
MCUXpresso SDK Documentation
Release 25.09.00

NXP
Sep 19, 2025

Table of contents

1 LPCXpresso55S06 3
1.1 Overview . 3
1.2 Getting Started with MCUXpresso SDK Package . 3

1.2.1 Getting Started with Package . 3
1.3 Getting Started with MCUXpresso SDK GitHub . 5

1.3.1 Getting Started with MCUXpresso SDK Repository 5
1.4 Release Notes . 18

1.4.1 MCUXpresso SDK Release Notes . 18
1.5 ChangeLog . 22

1.5.1 MCUXpresso SDK Changelog . 22
1.6 Driver API Reference Manual . 77
1.7 Middleware Documentation . 78

1.7.1 FreeMASTER . 78
1.7.2 FreeRTOS . 78
1.7.3 File systemFatfs . 78

2 LPC55S06 79
2.1 ANACTRL: Analog Control Driver . 79
2.2 CASPER: The Cryptographic Accelerator and Signal Processing Engine with RAM

sharing . 84
2.3 casper_driver . 84
2.4 casper_driver_pkha . 87
2.5 CDOG . 90
2.6 Clock Driver . 94
2.7 CMP: Analog Comparator Driver . 123
2.8 CRC: Cyclic Redundancy Check Driver . 127
2.9 CTIMER: Standard counter/timers . 129
2.10 DMA: Direct Memory Access Controller Driver . 139
2.11 IAP: In Application Programming Driver . 156
2.12 IAP_FFR Driver . 165
2.13 FLEXCOMM: FLEXCOMM Driver . 174
2.14 FLEXCOMM Driver . 174
2.15 GINT: Group GPIO Input Interrupt Driver . 175
2.16 Hashcrypt: The Cryptographic Accelerator . 178
2.17 Hashcrypt Background HASH . 178
2.18 Hashcrypt common functions . 179
2.19 Hashcrypt AES . 181
2.20 Hashcrypt HASH . 186
2.21 I2C: Inter-Integrated Circuit Driver . 187
2.22 I2C DMA Driver . 187
2.23 I2C Driver . 189
2.24 I2C Master Driver . 192
2.25 I2C Slave Driver . 202
2.26 I2S: I2S Driver . 211
2.27 I2S DMA Driver . 211
2.28 I2S Driver . 215

i

2.29 INPUTMUX: Input Multiplexing Driver . 223
2.30 IAP_KBP Driver . 237
2.31 Common Driver . 241
2.32 LPADC: 12-bit SAR Analog-to-Digital Converter Driver 252
2.33 GPIO: General Purpose I/O . 271
2.34 IOCON: I/O pin configuration . 274
2.35 MCAN: Controller Area Network Driver . 275
2.36 MRT: Multi-Rate Timer . 298
2.37 OSTIMER: OS Event Timer Driver . 302
2.38 PINT: Pin Interrupt and Pattern Match Driver . 306
2.39 PLU: Programmable Logic Unit . 315
2.40 Power Driver . 324
2.41 PRINCE: PRINCE bus crypto engine . 337
2.42 PUF: Physical Unclonable Function . 344
2.43 Reset Driver . 347
2.44 RNG: Random Number Generator . 351
2.45 RTC: Real Time Clock . 352
2.46 SCTimer: SCTimer/PWM (SCT) . 358
2.47 skboot_authenticate . 374
2.48 SPI: Serial Peripheral Interface Driver . 375
2.49 SPI DMA Driver . 375
2.50 SPI Driver . 379
2.51 SYSCTL: I2S bridging and signal sharing Configuration 388
2.52 USART: Universal Synchronous/Asynchronous Receiver/Transmitter Driver 390
2.53 USART DMA Driver . 390
2.54 USART Driver . 393
2.55 UTICK: MictoTick Timer Driver . 409
2.56 WWDT: Windowed Watchdog Timer Driver . 410

3 Middleware 415
3.1 Motor Control . 415

3.1.1 FreeMASTER . 415

4 RTOS 453
4.1 FreeRTOS . 453

4.1.1 FreeRTOS kernel . 453
4.1.2 FreeRTOS drivers . 459
4.1.3 backoffalgorithm . 459
4.1.4 corehttp . 462
4.1.5 corejson . 464
4.1.6 coremqtt . 467
4.1.7 coremqtt-agent . 470
4.1.8 corepkcs11 . 474
4.1.9 freertos-plus-tcp . 477

ii

MCUXpresso SDK Documentation, Release 25.09.00

This documentation contains information specific to the lpcxpresso55s06 board.

Table of contents 1

MCUXpresso SDK Documentation, Release 25.09.00

2 Table of contents

Chapter 1

LPCXpresso55S06

1.1 Overview

The LPCXpresso55S06 development board provides the ideal platform for evaluation of and de-
velopment with the LPC550x/S0x MCU based on the Arm Cortex-M33 architecture. The board
includes a high-performance onboard debug probe and accelerometer, with several options for
adding off-the-shelf add-on boards for networking, sensors, displays, and other interfaces.

The LPCXpresso55S06 is fully supported by theMCUXpresso suite of tools, which provides device
drivers, middleware and examples to allow rapid development, plus configuration tools and an
optional free IDE. MCUXpresso software is compatible with the open source MCU operating sys-
tem FreeRTOS, tools from popular tool vendors such as Arm and IAR, and the LPCXpresso55S06
may also be used with the popular debug probes available from SEGGER and P&E Micro.

MCU device and part on board is shown below:

• Device: LPC55S06

• PartNumber: LPC55S06JBD64

1.2 Getting Started with MCUXpresso SDK Package

1.2.1 Getting Started with Package

• Overview

• MCUXpresso SDK board support package folders

3

MCUXpresso SDK Documentation, Release 25.09.00

– Example application structure

– Locating example application source files

• Run a demo using MCUXpresso IDE

– Select the workspace location

– Build an example application

– Run an example application

– Build a multicore example application

– Run a multicore example application

– Build a TrustZone example application

– Run a TrustZone example application

• Run a demo application using IAR

– Build an example application

– Run an example application

– Build a multicore example application

– Run a multicore example application

– Build a TrustZone example application

– Run a TrustZone example application

• Run a demo using Keil MDK/μVision

– Install CMSIS device pack

– Build an example application

– Run an example application

– Build a multicore example application

– Run a multicore example application

– Build a TrustZone example application

– Run a TrustZone example application

• Run a demo using Arm GCC

– Set up toolchain

* Install GCC Arm Embedded tool chain

* Install MinGW (only required on Windows OS)

* Add a new system environment variable for ARMGCC_DIR

* Install CMake

– Build an example application

– Run an example application

– Build a multicore example application

– Run a multicore example application

– Build a TrustZone example application

– Run a TrustZone example application

• MCUXpresso Config Tools

• MCUXpresso IDE New Project Wizard

4 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

• How to determine COM port

• How to define IRQ handler in CPP files

• Default debug interfaces

• Updating LPCXpresso board firmware

• Revision history

• Legal information

1.3 Getting Started with MCUXpresso SDK GitHub

1.3.1 Getting Started with MCUXpresso SDK Repository

Installation

NOTE
If the installation instruction asks/selects whether to have the tool installation path added to
the PATH variable, agree/select the choice. This option ensures that the tool can be used in any
terminal in any path. Verify the installation after each tool installation.

Install Prerequisites with MCUXpresso Installer The MCUXpresso Installer offers a quick
and easy way to install the basic tools needed. The MCUXpresso Installer can be obtained from
https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Dependency-Installation. The MCUX-
presso Installer is an automated installation process, simply select MCUXpresso SDK Developer
from the menu and click install. If you prefer to install the basic tools manually, refer to the next
section.

1.3. Getting Started with MCUXpresso SDK GitHub 5

MCUXpresso SDK Documentation, Release 25.09.00

Alternative: Manual Installation

Basic tools

Git Git is a free and open source distributed version control system. Git is designed to handle
everything from small to large projects with speed and efficiency. To install Git, visit the official
Git website. Download the appropriate version(you may use the latest one) for your operating
system (Windows, macOS, Linux). Then run the installer and follow the installation instructions.

User git --version to check the version if you have a version installed.

Then configure your username and email using the commands:

git config --global user.name ”Your Name”
git config --global user.email ”youremail@example.com”

Python Install python 3.10 or latest. Follow the Python Download guide.

Use python --version to check the version if you have a version installed.

West Please use the west version equal or greater than 1.2.0

Note: you can add option '--default-timeout=1000' if you meet connection issue. Or you may set a different␣
↪→source using option '-i'.
for example, in China you could try: pip install -U west -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install -U west

Build And Configuration System

CMake It is strongly recommended to use CMake version equal or later than 3.30.0. You can get
latest CMake distributions from the official CMake download page.

For Windows, you can directly use the .msi installer like cmake-3.31.4-windows-x86_64.msi to
install.

For Linux, CMake can be installed using the system packagemanager or by getting binaries from
the official CMake download page.

After installation, you can use cmake --version to check the version.

Ninja Please use the ninja version equal or later than 1.12.1.

By default, Windows comes with the Ninja program. If the default Ninja version is too old, you
can directly download the ninja binary and register the ninja executor location path into your
system path variable to work.

For Linux, you can use your system package manager or you can directly download the ninja
binary to work.

After installation, you can use ninja --version to check the version.

Kconfig MCUXpresso SDK uses Kconfig python implementation. We customize it based on our
needs and integrate it into our build and configuration system. The Kconfiglib sources are placed
under mcuxsdk/scripts/kconfig folder.

Please make sure python environment is setup ready then you can use the Kconfig.

6 Chapter 1. LPCXpresso55S06

https://git-scm.com/
https://wiki.python.org/moin/BeginnersGuide/Download
https://cmake.org/download/
https://github.com/Kitware/CMake/releases/download/v3.31.4/cmake-3.31.4-windows-x86_64.msi
https://cmake.org/download/
https://github.com/ninja-build/ninja/releases
https://github.com/ninja-build/ninja/wiki/Pre-built-Ninja-packages
https://github.com/ninja-build/ninja/releases
https://github.com/ninja-build/ninja/releases

MCUXpresso SDK Documentation, Release 25.09.00

Ruby Our build system supports IDE project generation for iar, mdk, codewarrior and xtensa
to provide OOBE from build to debug. This feature is implemented with ruby. You can follow
the guide ruby environment setup to setup the ruby environment. Since we provide a built-in
portable ruby, it is just a simple one cmd installation.

If you only work with CLI, you can skip this step.

Toolchain MCUXpresso SDK supports all mainstream toolchains for embedded development.
You can install your used or interested toolchains following the guides.

Toolchain Download and Installation Guide Note
Armgcc Arm GNU Toolchain Install Guide ARMGCC is default

toolchain
IAR IAR Installation and Licensing quick ref-

erence guide
MDK MDK Installation

Armclang Installing Arm Compiler for Embedded

Zephyr Zephyr SDK

Codewarrior NXP CodeWarrior

Xtensa Tensilica Tools

NXP S32Compiler RISC-
V Zen-V

NXP Website

After you have installed the toolchains, register them in the system environment variables. This
will allow the west build to recognize them:

1.3. Getting Started with MCUXpresso SDK GitHub 7

https://learn.arm.com/install-guides/gcc/arm-gnu/
https://www.iar.com/siteassets/knowledge/support/tech-notes/qr_lms2.pdf
https://www.iar.com/siteassets/knowledge/support/tech-notes/qr_lms2.pdf
https://developer.arm.com/documentation/109350/v6/Installation?lang=en
https://developer.arm.com/documentation/100748/0618/Getting-Started/Installing-Arm-Compiler-for-Embedded
https://docs.zephyrproject.org/latest/develop/toolchains/zephyr_sdk.html
https://www.nxp.com/design/design-center/software/development-software/codewarrior-development-tools:CW_HOME
https://tensilicatools.com/platforms/
https://www.nxp.com/search?keyword=NXP%2520S32Compiler%2520RISC-V&start=0

MCUXpresso SDK Documentation, Release 25.09.00

Toolchain Environ-
ment
Variable

Example Cmd
Line Ar-
gument

Armgcc AR-
MGCC_DIR

C:\armgcc for windows/usr for Linux. Typically
arm-none-eabi-* is installed under /usr/bin

–
toolchain
armgcc

IAR IAR_DIR C:\iar\ewarm-9.60.3 for Windows/opt/iarsystems/
bxarm-9.60.3 for Linux

–
toolchain
iar

MDK MDK_DIR C:\Keil_v5 for Windows.MDK IDE is not officially sup-
ported with Linux.

–
toolchain
mdk

Armclang ARM-
CLANG_DIR

C:\ArmCompilerforEmbedded6.22 for Windows/opt/
ArmCompilerforEmbedded6.21 for Linux

–
toolchain
mdk

Zephyr ZEPHYR_SDK_INSTALL_DIRc:\NXP\zephyr-sdk-<version> for windows/opt/
zephyr-sdk-<version> for Linux

–
toolchain
zephyr

CodeWar-
rior

CW_DIR C:\Freescale\CW MCU v11.2 for windowsCodeWarrior is
not supported with Linux

–
toolchain
code-
warrior

Xtensa XCC_DIR C:\xtensa\XtDevTools\install\tools\RI-2023.11-win32\
XtensaTools for windows/opt/xtensa/XtDevTools/
install/tools/RI-2023.11-Linux/XtensaTools for Linux

–
toolchain
xtensa

NXP
S32Compiler
RISC-V
Zen-V

RISCVL-
LVM_DIR

C:\riscv-llvm-win32_b298_b298_2024.08.12 for Win-
dows/opt/riscv-llvm-Linux-x64_b298_b298_2024.08.12
for Linux

–
toolchain
riscvl-
lvm

• The <toolchain>_DIR is the root installation folder, not the binary location folder. For IAR,
it is directory containing following installation folders:

• MDK IDE using armclang toolchain only officially supports Windows. In Linux, please di-
rectly use armclang toolchain by setting ARMCLANG_DIR. In Windows, since most Keil
users will install MDK IDE instead of standalone armclang toolchain, the MDK_DIR has
higher priority than ARMCLANG_DIR.

• For Xtensa toolchain, please set the XTENSA_CORE environment variable. Here’s an ex-
ample list:

8 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

Device Core XTENSA_CORE
RT500 fusion1 nxp_rt500_RI23_11_newlib
RT600 hifi4 nxp_rt600_RI23_11_newlib
RT700 hifi1 rt700_hifi1_RI23_11_nlib
RT700 hifi4 t700_hifi4_RI23_11_nlib
i.MX8ULP fusion1 fusion_nxp02_dsp_prod

• In Windows, the short path is used in environment variables. If any toolchain is using
the long path, you can open a command window from the toolchain folder and use below
command to get the short path: for %i in (.) do echo %~fsi

Tool installation check Once installed, open a terminal or command prompt and type the
associated command to verify the installation.

If you see the version number, you have successfully installed the tool. Else, check whether the
tool’s installation path is added into the PATH variable. You can add the installation path to the
PATH with the commands below:

• Windows: Open command prompt or powershell, run below command to show the user
PATH variable.

reg query HKEY_CURRENT_USER\Environment /v PATH

The tool installation path should be C:\Users\xxx\AppData\Local\Programs\Git\cmd. If the
path is not seen in the output from above, append the path value to the PATH variable with
the command below:

reg add HKEY_CURRENT_USER\Environment /v PATH /d ”%PATH%;C:\Users\xxx\AppData\
↪→Local\Programs\Git\cmd”

Then close the command prompt or powershell and verify the tool command again.

• Linux:

1. Open the $HOME/.bashrc file using a text editor, such as vim.

2. Go to the end of the file.

3. Add the line which appends the tool installation path to the PATH variable and export
PATH at the end of the file. For example, export PATH=”/Directory1:$PATH”.

4. Save and exit.

5. Execute the script with source .bashrc or reboot the system to make the changes live. To
verify the changes, run echo $PATH.

• macOS:

1. Open the $HOME/.bash_profile file using a text editor, such as nano.

2. Go to the end of the file.

3. Add the line which appends the tool installation path to the PATH variable and export
PATH at the end of the file. For example, export PATH=”/Directory1:$PATH”.

4. Save and exit.

5. Execute the script with source .bash_profile or reboot the system to make the changes
live. To verify the changes, run echo $PATH.

1.3. Getting Started with MCUXpresso SDK GitHub 9

MCUXpresso SDK Documentation, Release 25.09.00

Get MCUXpresso SDK Repo

Establish SDK Workspace To get the MCUXpresso SDK repository, use the west tool to clone
the manifest repository and checkout all the west projects.

Initialize west with the manifest repository
west init -m https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/ mcuxpresso-sdk

Update the west projects
cd mcuxpresso-sdk
west update

Allow the usage of west extensions provided by MCUXpresso SDK
west config commands.allow_extensions true

Install Python Dependency(If do tool installation manually) To create a Python virtual en-
vironment in the west workspace core repo directory mcuxsdk, follow these steps:

1. Navigate to the core directory:

cd mcuxsdk

2. [Optional] Create and activate the virtual environment: If you don’t want to use the python
virtual environment, skip this step. We strongly suggest you use venv to avoid conflicts
with other projects using python.

python -m venv .venv

For Linux/MacOS
source .venv/bin/activate

For Windows
.\.venv\Scripts\activate
If you are using powershell and see the issue that the activate script cannot be run.
You may fix the issue by opening the powershell as administrator and run below command:
powershell Set-ExecutionPolicy RemoteSigned
then run above activate command again.

Once activated, your shell will be prefixed with (.venv). The virtual environment can be
deactivated at any time by running deactivate command.

Remember to activate the virtual environment every time you start working in this
directory. If you are using some modern shell like zsh, there are some powerful plugins to
help you auto switch venv among workspaces. For example, zsh-autoswitch-virtualenv.

3. Install the required Python packages:

Note: you can add option '--default-timeout=1000' if you meet connection issue. Or you may set a␣
↪→different source using option '-i'.
for example, in China you could try: pip3 install -r mcuxsdk/scripts/requirements.txt -i https://pypi.
↪→tuna.tsinghua.edu.cn/simple
pip install -r scripts/requirements.txt

Explore Contents

This section helps you build basic understanding of current fundamental project content and
guides you how to build and run the provided example project in whole SDK delivery.

10 Chapter 1. LPCXpresso55S06

https://github.com/MichaelAquilina/zsh-autoswitch-virtualenv

MCUXpresso SDK Documentation, Release 25.09.00

Folder View The whole MCUXpresso SDK project, after you have done the west init and west
update operations follow the guideline at Getting Started Guide, have below folder structure:

Folder Description
mani-
fests

Manifest repo, contains the manifest file to initialize and update the west
workspace.

mcuxsdk The MCUXpresso SDK source code, examples, middleware integration and script
files.

All the projects record in the Manifest repo are checked out to the folder mcuxsdk/, the layout of
mcuxsdk folder is shown as below:

Folder Description
arch Arch related files such as ARM CMSIS core files, RISC-V files and the build files related

to the architecture.
cmake The cmake modules, files which organize the build system.
com-
po-
nents

Software components.

de-
vices

Device support package which categorized by device series. For each device, header
file, feature file, startup file and linker files are provided, also device specific drivers
are included.

docs Documentation source and build configuration for this sphinx built online documen-
tation.

drivers Peripheral drivers.
ex-
am-
ples

Various demos and examples, support files on different supported boards. For each
board support, there are board configuration files.

mid-
dle-
ware

Middleware components integrated into SDK.

rtos Rtos components integrated into SDK.
scripts Script files for the west extension command and build system support.
svd Svd files for devices, this is optional because of large size. Customers runwest manifest

config group.filter +optional and west update mcux-soc-svd to get this folder.

Examples Project The examples project is part of the whole SDK delivery, and locates in the
folder mcuxsdk/examples of west workspace.

Examples files are placed in folder of <example_category>, these examples include (but are not
limited to)

• demo_apps: Basic demo set to start using SDK, including hello_world and led_blinky.

• driver_examples: Simple applications that show how to use the peripheral drivers for a
single use case. These applications typically only use a single peripheral but there are cases
where multiple peripherals are used (for example, SPI transfer using DMA).

Board porting layers are placed in folder of _boards/<board_name>which aims at providing the
board specific parts for examples code mentioned above.

Run a demo using MCUXpresso for VS Code

This section explains how to configureMCUXpresso for VS Code to build, run, and debug example
applications. This guide uses the hello_world demo application as an example. However, these

1.3. Getting Started with MCUXpresso SDK GitHub 11

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests

MCUXpresso SDK Documentation, Release 25.09.00

steps can be applied to any example application in the MCUXpresso SDK.

Build an example application This section assumes that the user has already obtained the
SDK as outlined in Get MCUXpresso SDK Repo.

To build an example application:

1. Import the SDK into your workspace. Click Import Repository from the QUICKSTART
PANEL.

Note: You can import the SDK in several ways. Refer to MCUXpresso for VS Code Wiki for
details.

Select Local if you’ve already obtained the SDK as seen inGetMCUXpresso SDK Repo. Select
your location and click Import.

2. Click Import Example from Repository from the QUICKSTART PANEL.

In the dropdown menu, select the MCUXpresso SDK, the Arm GNU Toolchain, your board,
template, and application type. Click Import.

12 Chapter 1. LPCXpresso55S06

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Working-with-MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.09.00

Note: The MCUXpresso SDK projects can be imported as Repository applications or Free-
standing applications. The difference between the two is the import location. Projects im-
ported as Repository examples will be located inside the MCUXpresso SDK, whereas Free-
standing examples can be imported to a user-defined location. Select between these by
designating your selection in the App type dropdown menu.

3. VS Code will prompt you to confirm if the imported files are trusted. Click Yes.
4. Navigate to the PROJECTS view. Find your project and click the Build Project icon.

The integrated terminal will open at the bottom and will display the build output.

1.3. Getting Started with MCUXpresso SDK GitHub 13

MCUXpresso SDK Documentation, Release 25.09.00

Run an example application Note: for full details on MCUXpresso for VS Code debug probe
support, see MCUXpresso for VS Code Wiki.

1. Open the Serial Monitor from the VS Code’s integrated terminal. Select the VCom Port for
your device and set the baud rate to 115200.

2. Navigate to the PROJECTS view and click the play button to initiate a debug session.

The debug session will begin. The debug controls are initially at the top.

14 Chapter 1. LPCXpresso55S06

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/DebugK

MCUXpresso SDK Documentation, Release 25.09.00

.

3. Click Continue on the debug controls to resume execution of the code. Observe the output
on the Serial Monitor.

Running a demo using ARMGCC CLI/IAR/MDK

Supported Boards Use the west extension west list_project to understand the board support
scope for a specified example. All supported build command will be listed in output:

west list_project -p examples/demo_apps/hello_world [-t armgcc]

INFO: [1][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evk9mimx8ulp -Dcore_id=cm33]
INFO: [2][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkbimxrt1050]
INFO: [3][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣

(continues on next page)

1.3. Getting Started with MCUXpresso SDK GitHub 15

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
↪→evkbmimxrt1060]
INFO: [4][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkbmimxrt1170 -Dcore_id=cm4]
INFO: [5][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkbmimxrt1170 -Dcore_id=cm7]
INFO: [6][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkcmimxrt1060]
INFO: [7][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkmcimx7ulp]
...

The supported toolchains andbuild targets for an example are decidedby the example-self exam-
ple.yml and board example.yml, please refer Example Toolchains and Targets for more details.

Build the project Usewest build -h to see help information for west build command. Compared
to zephyr’s west build, MCUXpresso SDK’s west build command provides following additional
options for mcux examples:

• --toolchain: specify the toolchain for this build, default armgcc.

• --config: value for CMAKE_BUILD_TYPE. If not provided, build system will get all the ex-
ample supported build targets and use the first debug target as the default one. Please refer
Example Toolchains and Targets for more details about example supported build targets.

Here are some typical usages for generating a SDK example:

Generate example with default settings, default used device is the mainset MK22F51212
west build -b frdmk22f examples/demo_apps/hello_world

Just print cmake commands, do not execute it
west build -b frdmk22f examples/demo_apps/hello_world --dry-run

Generate example with other toolchain like iar, default armgcc
west build -b frdmk22f examples/demo_apps/hello_world --toolchain iar

Generate example with other config type
west build -b frdmk22f examples/demo_apps/hello_world --config release

Generate example with other devices with --device
west build -b frdmk22f examples/demo_apps/hello_world --device MK22F12810 --config release

For multicore devices, you shall specify the corresponding core id by passing the command line
argument -Dcore_id. For example

west build -b evkbmimxrt1170 examples/demo_apps/hello_world --toolchain iar -Dcore_id=cm7 --config␣
↪→flexspi_nor_debug

For shield, please use the --shield to specify the shield to run, like

west build -b mimxrt700evk --shield a8974 examples/issdk_examples/sensors/fxls8974cf/fxls8974cf_poll -
↪→Dcore_id=cm33_core0

Sysbuild(System build) To support multicore project building, we ported Sysbuild from
Zephyr. It supports combine multiple projects for compilation. You can build all projects by
adding --sysbuild for main application. For example:

west build -b evkbmimxrt1170 --sysbuild ./examples/multicore_examples/hello_world/primary -Dcore_
↪→id=cm7 --config flexspi_nor_debug --toolchain=armgcc -p always

For more details, please refer to System build.

16 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

Config a Project Example in MCUXpresso SDK is configured and tested with pre-defined con-
figuration. You can follow steps blow to change the configuration.

1. Run cmake configuration

west build -b evkbmimxrt1170 examples/demo_apps/hello_world -Dcore_id=cm7 --cmake-only -p

Please note the project will be built without --cmake-only parameter.

2. Run guiconfig target

west build -t guiconfig

Then you will get the Kconfig GUI launched, like

You can reconfigure the project by selecting/deselecting Kconfig options.

After saving and closing the Kconfig GUI, you can directly run west build to build with the new
configuration.

1.3. Getting Started with MCUXpresso SDK GitHub 17

MCUXpresso SDK Documentation, Release 25.09.00

Flash Note: Please refer Flash and Debug The Example to enable west flash/debug support.

Flash the hello_world example:

west flash -r linkserver

Debug Start a gdb interface by following command:

west debug -r linkserver

Work with IDE Project The above build functionalities are all with CLI. If you want to use
the toolchain IDE to work to enjoy the better user experience especially for debugging or you
are already used to develop with IDEs like IAR, MDK, Xtensa and CodeWarrior in the embedded
world, you can play with our IDE project generation functionality.

This is the cmd to generate the evkbmimxrt1170 hello_world IAR IDE project files.

west build -b evkbmimxrt1170 examples/demo_apps/hello_world --toolchain iar -Dcore_id=cm7 --config␣
↪→flexspi_nor_debug -p always -t guiproject

By default, the IDE project files are generated inmcuxsdk/build/<toolchain> folder, you can open
the project file with the IDE tool to work:

Note, please follow the Installation to setup the environment especially make sure that ruby has
been installed.

1.4 Release Notes

1.4.1 MCUXpresso SDK Release Notes

Overview

The MCUXpresso SDK is a comprehensive software enablement package designed to simplify
and accelerate application development with Arm Cortex-M-based devices from NXP, including
its general purpose, crossover and Bluetooth-enabled MCUs. MCUXpresso SW and Tools for DSC

18 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

further extends the SDK support to current 32-bit Digital Signal Controllers. The MCUXpresso
SDK includes production-grade software with integrated RTOS (optional), integrated enabling
software technologies (stacks and middleware), reference software, and more.

In addition to working seamlessly with the MCUXpresso IDE, the MCUXpresso SDK also supports
and provides example projects for various toolchains. The Development tools chapter in the
associated Release Notes provides details about toolchain support for your board. Support for
the MCUXpresso Config Tools allows easy cloning of existing SDK examples and demos, allowing
users to leverage the existing software examples provided by the SDK for their own projects.

Underscoring our commitment to high quality, the MCUXpresso SDK is MISRA compliant and
checked with Coverity static analysis tools. For details on MCUXpresso SDK, see MCUXpresso-
SDK: Software Development Kit for MCUXpresso.

MCUXpresso SDK

As part of the MCUXpresso software and tools, MCUXpresso SDK is the evolution of Kinetis SDK,
includes support for LPC, DSC,PN76, and i.MX System-on-Chip (SoC). The same drivers, APIs, and
middleware are still available with support for Kinetis, LPC, DSC, and i.MX silicon. The MCUX-
presso SDK adds support for the MCUXpresso IDE, an Eclipse-based toolchain that works with
all MCUXpresso SDKs. Easily import your SDK into the new toolchain to access to all of the avail-
able components, examples, and demos for your target silicon. In addition to the MCUXpresso
IDE, support for the MCUXpresso Config Tools allows easy cloning of existing SDK examples and
demos, allowing users to leverage the existing software examples provided by the SDK for their
own projects.

In order to maintain compatibility with legacy Freescale code, the filenames and source code in
MCUXpresso SDK containing the legacy Freescale prefix FSL has been left as is. The FSL prefix
has been redefined as the NXP Foundation Software Library.

Development tools

The MCUXpresso SDK was tested with following development tools. Same versions or above are
recommended.

• MCUXpresso IDE, Rev. 25.06.xx

• IAR Embedded Workbench for Arm, version is 9.60.4

• Keil MDK, version is 5.42

• MCUXpresso for VS Code v25.09

• GCC Arm Embedded Toolchain 14.2.x

Supported development systems

This release supports board and devices listed in following table. The board and devices in bold
were tested in this release.

Devel-
opment
boards

MCU devices

LPCX-
presso55S06

LPC5502JBD64, LPC5502JHI48, LPC5504JBD64, LPC5504JHI48, LPC5506JBD64,
LPC5506JHI48, LPC55S04JBD64, LPC55S04JHI48, LPC55S06JBD64,
LPC55S06JHI48

1.4. Release Notes 19

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.09.00

MCUXpresso SDK release package

The MCUXpresso SDK release package content is aligned with the silicon subfamily it supports.
This includes the boards, CMSIS, devices, middleware, and RTOS support.

Device support The device folder contains the whole software enablement available for the
specific System-on-Chip (SoC) subfamily. This folder includes clock-specific implementation,
device register header files, device register feature header files, and the system configuration
source files. Included with the standard SoC support are folders containing peripheral drivers,
toolchain support, and a standard debug console. The device-specific header files provide a di-
rect access to themicrocontroller peripheral registers. The device header file provides an overall
SoCmemorymapped register definition. The folder also includes the feature header file for each
peripheral on themicrocontroller. The toolchain folder contains the startup code and linker files
for each supported toolchain. The startup code efficiently transfers the code execution to the
main() function.

Board support The boards folder provides the board-specific demo applications, driver exam-
ples, and middleware examples.

Demo application and other examples The demo applications demonstrate the usage of the
peripheral drivers to achieve a system level solution. Each demo application contains a readme
file that describes the operation of the demo and required setup steps. The driver examples
demonstrate the capabilities of the peripheral drivers. Each example implements a common
use case to help demonstrate the driver functionality.

RTOS

FreeRTOS Real-time operating system for microcontrollers from Amazon

Middleware

CMSIS DSP Library The MCUXpresso SDK is shipped with the standard CMSIS development
pack, including the prebuilt libraries.

coreHTTP coreHTTP

PSA Test Suite Arm Platform Security Architecture Test Suite

mbedTLS mbedtls SSL/TLS library v3.x

USB Type-C PD Stack See the MCUXpresso SDK USB Type-C PD Stack User’s Guide (document
MCUXSDKUSBPDUG) for more information

USB Host, Device, OTG Stack See the MCUXpresso SDK USB Stack User’s Guide (document
MCUXSDKUSBSUG) for more information.

TinyCBOR Concise Binary Object Representation (CBOR) Library

20 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

TF-M Trusted Firmware - M Library

PKCS#11 The PKCS#11 standard specifies an application programming interface (API), called
“Cryptoki,” for devices that hold cryptographic information and perform cryptographic func-
tions. Cryptoki follows a simple object based approach, addressing the goals of technology in-
dependence (any kind of device) and resource sharing (multiple applications accessing multiple
devices), presenting to applications a common, logical view of the device called a “cryptographic
token”.

mbedTLS mbedtls SSL/TLS library v2.x

LVGL LVGL Open Source Graphics Library

llhttp HTTP parser llhttp

FreeMASTER FreeMASTER communication driver for 32-bit platforms.

File systemFatfs The FatFs file system is integrated with theMCUXpresso SDK and can be used
to access either the SD card or the USB memory stick when the SD card driver or the USB Mass
Storage Device class implementation is used.

emWin TheMCUXpresso SDK is pre-integrated with the SEGGER emWin GUI middleware. The
AppWizard provides developers and designers with a flexible tool to create stunning user inter-
face applications, without writing any code.

NXPPSACRYPTODRIVER PSA crypto driver for crypto library integration via driverwrappers

Release contents

Provides an overview of the MCUXpresso SDK release package contents and locations.

1.4. Release Notes 21

MCUXpresso SDK Documentation, Release 25.09.00

Deliverable Location
Boards INSTALL_DIR/boards
Demo Applications INSTALL_DIR/boards/<board_name>/demo_apps
Driver Examples INSTALL_DIR/boards/<board_name>/driver_examples
eIQ examples INSTALL_DIR/boards/<board_name>/eiq_examples
Board Project Template for MCUXpresso IDE NPW INSTALL_DIR/boards/<board_name>/project_template
Driver, SoC header files, extension header files and
feature header files, utilities

INSTALL_DIR/devices/<device_name>

CMSIS drivers INSTALL_DIR/devices/<device_name>/cmsis_drivers
Peripheral drivers INSTALL_DIR/devices/<device_name>/drivers
Toolchain linker files and startup code INSTALL_DIR/devices/<device_name>/<toolchain_name>
Utilities such as debug console INSTALL_DIR/devices/<device_name>/utilities
Device Project Template for MCUXpresso IDE NPW INSTALL_DIR/devices/<device_name>/project_template
CMSIS Arm Cortex-M header files, DSP library source INSTALL_DIR/CMSIS
Components and board device drivers INSTALL_DIR/components
RTOS INSTALL_DIR/rtos
Release Notes, Getting Started Document and other
documents

INSTALL_DIR/docs

Tools such as shared cmake files INSTALL_DIR/tools
Middleware INSTALL_DIR/middleware

Known issues

This section lists the known issues, limitations, and/or workarounds.

Cannot add SDK components into FreeRTOS projects

It is not possible to add any SDK components into FreeRTOS project using the MCUXpresso IDE
New Project wizard.

Examples hello_world_ns, secure_faults_ns, and secure_faults_trdc_ns have incorrect li-
brary path in GUI projects

When the affected examples are generated as GUI projects, the library linking the secure and
non-secure worlds has an incorrect path set. This causes linking errors during project compila-
tion.

Examples: hello_world_ns, hello_world_s, secure_faults_ns, secure_faults_s, se-
cure_faults_trdc_ns, secure_faults_trdc_s

Affected toolchains: mdk, iar

Workaround: In the IDE project settings for the non-secure (_ns) project, find the linked library
(named hello_world_s_CMSE_lib.o, or similar, depending on the example project) and replace
the path to the library with <build_directory>/<secure_world_project_folder>/<IDE>/, replac-
ing the subdirectory names with the build directory, the secure world project name, and IDE
name.

1.5 ChangeLog

1.5.1 MCUXpresso SDK Changelog

22 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

Board Support Files

board

[25.06.00]
• Initial version

clock_config

[25.06.00]
• Initial version

pin_mux

[25.06.00]
• Initial version

ANACTRL

[2.4.0]
• Improvements

– Added some interrupt flags for devices containing BOD1 and BOD2 interrupt controls.

– Added a control macro to enable/disable the 32MHz Crystal oscillator code in current
driver.

– Added a feature macro for bit field ENA_96MHZCLK in FRO192M_CTRL.

– Added a feature macro for bit field BODCORE_INT_ENABLE in BOD_DCDC_INT_CTRL.

[2.3.1]
• Bug Fixes

– Added casts to prevent overflow caused by capturing large target clock.

[2.3.0]
• Improvements

– Added AUX_BIAS control APIs.

[2.2.0]
• Improvements

– Added some macros to separate the scenes that some bit fields are reserved for some
devices.

– Optimized the comments.

– Optimized the code implementation inside some functions.

1.5. ChangeLog 23

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.2]
• Bug Fixes

– Fixed MISRA C-2012 rule 10.3 and rule 17.7.

[2.1.1]
• Bug Fixes

– Removed AnalogTestBus configuration to align with new header.

[2.1.0]
• Improvements

– Updates for LPC55xx A1.

* Removed the control of bitfield FRO192M_CTRL_ENA_48MHZCLK,
XO32M_CTRL_ACBUF_PASS_ENABLE.

* Removed status bits in ANACTRL_STATUS: PMU_ID OSC_ID FI-
NAL_TEST_DONE_VECT.

* Removed API ANACTRL_EnableAdcVBATDivider() and APIs which operate the
RingOSC registers.

* Removed the configurations of 32MHzCrystal oscillator voltage source supply con-
trol register.

* Added API ANACTRL_ClearInterrupts().

[2.0.0]
• Initial version.

CASSPER

[2.2.4]
• Fix MISRA-C 2012 issue.

[2.2.3]
• Added macro into CASPER_Init and CASPER_Deinit to support devices without clock and
reset control.

[2.2.2]
• Enable hardware interleaving to RAMX0 and RAMX1 for CASPER by feature macro
FSL_FEATURE_CASPER_RAM_HW_INTERLEAVE

[2.2.1]
• Fix MISRA C-2012 issue.

24 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

[2.2.0]
• Rework driver to support multiple curves at once.

[2.1.0]
• Add ECC NIST P-521 elliptic curve.

[2.0.10]
• Fix MISRA C-2012 issue.

[2.0.9]
• Remove unused function Jac_oncurve().

• Fix ECC384 build.

[2.0.8]
• Add feature macro for CASPER_RAM_OFFSET.

[2.0.7]
• Fix MISRA C-2012 issue.

[2.0.6]
• Bug Fixes

– Fix IAR Pa082 warning

[2.0.5]
• Bug Fixes

– Fix sign-compare warning

[2.0.4]
• For GCC compiler, enforce O1 optimize level, specifically to remove strict-aliasing option.
This driver is very specific and requires -fno-strict-aliasing.

[2.0.3]
• Bug Fixes

– Fixed the bug for KPSDK-28107 RSUB, FILL and ZERO operations not implemented in
enum _casper_operation.

[2.0.2]
• Bug Fixes

– Fixed KPSDK-25015 CASPER_MEMCPY hard-fault on LPC55xx when both source and
destination buffers are outside of CASPER_RAM.

1.5. ChangeLog 25

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.1]
• Bug Fixes

– Fixed the bug that KPSDK-24531 double_scalar_multiplication() result may be all ze-
roes for some specific input.

[2.0.0]
• Initial version.

CDOG

[2.1.3]
• Re-design multiple instance IRQs and Clocks

• Add fix for RESTART command errata

[2.1.2]
• Support multiple IRQs

• Fix default CONTROL values

[2.1.1]
• Remove bit CONTROL[CONTROL_CTRL].

[2.1.0]
• Rename CWT to CDOG.

[2.0.2]
• Fix MISRA-2012 issues.

[2.0.1]
• Fix doxygen issues.

[2.0.0]
• Initial version.

CLOCK

[2.3.8]
• Bug Fixes

– Fixed an issue that ss_progmodfm_t, ss_progmoddp_t, and ss_modwvctrl_t use wrong
shift value.

26 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

[2.3.7]
• Improvements

– Add errata workaround for pll lock bit in CLOCK_SetPLL0Freq() and
CLOCK_SetPLL1Freq().

[2.3.6]
• Bug Fixes

– Correct the fail status condition in CLOCK_SetupExtClocking().

[2.3.5]
• Improvements

– Added lost comments for some enumerations.

[2.3.4]
• Bug Fixes

– Correct the clock name kCLOCK_Cwt to kCLOCK_Cdog.

[2.3.3]
• Bug Fixes

– Fix kCLOCK_DivFlexFrgx setting in CLOCK_SetClkDiv function.

[2.3.2]
• Improvements

– Removed USB component.

[2.3.1]
• Bug Fixes

– Fixed violation of MISRA C-2012 rule 10.1, rule 10.4, rule 18.1 and so on.

[2.3.0]
• New Features

– Moved SDK_DelayAtLeastUs function from clock driver to common driver.

[2.2.2]
• Bug Fixes

– Corrected the PLL.SELI setting to align with new UM.

– Changed the PLL lock reliable condition.

1.5. ChangeLog 27

MCUXpresso SDK Documentation, Release 25.09.00

[2.2.1]
• Improvements

– Removed redundant macro definitions.

[2.2.0]
• New Features

– Added the CLOCK_SetupPLUClkInClocking() to store the PLU CLKIN frequency.

[2.1.1]
• Improvements

– Updated the CLOCK_SetFLASHAccessCyclesForFreq() to support up to 150MHz fre-
quency.

[2.1.0]
• New features

– Added new API CLOCK_DelayAtLeastUs() implemented by DWT to allow users to set
delay in unit of microsecond.

[2.0.4]
• Bug Fixes

– Fixed C++ build errors in CLOCK_GetClockAttachId() and CLOCK_AttachClk().

[2.0.3]
• Bug Fixes

– Fixed attach incorrect attach_id.

[2.0.2]
• New Features

– Added get actual clock attach id api to allow users to obtain the actual clock source in
target register.

• Bug Fixes

– The attach clock and get actual clock attach id APIs should check combination of two
clock sources.

• Optimizations

– Made the judgement statements more clear.

– Strengthened the compatibility of clock attach id.

– Removed some unmeaningful definitions and add some useful ones to enhance read-
ability.

[2.0.1]
• Some minor fixes.

28 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.0]
• Initial version.

CMP

[2.2.1]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.1, rule 10.4, and rule 17.7.

[2.2.0]
• Improvements:

– Added API to configure the sampling mode and clock divider of the CMP Filter.

– Supported CMP filter sampling mode configuration.

[2.1.0]
• New Features:

– Added API to get default CMP user configuration structure.

– Supported CMP filter clock divider settings.

– Combined the settings of VREF source and VREF value into one API CMP_SetVREF().

– Extracted CMP input source selection from CMP_Init() to CMP_SetInputChannels().

• Improvements:

– Formatted API naming, variable naming and comment style for better readability.

– Added comments for APIs in source file.

[2.0.1]
• Bug Fixes

– Fixed missing ‘const’ qualifier for structure variable in function parameter.

[2.0.0]
• Initial version.

COMMON

[2.6.0]
• Bug Fixes

– Fix CERT-C violations.

1.5. ChangeLog 29

MCUXpresso SDK Documentation, Release 25.09.00

[2.5.0]
• New Features

– Added new APIs InitCriticalSectionMeasurementContext, DisableGlobalIRQEx and En-
ableGlobalIRQEx so that user canmeasure the execution time of the protected sections.

[2.4.3]
• Improvements

– Enable irqs that mount under irqsteer interrupt extender.

[2.4.2]
• Improvements

– Add themacros to convert peripheral address to secure address or non-secure address.

[2.4.1]
• Improvements

– Improve for the macro redefinition error when integrated with zephyr.

[2.4.0]
• New Features

– Added EnableIRQWithPriority, IRQ_SetPriority, and IRQ_ClearPendingIRQ for ARM.

– Added MSDK_EnableCpuCycleCounter, MSDK_GetCpuCycleCount for ARM.

[2.3.3]
• New Features

– Added NETC into status group.

[2.3.2]
• Improvements

– Make driver aarch64 compatible

[2.3.1]
• Bug Fixes

– Fixed MAKE_VERSION overflow on 16-bit platforms.

[2.3.0]
• Improvements

– Split the driver to common part and CPU architecture related part.

30 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

[2.2.10]
• Bug Fixes

– Fixed the ATOMIC macros build error in cpp files.

[2.2.9]
• Bug Fixes

– Fixed MISRA C-2012 issue, 5.6, 5.8, 8.4, 8.5, 8.6, 10.1, 10.4, 17.7, 21.3.

– Fixed SDK_Malloc issue that not allocate memory with required size.

[2.2.8]
• Improvements

– Included stddef.h header file for MDK tool chain.

• New Features:

– Added atomic modification macros.

[2.2.7]
• Other Change

– Added MECC status group definition.

[2.2.6]
• Other Change

– Added more status group definition.

• Bug Fixes

– Undef __VECTOR_TABLE to avoid duplicate definition in cmsis_clang.h

[2.2.5]
• Bug Fixes

– Fixed MISRA C-2012 rule-15.5.

[2.2.4]
• Bug Fixes

– Fixed MISRA C-2012 rule-10.4.

[2.2.3]
• New Features

– Provided better accuracy of SDK_DelayAtLeastUs with DWT, use macro
SDK_DELAY_USE_DWT to enable this feature.

– Modified the Cortex-M7 delay count divisor based on latest tests on RT series boards,
this setting lets result be closer to actual delay time.

1.5. ChangeLog 31

MCUXpresso SDK Documentation, Release 25.09.00

[2.2.2]
• New Features

– Added include RTE_Components.h for CMSIS pack RTE.

[2.2.1]
• Bug Fixes

– Fixed violation of MISRA C-2012 Rule 3.1, 10.1, 10.3, 10.4, 11.6, 11.9.

[2.2.0]
• New Features

– Moved SDK_DelayAtLeastUs function from clock driver to common driver.

[2.1.4]
• New Features

– Added OTFAD into status group.

[2.1.3]
• Bug Fixes

– MISRA C-2012 issue fixed.

* Fixed the rule: rule-10.3.

[2.1.2]
• Improvements

– Add SUPPRESS_FALL_THROUGH_WARNING() macro for the usage of suppressing
fallthrough warning.

[2.1.1]
• Bug Fixes

– Deleted and optimized repeated macro.

[2.1.0]
• New Features

– Added IRQ operation for XCC toolchain.

– Added group IDs for newly supported drivers.

[2.0.2]
• Bug Fixes

– MISRA C-2012 issue fixed.

* Fixed the rule: rule-10.4.

32 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.1]
• Improvements

– Removed the implementation of LPC8XX Enable/DisableDeepSleepIRQ() function.

– Addednew featuremacro switch “FSL_FEATURE_HAS_NO_NONCACHEABLE_SECTION”
for specific SoCs which have no noncacheable sections, that helps avoid an unneces-
sary complex in link file and the startup file.

– Updated the align(x) to attribute(aligned(x)) to support MDK v6 armclang compiler.

[2.0.0]
• Initial version.

CRC

[2.1.1]
• Fix MISRA issue.

[2.1.0]
• Add CRC_WriteSeed function.

[2.0.2]
• Fix MISRA issue.

[2.0.1]
• Fixed KPSDK-13362. MDK compiler issue when writing to WR_DATA with -O3 optimize for
time.

[2.0.0]
• Initial version.

CTIMER

[2.3.3]
• Bug Fixes

– Fix CERT INT30-C INT31-C issue.

– Make API CTIMER_SetupPwm and CTIMER_UpdatePwmDutycycle return fail if pulse
width register overflow.

1.5. ChangeLog 33

MCUXpresso SDK Documentation, Release 25.09.00

[2.3.2]
• Bug Fixes

– Clear unexpected DMA request generated by RESET_PeripheralReset in API
CTIMER_Init to avoid trigger DMA by mistake.

[2.3.1]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.7 and 12.2.

[2.3.0]
• Improvements

– Added the CTIMER_SetPrescale(), CTIMER_GetCaptureValue(),
CTIMER_EnableResetMatchChannel(), CTIMER_EnableStopMatchChannel(),
CTIMER_EnableRisingEdgeCapture(), CTIMER_EnableFallingEdgeCapture(),
CTIMER_SetShadowValue(),APIs Interface to reduce code complexity.

[2.2.2]
• Bug Fixes

– Fixed SetupPwm() API only can use match 3 as period channel issue.

[2.2.1]
• Bug Fixes

– Fixed use specified channel to setting the PWM period in SetupPwmPeriod() API.

– Fixed Coverity Out-of-bounds issue.

[2.2.0]
• Improvements

– Updated three API Interface to support Users to flexibly configure the PWMperiod and
PWM output.

• Bug Fixes

– MISRA C-2012 issue fixed: rule 8.4.

[2.1.0]
• Improvements

– Added the CTIMER_GetOutputMatchStatus() API Interface.

– Added feature macro for FSL_FEATURE_CTIMER_HAS_NO_CCR_CAP2 and
FSL_FEATURE_CTIMER_HAS_NO_IR_CR2INT.

[2.0.3]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.3, 10.4, 10.6, 10.7 and 11.9.

34 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.2]
• New Features

– Added new API “CTIMER_GetTimerCountValue” to get the current timer count value.

– Added a control macro to enable/disable the RESET and CLOCK code in current driver.

– Added a new feature macro to update the API of CTimer driver for lpc8n04.

[2.0.1]
• Improvements

– API Interface Change

* Changed API interface by adding CTIMER_SetupPwmPeriod API and
CTIMER_UpdatePwmPulsePeriod API, which both can set up the right PWM
with high resolution.

[2.0.0]
• Initial version.

LPC_DMA

[2.5.3]
• Improvements

– Add assert in DMA_SetChannelXferConfig to prevent XFERCOUNT value overflow.

[2.5.2]
• Bug Fixes

– Use separate “SET” and “CLR” registers to modify shared registers for all channels, in
case of thread-safe issue.

[2.5.1]
• Bug Fixes

– Fixed violation of the MISRA C-2012 rule 11.6.

[2.5.0]
• Improvements

– Added a new api DMA_SetChannelXferConfig to set DMA xfer config.

[2.4.4]
• Bug Fixes

– Fixed the issue that DMA_IRQHandle might generate redundant callbacks.

– Fixed the issue that DMA driver cannot support channel bigger then 32.

– Fixed violation of the MISRA C-2012 rule 13.5.

1.5. ChangeLog 35

MCUXpresso SDK Documentation, Release 25.09.00

[2.4.3]
• Improvements

– Added features FSL_FEATURE_DMA_DESCRIPTOR_ALIGN_SIZEn/FSL_FEATURE_DMA0_DESCRIPTOR_ALIGN_SIZE/FSL_FEATURE_DMA1_DESCRIPTOR_ALIGN_SIZE
to support the descriptor align size not constant in the two instances.

[2.4.2]
• Bug Fixes

– Fixed violation of the MISRA C-2012 rule 8.4.

[2.4.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 5.7, 8.3.

[2.4.0]
• Improvements

– AddednewAPIsDMA_LoadChannelDescriptor/DMA_ChannelIsBusy to support polling
transfer case.

• Bug Fixes

– Added address alignment check for descriptor source and destination address.

– Added DMA_ALLOCATE_DATA_TRANSFER_BUFFER for application buffer allocation.

– Fixed the sign-compare warning.

– Fixed violations of the MISRA C-2012 rules 18.1, 10.4, 11.6, 10.7, 14.4, 16.3, 20.7, 10.8,
16.1, 17.7, 10.3, 3.1, 18.1.

[2.3.0]
• Bug Fixes

– Removed DMA_HandleIRQ prototype definition from header file.

– Added DMA_IRQHandle prototype definition in header file.

[2.2.5]
• Improvements

– Added newAPI DMA_SetupChannelDescriptor to support configuring wrap descriptor.

– Added wrap support in function DMA_SubmitChannelTransfer.

[2.2.4]
• Bug Fixes

– Fixed the issue that macro DMA_CHANNEL_CFER used wrong parameter to calculate
DSTINC.

36 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

[2.2.3]
• Bug Fixes

– Improved DMA driver Deinit function for correct logic order.

• Improvements

– Added API DMA_SubmitChannelTransferParameter to support creating head descrip-
tor directly.

– Added API DMA_SubmitChannelDescriptor to support ping pong transfer.

– AddedmacroDMA_ALLOCATE_HEAD_DESCRIPTOR/DMA_ALLOCATE_LINK_DESCRIPTOR
to simplify DMA descriptor allocation.

[2.2.2]
• Bug Fixes

– Do not use software trigger when hardware trigger is enabled.

[2.2.1]
• Bug Fixes

– Fixed Coverity issue.

[2.2.0]
• Improvements

– Changed API DMA_SetupDMADescriptor to non-static.

– Marked APIs below as deprecated.

* DMA_PrepareTransfer.

* DMA_Submit transfer.

– Added new APIs as below:

* DMA_SetChannelConfig.

* DMA_PrepareChannelTransfer.

* DMA_InstallDescriptorMemory.

* DMA_SubmitChannelTransfer.

* DMA_SetChannelConfigValid.

* DMA_DoChannelSoftwareTrigger.

* DMA_LoadChannelTransferConfig.

[2.0.1]
• Improvements

– Added volatile for DMA descriptor member xfercfg to avoid optimization.

[2.0.0]
• Initial version.

1.5. ChangeLog 37

MCUXpresso SDK Documentation, Release 25.09.00

FLEXCOMM

[2.0.2]
• Bug Fixes

– Fixed typos in FLEXCOMM15_DriverIRQHandler().

– Fixed MISRA issues.

* Fixed rules 10.1, 10.3, 10.4, 10.7, 10.8, 11.3, 11.6, 11.8, 11.9, 13.5.

• Improvements

– Added instance calculation in FLEXCOMM16_DriverIRQHandler() to align with Flex-
comm 14 and 15.

[2.0.1]
• Improvements

– Added more IRQHandler code in drivers to adapt new devices.

[2.0.0]
• Initial version.

GINT

[2.1.1]
• Improvements

– Added support for platforms with PORT_POL and PORT_ENA registers without arrays.

[2.1.0]
• Improvements

– Updated for platforms which only has one port.

[2.0.3]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.8.

[2.0.2]
• Bug Fixes

– Fixed issue for MISRA-2012 check.

* Fixed rule 17.7.

[2.0.1]
• Added control macro to enable/disable the RESET and CLOCK code in current driver.

38 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.0]
• Initial version.

GPIO

[2.1.7]
• Improvements

– Enhanced GPIO_PinInit to enable clock internally.

[2.1.6]
• Bug Fixes

– Clear bit before set it within GPIO_SetPinInterruptConfig() API.

[2.1.5]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 3.1, 10.6, 10.7, 17.7.

[2.1.4]
• Improvements

– Added API GPIO_PortGetInterruptStatus to retrieve interrupt status for whole port.

– Corrected typos in header file.

[2.1.3]
• Improvements

– Updated “GPIO_PinInit” API. If it has DIRCLR and DIRSET registers, use them at set 1
or clean 0.

[2.1.2]
• Improvements

– Removed deprecated APIs.

[2.1.1]
• Improvements

– API interface changes:

* Refined naming of APIs while keeping all original APIs, marking them as depre-
cated. Original APIs will be removed in next release. The mainin change is updat-
ing APIs with prefix of _PinXXX() and _PorortXXX

1.5. ChangeLog 39

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.0]
• New Features

– Added GPIO initialize API.

[2.0.0]
• Initial version.

HASHCRYPT

[2.0.0]
• Initial version.

[2.0.1]
• Supported loading AES key from unaligned address.

[2.0.2]
• Supported loading AES key from unaligned address for different compiler and core vari-
ants.

[2.0.3]
• Remove SHA512 and AES ICB algorithm definitions

[2.0.4]
• Add SHA context switch support

[2.1.0]
• Update the register name and macro to align with new header.

• Fixed the sign-compare warning in hashcrypt_load_data.

[2.1.1]
• Fix MISRA C-2012.

[2.1.2]
• Support loading AES input data from unaligned address.

[2.1.3]
• Fix MISRA C-2012.

40 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.4]
• Fix context switch cannot work when switching from AES.

[2.1.5]
• Add data synchronization barrier inside hashcrypt_sha_ldm_stm_16_words() to prevent
possible optimization issue.

[2.2.0]
• Add AES-OFB and AES-CFB mixed IP/SW modes.

[2.2.1]
• Add data synchronization barrier inside hashcrypt_sha_ldm_stm_16_words() prevent com-
piler from reordering memory write when -O2 or higher is used.

[2.2.2]
• Add data synchronization barrier inside hashcrypt_sha_ldm_stm_16_words() to fix opti-
mization issue

[2.2.3]
• Added check for size in hashcrypt_aes_one_block to prevent overflowing COUNT field in
MEMCTRL register, if its bigger than COUNT field do a multiple runs.

[2.2.4]
• In all HASHCRYPT_AES_xx functions have been added setting CTRL_MODEbitfield to 0 after
processing data, which decreases power consumption.

[2.2.5]
• Add data synchronization barrier and instruction synchronization barrier inside
hashcrypt_sha_process_message_data() to fix optimization issue

[2.2.6]
• Add data synchronization barrier inside HASHCRYPT_SHA_Update() and
hashcrypt_get_data() function to fix optimization issue on MDK and ARMGCC release
targets

[2.2.7]
• Add data synchronization barrier inside HASHCRYPT_SHA_Update() to fix optimization is-
sue on MCUX IDE release target

[2.2.8]
• Unify hashcrypt hashing behavior between aligned and unaligned input data

1.5. ChangeLog 41

MCUXpresso SDK Documentation, Release 25.09.00

[2.2.9]
• Add handling of set ERROR bit in the STATUS register

[2.2.10]
• Fix missing error statement in hashcrypt_save_running_hash()

[2.2.11]
• Fix incorrect SHA-256 calculation for long messages with reload

[2.2.12]
• Fix hardfault issue on the Keil compiler due to unaligned memcpy() input on some opti-
mization levels

[2.2.13]
• Added function hashcrypt_seed_prng() which loading random number into PRNG_SEED
register before AES operation for SCA protection

[2.2.14]
• Modify function hashcrypt_get_data() to prevent issue with unaligned access

[2.2.15]
• Addwait on DIGEST BIT inside hashcrypt_sha_one_block() to fix issues with some optimiza-
tion flags

[2.2.16]
• Add DSB instruction inside hashcrypt_sha_ldm_stm_16_words() to fix issues with some op-
timization flags

[2.2.17]
• Fix context size when hashcrypt built with reload feature

I2C

[2.3.3]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.1.

– Fixed issue that if master only sends address without data during I2C interrupt trans-
fer, address nack cannot be detected.

42 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

[2.3.2]
• Improvement

– Enable or disable timeout option according to enableTimeout.

• Bug Fixes

– Fixed timeout value calculation error.

– Fixed bug that the interrupt transfer cannot recover from the timeout error.

[2.3.1]
• Improvement

– Before master transfer with transactional APIs, enable master function while disable
slave function and vise versa for slave transfer to avoid the one affecting the other.

• Bug Fixes

– Fixed bug in I2C_SlaveEnable that the slave enable/disable should not affect the other
register bits.

[2.3.0]
• Improvement

– Added new return codes kStatus_I2C_EventTimeout and kStatus_I2C_SclLowTimeout,
and added the check for event timeout and SCL timeout in I2C master transfer.

– Fixed bug in slave transfer that the address match event should be invoked before not
after slave transmit/receive event.

[2.2.0]
• New Features

– Added enumeration _i2c_status_flags to include all previous master and slave status
flags, and added missing status flags.

– Modified I2C_GetStatusFlags to get all I2C flags.

– Added API I2C_ClearStatusFlags to clear all clearable flags not just master flags.

– Modifiedmaster transactional APIs to enable bus event timeout interrupt during trans-
fer, to avoid glitch on bus causing transfer hangs indefinitely.

• Bug Fixes

– Fixed bug that status flags and interrupt enablemasks share the same enumerations by
adding enumeration _i2c_interrupt_enable for all master and slave interrupt sources.

[2.1.0]
• Bug Fixes

– Fixed bug that during master transfer, when master is nacked during slave probing
or sending subaddress, the return status should be kStatus_I2C_Addr_Nak rather than
kStatus_I2C_Nak.

• Bug Fixes

– Fixed MISRA issues.

* Fixed rules 10.1, 10.4, 13.5.

1.5. ChangeLog 43

MCUXpresso SDK Documentation, Release 25.09.00

• New Features

– Added macro I2C_MASTER_TRANSMIT_IGNORE_LAST_NACK, so that user can config-
ure whether to ignore the last byte being nacked by slave during master transfer.

[2.0.8]
• Bug Fixes

– Fixed I2C_MasterSetBaudRate issue that MSTSCLLOW andMSTSCLHIGH are incorrect
when MSTTIME is odd.

[2.0.7]
• Bug Fixes

– Two dividers, CLKDIV and MSTTIME are used to configure baudrate. According to
reference manual, in order to generate 400kHz baudrate, the clock frequency after
CLKDIV must be less than 2mHz. Fixed the bug that, the clock frequency after CLKDIV
may be larger than 2mHz using the previous calculation method.

– Fixed MISRA 10.1 issues.

– Fixedwrongbaudrate calculationwhen feature FSL_FEATURE_I2C_PREPCLKFRG_8MHZ
is enabled.

[2.0.6]
• New Features

– Added master timeout self-recovery support for feature
FSL_FEATURE_I2C_TIMEOUT_RECOVERY.

• Bug Fixes

– Eliminated IAR Pa082 warning.

– Fixed MISRA issues.

* Fixed rules 10.1, 10.3, 10.4, 10.7, 10.8, 11.3, 11.6, 11.8, 11.9, 13.5.

[2.0.5]
• Bug Fixes

– Fixed wrong assignment for datasize in I2C_InitTransferStateMachineDMA.

– Fixedwrongworking flow in I2C_RunTransferStateMachineDMA to ensuremaster can
work in no start flag and no stop flag mode.

– Fixed wrong working flow in I2C_RunTransferStateMachine and added kReceive-
DataBeginState in _i2c_transfer_states to ensure master can work in no start flag and
no stop flag mode.

– Fixed wrong handle state in I2C_MasterTransferDMAHandleIRQ. After all the data has
been transfered or nak is returned, handle state should be changed to idle.

• Improvements

– Rounded up the calculated divider value in I2C_MasterSetBaudRate.

44 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.4]
• Improvements

– Updated the I2C_WATI_TIMEOUT macro to unified name I2C_RETRY_TIMES

– Updated the “I2C_MasterSetBaudRate” API to support baudrate configuration for fea-
ture QN9090.

• Bug Fixes

– Fixed build warnning caused by uninitialized variable.

– Fixed COVERITY issue of unchecked return value in I2C_RTOS_Transfer.

[2.0.3]
• Improvements

– Unified the component full name to FLEXCOMM I2C(DMA/FREERTOS) driver.

