eDMA

typedef void (*edma_ transfer callback t)(edma_handle_t *psHandle, void *pUserData, bool
bTransferDone, uint32_t u32Tcds)

Define callback function for eDMA.

This callback function is called in the EDMA interrupt handler function. In normal
mode, running into callback function means the transfer users need is done. In scat-
ter gather mode, run into callback function means a transfer control block (tcd) is fin-
ished. Not all transfer finished, users can get the finished tcd numbers using interface
EDMA_GetUnusedTCDNumber.

Param handle
EDMA handle pointer; users shall not touch the values inside.

Param userData
The callback user parameter pointer. Users can use this parameter to involve
things users need to change in EDMA callback function.

Param transferDone
If the current loaded transfer done. In normal mode it means if all transfer
done. In scatter gather mode, this parameter shows is the current transfer
block in EDMA register is done. As the load of core is different, it will be dif-
ferent if the new tcd loaded into EDMA registers while this callback called. If
true, it always means new tcd still not loaded into registers, while false means
new tcd already loaded into registers.

2.19. EDMA: Enhanced Direct Memory Access Driver 123

MCUXpresso SDK Documentation, Release 25.09.00

Param tcds
How many tcds are done from the last callback. This parameter only used in
scatter gather mode. It tells user how many tcds are finished between the last
callback and this.

EDMA_ENTER_ CRITICAL_SECTIONY()
edma transactional tcd pool resource protection lock definition Application should over-
write below two macros if multi task trying to access the same channel.

EDMA_LEAVE_ CRITICAL_SECTIONY()

struct _edma,_ channel Preemption_ config

#include <fsl_edma.h> eDMA channel priority configuration, useful to the fixed priority ar-
bitration type

Public Members

bool bSuspendedByHighPriorityChannel
a channel can be suspended by other channel with higher priority

bool bSuspendLowPriority Channel
a channel can suspend other channel with low priority

uint8_t u8ChannelPriority
Channel priority

struct _edma_ channel transfer config
#include <fsl_edma.h> edma channel transfer configuration

The transfer configuration structure support full feature configuration of the transfer con-
trol descriptor.

1.To perform a simple transfer, below members should be initialized at least .u32SrcAddr -
source address .u32DstAddr - destination address .eSrcWidthOfEachTransfer - data width
of source address .eDstWidthOfEachTransfer - data width of destination address, nor-
mally it should be as same as eSrcWidthOfEachTransfer .u32BytesEachRequest - bytes
to be transferred in each DMA request .u32TotalBytes - total bytes to be transferred
.116SrcOffsetOfEachTransfer - offset value in bytes unit to be applied to source address as
each source read is completed .i16DstOffsetOfEachTransfer - offset value in bytes unit to be
applied to destination address as each destination write is completed bEnableChannelRe-
quest - channel request can be enabled together with transfer configure submission

2.The transfer configuration structure also support advance feature: Programmable
source/destination address range(MODULO) Programmable minor loop offset Pro-
grammable major loop offset Programmable channel chain feature Programmable channel
transfer control descriptor link feature

Note: User should pay attention to the transfer size alignment limitation

a. the u32BytesEachRequest should align with the eSrcWidthOfEachTransfer and the
eDstWidthOfEachTransfer that is to say u32BytesEachRequest % eSrcWidthOfEach-
Transfer should be 0

b. the i116SrcOffsetOfEachTransfer and i16DstOffsetOfEachTransfer must be aligne with
transfer width

c. the u32TotalBytes should align with the u32BytesEachRequest
d. the u32SrcAddr should align with the eSrcWidthOfEachTransfer
e. the u32DstAddr should align with the eDstWidthOfEachTransfer

124 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

f. the u32SrcAddr should align with eSrcAddrModulo if modulo feature is enabled

g. the u32DstAddr should align with eDstAddrModulo if modulo feature is enabled If any-
one of above condition can not be satisfied, the edma interfaces will generate assert
error.

Public Members

uint32_t u32SrcAddr
source address
uint32_t u32DstAddr
destination address
edma_channel_transfer_width_t eSrcWidthOfEachTransfer
source width of each transfer
edma_channel_transfer_width_t eDstWidthOfEach Transfer
destination width of each transfer

uint32_t u32BytesEachMinorLoop

bytes in each minor loop or each request range: 1 - (2430 -1) when minor loop mapping
is enabled range: 1- (2210 - 1) when minor loop mapping is enabled and source or dest
minor loop offset is enabled range: 1 - (2432 - 1) when minor loop mapping is disabled

uint16_t ul6MinorLoopCountsEachMajorLoop

minor loop counts in each major loop, should be 1 at least for each transfer
range: (0 - (2715 - 1)) when minor loop channel link is disabled range: (0 -
(279 - 1)) when minor loop channel link is enabled total bytes in a transfer =
ul6MinorLoopCountsEachMajorLoop * u32BytesEachMinorLoop

uint16_t ul6EnabledInterruptMask
channel interrupt to enable, can be OR’ed value of _edma_channel_interrupt_enable

int16_t i16SrcOffset OfEachTransfer

Sign-extended offset value in byte unit applied to the current source address to form
the next-state value as each source read is completed

edma_channel_modulo_t eSrcAddrModulo
source circular data queue range

int32_t i32SrcMajorLoopOffset
source major loop offset

int16_t i16DstOffsetOfEachTransfer

Sign-extended offset value in byte unit applied to the current destination address to
form the next-state value as each destination write is completed.

edma_channel_modulo_t eDstAddrModulo
destination circular data queue range
int32_t i32DstMajorLoopOffset
destination major loop offset
bool bEnableSrcMinorLoopOffset
enable source minor loop offset

bool bEnableDstMinorLoopOffset
enable dest minor loop offset

2.19. EDMA: Enhanced Direct Memory Access Driver 125

MCUXpresso SDK Documentation, Release 25.09.00

int32_t i32MinorLoopOffset
burst offset, the offset will be applied after minor loop update

bool bEnableChannelMajorLoopLink
channel link when major loop complete
edma_channel_t eMajorLoopLinkChannel
major loop link channel number
bool bEnableChannelMinorLoopLink
channel link when minor loop complete
edma_channel_t eMinorLoopLinkChannel
minor loop link channel number
edma_channel_bandwidth_t eChannelBandWidth
channel bandwidth
bool bDisableRequest AfterMajorLoopComplete
the channel’s ERQ bit can be cleared after the major loop complete automatically
bool bEnableChannelRequest
enable the channel request signal

edma_channel_tcd_t *psLinkTCD
pointer to the link transfer control descriptor

struct edma_channel tcd

#include <fsl_edma.h> eDMA software Transfer control descriptor structure.

This structure is same as eDMA hardware channel TCD registers, user doesn’t need to un-
derstand the structures, since eDMA driver will responsible for configure it.

The software TCD is useful to configure a software TCD which is linked by the channel
hardware TCD to have scatter/gather feature without using transactional interface.

Public Members

IO uint32_t u32SADDR

SADDR register, used to save source address
IO uintl16_t ul6SOFF

SOFF register, offset bytes added to source address every transfer
IO uintl6_t ul6ATTR

ATTR register, source/destination transfer size and modulo

IO uint32_ t u32NBYTES
Nbytes register, minor loop length in bytes

IO uint32_t u32SLAST

SLAST register, adjustment value added to the source address at the completion of the
major loop

_ IO uint32_t u32DADDR
DADDR register, used for destination address
__ 10 uint16_t ul6DOFF
DOFF register, offset bytes added to destination address every transfer

IO uintl6_t ul6CITER
CITER register, current minor loop numbers, for unfinished minor loop.

126

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

IO uint32_t u32DLAST SGA
DLASTSGA register, next tcd address used in scatter-gather mode

IO uintl16_t ul6CSR
CSR register, for TCD control status

IO uintl16_t ul6BITER
BITER register, begin minor loop count.

struct _edma,_ config

#include <fsl_edma.h> edma configuration structure

This structure target for whole edma module configurations.

Public Members

bool bEnableContinuousLinkMode
Enable (true) continuous link mode. Upon minor loop completion, the channel acti-
vates again if that channel has a minor loop channel link enabled and the link channel
is itself.

bool bEnableHaltOnError
Enable (true) transfer halt on error. Any error causes the HALT bit to set. Subsequently,
all service requests are ignored until the HALT bit is cleared.

bool bEnableDmalnDebugMode
Enable(true) eDMA debug mode. When in debug mode, the eDMA stalls the start of a
new channel. Executing channels are allowed to complete.

bool bEnableMinorLoopMapping
TCDn.word?2 is redefined to include individual enable fields, an offset field, and the
NBYTES field. The individual enable fields allow the minor loop offset to be applied
to the source address, the destination address, or both. The NBYTES field is reduced
when either offset is enabled

edma_arbitration_type_t eArbitrationType
Enable (true) round robin channel arbitration method or fixed priority arbitration is
used for channel selection

edma_channel_Preemption_config_t sChannelPreemptionConfig[1]
channel preemption configuration

edma_channel_transfer_config_t *psChannel TransferConfig[1]
channel transfer configuration pointer

struct _edma_ handle

#include <fsl_edma.h> eDMA transfer handle structure

Public Members
edma_transfer_callback_t pfCallback
Callback function for major count exhausted.

void *pUserData
Callback function parameter.

DMA_Type *psBase
eDMA peripheral base address.

2.19. EDMA: Enhanced Direct Memory Access Driver 127

MCUXpresso SDK Documentation, Release 25.09.00

edma_channel_tcd_t *psTcdPool
Pointer to memory stored TCDs.

edma_channel_t eChannel
eDMA channel number.

volatile uint8_t u8Header

The first TCD index. Should point to the next TCD to be loaded into the eDMA engine.
volatile uint8_t u8Tail

The last TCD index. Should point to the next TCD to be stored into the memory pool.

volatile uint8_t u8TcdUsed

The number of used TCD slots. Should reflect the number of TCDs can be used/loaded
in the memory.

volatile uint8_t u8TcdSize
The total number of TCD slots in the queue.

2.20 The Driver Change Log

2.21 EDMA Peripheral and Driver Overview

2.22 EQDC: Enhanced Quadrature Decoder Driver

void EQDC_Init(EQDC_Type *base, const eqdc_config t *psConfig)

Initializes the EQDC module.
This function initializes the EQDC by enabling the IP bus clock (optional).
Parameters
* base — EQDC peripheral base address.

* psConfig — Pointer to configuration structure.

void EQDC_ GetDefaultConfig(eqdc_config t *psConfig)

Gets an available pre-defined configuration.

The default value are:

psConfig->bEnableReverseDirection = false;

psConfig->bCountOnce = false;

psConfig->eOperateMode = kEQDC__QuadratureDecodeOperationMode;
psConfig->eCountMode = kEQDC_ QuadratureX4;
psConfig->eHomeEnablelnitPosCounterMode = kEQDC__HomelnitPosCounterDisabled;
psConfig->elndexPresetInit PosCounterMode = KEQDC__IndexInitPosCounterDisabled;
psConfig->bEnableDma = false;

psConfig->bBufferedRegisterLoadMode = false;

psConfig->bEnableTriggerInitPositionCounter = false;
psConfig->bEnableTriggerClearPositionRegisters = false;
psConfig->bEnableTriggerHoldPositionRegisters = false;

psConfig->bEnableWatchdog = false;
psConfig->ul6WatchdogTimeoutValue = OxFFFFU;
psConfig->bFilterPhaseA = 0U;
psConfig->bFilterPhaseB = 0U;
psConfig->bFilterIndPre = 0U;
psConfig->bFilterHomEna = 0U;

(continues on next page)

128

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)

psConfig->bFilterClockSourceselection = false;

psConfig->eFilterSampleCount = kEQDC__Filter3Samples;
psConfig->u8FilterSamplePeriod = 0U;

psConfig->eOutputPulseMode = kEQDC__OutputPulseOnCounterEqualCompare;
psConfig->u32PositionCompareValue[0] = 0xFFFFFFFFU;
psConfig->u32PositionCompareValue[l] = OxFFFFFFFFU;
psConfig->u32PositionCompareValue[2] = 0xFFFFFFFFU;
psConfig->u32PositionCompareValue[3] = 0xFFFFFFFFU;
psConfig->eRevolutionCountCondition = kEQDC__RevolutionCountOnlIndexPulse;
psConfig->bEnableModuloCountMode = false;
psConfig->u32PositionModulusValue = 0U;

psConfig->u32PositionInitial Value = 0U;

psConfig->u32PositionCounterValue = 0U;
psConfig->bEnablePeriodMeasurement = false;

psConfig->ePrescaler = kEQDC__Prescalerl;
psConfig->ul6EnabledInterruptsMask = 0U;

Parameters
* psConfig — Pointer to configuration structure.
void EQDC_ Deinit(EQDC_Type *base)
De-initializes the EQDC module.
This function deinitializes the EQDC by disabling the IP bus clock (optional).
Parameters
* base — EQDC peripheral base address.

void EQDC__SetOperateMode(EQDC_Type *base, eqdc_operate_mode_t eOperateMode)
Initializes the mode of operation.

This function initializes mode of operation by enabling the IP bus clock (optional).
Parameters
* base — EQDC peripheral base address.
* eOperateMode — Select operation mode.

static inline void EQDC_ SetCountMode(EQDC_Type *base, eqdc_count_mode_t eCountMode)

Initializes the mode of count.

These bits control the basic counting and behavior of Position Counter and Position Dif-
ference Counter. Setting CTRL[REV] to 1 can reverse the counting direction. 1.In quadra-
ture Mode (CTRL[PH1] = 0): 00b - CMO: Normal/Reverse Quadrature X4 01b - CM1: Nor-
mal/Reverse Quadrature X2 10b - CM2: Normal/Reverse Quadrature X1 11b - CM3: Reserved
2.In Single Phase Mode (CTRL[PH1] = 1): 00b - CM0: UP/DOWN Pulse Count Mode 01b - CM1:
Signed Mode, count PHASEA rising/falling edge, position counter counts up when PHASEB
islow and counts down when PHASEB is high 10b - CM2: Signed Count Mode,count PHASEA
rising edge only, position counter counts up when PHASEB is low and counts down when
PHASEB is high 11b - CM3: Reserved

Parameters
* base — EQDC peripheral base address.
* eCountMode — Select count mode.

static inline void EQDC_ EnableWatchdog(EQDC_Type *base, bool bEnable)
Enable watchdog for EQDC module.

Parameters

* base — EQDC peripheral base address

2.22. EQDC: Enhanced Quadrature Decoder Driver 129

MCUXpresso SDK Documentation, Release 25.09.00

* bEnable — Enables or disables the watchdog

static inline void EQDC__ SetWatchdogTimeout(EQDC_Type *base, uint16_t ul6Timeout)
Set watchdog timeout value.

Parameters
* base — EQDC peripheral base address

* ul6Timeout — Number of clock cycles, plus one clock cycle that the watch-
dog timer counts before timing out

static inline void EQDC_ EnableDMA (EQDC_Type *base, bool bEnable)
Enable DMA for EQDC module.

Parameters
* base — EQDC peripheral base address
* bEnable — Enables or disables the DMA

static inline void EQDC_ SetBufferedRegisterLoadUpdateMode(EQDC_Type *base)
Set Buffered Register Load (Update) Mode.

This bit selects the loading time point of the buffered compare registers UCOMPx/LCOMPX,
x=0~3, initial register (UINIT/LINIT), and modulus register (UMOD/LMOD). Buffered regis-

ters are loaded and take effect at the next roll-over or roll-under if CTRL[LDOK] is set.
Parameters
* base — EQDC peripheral base address

static inline void EQDC_ ClearBufferedRegisterLoad UpdateMode(EQDC_Type *base)
Clear Buffered Register Load (Update) Mode.

Buffered Register Load (Update) Mode bit selects the loading time point of the buffered
compare registers UCOMPx/LCOMPx, x=0~3, initial register (UINIT/LINIT), and modulus
register (UMOD/LMOD). Buffered registers are loaded and take effect immediately upon

CTRL[LDOK] is set.
Parameters
* base — EQDC peripheral base address

static inline void EQDC_ SetEqdcLdok(EQDC_Type *base)
Set load okay.

Load okay enables that the outer-set values of buffered compare registers
(UCOMPx/LCOMPx, x=0~3), initial register(UINIT/LINIT) and modulus regis-
ter(UMOD/LMOD) can be loaded into their inner-sets and take effect. When LDOK is
set, this loading action occurs at the next position counter roll-over or roll-under if
CTRL2[LDMOD] is set, or it occurs immediately if CTRL2[LDMOD] is cleared. LDOK is

automatically cleared after the values in outer-set is loaded into the inner-set.
Parameters
* base — EQDC peripheral base address.

static inline uint8_t EQDC_ GetEqdcLdok(EQDC_Type *base)
Get load okay.

Parameters
* base — EQDC peripheral base address.

static inline void EQDC__ClearEqdcLdok(EQDC_Type *base)
Clear load okay.

Parameters

130 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

* base — EQDC peripheral base address.

static inline uint32_t EQDC_ GetStatusFlags(EQDC_Type *base)
Get the status flags.

Parameters
* base — EQDC peripheral base address.

Returns
Logical OR’ed value of the status flags, _eqdc_status_flags.

static inline void EQDC__ClearStatusFlags(EQDC_Type *base, uint32_t u32Flags)
Clear the status flags.

Parameters
* base — EQDC peripheral base address.
» u32Flags — Logical OR’ed value of the flags to clear, _eqdc_status_flags.

static inline uint16_t EQDC_ GetSignalStatusFlags(EQDC_Type *base)
Get the signals’ real-time status.

Parameters
* base — EQDC peripheral base address.

Returns
Logical OR’ed value of the real-time signal status, _eqdc_signal_status.

static inline eqdc_count_direction_flag t EQDC_ GetLastCountDirection(EQDC_Type *base)
Get the direction of the last count.

Parameters
* base — EQDC peripheral base address.

Returns
Direction of the last count.

static inline void EQDC_ EnableInterrupts(EQDC_Type *base, uint32_t u32Interrupts)
Enable the interrupts.

Parameters
* base — EQDC peripheral base address.

» u32Interrupts - Logical ORed wvalue of the interrupts,
_eqdc_interrupt_enable.

static inline void EQDC_ DisableInterrupts(EQDC_Type *base, uint32_t u32Interrupts)
Disable the interrupts.

Parameters
* base — EQDC peripheral base address.

» u32Interrupts - Logical ORed value of the interrupts,
_eqdc_interrupt_enable.

static inline void EQDC_ DoSoftwareLoadInitialPositionValue(EQDC_Type *base)
Load the initial position value to position counter.

Software trigger to load the initial position value (UINIT and LINIT) contents to position
counter (UPOS and LPOS), so that to provide the consistent operation the position counter
registers.

Parameters

2.22. EQDC: Enhanced Quadrature Decoder Driver 131

MCUXpresso SDK Documentation, Release 25.09.00

* base — EQDC peripheral base address.

static inline void EQDC__SetInitialPositionValue(EQDC_Type *base, uint32_t
u32PositionInitValue)

Set initial position value for EQDC module.

Set the position counter initial value (UINIT, LINIT). After writing values to the UINIT and
LINIT registers, the values are “buffered” into outer-set registers temporarily. Values will
be loaded into inner-set registers and take effect using the following two methods:

a. If CTRL2[LDMODE] is 1, “buffered” values are loaded into inner-set and take effect at
the next roll-over or roll-under if CTRL[LDOK] is set.

b. If CTRL2[LDMODE] is 0, “buffered” values are loaded into inner-set and take effect
immediately when CTRL[LDOK] is set.

Parameters
* base — EQDC peripheral base address
» u32PositionInitValue — Position initial value

static inline void EQDC__SetPositionCounterValue(EQDC_Type *base, uint32_t
u32PositionCounterValue)

Set position counter value.
Set the position counter value (POS or UPOS, LPOS).
Parameters
* base — EQDC peripheral base address
¢ u32PositionCounterValue — Position counter value

static inline void EQDC__SetPositionModulusValue(EQDC_Type *base, uint32_t
u32PositionModulusValue)

Set position counter modulus value.

Set the position counter modulus value (UMOD, LMOD). After writing values to the UMOD
and LMOD registers, the values are “buffered” into outer-set registers temporarily. Values
will be loaded into inner-set registers and take effect using the following two methods:

a. If CTRL2[LDMODE] is 1, “buffered” values are loaded into inner-set and take effect at
the next roll-over or roll-under if CTRL[LDOK] is set.

b. If CTRL2[LDMODE] is 0, “buffered” values are loaded into inner-set and take effect
immediately when CTRL[LDOK] is set.

Parameters
* base — EQDC peripheral base address
* u32PositionModulusValue — Position modulus value

static inline void EQDC_ SetPositionCompare0Value(EQDC_Type *base, uint32_t
u32PositionCompOValue)

Set position counter compare 0 value.

Set the position counter compare 0 value (UCOMPO, LCOMPO0). After writing values to the
UCOMPO and LCOMPO registers, the values are “buffered” into outer-set registers temporar-
ily. Values will be loaded into inner-set registers and take effect using the following two
methods:

a. If CTRL2[LDMODE] is 1, “buffered” values are loaded into inner-set and take effect at
the next roll-over or roll-under if CTRL[LDOK] is set.

132 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

b. If CTRL2[LDMODE] is 0, “buffered” values are loaded into inner-set and take effect
immediately when CTRL[LDOK] is set.

Parameters
* base — EQDC peripheral base address
* u32PositionComp0Value — Position modulus value

static inline void EQDC_ SetPositionComparelValue(EQDC_Type *base, uint32_t
u32PositionCompiValue)

Set position counter compare 1 value.

Set the position counter compare 1 value (UCOMP1, LCOMP1). After writing values to the
UCOMP1 and LCOMP1 registers, the values are “buffered” into outer-set registers temporar-
ily. Values will be loaded into inner-set registers and take effect using the following two
methods:

a. If CTRL2[LDMODE] is 1, “buffered” values are loaded into inner-set and take effect at
the next roll-over or roll-under if CTRL[LDOK] is set.

b. If CTRL2[LDMODE] is 0, “buffered” values are loaded into inner-set and take effect
immediately when CTRL[LDOK] is set.

Parameters
* base — EQDC peripheral base address
* u32PositionComp1lValue — Position modulus value

static inline void EQDC__SetPositionCompare2Value(EQDC_Type *base, uint32_t
u32PositionComp2Value)

Set position counter compare 2 value.

Set the position counter compare 2 value (UCOMP2, LCOMP2). After writing values to the
UCOMP2 and LCOMP2 registers, the values are “buffered” into outer-set registers temporar-
ily. Values will be loaded into inner-set registers and take effect using the following two
methods:

a. If CTRL2[LDMODE] is 1, “buffered” values are loaded into inner-set and take effect at
the next roll-over or roll-under if CTRL[LDOK] is set.

b. If CTRL2[LDMODE] is 0, “buffered” values are loaded into inner-set and take effect
immediately when CTRL[LDOK] is set.

Parameters
* base — EQDC peripheral base address
* u32PositionComp2Value — Position modulus value

static inline void EQDC_ SetPositionCompare3Value(EQDC_Type *base, uint32_t
u32PositionComp3Value)

Set position counter compare 3 value.

Set the position counter compare 3 value (UCOMP3, LCOMP3). After writing values to the
UCOMP3 and LCOMP3 registers, the values are “buffered” into outer-set registers temporar-
ily. Values will be loaded into inner-set registers and take effect using the following two
methods:

a. If CTRL2[LDMODE] is 1, “buffered” values are loaded into inner-set and take effect at
the next roll-over or roll-under if CTRL[LDOK] is set.

b. If CTRL2[LDMODE] is 0, “buffered” values are loaded into inner-set and take effect
immediately when CTRL[LDOK] is set.

2.22. EQDC: Enhanced Quadrature Decoder Driver 133

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* base — EQDC peripheral base address
* u32PositionComp3Value — Position modulus value
static inline uint32_t EQDC_ GetPosition(EQDC_Type *base)
Get the current position counter’s value.
Parameters
* base — EQDC peripheral base address.

Returns
Current position counter’s value.

static inline uint32_t EQDC_ GetHoldPosition(EQDC_Type *base)
Get the hold position counter’s value.

The position counter (POS or UPOS, LPOS) value is loaded to hold position (POSH or UPOSH,
LPOSH) when:

a. Position register (POS or UPOS, LPOS), or position difference register (POSD), or revo-
lution register (REV) is read.

b. TRIGGER happens and TRIGGER is enabled to update the hold registers.

Parameters
* base — EQDC peripheral base address.

Returns
Hold position counter’s value.

static inline uint32_t EQDC_ GetHoldPosition1(EQDC_Type *base)
Get the hold position counter1’s value.

The Upper Position Counter Hold Register 1(UPOSH1) shares the same address with
UCOMP1. When read, this register means the value of UPOSH1, which is the upper 16 bits
of POSH1. The Lower Position Counter Hold Register 1(LPOSH1) shares the same address
with LCOMP1. When read, this register means the value of LPOSH1, which is the lower 16
bits of POSH1. Position counter is captured into POSH1 on the rising edge of ICAP[1].

Parameters
* base — EQDC peripheral base address.

Returns
Hold position counter?’s value.

static inline uint32_t EQDC_ GetHoldPosition2(EQDC_Type *base)
Get the hold position counter2’s value.

The Upper Position Counter Hold Register 2(UPOSH2) shares the same address with
UCOMP2. When read,this register means the value of UPOSH2, which is the upper 16 bits
of POSH2. The Lower Position Counter Hold Register 2(LPOSH2) shares the same address
with LCOMP2. When read, this register means the value of LPOSH2, which is the lower 16
bits of POSH2. Position counter is captured into POSH2 on the rising edge of ICAP[2].

Parameters
* base — EQDC peripheral base address.

Returns
Hold position counter2’s value.

134 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t EQDC_ GetHoldPosition3(EQDC_Type *base)
Get the hold position counter3’s value.

The Upper Position Counter Hold Register 3(UPOSH3) shares the same address with
UCOMP3. When read,this register means the value of UPOSH3, which is the upper 16 bits
of POSH3. The Lower Position Counter Hold Register 3(LPOSH3) shares the same address
with LCOMP3. When read, this register means the value of LPOSH3, which is the lower 16
bits of POSH3. Position counter is captured into POSH3 on the rising edge of ICAP[3].

Parameters
* base — EQDC peripheral base address.

Returns
Hold position counter3’s value.

static inline uint16_t EQDC_ GetPositionDifference(EQDC_Type *base)
Get the position difference counter’s value.

Parameters
* base — EQDC peripheral base address.

Returns
The position difference counter’s value.

static inline uint16_t EQDC_ GetHoldPositionDifference(EQDC_Type *base)
Get the hold position difference counter’s value.

The position difference (POSD) value is loaded to hold position difference (POSDH) when:

a. Position register (POS or UPOS, LPOS), or position difference register (POSD), or revo-
lution register (REV) is read. When Period Measurement is enabled (CTRL3[PMEN] =
1), POSDH will only be udpated when reading POSD.

b. TRIGGER happens and TRIGGER is enabled to update the hold registers.

Parameters
* base — EQDC peripheral base address.

Returns
Hold position difference counter’s value.

static inline uint16_t EQDC_ GetRevolution(EQDC_Type *base)
Get the revolution counter’s value.

Get the revolution counter (REV) value.
Parameters
* base — EQDC peripheral base address.

Returns
The revolution counter’s value.

static inline uint16_t EQDC_ GetHoldRevolution(EQDC_Type *base)
Get the hold revolution counter’s value.

The revolution counter (REV) value is loaded to hold revolution (REVH) when:

a. Position register (POS or UPOS, LPOS), or position difference register (POSD), or revo-
lution register (REV) is read.

b. TRIGGER happens and TRIGGER is enabled to update the hold registers.

Parameters
* base — EQDC peripheral base address.

2.22. EQDC: Enhanced Quadrature Decoder Driver 135

MCUXpresso SDK Documentation, Release 25.09.00

Returns
Hold position revolution counter’s value.

static inline uint16_t EQDC_ GetLastEdgeTime(EQDC_Type *base)
Get the last edge time.

Last edge time (LASTEDGE) is the time since the last edge occurred on PHASEA or PHASEB.
The last edge time register counts up using the peripheral clock after prescaler. Any edge
on PHASEA or PHASEB will reset this register to 0 and start counting. If the last edge timer
count reaches Oxffff, the counting will stop in order to prevent an overflow.Counting will
continue when an edge occurs on PHASEA or PHASEB.

Parameters
* base — EQDC peripheral base address.

Returns
The last edge time.

static inline uint16_t EQDC_ GetHoldLastEdgeTime(EQDC_Type *base)
Get the hold last edge time.

The hold of last edge time(LASTEDGEH) is update to last edge time(LASTEDGE) when the
position difference register register (POSD) is read.

Parameters
* base — EQDC peripheral base address.

Returns
Hold of last edge time.

static inline uint16_t EQDC_ GetPositionDifferencePeriod(EQDC_Type *base)
Get the Position Difference Period counter value.

The Position Difference Period counter (POSDPER) counts up using the prescaled periph-
eral clock. When reading the position difference register(POSD), the last edge time (LAST-
EDGE) will beloaded to position difference period counter(POSDPER). If the POSDPER count
reaches Oxffff, the counting will stop in order to prevent an overflow. Counting will con-
tinue when an edge occurs on PHASEA or PHASEB.

Parameters
* base — EQDC peripheral base address.

Returns
The position difference period counter value.

static inline uint16_t EQDC_ GetBufferedPositionDifferencePeriod(EQDC_Type *base)
Get buffered Position Difference Period counter value.

The Bufferd Position Difference Period (POSDPERBFR) value is updated with the position
difference period counter(POSDPER) when any edge occurs on PHASEA or PHASEB.

Parameters
* base — EQDC peripheral base address.

Returns
The buffered position difference period counter value.

static inline uint16_t EQDC_ GetHoldPositionDifferencePeriod(EQDC_Type *base)
Get Hold Position Difference Period counter value.

The hold position difference period(POSDPERH) is updated with the value of buffered posi-
tion difference period(POSDPERBFR) when the position difference(POSD) register is read.

Parameters

136 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

* base — EQDC peripheral base address.

Returns
The hold position difference period counter value.

FSL_EQDC_DRIVER,_ VERSION
EQDC driver version.

enum _ eqdc_status_ flags
EQDC status flags, these flags indicate the counter’s events. .

Values:

enumerator kEQDC__HomeEnableTransitionFlag
HOME/ENABLE signal transition occured.

enumerator kEQDC__IndexPresetPulseFlag
INDEX/PRESET pulse occured.

enumerator kEQDC_WatchdogTimeoutFlag
Watchdog timeout occured.

enumerator kEQDC__SimultPhaseChangeFlag
Simultaneous change of PHASEA and PHASEB occured.

enumerator kEQDC__CountDirectionChangeFlag
Count direction change interrupt enable.

enumerator kEQDC__PositionRollOverFlag
Position counter rolls over from OXFFFFFFFF to 0, or from MOD value to INIT value.

enumerator kEQDC_ PositionRollUnderFlag
Position register roll under from 0 to OXFFFFFFFE, or from INIT value to MOD value.

enumerator kEQDC_ PositionCompareOFlag
Position counter match the COMPO value.

enumerator kEQDC_ PositionComparelFlag
Position counter match the COMP1 value.

enumerator kEQDC__PositionCompare2Flag
Position counter match the COMP2 value.

enumerator kEQDC__ PositionCompare3Flag
Position counter match the COMP3 value.

enumerator kEQDC__StatusAllFlags

enum _ eqdc_ signal_status
Signal status, these flags indicate the raw and filtered input signal status. .
Values:

enumerator kEQDC__SignalStatusRawHomeEnable
Raw HOME/ENABLE input.

enumerator kEQDC__SignalStatusRawIndexPreset
Raw INDEX/PRESET input.

enumerator kEQDC__SignalStatusRawPhaseB
Raw PHASEB input.

enumerator kEQDC__SignalStatusRawPhaseA
Raw PHASEA input.

2.22. EQDC: Enhanced Quadrature Decoder Driver 137

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kEQDC__SignalStatusFilteredHomeEnable
The filtered HOME/ENABLE input.

enumerator kEQDC__SignalStatusFilteredIndexPreset
The filtered INDEX/PRESET input.

enumerator kEQDC__SignalStatusFilteredPhaseB
The filtered PHASEB input.

enumerator kEQDC__SignalStatusFilteredPhaseA
The filtered PHASEA input.

enumerator kEQDC__SignalStatusPositionCompare0Flag
Position Compare 0 Flag Output.

enumerator kEQDC__SignalStatusPositionComparelFlag
Position Compare 1 Flag Output.

enumerator kEQDC__SignalStatusPositionCompare2Flag
Position Compare 2 Flag Output.

enumerator kEQDC__SignalStatusPositionCompare3Flag
Position Compare 3 Flag Output.

enumerator kEQDC__ SignalStatusCountDirectionFlagHold
Count Direction Flag Hold.

enumerator kEQDC__SignalStatusCountDirectionFlag
Count Direction Flag Output.

enumerator kEQDC__SignalStatusAllFlags
enum _ eqdc_ interrupt_ enable

Interrupt enable/disable mask. .

Values:

enumerator kKEQDC__HomeEnableTransitionInterruptEnable
HOME/ENABLE signal transition interrupt enable.

enumerator KEQDC__ IndexPresetPulselnterruptEnable
INDEX/PRESET pulse interrupt enable.

enumerator kEQDC__ WatchdogTimeoutInterruptEnable
Watchdog timeout interrupt enable.

enumerator kEQDC__SimultPhaseChangelnterruptEnable
Simultaneous PHASEA and PHASEB change interrupt enable.

enumerator kKEQDC_ PositionRollOverInterruptEnable
Roll-over interrupt enable.

enumerator kKEQDC_ PositionRollUnderInterruptEnable
Roll-under interrupt enable.

enumerator kEQDC__ PositionCompareOInerruptEnable
Position compare 0 interrupt enable.

enumerator kEQDC_ PositionComparellnerruptEnable
Position compare 1 interrupt enable.

enumerator kEQDC_ PositionCompare2InerruptEnable
Position compare 2 interrupt enable.

138 Chapter 2

. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kEQDC__ PositionCompare3InerruptEnable
Position compare 3 interrupt enable.

enumerator kEQDC__AlllnterruptEnable

enum _ eqdc_home_enable init_pos_counter mode
Define HOME/ENABLE signal’s trigger mode.

Values:

enumerator kEQDC__HomelnitPosCounterDisabled
Don’t use HOME/ENABLE signal to initialize the position counter.

enumerator kEQDC__HomelnitPosCounterOnRisingEdge
Use positive going edge to trigger initialization of position counters.

enumerator kEQDC__HomelnitPosCounterOnFallingEdge
Use negative going edge to trigger initialization of position counters.

enum _ eqdc_index_ preset_ init_ pos_counter_mode
Define INDEX/PRESET signal’s trigger mode.

Values:

enumerator kEQDC_ IndexInitPosCounterDisabled
INDEX/PRESET pulse does not initialize the position counter.

enumerator kEQDC_ IndexInitPosCounterOnRisingEdge
Use INDEX/PRESET pulse rising edge to initialize position counter.

enumerator kEQDC__IndexInitPosCounterOnFallingEdge
Use INDEX/PRESET pulse falling edge to initialize position counter.

enum _ eqdc_ operate__mode
Define type for decoder opertion mode.

The Quadrature Decoder operates in following 4 operation modes: 1.Quadrature De-
code(QDC) Operation Mode (CTRL[PH1] = 0,CTRL2[OPMODE] = 0) In QDC operation mode,
Module uses PHASEA, PHASEB, INDEX, HOME, TRIGGER and ICAP[3:1] to decode the
PHASEA and PHASEB signals from Speed/Position sensor. 2.Quadrature Count(QCT) Op-
eration Mode (CTRL[PH1] = 0,CTRL2[OPMODE] = 1) In QCT operation mode, Module uses
PHASEA, PHASEB, PRESET, ENABLE, TRIGGER and ICAP[3:1] to count the PHASEA and
PHASEB signals from Speed/Position sensor. 3.Single Phase Decode(PH1DC) Operation
Mode (CTRL[PH1] = 1,CTRL2[OPMODE] = 0) In PH1DC operation mode, the module uses
PHASEA, PHASEB, INDEX, HOME, TRIGGER and ICAP[3:1] to decode the PHASEA and
PHASERB signals from Speed/Position sensor. 4.Single Phase Count(PH1CT) Operation Mode
(CTRL[PH1] = 1,CTRL2[OPMODE] = 1) In PH1CT operation mode, the module uses PHASEA,
PHASEB, PRESET, ENABLE, TRIGGER and ICAP[3:1] to count the PHASEA and PHASEB sig-
nals from Speed/Position sensor.

Values:

enumerator kKEQDC_QuadratureDecodeOperationMode
Use standard quadrature decoder with PHASEA/PHASEB, INDEX/HOME.

enumerator kKEQDC__QuadratureCountOperationMode
Use quadrature count operation mode with PHASEA/PHASEB, PRESET/ENABLE.

enumerator kEQDC__SinglePhaseDecodeOperationMode
Use single phase quadrature decoder with PHASEA/PHASEB, INDEX/HOME.

enumerator kEQDC__ SinglePhaseCountOperationMode
Use single phase count decoder with PHASEA/PHASEB, PRESET/ENABLE.

2.22. EQDC: Enhanced Quadrature Decoder Driver 139

MCUXpresso SDK Documentation, Release 25.09.00

enum _ eqdc_ count_ mode
Define type for decoder count mode.

In decode mode, it uses the standard quadrature decoder with PHASEA and PHASEB,
PHASEA = 0 and PHASEB = 0 mean reverse direction.

» If PHASEA leads PHASEB, then motion is in the positive direction.

o If PHASEA trails PHASEB,then motion is in the negative direction. In single phase
mode, there are three count modes:

* In Signed Count mode (Single Edge). Both position counter (POS) and position differ-
ence counter (POSD) count on the input PHASEA rising edge while the input PHASEB
provides the selected position counter direction (up/down). If CTRL[REV] is 1, then the
position counter will count in the opposite direction.

* In Signed Count mode (double edge), both position counter (POS) and position differ-
ence counter (POSD) count the input PHASEA on both rising edge and falling edge while
the input PHASEB provides the selected position counter direction (up/down).

* In UP/DOWN Pulse Count mode. Both position counter (POS) and position difference
counter (POSD) count in the up direction when input PHASEA rising edge occurs.
Both counters count in the down direction when input PHASEB rising edge occurs.
If CTRL[REV] is 1, then the position counter will count in the opposite direction.

Values:

enumerator kEQDC__QuadratureX4
Active on kEQDC_QuadratureDecodeOperationMode/KEQDC_QuadratureCountOperationMode.

enumerator kEQDC__QuadratureX2
Active on kEQDC_QuadratureDecodeOperationMode/KEQDC_QuadratureCountOperationMode.

enumerator kEQDC__QuadratureX1
Active on kEQDC_QuadratureDecodeOperationMode/KEQDC_QuadratureCountOperationMode.

enumerator kEQDC__UpDownPulseCount
Active on kEQDC_SinglePhaseDecodeOperationMode/kEQDC_SinglePhaseCountOperationMode.

enumerator kEQDC__SignedCountDoubleEdge
Active on kEQDC_SinglePhaseDecodeOperationMode/kEQDC_SinglePhaseCountOperationMode.

enumerator kEQDC__SignedCountSingleEdge
Active on kEQDC_SinglePhaseDecodeOperationMode/kEQDC_SinglePhaseCountOperationMode.

enum _ eqdc_ output_ pulse_mode
Define type for the condition of POSMATCH pulses.
Values:

enumerator kKEQDC__ OutputPulseOnCounterEqualCompare
POSMATCH pulses when a match occurs between the position counters (POS) and the
compare value (UCOMPx/LCOMPX)(x range is 0-3).

enumerator kEQDC__ OutputPulseOnReadingPositionCounter
POSMATCH pulses when reading position counter(POS and LPOS), revolution
counter(REV), position difference counter(POSD).

enum _ eqdc_ revolution_ count_ condition
Define type for determining how the revolution counter (REV) is incre-
mented/decremented.

Values:

140 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kEQDC_ RevolutionCountOnIndexPulse
Use INDEX pulse to increment/decrement revolution counter.

enumerator kEQDC__ RevolutionCountOnRollOverModulus
Use modulus counting roll-over/under to increment/decrement revolution counter.

enum _ eqdc_filter__sample_ count
Input Filter Sample Count.

The Input Filter Sample Count represents the number of consecutive samples that must
agree, before the input filter accepts an input transition

Values:

enumerator kEQDC_ Filter3Samples
3 samples.

enumerator kEQDC__ Filter4dSamples
4 samples.

enumerator kEQDC__ Filter5Samples
5 samples.

enumerator kEQDC_ Filter6Samples
6 samples.

enumerator kEQDC_ Filter7Samples
7 samples.

enumerator kEQDC__ Filter8Samples
8 samples.

enumerator kEQDC__ Filter9Samples
9 samples.

enumerator kEQDC_ Filter10Samples
10 samples.

enum _ eqdc_count_ direction_ flag
Count direction.

Values:

enumerator kKEQDC__ CountDirectionDown
Last count was in down direction.

enumerator kKEQDC_ CountDirectionUp
Last count was in up direction.

enum _ eqdc_ prescaler

Prescaler used by Last Edge Time (LASTEDGE) and Position Difference Period Counter (POS-
DPER).

Values:

enumerator kKEQDC_ Prescalerl
Prescaler value 1.

enumerator kEQDC_ Prescaler2
Prescaler value 2.

enumerator kEQDC__ Prescaler4
Prescaler value 4.

2.22. EQDC: Enhanced Quadrature Decoder Driver 141

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kEQDC_ Prescaler8
Prescaler value 8.

enumerator kEQDC_ Prescaler16
Prescaler value 16.

enumerator kEQDC_ Prescaler32
Prescaler value 32.

enumerator kEQDC__ Prescaler64
Prescaler value 64.

enumerator kEQDC_ Prescaler128
Prescaler value 128.

enumerator kEQDC_ Prescaler256
Prescaler value 256.
enumerator kEQDC_ Prescaler512
Prescaler value 512.
enumerator kKEQDC_ Prescaler1024
Prescaler value 1024.
enumerator kKEQDC_ Prescaler2048
Prescaler value 2048.
enumerator kKEQDC_ Prescaler4096
Prescaler value 4096.
enumerator kKEQDC_ Prescaler8192
Prescaler value 8192.
enumerator kKEQDC_ Prescaler16384
Prescaler value 16384.

enumerator kEQDC_ Prescaler32768
Prescaler value 32768.

typedef enum _eqdc_home_enable_init_pos_counter_mode
eqdc__home_ enable_init_ pos_ counter mode_t

Define HOME/ENABLE signal’s trigger mode.

typedef enum _eqdc_index_preset_init_pos_counter_mode
eqdc_index_ preset_ init_ pos_ counter__mode_t

Define INDEX/PRESET signal’s trigger mode.

typedef enum _eqdc_operate_mode eqdc_operate. mode_t

Define type for decoder opertion mode.

The Quadrature Decoder operates in following 4 operation modes: 1.Quadrature De-
code(QDC) Operation Mode (CTRL[PH1] = 0,CTRL2[OPMODE] = 0) In QDC operation mode,
Module uses PHASEA, PHASEB, INDEX, HOME, TRIGGER and ICAP[3:1] to decode the
PHASEA and PHASEB signals from Speed/Position sensor. 2.Quadrature Count(QCT) Op-
eration Mode (CTRL[PH1] = 0,CTRL2[OPMODE] = 1) In QCT operation mode, Module uses
PHASEA, PHASEB, PRESET, ENABLE, TRIGGER and ICAP[3:1] to count the PHASEA and
PHASEB signals from Speed/Position sensor. 3.Single Phase Decode(PH1DC) Operation
Mode (CTRL[PH1] = 1,CTRL2[OPMODE] = 0) In PH1DC operation mode, the module uses
PHASEA, PHASEB, INDEX, HOME, TRIGGER and ICAP[3:1] to decode the PHASEA and
PHASERB signals from Speed/Position sensor. 4.Single Phase Count(PH1CT) Operation Mode
(CTRL[PH1] = 1,CTRL2[OPMODE] = 1) In PH1CT operation mode, the module uses PHASEA,
PHASEB, PRESET, ENABLE, TRIGGER and ICAP[3:1] to count the PHASEA and PHASEB sig-
nals from Speed/Position sensor.

142

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _eqdc_count_mode eqdc__count_mode_t
Define type for decoder count mode.

In decode mode, it uses the standard quadrature decoder with PHASEA and PHASEB,
PHASEA = 0 and PHASEB = 0 mean reverse direction.

» If PHASEA leads PHASEB, then motion is in the positive direction.

o If PHASEA trails PHASEB,then motion is in the negative direction. In single phase
mode, there are three count modes:

* In Signed Count mode (Single Edge). Both position counter (POS) and position differ-
ence counter (POSD) count on the input PHASEA rising edge while the input PHASEB
provides the selected position counter direction (up/down). If CTRL[REV] is 1, then the
position counter will count in the opposite direction.

* In Signed Count mode (double edge), both position counter (POS) and position differ-
ence counter (POSD) count the input PHASEA on both rising edge and falling edge while
the input PHASEB provides the selected position counter direction (up/down).

* In UP/DOWN Pulse Count mode. Both position counter (POS) and position difference
counter (POSD) count in the up direction when input PHASEA rising edge occurs.
Both counters count in the down direction when input PHASEB rising edge occurs.
If CTRL[REV] is 1, then the position counter will count in the opposite direction.
typedef enum _eqdc_output_pulse_mode eqdc_ output_ pulse _mode_t
Define type for the condition of POSMATCH pulses.
typedef enum _eqdc_revolution_count_condition eqdc_ revolution_count_ condition_ t
Define type for determining how the revolution counter (REV) is incre-
mented/decremented.
typedef enum _eqdc_filter_sample_count eqdc_ filter__sample_count_ t
Input Filter Sample Count.
The Input Filter Sample Count represents the number of consecutive samples that must
agree, before the input filter accepts an input transition
typedef enum _eqdc_count_direction_flag eqdc_ count_ direction_flag t
Count direction.
typedef enum _eqdc_prescaler eqdc_ prescaler_t

Prescaler used by Last Edge Time (LASTEDGE) and Position Difference Period Counter (POS-
DPER).

typedef struct _eqdc_config eqdc_config_t

Define user configuration structure for EQDC module.
EQDC_CTRL_ WI1C_ FLAGS

W1C bits in EQDC CTRL registers.
EQDC_INTCTRL_WI1C_FLAGS

W1C bits in EQDC INTCTRL registers.
EQDC_CTRL_INT_EN

Interrupt enable bits in EQDC CTRL registers.
EQDC_INTCTRL_INT_EN

Interrupt enable bits in EQDC INTCTRL registers.

EQDC_CTRL_INT_FLAGS
Interrupt flag bits in EQDC CTRL registers.

2.22. EQDC: Enhanced Quadrature Decoder Driver 143

MCUXpresso SDK Documentation, Release 25.09.00

EQDC_INTCTRL_INT_FLAGS

Interrupt flag bits in EQDC INTCTRL registers.

struct _eqdc_ config

#include <fsl_eqdc.h> Define user configuration structure for EQDC module.

Public Members

bool bEnableReverseDirection
Enable reverse direction counting.

bool bCountOnce
Selects modulo loop or one shot counting mode.

bool bEnableDma
Enable DMA for new written buffer values of COMPx/INIT/MOD(x range is 0-3)

bool bBufferedRegisterLoadMode
selects the loading time point of the buffered compare registers UCOMPx/LCOMPX,
x=0~3, initial register (UINIT/LINIT), and modulus register (UMOD/LMOD).

bool bEnableTriggerInitPositionCounter
Initialize position counter with initial register(UINIT, LINIT) value on TRIGGER’s rising
edge.

bool bEnableTriggerClearPositionRegisters
Clear position counter(POS), revolution counter(REV), position difference counter
(POSD) on TRIGGER’s rising edge.

bool bEnableTriggerHoldPositionRegisters
Load position counter(POS), revolution counter(REV), position difference counter
(POSD) values to hold registers on TRIGGER’s rising edge.

bool bFilterPhaseA
Filter operation on PHASEA input, when write 1, it means filter for PHASEA input is
bypassed.

bool bFilterPhaseB
Filter operation on PHASEB input, when write 1, it means filter for PHASEB input is
bypassed.

bool bFilterIndPre
Filter operation on INDEX/PRESET input, when write 1, it means filter for IN-
DEX/PRESET input is bypassed.

bool bFilterHomEna
Filter operation on HOME/ENABLE input, when write 1, it means filter for
HOME/ENABLE input is bypassed.

bool bEnableWatchdog
Enable the watchdog to detect if the target is moving or not.

uint16_t ul6WatchdogTimeout Value
Watchdog timeout count value. It stores the timeout count for the quadrature decoder
module watchdog timer.

eqdc_prescaler_t ePrescaler
Prescaler.

bool bFilterClockSourceselection
Filter Clock Source selection.

144

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

eqdc_filter_sample_count_t eFilterSampleCount

Input Filter Sample Count. This value should be chosen to reduce the probability of
noisy samples causing an incorrect transition to be recognized. The value represent
the number of consecutive samples that must agree prior to the input filter accepting
an input transition.

uint8_t u8FilterSamplePeriod

Input Filter Sample Period. This value should be set such that the sampling period is
larger than the period of the expected noise. This value represents the sampling period
(in IPBus clock cycles) of the decoder input signals. The available range is 0 - 255.

eqdc_operate_mode_t eOperateMode
Selects operation mode.
eqdc_count_mode_t eCountMode
Selects count mode.
eqdc_home_enable_init_pos_counter_mode_t eHomeEnableInitPosCounterMode
Select how HOME/Enable signal used to initialize position counters.
eqdc_index_preset_init_pos_counter_mode_t eIndexPresetInitPosCounterMode
Select how INDEX/Preset signal used to initialize position counters.
eqdc_output_pulse_mode_t eOutputPulseMode
The condition of POSMATCH pulses.
uint32_t u32PositionCompareValue[4]
Position compare 0 ~ 3 value. The available value is a 32-bit number.
eqdc_revolution_count_condition_t eRevolutionCountCondition
Revolution Counter Modulus Enable.
bool bEnableModuloCountMode
Enable Modulo Counting.
uint32_t u32PositionModulusValue

Position modulus value. Only used when bEnableModuloCountMode is true. The avail-
able value is a 32-bit number.

uint32_t u32PositionInitial Value
Position initial value. The available value is a 32-bit number.

uint32_t u32PositionCounterValue

Position counter value. When Modulo mode enabled, the u32PositionCounterValue
should be in the range of u32PositionInitialValue and u32PositionModulusValue.

bool bEnablePeriodMeasurement

Enable period measurement. When enabled, the position difference hold register
(POSDH) is only updated when position difference register (POSD) is read.

uint16_t ul6EnabledInterruptsMask
Mask of interrupts to be enabled, should be OR’ed value of _eqdc_interrupt_enable.

2.23 EQDC Peripheral and Driver Overview

2.24 EVTG: Event Generator Driver

2.23. EQDC Peripheral and Driver Overview 145

MCUXpresso SDK Documentation, Release 25.09.00

void EVTG_ Init(EVTG_Type *base, evtg index_t eEvtgIndex, evtg config t *psConfig)
Initialize EVTG with a user configuration structure.

Parameters
* base — EVTG base address.
* eEvtgIndex — EVTG instance index.
* psConfig — EVTG initial configuration structure pointer.

static inline void EVTG_ GetDefaultConfig(evtg config t *psConfig, evtg flipflop_mode_t
eFlipflopMode)

Loads default values to the EVTG configuration structure.

The purpose of this API is to initialize the configuration structure to default value for
EVTG_Init() to use. The Flip-Flop can be configured as Bypass mode, RS trigger mode, T-
FF mode, D-FF mode, JK-FF mode, Latch mode. Please check RM INTC chapter for more
details.

Parameters
* psConfig — EVTG initial configuration structure pointer.
* eFlipflopMode — EVTG flip flop mode. see @ ref _evtg_flipflop_mode

static inline void EVTG_ ForceFlipflopInitOutput(EVTG_Type *base, evtg_index_t eEvtgindex,

evtg flipflop_init_output_t
eFlipflopInitOutputValue)

Force Flip-flop initial output value to be presented on flip-flop positive output.
Parameters
* base — EVTG base address.
* eEvtgIndex — EVTG instance index.

¢ eFlipflopInitOutputValue — EVTG flip-flop initial output control. see
evtg_flipflop_init_output_t

static inline void EVTG_ SetProductTermInput(EVTG_Type *base, evtg index_t eEvtgIndex,
evtg aoi_index_t eAOIIndex,
evtg aoi_product_term_t eProductTerm,
evtg input_index_t eInputindex,
evtg aoi_input_config_t eInput)

Configure each input value of AOI product term. Each selected input term in each product
term can be configured to produce a logical 0 or 1 or pass the true or complement of the
selected event input. Adapt to some simple aoi expressions.

Parameters
* base — EVTG base address.
* cEvtgIndex — EVTG instance index.
* eAOIIndex — EVTG AOI index. see enum ref evtg_aoi_index_t
* eProductTerm — EVTG product term index.
* elnputIndex — EVTG input index.
* elnput — EVTG input configuration with enum evtg_aoi_input_config_t.

void EVTG_ ConfigAOIProductTerm(EVTG_Type *base, evtg _index_t eEvtgindex, evtg aoi index_t
eAOIIndex, evtg aoi _product_term_t eProductTerm,
evtg aoi_product_term_config_t *psProductTermConfig)

Configure AOI product term by initializing the product term configuration structure.

Parameters

146 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

* base — EVTG base address.

* cEvtgIndex — EVTG instance index.

* eAOIIndex — EVTG AOI index. see enum evtg_aoi_index_t
* eProductTerm — EVTG AOI product term index.

¢ psProductTermConfig — Pointer to EVTG product term configuration struc-
ture. see ref _evtg_aoi_product_term_config

FSL EVTG DRIVER_ VERSION
EVTG driver version.

enum _ evtg index
EVTG instance index.

Values:

enumerator kEVTG_Index0
EVTG instance index 0.

enumerator kEVTG_Index1
EVTG instance index 1.

enumerator kEVTG_Index2
EVTG instance index 2.

enumerator kEVTG Index3
EVTG instance index 3.

enum _ evtg_input_index
EVTG input index.

Values:

enumerator kEVTG_InputA
EVTG input A.

enumerator kEVTG_ InputB
EVTG input B.

enumerator kKEVTG_ InputC
EVTG input C.

enumerator kEVTG_ InputD
EVTG input D.

enum _ evtg aoi_index
EVTG AOI index.

Values:

enumerator kEVTG__AOIO
EVTG AOI index 0.

enumerator kEVTG_AOI1
EVTG AOI index 1.

enum _ evtg aoi_ product_ term
EVTG AOI product term index.

Values:

enumerator KEVTG_ ProductTerm0O
EVTG AOI product term index 0.

2.24. EVTG: Event Generator Driver 147

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kEVTG_ ProductTerm1
EVTG AOI product term index 1.

enumerator kEVTG_ ProductTerm?2
EVTG AOI product term index 2.

enumerator kEVTG_ ProductTerm3
EVTG AOI product term index 3.

enum _evtg aoi_input_ config
EVTG input configuration.

Values:

enumerator kEVTG_ Input_ LogicZero
Force input in product term to a logical zero.

enumerator kKEVTG_ Input_ DirectPass
Pass input in product term.

enumerator kEVTG_ Input_ Complement
Complement input in product term.

enumerator kEVTG_ Input_ LogicOne
Force input in product term to a logical one.

enum _ evtg aoi_ outfilter_count
EVTG AOI Output Filter Sample Count.

Values:

enumerator kEVTG__AOIOutFilter_ SampleCount3
EVTG AOI output filter sample count is 3.

enumerator kEVTG__AOIOutFilter SampleCount4
EVTG AOI output filter sample count is 4.

enumerator kEVTG__AOIOutFilter_ SampleCount5
EVTG AOI output filter sample count is 5.

enumerator kEVTG__AOIOutFilter_ SampleCount6
EVTG AOI output filter sample count is 6.

enumerator kEVTG__AOIOutFilter SampleCount7
EVTG AOI output filter sample count is 7.

enumerator kEVTG__AOIOutFilter_ SampleCount8
EVTG AOI output filter sample count is 8.

enumerator kEVTG__AOIOutFilter_ SampleCount9
EVTG AOI output filter sample count is 9.

enumerator kEVTG__AOIOutFilter_ SampleCount10
EVTG AOI output filter sample count is 10.

enum _evtg outfdbk override input

EVTG output feedback override control mode. When FF is configured as JK-FF mode, need
EVTG_OUTA feedback to EVTG input and replace one of the four inputs.

Values:

enumerator kEVTG__Output_ OverrideInputA
Replace input A.

148 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kEVTG__ Output_ OverrideInputB
Replace input B.

enumerator KEVTG__ Output_ OverrideInputC
Replace input C.

enumerator kEVTG__ Output_ OverrideInputD
Replace input D.
enum _ evtg flipflop_ mode
EVTG flip flop mode configuration.
Values:

enumerator kEVTG__FFMode_Bypass

Bypass mode (default).In this mode, user can choose to enable or disable input sync
logic and filter function.

enumerator kEVTG_FFMode RSTrigger

RS trigger mode. In this mode, user can choose to enable or disable input sync logic
and filter function.

enumerator kEVTG_FFMode_TFF

T-FF mode. In this mode, input sync or filter has to be enabled to remove the possible
glitch.

enumerator kEVTG FFMode DFF

D-FF mode. In this mode, input sync or filter has to be enabled to remove the possible
glitch.

enumerator kEVTG_FFMode JKFF

JK-FF mode. In this mode, input sync or filter has to be enabled to remove the possible
glitch.

enumerator kEVTG_FFMode_Latch

Latch mode. In this mode, input sync or filter has to be enabled to remove the possible
glitch.

enum _ evtg flipflop_initoutput
EVTG flip-flop initial value.
Values:
enumerator kEVTG_FF _InitOut0
Configure the positive output of flip-flop as 0.

enumerator kEVTG_FF_ InitOutl
Configure the positive output of flip-flop as 1.
typedef enum _evtg index evtg_index_t
EVTG instance index.

typedef enum _evtg input_index evtg_input_index_t
EVTG input index.

typedef enum _evtg aoi_index evtg aoi_index_t
EVTG AOI index.

typedef enum _evtg aoi product_term evtg_aoi_product_term_ t
EVTG AOI product term index.

typedef enum _evtg aoi_input_config evtg aoi_input_ config t
EVTG input configuration.

2.24. EVTG: Event Generator Driver 149

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _evtg aoi outfilter_count evtg_aoi_ outfilter__count_t
EVTG AOI Output Filter Sample Count.

typedef enum _evtg outfdbk _override_input evtg_outfdbk_override input_ t
EVTG output feedback override control mode. When FF is configured as JK-FF mode, need
EVTG_OUTA feedback to EVTG input and replace one of the four inputs.

typedef enum _evtg flipflop_mode evtg_flipflop_ mode_t
EVTG flip flop mode configuration.

typedef enum _evtg flipflop_initoutput evtg_flipflop_init_output_t
EVTG flip-flop initial value.

typedef struct _evtg aoi outfilter_config evtg aoi_outfilter config t
The structure for configuring an AOI output filter sample.

AOI output filter sample count represent the number of consecutive samples that must
agree prior to the AOI output filter accepting an transition. AOI output filter sample pe-
riod represent the sampling period (in IP bus clock cycles) of the AOI output signals. Each
AOI output is sampled multiple times at the rate specified by this period.

For the modes with Filter function enabled, filter delay is “(FILT_CNT + 3) x FILT PER + 2~

typedef struct _evtg aoi_product_term_config evtg aoi_product_term_ config t
The structure for configuring an AOI product term.

typedef struct _evtg aoi _config evtg_aoi_config_t
EVTG AOI configuration structure.
typedef struct _evtg config evtg config t
EVTG configuration covering all configurable fields.

struct _evtg aoi_outfilter config
#include <fsl_evtg.h> The structure for configuring an AOI output filter sample.

AOI output filter sample count represent the number of consecutive samples that must
agree prior to the AOI output filter accepting an transition. AOI output filter sample pe-
riod represent the sampling period (in IP bus clock cycles) of the AOI output signals. Each
AOI output is sampled multiple times at the rate specified by this period.

For the modes with Filter function enabled, filter delay is “(FILT_CNT + 3) x FILT_PER + 2”.

Public Members
evtg_aoi_outfilter_count_t eSampleCount
EVTG AOI output filter sample count. refer to evtg_aoi_outfilter_count_t.

uint8_t u8SamplePeriod

EVTG AOI output filter sample period, within 0~255. If sample period value is 0x00
(default), then the input filter is bypassed.

struct _evtg aoi_product_term_ config
#include <fsl_evtg.h> The structure for configuring an AOI product term.

Public Members
evtg_aol_input_config_t eAlnput
Input A configuration.

evtg_aol_input_config t eBlnput
Input B configuration.

150 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

evtg_aoi_input_config t eClnput
Input C configuration.

evtg_aot_input_config_t eDInput
Input D configuration.

struct _evtg aoi_ config
#include <fsl_evtg.h> EVTG AOI configuration structure.

Public Members
evtg aoi outfilter_config t sAOIOutFilterConfig
EVTG AOI output filter sample configuration structure.

evtg_aoi_product_term_config_t sProductTerm0
Configure AOI product termO.

evtg aoi_product_term_config t sProductTerm1
Configure AOI product term1.

evtg_aoi_product_term_config_t sProductTerm?2
Configure AOI product term2.

evtg_aoi_product_term_config t sProductTerm3
Configure AOI product term3.

struct _evtg_ config
#include <fsl_evtg.h> EVTG configuration covering all configurable fields.

Public Members

bool bEnableInput ASync
Enable/Disable EVTG A input synchronous with bus clk.

bool bEnableInputBSync
Enable/Disable EVTG B input synchronous with bus clk.

bool bEnableInputCSync

Enable/Disable EVTG C input synchronous with bus clk.
bool bEnableInputDSync

Enable/Disable EVTG D input synchronous with bus clk.
evtg_outfdbk_override_input_t eOutfdbkOverideinput

EVTG output feedback to EVTG input and replace one of the four inputs.
evtg flipflop_mode_t eFlipflopMode

Flip-Flop can be configured as one of Bypass mode, RS trigger mode, T-FF mode, D-FF
mode, JK-FF mode, Latch mode.

bool bEnableFlipflopInitOutput
Flip-flop initial output value enable/disable.
evtg flipflop_init_output_t eFlipflopInitOutputValue
Flip-flop initial output value configuration.

evtg aoi_config t sAOI0Config
Configure EVTG AOIO.

evtg_aoi_config_t sAOI1Config
Configure EVTG AOI1.

2.24. EVTG: Event Generator Driver 151

MCUXpresso SDK Documentation, Release 25.09.00

2.25 The Driver Change Log

2.26 EVTG Peripheral and Driver Overview

2.27 EWM: External Watchdog Monitor Driver

void EWM_ Init(EWM_Type *base, const ewm_config_t *psConfig)

Initializes the EWM peripheral.

This function is used to initialize the EWM. After calling, the EWM runs immediately ac-
cording to the configuration.

This is an example.

ewm__config_t psConfig;
EWM__GetDefaultConfig(& psConfig);
psConfig.compareHighValue = 0xAAU;
EWM_ Init(ewm_ base,&psConfig);

Note: Except for the interrupt enable control bit, other control bits and registers are write
once after a CPU reset. Modifying them more than once generates a bus transfer error.

Parameters
* base — EWM peripheral base address
¢ psConfig — The configuration of the EWM

void EWM_ Deinit(EWM_Type *base)

Deinitializes the EWM peripheral.
This function is used to shut down the EWM.
Parameters

* base — EWM peripheral base address

void EWM_ GetDefaultConfig(ewm_config t *psConfig)

Initializes the EWM configuration structure.