[2.0.2]
• Improvements

– In slave IRQ:

1. Changed slave receive process to first set the I2C_SLVCTL_SLVCONTINUE_MASK to
acknowledge the received data, then do data receive.

2. Improved slave transmit process to set the I2C_SLVCTL_SLVCONTINUE_MASK im-
mediately after writing the data.

[2.0.1]
• Improvements

– Added I2C_WATI_TIMEOUTmacro to allow users to specify the timeout times for wait-
ing flags in functional API and blocking transfer API.

[2.0.0]
• Initial version.

I2S

[2.3.2]
• Bug Fixes

– Fixed warning for comparison between pointer and integer.

[2.3.1]
• Bug Fixes

– Updated the value of TX/RX software transfer statemachine after transfer contents are
submitted to avoid race condition.

1.5. ChangeLog 45

MCUXpresso SDK Documentation, Release 25.09.00

[2.3.0]
• Improvements

– Addedapi I2S_InstallDMADescriptorMemory/I2S_TransferSendLoopDMA/I2S_TransferReceiveLoopDMA
to support loop transfer.

– Added api I2S_EmptyTxFifo to support blocking flush tx fifo.

– Updated api I2S_TransferAbortDMA by removed the blocking flush tx fifo from this
function.

• Bug Fixes

– Removed the while loop in abort transfer function to fix the dead loop issue under
specific user case.

[2.2.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 8.4.

[2.2.1]
• Improvements

– Added feature FSL_FEATURE_FLEXCOMM_INSTANCE_I2S_SUPPORT_SECONDARY_CHANNELn
for the SOC has parts of instance support secondary channel.

• Bug Fixes

– Added volatile statement for the state variable of i2s_handle and enable the mainline
channel pair before enable interrupt to avoid the issue of code excution reordering
which may cause the interrupt generated unexpectedly.

[2.2.0]
• Improvements

– Added 8/16/24 bits mono data format transfer support in I2S driver.

– Added new apis I2S_SetBitClockRate.

• Bug Fixes

– Fixed the PA082 build warning.

– Fixed the sign-compare warning.

– Fixed violations of the MISRA C-2012 rules 10.4, 10.8, 11.9, 10.1, 11.3, 13.5, 11.8, 10.3,
10.7.

– Fixed the Operand don’t affect result Coverity issue.

[2.1.0]
• Improvements

– Added a feature for the FLEXCOMMwhich supports I2S and has interconnection with
DMIC.

– Used a feature to control PDMDATA instead of I2S_CFG1_PDMDATA.

– Addedmember bytesPerFrame in i2s_dma_handle_t, used for DMA transferwidth con-
figure, instead of using sizeof(uint32_t) hardcode.

46 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

– Used the macro provided by DMA driver to define the I2S DMA descriptor.

• Bug Fixes

– Fixed the issue that I2S DMA driver always generated duplicate callback.

[2.0.3]
• New Features

– Added a feature to remove configuration for the second channel on LPC51U68.

[2.0.2]
• New Features

– Added ENABLE_IRQ handle after register I2S interrupt handle.

[2.0.1]
• Improvements

– Unified the component full name to FLEXCOMM I2S (DMA) driver.

[2.0.0]
• Initial version.

I2S_DMA

[2.3.3]
• Bug Fixes

– Fixed data size limit does not match the macro DMA_MAX_TRANSFER_BYTES issue.

[2.3.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.3.

[2.3.1]
• Refer I2S driver change log 2.0.1 to 2.3.1

IAP

[2.1.5]
• Improvements

– Update Flash_Program src parameter to const.

– Check CPU frequency <= 100MHZ for Flash Erase and Program.

– Add BOOTLOADER_UserEntry API.

1.5. ChangeLog 47

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.4]
• Bug Fixes

– Fixed misra issue.

[2.1.3]
• Bug Fixes

– Fix the CFPA version wasn’t transferred into SDK driver.

[2.1.2]
• Bug Fixes

– Fix IAP driver status definitions don’t match ROM_API.pdf from User Manual.

[2.1.1]
• Bug Fixes

– The last 17 pages are reserved for chips with 640KB flash.

[2.1.0]
• New Features

– Added new API FLASH_Read for users to read flash.

– Added new API skboot_authenticate for image authentication api.

– Added new AP kb_init, kb_deinit, kb_execute for users to operate BOOT ROM.

[2.0.3]
• Bug Fixes

– Resolve incompatibility issue.

[2.0.2]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 11.1.

• Improvements

– Improved the format of IAP driver version, using versionMajor to obtain the major
version of bootloader.

[2.0.1]
• Improvements

– Removed the enumeration itemkSysToFlashFreq_100MHzwhich cannot be supported.

– Removed the invalid FFR commands.

– Improved the format of IAP driver version, using S_VersionMajor to obtain the major
version of bootloader.

48 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.0]
• Initial version.

INPUTMUX

[2.0.9]
• Improvements

– Use INPUTMUX_CLOCKS to initialize the inputmux module clock to adapt to multiple
inputmux instances.

– Modify the API base type from INPUTMUX_Type to void.

[2.0.8]
• Improvements

– Updated a feature macro usage for function INPUTMUX_EnableSignal.

[2.0.7]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.0.6]
• Bug Fixes

– Fixed the documentation wrong in API INPUTMUX_AttachSignal.

[2.0.5]
• Bug Fixes

– Fixed build error because some devices has no sct.

[2.0.4]
• Bug Fixes

– Fixed violations of theMISRA C-2012 rule 10.4, 12.2 in INPUTMUX_EnableSignal() func-
tion.

[2.0.3]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.4, 10.7, 12.2.

[2.0.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.4, 12.2.

1.5. ChangeLog 49

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.1]
• Support channel mux setting in INPUTMUX_EnableSignal().

[2.0.0]
• Initial version.

IOCON

[2.2.0]
• Improvements

– Removed duplicate macro defintions.

– Renamed ‘IOCON_I2C_SLEW’macro to ‘IOCON_I2C_MODE’ tomatch its companion ‘IO-
CON_GPIO_MODE’. The original is kept as a deprecated symbol.

[2.1.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.3.

[2.1.1]
• Updated left shift formatwithmask value instead of a constant value to automatically adapt
to all platforms.

[2.1.0]
• Added a new IOCON_PinMuxSet() function with a feature IOCON_ONE_DIMENSION for
LPC845MAX board.

[2.0.0]
• Initial version.

LPADC

[2.9.3]
• Improvements

– Add timeout for while loop code.

[2.9.2]
• Improvements

– Fixed CERT-C issues.

50 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

[2.9.1]
• Bug Fixes

– Fixed incorrect channel B FIFO selection logic.

[2.9.0]
• Bug Fixes

– Add code to handle the case where GCC[GAIN_CAL] is a signed number.

– Split LPADC_FinishAutoCalibration function into two functions.

– Improved LPADC driver.

[2.8.4]
• Bug Fixes

– Remove function ‘LPADC_SetOffsetValue’ assert statement, this statement may cause
runtime errors in existing code.

[2.8.3]
• Bug Fixes

– Fixed SDK lpadc driver examples compile issue, move condition ‘commandId <
ADC_CV_COUNT’ to a more appropriate location.

[2.8.2]
• Bug Fixes

– Fixed the violations of MISRA C-2012 rule 18.1, 10.3, 10.1 and 10.4.

[2.8.1]
• Bug Fixes

– Fixed LPADC sample mode enum name mistake.

[2.8.0]
• Improvements

– Release peripheral from reset if necessary in init function.

• Bug Fixes

– Fixed function LPADC_GetConvResult() issue.

– Fixed function LPADC_SetConvCommandConfig() bugs.

[2.7.2]
• Improvements

– Use feature macros instead of header file macros.

• Bug Fixes

– Fixed the violations of MISRA C-2012 rule 10.1, 10.3, 10.4 and 14.3.

1.5. ChangeLog 51

MCUXpresso SDK Documentation, Release 25.09.00

[2.7.1]
• Improvements

– Corrected descriptions of several functions.

– Improved function LPADC_GetOffsetValue and LPADC_SetOffsetValue.

– Revert changes of feature macros for lpadc.

– Use feature macros instead of header file macros.

• Bug Fixes

– Fixed the violations of MISRA C-2012 rule 10.8.

– Fixed the violations of MISRA C-2012 rule 10.1, 10.3, 10.4 and 14.3.

[2.7.0]
• Improvements

– Added supports of CFG2 register.

– Removed some useless macros.

[2.6.2]
• Bug Fixes

– Fixed the violations of MISRA C-2012 rules.

– Fixed LPADC driver code compile error issue.

[2.6.1]
• Improvements

– Updated the use of macros in the driver code.

[2.6.0]
• Improvements

– Added the API LPADC_SetOffset12BitValue() to configure 12bit ADC conversion offset
trim value manually.

– Added the API LPADC_SetOffset16BitValue() to configure 16bit ADC conversion offset
trim value manually.

– Added API to set offset calibration mode.

– Added configuration of alternate channel.

– Updated auto calibration API and added calibration value conversion API.

• New feature

– Added API LPADC_EnableHardwareTriggerCommandSelection() to enable trigger
commands controlled by ADC_ETC.

– Updated LPADC_DoAutoCalibration() to allow doing something else before the ADC ini-
titialization to be totally complete. Enhance initialization duration time of the ADC.

– Added two new APIs to get/set calibration value.

52 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

[2.5.2]
• Improvements

– Added while loop, LPADC_GetConvResult() will return only when the FIFO will not be
empty.

[2.5.1]
• Bug Fixes

– Fixed some typos in Lpadc driver comments.

[2.5.0]
• Improvements

– Added missing items to enable trigger interrupts.

[2.4.0]
• New features

– Added APIs to get/clear trigger status flags.

[2.3.0]
• Improvements

– Removed LPADC_MeasureTemperature() function for the LPADC supports different
temperature sensor calculation equations.

[2.2.1]
• Improvements

– Optimized LPADC_MeasureTemperature() function to support the specific series with
flash solidified calibration value.

– Clean doxygen warnings.

• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.3, rule 10.8 and rule 17.7.

[2.2.0]
• New Feature

– AddedAPI LPADC_MeasureTemperature() to get correct temperature from the internal
sensor.

• Improvements

– Separated lpadc_conversion_resolution_mode_t with related feature macro.

• Bug Fixes

– Fixed the violations of MISRA C-2012 rules:

* Rule 10.3, 10.4, 10.6, 10.7 and 17.7.

1.5. ChangeLog 53

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.1]
• Improvements

– Updated the gain calibration formula.

– Used feature to segregate the new item kLPADC_TriggerPriorityPreemptSubsequently.

[2.1.0]
• New Features

– Added theAPI LPADC_SetOffsetValue() to support configure offset trimvaluemanually.

– Added the API LPADC_DoOffsetCalibration() to do offset calibration independently.

• Improvements

– Improved the usage of macros and removed invalid macros.

[2.0.2]
• Improvements

– Added support for platforms with 2 FIFOs and different calibration measures.

[2.0.1]
• Bug Fixes

– Ensured the API LPADC_SetConvCommandConfig configure related registers correctly.

[2.0.0]
• Initial version.

MCAN

[2.4.2]
• Bug Fixes

– Fixed MISRA issue rule-10.3, rule-10.6, rule-10.7 and rule-15.7.

[2.4.1]
• Bug Fixes

– Fixed incorrect fifo1 status on message lost.

[2.4.0]
• Improvements

– AddMCAN_CalculateSpecifiedTimingValues() API to get CANbit timing parameterwith
user-defined settings.

– Add MCAN_FDCalculateSpecifiedTimingValues() API to get CANFD bit timing parame-
ter with user-defined settings.

54 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

[2.3.2]
• Bug Fixes

– Fix MISRA C-2012 issue 10.1 and 10.4.

[2.3.1]
• Bug Fixes

– Fixed the issue that MCAN_TransferSendNonBlocking() API can’t send remote frame.

[2.3.0]
• Improvements

– Add MCAN_SetMessageRamConfig() API to perform global message RAM configure.

– Add MCAN_EnterInitialMode() API.

[2.2.0]
• Improvements

– Add MCAN_SetBaudRate/MCAN_SetBaudRateFD APIs to make users easy to set CAN
baud rate.

[2.1.8]
• Bug Fixes

– Add check FIFO status code in MCAN_ReadRxFifo() to avoid read back empty frame
and wrong trigger the FIFO index increase.

[2.1.7]
• Bug Fixes

– Fixed the clear error flags issue in MCAN_TransferHandleIRQ() API.

– Fixed the Solve Tx interrupt issue inMCAN_TransferHandleIRQ() API whichmay abort
the unhandled transfers.

– Remove disable global tx interrupt from MCAN_TransferAbortSend API.

[2.1.6]
• Bug Fixes

– Fixed the issue of writing 1 in the following functions.

– MCAN_TransmitAddRequest

– MCAN_TransmitCancelRequest

– MCAN_ClearRxBufferStatusFlag

[2.1.5]
• Bug Fixes

– Fix MISRA C-2012 issue.

1.5. ChangeLog 55

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.4]
• Improvements

– Updated improve timing APIs to make it can calculate the CiA recommended timing
configuration.

– Implement Transmitter Delay Compensation feature.

– Modify the default baudRateFD value to 2M.

• Bug Fixes

– Fixed the code error issue in MCAN_ClearStatusFlag() to avoid clear all flags.

[2.1.3]
• Bug Fixes

– Fixed the code error issue and simplified the algorithm in improved timing APIs.

* MCAN_CalculateImprovedTimingValues

* MCAN_FDCalculateImprovedTimingValues

[2.1.2]
• Bug Fixes

– Fixed the non-divisible case in improved timing APIs.

* MCAN_CalculateImprovedTimingValues

* MCAN_FDCalculateImprovedTimingValues

[2.1.1]
• Bug Fixes

– MISRA C-2012 issue check.

* Fixed rules, containing: rule-10.1, rule-10.3, rule-10.4, rule-10.6, rule-10.7, rule-
10.8, rule-11.9, rule-14.4, rule-15.5, rule-15.6, rule-15.7, rule-17.7, rule-18.4, rule-2.2,
rule-21.15, rule-5.8, rule-8.3.

* Fixed the Coverity issue of BAD_SHIFT in MCAN.

* Fixed the issue of Pa082 warning.

* Fixed the issue of dropping interrupt flags in handler function.

[2.1.0]
• Bug Fixes

– Fixed Coverity issue FORWARD_NULL.

– Fixed Clang issue.

– Fixed legacy issue in the driver and changed default bus data baud rate for CANFD.

• Improvements

– Implemented feature for improved timing configuration.

56 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.3]
• Improvements

– Used memset to initialize the structure before using.

– Added function definition comment in c file.

– Updated source file license to SPDX BSD_3.

– Corrected capital mistake of Fifo and fifo.

– Reset the MCAN module in LPC drivers after clock enable.

[2.0.2]
• Bug Fixes

– Picked MISRA fixed in release 8 branch.

– MISRA C 2012 fixed regarding FlexCAN and MCAN address update.

• Improvements

– Implemented for delay/retry in MCAN driver.

[2.0.1]
• Improvements

– LPC54608 chip did not support the FD feature, so added a feature macro for it.

[2.0.0]
• Initial version.

MRT

[2.0.5]
• Bug Fixes

– Fixed CERT INT31-C violations.

[2.0.4]
• Improvements

– Don’t reset MRT when there is not system level MRT reset functions.

[2.0.3]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.1 and 10.4.

– Fixed the wrong count value assertion in MRT_StartTimer API.

1.5. ChangeLog 57

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.2]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.4.

[2.0.1]
• Added control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.0]
• Initial version.

OSTIMER

[2.2.5]
• Improvements

– Support binary encoded ostimer.

[2.2.4]
• Bug Fixes

– Fixed CERT INT31-C violations.

[2.2.3]
• Improvements

– Disable and clear pending interrupts before disabling the OSTIMER clock to avoid in-
terrupts being executed when the clock is already disabled.

[2.2.2]
• Improvements

– Support devices with different OSTIMER instance name.

[2.2.1]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.2.0]
• Improvements

– Move the PMC operation out of the OSTIMER driver to board specific files.

– Added low level APIs to control OSTIMER MATCH and interrupt.

58 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.2]
• Bug Fixes

– Fixed MISRA-2012 rule 10.8.

[2.1.1]
• Bug Fixes

– removes the suffix ‘n’ for some register names and bit fields’ names

• Improvements

– Added HW CODE GRAY feature supported by CODE GRAY in SYSCTRL register group.

[2.1.0]
• Bug Fixes

– Added a workaround to fix the issue that no interrupt was reported when user set
smaller period.

– Fixed violation of MISRA C-2012 rule 10.3 and 11.9.

• Improvements

– Added return value for the two APIs to set match value.

* OSTIMER_SetMatchRawValue

* OSTIMER_SetMatchValue

[2.0.3]
• Bug Fixes

– Fixed violation of MISRA C-2012 rule 10.3, 14.4, 17.7.

[2.0.2]
• Improvements

– Added support for OSTIMER0

[2.0.1]
• Improvements

– Removed the software reset function out of the initialization API.

– Enabled interrupt directly instead of enabling deep sleep interrupt. Users need to en-
able the deep sleep interrupt in application code if needed.

[2.0.0]
• Initial version.

1.5. ChangeLog 59

MCUXpresso SDK Documentation, Release 25.09.00

PINT

[2.2.0]
• Fixed

– Fixed the issue that clear interrupt flag when it’s not handled. This causes events to be
lost.

• Changed

– Used one callback for one PINT instance. It’s unnecessary to provide different callbacks
for all PINT events.

[2.1.13]
• Improvements

– Added instance array for PINT to adapt more devices.

– Used release reset instead of reset PINT which may clear other related registers out of
PINT.

[2.1.12]
• Bug Fixes

– Fixed coverity issue.

[2.1.11]
• Bug Fixes

– Fixed MISRA C-2012 rule 10.7 violation.

[2.1.10]
• New Features

– Added the driver support for MCXN10 platform with combined interrupt handler.

[2.1.9]
• Bug Fixes

– Fixed MISRA-2012 rule 8.4.

[2.1.8]
• Bug Fixes

– Fixed MISRA-2012 rule 10.1 rule 10.4 rule 10.8 rule 18.1 rule 20.9.

[2.1.7]
• Improvements

– Added fully support for the SECPINT, making it can be used just like PINT.

60 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.6]
• Bug Fixes

– Fixed the bug of not enabling common pint clock when enabling security pint clock.

[2.1.5]
• Bug Fixes

– Fixed issue for MISRA-2012 check.

* Fixed rule 10.1 rule 10.3 rule 10.4 rule 10.8 rule 14.4.

– Changed interrupt init order to make pin interrupt configuration more reasonable.

[2.1.4]
• Improvements

– Added feature to control distinguish PINT/SECPINT relevant interrupt/clock configura-
tions for PINT_Init and PINT_Deinit API.

– Swapped the order of clearing PIN interrupt status flag and clearing pending NVIC
interrupt in PINT_EnableCallback and PINT_EnableCallbackByIndex function.

– Bug Fixes

* Fixed build issue caused by incorrect macro definitions.

[2.1.3]
• Bug fix:

– Updated PINT_PinInterruptClrStatus to clear PINT interrupt status when the bit is as-
serted and check whether was triggered by edge-sensitive mode.

– Write 1 to IST corresponding bit will clear interrupt status only in edge-sensitivemode
and will switch the active level for this pin in level-sensitive mode.

– Fixed MISRA c-2012 rule 10.1, rule 10.6, rule 10.7.

– Added FSL_FEATURE_SECPINT_NUMBER_OF_CONNECTED_OUTPUTS to distinguish
IRQ relevant array definitions for SECPINT/PINT on lpc55s69 board.

– Fixed PINT driver c++ build error and remove index offset operation.

[2.1.2]
• Improvement:

– Improved way of initialization for SECPINT/PINT in PINT_Init API.

[2.1.1]
• Improvement:

– Enabled secure pint interrupt and add secure interrupt handle.

[2.1.0]
• Added PINT_EnableCallbackByIndex/PINT_DisableCallbackByIndex APIs to enable/disable
callback by index.

1.5. ChangeLog 61

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.2]
• Added control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.1]
• Bug fix:

– Updated PINT driver to clear interrupt only in Edge sensitive.

[2.0.0]
• Initial version.

PLU

[2.2.1]
• Bug Fixes

– Fixed MISRA C-2012 rule 10.3 and rule 17.7.

[2.2.0]
• Bug Fixes

– Fixed wrong parameter of the PLU_EnableWakeIntRequest function.

[2.1.0]
• New Features

– Added 4 new APIs to support Niobe4’s wake-up/interrupt control feature, including
PLU_GetDefaultWakeIntConfig() PLU_EnableWakeIntRequest(), PLU_LatchInterrupt()
and PLU_ClearLatchedInterrupt().

• Other Changes

– Changed the register name LUT_INP to LUT_INP_MUX due to register map update.

[2.0.1]
• New Features

– Added control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.0]
• Initial version.

62 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

PRINCE

• Version 2.6.0

• Renamed CSS to ELS.

– Version 2.5.1

• Fix build error due to renamed symbols.

– Version 2.3.2

• Fix documentation of enumeration.

• Extend PRINCE example.

– Version 2.3.1

• Fix MISRA-2012 issues.

• Add support for LPC55S0x series

– Version 2.3.0

• Add support for LPC55S1x and LPC55S2x series

– Version 2.2.0

• Add runtime checking of the A0 and A1 rev. of LPC55Sxx serie to support both silicone
revisions.

– Version 2.1.0

• Update for the A1 rev. of LPC55Sxx serie.

[2.0.0]
• Initial version.

PUF

[2.2.0]
• Add support for kPUF_KeySlot4.

• Add new PUF_ClearKey() function, that clears a desired PUF internal HW key register.

[2.1.6]
• Changed wait time in PUF_Init(), when initialization fails it will try PUF_Powercycle() with
shorter time. If this shorter time will also fail, initialization will be tried with worst case
time as before.

[2.1.5]
• Use common SDK delay in puf_wait_usec().

[2.1.4]
• Replace register uint32_t ticksCount with volatile uint32_t ticksCount in puf_wait_usec() to
prevent optimization out delay loop.

1.5. ChangeLog 63

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.3]
• Fix MISRA C-2012 issue.

[2.1.2]
• Update: Add automatic big to little endian swap for user (pre-shared) keys destinated to
secret hardware bus (PUF key index 0).

[2.1.1]
• Fix ARMGCC build warning .

[2.1.0]
• Align driver with PUF SRAM controller registers on LPCXpresso55s16.

• Update initizalition logic .

[2.0.3]
• Fix MISRA C-2012 issue.

[2.0.2]
• New feature:

– Add PUF configuration structure and support for PUF SRAM controller.

• Improvements:

– Remove magic constants.

[2.0.1]
• Bug Fixes:

– Fixed puf_wait_usec function optimization issue.

[2.0.0]
• Initial version.

RESET

[2.4.0]
• Improvements

– Add RESET_ReleasePeripheralReset API.

[2.3.3]
• Improvements

– Add CASPER_RSTS,HASHCRYPT_RSTS and PUF_RSTS

64 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.1]
• Improvements

– Updated component full_name to “Reset Driver”.

[2.0.0]
• Initial version.

RNG

[2.0.3]
• Modified RNG_Init and RNG_GetRandomData functions, added rng_accumulateEntropy
and rng_readEntropy functions. These changes are reflecting recommended usage of RNG
according to device UM

[2.0.2]
• Add RESET_PeripheralReset function inside RNG_Init and RNG_Deinit functions.

[2.0.1]
• Fix MISRA C-2012 issue.

[2.0.0]
• Initial version.

RTC

[2.2.0]
• New Features

– Created new APIs for the RTC driver.

* RTC_EnableSubsecCounter

* RTC_GetSubsecValue

[2.1.3]
• Bug Fixes

– Fixed issue that RTC_GetWakeupCount may return wrong value.

[2.1.2]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.1, 10.4 and 10.7.

1.5. ChangeLog 65

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.1]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.3 and 11.9.

[2.1.0]
• Bug Fixes

– Created new APIs for the RTC driver.

* RTC_EnableTimer

* RTC_EnableWakeUpTimerInterruptFromDPD

* RTC_EnableAlarmTimerInterruptFromDPD

* RTC_EnableWakeupTimer

* RTC_GetEnabledWakeupTimer

* RTC_SetSecondsTimerMatch

* RTC_GetSecondsTimerMatch

* RTC_SetSecondsTimerCount

* RTC_GetSecondsTimerCount

– deprecated legacy APIs for the RTC driver.

* RTC_StartTimer

* RTC_StopTimer

* RTC_EnableInterrupts

* RTC_DisableInterrupts

* RTC_GetEnabledInterrupts

[2.0.0]
• Initial version.

SCTIMER

[2.5.1]
• Bug Fixes

– Fixed bug in SCTIMER_SetupCaptureAction: When kSCTIMER_Counter_H is selected,
events 12-15 and capture registers 12-15 CAPn_H field can’t be used.

[2.5.0]
• Improvements

– Add SCTIMER_GetCaptureValue API to get capture value in capture registers.

66 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

[2.4.9]
• Improvements

– Supported platforms which don’t have system level SCTIMER reset.

[2.4.8]
• Bug Fixes

– Fixed the issue that the SCTIMER_UpdatePwmDutycycle() can’t writes MATCH_H bit
and RELOADn_H.

[2.4.7]
• Bug Fixes

– Fixed the issue that the SCTIMER_UpdatePwmDutycycle() can’t configure 100% duty
cycle PWM.

[2.4.6]
• Bug Fixes

– Fixed the issuewhere theH registerwas notwritten as aword alongwith the L register.

– Fixed the issue that the SCTIMER_SetCOUNTValue() is not configured with high 16 bits
in unify mode.

[2.4.5]
• Bug Fixes

– Fix SCT_EV_STATE_STATEMSKn macro build error.

[2.4.4]
• Bug Fixes

– Fix MISRA C-2012 issue 10.8.

[2.4.3]
• Bug Fixes

– Fixed the wrong way of writing CAPCTRL and REGMODE registers in SC-
TIMER_SetupCaptureAction.

[2.4.2]
• Bug Fixes

– Fixed SCTIMER_SetupPwm 100% duty cycle issue.

[2.4.1]
• Bug Fixes

– Fixed the issue that MATCHn_H bit and RELOADn_H bit could not be written.

1.5. ChangeLog 67

MCUXpresso SDK Documentation, Release 25.09.00

[2.4.0]

[2.3.0]
• Bug Fixes

– Fixed the potential overflow issue of pulseperiod variable in SC-
TIMER_SetupPwm/SCTIMER_UpdatePwmDutycycle API.

– Fixed the issue of SCTIMER_CreateAndScheduleEvent API does not correctlyworkwith
32 bit unified counter.

– Fixed the issue of position of clear counter operation in SCTIMER_Init API.

• Improvements

– Update SCTIMER_SetupPwm/SCTIMER_UpdatePwmDutycycle to support generate 0%
and 100% PWM signal.

– Add SCTIMER_SetupEventActiveDirection API to configure event activity direction.

– Update SCTIMER_StartTimer/SCTIMER_StopTimer API to support start/stop low
counter and high counter at the same time.

– Add SCTIMER_SetCounterState/SCTIMER_GetCounterState API to write/read counter
current state value.

– Update APIs to make it meaningful.

* SCTIMER_SetEventInState

* SCTIMER_ClearEventInState

* SCTIMER_GetEventInState

[2.2.0]
• Improvements

– Updated for 16-bit register access.

[2.1.3]
• Bug Fixes

– Fixed the issue of uninitialized variables in SCTIMER_SetupPwm.

– Fixed the issue that the Low 16-bit and high 16-bit work independently in SCTIMER
driver.

• Improvements

– Added an enumerable macro of unify counter for user.

* kSCTIMER_Counter_U

– Created new APIs for the RTC driver.

* SCTIMER_SetupStateLdMethodAction

* SCTIMER_SetupNextStateActionwithLdMethod

* SCTIMER_SetCOUNTValue

* SCTIMER_GetCOUNTValue

* SCTIMER_SetEventInState

* SCTIMER_ClearEventInState

68 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

* SCTIMER_GetEventInState

– Deprecated legacy APIs for the RTC driver.

* SCTIMER_SetupNextStateAction

[2.1.2]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.3, 10.4, 10.6, 10.7, 11.9, 14.2 and 15.5.

[2.1.1]
• Improvements

– Updated the register and macro names to align with the header of devices.

[2.1.0]
• Bug Fixes

– Fixed issue where SCT application level Interrupt handler function is occupied by SCT
driver.

– Fixed issue where wrong value for INSYNC field inside SCTIMER_Init function.

– Fixed issue to changeDefault value for INSYNCfield inside SCTIMER_GetDefaultConfig.

[2.0.1]
• New Features

– Added control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.0]
• Initial version.

SPI

[2.3.2]
• Bug Fixes

– Fixed the txData from void * to const void * in transmit API

[2.3.1]
• Improvements

– Changed SPI_DUMMYDATA to 0x00.

[2.3.0]
• Update version.

1.5. ChangeLog 69

MCUXpresso SDK Documentation, Release 25.09.00

[2.2.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules.

[2.2.1]
• Bug Fixes

– Fixed MISRA 2012 10.4 issue.

– Added code to clear FIFOs before transfer using DMA.

[2.2.0]
• Bug Fixes

– Fixed bug that slave gets stuck during interrupt transfer.

[2.1.1]
• Improvements

– Added timeout mechanism when waiting certain states in transfer driver.

• Bug Fixes

– Fixed MISRA 10.1, 5.7 issues.

[2.1.0]
• Bug Fixes

– Fixed Coverity issue of incrementing null pointer in SPI_TransferHandleIRQInternal.

– Eliminated IAR Pa082 warnings.

– Fixed MISRA issues.

* Fixed rules 10.1, 10.3, 10.4, 10.7, 10.8, 11.3, 11.6, 11.8, 11.9, 13.5.

• New Features

– Modified the definition of SPI_SSELPOL_MASK to support the socs that have only 3
SSEL pins.

[2.0.4]
• Bug Fixes

– Fixed the bug of using read only mode in DMA transfer. In DMA transfer mode, if
transfer->txData is NULL, code attempts to read data from the address of 0x0 for con-
figuring the last frame.

– Fixed wrong assignment of handle->state. During transfer handle->state should be
kSPI_Busy rather than kStatus_SPI_Busy.

• Improvements

– Rounded up the calculated divider value in SPI_MasterSetBaud.

70 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.3]
• Improvements

– Added “SPI_FIFO_DEPTH(base)” with more definition.

[2.0.2]
• Improvements

– Unified the component full name to FLEXCOMM SPI(DMA/FREERTOS) driver.

[2.0.1]
• Changed the data buffer from uint32_t to uint8_t which matches the real applications for
SPI DMA driver.

• Added dummy data setup API to allow users to configure the dummy data to be transferred.

• Added new APIs for half-duplex transfer function. Users can not only send and receive
data by one API in polling/interrupt/DMA way, but choose either to transmit first or to re-
ceive first. Besides, the PCS pin can be configured as assert status in transmission (between
transmit and receive) by setting the isPcsAssertInTransfer to true.

[2.0.0]
• Initial version.

SPI_DMA

[2.2.2]
• Bug Fixes

– Fixed the bug half duplex mode can’t be used if data size is larger than 1024 bytes.

[2.2.1]
• Bug Fixes

– Fixed MISRA 2012 11.6 issue..

[2.2.0]
• Improvements

– Supported dataSize larger than 1024 data transmit.

SYSCTL

[2.0.5]
• Bug Fixes:

– Fixed violations of MISRA C-2012 rule 8.3, 10.1, 10.4, 10.7.

1.5. ChangeLog 71

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.4]
• Improvements:

– Update macro name to align with the header of devices.

[2.0.3]
• Improvements:

– Update the register and macro name to align with the header of devices.

[2.0.2]
• Removed kSYSCTL_Flexcomm3DataOut enumeration definition.

[2.0.1]
• Fixed some typo error comments and improved driver integral ability.

[2.0.0]
• Initial version.

USART

[2.8.5]
• Bug Fixes

– Fixed race condition during call of USART_EnableTxDMA and USART_EnableRxDMA.

[2.8.4]
• Bug Fixes

– Fixed exclusive access in USART_TransferReceiveNonBlocking and US-
ART_TransferSendNonBlocking.

[2.8.3]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.3, 11.8.

[2.8.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 14.2.

[2.8.1]
• Bug Fixes

– Fixed the Baud Rate Generator(BRG) configuration in 32kHz mode.

72 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

[2.8.0]
• New Features

– Added the rx timeout interrupts and status flags of bus status.

– Added new rx timeout configuration item in usart_config_t.

– Added API USART_SetRxTimeoutConfig for rx timeout configuration.

• Improvements

– When the calculated baudrate cannot meet user’s configuration, lower OSR value is
allewed to use.

[2.7.0]
• New Features

– Added the missing interrupts and status flags of bus status.

– Added the check of tx error, noise error framing error and parity error in interrupt
handler.

[2.6.0]
• Improvements

– Used separate data for TX and RX in usart_transfer_t.

• Bug Fixes

– Fixed bug that when ring buffer is used, if some data is received in ring buffer first
before calling USART_TransferReceiveNonBlocking, the received data count returned
by USART_TransferGetReceiveCount is wrong.

• New Features

– Added missing API USART_TransferGetSendCountDMA get send count using DMA.

[2.5.0]
• New Features

– Added APIs USART_GetRxFifoCount/USART_GetTxFifoCount to get rx/tx FIFO data
count.

– Added APIs USART_SetRxFifoWatermark/USART_SetTxFifoWatermark to set rx/tx FIFO
water mark.

• Bug Fixes

– Fixed DMA transfer blocking issue by enabling tx idle interrupt after DMA transmis-
sion finishes.

[2.4.0]
• New Features

– Modified usart_config_t, USART_Init and USART_GetDefaultConfig APIs so that the
hardware flow control can be enabled during module initialization.

• Bug Fixes

– Fixed MISRA 10.4 violation.

1.5. ChangeLog 73

MCUXpresso SDK Documentation, Release 25.09.00

[2.3.1]
• Bug Fixes

– Fixed bug that operation on INTENSET, INTENCLR, FIFOINTENSET and FIFOINTENCLR
should use bitwise operation not ‘or’ operation.

– Fixed bug that if rx interrupt occurrs before TX interrupt is enabled and after txData-
Size is configured, the data will be sent early by mistake, thus TX interrupt will be
enabled after data is sent out.

• Improvements

– Added check for baud rate’s accuracy that returns kSta-
tus_USART_BaudrateNotSupport when the best achieved baud rate is not within
3% error of configured baud rate.

[2.3.0]
• New Features

– Added APIs to configure 9-bit data mode, set slave address and send address.

– Modified USART_TransferReceiveNonBlocking and USART_TransferHandleIRQ to use
9-bit mode in multi-slave system.

[2.2.0]
• New Features

– Added the feature of supporting USART working at 32 kHz clocking mode.

• Improvements

– Modified USART_TransferHandleIRQ so that txState will be set to idle only when all
data has been sent out to bus.

– Modified USART_TransferGetSendCount so that this API returns the real byte count
that USART has sent out rather than the software buffer status.

– Added timeout mechanism when waiting for certain states in transfer driver.

• Bug Fixes

– Fixed MISRA 10.1 issues.

– Fixed bug that operation on INTENSET, INTENCLR, FIFOINTENSET and FIFOINTENCLR
should use bitwise operation not ‘or’ operation.

– Fixed bug that if rx interrupt occurrs before TX interrupt is enabled and after txData-
Size is configured, the data will be sent early by mistake, thus TX interrupt will be
enabled after data is sent out.

[2.1.1]
• Improvements

– Added check for transmitter idle in USART_TransferHandleIRQ and US-
ART_TransferSendDMACallback to ensure all the data would be sent out to bus.

– Modified USART_ReadBlocking so that if more than one receiver errors occur, all status
flags will be cleared and the most severe error status will be returned.

• Bug Fixes

– Eliminated IAR Pa082 warnings.

74 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

– Fixed MISRA issues.

* Fixed rules 10.1, 10.3, 10.4, 10.7, 10.8, 11.3, 11.6, 11.8, 11.9, 13.5.

[2.1.0]
• New Features

– Added features to allow users to configure the USART to synchronous transfer(master
and slave) mode.

• Bug Fixes

– Modified USART_SetBaudRate to get more acurate configuration.

[2.0.3]
• New Features

– Added new APIs to allow users to enable the CTS which determines whether CTS is
used for flow control.

[2.0.2]
• Bug Fixes

– Fixed the bug where transfer abort APIs could not disable the interrupts. The FIFOIN-
TENSET register should not be used to disable the interrupts, so use the FIFOINTENCLR
register instead.

[2.0.1]
• Improvements

– Unified the component full name to FLEXCOMM USART (DMA/FREERTOS) driver.

[2.0.0]
• Initial version.

USART_DMA

[2.6.0]
• Refer USART driver change log 2.0.1 to 2.6.0

UTICK

[2.0.5]
• Improvements

– Improved for SOC RW610.

1.5. ChangeLog 75

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.4]
• Bug Fixes

– Fixed compile fail issue of no-supporting PD configuration in utick driver.

[2.0.3]
• Bug Fixes

– Fixed violations of MISRA C-2012 rules: 8.4, 14.4, 17.7

[2.0.2]
• Added new feature definition macro to enable/disable power control in drivers for some
devices have no power control function.

[2.0.1]
• Added control macro to enable/disable the CLOCK code in current driver.

[2.0.0]
• Initial version.

WWDT

[2.1.10]
• Bug Fixes

– Chek WWDT_RSTS instead of FSL_FEATURE_WWDT_HAS_NO_RESET to determine
whether the peripheral can be reset.

[2.1.9]
• Bug Fixes

– Fixed violation of the MISRA C-2012 rule 10.4.

[2.1.8]
• Improvements

– Updated the “WWDT_Init” API to add wait operation. Which can avoid the TV value
read by CPU still be 0xFF (reset value) after WWDT_Init function returns.

[2.1.7]
• Bug Fixes

– Fixed the issue that the watchdog reset event affected the system from PMC.

– Fixed the issue of setting watchdog WDPROTECT field without considering the back-
wards compatibility.

– Fixed the issue of clearing bit fields by mistake in the function of
WWDT_ClearStatusFlags.

76 Chapter 1. LPCXpresso55S06

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.5]
• Bug Fixes

– deprecated a unusable API in WWWDT driver.

* WWDT_Disable

[2.1.4]
• Bug Fixes

– Fixed violation of the MISRA C-2012 rules Rule 10.1, 10.3, 10.4 and 11.9.

– Fixed the issue of the inseparable process interrupted by other interrupt source.

* WWDT_Init

[2.1.3]
• Bug Fixes

– Fixed legacy issue when initializing the MOD register.

[2.1.2]
• Improvements

– Updated the “WWDT_ClearStatusFlags” API and “WWDT_GetStatusFlags” API tomatch
QN9090. WDTOF is not set in case of WD reset. Get info from PMC instead.

[2.1.1]
• New Features

– Added new feature definition macro for devices which have no LCOK control bit in
MOD register.

– Implemented delay/retry in WWDT driver.

[2.1.0]
• Improvements

– Added new parameter in configuration when initializingWWDTmodule. This param-
eter, which must be set, allows the user to deliver the WWDT clock frequency.

[2.0.0]
• Initial version.

1.6 Driver API Reference Manual

This section provides a link to the Driver API RM, detailing available drivers and their usage to
help you integrate hardware efficiently.

LPC55S06

1.6. Driver API Reference Manual 77

MCUXpresso SDK Documentation, Release 25.09.00

1.7 Middleware Documentation

Find links to detailed middleware documentation for key components. While not all onboard
middleware is covered, this serves as a useful reference for configuration and development.

1.7.1 FreeMASTER

freemaster

1.7.2 FreeRTOS

FreeRTOS

1.7.3 File systemFatfs

fatfs

78 Chapter 1. LPCXpresso55S06

Chapter 2

LPC55S06

2.1 ANACTRL: Analog Control Driver

void ANACTRL_Init(ANACTRL_Type *base)
Initializes the ANACTRLmode, themodule’s clockwill be enabled by invoking this function.

Parameters
• base – ANACTRL peripheral base address.

void ANACTRL_Deinit(ANACTRL_Type *base)
De-initializes ANACTRL module, the module’s clock will be disabled by invoking this func-
tion.

Parameters
• base – ANACTRL peripheral base address.

void ANACTRL_SetFro192M(ANACTRL_Type *base, const anactrl_fro192M_config_t *config)
Configs the on-chip high-speed Free Running Oscillator(FRO192M), such as en-
abling/disabling 12 MHZ clock output and enable/disable 96MHZ clock output.

Parameters
• base – ANACTRL peripheral base address.

• config – Pointer to FRO192M configuration structure. Refer to anac-
trl_fro192M_config_t structure.

void ANACTRL_GetDefaultFro192MConfig(anactrl_fro192M_config_t *config)
Gets the default configuration of FRO192M. The default values are:

config->enable12MHzClk = true;
config->enable96MHzClk = false;

Parameters
• config – Pointer to FRO192M configuration structure. Refer to anac-
trl_fro192M_config_t structure.

void ANACTRL_SetXo32M(ANACTRL_Type *base, const anactrl_xo32M_config_t *config)
Configs the 32 MHz Crystal oscillator(High-speed crystal oscillator), such as enable/disable
output to CPU system, and so on.

Parameters

79

MCUXpresso SDK Documentation, Release 25.09.00

• base – ANACTRL peripheral base address.

• config – Pointer to XO32M configuration structure. Refer to anac-
trl_xo32M_config_t structure.

void ANACTRL_GetDefaultXo32MConfig(anactrl_xo32M_config_t *config)
Gets the default configuration of XO32M. The default values are:

config->enableSysCLkOutput = false;
config->enableACBufferBypass = false;

Parameters
• config – Pointer to XO32M configuration structure. Refer to anac-
trl_xo32M_config_t structure.

uint32_t ANACTRL_MeasureFrequency(ANACTRL_Type *base, uint8_t scale, uint32_t refClkFreq)
Measures the frequency of the target clock source.

This function measures target frequency according to a accurate reference frequency.The
formula is: Ftarget = (CAPVAL * Freference) / ((1«SCALE)-1)

Note: Both tartget and reference clocks are selectable by programming the target clock se-
lect FREQMEAS_TARGET register in INPUTMUX and reference clock select FREQMEAS_REF
register in INPUTMUX.

Parameters
• base – ANACTRL peripheral base address.

• scale – Define the power of 2 count that ref counter counts to during mea-
surement, ranges from 2 to 31.

• refClkFreq – frequency of the reference clock.

Returns
frequency of the target clock.

static inline void ANACTRL_EnableInterrupts(ANACTRL_Type *base, uint32_t mask)
Enables the ANACTRL interrupts.

Parameters
• base – ANACTRL peripheral base address.

• mask – The interrupt mask. Refer to “_anactrl_interrupt” enumeration.

static inline void ANACTRL_DisableInterrupts(ANACTRL_Type *base, uint32_t mask)
Disables the ANACTRL interrupts.

Parameters
• base – ANACTRL peripheral base address.

• mask – The interrupt mask. Refer to “_anactrl_interrupt” enumeration.

static inline void ANACTRL_ClearInterrupts(ANACTRL_Type *base, uint32_t mask)
Clears the ANACTRL interrupts.

Parameters
• base – ANACTRL peripheral base address.

• mask – The interrupt mask. Refer to “_anactrl_interrupt” enumeration.

80 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t ANACTRL_GetStatusFlags(ANACTRL_Type *base)
Gets ANACTRL status flags.

This function gets Analog control status flags. The flags are returned as the logical OR value
of the enumerators _anactrl_flags. To check for a specific status, compare the return value
with enumerators in the _anactrl_flags. For example, to checkwhether the flash is in power
down mode:

if (kANACTRL_FlashPowerDownFlag & ANACTRL_ANACTRL_GetStatusFlags(ANACTRL))
{

...
}

Parameters
• base – ANACTRL peripheral base address.

Returns
ANACTRL status flags which are given in the enumerators in the _anac-
trl_flags.

static inline uint32_t ANACTRL_GetOscStatusFlags(ANACTRL_Type *base)
Gets ANACTRL oscillators status flags.

This function gets Anactrl oscillators status flags. The flags are returned as the logical OR
value of the enumerators _anactrl_osc_flags. To check for a specific status, compare the
return value with enumerators in the _anactrl_osc_flags. For example, to check whether
the FRO192M clock output is valid:

if (kANACTRL_OutputClkValidFlag & ANACTRL_ANACTRL_GetOscStatusFlags(ANACTRL))
{

...
}

Parameters
• base – ANACTRL peripheral base address.

Returns
ANACTRL oscillators status flags which are given in the enumerators in the
_anactrl_osc_flags.

static inline uint32_t ANACTRL_GetInterruptStatusFlags(ANACTRL_Type *base)
Gets ANACTRL interrupt status flags.

This function gets Anactrl interrupt status flags. The flags are returned as the logical OR
value of the enumerators _anactrl_interrupt_flags. To check for a specific status, compare
the return value with enumerators in the _anactrl_interrupt_flags. For example, to check
whether the VBAT voltage level is above the threshold:

if (kANACTRL_BodVbatPowerFlag & ANACTRL_ANACTRL_GetInterruptStatusFlags(ANACTRL))
{

...
}

Parameters
• base – ANACTRL peripheral base address.

Returns
ANACTRL oscillators status flags which are given in the enumerators in the
_anactrl_osc_flags.

2.1. ANACTRL: Analog Control Driver 81

MCUXpresso SDK Documentation, Release 25.09.00

static inline void ANACTRL_EnableVref1V(ANACTRL_Type *base, bool enable)
Aux_Bias Control Interfaces.

Enables/disabless 1V reference voltage buffer.

Parameters
• base – ANACTRL peripheral base address.

• enable – Used to enable or disable 1V reference voltage buffer.

enum _anactrl_interrupt_flags
ANACTRL interrupt flags.

Values:

enumerator kANACTRL_BodVbatFlag
BOD VBAT Interrupt status before Interrupt Enable.

enumerator kANACTRL_BodVbatInterruptFlag
BOD VBAT Interrupt status after Interrupt Enable.

enumerator kANACTRL_BodVbatPowerFlag
Current value of BOD VBAT power status output.

enumerator kANACTRL_BodCoreFlag
BOD CORE Interrupt status before Interrupt Enable.

enumerator kANACTRL_BodCoreInterruptFlag
BOD CORE Interrupt status after Interrupt Enable.

enumerator kANACTRL_BodCorePowerFlag
Current value of BOD CORE power status output.

enumerator kANACTRL_DcdcFlag
DCDC Interrupt status before Interrupt Enable.

enumerator kANACTRL_DcdcInterruptFlag
DCDC Interrupt status after Interrupt Enable.

enumerator kANACTRL_DcdcPowerFlag
Current value of DCDC power status output.

enum _anactrl_interrupt
ANACTRL interrupt control.

Values:

enumerator kANACTRL_BodVbatInterruptEnable
BOD VBAT interrupt control.

enumerator kANACTRL_BodCoreInterruptEnable
BOD CORE interrupt control.

enumerator kANACTRL_DcdcInterruptEnable
DCDC interrupt control.

enum _anactrl_flags
ANACTRL status flags.

Values:

enumerator kANACTRL_FlashPowerDownFlag
Flash power-down status.

82 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kANACTRL_FlashInitErrorFlag
Flash initialization error status.

enum _anactrl_osc_flags
ANACTRL FRO192M and XO32M status flags.

Values:

enumerator kANACTRL_OutputClkValidFlag
Output clock valid signal.

enumerator kANACTRL_CCOThresholdVoltageFlag
CCO threshold voltage detector output (signal vcco_ok).

enumerator kANACTRL_XO32MOutputReadyFlag
Indicates XO out frequency statibilty.

typedef struct _anactrl_fro192M_config anactrl_fro192M_config_t
Configuration for FRO192M.

This structure holds the configuration settings for the on-chip high-speed Free Run-
ning Oscillator. To initialize this structure to reasonable defaults, call the ANAC-
TRL_GetDefaultFro192MConfig() function and pass a pointer to your config structure in-
stance.

typedef struct _anactrl_xo32M_config anactrl_xo32M_config_t
Configuration for XO32M.

This structure holds the configuration settings for the 32MHz crystal oscillator. To initialize
this structure to reasonable defaults, call the ANACTRL_GetDefaultXo32MConfig() function
and pass a pointer to your config structure instance.

FSL_ANACTRL_DRIVER_VERSION
ANACTRL driver version.

struct _anactrl_fro192M_config
#include <fsl_anactrl.h> Configuration for FRO192M.

This structure holds the configuration settings for the on-chip high-speed Free Run-
ning Oscillator. To initialize this structure to reasonable defaults, call the ANAC-
TRL_GetDefaultFro192MConfig() function and pass a pointer to your config structure in-
stance.

Public Members

bool enable12MHzClk
Enable 12MHz clock.

bool enable96MHzClk
Enable 96MHz clock.

struct _anactrl_xo32M_config
#include <fsl_anactrl.h> Configuration for XO32M.

This structure holds the configuration settings for the 32MHz crystal oscillator. To initialize
this structure to reasonable defaults, call the ANACTRL_GetDefaultXo32MConfig() function
and pass a pointer to your config structure instance.

Public Members

2.1. ANACTRL: Analog Control Driver 83

MCUXpresso SDK Documentation, Release 25.09.00

bool enableACBufferBypass
Enable XO AC buffer bypass in pll and top level.

bool enableSysCLkOutput
Enable XO 32 MHz output to CPU system, SCT, and CLKOUT

bool enableADCOutput
Enable High speed crystal oscillator output to ADC.

2.2 CASPER: The Cryptographic Accelerator and Signal Pro-
cessing Engine with RAM sharing

2.3 casper_driver

FSL_CASPER_DRIVER_VERSION
CASPER driver version. Version 2.2.4.

Current version: 2.2.4

Change log:

• Version 2.0.0

– Initial version

• Version 2.0.1

– Bug fix KPSDK-24531 double_scalar_multiplication() result may be all zeroes for
some specific input

• Version 2.0.2

– Bug fix KPSDK-25015 CASPER_MEMCPY hard-fault on LPC55xx when both source
and destination buffers are outside of CASPER_RAM

• Version 2.0.3

– Bug fix KPSDK-28107 RSUB, FILL and ZERO operations not implemented in enum
_casper_operation.

• Version 2.0.4

– For GCC compiler, enforce O1 optimize level, specifically to remove strict-aliasing
option. This driver is very specific and requires -fno-strict-aliasing.

• Version 2.0.5

– Fix sign-compare warning.

• Version 2.0.6

– Fix IAR Pa082 warning.

• Version 2.0.7

– Fix MISRA-C 2012 issue.

• Version 2.0.8

– Add feature macro for CASPER_RAM_OFFSET.

• Version 2.0.9

– Remove unused function Jac_oncurve().

– Fix ECC384 build.

84 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

• Version 2.0.10

– Fix MISRA-C 2012 issue.

• Version 2.1.0

– Add ECC NIST P-521 elliptic curve.

• Version 2.2.0

– Rework driver to support multiple curves at once.

• Version 2.2.1

– Fix MISRA-C 2012 issue.

• Version 2.2.2

– Enable hardware interleaving to RAMX0 and RAMX1 for CASPER by featuremacro
FSL_FEATURE_CASPER_RAM_HW_INTERLEAVE

• Version 2.2.3

– Added macro into CASPER_Init and CASPER_Deinit to support devices without
clock and reset control.

• Version 2.2.4

– Fix MISRA-C 2012 issue.

enum _casper_operation
CASPER operation.

Values:

enumerator kCASPER_OpMul6464NoSum

enumerator kCASPER_OpMul6464Sum
Walking 1 or more of J loop, doing r=a*b using 64x64=128

enumerator kCASPER_OpMul6464FullSum
Walking 1 or more of J loop, doing c,r=r+a*b using 64x64=128, but assume inner j loop

enumerator kCASPER_OpMul6464Reduce
Walking 1 or more of J loop, doing c,r=r+a*b using 64x64=128, but sum all of w.

enumerator kCASPER_OpAdd64
Walking 1 or more of J loop, doing c,r[-1]=r+a*b using 64x64=128, but skip 1st write

enumerator kCASPER_OpSub64
Walking add with off_AB, and in/out off_RES doing c,r=r+a+c using 64+64=65

enumerator kCASPER_OpDouble64
Walking subtract with off_AB, and in/out off_RES doing r=r-a using 64-64=64, with last
borrow implicit if any

enumerator kCASPER_OpXor64
Walking add to self with off_RES doing c,r=r+r+c using 64+64=65

enumerator kCASPER_OpRSub64
Walking XOR with off_AB, and in/out off_RES doing r=r^a using 64^64=64

enumerator kCASPER_OpShiftLeft32
Walking subtract with off_AB, and in/out off_RES using r=a-r

enumerator kCASPER_OpShiftRight32
Walking shift left doing r1,r=(b*D)|r1, where D is 2^amt and is loaded by app (off_CD
not used)

2.3. casper_driver 85

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCASPER_OpCopy
Walking shift right doing r,r1=(b*D)|r1, where D is 2^(32-amt) and is loaded by app
(off_CD not used) and off_RES starts at MSW

enumerator kCASPER_OpRemask
Copy from ABoff to resoff, 64b at a time

enumerator kCASPER_OpFill
Copy and mask from ABoff to resoff, 64b at a time

enumerator kCASPER_OpZero
Fill RESOFF using 64 bits at a time with value in A and B

enumerator kCASPER_OpCompare
Fill RESOFF using 64 bits at a time of 0s

enumerator kCASPER_OpCompareFast
Compare two arrays, running all the way to the end

enum _casper_algo_t
Algorithm used for CASPER operation.

Values:

enumerator kCASPER_ECC_P256
ECC_P256

enumerator kCASPER_ECC_P384
ECC_P384

enumerator kCASPER_ECC_P521
ECC_P521

Values:

enumerator kCASPER_RamOffset_Result

enumerator kCASPER_RamOffset_Base

enumerator kCASPER_RamOffset_TempBase

enumerator kCASPER_RamOffset_Modulus

enumerator kCASPER_RamOffset_M64

typedef enum _casper_operation casper_operation_t
CASPER operation.

typedef enum _casper_algo_t casper_algo_t
Algorithm used for CASPER operation.

void CASPER_Init(CASPER_Type *base)
Enables clock and disables reset for CASPER peripheral.

Enable clock and disable reset for CASPER.

Parameters
• base – CASPER base address

void CASPER_Deinit(CASPER_Type *base)
Disables clock for CASPER peripheral.

Disable clock and enable reset.

86 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• base – CASPER base address

CASPER_CP

CASPER_CP_CTRL0

CASPER_CP_CTRL1

CASPER_CP_LOADER

CASPER_CP_STATUS

CASPER_CP_INTENSET

CASPER_CP_INTENCLR

CASPER_CP_INTSTAT

CASPER_CP_AREG

CASPER_CP_BREG

CASPER_CP_CREG

CASPER_CP_DREG

CASPER_CP_RES0

CASPER_CP_RES1

CASPER_CP_RES2

CASPER_CP_RES3

CASPER_CP_MASK

CASPER_CP_REMASK

CASPER_CP_LOCK

CASPER_CP_ID

CASPER_Wr32b(value, off)

CASPER_Wr64b(value, off)

CASPER_Rd32b(off)

N_wordlen_max

2.4 casper_driver_pkha

void CASPER_ModExp(CASPER_Type *base, const uint8_t *signature, const uint8_t *pubN,
size_t wordLen, uint32_t pubE, uint8_t *plaintext)

Performs modular exponentiation - (A^E) mod N.

This function performs modular exponentiation.

Parameters
• base – CASPER base address

2.4. casper_driver_pkha 87

MCUXpresso SDK Documentation, Release 25.09.00

• signature – first addend (in little endian format)

• pubN – modulus (in little endian format)

• wordLen – Size of pubN in bytes

• pubE – exponent

• plaintext – [out] Output array to store result of operation (in little endian
format)

void CASPER_ecc_init(casper_algo_t curve)
Initialize prime modulus mod in Casper memory .

Set the prime modulus mod in Casper memory and set N_wordlen according to selected
algorithm.

Parameters
• curve – elliptic curve algoritm

void CASPER_ECC_SECP256R1_Mul(CASPER_Type *base, uint32_t resX[8], uint32_t resY[8],
uint32_t X[8], uint32_t Y[8], uint32_t scalar[8])

Performs ECC secp256r1 point single scalar multiplication.

This function performs ECC secp256r1 point single scalarmultiplication [resX; resY] = scalar
* [X; Y] Coordinates are affine in normal form, little endian. Scalars are little endian. All
arrays are little endianbyte arrays, uint32_t type is used only to enforce the 32-bit alignment
(0-mod-4 address).

Parameters
• base – CASPER base address

• resX – [out] Output X affine coordinate in normal form, little endian.

• resY – [out] Output Y affine coordinate in normal form, little endian.

• X – Input X affine coordinate in normal form, little endian.

• Y – Input Y affine coordinate in normal form, little endian.

• scalar – Input scalar integer, in normal form, little endian.

void CASPER_ECC_SECP256R1_MulAdd(CASPER_Type *base, uint32_t resX[8], uint32_t
resY[8], uint32_t X1[8], uint32_t Y1[8], uint32_t
scalar1[8], uint32_t X2[8], uint32_t Y2[8], uint32_t
scalar2[8])

Performs ECC secp256r1 point double scalar multiplication.

This function performs ECC secp256r1 point double scalar multiplication [resX; resY] =
scalar1 * [X1; Y1] + scalar2 * [X2; Y2] Coordinates are affine in normal form, little endian.
Scalars are little endian. All arrays are little endian byte arrays, uint32_t type is used only
to enforce the 32-bit alignment (0-mod-4 address).

Parameters
• base – CASPER base address

• resX – [out] Output X affine coordinate.

• resY – [out] Output Y affine coordinate.

• X1 – Input X1 affine coordinate.

• Y1 – Input Y1 affine coordinate.

• scalar1 – Input scalar1 integer.

• X2 – Input X2 affine coordinate.

88 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

• Y2 – Input Y2 affine coordinate.

• scalar2 – Input scalar2 integer.

void CASPER_ECC_SECP384R1_Mul(CASPER_Type *base, uint32_t resX[12], uint32_t resY[12],
uint32_t X[12], uint32_t Y[12], uint32_t scalar[12])

Performs ECC secp384r1 point single scalar multiplication.

This function performs ECC secp384r1 point single scalarmultiplication [resX; resY] = scalar
* [X; Y] Coordinates are affine in normal form, little endian. Scalars are little endian. All
arrays are little endianbyte arrays, uint32_t type is used only to enforce the 32-bit alignment
(0-mod-4 address).

Parameters
• base – CASPER base address

• resX – [out] Output X affine coordinate in normal form, little endian.

• resY – [out] Output Y affine coordinate in normal form, little endian.

• X – Input X affine coordinate in normal form, little endian.

• Y – Input Y affine coordinate in normal form, little endian.

• scalar – Input scalar integer, in normal form, little endian.

void CASPER_ECC_SECP384R1_MulAdd(CASPER_Type *base, uint32_t resX[12], uint32_t
resY[12], uint32_t X1[12], uint32_t Y1[12], uint32_t
scalar1[12], uint32_t X2[12], uint32_t Y2[12], uint32_t
scalar2[12])

Performs ECC secp384r1 point double scalar multiplication.

This function performs ECC secp384r1 point double scalar multiplication [resX; resY] =
scalar1 * [X1; Y1] + scalar2 * [X2; Y2] Coordinates are affine in normal form, little endian.
Scalars are little endian. All arrays are little endian byte arrays, uint32_t type is used only
to enforce the 32-bit alignment (0-mod-4 address).

Parameters
• base – CASPER base address

• resX – [out] Output X affine coordinate.

• resY – [out] Output Y affine coordinate.

• X1 – Input X1 affine coordinate.

• Y1 – Input Y1 affine coordinate.

• scalar1 – Input scalar1 integer.

• X2 – Input X2 affine coordinate.

• Y2 – Input Y2 affine coordinate.

• scalar2 – Input scalar2 integer.

void CASPER_ECC_SECP521R1_Mul(CASPER_Type *base, uint32_t resX[18], uint32_t resY[18],
uint32_t X[18], uint32_t Y[18], uint32_t scalar[18])

Performs ECC secp521r1 point single scalar multiplication.

This function performs ECC secp521r1 point single scalarmultiplication [resX; resY] = scalar
* [X; Y] Coordinates are affine in normal form, little endian. Scalars are little endian. All
arrays are little endianbyte arrays, uint32_t type is used only to enforce the 32-bit alignment
(0-mod-4 address).

Parameters
• base – CASPER base address

2.4. casper_driver_pkha 89

MCUXpresso SDK Documentation, Release 25.09.00

• resX – [out] Output X affine coordinate in normal form, little endian.

• resY – [out] Output Y affine coordinate in normal form, little endian.

• X – Input X affine coordinate in normal form, little endian.

• Y – Input Y affine coordinate in normal form, little endian.

• scalar – Input scalar integer, in normal form, little endian.

void CASPER_ECC_SECP521R1_MulAdd(CASPER_Type *base, uint32_t resX[18], uint32_t
resY[18], uint32_t X1[18], uint32_t Y1[18], uint32_t
scalar1[18], uint32_t X2[18], uint32_t Y2[18], uint32_t
scalar2[18])

Performs ECC secp521r1 point double scalar multiplication.

This function performs ECC secp521r1 point double scalar multiplication [resX; resY] =
scalar1 * [X1; Y1] + scalar2 * [X2; Y2] Coordinates are affine in normal form, little endian.
Scalars are little endian. All arrays are little endian byte arrays, uint32_t type is used only
to enforce the 32-bit alignment (0-mod-4 address).

Parameters
• base – CASPER base address

• resX – [out] Output X affine coordinate.

• resY – [out] Output Y affine coordinate.

• X1 – Input X1 affine coordinate.

• Y1 – Input Y1 affine coordinate.

• scalar1 – Input scalar1 integer.

• X2 – Input X2 affine coordinate.