This function initializes the EWM configuration structure to default values. The default
values are as follows.

ewmConfig->bEnableEWM = true;
ewmConfig->bEnableEWMInput = false;

ewmConfig- >elnputAssertState = kKEWM__EwmlInZeroAssert;
ewmConfig- >bEnablelnterrupt = false;
ewmConfig->eClockSource = kKEWM__LpoClockSource0;
ewmConfig- >u8ClockDivder = 0;
ewmConfig->u8CompareLowValue = 0;
ewmConfig->u8CompareHighValue = 0xFEU;

See also:

ewm_config t

Parameters

152

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

* psConfig — Pointer to the EWM configuration structure.

static inline void EWM__Enablelnterrupt(EWM_Type *base)
Enables the EWM interrupt.

This function enables the EWM interrupt.
Parameters
* base - EWM peripheral base address

static inline void EWM__ Disablelnterrupt(EWM_Type *base)
Disables the EWM interrupt.

This function disables the EWM interrupt.
Parameters
* base - EWM peripheral base address

void EWM_ Refresh(EWM_Type *base)
Services the EWM.

This function resets the EWM counter to zero.
Parameters
* base —- EWM peripheral base address

FSL EWM_ DRIVER VERSION
EWM driver version.

enum _ewm_ input_ assert_ state
Assert pin voltage configuration.

Values:

enumerator kEWM_EwmlInZeroAssert
EWM-in assert with low-voltage logic

enumerator kEWM__EwmInOneAssert
EWM-in assert with high-voltage logic

typedef enum _ewm_input_assert_state ewm_ input_ assert_state_t
Assert pin voltage configuration.

typedef struct _ewm_config ewm__config_t
Data structure for EWM configuration.

This structure is used to configure the EWM.

struct _ewm__config
#include <fsl_ ewm.h> Data structure for EWM configuration.

This structure is used to configure the EWM.

Public Members
uint8_t bEnableEWM
Enable EWM module

uint8_t bEnableEWMInput
Enable EWM_in input

uint8_t bEnableInterrupt
Enable EWM interrupt

2.27. EWM: External Watchdog Monitor Driver

153

MCUXpresso SDK Documentation, Release 25.09.00

ewm_input_assert_state_t elnputAssertState
EWM_in signal assertion state select

ewm_lpo_clock_source_t eClockSource
Clock source select

uint8_t u8ClockDivder

EWM counter clock is clockSource/(clockDivder+1)
uint8_t u8CompareLow Value

Compare low-register value

uint8_t u8CompareHighValue
Compare high-register value, maximum setting is OXFE

2.28 The Driver Change Log

2.29 EWM Peripheral and Driver Overview

2.30 C90TFS Flash Driver

2.31 ftfx adapter

2.32 ftfx controller

FTFx driver status codes.
Values:

enumerator kStatus_ FTFx_ Success
API is executed successfully

enumerator kStatus_ FTFx_ Invalid Argument
Invalid argument

enumerator kStatus FTFx_ SizeError
Error size

enumerator kStatus_ FTFx_ AlignmentError
Parameter is not aligned with the specified baseline

enumerator kStatus FTFx AddressError
Address is out of range

enumerator kStatus FTFx_ AccessError
Invalid instruction codes and out-of bound addresses

enumerator kStatus FTFx ProtectionViolation

The program/erase operation is requested to execute on protected areas

enumerator kStatus FTFx CommandFailure
Run-time error during command execution.

154

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus_ FTFx_ UnknownProperty
Unknown property.

enumerator kStatus_ FTFx_EraseKeyError
API erase key is invalid.

enumerator kStatus_ FTFx_ RegionExecuteOnly
The current region is execute-only.

enumerator kStatus_ FTFx_ExecuteInRamFunctionNotReady
Execute-in-RAM function is not available.

enumerator kStatus_ FTFx_ PartitionStatusUpdateFailure
Failed to update partition status.

enumerator kStatus_ FTFx_ SetFlexramAsEepromError
Failed to set FlexRAM as EEPROM.

enumerator kStatus. FTFx RecoverFlexramAsRamError
Failed to recover FlexRAM as RAM.

enumerator kStatus_ FTFx_SetFlexramAsRamError
Failed to set FlexRAM as RAM.

enumerator kStatus_ FTFx_RecoverFlexramAsEepromError
Failed to recover FlexRAM as EEPROM.

enumerator kStatus_ FTFx CommandNotSupported
Flash API is not supported.
enumerator kStatus_ FTFx_ SwapSystemNotInUninitialized
Swap system is not in an uninitialzed state.
enumerator kStatus_ FTFx SwaplndicatorAddressError
The swap indicator address is invalid.
enumerator kStatus_ FTFx_ ReadOnlyProperty
The flash property is read-only.
enumerator kStatus_ FTFx_ InvalidProperty Value
The flash property value is out of range.
enumerator kStatus_ FTFx_InvalidSpeculationOption
The option of flash prefetch speculation is invalid.

enumerator kStatus_ FTFx_CommandOperationInProgress
The option of flash command is processing.

kStatusGroupGeneric

FTFx driver status group.

kStatusGroupFtfxDriver
kFTFx_ ApiEraseKey

void FTFx_ API_Init(ftfx_config_t *config)

Initializes the global flash properties structure members.

This function checks and initializes the Flash module for the other Flash APIs.

Parameters

* config — Pointer to the storage for the driver runtime state.

2.32. ftfx controller

155

MCUXpresso SDK Documentation, Release 25.09.00

status_t FTFx_CMD_ Erase(ftfx_config_t *config, uint32_t start, uint32_t lengthInBytes, uint32_t

key)

Erases the flash sectors encompassed by parameters passed into function.

This function erases the appropriate number of flash sectors based on the desired start

address and length.

Parameters

config — The pointer to the storage for the driver runtime state.

start — The start address of the desired flash memory to be erased. The start
address does not need to be sector-aligned but must be word-aligned.

lengthInBytes — The length, given in bytes (not words or long-words) to be
erased. Must be word-aligned.

key — The value used to validate all flash erase APIs.

Return values

kStatus_ FTFx_ Success — API was executed successfully.
kStatus_ FTFx_InvalidArgument — An invalid argument is provided.

kStatus_ FTFx_ AlignmentError — The parameter is not aligned with the
specified baseline.

kStatus_ FTFx_ AddressError — The address is out of range.
kStatus_ FTFx_ EraseKeyError — The API erase key is invalid.

kStatus_ FTFx_ ExecuteInRamFunctionNotReady — Execute-in-RAM function
is not available.

kStatus FTFx AccessError — Invalid instruction codes and out-of bounds
addresses.

kStatus_ FTFx_ ProtectionViolation — The program/erase operation is re-
quested to execute on protected areas.

kStatus_ FTFx_CommandFailure — Run-time error during the command ex-
ecution.

status_t FTFx_CMD_ EraseAll(ftfx_config_t *config, uint32_t key)
Erases entire flash.

Parameters

config — Pointer to the storage for the driver runtime state.

key — A value used to validate all flash erase APIs.

Return values

kStatus_ FTFx_ Success — API was executed successfully.
kStatus_ FTFx_ InvalidArgument — An invalid argument is provided.
kStatus_ FTFx_ EraseKeyError — API erase key is invalid.

kStatus_ FTFx_ ExecuteInRamFunctionNotReady — Execute-in-RAM function
is not available.

kStatus FTFx AccessError — Invalid instruction codes and out-of bounds
addresses.

kStatus_ FTFx_ ProtectionViolation — The program/erase operation is re-
quested to execute on protected areas.

kStatus. FTFx_CommandFailure — Run-time error during command execu-
tion.

156

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

* kStatus_ FTFx_ PartitionStatusUpdateFailure — Failed to update the partition
status.

status_t FTFx_CMD_ Program(ftfx_config_t *config, uint32_t start, const uint8_t *src, uint32_t
lengthInBytes)

Programs flash with data at locations passed in through parameters.

This function programs the flash memory with the desired data for a given flash area as
determined by the start address and the length.

Parameters
* config — A pointer to the storage for the driver runtime state.

* start — The start address of the desired flash memory to be programmed.
Must be word-aligned.

* src — A pointer to the source buffer of data that is to be programmed into
the flash.

* lengthInBytes — The length, given in bytes (not words or long-words), to be
programmed. Must be word-aligned.

Return values
* kStatus_ FTFx_ Success — API was executed successfully.
* kStatus_ FTFx_ InvalidArgument — An invalid argument is provided.

* kStatus_ FTFx_ AlignmentError — Parameter is not aligned with the speci-
fied baseline.

* kStatus_ FTFx_ AddressError — Address is out of range.

e kStatus FTFx_ ExecuteInRamFunctionNotReady — Execute-in-RAM function
is not available.

* kStatus FTFx AccessError — Invalid instruction codes and out-of bounds
addresses.

* kStatus_ FTFx_ ProtectionViolation — The program/erase operation is re-
quested to execute on protected areas.

* kStatus FTFx CommandFailure — Run-time error during the command ex-
ecution.

status_t FTFx_ CMD_ ProgramOnce(ftfx_config_t *config, uint8_t index, const uint8_t *src,
uint32_t lengthInBytes)

Programs Program Once Field through parameters.

This function programs the Program Once Field with the desired data for a given flash area
as determined by the index and length.

Parameters
* config — A pointer to the storage for the driver runtime state.

* index — The index indicating which area of the Program Once Field to be
programmed.

* src — A pointer to the source buffer of data that is to be programmed into
the Program Once Field.

* lengthInBytes — The length, given in bytes (not words or long-words), to be
programmed. Must be word-aligned.

Return values

* kStatus_ FTFx_ Success — API was executed successfully.

2.32. ftfx controller 157

MCUXpresso SDK Documentation, Release 25.09.00

kStatus_ FTFx_ InvalidArgument — An invalid argument is provided.

kStatus_ FTFx_ ExecuteInRamFunctionNotReady — Execute-in-RAM function
is not available.

kStatus FTFx AccessError — Invalid instruction codes and out-of bounds
addresses.

kStatus_ FTFx_ ProtectionViolation — The program/erase operation is re-
quested to execute on protected areas.

kStatus_ FTFx_CommandFailure — Run-time error during the command ex-
ecution.

status_t FTFx_CMD_ ReadOnce(ftfx_config_t *config, uint8_t index, uint8_t *dst, uint32_t

lengthInBytes)

Reads the Program Once Field through parameters.

This function reads the read once feild with given index and length.

Parameters

config — A pointer to the storage for the driver runtime state.
index — The index indicating the area of program once field to be read.

dst — A pointer to the destination buffer of data that is used to store data to
be read.

lengthInBytes — The length, given in bytes (not words or long-words), to be
programmed. Must be word-aligned.

Return values

kStatus_ FTFx_ Success — API was executed successfully.
kStatus_ FTFx_InvalidArgument — An invalid argument is provided.

kStatus_ FTFx_ ExecuteInRamFunctionNotReady — Execute-in-RAM function
is not available.

kStatus FTFx AccessError — Invalid instruction codes and out-of bounds
addresses.

kStatus_ FTFx_ ProtectionViolation — The program/erase operation is re-
quested to execute on protected areas.

kStatus_ FTFx_CommandFailure — Run-time error during the command ex-
ecution.

status_t FTFx_ CMD_ VerifyErase(ftfx_config_t *config, uint32_t start, uint32_t lengthInBytes,

uint8_t margin)

Verifies an erasure of the desired flash area at a specified margin level.

This function checks the appropriate number of flash sectors based on the desired start
address and length to check whether the flash is erased to the specified read margin level.

Parameters

config — A pointer to the storage for the driver runtime state.

start — The start address of the desired flash memory to be verified. The
start address does not need to be sector-aligned but must be word-aligned.

lengthInBytes — The length, given in bytes (not words or long-words), to be
verified. Must be word-aligned.

margin — Read margin choice.

Return values

158

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

status_t FTFx__

» kStatus_ FTFx_ Success — API was executed successfully.
* kStatus_ FTFx_InvalidArgument — An invalid argument is provided.

* kStatus_ FTFx_ AlignmentError — Parameter is not aligned with specified
baseline.

* kStatus_ FTFx_ AddressError — Address is out of range.

* kStatus_ FTFx_ ExecuteInRamFunctionNotReady — Execute-in-RAM function
is not available.

* kStatus FTFx AccessError — Invalid instruction codes and out-of bounds
addresses.

* kStatus_ FTFx_ ProtectionViolation — The program/erase operation is re-
quested to execute on protected areas.

* kStatus_ FTFx_ CommandFailure — Run-time error during the command ex-
ecution.

CMD__VerifyEraseAll(ftfx_config_t *config, uint8_t margin)

Verifies erasure of the entire flash at a specified margin level.

This function checks whether the flash is erased to the specified read margin level.

Parameters

* config — A pointer to the storage for the driver runtime state.

* margin — Read margin choice.

Return values

* kStatus_ FTFx_ Success — API was executed successfully.
* kStatus. FTFx_InvalidArgument — An invalid argument is provided.

* kStatus_ FTFx_ ExecuteInRamFunctionNotReady — Execute-in-RAM function
is not available.

* kStatus FTFx AccessError — Invalid instruction codes and out-of bounds
addresses.

* kStatus_ FTFx_ ProtectionViolation — The program/erase operation is re-
quested to execute on protected areas.

* kStatus_ FTFx_ CommandFailure — Run-time error during the command ex-
ecution.

status_t FTFx_ CMD_ VerifyProgram(ftfx_config_t *config, uint32_t start, uint32_t lengthInBytes,

const uint8_t *expectedData, uint8_t margin, uint32_t
*failedAddress, uint32_t *failedData)

Verifies programming of the desired flash area at a specified margin level.

This function verifies the data programed in the flash memory using the Flash Program
Check Command and compares it to the expected data for a given flash area as determined
by the start address and length.

Parameters

* config — A pointer to the storage for the driver runtime state.

* start — The start address of the desired flash memory to be verified. Must

be word-aligned.

* lengthInBytes — The length, given in bytes (not words or long-words), to be

verified. Must be word-aligned.

* expectedData — A pointer to the expected data that is to be verified against.

2.32. ftfx controller

159

MCUXpresso SDK Documentation, Release 25.09.00

* margin — Read margin choice.

* failedAddress — A pointer to the returned failing address.

¢ failedData — A pointer to the returned failing data. Some derivatives do not
include failed data as part of the FCCOBXx registers. In this case, zeros are

returned upon failure.
Return values

* kStatus_ FTFx_ Success — API was executed successfully.

* kStatus_ FTFx_ InvalidArgument — An invalid argument is provided.

* kStatus_ FTFx_ AlignmentError — Parameter is not aligned with specified

baseline.

* kStatus_ FTFx_ AddressError — Address is out of range.

e kStatus_ FTFx_ ExecutelnRamFunctionNotReady — EXecute-in-RAM function

is not available.

* kStatus_ FTFx_ AccessError — Invalid instruction codes and out-

addresses.

of bounds

* kStatus_ FTFx_ ProtectionViolation — The program/erase operation is re-

quested to execute on protected areas.

* kStatus_ FTFx_ CommandFailure — Run-time error during the command ex-

ecution.

status_t FTFx_REG_ GetSecurityState(ftfx_config_t *config, ftfx_security_state_t *state)

Returns the security state via the pointer passed into the function.

This function retrieves the current flash security status, including the security enabling

state and the backdoor key enabling state.
Parameters

* config — A pointer to storage for the driver runtime state.

* state — A pointer to the value returned for the current security status code:

Return values

* kStatus. FTFx_Success — API was executed successfully.

* kStatus. FTFx_InvalidArgument — An invalid argument is provided.

enum _ ftfx_partition_flexram_ load_ option
Enumeration for the FlexRAM load during reset option.

Values:

enumerator kFTFx_ PartitionFlexramLoadOptLoadedWithValidEepromData
FlexRAM is loaded with valid EEPROM data during reset sequence.

enumerator kFTFx_ PartitionFlexramLoadOptNotLoaded
FlexRAM is not loaded during reset sequence.

enum _ ftfx_security_ state
Enumeration for the three possible FTFx security states.

Values:

enumerator kFTFx_ SecurityStateNotSecure
Flash is not secure.

enumerator kFTFx_ SecurityStateBackdoorEnabled
Flash backdoor is enabled.

160 Chapter 2

. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kFTFx_ SecurityStateBackdoorDisabled
Flash backdoor is disabled.

enum _ ftfx_flexram_ function_ option
Enumeration for the two possilbe options of set FlexRAM function command.

Values:

enumerator kFTFx FlexramFuncOptAvailableAsRam
An option used to make FlexRAM available as RAM

enumerator kFTFx_ FlexramFuncOptAvailableForEeprom
An option used to make FlexRAM available for EEPROM

enum _ ftfx swap state
Enumeration for the possible flash Swap status.

Values:

enumerator kFTFx_SwapStateUninitialized
Flash Swap system is in an uninitialized state.

enumerator kFTFx_ SwapStateReady
Flash Swap system is in a ready state.

enumerator kFTFx_ SwapStateUpdate
Flash Swap system is in an update state.

enumerator kFTFx_SwapStateUpdateErased
Flash Swap system is in an updateErased state.

enumerator kFTFx SwapStateComplete
Flash Swap system is in a complete state.

enumerator kFTFx SwapStateDisabled
Flash Swap system is in a disabled state.

enum _ ftfx memory_type
Enumeration for FTFx memory type.

Values:
enumerator kFTFx_MemTypePflash
enumerator kFTFx MemTypeFlexnvm
typedef enum _fifx_partition_flexram_load_option ftfx_ partition_ flexram_load_opt_t
Enumeration for the FlexRAM load during reset option.

typedef enum _fifx_security_state ftfx_security_state_ t
Enumeration for the three possible FTFx security states.

typedef enum _fifx_flexram_function_option ftfx_flexram_ func_opt_t
Enumeration for the two possilbe options of set FlexRAM function command.

typedef enum _ftfx_swap_state ftfx_swap_ state_t
Enumeration for the possible flash Swap status.

typedef struct _ftfx_special mem ftfx_spec_mem_t
ftfx special memory access information.

typedef struct _ftfx_mem_descriptor ftfx_mem_ desc_t
Flash memory descriptor.

2.32. ftfx controller 161

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _ftfx_ops_config ftfx_ops_ config_t

Active FTFx information for the current operation.
typedef struct _fitfx_ifr._descriptor ftfx_ifr_desc_t

Flash IFR memory descriptor.
typedef struct _ftfx_config ftfx_config_t

Flash driver state information.

An instance of this structure is allocated by the user of the flash driver and passed into each
of the driver APIs.

kFTFx_ ResourceOptionFlashlfr
Macro for the two possible options of flash read resource command.
Select code for Program flash 0 IFR, Program flash swap 0 IFR, Data flash 0 IFR
kFTFx_ ResourceOptionVersionld
Select code for the version ID
kFTFx_ MarginValueNormal
Macro for supported FTFx margin levels.
kFTFx_ MarginValueUser
Apply the ‘User’ margin to the normal read-1 level.
kFTFx_ MarginValueFactory
Apply the ‘Factory’ margin to the normal read-1 level.
kFTFx_ MarginValuelnvalid
Not real margin level, Used to determine the range of valid margin level.

struct _ ftfx special _mem
#include <fsL_ftfx_controllerh> ftfx special memory access information.

Public Members
uint32_t base
Base address of flash special memory.

uint32_t size
size of flash special memory.

uint32_t count
flash special memory count.

struct _ ftfx mem_ descriptor
#include <fsl_ftfx_controller.h> Flash memory descriptor.

Public Members

uint32_t blockBase
A base address of the flash block

uint32_t totalSize
The size of the flash block.

uint32_t sectorSize
The size in bytes of a sector of flash.

162 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t blockCount
A number of flash blocks.

struct _ ftfx_ops_ config
#include <fsl_ftfx_controllerh> Active FTFx information for the current operation.

Public Members

uint32_t convertedAddress
A converted address for the current flash type.

struct _ ftfx ifr descriptor
#include <fsl_ftfx_controllerh> Flash IFR memory descriptor.

union function_ ptr_t
#include <fsl_ftfx_controllerh>

Public Members
uint32_t commadAddr
void (*callFlashCommand)(volatile uint8_t *FTMRx_fstat)

struct _ ftfx_ config
#include <fsl_ftfx_controllerh> Flash driver state information.

An instance of this structure is allocated by the user of the flash driver and passed into each
of the driver APIs.

Public Members

uint32_t flexramBlockBase
The base address of the FlexRAM/acceleration RAM

uint32_t flexramTotalSize
The size of the FlexRAM/acceleration RAM

uint16_t eepromTotalSize
The size of EEPROM area which was partitioned from FlexRAM

function_ptr_t runCmdFuncAddr
An buffer point to the flash execute-in-RAM function.

struct unnamed4

Public Members

uint8_t type
Type of flash block.

uint8_t index
Index of flash block.

struct feature
struct addrAligment
struct feature

struct resRange

2.32. ftfx controller 163

MCUXpresso SDK Documentation, Release 25.09.00

Public Members
uint8_t versionldStart
Version ID start address

uint32_t pflashlfrStart
Program Flash O IFR start address

uint32_t dflashIfrStart
Data Flash 0 IFR start address

uint32_t pflashSwaplfrStart
Program Flash Swap IFR start address

struct idxInfo

2.33 ftfx feature

FTFx DRIVER IS FLASH RESIDENT
Flash driver location.

Used for the flash resident application.

FTFx_DRIVER_IS_EXPORTED
Flash Driver Export option.

Used for the MCUXpresso SDK application.

FTFx_FLASH1_HAS PROT_CONTROL
Indicates whether the secondary flash has its own protection register in flash module.

FTFx_FLASH1 HAS XACC_CONTROL

Indicates whether the secondary flash has its own Execute-Only access register in flash
module.

FTFx_DRIVER_HAS_ FLASH1 SUPPORT
Indicates whether the secondary flash is supported in the Flash driver.

FTFx FLASH COUNT
FTFx FLASH1 IS INDEPENDENT BLOCK

2.34 Ftftx FLASH Driver

status_t FLASH_ Init(flash_config_t *config)
Initializes the global flash properties structure members.

This function checks and initializes the Flash module for the other Flash APIs.
Parameters
* config — Pointer to the storage for the driver runtime state.
Return values
* kStatus_ FTFx_ Success — API was executed successfully.
* kStatus. FTFx_InvalidArgument — An invalid argument is provided.

* kStatus_ FTFx_ ExecuteInRamFunctionNotReady — Execute-in-RAM function
is not available.

164 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

* kStatus_ FTFx_ PartitionStatusUpdateFailure — Failed to update the partition
status.

status_t FLASH_ Erase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, uint32_t
key)

Erases the Dflash sectors encompassed by parameters passed into function.

This function erases the appropriate number of flash sectors based on the desired start
address and length.

Parameters
* config — The pointer to the storage for the driver runtime state.

* start —The start address of the desired flash memory to be erased. The start
address does not need to be sector-aligned but must be word-aligned.

* lengthInBytes — The length, given in bytes (not words or long-words) to be
erased. Must be word-aligned.

* key — The value used to validate all flash erase APIs.
Return values

* kStatus_ FTFx_ Success — API was executed successfully; the appropriate
number of flash sectors based on the desired start address and length were
erased successfully.

* kStatus_ FTFx_ InvalidArgument — An invalid argument is provided.

* kStatus_ FTFx_ AlignmentError — The parameter is not aligned with the
specified baseline.

* kStatus_ FTFx_ AddressError — The address is out of range.
* kStatus_ FTFx_ EraseKeyError — The API erase key is invalid.

* kStatus_ FTFx_ ExecutelnRamFunctionNotReady — EXecute-in-RAM function
is not available.

* kStatus FTFx_ AccessError — Invalid instruction codes and out-of bounds
addresses.

* kStatus FTFx_ProtectionViolation — The program/erase operation is re-
quested to execute on protected areas.

* kStatus_ FTFx_ CommandFailure — Run-time error during the command ex-
ecution.

status_t FLASH EraseAll(flash_config t *config, uint32_t key)
Erases entire flexnvm.

Parameters
* config — Pointer to the storage for the driver runtime state.
* key — A value used to validate all flash erase APIs.

Return values

* kStatus_ FTFx_ Success — API was executed successfully; the all pflash and
flexnvm were erased successfully, the swap and eeprom have been reset
to unconfigured state.

* kStatus_ FTFx_ InvalidArgument — An invalid argument is provided.
* kStatus_ FTFx_ EraseKeyError — API erase key is invalid.

* kStatus_ FTFx_ExecuteInRamFunctionNotReady — Execute-in-RAM function
is not available.

2.34. Ftftx FLASH Driver 165

MCUXpresso SDK Documentation, Release 25.09.00

* kStatus FTFx AccessError — Invalid instruction codes and out-of bounds
addresses.

* kStatus_ FTFx_ ProtectionViolation — The program/erase operation is re-
quested to execute on protected areas.

* kStatus FTFx CommandFailure — Run-time error during command execu-
tion.

* kStatus_ FTFx_ PartitionStatusUpdateFailure — Failed to update the partition
status.

status_t FLASH_ Program(flash_config_t *config, uint32_t start, uint8_t *src, uint32_t
lengthInBytes)

Programs flash with data at locations passed in through parameters.

This function programs the flash memory with the desired data for a given flash area as
determined by the start address and the length.

Parameters
* config — A pointer to the storage for the driver runtime state.

* start — The start address of the desired flash memory to be programmed.
Must be word-aligned.

* src — A pointer to the source buffer of data that is to be programmed into
the flash.

* lengthInBytes — The length, given in bytes (not words or long-words), to be
programmed. Must be word-aligned.

Return values

* kStatus_ FTFx_ Success — API was executed successfully; the desired data
were programed successfully into flash based on desired start address and
length.

* kStatus_ FTFx_InvalidArgument — An invalid argument is provided.

* kStatus_ FTFx_ AlignmentError — Parameter is not aligned with the speci-
fied baseline.

* kStatus_ FTFx_ AddressError — Address is out of range.

* kStatus_ FTFx_ ExecuteInRamFunctionNotReady — Execute-in-RAM function
is not available.

* kStatus FTFx AccessError — Invalid instruction codes and out-of bounds
addresses.

* kStatus_ FTFx_ ProtectionViolation — The program/erase operation is re-
quested to execute on protected areas.

* kStatus_ FTFx_ CommandFailure — Run-time error during the command ex-
ecution.

status_t FLASH_ ProgramOnce(flash_config _t *config, uint8_t index, uint8_t *src, uint32_t
lengthInBytes)

Program the Program-Once-Field through parameters.
This function Program the Program-once-feild with given index and length.
Parameters
* config — A pointer to the storage for the driver runtime state.

¢ index — The index indicating the area of program once field to be read.

166 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

* src — A pointer to the source buffer of data that is used to store data to be
write.

* lengthInBytes — The length, given in bytes (not words or long-words), to be
programmed. Must be word-aligned.

Return values

* kStatus_ FTFx_ Success — API was executed successfully; The index indicat-
ing the area of program once field was programed successfully.

* kStatus_ FTFx_ InvalidArgument — An invalid argument is provided.

* kStatus_ FTFx_ ExecutelnRamFunctionNotReady — EXecute-in-RAM function
is not available.

* kStatus FTFx AccessError — Invalid instruction codes and out-of bounds
addresses.

* kStatus_ FTFx_ProtectionViolation — The program/erase operation is re-
quested to execute on protected areas.

* kStatus_ FTFx_CommandFailure — Run-time error during the command ex-
ecution.

status_t FLASH_ ReadOnce(flash_config_t *config, uint8_t index, uint8_t *dst, uint32_t
lengthInBytes)

Reads the Program Once Field through parameters.
This function reads the read once feild with given index and length.
Parameters
* config — A pointer to the storage for the driver runtime state.
* index — The index indicating the area of program once field to be read.

* dst — A pointer to the destination buffer of data that is used to store data to
be read.

* lengthInBytes — The length, given in bytes (not words or long-words), to be
programmed. Must be word-aligned.

Return values

* kStatus_ FTFx_ Success—APIwas executed successfully; the data have been
successfuly read form Program flashO IFR map and Program Once field
based on index and length.

* kStatus_ FTFx_InvalidArgument — An invalid argument is provided.

* kStatus_ FTFx_ ExecuteInRamFunctionNotReady — Execute-in-RAM function
is not available.

* kStatus FTFx AccessError — Invalid instruction codes and out-of bounds
addresses.

* kStatus_ FTFx_ ProtectionViolation — The program/erase operation is re-
quested to execute on protected areas.

* kStatus_ FTFx_ CommandFailure — Run-time error during the command ex-
ecution.

status_t FLASH_ VerifyErase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, uint8_t
margin)

Verifies an erasure of the desired flash area at a specified margin level.

This function checks the appropriate number of flash sectors based on the desired start
address and length to check whether the flash is erased to the specified read margin level.

2.34. Ftftx FLASH Driver 167

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* config — A pointer to the storage for the driver runtime state.

* start — The start address of the desired flash memory to be verified. The
start address does not need to be sector-aligned but must be word-aligned.

* lengthInBytes — The length, given in bytes (not words or long-words), to be
verified. Must be word-aligned.

* margin — Read margin choice.
Return values

» kStatus. FTFx_ Success — API was executed successfully; the specified
FLASH region has been erased.

* kStatus_ FTFx_ InvalidArgument — An invalid argument is provided.

* kStatus FTFx_AlignmentError — Parameter is not aligned with specified
baseline.

* kStatus_ FTFx_ AddressError — Address is out of range.

e kStatus FTFx_ ExecuteInRamFunctionNotReady — Execute-in-RAM function
is not available.

* kStatus FTFx AccessError — Invalid instruction codes and out-of bounds
addresses.

* kStatus_ FTFx_ ProtectionViolation — The program/erase operation is re-
quested to execute on protected areas.

* kStatus FTFx CommandFailure — Run-time error during the command ex-
ecution.

status_t FLASH_ VerifyEraseAll(flash_config t *config, uint8_t margin)
Verifies erasure of the entire flash at a specified margin level.

This function checks whether the flash is erased to the specified read margin level.
Parameters
* config — A pointer to the storage for the driver runtime state.
* margin — Read margin choice.
Return values

* kStatus. FTFx_Success — API was executed successfully; all program flash
and flexnvm were in erased state.

* kStatus_ FTFx_InvalidArgument — An invalid argument is provided.

e kStatus FTFx_ ExecuteInRamFunctionNotReady — EXxecute-in-RAM function
is not available.

* kStatus FTFx AccessError — Invalid instruction codes and out-of bounds
addresses.

* kStatus_ FTFx_ ProtectionViolation — The program/erase operation is re-
quested to execute on protected areas.

* kStatus_ FTFx_ CommandFailure — Run-time error during the command ex-
ecution.

status_t FLASH_ VerifyProgram(flash_config_t *config, uint32_t start, uint32_t lengthInBytes,
const uint8_t *expectedData, uint8_t margin, uint32_t
*failedAddress, uint32_t *failedData)

168 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

Verifies programming of the desired flash area at a specified margin level.

This function verifies the data programmed in the flash memory using the Flash Program
Check Command and compares it to the expected data for a given flash area as determined
by the start address and length.

Parameters
* config — A pointer to the storage for the driver runtime state.

* start — The start address of the desired flash memory to be verified. Must
be word-aligned.

* lengthInBytes — The length, given in bytes (not words or long-words), to be
verified. Must be word-aligned.

* expectedData — A pointer to the expected data that is to be verified against.
» margin — Read margin choice.
* failedAddress — A pointer to the returned failing address.

* failedData — A pointer to the returned failing data. Some derivatives do not
include failed data as part of the FCCOBx registers. In this case, zeros are
returned upon failure.

Return values

* kStatus_ FTFx_ Success — API was executed successfully; the desired data
have been successfully programed into specified FLASH region.

* kStatus. FTFx_InvalidArgument — An invalid argument is provided.

* kStatus_ FTFx_ AlignmentError — Parameter is not aligned with specified
baseline.

* kStatus_ FTFx_ AddressError — Address is out of range.

* kStatus_ FTFx_ ExecutelnRamFunctionNotReady — EXecute-in-RAM function
is not available.

* kStatus FTFx AccessError — Invalid instruction codes and out-of bounds
addresses.

* kStatus_ FTFx_ProtectionViolation — The program/erase operation is re-
quested to execute on protected areas.

* kStatus_ FTFx_ CommandFailure — Run-time error during the command ex-
ecution.

status_t FLASH_ GetSecurityState(flash_config_t *config, ftfx_security_state_t *state)
Returns the security state via the pointer passed into the function.

This function retrieves the current flash security status, including the security enabling
state and the backdoor key enabling state.

Parameters

* config — A pointer to storage for the driver runtime state.

* state — A pointer to the value returned for the current security status code:
Return values

* kStatus_ FTFx_ Success — API was executed successfully; the security state
of flash was stored to state.

* kStatus. FTFx_InvalidArgument — An invalid argument is provided.

2.34. Ftftx FLASH Driver 169

MCUXpresso SDK Documentation, Release 25.09.00

status_t FLASH_ GetProperty(flash_config t *config, flash_property_tag t whichProperty,
uint32_t *value)

Returns the desired flash property.
Parameters
* config — A pointer to the storage for the driver runtime state.

* whichProperty — The desired property from the list of properties in enum
flash_property_tag_t

* value — A pointer to the value returned for the desired flash property.
Return values

* kStatus_ FTFx_ Success — APl was executed successfully; the flash property
was stored to value.

* kStatus. FTFx_InvalidArgument — An invalid argument is provided.
* kStatus_ FTFx_ UnknownProperty — An unknown property tag.

FSL_FLASH DRIVER_VERSION
Flash driver version for SDK.

Version 3.0.0.

enum _flash protection_state
Enumeration for the three possible flash protection levels.

Values:

enumerator kKFLASH_ ProtectionStateUnprotected
Flash region is not protected.

enumerator kFLASH ProtectionStateProtected
Flash region is protected.

enumerator kFLASH ProtectionStateMixed
Flash is mixed with protected and unprotected region.

enum _ flash_property_ tag

Enumeration for various flash properties.

Values:

enumerator kFLASH_ PropertyPflashOSectorSize
Pflash sector size property.

enumerator kFLASH_ PropertyPflashOTotalSize
Pflash total size property.

enumerator kFLASH_ PropertyPflashOBlockSize
Pflash block size property.

enumerator kFLASH_ PropertyPflashOBlockCount
Pflash block count property.

enumerator kFLASH_ PropertyPflashOBlockBaseAddr
Pflash block base address property.

enumerator kFLASH_ PropertyPflashOFacSupport
Pflash fac support property.

enumerator kFLASH_ PropertyPflashOAccessSegmentSize
Pflash access segment size property.

170 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kFLASH_ PropertyPflashOAccessSegmentCount
Pflash access segment count property.

enumerator kFLASH_PropertyPflash1SectorSize
Pflash sector size property.
enumerator kFLASH_ PropertyPflash1TotalSize
Pflash total size property.
enumerator kFLASH_ PropertyPflash1BlockSize
Pflash block size property.
enumerator kFLASH_ PropertyPflash1BlockCount
Pflash block count property.
enumerator kFLASH_ PropertyPflash1BlockBaseAddr
Pflash block base address property.
enumerator kFLASH_ PropertyPflash1FacSupport
Pflash fac support property.
enumerator kFLASH_ PropertyPflash1AccessSegmentSize
Pflash access segment size property.
enumerator kFLASH_ PropertyPflash1AccessSegmentCount
Pflash access segment count property.
enumerator kFLASH_ PropertyFlexRamBlockBaseAddr
FlexRam block base address property.
enumerator kFLASH_ PropertyFlexRamTotalSize
FlexRam total size property.
typedef enum _flash_protection_state flash_ prot_ state_t
Enumeration for the three possible flash protection levels.
typedef union _pflash_protection_status pflash_prot_status_t
PFlash protection status.
typedef enum _flash_property_tag flash_ property_tag_t
Enumeration for various flash properties.

typedef struct _flash_config flash_ config_t
Flash driver state information.

An instance of this structure is allocated by the user of the flash driver and passed into each

of the driver APIs.
kStatus_ FLASH Success

kFLASH_ ApiEraseKey

union _ pflash_ protection_ status
#include <fsl_ftfx_flash.h> PFlash protection status.

Public Members

uint32_t protl
PROT[31:0] .

uint32_t proth
PROTI[63:32].

2.34. Ftftx FLASH Driver

171

MCUXpresso SDK Documentation, Release 25.09.00

uint8_t protsl
PROTS[7:0] .

uint8_t protsh
PROTS[15:8] .

uint8_t reserved[2]
struct _ flash_ config
#include <fsl_ftfx_flash.h> Flash driver state information.

Aninstance of this structure is allocated by the user of the flash driver and passed into each
of the driver APIs.

2.35 ftfx utilities

MAKE_ VERSION(major, minor, bugfix)
Constructs the version number for drivers.

MAKE_ STATUS(group, code)
Constructs a status code value from a group and a code number.

FOUR_CHAR_ CODE(a, b, ¢, d)
Constructs the four character code for the Flash driver API key.

ALIGN_DOWN(X, a)
Alignment(down) utility.

ALIGN_UP(x, a)
Alignment(up) utility.

B1P4(b)
bytes2word utility.

BYTE2WORD_1_3(X,V)
BYTE2WORD_ 2 2(X,y)
BYTE2WORD_ 3 _1(X,y)
BYTE2WORD_1_1_2(X,V, Z)
BYTE2WORD_1_2_ 1(X,V, Z)
BYTE2WORD_2_1_1(X,V, Z)
BYTE2WORD 1 1 1 1(X,V, Z, W)

172 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

2.36 GPIO: General-Purpose Input/Output Driver

void GPIO_ Pinlnit(GPIO_Type *base, gpio_pin_t ePin, const gpio_config_t *psConfig)

Initializes a GPIO pin with provided structure gpio_config t covering all configuration
fields.

To initialize the GPIO, define a pin configuration, as either input or output, in the user file.
Then, call the GPIO_PinInit() function.

This is function to configure all GPIO Pin configurable fields.

gpio__config_t sConfig = {

.eDirection = kGPIO_ DigitalOutput,
.eMode = kGPIO__ ModeGpio,
.eOutMode = kGPIO_ OutputOpenDrain,
.eSlewRate = kGPIO_ SlewRateFast,
.eOutLevel = kGPIO_ OutputLow,
.eDriveStrength = kGPIO_ DriveStrengthLow,
.ePull = kGPIO_ PullDisable,

.elnterruptMode = kGPIO__InterruptDisable,

}
GPIO_ Pinlnit(GPIOA, kGPIO_ Pinl, &psConfig);

Note: If GPIO glitch is critical for your application, do not use this API instead using the
API in GPIO pin configuration interfaces to do with the glitch during GPIO mode transition
in accordance to your board design.

Parameters
* base — GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

¢ ePin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

* psConfig — GPIO pin configuration pointer

static inline void GPIO_ PinSetPeripheralMode(GPIO_Type *base, gpio_pin_t ePin,
gpio_peripheral mode_t eMode)

Configure the GPIO Pin as Peripheral mode or GPIO mode for one pin.
Configure GPIO can be configured as Peripheral mode or GPIO mode for one pin.
Parameters
* base — GPIO peripheral base pointer

* e¢Pin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

* eMode - Peripheral mode or GPIO mode for this pin. See
gpio_peripheral_mode_t

static inline void GPIO_ PinSetPeripheralMux(gpio_peripheral_mux_t eMux)
Configure the multiplexing of GPIO pins to different peripheral.

Configure the MUX of GPIO pins to different peripheral functionality.

Note: User still need to call the GPIO_PinSetPeripheralMode.

2.36. GPIO: General-Purpose Input/Output Driver 173

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* eMux — GPIO peripheral MUX when configured as peripheral mode.

static inline void GPIO_ PinSetDirection(GPIO_Type *base, gpio_pin_t ePin, gpio_direction_t
eDirection)

Configure the GPIO pin as Input or Output for one pin.
Configure the GPIO pin as Input or Output for one pin.
Parameters
* base — GPIO peripheral base pointer

* ¢Pin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

* eDirection — Direction of GPIO pin. gpio_direction_t

static inline void GPIO_ PinSetOutputMode(GPIO_Type *base, gpio_pin_t ePin,
gpio_output_mode_t eOutMode)

Configure GPIO pin output as Push-Pull or Open-Drain for one pin.

Configure GPIO pin output as Push-Pull or Open-Drain. This function applies while pin is
configured as output. See gpio_direction_t and API GPIO_PinSetDirection.

Parameters
* base — GPIO peripheral base pointer

* ¢Pin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

* eOutMode — Push-Pull/Open-Drain output mode. See gpio_output_mode_t.

static inline void GPIO_ PinSetDriveStrength(GPIO_Type *base, gpio_pin_t ePin,
gpio_output_drive_strength_t eDriveStrength)

Configure High/Low drive strength when Pin is configured as output for one pin.

Configure High/Low drive strength when Pin is configured as output. See gpio_direction_t
and API GPIO_PinSetDirection.

Parameters
* base — GPIO peripheral base pointer

* ePin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

* eDriveStrength - High/Low driver strength. See
gpio_output_drive_strength_t

static inline void GPIO_ PinSetSlewRate(GPIO_Type *base, gpio_pin_t ePin,
gpio_output_slew_rate_t eSlewRate)

Configure GPIO pin Fast/Slow slew rate when pin is configured as output.

Configure GPIO pin Fast/Slow slew rate when pin is configured as output. See
gpio_direction_t and API GPIO_PinSetDirection.

Parameters
* base — GPIO peripheral base pointer

* ¢Pin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

* eSlewRate — Fast/Slow slewrate. See gpio_output_slew_rate_t

174 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

static inline void GPIO_ PinSetPullResistorMode(GPIO_Type *base, gpio_pin_t ePin,
gpio_pull mode_t ePullMode)

Configure Pull resistor for GPIO pin to Disable/Pull-Up/Pull-Down.
Configure Pull resistor for GPIO pin to Disable/Pull-Up/Pull-Down.
Parameters
* base — GPIO peripheral base pointer

¢ ePin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

* ¢PullMode - Pull Mode as Disable/Pull-Up/Pull-Down. See
gpio_pull_mode_t

static inline void GPIO_ PinWrite(GPIO_Type *base, gpio_pin _t ePin, gpio_output_level t
eOutput)

Set GPIO Pin as High/Low voltage level on Output.
Set GPIO Pin as High/Low voltage level on Output.
Parameters
* base — GPIO peripheral base pointer

* e¢Pin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

* eOutput — Output as High level or Low Level. See gpio_output_level t.

static inline void GPIO_ PortSet(GPIO_Type *base, uint16_t ul6Pins)
Set GPIO multiple pins output High voltage level without impact pins.

Set GPIO multiple pins output High voltage level without impact other pins. Multiple pins
are configured by OR enumerator from gpio_pin_t

Parameters
* base — GPIO peripheral base pointer

* ul6Pins — GPIO pins which is ORed by gpio_pin_t. # kGPIO_PinO | kG-
PIO_Pin3 means Pin 0 and Pin 3.

static inline void GPIO_ PinSet(GPIO_Type *base, gpio_pin_t ePin)
Output High voltage level for GPIO Pin when configured as Output.

Output High voltage level for GPIO Pin when configured as Output.
Parameters
* base — GPIO peripheral base pointer

¢ ePin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

static inline void GPIO_ PortClear(GPIO_Type *base, uint16_t ul6Pins)

Set GPIO multiple pins belong to same PORT output Low voltage level when these pins are
configured as output.

Set GPIO multiple pins belong to same PORT output Low voltage level when these pins are
configured as output. Multiple pins are configured by ORing enumerators from gpio_pin_t

Parameters
* base — GPIO peripheral base pointer

* ul6Pins — GPIO pins which is ORed by gpio_pin_t. # kGPIO_PinO | kG-
PIO_Pin3 means Pin 0 and Pin 3.

2.36. GPIO: General-Purpose Input/Output Driver 175

MCUXpresso SDK Documentation, Release 25.09.00

static inline void GPIO_ PinClear(GPIO_Type *base, gpio_pin_t ePin)
Output Low voltage level for GPIO Pin when configured as Output.

Output Low voltage level for GPIO Pin when configured as Output.
Parameters
* base — GPIO peripheral base pointer

* ePin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

static inline void GPIO_ PortToggle(GPIO_Type *base, uint16_t ul6Pins)
Toggle GPIO multiple pins belong to same PORT when these pins are configured as output.

Toggle GPIO multiple pins belong to same PORT when these pins are configured as output.
Multiple pins are configured by ORing enumerators from gpio_pin_t

Parameters
* base — GPIO peripheral base pointer

* ul6Pins — GPIO pins which is ORed by gpio_pin_t. # KGPIO_PinO | kG-
PIO_Pin3 means Pin 0 and Pin 3.

static inline void GPIO_ PinToggle(GPIO_Type *base, gpio_pin_t ePin)
Toggle the GPIO output voltage level when configured as Output.

Toggle the GPIO output voltage level when configured as Output.

Note: GPIO peripheral register do not get register to toggle directly. It is implemented by
read back the GPIO output level and write to the register with reverted level.

Parameters
* base — GPIO peripheral base pointer

* e¢Pin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

static inline uint16_t GPIO_ PortRead(GPIO_Type *base)
Read High/Low voltage level for multiple GPIO pins from the pin or the data bus.

Read High/Low voltage level for multiple GPIO pins from the pin if the pin is configured
as input or the data bus. When the device comes out of reset, GPIO pins are configured as
inputs with internal pull disabled. As a result, the reset value of this pin is undefined. For
different PORT, the available pins number is different. User need use the return value to
OR with the gpio_pin_t to decide whether that pin is logic high or low.

if (GPIO_ PortRead(GPIOA) & (uintl6_t)kGPIO_ Pin0)

{
//GPIOA Pin 0 is High

else

{
}

//GPIOA Pin 0 is Low

Parameters
* base — GPIO peripheral base pointer

Returns
Voltage level for multiple GPIO pins from the pin or the data bus.

176 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint8_t GPIO_ PinRead(GPIO_Type *base, gpio_pin_t ePin)
Read High/Low voltage level for one GPIO pin from the pin or the data bus.

Read High/Low voltage level from the pin if the pin is configured as input or the data bus.

Note: When the device comes out of reset, GPIO pins are configured as inputs with internal
pull disabled. As a result, the reset value of this pin is undefined.

Parameters
* base — GPIO peripheral base pointer

* ePin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

Return values
* 1-Voltage level for one GPIO pin from the pin or the data bus is high.
» 0 - Voltage level for one GPIO pin from the pin or the data bus is low.

static inline uint16_t GPIO_ PortReadRawData(GPIO_Type *base)

Read Raw voltage high/low level data from the pins or peripheral bus for multiple pins
belong to same PORT.

Read Raw voltage high/low level data from the pins or peripheral bus. Values are not
clocked and are subject to change at any time. Read several times to ensure a stable value.
The reset value of this register depends on the default PIN state. User need use the return
value to OR with the gpio_pin_t to decide whether that pin is logic high or low.

if (GPIO__PortReadRawData(GPIOA) & (uint16_t)kGPIO_ Pin0)

//GPIOA Pin 0 is High
}

else

//GPIOA Pin 0 is Low
}

Parameters
* base — GPIO peripheral base pointer

Returns
Voltage high/low level data from the pins or peripheral bus for multiple pins
belong to same PORT.

static inline uint8_t GPIO_ PinReadRawData(GPIO_Type *base, gpio_pin_t ePin)
Read Raw logic level data from the pins or peripheral bus for one pin.

Read Raw voltage high/low level data from the pins or peripheral bus. Values are not
clocked and are subject to change at any time. Read several times to ensure a stable value.
The reset value of this register depends on the default PIN state.

Parameters
* base — GPIO peripheral base pointer

* ¢Pin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

Return values

» 1—Raw voltage level data from the pins or peripheral bus is high.

2.36. GPIO: General-Purpose Input/Output Driver 177

MCUXpresso SDK Documentation, Release 25.09.00

* 0—Raw voltage level data from the pins or peripheral bus is low.

static inline void GPIO_ PinSetInterruptConfig(GPIO_Type *base, gpio_pin_t ePin,
gpio_interrupt_mode_t eIntConfig)

Configure GPIO Pin interrupt detection condition.
Configure GPIO Pin interrupt detection condition
Parameters
* base — GPIO peripheral base pointer

* ¢Pin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

* eIntConfig — Interrupt detection condition for rising edge/down edge or no
detection. See gpio_interrupt_mode_t

static inline void GPIO_ PortAssertSWinterrupts(GPIO_Type *base, uint16_t ul6Pins)

Assert software interrupt for multiple pins belong to same port which will generate inter-
rupt.

This API is only for software testing of a software interrupt capability. When the software
interrupt is asserted, an interrupt is generated. The interrupt is generated continually until
this software interrupt is de-asserted.

Parameters
* base — GPIO peripheral base pointer

* ul6Pins — GPIO pins which is ORed by gpio_pin_t. # kGPIO_PinO | kG-
PIO_Pin3 means Pin 0 and Pin 3.

static inline void GPIO_ PortDeassertSWinterrupts(GPIO_Type *base, uint16_t u16Pins)

De-Assert software interrupt for multiple pins belong to same port which will stop gener-
ating interrupt.

This API is only for software testing of a software interrupt capability.
Parameters
* base — GPIO peripheral base pointer

* ul6Pins — GPIO pins which is ORed by gpio_pin_t. # kKGPIO_Pin0O | kG-
PIO_Pin3 means Pin 0 and Pin 3.

static inline void GPIO_ PinAssertSWinterrupt(GPIO_Type *base, gpio_pin_t ePin)
Assert software interrupt for one pin which will generate interrupt.

This API is only for software testing of a software interrupt capability. When the software
interrupt is asserted, an interrupt is generated. The interrupt is generated continually until
this software interrupt is de-asserted.

Parameters
* base — GPIO peripheral base pointer

* ¢Pin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

static inline void GPIO_ PinDeassertSWlnterrupt(GPIO_Type *base, gpio_pin_t ePin)
De-Assert software interrupt for one pin which will stop generating interrupt.

This API is only for software testing of a software interrupt capability.
Parameters

* base — GPIO peripheral base pointer

178 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

* ePin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

static inline void GPIO_ PortEnablelnterrupts(GPIO_Type *base, uint16_t ul6Pins)

Enable interrupt detection for multiple pins belong to same port.
This API is to enable interrupt detection on rising edge or falling edge.
Parameters
* base — GPIO peripheral base pointer

* ul6Pins — GPIO pins which is ORed by gpio_pin_t. # kKGPIO_PinO | kG-
PIO_Pin3 means Pin 0 and Pin 3.

static inline void GPIO_ PortDisablelnterrupts(GPIO_Type *base, uint16_t ul6Pins)

Disable interrupt detection for multiple pins belong to same port.
This API is to disable interrupt detection on rising edge or falling edge.
Parameters
* base — GPIO peripheral base pointer

* ul6Pins — GPIO pins which is ORed by gpio_pin_t. # kGPIO_PinO | kG-
PIO_Pin3 means Pin 0 and Pin 3.

static inline void GPIO_ PinEnablelnterrupt(GPIO_Type *base, gpio_pin_t ePin)

Enable interrupt detection for one pin.
This API is to enable interrupt detection on rising edge or falling edge.
Parameters
* base — GPIO peripheral base pointer

* ePin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

static inline void GPIO_ PinDisablelnterrupt(GPIO_Type *base, gpio_pin_t ePin)

Disable interrupt detection for one pin.
This API is to disable interrupt detection on rising edge or falling edge.
Parameters
* base — GPIO peripheral base pointer

* ¢Pin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

static inline uint16_t GPIO_ PortGetInterruptPendingStatusFlags(GPIO_Type *base)

Get interrupt pending status flags all pins belong to same port.

Get interrupt pending status flags for all pins belong to same port. User need to use the
gpio_pin_t to OR with the return value, if the result is not 0, this flag is set. otherwise, this
flag is not set.

Note: this flags can only be cleared by calling GPIO_PortClearEdgeDetectedStatusFlag if it
is caused by edge detected or by calling GPIO_PortEnableSWInterrupt if it is caused by SW
interrupt.

if (GPIO_ PortGetInterruptPendingStatusFlags(GPIOA) & (uintl6_t)kGPIO_ Pin0)

//Interrupt occurred on GPIOA Pin 0.
}

else
(continues on next page)

2.36. GPIO: General-Purpose Input/Output Driver 179

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)

//No Interrupt on GPIOA Pin 0.

Parameters
* base — GPIO peripheral base pointer

Returns
Interrupt pending status flags all pins belong to same port.

static inline uint16_t GPIO_ PinGetInterruptPendingStatusFlags(GPIO_Type *base, gpio_pin_t
ePin)

Get interrupt pending status flags for one pin.

Get interrupt pending status flags for one pin.

Note: this flags can only be cleared by calling GPIO_PortClearEdgeDetectedStatusFlag if it
is caused by edge detected or by calling GPIO_PortEnableSWInterrupt if it is caused by SW
interrupt.

Parameters
* base — GPIO peripheral base pointer

¢ ePin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

Return values
* 1-Interrupt occurred.
* 0 - No Interrupt.

static inline uint16_t GPIO_ PortGetEdgeDetectedStatusFlags(GPIO_Type *base)
Get Edge detected status flags for all pins belong to same port.

Get edge detected status flags for all pins in the PORT. This status flag can only
be detected when interrupt detection is enabled by GPIO_PortEnableInterrupt or
GPIO_PinEnablelnterrupt.

if (GPIO_ PortGetEdgeDetectedStatusFlags(GPIOA) & (uintl6 t)kGPIO_ Pin0)

//An edge detected on GPIOA Pin 0.
}

else

{
//No edge detected on GPIOA Pin 0.

Parameters
* base — GPIO peripheral base pointer

Returns
Detected edge status flags for all pins belong to same port.

static inline uint8_t GPIO_ PinGetEdgeDetectedStatusFlag(GPIO_Type *base, gpio_pin_t ePin)
Get Edge detected status flags for one pin.

180 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

Get edge detected status flags for one pin. This status flag can only be detected when inter-
rupt detection is enabled by GPIO_PortEnableInterrupt or GPIO_PinEnableInterrupt.

Parameters
* base — GPIO peripheral base pointer

* ePin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

Return values
* 1—An edge detected.
* 0-No edge detected.

static inline void GPIO_ PortClearEdgeDetectedStatusFlags(GPIO_Type *base, uint16_t ul6Pins)
Clear Edge detected status flags for multiple pins belong to same port.

Clear Edge Detected status flags for multiple pins belong to same port.
Parameters
* base — GPIO peripheral base pointer

* ul6Pins — GPIO pins which is ORed by gpio_pin_t. # KGPIO_PinO | kG-
PIO_Pin3 means Pin 0 and Pin 3.

static inline void GPIO_ PinClearEdgeDetectedStatusFlags(GPIO_Type *base, gpio_pin_t ePin)
Clear Edge detected status flags for one pin.

Clear Edge Detected status flags for one pin.
Parameters
* base — GPIO peripheral base pointer

* ¢Pin — GPIO pin identifier. User enumerator provided by gpio_pin_t. Note
that not all Pins existed in SoC and user need to check the data sheet.

FSL GPIO_DRIVER. VERSION
GPIO driver version.

enum _ gpio_ pin
GPIO Pin identifier with each pin get a unique bit thus they can be ORed.

Values:

enumerator kGPIO_Pin0
GPIO PORT Pin 0.

enumerator kGPIO_Pinl
GPIO PORT Pin 1.

enumerator kGPIO_Pin2
GPIO PORT Pin 2.

enumerator kGPIO Pin3
GPIO PORT Pin 3.

enumerator kGPIO_Pin4
GPIO PORT Pin 4.

enumerator kGPIO_ Pin5
GPIO PORT Pin 5.

enumerator kGPIO_Pin6
GPIO PORT Pin 6.

2.36. GPIO: General-Purpose Input/Output Driver 181

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kGPIO Pin7
GPIO PORT Pin 7.

enumerator kGPIO Pin8
GPIO PORT Pin 8.

enumerator kGPIO Pin9
GPIO PORT Pin 9.

enumerator kGPIO Pinl0
GPIO PORT Pin 10.

enumerator kGPIO_ Pinll
GPIO PORT Pin 11.

enumerator kGPIO Pinl2
GPIO PORT Pin 12.

enumerator kGPIO_ Pinl3
GPIO PORT Pin 13.

enumerator kGPIO_ Pinl4
GPIO PORT Pin 14.

enumerator kGPIO_Pinlb
GPIO PORT Pin 15.

enum _ gpio_ peripheral _mode
GPIO Pin peripheral/gpio mode option.

Values:

enumerator kGPIO__ModeGpio
Set GPIO pin as GPIO Mode.

enumerator kGPIO_ ModePeripheral
Set GPIO pin as Peripheral Mode.

enum _ gpio_ direction
GPIO Pin input/output direction option.

Values:

enumerator kGPIO_ Digitallnput
Set GPIO pin as digital input.

enumerator kGPIO_ DigitalOutput
Set GPIO pin as digital output.

enum _ gpio_ pull_mode
GPIO Pin pull resistor mode option.

Values:

enumerator kGPIO_ PullDown

Internal pull-down resistor is enabled.
enumerator kGPIO_ PullUp

Internal pull-up resistor is enabled.

enumerator kGPIO_PullDisable

Internal pull-up/down resistor is disabled.

182

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enum _ gpio_ output_ mode
GPIO Pin output mode option.

Values:

enumerator kGPIO_ OutputOpenDrain
Open drain output mode.

enumerator kGPIO_ OutputPushPull
Push pull output mode.

enum _ gpio_output_ level
GPIO Pin output High/Low level option.

Values:

enumerator kGPIO_ OutputLow
Set GPIO pin output low voltage level.

enumerator kGPIO_ OutputHigh
Set GPIO pin output high voltage level.

enum _ gpio_output_ slew_ rate
GPIO Pin output Fast/Slow slew rate option.

Values:

enumerator kGPIO_ SlewRateFast
Set GPIO pin output Fast slew rate.

enumerator kGPIO_ SlewRateSlow
Set GPIO pin output Slow slew rate.

enum _ gpio_output_ drive_strength
GPIO Pin output High/Low drive strength option.

Values:

enumerator kGPIO_ DriveStrengthLow
Set GPIO pin output Low-drive strength.

enumerator kGPIO_ DriveStrengthHigh
Set GPIO pin output High-drive strength.

enum _ gpio_ interrupt_ mode
GPIO Pin interrupt detect option.

Values:

enumerator kGPIO_ InterruptRisingEdge
Interrupt on rising edge.

enumerator kGPIO_ InterruptFallingEdge
Interrupt on falling edge.

enumerator kGPIO_ InterruptDisable
Interrupt is disabled.

typedef enum _gpio_pin gpio_pin_t

GPIO Pin identifier with each pin get a unique bit thus they can be ORed.

typedef enum _gpio_peripheral mode gpio_ peripheral _mode_t
GPIO Pin peripheral/gpio mode option.

2.36. GPIO: General-Purpose Input/Output Driver

183

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _gpio_direction gpio_ direction_t
GPIO Pin input/output direction option.

typedef enum _gpio_pull mode gpio_pull_mode_t
GPIO Pin pull resistor mode option.

typedef enum _gpio_output_mode gpio_output_mode_t
GPIO Pin output mode option.

typedef enum _gpio_output_level gpio_ output_level t
GPIO Pin output High/Low level option.

typedef enum _gpio_output_slew_rate gpio_output_slew_rate_t
GPIO Pin output Fast/Slow slew rate option.

typedef enum _gpio_output_drive_strength gpio_output_ drive strength_t
GPIO Pin output High/Low drive strength option.

typedef enum _gpio_interrupt_mode gpio__interrupt_ mode_ t
GPIO Pin interrupt detect option.

typedef struct _gpio_config gpio_ config t

GPIO Pin configuration covering all configurable fields when GPIO is configured in GPIO
mode.

GPIO_MUX_ENUM_TO_PORT INDEX(emux)

Helper MACRO function to extract Port Index. (GPIOA, GPIOB, GPIOC, and so on.) The fields
located in bit 8 - bit 11.

GPIO_MUX_ENUM_TO_PIN_INDEX(emux)
Helper MACRO function to extract Pin Index. The fields located in bit 4 - bit 7.

GPIO_MUX_ENUM_TO_REG_VALUE(emux)

Helper MACRO function to extract Pin mux config register value. The fields located in bit 0
- bit 1.

GPIO_MUX_ ENUM_TO_PIN_MASK(emux)
Helper MACRO function to extract Pin mux config mask.

GPIO_MUX_ENUM_TO_PIN_VALUE(emux)
Helper MACRO function to extract Pin mux config register value on a GPIO Pin.

struct _ gpio_ config

#include <fsl_gpio.h> GPIO Pin configuration covering all configurable fields when GPIO is
configured in GPIO mode.

Public Members
gpio_direction_t eDirection
GPIO direction, input or output

gpio_peripheral_mode_t eMode

GPIO mode as peripheral or GPIO
gpio_peripheral_mux_t eMux

Set the peripheral type if GPIO is configured as peripheral
gpio_output_mode_t eOutMode

GPIO Open-Drain/Push-Pull output mode.

184 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

gpio_output_slew_rate_t eSlewRate
GPIO Fast/Slow slew rate output mode.

gpio_output_level t eOutLevel
GPIO Output High/Low level.

gpio_output_drive_strength_t eDriveStrength
GPIO output Drive strength High/Low.

gpio_pull_ mode_t ePull
GPIO Pull resistor mode configuration.

gpio_interrupt_mode_t eInterruptMode
GPIO interrupt detection condition configuration.

2.37 The Driver Change Log
2.38 GPIO Peripheral and Driver Overview

2.39 INTC: Interrupt Controller Driver

static inline void INTC_ SetIRQPriorityNum(IRQn_Type elrq, uint8_t u8PriorityNum)
Disable IRQ or Enable IRQ with priority.
There are similar function in fsl_common:
* EnableIRQWithPriority,
* DisableIRQ,
* EnablelRQ,
* IRQ_SetPriority.

This function is faster and simpler than those in fsl_common. Generally, this function and
IRQ functions in fsl_common are either-or, don’t use them together for same IRQn type, but
feasible that different IRQn type use them simultaneously, for example: It is OK OCCS_IRQn
use INTC_SetIRQPriorityLevel, and ADC12_CC1_IRQn use EnableIRQWithPriority. It is NOT
OK that OCCS_IRQn use INTC_SetIRQPriorityLevel and EnableIRQWithPriority simultane-
ously.

Note: Please note a none-zero priority number does directly map to priority level, simple
summary is as below, you could check RM INTC chapter for more details.
» Some IPs have priority level 1~3, maps priority number 1 to priority 1, 2 to priority 2,
3 to priority 3.
* Some IPs have priority level 0~2, maps priority number 1 to priority 0, 2 to priority 1,
3 to priority 2.

Parameters
* elrq — The IRQ number.
* u8PriorityNum — IRQ interrupt priority number.
- 0: disable IRQ.

2.37. The Driver Change Log 185

MCUXpresso SDK Documentation, Release 25.09.00

— 1-3: enable IRQ and set its priority, 3 is the highest priority for this IRQ
and 1 is the lowest priority.

static inline void INTC _SetVectorBaseAddress(uint32_t u32VectorBaseAddr)

Set the base address vector table. The value in INTC_VBA is used as the upper 13 bits of the
interrupt vector VAB[20:0].

Parameters

* u32VectorBaseAddr — Vector table base address. The address requires 256
words (512 bytes) aligned. Take the vector table in MC56F83xxx_Vectors.c
as example for how to implement this table.

static inline void INTC__SetFastIRQVectorHandlerO(vector_type_t eVector, fast_irq_handler
pfHandler)

Set the IRQ handler for fast IRQO. The INTC takes the vector address from the appropriate
FIVALO and FIVAHO registers, instead of generating an address that is an offset from the
vector base address (VBA).

Parameters
* eVector — The vector number.

* pfHandler — Pointer to the fast IRQ handler function, see fast_irq_handler
definition for more info.

static inline void INTC_ SetFastIRQVectorHandler1(vector_type_t eVector, fast_irq_handler
pfHandler)

Set the IRQ handler for fast IRQ1. The INTC takes the vector address from the appropriate
FIVAL1 and FIVAH1 registers, instead of generating an address that is an offset from the
vector base address (VBA).

Parameters
* eVector — The eVector number.

» pfHandler — Pointer to the fast IRQ handler function, see @ ref
fast_irq_handler definition for more info.

static inline uint8_t INTC_ GetIRQPermittedPriorityLevel(void)

Get IRQ permitted priority levels. Interrupt exceptions may be nested to allow the servicing
of an IRQ with higher priority than the current exception.

The return value indicate the priority level needed for a new IRQ to interrupt the current
interrupt being sent to the Core.

Return values
* 0—Required nested exception priority levels are 0, 1, 2, or 3.
* 1-—Required nested exception priority levels are 1, 2, or 3.
* 2—Required nested exception priority levels are 2 or 3.
* 3 - Required nested exception priority level is 3.

static inline bool INTC_ GetPendingIRQ(vector_type_t eVector)

Check if IRQ is pending for execution. Before the ISR is entered, IRQ is pending. After the
ISR is entered, the IRQ is not pending.

Parameters
* e¢Vector — The IRQ vector number.

Return values
True — if interrupt is pending, otherwise return false.

186 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint16_t INTC_ GetLatestResponded VectorNumber(void)

Get the latest responded IRQ’s vector number. It shows the Vector Address Bus used at the
time the last IRQ was taken.

Note: Return value of the function call could be different according to where the function
call is invoked.

* when called in normal ISR handler, it returns current ISR’s vector number defined in
vector_type_t.

* when called in fast IRQ handler; it returns the lower address bits of the jump address.

* when called in none ISR handler code, it returns previous responded IRQ vector num-
ber defined in vector_type_t or fast IRQ low address bits.

Returns
The latest vector number.

FSL INTC DRIVER VERSION
INTC driver version.

typedef void (*fast_irq handler)(void)
The handle of the fast irq handler function.

Normally this function should be guarded by: #pragma interrupt fast and #pragma inter-
rupt off.

INTC_ DisableIRQ(X)
Macro to disable the IRQ.

INTC_ PEND_ REG_INDEX(X)
Helper Macro function to extract IRQ pending register index comparing to INTC_IRQPO.

INTC_PEND_BIT INDEX(X)
Helper Macro function to extract pending IRQs bit index.

INTC_TYPE_REG_INDEX(X)
Helper Macro function to extract IRQ priority register index comparing to INTC_IRPO.

INTC_TYPE_BIT_INDEX(X)
Helper Macro function to extract IRQs priority bit index.

2.40 The Driver Change Log
2.41 INTC Peripheral and Driver Overview

2.42 Common Driver

status_t EnableIRQWithPriority(IRQn_Type irq, uint8_t priNum)
Enable the IRQ, and also set the interrupt priority.

* Some IPs maps 1 to priority 1, 2 to priority 2, 3 to priority 3
* Some IPs maps 1 to priority 0, 2 to priority 1, 3 to priority 2

2.40. The Driver Change Log 187

MCUXpresso SDK Documentation, Release 25.09.00

User should check chip’s RM to get its corresponding interrupt priority.

When priNum set as 0, then SDK_DSC_DEFAULT_INT_PRIO is set instead. When priNum set
as number larger than 3, then only the 2 LSB take effect, for example, setting priNum to 5 is
the same with setting it to 1.

This function configures INTC module, application could call the INTC driver directly for
the same purpose.

Note: The parameter priNum is range in 1~3, and its value is NOT directly map to interrupt
priority.

Parameters
¢ irq — The IRQ to enable.

* priNum - Priority number set to interrupt controller register. Larger num-
ber means higher priority. The allowed range is 1~3, and its value is
NOT directly map to interrupt priority. In other words, the same pri-
ority number means different interrupt priority levels for different IRQ,
please check reference manual for the relationship. When pass in 0, then
SDK_DSC_DEFAULT_INT_PRIO is set to priority register.

Returns
Currently only returns kStatus_Success, will enhance in the future.

status_t DisableIRQ(IRQn_Type irq)

Disable specific interrupt.

This function configures INTC module, application could call the INTC driver directly for
the same purpose.

Parameters
* irq — The IRQ to disable.

Returns
Currently only returns kStatus_Success, will enhance in the future.

status_t EnableIRQ(IRQn_Type irq)

Enable specific interrupt.

The recommended workflow is calling IRQ_SetPriority first, then call EnableIRQ. If
IRQ_SetPriority is not called first, then the interrupt is enabled with default priority value
SDK_DSC_DEFAULT_INT_PRIO.

Another recommended workflow is calling EnableIRQWithPriority directly, it is the same
with calling IRQ_SetPriority + EnableIRQ.

This function configures INTC module, application could call the INTC driver directly for
the same purpose.

Parameters
¢ irq — The IRQ to enable.

Returns
Currently only returns kStatus_Success, will enhance in the future.

status_t TRQ_ SetPriority(IRQn_Type irq, uint8_t priNum)

Set the IRQ priority.

* Some IPs maps 1 to priority 1, 2 to priority 2, 3 to priority 3

188

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

* Some IPs maps 1 to priority 0, 2 to priority 1, 3 to priority 2
User should check chip’s RM to get its corresponding interrupt priority

When priNum set as 0, then SDK_DSC_DEFAULT_INT_PRIO is set instead. When priNum set
as number larger than 3, then only the 2 LSB take effect, for example, setting priNum to 5 is
the same with setting it to 1.

This function configures INTC module, application could call the INTC driver directly for
the same purpose.

Note: The parameter priNum is range in 1~3, and its value is NOT directly map to interrupt
priority.

Parameters
* irq — The IRQ to set.

* priNum — Priority number set to interrupt controller register. Larger num-
ber means higher priority, 0 means disable the interrupt. The allowed
range is 0~3, and its value is NOT directly map to interrupt priority. In
other words, the same priority number means different interrupt priority
levels for different IRQ, please check reference manual for the relation-
ship.

Returns
Currently only returns kStatus_Success, will enhance in the future.
FSL COMMON_DRIVER_ VERSION
common driver version.

DEBUG_CONSOLE_DEVICE_TYPE NONE
No debug console.

DEBUG_CONSOLE_DEVICE_TYPE_ UART
Debug console based on UART.

DEBUG_CONSOLE_DEVICE_TYPE_ LPUART
Debug console based on LPUART.

DEBUG_CONSOLE_DEVICE_TYPE_ LPSCI
Debug console based on LPSCI.

DEBUG_CONSOLE_DEVICE_TYPE_ USBCDC
Debug console based on USBCDC.

DEBUG_CONSOLE_DEVICE TYPE FLEXCOMM
Debug console based on FLEXCOMM.

DEBUG_CONSOLE_DEVICE TYPE IUART
Debug console based on i.MX UART.

DEBUG__CONSOLE_DEVICE_TYPE_VUSART
Debug console based on LPC_VUSART.

DEBUG_CONSOLE_DEVICE_TYPE_MINI_USART
Debug console based on LPC_USART.

DEBUG_CONSOLE_DEVICE_TYPE_SWO
Debug console based on SWO.

2.42. Common Driver 189

MCUXpresso SDK Documentation, Release 25.09.00

DEBUG__CONSOLE_DEVICE_TYPE_QSCI

Debug console based on QSCI.
MIN(a, b)

Computes the minimum of a and b.
MAX(a, b)

Computes the maximum of a and b.
UINT16_MAX

Max value of uint16_t type.
UINT32_MAX

Max value of uint32_t type.
USEC_TO_COUNT(us, clockFreqInHz)

Macro to convert a microsecond period to raw count value
COUNT_TO_USEC(count, clockFreqInHz)

Macro to convert a raw count value to microsecond
MSEC_TO_COUNT(ms, clockFreqInHz)

Macro to convert a millisecond period to raw count value
COUNT_TO_MSEC(count, clockFreqInHz)

Macro to convert a raw count value to millisecond
SDK__ALIGN(var, alignbytes)

Macro to define a variable with alignbytes alignment
AT NONCACHEABLE_SECTION(var)

AT NONCACHEABLE_SECTION__ALIGN(var, alignbytes)
AT NONCACHEABLE SECTION_ INIT(var)
AT NONCACHEABLE_SECTION__ALIGN_ INIT(var, alignbytes)
enum _ status_groups
Status group numbers.

Values:

enumerator kStatusGroup_ Generic
Group number for generic status codes.

enumerator kStatusGroup_ FLASH

Group number for FLASH status codes.
enumerator kStatusGroup_ LPSPI

Group number for LPSPI status codes.
enumerator kStatusGroup_ FLEXIO__SPI

Group number for FLEXIO SPI status codes.
enumerator kStatusGroup_ DSPI

Group number for DSPI status codes.
enumerator kStatusGroup_ FLEXIO_UART

Group number for FLEXIO UART status codes.

enumerator kStatusGroup_ FLEXIO_12C
Group number for FLEXIO I2C status codes.

190

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_ LPI2C
Group number for LPI2C status codes.

enumerator kStatusGroup_ UART
Group number for UART status codes.

enumerator kStatusGroup_ I12C
Group number for UART status codes.

enumerator kStatusGroup_ LPSCI
Group number for LPSCI status codes.

enumerator kStatusGroup_LPUART
Group number for LPUART status codes.

enumerator kStatusGroup_ SPI
Group number for SPI status code.

enumerator kStatusGroup_ XRDC
Group number for XRDC status code.

enumerator kStatusGroup_ SEMA42
Group number for SEMA42 status code.

enumerator kStatusGroup_ SDHC
Group number for SDHC status code

enumerator kStatusGroup_ SDMMC
Group number for SDMMC status code

enumerator kStatusGroup_ SAI
Group number for SAI status code

enumerator kStatusGroup_ MCG
Group number for MCG status codes.

enumerator kStatusGroup_ SCG
Group number for SCG status codes.

enumerator kStatusGroup_ SDSPI
Group number for SDSPI status codes.

enumerator kStatusGroup_ FLEXIO_ 128
Group number for FLEXIO I2S status codes

enumerator kStatusGroup_ FLEXIO_MCULCD
Group number for FLEXIO LCD status codes

enumerator kStatusGroup_ FLASHIAP
Group number for FLASHIAP status codes

enumerator kStatusGroup_ FLEXCOMM_ 12C
Group number for FLEXCOMM I2C status codes

enumerator kStatusGroup_ I2S
Group number for I2S status codes

enumerator kStatusGroup_ [UART
Group number for IUART status codes

enumerator kStatusGroup_ CSI
Group number for CSI status codes

2.42. Common Driver 191

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_ MIPI__DSI
Group number for MIPI DSI status codes

enumerator kStatusGroup_ SDRAMC

Group number for SDRAMC status codes.
enumerator kStatusGroup_ POWER

Group number for POWER status codes.
enumerator kStatusGroup_ ENET

Group number for ENET status codes.
enumerator kStatusGroup_ PHY

Group number for PHY status codes.
enumerator kStatusGroup_ TRGMUX

Group number for TRGMUX status codes.
enumerator kStatusGroup_ SMARTCARD

Group number for SMARTCARD status codes.
enumerator kStatusGroup_ LMEM

Group number for LMEM status codes.
enumerator kStatusGroup_ QSPI

Group number for QSPI status codes.
enumerator kStatusGroup_ DMA

Group number for DMA status codes.
enumerator kStatusGroup_ EDMA

Group number for EDMA status codes.
enumerator kStatusGroup_ DMAMGR

Group number for DMAMGR status codes.
enumerator kStatusGroup_ FLEXCAN

Group number for FlexCAN status codes.
enumerator kStatusGroup_LTC

Group number for LTC status codes.
enumerator kStatusGroup_ FLEXIO_ CAMERA

Group number for FLEXIO CAMERA status codes.
enumerator kStatusGroup_ LPC__SPI

Group number for LPC_SPI status codes.
enumerator kStatusGroup_ LPC_USART

Group number for LPC_USART status codes.
enumerator kStatusGroup_ DMIC

Group number for DMIC status codes.
enumerator kStatusGroup_ SDIF

Group number for SDIF status codes.
enumerator kStatusGroup_ SPIFI

Group number for SPIFI status codes.

enumerator kStatusGroup_ OTP
Group number for OTP status codes.

192 Chapter 2

. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_ MCAN
Group number for MCAN status codes.

enumerator kStatusGroup_ CAAM

Group number for CAAM status codes.
enumerator kStatusGroup_ ECSPI

Group number for ECSPI status codes.
enumerator kStatusGroup_ USDHC

Group number for USDHC status codes.
enumerator kStatusGroup_LPC_12C

Group number for LPC_I2C status codes.
enumerator kStatusGroup_ DCP

Group number for DCP status codes.
enumerator kStatusGroup_ MSCAN

Group number for MSCAN status codes.
enumerator kStatusGroup_ ESAI

Group number for ESAI status codes.
enumerator kStatusGroup_ FLEXSPI

Group number for FLEXSPI status codes.
enumerator kStatusGroup_ MMDC

Group number for MMDC status codes.
enumerator kStatusGroup_ PDM

Group number for MIC status codes.
enumerator kStatusGroup_ SDMA

Group number for SDMA status codes.
enumerator kStatusGroup_ ICS

Group number for ICS status codes.
enumerator kStatusGroup_ SPDIF

Group number for SPDIF status codes.
enumerator kStatusGroup_ LPC_MINISPI

Group number for LPC_MINISPI status codes.
enumerator kStatusGroup_ HASHCRYPT

Group number for Hashcrypt status codes
enumerator kStatusGroup_ LPC__SPI_SSP

Group number for LPC_SPI_SSP status codes.
enumerator kStatusGroup_ I13C

Group number for I3C status codes
enumerator kStatusGroup_ LPC_12C 1

Group number for LPC_I2C_1 status codes.
enumerator kStatusGroup_ NOTIFIER

Group number for NOTIFIER status codes.

enumerator kStatusGroup_ DebugConsole
Group number for debug console status codes.

2.42. Common Driver 193

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_ SEMC
Group number for SEMC status codes.

enumerator kStatusGroup__ ApplicationRangeStart

Starting number for application groups.
enumerator kStatusGroup_ IAP

Group number for IAP status codes
enumerator kStatusGroup_ SFA

Group number for SFA status codes
enumerator kStatusGroup_SPC

Group number for SPC status codes.
enumerator kStatusGroup_ PUF

Group number for PUF status codes.
enumerator kStatusGroup_ TOUCH__PANEL

Group number for touch panel status codes
enumerator kStatusGroup_ VBAT

Group number for VBAT status codes
enumerator kStatusGroup_ XSPI

Group number for XSPI status codes
enumerator kStatusGroup_ PNGDEC

Group number for PNGDEC status codes
enumerator kStatusGroup_ JPEGDEC

Group number for JPEGDEC status codes
enumerator kStatusGroup_ AUDMIX

Group number for AUDMIX status codes
enumerator kStatusGroup_ HAL GPIO

Group number for HAL GPIO status codes.
enumerator kStatusGroup_ HAL_ UART

Group number for HAL UART status codes.
enumerator kStatusGroup_ HAL TIMER

Group number for HAL TIMER status codes.
enumerator kStatusGroup_ HAL_ SPI

Group number for HAL SPI status codes.
enumerator kStatusGroup_ HAL_12C

Group number for HAL I2C status codes.
enumerator kStatusGroup_ HAL_FLASH

Group number for HAL FLASH status codes.
enumerator kStatusGroup_ HAL _PWM

Group number for HAL PWM status codes.
enumerator kStatusGroup_ HAL RNG

Group number for HAL RNG status codes.

enumerator kStatusGroup_ HAL_12S
Group number for HAL 12§ status codes.

194 Chapter 2

. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_ HAL_ADC_SENSOR
Group number for HAL ADC SENSOR status codes.

enumerator kStatusGroup_ TIMERMANAGER

Group number for TIMER MANAGER status codes.
enumerator kStatusGroup_ SERTALMANAGER

Group number for SERIAL MANAGER status codes.
enumerator kStatusGroup_ LED

Group number for LED status codes.
enumerator kStatusGroup_ BUTTON

Group number for BUTTON status codes.
enumerator kStatusGroup_ EXTERN_EEPROM

Group number for EXTERN EEPROM status codes.
enumerator kStatusGroup_ SHELL

Group number for SHELL status codes.
enumerator kStatusGroup_ MEM__MANAGER

Group number for MEM MANAGER status codes.
enumerator kStatusGroup_ LIST

Group number for List status codes.
enumerator kStatusGroup_ OSA

Group number for OSA status codes.
enumerator kStatusGroup_ COMMON__ TASK

Group number for Common task status codes.
enumerator kStatusGroup_ MSG

Group number for messaging status codes.
enumerator kStatusGroup_ SDK__OCOTP

Group number for OCOTP status codes.
enumerator kStatusGroup_ SDK_FLEXSPINOR

Group number for FLEXSPINOR status codes.
enumerator kStatusGroup_ CODEC

Group number for codec status codes.
enumerator kStatusGroup_ ASRC

Group number for codec status ASRC.
enumerator kStatusGroup_ OTFAD

Group number for codec status codes.
enumerator kStatusGroup_ SDIOSLV

Group number for SDIOSLV status codes.
enumerator kStatusGroup_ MECC

Group number for MECC status codes.
enumerator kStatusGroup_ ENET _QOS

Group number for ENET_QOS status codes.

enumerator kStatusGroup_ LOG
Group number for LOG status codes.

2.42. Common Driver 195

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_ I3CBUS
Group number for I3CBUS status codes.

enumerator kStatusGroup_ QSCI

Group number for QSCI status codes.
enumerator kStatusGroup_ ELEMU

Group number for ELEMU status codes.
enumerator kStatusGroup_ QUEUEDSPI

Group number for QSPI status codes.
enumerator kStatusGroup_ POWER_MANAGER

Group number for POWER_MANAGER status codes.
enumerator kStatusGroup_IPED

Group number for IPED status codes.
enumerator kStatusGroup_ELS PKC

Group number for ELS PKC status codes.
enumerator kStatusGroup_CSS_PKC

Group number for CSS PKC status codes.
enumerator kStatusGroup_ HOSTIF

Group number for HOSTIF status codes.
enumerator kStatusGroup_ CLIF

Group number for CLIF status codes.
enumerator kStatusGroup_ BMA

Group number for BMA status codes.
enumerator kStatusGroup_ NETC

Group number for NETC status codes.
enumerator kStatusGroup_ ELE

Group number for ELE status codes.
enumerator kStatusGroup_ GLIKEY

Group number for GLIKEY status codes.
enumerator kStatusGroup_ AON__POWER

Group number for AON_POWER status codes.
enumerator kStatusGroup_ AON__COMMON

Group number for AON_COMMON status codes.
enumerator kStatusGroup_ENDAT3

Group number for ENDAT3 status codes.
enumerator kStatusGroup_ HIPERFACE

Group number for HIPERFACE status codes.
enumerator kStatusGroup_ NPX

Group number for NPX status codes.
enumerator kStatusGroup_ ELA_ CSEC

Group number for ELA_CSEC status codes.

enumerator kStatusGroup_ FLEXIO_T_ FORMAT
Group number for T-format status codes.

196 Chapter 2

. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_ FLEXIO_A_FORMAT
Group number for A-format status codes.

Generic status return codes.
Values:

enumerator kStatus_ Success
Generic status for Success.

enumerator kStatus Fail
Generic status for Fail.

enumerator kStatus_ ReadOnly
Generic status for read only failure.

enumerator kStatus_ OutOfRange
Generic status for out of range access.

enumerator kStatus_ Invalid Argument
Generic status for invalid argument check.

enumerator kStatus_ Timeout
Generic status for timeout.

enumerator kStatus_ NoTransferInProgress
Generic status for no transfer in progress.

enumerator kStatus_ Busy
Generic status for module is busy.

enumerator kStatus_ NoData
Generic status for no data is found for the operation.

typedef int32_t status_t
Type used for all status and error return values.

uint8 t bool
void *SDK_ Malloc(size_t size, size_t alignbytes)
Allocate memory with given alignment and aligned size.
This is provided to support the dynamically allocated memory used in cache-able region.
Parameters
* size — The length required to malloc.
* alignbytes — The alignment size.

Return values
The — allocated memory.

void SDK_ Free(void *ptr)
Free memory.
Parameters
* ptr — The memory to be release.

void SDK_ DelayAtLeastUs(uint32_t delayTime_us, uint32_t coreClock_Hz)

Delay at least for some time. Please note that, this API uses while loop for delay, different
run-time environments make the time not precise, if precise delay count was needed, please
implement a new delay function with hardware timer.

2.42. Common Driver 197

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* delayTime_ us — Delay time in unit of microsecond.
* coreClock__Hz — Core clock frequency with Hz.

static inline uint32_t DisableGlobalIRQ(void)
Disable the global IRQ.

static inline void EnableGloballIRQ(uint32_t irqSts)
Enable the global IRQ.

static inline bool isTRQAllowed(void)
Check if currently core is able to response IRQ.

void SDK_ DelayCoreCycles(uint32_t u32Num)

Delay core cycles. Please note that, this API uses software loop for delay, the actual delayed
time depends on core clock frequency, where the function is located (ram or flash), flash
clock, possible interrupt.

Parameters
* u32Num — Number of core clock cycle which needs to be delayed.

uint32_t SDK_ CovertUsToCount(uint32_t u32Us, uint32_t u32Hz)
Covert us to count with fixed-point calculation.

Note: u32Us must not be greater than 4294

Parameters
* u32Us - Time in us
* u32Hz - Clock frequency in Hz

Returns
The count value

uint32_t SDK_ CovertCountToUs(uint32_t u32Count, uint32_t u32Hz)
Covert count to us with fixed-point calculation.

Note: u32Hz must not be greater than 429496729UL(OXFFFFFFFFUL/10UL)

Parameters
* u32Count — Count value
* u32Hz - Clock frequency in Hz

Returns
The us value

uint32_t SDK_ CovertMsToCount(uint32_t u32Ms, uint32_t u32Hz)
Covert ms to count with fixed-point calculation.

Note: u32Ms must not be greater than 42949UL @ u32Hz = 100M

Parameters

* u32Ms — Time in us

198 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

* u32Hz - Clock frequency in Hz

Returns
The count value

uint32_t SDK_ CovertCountToMs(uint32_t u32Count, uint32_t u32Hz)
Covert count to ms with fixed-point calculation.

Note: u32Hz must not be greater than 429496729UL(OXFFFFFFFFUL/10UL)

Parameters
* 1u32Count — Count value
* u32Hz - Clock frequency in Hz

Returns
The us value

void SDK_ DelayAtLeastMs(uint32_t delayTime_ms, uint32_t coreClock_Hz)

Delay at least for some time in millisecond unit. Please note that, this API uses while loop
for delay, different run-time environments make the time not precise, if precise delay count
was needed, please implement a new delay function with hardware timer.

Parameters
¢ delayTime_ ms — Delay time in unit of millisecond.
* coreClock__Hz — Core clock frequency with Hz.

FSL_DRIVER_ TRANSFER_DOUBLE_WEAK_TRQ

Macro to use the default weak IRQ handler in drivers.
MAKE_ STATUS(group, code)

Construct a status code value from a group and code number.
MAKE_ VERSION(major, minor, bugfix)

Construct the version number for drivers.

The driver version is a 32-bit number, for both 32-bit platforms(such as Cortex M) and 16-bit

platforms(such as DSC).
| Unused || Major Version || Minor Version || Bug Fix |
31 25 24 17 16 9 8 0

ARRAY_SIZE(X)

Computes the number of elements in an array.
UINT64_H(X)

Macro to get upper 32 bits of a 64-bit value
UINT64_L(X)

Macro to get lower 32 bits of a 64-bit value

SUPPRESS_FALL_THROUGH_WARNING()

For switch case code block, if case section ends without “break;” statement, there wil be
fallthrough warning with compiler flag -Wextra or -Wimplicit-fallthrough=n when using
armgcc. To suppress this warning, “SUPPRESS_FALL_THROUGH_WARNING();” need to be
added at the end of each case section which misses “break;”statement.

true

false

2.42. Common Driver 199

MCUXpresso SDK Documentation, Release 25.09.00

SDK_ISR_EXIT_ BARRIER
SDK_DSC_DEFAULT INT_PRIO
Default DSC interrupt priority number.

SetIRQBasePriority(X)

Set base core IRQ priority, that core will response the interrupt request with priority >=
base IRQ priority.

PeriphReadReg(reg)
Read register value.

Example: val = PeriphReadReg(OCCS->0OSCTL2);
Parameters
* reg — Register name.

Returns
The value of register.

PeriphWriteReg(reg, data)
Write data to register.

Example: PeriphWriteReg(OCCS->0OSCTLZ2, 0x278U);
Parameters
* reg — Register name.
* data — Data wrote to register.

PeriphSetBits(reg, bitMask)
Set specified bits in register.

Example: PeriphSetBits(OCCS->0OSCTL2, 0x12U);
Parameters
* reg — Register name.
* bitMask — Bits mask, set bits will be set in the register.

PeriphClearBits(reg, bitMask)
Clear specified bits in register.

Example: PeriphClearBits(OCCS->OSCTL2, 0x12U);
Parameters
* reg — Register name.
* bitMask — Bits mask, set bits will be cleared in the register.

PeriphInvertBits(reg, bitMask)
Invert specified bits in register.

Example: PeriphInvertBits(OCCS->0OSCTL2, 0x12U);
Parameters
* reg — Register name.
* bitMask — Bits mask, set bits will be inverted in the register.

PeriphGetBits(reg, bitMask)
Get specified bits in register.

Example: val = PeriphGetBits(OCCS->OSCTL2, 0x23U);

Parameters

200 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

* reg — Register name.
* bitMask — Bits mask, specify the getting bits.

Returns
The value of specified bits.

PeriphWriteBitGroup(reg, bitMask, bitValue)
Write group of hits to register.

Example: PeriphWriteBitGroup(OCCS->DIVBY, OCCS_DIVBY_COD_MASK,
OCCS_DIVBY_COD(23U)); PeriphWriteBitGroup(OCCS->DIVBY, OCCS_DIVBY_COD_MASK |
OCCS_DIVBY_PLLDB_MASK, \ OCCS_DIVBY_COD(23U) | OCCS_DIVBY_PLLDB(490));

Parameters
* reg — Register name.
* bitMask — Bits mask, mask of the group of bits.

* bitValue — This value will be written into the bit group specified by param-
eter bitMask.

PeriphSafeClearFlags(reg, allFlagsMask, flagMask)
Clear (acknowledge) flags which are active-high and are cleared-by-write-one.

This macro is useful when a register is comprised by normal read-write bits
and cleared-by-write-one bits. Example: PeriphSafeClearFlags(PWMA->FAULT[0].FSTS,
PWM_FSTS_FFLAG_MASK, PWM_FSTS_FFLAG(2));

Parameters
* reg — Register name.

¢ allFlagsMask — Mask for all flags which are active-high and are cleared-by-
write-one.

» flagMask — The selected flags(cleared-by-write-one) which are supposed to
be cleared.

PeriphSafeClearBits(reg, allFlagsMask, bitMask)

Clear selected bits without modifying (acknowledge) bit flags which are active-high and are
cleared-by-write-one.

This macro is useful when a register is comprised by normal read-write bits
and cleared-by-write-one bits. Example: PeriphSafeClearBits(PWMA->FAULT[0].FSTS,
PWM_FSTS_FFLAG_MASK, PWM_FSTS_FHALF(2));

Parameters
* reg — Register name.

* allFlagsMask — Mask for all flags which are active-high and are cleared-by-
write-one.

* bitMask — The selected bits which are supposed to be cleared.

PeriphSafeSetBits(reg, allFlagsMask, bitMask)

Set selected bits without modifying (acknowledge) bit flags which are active-high and are
cleared-by-write-one.

This macro is useful when a register is comprised by normal read-write bits
and cleared-by-write-one bits. = Example: PeriphSafeSetBits(PWMA->FAULT[0].FSTS,
PWM_FSTS_FFLAG_MASK, PWM_FSTS_FHALF(2));

Parameters

* reg — Register name.

2.42. Common Driver 201

MCUXpresso SDK Documentation, Release 25.09.00

* allFlagsMask — Mask for all flags which are active-high and are cleared-by-
write-one.

* bitMask — The selected bits which are supposed to be set.

PeriphSafeWriteBitGroup(reg, allFlagsMask, bitMask, bitValue)

Write group of bits without modifying (acknowledge) bit flags which are active-high and
are cleared-by-write-one.

This macro is useful when a register is comprised by normal read-write bits and
cleared-by-write-one bits. Example: PeriphSafeWriteBitGroup(PWMA->FAULT[0].FSTS,
PWM_FSTS_FFLAG_MASK, PWM_FSTS_FHALF_MASK, PWM_FSTS_FHALF(3U));
PeriphSafeWriteBitGroup(PWMA->FAULT[0].FSTS, PWM_FSTS_FFLAG_MASK,
PWM_FSTS_FHALF_MASK | PWM_FSTS_FFULL_MASK, \ PWM_FSTS_FHALF(3U) |
PWM_FSTS_FFULL(2U));

Parameters
* reg — Register name.

* allFlagsMask — Mask for all flags which are active-high and are cleared-by-
write-one.

* bitMask — Bits mask, mask of the group of bits.

* bitValue — This value will be written into the bit group specified by param-
eter bitMask.

SDK_GET REGISTER BYTE ADDR(ipType, ipBase, regName)
Get IP register byte address with uint32_t type.

This macro is useful when a register byte address is required, especially in SDM mode.
Example: SDK_GET_REGISTER_BYTE_ADDR(ADC_Type, ADC, RSLT[0]);

Parameters
* ipType — IP register mapping struct type.
* ipBase — IP instance base pointer, WORD address.
* regName — Member register name of IP register mapping struct.
MSDK_REG_SECURE_ADDR(X)

MSDK_REG_NONSECURE__ADDR(X)

2.43 LPI2C: Low Power Inter-Integrated Circuit Driver

enum _ lpi2c_ master_status_ flags
LPI2C master peripheral flags.

The following status register flags can be cleared:
* kKLPI2C_MasterEndOfPacketInterruptFlag
o KLPI2C_MasterStopDetectInterruptFlag
KkLPI2C_MasterNackDetectInterruptFlag
KkLPI2C_MasterArbitrationLostInterruptFlag
KLPI2C_MasterFifoErrinterruptFlag

KLPI2C_MasterPinLowTimeoutInterruptFlag
KkLPI2C_MasterDataMatchInterruptFlag

202 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

All flags except KLPI2C_MasterBusyFlag and KLPI2C_MasterBusBusyFlag can be enabled as
interrupts.

Note: These enums are meant to be OR’d together to form a bit mask.

Values:

enumerator kLPI2C_ MasterTxReadyInterruptFlag
Transmit data interrupt flag

enumerator kLPI2C_ MasterRxReadyInterruptFlag
Receive data interrupt flag

enumerator kLPI2C_ MasterEndOfPacketInterruptFlag
End Packet interrupt flag

enumerator kLPI2C_ MasterStopDetectInterruptFlag
Stop detect interrupt flag

enumerator kLPI2C_ MasterNackDetectInterruptFlag
NACK detect interrupt flag

enumerator kLPI2C_ MasterArbitrationLostInterruptFlag
Arbitration lost interrupt flag

enumerator kLPI2C_ MasterFifoErrInterruptFlag
FIFO error interrupt flag

enumerator kLPI2C_ MasterPinLowTimeoutInterruptFlag
Pin low timeout interrupt flag

enumerator kLPI2C_ MasterDataMatchInterruptFlag
Data match interrupt flag

enumerator kLPI2C_ MasterBusyFlag
Master busy flag

enumerator kLPI2C_ MasterBusBusyFlag
Bus busy flag All flags

enumerator kLPI2C_ MasterStatusAllFlags
enumerator kLLPI2C_ MasterClearInterruptFlags
All flags which are cleared by the driver upon starting a transfer.

enumerator kLPI2C_ MasterIrqFlags
IRQ sources enabled by the non-blocking transactional API.

enumerator kLLPI2C_ MasterErrorInterruptFlags
Errors to check for.

enum _ lpi2c_slave_status_ flags

LPI2C slave peripheral flags.
The following status register flags can be cleared:
* kKLPI2C_SlaveRepeatedStartDetectInterruptFlag
» KLPI2C_SlaveStopDetectInterruptFlag
* KLPI2C_SlaveBitErrInterruptFlag
o kLPI2C_SlaveFifoErrIinterruptFlag

2.43.

LPI2C: Low Power Inter-Integrated Circuit Driver 203

MCUXpresso SDK Documentation, Release 25.09.00

All flags except KLPI2C_SlaveBusyFlag and kLPI2C_SlaveBusBusyFlag can be enabled as in-
terrupts.

Note: These enumerations are meant to be OR’d together to form a bit mask.

Values:

enumerator kLPI2C_ SlaveTxReadylInterruptFlag
Transmit data interrupt flag

enumerator kLPI2C_ SlaveRxReadyInterruptFlag
Receive data interrupt flag

enumerator kLPI2C_ SlaveAddressValidInterruptFlag
Address valid interrupt flag

enumerator kLPI2C_ SlaveTransmit AckInterruptFlag
Transmit ACK interrupt flag

enumerator kLLPI2C_ SlaveRepeatedStartDetectInterruptFlag
Repeated start detect interrupt flag

enumerator kLLPI2C_ SlaveStopDetectInterruptFlag
Stop detect interrupt flag

enumerator kLPI2C_ SlaveBitErrInterruptFlag
Bit error interrupt flag

enumerator kLPI2C_ SlaveFifoErrInterruptFlag
FIFO error interrupt flag

enumerator kLPI2C_ SlaveAddressMatchOInterruptFlag
Address match 0 interrupt flag

enumerator kLPI2C_ SlaveAddressMatchlInterruptFlag
Address match 1 interrupt flag

enumerator kLPI2C_ SlaveGeneralCalllnterruptFlag
General call interrupt flag

enumerator kLPI2C_ SlaveSmbusAlertRespInterruptFlag
SMBus alert response interrupt flag

enumerator kLPI2C_ SlaveBusyFlag
Master busy flag

enumerator kLPI2C_ SlaveBusBusyFlag
Bus busy flag All flags

enumerator kLPI2C_ SlaveStatusAllFlags
enumerator kLPI2C_ SlaveClearInterruptFlags
All flags which are cleared by the driver upon starting a transfer.

enumerator kLPI2C_ SlavelrqFlags
IRQ sources enabled by the non-blocking transactional API.

enumerator kLPI2C_ SlaveErrorInterruptFlags
Errors to check for.

204 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint16_t LPI2C_ MasterGetStatusFlags(LPI2C_Type *base)
Gets the LPI2C master status flags.

A bit mask with the state of all LPI2C master status flags is returned. For each flag, the
corresponding bit in the return value is set if the flag is asserted.

See also:

_lpi2c_master_status_flags

Parameters
* base — The LPI2C peripheral base address.

Returns
State of the status flags:

* 1: related status flag is set.
* 0: related status flag is not set.

static inline void LPI2C_ MasterClearStatusFlags(LPI2C_Type *base, uint16_t ul6StatusFlags)
Clears the LPI2C master status flag state.

The following status register flags can be cleared:
* kLPI2C_MasterEndOfPacketInterruptFlag
KkLPI2C_MasterStopDetectInterruptFlag
KLPI2C_MasterNackDetectInterruptFlag
KkLPI2C_MasterArbitrationLostInterruptFlag
KkLPI2C_MasterFifoErrinterruptFlag

KkLPI2C_MasterPinLowTimeoutInterruptFlag
» KLPI2C_MasterDataMatchInterruptFlag

Attempts to clear other flags has no effect.

See also:

_lpi2c_master_status_flags.

Parameters
* base — The LPI2C peripheral base address.

* ul6StatusFlags — A bitmask of status flags that are to be cleared. The mask
is composed of _lpi2c_master_status_flags enumerators OR’d together. You
may pass the result of a previous call to LPI2C_MasterGetStatusFlags().

static inline uint16_t LPI2C_ SlaveGetStatusFlags(LPI2C_Type *base)
Gets the LPI2C slave status flags.

A bit mask with the state of all LPI2C slave status flags is returned. For each flag, the corre-
sponding bit in the return value is set if the flag is asserted.

See also:

_lpi2c_slave_status_flags

Parameters

2.43. LPI2C: Low Power Inter-Integrated Circuit Driver 205

MCUXpresso SDK Documentation, Release 25.09.00

* base — The LPI2C peripheral base address.

Returns
State of the status flags:

* 1: related status flag is set.
* 0: related status flag is not set.

static inline void LPI2C_ SlaveClearStatusFlags(LPI2C_Type *base, uint16_t ul6StatusFlags)
Clears the LPI2C status flag state.

The following status register flags can be cleared:
* kLPI2C_SlaveRepeatedStartDetectInterruptFlag
* KLPI2C_SlaveStopDetectInterruptFlag
* KLPI2C_SlaveBitErrIinterruptFlag
» kLPI2C_SlaveFifoErrInterruptFlag

Attempts to clear other flags has no effect.

See also:

_lpi2c_slave_status_flags.

Parameters
* base — The LPI2C peripheral base address.

* ul6StatusFlags — A bitmask of status flags that are to be cleared. The mask
is composed of _lpi2c_slave_status_flags enumerators OR’d together. You
may pass the result of a previous call to LPI2C_SlaveGetStatusFlags().

enum _lpi2c_master_pin_ config
LPI2C pin configuration.
Values:
enumerator kLPI2C_ 2PinOpenDrain
LPI2C Configured for 2-pin open drain mode
enumerator kLPI2C_ 2PinOutputOnly
LPI2C Configured for 2-pin output only mode (ultra-fast mode)
enumerator kLPI2C 2PinPushPull
LPI2C Configured for 2-pin push-pull mode
enumerator kLPI2C 4PinPushPull
LPI2C Configured for 4-pin push-pull mode
enumerator kLPI2C_ 2PinOpenDrainWithSeparateSlave
LPI2C Configured for 2-pin open drain mode with separate LPI2C slave

enumerator kLPI2C_ 2PinOutputOnlyWithSeparateSlave

LPI2C Configured for 2-pin output only mode(ultra-fast mode) with separate LPI2C
slave

enumerator kLPI2C_ 2PinPushPullWithSeparateSlave
LPI2C Configured for 2-pin push-pull mode with separate LPI2C slave

enumerator kLPI2C_ 4PinPushPullWithInvertedOutput
LPI2C Configured for 4-pin push-pull mode(inverted outputs)

206 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enum _ Ipi2c_ host_ request_ source
LPI2C master host request selection.

Values:

enumerator kKLPI2C__HostRequestExternalPin
Select the LPI2C_HREQ pin as the host request input

enumerator kLPI2C_ HostRequestInputTrigger
Select the input trigger as the host request input

enum _ lpi2c_ host_ request_ polarity
LPI2C master host request pin polarity configuration.

Values:

enumerator kLPI2C_ HostRequestPinActiveLow
Configure the LPI2C_HREQ pin active low

enumerator kLPI2C_ HostRequestPinActiveHigh
Configure the LPI2C_HREQ pin active high

enum _ lpi2c_ data_ match_ config mode
LPI2C master data match configuration modes.

Values:

enumerator kLPI2C MatchDisabled
LPI2C Match Disabled

enumerator kLPI2C_ 1stWordEqualsM0OrM1
LPI2C Match Enabled and 1st data word equals MATCHO OR MATCH1

enumerator kLPI2C_ AnyWordEqualsM0OrM1
LPI2C Match Enabled and any data word equals MATCHO OR MATCH1

enumerator kLPI2C_ 1stWordEqualsM0And2ndWordEqualsM 1
LPI2C Match Enabled and 1st data word equals MATCHO, 2nd data equals MATCH1

enumerator kLPI2C_ AnyWordEqualsM0OAndNextWordEqualsM 1
LPI2C Match Enabled and any data word equals MATCHO, next data equals MATCH1

enumerator kLPI2C_ 1stWordAndM1EqualsMOAndM1
LPI2C Match Enabled and 1st data word and MATCHO equals MATCHO and MATCH1

enumerator kLPI2C__ AnyWordAndM1EqualsM0OAndM1
LPI2C Match Enabled and any data word and MATCHO equals MATCHO and MATCH1

typedef enum _Ipi2c_master_pin_config Ipi2c_ master_pin_ config_t

LPI2C pin configuration.
typedef enum _Ipi2c_host_request_source lpi2c_ host_ request_ source_t

LPI2C master host request selection.
typedef enum _Ipi2c_host_request_polarity Ipi2c_host_request_ polarity t

LPI2C master host request pin polarity configuration.
typedef enum _Ipi2c_data _match_config mode Ipi2c_ data_match_config_mode_ t

LPI2C master data match configuration modes.

typedef struct _Ipi2c_match_config Ipi2c_ data_match_ config_t
LPI2C master data match configuration structure.

2.43. LPI2C: Low Power Inter-Integrated Circuit Driver 207

MCUXpresso SDK Documentation, Release 25.09.00

void LPI2C_ MasterSetBaudRate(LPI2C_Type *base, uint32_t u32SrcClockHz, uint32_t
u32BaudRateBps)

Sets the I12C bus frequency for master transactions.

The LPI2C master is automatically disabled and re-enabled as necessary to configure the
baud rate. Do not call this function during a transfer, or the transfer is aborted.

Note: Please note that the second parameter is the clock frequency of LPI2C module, the
third parameter means user configured bus baudrate, this implementation is different from
other I2C drivers which use baudrate configuration as second parameter and source clock
frequency as third parameter.

Parameters
* base — The LPI2C peripheral base address.
* u32SrcClockHz — LPI2C functional clock frequency in Hertz.
* u32BaudRateBps — Requested bus frequency in Hertz.

void LPI2C_ MasterSetGlitchFilter(LPI2C_Type *base, uint32_t u32SdaFilterWidthNs, uint32_t
u32SclFilterWidthNs, uint32_t u32SrcClockHz)

Sets the LPI2C master glitch filter width.

After the LPI2C module is initialized as master, user can call this function to change the
glitch filter width.

Parameters
* base — The LPI2C peripheral base address.
* u32SdaFilterWidthNs — The SDA glitch filter length in nano seconds.
* u32SclFilterWidthNs — The SCL glitch filter length in nano seconds.
* u32SrcClockHz — LPI2C peripheral clock frequency in Hz

void LPI2C_ MasterSetDataMatch(LPI2C_Type *base, const lpi2c_data match_config_t *psConfig)
Configures LPI2C master data match feature.

Parameters
* base — The LPI2C peripheral base address.
* psConfig — Settings for the data match feature.

static inline void LPI2C_ MasterReset(LPI2C_Type *base)
Performs a software reset.

Restores the LPI2C master peripheral to reset conditions.
Parameters
* base — The LPI2C peripheral base address.

static inline void LPI2C MasterEnable(LPI2C_Type *base, bool bEnable)
Enables or disables the LPI2C module as master.

Parameters
* base — The LPI2C peripheral base address.

* bEnable — Pass true to enable or false to disable the specified LPI2C as mas-
ter.

208 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

static inline void LPI2C_ MasterSetWatermarks(LPI2C_Type *base, uint16_t u16TxWords,
uint16_t ul6RxWords)

Sets the watermarks for LPI2C master FIFOs.
Parameters
* base — The LPI2C peripheral base address.

* ul6TxWords - Transmit FIFO watermark value in words. The
KLPI2C_MasterTxReadyInterruptFlag flag is set whenever the num-
ber of words in the transmit FIFO is equal or less than ul6TxWords.
Writing a value equal or greater than the FIFO size is truncated.

* ul6RxWords — Receive FIFO watermark value in words. The
KkLPI2C_MasterRxReadyInterruptFlag flag is set whenever the num-
ber of words in the receive FIFO is greater than u16RxWords. Writing a
value equal or greater than the FIFO size is truncated.

static inline void LPI2C_ MasterGetFifoCounts(LPI2C_Type *base, uint16_t *pul6RxCount,
uint16_t *pul6TxCount)

Gets the current number of words in the LPI2C master FIFOs.
Parameters
* base — The LPI2C peripheral base address.

* pul6RxCount — Pointer through which the current number of words in the
transmit FIFO is returned. Pass NULL if this value is not required.

* pul6TxCount — Pointer through which the current number of words in the
receive FIFO is returned. Pass NULL if this value is not required.

enum _ Ipi2c_slave address_match
LPI2C slave address match options.

Values:

enumerator kLPI2C_ Match7BitAddressO
Match only 7 bit address 0.

enumerator kLPI2C_Match10BitAddressO
Match only 10 bit address 0.

enumerator kLPI2C Match7BitAddressOOr7BitAddressl
Match either 7 bit address 0 or 7 bit address 1.

enumerator kLPI2C Match10BitAddress0Or10BitAddressl
Match either 10 bit address 0 or 10 bit address 1.

enumerator kLPI2C Match7BitAddress0Or10BitAddress1
Match either 7 bit address 0 or 10 bit address 1.

enumerator kLPI2C Match10BitAddress0Or7BitAddress1
Match either 10 bit address 0 or 7 bit address 1.

enumerator kLPI2C_ Match7BitAddressOThrough7Bit Addressl
Match a range of slave addresses from 7 bit address 0 through 7 bit address 1.

enumerator kLPI2C_ Match10BitAddress0Through10Bit Addressl
Match a range of slave addresses from 10 bit address 0 through 10 bit address 1.

typedef enum _Ipi2c_slave_address_match Ipi2c_slave_address match_t
LPI2C slave address match options.

2.43. LPI2C: Low Power Inter-Integrated Circuit Driver 209

MCUXpresso SDK Documentation, Release 25.09.00

void LPI2C_ SlaveSetGlitchFilter(LPI2C_Type *base, uint32_t u32SdaFilterWidthNs, uint32_t
u32SclFilterWidthNs, uint32_t u32SrcClockHz)

Sets the LPI2C slave glitch filter width.

After the LPI2C module is initialized as slave, user can call this function to change the glitch
filter width.

Parameters

* base — The LPI2C peripheral base address.
u32SdaFilterWidthNs — The SDA glitch filter length in nano seconds.
* u32SclFilterWidthNs — The SCL glitch filter length in nano seconds.

* u32SrcClockHz — LPI2C peripheral clock frequency in Hz

void LPI2C_ SlaveSetAddressingMode(LPI2C_Type *base, lpi2c_slave_address_match_t
eAddressMatchMode, uint16_t u16Address0, uint16_t
ul6Addressl)

Configure the slave addressing mode.

After the LPI2C module is initialized as slave, user can call this function to change the con-
figuration of slave addressing mode.

Parameters
* base — The LPI2C peripheral base address.
* eAddressMatchMode — The slave addressing match mode.

* ul6Address0 — LPI2C slave address 0. For 7-bit address low 7-bit is used, for
10-bit address low 10-bit is used.

e ul6Addressl — LPI2C slave address 1. For 7-bit address low 7-bit is used, for
10-bit address low 10-bit is used.

static inline void LPI2C_ SlaveReset(LPIZC_Type *base)
Performs a software reset of the LPI2C slave peripheral.

Parameters
* base — The LPI2C peripheral base address.

static inline void LPI2C_ SlaveEnable(LPI2C_Type *base, bool bEnable)
Enables or disables the LPI2C module as slave.

Parameters
* base — The LPI2C peripheral base address.
* bEnable—Pass true to enable or false to disable the specified LPI2C as slave.

enum _ lpi2c_ data_ direction
Direction of master and slave transfers.

Values:

enumerator kLPI2C_ Write
Master transmit.
enumerator kLPI2C_ Read
Master receive.
typedef enum _Ipi2c_data_direction lpi2c_ data_ direction_ t
Direction of master and slave transfers.
status_t LP12C_ MasterCheckAndClearError(LPI2C_Type *base, uint16_t ul6Status)

210 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

status_t LP12C_ MasterCheckForBusyBus(LPI2C_Type *base)

status_t LP12C_ MasterStartInternal(LPI2C_Type *base, uint8_t u8Address, Ipi2¢_data_direction_t
eDir, bool bIsRepeatedStart)

static inline status_t LPI2C_ MasterStart(LPI2C_Type *base, uint8_t u8Address,
lpi2¢_data_direction_t eDir)
Sends a START signal and slave address on the I12C bus.

This function is used to initiate a new master mode transfer. First, the bus state is checked
to ensure that another master is not occupying the bus. Then a START signal is transmitted,
followed by the 7-bit address specified in the address parameter. Note that this function
does not actually wait until the START and address are successfully sent on the bus before
returning.

Parameters
* base — The LPI2C peripheral base address.
* u8Address — 7-bit slave device address, in bits [6:0].

* eDir—Master transfer direction, either kLPI2C_Read or KLPI2C_Write. This
parameter is used to set the R/w bit (bit 0) in the transmitted slave address.

Return values

* kStatus_Success — START signal and address were successfully enqueued in
the transmit FIFO.

*» kStatus_ LPI2C_Busy — Another master is currently utilizing the bus.

static inline status_t LPI2C_ MasterRepeatedStart(LPI2C_Type *base, uint8_t u8Address,
lpi2¢_data_direction_t eDir)

Sends a repeated START signal and slave address on the I12C bus.

This function is used to send a Repeated START signal when a transfer is already in progress.
Like LPI2C_MasterStart(), it also sends the specified 7-bit address.

Note: This function exists primarily to maintain compatible APIs between LPI2C and 12C
drivers, as well as to better document the intent of code that uses these APIs.

Parameters
* base — The LPI2C peripheral base address.
* u8Address — 7-bit slave device address, in bits [6:0].

* eDir— Master transfer direction, either KLPI2C_Read or KLPI2C_Write. This
parameter is used to set the R/w bit (bit 0) in the transmitted slave address.

Return values

* kStatus_ Success—Repeated START signal and address were successfully en-
queued in the transmit FIFO.

* kStatus_ LPI2C_ Busy — Another master is currently utilizing the bus.

status_t LPI2C_ MasterStop(LPI2C_Type *base)
Sends a STOP signal on the 12C bus.

This function does not return until the STOP signal is seen on the bus, or an error occurs.
Parameters
* base — The LPI2C peripheral base address.

Return values

2.43. LPI2C: Low Power Inter-Integrated Circuit Driver 211

MCUXpresso SDK Documentation, Release 25.09.00

* kStatus_ Success — The STOP signal was successfully sent on the bus and the
transaction terminated.

* kStatus_ LPI2C_ Busy — Another master is currently utilizing the bus.

*» kStatus_ LPI2C_ Nak — The slave device sent a NAK in response to a byte.
* kStatus_ LPI2C_ FifoError — FIFO under run or overrun.

* kStatus_ LPI2C_ArbitrationLost — Arbitration lost error.

* kStatus_ LPI2C_ PinLowTimeout — SCL. or SDA were held low longer than
the timeout.

status_t LP12C_ MasterSend(LPI2C_Type *base, void *pTxBuff, uint16_t u16TxSize, bool

bPecEnable)
Performs a polling send transfer on the I2C bus.

Sends up to ul16TxSize number of bytes to the previously addressed slave device. The slave
may reply with a NAK to any byte in order to terminate the transfer early. If this happens,
this function returns kStatus_LPI2C_Nak.

Parameters
* base — The LPI2C peripheral base address.
» pTxBuff — The pointer to the data to be transferred.
* ul6TxSize — The length in bytes of the data to be transferred.
* bPecEnable — It decides whether one byte PEC is needed to send.
Return values
* kStatus_ Success — Data was sent successfully.
* kStatus_ LPI2C_ Busy — Another master is currently utilizing the bus.
* kStatus_ LPI2C_ Nak — The slave device sent a NAK in response to a byte.
* kStatus_ LPI2C_ FifoError — FIFO under run or over run.
* kStatus LPI2C ArbitrationLost — Arbitration lost error.

* kStatus_ LPI2C_PinLowTimeout — SCL or SDA were held low longer than
the timeout.

status_t LPI2C_MasterReceive(LPI2C_Type *base, void *pRxBuff, uint16_t ul16RxSize, bool

bPecEnable)
Performs a polling receive transfer on the 12C bus.

Parameters

* base — The LPI2C peripheral base address.

» pRxBuff — The pointer to the data to be transferred.

* ul6RxSize — The length in bytes of the data to be transferred.

* bPecEnable — It decides whether one byte PEC is needed to receive.
Return values

* kStatus_ Success — Data was received successfully.

* kStatus_ LPI2C_ Busy — Another master is currently utilizing the bus.

* kStatus_ LPI2C_ Nak — The slave device sent a NAK in response to a byte.

* kStatus_ LPI2C_ FifoError — FIFO under run or overrun.

* kStatus LPI2C_ArbitrationLost — Arbitration lost error.

212

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

* kStatus_ LPI2C_ PinLowTimeout — SCL. or SDA were held low longer than
the timeout.

enum _ lpi2c_ master_transfer control_flags
Transfer option flags.

Note: These enumerations are intended to be OR’d together to form a bit mask of options
for the _lpi2c_master_transfer::u8ControlFlagMask field.

Values:

enumerator kLPI2C_ TransferStartStopFlag
Transfer starts with a start signal, stops with a stop signal.

enumerator kLPI2C_ TransferNoStartFlag
Don’t send a start condition, address, and sub address

enumerator kLPI2C_ TransferRepeatedStartFlag
Send a repeated start condition

enumerator kLPI2C_ TransferNoStopFlag
Don’t send a stop condition.

typedef struct _Ipi2c_master_transfer lpi2c_ master_ transfer_t
Ipi2c_master_transfer_t forward definition.

typedef struct _Ipi2c_master_transfer_handle Ipi2c_master transfer handle_t
Ipi2c_master_transfer_handle_t forward definition.

typedef void (*Ipi2c_ master_transfer_callback_ t)(Ilpi2c_master_transfer_handle_t *psHandle)
Master completion callback function pointer type.

This callback is used only for the non-blocking master transfer API. Specify the callback you
wish to use in the call to LPI2C_MasterTransferCreateHandle().

Param psHandle
Pointer to the LPI2C master driver handle.

status_t LPI2C_ MasterTransferBlocking(LPI2C_Type *base, lpi2c_master_transfer_t *psTransfer)
Performs a master polling transfer on the I2C bus.

Note: The API does not return until the transfer succeeds or fails due to error happens
during transfer.

Parameters
* base — The LPI2C peripheral base address.
* psTransfer — Pointer to the transfer structure.
Return values
* kStatus_ Success — Data was received successfully.
* kStatus_ LPI2C_ Busy — Another master is currently utilizing the bus.
* kStatus_ LPI2C_ Nak — The slave device sent a NAK in response to a byte.
* kStatus_ LPI2C_ FifoError — FIFO under run or overrun.
* kStatus_ LPI2C_ ArbitrationLost — Arbitration lost error.

* kStatus_ LPI2C_ PinLowTimeout — SCL or SDA were held low longer than
the timeout.

2.43. LPI2C: Low Power Inter-Integrated Circuit Driver 213

MCUXpresso SDK Documentation, Release 25.09.00

void LPI2C_ MasterTransferCreateHandle(LPI2ZC_Type *base, Ipi2c_master_transfer_handle_t
*psHandle, lpi2c_master_transfer_callback_t
pfCallback, void *pUserData)

Creates a new handle for the LPI2C master non-blocking APIs.
The creation of a handle is for use with the non-blocking APIs. Once a handle is created,

there is not a corresponding destroy handle. If the user wants to terminate a transfer, the
LPI2C_MasterTransferAbort() API shall be called.

Note: The function also enables the NVIC IRQ for the input LPI2C. Need to notice that on
some SoCs the LPI2C IRQ is connected to INTMUX, in this case user needs to enable the
associated INTMUX IRQ in application.

Parameters
* base — The LPI2C peripheral base address.
e psHandle — Pointer to the LPI2C master driver handle.
» pfCallback — User provided pointer to the asynchronous callback function.
* pUserData — User provided pointer to the application callback data.

status_t LPI2C_MasterTransferNonBlocking(lpi2¢c_master_transfer_handle_t *psHandle,
Ipi2¢c_master_transfer_t *psTransfer)

Performs a non-blocking transaction on the I2C bus.
Parameters
e psHandle — Pointer to the LPI2C master driver handle.
* psTransfer — The pointer to the transfer descriptor.
Return values
* kStatus_ Success — The transaction was started successfully.

* kStatus_ LPI2C_ Busy — Either another master is currently utilizing the bus,
or a non-blocking transaction is already in progress.

status_t LPI2C_MasterTransferGetCount(Ilpi2¢c_master_transfer_handle_t *psHandle, uint16_t
*pul6Count)

Returns number of bytes transferred so far.
Parameters
e psHandle — Pointer to the LPI2C master driver handle.

* pul6Count - Number of bytes transferred so far by the non-blocking trans-
action.

Return values
* kStatus Success —

* kStatus_ NoTransferInProgress — There is not a non-blocking transaction cur-
rently in progress.

void LPI2C_ MasterTransfer Abort(lpi2c_master_transfer_handle_t *psHandle)
Terminates a non-blocking LPI2C master transmission early.

Note: Itisnot safe to call this function from an IRQ handler that has a higher priority than
the LPI2C peripheral’s IRQ priority.

214 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

Parameters

* psHandle — Pointer to the LPI2C master driver handle.
Return values

* kStatus_Success — A transaction was successfully aborted.

* kStatus_ LPI2C_ Idle — There is not a non-blocking transaction currently in
progress.

void LPI2C_ MasterTransferHandleIRQ(lpi2c_master._transfer_handle_t *psHandle)
Reusable routine to handle master interrupts.

Note: This function does not need to be called unless you are reimplementing the non-
blocking APT’s interrupt handler routines to add special functionality.

Parameters
* psHandle — Pointer to the LPI2C master driver handle.
enum _lpi2c_slave transfer event
Set of events sent to the callback for non blocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created by
OR’ing together events is passed to LPI2C_SlaveTransferNonBlocking() in order to specify
which events to enable. Then, when the slave callback is invoked, it is passed the current
event through its transfer parameter.

Note: These enumerations are meant to be OR’d together to form a bit mask of events.

Values:

enumerator kLPI2C SlaveAddressMatchEvent
Received the slave address after a start or repeated start.

enumerator kLPI2C SlaveTransmitEvent
Callback is requested to provide data to transmit (slave-transmitter role).

enumerator kLPI2C_ SlaveReceiveEvent
Callbackis requested to provide a buffer in which to place received data (slave-receiver
role).

enumerator kLPI2C_SlaveTransmitAckEvent
Callback needs to either transmit an ACK or NACK.

enumerator kKLPI2C _SlaveRepeatedStartEvent

A repeated start was detected.
enumerator KLPI2C__ SlaveCompletionEvent

A stop was detected, completing the transfer.
enumerator kKLPI2C_SlaveAllEvents

Bit mask of all available events.

typedef struct _Ipi2c_slave_transfer lpi2c_ slave_ transfer_t
Ipi2c_slave_transfer_t forward definition.

typedef struct _Ipi2c_slave_transfer_handle 1pi2c_ slave_ transfer handle t
Ipi2c_slave_transfer_handle_t forward definition.

2.43. LPI2C: Low Power Inter-Integrated Circuit Driver 215

MCUXpresso SDK Documentation, Release 25.09.00

typedef void (*Ipi2¢c_slave_transfer_ callback_t)(Ipi2¢_slave_transfer_handle_t *psHandle)

Slave event callback function pointer type.

This callback is used only for the slave non-blocking transfer API. To install a callback, use
the LPI2C_SlaveSetCallback() function after you have created a handle.

Param psHandle
Pointer to the LPI2C slave driver handle.

typedef enum _Ipi2c_slave_transfer_event lpi2c_slave_transfer event_t

Set of events sent to the callback for non blocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created by
OR’ing together events is passed to LPI2C_SlaveTransferNonBlocking() in order to specify
which events to enable. Then, when the slave callback is invoked, it is passed the current
event through its transfer parameter.

Note: These enumerations are meant to be OR’d together to form a bit mask of events.

void LPI2C_ SlaveTransferCreateHandle(LPI2C_Type *base, lpi2c_slave_transfer_handle_t

*psHandle, Ipi2c_slave_transfer_callback_t pfCallback,
void *pUserData)

Creates a new handle for the LPI2C slave non-blocking APIs.
The creation of a handle is for use with the non-blocking APIs. Once a handle is created,

there is not a corresponding destroy handle. If the user wants to terminate a transfer, the
LPI2C_SlaveTransferAbort() API shall be called.

Note: The function also enables the NVIC IRQ for the input LPI2C. Need to notice that on
some SoCs the LPI2C IRQ is connected to INTMUX, in this case user needs to enable the
associated INTMUX IRQ in application.

Parameters
* base — The LPI2C peripheral base address.
* psHandle — Pointer to the LPI2C slave driver handle.
* pfCallback — User provided pointer to the asynchronous callback function.

* pUserData — User provided pointer to the application callback data.

status_t LP12C_ SlaveTransferNonBlocking(Ipi2¢_slave_transfer_handle_t *psHandle, uint8_t

u8EventMask)
Starts accepting slave transfers.

Call this API after calling I12C_Slavelnit() and LPI2C_SlaveTransferCreateHandle() to start
processing transactions driven by an I2C master. The slave monitors the I12C bus and pass
events to the callback that was passed into the call to LPI2C_SlaveTransferCreateHandle().
The callback is always invoked from the interrupt context.

The set of events received by the callback is customizable. To do so, set the
eventMask parameter to the OR’d combination of lpi2c_slave_transfer_event t enu-
merators for the events you wish to receive. The KLPI2C_SlaveTransmitEvent and
kLPI2C_SlaveReceiveEvent events are always enabled and do not need to be included in
the mask. Alternatively, you can pass 0 to get a default set of only the transmit and re-
ceive events that are always enabled. In addition, the KLPI2C_SlaveAllEvents constant is
provided as a convenient way to enable all events.

Parameters

216

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

* psHandle — Pointer to lpi2c_slave_transfer_handle_t structure which stores
the transfer state.

* u8EventMask - Bit mask formed by ORing together
Ipi2c_slave_transfer_event_t enumerators to specify which events to
send to the callback. Other accepted values are 0 to get a default set
of only the transmit and receive events, and KLPI2C_SlaveAllEvents to
enable all events.

Return values
* kStatus_ Success — Slave transfers were successfully started.

* kStatus_ LPI2C_ Busy — Slave transfers have already been started on this
handle.

status_t LPI2C _SlaveTransferGetCount(lpi2c_slave_transfer_handle_t *psHandle, uint16_t
*pul6Count)

Gets the slave transfer status during a non-blocking transfer.
Parameters
* psHandle — Pointer to i2c_slave_handle_t structure.

* pul6Count — Pointer to a value to hold the number of bytes transferred.
May be NULL if the count is not required.

Return values
e kStatus Success —
* kStatus_NoTransferInProgress —

void LPI2C_ SlaveTransferAbort(lpi2c_slave_transfer_handle_t *psHandle)
Aborts the slave non-blocking transfers.

Note: This API could be called at any time to stop slave for handling the bus events.

Parameters

* psHandle — Pointer to lpi2c_slave_transfer_handle_t structure which stores
the transfer state.

Return values
e kStatus_ Success —
e kStatus_ LPI2C_ Idle —

void LPI2C_ SlaveTransferHandleIRQ(Ipi2c_slave_transfer_handle_t *psHandle)
Reusable routine to handle slave interrupts.

Note: This function does not need to be called unless you are reimplementing the non
blocking APT’s interrupt handler routines to add special functionality.

Parameters

* psHandle — Pointer to lpi2c_slave_transfer_handle_t structure which stores
the transfer state.

2.43. LPI2C: Low Power Inter-Integrated Circuit Driver 217

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _lpi2c_master_config lpi2c_master_config_t
Structure with settings to initialize the LPI2C master module.