• Y2 – Input Y2 affine coordinate.

• scalar2 – Input scalar2 integer.

void CASPER_ECC_equal(int *res, uint32_t *op1, uint32_t *op2)

void CASPER_ECC_equal_to_zero(int *res, uint32_t *op1)

2.5 CDOG

status_t CDOG_Init(CDOG_Type *base, cdog_config_t *conf)
Initialize CDOG.

This function initializes CDOG block and setting.

Parameters
• base – CDOG peripheral base address

• conf – CDOG configuration structure

Returns
Status of the init operation

void CDOG_Deinit(CDOG_Type *base)
Deinitialize CDOG.

This function deinitializes CDOG secure counter.

Parameters

90 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

• base – CDOG peripheral base address

void CDOG_GetDefaultConfig(cdog_config_t *conf)
Sets the default configuration of CDOG.

This function initialize CDOG config structure to default values.

Parameters
• conf – CDOG configuration structure

void CDOG_Stop(CDOG_Type *base, uint32_t stop)
Stops secure counter and instruction timer.

This function stops instruction timer and secure counter. This also change state od CDOG
to IDLE.

Parameters
• base – CDOG peripheral base address

• stop – expected valuewhichwill be comparedwith value of secure counter

void CDOG_Start(CDOG_Type *base, uint32_t reload, uint32_t start)
Sets secure counter and instruction timer values.

This function sets value in RELOAD and START registers for instruction timer and secure
counter

Parameters
• base – CDOG peripheral base address

• reload – reload value

• start – start value

void CDOG_Check(CDOG_Type *base, uint32_t check)
Checks secure counter.

This function compares stop value in handler with secure counter value by writting to
RELOAD refister.

Parameters
• base – CDOG peripheral base address

• check – expected (stop) value

void CDOG_Set(CDOG_Type *base, uint32_t stop, uint32_t reload, uint32_t start)
Sets secure counter and instruction timer values.

This function sets value in STOP, RELOAD and START registers for instruction timer and
secure counter.

Parameters
• base – CDOG peripheral base address

• stop – expected valuewhichwill be comparedwith value of secure counter

• reload – reload value for instruction timer

• start – start value for secure timer

void CDOG_Add(CDOG_Type *base, uint32_t add)
Add value to secure counter.

This function add specified value to secure counter.

Parameters

2.5. CDOG 91

MCUXpresso SDK Documentation, Release 25.09.00

• base – CDOG peripheral base address.

• add – Value to be added.

void CDOG_Add1(CDOG_Type *base)
Add 1 to secure counter.

This function add 1 to secure counter.

Parameters
• base – CDOG peripheral base address.

void CDOG_Add16(CDOG_Type *base)
Add 16 to secure counter.

This function add 16 to secure counter.

Parameters
• base – CDOG peripheral base address.

void CDOG_Add256(CDOG_Type *base)
Add 256 to secure counter.

This function add 256 to secure counter.

Parameters
• base – CDOG peripheral base address.

void CDOG_Sub(CDOG_Type *base, uint32_t sub)
brief Substract value to secure counter

This function substract specified value to secure counter.

param base CDOG peripheral base address. param sub Value to be substracted.

void CDOG_Sub1(CDOG_Type *base)
Substract 1 from secure counter.

This function substract specified 1 from secure counter.

Parameters
• base – CDOG peripheral base address.

void CDOG_Sub16(CDOG_Type *base)
Substract 16 from secure counter.

This function substract specified 16 from secure counter.

Parameters
• base – CDOG peripheral base address.

void CDOG_Sub256(CDOG_Type *base)
Substract 256 from secure counter.

This function substract specified 256 from secure counter.

Parameters
• base – CDOG peripheral base address.

void CDOG_WritePersistent(CDOG_Type *base, uint32_t value)
Set the CDOG persistent word.

Parameters
• base – CDOG peripheral base address.

92 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

• value – The value to be written.

uint32_t CDOG_ReadPersistent(CDOG_Type *base)
Get the CDOG persistent word.

Parameters
• base – CDOG peripheral base address.

Returns
The persistent word.

FSL_CDOG_DRIVER_VERSION
Defines CDOG driver version 2.1.3.

Change log:

• Version 2.1.3

– Re-design multiple instance IRQs and Clocks

– Add fix for RESTART command errata

• Version 2.1.2

– Support multiple IRQs

– Fix default CONTROL values

• Version 2.1.1

– Remove bit CONTROL[CONTROL_CTRL]

• Version 2.1.0

– Rename CWT to CDOG

• Version 2.0.2

– Fix MISRA-2012 issues

• Version 2.0.1

– Fix doxygen issues

• Version 2.0.0

– initial version

enum __cdog_debug_Action_ctrl_enum
Values:

enumerator kCDOG_DebugHaltCtrl_Run

enumerator kCDOG_DebugHaltCtrl_Pause

enum __cdog_irq_pause_ctrl_enum
Values:

enumerator kCDOG_IrqPauseCtrl_Run

enumerator kCDOG_IrqPauseCtrl_Pause

enum __cdog_fault_ctrl_enum
Values:

enumerator kCDOG_FaultCtrl_EnableReset

enumerator kCDOG_FaultCtrl_EnableInterrupt

2.5. CDOG 93

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCDOG_FaultCtrl_NoAction

enum __code_lock_ctrl_enum
Values:

enumerator kCDOG_LockCtrl_Lock

enumerator kCDOG_LockCtrl_Unlock

typedef uint32_t secure_counter_t

SC_ADD(add)

SC_ADD1

SC_ADD16

SC_ADD256

SC_SUB(sub)

SC_SUB1

SC_SUB16

SC_SUB256

SC_CHECK(val)

struct cdog_config_t
#include <fsl_cdog.h>

2.6 Clock Driver

enum _clock_ip_name
Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.

Values:

enumerator kCLOCK_IpInvalid
Invalid Ip Name.

enumerator kCLOCK_Rom
Clock gate name: Rom.

enumerator kCLOCK_Sram1
Clock gate name: Sram1.

enumerator kCLOCK_Sram2
Clock gate name: Sram2.

enumerator kCLOCK_Flash
Clock gate name: Flash.

enumerator kCLOCK_Fmc
Clock gate name: Fmc.

enumerator kCLOCK_InputMux
Clock gate name: InputMux.

94 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_Iocon
Clock gate name: Iocon.

enumerator kCLOCK_Gpio0
Clock gate name: Gpio0.

enumerator kCLOCK_Gpio1
Clock gate name: Gpio1.

enumerator kCLOCK_Pint
Clock gate name: Pint.

enumerator kCLOCK_Gint
Clock gate name: Gint.

enumerator kCLOCK_Dma0
Clock gate name: Dma0.

enumerator kCLOCK_Crc
Clock gate name: Crc.

enumerator kCLOCK_Wwdt
Clock gate name: Wwdt.

enumerator kCLOCK_Rtc
Clock gate name: Rtc.

enumerator kCLOCK_Mailbox
Clock gate name: Mailbox.

enumerator kCLOCK_Adc0
Clock gate name: Adc0.

enumerator kCLOCK_Mrt
Clock gate name: Mrt.

enumerator kCLOCK_OsTimer0
Clock gate name: OsTimer0.

enumerator kCLOCK_Sct0
Clock gate name: Sct0.

enumerator kCLOCK_Mcan
Clock gate name: Mcan.

enumerator kCLOCK_Utick0
Clock gate name: Utick0.

enumerator kCLOCK_FlexComm0
Clock gate name: FlexComm0.

enumerator kCLOCK_FlexComm1
Clock gate name: FlexComm1.

enumerator kCLOCK_FlexComm2
Clock gate name: FlexComm2.

enumerator kCLOCK_FlexComm3
Clock gate name: FlexComm3.

enumerator kCLOCK_FlexComm4
Clock gate name: FlexComm4.

2.6. Clock Driver 95

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_FlexComm5
Clock gate name: FlexComm5.

enumerator kCLOCK_FlexComm6
Clock gate name: FlexComm6.

enumerator kCLOCK_FlexComm7
Clock gate name: FlexComm7.

enumerator kCLOCK_MinUart0
Clock gate name: MinUart0.

enumerator kCLOCK_MinUart1
Clock gate name: MinUart1.

enumerator kCLOCK_MinUart2
Clock gate name: MinUart2.

enumerator kCLOCK_MinUart3
Clock gate name: MinUart3.

enumerator kCLOCK_MinUart4
Clock gate name: MinUart4.

enumerator kCLOCK_MinUart5
Clock gate name: MinUart5.

enumerator kCLOCK_MinUart6
Clock gate name: MinUart6.

enumerator kCLOCK_MinUart7
Clock gate name: MinUart7.

enumerator kCLOCK_LSpi0
Clock gate name: LSpi0.

enumerator kCLOCK_LSpi1
Clock gate name: LSpi1.

enumerator kCLOCK_LSpi2
Clock gate name: LSpi2.

enumerator kCLOCK_LSpi3
Clock gate name: LSpi3.

enumerator kCLOCK_LSpi4
Clock gate name: LSpi4.

enumerator kCLOCK_LSpi5
Clock gate name: LSpi5.

enumerator kCLOCK_LSpi6
Clock gate name: LSpi6.

enumerator kCLOCK_LSpi7
Clock gate name: LSpi7.

enumerator kCLOCK_BI2c0
Clock gate name: BI2c0.

enumerator kCLOCK_BI2c1
Clock gate name: BI2c1.

96 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_BI2c2
Clock gate name: BI2c2.

enumerator kCLOCK_BI2c3
Clock gate name: BI2c3.

enumerator kCLOCK_BI2c4
Clock gate name: BI2c4.

enumerator kCLOCK_BI2c5
Clock gate name: BI2c5.

enumerator kCLOCK_BI2c6
Clock gate name: BI2c6.

enumerator kCLOCK_BI2c7
Clock gate name: BI2c7.

enumerator kCLOCK_FlexI2s0
Clock gate name: FlexI2s0.

enumerator kCLOCK_FlexI2s1
Clock gate name: FlexI2s1.

enumerator kCLOCK_FlexI2s2
Clock gate name: FlexI2s2.

enumerator kCLOCK_FlexI2s3
Clock gate name: FlexI2s3.

enumerator kCLOCK_FlexI2s4
Clock gate name: FlexI2s4.

enumerator kCLOCK_FlexI2s5
Clock gate name: FlexI2s5.

enumerator kCLOCK_FlexI2s6
Clock gate name: FlexI2s6.

enumerator kCLOCK_FlexI2s7
Clock gate name: FlexI2s7.

enumerator kCLOCK_Timer2
Clock gate name: Timer2.

enumerator kCLOCK_Timer0
Clock gate name: Timer0.

enumerator kCLOCK_Timer1
Clock gate name: Timer1.

enumerator kCLOCK_Dma1
Clock gate name: Dma1.

enumerator kCLOCK_Comp
Clock gate name: Comp.

enumerator kCLOCK_Sram3
Clock gate name: Sram3.

enumerator kCLOCK_Freqme
Clock gate name: Freqme.

2.6. Clock Driver 97

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_Cdog
Clock gate name: Cdog.

enumerator kCLOCK_Rng
Clock gate name: Rng.

enumerator kCLOCK_Sysctl
Clock gate name: Sysctl.

enumerator kCLOCK_HashCrypt
Clock gate name: HashCrypt.

enumerator kCLOCK_PluLut
Clock gate name: PluLut.

enumerator kCLOCK_Timer3
Clock gate name: Timer3.

enumerator kCLOCK_Timer4
Clock gate name: Timer4.

enumerator kCLOCK_Puf
Clock gate name: Puf.

enumerator kCLOCK_Casper
Clock gate name: Casper.

enumerator kCLOCK_AnalogCtrl
Clock gate name: AnalogCtrl.

enumerator kCLOCK_Hs_Lspi
Clock gate name: Lspi.

enumerator kCLOCK_Gpio_Sec
Clock gate name: GPIO Sec.

enumerator kCLOCK_Gpio_Sec_Int
Clock gate name: Gpio Sec Int

enum _clock_name
Clock name used to get clock frequency.

Values:

enumerator kCLOCK_CoreSysClk
Core/system clock (aka MAIN_CLK)

enumerator kCLOCK_BusClk
Bus clock (AHB clock)

enumerator kCLOCK_ClockOut
CLOCKOUT

enumerator kCLOCK_FroHf
FRO48/96

enumerator kCLOCK_Pll1Out
PLL1 Output

enumerator kCLOCK_Mclk
MCLK

98 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_Fro12M
FRO12M

enumerator kCLOCK_Fro1M
FRO1M

enumerator kCLOCK_ExtClk
External Clock

enumerator kCLOCK_Pll0Out
PLL0 Output

enumerator kCLOCK_FlexI2S
FlexI2S clock

enum _clock_attach_id
The enumerator of clock attach Id.

Values:

enumerator kFRO12M_to_MAIN_CLK
Attach FRO12M to MAIN_CLK.

enumerator kEXT_CLK_to_MAIN_CLK
Attach EXT_CLK to MAIN_CLK.

enumerator kFRO1M_to_MAIN_CLK
Attach FRO1M to MAIN_CLK.

enumerator kFRO_HF_to_MAIN_CLK
Attach FRO_HF to MAIN_CLK.

enumerator kPLL0_to_MAIN_CLK
Attach PLL0 to MAIN_CLK.

enumerator kPLL1_to_MAIN_CLK
Attach PLL1 to MAIN_CLK.

enumerator kOSC32K_to_MAIN_CLK
Attach OSC32K to MAIN_CLK.

enumerator kMAIN_CLK_to_CLKOUT
Attach MAIN_CLK to CLKOUT.

enumerator kPLL0_to_CLKOUT
Attach PLL0 to CLKOUT.

enumerator kEXT_CLK_to_CLKOUT
Attach EXT_CLK to CLKOUT.

enumerator kFRO_HF_to_CLKOUT
Attach FRO_HF to CLKOUT.

enumerator kFRO1M_to_CLKOUT
Attach FRO1M to CLKOUT.

enumerator kPLL1_to_CLKOUT
Attach PLL1 to CLKOUT.

enumerator kOSC32K_to_CLKOUT
Attach OSC32K to CLKOUT.

2.6. Clock Driver 99

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kNONE_to_SYS_CLKOUT
Attach NONE to SYS_CLKOUT.

enumerator kFRO12M_to_PLL0
Attach FRO12M to PLL0.

enumerator kEXT_CLK_to_PLL0
Attach EXT_CLK to PLL0.

enumerator kFRO1M_to_PLL0
Attach FRO1M to PLL0.

enumerator kOSC32K_to_PLL0
Attach OSC32K to PLL0.

enumerator kNONE_to_PLL0
Attach NONE to PLL0.

enumerator kMCAN_DIV_to_MCAN
Attach MCAN_DIV to MCAN.

enumerator kFRO1M_to_MCAN
Attach FRO1M to MCAN.

enumerator kOSC32K_to_MCAN
Attach OSC32K to MCAN.

enumerator kNONE_to_MCAN
Attach NONE to MCAN.

enumerator kMAIN_CLK_to_ADC_CLK
Attach MAIN_CLK to ADC_CLK.

enumerator kPLL0_to_ADC_CLK
Attach PLL0 to ADC_CLK.

enumerator kFRO_HF_to_ADC_CLK
Attach FRO_HF to ADC_CLK.

enumerator kEXT_CLK_to_ADC_CLK
Attach EXT_CLK to ADC_CLK.

enumerator kNONE_to_ADC_CLK
Attach NONE to ADC_CLK.

enumerator kOSC32K_to_CLK32K
Attach OSC32K to CLK32K.

enumerator kFRO1MDIV_to_CLK32K
Attach FRO1MDIV to CLK32K.

enumerator kNONE_to_CLK32K
Attach NONE to CLK32K.

enumerator kMAIN_CLK_to_FLEXCOMM0
Attach MAIN_CLK to FLEXCOMM0.

enumerator kPLL0_DIV_to_FLEXCOMM0
Attach PLL0_DIV to FLEXCOMM0.

enumerator kFRO12M_to_FLEXCOMM0
Attach FRO12M to FLEXCOMM0.

100 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kFRO_HF_DIV_to_FLEXCOMM0
Attach FRO_HF_DIV to FLEXCOMM0.

enumerator kFRO1M_to_FLEXCOMM0
Attach FRO1M to FLEXCOMM0.

enumerator kMCLK_to_FLEXCOMM0
Attach MCLK to FLEXCOMM0.

enumerator kOSC32K_to_FLEXCOMM0
Attach OSC32K to FLEXCOMM0.

enumerator kNONE_to_FLEXCOMM0
Attach NONE to FLEXCOMM0.

enumerator kMAIN_CLK_to_FLEXCOMM1
Attach MAIN_CLK to FLEXCOMM1.

enumerator kPLL0_DIV_to_FLEXCOMM1
Attach PLL0_DIV to FLEXCOMM1.

enumerator kFRO12M_to_FLEXCOMM1
Attach FRO12M to FLEXCOMM1.

enumerator kFRO_HF_DIV_to_FLEXCOMM1
Attach FRO_HF_DIV to FLEXCOMM1.

enumerator kFRO1M_to_FLEXCOMM1
Attach FRO1M to FLEXCOMM1.

enumerator kMCLK_to_FLEXCOMM1
Attach MCLK to FLEXCOMM1.

enumerator kOSC32K_to_FLEXCOMM1
Attach OSC32K to FLEXCOMM1.

enumerator kNONE_to_FLEXCOMM1
Attach NONE to FLEXCOMM1.

enumerator kMAIN_CLK_to_FLEXCOMM2
Attach MAIN_CLK to FLEXCOMM2.

enumerator kPLL0_DIV_to_FLEXCOMM2
Attach PLL0_DIV to FLEXCOMM2.

enumerator kFRO12M_to_FLEXCOMM2
Attach FRO12M to FLEXCOMM2.

enumerator kFRO_HF_DIV_to_FLEXCOMM2
Attach FRO_HF_DIV to FLEXCOMM2.

enumerator kFRO1M_to_FLEXCOMM2
Attach FRO1M to FLEXCOMM2.

enumerator kMCLK_to_FLEXCOMM2
Attach MCLK to FLEXCOMM2.

enumerator kOSC32K_to_FLEXCOMM2
Attach OSC32K to FLEXCOMM2.

enumerator kNONE_to_FLEXCOMM2
Attach NONE to FLEXCOMM2.

2.6. Clock Driver 101

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kMAIN_CLK_to_FLEXCOMM3
Attach MAIN_CLK to FLEXCOMM3.

enumerator kPLL0_DIV_to_FLEXCOMM3
Attach PLL0_DIV to FLEXCOMM3.

enumerator kFRO12M_to_FLEXCOMM3
Attach FRO12M to FLEXCOMM3.

enumerator kFRO_HF_DIV_to_FLEXCOMM3
Attach FRO_HF_DIV to FLEXCOMM3.

enumerator kFRO1M_to_FLEXCOMM3
Attach FRO1M to FLEXCOMM3.

enumerator kMCLK_to_FLEXCOMM3
Attach MCLK to FLEXCOMM3.

enumerator kOSC32K_to_FLEXCOMM3
Attach OSC32K to FLEXCOMM3.

enumerator kNONE_to_FLEXCOMM3
Attach NONE to FLEXCOMM3.

enumerator kMAIN_CLK_to_FLEXCOMM4
Attach MAIN_CLK to FLEXCOMM4.

enumerator kPLL0_DIV_to_FLEXCOMM4
Attach PLL0_DIV to FLEXCOMM4.

enumerator kFRO12M_to_FLEXCOMM4
Attach FRO12M to FLEXCOMM4.

enumerator kFRO_HF_DIV_to_FLEXCOMM4
Attach FRO_HF_DIV to FLEXCOMM4.

enumerator kFRO1M_to_FLEXCOMM4
Attach FRO1M to FLEXCOMM4.

enumerator kMCLK_to_FLEXCOMM4
Attach MCLK to FLEXCOMM4.

enumerator kOSC32K_to_FLEXCOMM4
Attach OSC32K to FLEXCOMM4.

enumerator kNONE_to_FLEXCOMM4
Attach NONE to FLEXCOMM4.

enumerator kMAIN_CLK_to_FLEXCOMM5
Attach MAIN_CLK to FLEXCOMM5.

enumerator kPLL0_DIV_to_FLEXCOMM5
Attach PLL0_DIV to FLEXCOMM5.

enumerator kFRO12M_to_FLEXCOMM5
Attach FRO12M to FLEXCOMM5.

enumerator kFRO_HF_DIV_to_FLEXCOMM5
Attach FRO_HF_DIV to FLEXCOMM5.

enumerator kFRO1M_to_FLEXCOMM5
Attach FRO1M to FLEXCOMM5.

102 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kMCLK_to_FLEXCOMM5
Attach MCLK to FLEXCOMM5.

enumerator kOSC32K_to_FLEXCOMM5
Attach OSC32K to FLEXCOMM5.

enumerator kNONE_to_FLEXCOMM5
Attach NONE to FLEXCOMM5.

enumerator kMAIN_CLK_to_FLEXCOMM6
Attach MAIN_CLK to FLEXCOMM6.

enumerator kPLL0_DIV_to_FLEXCOMM6
Attach PLL0_DIV to FLEXCOMM6.

enumerator kFRO12M_to_FLEXCOMM6
Attach FRO12M to FLEXCOMM6.

enumerator kFRO_HF_DIV_to_FLEXCOMM6
Attach FRO_HF_DIV to FLEXCOMM6.

enumerator kFRO1M_to_FLEXCOMM6
Attach FRO1M to FLEXCOMM6.

enumerator kMCLK_to_FLEXCOMM6
Attach MCLK to FLEXCOMM6.

enumerator kOSC32K_to_FLEXCOMM6
Attach OSC32K to FLEXCOMM6.

enumerator kNONE_to_FLEXCOMM6
Attach NONE to FLEXCOMM6.

enumerator kMAIN_CLK_to_FLEXCOMM7
Attach MAIN_CLK to FLEXCOMM7.

enumerator kPLL0_DIV_to_FLEXCOMM7
Attach PLL0_DIV to FLEXCOMM7.

enumerator kFRO12M_to_FLEXCOMM7
Attach FRO12M to FLEXCOMM7.

enumerator kFRO_HF_DIV_to_FLEXCOMM7
Attach FRO_HF_DIV to FLEXCOMM7.

enumerator kFRO1M_to_FLEXCOMM7
Attach FRO1M to FLEXCOMM7.

enumerator kMCLK_to_FLEXCOMM7
Attach MCLK to FLEXCOMM7.

enumerator kOSC32K_to_FLEXCOMM7
Attach OSC32K to FLEXCOMM7.

enumerator kNONE_to_FLEXCOMM7
Attach NONE to FLEXCOMM7.

enumerator kMAIN_CLK_to_HSLSPI
Attach MAIN_CLK to HSLSPI.

enumerator kPLL0_DIV_to_HSLSPI
Attach PLL0_DIV to HSLSPI.

2.6. Clock Driver 103

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kFRO12M_to_HSLSPI
Attach FRO12M to HSLSPI.

enumerator kFRO_HF_DIV_to_HSLSPI
Attach FRO_HF_DIV to HSLSPI.

enumerator kFRO1M_to_HSLSPI
Attach FRO1M to HSLSPI.

enumerator kOSC32K_to_HSLSPI
Attach OSC32K to HSLSPI.

enumerator kNONE_to_HSLSPI
Attach NONE to HSLSPI.

enumerator kFRO_HF_to_MCLK
Attach FRO_HF to MCLK.

enumerator kPLL0_to_MCLK
Attach PLL0 to MCLK.

enumerator kNONE_to_MCLK
Attach NONE to MCLK.

enumerator kMAIN_CLK_to_SCT_CLK
Attach MAIN_CLK to SCT_CLK.

enumerator kPLL0_to_SCT_CLK
Attach PLL0 to SCT_CLK.

enumerator kEXT_CLK_to_SCT_CLK
Attach EXT_CLK to SCT_CLK.

enumerator kFRO_HF_to_SCT_CLK
Attach FRO_HF to SCT_CLK.

enumerator kMCLK_to_SCT_CLK
Attach MCLK to SCT_CLK.

enumerator kNONE_to_SCT_CLK
Attach NONE to SCT_CLK.

enumerator kFRO32K_to_OSC32K
Attach FRO32K to OSC32K.

enumerator kXTAL32K_to_OSC32K
Attach XTAL32K to OSC32K.

enumerator kOSC32K_to_OSTIMER
Attach OSC32K to OSTIMER.

enumerator kFRO1M_to_OSTIMER
Attach FRO1M to OSTIMER.

enumerator kMAIN_CLK_to_OSTIMER
Attach MAIN_CLK to OSTIMER.

enumerator kTRACE_DIV_to_TRACE
Attach TRACE_DIV to TRACE.

enumerator kFRO1M_to_TRACE
Attach FRO1M to TRACE.

104 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kOSC32K_to_TRACE
Attach OSC32K to TRACE.

enumerator kNONE_to_TRACE
Attach NONE to TRACE.

enumerator kSYSTICK_DIV0_to_SYSTICK0
Attach SYSTICK_DIV0 to SYSTICK0.

enumerator kFRO1M_to_SYSTICK0
Attach FRO1M to SYSTICK0.

enumerator kOSC32K_to_SYSTICK0
Attach OSC32K to SYSTICK0.

enumerator kNONE_to_SYSTICK0
Attach NONE to SYSTICK0.

enumerator kFRO12M_to_PLL1
Attach FRO12M to PLL1.

enumerator kEXT_CLK_to_PLL1
Attach EXT_CLK to PLL1.

enumerator kFRO1M_to_PLL1
Attach FRO1M to PLL1.

enumerator kOSC32K_to_PLL1
Attach OSC32K to PLL1.

enumerator kNONE_to_PLL1
Attach NONE to PLL1.

enumerator kMAIN_CLK_to_CTIMER0
Attach MAIN_CLK to CTIMER0.

enumerator kPLL0_to_CTIMER0
Attach PLL0 to CTIMER0.

enumerator kFRO_HF_to_CTIMER0
Attach FRO_HF to CTIMER0.

enumerator kFRO1M_to_CTIMER0
Attach FRO1M to CTIMER0.

enumerator kMCLK_to_CTIMER0
Attach MCLK to CTIMER0.

enumerator kOSC32K_to_CTIMER0
Attach OSC32K to CTIMER0.

enumerator kNONE_to_CTIMER0
Attach NONE to CTIMER0.

enumerator kMAIN_CLK_to_CTIMER1
Attach MAIN_CLK to CTIMER1.

enumerator kPLL0_to_CTIMER1
Attach PLL0 to CTIMER1.

enumerator kFRO_HF_to_CTIMER1
Attach FRO_HF to CTIMER1.

2.6. Clock Driver 105

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kFRO1M_to_CTIMER1
Attach FRO1M to CTIMER1.

enumerator kMCLK_to_CTIMER1
Attach MCLK to CTIMER1.

enumerator kOSC32K_to_CTIMER1
Attach OSC32K to CTIMER1.

enumerator kNONE_to_CTIMER1
Attach NONE to CTIMER1.

enumerator kMAIN_CLK_to_CTIMER2
Attach MAIN_CLK to CTIMER2.

enumerator kPLL0_to_CTIMER2
Attach PLL0 to CTIMER2.

enumerator kFRO_HF_to_CTIMER2
Attach FRO_HF to CTIMER2.

enumerator kFRO1M_to_CTIMER2
Attach FRO1M to CTIMER2.

enumerator kMCLK_to_CTIMER2
Attach MCLK to CTIMER2.

enumerator kOSC32K_to_CTIMER2
Attach OSC32K to CTIMER2.

enumerator kNONE_to_CTIMER2
Attach NONE to CTIMER2.

enumerator kMAIN_CLK_to_CTIMER3
Attach MAIN_CLK to CTIMER3.

enumerator kPLL0_to_CTIMER3
Attach PLL0 to CTIMER3.

enumerator kFRO_HF_to_CTIMER3
Attach FRO_HF to CTIMER3.

enumerator kFRO1M_to_CTIMER3
Attach FRO1M to CTIMER3.

enumerator kMCLK_to_CTIMER3
Attach MCLK to CTIMER3.

enumerator kOSC32K_to_CTIMER3
Attach OSC32K to CTIMER3.

enumerator kNONE_to_CTIMER3
Attach NONE to CTIMER3.

enumerator kMAIN_CLK_to_CTIMER4
Attach MAIN_CLK to CTIMER4.

enumerator kPLL0_to_CTIMER4
Attach PLL0 to CTIMER4.

enumerator kFRO_HF_to_CTIMER4
Attach FRO_HF to CTIMER4.

106 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kFRO1M_to_CTIMER4
Attach FRO1M to CTIMER4.

enumerator kMCLK_to_CTIMER4
Attach MCLK to CTIMER4.

enumerator kOSC32K_to_CTIMER4
Attach OSC32K to CTIMER4.

enumerator kNONE_to_CTIMER4
Attach NONE to CTIMER4.

enumerator kNONE_to_NONE
Attach NONE to NONE.

enum _clock_div_name
Clock dividers.

Values:

enumerator kCLOCK_DivSystickClk0
Systick Clk0 Divider.

enumerator kCLOCK_DivArmTrClkDiv
Arm Tr Clk Div Divider.

enumerator kCLOCK_DivCanClk
Can Clock Divider.

enumerator kCLOCK_DivFlexFrg0
Flex Frg0 Divider.

enumerator kCLOCK_DivFlexFrg1
Flex Frg1 Divider.

enumerator kCLOCK_DivFlexFrg2
Flex Frg2 Divider.

enumerator kCLOCK_DivFlexFrg3
Flex Frg3 Divider.

enumerator kCLOCK_DivFlexFrg4
Flex Frg4 Divider.

enumerator kCLOCK_DivFlexFrg5
Flex Frg5 Divider.

enumerator kCLOCK_DivFlexFrg6
Flex Frg6 Divider.

enumerator kCLOCK_DivFlexFrg7
Flex Frg7 Divider.

enumerator kCLOCK_DivAhbClk
Ahb Clock Divider.

enumerator kCLOCK_DivClkOut
Clk Out Divider.

enumerator kCLOCK_DivFrohfClk
Frohf Clock Divider.

2.6. Clock Driver 107

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_DivWdtClk
Wdt Clock Divider.

enumerator kCLOCK_DivAdcAsyncClk
Adc Async Clock Divider.

enumerator kCLOCK_DivFro1mClk
Fro1m Clock Divider.

enumerator kCLOCK_DivMClk
I2S MCLK Clock Divider.

enumerator kCLOCK_DivSctClk
Sct Clock Divider.

enumerator kCLOCK_DivPll0Clk
PLL0 clock divider.

enum _ss_progmodfm
PLL Spread Spectrum (SS) Programmable modulation frequency See (MF) field in the
PLL0SSCG1 register in the UM.

Values:

enumerator kSS_MF_512
Nss = 512 (fm ? 3.9 - 7.8 kHz)

enumerator kSS_MF_384
Nss ?= 384 (fm ? 5.2 - 10.4 kHz)

enumerator kSS_MF_256
Nss = 256 (fm ? 7.8 - 15.6 kHz)

enumerator kSS_MF_128
Nss = 128 (fm ? 15.6 - 31.3 kHz)

enumerator kSS_MF_64
Nss = 64 (fm ? 32.3 - 64.5 kHz)

enumerator kSS_MF_32
Nss = 32 (fm ? 62.5- 125 kHz)

enumerator kSS_MF_24
Nss ?= 24 (fm ? 83.3- 166.6 kHz)

enumerator kSS_MF_16
Nss = 16 (fm ? 125- 250 kHz)

enum _ss_progmoddp
PLL Spread Spectrum (SS) Programmable frequencymodulation depth See (MR) field in the
PLL0SSCG1 register in the UM.

Values:

enumerator kSS_MR_K0
k = 0 (no spread spectrum)

enumerator kSS_MR_K1
k = 1

enumerator kSS_MR_K1_5
k = 1.5

108 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSS_MR_K2
k = 2

enumerator kSS_MR_K3
k = 3

enumerator kSS_MR_K4
k = 4

enumerator kSS_MR_K6
k = 6

enumerator kSS_MR_K8
k = 8

enum _ss_modwvctrl

PLL Spread Spectrum (SS) Modulation waveform control See (MC) field in the PLL0SSCG1
register in the UM.

Compensation for low pass filtering of the PLL to get a triangular modulation at the output
of the PLL, giving a flat frequency spectrum.

Values:

enumerator kSS_MC_NOC
no compensation

enumerator kSS_MC_RECC
recommended setting

enumerator kSS_MC_MAXC
max. compensation

enum _pll_error
PLL status definitions.

Values:

enumerator kStatus_PLL_Success
PLL operation was successful

enumerator kStatus_PLL_OutputTooLow
PLL output rate request was too low

enumerator kStatus_PLL_OutputTooHigh
PLL output rate request was too high

enumerator kStatus_PLL_InputTooLow
PLL input rate is too low

enumerator kStatus_PLL_InputTooHigh
PLL input rate is too high

enumerator kStatus_PLL_OutsideIntLimit
Requested output rate isn’t possible

enumerator kStatus_PLL_CCOTooLow
Requested CCO rate isn’t possible

enumerator kStatus_PLL_CCOTooHigh
Requested CCO rate isn’t possible

2.6. Clock Driver 109

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _clock_ip_name clock_ip_name_t
Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.

typedef enum _clock_name clock_name_t
Clock name used to get clock frequency.

typedef enum _clock_attach_id clock_attach_id_t
The enumerator of clock attach Id.

typedef enum _clock_div_name clock_div_name_t
Clock dividers.

typedef enum _ss_progmodfm ss_progmodfm_t
PLL Spread Spectrum (SS) Programmable modulation frequency See (MF) field in the
PLL0SSCG1 register in the UM.

typedef enum _ss_progmoddp ss_progmoddp_t
PLL Spread Spectrum (SS) Programmable frequencymodulation depth See (MR) field in the
PLL0SSCG1 register in the UM.

typedef enum _ss_modwvctrl ss_modwvctrl_t

PLL Spread Spectrum (SS) Modulation waveform control See (MC) field in the PLL0SSCG1
register in the UM.

Compensation for low pass filtering of the PLL to get a triangular modulation at the output
of the PLL, giving a flat frequency spectrum.

typedef struct _pll_config pll_config_t
PLL configuration structure.

This structure can be used to configure the settings for a PLL setup structure. Fill in the
desired configuration for the PLL and call the PLL setup function to fill in a PLL setup struc-
ture.

typedef struct _pll_setup pll_setup_t
PLL0 setup structure This structure can be used to pre-build a PLL setup configuration at
run-time and quickly set the PLL to the configuration. It can be populated with the PLL
setup function. If powering up or waiting for PLL lock, the PLL input clock source should
be configured prior to PLL setup.

typedef enum _pll_error pll_error_t
PLL status definitions.

static inline void CLOCK_EnableClock(clock_ip_name_t clk)
Enable the clock for specific IP.

Parameters
• clk – : Clock to be enabled.

Returns
Nothing

static inline void CLOCK_DisableClock(clock_ip_name_t clk)
Disable the clock for specific IP.

Parameters
• clk – : Clock to be Disabled.

Returns
Nothing

110 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

status_t CLOCK_SetupFROClocking(uint32_t iFreq)
Initialize the Core clock to given frequency (12, 48 or 96 MHz). Turns on FRO and uses
default CCO, if freq is 12000000, then high speed output is off, else high speed output is
enabled.

Parameters
• iFreq – : Desired frequency (must be one of CLK_FRO_12MHZ or
CLK_FRO_48MHZ or CLK_FRO_96MHZ)

Returns
returns success or fail status.

void CLOCK_SetFLASHAccessCyclesForFreq(uint32_t system_freq_hz)
Set the flash wait states for the input freuqency.

Parameters
• system_freq_hz – : Input frequency

Returns
Nothing

status_t CLOCK_SetupExtClocking(uint32_t iFreq)
Initialize the external osc clock to given frequency.

Parameters
• iFreq – : Desired frequency (must be equal to exact rate in Hz)

Returns
returns success or fail status.

status_t CLOCK_SetupI2SMClkClocking(uint32_t iFreq)
Initialize the I2S MCLK clock to given frequency.

Parameters
• iFreq – : Desired frequency (must be equal to exact rate in Hz)

Returns
returns success or fail status.

status_t CLOCK_SetupPLUClkInClocking(uint32_t iFreq)
Initialize the PLU CLKIN clock to given frequency.

Parameters
• iFreq – : Desired frequency (must be equal to exact rate in Hz)

Returns
returns success or fail status.

void CLOCK_AttachClk(clock_attach_id_t connection)
Configure the clock selection muxes.

Parameters
• connection – : Clock to be configured.

Returns
Nothing

clock_attach_id_t CLOCK_GetClockAttachId(clock_attach_id_t attachId)
Get the actual clock attach id. This fuction uses the offset in input attach id, then it reads
the actual source value in the register and combine the offset to obtain an actual attach id.

Parameters

2.6. Clock Driver 111

MCUXpresso SDK Documentation, Release 25.09.00

• attachId – : Clock attach id to get.

Returns
Clock source value.

void CLOCK_SetClkDiv(clock_div_name_t div_name, uint32_t divided_by_value, bool reset)
Setup peripheral clock dividers.

Parameters
• div_name – : Clock divider name

• divided_by_value – Value to be divided

• reset – : Whether to reset the divider counter.

Returns
Nothing

void CLOCK_SetRtc1khzClkDiv(uint32_t divided_by_value)
Setup rtc 1khz clock divider.

Parameters
• divided_by_value – Value to be divided

Returns
Nothing

void CLOCK_SetRtc1hzClkDiv(uint32_t divided_by_value)
Setup rtc 1hz clock divider.

Parameters
• divided_by_value – Value to be divided

Returns
Nothing

uint32_t CLOCK_SetFlexCommClock(uint32_t id, uint32_t freq)
Set the flexcomm output frequency.

Parameters
• id – : flexcomm instance id

• freq – : output frequency

Returns
0 : the frequency range is out of range. 1 : switch successfully.

uint32_t CLOCK_GetFlexCommInputClock(uint32_t id)
Return Frequency of flexcomm input clock.

Parameters
• id – : flexcomm instance id

Returns
Frequency value

uint32_t CLOCK_GetFreq(clock_name_t clockName)
Return Frequency of selected clock.

Returns
Frequency of selected clock

112 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t CLOCK_GetFro12MFreq(void)
Return Frequency of FRO 12MHz.

Returns
Frequency of FRO 12MHz

uint32_t CLOCK_GetFro1MFreq(void)
Return Frequency of FRO 1MHz.

Returns
Frequency of FRO 1MHz

uint32_t CLOCK_GetClockOutClkFreq(void)
Return Frequency of ClockOut.

Returns
Frequency of ClockOut

uint32_t CLOCK_GetMCanClkFreq(void)
Return Frequency of Can Clock.

Returns
Frequency of Can.

uint32_t CLOCK_GetAdcClkFreq(void)
Return Frequency of Adc Clock.

Returns
Frequency of Adc.

uint32_t CLOCK_GetMclkClkFreq(void)
Return Frequency of MClk Clock.

Returns
Frequency of MClk Clock.

uint32_t CLOCK_GetSctClkFreq(void)
Return Frequency of SCTimer Clock.

Returns
Frequency of SCTimer Clock.

uint32_t CLOCK_GetExtClkFreq(void)
Return Frequency of External Clock.

Returns
Frequency of External Clock. If no external clock is used returns 0.

uint32_t CLOCK_GetWdtClkFreq(void)
Return Frequency of Watchdog.

Returns
Frequency of Watchdog

uint32_t CLOCK_GetFroHfFreq(void)
Return Frequency of High-Freq output of FRO.

Returns
Frequency of High-Freq output of FRO

uint32_t CLOCK_GetPll0OutFreq(void)
Return Frequency of PLL.

Returns
Frequency of PLL

2.6. Clock Driver 113

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t CLOCK_GetPll1OutFreq(void)
Return Frequency of USB PLL.

Returns
Frequency of PLL

uint32_t CLOCK_GetOsc32KFreq(void)
Return Frequency of 32kHz osc.

Returns
Frequency of 32kHz osc

uint32_t CLOCK_GetCoreSysClkFreq(void)
Return Frequency of Core System.

Returns
Frequency of Core System

uint32_t CLOCK_GetI2SMClkFreq(void)
Return Frequency of I2S MCLK Clock.

Returns
Frequency of I2S MCLK Clock

uint32_t CLOCK_GetPLUClkInFreq(void)
Return Frequency of PLU CLKIN Clock.

Returns
Frequency of PLU CLKIN Clock

uint32_t CLOCK_GetFlexCommClkFreq(uint32_t id)
Return Frequency of FlexComm Clock.

Returns
Frequency of FlexComm Clock

uint32_t CLOCK_GetHsLspiClkFreq(void)
Return Frequency of High speed SPI Clock.

Returns
Frequency of High speed SPI Clock

uint32_t CLOCK_GetCTimerClkFreq(uint32_t id)
Return Frequency of CTimer functional Clock.

Returns
Frequency of CTimer functional Clock

uint32_t CLOCK_GetSystickClkFreq(uint32_t id)
Return Frequency of SystickClock.

Returns
Frequency of Systick Clock

uint32_t CLOCK_GetPLL0InClockRate(void)
Return PLL0 input clock rate.

Returns
PLL0 input clock rate

uint32_t CLOCK_GetPLL1InClockRate(void)
Return PLL1 input clock rate.

Returns
PLL1 input clock rate

114 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t CLOCK_GetPLL0OutClockRate(bool recompute)
Return PLL0 output clock rate.

Note: The PLL rate is cached in the driver in a variable as the rate computation func-
tion can take some time to perform. It is recommended to use ‘false’ with the ‘recompute’
parameter.

Parameters
• recompute – : Forces a PLL rate recomputation if true

Returns
PLL0 output clock rate

uint32_t CLOCK_GetPLL1OutClockRate(bool recompute)
Return PLL1 output clock rate.

Note: The PLL rate is cached in the driver in a variable as the rate computation func-
tion can take some time to perform. It is recommended to use ‘false’ with the ‘recompute’
parameter.

Parameters
• recompute – : Forces a PLL rate recomputation if true

Returns
PLL1 output clock rate

__STATIC_INLINE void CLOCK_SetBypassPLL0 (bool bypass)
Enables and disables PLL0 bypass mode.

bypass : true to bypass PLL0 (PLL0 output = PLL0 input, false to disable bypass

Returns
PLL0 output clock rate

__STATIC_INLINE void CLOCK_SetBypassPLL1 (bool bypass)
Enables and disables PLL1 bypass mode.

bypass : true to bypass PLL1 (PLL1 output = PLL1 input, false to disable bypass

Returns
PLL1 output clock rate

__STATIC_INLINE bool CLOCK_IsPLL0Locked (void)
Check if PLL is locked or not.

Returns
true if the PLL is locked, false if not locked

__STATIC_INLINE bool CLOCK_IsPLL1Locked (void)
Check if PLL1 is locked or not.

Returns
true if the PLL1 is locked, false if not locked

void CLOCK_SetStoredPLL0ClockRate(uint32_t rate)
Store the current PLL0 rate.

Parameters
• rate – Current rate of the PLL0

2.6. Clock Driver 115

MCUXpresso SDK Documentation, Release 25.09.00

Returns
Nothing

uint32_t CLOCK_GetPLL0OutFromSetup(pll_setup_t *pSetup)
Return PLL0 output clock rate from setup structure.

Parameters
• pSetup – : Pointer to a PLL setup structure

Returns
System PLL output clock rate the setup structure will generate

uint32_t CLOCK_GetPLL1OutFromSetup(pll_setup_t *pSetup)
Return PLL1 output clock rate from setup structure.

Parameters
• pSetup – : Pointer to a PLL setup structure

Returns
PLL0 output clock rate the setup structure will generate

pll_error_t CLOCK_SetupPLL0Data(pll_config_t *pControl, pll_setup_t *pSetup)
Set PLL0 output based on the passed PLL setup data.

Note: Actual frequency for setup may vary from the desired frequency based on the accu-
racy of input clocks, rounding, non-fractional PLL mode, etc.

Parameters
• pControl – : Pointer to populated PLL control structure to generate setup
with

• pSetup – : Pointer to PLL setup structure to be filled

Returns
PLL_ERROR_SUCCESS on success, or PLL setup error code

pll_error_t CLOCK_SetupPLL0Prec(pll_setup_t *pSetup, uint32_t flagcfg)
Set PLL output from PLL setup structure (precise frequency)

Note: This function will power off the PLL, setup the PLL with the new setup data, and
then optionally powerup the PLL, wait for PLL lock, and adjust system voltages to the new
PLL rate. The function will not alter any source clocks (ie, main systen clock) that may use
the PLL, so these should be setup prior to and after exiting the function.

Parameters
• pSetup – : Pointer to populated PLL setup structure

• flagcfg – : Flag configuration for PLL config structure

Returns
PLL_ERROR_SUCCESS on success, or PLL setup error code

pll_error_t CLOCK_SetPLL0Freq(const pll_setup_t *pSetup)
Set PLL output from PLL setup structure (precise frequency)

Note: This function will power off the PLL, setup the PLL with the new setup data, and
then optionally powerup the PLL, wait for PLL lock, and adjust system voltages to the new

116 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

PLL rate. The function will not alter any source clocks (ie, main systen clock) that may use
the PLL, so these should be setup prior to and after exiting the function.

Parameters
• pSetup – : Pointer to populated PLL setup structure

Returns
kStatus_PLL_Success on success, or PLL setup error code

pll_error_t CLOCK_SetPLL1Freq(const pll_setup_t *pSetup)
Set PLL output from PLL setup structure (precise frequency)

Note: This function will power off the PLL, setup the PLL with the new setup data, and
then optionally powerup the PLL, wait for PLL lock, and adjust system voltages to the new
PLL rate. The function will not alter any source clocks (ie, main systen clock) that may use
the PLL, so these should be setup prior to and after exiting the function.

Parameters
• pSetup – : Pointer to populated PLL setup structure

Returns
kStatus_PLL_Success on success, or PLL setup error code

void CLOCK_SetupPLL0Mult(uint32_t multiply_by, uint32_t input_freq)
Set PLL0 output based on the multiplier and input frequency.

Note: Unlike the Chip_Clock_SetupSystemPLLPrec() function, this function does not dis-
able or enable PLL power, wait for PLL lock, or adjust system voltages. These must be done
in the application. The function will not alter any source clocks (ie, main systen clock) that
may use the PLL, so these should be setup prior to and after exiting the function.

Parameters
• multiply_by – : multiplier

• input_freq – : Clock input frequency of the PLL

Returns
Nothing

void CLOCK_EnableOstimer32kClock(void)
Enable the OSTIMER 32k clock.

Returns
Nothing

FSL_CLOCK_DRIVER_VERSION
CLOCK driver version 2.3.8.

FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL
Configure whether driver controls clock.

When set to 0, peripheral drivers will enable clock in initialize function and disable clock in
de-initialize function. When set to 1, peripheral driverwill not control the clock, application
could control the clock out of the driver.

2.6. Clock Driver 117

MCUXpresso SDK Documentation, Release 25.09.00

Note: All drivers share this feature switcher. If it is set to 1, application should handle
clock enable and disable for all drivers.

CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT
User-defined the size of cache for CLOCK_PllGetConfig() function.

Once define this MACRO to be non-zero value, CLOCK_PllGetConfig() function would cache
the recent calulation and accelerate the execution to get the right settings.

SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY

ROM_CLOCKS
Clock ip name array for ROM.

SRAM_CLOCKS
Clock ip name array for SRAM.

FLASH_CLOCKS
Clock ip name array for FLASH.

FMC_CLOCKS
Clock ip name array for FMC.

INPUTMUX_CLOCKS
Clock ip name array for INPUTMUX.

IOCON_CLOCKS
Clock ip name array for IOCON.

GPIO_CLOCKS
Clock ip name array for GPIO.

PINT_CLOCKS
Clock ip name array for PINT.

GINT_CLOCKS
Clock ip name array for GINT.

DMA_CLOCKS
Clock ip name array for DMA.

CRC_CLOCKS
Clock ip name array for CRC.

WWDT_CLOCKS
Clock ip name array for WWDT.

RTC_CLOCKS
Clock ip name array for RTC.

MAILBOX_CLOCKS
Clock ip name array for Mailbox.

LPADC_CLOCKS
Clock ip name array for LPADC.

MRT_CLOCKS
Clock ip name array for MRT.

OSTIMER_CLOCKS
Clock ip name array for OSTIMER.

118 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

SCT_CLOCKS
Clock ip name array for SCT0.

MCAN_CLOCKS
Clock ip name array for MCAN.

UTICK_CLOCKS
Clock ip name array for UTICK.

FLEXCOMM_CLOCKS
Clock ip name array for FLEXCOMM.

LPUART_CLOCKS
Clock ip name array for LPUART.

BI2C_CLOCKS
Clock ip name array for BI2C.

LPSPI_CLOCKS
Clock ip name array for LSPI.

FLEXI2S_CLOCKS
Clock ip name array for FLEXI2S.

CTIMER_CLOCKS
Clock ip name array for CTIMER.

COMP_CLOCKS
Clock ip name array for COMP.

FREQME_CLOCKS
Clock ip name array for FREQME.

CDOG_CLOCKS
Clock ip name array for CDOG.

RNG_CLOCKS
Clock ip name array for RNG.

HASHCRYPT_CLOCKS
Clock ip name array for HashCrypt.

PLULUT_CLOCKS
Clock ip name array for PLULUT.

PUF_CLOCKS
Clock ip name array for PUF.

CASPER_CLOCKS
Clock ip name array for CASPER.

ANALOGCTRL_CLOCKS
Clock ip name array for ANALOGCTRL.

HS_LSPI_CLOCKS
Clock ip name array for HS_LSPI.

GPIO_SEC_CLOCKS
Clock ip name array for GPIO_SEC.

GPIO_SEC_INT_CLOCKS
Clock ip name array for GPIO_SEC_INT.

2.6. Clock Driver 119

MCUXpresso SDK Documentation, Release 25.09.00

PLU_CLOCKS

SYSCTL_CLOCKS

CLK_GATE_REG_OFFSET_SHIFT
Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.

CLK_GATE_REG_OFFSET_MASK

CLK_GATE_BIT_SHIFT_SHIFT

CLK_GATE_BIT_SHIFT_MASK

CLK_GATE_DEFINE(reg_offset, bit_shift)

CLK_GATE_ABSTRACT_REG_OFFSET(x)

CLK_GATE_ABSTRACT_BITS_SHIFT(x)

AHB_CLK_CTRL0

AHB_CLK_CTRL1

AHB_CLK_CTRL2

BUS_CLK
Peripherals clock source definition.

I2C0_CLK_SRC

CLK_ATTACH_ID(mux, sel, pos)
Clock Mux Switches The encoding is as follows each connection identified is 32bits wide
while 24bits are valuable starting from LSB upwards.

[4 bits for choice, 0 means invalid choice] [8 bits mux ID]*

MUX_A(mux, sel)

MUX_B(mux, sel, selector)

GET_ID_ITEM(connection)

GET_ID_NEXT_ITEM(connection)

GET_ID_ITEM_MUX(connection)

GET_ID_ITEM_SEL(connection)

GET_ID_SELECTOR(connection)

CM_SYSTICKCLKSEL0

CM_TRACECLKSEL

CM_CTIMERCLKSEL0

CM_CTIMERCLKSEL1

CM_CTIMERCLKSEL2

CM_CTIMERCLKSEL3

CM_CTIMERCLKSEL4

CM_MAINCLKSELA

120 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

CM_MAINCLKSELB

CM_CLKOUTCLKSEL

CM_PLL0CLKSEL

CM_PLL1CLKSEL

CM_MCANCLKSEL

CM_ADCASYNCCLKSEL

CM_CLK32KCLKSEL

CM_FXCOMCLKSEL0

CM_FXCOMCLKSEL1

CM_FXCOMCLKSEL2

CM_FXCOMCLKSEL3

CM_FXCOMCLKSEL4

CM_FXCOMCLKSEL5

CM_FXCOMCLKSEL6

CM_FXCOMCLKSEL7

CM_HSLSPICLKSEL

CM_MCLKCLKSEL

CM_SCTCLKSEL

CM_OSTIMERCLKSEL

CM_RTCOSC32KCLKSEL

PLL_CONFIGFLAG_USEINRATE
PLL configuration structure flags for ‘flags’ field These flags control how the PLL configu-
ration function sets up the PLL setup structure.

When the PLL_CONFIGFLAG_USEINRATE flag is selected, the ‘InputRate’ field in the
configuration structure must be assigned with the expected PLL frequency. If the
PLL_CONFIGFLAG_USEINRATE is not used, ‘InputRate’ is ignored in the configuration func-
tion and the driverwill determine the PLL rate from the currently selected PLL source. This
flag might be used to configure the PLL input clock more accurately when using the WDT
oscillator or a more dyanmic CLKIN source.

When the PLL_CONFIGFLAG_FORCENOFRACT flag is selected, the PLL hardware for the
automatic bandwidth selection, Spread Spectrum (SS) support, and fractional M-divider
are not used.

Flag to use InputRate in PLL configuration structure for setup

PLL_CONFIGFLAG_FORCENOFRACT
Force non-fractional output mode, PLL output will not use the fractional, automatic band-
width, or SS hardware

2.6. Clock Driver 121

MCUXpresso SDK Documentation, Release 25.09.00

PLL_SETUPFLAG_POWERUP
PLL setup structure flags for ‘flags’ field These flags control how the PLL setup function sets
up the PLL.

Setup will power on the PLL after setup

PLL_SETUPFLAG_WAITLOCK
Setup will wait for PLL lock, implies the PLL will be pwoered on

PLL_SETUPFLAG_ADGVOLT
Optimize system voltage for the new PLL rate

PLL_SETUPFLAG_USEFEEDBACKDIV2
Use feedback divider by 2 in divider path

uint32_t desiredRate
Desired PLL rate in Hz

uint32_t inputRate
PLL input clock in Hz, only used if PLL_CONFIGFLAG_USEINRATE flag is set

uint32_t flags
PLL configuration flags, Or’ed value of PLL_CONFIGFLAG_* definitions

ss_progmodfm_t ss_mf
SS Programmable modulation frequency, only applicable when not using
PLL_CONFIGFLAG_FORCENOFRACT flag

ss_progmoddp_t ss_mr
SS Programmable frequency modulation depth, only applicable when not using
PLL_CONFIGFLAG_FORCENOFRACT flag

ss_modwvctrl_t ss_mc
SS Modulation waveform control, only applicable when not using
PLL_CONFIGFLAG_FORCENOFRACT flag

bool mfDither
false for fixed modulation frequency or true for dithering, only applicable when not using
PLL_CONFIGFLAG_FORCENOFRACT flag

uint32_t pllctrl
PLL control register PLL0CTRL

uint32_t pllndec
PLL NDEC register PLL0NDEC

uint32_t pllpdec
PLL PDEC register PLL0PDEC

uint32_t pllmdec
PLL MDEC registers PLL0PDEC

uint32_t pllsscg[2]
PLL SSCTL registers PLL0SSCG

uint32_t pllRate
Acutal PLL rate

uint32_t flags
PLL setup flags, Or’ed value of PLL_SETUPFLAG_* definitions

122 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

struct _pll_config
#include <fsl_clock.h> PLL configuration structure.

This structure can be used to configure the settings for a PLL setup structure. Fill in the
desired configuration for the PLL and call the PLL setup function to fill in a PLL setup struc-
ture.

struct _pll_setup
#include <fsl_clock.h> PLL0 setup structure This structure can be used to pre-build a PLL
setup configuration at run-time and quickly set the PLL to the configuration. It can be pop-
ulated with the PLL setup function. If powering up or waiting for PLL lock, the PLL input
clock source should be configured prior to PLL setup.

2.7 CMP: Analog Comparator Driver

void CMP_Init(const cmp_config_t *config)
CMP initialization.

This function enables the CMP module and do necessary settings.

Parameters
• config – Pointer to the configuration structure.

void CMP_Deinit(void)
CMP deinitialization.

This function gates the clock for CMP module.

void CMP_GetDefaultConfig(cmp_config_t *config)
Initializes the CMP user configuration structure.

This function initializes the user configuration structure to these default values.

config->enableHysteresis = true;
config->enableLowPower = true;
config->filterClockDivider = kCMP_FilterClockDivide1;
config->filterSampleMode = kCMP_FilterSampleMode0;

Parameters
• config – Pointer to the configuration structure.

static inline void CMP_SetInputChannels(uint8_t positiveChannel, uint8_t negativeChannel)

void CMP_SetVREF(const cmp_vref_config_t *config)
Configures the VREFINPUT.

Parameters
• config – Pointer to the configuration structure.

static inline bool CMP_GetOutput(void)
Get CMP compare output.

Returns
The output result. true: voltage on positive side is greater than negative side.
false: voltage on positive side is lower than negative side.

static inline void CMP_EnableInterrupt(uint32_t type)
CMP enable interrupt.

Parameters

2.7. CMP: Analog Comparator Driver 123

MCUXpresso SDK Documentation, Release 25.09.00

• type – CMP interrupt type. See “_cmp_interrupt_type”.

static inline void CMP_DisableInterrupt(void)
CMP disable interrupt.

static inline void CMP_ClearInterrupt(void)
CMP clear interrupt.

static inline void CMP_EnableFilteredInterruptSource(bool enable)
Select which Analog comparator output (filtered or un-filtered) is used for interrupt detec-
tion.

Note: : When CMP is configured as the wakeup source in power downmode, this function
must use the raw output as the interupt source, that is, call this function and set parameter
enable to false.

Parameters
• enable – false: Select Analog Comparator raw output (unfiltered) as input
for interrupt detection. true: Select Analog Comparator filtered output as
input for interrupt detection.

static inline bool CMP_GetPreviousInterruptStatus(void)
Get CMP interrupt status before interupt enable.

Returns
Interrupt status. true: interrupt pending, false: no interrupt pending.

static inline bool CMP_GetInterruptStatus(void)
Get CMP interrupt status after interupt enable.

Returns
Interrupt status. true: interrupt pending, false: no interrupt pending.

static inline void CMP_FilterSampleConfig(cmp_filtercgf_samplemode_t filterSampleMode,
cmp_filtercgf_clkdiv_t filterClockDivider)

CMP Filter Sample Config.

This function allows the users to configure the samplingmode and clock divider of the CMP
Filter.

Parameters
• filterSampleMode – CMP Select filter sample mode

• filterClockDivider – CMP Set fileter clock divider

FSL_CMP_DRIVER_VERSION
Driver version 2.2.1.

enum _cmp_input_mux
CMP input mux for positive and negative sides.

Values:

enumerator kCMP_InputVREF
Cmp input from VREF.

enumerator kCMP_Input1
Cmp input source 1.

enumerator kCMP_Input2
Cmp input source 2.

124 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCMP_Input3
Cmp input source 3.

enumerator kCMP_Input4
Cmp input source 4.

enumerator kCMP_Input5
Cmp input source 5.

enum _cmp_interrupt_type
CMP interrupt type.

Values:

enumerator kCMP_EdgeDisable
Disable edge interupt.

enumerator kCMP_EdgeRising
Interrupt on falling edge.

enumerator kCMP_EdgeFalling
Interrupt on rising edge.

enumerator kCMP_EdgeRisingFalling
Interrupt on both rising and falling edges.

enumerator kCMP_LevelDisable
Disable level interupt.

enumerator kCMP_LevelHigh
Interrupt on high level.

enumerator kCMP_LevelLow
Interrupt on low level.

enum _cmp_vref_source
CMP Voltage Reference source.

Values:

enumerator KCMP_VREFSourceVDDA
Select VDDA as VREF.

enumerator KCMP_VREFSourceInternalVREF
Select internal VREF as VREF.

enum _cmp_filtercgf_samplemode
CMP Filter sample mode.

Values:

enumerator kCMP_FilterSampleMode0
Bypass mode. Filtering is disabled.

enumerator kCMP_FilterSampleMode1
Filter 1 clock period.

enumerator kCMP_FilterSampleMode2
Filter 2 clock period.

enumerator kCMP_FilterSampleMode3
Filter 3 clock period.

2.7. CMP: Analog Comparator Driver 125

MCUXpresso SDK Documentation, Release 25.09.00

enum _cmp_filtercgf_clkdiv
CMP Filter clock divider.

Values:

enumerator kCMP_FilterClockDivide1
Filter clock period duration equals 1 analog comparator clock period.

enumerator kCMP_FilterClockDivide2
Filter clock period duration equals 2 analog comparator clock period.

enumerator kCMP_FilterClockDivide4
Filter clock period duration equals 4 analog comparator clock period.

enumerator kCMP_FilterClockDivide8
Filter clock period duration equals 8 analog comparator clock period.

enumerator kCMP_FilterClockDivide16
Filter clock period duration equals 16 analog comparator clock period.

enumerator kCMP_FilterClockDivide32
Filter clock period duration equals 32 analog comparator clock period.

enumerator kCMP_FilterClockDivide64
Filter clock period duration equals 64 analog comparator clock period.

typedef enum _cmp_vref_source cmp_vref_source_t
CMP Voltage Reference source.

typedef struct _cmp_vref_config cmp_vref_config_t

typedef enum _cmp_filtercgf_samplemode cmp_filtercgf_samplemode_t
CMP Filter sample mode.

typedef enum _cmp_filtercgf_clkdiv cmp_filtercgf_clkdiv_t
CMP Filter clock divider.

typedef struct _cmp_config cmp_config_t
CMP configuration structure.

struct _cmp_vref_config
#include <fsl_cmp.h>

Public Members

cmp_vref_source_t vrefSource
Reference voltage source.

uint8_t vrefValue
Reference voltage step. Available range is 0-31. Per step equals to VREFINPUT/31.

struct _cmp_config
#include <fsl_cmp.h> CMP configuration structure.

Public Members

bool enableHysteresis
Enable hysteresis.

bool enableLowPower
Enable low power mode.

126 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

2.8 CRC: Cyclic Redundancy Check Driver

FSL_CRC_DRIVER_VERSION
CRC driver version. Version 2.1.1.

Current version: 2.1.1

Change log:

• Version 2.0.0

– initial version

• Version 2.0.1

– add explicit type cast when writing to WR_DATA

• Version 2.0.2

– Fix MISRA issue

• Version 2.1.0

– Add CRC_WriteSeed function

• Version 2.1.1

– Fix MISRA issue

enum _crc_polynomial
CRC polynomials to use.

Values:

enumerator kCRC_Polynomial_CRC_CCITT
x^16+x^12+x^5+1

enumerator kCRC_Polynomial_CRC_16
x^16+x^15+x^2+1

enumerator kCRC_Polynomial_CRC_32
x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1

typedef enum _crc_polynomial crc_polynomial_t
CRC polynomials to use.

typedef struct _crc_config crc_config_t
CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

void CRC_Init(CRC_Type *base, const crc_config_t *config)
Enables and configures the CRC peripheral module.

This functions enables the CRC peripheral clock in the LPC SYSCON block. It also configures
the CRC engine and starts checksum computation by writing the seed.

Parameters
• base – CRC peripheral address.

• config – CRC module configuration structure.

static inline void CRC_Deinit(CRC_Type *base)
Disables the CRC peripheral module.

This functions disables the CRC peripheral clock in the LPC SYSCON block.

Parameters

2.8. CRC: Cyclic Redundancy Check Driver 127

MCUXpresso SDK Documentation, Release 25.09.00

• base – CRC peripheral address.

void CRC_Reset(CRC_Type *base)
resets CRC peripheral module.

Parameters
• base – CRC peripheral address.

void CRC_WriteSeed(CRC_Type *base, uint32_t seed)
Write seed to CRC peripheral module.

Parameters
• base – CRC peripheral address.

• seed – CRC Seed value.

void CRC_GetDefaultConfig(crc_config_t *config)
Loads default values to CRC protocol configuration structure.

Loads default values to CRC protocol configuration structure. The default values are:

config->polynomial = kCRC_Polynomial_CRC_CCITT;
config->reverseIn = false;
config->complementIn = false;
config->reverseOut = false;
config->complementOut = false;
config->seed = 0xFFFFU;

Parameters
• config – CRC protocol configuration structure

void CRC_GetConfig(CRC_Type *base, crc_config_t *config)
Loads actual values configured in CRC peripheral to CRC protocol configuration structure.

The values, including seed, can be used to resume CRC calculation later.

Parameters
• base – CRC peripheral address.

• config – CRC protocol configuration structure

void CRC_WriteData(CRC_Type *base, const uint8_t *data, size_t dataSize)
Writes data to the CRC module.

Writes input data buffer bytes to CRC data register.

Parameters
• base – CRC peripheral address.

• data – Input data stream, MSByte in data[0].

• dataSize – Size of the input data buffer in bytes.

static inline uint32_t CRC_Get32bitResult(CRC_Type *base)
Reads 32-bit checksum from the CRC module.

Reads CRC data register.

Parameters
• base – CRC peripheral address.

Returns
final 32-bit checksum, after configured bit reverse and complement opera-
tions.

128 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint16_t CRC_Get16bitResult(CRC_Type *base)
Reads 16-bit checksum from the CRC module.

Reads CRC data register.

Parameters
• base – CRC peripheral address.

Returns
final 16-bit checksum, after configured bit reverse and complement opera-
tions.

CRC_DRIVER_USE_CRC16_CCITT_FALSE_AS_DEFAULT
Default configuration structure filled by CRC_GetDefaultConfig(). Uses CRC-16/CCITT-FALSE
as default.

struct _crc_config
#include <fsl_crc.h> CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

Public Members

crc_polynomial_t polynomial
CRC polynomial.

bool reverseIn
Reverse bits on input.

bool complementIn
Perform 1’s complement on input.

bool reverseOut
Reverse bits on output.

bool complementOut
Perform 1’s complement on output.

uint32_t seed
Starting checksum value.

2.9 CTIMER: Standard counter/timers

void CTIMER_Init(CTIMER_Type *base, const ctimer_config_t *config)
Ungates the clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application before using the driver.

Parameters
• base – Ctimer peripheral base address

• config – Pointer to the user configuration structure.

2.9. CTIMER: Standard counter/timers 129

MCUXpresso SDK Documentation, Release 25.09.00

void CTIMER_Deinit(CTIMER_Type *base)
Gates the timer clock.

Parameters
• base – Ctimer peripheral base address

void CTIMER_GetDefaultConfig(ctimer_config_t *config)
Fills in the timers configuration structure with the default settings.

The default values are:

config->mode = kCTIMER_TimerMode;
config->input = kCTIMER_Capture_0;
config->prescale = 0;

Parameters
• config – Pointer to the user configuration structure.

status_t CTIMER_SetupPwmPeriod(CTIMER_Type *base, const ctimer_match_t
pwmPeriodChannel, ctimer_match_tmatchChannel,
uint32_t pwmPeriod, uint32_t pulsePeriod, bool enableInt)

Configures the PWM signal parameters.

Enables PWM mode on the match channel passed in and will then setup the match value
and other match parameters to generate a PWM signal. This function can manually assign
the specified channel to set the PWM cycle.

Note: When setting PWM output frommultiple output pins, all should use the same PWM
period

Parameters
• base – Ctimer peripheral base address

• pwmPeriodChannel – Specify the channel to control the PWM period

• matchChannel – Match pin to be used to output the PWM signal

• pwmPeriod – PWM period match value

• pulsePeriod – Pulse width match value

• enableInt – Enable interrupt when the timer value reaches thematch value
of the PWM pulse, if it is 0 then no interrupt will be generated.

Returns
kStatus_Success on success kStatus_Fail If matchChannel is equal to pwmPeri-
odChannel; this channel is reserved to set the PWM cycle If PWM pulse width
register value is larger than 0xFFFFFFFF.

status_t CTIMER_SetupPwm(CTIMER_Type *base, const ctimer_match_t pwmPeriodChannel,
ctimer_match_tmatchChannel, uint8_t dutyCyclePercent, uint32_t
pwmFreq_Hz, uint32_t srcClock_Hz, bool enableInt)

Configures the PWM signal parameters.

Enables PWM mode on the match channel passed in and will then setup the match value
and other match parameters to generate a PWM signal. This function can manually assign
the specified channel to set the PWM cycle.

130 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

Note: When setting PWM output frommultiple output pins, all should use the same PWM
frequency. Please use CTIMER_SetupPwmPeriod to set up the PWMwith high resolution.

Parameters
• base – Ctimer peripheral base address

• pwmPeriodChannel – Specify the channel to control the PWM period

• matchChannel – Match pin to be used to output the PWM signal

• dutyCyclePercent – PWMpulse width; the value should be between 0 to 100

• pwmFreq_Hz – PWM signal frequency in Hz

• srcClock_Hz – Timer counter clock in Hz

• enableInt – Enable interrupt when the timer value reaches thematch value
of the PWM pulse, if it is 0 then no interrupt will be generated.

static inline void CTIMER_UpdatePwmPulsePeriod(CTIMER_Type *base, ctimer_match_t
matchChannel, uint32_t pulsePeriod)

Updates the pulse period of an active PWM signal.

Parameters
• base – Ctimer peripheral base address

• matchChannel – Match pin to be used to output the PWM signal

• pulsePeriod – New PWM pulse width match value

status_t CTIMER_UpdatePwmDutycycle(CTIMER_Type *base, const ctimer_match_t
pwmPeriodChannel, ctimer_match_tmatchChannel,
uint8_t dutyCyclePercent)

Updates the duty cycle of an active PWM signal.

Note: Please use CTIMER_SetupPwmPeriod to update the PWMwith high resolution. This
function can manually assign the specified channel to set the PWM cycle.

Parameters
• base – Ctimer peripheral base address

• pwmPeriodChannel – Specify the channel to control the PWM period

• matchChannel – Match pin to be used to output the PWM signal

• dutyCyclePercent – New PWM pulse width; the value should be between 0
to 100

Returns
kStatus_Success on success kStatus_Fail If PWM pulse width register value is
larger than 0xFFFFFFFF.

static inline void CTIMER_EnableInterrupts(CTIMER_Type *base, uint32_t mask)
Enables the selected Timer interrupts.

Parameters
• base – Ctimer peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration ctimer_interrupt_enable_t

2.9. CTIMER: Standard counter/timers 131

MCUXpresso SDK Documentation, Release 25.09.00

static inline void CTIMER_DisableInterrupts(CTIMER_Type *base, uint32_t mask)
Disables the selected Timer interrupts.

Parameters
• base – Ctimer peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration ctimer_interrupt_enable_t

static inline uint32_t CTIMER_GetEnabledInterrupts(CTIMER_Type *base)
Gets the enabled Timer interrupts.

Parameters
• base – Ctimer peripheral base address

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
ctimer_interrupt_enable_t

static inline uint32_t CTIMER_GetStatusFlags(CTIMER_Type *base)
Gets the Timer status flags.

Parameters
• base – Ctimer peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
ctimer_status_flags_t

static inline void CTIMER_ClearStatusFlags(CTIMER_Type *base, uint32_t mask)
Clears the Timer status flags.

Parameters
• base – Ctimer peripheral base address

• mask – The status flags to clear. This is a logical OR of members of the
enumeration ctimer_status_flags_t

static inline void CTIMER_StartTimer(CTIMER_Type *base)
Starts the Timer counter.

Parameters
• base – Ctimer peripheral base address

static inline void CTIMER_StopTimer(CTIMER_Type *base)
Stops the Timer counter.

Parameters
• base – Ctimer peripheral base address

FSL_CTIMER_DRIVER_VERSION
Version 2.3.3

enum _ctimer_capture_channel
List of Timer capture channels.

Values:

enumerator kCTIMER_Capture_0
Timer capture channel 0

132 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCTIMER_Capture_1
Timer capture channel 1

enumerator kCTIMER_Capture_3
Timer capture channel 3

enum _ctimer_capture_edge
List of capture edge options.

Values:

enumerator kCTIMER_Capture_RiseEdge
Capture on rising edge

enumerator kCTIMER_Capture_FallEdge
Capture on falling edge

enumerator kCTIMER_Capture_BothEdge
Capture on rising and falling edge

enum _ctimer_match
List of Timer match registers.

Values:

enumerator kCTIMER_Match_0
Timer match register 0

enumerator kCTIMER_Match_1
Timer match register 1

enumerator kCTIMER_Match_2
Timer match register 2

enumerator kCTIMER_Match_3
Timer match register 3

enum _ctimer_external_match
List of external match.

Values:

enumerator kCTIMER_External_Match_0
External match 0

enumerator kCTIMER_External_Match_1
External match 1

enumerator kCTIMER_External_Match_2
External match 2

enumerator kCTIMER_External_Match_3
External match 3

enum _ctimer_match_output_control
List of output control options.

Values:

enumerator kCTIMER_Output_NoAction
No action is taken

enumerator kCTIMER_Output_Clear
Clear the EM bit/output to 0

2.9. CTIMER: Standard counter/timers 133

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCTIMER_Output_Set
Set the EM bit/output to 1

enumerator kCTIMER_Output_Toggle
Toggle the EM bit/output

enum _ctimer_timer_mode
List of Timer modes.

Values:

enumerator kCTIMER_TimerMode

enumerator kCTIMER_IncreaseOnRiseEdge

enumerator kCTIMER_IncreaseOnFallEdge

enumerator kCTIMER_IncreaseOnBothEdge

enum _ctimer_interrupt_enable
List of Timer interrupts.

Values:

enumerator kCTIMER_Match0InterruptEnable
Match 0 interrupt

enumerator kCTIMER_Match1InterruptEnable
Match 1 interrupt

enumerator kCTIMER_Match2InterruptEnable
Match 2 interrupt

enumerator kCTIMER_Match3InterruptEnable
Match 3 interrupt

enum _ctimer_status_flags
List of Timer flags.

Values:

enumerator kCTIMER_Match0Flag
Match 0 interrupt flag

enumerator kCTIMER_Match1Flag
Match 1 interrupt flag

enumerator kCTIMER_Match2Flag
Match 2 interrupt flag

enumerator kCTIMER_Match3Flag
Match 3 interrupt flag

enum ctimer_callback_type_t
Callback type when registering for a callback. When registering a callback an array of
function pointers is passed the size could be 1 or 8, the callback type will tell that.

Values:

enumerator kCTIMER_SingleCallback
Single Callback type where there is only one callback for the timer. based on the status
flags different channels needs to be handled differently

134 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCTIMER_MultipleCallback
Multiple Callback type where there can be 8 valid callbacks, one per channel. for both
match/capture

typedef enum _ctimer_capture_channel ctimer_capture_channel_t
List of Timer capture channels.

typedef enum _ctimer_capture_edge ctimer_capture_edge_t
List of capture edge options.

typedef enum _ctimer_match ctimer_match_t
List of Timer match registers.

typedef enum _ctimer_external_match ctimer_external_match_t
List of external match.

typedef enum _ctimer_match_output_control ctimer_match_output_control_t
List of output control options.

typedef enum _ctimer_timer_mode ctimer_timer_mode_t
List of Timer modes.

typedef enum _ctimer_interrupt_enable ctimer_interrupt_enable_t
List of Timer interrupts.

typedef enum _ctimer_status_flags ctimer_status_flags_t
List of Timer flags.

typedef void (*ctimer_callback_t)(uint32_t flags)

typedef struct _ctimer_match_config ctimer_match_config_t
Match configuration.

This structure holds the configuration settings for each match register.

typedef struct _ctimer_config ctimer_config_t
Timer configuration structure.

This structure holds the configuration settings for the Timer peripheral. To initialize this
structure to reasonable defaults, call the CTIMER_GetDefaultConfig() function and pass a
pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

void CTIMER_SetupMatch(CTIMER_Type *base, ctimer_match_tmatchChannel, const
ctimer_match_config_t *config)

Setup the match register.

User configuration is used to setup the match value and action to be taken when a match
occurs.

Parameters
• base – Ctimer peripheral base address

• matchChannel – Match register to configure

• config – Pointer to the match configuration structure

uint32_t CTIMER_GetOutputMatchStatus(CTIMER_Type *base, uint32_t matchChannel)
Get the status of output match.

This function gets the status of output MAT, whether or not this output is connected to a
pin. This status is driven to the MAT pins if the match function is selected via IOCON. 0 =
LOW. 1 = HIGH.

2.9. CTIMER: Standard counter/timers 135

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• base – Ctimer peripheral base address

• matchChannel – External match channel, user can obtain the status of mul-
tiple match channels at the same time by using the logic of “|” enumera-
tion ctimer_external_match_t

Returns
The mask of external match channel status flags. Users need to use the
_ctimer_external_match type to decode the return variables.

void CTIMER_SetupCapture(CTIMER_Type *base, ctimer_capture_channel_t capture,
ctimer_capture_edge_t edge, bool enableInt)

Setup the capture.

Parameters
• base – Ctimer peripheral base address

• capture – Capture channel to configure

• edge – Edge on the channel that will trigger a capture

• enableInt – Flag to enable channel interrupts, if enabled then the registered
call back is called upon capture

static inline uint32_t CTIMER_GetTimerCountValue(CTIMER_Type *base)
Get the timer count value from TC register.

Parameters
• base – Ctimer peripheral base address.

Returns
return the timer count value.

void CTIMER_RegisterCallBack(CTIMER_Type *base, ctimer_callback_t *cb_func,
ctimer_callback_type_t cb_type)

Register callback.

This function configures CTimer Callback in following modes:

• Single Callback: cb_func should be pointer to callback function pointer
For example: ctimer_callback_t ctimer_callback = pwm_match_callback;
CTIMER_RegisterCallBack(CTIMER, &ctimer_callback, kCTIMER_SingleCallback);

• Multiple Callback: cb_func should be pointer to array of callback func-
tion pointers Each element corresponds to Interrupt Flag in IR reg-
ister. For example: ctimer_callback_t ctimer_callback_table[] = {
ctimer_match0_callback, NULL, NULL, ctimer_match3_callback, NULL, NULL,
NULL, NULL}; CTIMER_RegisterCallBack(CTIMER, &ctimer_callback_table[0], kC-
TIMER_MultipleCallback);

Parameters
• base – Ctimer peripheral base address

• cb_func – Pointer to callback function pointer

• cb_type – callback function type, singular or multiple

static inline void CTIMER_Reset(CTIMER_Type *base)
Reset the counter.

The timer counter and prescale counter are reset on the next positive edge of the APB clock.

Parameters

136 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

• base – Ctimer peripheral base address

static inline void CTIMER_SetPrescale(CTIMER_Type *base, uint32_t prescale)
Setup the timer prescale value.

Specifies the maximum value for the Prescale Counter.

Parameters
• base – Ctimer peripheral base address

• prescale – Prescale value

static inline uint32_t CTIMER_GetCaptureValue(CTIMER_Type *base, ctimer_capture_channel_t
capture)

Get capture channel value.

Get the counter/timer value on the corresponding capture channel.

Parameters
• base – Ctimer peripheral base address

• capture – Select capture channel

Returns
The timer count capture value.

static inline void CTIMER_EnableResetMatchChannel(CTIMER_Type *base, ctimer_match_t
match, bool enable)

Enable reset match channel.

Set the specified match channel reset operation.

Parameters
• base – Ctimer peripheral base address

• match – match channel used

• enable – Enable match channel reset operation.

static inline void CTIMER_EnableStopMatchChannel(CTIMER_Type *base, ctimer_match_t
match, bool enable)

Enable stop match channel.

Set the specified match channel stop operation.

Parameters
• base – Ctimer peripheral base address.

• match – match channel used.

• enable – Enable match channel stop operation.

static inline void CTIMER_EnableMatchChannelReload(CTIMER_Type *base, ctimer_match_t
match, bool enable)

Enable reload channel falling edge.

Enable the specified match channel reload match shadow value.

Parameters
• base – Ctimer peripheral base address.

• match – match channel used.

• enable – Enable .

2.9. CTIMER: Standard counter/timers 137

MCUXpresso SDK Documentation, Release 25.09.00

static inline void CTIMER_EnableRisingEdgeCapture(CTIMER_Type *base,
ctimer_capture_channel_t capture, bool
enable)

Enable capture channel rising edge.

Sets the specified capture channel for rising edge capture.

Parameters
• base – Ctimer peripheral base address.

• capture – capture channel used.

• enable – Enable rising edge capture.

static inline void CTIMER_EnableFallingEdgeCapture(CTIMER_Type *base,
ctimer_capture_channel_t capture, bool
enable)

Enable capture channel falling edge.

Sets the specified capture channel for falling edge capture.

Parameters
• base – Ctimer peripheral base address.

• capture – capture channel used.

• enable – Enable falling edge capture.

static inline void CTIMER_SetShadowValue(CTIMER_Type *base, ctimer_match_tmatch,
uint32_t matchvalue)

Set the specified match shadow channel.

Parameters
• base – Ctimer peripheral base address.

• match – match channel used.

• matchvalue – Reload the value of the corresponding match register.

struct _ctimer_match_config
#include <fsl_ctimer.h>Match configuration.

This structure holds the configuration settings for each match register.

Public Members

uint32_t matchValue
This is stored in the match register

bool enableCounterReset
true: Match will reset the counter false: Match will not reser the counter

bool enableCounterStop
true: Match will stop the counter false: Match will not stop the counter

ctimer_match_output_control_t outControl
Action to be taken on a match on the EM bit/output

bool outPinInitState
Initial value of the EM bit/output

bool enableInterrupt
true: Generate interrupt upon match false: Do not generate interrupt on match

138 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

struct _ctimer_config
#include <fsl_ctimer.h> Timer configuration structure.

This structure holds the configuration settings for the Timer peripheral. To initialize this
structure to reasonable defaults, call the CTIMER_GetDefaultConfig() function and pass a
pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

Public Members

ctimer_timer_mode_t mode
Timer mode

ctimer_capture_channel_t input
Input channel to increment the timer, used only in timer modes that rely on this input
signal to increment TC

uint32_t prescale
Prescale value

2.10 DMA: Direct Memory Access Controller Driver

void DMA_Init(DMA_Type *base)
Initializes DMA peripheral.

This function enable the DMA clock, set descriptor table and enable DMA peripheral.

Parameters
• base – DMA peripheral base address.

void DMA_Deinit(DMA_Type *base)
Deinitializes DMA peripheral.

This function gates the DMA clock.

Parameters
• base – DMA peripheral base address.

void DMA_InstallDescriptorMemory(DMA_Type *base, void *addr)
Install DMA descriptor memory.

This function used to register DMA descriptor memory for linked transfer, a typical case
is ping pong transfer which will request more than one DMA descriptor memory space,
althrough current DMA driver has a default DMA descriptor buffer, but it support one DMA
descriptor for one channel only.

Parameters
• base – DMA base address.

• addr – DMA descriptor address

static inline bool DMA_ChannelIsActive(DMA_Type *base, uint32_t channel)
Return whether DMA channel is processing transfer.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

2.10. DMA: Direct Memory Access Controller Driver 139

MCUXpresso SDK Documentation, Release 25.09.00

Returns
True for active state, false otherwise.

static inline bool DMA_ChannelIsBusy(DMA_Type *base, uint32_t channel)
Return whether DMA channel is busy.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

Returns
True for busy state, false otherwise.

static inline void DMA_EnableChannelInterrupts(DMA_Type *base, uint32_t channel)
Enables the interrupt source for the DMA transfer.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

static inline void DMA_DisableChannelInterrupts(DMA_Type *base, uint32_t channel)
Disables the interrupt source for the DMA transfer.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

static inline void DMA_EnableChannel(DMA_Type *base, uint32_t channel)
Enable DMA channel.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

static inline void DMA_DisableChannel(DMA_Type *base, uint32_t channel)
Disable DMA channel.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

static inline void DMA_EnableChannelPeriphRq(DMA_Type *base, uint32_t channel)
Set PERIPHREQEN of channel configuration register.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

static inline void DMA_DisableChannelPeriphRq(DMA_Type *base, uint32_t channel)
Get PERIPHREQEN value of channel configuration register.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

Returns
True for enabled PeriphRq, false for disabled.

140 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

void DMA_ConfigureChannelTrigger(DMA_Type *base, uint32_t channel, dma_channel_trigger_t
*trigger)

Set trigger settings of DMA channel.

Deprecated:
Do not use this function. It has been superceded by DMA_SetChannelConfig.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

• trigger – trigger configuration.

void DMA_SetChannelConfig(DMA_Type *base, uint32_t channel, dma_channel_trigger_t
*trigger, bool isPeriph)

set channel config.

This function provide a interface to configure channel configuration reisters.

Parameters
• base – DMA base address.

• channel – DMA channel number.

• trigger – channel configurations structure.

• isPeriph – true is periph request, false is not.

static inline uint32_t DMA_SetChannelXferConfig(bool reload, bool clrTrig, bool intA, bool intB,
uint8_t width, uint8_t srcInc, uint8_t dstInc,
uint32_t bytes)

DMA channel xfer transfer configurations.

Parameters
• reload – true is reload link descriptor after current exhaust, false is not

• clrTrig – true is clear trigger status, wait software trigger, false is not

• intA – enable interruptA

• intB – enable interruptB

• width – transfer width

• srcInc – source address interleave size

• dstInc – destination address interleave size

• bytes – transfer bytes

Returns
The vaule of xfer config

uint32_t DMA_GetRemainingBytes(DMA_Type *base, uint32_t channel)
Gets the remaining bytes of the current DMA descriptor transfer.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

Returns
The number of bytes which have not been transferred yet.

2.10. DMA: Direct Memory Access Controller Driver 141

MCUXpresso SDK Documentation, Release 25.09.00

static inline void DMA_SetChannelPriority(DMA_Type *base, uint32_t channel, dma_priority_t
priority)

Set priority of channel configuration register.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

• priority – Channel priority value.

static inline dma_priority_t DMA_GetChannelPriority(DMA_Type *base, uint32_t channel)
Get priority of channel configuration register.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

Returns
Channel priority value.

static inline void DMA_SetChannelConfigValid(DMA_Type *base, uint32_t channel)
Set channel configuration valid.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

static inline void DMA_DoChannelSoftwareTrigger(DMA_Type *base, uint32_t channel)
Do software trigger for the channel.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

static inline void DMA_LoadChannelTransferConfig(DMA_Type *base, uint32_t channel, uint32_t
xfer)

Load channel transfer configurations.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

• xfer – transfer configurations.

void DMA_CreateDescriptor(dma_descriptor_t *desc, dma_xfercfg_t *xfercfg, void *srcAddr, void
*dstAddr, void *nextDesc)

Create application specific DMA descriptor to be used in a chain in transfer.

Deprecated:
Do not use this function. It has been superceded by DMA_SetupDescriptor.

Parameters
• desc – DMA descriptor address.

• xfercfg – Transfer configuration for DMA descriptor.

• srcAddr – Address of last item to transmit

142 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

• dstAddr – Address of last item to receive.

• nextDesc – Address of next descriptor in chain.

void DMA_SetupDescriptor(dma_descriptor_t *desc, uint32_t xfercfg, void *srcStartAddr, void
*dstStartAddr, void *nextDesc)

setup dma descriptor

Note: This function do not support configure wrap descriptor.

Parameters
• desc – DMA descriptor address.

• xfercfg – Transfer configuration for DMA descriptor.

• srcStartAddr – Start address of source address.

• dstStartAddr – Start address of destination address.

• nextDesc – Address of next descriptor in chain.

void DMA_SetupChannelDescriptor(dma_descriptor_t *desc, uint32_t xfercfg, void *srcStartAddr,
void *dstStartAddr, void *nextDesc, dma_burst_wrap_t
wrapType, uint32_t burstSize)

setup dma channel descriptor

Note: This function support configure wrap descriptor.

Parameters
• desc – DMA descriptor address.

• xfercfg – Transfer configuration for DMA descriptor.

• srcStartAddr – Start address of source address.

• dstStartAddr – Start address of destination address.

• nextDesc – Address of next descriptor in chain.

• wrapType – burst wrap type.

• burstSize – burst size, reference _dma_burst_size.

void DMA_LoadChannelDescriptor(DMA_Type *base, uint32_t channel, dma_descriptor_t
*descriptor)

load channel transfer decriptor.

This function can be used to load desscriptor to driver internal channel descriptor that is
used to start DMA transfer, the head descriptor table is defined in DMA driver, it is useful
for the case:

a. for the polling transfer, application can allocate a local descriptor memory table to
prepare a descriptor firstly and then call this api to load the configured descriptor to
driver descriptor table.

DMA_Init(DMA0);
DMA_EnableChannel(DMA0, DEMO_DMA_CHANNEL);
DMA_SetupDescriptor(desc, xferCfg, s_srcBuffer, &s_destBuffer[0], NULL);
DMA_LoadChannelDescriptor(DMA0, DEMO_DMA_CHANNEL, (dma_descriptor_t *)desc);
DMA_DoChannelSoftwareTrigger(DMA0, DEMO_DMA_CHANNEL);
while(DMA_ChannelIsBusy(DMA0, DEMO_DMA_CHANNEL))
{}

Parameters
• base – DMA base address.

2.10. DMA: Direct Memory Access Controller Driver 143

MCUXpresso SDK Documentation, Release 25.09.00

• channel – DMA channel.

• descriptor – configured DMA descriptor.

void DMA_AbortTransfer(dma_handle_t *handle)
Abort running transfer by handle.

This function aborts DMA transfer specified by handle.

Parameters
• handle – DMA handle pointer.

void DMA_CreateHandle(dma_handle_t *handle, DMA_Type *base, uint32_t channel)
Creates the DMA handle.

This function is called if using transaction API for DMA. This function initializes the internal
state of DMA handle.

Parameters
• handle – DMA handle pointer. The DMA handle stores callback function
and parameters.

• base – DMA peripheral base address.

• channel – DMA channel number.

void DMA_SetCallback(dma_handle_t *handle, dma_callback callback, void *userData)
Installs a callback function for the DMA transfer.

This callback is called in DMA IRQ handler. Use the callback to do something after the
current major loop transfer completes.

Parameters
• handle – DMA handle pointer.

• callback – DMA callback function pointer.

• userData – Parameter for callback function.

void DMA_PrepareTransfer(dma_transfer_config_t *config, void *srcAddr, void *dstAddr,
uint32_t byteWidth, uint32_t transferBytes, dma_transfer_type_t
type, void *nextDesc)

Prepares the DMA transfer structure.

Deprecated:
Do not use this function. It has been superceded by DMA_PrepareChannelTransfer.
This function prepares the transfer configuration structure according to the user input.

Note: The data address and the data width must be consistent. For example, if the SRC is
4 bytes, so the source address must be 4 bytes aligned, or it shall result in source address
error(SAE).

Parameters
• config – The user configuration structure of type dma_transfer_t.

• srcAddr – DMA transfer source address.

• dstAddr – DMA transfer destination address.

• byteWidth – DMA transfer destination address width(bytes).

• transferBytes – DMA transfer bytes to be transferred.

144 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

• type – DMA transfer type.

• nextDesc – Chain custom descriptor to transfer.

void DMA_PrepareChannelTransfer(dma_channel_config_t *config, void *srcStartAddr, void
*dstStartAddr, uint32_t xferCfg, dma_transfer_type_t type,
dma_channel_trigger_t *trigger, void *nextDesc)

Prepare channel transfer configurations.

This function used to prepare channel transfer configurations.

Parameters
• config – Pointer to DMA channel transfer configuration structure.

• srcStartAddr – source start address.

• dstStartAddr – destination start address.

• xferCfg – xfer configuration, user can reference DMA_CHANNEL_XFER
about to how to get xferCfg value.

• type – transfer type.

• trigger – DMA channel trigger configurations.

• nextDesc – address of next descriptor.

status_t DMA_SubmitTransfer(dma_handle_t *handle, dma_transfer_config_t *config)
Submits the DMA transfer request.

Deprecated:
Do not use this function. It has been superceded by DMA_SubmitChannelTransfer.

This function submits the DMA transfer request according to the transfer configuration
structure. If the user submits the transfer request repeatedly, this function packs an un-
processed request as a TCD and enables scatter/gather feature to process it in the next time.

Parameters
• handle – DMA handle pointer.

• config – Pointer to DMA transfer configuration structure.

Return values
• kStatus_DMA_Success – It means submit transfer request succeed.

• kStatus_DMA_QueueFull – It means TCD queue is full. Submit transfer re-
quest is not allowed.

• kStatus_DMA_Busy – It means the given channel is busy, need to submit
request later.

void DMA_SubmitChannelTransferParameter(dma_handle_t *handle, uint32_t xferCfg, void
*srcStartAddr, void *dstStartAddr, void *nextDesc)

Submit channel transfer paramter directly.

This function used to configue channel head descriptor that is used to start DMA transfer,
the head descriptor table is defined in DMA driver, it is useful for the case:

a. for the single transfer, application doesn’t need to allocate descriptor table, the head
descriptor can be used for it.

2.10. DMA: Direct Memory Access Controller Driver 145

MCUXpresso SDK Documentation, Release 25.09.00

DMA_SetChannelConfig(base, channel, trigger, isPeriph);
DMA_CreateHandle(handle, base, channel)
DMA_SubmitChannelTransferParameter(handle, DMA_CHANNEL_XFER(reload, clrTrig,␣

↪→intA, intB, width, srcInc, dstInc,
bytes), srcStartAddr, dstStartAddr, NULL);

DMA_StartTransfer(handle)

b. for the linked transfer, application should responsible for link descriptor, for example,
if 4 transfer is required, then application should prepare three descriptor table with
macro , the head descriptor in driver can be used for the first transfer descriptor.

define link descriptor table in application with macro
DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc[3]);

DMA_SetupDescriptor(nextDesc0, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc1);

DMA_SetupDescriptor(nextDesc1, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc2);

DMA_SetupDescriptor(nextDesc2, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, NULL);

DMA_SetChannelConfig(base, channel, trigger, isPeriph);
DMA_CreateHandle(handle, base, channel)
DMA_SubmitChannelTransferParameter(handle, DMA_CHANNEL_XFER(reload, clrTrig,␣

↪→intA, intB, width, srcInc, dstInc,
bytes), srcStartAddr, dstStartAddr, nextDesc0);

DMA_StartTransfer(handle);

Parameters
• handle – Pointer to DMA handle.

• xferCfg – xfer configuration, user can reference DMA_CHANNEL_XFER
about to how to get xferCfg value.

• srcStartAddr – source start address.

• dstStartAddr – destination start address.

• nextDesc – address of next descriptor.

void DMA_SubmitChannelDescriptor(dma_handle_t *handle, dma_descriptor_t *descriptor)
Submit channel descriptor.

This function used to configue channel head descriptor that is used to start DMA transfer,
the head descriptor table is defined in DMA driver, this functiono is typical for the ping
pong case:

a. for the ping pong case, application should responsible for the descriptor, for example,
application should prepare two descriptor table with macro.

define link descriptor table in application with macro
DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc[2]);

DMA_SetupDescriptor(nextDesc0, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc1);

DMA_SetupDescriptor(nextDesc1, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc0);

(continues on next page)

146 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
DMA_SetChannelConfig(base, channel, trigger, isPeriph);
DMA_CreateHandle(handle, base, channel)
DMA_SubmitChannelDescriptor(handle, nextDesc0);
DMA_StartTransfer(handle);

Parameters
• handle – Pointer to DMA handle.

• descriptor – descriptor to submit.

status_t DMA_SubmitChannelTransfer(dma_handle_t *handle, dma_channel_config_t *config)
Submits the DMA channel transfer request.

This function submits the DMA transfer request according to the transfer configuration
structure. If the user submits the transfer request repeatedly, this function packs an un-
processed request as a TCD and enables scatter/gather feature to process it in the next time.
It is used for the case:

a. for the single transfer, application doesn’t need to allocate descriptor table, the head
descriptor can be used for it.

DMA_CreateHandle(handle, base, channel)
DMA_PrepareChannelTransfer(config,srcStartAddr,dstStartAddr,xferCfg,type,trigger,NULL);
DMA_SubmitChannelTransfer(handle, config)
DMA_StartTransfer(handle)

b. for the linked transfer, application should responsible for link descriptor, for example,
if 4 transfer is required, then application should prepare three descriptor table with
macro , the head descriptor in driver can be used for the first transfer descriptor.

define link descriptor table in application with macro
DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc);
DMA_SetupDescriptor(nextDesc0, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,

↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc1);

DMA_SetupDescriptor(nextDesc1, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc2);

DMA_SetupDescriptor(nextDesc2, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, NULL);

DMA_CreateHandle(handle, base, channel)
DMA_PrepareChannelTransfer(config,srcStartAddr,dstStartAddr,xferCfg,type,trigger,

↪→nextDesc0);
DMA_SubmitChannelTransfer(handle, config)
DMA_StartTransfer(handle)

c. for the ping pong case, application should responsible for link descriptor, for example,
application should prepare two descriptor table with macro , the head descriptor in
driver can be used for the first transfer descriptor.

define link descriptor table in application with macro
DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc);

DMA_SetupDescriptor(nextDesc0, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc1);

DMA_SetupDescriptor(nextDesc1, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc0);

(continues on next page)

2.10. DMA: Direct Memory Access Controller Driver 147

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
DMA_CreateHandle(handle, base, channel)
DMA_PrepareChannelTransfer(config,srcStartAddr,dstStartAddr,xferCfg,type,trigger,

↪→nextDesc0);
DMA_SubmitChannelTransfer(handle, config)
DMA_StartTransfer(handle)

Parameters
• handle – DMA handle pointer.

• config – Pointer to DMA transfer configuration structure.

Return values
• kStatus_DMA_Success – It means submit transfer request succeed.

• kStatus_DMA_QueueFull – It means TCD queue is full. Submit transfer re-
quest is not allowed.

• kStatus_DMA_Busy – It means the given channel is busy, need to submit
request later.

void DMA_StartTransfer(dma_handle_t *handle)
DMA start transfer.

This function enables the channel request. User can call this function after submitting the
transfer request It will trigger transfer start with software trigger only when hardware
trigger is not used.

Parameters
• handle – DMA handle pointer.

void DMA_IRQHandle(DMA_Type *base)
DMA IRQ handler for descriptor transfer complete.

This function clears the channel major interrupt flag and call the callback function if it is
not NULL.

Parameters
• base – DMA base address.

FSL_DMA_DRIVER_VERSION
DMA driver version.

Version 2.5.3.

_dma_transfer_status DMA transfer status

Values:

enumerator kStatus_DMA_Busy
Channel is busy and can’t handle the transfer request.

_dma_addr_interleave_size dma address interleave size

Values:

enumerator kDMA_AddressInterleave0xWidth
dma source/destination address no interleave

enumerator kDMA_AddressInterleave1xWidth
dma source/destination address interleave 1xwidth

148 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kDMA_AddressInterleave2xWidth
dma source/destination address interleave 2xwidth

enumerator kDMA_AddressInterleave4xWidth
dma source/destination address interleave 3xwidth

_dma_transfer_width dma transfer width

Values:

enumerator kDMA_Transfer8BitWidth
dma channel transfer bit width is 8 bit

enumerator kDMA_Transfer16BitWidth
dma channel transfer bit width is 16 bit

enumerator kDMA_Transfer32BitWidth
dma channel transfer bit width is 32 bit

enum _dma_priority
DMA channel priority.

Values:

enumerator kDMA_ChannelPriority0
Highest channel priority - priority 0

enumerator kDMA_ChannelPriority1
Channel priority 1

enumerator kDMA_ChannelPriority2
Channel priority 2

enumerator kDMA_ChannelPriority3
Channel priority 3

enumerator kDMA_ChannelPriority4
Channel priority 4

enumerator kDMA_ChannelPriority5
Channel priority 5

enumerator kDMA_ChannelPriority6
Channel priority 6

enumerator kDMA_ChannelPriority7
Lowest channel priority - priority 7

enum _dma_int
DMA interrupt flags.

Values:

enumerator kDMA_IntA
DMA interrupt flag A

enumerator kDMA_IntB
DMA interrupt flag B

enumerator kDMA_IntError
DMA interrupt flag error

2.10. DMA: Direct Memory Access Controller Driver 149

MCUXpresso SDK Documentation, Release 25.09.00

enum _dma_trigger_type
DMA trigger type.

Values:

enumerator kDMA_NoTrigger
Trigger is disabled

enumerator kDMA_LowLevelTrigger
Low level active trigger

enumerator kDMA_HighLevelTrigger
High level active trigger

enumerator kDMA_FallingEdgeTrigger
Falling edge active trigger

enumerator kDMA_RisingEdgeTrigger
Rising edge active trigger

_dma_burst_size DMA burst size

Values:

enumerator kDMA_BurstSize1
burst size 1 transfer

enumerator kDMA_BurstSize2
burst size 2 transfer

enumerator kDMA_BurstSize4
burst size 4 transfer

enumerator kDMA_BurstSize8
burst size 8 transfer

enumerator kDMA_BurstSize16
burst size 16 transfer

enumerator kDMA_BurstSize32
burst size 32 transfer

enumerator kDMA_BurstSize64
burst size 64 transfer

enumerator kDMA_BurstSize128
burst size 128 transfer

enumerator kDMA_BurstSize256
burst size 256 transfer

enumerator kDMA_BurstSize512
burst size 512 transfer

enumerator kDMA_BurstSize1024
burst size 1024 transfer

enum _dma_trigger_burst
DMA trigger burst.

Values:

150 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kDMA_SingleTransfer
Single transfer

enumerator kDMA_LevelBurstTransfer
Burst transfer driven by level trigger

enumerator kDMA_EdgeBurstTransfer1
Perform 1 transfer by edge trigger

enumerator kDMA_EdgeBurstTransfer2
Perform 2 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer4
Perform 4 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer8
Perform 8 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer16
Perform 16 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer32
Perform 32 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer64
Perform 64 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer128
Perform 128 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer256
Perform 256 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer512
Perform 512 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer1024
Perform 1024 transfers by edge trigger

enum _dma_burst_wrap
DMA burst wrapping.

Values:

enumerator kDMA_NoWrap
Wrapping is disabled

enumerator kDMA_SrcWrap
Wrapping is enabled for source

enumerator kDMA_DstWrap
Wrapping is enabled for destination

enumerator kDMA_SrcAndDstWrap
Wrapping is enabled for source and destination

enum _dma_transfer_type
DMA transfer type.

Values:

enumerator kDMA_MemoryToMemory
Transfer from memory to memory (increment source and destination)

2.10. DMA: Direct Memory Access Controller Driver 151

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kDMA_PeripheralToMemory
Transfer from peripheral to memory (increment only destination)

enumerator kDMA_MemoryToPeripheral
Transfer from memory to peripheral (increment only source)

enumerator kDMA_StaticToStatic
Peripheral to static memory (do not increment source or destination)

typedef struct _dma_descriptor dma_descriptor_t
DMA descriptor structure.

typedef struct _dma_xfercfg dma_xfercfg_t
DMA transfer configuration.

typedef enum _dma_priority dma_priority_t
DMA channel priority.

typedef enum _dma_int dma_irq_t
DMA interrupt flags.

typedef enum _dma_trigger_type dma_trigger_type_t
DMA trigger type.

typedef enum _dma_trigger_burst dma_trigger_burst_t
DMA trigger burst.

typedef enum _dma_burst_wrap dma_burst_wrap_t
DMA burst wrapping.

typedef enum _dma_transfer_type dma_transfer_type_t
DMA transfer type.

typedef struct _dma_channel_trigger dma_channel_trigger_t
DMA channel trigger.

typedef struct _dma_channel_config dma_channel_config_t
DMA channel trigger.

typedef struct _dma_transfer_config dma_transfer_config_t
DMA transfer configuration.

typedef void (*dma_callback)(struct _dma_handle *handle, void *userData, bool transferDone,
uint32_t intmode)

Define Callback function for DMA.

typedef struct _dma_handle dma_handle_t
DMA transfer handle structure.

DMA_MAX_TRANSFER_COUNT
DMA max transfer size.

FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(x)
DMA channel numbers.

FSL_FEATURE_DMA_MAX_CHANNELS

FSL_FEATURE_DMA_ALL_CHANNELS

FSL_FEATURE_DMA_LINK_DESCRIPTOR_ALIGN_SIZE
DMA head link descriptor table align size.

152 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

DMA_ALLOCATE_HEAD_DESCRIPTORS(name, number)
DMA head descriptor table allocate macro To simplify user interface, this macro will help
allocate descriptor memory, user just need to provide the name and the number for the
allocate descriptor.

Parameters
• name – Allocate decriptor name.

• number – Number of descriptor to be allocated.

DMA_ALLOCATE_HEAD_DESCRIPTORS_AT_NONCACHEABLE(name, number)
DMA head descriptor table allocate macro at noncacheable section To simplify user inter-
face, this macro will help allocate descriptor memory at noncacheable section, user just
need to provide the name and the number for the allocate descriptor.

Parameters
• name – Allocate decriptor name.

• number – Number of descriptor to be allocated.

DMA_ALLOCATE_LINK_DESCRIPTORS(name, number)
DMA link descriptor table allocate macro To simplify user interface, this macro will help
allocate descriptor memory, user just need to provide the name and the number for the
allocate descriptor.

Parameters
• name – Allocate decriptor name.

• number – Number of descriptor to be allocated.

DMA_ALLOCATE_LINK_DESCRIPTORS_AT_NONCACHEABLE(name, number)
DMA link descriptor table allocate macro at noncacheable section To simplify user inter-
face, this macro will help allocate descriptor memory at noncacheable section, user just
need to provide the name and the number for the allocate descriptor.

Parameters
• name – Allocate decriptor name.

• number – Number of descriptor to be allocated.

DMA_ALLOCATE_DATA_TRANSFER_BUFFER(name, width)
DMA transfer buffer address need to align with the transfer width.

DMA_CHANNEL_GROUP(channel)

DMA_CHANNEL_INDEX(base, channel)

DMA_COMMON_REG_GET(base, channel, reg)
DMA linked descriptor address algin size.

DMA_COMMON_CONST_REG_GET(base, channel, reg)

DMA_COMMON_REG_SET(base, channel, reg, value)

DMA_DESCRIPTOR_END_ADDRESS(start, inc, bytes, width)
DMA descriptor end address calculate.

Parameters
• start – start address

• inc – address interleave size

• bytes – transfer bytes

2.10. DMA: Direct Memory Access Controller Driver 153

MCUXpresso SDK Documentation, Release 25.09.00

• width – transfer width

DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes)

struct _dma_descriptor
#include <fsl_dma.h> DMA descriptor structure.

Public Members

volatile uint32_t xfercfg
Transfer configuration

void *srcEndAddr
Last source address of DMA transfer

void *dstEndAddr
Last destination address of DMA transfer

void *linkToNextDesc
Address of next DMA descriptor in chain

struct _dma_xfercfg
#include <fsl_dma.h> DMA transfer configuration.

Public Members

bool valid
Descriptor is ready to transfer

bool reload
Reload channel configuration register after current descriptor is exhausted

bool swtrig
Perform software trigger. Transfer if fired when ‘valid’ is set

bool clrtrig
Clear trigger

bool intA
Raises IRQ when transfer is done and set IRQA status register flag

bool intB
Raises IRQ when transfer is done and set IRQB status register flag

uint8_t byteWidth
Byte width of data to transfer

uint8_t srcInc
Increment source address by ‘srcInc’ x ‘byteWidth’

uint8_t dstInc
Increment destination address by ‘dstInc’ x ‘byteWidth’

uint16_t transferCount
Number of transfers

struct _dma_channel_trigger
#include <fsl_dma.h> DMA channel trigger.

154 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

dma_trigger_type_t type
Select hardware trigger as edge triggered or level triggered.

dma_trigger_burst_t burst
Select whether hardware triggers cause a single or burst transfer.

dma_burst_wrap_t wrap
Select wrap type, source wrap or dest wrap, or both.

struct _dma_channel_config
#include <fsl_dma.h> DMA channel trigger.

Public Members

void *srcStartAddr
Source data address

void *dstStartAddr
Destination data address

void *nextDesc
Chain custom descriptor

uint32_t xferCfg
channel transfer configurations

dma_channel_trigger_t *trigger
DMA trigger type

bool isPeriph
select the request type

struct _dma_transfer_config
#include <fsl_dma.h> DMA transfer configuration.

Public Members

uint8_t *srcAddr
Source data address

uint8_t *dstAddr
Destination data address

uint8_t *nextDesc
Chain custom descriptor

dma_xfercfg_t xfercfg
Transfer options

bool isPeriph
DMA transfer is driven by peripheral

struct _dma_handle
#include <fsl_dma.h> DMA transfer handle structure.

2.10. DMA: Direct Memory Access Controller Driver 155

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

dma_callback callback
Callback function. Invoked when transfer of descriptor with interrupt flag finishes

void *userData
Callback function parameter

DMA_Type *base
DMA peripheral base address

uint8_t channel
DMA channel number

2.11 IAP: In Application Programming Driver

enum _flash_driver_version_constants
Flash driver version for ROM.

Values:

enumerator kFLASH_DriverVersionName
Flash driver version name.

enumerator kFLASH_DriverVersionMajor
Major flash driver version.

enumerator kFLASH_DriverVersionMinor
Minor flash driver version.

enumerator kFLASH_DriverVersionBugfix
Bugfix for flash driver version.

MAKE_VERSION(major, minor, bugfix)
Constructs the version number for drivers.

FSL_FLASH_DRIVER_VERSION
Flash driver version for SDK.

Version 2.1.5.

enum _flash_status
Flash driver status codes.

Values:

enumerator kStatus_FLASH_Success
API is executed successfully

enumerator kStatus_FLASH_InvalidArgument
Invalid argument

enumerator kStatus_FLASH_SizeError
Error size

enumerator kStatus_FLASH_AlignmentError
Parameter is not aligned with the specified baseline

enumerator kStatus_FLASH_AddressError
Address is out of range

156 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus_FLASH_AccessError
Invalid instruction codes and out-of bound addresses

enumerator kStatus_FLASH_ProtectionViolation
The program/erase operation is requested to execute on protected areas

enumerator kStatus_FLASH_CommandFailure
Run-time error during command execution.

enumerator kStatus_FLASH_UnknownProperty
Unknown property.

enumerator kStatus_FLASH_EraseKeyError
API erase key is invalid.

enumerator kStatus_FLASH_RegionExecuteOnly
The current region is execute-only.

enumerator kStatus_FLASH_ExecuteInRamFunctionNotReady
Execute-in-RAM function is not available.

enumerator kStatus_FLASH_CommandNotSupported
Flash API is not supported.

enumerator kStatus_FLASH_ReadOnlyProperty
The flash property is read-only.

enumerator kStatus_FLASH_InvalidPropertyValue
The flash property value is out of range.

enumerator kStatus_FLASH_InvalidSpeculationOption
The option of flash prefetch speculation is invalid.

enumerator kStatus_FLASH_EccError
A correctable or uncorrectable error during command execution.

enumerator kStatus_FLASH_CompareError
Destination and source memory contents do not match.

enumerator kStatus_FLASH_RegulationLoss
A loss of regulation during read.

enumerator kStatus_FLASH_InvalidWaitStateCycles
The wait state cycle set to r/w mode is invalid.

enumerator kStatus_FLASH_OutOfDateCfpaPage
CFPA page version is out of date.

enumerator kStatus_FLASH_BlankIfrPageData
Blank page cannnot be read.

enumerator kStatus_FLASH_EncryptedRegionsEraseNotDoneAtOnce
Encrypted flash subregions are not erased at once.

enumerator kStatus_FLASH_ProgramVerificationNotAllowed
Program verification is not allowed when the encryption is enabled.

enumerator kStatus_FLASH_HashCheckError
Hash check of page data is failed.

enumerator kStatus_FLASH_SealedFfrRegion
The FFR region is sealed.

2.11. IAP: In Application Programming Driver 157

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus_FLASH_FfrRegionWriteBroken
The FFR Spec region is not allowed to be written discontinuously.

enumerator kStatus_FLASH_NmpaAccessNotAllowed
The NMPA region is not allowed to be read/written/erased.

enumerator kStatus_FLASH_CmpaCfgDirectEraseNotAllowed
The CMPA Cfg region is not allowed to be erased directly.

enumerator kStatus_FLASH_FfrBankIsLocked
The FFR bank region is locked.

enumerator kStatus_FLASH_EraseFrequencyError
Core frequency is over 100MHZ.

enumerator kStatus_FLASH_ProgramFrequencyError
Core frequency is over 100MHZ.

kStatusGroupGeneric
Flash driver status group.

kStatusGroupFlashDriver

MAKE_STATUS(group, code)
Constructs a status code value from a group and a code number.

enum _flash_driver_api_keys
Enumeration for Flash driver API keys.

Note: The resulting value is built with a byte order such that the string being readable in
expected order when viewed in a hex editor, if the value is treated as a 32-bit little endian
value.

Values:

enumerator kFLASH_ApiEraseKey
Key value used to validate all flash erase APIs.

FOUR_CHAR_CODE(a, b, c, d)
Constructs the four character code for the Flash driver API key.

status_t FLASH_Init(flash_config_t *config)
Initializes the global flash properties structure members.

This function checks and initializes the Flash module for the other Flash APIs.

Parameters
• config – Pointer to the storage for the driver runtime state.

Return values
• kStatus_FLASH_Success – API was executed successfully.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

• kStatus_FLASH_CommandFailure – Run-time error during the command
execution.

• kStatus_FLASH_CommandNotSupported – Flash API is not supported.

• kStatus_FLASH_EccError – A correctable or uncorrectable error during
command execution.

158 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

status_t FLASH_Erase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, uint32_t
key)

Erases the flash sectors encompassed by parameters passed into function.

This function erases the appropriate number of flash sectors based on the desired start
address and length.

Parameters
• config – The pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be erased. The
start address need to be 512bytes-aligned.

• lengthInBytes – The length, given in bytes (not words or long-words) to be
erased. Must be 512bytes-aligned.

• key – The value used to validate all flash erase APIs.

Return values
• kStatus_FLASH_Success – API was executed successfully; the appropriate
number of flash sectors based on the desired start address and lengthwere
erased successfully.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

• kStatus_FLASH_AlignmentError – The parameter is not aligned with the
specified baseline.

• kStatus_FLASH_AddressError – The address is out of range.

• kStatus_FLASH_EraseKeyError – The API erase key is invalid.

• kStatus_FLASH_CommandFailure – Run-time error during the command
execution.

• kStatus_FLASH_CommandNotSupported – Flash API is not supported.

• kStatus_FLASH_EccError – A correctable or uncorrectable error during
command execution.

status_t FLASH_Program(flash_config_t *config, uint32_t start, const uint8_t *src, uint32_t
lengthInBytes)

Programs flash with data at locations passed in through parameters.

This function programs the flash memory with the desired data for a given flash area as
determined by the start address and the length.

Parameters
• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be programmed.
Must be 512bytes-aligned.

• src – A pointer to the source buffer of data that is to be programmed into
the flash.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
programmed. Must be 512bytes-aligned.

Return values
• kStatus_FLASH_Success – API was executed successfully; the desired data
were programed successfully into flash based on desired start address and
length.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

2.11. IAP: In Application Programming Driver 159

MCUXpresso SDK Documentation, Release 25.09.00

• kStatus_FLASH_AlignmentError – Parameter is not aligned with the speci-
fied baseline.

• kStatus_FLASH_AddressError – Address is out of range.

• kStatus_FLASH_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FLASH_CommandFailure – Run-time error during the command
execution.

• kStatus_FLASH_CommandFailure – Run-time error during the command
execution.

• kStatus_FLASH_CommandNotSupported – Flash API is not supported.

• kStatus_FLASH_EccError – A correctable or uncorrectable error during
command execution.

status_t FLASH_VerifyErase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes)
Verifies an erasure of the desired flash area at a specified margin level.

This function checks the appropriate number of flash sectors based on the desired start
address and length to check whether the flash is erased to the specified read margin level.

Parameters
• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be verified. The
start address need to be 512bytes-aligned.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
verified. Must be 512bytes-aligned.

Return values
• kStatus_FLASH_Success – API was executed successfully; the specified
FLASH region has been erased.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

• kStatus_FLASH_AlignmentError – Parameter is not aligned with specified
baseline.

• kStatus_FLASH_AddressError – Address is out of range.

• kStatus_FLASH_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FLASH_CommandFailure – Run-time error during the command
execution.

• kStatus_FLASH_CommandFailure – Run-time error during the command
execution.

• kStatus_FLASH_CommandNotSupported – Flash API is not supported.

• kStatus_FLASH_EccError – A correctable or uncorrectable error during
command execution.

status_t FLASH_VerifyProgram(flash_config_t *config, uint32_t start, uint32_t lengthInBytes,
const uint8_t *expectedData, uint32_t *failedAddress, uint32_t
*failedData)

Verifies programming of the desired flash area at a specified margin level.

This function verifies the data programed in the flash memory using the Flash Program
Check Command and compares it to the expected data for a given flash area as determined
by the start address and length.

160 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be verified. need
be 512bytes-aligned.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
verified. need be 512bytes-aligned.

• expectedData – A pointer to the expected data that is to be verified against.

• failedAddress – A pointer to the returned failing address.

• failedData – A pointer to the returned failing data. Some derivatives do not
include failed data as part of the FCCOBx registers. In this case, zeros are
returned upon failure.

Return values
• kStatus_FLASH_Success – API was executed successfully; the desired data
have been successfully programed into specified FLASH region.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

• kStatus_FLASH_AlignmentError – Parameter is not aligned with specified
baseline.

• kStatus_FLASH_AddressError – Address is out of range.

• kStatus_FLASH_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FLASH_CommandFailure – Run-time error during the command
execution.

• kStatus_FLASH_CommandFailure – Run-time error during the command
execution.

• kStatus_FLASH_CommandNotSupported – Flash API is not supported.

• kStatus_FLASH_EccError – A correctable or uncorrectable error during
command execution.

status_t FLASH_GetProperty(flash_config_t *config, flash_property_tag_t whichProperty,
uint32_t *value)

Returns the desired flash property.

Parameters
• config – A pointer to the storage for the driver runtime state.

• whichProperty – The desired property from the list of properties in enum
flash_property_tag_t

• value – A pointer to the value returned for the desired flash property.

Return values
• kStatus_FLASH_Success – API was executed successfully; the flash prop-
erty was stored to value.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

• kStatus_FLASH_UnknownProperty – An unknown property tag.

void BOOTLOADER_UserEntry(void *arg)
Run the Bootloader API to force into the ISP mode base on the user arg.

Parameters

2.11. IAP: In Application Programming Driver 161

MCUXpresso SDK Documentation, Release 25.09.00

• arg – Indicates API prototype fields definition. Refer to the above
user_app_boot_invoke_option_t structure

FSL_FEATURE_FLASH_IP_IS_C040HD_ATFC
Flash IP Type.

FSL_FEATURE_FLASH_IP_IS_C040HD_FC

enum _flash_property_tag
Enumeration for various flash properties.

Values:

enumerator kFLASH_PropertyPflashSectorSize
Pflash sector size property.

enumerator kFLASH_PropertyPflashTotalSize
Pflash total size property.

enumerator kFLASH_PropertyPflashBlockSize
Pflash block size property.

enumerator kFLASH_PropertyPflashBlockCount
Pflash block count property.

enumerator kFLASH_PropertyPflashBlockBaseAddr
Pflash block base address property.

enumerator kFLASH_PropertyPflashPageSize
Pflash page size property.

enumerator kFLASH_PropertyPflashSystemFreq
System Frequency System Frequency.

enumerator kFLASH_PropertyFfrSectorSize
FFR sector size property.

enumerator kFLASH_PropertyFfrTotalSize
FFR total size property.

enumerator kFLASH_PropertyFfrBlockBaseAddr
FFR block base address property.

enumerator kFLASH_PropertyFfrPageSize
FFR page size property.

enum _flash_max_erase_page_value
Enumeration for flash max pages to erase.

Values:

enumerator kFLASH_MaxPagesToErase
The max value in pages to erase.

enum _flash_alignment_property
Enumeration for flash alignment property.

Values:

enumerator kFLASH_AlignementUnitVerifyErase
The alignment unit in bytes used for verify erase operation.

enumerator kFLASH_AlignementUnitProgram
The alignment unit in bytes used for program operation.

162 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kFLASH_AlignementUnitSingleWordRead
The alignment unit in bytes used for verify program operation. The alignment unit in
bytes used for SingleWordRead command.

enum _flash_read_ecc_option
Enumeration for flash read ecc option.

Values:

enumerator kFLASH_ReadWithEccOn

enumerator kFLASH_ReadWithEccOff
ECC is on

enum _flash_freq_tag
Values:

enumerator kSysToFlashFreq_lowInMHz

enumerator kSysToFlashFreq_defaultInMHz

enum _flash_read_margin_option
Enumeration for flash read margin option.

Values:

enumerator kFLASH_ReadMarginNormal
Normal read

enumerator kFLASH_ReadMarginVsProgram
Margin vs. program

enumerator kFLASH_ReadMarginVsErase
Margin vs. erase

enumerator kFLASH_ReadMarginIllegalBitCombination
Illegal bit combination

enum _flash_read_dmacc_option
Enumeration for flash read dmacc option.

Values:

enumerator kFLASH_ReadDmaccDisabled
Memory word

enumerator kFLASH_ReadDmaccEnabled
DMACC word

enum _flash_ramp_control_option
Enumeration for flash ramp control option.

Values:

enumerator kFLASH_RampControlDivisionFactorReserved
Reserved

enumerator kFLASH_RampControlDivisionFactor256
clk48mhz / 256 = 187.5KHz

enumerator kFLASH_RampControlDivisionFactor128
clk48mhz / 128 = 375KHz

enumerator kFLASH_RampControlDivisionFactor64
clk48mhz / 64 = 750KHz

2.11. IAP: In Application Programming Driver 163

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _flash_property_tag flash_property_tag_t
Enumeration for various flash properties.

typedef struct _flash_ecc_log flash_ecc_log_t
Flash ECC log info.

typedef struct _flash_mode_config flash_mode_config_t
Flash controller paramter config.

typedef struct _flash_ffr_config flash_ffr_config_t
Flash controller paramter config.

typedef struct _flash_config flash_config_t
Flash driver state information.

An instance of this structure is allocated by the user of the flash driver and passed into each
of the driver APIs.

status_t FLASH_Read(flash_config_t *config, uint32_t start, uint8_t *dest, uint32_t
lengthInBytes)

Reads flash at locations passed in through parameters.

This function read the flash memory from a given flash area as determined by the start
address and the length.

Parameters
• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be read.

• dest – A pointer to the dest buffer of data that is to be read from the flash.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
read.

Return values
• kStatus_FLASH_Success – API was executed successfully.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

• kStatus_FLASH_AlignmentError – Parameter is not aligned with the speci-
fied baseline.

• kStatus_FLASH_AddressError – Address is out of range.

• kStatus_FLASH_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FLASH_CommandFailure – Run-time error during the command
execution.

• kStatus_FLASH_CommandFailure – Run-time error during the command
execution.

• kStatus_FLASH_CommandNotSupported – Flash API is not supported.

• kStatus_FLASH_EccError – A correctable or uncorrectable error during
command execution.

struct _flash_ecc_log
#include <fsl_iap.h> Flash ECC log info.

struct _flash_mode_config
#include <fsl_iap.h> Flash controller paramter config.

164 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

struct _flash_ffr_config
#include <fsl_iap.h> Flash controller paramter config.

struct _flash_config
#include <fsl_iap.h> Flash driver state information.

An instance of this structure is allocated by the user of the flash driver and passed into each
of the driver APIs.

Public Members

uint32_t PFlashBlockBase
A base address of the first PFlash block

uint32_t PFlashTotalSize
The size of the combined PFlash block.

uint32_t PFlashBlockCount
A number of PFlash blocks.

uint32_t PFlashPageSize
The size in bytes of a page of PFlash.

uint32_t PFlashSectorSize
The size in bytes of a sector of PFlash.

struct user_app_boot_invoke_option_t
#include <fsl_iap.h>

struct readSingleWord

struct setWriteMode

struct setReadMode

union option

Public Members

struct user_app_boot_invoke_option_t B

uint32_t U

struct B

2.12 IAP_FFR Driver

status_t FFR_Init(flash_config_t *config)
Initializes the global FFR properties structure members.