This structure holds configuration settings for the LPI2C peripheral. To initialize this struc-
ture to reasonable defaults, call the LPI2C_MasterGetDefaultConfig() function and pass a
pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

typedef struct _Ipi2c_slave_config pi2c_slave config_t
Structure with settings to initialize the LPI2C slave module.

This structure holds configuration settings for the LPI2C slave peripheral. To initialize this
structure to reasonable defaults, call the LPI2C_SlaveGetDefaultConfig() function and pass
a pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.
typedef struct _Ipi2c_config lpi2¢c_ config_t
Structure with settings to initialize the LPI2C module.

This structure holds configuration settings for the LPI2C peripheral. To initialize this struc-
ture to reasonable defaults, call the LPI2C_GetDefaultConfig function and pass a pointer to
your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

void LPI2C_ GetDefaultConfig(Ipi2c_config_t *psConfig, uint16_t ul6SlaveAddress, uint32_t
u32SrcClockHz)

Provides a default configuration for the LPI2C peripheral, including master and slave.
This is an example:

Ipi2¢c__config_t sConfig;

LPI2C_ GetDefaultConfig(&sConfig, ul6SlaveAddress, u32SrcClockHz);
sConfig.u32BaudRateBps = 100000U;

LPI2C_ Init(LPI2CO0, &sConfig);

After calling this function, you can override any settings in order to customize the configu-
ration, prior to initializing the driver with LPI2C_Init().
Parameters

* psConfig — User provided configuration structure for default values. Refer
to lpi2c_config_t.
» ul6SlaveAddress — Slave address raw value, driver will shift it.
» u32SrcClockHz — Frequency in Hertz of the LPI2C functional clock. Used to
calculate the baud rate divisors, filter widths, and timeout periods.
void LPI2C_Init(LPI2C_Type *base, const lpi2¢_config t *psConfig)
Initializes the LPI2C peripheral, including master and slave.
This function enables the peripheral clock and initializes the LPI2C peripheral as described
by the user provided configuration. A software reset is performed prior to configuration.

This function can enable master and slave together. If only want to use one of them, please
call LPI2C_MasterInit or LPI2C_Slavelnit.

Note: If FSL__ SDK DISABLE_DRIVER_CLOCK_CONTROL is enabled by user, the init func-
tion will not ungate 12C clock source before initialization, to avoid hardfault, user has to
manually enable ungate the clock source before calling the API.

Parameters

218 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

* base — The LPI2C peripheral base address.

* psConfig - User provided peripheral configuration. Use
LPI2C_GetDefaultConfig to get a set of defaults that you can override.

void LPI2C_ Deinit(LPIZC_Type *base)
Deinitializes the LPI2C peripheral, including master and slave.

This function disables the LPI2C peripheral and gates the clock. It also performs a software
reset to restore the peripheral to reset conditions.

Parameters
* base — The LPI2C peripheral base address.

void LPI2C_ MasterGetDefaultConfig(Ipi2c_master_config t *psMasterConfig, uint32_t
u32SrcClockHz)

Provides a default configuration for the LPI2C master peripheral.

This is an example:

Ipi2c__master_config_t sConfig;

LPI2C_ MasterGetDefaultConfig(&sConfig, 12000000U);
sConfig.u32BaudRateBps = 100000U;

LPI2C_ MasterInit(LPI2C1, &sConfig);

After calling this function, you can override any settings in order to customize the configu-
ration, prior to initializing the master driver with LPI2C_MasterInit().

Parameters

* psMasterConfig — User provided configuration structure for default values.
Refer to lpi2c_master_config t.

* u32SrcClockHz — Frequency in Hertz of the LPI2C functional clock. Used to
calculate the baud rate divisors, filter widths, and timeout periods.

void LPI2C_ MasterInit(LPI2C_Type *base, const Ipi2c_master_config t *psMasterConfig)
Initializes the LPI2C master peripheral.
This function enables the peripheral clock and initializes the LPI2C master peripheral as
described by the user provided configuration. A software reset is performed prior to con-

figuration. User just needs to call this function to enable LPI2C master if only use I2C master
operation.

Note: If FSL_SDK _DISABLE_DRIVER_CLOCK_CONTROL is enabled by user, the init func-
tion will not ungate 12C clock source before initialization, to avoid hardfault, user has to
manually enable ungate the clock source before calling the API.

Parameters

* base — The LPI2C peripheral base address.

* psMasterConfig — User provided peripheral configuration. Use
LPI2C_MasterGetDefaultConfig() to get a set of defaults that you can
override.

void LPI2C_ MasterDeinit(LPI2C_Type *base)
Deinitializes the LPI2C master peripheral.

This function disables the LPI2C master peripheral and gates the clock. It also performs a
software reset to restore the peripheral to reset conditions.

Parameters

2.43. LPI2C: Low Power Inter-Integrated Circuit Driver 219

MCUXpresso SDK Documentation, Release 25.09.00

* base — The LPI2C peripheral base address.

void LPI2C_ SlaveGetDefaultConfig(lpi2¢c_slave_config_t *psSlaveConfig, uint16_t
ul6SlaveAddress, uint32_t u32SrcClockHz)

Provides a default configuration for the LPI2C slave peripheral.

This is an example:

Ipi2c_slave_config_t sConfig;
LPI2C_ SlaveGetDefaultConfig(&sConfig, ul6SlaveAddress, u32SrcClockHz);
LPI2C_ Slavelnit(LPI2C1, &sConfig);

After calling this function, override any settings to customize the configuration, prior
to initializing the master driver with LPI2C_Slavelnit(). Be sure to override at least the
u8AddressO member of the configuration structure with the desired slave address.

Parameters

* psSlaveConfig — User provided configuration structure that is set to default
values. Refer to lpi2c_slave_config_t.

* ul6SlaveAddress — Slave address raw value, driver will shift it.

* u32SrcClockHz — Frequency in Hertz of the LPI2C functional clock. Used to
calculate the filter widths, data valid delay, and clock hold time.
void LPI2C_ Slavelnit(LPI2C_Type *base, const lpi2¢_slave_config t *psSlaveConfig)
Initializes the LPI2C slave peripheral.
This function enables the peripheral clock and initializes the LPI2C slave peripheral as de-

scribed by the user provided configuration. User just needs to call this function to enable
LPI2C slave if only use I12C slave operation.

Note: If FSL._SDK_DISABLE_DRIVER_CLOCK_CONTROL is enabled by user, the init func-
tion will not ungate 12C clock source before initialization, to avoid hardfault, user has to
manually enable ungate the clock source before calling the API.

Parameters

* base — The LPI2C peripheral base address.

* psSlaveConfig - User provided peripheral configuration. Use
LPI2C_SlaveGetDefaultConfig() to get a set of defaults that you can
override.

void LPI2C_ SlaveDeinit(LPI2C_Type *base)
Deinitializes the LPI2C slave peripheral.

This function disables the LPI2C slave peripheral and gates the clock. It also performs a
software reset to restore the peripheral to reset conditions.

Parameters
* base — The LPI2C peripheral base address.

static inline void LPI2C_ MasterEnableInterrupts(LPI2C_Type *base, uint16_t ul6Interrupts)
Enables the LPI2C master interrupt requests.

All flags except KLPI2C_MasterBusyFlag and KLLPI2C_MasterBusBusyFlag can be enabled as
interrupts.

Parameters

* base — The LPI2C peripheral base address.

220 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

* ul6Interrupts — Bit mask of interrupts to enable. See
_lpi2c_master_status_flags for the set of constants that should be ORd
together to form the bit mask.

static inline void LPI2C_ MasterDisableInterrupts(LPI2C_Type *base, uint16_t ul6Interrupts)
Disables the LPI2C master interrupt requests.

All flags except KLPI2C_MasterBusyFlag and KLPI2C_MasterBusBusyFlag can be enabled as
interrupts.

Parameters
* base — The LPI2C peripheral base address.

* ul6Interrupts — Bit mask of interrupts to disable. See
_lpi2c_master_status_flags for the set of constants that should be OR’d
together to form the bit mask.

static inline uint16_t LPI2C_ MasterGetEnabledInterrupts(LPI2ZC_Type *base)
Returns the set of currently enabled LPI2C master interrupt requests.

Parameters
* base — The LPI2C peripheral base address.

Returns
A bitmask composed of _lpi2c_master_status_flags enumerators OR’d together
to indicate the set of enabled interrupts.

static inline void LPI2C _SlaveEnableInterrupts(LPI2C_Type *base, uint16_t ul6Interrupts)
Enables the LPI2C slave interrupt requests.

All flags except kLPI2C_SlaveBusyFlag and kL.PI2C_SlaveBusBusyFlag can be enabled as in-
terrupts.

Parameters
* base — The LPI2C peripheral base address.

* ul6Interrupts - Bit mask of interrupts to enable. See
_lpi2c_slave_status_flags for the set of constants that should be OR’d
together to form the bit mask.

static inline void LPI2C_ SlaveDisableInterrupts(LPI2C_Type *base, uint16_t ul6Interrupts)
Disables the LPI2C slave interrupt requests.

All flags except kL.PI2C_SlaveBusyFlag and kL.PI2C_SlaveBusBusyFlag can be enabled as in-
terrupts.

Parameters
* base — The LPI2C peripheral base address.

* ul6Interrupts — Bit mask of interrupts to disable. See
_lpi2c_slave_status_flags for the set of constants that should be ORd
together to form the bit mask.

static inline uint16_t LPI2C_ SlaveGetEnabledInterrupts(LPI2C_Type *base)
Returns the set of currently enabled LPI2C slave interrupt requests.

Parameters
* base — The LPI2C peripheral base address.

Returns
A bitmask composed of _lpi2c_slave_status_flags enumerators OR’d together
to indicate the set of enabled interrupts.

2.43. LPI2C: Low Power Inter-Integrated Circuit Driver 221

MCUXpresso SDK Documentation, Release 25.09.00

static inline void LPI2C_ MasterEnableDMA (LPI2C_Type *base, bool bEnableTx, bool
bEnableRx)

Enables or disables LPI2C master DMA requests.
Parameters
* base — The LPI2C peripheral base address.

* bEnableTx — Enable flag for transmit DMA request. Pass true for enable,
false for disable.

* bEnableRx — Enable flag for receive DMA request. Pass true for enable,
false for disable.

static inline uint32_t LPI2C_ MasterGetTxFifoAddress(LPI2C_Type *base)
Gets LPI2C master transmit data register address for DMA transfer.

Parameters
* base — The LPI2C peripheral base address.

Returns
The LPI2C Master Transmit Data Register address.

static inline uint32_t LPI2C_ MasterGetRxFifoAddress(LPI2C_Type *base)
Gets LPI2C master receive data register address for DMA transfer.

Parameters
* base — The LPI2C peripheral base address.

Returns
The LPI2C Master Receive Data Register address.

static inline void LPI2C_ SlaveEnableDMA (LPI2C_Type *base, bool bEnableAddressValid, bool
bEnableRx, bool bEnableTx)

Enables or disables the LPI2C slave peripheral DMA requests.
Parameters
* base — The LPI2C peripheral base address.

* bEnableAddressValid — Enable flag for the address valid DMA request. Pass
true for enable, false for disable. The address valid DMA request is shared
with the receive data DMA request.

* bEnableRx — Enable flag for the receive data DMA request. Pass true for
enable, false for disable.

* bEnableTx — Enable flag for the transmit data DMA request. Pass true for
enable, false for disable.

static inline bool LPI2C _SlaveGetBusldleState(LPI2ZC_Type *base)
Returns whether the bus is idle.

Requires the slave mode to be enabled.
Parameters
* base — The LPI2C peripheral base address.
Return values
* true — Bus is busy.

 false — Busis idle.

222 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

static inline void LPI2C_ SlaveTransmitAck(LPI2C_Type *base, bool bSendAck)
Transmits either an ACK or NAK on the I2C bus in response to a byte from the master.

Use this function to send an ACK or NAK when the kKLPI2C_SlaveTransmitAckInterruptFlag
is asserted. This only happens if you enable the sclStall.enableAck field of the
Ipi2c_slave_config_t configuration structure used to initialize the slave peripheral.

Parameters
* base — The LPI2C peripheral base address.
* bSendAck — Pass true for an ACK or false for a NAK.

static inline uint16_t LPI2C_ SlaveGetReceived Address(LPI2C_Type *base)
Returns the slave address sent by the I2C master.

This function should only be called if the kKLPI2C_SlaveAddressValidInterruptFlag is as-
serted.

Parameters
* base — The LPI2C peripheral base address.

Returns
The 8-bit address matched by the LPI2C slave. Bit 0 contains the R/w direction

bit, and the 7-bit slave address is in the upper 7 bits.

status_t LP12C_SlaveSend (LPI2C_Type *base, void *pTxBuff, uint16_t u16TxSize, uint16_t
*pul6ActualTxSize)

Performs a polling send transfer on the I12C bus.
Parameters
* base — The LPI2C peripheral base address.
» pTxBuff — The pointer to the data to be transferred.
* ul6TxSize — The length in bytes of the data to be transferred.
* pul6ActualTxSize —

Returns
Error or success status returned by APIL.

status_t LP12C_ SlaveReceive(LPI2C_Type *base, void *pRxBuff, uint16_t u16RxSize, uint16_t
*pul6ActualRxSize)

Performs a polling receive transfer on the I12C bus.
Parameters
* base — The LPI2C peripheral base address.
» pRxBuff — The pointer to the data to be transferred.
* ul6RxSize — The length in bytes of the data to be transferred.
* pul6ActualRxSize —

Returns
Error or success status returned by APIL.

FSL LPI2C DRIVER VERSION
LPI2C driver version.

LPI2C status return codes.

Values:

2.43. LPI2C: Low Power Inter-Integrated Circuit Driver 223

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus_ LPI2C_Busy
The master is already performing a transfer.

enumerator kStatus LPI2C Idle
The slave driver is idle.

enumerator kStatus_ LPI2C_ Nak
The slave device sent a NAK in response to a byte.

enumerator kStatus LPI2C FifoError
FIFO under run or overrun.

enumerator kStatus LPI2C BitError
Transferred bit was not seen on the bus.

enumerator kStatus_ LPI2C_ArbitrationLost
Arbitration lost error.

enumerator kStatus LPI2C PinLowTimeout
SCL or SDA were held low longer than the timeout.

enumerator kStatus_ LPI2C_NoTransferInProgress
Attempt to abort a transfer when one is not in progress.

enumerator kStatus_ LPI2C__DmaRequestFail
DMA request failed.

enumerator kStatus_ LPI2C_Timeout
Timeout polling status flags.

FSL_SDK_DISABLE DRIVER CLOCK_CONTROL

Clock enable/disable controlled by driver or not.

12C_RETRY_TIMES

Retry times for waiting flag.

12C_SMBUS__ENABLE

Control whether to use SMBus features.

LPI2C_GET_TRANSFER_COMPLETION_STATUS(psHandle)

LPI2C_GET TRANSFER USER_DATA (psHandle)

LPI2C_GET SLAVE TRANSFER_EVENT(psHandle)

LPI2C_GET_SLAVE_TRANSFER_DATA_POINTER(psHandle)

LPI2C_GET_SLAVE_TRANSFER_DATASIZE(psHandle)

LPI2C_GET_SLAVE TRANSFERRED COUNT(psHandle)

struct _lpi2c_ master_config

#include <fsl_lpi2c.h> Structure with settings to initialize the LPI2C master module.

This structure holds configuration settings for the LPI2C peripheral. To initialize this struc-
ture to reasonable defaults, call the LPI2C_MasterGetDefaultConfig() function and pass a
pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

224

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

Public Members
bool bEnableMaster

Whether to enable master mode.
bool bEnableDoze

Whether master is enabled in doze mode.
bool bDebugEnable

Enable transfers to continue when halted in debug mode.
bool bIgnoreAck

Whether to ignore ACK/NACK.
uint16_t ePinConfig

The pin configuration option chosen from lpi2c_master_pin_config_t.
struct _Ipi2c_master_config hostRequest

Host request options.
uint32_t u32SrcClockHz

Frequency in Hertz of the LPI2C functional clock.
uint32_t u32BaudRateBps

Desired baud rate in Hertz.

uint32_t u32BusldleTimeoutNs
Bus idle timeout in nanoseconds. Set to 0 to disable.
uint32_t u32PinLowTimeoutNs
Pin low timeout in nanoseconds. Set to 0 to disable.
uint32_t u32SdaGlitchFilterWidthNs
Width in nanoseconds of glitch filter on SDA pin. Set to 0 to disable.
uint32_t u32SclGlitchFilterWidthNs
Width in nanoseconds of glitch filter on SCL pin. Set to 0 to disable.
struct _lpi2c_slave_config
#include <fsl_Ipi2c.h> Structure with settings to initialize the LPI2C slave module.

This structure holds configuration settings for the LPI2C slave peripheral. To initialize this
structure to reasonable defaults, call the LPI2C_SlaveGetDefaultConfig() function and pass
a pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members
bool bEnableSlave
Enable slave mode.
bool bFilterDozeEnable
Enable digital glitch filter in doze mode.
bool bFilterEnable
Enable digital glitch filter.

bool bIgnoreAck
Continue transfers after a NACK is detected.

2.43. LPI2C: Low Power Inter-Integrated Circuit Driver 225

MCUXpresso SDK Documentation, Release 25.09.00

bool bEnableGeneralCall
Enable general call address matching.

bool bEnableSmbusAlert
Enable SMBus Alert.
bool bEnableReceived AddressRead
Enable reading the address received address as the first byte of data.
uint16_t eAddressMatchMode
Address matching options chosen from lpi2c_slave_address_match_t.
uint16_t ul6Address0
Slave’s 7-bit address.
uint16_t ul6Addressl
Alternate slave 7-bit address.
uint32_t u32SdaGlitchFilterWidthNs
Width in nanoseconds of the digital filter on the SDA signal.
uint32_t u32SclGlitchFilterWidthNs
Width in nanoseconds of the digital filter on the SCL signal.
uint32_t u32DataValidDelayNs
Width in nanoseconds of the data valid delay.
uint32_t u32ClockHold TimeNs
Width in nanoseconds of the clock hold time.

uint32_t u32SrcClockHz
Frequency in Hertz of the LPI2C functional clock.

struct _lpi2c_ config

#include <fsl_lpi2c.h> Structure with settings to initialize the LPI2C module.

This structure holds configuration settings for the LPI2C peripheral. To initialize this struc-
ture to reasonable defaults, call the LPI2C_GetDefaultConfig function and pass a pointer to
your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members
bool bEnableMaster
< Master configuration. Whether to enable master mode.

bool bEnableDoze
Whether master is enabled in doze mode.

bool bDebugEnable
Enable transfers to continue when halted in debug mode.
bool bMasterIgnoreAck
Whether to ignore ACK/NACK.
uint16_t ePinConfig
The pin configuration option chosen from lpi2c_master_pin_config t.

struct _Ipi2c_config hostRequest
Host request options.

226

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t u32BaudRateBps
Desired baud rate in Hertz.

uint32_t u32BusldleTimeoutNs

Bus idle timeout in nanoseconds. Set to 0 to disable.
uint32_t u32PinLowTimeoutNs

Pin low timeout in nanoseconds. Set to 0 to disable.
uint32_t u32MasterSdaGlitchFilterWidthNs

Width in nanoseconds of glitch filter on SDA pin. Set to 0 to disable.
uint32_t u32MasterSclGlitchFilterWidthNs

Width in nanoseconds of glitch filter on SCL pin. Set to 0 to disable. Slave configuration.
bool bEnableSlave

Enable slave mode.
bool bFilterDozeEnable

Enable digital glitch filter in doze mode.
bool bFilterEnable

Enable digital glitch filter.
bool bSlavelgnoreAck

Continue transfers after a NACK is detected.
bool bEnableGeneralCall

Enable general call address matching.
bool bEnableSmbusAlert

Enable SMBus Alert.
bool bEnableReceived AddressRead

Enable reading the address received address as the first byte of data.
uint16_t eAddressMatchMode

Address matching options chosen from lpi2c_slave_address_match_t.
uint16_t ul6AddressO

Slave’s 7-bit address.
uint16_t ul6Addressl

Alternate slave 7-bit address.
uint32_t u32SlaveSdaGlitchFilterWidthNs

Width in nanoseconds of the digital filter on the SDA signal.
uint32_t u32SlaveSclGlitchFilterWidthNs

Width in nanoseconds of the digital filter on the SCL signal.
uint32_t u32DataValidDelayNs

Width in nanoseconds of the data valid delay.
uint32_t u32ClockHold TimeNs

Width in nanoseconds of the clock hold time.
uint32_t u32SrcClockHz

Frequency in Hertz of the LPI2C functional clock.

struct _lpi2c_ match_ config
#include <fsl_lpi2c.h> LPI2C master data match configuration structure.

2.43. LPI2C: Low Power Inter-Integrated Circuit Driver 227

MCUXpresso SDK Documentation, Release 25.09.00

Public Members
lpi2¢_data_match_config mode_t eMatchMode
Data match configuration setting.
bool bRxDataMatchOnly
When set to true, received data is ignored until a successful match.
uint8_t u8Match0
Match value 0.

uint8_t u8Matchl
Match value 1.

struct _lpi2c_ master transfer

#include <fsl_lpi2c.h> Non-blocking transfer descriptor structure.

This structure is used to pass transaction parameters to the
LPI2C_MasterTransferNonBlocking() API.

Public Members

uint8_t u8ControlFlagMask

Bit mask of options for the transfer. See enumeration
_lpi2c_master_transfer_control_flags for available options. Set to 0 or
KLPI2C_TransferStartStopFlag for normal transfers.

uint16_t u8SlaveAddress

The 7-bit slave address.
Ipi2c_data_direction_t eDirection

Either KLPI2C_Read or KLPI2C_Write.
uint8_t *pu8Command

Pointer to command code.
uint8_t u8CommandSize

Length of sub address to send in bytes.
void *pData

Pointer to data to transfer.
uint16_t ul6DataSize

Number of bytes to transfer.

struct _lpi2c_ master_ transfer handle

#include <fsl_Ipi2c.h> Driver handle for master non-blocking APIs.

Note: The contents of this structure are private and subject to change.

Public Members
LPI2C_Type *base
The peripheral register address base.

uint8_t u8State
Transfer state machine current state.

228

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

uint16_t ul6RemainingBytes
Remaining byte count in current state.
uint8_t *pulBuf
Buffer pointer for current state.
uint16_t ul6CommandBuffer[7]
LPI2C command sequence.
Ipi2¢c_master_transfer_t sTransfer
Copy of the current transfer info.
Ipi2¢c_master_transfer_callback_t pfCompletionCallback
Callback function pointer.
status_t completionStatus
Master transfer complete status indicating how the transfer ends.
void *pUserData
Application data passed to callback.
struct _lpi2c_slave_transfer
#include <fsl_lpi2c.h> LPI2C slave transfer structure.

Public Members

uint8_t uSEventMask

Mask of enabled events, set correspond bit if user wants to handle this event.
Ipi2c_slave_transfer_event_t eEvent

Reason the callback is being invoked 1pi2c_slave_transfer_event_t.
uint16_t ul6Received Address

Matching address send by master.
uint8_t *pu8Data

Transfer buffer
uint16_t ul6DataSize

Transfer size
status_t completionStatus

Success or error code describing how the transfer completed. Only applies for
KkLPI2C_SlaveCompletionEvent.

uint16_t ul6TransferredCount
Number of bytes actually transferred since start or last repeated start.

struct _lpi2c_slave_transfer_handle
#include <fsl_lpi2c.h> LPI2C slave handle structure.

Note: The contents of this structure are private and subject to change.

Public Members

LPI2C_Type *base
The peripheral register address base.

2.43. LPI2C: Low Power Inter-Integrated Circuit Driver 229

MCUXpresso SDK Documentation, Release 25.09.00

lpi2c_slave_transfer_t sTransfer

LPI2C slave transfer copy.
bool blsBusy

Whether transfer is busy.
bool bWasTransmit

Whether the last transfer was a transmit.
uint8_t u8State

A transfer state maintained during transfer.
uint16_t ul6TransferredCount

Count of bytes transferred.
Ipi2c_slave_transfer_callback_t pfCallback

Callback function called at transfer event.

void *pUserData
Callback parameter passed to callback.

struct hostRequest

Public Members

bool bEnable
Whether to enable host request.
uint16_t eSource
Host request source chosen from Ipi2c_host_request_source_t.

uint16_t ePolarity
Host request pin polarity chosen from lpi2c_host_request_polarity_t.

struct sSclStall

Public Members

bool bEnableAck
Enables SCL clock stretching during slave-transmit address byte(s) and slave-receiver
address and data byte(s) to allow software to write the Transmit ACK Register before
the ACK or NACK is transmitted. Clock stretching occurs when transmitting the 9th
bit. When enableAckSCLStall is enabled, there is no need to set either enableRxDataS-
CLStall or enableAddressSCLStall.

bool bEnableTx
Enables SCL clock stretching when the transmit data flag is set during a slave-transmit
transfer.

bool bEnableRx
Enables SCL clock stretching when receive data flag is set during a slave-receive trans-
fer.

bool bEnableAddress
Enables SCL clock stretching when the address valid flag is asserted.

struct hostRequest

230 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

bool bEnable
Whether to enable host request.

uint16_t eSource
Host request source chosen from lpi2c_host_request_source_t.

uint16_t ePolarity
Host request pin polarity chosen from lpi2c_host_request_polarity_t.

struct sSclStall

Public Members

bool bEnableAck
Enables SCL clock stretching during slave-transmit address byte(s) and slave-receiver
address and data byte(s) to allow software to write the Transmit ACK Register before
the ACK or NACK is transmitted. Clock stretching occurs when transmitting the 9th
bit. When enableAckSCLStall is enabled, there is no need to set either enableRxDatasS-
CLStall or enableAddressSCLStall.

bool bEnableTx
Enables SCL clock stretching when the transmit data flag is set during a slave-transmit
transfer.

bool bEnableRx
Enables SCL clock stretching when receive data flag is set during a slave-receive trans-
fer.

bool bEnableAddress
Enables SCL clock stretching when the address valid flag is asserted.

2.44 The Driver Change Log

2.45 LPI2C_EDMA: EDMA based LPI2C Driver

void LPI2C_ MasterCreatetEDMAHandle(LPI2C_Type *base, lpi2c_master_edma_transfer_handle_t
*psHandle, Ipi2c_master_edma_transfer_callback_t
pfcallback, void *pUserData, DMA_Type *edmaBase,
edma_channel_t eEdmaTxChannel, edma_channel t
eEdmaRxChannel)

Create a new handle for the LPI2C master DMA APIs.

The creation of a handle is for use with the DMA APIs. Once a handle is created, there
is not a corresponding destroy handle. If the user wants to terminate a transfer, the
LPI2C_MasterTransferAbortEDMA() API shall be called.

For devices where the LPI2C send and receive DMA requests are OR’d together, the txDma-
Handle parameter is ignored and may be set to NULL.

Parameters
* base — The LPI2C peripheral base address.
e psHandle — Pointer to the LPI2C master driver handle.

* pfcallback — User provided pointer to the asynchronous callback function.

2.44. The Driver Change Log 231

MCUXpresso SDK Documentation, Release 25.09.00

» pUserData — User provided pointer to the application callback data.
* edmaBase — Edma base address.

* eEdmaTxChannel — eDMA channel for master transfer Tx request.

* eEdmaRxChannel — eDMA channel for master transfer Rx request.

status_t LP12C_ MasterTransferEDMA (lpi2c_master_edma_transfer_handle_t *psHandle,
Ipi2¢_master_transfer_t *psTransfer)

Performs a non-blocking DMA-based transaction on the I2C bus.

The callback specified when the handle was created is invoked when the transaction has
completed.

Parameters
* psHandle — Pointer to the LPI2C master driver handle.
* psTransfer — The pointer to the transfer descriptor.
Return values
* kStatus_ Success — The transaction was started successfully.

* kStatus_ LPI2C_ Busy — Either another master is currently utilizing the bus,
or another DMA transaction is already in progress.

status_t LP12C_MasterTransferGetCountEDMA (Ipi2c_master_edma_transfer_handle_t *psHandle,
uint16_t *pul6Count)

Returns number of bytes transferred so far.
Parameters
* psHandle — Pointer to the LPI2C master driver handle.

* pul6Count - Number of bytes transferred so far by the non-blocking trans-
action.

Return values
* kStatus Success —

* kStatus_ NoTransferInProgress — There is not a DMA transaction currently in
progress.

status_t LP12C_ MasterTransferAbortEDMA (Ipi2c_master_edma_transfer_handle_t *psHandle)
Terminates a non-blocking LPI2C master transmission early.

Note: Itisnot safe to call this function from an IRQ handler that has a higher priority than
the eDMA peripheral’s IRQ priority.

Parameters

* psHandle — Pointer to the LPI2C master driver handle.
Return values

* kStatus_ Success — A transaction was successfully aborted.

* kStatus_ LPI2C_1Idle — There is not a DMA transaction currently in
progress.

FSL LPI2C_ _EDMA DRIVER_VERSION
LPI2C EDMA driver version.

typedef struct _Ipi2c_master_edma_transfer_handle 1pi2c_ master edma_ transfer handle_t

232 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

typedef void (*1pi2c_ master__edma_ transfer_ callback_t)(Ipi2c_master_edma_transfer_handle_t
*psHandle)

Master DMA completion callback function pointer type.

This callback is used only for the non-blocking master transfer API. Specify the callback you
wish to use in the call to LPI2C_MasterCreateEDMAHandle().

Param psHandle
Handle associated with the completed transfer.

struct _lpi2c_master edma_ transfer handle
#include <fsl_lpi2¢c_edma.h> Driver handle for master DMA APIs.

Note: The contents of this structure are private and subject to change. This struct address
should be sizeof(edma_channel_tcd_t) aligned.

Public Members
edma_channel_tcd_t sRxTecd[1]
TCD for RX EDMA transfer.

edma_channel tcd_t sTxTed[3]
TCD for TX EDMA transfer.

LPI2C_Type *base
LPI2C base pointer.

bool bIsBusy
Transfer state machine current state.

uint8_t u8Nbytes
eDMA minor byte transfer count initially configured.

uint16_t ul6CommandBuffer[7]
LPI2C command sequence.

Ipi2¢c_master_transfer._t sTransfer
Copy of the current transfer info.

Ipi2¢c_master_edma_transfer_callback_t pfCallback
Callback function pointer.

status_t completionStatus
Either kStatus_Success or an error code describing how the transfer completed.

void *pUserData
Application data passed to callback.

edma_handle_t sRxDmaHandle
Handle for receive DMA channel.

edma_handle_t sTxDmaHandle
Handle for transmit DMA channel.

2.46 LPI2C Peripheral and Driver Overview

2.47 MCM: Miscellaneous Control Module Driver

2.46. LPI2C Peripheral and Driver Overview 233

MCUXpresso SDK Documentation, Release 25.09.00

static inline mem_datapath_width_t MCM__GetDataPathWidth(MCM_Type *base)
Indicates if the datapath is 32 or 64 hits wide.

Parameters
* base — MCM base address.

Returns
The device’s datapath width, please refer to mcm_datapath_width_t.

static inline uint16_t MCM__GetCrossbarSwitchSlaveConfig(MCM_Type *base)

Gets crossbar switch (AXBS) slave configuration that indicates the presence/absence of bus
slave connections to the device’s crossbar switch.

Parameters
* base — MCM base address.

Returns
Crosshar switch (AXBS) slave configuration, each bit in the return value indi-
cates if there is a corresponding connection to the AXBS slave input port. For
example if the result is 0x1, it means a bus slave connection to AXBS input
port 0 is present.

static inline uint16_t MCM_ GetCrossbarSwitchMasterConfig(MCM_Type *base)

Gets crossbar switch (AXBS) master configuration that indicates the presence/absence of
bus master connections to the device’s crosshar switch.

Parameters
* base — MCM base address.

Returns
Crossbar switch (AXBS) master configuration, each bit in the return value in-
dicates if there is a corresponding connection to the AXBS master input port.
For example if the result is 0x1, it means a bus master connection to AXBS
input port 0 is present.

static inline void MCM__ClearFlashControllerCache(MCM_Type *base)
Clears Flash Controller Cache, 1 cycle active.

Parameters
* base — MCM base address.

static inline void MCM _ DisableFlashControllerDataCaching(MCM_Type *base, bool bDisable)
Disables/Enables flash controller data caching.

Parameters
* base — MCM peripheral base address.
* bDisable — Used to enable/disable flash controller data caching.
- true Disable flash controller data caching.
- false Enable flash controller data caching.

static inline void MCM__DisableFlashControllerInstructionCaching(MCM_Type *base, bool
bDisable)

Disables/Enables flash controller instruction caching.
Parameters
* base —- MCM peripheral base address.
* bDisable — Used to enable/disable flash contoller instruction caching.

— true Disable flash controller instruction caching.

234 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

— false Enable flash controller instruction caching.

static inline void MCM__DisableFlashControllerCache(MCM_Type *base, bool bDisable)
Disables/Enables flash controller cache.

Parameters
* base —- MCM peripheral base address.
* bDisable — Used to enable/disable flash controller cache.
- true Disable flash controller cache.
- false Enable flash controller cache.

static inline void MCM __DisableFlashControllerDataSpeculation(MCM_Type *base, bool bDisable)
Disables/Enables flash controller data speculation.

Parameters
* base —- MCM peripheral base address.
* bDisable — Used to enable/disable flash controller data speculation.
— true Disable flash controller data speculation.
— false Enable flash controller data speculation.

static inline void MCM__ DisableFlashControllerSpeculation(MCM_Type *base, bool bDisable)
Disables/Enables flash controller speculation.

Parameters
* base — MCM peripheral base address.
* bDisable — Used to enable/disable flash controller speculation.
— true Disable flash controller speculation.
- false Enable flash controller speculation.

static inline void MCM__DisableDSP56800EX Corelnstructions(MCM_Type *base, bool bDisable)

Disables/Enables the instruction support only by DSP56800EX core, the instructions sup-
ported only by the DSP56800EX core are the BPSC and 32-bit multiply and MAC instructions.

Parameters
* base —- MCM peripheral base address.
* bDisable — Used to enable/disable 32-bit multiply and MAC instructions.
— true BFSC and 32-bit multiply and MAC instructions disabled.
— false BFSC and 32-bit multiply and MAC instructions enabled.

static inline void MCM__DisableCoreReverseCarry(MCM_Type *base, bool bDisable)
Disables/Enables core reverse carry.

Parameters
* base —- MCM peripheral base address.
* bDisable — Used to enable/disable reverse carry.
— true Disable bit-reverse addressing mode.
— false Enable bit-reverse addressing mode.

static inline void MCM_ DisableDSP56800EXNewShadowRegion(MCM_Type *base, bool bDisable)
Disables/Enables the additional AGU shadow registers on the DSP56800EX core.

Parameters

2.47. MCM: Miscellaneous Control Module Driver 235

MCUXpresso SDK Documentation, Release 25.09.00

* base - MCM peripheral base address.

* bDisable — Used to disable/enable the additional AGU shadow register on
the DPS core.

— true Only the AGU shadow registers supported by the DSP56800E core
are enabled.

- false The additional AGU shadow registers on the DSP56800EX core are
also enabled.

static inline void MCM _DisableCorelnstructionBuffer(MCM_Type *base, bool bDisable)
Disables/Enables core instruction buffer.

Parameters
* base —- MCM peripheral base address.
* bDisable — Used to disable/enable core longword instruction buffer.
— true Disable core longword instruction buffer.
— false Enable core longword instruction buffer.

static inline void MCM _ DisableFlashMemoryControllerStallMCM_Type *base, bool bDisable)

Disables/Enables the flash memory controller’s ability to allow flash memory access to ini-
tiate when a flash memory command is executing.

Parameters
* base —- MCM peripheral base address.
* bDisable — Used to disable/enable stall logic.

- true Stalllogicis disabled. While a flash memory command is executing,
an attempted flash memory access causes a bus error.

— false Stall logic is disabled. While a flash memory command is execut-
ing, a flash memory access can occur without causing a bus error. The
flash memory command completes execution, and then the flash mem-
Ory access occurs.

static inline void MCM__Set AxbsDM A ControllerPriority(MCM_Type *base,
mcm_axbs_dma_core_priority_t
ePriority)

Sets the priority of the DMA controller in the AXBS crossbar switch arbitration scheme.
Parameters
* base — MCM base address.

* ePriority — The selected DMA controller priority in Crossbar switch arbitra-
tion scheme, please refer to mcm_axbs_dma_core_priority_t.

static inline uint32_t MCM_ GetCoreFaultAddr(MCM_Type *base)
Gets the address of the last core access terminated with an error response.

Parameters
* base — MCM base address.

Returns
address of the last core access terminated with an error response.

void MCM__GetCoreFaultAttribute(MCM_Type *base, mcm_core_fault_attribute_t *psAttribute)
Gets the processor’s attributes of the last faulted core access to the system bus.

Parameters

* base — MCM peripheral base address.

236 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

* psAttribute — The pointer of structure mcm_core_fault_attribute_t.

static inline mcm_last_fault_access_location_t MCM_ GetCoreFaultLocation(MCM_Type *base)
Gets the location of the last captured fault.

Parameters
* base —- MCM peripheral base address.

Returns
The location of the last captured fault, please refer to
mcm_last_fault_access_location_t.

static inline uint32_t MCM__ GetCoreFaultData(MCM_Type *base)

Gets the data associated with the last faulted processor write data access from the device’s
internal bus.

Parameters
* base — MCM base address.

Returns
The data associated with the last faulted processor write data access.

static inline void MCM__EnableCoreFaultInterrupt(MCM_Type *base, bool bEnable)
Enables/Disables core fault error interrupt.

Parameters
* base - MCM peripheral base address.
* bEnable — Used to enable/disable the core fault error interrupt.

— true Enables core fault error interrupt, so an error interrupt will be gen-
erated to the interrupt controller on a faulted system bus cycle.

- false Disables core fault error interrupt, so an error interrupt will not
be generated to the interrupt controller on a faulted system bus cycle.

static inline uint8_t MCM__GetCoreFaultStatusFlags(MCM_Type *base)

Gets the core fault error status flags, including core fault error interrupt flag and core fault
error data lost flag.

Parameters
* base —- MCM peripheral base address.

Returns
The current status flags, should be the OR’ed value of _mcm_status_flags.

static inline void MCM__ClearCoreFaultStatusFlags(MCM_Type *base, uint8_t u8StatusFlags)

Clears the core fault error status flags, including core fault error interrupt flag and core
fault error data lost flag.

Parameters
* base — MCM peripheral base address.

» u8StatusFlags — The status flags to be cleared, should be the OR’ed value of
_mcm_status_flags.

static inline void MCM__EnableResourceProtection(MCM_Type *base, bool bEnable)
Enables/Disables resource protection.

Parameters
* base — MCM peripheral base address.

* bEnable — Used to enable/disable memory resource protection.

2.47. MCM: Miscellaneous Control Module Driver 237

MCUXpresso SDK Documentation, Release 25.09.00

- true Enable memory resource protection.
— false Disable memory resource protection.

static inline void MCM__LockResourceProtectionRegisters(MCM_Type *base)

Locks the value of the resource protection related registers, after locked the registers’ value
can not be changed until a system reset.

Parameters
* base — MCM peripheral base address.

status_t MCM__SetResourceProtectionConfig(MCM_Type *base, const
mcm_resource_protection_config_t *psConfig)

Sets the configuration of resource protection, including flash base address, ram base ad-
dress, etc.

Parameters
* base —- MCM peripheral base address.
* psConfig — The pointer of structure mcm_resource_protection_config_t.
Return values
* kStatus_ Success — Succeed to setting resource protection related options.
* kStatus_ Fail — Fail to set resource protection related options.

static inline uint32_t MCM__GetResourceProtectionlllegalFaultPC(MCM_Type *base)
Gets the 21-bit illegal faulting PC that only for a resource protection fault.

Parameters
* base —- MCM peripheral base address.

Returns
The resource protection illegal faulting PC.

static inline bool MCM __IsResourceProtectionIllegalFault Valid(MCM_Type *base)
Indicates whether an resource protection illegal PC fault has occurred.

Parameters
* base —- MCM peripheral base address.
Return values
* true — The resource protection illegal PC fault has occurred.
* false — The resource protection illegal PC fault has not occurred.

static inline void MCM __ClearResourceProtectionlllegalFaultValid(MCM_Type *base)
Clears the resource protection illegal fault bit.

Parameters
* base —- MCM peripheral base address.

static inline uint32_t MCM__GetResourceProtectionMisalignedFaultPC(MCM_Type *base)
Gets the 21-bit misaligned faulting PC that only for a resource protection fault.

Parameters
* base — MCM peripheral base address.

Returns
The resource protection misaligned faulting PC.

238 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

static inline bool MCM__IsResourceProtectionMisalignedFault Valid(MCM_Type *base)
Indicates whether an resource protection misaligned PC fault has occurred.

Parameters
* base — MCM peripheral base address.
Return values
* true — The resource protection misaligned PC fault has occurred.
* false — The resource protection misaligned PC fault has not occurred.
static inline void MCM __ ClearResourceProtectionMisalignedFault Valid(MCM_Type *base)
Clears the resource protection misaligned fault bit.
Parameters
* base —- MCM peripheral base address.
FSL_MCM_DRIVER_ VERSION
MCM driver version.

enum _mcm_ status_flags

The enumeration of status flags, including core fault error interrupt flag and core fault
error data lost flag.

Values:

enumerator kMCM__CoreFaultErrorInterruptFlag
A bus error has occurred.
enumerator kMCM__CoreFaultErrorDataLostFlag
A bus error has occurred before the previous error condition was cleared.
enum _mcm_ datapath_width
The enumeration of datapath width, including 32 bits and 64 bits.
Values:
enumerator kMCM_ Datapath32b
Datapath width is 32 bits.
enumerator kMCM_ Datapath64b
Datapath width is 64 bits.
enum _mcm_ axbs dma_ core_ priority
The enumeration of DMA controller priority in the Crossbar switch arbitration scheme.
Values:

enumerator kMCM__AxbsPriorityCoreHigherThanDMA

Fixed-priority arbitration is selected: DSC core has a higher priority than the DMA
Controller’s priority.

enumerator kMCM__AxbsPriorityCoreDMARoundRobin

Round-robin priority arbitration is selected: DMA Controller and DSC core have equal
priority.

enum mcm_last fault access dir
The enumeration of last faulted core access direction.
Values:

enumerator kMCM _CoreRead
Core read access.

2.47. MCM: Miscellaneous Control Module Driver 239

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kMCM_ CoreWrite
Core write access.

enum mcm last fault access size
The enumeration of last faulted core access size.

Values:

enumerator kMCM __ Access8b
Last faulted core access size is 8-bit.

enumerator kMCM_ Access16b
Last faulted core access size is 16-bit.

enumerator kMCM_ Access32b
Last faulted core access size is 32-bit.

enum _mcm_ last_ fault_ access_ type
The enumeration of last faulted core access type.
Values:

enumerator kMCM__ AccessInstruction
Last faulted core access is instruction.

enumerator kMCM__ AccessData
Last faulted core access is data.

enum mcm_last fault access location
The enumeration of last captured fault Location.

Values:

enumerator kMCM _ErrOnlnstructionBus
Error occurred on MO (instruction bus).

enumerator kMCM_ ErrOnOperand ABus
Error occurred on M1 (operand A bus).

enumerator kMCM_ ErrOnOperandBBus
Error occurred on M2 (operand B bus).
typedef enum _mcm_datapath_width mcm_ datapath_ width_t
The enumeration of datapath width, including 32 bits and 64 bits.
typedef enum _mcm_axbs_dma_core_priority mcm_axbs_dma_ core_ priority_t
The enumeration of DMA controller priority in the Crossbar switch arbitration scheme.
typedef enum _mcm _last_fault_access__dir mcm_ last_ fault__access_ dir_t
The enumeration of last faulted core access direction.
typedef enum _mcm_last_fault_access_size mcm_ last_ fault_access_size t
The enumeration of last faulted core access size.
typedef enum _mcm_last_fault_access_type mcm_ last_fault_access_type_t
The enumeration of last faulted core access type.
typedef enum _mcm_last_fault_access_location mem_ last_ fault_access location_ t
The enumeration of last captured fault Location.

typedef struct _mcm_core_fault_attribute mcm_ core_ fault_ attribute_t
The structure of core fault attributes, contains access type, access size, access direction, etc.

240 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _mcm_resource_protection_config mcm__resource_ protection__config_t

The structure of the resource protection config, the set value can be used only when the
resource protection is enabled, and this value can be changed only when the resource pro-
tection is disabled.

struct _mecm_ core_fault attribute

#include <fsl_mcm.h> The structure of core fault attributes, contains access type, access size,
access direction, etc.

Public Members
mcm_last_fault_access_type_t eType
Indicates the last faulted core access type, please refer to mcm_last_fault_access_type_t.

uint8_t bitReservedl
Reserved 1 bit.

bool bBufferable
Indicates if last faulted core access was bufferable.

 true Last faulted core access is bufferable.
 false Last faulted core access is non-bufferable.

uint8_t bitReserved?2

Reserved 1 bit.
mcm_last_fault_access_size_t eSize

Indicates last faulted core access size.
mcem_last_fault_access_dir_t eDirection

Indicates the last faulted core access direction.

struct _mcm_ resource_ protection_ config

#include <fsl_mcm.h> The structure of the resource protection config, the set value can be
used only when the resource protection is enabled, and this value can be changed only
when the resource protection is disabled.

Public Members
bool bEnableResourceProtection
Enable/Disable resource protection.
* true Enable Resource protection.
» false Disable Resource protection.

uint8_t u8FlashBaseAddress

Flash base address for user region, supports 4 KB granularity.
uint8_t uSRamBaseAddress

Program RAM base address for user region, support 256 byte granularity.
uint32_t u32BootRomBaseAddress

Boot ROM base address for user region

uint32_t u32ResourceProtectionOtherSP
Resource protection other stack pointer.

2.47. MCM: Miscellaneous Control Module Driver 241

MCUXpresso SDK Documentation, Release 25.09.00

2.48 The Driver Change Log
2.49 MCM Peripheral and Driver Overview

2.50 OPAMP: Operational Amplifier Driver

void OPAMP_ Init(OPAMP_Type *base, const opamp_config_t *psConfig)
Initializes the OPAMP module.

This function does initialization when using OPAMP module. The operations are:
* Enable the clock for OPAMP.
* Enable the write protection.
* Enable the load completion interrupt.
* Set configuration register for OPAMP.
* Set Positive channel and Negative channel.
* Set the power mode.
* Set the gain value.
* Set the load mode.
* Enable the OPAMP.

Parameters
* base — OPAMP peripheral base address.
» psConfig — Pointer to configuration structure.See opamp_config_t.

void OPAMP_ GetDefaultConfig(opamp_config_t *psConfig)
Gets default configuration for OPAMP.

The default value:

psConfig->bEnableLoad CompletionInterrupt = false;
psConfig->bEnableWriteProtection = false;
psConfig->eLoadMode = kOPAMP__LoadModeDelayLoad;
psConfig->ePowerMode = kOPAMP__PowerModeLowPower;
psConfig->eConfigRegSel = kOPAMP_ ConfigRegSel CFGO;

psConfig->sConfigSet0.eWorkMode = kOPAMP_ WorkModeBufferMode;
psConfig->sConfigSet0.eNegChannel = kOPAMP_ NegChannel0;
psConfig->sConfigSet0.ePosChannel = kOPAMP__PosChannel0;

psConfig->sConfigSet1.eWorkMode = kOPAMP_ WorkModeBufferMode;
psConfig->sConfigSet1.eNegChannel = kOPAMP_ NegChannel0;
psConfig->sConfigSet1.ePosChannel = kOPAMP_ PosChannel0;

psConfig->sConfigSet2.eWorkMode = kOPAMP__ WorkModeBufferMode;
psConfig->sConfigSet2.eNegChannel = kOPAMP_ NegChannel0;
psConfig->sConfigSet2.ePosChannel = kOPAMP_ PosChannel0;

psConfig->sConfigSet3.eWorkMode = kOPAMP__ WorkModeBufferMode;

psConfig->sConfigSet3.eNegChannel = kOPAMP_NegChannel0;
psConfig->sConfigSet3.ePosChannel = kOPAMP__PosChannel0;

Parameters

242 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

* psConfig — Pointer to configuration structure.
void OPAMP_ Deinit(OPAMP_Type *base)
De-initializes the OPAMP module.
This function does de-initialization when using OPAMP module. The operations are:
 Disable the OPAMP.
* Disable the clock for OPAMP.

Parameters
* base — OPAMP peripheral base address.

void OPAMP_ SetOneConfigSet(OPAMP_Type *base, opamp_config set_index_t eIndex, const
opamp_config_set_t *psConfigSet)

Sets configuration set.

This function only sets the configuration set, application should call
OPAMP_EnableConfigload to enable the load after setting all desired configuration
sets.

Parameters
* base — OPAMP peripheral base address.

* eIndex — Index of configuration set,please see opamp_config set_index_t
for details.

» psConfigSet — Pointer to the configure structure,please see
opamp_config_set_t for details.

void OPAMP_ SetConfigSelection(OPAMP_Type *base, opamp_config reg sel t eConfigRegSel)
Changes configuration register selection.

This function can configure the working registers of the software and external signal. When
the configuration set is updated using OPAMP_SetOneConfigSet and the external signal is
not used, the software working register should also select the corresponding software work-
ing register according to the update of the configuration set.

Parameters
* base — OPAMP peripheral base address.

* eConfigRegSel — configuration register selection, please see
opamp_config_reg_sel t for details.

static inline void OPAMP_ EnableOPAMP(OPAMP_Type *base, bool bEnable)
Enables the OPAMP.

Note: Please use function OPAMP_EnableOPAMP to re-enable the OPAMP if it is disabled.
Then load it with function OPAMP_EnableConfigLoad.

Parameters
* base — OPAMP peripheral base address.
* bEnable — Enables/disables the module.

static inline void OPAMP__EnableConfigLoad(OPAMP_Type *base)
Enables the new configuration load.

After configuration load enabled, the new set configuration will be loaded at the
time determined by load mode. Application could monitor the load completion by

2.50. OPAMP: Operational Amplifier Driver 243

MCUXpresso SDK Documentation, Release 25.09.00

OPAMP_CheckLoadCompletionFlag or the interrupt. When the load finishes, the config-
uration load shall be disabled automatically.

Parameters
* base — OPAMP peripheral base address.

static inline void OPAMP_ DisableWriteProtection(OPAMP_Type *base)
Disables write protection.

Write 10b to this field to disable the write protection.
Parameters
* base — OPAMP peripheral base address.

static inline void OPAMP_ SetPowerMode(OPAMP_Type *base, opamp_power_mode_t
ePowerMode)

Changes the power mode.
Parameters
* base — OPAMP peripheral base address.
* ePowerMode — Power mode, please see opamp_power_mode_t for details.

static inline void OPAMP_ SetLoadMode(OPAMP_Type *base, opamp_load_mode_t eLoadMode)
Changes the load mode.

Parameters
* base — OPAMP peripheral base address.
* eLoadMode —load mode, please see opamp_load_mode_t for details.

static inline void OPAMP__EnableLoadCompletionInterrupt(OPAMP_Type *base)
Enables load completion interrupt.

Parameters
* base — OPAMP peripheral base address.

static inline void OPAMP_ DisableLoadCompletionInterrupt(OPAMP_Type *base)
Disables load completion interrupt.

Parameters
* base — OPAMP peripheral base address.

static inline bool OPAMP__ CheckLoadCompletionFlag(OPAMP_Type *base)
Checks the configuration load completion flag status.

Parameters
* base — OPAMP peripheral base address.

Returns
Return true if the flag is set, otherwise return false.

static inline void OPAMP __ ClearLoadCompletionFlag(OPAMP_Type *base)
Clears the configuration load completion flag.

Parameters
* base — OPAMP peripheral base address.

FSL OPAMP_DRIVER_VERSION
OPAMP driver version.

244 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enum _opamp_ config_reg sel

The enumeration lists all options for software controlled opamps and other external signal
controlled opamps.

Values:
enumerator kOPAMP_ ConfigRegSel CFGO

Software work register select CFGO (internal signal).
enumerator kOPAMP__ ConfigRegSelCFG1

Software work register select CFG1 (internal signal).
enumerator kOPAMP__ ConfigRegSelCFG2

Software work register select CFG2 (internal signal).
enumerator kOPAMP__ ConfigRegSelCFG3

Software work register select CFG3 (internal signal).
enumerator kOPAMP__ ConfigRegSelA10rA0Q

External signal cfg_sel_al or cfg_sel_a0 selects configuartion register.
enumerator kOPAMP__ ConfigRegSelA10rB0

External signal cfg_sel_al or cfg_sel b0 selects configuartion register.
enumerator kOPAMP__ ConfigRegSelA10rCO0

External signal cfg_sel_al or cfg_sel_c0 selects configuartion register.
enumerator kOPAMP__configRegSelB10rA0

External signal cfg_sel_b1 or cfg_sel_a0 selects configuartion register.
enumerator kOPAMP_ configRegSelB10rB0

External signal cfg_sel_b1 or cfg_sel_bO0 selects configuartion register.
enumerator kOPAMP__configRegSelB10rC0

External signal cfg_sel_b1 or cfg_sel_c0 selects configuartion register.
enumerator kOPAMP_ ConfigRegSelC10rA0

External signal cfg_sel_c1 or cfg_sel_a0 selects configuartion register.
enumerator kOPAMP_ ConfigRegSelC10rB0

External signal cfg_sel_c1 or cfg_sel_bO0 selects configuartion register.
enumerator kOPAMP__ ConfigRegSelC10rC0

External signal cfg_sel_c1 or cfg_sel_c0 selects configuartion register.

enum _ opamp_load_mode
The enumeration lists the opamp buffer’s loading modes, delay loading and immediately
loading modes.
Values:

enumerator kOPAMP_ LoadModeDelayLoad

The buffer registers are loaded when the next configuration is complete, if
CTRL[LDOK] is set.

enumerator kOPAMP__ LoadModelmmediatelyLoad
The buffer register shall be loaded immediately after CTRL[LDOK] is set.

enum 7opamp7power7mode

The enumeration lists the power modes of the opamp, including low power and high power
modes.

Values:

2.50. OPAMP: Operational Amplifier Driver 245

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kOPAMP PowerModeLowPower

Lower current consumption with slower slew rate and narrower unity gain bandwidth
performance.

enumerator kOPAMP__ PowerModeHighSpeed

Higher current consumption with higher slew rate and wider unity gain bandwidth
performance.

enum _ opamp_ positive_channel
The enumeration of positive input channel selection.
Values:
enumerator kOPAMP_PosChannel0
Positive channel 0.
enumerator kOPAMP_PosChannell
Positive channel 1.
enumerator kOPAMP_PosChannel2
Positive channel 2.
enumerator kOPAMP__ PosChannel3
Positive channel 3.
enum _ opamp_ negative_channel
The enumeration of negative input channel selection.
Values:
enumerator kOPAMP_ NegChannelO
Negative channel 0.
enumerator kOPAMP_ NegChannell
Negative channel 1.
enumerator kOPAMP_ NegChannel2
Negative channel 2.
enumerator kOPAMP__ NegChannel3
Negative channel 3.
enum _opamp_ config_set_ index
The enumeration of configuration set index.
Values:
enumerator kOPAMP__ConfigSet0
Configuration set 0.
enumerator kOPAMP_ ConfigSet1
Configuration set 1.
enumerator kOPAMP_ ConfigSet2
Configuration set 2.
enumerator kOPAMP_ ConfigSet3
Configuration set 3.

enum _ opamp_ work mode

The enumeration lists the operating modes of the opamp, including buffer mode, internal
gain and external gain mode.

Values:

246 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kOPAMP_ WorkModeBufferMode
Buffer mode.
enumerator kOPAMP WorkModelnternalGain2X
Internal gain 2X mode.
enumerator kOPAMP WorkModelnternalGain4X
Internal gain 4X mode.
enumerator kOPAMP_ WorkModelnternalGain8X
Internal gain 8X mode.
enumerator kOPAMP_ WorkModelnternalGain16X
Internal gain 16X mode.
enumerator kOPAMP__WorkModeExternalGain
External gain mode.
typedef enum _opamp_config reg sel opamp_ config_reg sel t
The enumeration lists all options for software controlled opamps and other external signal
controlled opamps.
typedef enum _opamp_load_mode opamp_ load_mode_ t
The enumeration lists the opamp buffer’s loading modes, delay loading and immediately
loading modes.
typedef enum _opamp_power_mode opamp_ power__mode__t
The enumeration lists the power modes of the opamp, including low power and high power
modes.
typedef enum _opamp_positive_channel opamp_ positive_ channel t
The enumeration of positive input channel selection.

typedef enum _opamp_negative_channel opamp_ negative channel t
The enumeration of negative input channel selection.

typedef enum _opamp_config_set_index opamp_ config_set_index_t
The enumeration of configuration set index.

typedef enum _opamp_work_mode opamp_ work_mode_t

The enumeration lists the operating modes of the opamp, including buffer mode, internal
gain and external gain mode.

typedef struct _opamp_config set opamp_ config_set_t
Configuration set information.

typedef struct _opamp_config opamp_ config_t
Configuration structure.

struct _opamp_ config_set
#include <fsl_opamp.h> Configuration set information.

Public Members
opamp_work_mode_t eWorkMode
Opamp work mode.

opamp_negative_channel_t eNegChannel
Negative channel selection.

2.50. OPAMP: Operational Amplifier Driver 247

MCUXpresso SDK Documentation, Release 25.09.00

opamp_positive_channel_t ePosChannel
Positive channel selection.

struct _opamp_ config
#include <fsl_opamp.h> Configuration structure.

Public Members
bool bEnableLoadCompletionInterrupt
Enable load completion interrupt

bool bEnableWriteProtection
Enable write protection.

opamp_load_mode_t eLoadMode
Configuration load mode.

opamp_power_mode_t ePowerMode
Configuration Power mode.

opamp_config_reg_sel t eConfigRegSel
Selects configuration register.

opamp_config_set_t sConfigSet0
Configuration register set 0.

opamp_config_set_t sConfigSet1
Configuration register set 1.

opamp_config_set_t sConfigSet2
Configuration register set 2.

opamp_config_set_t sConfigSet3
Configuration register set 3.

2.51 The Driver Change Log
2.52 OPAMP Peripheral and Driver Overview

2.53 PIT: Periodic Interrupt Timer (PIT) Driver

void PIT_ Init(PIT_Type *base, const pit_config t *psConfig)
Ungates the PIT clock, configures the PIT features. The configurations are:

* Clock source selection for PIT module

* Prescaler configuration to the input clock source
* PIT period interval

* PIT slave mode enable/disable

* Interrupt enable/disable

* PIT timer enable/disable

* Preset Polarity positive edge/negative edge

248 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

Note: This API should be called at the beginning of the application using the PIT driver
and call PIT_StartTimer() API to start PIT timer.

Parameters
* base — PIT peripheral base address
* psConfig — Pointer to the user’s PIT config structure

void PIT_ Deinit(PIT_Type *base)
Gates the PIT clock and disables the PIT module.

Parameters
* base — PIT peripheral base address

void PIT_ GetDefaultConfig(pit_config_t *psConfig)
Fill in the PIT config structure with the default settings.

This function initializes the PIT configuration structure to default values.

psConfig->eClockSource = kPIT__CountClockSource0;
psConfig->bEnableTimer = false;

psConfig->bEnableSlaveMode = false;

psConfig->ePrescaler = kPIT _PrescalerDivBy1;
psConfig->bEnablelnterrupt = false;
psConfig->u32PeriodCount = OxFFFFFFFEFU;
psConfig->bEnableNegativeEdge = false;
psConfig->sPresetFilter.ul6FilterSamplePeriod = 0x0U;
psConfig->sPresetFilter.ul6FilterSampleCount = 0x0U;
psConfig->sPresetFilter.bFilterClock = true;
psConfig->sPresetFilter.eFilterPrescalerPeripheral = kPIT_ PrescalerDivBy1;
psConfig->sSyncSource.u8StretchCount = 0x0U;
psConfig->sSyncSource.eSyncOutSel = kPIT _Syncout_ Default;

Parameters
* psConfig — Pointer to user’s PIT config structure.

static inline void PIT_EnableSlaveMode(PIT_Type *base, bool bEnable)
Enable/Disable PIT slave mode.

Parameters
* base — PIT peripheral base address
* bEnable — enable/disable slave mode

static inline void PIT SetTimerPrescaler(PIT_Type *base, pit_prescaler_value_t ePrescaler)
Sets the PIT clock prescaler.

Parameters
* base — PIT peripheral base address
* ePrescaler — Timer prescaler value

static inline void PIT _SetTimerPeriod(PIT_Type *base, uint32_t u32PeriodCount)
Sets the timer period in units of count.

Timers begin counting from 0 until it reaches the value set by this function, then it generates
an interrupt and counter resumes counting from 0 again.

Note: Users can call the utility macros provided in fsl_common.h to convert to ticks.

2.53. PIT: Periodic Interrupt Timer (PIT) Driver 249

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* base — PIT peripheral base address

* u32PeriodCount — Timer period in units of ticks, use macro definition
MSEC_TO_COUNT to convert value in ms to count of ticks, the PIT clock
rate is source clock divide prescaler.

static inline uint32_t PIT_ GetCurrentTimerCount(PIT_Type *base)
Reads the current timer counting value.

This function returns the real-time timer counting value, in a range from 0 to a timer period.

Note: Users can call the utility macros provided in fsl_common.h to convert ticks to usec
or msec.

Parameters
* base — PIT peripheral base address

Returns
Current timer counting value in ticks, use macro definition COUNT_TO_MSEC
to convert value in ticks to count of millisecond, the PIT clock rate is source
clock divide prescaler.

static inline void PIT _StartTimer(PIT_Type *base)
Starts the timer counting.

After calling this function, timers load period value, count down to 0 and then load the
respective start value again. Each time a timer reaches 0, it generates a trigger pulse and
sets the timeout interrupt flag.

Parameters
* base — PIT peripheral base address

static inline void PIT_ StopTimer(PIT_Type *base)
Stops the timer counting.

This function stops timer counting, and the counter remains at or returns to a 0 value.
Parameters
* base — PIT peripheral base address

static inline void PIT__EnableInterrupt(PIT_Type *base)
Enables the PIT interrupts.

Parameters
* base — PIT peripheral base address

static inline void PIT_ DisableInterrupt(PIT_Type *base)
Disables the selected PIT interrupts.

Parameters
* base — PIT peripheral base address

static inline uint16_t PIT_ GetStatusFlags(PIT_Type *base)
Gets the PIT status flags.

Parameters

* base — PIT peripheral base address

250 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

Returns
The status flags. This is the logical OR of members of the enumeration
_pit_status_flags

static inline void PIT__ClearStatusFlags(PIT_Type *base)
Clears the PIT status flags.

Parameters
* base — PIT peripheral base address

static inline void PIT_ SetPresetFiltConfig(PIT_Type *base, const pit_config filt t psConfig)
Set FILT configurations.

Parameters
* base — PIT peripheral base address
* psConfig — Pointer to user’s PIT FILT config structure

static inline void PIT_SetSyncOutConfig(PIT_Type *base, const pit_config ctrl2_t psConfig)
Set Sync configurations.

Parameters
* base — PIT peripheral base address
* psConfig — Pointer to user’s PIT SYNC config structure

FSL PIT DRIVER VERSION
PIT driver version.

enum _ pit_ prescaler_ value
PIT clock prescaler values.