Parameters
• config – A pointer to the storage for the driver runtime state.

Return values
• kStatus_FLASH_Success – API was executed successfully.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

2.12. IAP_FFR Driver 165

MCUXpresso SDK Documentation, Release 25.09.00

status_t FFR_Lock_All(flash_config_t *config)
Enable firewall for all flash banks.

CFPA, CMPA, and NMPA flash areas region will be locked, After this function executed; Un-
less the board is reset again.

Parameters
• config – A pointer to the storage for the driver runtime state.

Return values
• kStatus_FLASH_Success – An invalid argument is provided.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

status_t FFR_InfieldPageWrite(flash_config_t *config, uint8_t *page_data, uint32_t valid_len)
APIs to access CFPA pages.

This routine will erase CFPA and program the CFPA page with passed data.

Parameters
• config – A pointer to the storage for the driver runtime state.

• page_data – A pointer to the source buffer of data that is to be programmed
into the CFPA.

• valid_len – The length, given in bytes, to be programmed.

Return values
• kStatus_FLASH_Success – The desire page-data were programed success-
fully into CFPA.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_AddressError – Address is out of range.

• kStatus_FLASH_FfrBankIsLocked – The CFPA was locked.

• kStatus_FLASH_OutOfDateCfpaPage – It is not newest CFPA page.

status_t FFR_GetCustomerInfieldData(flash_config_t *config, uint8_t *pData, uint32_t offset,
uint32_t len)

APIs to access CFPA pages.

Generic read function, used by customer to read data stored in ‘Customer In-field Page’.

Parameters
• config – A pointer to the storage for the driver runtime state.

• pData –Apointer to the dest buffer of data that is to be read from ‘Customer
In-field Page’.

• offset – An offset from the ‘Customer In-field Page’ start address.

• len – The length, given in bytes, to be read.

Return values
• kStatus_FLASH_Success – Get data from ‘Customer In-field Page’.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_AddressError – Address is out of range.

• kStatus_FLASH_CommandFailure – access error.

166 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

status_t FFR_CustFactoryPageWrite(flash_config_t *config, uint8_t *page_data, bool seal_part)
APIs to access CMPA pages.

This routine will erase “customer factory page” and program the page with passed data.
If ‘seal_part’ parameter is TRUE then the routine will compute SHA256 hash of the page
contents and then programs the pages. 1.During development customer code uses this API
with ‘seal_part’ set to FALSE. 2.During manufacturing this parameter should be set to TRUE
to seal the part from further modifications 3.This routine checks if the page is sealed or not.
A page is said to be sealed if the SHA256 value in the page has non-zero value. On boot ROM
locks the firewall for the region if hash is programmed anyways. So, write/erase commands
will fail eventually.

Parameters
• config – A pointer to the storage for the driver runtime state.

• page_data – A pointer to the source buffer of data that is to be programmed
into the “customer factory page”.

• seal_part – Set fasle for During development customer code.

Return values
• kStatus_FLASH_Success – The desire page-data were programed success-
fully into CMPA.

• kStatus_FLASH_InvalidArgument – Parameter is not aligned with the spec-
ified baseline.

• kStatus_FTFx_AddressError – Address is out of range.

• kStatus_FLASH_CommandFailure – access error.

status_t FFR_GetCustomerData(flash_config_t *config, uint8_t *pData, uint32_t offset, uint32_t
len)

APIs to access CMPA page.

Read data stored in ‘Customer Factory CFG Page’.

Parameters
• config – A pointer to the storage for the driver runtime state.

• pData – A pointer to the dest buffer of data that is to be read from the
Customer Factory CFG Page.

• offset – Address offset relative to the CMPA area.

• len – The length, given in bytes to be read.

Return values
• kStatus_FLASH_Success – Get data from ‘Customer Factory CFG Page’.

• kStatus_FLASH_InvalidArgument – Parameter is not aligned with the spec-
ified baseline.

• kStatus_FTFx_AddressError – Address is out of range.

• kStatus_FLASH_CommandFailure – access error.

status_t FFR_GetUUID(flash_config_t *config, uint8_t *uuid)
APIs to access CMPA page.

1.SW should use this API routine to get the UUID of the chip. 2.Calling routine should pass
a pointer to buffer which can hold 128-bit value.

2.12. IAP_FFR Driver 167

MCUXpresso SDK Documentation, Release 25.09.00

status_t FFR_KeystoreWrite(flash_config_t *config, ffr_key_store_t *pKeyStore)
This routine writes the 3 pages allocated for Key store data,.

1.Used during manufacturing. Should write pages when ‘customer factory page’ is not in
sealed state. 2.Optional routines to set individual datamembers (activation code, key codes
etc) to construct the key store structure in RAM before committing it to IFR/FFR.

Parameters
• config – A pointer to the storage for the driver runtime state.

• pKeyStore – A Pointer to the 3 pages allocated for Key store data. that will
be written to ‘customer factory page’.

Return values
• kStatus_FLASH_Success – The key were programed successfully into FFR.

• kStatus_FLASH_InvalidArgument – Parameter is not aligned with the spec-
ified baseline.

• kStatus_FTFx_AddressError – Address is out of range.

• kStatus_FLASH_CommandFailure – access error.

status_t FFR_KeystoreGetAC(flash_config_t *config, uint8_t *pActivationCode)
Get/Read Key store code routines.

a. Calling code should pass buffer pointer which can hold activation code 1192 bytes.

b. Check if flash aperture is small or regular and read the data appropriately.

status_t FFR_KeystoreGetKC(flash_config_t *config, uint8_t *pKeyCode, ffr_key_type_t keyIndex)
Get/Read Key store code routines.

a. Calling code should pass buffer pointer which can hold key code 52 bytes.

b. Check if flash aperture is small or regular and read the data appropriately.

c. keyIndex specifies which key code is read.

FSL_FLASH_IFR_DRIVER_VERSION
Flash IFR driver version for SDK.

Version 2.1.0.

enum _flash_ffr_page_offset
flash ffr page offset.

Values:

enumerator kFfrPageOffset_CFPA
Customer In-Field programmed area

enumerator kFfrPageOffset_CFPA_Scratch
CFPA Scratch page

enumerator kFfrPageOffset_CFPA_Cfg
CFPA Configuration area (Ping page)

enumerator kFfrPageOffset_CFPA_CfgPong
Same as CFPA page (Pong page)

enumerator kFfrPageOffset_CMPA
Customer Manufacturing programmed area

168 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kFfrPageOffset_CMPA_Cfg
CMPA Configuration area (Part of CMPA)

enumerator kFfrPageOffset_CMPA_Key
Key Store area (Part of CMPA)

enumerator kFfrPageOffset_NMPA
NXP Manufacturing programmed area

enumerator kFfrPageOffset_NMPA_Romcp
ROM patch area (Part of NMPA)

enumerator kFfrPageOffset_NMPA_Repair
Repair area (Part of NMPA)

enumerator kFfrPageOffset_NMPA_Cfg
NMPA configuration area (Part of NMPA)

enumerator kFfrPageOffset_NMPA_End
Reserved (Part of NMPA)

enum _flash_ffr_page_num
flash ffr page number.

Values:

enumerator kFfrPageNum_CFPA
Customer In-Field programmed area

enumerator kFfrPageNum_CMPA
Customer Manufacturing programmed area

enumerator kFfrPageNum_NMPA
NXP Manufacturing programmed area

enumerator kFfrPageNum_CMPA_Cfg

enumerator kFfrPageNum_CMPA_Key

enumerator kFfrPageNum_NMPA_Romcp

enumerator kFfrPageNum_SpecArea

enumerator kFfrPageNum_Total

enum _flash_ffr_block_size
Values:

enumerator kFfrBlockSize_Key

enumerator kFfrBlockSize_ActivationCode

enum _cfpa_cfg_cmpa_prog_process
Values:

enumerator kFfrCmpaProgProcess_Pre

enumerator kFfrCmpaProgProcess_Post

enum _ffr_key_type
Values:

enumerator kFFR_KeyTypeSbkek

2.12. IAP_FFR Driver 169

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kFFR_KeyTypeUser

enumerator kFFR_KeyTypeUds

enumerator kFFR_KeyTypePrinceRegion0

enumerator kFFR_KeyTypePrinceRegion1

enumerator kFFR_KeyTypePrinceRegion2

enum _ffr_bank_type
Values:

enumerator kFFR_BankTypeBank0_NMPA

enumerator kFFR_BankTypeBank1_CMPA

enumerator kFFR_BankTypeBank2_CFPA

typedef enum _cfpa_cfg_cmpa_prog_process cmpa_prog_process_t

typedef struct _cfpa_cfg_iv_code cfpa_cfg_iv_code_t

typedef struct _cfpa_cfg_info cfpa_cfg_info_t

typedef struct _cmpa_cfg_info cmpa_cfg_info_t

typedef struct _cmpa_key_store_header cmpa_key_store_header_t

typedef struct _nmpa_cfg_info nmpa_cfg_info_t

typedef struct _ffr_key_store ffr_key_store_t

typedef enum _ffr_key_type ffr_key_type_t

typedef enum _ffr_bank_type ffr_bank_type_t

ALIGN_DOWN(x, a)
Alignment(down) utility.

ALIGN_UP(x, a)
Alignment(up) utility.

FLASH_FFR_MAX_PAGE_SIZE

FLASH_FFR_HASH_DIGEST_SIZE

FLASH_FFR_IV_CODE_SIZE

FFR_BOOTCFG_BOOTSPEED_MASK

FFR_BOOTCFG_BOOTSPEED_SHIFT

FFR_BOOTCFG_BOOTSPEED_48MHZ

FFR_BOOTCFG_BOOTSPEED_96MHZ

FFR_USBID_VENDORID_MASK

FFR_USBID_VENDORID_SHIFT

FFR_USBID_PRODUCTID_MASK

FFR_USBID_PRODUCTID_SHIFT

170 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

FFR_SYSTEM_SPEED_CODE_MASK

FFR_SYSTEM_SPEED_CODE_SHIFT

FFR_SYSTEM_SPEED_CODE_FRO12MHZ_12MHZ

FFR_SYSTEM_SPEED_CODE_FROHF96MHZ_24MHZ

FFR_SYSTEM_SPEED_CODE_FROHF96MHZ_48MHZ

FFR_SYSTEM_SPEED_CODE_FROHF96MHZ_96MHZ

FFR_PERIPHERALCFG_PERI_MASK

FFR_PERIPHERALCFG_PERI_SHIFT

FFR_PERIPHERALCFG_COREEN_MASK

FFR_PERIPHERALCFG_COREEN_SHIFT

struct _cfpa_cfg_iv_code
#include <fsl_iap_ffr.h>

struct _cfpa_cfg_info
#include <fsl_iap_ffr.h>

Public Members

uint32_t header
[0x000-0x003]

uint32_t version
[0x004-0x007

uint32_t secureFwVersion
[0x008-0x00b

uint32_t nsFwVersion
[0x00c-0x00f]

uint32_t imageKeyRevoke
[0x010-0x013]

uint8_t reserved0[4]
[0x014-0x017]

uint32_t rotkhRevoke
[0x018-0x01b]

uint32_t vendorUsage
[0x01c-0x01f]

uint32_t dcfgNsPin
[0x020-0x013]

uint32_t dcfgNsDflt
[0x024-0x017]

uint32_t enableFaMode
[0x028-0x02b]

uint8_t reserved1[4]
[0x02c-0x02f]

2.12. IAP_FFR Driver 171

MCUXpresso SDK Documentation, Release 25.09.00

cfpa_cfg_iv_code_t ivCodePrinceRegion[3]
[0x030-0x0d7]

uint8_t reserved2[264]
[0x0d8-0x1df]

uint8_t sha256[32]
[0x1e0-0x1ff]

struct _cmpa_cfg_info
#include <fsl_iap_ffr.h>

Public Members

uint32_t bootCfg
[0x000-0x003]

uint32_t spiFlashCfg
[0x004-0x007]

struct _cmpa_cfg_info usbId
[0x008-0x00b]

uint32_t sdioCfg
[0x00c-0x00f]

uint32_t dcfgPin
[0x010-0x013]

uint32_t dcfgDflt
[0x014-0x017]

uint32_t dapVendorUsage
[0x018-0x01b]

uint32_t secureBootCfg
[0x01c-0x01f]

uint32_t princeBaseAddr
[0x020-0x023]

uint32_t princeSr[3]
[0x024-0x02f]

uint8_t reserved0[32]
[0x030-0x04f]

uint32_t rotkh[8]
[0x050-0x06f]

uint8_t reserved1[368]
[0x070-0x1df]

uint8_t sha256[32]
[0x1e0-0x1ff]

struct _cmpa_key_store_header
#include <fsl_iap_ffr.h>

struct _nmpa_cfg_info
#include <fsl_iap_ffr.h>

172 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

uint16_t fro32kCfg
[0x000-0x001]

uint8_t reserved0[6]
[0x002-0x007]

uint8_t sysCfg
[0x008-0x008]

uint8_t reserved1[7]
[0x009-0x00f]

struct _nmpa_cfg_info GpoInitData[3]
[0x010-0x03f]

uint32_t GpoDataChecksum[4]
[0x040-0x04f]

uint32_t finalTestBatchId[4]
[0x050-0x05f]

uint32_t deviceType
[0x060-0x063]

uint32_t finalTestProgVersion
[0x064-0x067]

uint32_t finalTestDate
[0x068-0x06b]

uint32_t finalTestTime
[0x06c-0x06f]

uint32_t uuid[4]
[0x070-0x07f]

uint8_t reserved2[32]
[0x080-0x09f]

uint32_t peripheralCfg
[0x0a0-0x0a3]

uint32_t ramSizeCfg
[0x0a4-0x0a7]

uint32_t flashSizeCfg
[0x0a8-0x0ab]

uint8_t reserved3[36]
[0x0ac-0x0cf]

uint8_t fro1mCfg
[0x0d0-0x0d0]

uint8_t reserved4[15]
[0x0d1-0x0df]

uint32_t dcdc[4]
[0x0e0-0x0ef]

2.12. IAP_FFR Driver 173

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t bod
[0x0f0-0x0f3]

uint8_t reserved5[12]
[0x0f4-0x0ff]

uint8_t calcHashReserved[192]
[0x100-0x1bf]

uint8_t sha256[32]
[0x1c0-0x1df]

uint32_t ecidBackup[4]
[0x1e0-0x1ef]

uint32_t pageChecksum[4]
[0x1f0-0x1ff]

struct _ffr_key_store
#include <fsl_iap_ffr.h>

struct usbId

struct GpoInitData

2.13 FLEXCOMM: FLEXCOMM Driver

2.14 FLEXCOMM Driver

FSL_FLEXCOMM_DRIVER_VERSION
FlexCOMM driver version 2.0.2.

enum FLEXCOMM_PERIPH_T
FLEXCOMM peripheral modes.

Values:

enumerator FLEXCOMM_PERIPH_NONE
No peripheral

enumerator FLEXCOMM_PERIPH_USART
USART peripheral

enumerator FLEXCOMM_PERIPH_SPI
SPI Peripheral

enumerator FLEXCOMM_PERIPH_I2C
I2C Peripheral

enumerator FLEXCOMM_PERIPH_I2S_TX
I2S TX Peripheral

enumerator FLEXCOMM_PERIPH_I2S_RX
I2S RX Peripheral

typedef void (*flexcomm_irq_handler_t)(void *base, void *handle)
Typedef for interrupt handler.

174 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

IRQn_Type const kFlexcommIrqs[]
Array with IRQ number for each FLEXCOMMmodule.

uint32_t FLEXCOMM_GetInstance(void *base)
Returns instance number for FLEXCOMMmodule with given base address.

status_t FLEXCOMM_Init(void *base, FLEXCOMM_PERIPH_T periph)
Initializes FLEXCOMM and selects peripheral mode according to the second parameter.

void FLEXCOMM_SetIRQHandler(void *base, flexcomm_irq_handler_t handler, void
*flexcommHandle)

Sets IRQ handler for given FLEXCOMM module. It is used by drivers register IRQ handler
according to FLEXCOMMmode.

2.15 GINT: Group GPIO Input Interrupt Driver

FSL_GINT_DRIVER_VERSION
Driver version.

enum _gint_comb
GINT combine inputs type.

Values:

enumerator kGINT_CombineOr
A grouped interrupt is generated when any one of the enabled inputs is active

enumerator kGINT_CombineAnd
A grouped interrupt is generated when all enabled inputs are active

enum _gint_trig
GINT trigger type.

Values:

enumerator kGINT_TrigEdge
Edge triggered based on polarity

enumerator kGINT_TrigLevel
Level triggered based on polarity

enum _gint_port
Values:

enumerator kGINT_Port0

typedef enum _gint_comb gint_comb_t
GINT combine inputs type.

typedef enum _gint_trig gint_trig_t
GINT trigger type.

typedef enum _gint_port gint_port_t

typedef void (*gint_cb_t)(void)
GINT Callback function.

2.15. GINT: Group GPIO Input Interrupt Driver 175

MCUXpresso SDK Documentation, Release 25.09.00

void GINT_Init(GINT_Type *base)
Initialize GINT peripheral.

This function initializes the GINT peripheral and enables the clock.

Parameters
• base – Base address of the GINT peripheral.

Return values
None. –

void GINT_SetCtrl(GINT_Type *base, gint_comb_t comb, gint_trig_t trig, gint_cb_t callback)
Setup GINT peripheral control parameters.

This function sets the control parameters of GINT peripheral.

Parameters
• base – Base address of the GINT peripheral.

• comb – Controls if the enabled inputs are logically ORed or ANDed for in-
terrupt generation.

• trig – Controls if the enabled inputs are level or edge sensitive based on
polarity.

• callback – This function is called when configured group interrupt is gen-
erated.

Return values
None. –

void GINT_GetCtrl(GINT_Type *base, gint_comb_t *comb, gint_trig_t *trig, gint_cb_t *callback)
Get GINT peripheral control parameters.

This function returns the control parameters of GINT peripheral.

Parameters
• base – Base address of the GINT peripheral.

• comb – Pointer to store combine input value.

• trig – Pointer to store trigger value.

• callback – Pointer to store callback function.

Return values
None. –

void GINT_ConfigPins(GINT_Type *base, gint_port_t port, uint32_t polarityMask, uint32_t
enableMask)

Configure GINT peripheral pins.

This function enables and controls the polarity of enabled pin(s) of a given port.

Parameters
• base – Base address of the GINT peripheral.

• port – Port number.

• polarityMask – Each bit position selects the polarity of the corresponding
enabled pin. 0 = The pin is active LOW. 1 = The pin is active HIGH.

• enableMask – Each bit position selects if the corresponding pin is enabled
or not. 0 = The pin is disabled. 1 = The pin is enabled.

Return values
None. –

176 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

void GINT_GetConfigPins(GINT_Type *base, gint_port_t port, uint32_t *polarityMask, uint32_t
*enableMask)

Get GINT peripheral pin configuration.

This function returns the pin configuration of a given port.

Parameters
• base – Base address of the GINT peripheral.

• port – Port number.

• polarityMask – Pointer to store the polaritymask Each bit position indicates
the polarity of the corresponding enabled pin. 0 = The pin is active LOW.
1 = The pin is active HIGH.

• enableMask – Pointer to store the enable mask. Each bit position indicates
if the corresponding pin is enabled or not. 0 = The pin is disabled. 1 = The
pin is enabled.

Return values
None. –

void GINT_EnableCallback(GINT_Type *base)
Enable callback.

This function enables the interrupt for the selected GINT peripheral. Although the pin(s)
are monitored as soon as they are enabled, the callback function is not enabled until this
function is called.

Parameters
• base – Base address of the GINT peripheral.

Return values
None. –

void GINT_DisableCallback(GINT_Type *base)
Disable callback.

This function disables the interrupt for the selected GINT peripheral. Although the pins are
still being monitored but the callback function is not called.

Parameters
• base – Base address of the peripheral.

Return values
None. –

static inline void GINT_ClrStatus(GINT_Type *base)
Clear GINT status.

This function clears the GINT status bit.

Parameters
• base – Base address of the GINT peripheral.

Return values
None. –

static inline uint32_t GINT_GetStatus(GINT_Type *base)
Get GINT status.

This function returns the GINT status.

Parameters
• base – Base address of the GINT peripheral.

2.15. GINT: Group GPIO Input Interrupt Driver 177

MCUXpresso SDK Documentation, Release 25.09.00

Return values
status – = 0 No group interrupt request. = 1 Group interrupt request active.

void GINT_Deinit(GINT_Type *base)
Deinitialize GINT peripheral.

This function disables the GINT clock.

Parameters
• base – Base address of the GINT peripheral.

Return values
None. –

2.16 Hashcrypt: The Cryptographic Accelerator

2.17 Hashcrypt Background HASH

void HASHCRYPT_SHA_SetCallback(HASHCRYPT_Type *base, hashcrypt_hash_ctx_t *ctx,
hashcrypt_callback_t callback, void *userData)

Initializes the HASHCRYPT handle for background hashing.

This function initializes the hash context for background hashing (Non-blocking) APIs. This
is less typical interface to hash function, but can be used for parallel processing, when
main CPU has something else to do. Example is digital signature RSASSA-PKCS1-V1_5-
VERIFY((n,e),M,S) algorithm, where background hashing of M can be started, then CPU can
compute S^e mod n (in parallel with background hashing) and once the digest becomes
available, CPU can proceed to comparison of EM with EM’.

Parameters
• base – HASHCRYPT peripheral base address.

• ctx – [out] Hash context.

• callback – Callback function.

• userData – User data (to be passed as an argument to callback function,
once callback is invoked from isr).

status_t HASHCRYPT_SHA_UpdateNonBlocking(HASHCRYPT_Type *base, hashcrypt_hash_ctx_t
*ctx, const uint8_t *input, size_t inputSize)

Create running hash on given data.

Configures the HASHCRYPT to compute new running hash as AHB master and returns
immediately. HASHCRYPT AHB Master mode supports only aligned input address and
can be called only once per continuous block of data. Every call to this function must
be preceded with HASHCRYPT_SHA_Init() and finished with HASHCRYPT_SHA_Finish().
Once callback function is invoked by HASHCRYPT isr, it should set a flag for the main
application to finalize the hashing (padding) and to read out the final digest by calling
HASHCRYPT_SHA_Finish().

Parameters
• base – HASHCRYPT peripheral base address

• ctx – Specifies callback. Last incomplete 512-bit block of the input is copied
into clear buffer for padding.

• input – 32-bit word aligned pointer to Input data.

• inputSize – Size of input data in bytes (must be word aligned)

178 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

Returns
Status of the hash update operation.

2.18 Hashcrypt common functions

FSL_HASHCRYPT_DRIVER_VERSION
HASHCRYPT driver version. Version 2.2.16.

Current version: 2.2.16

Change log:

• Version 2.0.0

– Initial version

• Version 2.0.1

– Support loading AES key from unaligned address

• Version 2.0.2

– Support loading AES key from unaligned address for different compiler and core
variants

• Version 2.0.3

– Remove SHA512 and AES ICB algorithm definitions

• Version 2.0.4

– Add SHA context switch support

• Version 2.1.0

– Update the register name and macro to align with new header.

• Version 2.1.1

– Fix MISRA C-2012.

• Version 2.1.2

– Support loading AES input data from unaligned address.

• Version 2.1.3

– Fix MISRA C-2012.

• Version 2.1.4

– Fix context switch cannot work when switching from AES.

• Version 2.1.5

– Add data synchronization barrier inside hashcrypt_sha_ldm_stm_16_words() to
prevent possible optimization issue.

• Version 2.2.0

– Add AES-OFB and AES-CFB mixed IP/SW modes.

• Version 2.2.1

– Add data synchronization barrier inside hashcrypt_sha_ldm_stm_16_words() pre-
vent compiler from reordering memory write when -O2 or higher is used.

• Version 2.2.2

– Add data synchronization barrier inside hashcrypt_sha_ldm_stm_16_words() to fix
optimization issue

2.18. Hashcrypt common functions 179

MCUXpresso SDK Documentation, Release 25.09.00

• Version 2.2.3

– Added check for size in hashcrypt_aes_one_block to prevent overflowing COUNT
field in MEMCTRL register, if its bigger than COUNT field do a multiple runs.

• Version 2.2.4

– In all HASHCRYPT_AES_xx functions have been added setting CTRL_MODE bitfield
to 0 after processing data, which decreases power consumption.

• Version 2.2.5

– Add data synchronization barrier and instruction synchronization barrier inside
hashcrypt_sha_process_message_data() to fix optimization issue

• Version 2.2.6

– Add data synchronization barrier inside HASHCRYPT_SHA_Update() and
hashcrypt_get_data() function to fix optimization issue on MDK and ARMGCC
release targets

• Version 2.2.7

– Add data synchronization barrier inside HASHCRYPT_SHA_Update() to fix opti-
mization issue on MCUX IDE release target

• Version 2.2.8

– Unify hashcrypt hashing behavior between aligned and unaligned input data

• Version 2.2.9

– Add handling of set ERROR bit in the STATUS register

• Version 2.2.10

– Fix missing error statement in hashcrypt_save_running_hash()

• Version 2.2.11

– Fix incorrect SHA-256 calculation for long messages with reload

• Version 2.2.12

– Fix hardfault issue on the Keil compiler due to unalignedmemcpy() input on some
optimization levels

• Version 2.2.13

– Added function hashcrypt_seed_prng() which loading random number into
PRNG_SEED register before AES operation for SCA protection

• Version 2.2.14

– Modify function hashcrypt_get_data() to prevent issue with unaligned access

• Version 2.2.15

– Add wait on DIGEST BIT inside hashcrypt_sha_one_block() to fix issues with some
optimization flags

• Version 2.2.16

– Add DSB instruction inside hashcrypt_sha_ldm_stm_16_words() to fix issues with
some optimization flags

• Version 2.2.17

– Fix context size when hashcrypt built with reload feature

180 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enum _hashcrypt_algo_t
Algorithm used for Hashcrypt operation.

Values:

enumerator kHASHCRYPT_Sha1
SHA_1

enumerator kHASHCRYPT_Sha256
SHA_256

enumerator kHASHCRYPT_Aes
AES

typedef enum _hashcrypt_algo_t hashcrypt_algo_t
Algorithm used for Hashcrypt operation.

void HASHCRYPT_Init(HASHCRYPT_Type *base)
Enables clock and disables reset for HASHCRYPT peripheral.

Enable clock and disable reset for HASHCRYPT.

Parameters
• base – HASHCRYPT base address

void HASHCRYPT_Deinit(HASHCRYPT_Type *base)
Disables clock for HASHCRYPT peripheral.

Disable clock and enable reset.

Parameters
• base – HASHCRYPT base address

HASHCRYPT_MODE_SHA1
Algorithm definitions correspond with the values for Mode field in Control register !

HASHCRYPT_MODE_SHA256

HASHCRYPT_MODE_AES

2.19 Hashcrypt AES

enum _hashcrypt_aes_mode_t
AES mode.

Values:

enumerator kHASHCRYPT_AesEcb
AES ECB mode

enumerator kHASHCRYPT_AesCbc
AES CBC mode

enumerator kHASHCRYPT_AesCtr
AES CTR mode

enum _hashcrypt_aes_keysize_t
Size of AES key.

Values:

2.19. Hashcrypt AES 181

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kHASHCRYPT_Aes128
AES 128 bit key

enumerator kHASHCRYPT_Aes192
AES 192 bit key

enumerator kHASHCRYPT_Aes256
AES 256 bit key

enumerator kHASHCRYPT_InvalidKey
AES invalid key

enum _hashcrypt_key
HASHCRYPT key source selection.

Values:

enumerator kHASHCRYPT_UserKey
HASHCRYPT user key

enumerator kHASHCRYPT_SecretKey
HASHCRYPT secret key (dedicated hw bus from PUF)

typedef enum _hashcrypt_aes_mode_t hashcrypt_aes_mode_t
AES mode.

typedef enum _hashcrypt_aes_keysize_t hashcrypt_aes_keysize_t
Size of AES key.

typedef enum _hashcrypt_key hashcrypt_key_t
HASHCRYPT key source selection.

typedef struct _hashcrypt_handle hashcrypt_handle_t

struct _hashcrypt_handle __attribute__ ((aligned))

status_t HASHCRYPT_AES_SetKey(HASHCRYPT_Type *base, hashcrypt_handle_t *handle,
const uint8_t *key, size_t keySize)

Set AES key to hashcrypt_handle_t struct and optionally to HASHCRYPT.

Sets the AES key for encryption/decryption with the hashcrypt_handle_t structure. The
hashcrypt_handle_t input argument specifies key source.

Parameters
• base – HASHCRYPT peripheral base address.

• handle – Handle used for the request.

• key – 0-mod-4 aligned pointer to AES key.

• keySize – AES key size in bytes. Shall equal 16, 24 or 32.

Returns
status from set key operation

status_t HASHCRYPT_AES_EncryptEcb(HASHCRYPT_Type *base, hashcrypt_handle_t *handle,
const uint8_t *plaintext, uint8_t *ciphertext, size_t
size)

Encrypts AES on one or multiple 128-bit block(s).

Encrypts AES. The source plaintext and destination ciphertext can overlap in systemmem-
ory.

Parameters
• base – HASHCRYPT peripheral base address

182 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

• handle – Handle used for this request.

• plaintext – Input plain text to encrypt

• ciphertext – [out] Output cipher text
• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

Returns
Status from encrypt operation

status_t HASHCRYPT_AES_DecryptEcb(HASHCRYPT_Type *base, hashcrypt_handle_t *handle,
const uint8_t *ciphertext, uint8_t *plaintext, size_t
size)

Decrypts AES on one or multiple 128-bit block(s).

Decrypts AES. The source ciphertext and destination plaintext can overlap in systemmem-
ory.

Parameters
• base – HASHCRYPT peripheral base address

• handle – Handle used for this request.

• ciphertext – Input plain text to encrypt

• plaintext – [out] Output cipher text
• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

Returns
Status from decrypt operation

status_t HASHCRYPT_AES_EncryptCbc(HASHCRYPT_Type *base, hashcrypt_handle_t *handle,
const uint8_t *plaintext, uint8_t *ciphertext, size_t
size, const uint8_t iv[16])

Encrypts AES using CBC block mode.

Parameters
• base – HASHCRYPT peripheral base address

• handle – Handle used for this request.

• plaintext – Input plain text to encrypt

• ciphertext – [out] Output cipher text
• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

• iv – Input initial vector to combine with the first input block.

Returns
Status from encrypt operation

status_t HASHCRYPT_AES_DecryptCbc(HASHCRYPT_Type *base, hashcrypt_handle_t *handle,
const uint8_t *ciphertext, uint8_t *plaintext, size_t
size, const uint8_t iv[16])

Decrypts AES using CBC block mode.

Parameters
• base – HASHCRYPT peripheral base address

• handle – Handle used for this request.

• ciphertext – Input cipher text to decrypt

• plaintext – [out] Output plain text

• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

2.19. Hashcrypt AES 183

MCUXpresso SDK Documentation, Release 25.09.00

• iv – Input initial vector to combine with the first input block.

Returns
Status from decrypt operation

status_t HASHCRYPT_AES_CryptCtr(HASHCRYPT_Type *base, hashcrypt_handle_t *handle,
const uint8_t *input, uint8_t *output, size_t size, uint8_t
counter[16U], uint8_t counterlast[16U], size_t *szLeft)

Encrypts or decrypts AES using CTR block mode.

Encrypts or decrypts AES using CTR block mode. AES CTR mode uses only forward AES
cipher and same algorithm for encryption and decryption. The only difference between
encryption and decryption is that, for encryption, the input argument is plain text and the
output argument is cipher text. For decryption, the input argument is cipher text and the
output argument is plain text.

Parameters
• base – HASHCRYPT peripheral base address

• handle – Handle used for this request.

• input – Input data for CTR block mode

• output – [out] Output data for CTR block mode

• size – Size of input and output data in bytes

• counter – [inout] Input counter (updates on return)

• counterlast – [out] Output cipher of last counter, for chained CTR calls
(statefull encryption). NULL can be passed if chained calls are not used.

• szLeft – [out] Output number of bytes in left unused in counterlast block.
NULL can be passed if chained calls are not used.

Returns
Status from encrypt operation

status_t HASHCRYPT_AES_CryptOfb(HASHCRYPT_Type *base, hashcrypt_handle_t *handle,
const uint8_t *input, uint8_t *output, size_t size, const
uint8_t iv[16U])

Encrypts or decrypts AES using OFB block mode.

Encrypts or decrypts AES using OFB block mode. AES OFB mode uses only forward AES
cipher and same algorithm for encryption and decryption. The only difference between
encryption and decryption is that, for encryption, the input argument is plain text and the
output argument is cipher text. For decryption, the input argument is cipher text and the
output argument is plain text.

Parameters
• base – HASHCRYPT peripheral base address

• handle – Handle used for this request.

• input – Input data for OFB block mode

• output – [out] Output data for OFB block mode

• size – Size of input and output data in bytes

• iv – Input initial vector to combine with the first input block.

Returns
Status from encrypt operation

184 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

status_t HASHCRYPT_AES_EncryptCfb(HASHCRYPT_Type *base, hashcrypt_handle_t *handle,
const uint8_t *plaintext, uint8_t *ciphertext, size_t size,
const uint8_t iv[16])

Encrypts AES using CFB block mode.

Parameters
• base – HASHCRYPT peripheral base address

• handle – Handle used for this request.

• plaintext – Input plain text to encrypt

• ciphertext – [out] Output cipher text
• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

• iv – Input initial vector to combine with the first input block.

Returns
Status from encrypt operation

status_t HASHCRYPT_AES_DecryptCfb(HASHCRYPT_Type *base, hashcrypt_handle_t *handle,
const uint8_t *ciphertext, uint8_t *plaintext, size_t size,
const uint8_t iv[16])

Decrypts AES using CFB block mode.

Parameters
• base – HASHCRYPT peripheral base address

• handle – Handle used for this request.

• ciphertext – Input cipher text to decrypt

• plaintext – [out] Output plaintext text
• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

• iv – Input initial vector to combine with the first input block.

Returns
Status from encrypt operation

HASHCRYPT_AES_BLOCK_SIZE
AES block size in bytes

AES_ENCRYPT

AES_DECRYPT

struct _hashcrypt_handle
#include <fsl_hashcrypt.h> Specify HASHCRYPT’s key resource.

Public Members

uint32_t keyWord[8]
Copy of user key (set by HASHCRYPT_AES_SetKey().

hashcrypt_key_t keyType
For operations with key (such as AES encryption/decryption), specify key type.

2.19. Hashcrypt AES 185

MCUXpresso SDK Documentation, Release 25.09.00

2.20 Hashcrypt HASH

typedef struct _hashcrypt_hash_ctx_t hashcrypt_hash_ctx_t
Storage type used to save hash context.

typedef void (*hashcrypt_callback_t)(HASHCRYPT_Type *base, hashcrypt_hash_ctx_t *ctx,
status_t status, void *userData)

HASHCRYPT background hash callback function.

status_t HASHCRYPT_SHA(HASHCRYPT_Type *base, hashcrypt_algo_t algo, const uint8_t
*input, size_t inputSize, uint8_t *output, size_t *outputSize)

Create HASH on given data.

Perform the full SHA in one function call. The function is blocking.

Parameters
• base – HASHCRYPT peripheral base address

• algo – Underlaying algorithm to use for hash computation.

• input – Input data

• inputSize – Size of input data in bytes

• output – [out] Output hash data

• outputSize – [out] Output parameter storing the size of the output hash in
bytes

Returns
Status of the one call hash operation.

status_t HASHCRYPT_SHA_Init(HASHCRYPT_Type *base, hashcrypt_hash_ctx_t *ctx,
hashcrypt_algo_t algo)

Initialize HASH context.

This function initializes the HASH.

Parameters
• base – HASHCRYPT peripheral base address

• ctx – [out] Output hash context

• algo – Underlaying algorithm to use for hash computation.

Returns
Status of initialization

status_t HASHCRYPT_SHA_Update(HASHCRYPT_Type *base, hashcrypt_hash_ctx_t *ctx, const
uint8_t *input, size_t inputSize)

Add data to current HASH.

Add data to current HASH. This can be called repeatedly with an arbitrary amount of data
to be hashed. The functions blocks. If it returns kStatus_Success, the running hash has been
updated (HASHCRYPT has processed the input data), so the memory at input pointer can be
released back to system. The HASHCRYPT context buffer is updated with the running hash
and with all necessary information to support possible context switch.

Parameters
• base – HASHCRYPT peripheral base address

• ctx – [inout] HASH context

• input – Input data

186 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

• inputSize – Size of input data in bytes

Returns
Status of the hash update operation

status_t HASHCRYPT_SHA_Finish(HASHCRYPT_Type *base, hashcrypt_hash_ctx_t *ctx, uint8_t
*output, size_t *outputSize)

Finalize hashing.

Outputs the final hash (computed by HASHCRYPT_HASH_Update()) and erases the context.

Parameters
• base – HASHCRYPT peripheral base address

• ctx – [inout] Input hash context

• output – [out] Output hash data

• outputSize – [inout]Optional parameter (can be passed as NULL). On func-
tion entry, it specifies the size of output[] buffer. On function return, it
stores the number of updated output bytes.

Returns
Status of the hash finish operation

HASHCRYPT_HASH_CTX_SIZE
HASHCRYPT HASH Context size.

struct _hashcrypt_hash_ctx_t
#include <fsl_hashcrypt.h> Storage type used to save hash context.

Public Members

uint32_t x[31]
storage

2.21 I2C: Inter-Integrated Circuit Driver

2.22 I2C DMA Driver

void I2C_MasterTransferCreateHandleDMA(I2C_Type *base, i2c_master_dma_handle_t *handle,
i2c_master_dma_transfer_callback_t callback, void
*userData, dma_handle_t *dmaHandle)

Init the I2C handle which is used in transactional functions.

Parameters
• base – I2C peripheral base address

• handle – pointer to i2c_master_dma_handle_t structure

• callback – pointer to user callback function

• userData – user param passed to the callback function

• dmaHandle – DMA handle pointer

status_t I2C_MasterTransferDMA(I2C_Type *base, i2c_master_dma_handle_t *handle,
i2c_master_transfer_t *xfer)

Performs a master dma non-blocking transfer on the I2C bus.

2.21. I2C: Inter-Integrated Circuit Driver 187

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• base – I2C peripheral base address

• handle – pointer to i2c_master_dma_handle_t structure

• xfer – pointer to transfer structure of i2c_master_transfer_t

Return values
• kStatus_Success – Sucessully complete the data transmission.

• kStatus_I2C_Busy – Previous transmission still not finished.

• kStatus_I2C_Timeout – Transfer error, wait signal timeout.

• kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.

• kStataus_I2C_Nak – Transfer error, receive Nak during transfer.

status_t I2C_MasterTransferGetCountDMA(I2C_Type *base, i2c_master_dma_handle_t *handle,
size_t *count)

Get master transfer status during a dma non-blocking transfer.

Parameters
• base – I2C peripheral base address

• handle – pointer to i2c_master_dma_handle_t structure

• count –Number of bytes transferred so far by the non-blocking transaction.

void I2C_MasterTransferAbortDMA(I2C_Type *base, i2c_master_dma_handle_t *handle)
Abort a master dma non-blocking transfer in a early time.

Parameters
• base – I2C peripheral base address

• handle – pointer to i2c_master_dma_handle_t structure

FSL_I2C_DMA_DRIVER_VERSION
I2C DMA driver version.

typedef struct _i2c_master_dma_handle i2c_master_dma_handle_t
I2C master dma handle typedef.

typedef void (*i2c_master_dma_transfer_callback_t)(I2C_Type *base, i2c_master_dma_handle_t
*handle, status_t status, void *userData)

I2C master dma transfer callback typedef.

typedef void (*flexcomm_i2c_dma_master_irq_handler_t)(I2C_Type *base,
i2c_master_dma_handle_t *handle)

Typedef for master dma handler.

I2C_MAX_DMA_TRANSFER_COUNT
Maximum lenght of single DMA transfer (determined by capability of the DMA engine)

struct _i2c_master_dma_handle
#include <fsl_i2c_dma.h> I2C master dma transfer structure.

Public Members

uint8_t state
Transfer state machine current state.

188 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t transferCount
Indicates progress of the transfer

uint32_t remainingBytesDMA
Remaining byte count to be transferred using DMA.

uint8_t *buf
Buffer pointer for current state.

bool checkAddrNack
Whether to check the nack signal is detected during addressing.

dma_handle_t *dmaHandle
The DMA handler used.

i2c_master_transfer_t transfer
Copy of the current transfer info.

i2c_master_dma_transfer_callback_t completionCallback
Callback function called after dma transfer finished.

void *userData
Callback parameter passed to callback function.

2.23 I2C Driver

FSL_I2C_DRIVER_VERSION
I2C driver version.

I2C status return codes.

Values:

enumerator kStatus_I2C_Busy
The master is already performing a transfer.

enumerator kStatus_I2C_Idle
The slave driver is idle.

enumerator kStatus_I2C_Nak
The slave device sent a NAK in response to a byte.

enumerator kStatus_I2C_InvalidParameter
Unable to proceed due to invalid parameter.

enumerator kStatus_I2C_BitError
Transferred bit was not seen on the bus.

enumerator kStatus_I2C_ArbitrationLost
Arbitration lost error.

enumerator kStatus_I2C_NoTransferInProgress
Attempt to abort a transfer when one is not in progress.

enumerator kStatus_I2C_DmaRequestFail
DMA request failed.

enumerator kStatus_I2C_StartStopError
Start and stop error.

2.23. I2C Driver 189

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus_I2C_UnexpectedState
Unexpected state.

enumerator kStatus_I2C_Timeout
Timeout when waiting for I2C master/slave pending status to set to continue transfer.

enumerator kStatus_I2C_Addr_Nak
NAK received for Address

enumerator kStatus_I2C_EventTimeout
Timeout waiting for bus event.

enumerator kStatus_I2C_SclLowTimeout
Timeout SCL signal remains low.

enum _i2c_status_flags
I2C status flags.

Note: These enums are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2C_MasterPendingFlag
The I2C module is waiting for software interaction. bit 0

enumerator kI2C_MasterArbitrationLostFlag
The arbitration of the bus was lost. There was collision on the bus. bit 4

enumerator kI2C_MasterStartStopErrorFlag
There was an error during start or stop phase of the transaction. bit 6

enumerator kI2C_MasterIdleFlag
The I2C master idle status. bit 5

enumerator kI2C_MasterRxReadyFlag
The I2C master rx ready status. bit 1

enumerator kI2C_MasterTxReadyFlag
The I2C master tx ready status. bit 2

enumerator kI2C_MasterAddrNackFlag
The I2C master address nack status. bit 7

enumerator kI2C_MasterDataNackFlag
The I2C master data nack status. bit 3

enumerator kI2C_SlavePendingFlag
The I2C module is waiting for software interaction. bit 8

enumerator kI2C_SlaveNotStretching
Indicates whether the slave is currently stretching clock (0 = yes, 1 = no). bit 11

enumerator kI2C_SlaveSelected
Indicates whether the slave is selected by an address match. bit 14

enumerator kI2C_SaveDeselected
Indicates that slave was previously deselected (deselect event took place, w1c). bit 15

enumerator kI2C_SlaveAddressedFlag
One of the I2C slave’s 4 addresses is matched. bit 22

190 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kI2C_SlaveReceiveFlag
Slave receive data available. bit 9

enumerator kI2C_SlaveTransmitFlag
Slave data can be transmitted. bit 10

enumerator kI2C_SlaveAddress0MatchFlag
Slave address0 match. bit 20

enumerator kI2C_SlaveAddress1MatchFlag
Slave address1 match. bit 12

enumerator kI2C_SlaveAddress2MatchFlag
Slave address2 match. bit 13

enumerator kI2C_SlaveAddress3MatchFlag
Slave address3 match. bit 21

enumerator kI2C_MonitorReadyFlag
The I2C monitor ready interrupt. bit 16

enumerator kI2C_MonitorOverflowFlag
The monitor data overrun interrupt. bit 17

enumerator kI2C_MonitorActiveFlag
The monitor is active. bit 18

enumerator kI2C_MonitorIdleFlag
The monitor idle interrupt. bit 19

enumerator kI2C_EventTimeoutFlag
The bus event timeout interrupt. bit 24

enumerator kI2C_SclTimeoutFlag
The SCL timeout interrupt. bit 25

enumerator kI2C_MasterAllClearFlags

enumerator kI2C_SlaveAllClearFlags

enumerator kI2C_CommonAllClearFlags

enum _i2c_interrupt_enable
I2C interrupt enable.

Note: These enums are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2C_MasterPendingInterruptEnable
The I2C master communication pending interrupt.

enumerator kI2C_MasterArbitrationLostInterruptEnable
The I2C master arbitration lost interrupt.

enumerator kI2C_MasterStartStopErrorInterruptEnable
The I2C master start/stop timing error interrupt.

enumerator kI2C_SlavePendingInterruptEnable
The I2C slave communication pending interrupt.

2.23. I2C Driver 191

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kI2C_SlaveNotStretchingInterruptEnable
The I2C slave not streching interrupt, deep-sleep mode can be entered only when this
interrupt occurs.

enumerator kI2C_SlaveDeselectedInterruptEnable
The I2C slave deselection interrupt.

enumerator kI2C_MonitorReadyInterruptEnable
The I2C monitor ready interrupt.

enumerator kI2C_MonitorOverflowInterruptEnable
The monitor data overrun interrupt.

enumerator kI2C_MonitorIdleInterruptEnable
The monitor idle interrupt.

enumerator kI2C_EventTimeoutInterruptEnable
The bus event timeout interrupt.

enumerator kI2C_SclTimeoutInterruptEnable
The SCL timeout interrupt.

enumerator kI2C_MasterAllInterruptEnable

enumerator kI2C_SlaveAllInterruptEnable

enumerator kI2C_CommonAllInterruptEnable

I2C_RETRY_TIMES
Retry times for waiting flag.

I2C_MASTER_TRANSMIT_IGNORE_LAST_NACK
Whether to ignore the nack signal of the last byte during master transmit.

I2C_STAT_MSTCODE_IDLE
Master Idle State Code

I2C_STAT_MSTCODE_RXREADY
Master Receive Ready State Code

I2C_STAT_MSTCODE_TXREADY
Master Transmit Ready State Code

I2C_STAT_MSTCODE_NACKADR
Master NACK by slave on address State Code

I2C_STAT_MSTCODE_NACKDAT
Master NACK by slave on data State Code

I2C_STAT_SLVST_ADDR

I2C_STAT_SLVST_RX

I2C_STAT_SLVST_TX

2.24 I2C Master Driver

192 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

void I2C_MasterGetDefaultConfig(i2c_master_config_t *masterConfig)
Provides a default configuration for the I2C master peripheral.

This function provides the following default configuration for the I2C master peripheral:

masterConfig->enableMaster = true;
masterConfig->baudRate_Bps = 100000U;
masterConfig->enableTimeout = false;

After calling this function, you can override any settings in order to customize the configu-
ration, prior to initializing the master driver with I2C_MasterInit().

Parameters
• masterConfig – [out] User provided configuration structure for default val-
ues. Refer to i2c_master_config_t.

void I2C_MasterInit(I2C_Type *base, const i2c_master_config_t *masterConfig, uint32_t
srcClock_Hz)

Initializes the I2C master peripheral.

This function enables the peripheral clock and initializes the I2C master peripheral as de-
scribed by the user provided configuration. A software reset is performed prior to config-
uration.

Parameters
• base – The I2C peripheral base address.

• masterConfig – User provided peripheral configuration. Use
I2C_MasterGetDefaultConfig() to get a set of defaults that you can
override.

• srcClock_Hz – Frequency in Hertz of the I2C functional clock. Used to cal-
culate the baud rate divisors, filter widths, and timeout periods.

void I2C_MasterDeinit(I2C_Type *base)
Deinitializes the I2C master peripheral.

This function disables the I2C master peripheral and gates the clock. It also performs a
software reset to restore the peripheral to reset conditions.

Parameters
• base – The I2C peripheral base address.

uint32_t I2C_GetInstance(I2C_Type *base)
Returns an instance number given a base address.

If an invalid base address is passed, debug builds will assert. Release builds will just return
instance number 0.

Parameters
• base – The I2C peripheral base address.

Returns
I2C instance number starting from 0.

static inline void I2C_MasterReset(I2C_Type *base)
Performs a software reset.

Restores the I2C master peripheral to reset conditions.

Parameters
• base – The I2C peripheral base address.

2.24. I2C Master Driver 193

MCUXpresso SDK Documentation, Release 25.09.00

static inline void I2C_MasterEnable(I2C_Type *base, bool enable)
Enables or disables the I2C module as master.

Parameters
• base – The I2C peripheral base address.

• enable – Pass true to enable or false to disable the specified I2C as master.

uint32_t I2C_GetStatusFlags(I2C_Type *base)
Gets the I2C status flags.

A bit mask with the state of all I2C status flags is returned. For each flag, the corresponding
bit in the return value is set if the flag is asserted.

See also:
_i2c_status_flags.

Parameters
• base – The I2C peripheral base address.

Returns
State of the status flags:

• 1: related status flag is set.

• 0: related status flag is not set.

static inline void I2C_ClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C status flag state.

Refer to kI2C_CommonAllClearStatusFlags, kI2C_MasterAllClearStatusFlags and
kI2C_SlaveAllClearStatusFlags to see the clearable flags. Attempts to clear other flags
has no effect.

See also:
_i2c_status_flags, _i2c_master_status_flags and _i2c_slave_status_flags.

Parameters
• base – The I2C peripheral base address.

• statusMask – A bitmask of status flags that are to be cleared. The
mask is composed of the members in kI2C_CommonAllClearStatusFlags,
kI2C_MasterAllClearStatusFlags and kI2C_SlaveAllClearStatusFlags. You
may pass the result of a previous call to I2C_GetStatusFlags().

static inline void I2C_MasterClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C master status flag state.

Deprecated:
Do not use this function. It has been superceded by I2C_ClearStatusFlags The following
status register flags can be cleared:

• kI2C_MasterArbitrationLostFlag

• kI2C_MasterStartStopErrorFlag

194 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

Attempts to clear other flags has no effect.

See also:
_i2c_status_flags.

Parameters
• base – The I2C peripheral base address.

• statusMask – A bitmask of status flags that are to be cleared. The mask is
composed of _i2c_status_flags enumerators OR’d together. You may pass
the result of a previous call to I2C_GetStatusFlags().

static inline void I2C_EnableInterrupts(I2C_Type *base, uint32_t interruptMask)
Enables the I2C interrupt requests.

Parameters
• base – The I2C peripheral base address.

• interruptMask – Bit mask of interrupts to enable. See _i2c_interrupt_enable
for the set of constants that should be OR’d together to form the bit mask.

static inline void I2C_DisableInterrupts(I2C_Type *base, uint32_t interruptMask)
Disables the I2C interrupt requests.

Parameters
• base – The I2C peripheral base address.

• interruptMask – Bitmask of interrupts to disable. See _i2c_interrupt_enable
for the set of constants that should be OR’d together to form the bit mask.

static inline uint32_t I2C_GetEnabledInterrupts(I2C_Type *base)
Returns the set of currently enabled I2C interrupt requests.

Parameters
• base – The I2C peripheral base address.

Returns
A bitmask composed of _i2c_interrupt_enable enumerators OR’d together to
indicate the set of enabled interrupts.

void I2C_MasterSetBaudRate(I2C_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
Sets the I2C bus frequency for master transactions.

The I2Cmaster is automatically disabled and re-enabled as necessary to configure the baud
rate. Do not call this function during a transfer, or the transfer is aborted.

Parameters
• base – The I2C peripheral base address.

• srcClock_Hz – I2C functional clock frequency in Hertz.

• baudRate_Bps – Requested bus frequency in bits per second.

void I2C_MasterSetTimeoutValue(I2C_Type *base, uint8_t timeout_Ms, uint32_t srcClock_Hz)
Sets the I2C bus timeout value.

If the SCL signal remains low or bus does not have event longer than the timeout value,
kI2C_SclTimeoutFlag or kI2C_EventTimeoutFlag is set. This can indicete the bus is held by
slave or any fault occurs to the I2C module.

Parameters

2.24. I2C Master Driver 195

MCUXpresso SDK Documentation, Release 25.09.00

• base – The I2C peripheral base address.

• timeout_Ms – Timeout value in millisecond.

• srcClock_Hz – I2C functional clock frequency in Hertz.

static inline bool I2C_MasterGetBusIdleState(I2C_Type *base)
Returns whether the bus is idle.

Requires the master mode to be enabled.

Parameters
• base – The I2C peripheral base address.

Return values
• true – Bus is busy.

• false – Bus is idle.

status_t I2C_MasterStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)
Sends a START on the I2C bus.

This function is used to initiate a new master mode transfer by sending the START signal.
The slave address is sent following the I2C START signal.

Parameters
• base – I2C peripheral base pointer

• address – 7-bit slave device address.

• direction – Master transfer directions(transmit/receive).

Return values
• kStatus_Success – Successfully send the start signal.

• kStatus_I2C_Busy – Current bus is busy.

status_t I2C_MasterStop(I2C_Type *base)
Sends a STOP signal on the I2C bus.

Return values
• kStatus_Success – Successfully send the stop signal.

• kStatus_I2C_Timeout – Send stop signal failed, timeout.

static inline status_t I2C_MasterRepeatedStart(I2C_Type *base, uint8_t address, i2c_direction_t
direction)

Sends a REPEATED START on the I2C bus.

Parameters
• base – I2C peripheral base pointer

• address – 7-bit slave device address.

• direction – Master transfer directions(transmit/receive).

Return values
• kStatus_Success – Successfully send the start signal.

• kStatus_I2C_Busy – Current bus is busy but not occupied by current I2C
master.

196 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

status_t I2C_MasterWriteBlocking(I2C_Type *base, const void *txBuff, size_t txSize, uint32_t
flags)

Performs a polling send transfer on the I2C bus.

Sends up to txSize number of bytes to the previously addressed slave device. The slavemay
reply with a NAK to any byte in order to terminate the transfer early. If this happens, this
function returns kStatus_I2C_Nak.

Parameters
• base – The I2C peripheral base address.

• txBuff – The pointer to the data to be transferred.

• txSize – The length in bytes of the data to be transferred.

• flags – Transfer control flag to control special behavior like suppressing
start or stop, for normal transfers use kI2C_TransferDefaultFlag

Return values
• kStatus_Success – Data was sent successfully.

• kStatus_I2C_Busy – Another master is currently utilizing the bus.

• kStatus_I2C_Nak – The slave device sent a NAK in response to a byte.

• kStatus_I2C_ArbitrationLost – Arbitration lost error.

status_t I2C_MasterReadBlocking(I2C_Type *base, void *rxBuff, size_t rxSize, uint32_t flags)
Performs a polling receive transfer on the I2C bus.

Parameters
• base – The I2C peripheral base address.

• rxBuff – The pointer to the data to be transferred.

• rxSize – The length in bytes of the data to be transferred.

• flags – Transfer control flag to control special behavior like suppressing
start or stop, for normal transfers use kI2C_TransferDefaultFlag

Return values
• kStatus_Success – Data was received successfully.

• kStatus_I2C_Busy – Another master is currently utilizing the bus.

• kStatus_I2C_Nak – The slave device sent a NAK in response to a byte.

• kStatus_I2C_ArbitrationLost – Arbitration lost error.

status_t I2C_MasterTransferBlocking(I2C_Type *base, i2c_master_transfer_t *xfer)
Performs a master polling transfer on the I2C bus.

Note: The API does not return until the transfer succeeds or fails due to arbitration lost or
receiving a NAK.

Parameters
• base – I2C peripheral base address.

• xfer – Pointer to the transfer structure.

Return values
• kStatus_Success – Successfully complete the data transmission.

• kStatus_I2C_Busy – Previous transmission still not finished.

2.24. I2C Master Driver 197

MCUXpresso SDK Documentation, Release 25.09.00

• kStatus_I2C_Timeout – Transfer error, wait signal timeout.

• kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.

• kStataus_I2C_Nak – Transfer error, receive NAK during transfer.

• kStataus_I2C_Addr_Nak – Transfer error, receive NAK during addressing.

void I2C_MasterTransferCreateHandle(I2C_Type *base, i2c_master_handle_t *handle,
i2c_master_transfer_callback_t callback, void *userData)

Creates a new handle for the I2C master non-blocking APIs.

The creation of a handle is for use with the non-blocking APIs. Once a handle is created,
there is not a corresponding destroy handle. If the user wants to terminate a transfer, the
I2C_MasterTransferAbort() API shall be called.

Parameters
• base – The I2C peripheral base address.

• handle – [out] Pointer to the I2C master driver handle.

• callback – User provided pointer to the asynchronous callback function.

• userData – User provided pointer to the application callback data.

status_t I2C_MasterTransferNonBlocking(I2C_Type *base, i2c_master_handle_t *handle,
i2c_master_transfer_t *xfer)

Performs a non-blocking transaction on the I2C bus.

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to the I2C master driver handle.

• xfer – The pointer to the transfer descriptor.

Return values
• kStatus_Success – The transaction was started successfully.

• kStatus_I2C_Busy – Either another master is currently utilizing the bus,
or a non-blocking transaction is already in progress.

status_t I2C_MasterTransferGetCount(I2C_Type *base, i2c_master_handle_t *handle, size_t
*count)

Returns number of bytes transferred so far.

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to the I2C master driver handle.

• count – [out]Number of bytes transferred so far by the non-blocking trans-
action.

Return values
• kStatus_Success –

• kStatus_I2C_Busy –

status_t I2C_MasterTransferAbort(I2C_Type *base, i2c_master_handle_t *handle)
Terminates a non-blocking I2C master transmission early.

Note: It is not safe to call this function from an IRQ handler that has a higher priority than
the I2C peripheral’s IRQ priority.

198 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to the I2C master driver handle.

Return values
• kStatus_Success – A transaction was successfully aborted.

• kStatus_I2C_Timeout – Timeout during polling for flags.

void I2C_MasterTransferHandleIRQ(I2C_Type *base, i2c_master_handle_t *handle)
Reusable routine to handle master interrupts.

Note: This function does not need to be called unless you are reimplementing the non-
blocking API’s interrupt handler routines to add special functionality.

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to the I2C master driver handle.

enum _i2c_direction
Direction of master and slave transfers.

Values:

enumerator kI2C_Write
Master transmit.

enumerator kI2C_Read
Master receive.

enum _i2c_master_transfer_flags
Transfer option flags.

Note: These enumerations are intended to be OR’d together to form a bit mask of options
for the _i2c_master_transfer::flags field.

Values:

enumerator kI2C_TransferDefaultFlag
Transfer starts with a start signal, stops with a stop signal.

enumerator kI2C_TransferNoStartFlag
Don’t send a start condition, address, and sub address

enumerator kI2C_TransferRepeatedStartFlag
Send a repeated start condition

enumerator kI2C_TransferNoStopFlag
Don’t send a stop condition.

enum _i2c_transfer_states
States for the state machine used by transactional APIs.

Values:

enumerator kIdleState

enumerator kTransmitSubaddrState

2.24. I2C Master Driver 199

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kTransmitDataState

enumerator kReceiveDataBeginState

enumerator kReceiveDataState

enumerator kReceiveLastDataState

enumerator kStartState

enumerator kStopState

enumerator kWaitForCompletionState

typedef enum _i2c_direction i2c_direction_t
Direction of master and slave transfers.

typedef struct _i2c_master_config i2c_master_config_t
Structure with settings to initialize the I2C master module.

This structure holds configuration settings for the I2C peripheral. To initialize this structure
to reasonable defaults, call the I2C_MasterGetDefaultConfig() function and pass a pointer
to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

typedef struct _i2c_master_transfer i2c_master_transfer_t
I2C master transfer typedef.

typedef struct _i2c_master_handle i2c_master_handle_t
I2C master handle typedef.

typedef void (*i2c_master_transfer_callback_t)(I2C_Type *base, i2c_master_handle_t *handle,
status_t completionStatus, void *userData)

Master completion callback function pointer type.

This callback is used only for the non-blockingmaster transfer API. Specify the callback you
wish to use in the call to I2C_MasterTransferCreateHandle().

Param base
The I2C peripheral base address.

Param completionStatus
Either kStatus_Success or an error code describing how the transfer com-
pleted.

Param userData
Arbitrary pointer-sized value passed from the application.

struct _i2c_master_config
#include <fsl_i2c.h> Structure with settings to initialize the I2C master module.

This structure holds configuration settings for the I2C peripheral. To initialize this structure
to reasonable defaults, call the I2C_MasterGetDefaultConfig() function and pass a pointer
to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members

bool enableMaster
Whether to enable master mode.

200 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t baudRate_Bps
Desired baud rate in bits per second.

bool enableTimeout
Enable internal timeout function.

uint8_t timeout_Ms
Event timeout and SCL low timeout value.

struct _i2c_master_transfer
#include <fsl_i2c.h> Non-blocking transfer descriptor structure.

This structure is used to pass transaction parameters to the
I2C_MasterTransferNonBlocking() API.

Public Members

uint32_t flags
Bit mask of options for the transfer. See enumeration _i2c_master_transfer_flags for
available options. Set to 0 or kI2C_TransferDefaultFlag for normal transfers.

uint8_t slaveAddress
The 7-bit slave address.

i2c_direction_t direction
Either kI2C_Read or kI2C_Write.

uint32_t subaddress
Sub address. Transferred MSB first.

size_t subaddressSize
Length of sub address to send in bytes. Maximum size is 4 bytes.

void *data
Pointer to data to transfer.

size_t dataSize
Number of bytes to transfer.

struct _i2c_master_handle
#include <fsl_i2c.h> Driver handle for master non-blocking APIs.

Note: The contents of this structure are private and subject to change.

Public Members

uint8_t state
Transfer state machine current state.

uint32_t transferCount
Indicates progress of the transfer

uint32_t remainingBytes
Remaining byte count in current state.

uint8_t *buf
Buffer pointer for current state.

2.24. I2C Master Driver 201

MCUXpresso SDK Documentation, Release 25.09.00

bool checkAddrNack
Whether to check the nack signal is detected during addressing.

i2c_master_transfer_t transfer
Copy of the current transfer info.

i2c_master_transfer_callback_t completionCallback
Callback function pointer.

void *userData
Application data passed to callback.

2.25 I2C Slave Driver

void I2C_SlaveGetDefaultConfig(i2c_slave_config_t *slaveConfig)
Provides a default configuration for the I2C slave peripheral.

This function provides the following default configuration for the I2C slave peripheral:

slaveConfig->enableSlave = true;
slaveConfig->address0.disable = false;
slaveConfig->address0.address = 0u;
slaveConfig->address1.disable = true;
slaveConfig->address2.disable = true;
slaveConfig->address3.disable = true;
slaveConfig->busSpeed = kI2C_SlaveStandardMode;

After calling this function, override any settings to customize the configuration, prior to
initializing the master driver with I2C_SlaveInit(). Be sure to override at least the ad-
dress0.addressmember of the configuration structure with the desired slave address.

Parameters
• slaveConfig – [out] User provided configuration structure that is set to de-
fault values. Refer to i2c_slave_config_t.

status_t I2C_SlaveInit(I2C_Type *base, const i2c_slave_config_t *slaveConfig, uint32_t
srcClock_Hz)

Initializes the I2C slave peripheral.

This function enables the peripheral clock and initializes the I2C slave peripheral as de-
scribed by the user provided configuration.

Parameters
• base – The I2C peripheral base address.

• slaveConfig – User provided peripheral configuration. Use
I2C_SlaveGetDefaultConfig() to get a set of defaults that you can override.

• srcClock_Hz – Frequency in Hertz of the I2C functional clock. Used to cal-
culate CLKDIV value to provide enough data setup time for master when
slave stretches the clock.

void I2C_SlaveSetAddress(I2C_Type *base, i2c_slave_address_register_t addressRegister, uint8_t
address, bool addressDisable)

Configures Slave Address n register.

This function writes new value to Slave Address register.

Parameters
• base – The I2C peripheral base address.

202 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

• addressRegister – The module supports multiple address registers. The pa-
rameter determines which one shall be changed.

• address – The slave address to be stored to the address register for match-
ing.

• addressDisable – Disable matching of the specified address register.

void I2C_SlaveDeinit(I2C_Type *base)
Deinitializes the I2C slave peripheral.

This function disables the I2C slave peripheral and gates the clock. It also performs a soft-
ware reset to restore the peripheral to reset conditions.

Parameters
• base – The I2C peripheral base address.

static inline void I2C_SlaveEnable(I2C_Type *base, bool enable)
Enables or disables the I2C module as slave.

Parameters
• base – The I2C peripheral base address.

• enable – True to enable or flase to disable.

static inline void I2C_SlaveClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C status flag state.

The following status register flags can be cleared:

• slave deselected flag

Attempts to clear other flags has no effect.

See also:
_i2c_slave_flags.

Parameters
• base – The I2C peripheral base address.

• statusMask – A bitmask of status flags that are to be cleared. The mask is
composed of _i2c_slave_flags enumerators OR’d together. You may pass
the result of a previous call to I2C_SlaveGetStatusFlags().

status_t I2C_SlaveWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize)
Performs a polling send transfer on the I2C bus.

The function executes blocking address phase and blocking data phase.

Parameters
• base – The I2C peripheral base address.

• txBuff – The pointer to the data to be transferred.

• txSize – The length in bytes of the data to be transferred.

Returns
kStatus_Success Data has been sent.

Returns
kStatus_Fail Unexpected slave state (master data write while master read
from slave is expected).

2.25. I2C Slave Driver 203

MCUXpresso SDK Documentation, Release 25.09.00

status_t I2C_SlaveReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize)
Performs a polling receive transfer on the I2C bus.

The function executes blocking address phase and blocking data phase.

Parameters
• base – The I2C peripheral base address.

• rxBuff – The pointer to the data to be transferred.

• rxSize – The length in bytes of the data to be transferred.

Returns
kStatus_Success Data has been received.

Returns
kStatus_Fail Unexpected slave state (master data read while master write to
slave is expected).

void I2C_SlaveTransferCreateHandle(I2C_Type *base, i2c_slave_handle_t *handle,
i2c_slave_transfer_callback_t callback, void *userData)

Creates a new handle for the I2C slave non-blocking APIs.

The creation of a handle is for use with the non-blocking APIs. Once a handle is created,
there is not a corresponding destroy handle. If the user wants to terminate a transfer, the
I2C_SlaveTransferAbort() API shall be called.

Parameters
• base – The I2C peripheral base address.

• handle – [out] Pointer to the I2C slave driver handle.

• callback – User provided pointer to the asynchronous callback function.

• userData – User provided pointer to the application callback data.

status_t I2C_SlaveTransferNonBlocking(I2C_Type *base, i2c_slave_handle_t *handle, uint32_t
eventMask)

Starts accepting slave transfers.

Call this API after calling I2C_SlaveInit() and I2C_SlaveTransferCreateHandle() to start pro-
cessing transactions driven by an I2C master. The slave monitors the I2C bus and pass
events to the callback that was passed into the call to I2C_SlaveTransferCreateHandle().
The callback is always invoked from the interrupt context.

If no slave Tx transfer is busy, a master read from slave request invokes
kI2C_SlaveTransmitEvent callback. If no slave Rx transfer is busy, a master write to
slave request invokes kI2C_SlaveReceiveEvent callback.

The set of events received by the callback is customizable. To do so, set the eventMask pa-
rameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events
you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are
always enabled and do not need to be included in the mask. Alternatively, you can pass
0 to get a default set of only the transmit and receive events that are always enabled. In
addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all
events.

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to i2c_slave_handle_t structure which stores the transfer
state.

204 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

• eventMask – Bitmask formed byOR’ing together i2c_slave_transfer_event_t
enumerators to specify which events to send to the callback. Other ac-
cepted values are 0 to get a default set of only the transmit and receive
events, and kI2C_SlaveAllEvents to enable all events.

Return values
• kStatus_Success – Slave transfers were successfully started.

• kStatus_I2C_Busy – Slave transfers have already been started on this han-
dle.

status_t I2C_SlaveSetSendBuffer(I2C_Type *base, volatile i2c_slave_transfer_t *transfer, const
void *txData, size_t txSize, uint32_t eventMask)

Starts accepting master read from slave requests.

The function can be called in response to kI2C_SlaveTransmitEvent callback to start a new
slave Tx transfer from within the transfer callback.

The set of events received by the callback is customizable. To do so, set the eventMask pa-
rameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events
you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are
always enabled and do not need to be included in the mask. Alternatively, you can pass
0 to get a default set of only the transmit and receive events that are always enabled. In
addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all
events.

Parameters
• base – The I2C peripheral base address.

• transfer – Pointer to i2c_slave_transfer_t structure.

• txData – Pointer to data to send to master.

• txSize – Size of txData in bytes.

• eventMask – Bitmask formed byOR’ing together i2c_slave_transfer_event_t
enumerators to specify which events to send to the callback. Other ac-
cepted values are 0 to get a default set of only the transmit and receive
events, and kI2C_SlaveAllEvents to enable all events.

Return values
• kStatus_Success – Slave transfers were successfully started.

• kStatus_I2C_Busy – Slave transfers have already been started on this han-
dle.

status_t I2C_SlaveSetReceiveBuffer(I2C_Type *base, volatile i2c_slave_transfer_t *transfer, void
*rxData, size_t rxSize, uint32_t eventMask)

Starts accepting master write to slave requests.

The function can be called in response to kI2C_SlaveReceiveEvent callback to start a new
slave Rx transfer from within the transfer callback.

The set of events received by the callback is customizable. To do so, set the eventMask pa-
rameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events
you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are
always enabled and do not need to be included in the mask. Alternatively, you can pass
0 to get a default set of only the transmit and receive events that are always enabled. In
addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all
events.

Parameters
• base – The I2C peripheral base address.

2.25. I2C Slave Driver 205

MCUXpresso SDK Documentation, Release 25.09.00

• transfer – Pointer to i2c_slave_transfer_t structure.

• rxData – Pointer to data to store data from master.

• rxSize – Size of rxData in bytes.

• eventMask – Bitmask formed byOR’ing together i2c_slave_transfer_event_t
enumerators to specify which events to send to the callback. Other ac-
cepted values are 0 to get a default set of only the transmit and receive
events, and kI2C_SlaveAllEvents to enable all events.

Return values
• kStatus_Success – Slave transfers were successfully started.

• kStatus_I2C_Busy – Slave transfers have already been started on this han-
dle.

static inline uint32_t I2C_SlaveGetReceivedAddress(I2C_Type *base, volatile i2c_slave_transfer_t
*transfer)

Returns the slave address sent by the I2C master.

This function should only be called from the address match event callback
kI2C_SlaveAddressMatchEvent.

Parameters
• base – The I2C peripheral base address.

• transfer – The I2C slave transfer.

Returns
The 8-bit address matched by the I2C slave. Bit 0 contains the R/w direction
bit, and the 7-bit slave address is in the upper 7 bits.

void I2C_SlaveTransferAbort(I2C_Type *base, i2c_slave_handle_t *handle)
Aborts the slave non-blocking transfers.

Note: This API could be called at any time to stop slave for handling the bus events.

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to i2c_slave_handle_t structure which stores the transfer
state.

Return values
• kStatus_Success –

• kStatus_I2C_Idle –

status_t I2C_SlaveTransferGetCount(I2C_Type *base, i2c_slave_handle_t *handle, size_t *count)
Gets the slave transfer remaining bytes during a interrupt non-blocking transfer.

Parameters
• base – I2C base pointer.

• handle – pointer to i2c_slave_handle_t structure.

• count –Number of bytes transferred so far by the non-blocking transaction.

Return values
• kStatus_InvalidArgument – count is Invalid.

• kStatus_Success – Successfully return the count.

206 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

void I2C_SlaveTransferHandleIRQ(I2C_Type *base, i2c_slave_handle_t *handle)
Reusable routine to handle slave interrupts.

Note: This function does not need to be called unless you are reimplementing the non
blocking API’s interrupt handler routines to add special functionality.

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to i2c_slave_handle_t structure which stores the transfer
state.

enum _i2c_slave_address_register
I2C slave address register.

Values:

enumerator kI2C_SlaveAddressRegister0
Slave Address 0 register.

enumerator kI2C_SlaveAddressRegister1
Slave Address 1 register.

enumerator kI2C_SlaveAddressRegister2
Slave Address 2 register.

enumerator kI2C_SlaveAddressRegister3
Slave Address 3 register.

enum _i2c_slave_address_qual_mode
I2C slave address match options.

Values:

enumerator kI2C_QualModeMask
The SLVQUAL0 field (qualAddress) is used as a logical mask for matching address0.

enumerator kI2C_QualModeExtend
The SLVQUAL0 (qualAddress) field is used to extend address 0 matching in a range of
addresses.

enum _i2c_slave_bus_speed
I2C slave bus speed options.

Values:

enumerator kI2C_SlaveStandardMode

enumerator kI2C_SlaveFastMode

enumerator kI2C_SlaveFastModePlus

enumerator kI2C_SlaveHsMode

enum _i2c_slave_transfer_event
Set of events sent to the callback for non blocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created
by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() in order to specify
which events to enable. Then, when the slave callback is invoked, it is passed the current
event through its transfer parameter.

2.25. I2C Slave Driver 207

MCUXpresso SDK Documentation, Release 25.09.00

Note: These enumerations are meant to be OR’d together to form a bit mask of events.

Values:

enumerator kI2C_SlaveAddressMatchEvent
Received the slave address after a start or repeated start.

enumerator kI2C_SlaveTransmitEvent
Callback is requested to provide data to transmit (slave-transmitter role).

enumerator kI2C_SlaveReceiveEvent
Callback is requested to provide a buffer inwhich to place received data (slave-receiver
role).

enumerator kI2C_SlaveCompletionEvent
All data in the active transfer have been consumed.

enumerator kI2C_SlaveDeselectedEvent
The slave function has become deselected (SLVSEL flag changing from 1 to 0.

enumerator kI2C_SlaveAllEvents
Bit mask of all available events.

enum _i2c_slave_fsm
I2C slave software finite state machine states.

Values:

enumerator kI2C_SlaveFsmAddressMatch

enumerator kI2C_SlaveFsmReceive

enumerator kI2C_SlaveFsmTransmit

typedef enum _i2c_slave_address_register i2c_slave_address_register_t
I2C slave address register.

typedef struct _i2c_slave_address i2c_slave_address_t
Data structure with 7-bit Slave address and Slave address disable.

typedef enum _i2c_slave_address_qual_mode i2c_slave_address_qual_mode_t
I2C slave address match options.

typedef enum _i2c_slave_bus_speed i2c_slave_bus_speed_t
I2C slave bus speed options.

typedef struct _i2c_slave_config i2c_slave_config_t
Structure with settings to initialize the I2C slave module.

This structure holds configuration settings for the I2C slave peripheral. To initialize this
structure to reasonable defaults, call the I2C_SlaveGetDefaultConfig() function and pass a
pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

typedef enum _i2c_slave_transfer_event i2c_slave_transfer_event_t
Set of events sent to the callback for non blocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created
by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() in order to specify
which events to enable. Then, when the slave callback is invoked, it is passed the current
event through its transfer parameter.

208 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

Note: These enumerations are meant to be OR’d together to form a bit mask of events.

typedef struct _i2c_slave_handle i2c_slave_handle_t
I2C slave handle typedef.

typedef struct _i2c_slave_transfer i2c_slave_transfer_t
I2C slave transfer structure.

typedef void (*i2c_slave_transfer_callback_t)(I2C_Type *base, volatile i2c_slave_transfer_t
*transfer, void *userData)

Slave event callback function pointer type.

This callback is used only for the slave non-blocking transfer API. To install a callback, use
the I2C_SlaveSetCallback() function after you have created a handle.

Param base
Base address for the I2C instance on which the event occurred.

Param transfer
Pointer to transfer descriptor containing values passed to and/or from the call-
back.

Param userData
Arbitrary pointer-sized value passed from the application.

typedef enum _i2c_slave_fsm i2c_slave_fsm_t
I2C slave software finite state machine states.

typedef void (*flexcomm_i2c_master_irq_handler_t)(I2C_Type *base, i2c_master_handle_t
*handle)

Typedef for master interrupt handler.

typedef void (*flexcomm_i2c_slave_irq_handler_t)(I2C_Type *base, i2c_slave_handle_t *handle)
Typedef for slave interrupt handler.

struct _i2c_slave_address
#include <fsl_i2c.h> Data structure with 7-bit Slave address and Slave address disable.

Public Members

uint8_t address
7-bit Slave address SLVADR.

bool addressDisable
Slave address disable SADISABLE.

struct _i2c_slave_config
#include <fsl_i2c.h> Structure with settings to initialize the I2C slave module.

This structure holds configuration settings for the I2C slave peripheral. To initialize this
structure to reasonable defaults, call the I2C_SlaveGetDefaultConfig() function and pass a
pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members

i2c_slave_address_t address0
Slave’s 7-bit address and disable.

2.25. I2C Slave Driver 209

MCUXpresso SDK Documentation, Release 25.09.00

i2c_slave_address_t address1
Alternate slave 7-bit address and disable.

i2c_slave_address_t address2
Alternate slave 7-bit address and disable.

i2c_slave_address_t address3
Alternate slave 7-bit address and disable.

i2c_slave_address_qual_mode_t qualMode
Qualify mode for slave address 0.

uint8_t qualAddress
Slave address qualifier for address 0.

i2c_slave_bus_speed_t busSpeed
Slave bus speed mode. If the slave function stretches SCL to allow for software re-
sponse, it must provide sufficient data setup time to the master before releasing the
stretched clock. This is accomplished by inserting one clock time of CLKDIV at that
point. The busSpeed value is used to configure CLKDIV such that one clock time is
greater than the tSU;DAT value noted in the I2C bus specification for the I2C mode that
is being used. If the busSpeed mode is unknown at compile time, use the longest data
setup time kI2C_SlaveStandardMode (250 ns)

bool enableSlave
Enable slave mode.

struct _i2c_slave_transfer
#include <fsl_i2c.h> I2C slave transfer structure.

Public Members

i2c_slave_handle_t *handle
Pointer to handle that contains this transfer.

i2c_slave_transfer_event_t event
Reason the callback is being invoked.

uint8_t receivedAddress
Matching address send by master. 7-bits plus R/nW bit0

uint32_t eventMask
Mask of enabled events.

uint8_t *rxData
Transfer buffer for receive data

const uint8_t *txData
Transfer buffer for transmit data

size_t txSize
Transfer size

size_t rxSize
Transfer size

size_t transferredCount
Number of bytes transferred during this transfer.

210 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

status_t completionStatus
Success or error code describing how the transfer completed. Only applies for
kI2C_SlaveCompletionEvent.

struct _i2c_slave_handle
#include <fsl_i2c.h> I2C slave handle structure.

Note: The contents of this structure are private and subject to change.

Public Members

volatile i2c_slave_transfer_t transfer
I2C slave transfer.

volatile bool isBusy
Whether transfer is busy.

volatile i2c_slave_fsm_t slaveFsm
slave transfer state machine.

i2c_slave_transfer_callback_t callback
Callback function called at transfer event.

void *userData
Callback parameter passed to callback.

2.26 I2S: I2S Driver

2.27 I2S DMA Driver

void I2S_TxTransferCreateHandleDMA(I2S_Type *base, i2s_dma_handle_t *handle, dma_handle_t
*dmaHandle, i2s_dma_transfer_callback_t callback, void
*userData)

Initializes handle for transfer of audio data.

Parameters
• base – I2S base pointer.

• handle – pointer to handle structure.

• dmaHandle – pointer to dma handle structure.

• callback – function to be called back when transfer is done or fails.

• userData – pointer to data passed to callback.

status_t I2S_TxTransferSendDMA(I2S_Type *base, i2s_dma_handle_t *handle, i2s_transfer_t
transfer)

Begins or queue sending of the given data.

Parameters
• base – I2S base pointer.

• handle – pointer to handle structure.

• transfer – data buffer.

2.26. I2S: I2S Driver 211

MCUXpresso SDK Documentation, Release 25.09.00

Return values
• kStatus_Success –

• kStatus_I2S_Busy – if all queue slots are occupied with unsent buffers.

void I2S_TransferAbortDMA(I2S_Type *base, i2s_dma_handle_t *handle)
Aborts transfer of data.

Parameters
• base – I2S base pointer.

• handle – pointer to handle structure.

void I2S_RxTransferCreateHandleDMA(I2S_Type *base, i2s_dma_handle_t *handle, dma_handle_t
*dmaHandle, i2s_dma_transfer_callback_t callback, void
*userData)

Initializes handle for reception of audio data.

Parameters
• base – I2S base pointer.

• handle – pointer to handle structure.

• dmaHandle – pointer to dma handle structure.

• callback – function to be called back when transfer is done or fails.

• userData – pointer to data passed to callback.

status_t I2S_RxTransferReceiveDMA(I2S_Type *base, i2s_dma_handle_t *handle, i2s_transfer_t
transfer)

Begins or queue reception of data into given buffer.

Parameters
• base – I2S base pointer.

• handle – pointer to handle structure.

• transfer – data buffer.

Return values
• kStatus_Success –

• kStatus_I2S_Busy – if all queue slots are occupied with buffers which are
not full.

void I2S_DMACallback(dma_handle_t *handle, void *userData, bool transferDone, uint32_t tcds)
Invoked from DMA interrupt handler.

Parameters
• handle – pointer to DMA handle structure.

• userData – argument for user callback.

• transferDone – if transfer was done.

• tcds –

void I2S_TransferInstallLoopDMADescriptorMemory(i2s_dma_handle_t *handle, void
*dmaDescriptorAddr, size_t
dmaDescriptorNum)

Install DMA descriptor memory for loop transfer only.

This function used to register DMA descriptor memory for the i2s loop dma transfer.

212 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

It must be callbed before I2S_TransferSendLoopDMA/I2S_TransferReceiveLoopDMA and
after I2S_RxTransferCreateHandleDMA/I2S_TxTransferCreateHandleDMA.

User should be take care about the address of DMA descriptor pool which required align
with 16BYTE at least.

Parameters
• handle – Pointer to i2s DMA transfer handle.

• dmaDescriptorAddr – DMA descriptor start address.

• dmaDescriptorNum – DMA descriptor number.

status_t I2S_TransferSendLoopDMA(I2S_Type *base, i2s_dma_handle_t *handle, i2s_transfer_t
*xfer, uint32_t loopTransferCount)

Send link transfer data using DMA.

This function receives data using DMA. This is a non-blocking function, which returns right
away. When all data is received, the receive callback function is called.

This function support loop transfer, such as A->B->…->A, the loop transfer chain will be
converted into a chain of descriptor and submit to dma. Application must be aware of that
themore counts of the loop transfer, thenmore DMAdescriptormemory required, user can
use function I2S_InstallDMADescriptorMemory to register the dma descriptor memory.

As the DMA support maximum 1024 transfer count, so application must be aware of that
this transfer function support maximum 1024 samples in each transfer, otherwise assert
error or error status will be returned. Once the loop transfer start, application can use
function I2S_TransferAbortDMA to stop the loop transfer.

Parameters
• base – I2S peripheral base address.

• handle – Pointer to usart_dma_handle_t structure.

• xfer – I2S DMA transfer structure. See i2s_transfer_t.

• loopTransferCount – loop count

Return values
kStatus_Success –

status_t I2S_TransferReceiveLoopDMA(I2S_Type *base, i2s_dma_handle_t *handle, i2s_transfer_t
*xfer, uint32_t loopTransferCount)

Receive link transfer data using DMA.

This function receives data using DMA. This is a non-blocking function, which returns right
away. When all data is received, the receive callback function is called.

This function support loop transfer, such as A->B->…->A, the loop transfer chain will be
converted into a chain of descriptor and submit to dma. Application must be aware of that
themore counts of the loop transfer, thenmore DMAdescriptormemory required, user can
use function I2S_InstallDMADescriptorMemory to register the dma descriptor memory.

As the DMA support maximum 1024 transfer count, so application must be aware of that
this transfer function support maximum 1024 samples in each transfer, otherwise assert
error or error status will be returned. Once the loop transfer start, application can use
function I2S_TransferAbortDMA to stop the loop transfer.

Parameters
• base – I2S peripheral base address.

• handle – Pointer to usart_dma_handle_t structure.

• xfer – I2S DMA transfer structure. See i2s_transfer_t.

2.27. I2S DMA Driver 213

MCUXpresso SDK Documentation, Release 25.09.00

• loopTransferCount – loop count

Return values
kStatus_Success –

FSL_I2S_DMA_DRIVER_VERSION
I2S DMA driver version 2.3.3.

typedef struct _i2s_dma_handle i2s_dma_handle_t
Members not to be accessed / modified outside of the driver.

typedef void (*i2s_dma_transfer_callback_t)(I2S_Type *base, i2s_dma_handle_t *handle, status_t
completionStatus, void *userData)

Callback function invoked from DMA API on completion.

Param base
I2S base pointer.

Param handle
pointer to I2S transaction.

Param completionStatus
status of the transaction.

Param userData
optional pointer to user arguments data.

struct _i2s_dma_handle
#include <fsl_i2s_dma.h> i2s dma handle

Public Members

uint32_t state
Internal state of I2S DMA transfer

uint8_t bytesPerFrame
bytes per frame

i2s_dma_transfer_callback_t completionCallback
Callback function pointer

void *userData
Application data passed to callback

dma_handle_t *dmaHandle
DMA handle

volatile i2s_transfer_t i2sQueue[(4U)]
Transfer queue storing transfer buffers

volatile uint8_t queueUser
Queue index where user’s next transfer will be stored

volatile uint8_t queueDriver
Queue index of buffer actually used by the driver

dma_descriptor_t *i2sLoopDMADescriptor
descriptor pool pointer

size_t i2sLoopDMADescriptorNum
number of descriptor in descriptors pool

214 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

2.28 I2S Driver

void I2S_TxInit(I2S_Type *base, const i2s_config_t *config)
Initializes the FLEXCOMM peripheral for I2S transmit functionality.

Ungates the FLEXCOMM clock and configures the module for I2S transmission using a con-
figuration structure. The configuration structure can be custom filled or set with default
values by I2S_TxGetDefaultConfig().

Note: This API should be called at the beginning of the application to use the I2S driver.

Parameters
• base – I2S base pointer.

• config – pointer to I2S configuration structure.

void I2S_RxInit(I2S_Type *base, const i2s_config_t *config)
Initializes the FLEXCOMM peripheral for I2S receive functionality.

Ungates the FLEXCOMM clock and configures the module for I2S receive using a configura-
tion structure. The configuration structure can be custom filled or set with default values
by I2S_RxGetDefaultConfig().

Note: This API should be called at the beginning of the application to use the I2S driver.

Parameters
• base – I2S base pointer.

• config – pointer to I2S configuration structure.

void I2S_TxGetDefaultConfig(i2s_config_t *config)
Sets the I2S Tx configuration structure to default values.

This API initializes the configuration structure for use in I2S_TxInit(). The initialized struc-
ture can remain unchanged in I2S_TxInit(), or it can bemodified before calling I2S_TxInit().
Example:

i2s_config_t config;
I2S_TxGetDefaultConfig(&config);

Default values:

config->masterSlave = kI2S_MasterSlaveNormalMaster;
config->mode = kI2S_ModeI2sClassic;
config->rightLow = false;
config->leftJust = false;
config->pdmData = false;
config->sckPol = false;
config->wsPol = false;
config->divider = 1;
config->oneChannel = false;
config->dataLength = 16;
config->frameLength = 32;
config->position = 0;
config->watermark = 4;
config->txEmptyZero = true;
config->pack48 = false;

2.28. I2S Driver 215

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• config – pointer to I2S configuration structure.

void I2S_RxGetDefaultConfig(i2s_config_t *config)
Sets the I2S Rx configuration structure to default values.

This API initializes the configuration structure for use in I2S_RxInit(). The initialized struc-
ture can remain unchanged in I2S_RxInit(), or it can bemodified before calling I2S_RxInit().
Example:

i2s_config_t config;
I2S_RxGetDefaultConfig(&config);

Default values:

config->masterSlave = kI2S_MasterSlaveNormalSlave;
config->mode = kI2S_ModeI2sClassic;
config->rightLow = false;
config->leftJust = false;
config->pdmData = false;
config->sckPol = false;
config->wsPol = false;
config->divider = 1;
config->oneChannel = false;
config->dataLength = 16;
config->frameLength = 32;
config->position = 0;
config->watermark = 4;
config->txEmptyZero = false;
config->pack48 = false;

Parameters
• config – pointer to I2S configuration structure.

void I2S_Deinit(I2S_Type *base)
De-initializes the I2S peripheral.

This API gates the FLEXCOMM clock. The I2S module can’t operate unless I2S_TxInit or
I2S_RxInit is called to enable the clock.

Parameters
• base – I2S base pointer.

void I2S_SetBitClockRate(I2S_Type *base, uint32_t sourceClockHz, uint32_t sampleRate,
uint32_t bitWidth, uint32_t channelNumbers)

Transmitter/Receiver bit clock rate configurations.

Parameters
• base – SAI base pointer.

• sourceClockHz – bit clock source frequency.

• sampleRate – audio data sample rate.

• bitWidth – audio data bitWidth.

• channelNumbers – audio channel numbers.

void I2S_TxTransferCreateHandle(I2S_Type *base, i2s_handle_t *handle, i2s_transfer_callback_t
callback, void *userData)

Initializes handle for transfer of audio data.

Parameters

216 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

• base – I2S base pointer.

• handle – pointer to handle structure.

• callback – function to be called back when transfer is done or fails.

• userData – pointer to data passed to callback.

status_t I2S_TxTransferNonBlocking(I2S_Type *base, i2s_handle_t *handle, i2s_transfer_t
transfer)

Begins or queue sending of the given data.

Parameters
• base – I2S base pointer.

• handle – pointer to handle structure.

• transfer – data buffer.

Return values
• kStatus_Success –

• kStatus_I2S_Busy – if all queue slots are occupied with unsent buffers.

void I2S_TxTransferAbort(I2S_Type *base, i2s_handle_t *handle)
Aborts sending of data.

Parameters
• base – I2S base pointer.

• handle – pointer to handle structure.

void I2S_RxTransferCreateHandle(I2S_Type *base, i2s_handle_t *handle, i2s_transfer_callback_t
callback, void *userData)

Initializes handle for reception of audio data.

Parameters
• base – I2S base pointer.

• handle – pointer to handle structure.

• callback – function to be called back when transfer is done or fails.

• userData – pointer to data passed to callback.

status_t I2S_RxTransferNonBlocking(I2S_Type *base, i2s_handle_t *handle, i2s_transfer_t
transfer)

Begins or queue reception of data into given buffer.

Parameters
• base – I2S base pointer.

• handle – pointer to handle structure.

• transfer – data buffer.

Return values
• kStatus_Success –

• kStatus_I2S_Busy – if all queue slots are occupied with buffers which are
not full.

void I2S_RxTransferAbort(I2S_Type *base, i2s_handle_t *handle)
Aborts receiving of data.

Parameters

2.28. I2S Driver 217

MCUXpresso SDK Documentation, Release 25.09.00

• base – I2S base pointer.

• handle – pointer to handle structure.

status_t I2S_TransferGetCount(I2S_Type *base, i2s_handle_t *handle, size_t *count)
Returns number of bytes transferred so far.

Parameters
• base – I2S base pointer.

• handle – pointer to handle structure.

• count – [out] number of bytes transferred so far by the non-blocking trans-
action.

Return values
• kStatus_Success –

• kStatus_NoTransferInProgress – there is no non-blocking transaction cur-
rently in progress.

status_t I2S_TransferGetErrorCount(I2S_Type *base, i2s_handle_t *handle, size_t *count)
Returns number of buffer underruns or overruns.

Parameters
• base – I2S base pointer.

• handle – pointer to handle structure.

• count – [out] number of transmit errors encountered so far by the non-
blocking transaction.

Return values
• kStatus_Success –

• kStatus_NoTransferInProgress – there is no non-blocking transaction cur-
rently in progress.

static inline void I2S_Enable(I2S_Type *base)
Enables I2S operation.

Parameters
• base – I2S base pointer.

void I2S_EnableSecondaryChannel(I2S_Type *base, uint32_t channel, bool oneChannel, uint32_t
position)

Enables I2S secondary channel.

Parameters
• base – I2S base pointer.

• channel – seondary channel channel number, reference
_i2s_secondary_channel.

• oneChannel – true is treated as single channel, functionality left channel for
this pair.

• position – define the locationwithin the frameof the data, should not bigger
than 0x1FFU.

static inline void I2S_DisableSecondaryChannel(I2S_Type *base, uint32_t channel)
Disables I2S secondary channel.

Parameters

218 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

• base – I2S base pointer.

• channel – seondary channel channel number, reference
_i2s_secondary_channel.

static inline void I2S_Disable(I2S_Type *base)
Disables I2S operation.

Parameters
• base – I2S base pointer.

static inline void I2S_EnableInterrupts(I2S_Type *base, uint32_t interruptMask)
Enables I2S FIFO interrupts.

Parameters
• base – I2S base pointer.

• interruptMask – bit mask of interrupts to enable. See i2s_flags_t for the set
of constants that should be OR’d together to form the bit mask.

static inline void I2S_DisableInterrupts(I2S_Type *base, uint32_t interruptMask)
Disables I2S FIFO interrupts.

Parameters
• base – I2S base pointer.

• interruptMask – bit mask of interrupts to enable. See i2s_flags_t for the set
of constants that should be OR’d together to form the bit mask.

static inline uint32_t I2S_GetEnabledInterrupts(I2S_Type *base)
Returns the set of currently enabled I2S FIFO interrupts.

Parameters
• base – I2S base pointer.

Returns
A bitmask composed of i2s_flags_t enumerators OR’d together to indicate the
set of enabled interrupts.

status_t I2S_EmptyTxFifo(I2S_Type *base)
Flush the valid data in TX fifo.

Parameters
• base – I2S base pointer.

Returns
kStatus_Fail empty TX fifo failed, kStatus_Success empty tx fifo success.

void I2S_TxHandleIRQ(I2S_Type *base, i2s_handle_t *handle)
Invoked from interrupt handler when transmit FIFO level decreases.

Parameters
• base – I2S base pointer.

• handle – pointer to handle structure.

void I2S_RxHandleIRQ(I2S_Type *base, i2s_handle_t *handle)
Invoked from interrupt handler when receive FIFO level decreases.

Parameters
• base – I2S base pointer.

• handle – pointer to handle structure.

2.28. I2S Driver 219

MCUXpresso SDK Documentation, Release 25.09.00

FSL_I2S_DRIVER_VERSION
I2S driver version 2.3.2.

_i2s_status I2S status codes.

Values:

enumerator kStatus_I2S_BufferComplete
Transfer from/into a single buffer has completed

enumerator kStatus_I2S_Done
All buffers transfers have completed

enumerator kStatus_I2S_Busy
Already performing a transfer and cannot queue another buffer

enum _i2s_flags
I2S flags.

Note: These enums are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2S_TxErrorFlag
TX error interrupt

enumerator kI2S_TxLevelFlag
TX level interrupt

enumerator kI2S_RxErrorFlag
RX error interrupt

enumerator kI2S_RxLevelFlag
RX level interrupt

enum _i2s_master_slave
Master / slave mode.

Values:

enumerator kI2S_MasterSlaveNormalSlave
Normal slave

enumerator kI2S_MasterSlaveWsSyncMaster
WS synchronized master

enumerator kI2S_MasterSlaveExtSckMaster
Master using existing SCK

enumerator kI2S_MasterSlaveNormalMaster
Normal master

enum _i2s_mode
I2S mode.

Values:

enumerator kI2S_ModeI2sClassic
I2S classic mode

enumerator kI2S_ModeDspWs50
DSP mode, WS having 50% duty cycle

220 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kI2S_ModeDspWsShort
DSP mode, WS having one clock long pulse

enumerator kI2S_ModeDspWsLong
DSP mode, WS having one data slot long pulse

_i2s_secondary_channel I2S secondary channel.

Values:

enumerator kI2S_SecondaryChannel1
secondary channel 1

enumerator kI2S_SecondaryChannel2
secondary channel 2

enumerator kI2S_SecondaryChannel3
secondary channel 3

typedef enum _i2s_flags i2s_flags_t
I2S flags.

Note: These enums are meant to be OR’d together to form a bit mask.

typedef enum _i2s_master_slave i2s_master_slave_t
Master / slave mode.

typedef enum _i2s_mode i2s_mode_t
I2S mode.

typedef struct _i2s_config i2s_config_t
I2S configuration structure.

typedef struct _i2s_transfer i2s_transfer_t
Buffer to transfer from or receive audio data into.

typedef struct _i2s_handle i2s_handle_t
Transactional state of the intialized transfer or receive I2S operation.

typedef void (*i2s_transfer_callback_t)(I2S_Type *base, i2s_handle_t *handle, status_t
completionStatus, void *userData)

Callback function invoked from transactional API on completion of a single buffer transfer.

Param base
I2S base pointer.

Param handle
pointer to I2S transaction.

Param completionStatus
status of the transaction.

Param userData
optional pointer to user arguments data.

I2S_NUM_BUFFERS
Number of buffers .

struct _i2s_config
#include <fsl_i2s.h> I2S configuration structure.

2.28. I2S Driver 221

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

i2s_master_slave_t masterSlave
Master / slave configuration

i2s_mode_t mode
I2S mode

bool rightLow
Right channel data in low portion of FIFO

bool leftJust
Left justify data in FIFO

bool pdmData
Data source is the D-Mic subsystem

bool sckPol
SCK polarity

bool wsPol
WS polarity

uint16_t divider
Flexcomm function clock divider (1 - 4096)

bool oneChannel
true mono, false stereo

uint8_t dataLength
Data length (4 - 32)

uint16_t frameLength
Frame width (4 - 512)

uint16_t position
Data position in the frame

uint8_t watermark
FIFO trigger level

bool txEmptyZero
Transmit zero when buffer becomes empty or last item

bool pack48
Packing format for 48-bit data (false - 24 bit values, true - alternating 32-bit and 16-bit
values)

struct _i2s_transfer
#include <fsl_i2s.h> Buffer to transfer from or receive audio data into.

Public Members

uint8_t *data
Pointer to data buffer.

size_t dataSize
Buffer size in bytes.

struct _i2s_handle
#include <fsl_i2s.h>Members not to be accessed / modified outside of the driver.

222 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

volatile uint32_t state
State of transfer

i2s_transfer_callback_t completionCallback
Callback function pointer

void *userData
Application data passed to callback

bool oneChannel
true mono, false stereo

uint8_t dataLength
Data length (4 - 32)

bool pack48
Packing format for 48-bit data (false - 24 bit values, true - alternating 32-bit and 16-bit
values)

uint8_t watermark
FIFO trigger level

bool useFifo48H
When dataLength 17-24: true use FIFOWR48H, false use FIFOWR

volatile i2s_transfer_t i2sQueue[(4U)]
Transfer queue storing transfer buffers

volatile uint8_t queueUser
Queue index where user’s next transfer will be stored

volatile uint8_t queueDriver
Queue index of buffer actually used by the driver

volatile uint32_t errorCount
Number of buffer underruns/overruns

volatile uint32_t transferCount
Number of bytes transferred

2.29 INPUTMUX: Input Multiplexing Driver

enum _inputmux_connection_t
INPUTMUX connections type.

Values:

enumerator kINPUTMUX_SctGpi0ToSct0
SCT0 INMUX.

enumerator kINPUTMUX_SctGpi1ToSct0

enumerator kINPUTMUX_SctGpi2ToSct0

enumerator kINPUTMUX_SctGpi3ToSct0

enumerator kINPUTMUX_SctGpi4ToSct0

2.29. INPUTMUX: Input Multiplexing Driver 223

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kINPUTMUX_SctGpi5ToSct0

enumerator kINPUTMUX_SctGpi6ToSct0

enumerator kINPUTMUX_SctGpi7ToSct0

enumerator kINPUTMUX_Ctimer0M0ToSct0

enumerator kINPUTMUX_Ctimer1M0ToSct0

enumerator kINPUTMUX_Ctimer2M0ToSct0

enumerator kINPUTMUX_Ctimer3M0ToSct0

enumerator kINPUTMUX_Ctimer4M0ToSct0

enumerator kINPUTMUX_AdcIrqToSct0

enumerator kINPUTMUX_GpiointBmatchToSct0

enumerator kINPUTMUX_CompOutToSct0

enumerator kINPUTMUX_I2sSharedSck0ToSct0

enumerator kINPUTMUX_I2sSharedSck1ToSct0

enumerator kINPUTMUX_I2sSharedWs0ToSct0

enumerator kINPUTMUX_I2sSharedWs1ToSct0

enumerator kINPUTMUX_ArmTxevToSct0

enumerator kINPUTMUX_DebugHaltedToSct0
TIMER0 CAPTSEL.

enumerator kINPUTMUX_CtimerInp0ToTimer0Captsel

enumerator kINPUTMUX_CtimerInp1ToTimer0Captsel

enumerator kINPUTMUX_CtimerInp2ToTimer0Captsel

enumerator kINPUTMUX_CtimerInp3ToTimer0Captsel

enumerator kINPUTMUX_CtimerInp4ToTimer0Captsel

enumerator kINPUTMUX_CtimerInp5ToTimer0Captsel

enumerator kINPUTMUX_CtimerInp6ToTimer0Captsel

enumerator kINPUTMUX_CtimerInp7ToTimer0Captsel

enumerator kINPUTMUX_CtimerInp8ToTimer0Captsel

enumerator kINPUTMUX_CtimerInp9ToTimer0Captsel

enumerator kINPUTMUX_CtimerInp10ToTimer0Captsel

enumerator kINPUTMUX_CtimerInp11ToTimer0Captsel

enumerator kINPUTMUX_CtimerInp12ToTimer0Captsel

enumerator kINPUTMUX_CtimerInp13ToTimer0Captsel

enumerator kINPUTMUX_CtimerInp14ToTimer0Captsel

224 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kINPUTMUX_CtimerInp15ToTimer0Captsel

enumerator kINPUTMUX_CtimerInp16ToTimer0Captsel

enumerator kINPUTMUX_CompOutToTimer0Captsel

enumerator kINPUTMUX_I2sSharedWs0ToTimer0Captsel

enumerator kINPUTMUX_I2sSharedWs1ToTimer0Captsel
TIMER1 CAPTSEL.

enumerator kINPUTMUX_CtimerInp0ToTimer1Captsel

enumerator kINPUTMUX_CtimerInp1ToTimer1Captsel

enumerator kINPUTMUX_CtimerInp2ToTimer1Captsel

enumerator kINPUTMUX_CtimerInp3ToTimer1Captsel

enumerator kINPUTMUX_CtimerInp4ToTimer1Captsel

enumerator kINPUTMUX_CtimerInp5ToTimer1Captsel

enumerator kINPUTMUX_CtimerInp6ToTimer1Captsel

enumerator kINPUTMUX_CtimerInp7ToTimer1Captsel

enumerator kINPUTMUX_CtimerInp8ToTimer1Captsel

enumerator kINPUTMUX_CtimerInp9ToTimer1Captsel

enumerator kINPUTMUX_CtimerInp10ToTimer1Captsel

enumerator kINPUTMUX_CtimerInp11ToTimer1Captsel

enumerator kINPUTMUX_CtimerInp12ToTimer1Captsel

enumerator kINPUTMUX_CtimerInp13ToTimer1Captsel

enumerator kINPUTMUX_CtimerInp14ToTimer1Captsel

enumerator kINPUTMUX_CtimerInp15ToTimer1Captsel

enumerator kINPUTMUX_CtimerInp16ToTimer1Captsel

enumerator kINPUTMUX_CompOutToTimer1Captsel

enumerator kINPUTMUX_I2sSharedWs0ToTimer1Captsel

enumerator kINPUTMUX_I2sSharedWs1ToTimer1Captsel
TIMER2 CAPTSEL.

enumerator kINPUTMUX_CtimerInp0ToTimer2Captsel

enumerator kINPUTMUX_CtimerInp1ToTimer2Captsel

enumerator kINPUTMUX_CtimerInp2ToTimer2Captsel

enumerator kINPUTMUX_CtimerInp3ToTimer2Captsel

enumerator kINPUTMUX_CtimerInp4ToTimer2Captsel

enumerator kINPUTMUX_CtimerInp5ToTimer2Captsel

enumerator kINPUTMUX_CtimerInp6ToTimer2Captsel

2.29. INPUTMUX: Input Multiplexing Driver 225

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kINPUTMUX_CtimerInp7ToTimer2Captsel

enumerator kINPUTMUX_CtimerInp8ToTimer2Captsel

enumerator kINPUTMUX_CtimerInp9ToTimer2Captsel

enumerator kINPUTMUX_CtimerInp10ToTimer2Captsel

enumerator kINPUTMUX_CtimerInp11ToTimer2Captsel

enumerator kINPUTMUX_CtimerInp12ToTimer2Captsel

enumerator kINPUTMUX_CtimerInp13ToTimer2Captsel

enumerator kINPUTMUX_CtimerInp14ToTimer2Captsel

enumerator kINPUTMUX_CtimerInp15ToTimer2Captsel

enumerator kINPUTMUX_CtimerInp16ToTimer2Captsel

enumerator kINPUTMUX_CompOutToTimer2Captsel

enumerator kINPUTMUX_I2sSharedWs0ToTimer2Captsel

enumerator kINPUTMUX_I2sSharedWs1ToTimer2Captsel
Pin interrupt select.

enumerator kINPUTMUX_GpioPort0Pin0ToPintsel

enumerator kINPUTMUX_GpioPort0Pin1ToPintsel

enumerator kINPUTMUX_GpioPort0Pin2ToPintsel

enumerator kINPUTMUX_GpioPort0Pin3ToPintsel

enumerator kINPUTMUX_GpioPort0Pin4ToPintsel

enumerator kINPUTMUX_GpioPort0Pin5ToPintsel

enumerator kINPUTMUX_GpioPort0Pin6ToPintsel

enumerator kINPUTMUX_GpioPort0Pin7ToPintsel

enumerator kINPUTMUX_GpioPort0Pin8ToPintsel

enumerator kINPUTMUX_GpioPort0Pin9ToPintsel

enumerator kINPUTMUX_GpioPort0Pin10ToPintsel

enumerator kINPUTMUX_GpioPort0Pin11ToPintsel

enumerator kINPUTMUX_GpioPort0Pin12ToPintsel

enumerator kINPUTMUX_GpioPort0Pin13ToPintsel

enumerator kINPUTMUX_GpioPort0Pin14ToPintsel

enumerator kINPUTMUX_GpioPort0Pin15ToPintsel

enumerator kINPUTMUX_GpioPort0Pin16ToPintsel

enumerator kINPUTMUX_GpioPort0Pin17ToPintsel

enumerator kINPUTMUX_GpioPort0Pin18ToPintsel

226 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kINPUTMUX_GpioPort0Pin19ToPintsel

enumerator kINPUTMUX_GpioPort0Pin20ToPintsel

enumerator kINPUTMUX_GpioPort0Pin21ToPintsel

enumerator kINPUTMUX_GpioPort0Pin22ToPintsel

enumerator kINPUTMUX_GpioPort0Pin23ToPintsel

enumerator kINPUTMUX_GpioPort0Pin24ToPintsel

enumerator kINPUTMUX_GpioPort0Pin25ToPintsel

enumerator kINPUTMUX_GpioPort0Pin26ToPintsel

enumerator kINPUTMUX_GpioPort0Pin27ToPintsel

enumerator kINPUTMUX_GpioPort0Pin28ToPintsel

enumerator kINPUTMUX_GpioPort0Pin29ToPintsel

enumerator kINPUTMUX_GpioPort0Pin30ToPintsel

enumerator kINPUTMUX_GpioPort0Pin31ToPintsel

enumerator kINPUTMUX_GpioPort1Pin0ToPintsel

enumerator kINPUTMUX_GpioPort1Pin1ToPintsel

enumerator kINPUTMUX_GpioPort1Pin2ToPintsel

enumerator kINPUTMUX_GpioPort1Pin3ToPintsel

enumerator kINPUTMUX_GpioPort1Pin4ToPintsel

enumerator kINPUTMUX_GpioPort1Pin5ToPintsel

enumerator kINPUTMUX_GpioPort1Pin6ToPintsel

enumerator kINPUTMUX_GpioPort1Pin7ToPintsel

enumerator kINPUTMUX_GpioPort1Pin8ToPintsel

enumerator kINPUTMUX_GpioPort1Pin9ToPintsel

enumerator kINPUTMUX_GpioPort1Pin10ToPintsel

enumerator kINPUTMUX_GpioPort1Pin11ToPintsel

enumerator kINPUTMUX_GpioPort1Pin12ToPintsel

enumerator kINPUTMUX_GpioPort1Pin13ToPintsel

enumerator kINPUTMUX_GpioPort1Pin14ToPintsel

enumerator kINPUTMUX_GpioPort1Pin15ToPintsel

enumerator kINPUTMUX_GpioPort1Pin16ToPintsel

enumerator kINPUTMUX_GpioPort1Pin17ToPintsel

enumerator kINPUTMUX_GpioPort1Pin18ToPintsel

enumerator kINPUTMUX_GpioPort1Pin19ToPintsel

2.29. INPUTMUX: Input Multiplexing Driver 227

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kINPUTMUX_GpioPort1Pin20ToPintsel

enumerator kINPUTMUX_GpioPort1Pin21ToPintsel

enumerator kINPUTMUX_GpioPort1Pin22ToPintsel

enumerator kINPUTMUX_GpioPort1Pin23ToPintsel

enumerator kINPUTMUX_GpioPort1Pin24ToPintsel

enumerator kINPUTMUX_GpioPort1Pin25ToPintsel

enumerator kINPUTMUX_GpioPort1Pin26ToPintsel

enumerator kINPUTMUX_GpioPort1Pin27ToPintsel

enumerator kINPUTMUX_GpioPort1Pin28ToPintsel

enumerator kINPUTMUX_GpioPort1Pin29ToPintsel

enumerator kINPUTMUX_GpioPort1Pin30ToPintsel

enumerator kINPUTMUX_GpioPort1Pin31ToPintsel
DMA0 Input trigger.

enumerator kINPUTMUX_PinInt0ToDma0

enumerator kINPUTMUX_PinInt1ToDma0

enumerator kINPUTMUX_PinInt2ToDma0

enumerator kINPUTMUX_PinInt3ToDma0

enumerator kINPUTMUX_Ctimer0M0ToDma0

enumerator kINPUTMUX_Ctimer0M1ToDma0

enumerator kINPUTMUX_Ctimer1M0ToDma0

enumerator kINPUTMUX_Ctimer1M1ToDma0

enumerator kINPUTMUX_Ctimer2M0ToDma0

enumerator kINPUTMUX_Ctimer2M1ToDma0

enumerator kINPUTMUX_Ctimer3M0ToDma0

enumerator kINPUTMUX_Ctimer3M1ToDma0

enumerator kINPUTMUX_Ctimer4M0ToDma0

enumerator kINPUTMUX_Ctimer4M1ToDma0

enumerator kINPUTMUX_CompOutToDma0

enumerator kINPUTMUX_Otrig0ToDma0

enumerator kINPUTMUX_Otrig1ToDma0

enumerator kINPUTMUX_Otrig2ToDma0

enumerator kINPUTMUX_Otrig3ToDma0

enumerator kINPUTMUX_Sct0DmaReq0ToDma0

228 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kINPUTMUX_Sct0DmaReq1ToDma0

enumerator kINPUTMUX_HashDmaRxToDma0
DMA0 output trigger.

enumerator kINPUTMUX_Dma0Hash0TxTrigoutToTriginChannels

enumerator kINPUTMUX_Dma0HsLspiRxTrigoutToTriginChannels

enumerator kINPUTMUX_Dma0HsLspiTxTrigoutToTriginChannels

enumerator kINPUTMUX_Dma0Flexcomm0RxTrigoutToTriginChannels

enumerator kINPUTMUX_Dma0Flexcomm0TxTrigoutToTriginChannels

enumerator kINPUTMUX_Dma0Flexcomm1RxTrigoutToTriginChannels

enumerator kINPUTMUX_Dma0Flexcomm1TxTrigoutToTriginChannels

enumerator kINPUTMUX_Dma0Flexcomm3RxTrigoutToTriginChannels

enumerator kINPUTMUX_Dma0Flexcomm3TxTrigoutToTriginChannels

enumerator kINPUTMUX_Dma0Flexcomm2RxTrigoutToTriginChannels

enumerator kINPUTMUX_Dma0Flexcomm2TxTrigoutToTriginChannels

enumerator kINPUTMUX_Dma0Flexcomm4RxTrigoutToTriginChannels

enumerator kINPUTMUX_Dma0Flexcomm4TxTrigoutToTriginChannels

enumerator kINPUTMUX_Dma0Flexcomm5RxTrigoutToTriginChannels

enumerator kINPUTMUX_Dma0Flexcomm5TxTrigoutToTriginChannels

enumerator kINPUTMUX_Dma0Flexcomm6RxTrigoutToTriginChannels

enumerator kINPUTMUX_Dma0Flexcomm6TxTrigoutToTriginChannels

enumerator kINPUTMUX_Dma0Flexcomm7RxTrigoutToTriginChannels

enumerator kINPUTMUX_Dma0Flexcomm7TxTrigoutToTriginChannels

enumerator kINPUTMUX_Dma0Adc0Ch0TrigoutToTriginChannels

enumerator kINPUTMUX_Dma0Adc0Ch1TrigoutToTriginChannels
Selection for frequency measurement reference clock.

enumerator kINPUTMUX_ExternOscToFreqmeasRef

enumerator kINPUTMUX_Fro12MhzToFreqmeasRef

enumerator kINPUTMUX_Fro96MhzToFreqmeasRef

enumerator kINPUTMUX_WdtOscToFreqmeasRef

enumerator kINPUTMUX_32KhzOscToFreqmeasRef

enumerator kINPUTMUX_MainClkToFreqmeasRef

enumerator kINPUTMUX_FreqmeGpioClk_aRef

enumerator kINPUTMUX_FreqmeGpioClk_bRef
Selection for frequency measurement target clock.

2.29. INPUTMUX: Input Multiplexing Driver 229

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kINPUTMUX_ExternOscToFreqmeasTarget

enumerator kINPUTMUX_Fro12MhzToFreqmeasTarget

enumerator kINPUTMUX_Fro96MhzToFreqmeasTarget

enumerator kINPUTMUX_WdtOscToFreqmeasTarget

enumerator kINPUTMUX_32KhzOscToFreqmeasTarget

enumerator kINPUTMUX_MainClkToFreqmeasTarget

enumerator kINPUTMUX_FreqmeGpioClk_aTarget

enumerator kINPUTMUX_FreqmeGpioClk_bTarget
TIMER3 CAPTSEL.

enumerator kINPUTMUX_CtimerInp0ToTimer3Captsel

enumerator kINPUTMUX_CtimerInp1ToTimer3Captsel

enumerator kINPUTMUX_CtimerInp2ToTimer3Captsel

enumerator kINPUTMUX_CtimerInp3ToTimer3Captsel

enumerator kINPUTMUX_CtimerInp4ToTimer3Captsel

enumerator kINPUTMUX_CtimerInp5ToTimer3Captsel

enumerator kINPUTMUX_CtimerInp6ToTimer3Captsel

enumerator kINPUTMUX_CtimerInp7ToTimer3Captsel

enumerator kINPUTMUX_CtimerInp8ToTimer3Captsel

enumerator kINPUTMUX_CtimerInp9ToTimer3Captsel

enumerator kINPUTMUX_CtimerInp10ToTimer3Captsel

enumerator kINPUTMUX_CtimerInp11ToTimer3Captsel

enumerator kINPUTMUX_CtimerInp12ToTimer3Captsel

enumerator kINPUTMUX_CtimerInp13ToTimer3Captsel

enumerator kINPUTMUX_CtimerInp14ToTimer3Captsel

enumerator kINPUTMUX_CtimerInp15ToTimer3Captsel

enumerator kINPUTMUX_CtimerInp16ToTimer3Captsel

enumerator kINPUTMUX_CompOutToTimer3Captsel

enumerator kINPUTMUX_I2sSharedWs0ToTimer3Captsel

enumerator kINPUTMUX_I2sSharedWs1ToTimer3Captsel
Timer4 CAPTSEL.

enumerator kINPUTMUX_CtimerInp0ToTimer4Captsel

enumerator kINPUTMUX_CtimerInp1ToTimer4Captsel

enumerator kINPUTMUX_CtimerInp2ToTimer4Captsel

enumerator kINPUTMUX_CtimerInp3ToTimer4Captsel

230 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kINPUTMUX_CtimerInp4ToTimer4Captsel

enumerator kINPUTMUX_CtimerInp5ToTimer4Captsel

enumerator kINPUTMUX_CtimerInp6ToTimer4Captsel

enumerator kINPUTMUX_CtimerInp7ToTimer4Captsel

enumerator kINPUTMUX_CtimerInp8ToTimer4Captsel

enumerator kINPUTMUX_CtimerInp9ToTimer4Captsel

enumerator kINPUTMUX_CtimerInp10ToTimer4Captsel

enumerator kINPUTMUX_CtimerInp11ToTimer4Captsel

enumerator kINPUTMUX_CtimerInp12ToTimer4Captsel

enumerator kINPUTMUX_CtimerInp13ToTimer4Captsel

enumerator kINPUTMUX_CtimerInp14ToTimer4Captsel

enumerator kINPUTMUX_CtimerInp15ToTimer4Captsel

enumerator kINPUTMUX_CtimerInp16ToTimer4Captsel

enumerator kINPUTMUX_CompOutToTimer4Captsel

enumerator kINPUTMUX_I2sSharedWs0ToTimer4Captsel

enumerator kINPUTMUX_I2sSharedWs1ToTimer4Captsel

enumerator kINPUTMUX_GpioPort0Pin0ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin1ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin2ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin3ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin4ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin5ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin6ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin7ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin8ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin9ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin10ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin11ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin12ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin13ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin14ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin15ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin16ToPintSecsel

2.29. INPUTMUX: Input Multiplexing Driver 231

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kINPUTMUX_GpioPort0Pin17ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin18ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin19ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin20ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin21ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin22ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin23ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin24ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin25ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin26ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin27ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin28ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin29ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin30ToPintSecsel

enumerator kINPUTMUX_GpioPort0Pin31ToPintSecsel
DMA1 Input trigger.

enumerator kINPUTMUX_PinInt0ToDma1

enumerator kINPUTMUX_PinInt1ToDma1

enumerator kINPUTMUX_PinInt2ToDma1

enumerator kINPUTMUX_PinInt3ToDma1

enumerator kINPUTMUX_Ctimer0M0ToDma1

enumerator kINPUTMUX_Ctimer0M1ToDma1

enumerator kINPUTMUX_Ctimer2M0ToDma1

enumerator kINPUTMUX_Ctimer4M0ToDma1

enumerator kINPUTMUX_Otrig0ToDma1

enumerator kINPUTMUX_Otrig1ToDma1

enumerator kINPUTMUX_Otrig2ToDma1

enumerator kINPUTMUX_Otrig3ToDma1

enumerator kINPUTMUX_Sct0DmaReq0ToDma1

enumerator kINPUTMUX_Sct0DmaReq1ToDma1

enumerator kINPUTMUX_HashDmaRxToDma1
DMA1 output trigger.

enumerator kINPUTMUX_Dma1Hash0TxTrigoutToTriginChannels

enumerator kINPUTMUX_Dma1HsLspiRxTrigoutToTriginChannels

232 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kINPUTMUX_Dma1HsLspiTxTrigoutToTriginChannels

enumerator kINPUTMUX_Dma1Flexcomm0RxTrigoutToTriginChannels

enumerator kINPUTMUX_Dma1Flexcomm0TxTrigoutToTriginChannels

enumerator kINPUTMUX_Dma1Flexcomm1RxTrigoutToTriginChannels

enumerator kINPUTMUX_Dma1Flexcomm1TxTrigoutToTriginChannels

enumerator kINPUTMUX_Dma1Flexcomm3RxTrigoutToTriginChannels

enumerator kINPUTMUX_Dma1Flexcomm3TxTrigoutToTriginChannels

enum _inputmux_signal_t
INPUTMUX signal enable/disable type.

Values:

enumerator kINPUTMUX_HashCryptToDmac0Ch0RequestEna
DMA0 REQ signal.

enumerator kINPUTMUX_Flexcomm8RxToDmac0Ch2RequestEna

enumerator kINPUTMUX_Flexcomm8TxToDmac0Ch3RequestEna

enumerator kINPUTMUX_Flexcomm0RxToDmac0Ch4RequestEna

enumerator kINPUTMUX_Flexcomm0TxToDmac0Ch5RequestEna

enumerator kINPUTMUX_Flexcomm1RxToDmac0Ch6RequestEna

enumerator kINPUTMUX_Flexcomm1TxToDmac0Ch7RequestEna

enumerator kINPUTMUX_Flexcomm3RxToDmac0Ch8RequestEna

enumerator kINPUTMUX_Flexcomm3TxToDmac0Ch9RequestEna

enumerator kINPUTMUX_Flexcomm2RxToDmac0Ch10RequestEna

enumerator kINPUTMUX_Flexcomm2TxToDmac0Ch11RequestEna

enumerator kINPUTMUX_Flexcomm4RxToDmac0Ch12RequestEna

enumerator kINPUTMUX_Flexcomm4TxToDmac0Ch13RequestEna

enumerator kINPUTMUX_Flexcomm5RxToDmac0Ch14RequestEna

enumerator kINPUTMUX_Flexcomm5TxToDmac0Ch15RequestEna

enumerator kINPUTMUX_Flexcomm6RxToDmac0Ch16RequestEna

enumerator kINPUTMUX_Flexcomm6TxToDmac0Ch17RequestEna

enumerator kINPUTMUX_Flexcomm7RxToDmac0Ch18RequestEna

enumerator kINPUTMUX_Flexcomm7TxToDmac0Ch19RequestEna

enumerator kINPUTMUX_Adc0FIFO0ToDmac0Ch21RequestEna

enumerator kINPUTMUX_Adc0FIFO1ToDmac0Ch22RequestEna
DMA1 REQ signal.

enumerator kINPUTMUX_HashCryptToDmac1Ch0RequestEna

2.29. INPUTMUX: Input Multiplexing Driver 233

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kINPUTMUX_Flexcomm8RxToDmac1Ch2RequestEna

enumerator kINPUTMUX_Flexcomm8TxToDmac1Ch3RequestEna

enumerator kINPUTMUX_Flexcomm0RxToDmac1Ch4RequestEna

enumerator kINPUTMUX_Flexcomm0TxToDmac1Ch5RequestEna

enumerator kINPUTMUX_Flexcomm1RxToDmac1Ch6RequestEna

enumerator kINPUTMUX_Flexcomm1TxToDmac1Ch7RequestEna

enumerator kINPUTMUX_Flexcomm3RxToDmac1Ch8RequestEna

enumerator kINPUTMUX_Flexcomm3TxToDmac1Ch9RequestEna
DMA0 input trigger source enable.

enumerator kINPUTMUX_Dmac0InputTriggerPint0Ena

enumerator kINPUTMUX_Dmac0InputTriggerPint1Ena

enumerator kINPUTMUX_Dmac0InputTriggerPint2Ena

enumerator kINPUTMUX_Dmac0InputTriggerPint3Ena

enumerator kINPUTMUX_Dmac0InputTriggerCtimer0M0Ena

enumerator kINPUTMUX_Dmac0InputTriggerCtimer0M1Ena

enumerator kINPUTMUX_Dmac0InputTriggerCtimer1M0Ena

enumerator kINPUTMUX_Dmac0InputTriggerCtimer1M1Ena

enumerator kINPUTMUX_Dmac0InputTriggerCtimer2M0Ena

enumerator kINPUTMUX_Dmac0InputTriggerCtimer2M1Ena

enumerator kINPUTMUX_Dmac0InputTriggerCtimer3M0Ena

enumerator kINPUTMUX_Dmac0InputTriggerCtimer3M1Ena

enumerator kINPUTMUX_Dmac0InputTriggerCtimer4M0Ena

enumerator kINPUTMUX_Dmac0InputTriggerCtimer4M1Ena

enumerator kINPUTMUX_Dmac0InputTriggerCompOutEna

enumerator kINPUTMUX_Dmac0InputTriggerDma0Out0Ena

enumerator kINPUTMUX_Dmac0InputTriggerDma0Out1Ena

enumerator kINPUTMUX_Dmac0InputTriggerDma0Out2Ena

enumerator kINPUTMUX_Dmac0InputTriggerDma0Out3Ena

enumerator kINPUTMUX_Dmac0InputTriggerSctDmac0Ena

enumerator kINPUTMUX_Dmac0InputTriggerSctDmac1Ena

enumerator kINPUTMUX_Dmac0InputTriggerHashOutEna
DMA1 input trigger source enable.

enumerator kINPUTMUX_Dmac1InputTriggerPint0Ena

enumerator kINPUTMUX_Dmac1InputTriggerPint1Ena

234 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kINPUTMUX_Dmac1InputTriggerPint2Ena

enumerator kINPUTMUX_Dmac1InputTriggerPint3Ena

enumerator kINPUTMUX_Dmac1InputTriggerCtimer0M0Ena

enumerator kINPUTMUX_Dmac1InputTriggerCtimer0M1Ena

enumerator kINPUTMUX_Dmac1InputTriggerCtimer2M0Ena

enumerator kINPUTMUX_Dmac1InputTriggerCtimer4M0Ena

enumerator kINPUTMUX_Dmac1InputTriggerDma1Out0Ena

enumerator kINPUTMUX_Dmac1InputTriggerDma1Out1Ena

enumerator kINPUTMUX_Dmac1InputTriggerDma1Out2Ena

enumerator kINPUTMUX_Dmac1InputTriggerDma1Out3Ena

enumerator kINPUTMUX_Dmac1InputTriggerSctDmac0Ena

enumerator kINPUTMUX_Dmac1InputTriggerSctDmac1Ena

enumerator kINPUTMUX_Dmac1InputTriggerHashOutEna

typedef enum _inputmux_connection_t inputmux_connection_t
INPUTMUX connections type.

typedef enum _inputmux_signal_t inputmux_signal_t
INPUTMUX signal enable/disable type.