Values:

enumerator kPIT_ PrescalerDivByl
Clock divided by 1

enumerator kPIT_ PrescalerDivBy2
Clock divided by 2

enumerator kPIT_ PrescalerDivBy4
Clock divided by 4

enumerator kPIT_ PrescalerDivBy8
Clock divided by 8

enumerator kPIT_ PrescalerDivBy16
Clock divided by 16

enumerator kPIT_ PrescalerDivBy32
Clock divided by 32

enumerator kPIT_ PrescalerDivBy64
Clock divided by 64

enumerator kPIT_ PrescalerDivBy128
Clock divided by 128

enumerator kPIT_ PrescalerDivBy256
Clock divided by 256

enumerator kPIT_ PrescalerDivBy512
Clock divided by 512

2.53. PIT: Periodic Interrupt Timer (PIT) Driver 251

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPIT_PrescalerDivBy1024
Clock divided by 1024

enumerator kPIT_ PrescalerDivBy2048
Clock divided by 2048

enumerator kPIT_ PrescalerDivBy4096
Clock divided by 4096

enumerator kPIT_ PrescalerDivBy8192
Clock divided by 8192

enumerator kPIT_PrescalerDivBy16384
Clock divided by 16384

enumerator kPIT_PrescalerDivBy32768
Clock divided by 32768

enum _ pit_ status_ flags
List of PIT status flags.

Values:

enumerator kPIT_ Timer_ RollOverFlag
Timer roll over flag

enum _ pit_ syncout_ mode
List of SYNC_OUT output mode.

Values:

enumerator kPIT Syncout_ Default
SYNC_OUT takes affect when PIT counter equals to the MODULO value (default)
enumerator kPIT_Syncout_ Toggle
SYNC_OUT is in toggle mode
typedef enum _pit_prescaler_value pit_ prescaler value_t
PIT clock prescaler values.
typedef enum _pit_syncout_mode pit_syncout_mode_t
List of SYNC_OUT output mode.
typedef struct _pit_config_filt pit_ config_filt_t
PIT FILT configuration structure.

This structure holds the configuration settings for the PIT FILT register. To initialize this
structure to reasonable defaults, call the PIT_GetDefaultConfig() function and pass a pointer
to your config structure instance.

The configuration structure can be made constant so it resides in flash.

typedef struct _pit_config_ctrl2 pit_ config_ ctrl2_t
PIT CTRL2 configuration structure.

This structure holds the configuration settings for the PIT CTRL2 register. To initialize this
structure to reasonable defaults, call the PIT_GetDefaultConfig() function and pass a pointer
to your config structure instance.

The configuration structure can be made constant so it resides in flash.

252 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _pit_config pit_ config_t
PIT configuration structure.

This structure holds the configuration settings for the PIT peripheral. To initialize this struc-
ture to reasonable defaults, call the PIT_GetDefaultConfig() function and pass a pointer to
your config structure instance.

The configuration structure can be made constant so it resides in flash.

struct _ pit_ config_filt
#include <fsl_pit.h> PIT FILT configuration structure.

This structure holds the configuration settings for the PIT FILT register. To initialize this
structure to reasonable defaults, call the PIT_GetDefaultConfig() function and pass a pointer
to your config structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members
bool bFilterClock
Filter Clock Source selection.

pit_prescaler_value_t eFilterPrescalerPeripheral
Sets the peripheral clock prescaler.

uint8_t ul6FilterSampleCount
Input Filter Sample Count.

uint8_t ul6FilterSamplePeriod
Input Filter Sample Period.

struct _ pit_ config_ ctrl2
#include <fsl_pit.h> PIT CTRL2 configuration structure.

This structure holds the configuration settings for the PIT CTRL2 register. To initialize this
structure to reasonable defaults, call the PIT_GetDefaultConfig() function and pass a pointer
to your config structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members
uint8_t u8StretchCount

The cycle number to be stretched for SYNC_OUT signal.
pit_syncout_mode_t eSyncOutSel

Select the output mode of SYNC_OUT.

struct _ pit_ config
#include <fsl_pit.h> PIT configuration structure.

This structure holds the configuration settings for the PIT peripheral. To initialize this struc-
ture to reasonable defaults, call the PIT_GetDefaultConfig() function and pass a pointer to
your config structure instance.

The configuration structure can be made constant so it resides in flash.

2.53. PIT: Periodic Interrupt Timer (PIT) Driver 253

MCUXpresso SDK Documentation, Release 25.09.00

Public Members
pit_prescaler_value_t ePrescaler
Clock prescaler value

bool bEnablelnterrupt
Enable PIT Roll-Over Interrupt

bool bEnableSlaveMode

Enable the PIT module in slave mode, in which mode the timer will be triggered by
master PIT enable.

bool bEnableTimer
PIT timer enable flag, which is false by default

pit_count_clock_source_t eClockSource
Specify the PIT count clock source

uint32_t u32PeriodCount

Timer period in clock cycles, Use macro definition MSEC_TO_COUNT to convert value
in ms to count of ticks, the COP clock rate is source clock divide prescaler.

bool bEnableNegativeEdge
choose the polarity of Preset input.

pit_config filt_t sPresetFilter
Specify the PIT preset filter source

pit_config_ctrl2_t sSyncSource
Specify the PIT Sync source

2.54 The Driver Change Log
2.55 PIT Peripheral and Driver Overview

2.56 PMC: Power Management Controller Driver

static inline void PMC_ SetBandgapTrim(PMC_Type *base, uint8_t u8TrimValue)
Sets the trim value of the bandgap reference in the regulator.

Parameters
* base — PMC peripheral base address.
* u8TrimValue — The bandgap’s trim value, ranges from 0 to 15.

static inline void PMC_ EnableVoltageReferenceBuffer(PMC_Type *base, bool bEnable)
Enables/Disables a buffer that drivers the 1.2V bandgap reference to the ADC.

If the users want to calibrate the ADC using the 1.2V reference voltage, then the voltage
reference buffer should be enabled. When ADC calibration is not being performed, the
voltage reference buffer should be disabled to save power.

Parameters
* base — PMC peripheral base address.
* bEnable — Used to control the behaviour of voltage reference buffer.

- true Enable voltage reference buffer.

254 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

— false Disable voltage reference buffer.

static inline void PMC_ EnableInterrupts(PMC_Type *base, uint16_t ul6Interrupts)

Enables the interrups, including 2.2V high voltage interrupt, 2.7V/2.65V high voltage inter-
rupt, 2.2V low voltage interrupt, 2.7V/2.65V low voltage interrupt.

Parameters
* base — PMC peripheral base address.

¢ ul6Interrupts — The interupts to be enabled, should be the OR’ed value of
_pmc_interrupt_enable.

static inline void PMC_ DisableInterrupts(PMC_Type *base, uint16_t ul6Interrupts)

Disables the interrups, including 2.2V high voltage interrupt, 2.7V/2.65V high voltage inter-
rupt, 2.2V low voltage interrupt, 2.7V/2.65V low voltage interrupt.

Parameters
* base — PMC peripheral base address.

* ul6Interrupts — The interupts to be disabled, should be the OR’ed value of
_pmc_interrupt_enable.

static inline uint16_t PMC_ GetStatusFlags(PMC_Type *base)

Gets the status flags of PMC module, such as low voltage interrpt flag, small regulator 2.7
active flag, etc.

Parameters
* base — PMC peripheral base address.

Returns
The status flags of PMC module, should be the OR’ed value of
_pmc_status_{flags.

static inline void PMC_ ClearStatusFlags(PMC_Type *base, uint16_t ul6StatusFlags)

Clears the status flags of PMC module, only low voltage interrupt flag, sticky 2.7V/2.65V low
voltage flag, and sticky 2.2V low voltage flag can be cleared.

Parameters
* base — PMC peripheral base address.

* ul6StatusFlags - The status flags to be cleared, should be
the ORed value of kPMC_LowVoltagelnterruptFlag, and
kPMC_Sticky2P7VLowVoltageFlag/kPMC_Sticky2P65VLowVoltageFlag,
and kPMC_Sticky2P2VLowVoltageFlag,

static inline void PMC_ SetVrefTrim(PMC_Type *base, uint16_t ul6TrimValue)
Sets the trim value of the Vref reference in the regulator.

Parameters
* base — PMC peripheral base address.
* ul6TrimValue — The Vref’s trim value, ranges from 0 to 31.

static inline void PMC_ SetVcapTrim(PMC_Type *base, uint16_t ul6TrimValue)
Sets the trim value of the Vacp reference in the regulator.

Parameters
* base — PMC peripheral base address.
* ul6TrimValue — The Vacp’s trim value, ranges from 0 to 15.

FSL PMC DRIVER_ VERSION
PMC driver version.

2.56. PMC: Power Management Controller Driver 255

MCUXpresso SDK Documentation, Release 25.09.00

enum _ pmc__interrupt__enable
The enumeration of PMC voltage detection interrupts.

Values:

enumerator kPMC_ 2P2VLow VoltagelnterruptEnable

If the input supply is currently dropped below the 2.2V level, generate the low voltage
interrupt.

enumerator kPMC_ 2P2VHighVoltagelnterruptEnable

If the input supply is currently raised above the 2.2V level, generate the low voltage
interrupt.

enumerator kPMC_ AlllnterruptsEnable
enum _ pmc_ status_ flags

The enumeration of PMC status flags.

Values:

enumerator kPMC_ SmallRegulator2P7VActiveFlag
The small regulator 2.7V supply is ready to be used.

enumerator kPMC_ Low VoltageInterruptFlag

The low voltage interrupt flag, used to indicate whether the low voltage interrupt is
asserted.

enumerator kPMC_ Sticky2P2VLow VoltageFlag

Input supply has dropped below the 2.2V threshold. This sticky flag indicates that the
input supply dropped below the 2.2V level at some point.

enumerator kPMC_ 2P2VLow VoltageFlag
Input supply is below the 2.2V threshold.

enumerator kPMC__AllStatusFlags

2.57 The Driver Change Log
2.58 PMC Peripheral and Driver Overview

2.59 eFlexPWM: Enhanced Flexible Pulse Width Modulator
Driver

void PWM__Init(PWM_Type *base, const pwm_config_t *psConfig)
Initialization PWM module with provided structure pwm_config_t.

This function can initial one or more submodules of the PWM module.

This examples shows how only initial submodule 0 without fault protection channel.

pwm_ config t sPwmConfig = {0};

pwm_ sm__config t sSPwmSmOConfig;

sPwmConfig. psPwmSubmoduleConfig[0] = &sPwmSmO0Config;
PWM_ GetSmDefaultConfig(&sPwmSmO0Config);

PWM_ Init(PWM, sPwmConfig);

256 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

Note: This API should be called at the beginning of the application using the PWM driver.

Parameters
* base - PWM peripheral base address.
* psConfig — Pointer to PWM module configure structure. See pwm_config_t.

void PWM_ Deinit(PWM_Type *base)
De-initialization a PWM module.

Parameters
* base — PWM peripheral base address

void PWM__GetSMDefaultConfig(pwm_sm_config_t *psConfig)
Gets an default PWM submodule’s configuration.

This function fills in the initialization structure member, which can make submodule gen-
erate 50% duty cycle center aligned PWM_A/B output.

The default effective values are:

psConfig->enableDebugMode = false;

psConfig->enableWaitMode = false;

psConfig->enableRun = false;

psConfig->sCounterConfig.eCountClockSource = kPWM__ClockSrcBusClock;
psConfig->sCounterConfig.eCountClockPrescale = kPWM__ClockPrescaleDividel;
psConfig->sCounterConfig.eCountInitSource = kPWM _ InitOnLocalSync;
psConfig->sReloadConfig.eReloadSignalSelect = kPWM__LocalReloadSignal;
psConfig->sReloadConfig.eLoclReloadEffect Time = kPWM__ TakeEffect AtReloadOportunity;
psConfig->sReloadConfig.eLocalReloadOportunity = kPWM _LoadEveryOportunity;
psConfig->sReloadConfig.bEnableFullCycleReloadOportunity = true;
psConfig->sReloadConfig.bEnableHalfCycleReloadOportunity = false;
psConfig->sValRegisterConfig.ul6CounterlnitialValue = 0xFF00U;
psConfig->sValRegisterConfig.ul6ValRegister0 = 0x0U;
psConfig->sValRegisterConfig.ul6ValRegisterl = 0x00FEFU;
psConfig->sValRegisterConfig.ul6ValRegister2 = 0xFEF80U;
psConfig->sValRegisterConfig.ul6ValRegister3 = 0x80U;
psConfig->sValRegisterConfig.ul6ValRegisterd = 0xFF80U;
psConfig->sValRegisterConfig.ul6 ValRegister5 = 0x80U;
psConfig->sForceConfig.eForceSignalSelect = kPWM __LocalSoftwareForce;
psConfig->sForceConfig.eSoft OutputFor23 = kPWM__SoftwareOutputLow;
psConfig->sForceConfig.eSoft OutputFord5 = kPWM__SoftwareOutputLow;
psConfig->sForceConfig.eForceOutput23 = kPWM__GeneratedPwm;
psConfig->sForceConfig.eForceOutputd5 = kPWM__Generated Pwm;
psConfig->sDead TimeConfig.eMode = kPWM__Independent;
psConfig->sOutputConfig.ePwmXSignalSelect = kPWM_ RawPwmX;
psConfig->sOutputConfig.bEnablePwmxOutput = true;
psConfig->sOutputConfig.bEnablePwmaOutput = true;
psConfig->sOutputConfig.bEnablePwmbOutput = true;
psConfig->sOutputConfig.ePwmxFaultState = kPWM__ OutputLowOnFault;
psConfig->sOutputConfig.ePwmaFaultState = kPWM__OutputLowOnFault;
psConfig->sOutputConfig.ePwmbFaultState = kPWM__ OutputLowOnFault;

Parameters

» psConfig — Pointer to user’s PWM submodule config structure. See
pwm_sm_config _t.

void PWM__GetFaultProtectionDefaultConfig(pwm_fault_protection_config t *psConfig)
Gets an default fault protection channel’s configuration.

2.59. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 257

MCUXpresso SDK Documentation, Release 25.09.00

The default effective values are:

psConfig->sFaultInput[i].eFaultActiveLevel = kPWM_ Logic0;
psConfig->sFaultInput[i]. bEnableAutoFaultClear = true;
psConfig->sFaultInput[i]. bEnableFaultFullCycleRecovery = true;

Parameters

* psConfig — Pointer to user’s PWM fault protection config structure. See
pwm_fault_protection_config_t.

void PWM__SetupSMConfig(PWM_Type *base, pwm_sm_number._t eSubModule, const
pwm_sm_config_t *psConfig)

Sets up the PWM submodule configure.
Parameters
* base — PWM peripheral base address
* eSubModule - PWM submodule number, see pwm_sm_number_t.

* psConfig - Pointer to submodule configure structure, see
pwm_sm_config_t.

static inline void PWM__SetupCounterConfig(PWM_Type *base, pwm_sm_number_t eSubModule,
const pwm_sm_counter._config_t *psConfig)

Sets up the PWM submodule counter configure.
Parameters
* base — PWM peripheral base address
* eSubModule - PWM submodule number, see pwm_sm_number_t.

* psConfig — Pointer to submodule counter configure structure, see
pwm_sm_counter_config_t.

static inline void PWM__ SetCounterInitialValue(PWM_Type *base, pwm_sm_number._t
eSubModule, uint16_t ul6InitialValue)

Sets the PWM submodule counter initial register value.

This function set the INIT register value, the counter will start counting from INIT register
value when initial signal assert or software force set. This write value will be loaded into
inner set of buffered registers according to reload logic configure.

Parameters
* base — PWM peripheral base address
* eSubModule - PWM submodule number, see pwm_sm_number_t.
* ul6InitialValue — The submodule number counter initialize value.

static inline void PWM__ SetupReloadLogicConfig(PWM_Type *base, pwm_sm_number._t
eSubModule, const
pwm_sm_reload_logic_config t *psConfig)

Sets up the PWM submodule reload logic configure.
Parameters
* base —- PWM peripheral base address.
* eSubModule — PWM submodule number, see pwm_sm_number_t.

* psConfig — Pointer to submodule reload logic configure structure, see
pwm_sm_reload_logic_config_t.

258 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

void PWM__GetValueConfig(pwm_sm_value_register_config_t *psConfig,
pwm_sm_typical_output_mode_t eTypicalOutputMode, uint16_t
ul6PwmPeriod, uint16_t ul6PwmAPulseWidth, uint16_t

ul6PwmBPulseWidth)
Update PWM submodule compare value configuration according to the typical output
mode.
Parameters

¢ psConfig — See pwm_sm_config_t.

* ¢TypicalOutputMode - Typical PWM_A/B output mode. See
pwm_sm_typical_output_mode_t.

* ul6PwmPeriod - PWM output period value in counter ticks. This value can
be got by (main counter clock in Hz) / (wanted PWM signal frequency in
Hz).

* ul6PwmAPulseWidth - PWM_A pulse width value in counter ticks. Can got
by (wanted PWM duty Cycle) * ul16PwmPeriod.

* ul6PwmBPulseWidth - PWM_B pulse width value in counter ticks. Can got
by (wanted PWM duty Cycle) * ul6PwmPeriod.

static inline void PWM__SetupValRegisterConfig(PWM_Type *base, pwm_sm_number._t
eSubModule, const
pwm_sm_value_register_config_t *psConfig)

Sets up the PWM submodule VALn registers logic configure.
Parameters
* base —- PWM peripheral base address.
* eSubModule - PWM submodule number, see pwm_sm_number_t.

* psConfig — Pointer to VALn registers configure structure, see
pwm_sm_value_register_config_t.

static inline void PWM__ SetValueRegister(PWM_Type *base, pwm_sm_number_t eSubModule,
pwm_sm_val_register_t eRegister, uint16_t ul6Value)

Sets the PWM submodule VALn register value.

Note: These write value will be loaded into inner set of buffered registers according to
reload logic configure.

Parameters
* base - PWM peripheral base address.
* eSubModule — PWM submodule number, see pwm_sm_number_t.
* eRegister — Value register index (range in 0~5), see pwm_sm_val_register_t.
* ul6Value — The value for VALn register.

static inline uint16_t PWM_ GetValueRegister(PWM_Type *base, pwm_sm_number_t
eSubModule, pwm_sm_val_register_t eRegister)

Gets the PWM submodule VALn register value.
Parameters
* base - PWM peripheral base address.
* eSubModule - PWM submodule number, see pwm_sm_number_t.

* cRegister — Value register index (range in 0~5), see pwm_sm_val_register_t.

2.59. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 259

MCUXpresso SDK Documentation, Release 25.09.00

Returns
The VALn register value.

static inline void PWM_ SetFracvalRegister(PWM_Type *base, pwm_sm_number_t eSubModule,
pwm_sm_fracval_register_t eRegister, uint16_t
ul6Value)

Sets the PWM submodule fractional value register value.

Note: These write value will be loaded into inner set of buffered registers according to
reload logic configure.

Parameters
* base - PWM peripheral base address.
* eSubModule — PWM submodule number, see pwm_sm_number_t.

* eRegister — Fractional value register index (range in 1~5), see
pwm_sm_val_register_t.

* ul6Value — The value for FRACVALN register.

static inline uint16_t PWM__GetFracvalRegister(PWM_Type *base, pwm_sm_number._t
eSubModule, pwm_sm_fracval_register_t
eRegister)

Sets the PWM submodule fractional value register value.
Parameters
* base —- PWM peripheral base address.

* eSubModule - PWM submodule number, see pwm_sm_number_t.

* cRegister — Fractional value register index (range in 1~5), see
pwm_sm_fracval_register_t.
Returns
The VALn FRACVALN value.

static inline void PWM __SetValueAndFracRegister(PWM_Type *base, pwm_sm_number._t
eSubModule, pwm_sm_fracval_register_t
eRegister, uint32_t u32value)

Set submodule register VALx and its FRAC value with 32bit access.
Parameters
* base —- PWM peripheral base address.
* eSubModule — Submodule ID.

* cRegister — Fractional value register index (range in 1~5), see
pwm_sm_fracval_register_t.

* u32Value — 32bit value for VALx and its FRAC. VALX: BIT16~BIT31. FRAC-
VALX: BIT11~BIT15. RESERVED: BIT10~BITO.

static inline uint32_t PWM_ GetValueAndFracRegister(PWM_Type *base, pwm_sm_number._t
eSubModule, pwm_sm_fracval_register_t
eRegister)

Get submodule register VALx and its FRAC value with 32bit access.
Parameters
* base —- PWM peripheral base address.
* eSubModule — Submodule ID.

260 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

* eRegister — Fractional value register index (range in 1~5), see
pwm_sm_{fracval_register_t.

Returns
The value of submodule register VALx and its FRAC, combined into 32bit.
VALX: BIT16~BIT31. FRACVALX: BIT11~BIT15. RESERVED: BIT10~BITO.

static inline void PWM__SetPwmLdok(PWM_Type *base, uint16_t ul6Mask)
Set the PWM LDOK bit on a single or multiple submodules.
Enable this feature can make buffered CTRL[PRSC] and the INIT, FRACVAL and VAL registers
values take effect after next local load signal assert. The timing of take effect can be the

next PWM reload or immediately. After loading, MCTRL[LDOK] is automatically cleared
and need to enable again before the next register updated.

Note: The VALX, FRACVALX,INIT, and CTRL[PRSC] registers of the corresponding submod-
ule cannot be written while the the corresponding MCTRL[LDOK] bit is set.

Parameters
* base —- PWM peripheral base address

* ul6Mask — PWM submodules to set the LDOK bit, Logical OR of
_pwm_sm_enable.

static inline void PWM__ClearPwmLdok(PWM_Type *base, uint16_t ul6Mask)
Clear the PWM LDOK bit on a single or multiple submodules.

Parameters
* base —- PWM peripheral base address

* ul6Mask — PWM submodules to clear the LDOK bit, Logical OR of
_pwm_sm_enable.

static inline void PWM__SetupForceLogicConfig(PWM_Type *base, pwm_sm_number._t
eSubModule, const pwm_sm_force_logic_config t
*psConfig)

brief Sets up the PWM submodule force logic configure.

param base PWM peripheral base address. param eSubModule PWM submodule number,
see pwm_sm_number_t. param psConfig Poniter to submodule force logic configure struc-
ture, see pwm_sm_force_logic_config_t.

static inline void PWM__SetSoftwareForce(PWM_Type *base, pwm_sm_number._t eSubModule)
Sets up the PWM Sub-Module to trigger a software FORCE_OUT event.

Note: Only works when the CTRL2[FORCE_SEL] select kPWM_ForceOutOnLocalSoftware.

Parameters
* base —- PWM peripheral base address.
* eSubModule — PWM submodule number, see pwm_sm_number_t.

void PWM_ SetupDeadtimeConfig(PWM_Type *base, pwm_sm_number._t eSubModule, const
pwm_sm_deadtime_logic_config_t *psConfig)

Sets up the PWM submodule deadtime logic configure.
Parameters

* base —- PWM peripheral base address.

2.59. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 261

MCUXpresso SDK Documentation, Release 25.09.00

* eSubModule - PWM submodule number, see pwm_sm_number_t.

* psConfig — Pointer to deadtime logic configure structure, see
pwm_sm_deadtime_logic_config_t.

static inline uint16_t PWM_ GetDeadtimeSampleValue(PWM_Type *base, pwm_sm_number._t
eSubModule)

Get the sampled values of the PWM_X input at the end of each deadtime.

When use PWM_A/B in complementary mode and connect to transistor to controls the out-
put voltage. Need insert deadtime to avoid overlap of conducting interval between the top
and bottom transistor. And both transistors in complementary mode are off during dead-
time. Then connect the PWM_X input to complementary transistors output, then it sam-
pling input at the end of deadtime 0 for DT[0] and the end of deadtime 1 for DT[1]. Which
DT value is not 0 indicates that there is a problem with the corresponding deadtime value.
This can help to decide if there need do a deadtime correction for current complementary
PWM output.

Parameters
* base — PWM peripheral base address
* eSubModule - PWM submodule number, see pwm_sm_number_t.

Returns
The PWM_X input sampled values.

void PWM__ SetupFractionalDelayConfig(PWM_Type *base, pwm_sm_number_t eSubModule,
const pwm_sm_fractional_delay_logic_config t *psConfig)

Sets up the PWM submodule fractional delay logic configure.

Note: The fractional delay logic can only be used when the IPBus clock is running at 100
MHz.

Parameters
* base - PWM peripheral base address.
* eSubModule — PWM submodule number, see pwm_sm_number_t.

» psConfig — Pointer to fractional delay logic configure structure, see
pwm_sm_fractional_delay_logic_config_t.

void PWM__SetupOutputConfig(PWM_Type *base, pwm_sm_number._t eSubModule, const
pwm_sm_output_logic_config_t *psConfig)

Sets up the PWM submodule output logic configure.
Parameters
* base —- PWM peripheral base address.
* eSubModule - PWM submodule number, see pwm_sm_number_t.

» psConfig — Pointer to output logic configure structure, see
pwm_sm_output_logic_config_t.

static inline void PWM_ EnableOutput(PWM_Type *base, uint16_t ul6SubModules,
pwm_sm_pwm_out_t eOutput)

Enables the PWM submodule pin output.

This function handles PWMX_EN/PWMA_EN/PWMB_EN bit filed of OUTEN register, whcih
can enable one or more submodule pin in PWMX/A/B.

Parameters

262 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

* base —- PWM peripheral base address

* ul6SubModules — The submodules that enable eOutput output, logical OR
of _pwm_sm_enable.

* eOutput — PWM output pin ID, see pwm_sm_pwm_out_t.

static inline void PWM__ DisableOutput(PWM_Type *base, uint16_t ul6SubModules,
pwm_sm_pwm_out_t eOutput)

Disables the PWM submodule pin output.

This function handles PWMX_EN/PWMA_EN/PWMB_EN bit filed of OUTEN register, whcih
can disable one or more submodule pin in PWMZX/A/B.

Parameters
* base —- PWM peripheral base address

* ul6SubModules — The submodules that disable eOutput output, logical OR
of _pwm_sm_enable.

* eOutput — PWM output pin ID, see pwm_sm_pwm_out_t.

static inline void PWM__EnableCombinedOutput(PWM_Type *base, uint16_t u16XSubModules,
uint16_t ul6ASubModules, uint16_t
ul6BSubModules)

Enables the PWM pin combination output.

This function handles PWMX_EN/PWMA_EN/PWMB_EN bit filed of OUTEN register at the
same time.

Parameters
* base — PWM peripheral base address

* ul6XSubModules — The submodules that enable PWMX output, should be
logical OR of _pwm_sm_enable.

* ul6ASubModules — The submodules that enable PWMA output, should be
logical OR of _pwm_sm_enable.

* ul6BSubModules — The submodules that enable PWMB output, should be
logical OR of _pwm_sm_enable.

static inline void PWM_ DisableCombined Output(PWM_Type *base, uint16_t u16XSubModules,
uint16_t ul16ASubModules, uint16_t
ul6BSubModules)

Disables the PWM pin combination output.

This function handles PWMX_EN/PWMA_EN/PWMB_EN bit filed of OUTEN register at the
same time.

Parameters
* base - PWM peripheral base address

* ul6XSubModules — The submodules that disable PWMX output, should be
logical OR of _pwm_sm_enable.

* ul6ASubModules — The submodules that disable PWMA output, should be
logical OR of _pwm_sm_enable.

* ul6BSubModules — The submodules that disable PWMB output, should be
logical OR of _pwm_sm_enable.

static inline void PWM_ MaskOutput(PWM_Type *base, uint16_t ul6SubModules,
pwm_sm_pwm_out_t eOutput)

2.59. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 263

MCUXpresso SDK Documentation, Release 25.09.00

Mask the PWM pin output.

This function handles MASKA/MASKB/MASKX bit filed of MASK register, which can mask
one or more submodule pin in PWMX/A/B.

Note: The mask bits is buffered and can be updated until a FORCE_OUT event occurs or a
software update command.

Parameters
* base — PWM peripheral base address.

* ul6SubModules — The submodules that mask eOutput output, logical OR of
_pwm_sm_enable.

* eOutput — PWM output pin ID, see pwm_sm_pwm_out_t.

static inline void PWM_ UnmaskOutput(PWM_Type *base, uint16_t ul6SubModules,

pwm_sm_pwm_out_t eOutput)
Unmask the PWM pin output.

This function handles MASKA/MASKB/MASKX bit filed of MASK register, which can mask
one or more submodule pin in PWMZX/A/B.

Note: The mask bits is buffered and can be updated until a FORCE_OUT event occurs or a
software update command.

Parameters
* base —- PWM peripheral base address

* ul6SubModules — The submodules that unmask eOutput output, logical OR
of _pwm_sm_enable.

* eOutput — PWM output pin ID, see pwm_sm_pwm_out_t.

static inline void PWM_ MaskCombinedOutput(PWM_Type *base, uint16_t u16XSubModules,

uint16_t ul6ASubModules, uint16_t
ul6BSubModules)

Mask the PWM pin combination output.
This function handles MASKA/MASKB/MASKX bit filed of MASK register at the same time.

Note: The mask bits is buffered and can be updated until a FORCE_OUT event occurs or a
software update command.

Parameters
* base — PWM peripheral base address

* ul6XSubModules — The submodules that mask PWMX output, should be log-
ical OR of _pwm_sm_enable.

* ul6ASubModules — The submodules that mask PWMA output, should be log-
ical OR of _pwm_sm_enable.

* ul6BSubModules — The submodules that mask PWMB output, should be log-
ical OR of _pwm_sm_enable.

264

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

static inline void PWM_ UnmaskCombinedOutput(PWM_Type *base, uint16_t ul6XSubModules,
uint16_t ul6ASubModules, uint16_t
ul6BSubModules)

Unmask the PWM pin combination output.
This function handles MASKA/MASKB/MASKX bit filed of MASK register at the same time.

Note: The mask bits is buffered and can be updated until a FORCE_OUT event occurs or a
software update command.

Parameters
* base — PWM peripheral base address

* ul6XSubModules — The submodules that unmask PWMX output, should be
logical OR of _pwm_sm_enable.

* ul6ASubModules — The submodules that unmask PWMA output, should be
logical OR of _pwm_sm_enable.

* ul6BSubModules — The submodules that unmask PWMB output, should be
logical OR of _pwm_sm_enable.

static inline void PWM_ UpdateMask(PWM_Type *base, pwm_sm_number._t eSubModule)
Update PWM output mask bits immediately with a software command.

Parameters
* base — PWM peripheral base address
* eSubModule - PWM submodule number, see pwm_sm_number_t.

static inline void PWM__EnablePwmRunInDebug(PWM_Type *base, pwm_sm_number_t
eSubModule, bool bEnable)

Enables/Disables the PWM submodule continue to run while the chip is in DEBUG mode.
Parameters
* base — PWM peripheral base address
* eSubModule - PWM submodule number, see pwm_sm_number_t.
* bEnable — Enable the feature or not.
- true Enable load feature.
— false Disable load feature.

static inline void PWM__EnablePwmRunInWait(PWM_Type *base, pwm_sm_number_t
eSubModule, bool bEnable)

Enables/Disables the PWM submodule continue to run while the chip is in WAIT mode.
Parameters
* base —- PWM peripheral base address
* eSubModule - PWM submodule number, see pwm_sm_number_t.
* bEnable — Enable the feature or not.
— true Enable load feature.

— false Disable load feature.

2.59. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 265

MCUXpresso SDK Documentation, Release 25.09.00

static inline void PWM__EnableCounters(PWM_Type *base, uint16_t ul6Mask)
Starts the PWM submodule counter for a single or multiple submodules.

Sets the Run bit which enables the clocks to the PWM submodule. This function can start
multiple submodules at the same time.

Parameters
* base —- PWM peripheral base address
* ul6Mask - PWM submodules to start run, Logical OR of _pwm_sm_enable.

static inline void PWM__ DisableCounters(PWM_Type *base, uint16_t ul6Mask)
Stops the PWM counter for a single or multiple submodules.

Clears the Run bit which resets the submodule’s counter. This function can stop multiple
submodules at the same time.

Parameters
* base — PWM peripheral base address
* ul6Mask — PWM submodules to start run, Logical OR of _pwm_sm_enable.

static inline uint16_t PWM_ GetCaptureValue(PWM_Type *base, pwm_sm_number._t
eSubModule, pwm_sm_input_capture_register_t
eRegister)

Reads PWM submodule input capture value register.

This function read the CVALn register value, stores the value captured from the submodule

counter.
Parameters
* base — PWM peripheral base address.
* eSubModule - PWM submodule number, see pwm_sm_number_t.
* cRegister — PWM submodule input capture value register, see
pwm_sm_input_capture_register_t.
Returns

The input capture value.

static inline uint16_t PWM_ GetCaptureValueCycle(PWM_Type *base, pwm_sm_number._t
eSubModule,
pwm_sm_input_capture_register_t eRegister)

Reads PWM submodule input capture value cycle register.

This function read the CVALnCYC register value, stores the cycle number corresponding to
the value captured in CVALn. This register is incremented each time the counter is loaded
with the INIT value at the end of a PWM modulo cycle.

Parameters
* base —- PWM peripheral base address.
* eSubModule - PWM submodule number, see pwm_sm_number_t.

* eRegister — PWM submodule input capture value register, see
pwm_sm_input_capture_register_t.

Returns
The input capture register cycle value.

static inline uint16_t PWM_ GetCaptureEdgeCounter Vaule(PWM_Type *base, pwm_sm_number_t
eSubModule,
pwm_sm_input_capture_pin_t
elnputPin)

266 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

Reads the PWM submodule input capture logic edge counter value.

Each input capture logic has a edge counter, which counts both the rising and falling edges
of the input capture signal and it compare signal can select as input capture trigger source.

Parameters
* base —- PWM peripheral base address.
* eSubModule - PWM submodule number, see pwm_sm_number_t.

* elnputPin — PWM submodule input capture pin number, see
pwm_sm_input_capture_pin_t.

void PWM__SetupInputCaptureConfig(PWM_Type *base, pwm_sm_number_t eSubModule,
pwm_sm_input_capture_pin_t eInputPin, const
pwm_sm_input_capture_config_t *psConfig)

Sets up the PWM submodule input capture configure.

Each PWM submodule has 3 pins that can be configured for use as input capture pins. This
function sets up the capture parameters for each pin and enables the input capture opera-
tion.

Parameters
* base —- PWM peripheral base address.
* eSubModule - PWM submodule number, see pwm_sm_number_t.

* elnputPin — PWM submodule input capture pin number, see
pwm_sm_input_capture_pin_t.

* psConfig — Pointer to input capture configure structure, see
pwm_sm_input_capture_config_t.

static inline void PWM__EnableInputCapture(PWM_Type *base, pwm_sm_number._t eSubModule,
pwm_sm_input_capture_pin_t eInputPin)

Enables the PWM submodule input capture operation.

Enables input capture operation will start the input capture process. The enable bit is self-
cleared when in one shot mode and one or more of the enabled capture circuits has had a
capture event.

Parameters
* base —- PWM peripheral base address.
* eSubModule — PWM submodule number, see pwm_sm_number_t.

* elnputPin — PWM submodule input capture pin number, see
pwm_sm_input_capture_pin_t.

static inline void PWM__ DisableInputCapture(PWM_Type *base, pwm_sm_number._t
eSubModule, pwm_sm_input_capture_pin_t
elnputPin)

Disables the PWM submodule input capture operation.
The enable bit can be cleared at any time to disable input capture operation.
Parameters
* base —- PWM peripheral base address.
* eSubModule - PWM submodule number, see pwm_sm_number_t.

* elnputPin — PWM submodule input capture pin number, see
pwm_sm_input_capture_pin_t.

2.59. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 267

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint16_t PWM__ GetInputValue(PWM_Type *base, pwm_sm_number_t eSubModule,
pwm_sm_input_capture_pin_t eInputPin)

Get the logic value currently being driven into the PWM inputs.
Parameters
* base —- PWM peripheral base address
* eSubModule - PWM submodule number, see pwm_sm_number_t.

* elnputPin — PWM submodule input capture pin number, see
pwm_sm_input_capture_pin_t.

Returns
The PWM submodule input capture pin logic value.

void PWM__SetupFaultProtectionConfig(PWM_Type *base, pwm_fault_protection_channel_t
eFaultProtection, const pwm_fault_protection_config t
*psConfig)

Sets up the PWM fault protection channel configure.
Parameters
* base —- PWM peripheral base address.

* eFaultProtection — PWM fault protection channel number, see
pwm_fault_protection_channel t.

» psConfig — Pointer to fault protection channel configure structure, see
pwm_fault_protection_config_t.

static inline void PWM __ SetupSMFaultInputMapping(PWM_Type *base, pwm_sm_number._t
eSubModule, pwm_sm_pwm_out_t
ePwmOutput, const
pwm_sm_fault_input_mapping t
*psMapping)
Mapping fault protection channel fault input status to PWM submodule output,.

Note: Each PWM output can be mapping anyone or more fault inputs. The mapped fault
protection channel inputs can disable PWM output.

Parameters
* base —- PWM peripheral base address.
* eSubModule - PWM submodule number, see pwm_sm_number_t.
* ePwmOutput - PWM submodule output, see pwm_sm_pwm_out_t.

* psMapping - The fault input disable mapping structure, see
pwm_sm_fault_input_mapping_t.

void PWM__ SetupDmaConfig(PWM_Type *base, pwm_sm_number._t eSubModule, const
pwm_sm_dma_config_t *psConfig)

Sets up the PWM submodule DMA configure.
Parameters
* base - PWM peripheral base address.
* eSubModule — PWM submodule number, see pwm_sm_number_t.

* psConfig - Pointer to PWM submodule DMA configure, see
pwm_sm_dma_config_t.

268 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

static inline void PWM__SetEnabledCaptureDmaSource(PWM_Type *base, pwm_sm_number._t
eSubModule,
pwm_sm_capture_dma_source_t
eCaptureDmaSource)

Select the trigger source for enabled capture FIFOs DMA read request.

Note: This function only can be used when the bEnableCaptureDMA be true.

Parameters
* base —- PWM peripheral base address.
* eSubModule - PWM submodule number, see pwm_sm_number_t.
* eCaptureDmaSource — The PWM DMA capture source.

static inline void PWM__EnableSMInterrupts(PWM_Type *base, pwm_sm_number._t eSubModule,
uint16_t ul6Mask)

Enables the PWM submodule interrupts according to a provided mask.

This examples shows how to enable VAL 0 compare interrupt and VAL 1 compare interrupt.

PWM__EnableSMInterrupts(PWM, kPWM__SubModule0, kPWM__CompareValOInterruptEnable |
kPWM__CompareValllnterruptEnable);

Parameters
* base —- PWM peripheral base address
* eSubModule - PWM submodule number, see pwm_sm_number_t.

* ul6Mask — The PWM submodule interrupts to enable. Logical OR of
_pwm_sm_interrupt_enable.

static inline void PWM__ DisbaleSMInterrupts(PWM_Type *base, pwm_sm_number_t eSubModule,
uint16_t ul6Mask)

Disables the PWM submodule interrupts according to a provided mask.

This examples shows how to disable VAL 0 compare interrupt and VAL 1 compare interrupt.

PWM_ DisbaleSMInterrupts(PWM, kPWM__ SubModule0, kPWM__CompareValOInterruptEnable |
kPWM__CompareValllnterruptEnable);

Parameters
* base —- PWM peripheral base address
* eSubModule — PWM submodule number, see pwm_sm_number_t.

* ul6Mask — The PWM submodule interrupts to enable. Logical OR of
_pwm_sm_interrupt_enable.

static inline void PWM__EnableFaultInterrupts(PWM_Type *base,
pwm_fault_protection_channel_t eFaultProtection,
uint16_t ul6Mask)

Enables the PWM fault protection channel interrupt according to a provided mask.

This examples shows how to enable fault pin 0 interrupt and fault pin 1 interrupt.

PWM__EnableFaultInterrupts(PWM, kPWM __ FaultProtection0, kPWM _ FaultOInterruptEnable |
kPWM__ Fault1lInterruptEnable);

Parameters

2.59. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 269

MCUXpresso SDK Documentation, Release 25.09.00

* base —- PWM peripheral base address

* eFaultProtection — PWM fault protection channel number, see
pwm_fault_protection_channel _t.

» ul6Mask — The PWM fault protection channel interrupts to enable. Logical
OR of _pwm_fault_protection_interrupt_enable.

static inline void PWM _ DisableFaultInterrupts(PWM_Type *base,
pwm_fault_protection_channel t
eFaultProtection, uint16_t ul6Mask)

Disables the PWM fault protection channel interrupt according to a provided mask.

This examples shows how to disable fault pin 0 interrupt and fault pin 1 interrupt.

PWM__DisableFaultInterrupts(PWM, kPWM__ FaultProtection0, kPWM__FaultOInterruptEnable |
kPWM_ Fault1lInterruptEnable);

Parameters
* base —- PWM peripheral base address

* eFaultProtection — PWM fault protection channel number, see
pwm_fault_protection_channel_t.

* ul6Mask — The PWM fault protection channel interrupts to disable. Logical
OR of _pwm_fault_protection_interrupt_enable.

static inline uint16_t PWM_ GetSMStatusFlags(PWM_Type *base, pwm_sm_number._t
eSubModule)

Gets the PWM submodule status flags.
This examples shows how to check whether the submodule VALO compare flag set.

if(PWM__GetSMStatusFlags(PWM, kPWM __SubModule0) & kPWM_CompareValOFlag) = 0U)

Parameters
* base — PWM peripheral base address
* eSubModule - PWM submodule number, see pwm_sm_number_t.

Returns
The PWM submodule status flags. This is the logical OR of
pwm_sm_status_flags_t.

static inline void PWM__ClearSMStatusFlags(PWM_Type *base, pwm_sm_number_t eSubModule,
uint16_t ul6Mask)

Clears the PWM submodule status flags.

This examples shows how to clear the submodule VALO compare flag.

PWM__ClearSMStatusFlags(PWM, kPWM__ SubModule0, kPWM__CompareValOFlag);

Note: The kPWM_RegUpdatedFlag can’t be cleared by software.

Parameters

* base — PWM peripheral base address

270 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

* eSubModule - PWM submodule number, see pwm_sm_number_t.

* ul6Mask — The status flags to clear. This is the logical OR of
pwm_sm_status_flags_t.

static inline uint16_t PWM__ GetFaultStatusFlags(PWM_Type *base,
pwm_fault_protection_channel t
eFaultProtection)

Gets the PWM fault protection status flags.

This examples shows how to check whether the fault protection channel fault input pin 0
set.

if(PWM__GetFaultStatusFlags(PWM, kPWM__ FaultProtection0) & kPWM_ FaultPinOFlag) != 0U)

Parameters
* base —- PWM peripheral base address

* cFaultProtection — PWM fault protection channel number, see
pwm_fault_protection_channel _t.

Returns
The PWM fault protection channel status flags. This is the logical OR of
_pwm_fault_protection_status_flags.

static inline void PWM __ClearFaultStatusFlags(PWM_Type *base,
pwm_fault_protection_channel_t eFaultProtection,
uint16_t ul6Mask)

Clears the PWM fault protection status flags according to a provided mask.

This examples shows how to clear the fault protection channel fault 0 flag.

PWM__ClearFaultStatusFlags(PWM, kPWM__FaultProtection0, kPWM__FaultOFlag);

Note: The kPWM_FaultPinOActiveFlag ~ kPWM_FaultPin3ActiveFlag can’t be cleared by
software.

Parameters
* base —- PWM peripheral base address

* eFaultProtection — PWM fault protection channel number, see
pwm_fault_protection_channel t.

» ul6Mask — The PWM fault protection status flags to be clear. Logical OR of
_pwm_fault_protection_status_flags.

FSL PWM_DRIVER_VERSION
PWM driver version.

enum _ pwm_ sm_ number

The enumeration for PWM submodule number.
Values:

enumerator kPWM_ SubModule0
PWM Submodule 0

2.59. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 271

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPWM_ SubModulel
PWM Submodule 1

enumerator kPWM_SubModule2
PWM Submodule 2

enumerator kPWM_ SubModule3
PWM Submodule 3

enum _ pwm_ sm_ enable
The enumeration for PWM submodule enable.

Values:

enumerator kPWM_ SubModuleOEnable
PWM Submodule 0 enable.

enumerator kPWM_SubModulelEnable
PWM Submodule 1 enable.

enumerator kPWM _ SubModule2Enable
PWM Submodule 2 enable.

enumerator kPWM__ SubModule3Enable
PWM Submodule 3 enable.

enumerator kPWM__ALLSubModuleEnable

enum _ pwm_ sm_ count_ clock_source

The enumeration for PWM submodule clock source.

Values:

enumerator kPWM _ClockSrcBusClock
The IPBus clock is used as the source clock

enumerator kPWM _ ClockSrcExternalClock
EXT _CLK s used as the source clock

enumerator kPWM __ ClockSrcSubmodule0Clock

Clock of the submodule 0 (AUX_CLK) is used as the source clock

enum _pwm_sm_ count_ clock_ prescaler

The enumeration for PWM submodule prescaler factor selection for clock source.

Values:

enumerator kPWM __ClockPrescaleDividel
PWM submodule clock frequency = fclk/1

enumerator kPWM __ClockPrescaleDivide2
PWM submodule clock frequency = fclk/2

enumerator kPWM __ ClockPrescaleDivide4
PWM submodule clock frequency = fclk/4

enumerator kPWM_ ClockPrescaleDivide8
PWM submodule clock frequency = fclk/8

enumerator kPWM _ ClockPrescaleDividel6
PWM submodule clock frequency = fclk/16

enumerator kPWM __ ClockPrescaleDivide32
PWM submodule clock frequency = fclk/32

272

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPWM _ ClockPrescaleDivide64
PWM submodule clock frequency = fclk/64

enumerator kPWM __ ClockPrescaleDividel128
PWM submodule clock frequency = fclk/128

enum _ pwm_ sm_ count_ init_ source
The enumeration for PWM submodule counter initialization options.

Values:

enumerator kPWM_ InitOnLocalSync
Local sync causes initialization

enumerator kPWM _ InitOnMasterReload
Master reload from submodule 0 causes initialization

enumerator kPWM_ InitOnMasterSync
Master sync from submodule 0 causes initialization

enumerator kPWM_ InitOnExtSync
EXT_SYNC causes initialization

enum _pwm_ ml2 stretch_count_ clock prescaler

The enumeration for PWM stretch IPBus clock count
mux0_trig/mux1_trig/out0_trig/outl_trig/pwma_trig/pwmb_trig.

Values:

enumerator kPWM __ StretchIPBusClockPrescalerl
Stretch count is zero, no stretch.

enumerator kPWM__ StretchIPBusClockPrescaler2

prescaler for

Stretch mux0_trig/mux1_trig/outQ_trig/outl_trig/pwma_trig/pwmb_trig for 2 IPBus

clock period.
enumerator kPWM __ StretchIPBusClockPrescaler4

Stretch mux0_trig/mux1_trig/out0_trig/outl_trig/pwma_trig/pwmb_trig for 4 IPBus

clock period.
enumerator kPWM __StretchIPBusClockPrescaler8

Stretch mux0_trig/mux1_trig/out0_trig/outl_trig/pwma_trig/pwmb_trig for 8 IPBus

clock period.

enum _pwm_sm_ reload_signal select
The enumeration for PWM submodule local reload take effect timing.

Values:

enumerator kPWM_ LocalReloadSignal
The local RELOAD signal is used to reload buffered-registers.

enumerator kPWM_ MasterReloadSignal

The master RELOAD signal (from submodule 0) is used to reload buffered-registers

(should not be used in submodule 0).

enum _pwm_sm_ local reload_ effect_timing
The enumeration for PWM submodule local reload take effect timing.

Values:

enumerator kPWM_ TakeEffect AtReloadOportunity

Buffered-registers reload after one/more reload opportunities, and a load opportunity

can generate on a PWM half or/and full cycle.

2.59. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver

273

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPWM_ TakeEffectImmediately

Buffered-registers reload with new values as soon as MCTRL[LDOK] bit is set when
choose local reload.

enum _pwm_sm_ local_reload_ oportunity

The enumeration for PWM submodule reload opportunities selection under
kPWM_ReloadWithLocalReloadOportunity.

Values:

enumerator kPWM_ LoadEveryOportunity
Every PWM submodule reload opportunity

enumerator kPWM _ LoadEvery2Oportunity
Every 2 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery3Oportunity
Every 3 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery4Oportunity
Every 4 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery5Oportunity
Every 5 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery60Oportunity
Every 6 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery7Oportunity
Every 7 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery8Oportunity
Every 8 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery9Oportunity
Every 9 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery10Oportunity
Every 10 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery11Oportunity
Every 11 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery12Oportunity
Every 12 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery13Oportunity
Every 13 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery14Oportunity
Every 14 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery150portunity
Every 15 PWM submodule reload opportunities

enumerator kPWM_ LoadEvery160portunity
Every 16 PWM submodule reload opportunities

enum _ pwm_sm_ val_compare_mode
The enumeration for PWM submodule VALn register compare mode.

Values:

274 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPWM__ CompareOnEqual
The VALn registers and the PWM counter are compared using an “equal to” method.

enumerator kPWM__ CompareOnEqualOrGreater

The VALn registers and the PWM counter are compared using an “equal to or

greater than” method.

enum _pwm_ sm_ val_ register

The enumeration for PWM submodule VAL registers.
Values:
enumerator kPWM_ VALO

PWM submodule value register 0.
enumerator kPWM_VAL1

PWM submodule value register 1.
enumerator kPWM_ VAL2

PWM submodule value register 2.
enumerator kPWM_ VAL3

PWM submodule value register 3.
enumerator kPWM_ VAL4

PWM submodule value register 4.

enumerator kPWM_ VALS5
PWM submodule value register 5.

enum _pwm_ sm_ force_signal select

The enumeration for PWM submodule FORCE_OUT source which can trigger force logic
output update.

Values:

enumerator kPWM _ LocalSoftwareForce
The local software force signal CTRL2[FORCE] is used to force updates.

enumerator kPWM__ MasterSoftwareForce
The master software force signal from submodule 0 is used to force updates.

enumerator kPWM _ LocalReloadForce
The local reload signal from this submodule is used to force updates without regard to
the state of LDOK.

enumerator kPWM _ MasterReloadForce
The master reload signal from submodule 0 is used to force updates if LDOK is set,
should not be used in submodule 0.

enumerator kPWM _ LocalSyncForce
The local sync (VAL1 match event) signal from this submodule is used to force updates.

enumerator kPWM_ MasterSyncForce
The master sync signal from submodule0 is used to force updates.

enumerator kPWM__ ExternalForceForce
The external force signal EXT_FORCE, from outside the PWM module causes updates.

enumerator kPWM_ ExternalSyncForce
The external sync signal EXT_SYNC, from outside the PWM module causes updates.

2.59. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 275

MCUXpresso SDK Documentation, Release 25.09.00

enum _pwm_ sm_ force_deadtime_ source
The enumeration for PWM submodule force out logic output (PWM23 and PWM45) source,
which will transfer to output logic when a FORCE_OUT signal is asserted.
Values:

enumerator kPWM__ GeneratedPwm
Generated PWM signal is used as the deadtime logic output.

enumerator kPWM_ InvertedGeneratedPwm
Inverted PWM signal is used as the deadtime logic output.

enumerator kPWM__ SoftwareControlValue
Software controlled value is used as the deadtime logic output.

enumerator kPWM_ UseExternal
PWM_EXTA signal is used as the deadtime logic output.

enum _pwm_sm_ force software output_ value
The enumeration for PWM submodule software controlled force out signal value.

Values:

enumerator kPWM__ SoftwareOutputLow
Alogic 0 is supplied to the deadtime generator when chose Software controlled value
as output source.

enumerator kPWM __ SoftwareOutputHigh
Alogic 1 is supplied to the deadtime generator when chose Software controlled value
as output source.

enum _pwm_ sm_ deadtime_logic_mode

The enumeration for PWM submodule deadtime logic mode, which decide how the dead-

time logic process the force logic output signal.

Values:

enumerator kPWM _ Independent
The PWMA (PWM23) and PWMB (PWM45) signal from force logic transfer to output
logic independent.

enumerator kPWM__ IndependentWithDoubleSwitchPwm
The PWMA (PWM23) and PWMB (PWM45) signals from force logic will XOR first, then
the XOR signal transfer to output logic independent.

enumerator kPWM_ Independent WithSplitDoubleSwitchPwm
The PWMA (PWM23) and PWMB (PWM45) signals from force_out logic will XOR first,
then the XOR signal transfer to output logic independent.

enumerator kPWM__ Complementary WithPwmA
The PWMA (PWM23) signal from force logic will transfer to output logic with comple-
mentary mode.

enumerator kPWM__Complementary WithPwmB
The PWMB (PWM45) signal from force logic will transfer to output logic with comple-
mentary mode.

enumerator kPWM_ Complementary WithDoubleSwitchPwm

The PWMA (PWM23) and PWMB (PWM45) signals from force logic will XOR first, then
the XOR signal transfer to output logic with complementary mode.

276 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enum _pwm_ sm_ fracval register
The enumeration for PWM submodule FRACVAL registers.

Values:
enumerator kPWM_FRACVAL1

PWM submodule fractional value register 1.
enumerator kPWM_FRACVAL2

PWM submodule fractional value register 2.
enumerator kPWM_FRACVALS3

PWM submodule fractional value register 3.
enumerator kPWM_FRACVAL4

PWM submodule fractional value register 4.
enumerator kPWM_FRACVALS5

PWM submodule fractional value register 5.

enum _pwm_sm_ mux_ trigger source

The enumeration for PWM submodule output logic final trigger output port signal.
Values:

enumerator kPWM__ActualCompareEvent
Route the PWM_OUT_TRIG signal (OR of VALX compare signal) to the mux trigger out-
put port.

enumerator kPWM_ PwmOutput
Route the PWM output (after polarity/mask/enable control) to the mux trigger output
port.

enum _pwm_sm_pwm_ output_on_ fault
The enumeration for PWM submodule output logic PWM output fault status.

Values:

enumerator kPWM__ OutputLowOnFault
The output is forced to logic 0 state prior to consideration of output polar-
ity/mask/enable control during fault conditions and STOP mode.

enumerator kPWM_ OutputHighOnFault
The output is forced to logic 1 state prior to consideration of output polar-
ity/mask/enable control during fault conditions and STOP mode.

enumerator kPWM_ OutputTristatedOnFault
The output status be tristated during fault conditions and STOP mode.

enum _ pwm_sm_ pwmx_ signal_select

The enumeration for PWM submodule output logic PwmX signal input source (before out-
put polarity/mask/enable control).

Values:

enumerator kPWM_ RawPwmX
The PWM_X source is raw PwmoO1_fractional_delay signal.

enumerator kPWM__ DoubleSwitch
The PWM_X source is Pwm23_fractional_delay XOR Pwm23_fractional_delay signal.

enum _ pwm_ sm_ pwin_ out
The enumeration for PWM submodule PWM output.

Values:

2.59. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 277

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPWM_ PwmX
The PWM output PWM_X.

enumerator kPWM_ PwmB
The PWM output PWM_B.

enumerator kPWM_ PwmA
The PWM output PWM_A.

enum _pwm_ sm_ input_ capture_ pin
The enumeration for PWM submodule input capture pins.

Values:

enumerator kPWM_ InputCapturePwmX
The input capture pin PwmX, need disable PwmX output when enable input capture.

enumerator kPWM_ InputCapturePwmA
The input capture pin PwmaA, need disable PwmA output when enable input capture.

enumerator kPWM_ InputCapturePwmB
The input capture pin PwmB, need disable PwmB output when enable input capture.

enum _pwm_sm_ input_ capture_ source
The enumeration for PWM submodule input capture source.

Values:

enumerator kPWM_ Rawlnput
The capture source is the raw input signal.

enumerator kPWM_ InputEdgeCounter
The capture source is edge counter which counts rising and falling edges on the raw
input signal.
enum _pwm_ sm_ input_ capture_edge
The enumeration for PWM submodule input capture edge when choose raw input as cap-
ture source.
Values:

enumerator kPWM_ Noedge
Disabled capture on source falling/falling edge.

enumerator kPWM_ FallingEdge
Enable input capture, and capture on source falling edge when chose the raw input
signal as capture source.

enumerator kPWM_ RisingEdge
Enable input capture, and capture on source rising edge when chose the raw input
signal as capture source.

enumerator kPWM_ RiseAndFallEdge
Enable input capture, and capture on source rising or falling edge when chose the raw
input signal as capture source.

enum _ pwm_ sm_ input_ capture_ register
The enumeration for PWM submodule input capture value register.

Values:

enumerator kPWM_ InpCaptureVal0

Stores the value captured from the submodule counter when the PWM_X circuitry 0
logic capture occurs.

278 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPWM_ InpCaptureVall
Stores the value captured from the submodule counter when the PWM_X circuitry 1
logic capture occurs.

enumerator kPWM_ InpCaptureVal2
Stores the value captured from the submodule counter when the PWM_A circuitry 0
logic capture occurs.

enumerator kPWM_ InpCaptureVal3
Stores the value captured from the submodule counter when the PWM_A circuitry 1
logic capture occurs.

enumerator kPWM_ InpCaptureVald
Stores the value captured from the submodule counter when the PWM_B circuitry 0
logic capture occurs.

enumerator kPWM_ InpCaptureVal5

Stores the value captured from the submodule counter when the PWM_B circuitry 1
logic capture occurs.

enum _pwm_ sm_ input_ capture_filter count

The enumeration for input filter count Represent the number of consecutive samples that
must agree prior to the input filter accepting an input transition.

Values:

enumerator kPWM_ InputCaptureFilterCount3Samples
3 samples.

enumerator kPWM_ InputCaptureFilterCount4Samples
4 samples.

enumerator kPWM_ InputCaptureFilterCount5Samples
5 samples.

enumerator kPWM_ InputCaptureFilterCount6Samples
6 samples.

enumerator kPWM_ InputCaptureFilterCount7Samples
7 samples.

enumerator kPWM_ InputCaptureFilterCount8Samples
8 samples.

enumerator kPWM_ InputCaptureFilterCount9Samples
9 samples.

enumerator kPWM_ InputCaptureFilterCount10Samples
10 samples.

enum _pwm_sm_ capture_dma_ source

The enumeration for the source which can trigger the DMA read requests for the capture
FIFOs.

Values:

enumerator kPWM_ FIFOWatermarksORDma
Selected FIFO watermarks are OR’ed together to sets the read DMA request.

enumerator kPWM_ FIFOWatermarksANDDma
Selected FIFO watermarks are AND’ed together to sets the read DMA request.

2.59. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 279

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPWM_ LocalSyncDma
Alocal sync (VAL1 match event) sets the read DMA request.

enumerator kPWM _LocalReloadDma
Alocal reload (STS[RF] being set) sets the read DMA request.

enum _ pwm_ sm__interrupt_ enable
The enumeration for PWM submodule interrupt enable.

Values:

enumerator kPWM__ CompareValOlnterruptEnable
PWM submodule VALO compare interrupt.

enumerator kPWM__ CompareValllnterruptEnable
PWM submodule VAL1 compare interrupt.

enumerator kPWM__CompareVal2InterruptEnable
PWM submodule VAL2 compare interrupt.

enumerator kPWM__ CompareVal3InterruptEnable
PWM submodule VAL3 compare interrupt.

enumerator kPWM_ CompareValdlnterrupt Enable
PWM submodule VAL4 compare interrupt.

enumerator kPWM__ CompareVal5InterruptEnable
PWM submodule VALS5 compare interrupt.

enumerator kPWM__ CaptureXOInterruptEnable
PWM submodule capture X0 interrupt.

enumerator kPWM__ CaptureX1InterruptEnable
PWM submodule capture X1 interrupt.

enumerator kPWM__ CaptureBOInterruptEnable
PWM submodule capture B0 interrupt.

enumerator kPWM__CaptureBlInterruptEnable
PWM submodule capture B1 interrupt.

enumerator kPWM _ CaptureAOInterruptEnable
PWM submodule capture AO interrupt.

enumerator kPWM_ CaptureAllnterruptEnable
PWM submodule capture A1l interrupt.

enumerator kPWM__ ReloadInterruptEnable
PWM submodule reload interrupt.

enumerator kPWM_ ReloadErrorInterruptEnable
PWM submodule reload error interrupt.

enumerator kPWM__ALLSubModulelnterruptEnable
enum _pwm_ sm_ status_flags

The enumeration for PWM submodule status flags.

Values:

enumerator kPWM_ CompareValOFlag
PWM submodule VALO compare flag.

280

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPWM_ CompareVallFlag
PWM submodule VAL1 compare flag.

enumerator kPWM__ CompareVal2Flag
PWM submodule VAL2 compare flag.

enumerator kPWM_ CompareVal3Flag
PWM submodule VAL3 compare flag.

enumerator kPWM__ CompareValdFlag
PWM submodule VAL4 compare flag.

enumerator kPWM__ CompareVal5Flag
PWM submodule VALS compare flag.

enumerator kPWM_ CaptureX0Flag
PWM submodule capture X0 flag.

enumerator kPWM_ CaptureX1Flag
PWM submodule capture X1 flag.

enumerator kPWM_ CaptureBOFlag
PWM submodule capture BO flag.

enumerator kPWM_ CaptureB1Flag
PWM submodule capture B1 flag.

enumerator kPWM_ CaptureAOFlag
PWM submodule capture A0 flag.

enumerator kPWM_ CaptureAlFlag
PWM submodule capture Al flag.

enumerator kPWM_ ReloadFlag
PWM submodule reload flag.

enumerator kPWM_ ReloadErrorFlag
PWM submodule reload error flag.

enumerator kPWM_ RegUpdatedFlag
PWM submodule registers updated flag.

enumerator kPWM__ALLSMStatusFlags

enum _ pwm_ sm_ typical output_mode
The enumeration for some PWM submodule PWM_A/B typical output mode.
Values:

enumerator kPWM__ SignedCenterAligned

Center-aligned PWM with signed compare value.
enumerator kPWM__ CenterAligned

Center-aligned PWM with unsigned compare value.
enumerator kPWM__ SignedEdgeAligned

Edge-aligned PWM with signed compare value.

enumerator kPWM__EdgeAligned
Edge-aligned PWM with signed compare value.

2.59. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 281

MCUXpresso SDK Documentation, Release 25.09.00

enum _ pwm_ fault_ protection_ channel
The enumeration for PWM fault protection channel number.

Values:

enumerator kPWM__ FaultProtection0
PWM fault protection channel 0

enum _pwm_ fault_ protection_ interrupt_ enable
The enumeration for PWM module fault protection channel interrupt enable.

Values:

enumerator kPWM__ FaultOInterruptEnable
Fault protection channel fault 0 interrupt

enumerator kPWM_ FaultlInterruptEnable
Fault protection channel fault 1 interrupt

enumerator kPWM_ Fault2InterruptEnable
Fault protection channel fault 2 interrupt

enumerator kPWM__ Fault3InterruptEnable
Fault protection channel fault 3 interrupt

enumerator kPWM__ ALLfaultInterruptEnable

enum _ pwm_ fault_ protection_ status_flags
The enumeration for PWM module fault protection status flags.

Values:

enumerator kPWM_ FaultOFlag
Fault protection channel fault 0 flag, set within two CPU cycles after a transition to
active on the fault input pin 0.

enumerator kPWM_ Fault1Flag

Fault protection channel fault 1 flag, set within two CPU cycles after a transition to
active on the fault input pin 1.

enumerator kPWM_ Fault2Flag

Fault protection channel fault 2 flag, set within two CPU cycles after a transition to
active on the fault input pin 2.

enumerator kPWM_ Fault3Flag

Fault protection channel fault 3 flag, set within two CPU cycles after a transition to
active on the fault input pin 3.

enumerator kPWM_ FaultPinOActiveFlag
Fault protection channel fault input pin 0 active flag.

enumerator kPWM_ FaultPinlActiveFlag
Fault protection channel fault input pin 1 active flag.

enumerator kPWM_ FaultPin2ActiveFlag
Fault protection channel fault input pin 2 active flag.

enumerator kPWM_ FaultPin3ActiveFlag
Fault protection channel fault input pin 3 active flag.

enumerator kPWM__ALLFaultStatusFlags

282 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enum _pwm_ fault_active_level
The enumeration for PWM fault protection channel number.