SCT0_INMUX0
Periphinmux IDs.

TIMER0CAPTSEL0

TIMER1CAPTSEL0

TIMER2CAPTSEL0

PINTSEL_PMUX_ID

PINTSEL0

DMA0_ITRIG_INMUX0

DMA0_OTRIG_INMUX0

FREQMEAS_REF_REG

FREQMEAS_TARGET_REG

TIMER3CAPTSEL0

TIMER4CAPTSEL0

PINTSECSEL0

DMA1_ITRIG_INMUX0

DMA1_OTRIG_INMUX0

DMA0_REQ_ENA_ID

2.29. INPUTMUX: Input Multiplexing Driver 235

MCUXpresso SDK Documentation, Release 25.09.00

DMA1_REQ_ENA_ID

DMA0_ITRIG_ENA_ID

DMA1_ITRIG_ENA_ID

ENA_SHIFT

PMUX_SHIFT

FSL_INPUTMUX_DRIVER_VERSION
Group interrupt driver version for SDK.

void INPUTMUX_Init(void *base)
Initialize INPUTMUX peripheral.

This function enables the INPUTMUX clock.

Parameters
• base – Base address of the INPUTMUX peripheral.

Return values
None. –

void INPUTMUX_AttachSignal(void *base, uint32_t index, inputmux_connection_t connection)
Attaches a signal.

This function attaches multiplexed signals from INPUTMUX to target signals. For example,
to attach GPIO PORT0 Pin 5 to PINT peripheral, do the following:

INPUTMUX_AttachSignal(INPUTMUX, 2, kINPUTMUX_GpioPort0Pin5ToPintsel);

In this example, INTMUX has 8 registers for PINT, PINT_SEL0~PINT_SEL7. With parameter
index specified as 2, this function configures register PINT_SEL2.

Parameters
• base – Base address of the INPUTMUX peripheral.

• index – The serial number of destination register in the group of INPUT-
MUX registers with same name.

• connection – Applies signal from source signals collection to target signal.

Return values
None. –

void INPUTMUX_EnableSignal(void *base, inputmux_signal_t signal, bool enable)
Enable/disable a signal.

This function gates the INPUTPMUX clock.

Parameters
• base – Base address of the INPUTMUX peripheral.

• signal – Enable signal register id and bit offset.

• enable – Selects enable or disable.

Return values
None. –

void INPUTMUX_Deinit(void *base)
Deinitialize INPUTMUX peripheral.

This function disables the INPUTMUX clock.

Parameters

236 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

• base – Base address of the INPUTMUX peripheral.

Return values
None. –

2.30 IAP_KBP Driver

ROM API status codes.

Values:

enumerator kStatus_RomApiExecuteCompleted
ROM successfully process the whole sb file/boot image.

enumerator kStatus_RomApiNeedMoreData
ROM needs more data to continue processing the boot image.

enumerator kStatus_RomApiBufferSizeNotEnough
The user buffer is not enough for use by Kboot during execution of the operation.

enumerator kStatus_RomApiInvalidBuffer
The user buffer is not ok for sbloader or authentication.

enum _kb_operation
Details of the operation to be performed by the ROM.

The kRomAuthenticateImage operation requires the entire signed image to be available to
the application.

Values:

enumerator kRomAuthenticateImage
Authenticate a signed image.

enumerator kRomLoadImage
Load SB file.

enumerator kRomOperationCount

enum _kb_security_profile
Security constraint flags, Security profile flags.

Values:

enumerator kKbootMinRSA4096

typedef enum _kb_operation kb_operation_t
Details of the operation to be performed by the ROM.

The kRomAuthenticateImage operation requires the entire signed image to be available to
the application.

typedef struct _kb_region kb_region_t
Memory region definition.

typedef struct _kb_load_sb kb_load_sb_t
User-provided options passed into kb_init().

The buffer field is a pointer to memory provided by the caller for use by Kboot during
execution of the operation. Minimum size is the size of each certificate in the chain plus
432 bytes additional per certificate.

2.30. IAP_KBP Driver 237

MCUXpresso SDK Documentation, Release 25.09.00

The profile field is a mask that specifies which features are required in the SB file or
image being processed. This includes the minimum AES and RSA key sizes. See the
_kb_security_profile enum for profile mask constants. The image being loaded or authen-
ticated must match the profile or an error will be returned.

minBuildNumber is an optional field that can be used to prevent version rollback. The API
will check the build number of the image, and if it is less than minBuildNumber will fail
with an error.

maxImageLength is used to verify the offsetToCertificateBlockHeaderInBytes value at the
beginning of a signed image. It should be set to the length of the SB file. If verifying an
image in flash, it can be set to the internal flash size or a large number like 0x10000000.

userRHK can optionally be used by the user to override the RHK in IFR. If userRHK is not
NULL, it points to a 32-byte array containing the SHA-256 of the root certificate’s RSA public
key.

The regions field points to an array of memory regions that the SB file being loaded is al-
lowed to access. If regions is NULL, then all memory is accessible by the SB file. This feature
is required to prevent a malicious image from erasing good code or RAM contents while it
is being loaded, only for us to find that the image is inauthentic when we hit the end of the
section.

overrideSBBootSectionID lets the caller override the default section of the SB file that is
processed during a kKbootLoadSB operation. By default, the section specified in the first-
BootableSectionID field of the SB header is loaded. If overrideSBBootSectionID is non-zero,
then the section with the given ID will be loaded instead.

The userSBKEK field lets a user provide their own AES-256 key for unwrapping keys in an
SB file during the kKbootLoadSB operation. userSBKEK should point to a 32-byte AES-256
key. If userSBKEK is NULL then the IFR SBKEK will be used. After kb_init() returns, the
caller should zero out the data pointed to by userSBKEK, as the API will have installed the
key in the CAU3.

typedef struct _kb_authenticate kb_authenticate_t

typedef struct _kb_options kb_options_t

typedef struct _memory_region_interface memory_region_interface_t
Interface to memory operations for one region of memory.

typedef struct _memory_map_entry memory_map_entry_t
Structure of a memory map entry.

typedef struct _kb_opaque_session_ref kb_session_ref_t

status_t kb_init(kb_session_ref_t **session, const kb_options_t *options)
Initialize ROM API for a given operation.

Inits the ROMAPI based on the options provided by the application in the second argument.
Every call to rom_init() should be paired with a call to rom_deinit().

Return values
• kStatus_Success – API was executed successfully.

• kStatus_InvalidArgument – An invalid argument is provided.

• kStatus_RomApiBufferSizeNotEnough – The user buffer is not enough for
use by Kboot during execution of the operation.

• kStatus_RomApiInvalidBuffer – The user buffer is not ok for sbloader or au-
thentication.

• kStatus_SKBOOT_Fail – Return the failed status of secure boot.

238 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

• kStatus_SKBOOT_KeyStoreMarkerInvalid – The key code for the particular
PRINCE region is not present in the keystore

• kStatus_SKBOOT_Success – Return the successful status of secure boot.

status_t kb_deinit(kb_session_ref_t *session)
Cleans up the ROM API context.

After this call, the context parameter can be reused for another operation by calling
rom_init() again.

Return values
kStatus_Success – API was executed successfully

status_t kb_execute(kb_session_ref_t *session, const uint8_t *data, uint32_t dataLength)
Perform the operation configured during init.

This applicationmust call this API repeatedly, passing in sequential chunks of data from the
boot image (SB file) that is to be processed. The ROMwill perform the selected operation on
this data and return. The application may call this function with as much or as little data
as it wishes, which can be used to select the granularity of time given to the application in
between executing the operation.

Parameters
• session – Current ROM context pointer.

• data – Buffer of boot image data provided to the ROM by the application.

• dataLength – Length in bytes of the data in the buffer provided to the ROM.

Return values
• kStatus_Success – ROM successfully process the part of sb file/boot image.

• kStatus_RomApiExecuteCompleted – ROMsuccessfully process thewhole sb
file/boot image.

• kStatus_Fail – An error occurred while executing the operation.

• kStatus_RomApiNeedMoreData – No error occurred, but the ROM needs
more data to continue processing the boot image.

• kStatus_RomApiBufferSizeNotEnough – user buffer is not enough for use by
Kboot during execution of the operation.

kStatusGroup_RomApi
ROM API status group number.

struct _kb_region
#include <fsl_iap_kbp.h>Memory region definition.

struct _kb_load_sb
#include <fsl_iap_kbp.h> User-provided options passed into kb_init().

The buffer field is a pointer to memory provided by the caller for use by Kboot during
execution of the operation. Minimum size is the size of each certificate in the chain plus
432 bytes additional per certificate.

The profile field is a mask that specifies which features are required in the SB file or
image being processed. This includes the minimum AES and RSA key sizes. See the
_kb_security_profile enum for profile mask constants. The image being loaded or authen-
ticated must match the profile or an error will be returned.

minBuildNumber is an optional field that can be used to prevent version rollback. The API
will check the build number of the image, and if it is less than minBuildNumber will fail
with an error.

2.30. IAP_KBP Driver 239

MCUXpresso SDK Documentation, Release 25.09.00

maxImageLength is used to verify the offsetToCertificateBlockHeaderInBytes value at the
beginning of a signed image. It should be set to the length of the SB file. If verifying an
image in flash, it can be set to the internal flash size or a large number like 0x10000000.

userRHK can optionally be used by the user to override the RHK in IFR. If userRHK is not
NULL, it points to a 32-byte array containing the SHA-256 of the root certificate’s RSA public
key.

The regions field points to an array of memory regions that the SB file being loaded is al-
lowed to access. If regions is NULL, then all memory is accessible by the SB file. This feature
is required to prevent a malicious image from erasing good code or RAM contents while it
is being loaded, only for us to find that the image is inauthentic when we hit the end of the
section.

overrideSBBootSectionID lets the caller override the default section of the SB file that is
processed during a kKbootLoadSB operation. By default, the section specified in the first-
BootableSectionID field of the SB header is loaded. If overrideSBBootSectionID is non-zero,
then the section with the given ID will be loaded instead.

The userSBKEK field lets a user provide their own AES-256 key for unwrapping keys in an
SB file during the kKbootLoadSB operation. userSBKEK should point to a 32-byte AES-256
key. If userSBKEK is NULL then the IFR SBKEK will be used. After kb_init() returns, the
caller should zero out the data pointed to by userSBKEK, as the API will have installed the
key in the CAU3.

struct _kb_authenticate
#include <fsl_iap_kbp.h>

struct _kb_options
#include <fsl_iap_kbp.h>

Public Members

uint32_t version
Should be set to kKbootApiVersion.

uint8_t *buffer
Caller-provided buffer used by Kboot.

struct _memory_region_interface
#include <fsl_iap_kbp.h> Interface to memory operations for one region of memory.

struct _memory_map_entry
#include <fsl_iap_kbp.h> Structure of a memory map entry.

struct _kb_opaque_session_ref
#include <fsl_iap_kbp.h>

union __unnamed11__

Public Members

kb_authenticate_t authenticate

kb_load_sb_t loadSB
Settings for kKbootAuthenticate operation.

240 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

2.31 Common Driver

FSL_COMMON_DRIVER_VERSION
common driver version.

DEBUG_CONSOLE_DEVICE_TYPE_NONE
No debug console.

DEBUG_CONSOLE_DEVICE_TYPE_UART
Debug console based on UART.

DEBUG_CONSOLE_DEVICE_TYPE_LPUART
Debug console based on LPUART.

DEBUG_CONSOLE_DEVICE_TYPE_LPSCI
Debug console based on LPSCI.

DEBUG_CONSOLE_DEVICE_TYPE_USBCDC
Debug console based on USBCDC.

DEBUG_CONSOLE_DEVICE_TYPE_FLEXCOMM
Debug console based on FLEXCOMM.

DEBUG_CONSOLE_DEVICE_TYPE_IUART
Debug console based on i.MX UART.

DEBUG_CONSOLE_DEVICE_TYPE_VUSART
Debug console based on LPC_VUSART.

DEBUG_CONSOLE_DEVICE_TYPE_MINI_USART
Debug console based on LPC_USART.

DEBUG_CONSOLE_DEVICE_TYPE_SWO
Debug console based on SWO.

DEBUG_CONSOLE_DEVICE_TYPE_QSCI
Debug console based on QSCI.

MIN(a, b)
Computes the minimum of a and b.

MAX(a, b)
Computes the maximum of a and b.

UINT16_MAX
Max value of uint16_t type.

UINT32_MAX
Max value of uint32_t type.

SDK_ATOMIC_LOCAL_ADD(addr, val)
Add value val from the variable at address address.

SDK_ATOMIC_LOCAL_SUB(addr, val)
Subtract value val to the variable at address address.

SDK_ATOMIC_LOCAL_SET(addr, bits)
Set the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_CLEAR(addr, bits)
Clear the bits specifiled by bits to the variable at address address.

2.31. Common Driver 241

MCUXpresso SDK Documentation, Release 25.09.00

SDK_ATOMIC_LOCAL_TOGGLE(addr, bits)
Toggle the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_CLEAR_AND_SET(addr, clearBits, setBits)
For the variable at address address, clear the bits specifiled by clearBits and set the bits
specifiled by setBits.

SDK_ATOMIC_LOCAL_COMPARE_AND_SET(addr, expected, newValue)
For the variable at address address, check whether the value equal to expected. If value
same as expected then update newValue to address and return true , else return false .

SDK_ATOMIC_LOCAL_TEST_AND_SET(addr, newValue)
For the variable at address address, set as newValue value and return old value.

USEC_TO_COUNT(us, clockFreqInHz)
Macro to convert a microsecond period to raw count value

COUNT_TO_USEC(count, clockFreqInHz)
Macro to convert a raw count value to microsecond

MSEC_TO_COUNT(ms, clockFreqInHz)
Macro to convert a millisecond period to raw count value

COUNT_TO_MSEC(count, clockFreqInHz)
Macro to convert a raw count value to millisecond

SDK_ISR_EXIT_BARRIER

SDK_SIZEALIGN(var, alignbytes)
Macro to define a variable with L1 d-cache line size alignment

Macro to define a variable with L2 cache line size alignment

Macro to change a value to a given size aligned value

AT_NONCACHEABLE_SECTION(var)
Define a variable var, and place it in non-cacheable section.

AT_NONCACHEABLE_SECTION_ALIGN(var, alignbytes)
Define a variable var, and place it in non-cacheable section, the start address of the variable
is aligned to alignbytes.

AT_NONCACHEABLE_SECTION_INIT(var)
Define a variable var with initial value, and place it in non-cacheable section.

AT_NONCACHEABLE_SECTION_ALIGN_INIT(var, alignbytes)
Define a variable var with initial value, and place it in non-cacheable section, the start
address of the variable is aligned to alignbytes.

enum _status_groups
Status group numbers.

Values:

enumerator kStatusGroup_Generic
Group number for generic status codes.

enumerator kStatusGroup_FLASH
Group number for FLASH status codes.

enumerator kStatusGroup_LPSPI
Group number for LPSPI status codes.

242 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_FLEXIO_SPI
Group number for FLEXIO SPI status codes.

enumerator kStatusGroup_DSPI
Group number for DSPI status codes.

enumerator kStatusGroup_FLEXIO_UART
Group number for FLEXIO UART status codes.

enumerator kStatusGroup_FLEXIO_I2C
Group number for FLEXIO I2C status codes.

enumerator kStatusGroup_LPI2C
Group number for LPI2C status codes.

enumerator kStatusGroup_UART
Group number for UART status codes.

enumerator kStatusGroup_I2C
Group number for UART status codes.

enumerator kStatusGroup_LPSCI
Group number for LPSCI status codes.

enumerator kStatusGroup_LPUART
Group number for LPUART status codes.

enumerator kStatusGroup_SPI
Group number for SPI status code.

enumerator kStatusGroup_XRDC
Group number for XRDC status code.

enumerator kStatusGroup_SEMA42
Group number for SEMA42 status code.

enumerator kStatusGroup_SDHC
Group number for SDHC status code

enumerator kStatusGroup_SDMMC
Group number for SDMMC status code

enumerator kStatusGroup_SAI
Group number for SAI status code

enumerator kStatusGroup_MCG
Group number for MCG status codes.

enumerator kStatusGroup_SCG
Group number for SCG status codes.

enumerator kStatusGroup_SDSPI
Group number for SDSPI status codes.

enumerator kStatusGroup_FLEXIO_I2S
Group number for FLEXIO I2S status codes

enumerator kStatusGroup_FLEXIO_MCULCD
Group number for FLEXIO LCD status codes

enumerator kStatusGroup_FLASHIAP
Group number for FLASHIAP status codes

2.31. Common Driver 243

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_FLEXCOMM_I2C
Group number for FLEXCOMM I2C status codes

enumerator kStatusGroup_I2S
Group number for I2S status codes

enumerator kStatusGroup_IUART
Group number for IUART status codes

enumerator kStatusGroup_CSI
Group number for CSI status codes

enumerator kStatusGroup_MIPI_DSI
Group number for MIPI DSI status codes

enumerator kStatusGroup_SDRAMC
Group number for SDRAMC status codes.

enumerator kStatusGroup_POWER
Group number for POWER status codes.

enumerator kStatusGroup_ENET
Group number for ENET status codes.

enumerator kStatusGroup_PHY
Group number for PHY status codes.

enumerator kStatusGroup_TRGMUX
Group number for TRGMUX status codes.

enumerator kStatusGroup_SMARTCARD
Group number for SMARTCARD status codes.

enumerator kStatusGroup_LMEM
Group number for LMEM status codes.

enumerator kStatusGroup_QSPI
Group number for QSPI status codes.

enumerator kStatusGroup_DMA
Group number for DMA status codes.

enumerator kStatusGroup_EDMA
Group number for EDMA status codes.

enumerator kStatusGroup_DMAMGR
Group number for DMAMGR status codes.

enumerator kStatusGroup_FLEXCAN
Group number for FlexCAN status codes.

enumerator kStatusGroup_LTC
Group number for LTC status codes.

enumerator kStatusGroup_FLEXIO_CAMERA
Group number for FLEXIO CAMERA status codes.

enumerator kStatusGroup_LPC_SPI
Group number for LPC_SPI status codes.

enumerator kStatusGroup_LPC_USART
Group number for LPC_USART status codes.

244 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_DMIC
Group number for DMIC status codes.

enumerator kStatusGroup_SDIF
Group number for SDIF status codes.

enumerator kStatusGroup_SPIFI
Group number for SPIFI status codes.

enumerator kStatusGroup_OTP
Group number for OTP status codes.

enumerator kStatusGroup_MCAN
Group number for MCAN status codes.

enumerator kStatusGroup_CAAM
Group number for CAAM status codes.

enumerator kStatusGroup_ECSPI
Group number for ECSPI status codes.

enumerator kStatusGroup_USDHC
Group number for USDHC status codes.

enumerator kStatusGroup_LPC_I2C
Group number for LPC_I2C status codes.

enumerator kStatusGroup_DCP
Group number for DCP status codes.

enumerator kStatusGroup_MSCAN
Group number for MSCAN status codes.

enumerator kStatusGroup_ESAI
Group number for ESAI status codes.

enumerator kStatusGroup_FLEXSPI
Group number for FLEXSPI status codes.

enumerator kStatusGroup_MMDC
Group number for MMDC status codes.

enumerator kStatusGroup_PDM
Group number for MIC status codes.

enumerator kStatusGroup_SDMA
Group number for SDMA status codes.

enumerator kStatusGroup_ICS
Group number for ICS status codes.

enumerator kStatusGroup_SPDIF
Group number for SPDIF status codes.

enumerator kStatusGroup_LPC_MINISPI
Group number for LPC_MINISPI status codes.

enumerator kStatusGroup_HASHCRYPT
Group number for Hashcrypt status codes

enumerator kStatusGroup_LPC_SPI_SSP
Group number for LPC_SPI_SSP status codes.

2.31. Common Driver 245

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_I3C
Group number for I3C status codes

enumerator kStatusGroup_LPC_I2C_1
Group number for LPC_I2C_1 status codes.

enumerator kStatusGroup_NOTIFIER
Group number for NOTIFIER status codes.

enumerator kStatusGroup_DebugConsole
Group number for debug console status codes.

enumerator kStatusGroup_SEMC
Group number for SEMC status codes.

enumerator kStatusGroup_ApplicationRangeStart
Starting number for application groups.

enumerator kStatusGroup_IAP
Group number for IAP status codes

enumerator kStatusGroup_SFA
Group number for SFA status codes

enumerator kStatusGroup_SPC
Group number for SPC status codes.

enumerator kStatusGroup_PUF
Group number for PUF status codes.

enumerator kStatusGroup_TOUCH_PANEL
Group number for touch panel status codes

enumerator kStatusGroup_VBAT
Group number for VBAT status codes

enumerator kStatusGroup_XSPI
Group number for XSPI status codes

enumerator kStatusGroup_PNGDEC
Group number for PNGDEC status codes

enumerator kStatusGroup_JPEGDEC
Group number for JPEGDEC status codes

enumerator kStatusGroup_AUDMIX
Group number for AUDMIX status codes

enumerator kStatusGroup_HAL_GPIO
Group number for HAL GPIO status codes.

enumerator kStatusGroup_HAL_UART
Group number for HAL UART status codes.

enumerator kStatusGroup_HAL_TIMER
Group number for HAL TIMER status codes.

enumerator kStatusGroup_HAL_SPI
Group number for HAL SPI status codes.

enumerator kStatusGroup_HAL_I2C
Group number for HAL I2C status codes.

246 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_HAL_FLASH
Group number for HAL FLASH status codes.

enumerator kStatusGroup_HAL_PWM
Group number for HAL PWM status codes.

enumerator kStatusGroup_HAL_RNG
Group number for HAL RNG status codes.

enumerator kStatusGroup_HAL_I2S
Group number for HAL I2S status codes.

enumerator kStatusGroup_HAL_ADC_SENSOR
Group number for HAL ADC SENSOR status codes.

enumerator kStatusGroup_TIMERMANAGER
Group number for TiMER MANAGER status codes.

enumerator kStatusGroup_SERIALMANAGER
Group number for SERIAL MANAGER status codes.

enumerator kStatusGroup_LED
Group number for LED status codes.

enumerator kStatusGroup_BUTTON
Group number for BUTTON status codes.

enumerator kStatusGroup_EXTERN_EEPROM
Group number for EXTERN EEPROM status codes.

enumerator kStatusGroup_SHELL
Group number for SHELL status codes.

enumerator kStatusGroup_MEM_MANAGER
Group number for MEMMANAGER status codes.

enumerator kStatusGroup_LIST
Group number for List status codes.

enumerator kStatusGroup_OSA
Group number for OSA status codes.

enumerator kStatusGroup_COMMON_TASK
Group number for Common task status codes.

enumerator kStatusGroup_MSG
Group number for messaging status codes.

enumerator kStatusGroup_SDK_OCOTP
Group number for OCOTP status codes.

enumerator kStatusGroup_SDK_FLEXSPINOR
Group number for FLEXSPINOR status codes.

enumerator kStatusGroup_CODEC
Group number for codec status codes.

enumerator kStatusGroup_ASRC
Group number for codec status ASRC.

enumerator kStatusGroup_OTFAD
Group number for codec status codes.

2.31. Common Driver 247

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_SDIOSLV
Group number for SDIOSLV status codes.

enumerator kStatusGroup_MECC
Group number for MECC status codes.

enumerator kStatusGroup_ENET_QOS
Group number for ENET_QOS status codes.

enumerator kStatusGroup_LOG
Group number for LOG status codes.

enumerator kStatusGroup_I3CBUS
Group number for I3CBUS status codes.

enumerator kStatusGroup_QSCI
Group number for QSCI status codes.

enumerator kStatusGroup_ELEMU
Group number for ELEMU status codes.

enumerator kStatusGroup_QUEUEDSPI
Group number for QSPI status codes.

enumerator kStatusGroup_POWER_MANAGER
Group number for POWER_MANAGER status codes.

enumerator kStatusGroup_IPED
Group number for IPED status codes.

enumerator kStatusGroup_ELS_PKC
Group number for ELS PKC status codes.

enumerator kStatusGroup_CSS_PKC
Group number for CSS PKC status codes.

enumerator kStatusGroup_HOSTIF
Group number for HOSTIF status codes.

enumerator kStatusGroup_CLIF
Group number for CLIF status codes.

enumerator kStatusGroup_BMA
Group number for BMA status codes.

enumerator kStatusGroup_NETC
Group number for NETC status codes.

enumerator kStatusGroup_ELE
Group number for ELE status codes.

enumerator kStatusGroup_GLIKEY
Group number for GLIKEY status codes.

enumerator kStatusGroup_AON_POWER
Group number for AON_POWER status codes.

enumerator kStatusGroup_AON_COMMON
Group number for AON_COMMON status codes.

enumerator kStatusGroup_ENDAT3
Group number for ENDAT3 status codes.

248 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_HIPERFACE
Group number for HIPERFACE status codes.

enumerator kStatusGroup_NPX
Group number for NPX status codes.

enumerator kStatusGroup_ELA_CSEC
Group number for ELA_CSEC status codes.

enumerator kStatusGroup_FLEXIO_T_FORMAT
Group number for T-format status codes.

enumerator kStatusGroup_FLEXIO_A_FORMAT
Group number for A-format status codes.

Generic status return codes.

Values:

enumerator kStatus_Success
Generic status for Success.

enumerator kStatus_Fail
Generic status for Fail.

enumerator kStatus_ReadOnly
Generic status for read only failure.

enumerator kStatus_OutOfRange
Generic status for out of range access.

enumerator kStatus_InvalidArgument
Generic status for invalid argument check.

enumerator kStatus_Timeout
Generic status for timeout.

enumerator kStatus_NoTransferInProgress
Generic status for no transfer in progress.

enumerator kStatus_Busy
Generic status for module is busy.

enumerator kStatus_NoData
Generic status for no data is found for the operation.

typedef int32_t status_t
Type used for all status and error return values.

void *SDK_Malloc(size_t size, size_t alignbytes)
Allocate memory with given alignment and aligned size.

This is provided to support the dynamically allocated memory used in cache-able region.

Parameters
• size – The length required to malloc.

• alignbytes – The alignment size.

Return values
The – allocated memory.

2.31. Common Driver 249

MCUXpresso SDK Documentation, Release 25.09.00

void SDK_Free(void *ptr)
Free memory.

Parameters
• ptr – The memory to be release.

void SDK_DelayAtLeastUs(uint32_t delayTime_us, uint32_t coreClock_Hz)
Delay at least for some time. Please note that, this API uses while loop for delay, different
run-time environmentsmake the timenot precise, if precise delay countwas needed, please
implement a new delay function with hardware timer.

Parameters
• delayTime_us – Delay time in unit of microsecond.

• coreClock_Hz – Core clock frequency with Hz.

static inline status_t EnableIRQ(IRQn_Type interrupt)
Enable specific interrupt.

Enable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For
example, there areNVIC and intmux. Here the interrupts connected toNVIC are the LEVEL1
interrupts, because they are routed to the core directly. The interrupts connected to intmux
are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only enables the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ number.

Return values
• kStatus_Success – Interrupt enabled successfully

• kStatus_Fail – Failed to enable the interrupt

static inline status_t DisableIRQ(IRQn_Type interrupt)
Disable specific interrupt.

Disable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For
example, there areNVIC and intmux. Here the interrupts connected toNVIC are the LEVEL1
interrupts, because they are routed to the core directly. The interrupts connected to intmux
are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only disables the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ number.

Return values
• kStatus_Success – Interrupt disabled successfully

• kStatus_Fail – Failed to disable the interrupt

static inline status_t EnableIRQWithPriority(IRQn_Type interrupt, uint8_t priNum)
Enable the IRQ, and also set the interrupt priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

250 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• interrupt – The IRQ to Enable.

• priNum – Priority number set to interrupt controller register.

Return values
• kStatus_Success – Interrupt priority set successfully

• kStatus_Fail – Failed to set the interrupt priority.

static inline status_t IRQ_SetPriority(IRQn_Type interrupt, uint8_t priNum)
Set the IRQ priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ to set.

• priNum – Priority number set to interrupt controller register.

Return values
• kStatus_Success – Interrupt priority set successfully

• kStatus_Fail – Failed to set the interrupt priority.

static inline status_t IRQ_ClearPendingIRQ(IRQn_Type interrupt)
Clear the pending IRQ flag.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The flag which IRQ to clear.

Return values
• kStatus_Success – Interrupt priority set successfully

• kStatus_Fail – Failed to set the interrupt priority.

static inline uint32_t DisableGlobalIRQ(void)
Disable the global IRQ.

Disable the global interrupt and return the current primask register. User is required to
provided the primask register for the EnableGlobalIRQ().

Returns
Current primask value.

static inline void EnableGlobalIRQ(uint32_t primask)
Enable the global IRQ.

Set the primask register with the provided primask value but not just enable the primask.
The idea is for the convenience of integration of RTOS. some RTOS get its ownmanagement

2.31. Common Driver 251

MCUXpresso SDK Documentation, Release 25.09.00

mechanism of primask. User is required to use the EnableGlobalIRQ() and DisableGlob-
alIRQ() in pair.

Parameters
• primask – value of primask register to be restored. The primask value is
supposed to be provided by the DisableGlobalIRQ().

static inline bool _SDK_AtomicLocalCompareAndSet(uint32_t *addr, uint32_t expected, uint32_t
newValue)

static inline uint32_t _SDK_AtomicTestAndSet(uint32_t *addr, uint32_t newValue)

FSL_DRIVER_TRANSFER_DOUBLE_WEAK_IRQ
Macro to use the default weak IRQ handler in drivers.

MAKE_STATUS(group, code)
Construct a status code value from a group and code number.

MAKE_VERSION(major, minor, bugfix)
Construct the version number for drivers.

The driver version is a 32-bit number, for both 32-bit platforms(such as CortexM) and 16-bit
platforms(such as DSC).

| Unused || Major Version || Minor Version || Bug Fix |
31 25 24 17 16 9 8 0

ARRAY_SIZE(x)
Computes the number of elements in an array.

UINT64_H(X)
Macro to get upper 32 bits of a 64-bit value

UINT64_L(X)
Macro to get lower 32 bits of a 64-bit value

SUPPRESS_FALL_THROUGH_WARNING()
For switch case code block, if case section ends without “break;” statement, there wil be
fallthrough warning with compiler flag -Wextra or -Wimplicit-fallthrough=n when using
armgcc. To suppress this warning, “SUPPRESS_FALL_THROUGH_WARNING();” need to be
added at the end of each case section which misses “break;”statement.

MSDK_REG_SECURE_ADDR(x)
Convert the register address to the one used in secure mode.

MSDK_REG_NONSECURE_ADDR(x)
Convert the register address to the one used in non-secure mode.

MSDK_INVALID_IRQ_HANDLER
Invalid IRQ handler address.

2.32 LPADC: 12-bit SAR Analog-to-Digital Converter Driver

enum _lpadc_status_flags
Define hardware flags of the module.

Values:

enumerator kLPADC_ResultFIFO0OverflowFlag
Indicates that more data has been written to the Result FIFO 0 than it can hold.

252 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kLPADC_ResultFIFO0ReadyFlag
Indicates when the number of valid datawords in the result FIFO 0 is greater than the
setting watermark level.

enumerator kLPADC_TriggerExceptionFlag
Indicates that a trigger exception event has occurred.

enumerator kLPADC_TriggerCompletionFlag
Indicates that a trigger completion event has occurred.

enumerator kLPADC_CalibrationReadyFlag
Indicates that the calibration process is done.

enumerator kLPADC_ActiveFlag
Indicates that the ADC is in active state.

enumerator kLPADC_ResultFIFOOverflowFlag
To compilitable with old version, do not recommend using this, please use kL-
PADC_ResultFIFO0OverflowFlag as instead.

enumerator kLPADC_ResultFIFOReadyFlag
To compilitable with old version, do not recommend using this, please use kL-
PADC_ResultFIFO0ReadyFlag as instead.

enum _lpadc_interrupt_enable
Define interrupt switchers of the module.

Note: LPADC of different chips supports different number of trigger sources, please check
the Reference Manual for details.

Values:

enumerator kLPADC_ResultFIFO0OverflowInterruptEnable
Configures ADC to generate overflow interrupt requests when FOF0 flag is asserted.

enumerator kLPADC_FIFO0WatermarkInterruptEnable
Configures ADC to generate watermark interrupt requests when RDY0 flag is asserted.

enumerator kLPADC_ResultFIFOOverflowInterruptEnable
To compilitable with old version, do not recommend using this, please use kL-
PADC_ResultFIFO0OverflowInterruptEnable as instead.

enumerator kLPADC_FIFOWatermarkInterruptEnable
To compilitable with old version, do not recommend using this, please use kL-
PADC_FIFO0WatermarkInterruptEnable as instead.

enumerator kLPADC_TriggerExceptionInterruptEnable
Configures ADC to generate trigger exception interrupt.

enumerator kLPADC_Trigger0CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 0 completion.

enumerator kLPADC_Trigger1CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 1 completion.

enumerator kLPADC_Trigger2CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 2 completion.

enumerator kLPADC_Trigger3CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 3 completion.

enumerator kLPADC_Trigger4CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 4 completion.

2.32. LPADC: 12-bit SAR Analog-to-Digital Converter Driver 253

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kLPADC_Trigger5CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 5 completion.

enumerator kLPADC_Trigger6CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 6 completion.

enumerator kLPADC_Trigger7CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 7 completion.

enumerator kLPADC_Trigger8CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 8 completion.

enumerator kLPADC_Trigger9CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 9 completion.

enumerator kLPADC_Trigger10CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 10 completion.

enumerator kLPADC_Trigger11CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 11 completion.

enumerator kLPADC_Trigger12CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 12 completion.

enumerator kLPADC_Trigger13CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 13 completion.

enumerator kLPADC_Trigger14CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 14 completion.

enumerator kLPADC_Trigger15CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 15 completion.

enum _lpadc_trigger_status_flags
The enumerator of lpadc trigger status flags, including interrupted flags and completed
flags.

Note: LPADC of different chips supports different number of trigger sources, please check
the Reference Manual for details.

Values:

enumerator kLPADC_Trigger0InterruptedFlag
Trigger 0 is interrupted by a high priority exception.

enumerator kLPADC_Trigger1InterruptedFlag
Trigger 1 is interrupted by a high priority exception.

enumerator kLPADC_Trigger2InterruptedFlag
Trigger 2 is interrupted by a high priority exception.

enumerator kLPADC_Trigger3InterruptedFlag
Trigger 3 is interrupted by a high priority exception.

enumerator kLPADC_Trigger4InterruptedFlag
Trigger 4 is interrupted by a high priority exception.

enumerator kLPADC_Trigger5InterruptedFlag
Trigger 5 is interrupted by a high priority exception.

enumerator kLPADC_Trigger6InterruptedFlag
Trigger 6 is interrupted by a high priority exception.

254 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kLPADC_Trigger7InterruptedFlag
Trigger 7 is interrupted by a high priority exception.

enumerator kLPADC_Trigger8InterruptedFlag
Trigger 8 is interrupted by a high priority exception.

enumerator kLPADC_Trigger9InterruptedFlag
Trigger 9 is interrupted by a high priority exception.

enumerator kLPADC_Trigger10InterruptedFlag
Trigger 10 is interrupted by a high priority exception.

enumerator kLPADC_Trigger11InterruptedFlag
Trigger 11 is interrupted by a high priority exception.

enumerator kLPADC_Trigger12InterruptedFlag
Trigger 12 is interrupted by a high priority exception.

enumerator kLPADC_Trigger13InterruptedFlag
Trigger 13 is interrupted by a high priority exception.

enumerator kLPADC_Trigger14InterruptedFlag
Trigger 14 is interrupted by a high priority exception.

enumerator kLPADC_Trigger15InterruptedFlag
Trigger 15 is interrupted by a high priority exception.

enumerator kLPADC_Trigger0CompletedFlag
Trigger 0 is completed and trigger 0 has enabled completion interrupts.

enumerator kLPADC_Trigger1CompletedFlag
Trigger 1 is completed and trigger 1 has enabled completion interrupts.

enumerator kLPADC_Trigger2CompletedFlag
Trigger 2 is completed and trigger 2 has enabled completion interrupts.

enumerator kLPADC_Trigger3CompletedFlag
Trigger 3 is completed and trigger 3 has enabled completion interrupts.

enumerator kLPADC_Trigger4CompletedFlag
Trigger 4 is completed and trigger 4 has enabled completion interrupts.

enumerator kLPADC_Trigger5CompletedFlag
Trigger 5 is completed and trigger 5 has enabled completion interrupts.

enumerator kLPADC_Trigger6CompletedFlag
Trigger 6 is completed and trigger 6 has enabled completion interrupts.

enumerator kLPADC_Trigger7CompletedFlag
Trigger 7 is completed and trigger 7 has enabled completion interrupts.

enumerator kLPADC_Trigger8CompletedFlag
Trigger 8 is completed and trigger 8 has enabled completion interrupts.

enumerator kLPADC_Trigger9CompletedFlag
Trigger 9 is completed and trigger 9 has enabled completion interrupts.

enumerator kLPADC_Trigger10CompletedFlag
Trigger 10 is completed and trigger 10 has enabled completion interrupts.

enumerator kLPADC_Trigger11CompletedFlag
Trigger 11 is completed and trigger 11 has enabled completion interrupts.

2.32. LPADC: 12-bit SAR Analog-to-Digital Converter Driver 255

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kLPADC_Trigger12CompletedFlag
Trigger 12 is completed and trigger 12 has enabled completion interrupts.

enumerator kLPADC_Trigger13CompletedFlag
Trigger 13 is completed and trigger 13 has enabled completion interrupts.

enumerator kLPADC_Trigger14CompletedFlag
Trigger 14 is completed and trigger 14 has enabled completion interrupts.

enumerator kLPADC_Trigger15CompletedFlag
Trigger 15 is completed and trigger 15 has enabled completion interrupts.

enum _lpadc_sample_scale_mode
Define enumeration of sample scale mode.

The sample scalemode is used to reduce the selectedADCanalog channel input voltage level
by a factor. The maximum possible voltage on the ADC channel input should be considered
when selecting a scale mode to ensure that the reducing factor always results voltage level
at or below the VREFH reference. This reducing capability allows conversion of analog
inputs higher than VREFH. A-side and B-side channel inputs are both scaled using the scale
mode.

Values:

enumerator kLPADC_SamplePartScale
Use divided input voltage signal. (For scale select,please refer to the referencemanual).

enumerator kLPADC_SampleFullScale
Full scale (Factor of 1).

enum _lpadc_sample_channel_mode
Define enumeration of channel sample mode.

The channel sample mode configures the channel with single-end/differential/dual-single-
end, side A/B.

Values:

enumerator kLPADC_SampleChannelSingleEndSideA
Single-end mode, only A-side channel is converted.

enumerator kLPADC_SampleChannelSingleEndSideB
Single-end mode, only B-side channel is converted.

enumerator kLPADC_SampleChannelDiffBothSideAB
Differential mode, the ADC result is (CHnA-CHnB).

enumerator kLPADC_SampleChannelDiffBothSideBA
Differential mode, the ADC result is (CHnB-CHnA).

enumerator kLPADC_SampleChannelDiffBothSide
Differential mode, the ADC result is (CHnA-CHnB).

enumerator kLPADC_SampleChannelDualSingleEndBothSide
Dual-Single-Ended Mode. Both A side and B side channels are converted indepen-
dently.

enum _lpadc_hardware_average_mode
Define enumeration of hardware average selection.

It Selects how many ADC conversions are averaged to create the ADC result. An internal
storage buffer is used to capture temporary results while the averaging iterations are exe-
cuted.

256 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

Note: Some enumerator values are not available on some devices, mainly depends on the
size of AVGS field in CMDH register.

Values:

enumerator kLPADC_HardwareAverageCount1
Single conversion.

enumerator kLPADC_HardwareAverageCount2
2 conversions averaged.

enumerator kLPADC_HardwareAverageCount4
4 conversions averaged.

enumerator kLPADC_HardwareAverageCount8
8 conversions averaged.

enumerator kLPADC_HardwareAverageCount16
16 conversions averaged.

enumerator kLPADC_HardwareAverageCount32
32 conversions averaged.

enumerator kLPADC_HardwareAverageCount64
64 conversions averaged.

enumerator kLPADC_HardwareAverageCount128
128 conversions averaged.

enum _lpadc_sample_time_mode
Define enumeration of sample time selection.

The shortest sample timemaximizes conversion speed for lower impedance inputs. Extend-
ing sample time allows higher impedance inputs to be accurately sampled. Longer sample
times can also be used to lower overall power consumption when command looping and
sequencing is configured and high conversion rates are not required.

Values:

enumerator kLPADC_SampleTimeADCK3
3 ADCK cycles total sample time.

enumerator kLPADC_SampleTimeADCK5
5 ADCK cycles total sample time.

enumerator kLPADC_SampleTimeADCK7
7 ADCK cycles total sample time.

enumerator kLPADC_SampleTimeADCK11
11 ADCK cycles total sample time.

enumerator kLPADC_SampleTimeADCK19
19 ADCK cycles total sample time.

enumerator kLPADC_SampleTimeADCK35
35 ADCK cycles total sample time.

enumerator kLPADC_SampleTimeADCK67
69 ADCK cycles total sample time.

enumerator kLPADC_SampleTimeADCK131
131 ADCK cycles total sample time.

2.32. LPADC: 12-bit SAR Analog-to-Digital Converter Driver 257

MCUXpresso SDK Documentation, Release 25.09.00

enum _lpadc_hardware_compare_mode
Define enumeration of hardware compare mode.

After an ADC channel input is sampled and converted and any averaging iterations are per-
formed, thismode setting guides operation of the automatic compare function to optionally
only store when the compare operation is true. When compare is enabled, the conversion
result is compared to the compare values.

Values:

enumerator kLPADC_HardwareCompareDisabled
Compare disabled.

enumerator kLPADC_HardwareCompareStoreOnTrue
Compare enabled. Store on true.

enumerator kLPADC_HardwareCompareRepeatUntilTrue
Compare enabled. Repeat channel acquisition until true.

enum _lpadc_conversion_resolution_mode
Define enumeration of conversion resolution mode.

Configure the resolution bit in specific conversion type. For detailed resolution accuracy,
see to lpadc_sample_channel_mode_t

Values:

enumerator kLPADC_ConversionResolutionStandard
Standard resolution. Single-ended 12-bit conversion, Differential 13-bit conversion
with 2’s complement output.

enumerator kLPADC_ConversionResolutionHigh
High resolution. Single-ended 16-bit conversion; Differential 16-bit conversion with
2’s complement output.

enum _lpadc_conversion_average_mode
Define enumeration of conversion averages mode.

Configure the converion average number for auto-calibration.

Note: Some enumerator values are not available on some devices, mainly depends on the
size of CAL_AVGS field in CTRL register.

Values:

enumerator kLPADC_ConversionAverage1
Single conversion.

enumerator kLPADC_ConversionAverage2
2 conversions averaged.

enumerator kLPADC_ConversionAverage4
4 conversions averaged.

enumerator kLPADC_ConversionAverage8
8 conversions averaged.

enumerator kLPADC_ConversionAverage16
16 conversions averaged.

enumerator kLPADC_ConversionAverage32
32 conversions averaged.

258 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kLPADC_ConversionAverage64
64 conversions averaged.

enumerator kLPADC_ConversionAverage128
128 conversions averaged.

enum _lpadc_reference_voltage_mode
Define enumeration of reference voltage source.

For detail information, need to check the SoC’s specification.

Values:

enumerator kLPADC_ReferenceVoltageAlt1
Option 1 setting.

enumerator kLPADC_ReferenceVoltageAlt2
Option 2 setting.

enumerator kLPADC_ReferenceVoltageAlt3
Option 3 setting.

enum _lpadc_power_level_mode
Define enumeration of power configuration.

Configures the ADC for power and performance. In the highest power setting the highest
conversion rateswill be possible. Refer to the device data sheet for power and performance
capabilities for each setting.

Values:

enumerator kLPADC_PowerLevelAlt1
Lowest power setting.

enumerator kLPADC_PowerLevelAlt2
Next lowest power setting.

enumerator kLPADC_PowerLevelAlt3
…

enumerator kLPADC_PowerLevelAlt4
Highest power setting.

enum _lpadc_offset_calibration_mode
Define enumeration of offset calibration mode.

Values:

enumerator kLPADC_OffsetCalibration12bitMode
12 bit offset calibration mode.

enumerator kLPADC_OffsetCalibration16bitMode
16 bit offset calibration mode.

enum _lpadc_trigger_priority_policy
Define enumeration of trigger priority policy.

This selection controls how higher priority triggers are handled.

Note: kLPADC_TriggerPriorityPreemptSubsequently is not available on some devices,
mainly depends on the size of TPRICTRL field in CFG register.

Values:

2.32. LPADC: 12-bit SAR Analog-to-Digital Converter Driver 259

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kLPADC_ConvPreemptImmediatelyNotAutoResumed
If a higher priority trigger is detected during command processing, the current conver-
sion is aborted and the new command specified by the trigger is started, when higher
priority conversion finishes, the preempted conversion is not automatically resumed
or restarted.

enumerator kLPADC_ConvPreemptSoftlyNotAutoResumed
If a higher priority trigger is received during command processing, the current con-
version is completed (including averaging iterations and compare function if enabled)
and stored to the result FIFO before the higher priority trigger/command is initiated,
when higher priority conversion finishes, the preempted conversion is not resumed
or restarted.

enumerator kLPADC_ConvPreemptImmediatelyAutoRestarted
If a higher priority trigger is detected during command processing, the current con-
version is aborted and the new command specified by the trigger is started, when
higher priority conversion finishes, the preempted conversion will automatically be
restarted.

enumerator kLPADC_ConvPreemptSoftlyAutoRestarted
If a higher priority trigger is received during command processing, the current con-
version is completed (including averaging iterations and compare function if enabled)
and stored to the result FIFO before the higher priority trigger/command is initiated,
when higher priority conversion finishes, the preempted conversion will automati-
cally be restarted.

enumerator kLPADC_ConvPreemptImmediatelyAutoResumed
If a higher priority trigger is detected during command processing, the current conver-
sion is aborted and the new command specified by the trigger is started, when higher
priority conversion finishes, the preempted conversionwill automatically be resumed.

enumerator kLPADC_ConvPreemptSoftlyAutoResumed
If a higher priority trigger is received during command processing, the current con-
version is completed (including averaging iterations and compare function if enabled)
and stored to the result FIFO before the higher priority trigger/command is initiated,
when higher priority conversion finishes, the preempted conversion will be automat-
ically be resumed.

enumerator kLPADC_TriggerPriorityPreemptImmediately
Legacy support is not recommended as it only ensures compatibility with older ver-
sions.

enumerator kLPADC_TriggerPriorityPreemptSoftly
Legacy support is not recommended as it only ensures compatibility with older ver-
sions.

enumerator kLPADC_TriggerPriorityExceptionDisabled
High priority trigger exception disabled.

typedef enum _lpadc_sample_scale_mode lpadc_sample_scale_mode_t
Define enumeration of sample scale mode.

The sample scalemode is used to reduce the selectedADCanalog channel input voltage level
by a factor. The maximum possible voltage on the ADC channel input should be considered
when selecting a scale mode to ensure that the reducing factor always results voltage level
at or below the VREFH reference. This reducing capability allows conversion of analog
inputs higher than VREFH. A-side and B-side channel inputs are both scaled using the scale
mode.

260 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _lpadc_sample_channel_mode lpadc_sample_channel_mode_t
Define enumeration of channel sample mode.

The channel sample mode configures the channel with single-end/differential/dual-single-
end, side A/B.

typedef enum _lpadc_hardware_average_mode lpadc_hardware_average_mode_t
Define enumeration of hardware average selection.

It Selects how many ADC conversions are averaged to create the ADC result. An internal
storage buffer is used to capture temporary results while the averaging iterations are exe-
cuted.

Note: Some enumerator values are not available on some devices, mainly depends on the
size of AVGS field in CMDH register.

typedef enum _lpadc_sample_time_mode lpadc_sample_time_mode_t
Define enumeration of sample time selection.

The shortest sample timemaximizes conversion speed for lower impedance inputs. Extend-
ing sample time allows higher impedance inputs to be accurately sampled. Longer sample
times can also be used to lower overall power consumption when command looping and
sequencing is configured and high conversion rates are not required.

typedef enum _lpadc_hardware_compare_mode lpadc_hardware_compare_mode_t
Define enumeration of hardware compare mode.

After an ADC channel input is sampled and converted and any averaging iterations are per-
formed, thismode setting guides operation of the automatic compare function to optionally
only store when the compare operation is true. When compare is enabled, the conversion
result is compared to the compare values.

typedef enum _lpadc_conversion_resolution_mode lpadc_conversion_resolution_mode_t
Define enumeration of conversion resolution mode.

Configure the resolution bit in specific conversion type. For detailed resolution accuracy,
see to lpadc_sample_channel_mode_t

typedef enum _lpadc_conversion_average_mode lpadc_conversion_average_mode_t
Define enumeration of conversion averages mode.

Configure the converion average number for auto-calibration.

Note: Some enumerator values are not available on some devices, mainly depends on the
size of CAL_AVGS field in CTRL register.

typedef enum _lpadc_reference_voltage_mode lpadc_reference_voltage_source_t
Define enumeration of reference voltage source.

For detail information, need to check the SoC’s specification.

typedef enum _lpadc_power_level_mode lpadc_power_level_mode_t
Define enumeration of power configuration.

Configures the ADC for power and performance. In the highest power setting the highest
conversion rateswill be possible. Refer to the device data sheet for power and performance
capabilities for each setting.

typedef enum _lpadc_offset_calibration_mode lpadc_offset_calibration_mode_t
Define enumeration of offset calibration mode.

2.32. LPADC: 12-bit SAR Analog-to-Digital Converter Driver 261

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _lpadc_trigger_priority_policy lpadc_trigger_priority_policy_t
Define enumeration of trigger priority policy.

This selection controls how higher priority triggers are handled.

Note: kLPADC_TriggerPriorityPreemptSubsequently is not available on some devices,
mainly depends on the size of TPRICTRL field in CFG register.

typedef struct _lpadc_calibration_value lpadc_calibration_value_t
A structure of calibration value.

LPADC_CONVERSION_COMPLETE_TIMEOUT
Max loops to wait for LPADC conversion complete.

When doing calibration, driver will wait for the completion of conversion. This parameter
defines how many loops to check completion before return timeout. If defined as 0, driver
will wait forever until completion.

LPADC_CALIBRATION_READY_TIMEOUT
Max loops to wait for LPADC calibration ready.

Before doing calibration, driver will wait for the calibration ready. This parameter defines
howmany loops to check the calibration ready. If defined as 0, driverwill wait forever until
ready.

LPADC_GAIN_CAL_READY_TIMEOUT
Max loops to wait for LPADC gain calibration GAIN_CAL ready.

Before doing calibration, driver will wait for the gain calibration GAIN_CAL ready. This pa-
rameter defines how many loops to check the gain calibration GAIN_CAL ready. If defined
as 0, driver will wait forever until ready.

ADC_OFSTRIM_OFSTRIM_MAX

ADC_OFSTRIM_OFSTRIM_SIGN

LPADC_GET_ACTIVE_COMMAND_STATUS(statusVal)
Define the MACRO function to get command status from status value.

The statusVal is the return value from LPADC_GetStatusFlags().

LPADC_GET_ACTIVE_TRIGGER_STATUE(statusVal)
Define the MACRO function to get trigger status from status value.

The statusVal is the return value from LPADC_GetStatusFlags().

void LPADC_Init(ADC_Type *base, const lpadc_config_t *config)
Initializes the LPADC module.

Parameters
• base – LPADC peripheral base address.

• config – Pointer to configuration structure. See “lpadc_config_t”.

void LPADC_GetDefaultConfig(lpadc_config_t *config)
Gets an available pre-defined settings for initial configuration.

This function initializes the converter configuration structure with an available settings.
The default values are:

262 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

config->enableInDozeMode = true;
config->enableAnalogPreliminary = false;
config->powerUpDelay = 0x80;
config->referenceVoltageSource = kLPADC_ReferenceVoltageAlt1;
config->powerLevelMode = kLPADC_PowerLevelAlt1;
config->triggerPriorityPolicy = kLPADC_TriggerPriorityPreemptImmediately;
config->enableConvPause = false;
config->convPauseDelay = 0U;
config->FIFOWatermark = 0U;

Parameters
• config – Pointer to configuration structure.

void LPADC_Deinit(ADC_Type *base)
De-initializes the LPADC module.

Parameters
• base – LPADC peripheral base address.

static inline void LPADC_Enable(ADC_Type *base, bool enable)
Switch on/off the LPADC module.

Parameters
• base – LPADC peripheral base address.

• enable – switcher to the module.

static inline void LPADC_DoResetFIFO(ADC_Type *base)
Do reset the conversion FIFO.

Parameters
• base – LPADC peripheral base address.

static inline void LPADC_DoResetConfig(ADC_Type *base)
Do reset the module’s configuration.

Reset all ADC internal logic and registers, except the Control Register (ADCx_CTRL).

Parameters
• base – LPADC peripheral base address.

static inline uint32_t LPADC_GetStatusFlags(ADC_Type *base)
Get status flags.

Parameters
• base – LPADC peripheral base address.

Returns
status flags’ mask. See to _lpadc_status_flags.

static inline void LPADC_ClearStatusFlags(ADC_Type *base, uint32_t mask)
Clear status flags.

Only the flags can be cleared by writing ADCx_STATUS register would be cleared by this
API.

Parameters
• base – LPADC peripheral base address.

• mask – Mask value for flags to be cleared. See to _lpadc_status_flags.

2.32. LPADC: 12-bit SAR Analog-to-Digital Converter Driver 263

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t LPADC_GetTriggerStatusFlags(ADC_Type *base)
Get trigger status flags to indicate which trigger sequences have been completed or inter-
rupted by a high priority trigger exception.

Parameters
• base – LPADC peripheral base address.

Returns
The OR’ed value of _lpadc_trigger_status_flags.

static inline void LPADC_ClearTriggerStatusFlags(ADC_Type *base, uint32_t mask)
Clear trigger status flags.

Parameters
• base – LPADC peripheral base address.

• mask – The mask of trigger status flags to be cleared, should be the OR’ed
value of _lpadc_trigger_status_flags.

static inline void LPADC_EnableInterrupts(ADC_Type *base, uint32_t mask)
Enable interrupts.

Parameters
• base – LPADC peripheral base address.

• mask – Mask value for interrupt events. See to _lpadc_interrupt_enable.

static inline void LPADC_DisableInterrupts(ADC_Type *base, uint32_t mask)
Disable interrupts.

Parameters
• base – LPADC peripheral base address.

• mask – Mask value for interrupt events. See to _lpadc_interrupt_enable.

static inline void LPADC_EnableFIFOWatermarkDMA(ADC_Type *base, bool enable)
Switch on/off the DMA trigger for FIFO watermark event.

Parameters
• base – LPADC peripheral base address.

• enable – Switcher to the event.

static inline uint32_t LPADC_GetConvResultCount(ADC_Type *base)
Get the count of result kept in conversion FIFO.

Parameters
• base – LPADC peripheral base address.

Returns
The count of result kept in conversion FIFO.

bool LPADC_GetConvResult(ADC_Type *base, lpadc_conv_result_t *result)
Get the result in conversion FIFO.

Parameters
• base – LPADC peripheral base address.

• result – Pointer to structure variable that keeps the conversion result in
conversion FIFO.

Returns
Status whether FIFO entry is valid.

264 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

void LPADC_GetConvResultBlocking(ADC_Type *base, lpadc_conv_result_t *result)
Get the result in conversion FIFO using blocking method.

Parameters
• base – LPADC peripheral base address.

• result – Pointer to structure variable that keeps the conversion result in
conversion FIFO.

void LPADC_SetConvTriggerConfig(ADC_Type *base, uint32_t triggerId, const
lpadc_conv_trigger_config_t *config)

Configure the conversion trigger source.

Each programmable trigger can launch the conversion command in command buffer.

Parameters
• base – LPADC peripheral base address.

• triggerId – ID for each trigger. Typically, the available value range is from
0.

• config – Pointer to configuration structure. See to
lpadc_conv_trigger_config_t.

void LPADC_GetDefaultConvTriggerConfig(lpadc_conv_trigger_config_t *config)
Gets an available pre-defined settings for trigger’s configuration.

This function initializes the trigger’s configuration structurewith an available settings. The
default values are:

config->targetCommandId = 0U;
config->delayPower = 0U;
config->priority = 0U;
config->channelAFIFOSelect = 0U;
config->channelBFIFOSelect = 0U;
config->enableHardwareTrigger = false;

Parameters
• config – Pointer to configuration structure.

static inline void LPADC_DoSoftwareTrigger(ADC_Type *base, uint32_t triggerIdMask)
Do software trigger to conversion command.

Parameters
• base – LPADC peripheral base address.

• triggerIdMask – Mask value for software trigger indexes, which count from
zero.

void LPADC_SetConvCommandConfig(ADC_Type *base, uint32_t commandId, const
lpadc_conv_command_config_t *config)

Configure conversion command.

Note: The number of compare value register on different chips is different, that is mean
in some chips, some command buffers do not have the compare functionality.

Parameters
• base – LPADC peripheral base address.

2.32. LPADC: 12-bit SAR Analog-to-Digital Converter Driver 265

MCUXpresso SDK Documentation, Release 25.09.00

• commandId – ID for command in command buffer. Typically, the available
value range is 1 - 15.

• config – Pointer to configuration structure. See to
lpadc_conv_command_config_t.

void LPADC_GetDefaultConvCommandConfig(lpadc_conv_command_config_t *config)
Gets an available pre-defined settings for conversion command’s configuration.

This function initializes the conversion command’s configuration structure with an avail-
able settings. The default values are:

config->sampleScaleMode = kLPADC_SampleFullScale;
config->channelBScaleMode = kLPADC_SampleFullScale;
config->sampleChannelMode = kLPADC_SampleChannelSingleEndSideA;
config->channelNumber = 0U;
config->channelBNumber = 0U;
config->chainedNextCommandNumber = 0U;
config->enableAutoChannelIncrement = false;
config->loopCount = 0U;
config->hardwareAverageMode = kLPADC_HardwareAverageCount1;
config->sampleTimeMode = kLPADC_SampleTimeADCK3;
config->hardwareCompareMode = kLPADC_HardwareCompareDisabled;
config->hardwareCompareValueHigh = 0U;
config->hardwareCompareValueLow = 0U;
config->conversionResolutionMode = kLPADC_ConversionResolutionStandard;
config->enableWaitTrigger = false;
config->enableChannelB = false;

Parameters
• config – Pointer to configuration structure.

void LPADC_EnableCalibration(ADC_Type *base, bool enable)
Enable the calibration function.

When CALOFS is set, the ADC is configured to perform a calibration function anytime the
ADC executes a conversion. Any channel selected is ignored and the value returned in the
RESFIFO is a signed value between -31 and 31. -32 is not a valid and is never a returned
value. Software should copy the lower 6- bits of the conversion result stored in the RESFIFO
after a completed calibration conversion to the OFSTRIM field. The OFSTRIM field is used
in normal operation for offset correction.

Parameters
• base – LPADC peripheral base address.

• enable – switcher to the calibration function.

static inline void LPADC_SetOffsetValue(ADC_Type *base, uint32_t value)
Set proper offset value to trim ADC.

Tominimize the offset during normal operation, software should read the conversion result
from the RESFIFO calibration operation and write the lower 6 bits to the OFSTRIM register.

Parameters
• base – LPADC peripheral base address.

• value – Setting offset value.

status_t LPADC_DoAutoCalibration(ADC_Type *base)
Do auto calibration.