Values:

enumerator kPWM_ Logic0
Alogic 0 on the fault input indicates a fault condition.

enumerator kPWM_ Logicl
Alogic 0 on the fault input indicates a fault condition.

typedef enum _pwm_sm_number pwm_sm_number_ t
The enumeration for PWM submodule number.

typedef enum _pwm_sm_count_clock_source pwm_sm__count_ clock_source_t
The enumeration for PWM submodule clock source.

typedef enum _pwm_sm_count_clock_prescaler pwm_sm_ count_ clock_prescaler_t
The enumeration for PWM submodule prescaler factor selection for clock source.

typedef enum _pwm_sm_count_init_source pwm_sm_ count_ init_source_t
The enumeration for PWM submodule counter initialization options.
typedef enum _pwm_ml2_stretch_count_clock_prescaler
pwm_ ml2_stretch count_clock prescaler_t
The enumeration for PWM stretch IPBus clock count prescaler for
mux0_trig/mux1_trig/out0_trig/outl_trig/pwma_trig/pwmb_trig.
typedef struct _pwm_sm_counter_config pwm_sm_ counter_ config_t
The structure for configuring PWM submodule counter logic.

typedef enum _pwm_sm_reload_signal_select pwm_sm_ reload_signal select_t
The enumeration for PWM submodule local reload take effect timing.

typedef enum _pwm_sm_local_reload_effect_timing pwm_sm_ local_reload_ effect_ timing_t
The enumeration for PWM submodule local reload take effect timing.

typedef enum _pwm_sm_local_reload_oportunity pwm_sm_local reload_oportunity_t
The enumeration for PWM submodule reload opportunities selection under
kPWM_ReloadWithLocalReloadOportunity.

typedef struct _pwm_sm_reload_logic_config pwm_sm_ reload logic config t
The structure for configuring PWM submodule reload logic.

typedef enum _pwm_sm_val compare_mode pwm_sm_ val_compare_mode_t
The enumeration for PWM submodule VALn register compare mode.

typedef enum _pwm_sm_val register pwm_sm_ val_register_t
The enumeration for PWM submodule VAL registers.

typedef struct _pwm_sm_value_register_config pwm_sm_ value register config t
The structure for configuring PWM submodule value registers.

typedef enum _pwm_sm_force_signal_select pwm_sm_ force signal select_t
The enumeration for PWM submodule FORCE_OUT source which can trigger force logic
output update.

typedef enum _pwm_sm_force_deadtime_source pwm_sm_ force_ deadtime_source_t
The enumeration for PWM submodule force out logic output (PWM23 and PWM45) source,
which will transfer to output logic when a FORCE_OUT signal is asserted.

typedef enum _pwm_sm_force_software_output_value pwm_sm_ force software_output_value t
The enumeration for PWM submodule software controlled force out signal value.

2.59. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 283

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _pwm_sm_force_logic_config pwm_sm_ force_logic_config_t
The structure for configuring PWM submodule force logic.

typedef enum _pwm_sm_deadtime_logic_mode pwm_sm_ deadtime_logic_mode_t
The enumeration for PWM submodule deadtime logic mode, which decide how the dead-
time logic process the force logic output signal.

typedef struct _pwm_sm_deadtime_value pwm_ sm_ deadtime_ value_t
The structure of the inserted dead time value, applies only to KPWM_Complementaryxxx
mode.

typedef struct _pwm_sm_deadtime_logic_config pwm_sm_ deadtime_ logic_config t
The structure for configuring PWM submodule force out logic, works on the deadtime logic
output.

typedef enum _pwm_sm_fracval register pwm_sm_ fracval_register_t
The enumeration for PWM submodule FRACVAL registers.

typedef struct _pwm_sm_fractional _delay_logic_config pwm_sm_ fractional delay_logic_config_t
The structure for configuring PWM submodule fractional delay logic, works on the dead-
time logic output.

typedef enum _pwm_sm_mux_trigger_source pwm_sm_ mux_ trigger source_t
The enumeration for PWM submodule output logic final trigger output port signal.

typedef enum _pwm_sm_pwm_output_on_fault pwm_sm_pwm_ output_on_ fault_t
The enumeration for PWM submodule output logic PWM output fault status.

typedef enum _pwm_sm_pwmx_signal _select pwm_sm_ pwmx_ signal select_t
The enumeration for PWM submodule output logic PwmX signal input source (before out-
put polarity/mask/enable control).

typedef enum _pwm_sm_pwm_out pwm_sm_pwm_out_t
The enumeration for PWM submodule PWM output.

typedef struct _pwm_sm_output_logic_config t pwm_sm_output_logic config t
The structure for configuring PWM submodule output logic.

typedef enum _pwm_sm_input_capture_pin pwm_sm_ input_ capture_pin_t
The enumeration for PWM submodule input capture pins.

typedef enum _pwm_sm_input_capture_source pwm_ sm__input_ capture_source_t
The enumeration for PWM submodule input capture source.

typedef enum _pwm_sm_input_capture_edge pwm_ sm_ input_ capture_edge_t
The enumeration for PWM submodule input capture edge when choose raw input as cap-
ture source.

typedef enum _pwm_sm_input_capture_register pwm_sm_ input_ capture_register t
The enumeration for PWM submodule input capture value register.

typedef enum _pwm_sm_input_capture_filter_count pwm_sm_ input_ capture_filter count_t

The enumeration for input filter count Represent the number of consecutive samples that
must agree prior to the input filter accepting an input transition.

typedef struct _pwm_sm_input_capture_config pwm_sm_ input_ capture_config_t
The structure for configuring PWM submodule input capture logic.

Note: When choosing kPWM_InputEdgeCounter as circuit 0/1 capture source, the eCir-
cuitOCaptureEdge and eCircuit1CaptureEdge selected trigger edge will be ignored, but still

284 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

need place a value other than kPWM_Noedge in either or both of the eCaptureCircuit0
and/or CaptureCircuitl fields in order to enable one or both of the capture registers.

typedef enum _pwm_sm_capture_dma_source pwm_ sm_ capture_ dma_ source_ t
The enumeration for the source which can trigger the DMA read requests for the capture
FIFOs.

typedef struct _pwm_sm_capture_dma_config pwm_sm__capture__dma_ config_t
The structure for configuring PWM submodule read capture DMA.

typedef struct _pwm_sm_dma_config pwm_sm_ dma_ config_t
The structure for configuring PWM submodule DMA.
typedef struct _pwm_sm_fault_input_mapping pwm_sm_ fault_input_ mapping_ t

The enumeration for PWM submodule output fault enable mask for one fault protection
channel.

The structure for configuring PWM submodule fault input disable mapping.

Note: The channel 0 input 0 and channel 1 input 0 are different pins.

Note: Each PWM output can be mapping anyone or more fault inputs. The mapped fault
protection channel inputs can disable PWM output.

typedef enum _pwm_sm_status_flags pwm_sm_ status_flags t
The enumeration for PWM submodule status flags.

typedef enum _pwm_sm_typical output_mode pwm_ sm_ typical output_mode_t
The enumeration for some PWM submodule PWM_A/B typical output mode.

typedef struct _pwm_sm_config pwm_ sm_ config_t
PWM submodule config structure.
This structure holds the configuration settings for the PWM peripheral. To initialize this
structure to reasonable defaults, call the PWM_GetDefaultConfig() function and pass a
pointer to your config structure instance.

typedef enum _pwm _fault_protection_channel pwm_ fault_ protection_ channel t
The enumeration for PWM fault protection channel number.

typedef enum _pwm_fault_active_level pwm_ fault_input_ active_level t
The enumeration for PWM fault protection channel number.

typedef struct _pwm_fault_protection_input_config pwm_ fault_ protection__input_ config_t

typedef struct _pwm_fault_protection_config pwm_ fault_ protection_ config_t

The structure for configuring PWM fault protection channel, a PWM module can have mul-
tiple fault protection channels, PWM sub-module can choose to mapping any one or more
fault input from fault protection channels.

typedef struct _pwm_config pwm_ config_t

PWM module config structure which contain submodule config structure pointers and fault
protection filter config structure pointers.

2.59. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 285

MCUXpresso SDK Documentation, Release 25.09.00

Note: Need use submodule structure address to init the structure pointers, when the sub-
module or fault protection structure pointers is NULL, it will be ignored by PWM_Init APIL.
This can save stack space when only one or two submodules are used.

struct _pwm_ sm_ counter_ config
#include <fsl_pwm.h> The structure for configuring PWM submodule counter logic.

Public Members

pwm_sm_count_clock_source_t eCountClockSource
Configures PWM submodule counter clock source.

pwm_sm_count_clock_prescaler_t eCountClockPrescaler
Configures PWM submodule counter clock source prescaler.

pwm_sm_count_init_source_t eCountInitSource
Configures PWM submodule counter initial source.

bool bEnableForcelnitial
Enable force-controlled initialization. The assert FORCE_OUT signal can to initialize
the counter without regard to the selected initial source.

uint16_t ul6PhaseDelayValue
Defines the delay from the master sync signal of submodule 0 to this submod-
ule counter (the unit of delay is the PWM clock cycle), only works when chose
kPWM_InitOnMasterSync as initial source.

struct _pwm_ sm_ reload_logic_ config
#include <fsl_ pwm.h> The structure for configuring PWM submodule reload logic.

Public Members

pwm_sm_reload_signal_select_t eReloadSignalSelect
Configures PWM submodule RELOAD signal source to be local reload signal or master
reload signal.

pwm_sm_local_reload_effect_timing _t eLoclReloadEffectTime
Configures PWM submodule local reload signal effective timing when choose it as
RELOAD signal source.

bool bEnableFullCycleReloadOportunity
Enable generate a reload opportunity on PWM half cycle (count from INIT value to
VALO).

bool bEnableHalfCycleReload Oportunity
Enable generate a reload opportunity on PWM full cycle (count from INIT value to
VAL1).

pwm_sm_local_reload_oportunity_t eLocalReloadOportunity
Configures PWM submodule reload frequency when using local reload opportunities
mode .

struct _pwm_ sm_ value_register config
#include <fsl_pwm.h> The structure for configuring PWM submodule value registers.

286 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

uint16_t ul6CounterInitial Value

Configures PWM submodule counter initial value.
uint16_t ul6ValRegister0

Configures PWM submodule value register 0 (VALO) value.
uint16_t ul6ValRegisterl

Configures PWM submodule value register 1 (VAL1) value.
uint16_t ul6ValRegister2

Configures PWM submodule value register 2 (VAL2) value.
uint16_t ul6ValRegister3

Configures PWM submodule value register 3 (VAL3) value.
uint16_t ul6ValRegister4

Configures PWM submodule value register 4 (VAL4) value.
uint16_t ul6ValRegister5

Configures PWM submodule value register 5 (VAL5) value.

struct _pwm_ sm_ force_logic_ config

#include <fsl_pwm.h> The structure for configuring PWM submodule force logic.

Public Members

uint8_t bitPWM23Outputlnitial Vaule
Configures PWM submodule compare output x (PwmX) initial value.

uint8_t bitPWM450utputlnitial Vaule
Configures PWM submodule compare output A (PwmaA) initial value.

uint8_t bitPWMXOutputlnitial Vaule
Configures PWM submodule compare output B (PwmB) initial value.

pwm_sm_force_signal_select_t eForceSignalSelect
Configures PWM submodule force out select update trigger source.

pwm_sm_force_software_output_value_t eSoftOutputFor23
Configures PWM submodule force out PwmA value when select software as output
source.

pwm_sm_force_software_output_value_t eSoftOutputFord5
Configures PWM submodule force out PwmB value when select software as output
source.

pwm_sm_force_deadtime_source_t eForceOutput23
Configures the source of Pwm23, which will be force to deadtime logic.

pwm_sm_force_deadtime_source_t eForceOutput45
Configures the source of Pwm45, which will be force to deadtime logic.

struct _pwm_ sm_ deadtime_ value
#include <fsl pwm.h> The structure of the inserted dead time value, applies only to
KPWM_Complementaryxxx mode.

struct _pwm_ sm_ deadtime_ logic_ config

#include <fsl_pwm.h> The structure for configuring PWM submodule force out logic, works
on the deadtime logic output.

2.59. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 287

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

pwm_sm_deadtime_logic_mode_t eMode
The mode in which Deadtime logic process the force logic output signal.

pwm_sm_deadtime_value_t sDead TimeValue0

Control the deadtime during 0 to 1 transitions of the PWM_23 output (assuming normal
polarity). When disable fractional delays, the maximum value is OX7FF which repre-
sents 2047 cycles of IP bus cycles. When enable fractional delays, the maximum value
is OXFFFF which represents 2047 31/32 cycles cycles of IP bus cycles.

pwm_sm_deadtime_value_t sDead TimeValuel

Control the deadtime during 0 to 1 transitions of the PWM_45 output (assuming normal
polarity). When disable fractional delays, the maximum value is 0x7FF which repre-
sents 2047 cycles of IP bus cycles. When enable fractional delays, the maximum value
is OXFFFF which represents 2047 31/32 cycles cycles of IP bus cycles.

struct _pwm_ sm_ fractional delay_logic_ config

#include <fsl_pwm.h> The structure for configuring PWM submodule fractional delay logic,
works on the deadtime logic output.

Public Members

uint8_t bitsFracValuel
Configures PWM submodule compare register VAL1 fractional delay value, the unit is
1/32 IP bus clock.

bool bEnableVallFractionalDelay
Enable the fractional delay feature of bitsFracValuel.

uint8_t bitsFracValue2

Configures PWM submodule compare register VAL2 fractional delay value, the unit is
1/32 IP bus clock.

uint8_t bitsFracValue3

Configures PWM submodule compare register VAL3 fractional delay value, the unit is
1/32 IP bus clock.

bool bEnableVal23Fractional Delay
Enable the fractional delay feature of bitsFracValue2 and bitsFracValue3.

uint8_t bitsFracValue4

Configures PWM submodule compare register VAL4 fractional delay value, the unit is
1/32 IP bus clock.

uint8_t bitsFracValueb

Configures PWM submodule compare register VAL5 fractional delay value, the unit is
1/32 IP bus clock.

bool bEnableVal45Fractional Delay
Enable the fractional delay feature of bitsFracValue4 and bitsFracValue5.

struct _pwm_ sm_ output_ logic_ config t

#include <fsl_pwm.h> The structure for configuring PWM submodule output logic.

Public Members

bool bVal0TriggerEnable
Enable VALO register compare event trigger.

288

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

bool bVallTriggerEnable
Enable VAL1 register compare event trigger.

bool bVal2TriggerEnable
Enable VALZ2 register compare event trigger.

bool bVal3TriggerEnable
Enable VAL3 register compare event trigger.

bool bVal4TriggerEnable
Enable VAL4 register compare event trigger.

bool bVal5TriggerEnable
Enable VALS5 register compare event trigger.

bool bEnableTriggerPostScaler
True: Trigger outputs are generated only during the final PWM period prior to a reload
opportunity, false : Trigger outputs are generated during every PWM period. Config-
ures PWM submodule mux trigger output signal 0 source.
pwm_sm_mux_trigger_source_t eMuxTrigger0
Configures PWM submodule mux trigger output signal 1 source.

pwm_sm_mux_trigger._source_t eMuxTriggerl
Configures PWM submodule PWM_X output source (before polarity/mask/enable con-
trol).

bool bInvertPwmxOutput
True : invert PWM_X output, false : no invert PWM_X output.

bool bInvertPwmaQutput
True : invert PWM_A output, false : no invert PWM_A output.

bool bInvertPwmbQutput
True : invert PWM_B output, false : no invert PWM_B output.

bool bMaskPwmxOutput
True : PWM_X output masked, false : PWM_X output normal. Mask bit is buffered, and
take effect until FORCE_OUT event or software update command.

bool bMaskPwmaQutput
True : PWM_A output masked, false : PWM_A output normal. Mask bit is buffered, and
take effect until FORCE_OUT event or software update command.

bool bMaskPwmbQOutput
True : PWM_B output masked, false : PWM_B output normal. Mask bit is buffered, and
take effect until FORCE_OUT event or software update command.

bool bEnablePwmxQOutput
True : Enable PWM_X output. false : PWM_Xis disabled and output is tristated.

bool bEnablePwmaQutput
True : Enable PWM_A output. false : PWM_A is disabled and output is tristated.

bool bEnablePwmbOutput

True : Enable PWM_B output. false : PWM_B is disabled and output is tristated. Con-
figures PWM submodule PWM_X output during fault status (only works when fault
status enable).

pwm_sm_pwm_output_on_fault_t ePwmxFaultState

Configures PWM submodule PWM_A output during fault status (only works when fault
status enable).

2.59. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 289

MCUXpresso SDK Documentation, Release 25.09.00

pwm_sm_pwm_output_on_fault_t ePwmaFaultState

Configures PWM submodule PWM_B output during fault status (only works when fault
status enable).

struct _pwm_ sm_ input_ capture_ config

#include <fsl_ pwm.h> The structure for configuring PWM submodule input capture logic.

Note: When choosing kPWM_InputEdgeCounter as circuit 0/1 capture source, the eCir-
cuitOCaptureEdge and eCircuit1CaptureEdge selected trigger edge will be ignored, but still
need place a value other than kPWM_Noedge in either or both of the eCaptureCircuit0
and/or CaptureCircuitl fields in order to enable one or both of the capture registers.

Public Members

bool bEnableInputCapture
True: enable the input capture process, false : disable the input capture process.

pwm_sm_input_capture_source_t elnCaptureSource
Configures capture circuit 0/1 input source

pwm_sm_input_capture_edge_t eCircuitOCaptureEdge
Configures which edge causes a capture for capture circuit 0, will be ignore when use
edge counter as capture source.

pwm_sm_input_capture_edge_t eCircuit1CaptureEdge
Configures which edge causes a capture for capture circuit 1, will be ignore when use
edge counter as capture source.

bool bEnableOneShotCapture
True: Enable one-shot capture mode, the bEnableInputCapture will self-cleared when
one or more of the enabled capture circuits has had a capture event; false: Capture
circuit 0/1 will perform capture continue;

uint8_t bitsCaptureFifoWatermark
Watermark level for circuit 0/1 capture FIFO. The capture flags in the status register
will set if the word count in the circuit 0/1 capture FIFO is greater than this watermark
level

uint8_t u8EdgeCounterCompareValue
Edge counter compare value, used only if edge counter is used as capture circuit 0/1
input source

uint8_t u8FilterPeriod
Sampling period (in IPBus clock cycles) of the input filter, set to 0 to bypass the filter.

pwm_sm_input_capture_filter_count_t eFilterCount
Filter sample count.

struct _pwm_ sm_ capture_ dma,_ config

#include <fsl_pwm.h> The structure for configuring PWM submodule read capture DMA.

Public Members

bool bEnableCaptureDMA
Enables DMA read requests for the Capture FIFOs.

290

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

pwm_sm_capture_dma_source_t eCaptureDMASource
Select the source to enables DMA read requests for the Capture FIFOs. Will be ignored
when bEnableCaptureDMA be false.
struct _pwm_ sm_ dma_ config
#include <fsl_ pwm.h> The structure for configuring PWM submodule DMA.

Public Members

bool bEnableWriteValDMA
STS[RF] set enables DMA write requests for VALX and FRACVALX registers.

bool bEnableReadCaptureX0DMA
STS[CFXO0] set enables DMA read requests for Capture X0 FIFO. And X0 FIFO watermark
is selected for sCaptureDma pwm_sm_capture_dma_config_t.

bool bEnableReadCaptureX1DMA
STS[CFX1] set enables DMA read requests for Capture X1 FIFO. And X1 FIFO watermark
is selected for sCaptureDma pwm_sm_capture_dma_config_t.

bool bEnableReadCaptureAODMA
STS[CFAOQ] set enables DMA read requests for Capture A0 FIFO. And A0 FIFO watermark
is selected for sCaptureDma pwm_sm_capture_dma_config_t.

bool bEnableReadCaptureAIDMA
STS[CFA1] set enables DMA read requests for Capture A1 FIFO. And A1 FIFO watermark
is selected for sCaptureDma pwm_sm_capture_dma_config_t.

bool bEnableReadCaptureBODMA
STS[CFBO] set enables DMA read requests for Capture BO FIFO. And BO FIFO watermark
is selected for sCaptureDma pwm_sm_capture_dma_config_t.

bool bEnableReadCaptureBIDMA
STS[CFB1] set enables DMA read requests for Capture B1 FIFO. And B1 FIFO watermark
is selected for sCaptureDma pwm_sm_capture_dma_config_t.

pwm_sm_capture_dma_config t sCaptureDma
DMA read requests for the capture FIFOs configure.

struct _pwm_ sm_ fault_input_ mapping

#include <fsl_ pwm.h> The enumeration for PWM submodule output fault enable mask for
one fault protection channel.

The structure for configuring PWM submodule fault input disable mapping.

Note: The channel 0 input 0 and channel 1 input 0 are different pins.

Note: Each PWM output can be mapping anyone or more fault inputs. The mapped fault
protection channel inputs can disable PWM output.

Public Members

bool bFaultInputOMapping
Mapping fault input 0 (from fault protection channel 0) to PWM output.

2.59. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 291

MCUXpresso SDK Documentation, Release 25.09.00

bool bFaultInput1Mapping
Mapping fault input 1 (from fault protection channel 0) to PWM output.

bool bFaultInput2Mapping
Mapping fault input 2 (from fault protection channel 0) to PWM output.

bool bFaultInput3Mapping
Mapping fault input 3 (from fault protection channel 0) to PWM output.

bool bFaultInput4Mapping
Mapping fault input 4 (from fault protection channel 1) to PWM output.

bool bFaultInputsMapping
Mapping fault input 5 (from fault protection channel 1) to PWM output.

bool bFaultInput6Mapping
Mapping fault input 6 (from fault protection channel 1) to PWM output.

bool bFaultInput7Mapping
Mapping fault input 7 (from fault protection channel 1) to PWM output.

struct _pwm_ sm_ config
#include <fsl_ pwm.h> PWM submodule config structure.

This structure holds the configuration settings for the PWM peripheral. To initialize this
structure to reasonable defaults, call the PWM_GetDefaultConfig() function and pass a
pointer to your config structure instance.

Public Members

bool enableDebugMode
true: PWM continues to run in debug mode; false: PWM is paused in debug mode.

bool enableWaitMode
true: PWM continues to run in WAIT mode; false: PWM is paused in WAIT mode.

bool enableRun

true: PWM submodule is enabled; false: PWM submodule is disabled. Configures sub-
module value registers compare mode, only can be written one time.

pwm_sm_counter_config_t sCounterConfig
Submodule counter logic config.

pwm_sm_reload_logic_config_t sReloadConfig
Submodule reload control logic config.

pwm_sm_value_register_config_t sValRegisterConfig
Submodule value registers config.

pwm_sm_force_logic_config t sForceConfig
Submodule force out logic config.

pwm_sm_deadtime_logic_config_t sDeadTimeConfig
Submodule deadtime logic config.

pwm_sm_fractional_delay_logic_config t sFracDelayConfig
Submodule fractional logic config.

pwm_sm_output_logic_config_t sOutputConfig
Submodule output logic config.

292 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

pwm_sm_input_capture_config_t sinCaptureConfig[3]
Submodule input capture config for PWM_X/A/B pins.

pwm_sm_dma_config_t sDMAConfig
Submodule DMA config. PWM_X output fault input mapping, determines which fault
inputs can disable PWM_X output.

pwm_sm_fault_input_mapping_t sPwmXFaultInputMapping
PWM_A output fault input mapping, determines which faultinputs can disable PWM_A
output.

pwm_sm_fault_input_mapping_t sPwmAFaultInputMapping
PWM_B output fault input mapping, determines which faultinputs can disable PWM_B
output.

pwm_sm_fault_input_mapping_t sPwmBFaultInputMapping
Submodule interrupt enable mask, logic OR of _pwm_sm_interrupt_enable.

pwm_ml2_stretch_count_clock_prescaler._t eStrBusClock
PWM stretch IPBus clock count prescaler.

struct _pwm_ fault_ protection__input_ config
#include <fsl_pwm.h>

Public Members

pwm_fault_input_active_level_t eFaultActiveLevel
Select the active logic level of the fault input.

bool bEnableAutoFaultClear

True : Enable automatic fault clearing, fault recovery (PWM outputs can re-enable)
occurs when FSTS[FFPINX] is clear , false : Use manual fault clearing, fault recov-
ery (PWM outputs can re-enable) occurs when FSTS[FFLAGX] is manual clear (and
FSTS[FFPINX] is clear).

bool bEnableManualFaultClearSafeMode
True : fault recovery (PWM outputs can re-enable) occurs when FSTS[FFLAGX] is man-
ual clear and FSTS[FFPINX] is clear, false : fault recovery (PWM outputs can re-enable)
occurs when FSTS[FFLAGX] is manual clear.

bool bEnableFaultFullCycleRecovery
Enable full cycle fault recovery, which make PWM outputs are re-enabled at the start
of a half cycle after fault recovery occurs.

bool bEnableFaultHalfCycleRecovery
Enable half cycle fault recovery, which make PWM outputs are re-enabled at the start
of a half cycle after fault recovery occurs.

bool bEnableFaultNoCombinationalPath
True : The fault inputs are combined with the filtered and latched fault signals to dis-
able the PWM outputs, false : the filtered and latched fault signals are used to disable
the PWM outputs.

bool bEnableFaultInterrupt
Enable the fault input interrupt.

struct _pwm_ fault_ protection_ config
#include <fsl_pwm.h> The structure for configuring PWM fault protection channel, a PWM

module can have multiple fault protection channels, PWM sub-module can choose to map-
ping any one or more fault input from fault protection channels.

2.59. eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver 293

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

bool bEnableFaultGlitchStretch
Fault Glitch Stretch Enable: A logic 1 means that input fault signals will be stretched
to at least 2 IPBus clock cycles.

uint8_t bitsFaultFilterCount
Configures PWM fault protection channel fault filter count.

uint8_t uSFaultFilterPeriod
Configures PWM fault protection channel fault filter period, value of 0 will bypass the
filter.
struct _pwm__config

#include <fsl_pwm.h> PWM module config structure which contain submodule config struc-
ture pointers and fault protection filter config structure pointers.

Note: Need use submodule structure address to init the structure pointers, when the sub-
module or fault protection structure pointers is NULL, it will be ignored by PWM_Init API.
This can save stack space when only one or two submodules are used.

Public Members

pwm_sm_config t *psPwmSubmoduleConfig[1]

<PWM submodule config. PWM fault protection channel config, will take effect for all
submodules.

2.60 The Driver Change Log
2.61 eFlexPWM Peripheral and Driver Overview

2.62 QSCI: Queued Serial Communications Interface Driver

void QSCI_GetDefaultConfig(gsci_config_t *psConfig, uint32_t u32BaudRateBps, uint32_t
u32SrcClockHz)

Sets the QSCI configuration structure to default values.

The purpose of this API is to initialize the configuration structure to default value for
QSCI_Init to use. Use the unchanged structure in QSCI_Init or modify the structure before
calling QSCI_Init. This is an example:

gsci_config t sConfig;
QSCI_GetDefaultConfig(&sConfig, 115200, 12000000U);
QSCI__Init(QSCIO, &config);

Parameters
* psConfig — Pointer to configuration structure.
* u32BaudRateBps — Baudrate setting.
* u32SrcClockHz — The clock source frequency for QSCI module.

294 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

status_t QSCI_Init(QSCI_Type *base, gsci_config_t *psConfig)

Initializes the QSCI instance with a user configuration structure.

This function configures the QSCI module with the customed settings. User can config-
ure the configuration structure manually or get the default configuration by using the
QSCI_GetDefaultConfig function. The example below shows how to use this API to configure
QSCL

gsci__config_t sConfig;
QSCI_GetDefaultConfig(&sConfig, 115200, 12000000U);
QSCI_Init(QSCIO0, &sConfig);

Parameters

* base — QSCI peripheral base address.

* psConfig — Pointer to the user-defined configuration structure.
Return values

* kStatus_ QSCI_BaudrateNotSupport — Baudrate is not supported in the cur-
rent clock source.

* kStatus Success — Set baudrate succeeded.

void QSCI_ Deinit(QSCI_Type *base)

Deinitializes a QSCI instance.
This function waits for transmiting complete, then disables TX and RX.
Parameters

* base — QSCI peripheral base address.

static inline uint16_t QSCI_ GetStatusFlags(QSCI_Type *base)

Gets QSCI hardware status flags.
Parameters
* base — QSCI peripheral base address.

Returns
QSCI status flags, can be a single flag or several flags in _gsci_status_flags com-
bined by OR.

void QSCI__ClearStatusFlags(QSCI_Type *base, uint16_t ul6StatusFlags)

Clears QSCI status flags.

This function clears QSCI status flags. Members in kQSCI_GroupOFlags can’t be cleared by
this function, they are cleared or set by hardware.

Parameters
* base — QSCI peripheral base address.

*» ul6StatusFlags — The status flag mask, can be a single flag or several flags
in _gsci_status_flags combined by OR.

void QSCI__EnableInterrupts(QSCI_Type *base, uint8_t u8Interrupts)

Enables QSCI interrupts according to the provided mask.

This function enables the QSCI interrupts according to the provided mask. The mask is a
logical OR of enumeration members in _gsci_interrupt_enable.

Parameters

* base — QSCI peripheral base address.

2.62. QSCI: Queued Serial Communications Interface Driver 295

MCUXpresso SDK Documentation, Release 25.09.00

* u8Interrupts — The interrupt source mask, can be a single source or several
sources in _gsci_interrupt_enable combined by OR.

void QSCI_ DisableInterrupts(QSCI_Type *base, uint8_t u8Interrupts)
Disables QSCI interrupts according to the provided mask.

This function disables the QSCI interrupts according to the provided mask. The mask is a
logical OR of enumeration members in _gsci_interrupt_enable.

Parameters
* base — QSCI peripheral base address.

* u8Interrupts — The interrupt source mask, can be a single source or several
sources in _qsci_interrupt_enable combined by OR.

uint8_t QSCI_GetEnabledInterrupts(QSCI_Type *base)
Gets the enabled QSCI interrupts.

This function gets the enabled QSCI interrupts. The enabled interrupts are returned as the
logical OR value of the enumerators _qsci_interrupt_enable.

Parameters
* base — QSCI peripheral base address.

Returns
The interrupt source mask, can be a single source or several sources in
_qsci_interrupt_enable combined by OR.

static inline void QSCI_Reset(QSCI_Type *base)
Sets the QSCI register value to reset value.

Parameters
* base — QSCI peripheral base address.

static inline void QSCI__EnableTx(QSCI_Type *base, bool bEnable)
Enables or disables the QSCI transmitter.

This function enables or disables the QSCI transmitter.
Parameters
* base — QSCI peripheral base address.
* bEnable — True to enable, false to disable.

static inline void QSCI__EnableRx(QSCI_Type *base, bool bEnable)
Enables or disables the QSCI receiver.

This function enables or disables the QSCI receiver.
Parameters
* base — QSCI peripheral base address.
* bEnable — True to enable, false to disable.

static inline void QSCI_ EnableStopInWait(QSCI_Type *base, bool bEnable)
Enables/disables stop in wait.

Parameters
* base — QSCI peripheral base address.

* bEnable — true to enable, QSCI stops working in wait mode, false to disable,
QSCI keeps working in wait mode

296 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

static inline void QSCI_ Enable9bitMode(QSCI_Type *base, bool bEnable)
Enables/Disables 9-bit data mode for QSCI.

Parameters
* base — QSCI peripheral base address.
* bEnable — true to enable, false to disable.

static inline void QSCI_ EnableStandbyMode(QSCI_Type *base, bool bEnable)
Enables/Disables standby mode.

When QSCI is in standby mode, further receiver interrupt requests are inhibited waiting
to be wake up. The wakeup mode can be configured by QSCI_SetWakeupMode. Hardware
wakes the receiver by automatically disabling standby.

Parameters
* base — QSCI peripheral base address.
* bEnable — true to enable, false to disable.

static inline void QSCI__EnableLINSlaveMode(QSCI_Type *base, bool bEnable)
Enable/Disable LIN slave mode.

If enabled QSCI is in LIN slave mode. When break is detected, the baudrate register is
automatically adjusted to match the value measured from the sync character that follows.

Parameters
* base — QSCI peripheral base address.
* bEnable — true to enable, false to disable.

static inline void QSCI_ EnableStopHold(QSCI_Type *base, bool bEnable)
Enable/Disable stop mode hold off.

When enabled, if chip level stop mode occurs and transmiter or receiver is still busy, QSCI
will hold off stop mode until both transmiter and receiver are idle.

Parameters
* base — QSCI peripheral base address.
* bEnable — true to enable, false to disable.

static inline void QSCI_ SetTransferMode(QSCI_Type *base, gsci_transfer_mode_t
eTransferMode)

Sets the QSCI transfer mode.
Parameters
* base — QSCI peripheral base address.

¢ eTransferMode — The QSCI tx/rx loop mode, kQSCI_Normal to use nor-
mal transfer, kQSCI_LoopInternal to let internal tx feed back to rx,
kQSCI_SingleWire to use single wire mode using tx pin as tx and rx.

static inline void QSCI__SetWakeupMode(QSCI_Type *base, gsci wakeup_mode_t eWakeupMode)
Sets wakeup mode for QSCI.
Parameters
* base — QSCI peripheral base address.

* eWakeupMode - Wakeup mode, kQSCI_WakeupOnldleLine or
kQSCI_WakeupOnAddressMark.

2.62. QSCI: Queued Serial Communications Interface Driver 297

MCUXpresso SDK Documentation, Release 25.09.00

static inline void QSCI_SetPolarityMode(QSCI_Type *base, gsci_polarity_mode_t ePolarityMode)
Sets polarity mode for QSCI.

Parameters
* base — QSCI peripheral base address.

» ePolarityMode — Polarity = mode, kQSCI_PolarityNormal or
kQSCI_PolarityInvert.

static inline void QSCI_ SetParityMode(QSCI_Type *base, gsci_parity_mode_t eParityMode)
Sets parity mode for QSCI.

Parameters
* base — QSCI peripheral base address.

* eParityMode — Polarity mode, kQSCI_ParityDisabled, kQSCI_ParityEven or
kQSCI_ParityOdd.

status_t QSCI__SetBaudRate(QSCI_Type *base, uint32_t u32BaudRateBps, uint32_t
u32SrcClockHz)

Sets the QSCI instance baud rate.

This function configures the QSCI module baud rate. This function can be used to update
QSCI module baud rate after the QSCI module is initialized by the QSCI_Init.

Parameters
* base — QSCI peripheral base address.
* u32BaudRateBps — QSCI baudrate to be set.
* u32SrcClockHz — QSCI clock source frequency in Hz.

Return values

* kStatus_ QSCI__BaudrateNotSupport — Baudrate is not supported in the cur-
rent clock source.

* kStatus Success — Set baudrate succeeded.

static inline void QSCI_ EnableFifo(QSCI_Type *base, bool bEnable)
Enables/Disables transmitter/receiver FIFO.

Parameters
* base — QSCI peripheral base address.
* bEnable — true to enable, false to disable.

static inline void QSCI_ SetTxWaterMark(QSCI_Type *base, gsci_tx_water_t eTxFifoWatermark)
Sets transmitter watermark.

Parameters
* base — QSCI peripheral base address.
o ¢TxFifoWatermark — TX water mark level.

static inline void QSCI_SetRxWaterMark(QSCI_Type *base, gsci_rx_water_t eRxFifoWatermark)
Sets receiver watermark.

Parameters
* base — QSCI peripheral base address.

* eRxFifoWatermark — Rx water mark level.

298 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

static inline void QSCI__EnableTxDMA (QSCI_Type *base, bool bEnable)
Enables or disables the QSCI transmitter DMA request.

This function enables or disables CTRL2[TDE], to generate the DMA requests when Tx data
register is empty.

Parameters
* base — QSCI peripheral base address.
* bEnable — True to enable, false to disable.

static inline void QSCI_ EnableRxDMA (QSCI_Type *base, bool bEnable)
Enables or disables the QSCI receiver DMA request.

This function enables or disables CTRL2[RDE], to generate DMA requests when receiver
data register is full.

Parameters
* base — QSCI peripheral base address.
* bEnable — True to enable, false to disable.

static inline uint32_t QSCI_ GetDataRegister Address(QSCI_Type *base)
Gets the QSCI data register byte address.

This function returns the QSCI data register address, which is mainly used by DMA/eDMA.
Parameters
* base — QSCI peripheral base address.

Returns
QSCI data register byte addresses which are used both by the transmitter and
the receiver.

static inline void QSCI_ WriteByte(QSCI_Type *base, uint8_t u8Data)
Writes to the TX register.

This function writes data to the TX register directly. The upper layer must ensure that the
TX register is empty or TX FIFO has room before calling this function.

Parameters
* base — QSCI peripheral base address.
* u8Data — The byte to write.

static inline void QSCI_SendAddress(QSCI_Type *base, uint8_t u8Address)
Sends an address frame in 9-bit data mode.

Parameters
* base — QSCI peripheral base address.
* u8Address — QSCI slave address.

static inline uint8_t QSCI_ReadByte(QSCI_Type *base)
Reads the RX register directly.

This function reads data from the RX register directly. The upper layer must ensure that
the RX register is full or that the TX FIFO has data before calling this function.

Parameters
* base — QSCI peripheral base address.

Returns
The byte read from QSCI data register.

2.62. QSCI: Queued Serial Communications Interface Driver 299

MCUXpresso SDK Documentation, Release 25.09.00

void QSCI_WriteBlocking(QSCI_Type *base, const uint8_t *pu8Data, uint32_t u32Length)

Writes TX register using a blocking method.

This function polls the TX register, waits TX register to be empty or TX FIFO have room then

writes data to the TX buffer.
Parameters
* base — QSCI peripheral base address.
* puS8Data — Start address of the data to write.
» u32Length — Size of the data to write.

status_t QSCI_ReadBlocking(QSCI_Type *base, uint8_t *pu8Data, uint32_t u32Length)

Reads RX data register using a blocking method.

This function polls the RX register, waits RX register to be full or RX FIFO have data, then

reads data from the RX register.
Parameters
* base — QSCI peripheral base address.
* pu8Data — Start address of the buffer to store the received data.
* u32Length — Size of the buffer.
Return values

* kStatus_ Fail — Receiver error occurred while receiving data.

e kStatus_ QSCI_RxHardwareOverrun — Receiver overrun occurred while re-

ceiving data

* kStatus_ QSCI_ NoiseError — Noise error occurred while receiving data

* kStatus_ QSCI_ FramingError — error occurred while receiving data

* kStatus_ QSCI_ ParityError — Parity error occurred while receiving data

* kStatus_ Success — Successfully received all data.

static inline void QSCI_SendBreak(QSCI_Type *base)
Sends one break character (10 or 11 bits of zeroes).

Parameters

* base — QSCI peripheral base address.

void QSCI_TransferCreateHandle(QSCI_Type *base, gsci_transfer_handle_t *psHandle,
qsci_transfer_callback_t pfCallback, void *pUserData)

Initializes the QSCI handle.

This function initializes the QSCI handle which can be used for other QSCI transactional

APIs. Usually, for a specified QSCI instance, call this API once to get the initi
Parameters
* base — QSCI peripheral base address.
* psHandle — QSCI handle pointer.
¢ pfCallback — The callback function.

* pUserData — The parameter of the callback function.

alized handle.

300 Chapter 2

. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

void QSCI_TransferStartRingBuffer(qsci_transfer_handle_t *psHandle, uint8_t *pu8RxRingBuffer,
uint16_t ul6RxRingBufferSize)

Sets up the RX ring buffer.
This function sets up the RX ring buffer to a specific QSCI handle.

When the RX ring buffer is used, data received are stored into the ring buffer even when the
user doesn’t call the QSCI_TransferReceiveNonBlocking() APL If data is already received in
the ring buffer, the user can get the received data from the ring buffer directly.

Note: When using the RX ring buffer, one byte is reserved for internal use. In other words,
if ringBufferSize is 32, only 31 bytes are used for saving data.

Parameters
* psHandle — QSCI handle pointer.

* pu8RxRingBuffer — Start address of the ring buffer for background receiv-
ing. Pass NULL to disable the ring buffer.

* ul6RxRingBufferSize — Size of the ring buffer.

void QSCI_ TransferStopRingBuffer(qsci_transfer_handle_t *psHandle)
Aborts the background transfer and uninstalls the ring buffer.

This function aborts the background transfer and uninstalls the ring buffer.
Parameters
* psHandle — QSCI handle pointer.

uint16_t QSCI_TransferGetRxRingBufferLength(gsci_transfer_handle_t *psHandle)
Get the ring buffer valid data length.

Parameters
* psHandle — QSCI handle pointer.

Returns
Valid data length in ring buffer.

status_t QSCI_TransferSendNonBlocking(qsci_transfer_handle_t *psHandle, gsci_transfer_t
*psTransfer)

Transmits a buffer of data using the interrupt method.

This function sends data using an interrupt method. This is a non-blocking function, which
returns directly without waiting for all data to be written to the TX register. When all data
is sent out, the QSCI driver calls the callback function and passes the kStatus_QSCI_TxIdle
as status parameter.

Parameters

* psHandle — QSCI handle pointer.

* psTransfer — QSCI transfer structure. See qsci_transfer_t.
Return values

* kStatus_ Success — Successfully start the data transmission.

* kStatus_ QSCI_TxBusy — Previous transmission still not finished; data not
all written to TX register yet.

2.62. QSCI: Queued Serial Communications Interface Driver 301

MCUXpresso SDK Documentation, Release 25.09.00

void QSCI_Transfer AbortSend(gsci_transfer_handle_t *psHandle)
Aborts the interrupt-driven data transmit.

This function aborts the interrupt-driven data sending. The user can get the remainBytes
to find out how many bytes are not sent out.

Parameters
* psHandle — QSCI handle pointer.

status_t QSCI_TransferGetSendCount(gsci_transfer_handle_t *psHandle, uint32_t *pu32Count)
Gets the number of bytes sent out to bus.

This function gets the number of bytes sent out to bus by using the interrupt method.
Parameters
* psHandle — QSCI handle pointer.
* pu32Count — Send bytes count.
Return values
* kStatus_ NoTransferInProgress — No send in progress.
* kStatus_ Success — Get successfully through the parameter count;

status_t QSCI_TransferReceiveNonBlocking(gsci_transfer_handle_t *psHandle, gsci_transfer._t
*psTransfer, uint32_t *pu32ReceivedBytes)

Receives a buffer of data using an interrupt method.

This function receives data using an interrupt method. This is a non-blocking function,
which returns without waiting for all data to be received. If the RX ring buffer is used
and not empty, the data in the ring buffer is copied and the parameter pu32ReceivedBytes
shows how many bytes are copied from the ring buffer. After copying, if the data in the
ring buffer is not enough to read, the receive request is saved by the QSCI driver. When the
new data arrives, the receive request is serviced first. When all data is received, the QSCI
driver notifies the upper layer through a callback function and passes the status parameter
kStatus_QSCI_RxIdle. For example, the upper layer needs 10 bytes but there are only 5 bytes
in the ring buffer. The 5 bytes are copied to the psTransfer->data and this function returns
with the parameter pu32ReceivedBytes set to 5. For the left 5 bytes, newly arrived data is
saved from the psTransfer->data[5]. When 5 bytes are received, the QSCI driver notifies
the upper layer. If the RX ring buffer is not enabled, this function enables the RX and RX
interrupt to receive data to the psTransfer->data. When all data is received, the upper layer
is notified.

Parameters
* psHandle — QSCI handle pointer.
¢ psTransfer — QSCI transfer structure, see gsci_transfer_t.
* pu32ReceivedBytes — Bytes received from the ring buffer directly.
Return values
* kStatus_ Success — Successfully queue the transfer into transmit queue.
* kStatus_ QSCI_RxBusy — Previous receive request is not finished.

void QSCI_ TransferAbortReceive(gsci_transfer_handle_t *psHandle)
Aborts the interrupt-driven data receiving.

This function aborts the interrupt-driven data receiving. The user can get the remainBytes
to know how many bytes are not received yet.

Parameters
* psHandle — QSCI handle pointer.

302 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

status_t QSCI_ TransferGetReceivedCount(qsci_transfer_handle_t *psHandle, uint32_t
*pu32Count)

Gets the number of bytes that have been received.
This function gets the number of bytes that have been received.
Parameters
* psHandle — QSCI handle pointer.
* pu32Count — Receive bytes count.
Return values
* kStatus_NoTransferInProgress — No receive in progress.
* kStatus_ InvalidArgument — Parameter is invalid.
* kStatus_ Success — Get successfully through the parameter pu32Count;

FSL__QSCI_DRIVER__VERSION
QSCI driver version.

Status codes for the QSCI driver.
Values:

enumerator kStatus_ QSCI_TxBusy
Transmitter is busy.

enumerator kStatus_ QSCI_ RxBusy
Receiver is busy.

enumerator kStatus_ QSCI_ TxlIdle
Transmitter is idle.

enumerator kStatus_ QSCI__RxIdle
Receiver is idle.

enumerator kStatus_ QSCI__FlagCannotClearManually
Status flag can’t be manually cleared.
enumerator kStatus_ QSCI_RxRingBufferOverrun
QSCI RX software ring buffer overrun.
enumerator kStatus_ QSCI_RxHardwareOverrun
QSCI receiver hardware overrun.
enumerator kStatus_ QSCI_NoiseError
QSCI noise error.
enumerator kStatus_ QSCI__FramingError
QSCI framing error.
enumerator kStatus_ QSCI_ ParityError
QSCI parity error.
enumerator kStatus_ QSCI__BaudrateNotSupport
Baudrate is not supported in current clock source
enumerator kStatus_ QSCI__IdleLineDetected
QSCI IDLE line detected.

enumerator kStatus_ QSCI_ Timeout
Timeout happens when waiting for status flags to change.

2.62. QSCI: Queued Serial Communications Interface Driver 303

MCUXpresso SDK Documentation, Release 25.09.00

enum _ gsci_status_ flags
QSCI hardware status flags.

These enumerations can be ORed together to form bit masks.
Values:

enumerator kQSCI_ TxDataRegEmptyFlag
TX data register empty flag.
enumerator kQSCI_ TxIdleFlag
Transmission idle flag.
enumerator kQSCI_ RxDataRegFullFlag
RX data register full flag.
enumerator kQSCI_ RxIdleLineFlag
Rx Idle line flag.
enumerator kQSCI_ RxOverrunFlag
RX overrun flag.
enumerator kQSCI_ RxNoiseFlag
RX detect noise on Rx input.
enumerator kQSCI_ RxFrameErrorFlag
Rx frame error flag, sets if logic 0 was detected for stop bit
enumerator kQSCI_ RxParityErrorFlag
Rx parity error if parity enabled, sets upon parity error detection
enumerator kQSCI_ RxInputEdgeFlag
RX pin active edge interrupt flag, sets when active edge detected
enumerator kQSCI_ LINSyncErrorFlag
Only for LIN mode.
enumerator kQSCI_ TxDMARequestFlag
Tx DMA request is ongoing.
enumerator kQSCI_ RxDMARequestFlag
Rx DMA request is ongoing.

enumerator kQSCI_ RxActiveFlag

enumerator kQSCI_ GroupOFlags

Members in kQSCI_GroupOFlags can’t be cleared by QSCI_ClearStatusFlags, they are
handled by HW.

enumerator kQSCI_ GrouplFlags

Whole kQSCI_GroupilFlags will be cleared if trying to clear any member in
kQSCI_Group1Flags or kQSCI_Group2Flags in the mask.

enumerator kQSCI__ Group2Flags
Member in kQSCI_Group2Flags can be cleared individually

enumerator kQSCI_StatusAllFlags
enum _ gsci_interrupt_ enable
QSCI interrupt enable/disable source.
These enumerations can be ORed together to form bit masks.

Values:

304 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQSCI_ TxEmptyInterruptEnable
Transmit data register empty interrupt.

enumerator kQSCI_ TxIdleInterruptEnable
Transmission idle interrupt.

enumerator kQSCI_ RxFulllnterruptEnable
Receive data register full interrupt.

enumerator kQSCI_ RxErrorInterruptEnable
Receive error interrupt.

enumerator kQSCI_ RxInputEdgelnterruptEnable
Receive input edge interrupt.

enumerator kQSCI_RxIdleLinelnterruptEnable
Receive idle interrupt.

enumerator kQSCI__AlllnterruptEnable
enum _ gsci_ transfer__mode

QSCI transmiter/receiver loop mode.

Values:

enumerator kQSCI_Normal
Normal mode, 2 signal pins, no loop.

enumerator kQSCI_ Looplnternal
Loop mode with internal TXD fed back to RXD.

enumerator kQSCI_ SingleWire
Use tx pin as input and output half-duplex transfer.

enum _ gsci_ data_ bit__ mode
QSCI data bit count.

Values:

enumerator kQSCI__Data8Bit
1 start bit, 8 data bit, 1 stop bit

enumerator kQSCI__Data9Bit
1 start bit, 9 data bit, 1 stop bit. This mode actually is not supported yet in driver.

enum _ gsci_ wakeup_mode
QSCI wakeup mode.

Values:

enumerator kQSCI_ WakeupOnldleLine
Idle condition wakes the QSCI module.

enumerator kQSCI_ WakeupOnAddressMark
Address mark wakes the QSCI module.

enum _ gsci_ polarity__mode
QSCI signal polarity mode.

Values:

enumerator kQSCI_ PolarityNormal
Normal mode, no inversion.

2.62. QSCI: Queued Serial Communications Interface Driver 305

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQSCI_ PolarityInvert
Invert transmit and receive data bits.

enum _ gsci_ parity__mode
QSCI parity mode.
Values:
enumerator kQSCI_ ParityDisabled
Parity disabled
enumerator kQSCI_ ParityEven
Parity enabled, type even, bit setting: PE|PT = 10
enumerator kQSCI_ ParityOdd
Parity enabled, type odd, bit setting: PE|PT =11
enum _ gsci_ tx_ water
QSCI transmitter watermark level.
Values:
enumerator kQSCI_ TxWaterOWord
Tx interrupt sets when tx fifo empty.
enumerator kQSCI_ TxWater1Word
Tx interrupt sets when tx fifo has 1 or few word.
enumerator kQSCI_ TxWater2Word
Tx interrupt sets when tx fifo has 2 or few words.
enumerator kQSCI_ TxWater3Word
Tx interrupt sets when tx fifo not full.
enum _ gsci_ rx_water
QSCI receiver watermark level.
Values:
enumerator kQSCI_ RxWaterl Word
Rx interrupt sets when rx fifo not empty.
enumerator kQSCI_ RxWater2Word
Rx interrupt sets when rx fifo has at least 1 word.

enumerator kQSCI__ RxWater3Word

Rx interrupt sets when rx fifo has at least 2 words.

enumerator kQSCI_ RxWater4Word
Rx interrupt sets when rx fifo full.

typedef enum _gsci_transfer_mode qsci_ transfer__mode_ t
QSCI transmiter/receiver loop mode.

typedef enum _gsci_data_bit_mode qsci_ data_bit__mode_t
QSCI data bit count.

typedef enum _gsci_ wakeup_mode qsci_ wakeup_ mode_ t
QSCI wakeup mode.

typedef enum _gsci_polarity_mode qgsci_ polarity _mode_t
QSCI signal polarity mode.

306

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _qgsci_parity_mode gsci__parity__mode_t
QSCI parity mode.

typedef enum _gsci_tx_water gsci__tx_ water__t
QSCI transmitter watermark level.
typedef enum _gsci_rx_water gsci_rx_ water_t
QSCI receiver watermark level.
typedef struct _gsci_config qsci_ config t
QSCI configuration structure.
typedef struct _gsci_transfer_handle_t gsci_ transfer_handle_t
Forward declaration of the handle typedef.
typedef void (*qsci_ transfer callback t)(gsci_transfer_handle_t *psHandle)
QSCI interrupt transfer callback function definition.

Defines the interface of user callback function used in QSCI interrupt transfer using transac-
tional APIs. The callback function shall be defined and declared in application level by user.
Before starting QSCI transmiting or receiving by calling QSCI_TransferSendNonBlocking
or QSCI_TransferReceiveNonBlocking, call QSCI_TransferCreateHandle to install the user
callback. When the transmiting or receiving ends or any bus error like hardware overrun
occurs, user callback will be invoked by driver.

Param psHandle
Transfer handle that contains bus status, user data.

typedef struct _gsci_transfer qsci_transfer_t
QSCI transfer structure.

typedef void (*qsci_isr_t)(void *handle)
qsci_isr_t s_ pfQscilsr
void *s_ psQsciHandles[]
IRQn_Type const s_ eQsciTXIdleIRQs[]
uint16_t QSCI_ GetlInstance(QSCI_Type *base)
Get the QSCI instance from peripheral base address.
Parameters

* base — QSCI peripheral base address.

Returns
QSCI instance.

QSCI_RETRY__TIMES
Retry times when checking status flags.
QSCI_GET_BUS_STATUS(psHandle)
Macros to be used inside user callback.

QSCI_GET_TRANSFER_USER_DATA(psHandle)

struct _ gsci_ config
#include <fsl_gsci.h> QSCI configuration structure.

2.62. QSCI: Queued Serial Communications Interface Driver 307

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

qsci_transfer_mode_t eTransferMode
Transmitter/receiver loop mode.

bool bStopInWaitEnable

Enable/disable module stops working in wait mode.
qsci_data_bit_mode_t eDataBitMode

Number of data bits.
qsci_wakeup_mode_t eWakeupMode

Receiver wakeup mode, idle line or addressmark.
gsci_polarity_mode_t ePolarityMode

Polarity of transmit/receive data.
qsci_parity_mode_t eParityMode

Parity mode, disabled (default), even, odd.
bool bEnableStopHold

Control the stop hold enable.
bool bEnableTx

Enable TX
bool bEnableRx

Enable RX
bool bEnableFifo

Enable Tx/Rx FIFO
bool bEnableTxDMA

Enable Tx DMA
bool bEnableRxDMA

Enable Rx DMA
qsci_tx_water_t eTxFifoWatermark

TX FIFO watermark
qsci_rx_water_t eRxFifoWatermark

RX FIFO watermark
uint8_t u8Interrupts

Mask of QSCI interrupt sources to enable.
uint32_t u32BaudRateBps

QSCI baud rate
uint32_t u32SrcClockHz

The clock source frequency for QSCI module.

struct _ gsci_ transfer _handle t
#include <fsl_gsci.h> QSCI transfer handle.

Note: Ifuser wants to use the transactional API to transfer data in interrupt way, one QSCI
instance should and can only be allocated one handle.

Note: The handle is maintained by QSCI driver internally, which means the transfer state
is retained and user shall not modify its state u8TxState or u8RxState in application level.

308 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

If user only wish to use transactional APIs without understanding its machanism, it is not
necessary to understand these members.

Public Members
QSCI_Type *base

QSCI base pointer to the instance belongs to this handle.
uint8_t *pu8TxData

Address of remaining data to send.
volatile uint32_t u32TxRemainingSize

Size of the remaining data to send.
uint32_t u32TxDataSize

Size of the data to send out.
uint8_t *pu8RxData

Address of remaining data to receive.
volatile uint32_t u32RxRemainingSize

Size of the remaining data to receive.
uint32_t u32RxDataSize

Size of the data to receive.
uint8_t *pu8RxRingBuffer

Start address of the receiver ring buffer.
uint16_t ul6RxRingBufferSize

Size of the ring buffer.
volatile uint16_t ul6RxRingBufferHead

Index for the driver to store received data into ring buffer.
volatile uint16_t ul6RxRingBufferTail

Index for the user to get data from the ring buffer.
gsci_transfer_callback_t pfCallback

Callback function.
void *pUserData

QSCI callback function parameter.
volatile uint8_t u8TxState

TX transfer state.
volatile uint8_t u8RxState

RX transfer state
status_t busStatus

QSCI bus status.

struct _ gsci_ transfer
#include <fsl_gsci.h> QSCI transfer structure.

2.62. QSCI: Queued Serial Communications Interface Driver 309

MCUXpresso SDK Documentation, Release 25.09.00

Public Members
uint8_t *pu8Data
The buffer pointer of data to be transferred.

uint32_t u32DataSize
The byte count to be transferred.

2.63 The Driver Change Log

2.64 QSCI_EDMA: EDMA based QSCI Driver

void QSCI_ TransferCreateHandleEDMA (QSCI_Type *base, gsci_edma_transfer_handle_t
*psHandle, gsci_edma_transfer_callback_t pfCallback,
void *pUserData, DMA_Type *edmaBase,
edma_channel t eEdmaTxChannel, edma_channel t
eEdmaRxChannel)

Initializes the QSCI edma handle.

This function initializes the QSCI edma handle which can be used for other QSCI transac-
tional APIs. Usually, for a specified QSCI instance, call this API once to get the initialized
handle.

Parameters
* base — QSCI peripheral base address.
 psHandle — Pointer to gsci_edma_transfer_handle_t structure.
¢ pfCallback — Callback function.
* pUserData — User data.
* edmaBase — Edma base address.
* eEdmaTxChannel — eDMA channel for TX transfer.
* eEdmaRxChannel — eDMA channel for RX transfer.

status_t QSCI_ TransferSendEDMA (gsci_edma_transfer_handle_t *psHandle, gsci_transfer._t
*psTransfer)

Initiate data transmit using EDMA.

This function initiates a data transmit process using eDMA. This is a non-blocking function,
which returns right away. When all the data is sent, the send callback function is called.

Parameters

* psHandle — QSCI handle pointer.

* psTransfer — QSCI eDMA transfer structure. See gsci_transfer_t.
Return values

* kStatus Success — if succeed, others failed.

* kStatus_ QSCI_TxBusy — Previous transfer on going.

* kStatus_ InvalidArgument — Invalid argument.

310 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

status_t QSCI__TransferReceiveEDMA (gsci_edma_transfer_handle_t *psHandle, gsci_transfer_t
*psTransfer)

Initiate data receive using EDMA.

This function initiates a data receive process using eDMA. This is a non-blocking function,
which returns right away. When all the data is received, the receive callback function is
called.

Parameters
* psHandle — Pointer to gsci_edma_transfer_handle_t structure.
¢ psTransfer — QSCI eDMA transfer structure, see qsci_transfer_t.
Return values
* kStatus Success — if succeed, others fail.
* kStatus_ QSCI_RxBusy — Previous transfer ongoing.
* kStatus_InvalidArgument — Invalid argument.

void QSCI_ TransferAbortSendEDMA (gsci_edma_transfer_handle_t *psHandle)
Aborts the data transmit process using EDMA.

Parameters
 psHandle — Pointer to gsci_edma_transfer_handle_t structure.

void QSCI_ TransferAbortReceiveEDMA (gsci_edma_transfer_handle_t *psHandle)
Aborts the data receive process using EDMA.

Parameters
* psHandle — Pointer to gsci_edma_transfer_handle_t structure.

status_t QSCI_ TransferGetReceivedCountEDMA (gsci_edma_transfer_handle_t *psHandle,
uint32_t *pu32Count)

Gets the number of received bytes.
This function gets the number of received bytes.
Parameters
* psHandle — QSCI handle pointer.
* pu32Count — Receive bytes count.
Return values
* kStatus_ NoTransferInProgress — No receive in progress.
* kStatus_ Success — Get successfully through the parameter count;

status_t QSCI_ TransferGetSendCountEDMA (qsci_edma_transfer_handle_t *psHandle, uint32_t
*pu32Count)

Gets the number of bytes written to the QSCI TX register.
This function gets the number of bytes written to the QSCI TX register by DMA.
Parameters
* psHandle — QSCI handle pointer.
* pu32Count — Send bytes count.
Return values
* kStatus_ NoTransferInProgress — No send in progress.

* kStatus_ Success — Get successfully through the parameter count;

2.64. QSCI_EDMA: EDMA based QSCI Driver 311

MCUXpresso SDK Documentation, Release 25.09.00

FSL_QSCI_EDMA_DRIVER_VERSION

QSCI EDMA driver version.

typedef struct _gsci_edma_transfer_handle qsci_edma__transfer__handle_t

Forward declaration of the gsci edma handle typedef. .

typedef void (*gsci__edma__transfer_ callback__t)(qsci_edma_transfer_handle_t *psHandle)

QSCI edma transfer callback function definition.

Defines the interface of user callback function used in QSCI edma transfer using transac-
tional APIs. The callback function shall be defined and declared in application level by
user. Before starting QSCI transmiting or receiving by calling QSCI_TransferSendEDMA or
QSCI_TransferReceiveEDMA, call QSCI_TransferCreateHandleEDMA to install the user call-
back. When the transmiting or receiving ends, user callback will be invoked by driver.

Param psHandle
Transfer handle that contains bus status, user data.

struct _ gsci__edma, transfer__handle

#include <fsl_gsci_edma.h> QSCI edma transfer handle.

This struct address should be sizeof(edma_channel_tcd_t) aligned.

Note: If user wants to use the transactional API to transfer data in edma way, one QSCI
instance should and can only be allocated one handle.

Note: The handle is maintained by QSCI driver internally, which means the transfer state
is retained and user shall not modify its state u8TxState or u8RxState in application level.
If user only wish to use transactional APIs without understanding its machanism, it is not
necessary to understand these members.

Public Members

edma_channel_tcd_t sTxTed
TCD for EDMA TX transfer.

edma_channel_tcd_t sRxTcd

TCD for EDMA RX transfer.
QSCI_Type *base

Pointer to the QSCI base that belongs to this handle.
qsci_edma_transfer_callback_t pfCallback

Callback function.
uint32_t u32RxDataSizeAll

Size of the data to receive.
uint32_t u32TxDataSizeAll

Size of the data to send out.
edma_handle_t sTxEdmaHandle

The eDMA TX channel used.

edma_handle_t sRxEdmaHandle
The eDMA RX channel used.

312

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

volatile uint8_t u8TxState
TX transfer state.

volatile uint8_t u8RxState
RX transfer state

status_t busStatus
QSCI bus status.

void *pUserData

User configurable pointer to any data, function, structure etc that user wish to use in
the callback

2.65 QSCI Peripheral and Driver Overview

2.66 QSPI: Queued SPI Driver

void QSPI_MasterInit(QSPI_Type *base, const gspi_master_config t *psConfig)
Initializes the QUEUEDSPI as Master.

Use helpher function QSPI_MasterGetDefaultConfig to get ready-to-use structure.
Parameters
* base — QUEUEDSPI peripheral address.
* psConfig — Pointer to the structure qspi_master_config_t.

void QSPI_MasterGetDefaultConfig(qspi_master_config_t *psConfig, uint32_t u32ClockFreqHz)
Helper function to create ready-to-user maste init structure.

The purpose of this API is to get the configuration structure initialized for the
QSPI_Masterlnit. Users may use the initialized structure unchanged in the QSPI_MasterInit
or modify the structure before calling the QSPI_MasterInit. Example:

gspi__master__config_t sMasterConfig;
QSPI_MasterGetDefaultConfig(&sMasterConfig);

The default values are: Example:

// Parameter provided by user
psConfig->u32BaudRateBps = u32BaudRateBps;
psConfig->u32ClockFrequencyHz = u32ClockFreqHz;
psConfig->eDataWidth = eDataWidth;

// Default configuration

psConfig->eClkPolarity = kQSPI_ ClockPolarity ActiveRisingEdge;
psConfig->eClkPhase = kQSPI_ ClockPhaseSlaveSelectHighBetweenWords;
psConlfig->eShiftDirection = kQSPI_MsbFirst;
psConfig->ul6DelayBetweenFrameInCLK = 1U;
psConfig->bEnableWiredOrMode = false;
psConfig->bEnableModeFault = false;
psConfig->u8DmakEnableFlags = 0U; // Disable TX/RX Dma
psConfig->bEnableFIFO = false;
psConfig->bEnableStopModeHoldOff = false;
psConfig->u8Interrupts = 0U;

psConfig->bEnableModule = false;

@todo To be added

Parameters

2.65. QSCI Peripheral and Driver Overview 313

MCUXpresso SDK Documentation, Release 25.09.00

* psConfig — pointer to qspi_master_config_t structure.
* u32ClockFreqHz — Peripheral clock frequency in Hz

void QSPI_ Slavelnit(QSPI_Type *base, const gspi_slave_config_t *psConfig)
Initializes the QUEUEDSPI as slave.

Use helpher function QSPI_SlaveGetDefaultConfig to get ready-to-use structure.
Parameters
* base — QUEUEDSPI peripheral address.
* psConfig — Pointer to the structure gspi_slave_config_t.

void QSPI _SlaveGetDefaultConfig(qspi_slave_config_t *psConfig)
Set the qspi_slave_config_t structure to default values.

The purpose of this API is to get the configuration structure initialized for the
QSPI_Slavelnit. Users may use the initialized structure unchanged in the QSPI_Slavelnit
or modify the structure before calling the QSPI_Slavelnit. Example:

gspi_slave_ config_t slaveConfig;
QSPI_SlaveGetDefaultConfig(&slaveConfig);

The default values are: Example:

@todo

Parameters
* psConfig — Pointer to the gspi_slave_config_t structure.

void QSPI_Deinit(QSPI_Type *base)
De-initialize the QUEUEDSPI peripheral for either Master or Slave.

Parameters
* base — QUEUEDSPI peripheral address.

static inline void QSPI_ EnableInterrupts(QSPI_Type *base, uint8_t u8Interrupts)
Enable one or multiple interrupts.

This function enable one or multiple interrupts.

Note: for TX and RX requests, while enabling the interrupt request the DMA request will
be disabled as well. Do not use this API while QUEUEDSPI is in running state.

Parameters
* base — QUEUEDSPI peripheral address.
» u8lnterrupts — The interrupt mask which is ORed by the

_gspi_interrupt_enable.

static inline void QSPI_ DisableInterrupts(QSPI_Type *base, uint8_t u8Interrupts)
Disable one or multiple interrupts.

This function

Parameters
* base — QUEUEDSPI peripheral address.
* uInterrupts — The interrupt mask which is ORed by the

_gspi_interrupt_enable.

314 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

static inline void QSPI__EnableDMA (QSPI_Type *base, uint8_t u8DmaFlags)
Enable one or multiple DMA.

Note that if the DMA is enabled for Transmit or Receive, make sure the interurpt is disabled
for Transmit or Receive.

Parameters
* base — QUEUEDSPI peripheral address.
* u8DmaFlags — DMA Flags ORed from _gspi_dma_enable_flags.

static inline void QSPI_DisableDMA(QSPI_Type *base, uint8_t u8DmaFlags)
Enable one or multiple DMA.

Note that if the DMA is enabled for Transmit or Receive, make sure the interurpt is disabled
for Transmit or Receive.

Parameters
* base — QUEUEDSPI peripheral address.
* u8DmaFlags — DMA Flags ORed from _gspi_dma_enable_flags.

static inline uint32_t QSPI_ GetTxRegister Address(QSPI_Type *base)
Get the QUEUEDSPI transmit data register address for the DMA operation.

Parameters
* base — QUEUEDSPI peripheral address.

Returns
The QUEUEDSPI master PUSHR data register address.

static inline uint32_t QSPI_ GetRxRegister Address(QSPI_Type *base)
Get the QUEUEDSPI receive data register address for the DMA operation.

Parameters
* base — QUEUEDSPI peripheral address.

Returns
The QUEUEDSPI POPR data register address.

static inline uint16_t QSPI_ GetStatusFlags(QSPI_Type *base)
Get the QUEUEDSPI status flag state.

Parameters
* base — QUEUEDSPI peripheral address.

Returns
QUEUEDSPI status.

static inline void QSPI_ ClearStatusFlags(QSPI_Type *base, uint16_t ul6StatusFlags)
Clear the status flag only for the mode fault.

Clear the status flag only for mode fault.

Note: only kQSPI_ModeFaultFlag can be cleared by this APL

Parameters
* base — QUEUEDSPI peripheral address.
* ul6StatusFlags — status flags ORed from _qgspi_status_flags

2.66. QSPI: Queued SPI Driver 315

MCUXpresso SDK Documentation, Release 25.09.00

static inline void QSPI_ Enable(QSPI_Type *base, bool bEnable)
Enable or disable the QUEUEDSPI peripheral.

Parameters
* base — QUEUEDSPI peripheral address.
* bEnable — true to enable module, otherwise disable module

uint32_t QSPI_MasterSetBaudRate(QSPI_Type *base, uint32_t u32BaudRateBps, uint32_t
u32SrcClockHz)

Set the QUEUEDSPI baud rate in bits-per-second.

This function takes in the desired baud rate, calculates the nearest possible baud rate, and
returns the calculated baud rate in bits-per-second.

Parameters
* base — QUEUEDSPI peripheral address.
* u32BaudRateBps — The desired baud rate in bits-per-second.
* u32SrcClockHz — Module source input clock in Hertz.

Returns
The actual calculated baud rate.

static inline void QSPI_ SetMasterSlaveMode(QSPI_Type *base, gspi_master_slave_mode_t
eMode)

Set the QUEUEDSPI as master or slave.
Parameters
* base —- QUEUEDSPI peripheral address.
* eMode — Mode setting of type gspi_master_slave_mode_t.
static inline bool QSPI_IsMaster(QSPI_Type *base)
Return whether the QUEUEDSPI module is in master mode.
Parameters
* base — QUEUEDSPI peripheral address.

Returns
Returns true if the module is in master mode or false if the module is in slave
mode.

static inline void QSPI_SetDataShiftOrder(QSPI_Type *base, qspi_data_shift_direction_t
eDataShiftOrder)

Set Data Shift Order as MSB first or LSB first.
Parameters
* base — QUEUEDSPI peripheral address.
¢ eDataShiftOrder — MSB or LSB first from qspi_data_shift_direction_t
static inline void QSPI_ EnableModeFault(QSPI_Type *base, bool bEnable)
Enable/Disable mode fault detection.

If enable, allows the kQSPI_ModeFaultFlag flag to be set. If the kQSPI_ModeFaultFlag flag is
set, disable the Mod detection does not clear the flag. If the mod detection is disabled, the
level of the SS_B pin does not affect the operation of an enabled SPI configured as a master.
If configured as a master and mod fault detection is enabled, a transaction in progress will
stop if SS_B goes low. For an enabled SPI configured as a slave, having this feature disabled
only prevents the flag from being set. It does not affect any other part of SPI operation

Parameters

316 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

* base — QUEUEDSPI peripheral address.
* bEnable — true to enable Mode Fault detection, false to disable

static inline void QSPI_SetClockPolarity(QSPI_Type *base, gspi_clock_polarity_t ePolarity)
Set clock polarity.

Note: module shall be disabled before change the polarity by calling QSPI_Enable.

Parameters
* base — QUEUEDSPI peripheral address.
* ePolarity — clock polarity option
static inline void QSPI_SetClockPhase(QSPI_Type *base, gspi_clock_phase_t eClockPhase)
Set clock phase.

Configure whether get the Slave Select signal toggle high during 2 data frames. Get the SS
toggle high between data frames will lead to SPI to be trigged with transaction for the falling
edge of SS signal. Otherwise, the data transaction is started on the first active SCLK edge.

Note: module shall be disabled before change the polarity by calling QSPI_Enable.

Note: Do not use kQSPI_ClockPhaseSlaveSelectHighBetweenWords in DMA mode.

Parameters
* base — QUEUEDSPI peripheral address.
* eClockPhase — Option for clock phase

static inline void QSPI_ EnableWiredORMode(QSPI_Type *base, bool bEnable)

Enable/Disable Wired OR mode for SPI pins which means open-drain when enabled and
push-pull when disabled.

Parameters
* base — QUEUEDSPI peripheral address.

* bEnable — true to configure SPI pins as open-drain, false to configure as
push-pull

static inline void QSPI_SetTransactionDataSize(QSPI_Type *base, gspi_data_width_t eDataWidth)
Set the transaction data width.

Parameters
* base — QUEUEDSPI peripheral address.
* eDataWidth — datawidth for bits in each data frame.

static inline void QSPI_ MasterSetWaitDelay(QSPI_Type *base, uint16_t
ul6WaitDelayInPeriClockCount)

For master mode, set wait delay in clock cycle with delay is set value + 1 peripheral bus
clock.

This controls the time between data transactions in master mode. Delay will not be added
if no word is waiting for transmitting.

Parameters

2.66. QSPI: Queued SPI Driver 317

MCUXpresso SDK Documentation, Release 25.09.00

* base — QUEUEDSPI peripheral address.

* ul6WaitDelayInPeriClockCount — Clock count for the delay during data
frames

static inline void QSPI_ EnableStopModeHoldOff (QSPI_Type *base, bool bEnable)

Enable/Disable hold off entry to stop mode is a word is being transmitted/received for Mas-
ter Mode.

When enabled, this bit allows the SPI module to hold off entry to chip level stop mode if
a word is being transmitted or received. Stop mode will be entered after the SPI finishes
transmitting/receiving. This bit does not allow the SPI to wake the chip from stop mode in
any way. The SHEN bit can only delay the entry into stop mode. This bit should not be set
in slave mode because the state of SS_B (which would be controlled by an external master
device) may cause the logic to hold off stop mode entry forever.

Parameters
* base — QUEUEDSPI peripheral address.

* bEnable — true to enable hold-off entrying stop mode if there is transmit-
ting/receiving

uint32_t QSPI_ GetInstance(QSPI_Type *base)
Helper function exported for QSPI DMA driver.
Get the instance index from the base address. User need not understand this function.
Parameters
* base — QUEUEDSPI peripheral address.

Returns
uint32_t Index of the peripheral instance for given base address.

static inline gspi_ss_data_logic_level t QSPI_MasterGetSlaveSelectLogicLevel(QSPI_Type *base)

For master mode, get the SS_B input logic level while true means drive High and false means
drive Low.

Get the value to drive on the SS_B pin. This bit is disabled when SSB_AUTO=1 or SSB_STRB=1.
Only apply for Master mode.

Parameters
* base — QUEUEDSPI peripheral address.

Returns
true SS_B input level High

Returns
false SS_B input level Low

static inline void QSPI_ MasterSetSlaveSelectLogicLevel(QSPI_Type *base,
qspi_ss_data_logic_level t eLogicLevel)

for master mode, drive Slave Select pin logic high or low

This feature is disabled if Slave Select automatic mode is enabled or Slave Select Strobe
feature is enabled

Parameters
* base — QUEUEDSPI peripheral address.

* eLogicLevel —logic level

318 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

static inline void QSPI_ MasterEnableSlaveSelectOpenDrainMode(QSPI_Type *base, bool bEnable)
For master mode, Enable open drain in SSB pad pin.

Enable it means SS_B is configured for high and low drive. This mode is generally used
in single master systems. Disable it means SS_B is configured as an open drain pin (only
drives low output level). This mode is useful for multiple master systems

Parameters
* base — QUEUEDSPI peripheral address.
* bEnable — Enable/Disable option.

static inline void QSPI_MasterEnableSlaveSelect AutomaticMode(QSPI_Type *base, bool bEnable)
For master mode, Enable/Disable Slave Select pin automatic mode.

Parameters
* base — QUEUEDSPI peripheral address.
* bEnable — Enable/Disable option.

static inline void QSPI_ SetSlaveSelectDirection(QSPI_Type *base, gspi_ss_direction_t eDirection)
Set Input/Output mode for SSB signal.

Parameters
* base — QUEUEDSPI peripheral address.
* eDirection — options from gspi_ss_direction_t

static inline void QSPI_ MasterEnableSlaveSelectStrobe(QSPI_Type *base, bool bEnable)
For master, set strobe mode for SSB signal.

If enabled, Slave select pulse high during data frames irrespective of Clock Phase configu-
ration

Parameters
* base — QUEUEDSPI peripheral address.
* bEnable — Enable/Disable option.

static inline void QSPI_EnableSlaveSelectOverride(QSPI_Type *base, bool bEnable)
Enable / Disable SSB signal from Master/Slave configuration or GPIO pin state.

Parameters
* base — QUEUEDSPI peripheral address.
* bEnable — Enable/Disable option.

void QSPI_SetDummyData(QSPI_Type *base, uint8_t u8DummyData)
Set up the dummy data used when there is not transmit data provided.

Parameters
* base — QUEUEDSPI peripheral address.
* u8DummyData — Data to be transferred when tx buffer is NULL.

uint8_t QSPI_GetDummyData(QSPI_Type *base)
Get the dummy data for each peripheral.

Parameters
* base — QUEUEDSPI peripheral base address.

2.66. QSPI: Queued SPI Driver 319

MCUXpresso SDK Documentation, Release 25.09.00

static inline void QSPI_ WriteData(QSPI_Type *base, uint16_t data)
Write data into the transmit data register without polling the status of shifting.

Parameters
* base — QUEUEDSPI peripheral address.
* data — The data to send.

static inline uint16_t QSPI_ReadData(QSPI_Type *base)
Read data from the receive data register.

Parameters
* base — QUEUEDSPI peripheral address.

Returns
The data from the receive data register.

static inline void QSPI_EnableFifo(QSPI_Type *base, bool bEnable)
Enable or disable the QUEUEDSPI FIFOs.

This function allows the caller to disable or enable the TX and RX FIFOs together.
Parameters
* base — QUEUEDSPI peripheral address.
* bEnable — Pass true to enable, pass false to disable

static inline uint16_t QSPI_ GetTxFIFOCount(QSPI_Type *base)
Get TX FIFO level.

This function gets how many words are in the TX FIFO.
Parameters
* base — QUEUEDSPI peripheral address.

Returns
TX FIFO word count.

static inline uint16_t QSPI_ GetRxFIFOCount(QSPI_Type *base)
Get RX FIFO level.

This function gets how many words are in the RX FIFO.
Parameters
* base — QUEUEDSPI peripheral address.

Returns
RX FIFO word count.

static inline void QSPI_ SetFifoWatermarks(QSPI_Type *base, uint16_t txWatermark, uint16_t
rxWatermark)

Set the transmit and receive FIFO watermark values.

Parameters
* base —- QUEUEDSPI peripheral address.
o txWatermark - The TX FIFO watermark value. Refer to

gspi_txfifo_watermark_t for available values.

o rxWatermark - The RX FIFO watermark value. Refer to
gspi_rxfifo_watermark_t for available values.

320 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

static inline void QSPI_ GetFifoWatermarks(QSPI_Type *base, uint8_t *pu8TxWatermark, uint8_t
*pu8RxWatermark)

Get the transmit and receive FIFO watermark values.
Parameters
* base —- QUEUEDSPI peripheral address.
* pu8TxWatermark — The TX FIFO watermark value.
* pu8RxWatermark — The RX FIFO watermark value.
static inline void QSPI_EmptyRxFifo(QSPI_Type *base)
Empty the QUEUEDSPI RX FIFO.
Parameters
* base — QUEUEDSPI peripheral address.

void QSPI_ MasterTransferCreateHandle(QSPI_Type *base, gspi_master_transfer_handle_t
*psHandle, gspi_master_transfer_callback_t pfCallback,
void *pUserData)

Initialize the QUEUEDSPI master handle.
This function initializes the QUEUEDSPI handle, which can be used for other QUEUEDSPI

transactional APIs. Usually, for a specified QUEUEDSPI instance, call this API once to get
the initialized handle.

Note: If only use the QSPI_MasterTransferBlocking, this API is not necessary be called.

Parameters
* base — QUEUEDSPI peripheral address.
* psHandle — QUEUEDSPI handle pointer to gspi_master_transfer_handle_t.
¢ pfCallback — QUEUEDSPI callback.
* pUserData — Callback function parameter.

status_t QSPI_MasterTransferBlocking(QSPI_Type *base, gspi_transfer_t *psXfer)
Polling method of QUEUEDSPI master transfer.

This function transfers data using a polling method for master. This is a blocking function,
which does not return until all transfers have been completed.

Parameters
* base — QUEUEDSPI peripheral address.
* psXfer — Pointer to the gspi_transfer_t structure.

Returns
status of status_t.

status_t QSPI_MasterTransferNonBlocking(gspi_master_transfer_handle_t *psHandle,
qspi_transfer._t *psXfer)

Interrupt method of QUEUEDSPI master transfer.

This function transfers data using interrupts for master. This is a non-blocking function,
which returns right away. When all data is transferred, the callback function is called.

Parameters
* psHandle — QUEUEDSPI handle pointer to gspi_master_transfer_handle_t.

* psXfer — Pointer to the gspi_transfer_t structure.

2.66. QSPI: Queued SPI Driver 321

MCUXpresso SDK Documentation, Release 25.09.00

Returns
status of status_t.

status_t QSPI_MasterTransferGetCount(qspi_master._transfer_handle_t *psHandle, uint16_t
*pul6Count)

Get the master transfer count.
Parameters
* psHandle — QUEUEDSPI handle pointer to gspi_master_transfer_handle_t.

* pul6Count — The number of bytes transferred by using the non-blocking
transaction.

Returns
status of status_t.

void QSPI_MasterTransferAbort(gspi_master_transfer_handle_t *psHandle)
Abort a transfer that uses interrupts for master.

Parameters
* psHandle — QUEUEDSPI handle pointer to gspi_master_transfer_handle_t.

void QSPI_MasterTransferHandleIRQ(qspi_master._transfer_handle_t *psHandle)
QUEUEDSPI Master IRQ handler function.

This function processes the QUEUEDSPI transmit and receive IRQ.
Parameters
* psHandle — QUEUEDSPI handle pointer to gspi_master_transfer_handle_t.

void QSPI_ SlaveTransferCreateHandle(QSPI_Type *base, gspi_slave_transfer_handle_t *psHandle,
qspi_slave_transfer_callback_t pfCallback, void
*pUserData)

Initialize the QUEUEDSPI slave handle.

This function initializes the QUEUEDSPI handle, which can be used for other QUEUEDSPI
transactional APIs. Usually, for a specified QUEUEDSPI instance, call this API once to get
the initialized handle.

Parameters
* base — QUEUEDSPI peripheral base address.
 psHandle— QUEUEDSPI handle pointer to the gspi_slave_transfer_handle_t.
¢ pfCallback — QUEUEDSPI callback.
* pUserData — Callback function parameter.

status_t QSPI_SlaveTransferNonBlocking(gspi_slave_transfer_handle_t *psHandle, gspi_transfer_t
*
psXfer)

Interrupt driven method of QUEUEDSPI slave transfer with completion will be notified by
registered callback.

This function transfers data using interrupts for slave. This is a non-blocking function,
which returns right away. When all data is transferred, the callback function is called.

Parameters

» psHandle — Pointer to the gspi_slave_transfer_handle_t structure which
stores the transfer state.

* psXfer — Pointer to the gspi_transfer_t structure.

Returns
status of status_t.

322 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

status_t QSPI_SlaveTransferGetCount(qspi_slave_transfer_handle_t *psHandle, uint16_t
*pul6Count)

Get the slave transfer count already transmitted/received.
Parameters

» psHandle — Pointer to the gspi_slave_transfer_handle_t structure which
stores the transfer state.

* pul6Count — The number of bytes transferred by using the non-blocking
transaction.

Returns
status of status_t.

void QSPI_ SlaveTransferAbort(qspi_slave_transfer_handle_t *psHandle)
Abort a transaction.
Parameters

* psHandle — Pointer to the gspi_slave_transfer_handle_t structure which
stores the transfer state.

void QSPI_SlaveTransferHandleIRQ(gspi_slave_transfer_handle_t *psHandle)
QUEUEDSPI slave IRQ handler function.
This function processes the QUEUEDSPI transmit and receive IRQ.
Parameters

» psHandle — Pointer to the gspi_slave_transfer_handle_t structure which
stores the transfer state.

FSL__QSPI_DRIVER__VERSION
QSPI driver version.
QSPI_TRANSFER_GET BASE(handle)
Extract Base Address from handle for master or slave handle.

QSPIiTRANSFERiGETiUSEPpiDATA(handle)
Extract user data from handle for master or slave handle.

Status return code for the QUEUEDSPI driver. Only used in transactional layer in this driver.

Values:

enumerator kStatus_ QSPI_Busy
QUEUEDSPI transfer is busy.

enumerator kStatus_ QSPI_ Error
QUEUEDSPI driver error.

enumerator kStatus_ QSPI_Idle
QUEUEDSPI is idle.

enumerator kStatus_ QSPI__OutOfRange
QUEUEDSPI transfer out of range.

enum _ gspi_status_ flags
QUEUEDSPI peripheral status flags.

Values:

2.66. QSPI: Queued SPI Driver

323

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQSPI_TxEmptyFlag
Transmitter Empty Flag.

enumerator kQSPI_ModeFaultFlag
Mode Fault Flag.

enumerator kQSPI_RxOverflowFlag
Receiver Overflow Flag.

enumerator kQSPI_ RxFullFlag
Receiver Full Flag.

enumerator kQSPI__AllStatusFlags

enum _ gspi_ interrupt_ enable
QUEUEDSPI interrupt source.
Values:

enumerator kQSPI_ TxInterruptEnable
SPTE interrupt enable.

enumerator kQSPI_RxInterruptEnable
SPRF interrupt enable.

enumerator kQSPI_RxOverFlowInterruptEnable
Bus error interrupt enable.

enumerator kQSPI_ Alllnterrupts

enum _ gspi_ss_direction
options for Slave Select (SSB) signal direction.
Values:

enumerator kQSPI__SlaveSelectDirectionInput
SSB signal as input for slave mode or master mode with Mode fault enabled.

enumerator kQSPI_ SlaveSelect DIrectionOutput
SSB signal as output.

enum _ gspi_ss_data_ logic_ level
logical level for Slave Select (SSB) signal data
Values:

enumerator kQSPI_SlaveSelectLogicLow
Slave select logic level low

enumerator kQSPI_ SlaveSelectLogicHigh
Slave select logic level high

enum _ gspi_ txfifowatermark
QUEUEDSPI Transmit FIFO watermark settings.

Values:

enumerator kQSPI_ TxFifoWatermarkEmpty
Transmit interrupt active when Tx FIFO is empty

enumerator kQSPI_ TxFifoWatermarkOneWord
Transmit interrupt active when Tx FIFO has one or fewer words available

enumerator kQSPI_ TxFifoWatermarkTwoWord
Transmit interrupt active when Tx FIFO has two or fewer words available

324 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQSPI_ TxFifoWatermarkThreeWord
Transmit interrupt active when Tx FIFO has three or fewer words available

enum _ gspi_ rxfifowatermark
QUEUEDSPI Receive FIFO watermark settings.
Values:
enumerator kQSPI_RxFifoWatermarkOneWord
Receive interrupt active when Rx FIFO has at least one word used
enumerator kQSPI_RxFifoWatermarkTwoWord
Receive interrupt active when Rx FIFO has at least two words used
enumerator kQSPI_RxFifoWatermarkThreeWord
Receive interrupt active when Rx FIFO has at least three words used
enumerator kQSPI_RxFifowatermarkFull
Receive interrupt active when Rx FIFO is full
enum _ gspi_ data_ width
Transfer data width in each frame.
Values:
enumerator kQSPI_Data2Bits
2 bits data width
enumerator kQSPI_Data3Bits
3 bits data width
enumerator kQSPI_Data4Bits
4 bits data width
enumerator kQSPI_DatabBits
5 bits data width
enumerator kQSPI_Data6Bits
6 bits data width
enumerator kQSPI_Data7Bits
7 bits data width
enumerator kQSPI_Data8Bits
8 bits data width
enumerator kQSPI_Data9Bits
9 bits data width
enumerator kQSPI_ DatalOBits
10 bits data width
enumerator kQSPI_ DatallBits
11 bits data width
enumerator kQSPI_Datal2Bits
12 bits data width
enumerator kQSPI_Datal3Bits
13 bits data width

enumerator kQSPI_Datal4Bits
14 bits data width

2.66. QSPI: Queued SPI Driver

325

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQSPI_ Datal5Bits
15 bits data width

enumerator kQSPI_Datal6Bits
16 bits data width

enum _ gspi_dma_ enable_flags
QUEUEDSPI DMA configuration for Transmit and Receive.
Values:

enumerator kQSPI_DmaRx
Receive DMA Enable Flag.

enumerator kQSPI_DmaTx
Transmit DMA Enable Flag.

enum _ gspi_ master_slave_mode
QUEUEDSPI master or slave mode configuration.
Values:

enumerator kQSPI_Slave
QUEUEDSPI peripheral operates in slave mode.

enumerator kQSPI_Master
QUEUEDSPI peripheral operates in master mode.

enum _ gspi_ clock_ polarity
QUEUEDSPI clock polarity configuration.
Values:

enumerator kQSPI_ClockPolarity ActiveRisingEdge

CPOL=0. Active-high QUEUEDSPI clock (idles low), rising edge of SCLK starts transac-
tion.

enumerator kQSPI_ClockPolarity ActiveFallingEdge

CPOL=1. Active-low QUEUEDSPI clock (idles high), falling edge of SCLK starts transac-
tion.

enum _ gspi_ clock_phase
QUEUEDSPI clock phase configuration.
Values:

enumerator kQSPI_ClockPhaseSlaveSelectHighBetweenWords
CPHA-=0, Slave Select toggle high during data frames.

enumerator kQSPI_ClockPhaseSlaveSelectLowBetweenWords
CPHA-=1, Slave Select keep low during data frames.

enum _ gspi_ data_ shift_ direction
QUEUEDSPI data shifter direction options for a given CTAR.
Values:

enumerator kQSPI_ MsbFirst
Data transfers start with most significant bit.

enumerator kQSPI_ LsbFirst
Data transfers start with least significant bit.

326 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enum _ gspi_ pcs_ polarity config
QUEUEDSPI Peripheral Chip Select Polarity configuration.

Values:

enumerator kQSPI_ PcsActiveHigh
Pcs Active High (idles low).

enumerator kQSPI_ PcsActiveLow
Pcs Active Low (idles high).
enum _ gspi_master transfer flag
transaction layer configuration options for each transaction

Values:

enumerator kQSPI_MasterPCSContinous
Indicates whether the PCS signal de-asserts during transfer between frames, note this
flag should not be used when CPHA is 0.

enumerator kQSPI_MasterActiveAfter Transfer

Indicates whether the PCS signal is active after the last frame transfer, note 1.
this flag should not be used when CPHA is 0, 2. this flag can only be used when
kQSPI_MasterPCSContinous is used.

enum _ gspi_ transfer state
QUEUEDSPI transfer state, used internally for transactional layer.

Values:

enumerator kQSPI_Idle

Nothing in the transmitter/receiver.
enumerator kQSPI_Busy

Transfer queue is not finished.

enumerator kQSPI_Error
Transfer error.
typedef enum _gspi_ss_direction qspi_ss_ direction_ t
options for Slave Select (SSB) signal direction.
typedef enum _gspi_ss_data_logic_level qspi_ss_ data_logic_level t
logical level for Slave Select (SSB) signal data
typedef enum _gspi_txfifo_watermark qspi_ txfifowatermark_t
QUEUEDSPI Transmit FIFO watermark settings.

typedef enum _gspi_rxfifo_watermark qspi_ rxfifowatermark_t
QUEUEDSPI Receive FIFO watermark settings.

typedef enum _gspi_data_width qspi_ data_ width_t
Transfer data width in each frame.

typedef enum _qgspi_master_slave_mode qspi_ master_slave__mode_ t
QUEUEDSPI master or slave mode configuration.

typedef enum _gspi_clock_polarity gspi_ clock_ polarity_t
QUEUEDSPI clock polarity configuration.

typedef enum _gspi_clock_phase gspi_ clock_phase_t
QUEUEDSPI clock phase configuration.

2.66. QSPI: Queued SPI Driver 327

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _gspi_data_shift_direction qspi_ data_ shift_ direction_t

QUEUEDSPI data shifter direction options for a given CTAR.
typedef struct _gspi_master._config qspi__master__config_t

QUEUEDSPI master configuration structure with all master configuration fields covered.
typedef struct _gspi_slave_config qspi_slave__config_t

QUEUEDSPI slave configuration structure with all slave configuration fields covered.
typedef enum _gspi_pcs_polarity_config qspi_ pcs_ polarity_config_t

QUEUEDSPI Peripheral Chip Select Polarity configuration.
typedef struct _qgspi_transfer qspi_ transfer t

QUEUEDSPI master/slave transfer structure.

typedef struct _qspi master_handle qspi_master transfer handle_t
Forward declaration of the _qspi_master_handle typedefs. .

typedef void (*qspi_ master_transfer callback t)(qspi_master_transfer_handle_t *psHandle,
status_t eCompletionStatus, void *pUserData)

Completion callback function pointer type.

Param base
QUEUEDSPI peripheral address.

Param psHandle
Pointer to the handle for the QUEUEDSPI master.

Param eCompletionStatus
Success or error code describing whether the transfer completed.

Param pUserData
Arbitrary pointer-dataSized value passed from the application.

typedef struct _qspi master_handle qspi_slave_ transfer_handle_t
Forward declaration of the _qspi_master_handle typedefs. .

typedef void (*gspi_slave__transfer_ callback_t)(qspi_slave_transfer_handle_t *psHandle, status_t
eCompletionStatus, void *pUserData)

Completion callback function pointer type.

Param base
QUEUEDSPI peripheral address.

Param handle
Pointer to the handle for the QUEUEDSPI slave.

Param status
Success or error code describing whether the transfer completed.

Param pUserData
Arbitrary pointer-dataSized value passed from the application.

QSPI_DUMMY_DATA
User Configuraiton item dummy data filled into Output signal if there is no Tx data.
Dummy data used for Tx if there is no txData.

struct _ gspi__master_config

#include <fsl_queued_spi.h> QUEUEDSPI master configuration structure with all master con-
figuration fields covered.

328 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

uint32_t u32BaudRateBps
Baud Rate for QUEUEDSPL.
qspi_data_width_t eDataWidth
Data width in SPI transfer

qspi_clock_polarity_t eClkPolarity
Clock polarity.

qspi_clock_phase_t eClkPhase
Clock phase.
qspi_data_shift_direction_t eShiftDirection
MSB or LSB data shift direction.

bool bEnableWiredOrMode

SPI pin configuration, when enabled the SPI pins are configured as open-drain drivers
with the pull-ups disabled.

bool bEnableModeFault

Enable/Disable mode fault detect for Slave Select Signal
bool bEnableStrobe

Enable/Disable strobe between data frames irrespective of clock pahse setting
bool bEnableSlaveSel AutoMode

Enable/Disable Slave Select Auto mode.
bool bEnableSlaveSelOpenDrain

Enable the open-drain mode of SPI Pins, otherwise Push-Pull
uint16_t ul6DelayBetweenFrameInCLK

The delay between frame.
bool bEnableFIFO

Enable / Disable FIFO for Transmit/Receive
qspi_txfifo_watermark_t e TxFIFOWatermark

Watermark config for Transmit FIFO
qspi_txfifo_watermark_t eRxFIFOWatermark

Watermark config for Receive FIFO
bool bEnableModule

Enable / Disable module
uint8_t u8Interrupts

Interrupt enabled ORed from _gspi_interrupt_enable
uint8_t u8DmaEnableFlags

Configure DMA Enable/Disable for Transmit/Receive

struct _ gspi_ slave_ config

#include <fsl_queued_spi.h> QUEUEDSPI slave configuration structure with all slave config-
uration fields covered.

Public Members

qspi_data_width_t eDataWidth
Data width in SPI transfer

2.66. QSPI: Queued SPI Driver 329

MCUXpresso SDK Documentation, Release 25.09.00

qspi_clock_polarity_t eClkPolarity
Clock polarity.

qspi_clock_phase_t eClkPhase
Clock phase.
qspi_data_shift_direction_t eShiftDirection
MSB or LSB data shift direction.

bool bEnableWiredOrMode

SPI pin configuration, when enabled the SPI pins are configured as open-drain drivers
with the pull-ups disabled.

bool bEnableModeFault
Enable/Disable mode fault detect for Slave Select Signal

bool bEnableSlaveSelOverride
Enable/Disble override Slave Select (SS) singal with Master/Slave Mode config

bool bEnableFIFO
Enable / Disable FIFO for Transmit/Receive

qspi_txfifo_watermark_t e TxFIFOWatermark
Watermark config for Transmit FIFO

qspi_txfifo_watermark_t eRxFIFOWatermark
Watermark config for Receive FIFO

bool bEnableModule
Enable/Disable Module

uint8_t u8DmaEnableFlags
Configure DMA Enable/Disable for Transmit/Receive

struct _ gspi_ transfer
#include <fsl_queued_spi.h> QUEUEDSPI master/slave transfer structure.

Public Members

void *pTxData
Transmit buffer.

void *pRxData
Receive buffer.

volatile uint16_t ul6DataSize
Transfer bytes.

uint8_t u8ConfigFlags

Transfer configuration flags; set from _qspi_master_transfer_flag. This is not used in
slave transfer.

struct _ gspi_ master__handle

#include <fsl_queued_spi.h> QUEUEDSPI master transfer handle structure used for transac-
tional API.

Public Members

QSPI_Type *base
Base address for the QSPI peripheral

330 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

qspi_data_width_t eDataWidth
The desired number of bits per frame.

volatile bool bIsPcsActiveAfterTransfer

Indicates whether the PCS signal is active after the last frame transfer, This is not used
in slave transfer.

uint8_t *volatile pu8TxData
Send buffer.

uint8_t *volatile pu8RxData
Receive buffer.

volatile uint16_t ul6RemainingSendByteCount
A number of bytes remaining to send.
volatile uint16_t ul6RemainingReceiveByteCount
A number of bytes remaining to receive.

uint16_t ul6TotalByteCount
A number of transfer bytes

volatile uint8_t u8State
QUEUEDSPI transfer state, see _qspi_transfer_state.

qspi_master_transfer_callback_t pfCallback
Completion callback.

void *pUserData
Callback user data.

volatile uint16_t ul6ErrorCount
Error count for slave transfer, this is not used in master transfer.

2.67 QSPI Peripheral and Driver Overview

2.68 QSPI_EDMA: EDMA based QSPI Driver

FSL_QSPI_EDMA_ DRIVER_VERSION

QSPI EDMA driver version.

typedef struct _qspi_master_edma_handle qspi_master__edma_ handle_t

Forward declaration of the _qspi_master_edma_handle typedefs.

typedef struct _qspi_master_edma_handle qspi_slave_edma_handle_t

Forward declaration of the _qspi_master_edma_handle typedefs.

typedef void (*qspi_edma_ transfer_ callback_ t)(qspi_master_edma_handle_t *psHandle, status_t
eCompletionStatus, void *pUserData)

Completion callback function pointer type.

Param base
QUEUEDSPI peripheral base address.

Param psHandle
Pointer to the handle for the QUEUEDSPI master.

Param eCompletionStatus
Success or error code describing whether the transfer completed.

2.67. QSPI Peripheral and Driver Overview 331

MCUXpresso SDK Documentation, Release 25.09.00

Param pUserData
Arbitrary pointer-dataSized value passed from the application.

void QSPI_MasterTransferCreateHandleEDMA (QSPI_Type *base, gspi_master_edma_handle_t
*psHandle, gspi_edma_transfer_callback_t
pfCallback, void *pUserData, DMA_Type
*psEdmaBase, edma_channel_t eEdmaTxChannel,
edma_channel_t eEdmaRxChannel)

Initialize the QUEUEDSPI master EDMA handle.

This function initializes the QUEUEDSPI EDMA master handle which can be used for
QUEUEDSPI EDMA master transactional APIs. Usually, for a specified QUEUEDSPI instance,
call this API once to get the initialized handle.

Parameters
* base —- QUEUEDSPI peripheral base address.
* psHandle - QUEUEDSPI handle pointer to gspi_master_edma_handle_t.
* pfCallback — QUEUEDSPI callback.
» pUserData — callback function parameter.
* psEdmaBase — base address for the EDMA
* eEdmaTxChannel — Channel of the EDMA used for QSPI Tx
* eEdmaRxChannel — Channel of the EDMA used for QSPI Rx

status_t QSPI_MasterTransferEDMA (qspi_master_edma_handle_t *psHandle, gspi_transfer_t
*
psXfer)

EDMA method of QUEUEDSPI master transfer.

This function transfers data using EDMA. This is a non-blocking function, which returns
right away. When all data is transferred, the callback function is called.

Note: : The transfer data size should be even, if the transfer data width is larger than 8.

Parameters

* psHandle — pointer to qspi_master_edma_handle_t structure which stores
the transfer state.

* psXfer — pointer to qspi_transfer_t structure.

Returns
status of status_t.

status_t QSPI_MasterTransferGetCountEDMA (qspi_master_edma_handle_t *psHandle, uint16_t
*pul6Count)

Get the master EDMA transfer count.
Parameters

* psHandle — Pointer to the gspi_master_edma_handle_t structure which
stores the transfer state.

* pul6Count — The number of bytes transferred by using the EDMA transac-
tion.

Returns
status of status_t.

332 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

void QSPI_MasterTransferAbortEDMA (gspi_master_edma_handle_t *psHandle)
Abort a transfer that uses EDMA for master.

Parameters

» psHandle — Pointer to the gspi_master_edma_handle_t structure which
stores the transfer state.

void QSPI_ SlaveTransferCreateHandleEDMA (QSPI_Type *base, gspi_slave_edma_handle_t
*psHandle, gspi_edma_transfer_callback_t
pfCallback, void *pUserData, DMA_Type
*psEdmaBase, edma_channel_t eEdmaTxChannel,
edma_channel_t eEdmaRxChannel)

Initialize the QUEUEDSPI slave EDMA handle.

This function initializes the QUEUEDSPI EDMA handle which can be used for other
QUEUEDSPI transactional APIs. Usually, for a specified QUEUEDSPI instance, call this API
once to get the initialized handle.

Parameters
* base — QUEUEDSPI peripheral base address.
* psHandle — QUEUEDSPI handle pointer to gspi_slave_edma_handle_t.
¢ pfCallback — QUEUEDSPI callback.
* pUserData — callback function parameter.
* psEdmaBase — base address for the EDMA
* eEdmaTxChannel — Channel of the EDMA used for QSPI Tx
* ¢EdmaRxChannel — Channel of the EDMA used for QSPI Rx

status_t QSPI_SlaveTransferEDMA (gspi_slave_edma_handle_t *psHandle, gspi_transfer._t
*.
psXfer)

EDMA method of QUEUEDSPI slave transfer.

This function transfers data using EDMA. This is a non-blocking function, which returns
right away. When all data is transferred, the callback function is called.

Note: : The transfer data size should be even if the transfer data width is larger than 8.

Parameters

 psHandle —pointer to gspi_slave_edma_handle_t structure which stores the
transfer state.

* psXfer — pointer to qspi_transfer_t structure.

Returns
status of status_t.

status_t QSPI_SlaveTransferGetCountEDMA (gspi_slave_edma_handle_t *psHandle, uint16_t
*pul6Count)

Get the slave EDMA transfer count.
Parameters

* psHandle —Pointer to the qspi_slave_edma_handle_t structure which stores
the transfer state.

* pul6Count — The number of bytes transferred by using the EDMA transac-
tion.

2.68. QSPI_EDMA: EDMA based QSPI Driver 333

MCUXpresso SDK Documentation, Release 25.09.00

Returns
status of status_t.

void QSPI_SlaveTransferAbortEDMA (qspi_slave_edma_handle_t *psHandle)
Abort a transfer that uses EDMA for slave.

Parameters

* psHandle —Pointer to the gspi_slave_edma_handle_t structure which stores
the transfer state.

struct _ gspi_ master_edma_ handle

#include <fsl_queued_spi_edma.h> QUEUEDSPI master EDMA transfer handle structure used
for transactional API. This struct should be sizeof(edma_channel_tcd_t) aligned.

Public Members
QSPI_Type *base
Base address of the QSPI Peripheral

volatile uint8_t u8State
QUEUEDSPI transfer state, defined in _gspi_transfer_state.

uint16_t ul6TotalByteCount
A number of transfer bytes.

qspi_data_width_t eDataWidth
The desired number of bits per frame.

uint16_t ul6TxDummyData
Used if txData is NULL.

uint16_t ul6RxDummyData
Used if rxData is NULL.

edma_handle_t sTxHandle
edma_handle_t handle point used for transmitting data.

edma_handle_t sRxHandle

edma_handle_t handle point used for receiving data.
bool bIsTxInProgress

Indicates whether the transmit is in progress.
bool bIsRxInProgress

Indicates whether the receive is in progress.
qspi_edma_transfer_callback_t pfCallback

Completion callback.
void *pUserData

Callback user data.

volatile bool bIsPcsActiveAfterTransfer

Indicates whether the PCS signal is active after the last frame transfer, This is not used
in slave transfer.

2.69 QTMR: Quad Timer Driver

334 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

void QTMR,_ Init(TMR_Type *base, const gtmr_config_t *psConfig)
Initialization Quad Timer module with provided structure.

This function can initial one or more channels of the Quad Timer module.

This examples shows how only initial channel 0.

qtmr_config t sConfig = {0};

gtmr__channel_config t sChannel0Config;
sConfig.psChannelConfig[0] = &sChannel0Config;
QTMR_ GetChannelDefaultConfig(&sChannel0Config);
QTMR,_ Init(QTMR, sConfig);

Note: This API should be called at the beginning of the application using the Quad Timer
module.

Parameters
* base — Quad Timer peripheral base address.
* psConfig—Pointer to user’s Quad Timer config structure. See gtmr_config _t.

void QTMR,_ Deinit(TMR_Type *base)
De-initialization Quad Timer module.

Parameters
* base — Quad Timer peripheral base address.

void QTMR, GetChannelDefaultConfig(qtmr_channel_config_t *psConfig)
Gets an available pre-defined options for Quad Timer channel module’s configuration.

This function initializes the channel configuration structure with a free run 16bit timer
work setting. The default values are:

psConfig->sInputConfig.ePrimarySource = kQTMR_ PrimarySrcIPBusClockDivide2;
psConfig->sInputConfig.eSecondarySource = kQTMR__ SecondarySrcInputPin0;
psConfig->sInputConfig.eSecondarySourceCaptureMode = kQTMR,_SecondarySrcCaptureNoCapture;
psConfig->sInputConfig.bEnableSecondarySrcFaultFunction = false;
psConfig->sInputConfig.eEnablelnputInvert = false;
psConfig->sCountConfig.eCountMode = kQTMR_ CountPrimarySrcRiseEdge;
psConfig->sCountConfig.eCountLength = kQTMR_ CountLengthUntilRollOver;
psConfig->sCountConfig.eCountDir = kQTMR,_ CountDirectionUp;
psConfig->sCountConfig.eCountTimes = kQTMR, CountTimesRepeat;
psConfig->sCountConfig.eCountLoadMode = kQTMR,_ CountLoadNormal;
psConfig->sCountConfig.eCountPreloadl = kQTMR, CountPreloadNoLoad;
psConfig->sCountConfig.eCountPreload2 = kQTMR, CountPreloadNolLoad;
psConfig->sOutputConfig.eOutputMode = kQTMR,__OutputAssert WhenCountActive;
psConfig->sOutputConfig.eOutput ValueOnForce = kQTMR,_ OutputValueClearOnForce;
psConfig->sOutputConfig.bEnableOutputInvert = false;
psConfig->sOutputConfig.bEnableSwForceOutput = false;
psConfig->sOutputConfig.bEnableOutputPin = false;
psConfig->sCooperationConfig.bEnableMasterRelnit = false;
psConfig->sCooperationConfig.bEnableMasterForcecOFLAG = false;
psConfig->sCooperationConfig.bEnableMasterMode = false;
psConfig->eDebugMode = kQTMR__DebugRunNormal;
psConfig->ul6EnabledInterruptMask = 0x0U;
psConfig->ul6EnabledDMAMask = 0x0U;
psConfig->ul6Compl = 0x0U;
psConfig->ul6Comp2 = 0x0U;
psConfig->ul6ComplPreload = 0x0U;
psConfig->ul6ComplPreload = 0x0U;

(continues on next page)

2.69. QTMR: Quad Timer Driver 335

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)

psConfig->ul6Load = 0x0U;
psConfig->ul6Count = 0x0U;
psConfig->bEnableChannel = false;

Parameters

* psConfig — Pointer to user’s Quad Timer channel config structure. See
qtmr_channel_config_t.

void QTMR,_SetupChannleConfig(TMR_Type *base, qtmr_channel number_t eChannelNumber,
const gtmr_channel_config_t *psConfig)

Setup a Quad Timer channel with provided structure.
Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

*» psConfig — Pointer to user’s Quad Timer channel config structure. See
gtmr_channel_config _t.

static inline void QTMR__ SetPrimaryCountSource(TMR_Type *base, gtmr_channel_number_t
eChannelNumber,
qtmr_channel_primary_count_source_t
ePrimarySource)

Sets primary input source.

This function select the primary input source, it can select from “input pin 0~3”, “channel
output

0~3” and “IP bus clock prescaler”.

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

* ePrimarySource =~ — The primary input source. See
gtmr_channel_primary_count_source_t.

static inline void QTMR__ SetSecondaryCountSource(TMR_Type *base, gtmr_channel number_t
eChannelNumber,
qtmr_channel_secondary_count_source_t
source)

Sets secondary input source.
This function select the secondary input source, it can select from “input pin 0~3”.
Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
qtmr_channel_number_t.

* source - The Secondary input source. See
gtmr_channel secondary_count_source_t.

336 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

void QTMR_ SetSecondarySourcelnputCaptureMode(TMR_Type *base, gtmr_channel number._t
eChannelNumber,
qtmr_channel_secondary_source_capture_mode_t
eCaptureMode)

Sets secondary input capture mode.

This function select the capture mode for secondary input, it can select from “disable cap-
ture”, “capture on

rising/falling edge” and “capture on both edges”. Need enable capture mode when input
edge interrupt is needed.
Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
qtmr_channel_number_t.

» eCaptureMode - The capture mode of secondary input. See
gtmr_channel _secondary_source_capture_mode_t.

static inline void QTMR,_EnableSecondarySourceFault(TMR_Type *base, gtmr_channel_number_t
eChannelNumber, bool bEnable)

Enables/Disables secondary input source signal fault feature.

Enable fault feature will make secondary input acts as a fault signal so that the channel
output signal (OFLAG) is cleared when the secondary input is set.

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel_number_t.

* bEnable — Enable the feature or not.
- true Enable secondary source fault feature.
— false Disable secondary source fault feature.

static inline void QTMR,_EnableInputInvert(TMR_Type *base, gtmr_channel number._t
eChannelNumber, bool bEnable)

Enables/Disables input pin signal polarity invert feature.

This function enables/disables input pin signal polarity invert feature.

Note: Invert feature only affects “input pin 0~3”, and acts on the channel input node, not
the input pin, so it only affect current channel and not share by other channel

Parameters
* base — Quad Timer peripheral base address.

¢ ¢ChannelNumber - Quad Timer channel number. See
qtmr_channel number_t.

* bEnable — Enable the feature or not.
— true Invert input pin signal polarity.

- false No invert for input pin signal polarity.

2.69. QTMR: Quad Timer Driver 337

MCUXpresso SDK Documentation, Release 25.09.00

static inline void QTMR_ SetInputFilter(TMR_Type *base, gtmr_input_pin_t ePin, uint8_t
u8Count, uint8_t u8Period)

Sets input filter for one input pin.

Sets input filter if the input signal is noisy.

Note: The input filter acts on the input pin directly, so the input filter config will affect all
channels that select this input pin as source. Turning on the input filter(setting FILT PER
to a non-zero value) introduces a latency of ((u8Count + 3) x u8Period) + 2) IP bus clock
periods.

Parameters
* base — Quad Timer peripheral base address.
* ePin — Quad Timer input pin number. See qtmr_input_pin_t.

» u8Count — Range is 0~7, represent the number of consecutive samples that
must agree prior to the input filter accepting an input transition. Actual
consecutive samples numbers is (u8Count + 3).

* u8Period — Represent the sampling period (in IP bus clock cycles) of the
input pin signals. Each inputis sampled multiple times at the rate specified
by this field. If u8Period is 0, then the input pin filter is bypassed.

static inline uint16_t QTMR_ GetInputPinValueInSecondarySource(TMR_Type *base,
qtmr_channel_number._t
eChannelNumber)

Gets the external input signal value selected via the secondary input source.

This function read the value of the secondary input source, the input pin IPS and filtering
have been applied to the read back value.

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

Returns
The state of the current state of the external input pin selected via the sec-
ondary count source after application of IPS and filtering.

void QTMR_ SetCountMode(TMR_Type *base, gtmr_channel_number_t eChannelNumber,
qtmr_channel_count_mode_t eCountMode)

Sets channel count mode.

This function select channel basic count mode which trigger by primary input or/and sec-
ondary input events.

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
qtmr_channel_number_t.

* eCountMode - The mode of operation for the count. See
gtmr_channel _count_mode_t.

static inline void QTMR_ SetCountLength(TMR_Type *base, gtmr_channel_number._t
eChannelNumber, gtmr_channel count_length_t
eLength)

338 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

Sets channel count length.

This function select channel single count length from “until roll over” or “until compare”.
“until roll over” means count until OXFFFF, “until compare” means count until reach COMP1
(for count up) or COMP2 (for count up) value (unless the output signal is in alternating
compare mode, this mode make channel use COMP1 and COMP2 alternately).

Parameters
* base — Quad Timer peripheral base address.

* eChannelNumber - Quad Timer channel number. See
gtmr_channel_number_t.

* eLength — The channel count length. See gtmr_channel_count_length_t.

static inline void QTMR,_ SetCountDirection(TMR_Type *base, gtmr_channel number._t
eChannelNumber, gtmr_channel count_direction_t
eDirection)

Sets channel count direction.

This function select channel count direction from “count up” or “count down”. Under nor-
mal count mode, this function decide the count direction directly, when chose “secondary
specifies direction” count mode, count direction decide by “the secondary input level” XOR
with “the function selection”.

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
qtmr_channel_number_t.

* eDirection - The channel count direction. See
gtmr_channel _count_direction_t.

static inline gtmr_channel_count_direction_t QTMR,__ GetCountDirection(TMR_Type *base,
qtmr_channel_number_t
eChannelNumber)

Gets channel count direction.

This function read the channel count direction of the last count during quadrature encoded
count mode.

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number See
gtmr_channel_number_t.

Returns
The direction of the last count. Value see gtmr_channel_count_direction_t.

static inline void QTMR,_SetCountTimes(TMR_Type *base, gtmr_channel number._t
eChannelNumber, gtmr_channel_count_times_t
eTimes)

Sets channel count times.

This function select channel count times from “once” or “repeatedly”. If select “once” with
“until compare”, channel will stop when reach COMP1 (for count up) or COMP2 (for count
up) (unless the output signal is in alternating compare mode, this mode will make channel
reaching COMP1, re-initializes then count reaching COMP2, and then stops).

Parameters

* base — Quad Timer peripheral base address.

2.69. QTMR: Quad Timer Driver 339

MCUXpresso SDK Documentation, Release 25.09.00

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel number _t.

* ¢Times — The channel count times. See qtmr_channel_count_times_t.

static inline void QTMR,_SetCountLoadMode(TMR_Type *base, gtmr_channel number._t
eChannelNumber,
qtmr_channel_count_load_mode_t eLoadMode)

Sets channel count load mode.
This function select channel count re-initialized load mode from “normal” or “alternative”.
“normal” means channel counter re-initialized from LOAD register when compare event,

“alternative” means channel counter can re-initialized from LOAD (count up) or CMPLD2
(count down) when compare event.

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel_number_t.

¢ eLoadMode - The channel count load mode. See
gtmr_channel_count_load_mode_t.

static inline void QTMR,_SetComparelPreloadControl(TMR_Type *base, gtmr_channel number._t
eChannelNumber,
qtmr_channel_count_preload_mode_t
ePreloadMode)

Sets channel preload mode for compare register 1.

This function select channel preload mode for compare register 1. Default the COMP1 reg-
ister never preload, when enabled, the COMP1 can preload from CMPLD1 register when
COMP1 or COMP2 compare event.

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel number _t.

* ePreloadMode — The compare register 1 preload mode. See
gtmr_channel_count_preload_mode_t.

static inline void QTMR_ SetCompare2PreloadControl(TMR_Type *base, qtmr_channel number._t
eChannelNumber,
qtmr_channel_count_preload_mode_t
ePreloadMode)

Sets channel preload mode for compare register 2.

This function select channel preload mode for compare register 2. Default the COMP2 reg-
ister never preload, when enabled, the COMP2 can preload from CMPLD2 register when
COMP1 or COMP2 compare event.

Parameters
* base — Quad Timer peripheral base address.

* eChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

* ePreloadMode — The compare register 2 preload mode. See
gtmr_channel _count_preload_mode_t.

340 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

static inline void QTMR_ SetComparelPreloadValue(TMR_Type *base, gtmr_channel number._t
eChannelNumber, uint16_t
ul6ComplPreload)

Sets channel compare register 1 preload register value.

This function set the CMPLD1 register value. The COMP1 can preload from CMPLD1 register
when preload mode is not “never preload”.

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel_number_t.

* ul6ComplPreload — Value for Channel compare register 1 preload register.

static inline void QTMR_ SetCompare2PreloadValue(TMR_Type *base, gtmr_channel number._t
eChannelNumber, uint16_t
ul6Comp2Preload)

Sets channel compare register 2 preload register value.

This function set the CMPLD2 register value. The COMP2 can preload from CMPLD2 register
when preload mode is not “never preload”.

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel_number_t.

* ul6Comp2Preload — Value for Channel compare register 2 preload register.

static inline void QTMR_ SetLoadValue(TMR_Type *base, gtmr_channel number._t
eChannelNumber, uint16_t ul6Load)

Sets channel load register value.

This function set the LOAD register value. The channel will re-initialize the counter value
with this register after counter compare or overflow event.

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

* ul6Load — Value used to initialize the counter after counter compare or
overflow event.

static inline void QTMR_ SetComparel Value(TMR_Type *base, qtmr_channel_number._t
eChannelNumber, uint16_t u16Comp1)

Sets channel count compare register 1.

This function set the COMP1 register value. It use to trigger compare event in count up
mode or alternating compare mode.

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

* ul6Compl — Value for Channel compare register 1.

2.69. QTMR: Quad Timer Driver 311

MCUXpresso SDK Documentation, Release 25.09.00

static inline void QTMR_ SetCompare2Value(TMR_Type *base, qtmr_channel_number._t
eChannelNumber, uint16_t u16Comp2)

Sets channel count compare register 2.

This function set the COMP2 register value. It use to trigger compare event in count down
mode or alternating compare mode.

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

* ul6Comp2 — Value for Channel compare register 2.

static inline uint16_t QTMR_ ReadCaptureValue(TMR_Type *base, gtmr_channel number._t
eChannelNumber)

Gets channel capture register value.

This function read the CAPT register value, which store the real-time channel counter value
when input capture event.

Parameters
* base — Quad Timer peripheral base address.

* eChannelNumber - Quad Timer channel number. See
gtmr_channel number _t.

Returns
The value captured from the channel counter.

static inline uint16_t QTMR_ GetHoldValue(TMR_Type *base, gtmr_channel_number._t
eChannelNumber)

Gets channel hold register value.

This function read the HOLD register value, which stores the channel counter’s values of
specific channels whenever any of the four channels within a module is read.

Parameters
* base — Quad Timer peripheral base address.

* eChannelNumber - Quad Timer channel number. See
gtmr_channel number _t.

Returns
The channel counter value when any read operation occurs.

static inline void QTMR,_SetCounterValue(TMR_Type *base, gtmr_channel_number._t
eChannelNumber, uint16_t ul16Count)

Sets channel counter register value.

This function set the CNTR register value, the channel will start counting based on this
value.

Parameters
* base — Quad Timer peripheral base address.

* eChannelNumber - Quad Timer channel number. See
gtmr_channel number _t.

* 116Count — The channel counter initialize value.

342 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint16_t QTMR_ GetCounterValue(TMR_Type *base, qtmr_channel_number._t
eChannelNumber)

Reads channel counter register value.

This function read the CNTR register value, which stores the channel real-time channel
counting value. This read operation will trigger HOLD register update.

Note: User can call the utility macros provided in fsl_common.h to convert ticks to usec or

msec.
Parameters
* base — Quad Timer peripheral base address.
* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel number _t.
Returns

The real-time channel counter value.

static inline void QTMR_ SetOutputMode(TMR_Type *base, gtmr_channel_number._t
eChannelNumber, gtmr_channel _output _mode_t
eOutputMode)

Sets Channel output signal (OFLAG) work mode.

This function select channel output signal (OFLAG) work mode base on different channel
event.

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel_number_t.

* eOutputMode — The mode of operation for the OFLAG output signal. See
gtmr_channel output_mode_t.

static inline void QTMR_ SetOutputValueOnForce(TMR_Type *base, gtmr_channel number._t
eChannelNumber,
qtmr_channel_output_value_on_force_t eValue)

Sets the value of output signal when a force event occurs.

This function config the value of output signal when a force event occurs. Force events can
be a software command or compare event from a master channel.

Parameters
* base — Quad Timer peripheral base address.

o ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel_number_t.

* eValue — The value of output signal when force event occur. See
qtmr_channel_output_value_on_force_t.

static inline void QTMR,_EnableOutputInvert(TMR_Type *base, gtmr_channel_ number._t
eChannelNumber, bool bEnable)

Enables/Disables output signal polarity invert feature.
This function enables/disables the invert feature of output signal (OFLAG).
Parameters

* base — Quad Timer peripheral base address.

2.69. QTMR: Quad Timer Driver 343

MCUXpresso SDK Documentation, Release 25.09.00

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel number _t.

* bEnable — Enable the feature or not.
— true Invert output signal polarity.
— false No invert for output signal polarity.

static inline void QTMR,_EnableSwForceOutput(TMR_Type *base, qtmr_channel number._t
eChannelNumber)

Enables software triggers a FORCE command to output signal.

This function uses a software command to trigger force event, which can force the current
value of SCTRL[VAL] bit to be written to the OFLAG output.

Note: This function can be called only if the counter is disabled.

QTMR,_SetOutputValueOnForce(QTMR, kQTMR, _Channel0, kQTMR,_OutputValueSetOnForce);
QTMR,__EnableSwForceOutput(QTMR, kQTMR,__Channel0);

Parameters
* base — Quad Timer peripheral base address.

* eChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

static inline void QTMR_ EnableOutputPin(TMR_Type *base, gtmr_channel_number._t
eChannelNumber, bool bEnable)

Enables/Disables output signal (OFLAG) drive on the external pin feature.
This function enables/disables output signal (OFLAG) drive on the external pin feature.
Parameters
* base — Quad Timer peripheral base address.

* eChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

* bEnable — Enable the feature or not.
— true The output signal is driven on the external pin.
— false The external pin is configured as an input.

static inline void QTMR, EnableMasterMode(TMR_Type *base, qtmr_channel number._t
eChannelNumber, bool bEnable)

Enables/Disables channel master mode.

This function enables/disables channel master mode.

Note: Master channel can broadcast compare event to all channels within the module to
re-initialize channel and/or force channel output signal.

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

* bEnable — Enable the feature or not.

344 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

— true Enables channel master mode.
— false Disables channel master mode.

static inline void QTMR,_EnableMasterForcecOFLAG(TMR_Type *base, gtmr_channel number._t
eChannelNumber, bool bEnable)

Enables/Disables force the channel output signal (OFLAG) state by master channel compare
event.

This function enables/disables the compare event from master channel within the same
module to force the state of this channel OFLAG output signal.

Parameters
* base — Quad Timer peripheral base address.

* eChannelNumber - Quad Timer channel number. See
gtmr_channel number _t.

* bEnable — Enable the feature or not.

— true Enables OFLAG state to be forced by master channel compare
event.

- false Disables OFLAG state to be forced by master channel compare
event.

static inline void QTMR,_EnableMasterReInit(TMR_Type *base, qtmr_channel number._t
eChannelNumber, bool bEnable)

Enables/Disables channel be re-initialized by master channel compare event feature.

This function enables/disables the compare event from master channel within the same
module to force the re-initialization of this channel.

Parameters
* base — Quad Timer peripheral base address.

* eChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

* bEnable — Enable the feature or not.

- true Enables channel be re-initialized by master channel compare
event.

— false Disables channel be re-initialized by master channel compare
event.

static inline void QTMR,_EnableDma(TMR_Type *base, gtmr_channel_number_t
eChannelNumber, uint16_t ul6Mask)

Enables the Quad Timer DMA request according to a provided mask.

This function enables the Quad Timer DMA request according to a provided mask. The
mask is alogical OR of enumerators members. See _qtmr_channel_dma_enable. This exam-
ples shows how to enable compare 1 register preload DMA request and compare 2 register
preload DMA request.

QTMR,_EnableDma((QTMR, kQTMR_ Channel0,kQTMR,_ Comparel PreloadDmaEnable | kQTMR,__
—Compare2PreloadDmaEnable);

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel_number_t.

2.69. QTMR: Quad Timer Driver 345

MCUXpresso SDK Documentation, Release 25.09.00

* ul6Mask — The QTMR DMA requests to enable. Logical OR of
_qtmr_channel_dma_enable.

static inline void QTMR_ DisableDma(TMR_Type *base, qtmr_channel_number_t
eChannelNumber, uint16_t ul6Mask)

Disables the Quad Timer DMA request according to a provided mask.

This function disables the Quad Timer DMA request according to a provided mask. The
mask is alogical OR of enumerators members. See _qtmr_channel_dma_enable. This exam-
ples shows how to disable compare 1 register preload DMA request and compare 2 register
preload DMA request.

QTMR,_ DisableDma((QTMR, kQTMR_ Channel0, kQTMR,_Comparel PreloadDmaEnable | kQTMR,__
—Compare2PreloadDmaEnable);

Parameters
* base — Quad Timer peripheral base address.

o ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel_number_t.

* ul6Mask — The QTMR DMA requests to disable. Logical OR of
_qtmr_channel _dma_enable.

static inline void QTMR,_EnableInterrupts(TMR_Type *base, qgtmr_channel number._t
eChannelNumber, uint16_t ul6Mask)

Enables the Quad Timer interrupts according to a provided mask.

This function enables the Quad Timer interrupts according to a provided mask. The mask
is a logical OR of enumerators members. See _qtmr_channel_interrupt_enable. This exam-
ples shows how to enable compare 1 interrupt and compare 2 interrupt.

QTMR,__Enablelnterrupts((QTMR, kQTMR,_ Channel0, kQTMR__ComparelInterruptEnable |
—~kQTMR,_ Compare2InterruptEnable);

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

* ul6Mask - The QTMR DMA interrupts to enable. Logical OR of
_qtmr_channel_interrupt_enable.

static inline void QTMR_ DisableInterrupts(TMR_Type *base, gtmr_channel number._t
eChannelNumber, uint16_t ul6Mask)

Disables the Quad Timer interrupts according to a provided mask.

This function disables the Quad Timer interrupts according to a provided mask. The mask
is a logical OR of enumerators members. See _qtmr_channel_interrupt_enable. This exam-
ples shows how to disable compare 1 interrupt and compare 2 interrupt.

QTMR,_ DisableInterrupts((QTMR, kQTMR,__Channel0, kQTMR_ ComparellnterruptEnable |,
—kQTMR_ Compare2InterruptEnable);

Parameters
* base — Quad Timer peripheral base address.

* eChannelNumber - Quad Timer channel number. See
gtmr_channel number _t.

346 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

* ul6Mask — The QTMR DMA interrupts to disable. Logical OR of
_qtmr_channel_interrupt_enable.

static inline uint16_t QTMR,_ GetStatusFlags(TMR_Type *base, gtmr_channel number_t
eChannelNumber)

Gets the Quad Timer status flags.

This function gets all QTMR channel status flags. The flags are returned as the logical OR
value of the enumerators _qtmr_channel_status_flags. To check for a specific status, com-
pare the return value with enumerators in the _qtmr_channel _status_flags. For example,
to check whether the compare flag set.

if((QTMR,_GetStatusFlags(QTMR, kQTMR_ Channel0) & kQTMR, CompareFlag) != 0U)

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel number_t.

Returns
The QTMR status flags which is the logical OR of the enumerators
_qtmr_channel_status_flags.

static inline void QTMR__ ClearStatusFlags(TMR_Type *base, gtmr_channel number._t
eChannelNumber, uint16_t ul6Mask)

Clears the Quad Timer status flags.

This function clears QTMR channel status flags with a provide mask. The mask is a logical
ORof enumerators _qtmr_channel_status_flags. This examples shows how to clear compare
1 flag and compare 2 flag.

QTMR__ClearStatusFlags((QTMR, kQTMR_ Channel0, kQTMR,__ComparelFlag | kQTMR__
—Compare2Flag);

Parameters
* base — Quad Timer peripheral base address

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel number_t

* ul6Mask — The QTMR status flags to clear. Logical OR of
_qtmr_channel_status_flags

static inline void QTMR_ SetDebugActions(TMR_Type *base, qtmr_channel number._t
eChannelNumber, gtmr_channel _debug action_t
eDebugMode)

Sets channel debug actions.

This function selects the certain actions which will perform when the chip entering debug
mode.

Parameters
* base — Quad Timer peripheral base address.

* ¢ChannelNumber - Quad Timer channel number. See
gtmr_channel_number_t.

2.69. QTMR: Quad Timer Driver 347

MCUXpresso SDK Documentation, Release 25.09.00

* eDebugMode — The Quad Timer channel actions in response to the chip en-
tering debug mode. See qtmr_channel_debug_action_t.

static inline void QTMR_ EnableChannels(TMR_Type *base, uint16_t ul6Mask)
Enables the Quad Timer channels according to a provided mask.

This function enables the Quad Timer channels according to a provided mask. The mask
is a logical OR of enumerators _qtmr_channel_enable. This examples shows how to enable
channel 0 and channel 1.

QTMR,_ EnableChannels(QTMR, kQTMR,_ Channel0Enable | kQTMR,_ChannellEnable);

Note: If one channel has effective count mode, it will start its counter as soon as the chan-
nel be enabled.

Parameters
* base — Quad Timer peripheral base address.

* ul6Mask - The QTMR channels to enable. Logical OR of
_qtmr_channel_enable.

static inline void QTMR_ DisableChannels(TMR_Type *base, uint16_t ul6Mask)
Disables the Quad Timer channels according to a provided mask.

This function disables the Quad Timer channels according to a provided mask. The mask
is alogical OR of enumerators _qtmr_channel_enable. This examples shows how to disable
channel 0 and channel 1.

QTMR,_ DisableChannels(QTMR, kQTMR,_ChannelOEnable | kQTMR, ChannellEnable);

Parameters
* base — Quad Timer peripheral base address.

* ul6Mask - The QTMR channels to enable. Logical OR of
_qtmr_channel_enable.

static inline uint32_t TMR,_ GetCaptureRegAddr(TMR_Type *base, qtmr_channel number._t
nChannel)

Gets the TMR capture register address. This API is used to provide the transfer address for
TMR capture transfer.

Parameters
* base — TMR base pointer
* nChannel - Quad Timer channel number. See qtmr_channel number _t.

Returns
capture register address

FSL_QTMR_DRIVER_ VERSION
QTMR driver version.

enum _ gtmr_ input_ pin
The enumeration for Quad Timer module input pin source.
Values:

enumerator kQTMR,_ InputPin0
Quad Timer input pin 0.

348 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQTMR,_ InputPinl
Quad Timer input pin 1.

enumerator kQTMR,_ InputPin2
Quad Timer input pin 2.

enumerator kQTMR,_ InputPin3
Quad Timer input pin 3.

enum _ gtmr_ channel__number

The enumeration for Quad Timer module channel number.

Values:

enumerator kQTMR, Channel0
Quad Timer Channel 0.

enumerator kQTMR,_Channell
Quad Timer Channel 1.

enumerator kQTMR, Channel2
Quad Timer Channel 2.

enumerator kQTMR,_ Channel3
Quad Timer Channel 3.

enum 7qtmrichanneliprimaryicountisource

The enumeration for Quad Timer channel primary input source.

Values:

enumerator kQTMR_ PrimarySrcInputPin0
Quad Timer input pin 0.

enumerator kQTMR_ PrimarySrcInputPinl
Quad Timer input pin 1.

enumerator kQTMR,_ PrimarySrcInputPin2
Quad Timer input pin 2.

enumerator kQTMR,_ PrimarySrcInputPin3
Quad Timer input pin 3.

enumerator kQTMR,_ PrimarySrcChannel0Output
Quad Timer channel 0 output.

enumerator kQTMR,_ PrimarySrcChannellOutput
Quad Timer channel 1 output.

enumerator kQTMR,_ PrimarySrcChannel20utput
Quad Timer channel 2 output.

enumerator kQTMR,_ PrimarySrcChannel30utput
Quad Timer channel 3 output.

enumerator kQTMR,_ PrimarySrcIPBusClockDividel
IP bus clock divide by 1.

enumerator kQTMR,_ PrimarySrcIPBusClockDivide2
IP bus clock divide by 2.

enumerator kQTMR,_ PrimarySrcIPBusClockDivide4
IP bus clock divide by 4.

2.69. QTMR: Quad Timer Driver

349

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQTMR,_ PrimarySrcIPBusClockDivide8
IP bus clock divide by 8.

enumerator kQTMR,_ PrimarySrcIPBusClockDividel6
IP bus clock divide by 16.

enumerator kQTMR,_ PrimarySrcIPBusClockDivide32
IP bus clock divide by 32.

enumerator kQTMR,_ PrimarySrcIPBusClockDivide64
IP bus clock divide by 64.

enumerator kQTMR,_ PrimarySrcIPBusClockDivide128
IP bus clock divide by 128.

enum _ gtmr_ channel_secondary_ count_ source
The enumeration for Quad Timer channel secondary input source.

Values:

enumerator kQTMR,_ SecondarySrcInputPin0
Quad Timer input pin 0.

enumerator kQTMR,_ SecondarySrcInputPinl
Quad Timer input pin 1.

enumerator kQTMR,_ SecondarySrcInputPin2
Quad Timer input pin 2.

enumerator kQTMR,_ SecondarySrcInputPin3
Quad Timer input pin 3.

enum _ gtmr_ channel secondary_ source_ capture_mode

The enumeration for Quad Timer channel secondary input source capture mode.

Values:

enumerator kQTMR,_ SecondarySrcCaptureNoCapture
Secondary source capture is disabled.

enumerator kQTMR,_SecondarySrcCaptureRisingEdge
Secondary source capture on rising edge.

enumerator kQTMR,_ SecondarySrcCaptureFallingFEdge
Secondary source capture on falling edge.

enumerator kQTMR,_ SecondarySrcCaptureRisingAndFallingEdge
Secondary source capture on both edges.

enumerator kQTMR,_ SecondarySrcCaptureRisingEdgeWithReload
Secondary source capture on rising edge while cause the channel to be reloaded.

enumerator kQTMR,_ SecondarySrcCaptureFallingEdgeWithReload

Secondary source capture on falling edge while cause the channel to be reloaded.
enumerator kQTMR,_ SecondarySrcCaptureRisingAndFallingEdgeWithReload

Secondary source capture on both edges while cause the channel to be reloaded.

enum _ gtmr_ channel count_ mode
The enumeration for Quad Timer channel count mode.
When “channel output 0~3” or “IP bus clock prescaler” is chosen, active edge is the rising

edge. When “input pin 0~3” is chosen, active edge and active level is determined by input
invert feature (IPS). Disable input invert feature means active edge is rising edge, active

350 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

level is high level, enable input invert feature means active edge is falling edge, active level
is low level.

Values:

enumerator kQTMR,_ CountNoOperation
No operation.

enumerator kQTMR,_ CountPrimarySrcRiseEdge
Count active edge of primary input source.
enumerator kQTMR,_ CountPrimarySrcRiseAndFallEdge
Count rising and falling edges of primary input source.
enumerator kQTMR,_ CountPrimarySrcRiseEdgeSecondarySrcInHigh
Count active edge of primary input source when secondary input is at a active level.
enumerator kQTMR,_ CountPrimarySecondarySrcInQuadDecode
Quadrature count mode, uses primary and secondary sources.

enumerator kQTMR,_ CountPrimarySrcRiseEdgeSecondarySrcDir
Count active edge of primary input source; secondary input source specifies count di-
rection.

enumerator kQTMR,_ CountPrimarySrcRiseEdgeSecondarySrcRiseEdgeTrig

The active edge of secondary input source triggers count active edge of primary input
source, and the channel counter will stop upon receiving a second trigger event while
it’s still counting from the first trigger event.

enumerator kQTMR, CountCascadeWithOtherChannel

Cascaded count mode, the channel will count as compare events occur in the selected
source chennel (use a special high-speed signal path rather than the OFLAG output sig-
nal). The active edge of secondary input source triggers count active edge of primary
input source, and the channel counter will re-initialized upon receiving a second trig-
ger event while it’s still counting from the first trigger event.

enumerator kQTMR,_ CountPrimarySrcRiseEdgeSecondarySrcRiseEdgeTrigWithRelnit
enum _ gtmr_ channel_count_ length

The enumeration for Quad Timer channel count length.

Values:

enumerator kQTMR,_ CountLengthUntilRollOver
Count until roll over at $FFFF.

enumerator kQTMR,_ CountLengthUntilCompare
Count until compare.

enum _ gtmr_ channel count_ direction
The enumeration for Quad Timer channel count direction.

Values:

enumerator kQTMR_ CountDirectionUp
Count direction up.

enumerator kQTMR,_ CountDirectionDown
Count direction down.

enum _ gtmr_ channel count_ times
The enumeration for Quad Timer channel count times.

Values:

2.69. QTMR: Quad Timer Driver 351

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQTMR,_ CountTimesRepeat
Count repeatedly.

enumerator kQTMR,_ CountTimesOnce
Count time once.

enum _ gtmr_ channel_count_ load_mode
The enumeration for Quad Timer channel count load mode.

Values:
enumerator kQTMR,__CountLoadNormal
Count can be re-initialized only with the LOAD register when match event occurs.

enumerator kQTMR_ CountLoadAlternative

Channel can be re-initialized with the LOAD register when count up and a match with
COMP1 occurs, or with CMPLD2 register when count down and a match with COMP2
occurs.

enum _ gtmr_ channel count_ preload__mode
The enumeration for Quad Timer channel COMP1 & COMP2 preload mode.
Values:
enumerator kQTMR,_ CountPreloadNoLoad
Not load CMPLDn into COMPn register when compare event occurs.

enumerator kQTMR,_ CountPreloadOnComplCompareEvent

Load CMPLDn register into COMPn when occurs a successful comparison of channel
counter value and the COMP1 register.

enumerator kQTMR,_ CountPreloadOnComp2CompareEvent

Load CMPLDn register into COMPn when occurs a successful comparison of channel
counter value and the COMP2 register.

enum _ gtmr_ channel output_mode
The enumeration for Quad Timer channel output signal (OFLAG signal) work mode.

Values:

enumerator kQTMR,_ OutputAssert WhenCountActive
OFLAG output assert while counter is active.

enumerator kQTMR,_ OutputClearOnCompare
OFLAG output clear on successful compare.

enumerator kQTMR,_ OutputSetOnCompare
OFLAG output set on successful compare.

enumerator kQTMR,_ OutputToggleOnCompare
OFLAG output toggle on successful compare.

enumerator kQTMR,_ OutputToggleOnAltCompareReg
OFLAG output toggle using alternating compare registers.

enumerator kQTMR,_ OutputSetOnComareClearOnSecSrcActiveEdge
OFLAG output set on compare, clear on secondary source input edge.

enumerator kQTMR,_ OutputSetOnCompareClearOnCountRoll
OFLAG output set on compare, clear on counter rollover.

enumerator kQTMR,_ OutputGateClockOutWhenCountActive
OFLAG output gated while count is active.

352 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enum _ gtmr_gtmr_ channel output_ value on_ force
The enumeration for Quad Timer channel output signal (OFLAG) value on force event occur.

Values:

enumerator kQTMR, _OutputValueClearOnForce

OFLAG output clear (low) when software triggers a FORCE command or master chan-
nel force the OFLAG (EEOF need set).

enumerator kQTMR,_ OutputValueSetOnForce

OFLAG output set (high) when software triggers a FORCE command or master channel
force the OFLAG (EEOF need set).

enum _ gtmr_ channel debug action
The enumeration for Quad Timer channel run options when the chip entering debug mode.

Values:

enumerator kQTMR_ DebugRunNormal
Continue with normal operation.

enumerator kQTMR,_ DebugHaltCounter
Halt counter.

enumerator kQTMR,_ DebugForceOutToZero
Force output to logic 0.

enumerator kQTMR,_ DebugHaltCountForceOutZero
Halt counter and force output to logic 0.

enum _ gtmr_ channel_ interrupt_ enable
The enumeration for Quad Timer channel interrupts.

Values:

enumerator kQTMR,_ ComparelnterruptEnable
Compare interrupt.

enumerator kQTMR,_ ComparellnterruptEnable
Compare 1 interrupt.

enumerator kQTMR,_ Compare2Interrupt Enable
Compare 2 interrupt.

enumerator kQTMR,__ OverflowInterruptEnable
Timer overflow interrupt.

enumerator kQTMR,_ EdgelnterruptEnable
Input edge interrupt.

enumerator kQTMR__ ALLInterruptEnable

enum _ gtmr_ channel_status_ flags
The enumeration for Quad Timer channel work status.
Values:

enumerator kQTMR_ CompareFlag
Compare flag.

enumerator kQTMR,_ ComparelFlag
Compare 1 flag.

2.69. QTMR: Quad Timer Driver 353

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQTMR,__ Compare2Flag
Compare 2 flag.

enumerator kQTMR,_ OverflowFlag
Timer overflow flag.

enumerator kQTMR_ EdgeFlag
Input edge flag.

enumerator kQTMR,_ StatusAllFlags

enum _ gtmr_ channel__enable
The enumeration for Quad Timer channel enable.

Values:

enumerator kQTMR, ChannelOEnable
Channel 0 enable.

enumerator kQTMR,_ ChannellEnable
Channel 1 enable.

enumerator kQTMR, Channel2Enable
Channel 2 enable.

enumerator kQTMR, Channel3Enable
Channel 3 enable.

enumerator kQTMR__ALLChannelEnable
enum _ gtmr_ channel_dma_ enable
The enumeration for Quad Timer channel DMA trigger source.
Values:
enumerator kQTMR,_ InputEdgeFlagDmaEnable
Input edge flag setting will trigger DMA read request for CAPT register.
enumerator kQTMR,_ ComparelPreloadDmaEnable
Channel load CMPLD1 register into COMP1 will trigger DMA write request for CMPLD1.
enumerator kQTMR,_ Compare2PreloadDmaEnable
Channel load CMPLD2 register into COMP2 will trigger DMA write request for CMPLD2.
enumerator kQTMR__ AIDMAEnable
typedef enum _qgtmr_input_pin gtmr_ input_ pin_ t
The enumeration for Quad Timer module input pin source.
typedef enum _qtmr_channel number qtmr_channel number_ t
The enumeration for Quad Timer module channel number.
typedef enum _qgtmr_channel_primary_count_source qtmr_ channel primary count_source_t
The enumeration for Quad Timer channel primary input source.
typedef enum _qtmr_channel_secondary_count_source qtmr_channel secondary_ count_ source_t
The enumeration for Quad Timer channel secondary input source.

typedef enum _qtmr_channel_secondary_source_capture_mode
gtmr_ channel secondary_source_capture_mode_t

The enumeration for Quad Timer channel secondary input source capture mode.

354 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _qtmr_channel_count_mode qtmr_ channel__count_mode_t
The enumeration for Quad Timer channel count mode.
When “channel output 0~3” or “IP bus clock prescaler” is chosen, active edge is the rising
edge. When “input pin 0~3” is chosen, active edge and active level is determined by input
invert feature (IPS). Disable input invert feature means active edge is rising edge, active
level is high level, enable input invert feature means active edge is falling edge, active level
is low level.

typedef enum _qtmr_channel_count_length qtmr_channel count_ length_t
The enumeration for Quad Timer channel count length.

typedef enum _qtmr_channel_count_direction qtmr_ channel count_ direction_ t
The enumeration for Quad Timer channel count direction.

typedef enum _qtmr_channel_count_times qtmr_channel__count__times_t
The enumeration for Quad Timer channel count times.

typedef enum _qtmr_channel_count_load_mode qtmr_ channel count_load mode_t
The enumeration for Quad Timer channel count load mode.

typedef enum _qtmr_channel_count_preload_mode qtmr_ channel count_ preload_mode_t
The enumeration for Quad Timer channel COMP1 & COMP2 preload mode.

typedef enum _qtmr_channel_output_mode qtmr__channel _output_mode_t

The enumeration for Quad Timer channel output signal (OFLAG signal) work mode.
typedef enum _qgtmr_qtmr_channel_output_value_on_force
qtmr__channel output_ value on_ force_t

The enumeration for Quad Timer channel output signal (OFLAG) value on force event occur.

typedef enum _qtmr_channel _debug_action qtmr_ channel debug_action_t
The enumeration for Quad Timer channel run options when the chip entering debug mode.

typedef struct _qtmr_channel_input_config qtmr_ channel input_ config t
The structure for configuring Quad Timer channel input signal.

typedef struct _qtmr._channel_count_config qtmr_ channel count_ config_t
The structure for configuring Quad Timer channel counting behaviors.

typedef struct _qtmr_channel output_config qtmr_channel output_ config_t
The structure for configuring Quad Timer channel output signal (OFLAG).

typedef struct _qtmr_channel_cooperation_config qtmr_ channel cooperation_ config_t
The structure for configuring Quad Timer channel cooperation mode with other channels.

typedef struct _qtmr_channel_config qtmr_ channel_config_t
Quad Timer channel configuration covering all channel configurable fields.

typedef struct _qtmr._input_pin_filter_config qtmr_input_ pin_ filter_config_t
The structure for configuring Quad Timer module input pin filter.

typedef struct _qtmr_config qtmr_ config_t

Quad Timer module configuration which contain channel config structure pointers and
input pin filter config structure pointers.

Note: Need use channel structure address to init the structure pointers, when the channel
or input pin structure pointers is NULL, it will be ignored by QTMR_Init API. This can save
stack space when only one or two channels are used.

struct _ qtmr_channel input_ config
#include <fsl_qtmr:h> The structure for configuring Quad Timer channel input signal.

2.69. QTMR: Quad Timer Driver 355

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

qtmr_channel primary_count_source_t ePrimarySource
Specify the primary input source.

qtmr_channel_secondary_count_source_t eSecondarySource
Specify the secondary input source.

bool bEnableSecondarySrcFaultFunction
true: The selected secondary input acts as a fault signal which can clear the channel
output signal when it is set, false: Fault function disabled.

bool eEnableInputInvert

true: Invert input signal value when select input pin as primary or/and secondary
input source false: no operation.

struct _ qtmr_ channel count_ config

#include <fsl_gtmrh> The structure for configuring Quad Timer channel counting behav-
iors.

Public Members
qtmr_channel_count_mode_t eCountMode
Configures channel count mode.

qtmr_channel_count_length_t eCountLength
Configures channel count length.

qtmr_channel_count_direction_t eCountDir
Configures channel count direction.

qgtmr_channel_count_times_t eCountTimes
Configures channel count times.

qtmr_channel _count_load_mode_t eCountLoadMode
Configures channel count load mode.

struct __gtmr_ channel output_ config

#include <fsl_ qtmrh> The structure for configuring Quad Timer channel output signal
(OFLAG).

Public Members

qgtmr_channel_output_mode_t eOutputMode
Configures channel output signal work mode.

qtmr_channel output_value_on_force_t eOutputValueOnForce
The value of output signal when force event occur.

bool bEnableOutputInvert
True: the polarity of output signal will be inverted, false: The output signal is not in-
verted.

bool bEnableSwForceOutput
True: forces the current value of eOFLAGValueOnForce to output signal. false: no
operation.

bool bEnableOutputPin

True: the output signal is driven on the external pin. false: the external pin is config-
ured as an input.

356

Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

struct _ qtmr_ channel cooperation_ config

#include <fsl_qtmr.h> The structure for configuring Quad Timer channel cooperation mode
with other channels.

Public Members

bool bEnableMasterRelnit

true: Master channel within the module can re-initialize this channel when it has a
compare event, false: no operation.

bool bEnableMasterForceOFLAG

true: Master channel within the module can force this channel OFLAG signal when it
has a compare event, false: no operation.

bool bEnableMasterMode

true: This channel is configured as mater channel, it can broadcast compare event to
all channels within the module to re-initialize channel and/or force channel output
signal, false: no operation.

struct _ qtmr_ channel config

#include <fsl_qtmrh> Quad Timer channel configuration covering all channel configurable
fields.

Public Members

qtmr_channel_input_config_t sinputConfig

Configures channel input signal.
qtmr_channel_count_config_t sCountConfig

Configures channel count work mode.
qtmr_channel_output_config_t sOutputConfig

Configures channel output signal (OFLAG) work mode.
qtmr_channel_debug_action_t eDebugMode

Configures channel operation in chip debug mode.

uint16_t ul6EnabledInterruptMask

The mask of the interrupts to be enabled, should be the ORed of
_qtmr_channel_interrupt_enable.

uint16_t ul6EnabledDMAMask

The mask of the interrupts to be enabled, should be the ORed of
_qtmr_channel dma_enable.

uint16_t ul6Comp1

Value for Channel compare register 1.
uint16_t ul6Comp?2

Value for Channel compare register 2.
uint16_t ul6Comp1Preload

Value for Channel compare 1 preload register.
uint16_t ul6Comp2Preload

Value for Channel compare 2 preload register.

uint16_t ul6Load
Value for Channel load register.

2.69. QTMR: Quad Timer Driver 357

MCUXpresso SDK Documentation, Release 25.09.00

uint16_t ul6Count
Value for Channel counter value register.
bool bEnableChannel

True: enable the channel prescaler (if it is being used) and counter false: disable chan-
nel.

struct _qtmr_input_ pin_ filter config
#include <fsl_qtmr.h> The structure for configuring Quad Timer module input pin filter.

Public Members
uint8_t u8Period
Value for input filter sample period.
uint8_t u8Count
Value for input filter sample count (sample count = count +3).

struct _qtmr_ config

#include <fsl_qtmrh> Quad Timer module configuration which contain channel config struc-
ture pointers and input pin filter config structure pointers.

Note: Need use channel structure address to init the structure pointers, when the channel
or input pin structure pointers is NULL, it will be ignored by QTMR_Init API. This can save
stack space when only one or two channels are used.

2.70 The Driver Change Log
2.71 QTMR Peripheral and Driver Overview
2.72 The Driver Change Log

2.73 SIM: System Integration Module Driver

FSL SIM DRIVER VERSION
SIM driver version.

2.74 The Driver Change Log

static inline void SIM__SetWaitModeOperation(SIM_Type *base, sim_wait_mode_operation_t
eOperation)

Sets the operation of wait mode, enable/disable the entry of wait mode.
Parameters
* base — SIM peripheral base address.

* eOperation — Used to enable/disable the wait mode, please refer to
sim_wait_mode_operation_t.

358 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

static inline void SIM__SetStopModeOperation(SIM_Type *base, sim_stop_mode_operation _t
eOperation)

Sets the operation of stop mode, enable/disable the entry of stop mode.
Parameters
* base — SIM peripheral base address.

* eOperation — Used to enable/disable the stop mode, please refer to
sim_stop_mode_operation_t.

static inline void SIM__EnterLPMode(SIM_Type *base)
Enters into LPMode when the advanced power mode is enabled(register FOPT[1] bit is set).

Note: Please make sure the power mode register is not set as write protected before in-
voking this function.

Note: This function is useful only when the FTFE module’s FOPT[0] bit is set(advanced
power mode is enabled).

Parameters
* base — SIM peripheral base address.

static inline void SIM__ ExitLPMode(SIM_Type *base)
Exits from LPMode when the advanced power mode is enabled(register FOPT[1] bit is set).

Note: Please make sure the power mode register is not set as write protected before in-
voking this function.

Note: This function is useful only when the FTFE module’s FOPT[0] bit is set(advanced
power mode is enabled).

Parameters
* base — SIM peripheral base address.

static inline void SIM__ EnterVLPMode(SIM_Type *base)

Enters into VLPMode when the advanced power mode is enabled(register FOPT[1] bit is
set).

Note: Please make sure the power mode register is not set as write protected before in-
voking this function. If both set to enter LPMode and VLPMode, the VLPMode has higher
priority.

Note: This function is useful only when the FTFE module’s FOPT[0] bit is set(advanced
power mode is enabled).

Parameters

* base — SIM peripheral base address.

2.74. The Driver Change Log 359

MCUXpresso SDK Documentation, Release 25.09.00

static inline void SIM__ ExitVLPMode(SIM_Type *base)
Exits from VLPMode when the advanced power mode is enabled(register FOPT[1] bit is set).

Note: Please make sure the power mode register is not set as write protected before in-
voking this function.

Note: This function is useful only when the FTFE module’s FOPT[0] bit is set(advanced
power mode is enabled).

Parameters
* base — SIM peripheral base address.

static inline bool SIM_ IsInL.PMode(SIM_Type *base)

Indicates whether the chip is in LPMode when the advanced power mode is en-
abled(register FOPT[1] bit is set).

Note: This function is useful only when the FTFE module’s FOPT[0] bit is set(advanced
power mode is enabled).

Parameters

* base — SIM peripheral base address.
Return values

* true — The chip is in LPMode.

* false — The chip is not in LPMode.

static inline bool SIM_ IsInVLPMode(SIM_Type *base)

Indicates whether the chip is in VLPMode when the advanced power mode is en-
abled(register FOPT[1] bit is set).

Note: This function is useful only when the FTFE module’s FOPT[0] bit is set(advanced
power mode is enabled).

Parameters

* base — SIM peripheral base address.
Return values

* true — The chip is in VLPMode.

o false — The chip is not in VLPMode.

static inline void SIM_ TriggerSoftwareReset(SIM_Type *base)
Triggers the software reset for device.

Parameters
* base — SIM base address.

static inline uint16_t SIM_ GetResetStatusFlags(SIM_Type *base)
Gets the cause of the most recent reset.

360 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

Note: Atany given time, the only one reset source is indicated. When multiple reset source
assert simultaneously, the reset source with the highest precedence is indicated. The prece-
dence from highest to lowest is POR, external reset, COP loss of reference reset, COP CPU
time-out reset, software reset, COP window time-out reset. The POR is always set during a
power-on reset. However, POR is cleared and the external reset is set if the external reset
pin is asserted or remains asserted after the power-on reset has de-asserted.

Parameters
* base — SIM peripheral base address.

Returns
The current reset status flags, should be the ORed value of
_sim_reset_status_flags.

static inline void SIM_ TriggerPeripheralSoftwareReset(SIM_Type *base,
sim_swReset_peri_index_t ePerilndex)

Triggers the software reset of specific peripheral.
Parameters
* base — SIM peripheral base address.
* ePerilndex — The index of the peripheral to be reset.

static inline void SIM__ EnableResetPadCelllnputFilter (SIM_Type *base, bool bEnable)
Enables/Disables the input filter on external reset padcell.

If the input filter is enabled, the filter will remove transient signals on the input at the
expense of an increased input delay.

Note: If the input filter is enabled, the filter will affect all input functions supported by
that padcell, including GPIO.

Parameters
* base — SIM peripheral base address.
* bEnable — Used to control the behaviour of input filter.
- true Enable the input filter on external input padcell.
- false Disable the input filter on external input padcell.

static inline void SIM_ SetInternalPerilnput(SIM_Type *base, sim_internal_peri_index_t eIndex,
sim_internal_peri_input_t elnput)

Sets internal peripheral inputs, some peripheral inputs have the ability to be connected to
either XBAR outputs or GPIO.

Parameters
* base — SIM base address.
* elndex — The internal peripherals that supply multi-inputs.

* elnput — The specific input that connected to the selected internal periph-
eral.

static inline void SIM__ SetXbarInputAdcTmrSelection(SIM_Type *base,
sim_xbar_input_adc_tmr_index_t eIndex,
sim_xbar_input_adc_tmr_selection_t
eSelection)

2.74. The Driver Change Log 361

MCUXpresso SDK Documentation, Release 25.09.00

Selects the Xbar input from ADC and TMR A/B.
Parameters
* base — SIM base address.
* eIndex — SIM ADC and TMR select register field index.
* eSelection — Xbar input ADC and TMR selection.

static inline void SIM_ XBARInputFilter(SIM_Type *base, sim_xbar_input_t eXbarInput, uint8_t
u8SamplePeriod, sim_xbar_filter_count_t eCount)

Sets XBAR input filter period and count.
Parameters
* base — SIM peripheral base address.
* eXbarInput — XBAR input index.

* u8SamplePeriod — XBAR input filter sample period, in unit of 1 IP bus clock.
u8SamplePeriod must be range in 0~31, where 0 means filter disabled.

* eCount — Count for filter, which means eCount consecutive samples must
agree to be accepted as transition.

static inline void SIM__SetSmallRegulator1P2VControlMode(SIM_Type *base,
sim_small_regulator_1P2V_control_mode_t

eControlMode)

Sets the control mode of small regulator 1.2V supply, the available control modes are nor-
mal mode, standby mode, etc.

Note: This function is useful only when the flash module’s FOPT[0] bit is 0.

Parameters
* base — SIM peripheral base address.

* eControlMode — The control mode to be set, please refer to
sim_small_regulator_1P2V_control_mode_t.

static inline void SIM__ SetSmallRegulator2P7VControlMode(SIM_Type *base,
sim_small_regulator_2P7V_control_mode_t

eControlMode)

Sets the control mode of small regulator 2.7 supply, the available control modes are normal
mode, standby mode, etc.

Note: This function is useful only when the flash module’s FOPT[0] bit is 0.

Parameters
* base — SIM peripheral base address.

* eControlMode - THe control mode to be set, please refer to
sim_small_regulator_2P7V_control_mode_t.

static inline void SIM _ SetLargeRegulatorControlMode(SIM_Type *base,
sim_large_regulator_control_mode_t
eControlMode)

Sets the control mode of large regulator, the available control mode are normal mode,
standby mode, etc.

362 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

Note: This function is useful only when the flash module’s FOPT[0] bit is 0.

Parameters
* base — SIM peripheral base address.

* eControlMode - The control mode to be set, please refer to
sim_large_regulator_control_mode_t.

static inline void SIM_ SetRegisterProtectionMode(SIM_Type *base,
sim_write_protection_module_t eModule,
sim_write_protection_mode_t eMode)

Sets the write protection mode of the selected register.
Parameters
* base — SIM peripheral base address.

* eModule - The module to be set, please refer to
sim_write_protection_module_t.

* eMode — The specific write protection mode to be set, please refer to
sim_write_protection_mode_t.

static inline uint32_t SIM_ GetJTAGID(SIM_Type *base)
Gets JTAG ID, the JTAG ID is 32bits width.
Parameters
* base — SIM base address.

Returns
The 32bits width JTAG ID.

static inline void SIM_ SetIOShortAddressValue(SIM_Type *base, uint32_t
u32I0ShortAddressValue)

Sets the I/O short address location value which specifies the memory referenced through
the I/O short address mode.

The I/O short address mode allows the instrution to specify the lower 6 bits of the address.
And the upper 18 bits of the address can be controlled by invoking this function.

Note: The pipeline delay between setting the related register set and using short I/O ad-
drssing with the new value is five cycles.

Parameters
* base — SIM base address.

* u32I0ShortAddressValue — The value of I/O short address location, this ad-
dress value should be 24 bits width.

static inline uint16_t SIM_ GetSoftwareControlData(SIM_Type *base,
sim_software_contrl_register_index_t
elndex)

Gets the software control data by the software control register index.
Parameters
* base — SIM base address.

¢ eIndex — SIM software control register index.

2.74. The Driver Change Log 363

MCUXpresso SDK Documentation, Release 25.09.00

Returns
Software control registers value.

static inline void SIM __ SetSoftwareControlData(SIM_Type *base,
sim_software_contrl_register_index_t eIndex,
uint16_t ul6Value)

Sets the software control data by the software contorl register index, the data is for general-
purpose use by software.

Parameters
* base — SIM base address.
* elndex — SIM software control register index.
* ul6Value — Software control registers value.

static inline void SIM_ SetOnCEClockOperationMode(SIM_Type *base,
sim_onceclk_operation_mode_t
eOperationMode)

Sets the operation mode of the OnCE clock, the available operation modes are always en-
abled and enabled when the core TAP is enabled.

Parameters
* base — SIM peripheral base address.

* eOperationMode — The operation mode of OnCE clock, please refer to
sim_onceclk_operation_mode_t.

static inline void SIM__ SetDMAOperationMode(SIM_Type *base, sim_dma_operation_mode_t
eOperationMode)

Sets the operation mode of DMA, such as disabled, enabled in run mode only, etc.
Parameters
* base — SIM peripheral base address.

* eOperationMode — The operation mode to be set, please refer to
sim_dma_operation_mode_t.

static inline void SIM_ SetLPI2C0TriggerSelection(SIM_Type *base, sim_Ipi2c_trigger._selection_t
eTriggerSelection)

Sets the trigger selection of 1pi2c0, the available selections are master trigger and slave
trigger.

This function can be used to selection the LPI2CO output trigger. If selected as master trigger,
the LPI2CO master will generate an output trigger that can be connected to other peripherals
on the device. If selected as slave trigger, the LPI2CO slave will generate an output trigger
that can be connected to other peripherals on the device.

Parameters
* base — SIM peripheral base address.

* eTriggerSelection — The trigger selection to set, please refer to
sim_lpi2c_trigger_selection_t.

static inline sim_device_operate_mode_t SIM__GetDeviceOperateMode(SIM_Type *base)

Gets device currently operate mode, the possible result is normal operate mode or fast op-
erate mode.

Parameters
* base — SIM peripheral base address.

Returns
Current device’s operate mode.

364 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

static inline void SIM_ EnableADCScanControlReorder(SIM_Type *base, bool bEnable)
Enables/Disables the ADC scan control register reorder feature.

Parameters
* base — SIM peripheral base address.
* bEnable — Used to control the ADC scan control register reorder feature.
— true Enable the re-ordering of ADC scan control bits.
- false ADC scan control register works in normal order.

static inline void SIM_ SetMasterPIT(SIM_Type *base, sim_master._pit_selection_t eMasterPit)
Sets master programmable interval timer.

Parameters
* base — SIM peripheral base address.

* eMasterPit — The master PIT to be selected, please refer to
sim_master_pit_selection_t.
enum _sim_ reset_ status_ flags
The enumeration of system reset status flags, such as power on reset, software reset, etc.
Values:

enumerator kSIM_ PowerONResetFlag
The Power on reset caused the most recent reset.

enumerator kSIM_ ExternalResetFlag

The external reset caused the most recent reset, that means the external reset pin was
asserted or remained asserted after the power-on reset de-asserted.

enumerator kSIM__ COPLossOfReferenceResetFlag

The computer operating properly module signaled a loss of reference clock reset
caused the most recent reset.

enumerator kSIM__ COPCPUTimeOutResetFlag

The computer operating properly module signaled a CPU time-out reset caused the
most recent reset.

enumerator kSIM__SofwareResetFlag
The previous system reset occurred as a result of a software reset

enumerator kSIM__ COPWindowTimeOutResetFlag
The previous system reset occurred as a result of a cop_window reset.
enum _sim_ stop_ mode_ operation
The enumeration of stop mode operation can be used to enable/disable stop mode enter.
Values:
enumerator kSIM_ STOPInstrutionEnterStopMode
Stop mode is entered when the DSC core executes a STOP instruction.
enumerator kSIM_ STOPInstrutionNotEnterStopMode
The DSC core STOP instruction does not cause entry into stop mode.

enumerator kSIM_ STOPInstrutionEnterStopModeWriteProtect

Stop mode is entered when the DSC core executes a STOP instruction, and the realted
register bit field is write protected until the next reset.

2.74. The Driver Change Log 365

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSIM__ STOPInstructionNotEnterStopModeWriteProtect
The DSC core STOP instruction does not cause entry into stop mode, and the related
register bit field is write protected until the next reset.
enum _ sim_ wait_ mode_ operation
The enumeration of wait mode operation can be used to enable/disable wait mode enter.

Values:

enumerator kSIM_ WAITInstrutionEnter WaitMode
Wait mode is entered when the DSC core executes a WAIT instruction.

enumerator kSIM_WAITInstrutionNotEnter WaitMode
The DSC core WAIT instruction does not cause entry into wait mode.

enumerator kSIM_ WAITInstrutionEnter WaitModeWriteProtect
Wait mode is entered when the DSC core executes a WAIT instruction, and the realted
register bit field is write protected until the next reset.

enumerator kSIM_ WAITInstructionNotEnter WaitModeWriteProtect
The DSC core WAIT instruction does not cause entry into wait mode, and the related
register bit field is write protected until the next reset.

enum _ sim_ onceclk_operation_mode

The enumeration of OnCE clock operation mode, such as enabled when core TAP is enabled

and always enabled.

Values:

enumerator kSIM_ OnCEClkEnabledWhenCoreTapEnabled
The OnCE clock to the DSC core is enabled when the core TAP is enabled.

enumerator kSIM_ OnCECIkAlwaysEnabled
The OnCE clock to the DSC core is always enabled.

enum _sim_ dma_ operation_ mode

The enumeration of dma operation mode, this enumeration can be used to disable/enable
DMA module in different power modes.

Values:

enumerator kSIM_ DMADisable
DMA module is disabled.
enumerator kSIM_ DMAEnableAtRunModeOnly
DMA module is enabled in run mode only.
enumerator kSIM_ DMAEnableAtRunModeWaitMode
DMA module is enabled in run and wait modes only.
enumerator kSIM_ DMAEnableAtAllPowerModes
DMA module is enabled in all power modes.

enumerator kSIM_DMADisableWriteProtect
DMA module is disabled and the related register bit field is write protected until the
next reset.

enumerator kSIM_ DM AEnableAtRunModeOnly WriteProtect
DMA module is enabled in run mode only and the related bit field is write protected
until the next reset.

enumerator kSIM_DMAEnableAtRunModeWaitModeWriteProtect

DMA module is enabled in run and wait modes only and the related register bit field
is write protected until the next reset.

366 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSIM_DMAEnableAtAllPowerModesWriteProtect
DMA module is enabled in all low power modes and the related register bit field is
write protected until the next reset.
enum _ sim_ small regulator 1P2V_ control mode
The enumeration of small regualtor 1P2V control mode, such as normal mode and standby
mode.
Values:

enumerator kSIM_ SmallRegulator1P2VInNormalMode
Small regulator 1.2V supply placed in normal mode.

enumerator kSIM_SmallRegulator1P2VInStandbyMode
Small regulator 1.2V supply placed in standby mode.

enumerator kSIM_SmallRegulator1P2VInNormalModeWriteProtect
Small regulator 1.2V supply placed in nomal mode, and the related register bit field is
write protected until the next reset.

enumerator kSIM_ SmallRegulator1P2VInStandbyModeWriteProtect
Small regulator 1.2V supply placed in standby mode, and the related register bit field
is write protected until the next reset.

enum _ sim_ small_regulator_ 2P7V__control _mode

The enumeration of small regulator 2P7V control mode, such as normal mode, standby

mode, powerdown mode, etc.

Values:

enumerator kSIM__SmallRegulator2P7VInNormalMode
Small regulator 2.7V supply placed in normal mode.

enumerator kSIM__SmallRegulator2P7VInStandbyMode
Small regulator 2.7V supply placed in standby mode.
enumerator kSIM__SmallRegulator2P7VInPowerdownMode
Small regulator 2.7V supply placed in powerdown mode.

enumerator kSIM__SmallRegulator2P7VInNormalModeWriteProtect
Small regulator 2.7V supply placed in normal mode and the related bit field is write
protected until chip reset.

enumerator kSIM__ SmallRegulator2P7VInStandbyModeWriteProtect
Small regulator 2.7V supply placed in standby mode and the related bit field is write
protected until chip reset.

enumerator kSIM__SmallRegulator2P7VInPowerdownModeWriteProtect
Small regulator placed in powerdown mode and the related bit field is write protected
until chip reset.

enum _sim_ large regulator_control__mode
The enumeration of large regulator contorl mode, such as normal mode, standby mode.

Values:

enumerator kSIM__LargeRegulatorInNormalMode
Large regulator placed in normal mode.

enumerator kSIM__LargeRegulatorInStandbyMode
Large regulator placed in standby mode.

2.74. The Driver Change Log 367

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSIM__LargeRegulatorInNormalModeWriteProtect

Large regulator placed in normal mode, and the related register bit field is write pro-
tected until chip reset.

enumerator kSIM_LargeRegulatorInStandbyModeWriteProtect

Large regulator placed in standby mode, and the related register bit field is write pro-
tected until chip reset.

enum _ sim_ write_ protection_ module
The enumeration of modules that support various protection mode.

Values:

enumerator kSIM_ GPIOInternalPeripheralSelectProtection

Used to control the protection mode GPSn and IPSn registers in the SIM, all XBAR, EVTG,
GPIOn_PER, GPIOn_PPMODE, GPIOn_DRIVE.

enumerator kSIM_ PeripheralClockEnableProtection
Used to control the protection mode of PCEn, SDn, PSWRn, and PCR register.

enumerator kSIM_ GPIOPortDProtection

Used to control the protection mode of GPIO_D_PER, GPIO_D_PPMODE, and
GPIO_D_DRIVE register.

enumerator kSIM_ PowerModeControlWriteProtection
Used to control the protection mode of the PWRMODE register.

enum _ sim_ write_ protection__mode

The enumeration of write protection mode, such as write protection off, write protection
on, etc.

Values:

enumerator kSIM__ WriteProtectionOff
Write protection off.

enumerator kSIM__WriteProtectionOn
Write protection on.

enumerator kSIM__ WriteProtectionOffAndLocked
Write protection off and locked until chip reset.

enumerator kSIM__ WriteProtectionOnAndLocked
Write protection on and locked until chip reset.

enum _sim_ lpi2c_ trigger selection
The enumeration of 1pi2c trigger selection, including slave trigger and master trigger.

Values:

enumerator kSIM__Lpi2cSlaveTrigger
Selects slave trigger.

enumerator kSIM_Lpi2cMasterTrigger
Selects master trigger.

enum _ sim_ device_operate_mode
The enumeration of device operate mode, including normal mode and fast mode.

Values:

enumerator kSIM_ NormalOperateMode
Device in normal operating mode, core:bus:flash frequency as 2:2:1

368 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSIM_ FastOperateMode
Device in fast operate mode, core:bus:flash frequency as 4:4:1

enum _ sim_ master_ pit_ selection
The enumeration of master pit.
Values:
enumerator kSIM_PITOMasterPIT1Slave
PITO is master PIT and PIT1 is slave PIT.
enumerator kSIM__ PIT1MasterPITOSlave
PITO is master PIT and PIT1 is slave PIT.
enum _sim_ xbar_input
The enumeration of XBAR input.
Values:
enumerator kSIM_ XBARInput2
XBAR Input 2.
enumerator kSIM_ XBARInput3
XBAR Input 3.
enumerator kSIM_ XBARInput4
XBAR Input 4.
enumerator kSIM_ XBARInputh
XBAR Input 5.
enumerator kSIM_ XBARInput6
XBAR Input 6.
enumerator kSIM_ XBARInput7
XBAR Input 7.
enumerator kSIM_ XBARInput8
XBAR Input 8.
enumerator kSIM_ XBARInput9
XBAR Input 9.
enum _sim_xbar filter count
The enumeration of XBAR filter count.
Values:
enumerator kSIM_ XBARFilter3Count
3 consecutive sample must agree.
enumerator kSIM_ XBARFilter4Count
4 consecutive sample must agree.
enumerator kSIM_ XBARFilter5Count
5 consecutive sample must agree.
enumerator kSIM_ XBARFilter6Count
6 consecutive sample must agree.

enumerator kSIM_ XBARFilter7Count
7 consecutive sample must agree.

2.74. The Driver Change Log 369

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSIM_XBARFilter8Count
8 consecutive sample must agree.

enumerator kSIM_XBARFilter9Count
9 consecutive sample must agree.

enumerator kSIM_XBARFilter10Count
10 consecutive sample must agree.

typedef enum _sim_stop_mode_operation sim_ stop_ mode_ operation_ t
The enumeration of stop mode operation can be used to enable/disable stop mode enter.
typedef enum _sim_wait_mode_operation sim_ wait_ mode_operation_t
The enumeration of wait mode operation can be used to enable/disable wait mode enter.
typedef enum _sim_onceclk_operation_mode sim_ onceclk_ operation_mode_ t
The enumeration of OnCE clock operation mode, such as enabled when core TAP is enabled
and always enabled.
typedef enum _sim_dma_operation_mode sim_ dma_ operation_mode_
The enumeration of dma operation mode, this enumeration can be used to disable/enable
DMA module in different power modes.
typedef enum _sim_small_regulator_1P2V_control mode
sim_ small_regulator_ 1P2V_ control mode_t
The enumeration of small regualtor 1P2V control mode, such as normal mode and standby
mode.
typedef enum _sim_small regulator_2P7V_control_mode
sim__small_regulator_ 2P7V__control _mode_t
The enumeration of small regulator 2P7V control mode, such as normal mode, standby
mode, powerdown mode, etc.
typedef enum _sim_large_regulator_control_mode sim_ large_regulator_control _mode_t
The enumeration of large regulator contorl mode, such as normal mode, standby mode.

typedef enum _sim_write_protection_module sim_ write_ protection_module_t
The enumeration of modules that support various protection mode.

typedef enum _sim_write_protection_mode sim_ write_ protection_mode_t

The enumeration of write protection mode, such as write protection off, write protection
on, etc.

typedef enum _sim_Ipi2c_trigger_selection sim_ Ipi2c_ trigger selection_t
The enumeration of 1pi2c trigger selection, including slave trigger and master trigger.

typedef enum _sim_device_operate_mode sim_ device operate_ mode_ t
The enumeration of device operate mode, including normal mode and fast mode.

typedef enum _sim_master_pit_selection sim_ master_pit_ selection_ t
The enumeration of master pit.

typedef enum _sim_xbar_input sim_ xbar_input_ t
The enumeration of XBAR input.

typedef enum _sim_xbar_filter_count sim_ xbar_filter count_t
The enumeration of XBAR filter count.

FSL_COMPONENT_ID

SIM_RESET STATUS MASK
The macro of REST status bit field mask.

370 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

SIM_PWR_SR27_ CONTROL_MODE_MASK
The definition of the short regulator control mode bit field mask.

SIM_PWR_SR27_CONTROL_MODE_SHIFT
The definition of the short regulator control mode bit field shift.

SIM_PWR_SR27_CONTROL_MODE(X)
The macro that can be used to set the bit field of PWR register’s short regulator bit field.

SIM_PROT_BIT_FIELD_MASK(moduleName)
The definition of the PORT register bit filed mask.

SIM_PORT_SET_ MODE_PROTECTION_MODE(moduleName, protectionMode)
The macro that can be used to set module’s protection mode.

SIM_XBAR_FILTER_REG_INDEX(xbarInput)
The definition of the XBAR_FLTX register index.

SIMiXBARﬁFILTERiBITisHIFT(XbarInput)
The definition of the XBAR_FLTX register bit field shift.

SIMiXBARﬁFILTERiBITiMASK(XbarInput)
The definition of the XBAR_FLTX register bit field mask.

2.75 SIM Peripheral and Driver Overview

2.76 XBAR: Inter-Peripheral Crossbar Switch Driver

void XBARA_Init(XBARA_Type *base)
Initializes the XBARA module.

This function un-gates the XBARA clock.
Parameters
* base — XBARA peripheral address.
void XBARA_ Deinit(XBARA_Type *base)
Shuts down the XBARA module.
This function disables XBARA clock.
Parameters
* base — XBARA peripheral address.

static inline void XBARA _SetSignalsConnection(XBARA_Type *base, xbar_input_signal_t eInput,
xbar_output_signal_t eOutput)

Sets a connection between the selected XBARA_IN[*] input and the XBARA_OUT[*] output
signal.

This function connects the XBARA input to the selected XBARA output. If more than one
XBARA module is available, only the inputs and outputs from the same module can be con-
nected.

Example:

XBARA_ SetSignalsConnection(XBARA, kXBARA_InputPIT_TRGO, kXBARA__
< OutputDMAMUX18);

Parameters

2.75. SIM Peripheral and Driver Overview 371

MCUXpresso SDK Documentation, Release 25.09.00

* base — XBARA peripheral address.
* elnput — XBARA input signal.
* eOutput — XBARA output signal.

static inline void XBARA _SetActiveEdgeDetectMode(XBARA_Type *base, xbar_output_signal t
eOutput, xbara_active_edge_t
eActiveEdgeMode)

Sets active edge detection mode for the XBARA_OUT[*] output signal.
Parameters
* base — XBARA peripheral address.
* eOutput — XBARA output signal.
* eActiveEdgeMode — Active edge mode.

static inline void XBARA_ SetInterruptDMARequestMode(XBARA_Type *base,
xbar_output_signal_t eOutput,
xbara_request_t eRequest)

Sets DMA, Interrupt or disabled request generation mode for the XBARA_OUT[*] output
signal.

Parameters
* base — XBARA peripheral address.
* eOutput — XBARA output signal.
* eRequest — Request type.

void XBARA_ SetOutputSignalConfig(XBARA_Type *base, xbar_output_signal_t eOutput, const
xbara_control_config_t *psControlConfig)

Configures the XBARA output signal edge detection and interrupt/dma featues.

This function configures an XBARA control register. The active edge detection and the
DMA/IRQ function on the corresponding XBARA output can be set.

Example:

xbara__control__config_t userConfig;

userConfig.activeEdge = kXBARA__EdgeRising;

userConfig.request Type = kXBARA_RequestInterruptEnable;
XBARA_SetOutputSignalConfig(XBARA, kXBARA__OutputDMAMUX18, &userConfig);

Note: Only a subset of the XBARA output signal can be called with this API. On debug mode
code will check whether the output signal eOutput satisfy the requirement.

Parameters
* base — XBARA peripheral address.
* eOutput — XBARA output number.

* psControlConfig — Pointer to structure that keeps configuration of control
register.

uint16_t XBARA_ GetStatusFlags(XBARA_Type *base)
Gets the active edge detection status for all XBAR output signal supporting this feature.

This function gets the active edge detect status of all XBARA_OUTs. If the active edge occurs,
the return value is asserted. When the interrupt or the DMA functionality is enabled for

372 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

the XBARA_OUTSX, this field is 1 when the interrupt or DMA request is asserted and 0 when
the interrupt or DMA request has been cleared.

Parameters
* base — XBARA peripheral address.

Returns
ORed value from all status flag from xbara_status_flag_t.

static inline void XBARA_ ClearStatusFlags(XBARA_Type *base, uint16_t ul6Flags)
Clear the edge detection status flags of relative mask.
Parameters
* base — XBARA peripheral address.

* ul6Flags — status flags composed from ORed xbara_status_flag_t indicating
flags to be cleared.

FSL_XBAR_DRIVER_ VERSION
XBAR driver version.
enum _ xbara_ active__edge
XBARA active edge for detection.
Values:
enumerator kXBARA_EdgeNone
Edge detection status bit never asserts.
enumerator kXBARA__EdgeRising
Edge detection status bit asserts on rising edges.
enumerator kXBARA__EdgeFalling
Edge detection status bit asserts on falling edges.
enumerator kXBARA__EdgeRisingAndFalling
Edge detection status bit asserts on rising and falling edges.

enum _ xbara_ request

XBARA DMA and interrupt configurations. Note it only apply for a subset of XBARA output
signal.

Values:

enumerator kXBARA_RequestDisable
Interrupt and DMA are disabled.

enumerator kXBARA_ RequestDMAEnable
DMA enabled, interrupt disabled.

enumerator kXBARA RequestInterruptEnable
Interrupt enabled, DMA disabled.

enum _ xbara_ status_ flag
XBARA status flags.

This provides constants for the XBARA status flags for use in the XBARA functions. The enu-
merator value is designed to make sure Flags in same register can be created with register
value to write/read register.

Values:

enumerator kXBARA__EdgeDetectionOutOFlag
XBAR_OUTO active edge interrupt flag, sets when active edge detected.

2.76. XBAR: Inter-Peripheral Crossbar Switch Driver 373

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kXBARA_EdgeDetectionOut1Flag
XBAR_OUT1 active edge interrupt flag, sets when active edge detected.

enumerator kXBARA_EdgeDetectionOut2Flag
XBAR_OUT?2 active edge interrupt flag, sets when active edge detected.

enumerator kXBARA__EdgeDetectionOut3Flag
XBAR_OUTS active edge interrupt flag, sets when active edge detected.

enumerator kXBARA__ AllStatusFlags

typedef enum _xbara_active_edge xbara_ active_edge t
XBARA active edge for detection.

typedef enum _xbara_request xbara_ request_ t

XBARA DMA and interrupt configurations. Note it only apply for a subset of XBARA output
signal.

typedef enum _xbara_status_flag xbara_ status_flag_t
XBARA status flags.

This provides constants for the XBARA status flags for use in the XBARA functions. The enu-
merator value is designed to make sure Flags in same register can be created with register
value to write/read register.

typedef struct _xbara_control_config xbara_ control _config_t
Defines the configuration structure of the XBARA control register.

This structure keeps the configuration of XBARA control register for one output. Control
registers are available only for a few outputs. Not every XBARA module has control regis-
ters.

XBARA_SELx(base, output)

Macro function to extract the XBAR select register address for a given xbar output signal.
XBARA__CTRLx(base, output)

Macro function to extract the XBAR Ctrl register address for a given xbar output signal.
XBARA SELx_SELn SHIFT(output)

Macro function to get SELn field shift in XBARA_SELX register for a given output signal.
XBARA_SELx_SELn_ MASK(output)

Macro function to get SELn field mask in XBARA_SELX register for a given output signal.
XBARA_SELx_SELn(output, input_signal)

Macro function to create SELn field value in XBARA_SELX register for given output signal
and input signal value input_signal, see xbar_input_signal_t.

XBARA_CTRLx_DIENn_ MASK (output)

Macro function to get DIENnN field mask in XBARA_CTRLx register for a given output signal.
XBARA_CTRLx_DIENn_SHIFT(output)

Macro function to get DIENN field shift in XBARA_CTRLx register for a given output signal.
XBARA__CTRLx_DIENn(output, X)

Macro function to create DIEND field value in XBARA_CTRLx register for given output signal
and DMA/Interrupt mode X, see xbara_request_t.

XBARA CTRLx_ EDGEn_ MASK(output)
Macro function to get EDGEn field mask in XBARA_CTRLx register for a given output signal.

XBARA_CTRLx_EDGEn_SHIFT(output)
Macro function to get EDGEn field shift in XBARA_CTRLx register for a given output signal.

374 Chapter 2. MC56F80748

MCUXpresso SDK Documentation, Release 25.09.00

XBARA__CTRLx_EDGEn(output, X)

Macro function to create EDGEn field value in XBARA_CTRLx register for given output sig-
nal and edge mode X, see xbara_active_edge_t.

XBARA_CTRLx_STS_MASK
Macro value for the Status bits in CTRL register.

struct _ xbara_ control__config
#include <fsl_xbara.h> Defines the configuration structure of the XBARA control register.

This structure keeps the configuration of XBARA control register for one output. Control
registers are available only for a few outputs. Not every XBARA module has control regis-
ters.

Public Members

xbara_active_edge_t eActiveEdge
Active edge to be detected.

xbara_request_t eRequestType
Selects DMA/Interrupt request.

2.77 The Driver Change Log

2.78 XBAR Peripheral and Driver Overview

2.77. The Driver Change Log 375

MCUXpresso SDK Documentation, Release 25.09.00

376 Chapter 2. MC56F80748

Chapter 3

Middleware

377

MCUXpresso SDK Documentation, Release 25.09.00

378 Chapter 3. Middleware

Chapter 4

RTOS

4.1 FreeRTOS

4.1.1 FreeRTOS kernel

Open source RTOS kernel for small devices.

FreeRTOS kernel for MCUXpresso SDK Readme
FreeRTOS kernel for MCUXpresso SDK ChangeLog
FreeRTOS kernel Readme

4.1.2 FreeRTOS drivers

This is set of NXP provided FreeRTOS reentrant bus drivers.

4.1.3 backoffalgorithm

Algorithm for calculating exponential backoff with jitter for network retry attempts.

Readme

4.1.4 corehttp

Clanguage HTTP client library designed for embedded platforms.

4.1.5 corejson

JSON parser.

379

MCUXpresso SDK Documentation, Release 25.09.00

Readme

4.1.6 coremqtt

MQTT publish/subscribe messaging library.

4.1.7 coremqtt-agent

The coreMQTT Agent library is a high level API that adds thread safety to the coreMQTT library.

Readme

4.1.8 corepkesil

PKCS #11 key management library.

Readme

4.1.9 freertos-plus-tcp

Open source RTOS FreeRTOS Plus TCP.

Readme

380 Chapter 4. RTOS

	MC56F80000-EVK
	Overview
	Getting Started with MCUXpresso SDK Package
	Getting Started with Package
	Overview
	Build and run SDK example on codewarrior
	Install CodeWarrior
	Build an example application
	Board debugger setup
	Run an example application

	Project template for a specific DSC part
	How to determine COM port

	Getting Started with MCUXpresso SDK GitHub
	Getting Started with MCUXpresso SDK Repository
	Installation
	Install Prerequisites with MCUXpresso Installer
	Alternative: Manual Installation
	Basic tools
	Git
	Python
	West
	Build And Configuration System
	CMake
	Ninja
	Kconfig
	Ruby
	Toolchain
	Tool installation check

	Get MCUXpresso SDK Repo
	Establish SDK Workspace
	Install Python Dependency(If do tool installation manually)

	Explore Contents
	Folder View
	Examples Project

	Run a demo using MCUXpresso for VS Code
	Build an example application
	Run an example application

	Running a demo using ARMGCC CLI/IAR/MDK
	Supported Boards
	Build the project
	Sysbuild(System build)

	Config a Project
	Flash
	Debug
	Work with IDE Project

	Release Notes
	MCUXpresso SDK Release Notes
	Overview
	MCUXpresso SDK
	Development tools
	Supported development systems
	Release contents
	MCUXpresso SDK release package
	Device support
	Board support
	Demo application and other examples

	Middleware
	Motor Control Software (ACIM, BLDC, PMSM)
	FreeMASTER

	Known Issues
	PRINTF issue for program address space

	ChangeLog
	MCUXpresso SDK Changelog
	Board Support Files
	board
	[25.06.00]

	clock_config
	[25.06.00]

	pin_mux
	[25.06.00]

	CADC
	[2.2.0]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	CLOCK
	[2.0.0]

	CMP
	[2.0.1]
	[2.0.0]

	COMMON
	[2.6.0]
	[2.5.0]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.10]
	[2.2.9]
	[2.2.8]
	[2.2.7]
	[2.2.6]
	[2.2.5]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	COP
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.0]

	CRC
	[2.0.1]
	[2.0.0]

	DMAMUX
	[2.0.0]

	EDMA
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	EQDC
	[2.0.0]

	EVTG
	[2.0.0]

	EWM
	[2.0.2]
	[2.0.1]
	[2.0.0]

	FLASH
	[3.0.0]

	GPIO
	[2.0.1]
	[2.0.0]

	INTC
	[2.0.1]
	[2.0.0]

	LPI2C
	[2.0.2]
	[2.0.1]
	[2.0.0]

	MCM
	[2.0.1]
	[2.0.0]

	OPAMP
	[2.0.0]

	PIT
	[2.3.1]
	[2.3.0]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	PMC
	[2.1.0]
	[2.0.0]

	eFlexPWM
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	QSCI
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	QTMR
	[2.0.1]
	[2.0.0]

	Queued SPI
	[2.1.1]
	[2.1.0]
	[2.0.0]

	SIM
	[2.0.0]

	DSC_XBARA
	[2.0.1]
	[2.0.0]

	MC56F80748
	CADC: 12-bit Cyclic Analog-to-Digital Converter Driver
	The Driver Change Log
	CADC Peripheral and Driver Overview
	Clock Driver
	Driver Change Log
	CMP: Comparator Driver
	The Driver Change Log
	CMP Peripheral and Driver Overview
	COP: Computer Operating Properly(Watchdog) Driver
	The Driver Change Log
	COP Peripheral and Driver Overview
	CRC: Cyclic Redundancy Check Driver
	The Driver Change Log
	CRC Peripheral and Driver Overview
	DMAMUX: DMA Channel Multiplexer Driver
	The Driver Change Log
	DMAMUX Peripheral and Driver Overview
	The Driver Change Log
	EDMA: Enhanced Direct Memory Access Driver
	The Driver Change Log
	EDMA Peripheral and Driver Overview
	EQDC: Enhanced Quadrature Decoder Driver
	EQDC Peripheral and Driver Overview
	EVTG: Event Generator Driver
	The Driver Change Log
	EVTG Peripheral and Driver Overview
	EWM: External Watchdog Monitor Driver
	The Driver Change Log
	EWM Peripheral and Driver Overview
	C90TFS Flash Driver
	ftfx adapter
	ftfx controller
	ftfx feature
	Ftftx FLASH Driver
	ftfx utilities
	GPIO: General-Purpose Input/Output Driver
	The Driver Change Log
	GPIO Peripheral and Driver Overview
	INTC: Interrupt Controller Driver
	The Driver Change Log
	INTC Peripheral and Driver Overview
	Common Driver
	LPI2C: Low Power Inter-Integrated Circuit Driver
	The Driver Change Log
	LPI2C_EDMA: EDMA based LPI2C Driver
	LPI2C Peripheral and Driver Overview
	MCM: Miscellaneous Control Module Driver
	The Driver Change Log
	MCM Peripheral and Driver Overview
	OPAMP: Operational Amplifier Driver
	The Driver Change Log
	OPAMP Peripheral and Driver Overview
	PIT: Periodic Interrupt Timer (PIT) Driver
	The Driver Change Log
	PIT Peripheral and Driver Overview
	PMC: Power Management Controller Driver
	The Driver Change Log
	PMC Peripheral and Driver Overview
	eFlexPWM: Enhanced Flexible Pulse Width Modulator Driver
	The Driver Change Log
	eFlexPWM Peripheral and Driver Overview
	QSCI: Queued Serial Communications Interface Driver
	The Driver Change Log
	QSCI_EDMA: EDMA based QSCI Driver
	QSCI Peripheral and Driver Overview
	QSPI: Queued SPI Driver
	QSPI Peripheral and Driver Overview
	QSPI_EDMA: EDMA based QSPI Driver
	QTMR: Quad Timer Driver
	The Driver Change Log
	QTMR Peripheral and Driver Overview
	The Driver Change Log
	SIM: System Integration Module Driver
	The Driver Change Log
	SIM Peripheral and Driver Overview
	XBAR: Inter-Peripheral Crossbar Switch Driver
	The Driver Change Log
	XBAR Peripheral and Driver Overview

	Middleware
	RTOS
	FreeRTOS
	FreeRTOS kernel
	FreeRTOS kernel for MCUXpresso SDK Readme
	FreeRTOS kernel for MCUXpresso SDK ChangeLog
	FreeRTOS kernel Readme

	FreeRTOS drivers
	backoffalgorithm
	Readme

	corehttp
	corejson
	Readme

	coremqtt
	coremqtt-agent
	Readme

	corepkcs11
	Readme

	freertos-plus-tcp
	Readme