Calibration function should be executed before using converter in applica-
tion. It used the software trigger and a dummy conversion, get the off-
set and write them into the OFSTRIM register. It called some of functional

266 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

API including: -LPADC_EnableCalibration(…) -LPADC_LPADC_SetOffsetValue(…) -
LPADC_SetConvCommandConfig(…) -LPADC_SetConvTriggerConfig(…)

Parameters
• base – LPADC peripheral base address.

• base – LPADC peripheral base address.

Return values
• kStatus_Success – Successfully configured.

• kStatus_Timeout – Timeout occurs while waiting completion.

static inline void LPADC_SetOffsetValue(ADC_Type *base, int16_t value)
Set trim value for offset.

Note: For 16-bit conversions, each increment is 1/2 LSB resulting in a programmable offset
range of -256 LSB to 255.5 LSB; For 12-bit conversions, each increment is 1/32 LSB resulting
in a programmable offset range of -16 LSB to 15.96875 LSB.

Parameters
• base – LPADC peripheral base address.

• value – Offset trim value, is a 10-bit signed value between -512 and 511.

static inline void LPADC_GetOffsetValue(ADC_Type *base, int16_t *pValue)
Get trim value of offset.

Parameters
• base – LPADC peripheral base address.

• pValue – Pointer to the variable in type of int16_t to store offset value.

static inline void LPADC_EnableOffsetCalibration(ADC_Type *base, bool enable)
Enable the offset calibration function.

Parameters
• base – LPADC peripheral base address.

• enable – switcher to the calibration function.

static inline void LPADC_SetOffsetCalibrationMode(ADC_Type *base,
lpadc_offset_calibration_mode_tmode)

Set offset calibration mode.

Parameters
• base – LPADC peripheral base address.

• mode – set offset calibration mode.see to lpadc_offset_calibration_mode_t .

status_t LPADC_DoOffsetCalibration(ADC_Type *base)
Do offset calibration.

Parameters
• base – LPADC peripheral base address.

Return values
• kStatus_Success – Successfully configured.

• kStatus_Timeout – Timeout occurs while waiting completion.

2.32. LPADC: 12-bit SAR Analog-to-Digital Converter Driver 267

MCUXpresso SDK Documentation, Release 25.09.00

void LPADC_PrepareAutoCalibration(ADC_Type *base)
Prepare auto calibration, LPADC_FinishAutoCalibration has to be called before using the
LPADC. LPADC_DoAutoCalibration has been split in two API to avoid to be stuck too long in
the function.

Parameters
• base – LPADC peripheral base address.

status_t LPADC_FinishAutoCalibration(ADC_Type *base)
Finish auto calibration start with LPADC_PrepareAutoCalibration.

Note: This feature is used for LPADC with CTRL[CALOFSMODE].

Parameters
• base – LPADC peripheral base address.

Return values
• kStatus_Success – Successfully configured.

• kStatus_Timeout – Timeout occurs while waiting completion.

void LPADC_GetCalibrationValue(ADC_Type *base, lpadc_calibration_value_t
*ptrCalibrationValue)

Get calibration value into the memory which is defined by invoker.

Note: Please note the ADC will be disabled temporary.

Note: This function should be used after finish calibration.

Parameters
• base – LPADC peripheral base address.

• ptrCalibrationValue – Pointer to lpadc_calibration_value_t structure, this
memory block should be always powered on even in low power modes.

status_t LPADC_SetCalibrationValue(ADC_Type *base, const lpadc_calibration_value_t
*ptrCalibrationValue)

Set calibration value into ADC calibration registers.

Note: Please note the ADC will be disabled temporary.

Parameters
• base – LPADC peripheral base address.

• ptrCalibrationValue – Pointer to lpadc_calibration_value_t structure which
contains ADC’s calibration value.

Return values
• kStatus_Success – Successfully configured.

• kStatus_Timeout – Timeout occurs while waiting completion.

268 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

FSL_LPADC_DRIVER_VERSION
LPADC driver version 2.9.3.

struct lpadc_config_t
#include <fsl_lpadc.h> LPADC global configuration.

This structure would used to keep the settings for initialization.

Public Members

bool enableInternalClock
Enables the internally generated clock source. The clock source is used in clock selec-
tion logic at the chip level and is optionally used for the ADC clock source.

bool enableVref1LowVoltage
If voltage reference option1 input is below 1.8V, it should be “true”. If voltage reference
option1 input is above 1.8V, it should be “false”.

bool enableInDozeMode
Control system transition to Stop and Wait power modes while ADC is converting.
When enabled in Doze mode, immediate entries to Wait or Stop are allowed. When
disabled, the ADC will wait for the current averaging iteration/FIFO storage to com-
plete before acknowledging stop or wait mode entry.

lpadc_conversion_average_mode_t conversionAverageMode
Auto-Calibration Averages.

bool enableAnalogPreliminary
ADC analog circuits are pre-enabled and ready to execute conversions without startup
delays(at the cost of higher DC current consumption).

uint32_t powerUpDelay
When the analog circuits are not pre-enabled, the ADC analog circuits are only pow-
ered while the ADC is active and there is a counted delay defined by this field after an
initial trigger transitions the ADC from its Idle state to allow time for the analog circuits
to stabilize. The startup delay count of (powerUpDelay * 4) ADCK cycles must result in
a longer delay than the analog startup time.

lpadc_reference_voltage_source_t referenceVoltageSource
Selects the voltage reference high used for conversions.

lpadc_power_level_mode_t powerLevelMode
Power Configuration Selection.

lpadc_trigger_priority_policy_t triggerPriorityPolicy
Control how higher priority triggers are handled, see to
lpadc_trigger_priority_policy_t.

bool enableConvPause
Enables the ADC pausing function. When enabled, a programmable delay is inserted
during command execution sequencing between LOOP iterations, between commands
in a sequence, and between conversions when command is executing in “Compare
Until True” configuration.

uint32_t convPauseDelay
Controls the duration of pausing during command execution sequencing. The pause
delay is a count of (convPauseDelay*4) ADCK cycles. Only available when ADC pausing
function is enabled. The available value range is in 9-bit.

2.32. LPADC: 12-bit SAR Analog-to-Digital Converter Driver 269

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t FIFOWatermark
FIFOWatermark is a programmable threshold setting. When the number of datawords
stored in theADCResult FIFO is greater than the value in this field, the readyflagwould
be asserted to indicate stored data has reached the programmable threshold.

struct lpadc_conv_command_config_t
#include <fsl_lpadc.h> Define structure to keep the configuration for conversion command.

Public Members

lpadc_sample_scale_mode_t sampleScaleMode
Sample scale mode.

lpadc_sample_scale_mode_t channelBScaleMode
Alternate channe B Scale mode.

lpadc_sample_channel_mode_t sampleChannelMode
Channel sample mode.

uint32_t channelNumber
Channel number, select the channel or channel pair.

uint32_t channelBNumber
Alternate Channel B number, select the channel.

uint32_t chainedNextCommandNumber
Selects the next command to be executed after this command completes. 1-15 is avail-
able, 0 is to terminate the chain after this command.

bool enableAutoChannelIncrement
Loopwith increment: when disabled, the “loopCount” field selects the number of times
the selected channel is converted consecutively; when enabled, the “loopCount” field
defines howmany consecutive channels are converted as part of the command execu-
tion.

uint32_t loopCount
Selects howmany times this command executes before finish and transition to the next
command or Idle state. Command executes LOOP+1 times. 0-15 is available.

lpadc_hardware_average_mode_t hardwareAverageMode
Hardware average selection.

lpadc_sample_time_mode_t sampleTimeMode
Sample time selection.

lpadc_hardware_compare_mode_t hardwareCompareMode
Hardware compare selection.

uint32_t hardwareCompareValueHigh
Compare Value High. The available value range is in 16-bit.

uint32_t hardwareCompareValueLow
Compare Value Low. The available value range is in 16-bit.

lpadc_conversion_resolution_mode_t conversionResolutionMode
Conversion resolution mode.

bool enableWaitTrigger
Wait for trigger assertion before execution: when disabled, this command will be au-
tomatically executed; when enabled, the active trigger must be asserted again before
executing this command.

270 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

struct lpadc_conv_trigger_config_t
#include <fsl_lpadc.h> Define structure to keep the configuration for conversion trigger.

Public Members

uint32_t targetCommandId
Select the command from command buffer to execute upon detect of the associated
trigger event.

uint32_t delayPower
Select the trigger delay duration to wait at the start of servicing a trigger event. When
this field is clear, then no delay is incurred. When this field is set to a non-zero value,
the duration for the delay is 2^delayPower ADCK cycles. The available value range is
4-bit.

uint32_t priority
Sets the priority of the associated trigger source. If two ormore triggers have the same
priority level setting, the lower order trigger event has the higher priority. The lower
value for this field is for the higher priority, the available value range is 1-bit.

bool enableHardwareTrigger
Enable hardware trigger source to initiate conversion on the rising edge of the input
trigger source or not. THe software trigger is always available.

struct lpadc_conv_result_t
#include <fsl_lpadc.h> Define the structure to keep the conversion result.

Public Members

uint32_t commandIdSource
Indicate the command buffer being executed that generated this result.

uint32_t loopCountIndex
Indicate the loop count value during command execution that generated this result.

uint32_t triggerIdSource
Indicate the trigger source that initiated a conversion and generated this result.

uint16_t convValue
Data result.

struct _lpadc_calibration_value
#include <fsl_lpadc.h> A structure of calibration value.

2.33 GPIO: General Purpose I/O

void GPIO_PortInit(GPIO_Type *base, uint32_t port)
Initializes the GPIO peripheral.

This function ungates the GPIO clock.

Parameters
• base – GPIO peripheral base pointer.

• port – GPIO port number.

2.33. GPIO: General Purpose I/O 271

MCUXpresso SDK Documentation, Release 25.09.00

void GPIO_PinInit(GPIO_Type *base, uint32_t port, uint32_t pin, const gpio_pin_config_t
*config)

Initializes a GPIO pin used by the board.

To initialize the GPIO, define a pin configuration, either input or output, in the user file.
Then, call the GPIO_PinInit() function.

This is an example to define an input pin or output pin configuration:

Define a digital input pin configuration,
gpio_pin_config_t config =
{
kGPIO_DigitalInput,
0,

}
Define a digital output pin configuration,
gpio_pin_config_t config =
{
kGPIO_DigitalOutput,
0,

}

Parameters
• base – GPIO peripheral base pointer(Typically GPIO)

• port – GPIO port number

• pin – GPIO pin number

• config – GPIO pin configuration pointer

static inline void GPIO_PinWrite(GPIO_Type *base, uint32_t port, uint32_t pin, uint8_t output)
Sets the output level of the one GPIO pin to the logic 1 or 0.

Parameters
• base – GPIO peripheral base pointer(Typically GPIO)

• port – GPIO port number

• pin – GPIO pin number

• output – GPIO pin output logic level.

– 0: corresponding pin output low-logic level.

– 1: corresponding pin output high-logic level.

static inline uint32_t GPIO_PinRead(GPIO_Type *base, uint32_t port, uint32_t pin)
Reads the current input value of the GPIO PIN.

Parameters
• base – GPIO peripheral base pointer(Typically GPIO)

• port – GPIO port number

• pin – GPIO pin number

Return values
GPIO – port input value

• 0: corresponding pin input low-logic level.

• 1: corresponding pin input high-logic level.

FSL_GPIO_DRIVER_VERSION
LPC GPIO driver version.

272 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enum _gpio_pin_direction
LPC GPIO direction definition.

Values:

enumerator kGPIO_DigitalInput
Set current pin as digital input

enumerator kGPIO_DigitalOutput
Set current pin as digital output

typedef enum _gpio_pin_direction gpio_pin_direction_t
LPC GPIO direction definition.

typedef struct _gpio_pin_config gpio_pin_config_t
The GPIO pin configuration structure.

Every pin can only be configured as either output pin or input pin at a time. If configured
as a input pin, then leave the outputConfig unused.

static inline void GPIO_PortSet(GPIO_Type *base, uint32_t port, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 1.

Parameters
• base – GPIO peripheral base pointer(Typically GPIO)

• port – GPIO port number

• mask – GPIO pin number macro

static inline void GPIO_PortClear(GPIO_Type *base, uint32_t port, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 0.

Parameters
• base – GPIO peripheral base pointer(Typically GPIO)

• port – GPIO port number

• mask – GPIO pin number macro

static inline void GPIO_PortToggle(GPIO_Type *base, uint32_t port, uint32_t mask)
Reverses current output logic of the multiple GPIO pins.

Parameters
• base – GPIO peripheral base pointer(Typically GPIO)

• port – GPIO port number

• mask – GPIO pin number macro

struct _gpio_pin_config
#include <fsl_gpio.h> The GPIO pin configuration structure.

Every pin can only be configured as either output pin or input pin at a time. If configured
as a input pin, then leave the outputConfig unused.

Public Members

gpio_pin_direction_t pinDirection
GPIO direction, input or output

uint8_t outputLogic
Set default output logic, no use in input

2.33. GPIO: General Purpose I/O 273

MCUXpresso SDK Documentation, Release 25.09.00

2.34 IOCON: I/O pin configuration

FSL_IOCON_DRIVER_VERSION
IOCON driver version.

typedef struct _iocon_group iocon_group_t
Array of IOCON pin definitions passed to IOCON_SetPinMuxing() must be in this format.

__STATIC_INLINE void IOCON_PinMuxSet (IOCON_Type *base, uint8_t port, uint8_t pin,
uint32_t modefunc)

Sets I/O Control pin mux.

Parameters
• base – : The base of IOCON peripheral on the chip

• port – : GPIO port to mux

• pin – : GPIO pin to mux

• modefunc – : OR’ed values of type IOCON_*

Returns
Nothing

__STATIC_INLINE void IOCON_SetPinMuxing (IOCON_Type *base,
const iocon_group_t *pinArray, uint32_t arrayLength)

Set all I/O Control pin muxing.

Parameters
• base – : The base of IOCON peripheral on the chip

• pinArray – : Pointer to array of pin mux selections

• arrayLength – : Number of entries in pinArray

Returns
Nothing

FSL_COMPONENT_ID

IOCON_FUNC0
IOCON function and mode selection definitions.

Note: See the UserManual for specificmodes and functions supported by the various pins.
Selects pin function 0

IOCON_FUNC1
Selects pin function 1

IOCON_FUNC2
Selects pin function 2

IOCON_FUNC3
Selects pin function 3

IOCON_FUNC4
Selects pin function 4

IOCON_FUNC5
Selects pin function 5

274 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

IOCON_FUNC6
Selects pin function 6

IOCON_FUNC7
Selects pin function 7

struct _iocon_group
#include <fsl_iocon.h> Array of IOCON pin definitions passed to IOCON_SetPinMuxing()
must be in this format.

2.35 MCAN: Controller Area Network Driver

voidMCAN_Init(CAN_Type *base, constmcan_config_t *config, uint32_t sourceClock_Hz)
Initializes an MCAN instance.

This function initializes the MCANmodule with user-defined settings. This example shows
how to set up the mcan_config_t parameters and how to call the MCAN_Init function by
passing in these parameters.

mcan_config_t config;
config->baudRateA = 500000U;
config->baudRateD = 1000000U;
config->enableCanfdNormal = false;
config->enableCanfdSwitch = false;
config->enableLoopBackInt = false;
config->enableLoopBackExt = false;
config->enableBusMon = false;
MCAN_Init(CANFD0, &config, 8000000UL);

Parameters
• base – MCAN peripheral base address.

• config – Pointer to the user-defined configuration structure.

• sourceClock_Hz – MCAN Protocol Engine clock source frequency in Hz.

voidMCAN_Deinit(CAN_Type *base)
Deinitializes an MCAN instance.

This function deinitializes the MCAN module.

Parameters
• base – MCAN peripheral base address.

voidMCAN_GetDefaultConfig(mcan_config_t *config)
Gets the default configuration structure.

This function initializes the MCAN configuration structure to default values. The
default values are as follows. config->baudRateA = 500000U; config->baudRateD =
1000000U; config->enableCanfdNormal = false; config->enableCanfdSwitch = false; config-
>enableLoopBackInt = false; config->enableLoopBackExt = false; config->enableBusMon =
false;

Parameters
• config – Pointer to the MCAN configuration structure.

2.35. MCAN: Controller Area Network Driver 275

MCUXpresso SDK Documentation, Release 25.09.00

static inline voidMCAN_EnterInitialMode(CAN_Type *base)
MCAN enters initialization mode.

After enter initialization mode, users can write access to the protected configuration regis-
ters.

Parameters
• base – MCAN peripheral base address.

static inline voidMCAN_EnterNormalMode(CAN_Type *base)
MCAN enters normal mode.

After initialization, INIT bit in CCCR register must be cleared to enter normal mode thus
synchronizes to the CAN bus and ready for communication.

Parameters
• base – MCAN peripheral base address.

static inline voidMCAN_SetMsgRAMBase(CAN_Type *base, uint32_t value)
Sets the MCAN Message RAM base address.

This function sets the Message RAM base address.

Parameters
• base – MCAN peripheral base address.

• value – Desired Message RAM base.

static inline uint32_tMCAN_GetMsgRAMBase(CAN_Type *base)
Gets the MCAN Message RAM base address.

This function gets the Message RAM base address.

Parameters
• base – MCAN peripheral base address.

Returns
Message RAM base address.

boolMCAN_CalculateImprovedTimingValues(uint32_t baudRate, uint32_t sourceClock_Hz,
mcan_timing_config_t *pconfig)

Calculates the improved timing values by specific baudrates for classical CAN.

Parameters
• baudRate – The classical CAN speed in bps defined by user

• sourceClock_Hz – The Source clock data speed in bps. Zero to disable bau-
drate switching

• pconfig – Pointer to the MCAN timing configuration structure.

Returns
TRUE if timing configuration found, FALSE if failed to find configuration

boolMCAN_CalculateSpecifiedTimingValues(uint32_t sourceClock_Hz,mcan_timing_config_t
*pconfig, constmcan_timing_param_t
*pParamConfig)

Calculates the specified timing values for classical CAN with user-defined settings.

User can specify baudrates, sample point position, bus length, and transceiver propagation
delay. This example shows how to set up the mcan_timing_param_t parameters and how
to call the this function by passing in these parameters.

276 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

mcan_timing_config_t timing_config;
mcan_timing_param_t timing_param;
timing_param.busLength = 1U;
timing_param.propTxRx = 230U;
timing_param.nominalbaudRate = 500000U;
timing_param.nominalSP = 800U;
MCAN_CalculateSpecifiedTimingValues(MCAN_CLK_FREQ, &timing_config, &timing_param);

Note that due to integer division will sacrifice the precision, actual sample point may not
equal to expected. If actual sample point is not in allowed 2% range, this function will re-
turn false. So it is better to select higher source clock when baudrate is relatively high. This
will ensure more time quanta and higher precision of sample point. Parameter busLength
and propTxRx are optional and intended to verify whether propagation delay is too long
to corrupt sample point. User can set these parameter zero if you do not want to consider
this factor.

Parameters
• sourceClock_Hz – The Source clock data speed in bps.

• pconfig – Pointer to the MCAN timing configuration structure.

• config – Pointer to the MCAN timing parameters structure.

Returns
TRUE if timing configuration found, FALSE if failed to find configuration

voidMCAN_SetArbitrationTimingConfig(CAN_Type *base, constmcan_timing_config_t *config)
Sets the MCAN protocol arbitration phase timing characteristic.

This function gives user settings to CAN bus timing characteristic. The function is for an ex-
perienced user. For less experienced users, call the MCAN_Init() and fill the baud rate field
with a desired value. This provides the default arbitration phase timing characteristics.

Note that calling MCAN_SetArbitrationTimingConfig() overrides the baud rate set in
MCAN_Init().

Parameters
• base – MCAN peripheral base address.

• config – Pointer to the timing configuration structure.

status_tMCAN_SetBaudRate(CAN_Type *base, uint32_t sourceClock_Hz, uint32_t
baudRate_Bps)

Set Baud Rate of MCAN classic mode.

This function set the baud rate of MCAN base on MCAN_CalculateImprovedTimingValues()
API calculated timing values.

Parameters
• base – MCAN peripheral base address.

• sourceClock_Hz – Source Clock in Hz.

• baudRate_Bps – Baud Rate in Bps.

Returns
kStatus_Success - Set CAN baud rate (only has Nominal phase) successfully.

boolMCAN_FDCalculateImprovedTimingValues(uint32_t baudRate, uint32_t baudRateFD,
uint32_t sourceClock_Hz,mcan_timing_config_t
*pconfig)

Calculates the improved timing values by specific baudrates for CANFD.

Parameters

2.35. MCAN: Controller Area Network Driver 277

MCUXpresso SDK Documentation, Release 25.09.00

• baudRate – The CANFD bus control speed in bps defined by user

• baudRateFD – The CANFD bus data speed in bps defined by user

• sourceClock_Hz – The Source clock data speed in bps.

• pconfig – Pointer to the MCAN timing configuration structure.

Returns
TRUE if timing configuration found, FALSE if failed to find configuration

boolMCAN_FDCalculateSpecifiedTimingValues(uint32_t sourceClock_Hz,mcan_timing_config_t
*pconfig, constmcan_timing_param_t
*pParamConfig)

Calculates the specified timing values for CANFD with user-defined settings.

User can specify baudrates, sample point position, bus length, and transceiver propagation
delay. This example shows how to set up the mcan_timing_param_t parameters and how
to call the this function by passing in these parameters.

mcan_timing_config_t timing_config;
mcan_timing_param_t timing_param;
timing_param.busLength = 1U;
timing_param.propTxRx = 230U;
timing_param.nominalbaudRate = 500000U;
timing_param.nominalSP = 800U;
timing_param.databaudRate = 4000000U;
timing_param.dataSP = 700U;
MCAN_FDCalculateSpecifiedTimingValues(MCAN_CLK_FREQ, &timing_config, &timing_param);

Note that due to integer division will sacrifice the precision, actual sample point may not
equal to expected. So it is better to select higher source clock when baudrate is relatively
high. Select higher nominal baudrate when source clock is relatively high because large
clock predividerwill lead to less time quanta in data phase. This functionwill set predivider
in arbitration phase equal to data phase. These methods will ensure more time quanta and
higher precision of sample point. Parameter busLength and propTxRx are optional and
intended to verify whether propagation delay is too long to corrupt sample point. User can
set these parameter zero if you do not want to consider this factor.

Parameters
• sourceClock_Hz – The Source clock data speed in bps.

• pconfig – Pointer to the MCAN timing configuration structure.

• config – Pointer to the MCAN timing parameters structure.

Returns
TRUE if timing configuration found, FALSE if failed to find configuration

status_tMCAN_SetBaudRateFD(CAN_Type *base, uint32_t sourceClock_Hz, uint32_t
baudRateN_Bps, uint32_t baudRateD_Bps)

Set Baud Rate of MCAN FD mode.

This function set the baud rate of MCAN FD base on
MCAN_FDCalculateImprovedTimingValues API calculated timing values.

Parameters
• base – MCAN peripheral base address.

• sourceClock_Hz – Source Clock in Hz.

• baudRateN_Bps – Nominal Baud Rate in Bps.

• baudRateD_Bps – Data Baud Rate in Bps.

278 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

Returns
kStatus_Success - Set CAN FD baud rate (include Nominal and Data phase) suc-
cessfully.

voidMCAN_SetDataTimingConfig(CAN_Type *base, constmcan_timing_config_t *config)
Sets the MCAN protocol data phase timing characteristic.

This function gives user settings to CAN bus timing characteristic. The function is for an
experienced user. For less experienced users, call the MCAN_Init() and fill the baud rate
field with a desired value. This provides the default data phase timing characteristics.

Note that calling MCAN_SetArbitrationTimingConfig() overrides the baud rate set in
MCAN_Init().

Parameters
• base – MCAN peripheral base address.

• config – Pointer to the timing configuration structure.

voidMCAN_SetRxFifo0Config(CAN_Type *base, constmcan_rx_fifo_config_t *config)
Configures an MCAN receive fifo 0 buffer.

This function sets start address, element size, watermark, operation mode and datafield
size of the recieve fifo 0.

Parameters
• base – MCAN peripheral base address.

• config – The receive fifo 0 configuration structure.

voidMCAN_SetRxFifo1Config(CAN_Type *base, constmcan_rx_fifo_config_t *config)
Configures an MCAN receive fifo 1 buffer.

This function sets start address, element size, watermark, operation mode and datafield
size of the recieve fifo 1.

Parameters
• base – MCAN peripheral base address.

• config – The receive fifo 1 configuration structure.

voidMCAN_SetRxBufferConfig(CAN_Type *base, constmcan_rx_buffer_config_t *config)
Configures an MCAN receive buffer.

This function sets start address and datafield size of the recieve buffer.

Parameters
• base – MCAN peripheral base address.

• config – The receive buffer configuration structure.

voidMCAN_SetTxEventFifoConfig(CAN_Type *base, constmcan_tx_fifo_config_t *config)
Configures an MCAN transmit event fifo.

This function sets start address, element size, watermark of the transmit event fifo.

Parameters
• base – MCAN peripheral base address.

• config – The transmit event fifo configuration structure.

voidMCAN_SetTxBufferConfig(CAN_Type *base, constmcan_tx_buffer_config_t *config)
Configures an MCAN transmit buffer.

This function sets start address, element size, fifo/queue mode and datafield size of the
transmit buffer.

2.35. MCAN: Controller Area Network Driver 279

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• base – MCAN peripheral base address.

• config – The transmit buffer configuration structure.

voidMCAN_SetFilterConfig(CAN_Type *base, constmcan_frame_filter_config_t *config)
Set filter configuration.

This function sets remote and non masking frames in global filter configuration, also the
start address, list size in standard/extended ID filter configuration.

Parameters
• base – MCAN peripheral base address.

• config – The MCAN filter configuration.

status_tMCAN_SetMessageRamConfig(CAN_Type *base, constmcan_memory_config_t *config)
Set Message RAM related configuration.

Note: This function include Standard/extended ID filter, Rx FIFO 0/1, Rx buffer, Tx event
FIFO and Tx buffer configurations

Parameters
• base – MCAN peripheral base address.

• config – The MCAN filter configuration.

Return values
• kStatus_Success – - Message RAM related configuration Successfully.

• kStatus_Fail – - Message RAM related configure fail due to wrong address
parameter.

voidMCAN_SetSTDFilterElement(CAN_Type *base, constmcan_frame_filter_config_t *config,
constmcan_std_filter_element_config_t *filter, uint8_t idx)

Set standard message ID filter element configuration.

Parameters
• base – MCAN peripheral base address.

• config – The MCAN filter configuration.

• filter – The MCAN standard message ID filter element configuration.

• idx – The standard message ID filter element index.

voidMCAN_SetEXTFilterElement(CAN_Type *base, constmcan_frame_filter_config_t *config,
constmcan_ext_filter_element_config_t *filter, uint8_t idx)

Set extended message ID filter element configuration.

Parameters
• base – MCAN peripheral base address.

• config – The MCAN filter configuration.

• filter – The MCAN extended message ID filter element configuration.

• idx – The extended message ID filter element index.

280 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_tMCAN_GetStatusFlag(CAN_Type *base, uint32_t mask)
Gets the MCAN module interrupt flags.

This function gets all MCAN interrupt status flags.

Parameters
• base – MCAN peripheral base address.

• mask – The ORed MCAN interrupt mask.

Returns
MCAN status flags which are ORed.

static inline voidMCAN_ClearStatusFlag(CAN_Type *base, uint32_t mask)
Clears the MCAN module interrupt flags.

This function clears MCAN interrupt status flags.

Parameters
• base – MCAN peripheral base address.

• mask – The ORed MCAN interrupt mask.

static inline boolMCAN_GetRxBufferStatusFlag(CAN_Type *base, uint8_t idx)
Gets the new data flag of specific Rx Buffer.

This function gets new data flag of specific Rx Buffer.

Parameters
• base – MCAN peripheral base address.

• idx – Rx Buffer index.

Returns
Rx Buffer new data status flag.

static inline voidMCAN_ClearRxBufferStatusFlag(CAN_Type *base, uint8_t idx)
Clears the new data flag of specific Rx Buffer.

This function clears new data flag of specific Rx Buffer.

Parameters
• base – MCAN peripheral base address.

• idx – Rx Buffer index.

static inline voidMCAN_EnableInterrupts(CAN_Type *base, uint32_t line, uint32_t mask)
Enables MCAN interrupts according to the provided interrupt line and mask.

This function enables the MCAN interrupts according to the provided interrupt line and
mask. The mask is a logical OR of enumeration members.

Parameters
• base – MCAN peripheral base address.

• line – Interrupt line number, 0 or 1.

• mask – The interrupts to enable.

static inline voidMCAN_EnableTransmitBufferInterrupts(CAN_Type *base, uint8_t idx)
Enables MCAN Tx Buffer interrupts according to the provided index.

This function enables the MCAN Tx Buffer interrupts.

Parameters
• base – MCAN peripheral base address.

2.35. MCAN: Controller Area Network Driver 281

MCUXpresso SDK Documentation, Release 25.09.00

• idx – Tx Buffer index.

static inline voidMCAN_DisableTransmitBufferInterrupts(CAN_Type *base, uint8_t idx)
Disables MCAN Tx Buffer interrupts according to the provided index.

This function disables the MCAN Tx Buffer interrupts.

Parameters
• base – MCAN peripheral base address.

• idx – Tx Buffer index.

static inline voidMCAN_DisableInterrupts(CAN_Type *base, uint32_t mask)
Disables MCAN interrupts according to the provided mask.

This function disables the MCAN interrupts according to the provided mask. The mask is a
logical OR of enumeration members.

Parameters
• base – MCAN peripheral base address.

• mask – The interrupts to disable.

uint32_tMCAN_IsTransmitRequestPending(CAN_Type *base, uint8_t idx)
Gets the Tx buffer request pending status.

This function returns Tx Message Buffer transmission request pending status.

Parameters
• base – MCAN peripheral base address.

• idx – The MCAN Tx Buffer index.

uint32_tMCAN_IsTransmitOccurred(CAN_Type *base, uint8_t idx)
Gets the Tx buffer transmission occurred status.

This function returns Tx Message Buffer transmission occurred status.

Parameters
• base – MCAN peripheral base address.

• idx – The MCAN Tx Buffer index.

status_tMCAN_WriteTxBuffer(CAN_Type *base, uint8_t idx, constmcan_tx_buffer_frame_t
*pTxFrame)

Writes an MCAN Message to the Transmit Buffer.

This function writes a CAN Message to the specified Transmit Message Buffer and changes
the Message Buffer state to start CAN Message transmit. After that the function returns
immediately.

Parameters
• base – MCAN peripheral base address.

• idx – The MCAN Tx Buffer index.

• pTxFrame – Pointer to CAN message frame to be sent.

status_tMCAN_ReadRxBuffer(CAN_Type *base, uint8_t idx,mcan_rx_buffer_frame_t
*pRxFrame)

Reads an MCAN Message from Rx Buffer.

This function reads a CAN message from the Rx Buffer in the Message RAM.

Parameters
• base – MCAN peripheral base address.

282 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

• idx – The MCAN Rx Buffer index.

• pRxFrame – Pointer to CAN message frame structure for reception.

Return values
kStatus_Success – - Read Message from Rx Buffer successfully.

status_tMCAN_ReadRxFifo(CAN_Type *base, uint8_t fifoBlock,mcan_rx_buffer_frame_t
*pRxFrame)

Reads an MCAN Message from Rx FIFO.

This function reads a CAN message from the Rx FIFO in the Message RAM.

Parameters
• base – MCAN peripheral base address.

• fifoBlock – Rx FIFO block 0 or 1.

• pRxFrame – Pointer to CAN message frame structure for reception.

Return values
kStatus_Success – - Read Message from Rx FIFO successfully.

static inline voidMCAN_TransmitAddRequest(CAN_Type *base, uint8_t idx)
Tx Buffer add request to send message out.

This function add sending request to corresponding Tx Buffer.

Parameters
• base – MCAN peripheral base address.

• idx – Tx Buffer index.

static inline voidMCAN_TransmitCancelRequest(CAN_Type *base, uint8_t idx)
Tx Buffer cancel sending request.

This function clears Tx buffer request pending bit.

Parameters
• base – MCAN peripheral base address.

• idx – Tx Buffer index.

status_tMCAN_TransferSendBlocking(CAN_Type *base, uint8_t idx,mcan_tx_buffer_frame_t
*pTxFrame)

Performs a polling send transaction on the CAN bus.

Note that a transfer handle does not need to be created before calling this API.

Parameters
• base – MCAN peripheral base pointer.

• idx – The MCAN buffer index.

• pTxFrame – Pointer to CAN message frame to be sent.

Return values
• kStatus_Success – - Write Tx Message Buffer Successfully.

• kStatus_Fail – - Tx Message Buffer is currently in use.

status_tMCAN_TransferReceiveBlocking(CAN_Type *base, uint8_t idx,mcan_rx_buffer_frame_t
*pRxFrame)

Performs a polling receive transaction on the CAN bus.

Note that a transfer handle does not need to be created before calling this API.

2.35. MCAN: Controller Area Network Driver 283

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• base – MCAN peripheral base pointer.

• idx – The MCAN buffer index.

• pRxFrame – Pointer to CAN message frame structure for reception.

Return values
• kStatus_Success – - Read Rx Message Buffer Successfully.

• kStatus_Fail – - No new message.

status_tMCAN_TransferReceiveFifoBlocking(CAN_Type *base, uint8_t fifoBlock,
mcan_rx_buffer_frame_t *pRxFrame)

Performs a polling receive transaction from Rx FIFO on the CAN bus.

Note that a transfer handle does not need to be created before calling this API.

Parameters
• base – MCAN peripheral base pointer.

• fifoBlock – Rx FIFO block, 0 or 1.

• pRxFrame – Pointer to CAN message frame structure for reception.

Return values
• kStatus_Success – - Read Message from Rx FIFO successfully.

• kStatus_Fail – - No new message in Rx FIFO.

voidMCAN_TransferCreateHandle(CAN_Type *base,mcan_handle_t *handle,
mcan_transfer_callback_t callback, void *userData)

Initializes the MCAN handle.

This function initializes theMCAN handle, which can be used for otherMCAN transactional
APIs. Usually, for a specified MCAN instance, call this API once to get the initialized handle.

Parameters
• base – MCAN peripheral base address.

• handle – MCAN handle pointer.

• callback – The callback function.

• userData – The parameter of the callback function.

status_tMCAN_TransferSendNonBlocking(CAN_Type *base,mcan_handle_t *handle,
mcan_buffer_transfer_t *xfer)

Sends a message using IRQ.

This function sends a message using IRQ. This is a non-blocking function, which returns
right away. When messages have been sent out, the send callback function is called.

Parameters
• base – MCAN peripheral base address.

• handle – MCAN handle pointer.

• xfer – MCAN Buffer transfer structure. See the mcan_buffer_transfer_t.

Return values
• kStatus_Success – Start Tx Buffer sending process successfully.

• kStatus_Fail – Write Tx Buffer failed.

• kStatus_MCAN_TxBusy – Tx Buffer is in use.

284 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

status_tMCAN_TransferReceiveFifoNonBlocking(CAN_Type *base, uint8_t fifoBlock,
mcan_handle_t *handle,mcan_fifo_transfer_t
*xfer)

Receives a message from Rx FIFO using IRQ.

This function receives a message using IRQ. This is a non-blocking function, which returns
right away. When all messages have been received, the receive callback function is called.

Parameters
• base – MCAN peripheral base address.

• handle – MCAN handle pointer.

• fifoBlock – Rx FIFO block, 0 or 1.

• xfer – MCAN Rx FIFO transfer structure. See the mcan_fifo_transfer_t.

Return values
• kStatus_Success – - Start Rx FIFO receiving process successfully.

• kStatus_MCAN_RxFifo0Busy – - Rx FIFO 0 is currently in use.

• kStatus_MCAN_RxFifo1Busy – - Rx FIFO 1 is currently in use.

voidMCAN_TransferAbortSend(CAN_Type *base,mcan_handle_t *handle, uint8_t bufferIdx)
Aborts the interrupt driven message send process.

This function aborts the interrupt driven message send process.

Parameters
• base – MCAN peripheral base address.

• handle – MCAN handle pointer.

• bufferIdx – The MCAN Buffer index.

voidMCAN_TransferAbortReceiveFifo(CAN_Type *base, uint8_t fifoBlock,mcan_handle_t
*handle)

Aborts the interrupt driven message receive from Rx FIFO process.

This function aborts the interrupt driven message receive from Rx FIFO process.

Parameters
• base – MCAN peripheral base address.

• fifoBlock – MCAN Fifo block, 0 or 1.

• handle – MCAN handle pointer.

voidMCAN_TransferHandleIRQ(CAN_Type *base,mcan_handle_t *handle)
MCAN IRQ handle function.

This function handles the MCAN Error, the Buffer, and the Rx FIFO IRQ request.

Parameters
• base – MCAN peripheral base address.

• handle – MCAN handle pointer.

FSL_MCAN_DRIVER_VERSION
MCAN driver version.

MCAN transfer status.

Values:

2.35. MCAN: Controller Area Network Driver 285

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus_MCAN_TxBusy
Tx Buffer is Busy.

enumerator kStatus_MCAN_TxIdle
Tx Buffer is Idle.

enumerator kStatus_MCAN_RxBusy
Rx Buffer is Busy.

enumerator kStatus_MCAN_RxIdle
Rx Buffer is Idle.

enumerator kStatus_MCAN_RxFifo0New
New message written to Rx FIFO 0.

enumerator kStatus_MCAN_RxFifo0Idle
Rx FIFO 0 is Idle.

enumerator kStatus_MCAN_RxFifo0Watermark
Rx FIFO 0 fill level reached watermark.

enumerator kStatus_MCAN_RxFifo0Full
Rx FIFO 0 full.

enumerator kStatus_MCAN_RxFifo0Lost
Rx FIFO 0 message lost.

enumerator kStatus_MCAN_RxFifo1New
New message written to Rx FIFO 1.

enumerator kStatus_MCAN_RxFifo1Idle
Rx FIFO 1 is Idle.

enumerator kStatus_MCAN_RxFifo1Watermark
Rx FIFO 1 fill level reached watermark.

enumerator kStatus_MCAN_RxFifo1Full
Rx FIFO 1 full.

enumerator kStatus_MCAN_RxFifo1Lost
Rx FIFO 1 message lost.

enumerator kStatus_MCAN_RxFifo0Busy
Rx FIFO 0 is busy.

enumerator kStatus_MCAN_RxFifo1Busy
Rx FIFO 1 is busy.

enumerator kStatus_MCAN_ErrorStatus
MCAN Module Error and Status.

enumerator kStatus_MCAN_UnHandled
UnHadled Interrupt asserted.

enum _mcan_flags
MCAN status flags.

This provides constants for the MCAN status flags for use in theMCAN functions. Note: The
CPU read action clears MCAN_ErrorFlag, therefore user need to read MCAN_ErrorFlag and
distinguish which error is occur using _mcan_error_flags enumerations.

Values:

286 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kMCAN_AccesstoRsvdFlag
CAN Synchronization Status.

enumerator kMCAN_ProtocolErrDIntFlag
Tx Warning Interrupt Flag.

enumerator kMCAN_ProtocolErrAIntFlag
Rx Warning Interrupt Flag.

enumerator kMCAN_BusOffIntFlag
Tx Error Warning Status.

enumerator kMCAN_ErrorWarningIntFlag
Rx Error Warning Status.

enumerator kMCAN_ErrorPassiveIntFlag
Rx Error Warning Status.

enum _mcan_rx_fifo_flags
MCAN Rx FIFO status flags.

The MCAN Rx FIFO Status enumerations are used to determine the status of the Rx FIFO.

Values:

enumerator kMCAN_RxFifo0NewFlag
Rx FIFO 0 new message flag.

enumerator kMCAN_RxFifo0WatermarkFlag
Rx FIFO 0 watermark reached flag.

enumerator kMCAN_RxFifo0FullFlag
Rx FIFO 0 full flag.

enumerator kMCAN_RxFifo0LostFlag
Rx FIFO 0 message lost flag.

enumerator kMCAN_RxFifo1NewFlag
Rx FIFO 0 new message flag.

enumerator kMCAN_RxFifo1WatermarkFlag
Rx FIFO 0 watermark reached flag.

enumerator kMCAN_RxFifo1FullFlag
Rx FIFO 0 full flag.

enumerator kMCAN_RxFifo1LostFlag
Rx FIFO 0 message lost flag.

enum _mcan_tx_flags
MCAN Tx status flags.

The MCAN Tx Status enumerations are used to determine the status of the Tx Buffer/Event
FIFO.

Values:

enumerator kMCAN_TxTransmitCompleteFlag
Transmission completed flag.

enumerator kMCAN_TxTransmitCancelFinishFlag
Transmission cancellation finished flag.

2.35. MCAN: Controller Area Network Driver 287

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kMCAN_TxEventFifoLostFlag
Tx Event FIFO element lost.

enumerator kMCAN_TxEventFifoFullFlag
Tx Event FIFO full.

enumerator kMCAN_TxEventFifoWatermarkFlag
Tx Event FIFO fill level reached watermark.

enumerator kMCAN_TxEventFifoNewFlag
Tx Handler wrote Tx Event FIFO element flag.

enumerator kMCAN_TxEventFifoEmptyFlag
Tx FIFO empty flag.

enum _mcan_interrupt_enable
MCAN interrupt configuration structure, default settings all disabled.

This structure contains the settings for all of the MCAN Module interrupt configurations.

Values:

enumerator kMCAN_BusOffInterruptEnable
Bus Off interrupt.

enumerator kMCAN_ErrorInterruptEnable
Error interrupt.

enumerator kMCAN_WarningInterruptEnable
Rx Warning interrupt.

enum _mcan_frame_idformat
MCAN frame format.

Values:

enumerator kMCAN_FrameIDStandard
Standard frame format attribute.

enumerator kMCAN_FrameIDExtend
Extend frame format attribute.

enum _mcan_frame_type
MCAN frame type.

Values:

enumerator kMCAN_FrameTypeData
Data frame type attribute.

enumerator kMCAN_FrameTypeRemote
Remote frame type attribute.

enum _mcan_bytes_in_datafield
MCAN frame datafield size.

Values:

enumerator kMCAN_8ByteDatafield
8 byte data field.

enumerator kMCAN_12ByteDatafield
12 byte data field.

288 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kMCAN_16ByteDatafield
16 byte data field.

enumerator kMCAN_20ByteDatafield
20 byte data field.

enumerator kMCAN_24ByteDatafield
24 byte data field.

enumerator kMCAN_32ByteDatafield
32 byte data field.

enumerator kMCAN_48ByteDatafield
48 byte data field.

enumerator kMCAN_64ByteDatafield
64 byte data field.

enum _mcan_fifo_type
MCAN Rx FIFO block number.

Values:

enumerator kMCAN_Fifo0
CAN Rx FIFO 0.

enumerator kMCAN_Fifo1
CAN Rx FIFO 1.

enum _mcan_fifo_opmode_config
MCAN FIFO Operation Mode.

Values:

enumerator kMCAN_FifoBlocking
FIFO blocking mode.

enumerator kMCAN_FifoOverwrite
FIFO overwrite mode.

enum _mcan_txmode_config
MCAN Tx FIFO/Queue Mode.

Values:

enumerator kMCAN_txFifo
Tx FIFO operation.

enumerator kMCAN_txQueue
Tx Queue operation.

enum _mcan_remote_frame_config
MCAN remote frames treatment.

Values:

enumerator kMCAN_filterFrame
Filter remote frames.

enumerator kMCAN_rejectFrame
Reject all remote frames.

2.35. MCAN: Controller Area Network Driver 289

MCUXpresso SDK Documentation, Release 25.09.00

enum _mcan_nonmasking_frame_config
MCAN non-masking frames treatment.

Values:

enumerator kMCAN_acceptinFifo0
Accept non-masking frames in Rx FIFO 0.

enumerator kMCAN_acceptinFifo1
Accept non-masking frames in Rx FIFO 1.

enumerator kMCAN_reject0
Reject non-masking frames.

enumerator kMCAN_reject1
Reject non-masking frames.

enum _mcan_fec_config
MCAN Filter Element Configuration.

Values:

enumerator kMCAN_disable
Disable filter element.

enumerator kMCAN_storeinFifo0
Store in Rx FIFO 0 if filter matches.

enumerator kMCAN_storeinFifo1
Store in Rx FIFO 1 if filter matches.

enumerator kMCAN_reject
Reject ID if filter matches.

enumerator kMCAN_setprio
Set priority if filter matches.

enumerator kMCAN_setpriofifo0
Set priority and store in FIFO 0 if filter matches.

enumerator kMCAN_setpriofifo1
Set priority and store in FIFO 1 if filter matches.

enumerator kMCAN_storeinbuffer
Store into Rx Buffer or as debug message.

enum _mcan_std_filter_type
MCAN Filter Type.

Values:

enumerator kMCAN_range
Range filter from SFID1 to SFID2.

enumerator kMCAN_dual
Dual ID filter for SFID1 or SFID2.

enumerator kMCAN_classic
Classic filter: SFID1 = filter, SFID2 = mask.

enumerator kMCAN_disableORrange2
Filter element disabled for standard filter or Range filter, XIDAMmask not applied for
extended filter.

290 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _mcan_frame_idformat mcan_frame_idformat_t
MCAN frame format.

typedef enum _mcan_frame_type mcan_frame_type_t
MCAN frame type.

typedef enum _mcan_bytes_in_datafield mcan_bytes_in_datafield_t
MCAN frame datafield size.

typedef struct _mcan_tx_buffer_frame mcan_tx_buffer_frame_t
MCAN Tx Buffer structure.

typedef struct _mcan_rx_buffer_frame mcan_rx_buffer_frame_t
MCAN Rx FIFO/Buffer structure.

typedef enum _mcan_fifo_type mcan_fifo_type_t
MCAN Rx FIFO block number.

typedef enum _mcan_fifo_opmode_config mcan_fifo_opmode_config_t
MCAN FIFO Operation Mode.

typedef enum _mcan_txmode_config mcan_txmode_config_t
MCAN Tx FIFO/Queue Mode.

typedef enum _mcan_remote_frame_config mcan_remote_frame_config_t
MCAN remote frames treatment.

typedef enum _mcan_nonmasking_frame_config mcan_nonmasking_frame_config_t
MCAN non-masking frames treatment.

typedef enum _mcan_fec_config mcan_fec_config_t
MCAN Filter Element Configuration.

typedef struct _mcan_rx_fifo_config mcan_rx_fifo_config_t
MCAN Rx FIFO configuration.

typedef struct _mcan_rx_buffer_config mcan_rx_buffer_config_t
MCAN Rx Buffer configuration.

typedef struct _mcan_tx_fifo_config mcan_tx_fifo_config_t
MCAN Tx Event FIFO configuration.

typedef struct _mcan_tx_buffer_config mcan_tx_buffer_config_t
MCAN Tx Buffer configuration.

typedef enum _mcan_std_filter_type mcan_filter_type_t
MCAN Filter Type.

typedef struct _mcan_std_filter_element_config mcan_std_filter_element_config_t
MCAN Standard Message ID Filter Element.

typedef struct _mcan_ext_filter_element_config mcan_ext_filter_element_config_t
MCAN Extended Message ID Filter Element.

typedef struct _mcan_frame_filter_config mcan_frame_filter_config_t
MCAN Rx filter configuration.

typedef struct _mcan_timing_config mcan_timing_config_t
MCAN protocol timing characteristic configuration structure.

typedef struct _mcan_timing_param mcan_timing_param_t
MCAN bit timing parameter configuration structure.

2.35. MCAN: Controller Area Network Driver 291

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _mcan_memory_config mcan_memory_config_t
MCAN Message RAM related configuration structure.

typedef struct _mcan_config mcan_config_t
MCAN module configuration structure.

typedef struct _mcan_buffer_transfer mcan_buffer_transfer_t
MCAN Buffer transfer.

typedef struct _mcan_fifo_transfer mcan_fifo_transfer_t
MCAN Rx FIFO transfer.

typedef struct _mcan_handle mcan_handle_t
MCAN handle structure definition.

typedef void (*mcan_transfer_callback_t)(CAN_Type *base,mcan_handle_t *handle, status_t
status, uint32_t result, void *userData)

MCAN transfer callback function.

The MCAN transfer callback returns a value from the underlying layer. If the status equals
to kStatus_MCAN_ErrorStatus, the result parameter is the Content of MCAN status register
which can be used to get the working status(or error status) of MCAN module. If the status
equals to other MCAN Message Buffer transfer status, the result is the index of Message
Buffer that generate transfer event. If the status equals to other MCAN Message Buffer
transfer status, the result is meaningless and should be Ignored.

MCAN_RETRY_TIMES

struct _mcan_tx_buffer_frame
#include <fsl_mcan.h>MCAN Tx Buffer structure.

Public Members

uint8_t size
classical CAN is 8(bytes), FD is 12/64 such.

struct _mcan_rx_buffer_frame
#include <fsl_mcan.h>MCAN Rx FIFO/Buffer structure.

Public Members

uint8_t size
classical CAN is 8(bytes), FD is 12/64 such.

struct _mcan_rx_fifo_config
#include <fsl_mcan.h>MCAN Rx FIFO configuration.

Public Members

uint32_t address
FIFOn start address.

uint32_t elementSize
FIFOn element number.

uint32_t watermark
FIFOn watermark level.

292 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

mcan_fifo_opmode_config_t opmode
FIFOn blocking/overwrite mode.

mcan_bytes_in_datafield_t datafieldSize
Data field size per frame, size>8 is for CANFD.

struct _mcan_rx_buffer_config
#include <fsl_mcan.h>MCAN Rx Buffer configuration.

Public Members

uint32_t address
Rx Buffer start address.

mcan_bytes_in_datafield_t datafieldSize
Data field size per frame, size>8 is for CANFD.

struct _mcan_tx_fifo_config
#include <fsl_mcan.h>MCAN Tx Event FIFO configuration.

Public Members

uint32_t address
Event fifo start address.

uint32_t elementSize
FIFOn element number.

uint32_t watermark
FIFOn watermark level.

struct _mcan_tx_buffer_config
#include <fsl_mcan.h>MCAN Tx Buffer configuration.

Public Members

uint32_t address
Tx Buffers Start Address.

uint32_t dedicatedSize
Number of Dedicated Transmit Buffers.

uint32_t fqSize
Transmit FIFO/Queue Size.

mcan_txmode_config_t mode
Tx FIFO/Queue Mode.

mcan_bytes_in_datafield_t datafieldSize
Data field size per frame, size>8 is for CANFD.

struct _mcan_std_filter_element_config
#include <fsl_mcan.h>MCAN Standard Message ID Filter Element.

2.35. MCAN: Controller Area Network Driver 293

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

uint32_t sfid2
Standard Filter ID 2.

uint32_t __pad0__
Reserved.

uint32_t sfid1
Standard Filter ID 1.

uint32_t sfec
Standard Filter Element Configuration.

uint32_t sft
Standard Filter Type.

struct _mcan_ext_filter_element_config
#include <fsl_mcan.h>MCAN Extended Message ID Filter Element.

Public Members

uint32_t efid1
Extended Filter ID 1.

uint32_t efec
Extended Filter Element Configuration.

uint32_t efid2
Extended Filter ID 2.

uint32_t __pad0__
Reserved.

uint32_t eft
Extended Filter Type.

struct _mcan_frame_filter_config
#include <fsl_mcan.h>MCAN Rx filter configuration.

Public Members

uint32_t address
Filter start address.

uint32_t listSize
Filter list size.

mcan_frame_idformat_t idFormat
Frame format.

mcan_remote_frame_config_t remFrame
Remote frame treatment.

mcan_nonmasking_frame_config_t nmFrame
Non-masking frame treatment.

struct _mcan_timing_config
#include <fsl_mcan.h>MCAN protocol timing characteristic configuration structure.

294 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

uint16_t preDivider
Nominal Clock Pre-scaler Division Factor.

uint8_t rJumpwidth
Nominal Re-sync Jump Width.

uint8_t seg1
Nominal Time Segment 1.

uint8_t seg2
Nominal Time Segment 2.

uint16_t datapreDivider
Data Clock Pre-scaler Division Factor.

uint8_t datarJumpwidth
Data Re-sync Jump Width.

uint8_t dataseg1
Data Time Segment 1.

uint8_t dataseg2
Data Time Segment 2.

struct _mcan_timing_param
#include <fsl_mcan.h>MCAN bit timing parameter configuration structure.

Public Members

uint32_t busLength
Maximum Bus length in meter.

uint32_t propTxRx
Transceiver propagation delay in nanosecond.

uint32_t nominalbaudRate
Baud rate of Arbitration phase in bps.

uint32_t nominalSP
Sample point of Arbitration phase, range in 10 ~ 990, 800 means 80%.

uint32_t databaudRate
Baud rate of Data phase in bps.

uint32_t dataSP
Sample point of Data phase, range in 0 ~ 1000, 800 means 80%.

struct _mcan_memory_config
#include <fsl_mcan.h>MCAN Message RAM related configuration structure.

Public Members

uint32_t baseAddr
Message RAM base address, should be 4k alignment.

struct _mcan_config
#include <fsl_mcan.h>MCAN module configuration structure.

2.35. MCAN: Controller Area Network Driver 295

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

uint32_t baudRateA
Baud rate of Arbitration phase in bps.

uint32_t baudRateD
Baud rate of Data phase in bps.

bool enableCanfdNormal
Enable or Disable CANFD normal.

bool enableCanfdSwitch
Enable or Disable CANFD with baudrate switch.

bool enableLoopBackInt
Enable or Disable Internal Back.

bool enableLoopBackExt
Enable or Disable External Loop Back.

bool enableBusMon
Enable or Disable Bus Monitoring Mode.

mcan_timing_config_t timingConfig
Protocol timing .

struct _mcan_buffer_transfer
#include <fsl_mcan.h>MCAN Buffer transfer.

Public Members

mcan_tx_buffer_frame_t *frame
The buffer of CAN Message to be transfer.

uint8_t bufferIdx
The index of Message buffer used to transfer Message.

struct _mcan_fifo_transfer
#include <fsl_mcan.h>MCAN Rx FIFO transfer.

Public Members

mcan_rx_buffer_frame_t *frame
The buffer of CAN Message to be received from Rx FIFO.

struct _mcan_handle
#include <fsl_mcan.h>MCAN handle structure.

Public Members

mcan_transfer_callback_t callback
Callback function.

void *userData
MCAN callback function parameter.

mcan_tx_buffer_frame_t *volatile bufferFrameBuf[64]
The buffer for received data from Buffers.

296 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

mcan_rx_buffer_frame_t *volatile rxFifoFrameBuf
The buffer for received data from Rx FIFO.

volatile uint8_t bufferState[64]
Message Buffer transfer state.

volatile uint8_t rxFifoState
Rx FIFO transfer state.

struct __unnamed18__

Public Members

uint32_t id
CAN Frame Identifier.

uint32_t rtr
CAN Frame Type(DATA or REMOTE).

uint32_t xtd
CAN Frame Type(STD or EXT).

uint32_t esi
CAN Frame Error State Indicator.

struct __unnamed20__

Public Members

uint32_t dlc
Data Length Code 9 10 11 12 13 14 15 Number of data bytes 12 16 20 24 32 48 64

uint32_t brs
Bit Rate Switch.

uint32_t fdf
CAN FD format.

uint32_t __pad1__
Reserved.

uint32_t efc
Event FIFO control.

uint32_t mm
Message Marker.

struct __unnamed22__

Public Members

uint32_t id
CAN Frame Identifier.

uint32_t rtr
CAN Frame Type(DATA or REMOTE).

uint32_t xtd
CAN Frame Type(STD or EXT).

2.35. MCAN: Controller Area Network Driver 297

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t esi
CAN Frame Error State Indicator.

struct __unnamed24__

Public Members

uint32_t rxts
Rx Timestamp.

uint32_t dlc
Data Length Code 9 10 11 12 13 14 15 Number of data bytes 12 16 20 24 32 48 64

uint32_t brs
Bit Rate Switch.

uint32_t fdf
CAN FD format.

uint32_t __pad0__
Reserved.

uint32_t fidx
Filter Index.

uint32_t anmf
Accepted Non-matching Frame.

2.36 MRT: Multi-Rate Timer

voidMRT_Init(MRT_Type *base, constmrt_config_t *config)
Ungates the MRT clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the MRT driver.

Parameters
• base – Multi-Rate timer peripheral base address

• config – Pointer to user’s MRT config structure. If MRT has MULTITASK bit
field in MODCFG reigster, param config is useless.

voidMRT_Deinit(MRT_Type *base)
Gate the MRT clock.

Parameters
• base – Multi-Rate timer peripheral base address

static inline voidMRT_GetDefaultConfig(mrt_config_t *config)
Fill in the MRT config struct with the default settings.

The default values are:

config->enableMultiTask = false;

Parameters

298 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

• config – Pointer to user’s MRT config structure.

static inline voidMRT_SetupChannelMode(MRT_Type *base,mrt_chnl_t channel, const
mrt_timer_mode_tmode)

Sets up an MRT channel mode.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Channel that is being configured.

• mode – Timer mode to use for the channel.

static inline voidMRT_EnableInterrupts(MRT_Type *base,mrt_chnl_t channel, uint32_t mask)
Enables the MRT interrupt.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration mrt_interrupt_enable_t

static inline voidMRT_DisableInterrupts(MRT_Type *base,mrt_chnl_t channel, uint32_t mask)
Disables the selected MRT interrupt.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number

• mask – The interrupts to disable. This is a logical OR of members of the
enumeration mrt_interrupt_enable_t

static inline uint32_tMRT_GetEnabledInterrupts(MRT_Type *base,mrt_chnl_t channel)
Gets the enabled MRT interrupts.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
mrt_interrupt_enable_t

static inline uint32_tMRT_GetStatusFlags(MRT_Type *base,mrt_chnl_t channel)
Gets the MRT status flags.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number

Returns
The status flags. This is the logical OR of members of the enumeration
mrt_status_flags_t

static inline voidMRT_ClearStatusFlags(MRT_Type *base,mrt_chnl_t channel, uint32_t mask)
Clears the MRT status flags.

Parameters
• base – Multi-Rate timer peripheral base address

2.36. MRT: Multi-Rate Timer 299

MCUXpresso SDK Documentation, Release 25.09.00

• channel – Timer channel number

• mask – The status flags to clear. This is a logical OR of members of the
enumeration mrt_status_flags_t

voidMRT_UpdateTimerPeriod(MRT_Type *base,mrt_chnl_t channel, uint32_t count, bool
immediateLoad)

Used to update the timer period in units of count.

The new value will be immediately loaded or will be loaded at the end of the current time
interval. For one-shot interrupt mode the new value will be immediately loaded.

Note: User can call the utility macros provided in fsl_common.h to convert to ticks

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number

• count – Timer period in units of ticks

• immediateLoad – true: Load the new value immediately into the TIMER reg-
ister; false: Load the new value at the end of current timer interval

static inline uint32_tMRT_GetCurrentTimerCount(MRT_Type *base,mrt_chnl_t channel)
Reads the current timer counting value.

This function returns the real-time timer counting value, in a range from0 to a timer period.

Note: User can call the utility macros provided in fsl_common.h to convert ticks to usec or
msec

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number

Returns
Current timer counting value in ticks

static inline voidMRT_StartTimer(MRT_Type *base,mrt_chnl_t channel, uint32_t count)
Starts the timer counting.

After calling this function, timers load period value, counts down to 0 and depending on
the timer mode it will either load the respective start value again or stop.

Note: User can call the utility macros provided in fsl_common.h to convert to ticks

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number.

• count – Timer period in units of ticks. Count can contain the LOAD bit,
which control the force load feature.

300 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

static inline voidMRT_StopTimer(MRT_Type *base,mrt_chnl_t channel)
Stops the timer counting.

This function stops the timer from counting.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number.

static inline uint32_tMRT_GetIdleChannel(MRT_Type *base)
Find the available channel.

This function returns the lowest available channel number.

Parameters
• base – Multi-Rate timer peripheral base address

static inline voidMRT_ReleaseChannel(MRT_Type *base,mrt_chnl_t channel)
Release the channel when the timer is using the multi-task mode.

In multi-task mode, the INUSE flags allow more control over when MRT channels are
released for further use. The user can hold on to a channel acquired by calling
MRT_GetIdleChannel() for as long as it is needed and release it by calling this function.
This removes the need to ask for an available channel for every use.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number.

FSL_MRT_DRIVER_VERSION

enum _mrt_chnl
List of MRT channels.

Values:

enumerator kMRT_Channel_0
MRT channel number 0

enumerator kMRT_Channel_1
MRT channel number 1

enumerator kMRT_Channel_2
MRT channel number 2

enumerator kMRT_Channel_3
MRT channel number 3

enum _mrt_timer_mode
List of MRT timer modes.

Values:

enumerator kMRT_RepeatMode
Repeat Interrupt mode

enumerator kMRT_OneShotMode
One-shot Interrupt mode

enumerator kMRT_OneShotStallMode
One-shot stall mode

2.36. MRT: Multi-Rate Timer 301

MCUXpresso SDK Documentation, Release 25.09.00

enum _mrt_interrupt_enable
List of MRT interrupts.

Values:

enumerator kMRT_TimerInterruptEnable
Timer interrupt enable

enum _mrt_status_flags
List of MRT status flags.

Values:

enumerator kMRT_TimerInterruptFlag
Timer interrupt flag

enumerator kMRT_TimerRunFlag
Indicates state of the timer

typedef enum _mrt_chnl mrt_chnl_t
List of MRT channels.

typedef enum _mrt_timer_mode mrt_timer_mode_t
List of MRT timer modes.

typedef enum _mrt_interrupt_enable mrt_interrupt_enable_t
List of MRT interrupts.

typedef enum _mrt_status_flags mrt_status_flags_t
List of MRT status flags.

typedef struct _mrt_config mrt_config_t
MRT configuration structure.

This structure holds the configuration settings for the MRT peripheral. To initialize this
structure to reasonable defaults, call the MRT_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

struct _mrt_config
#include <fsl_mrt.h>MRT configuration structure.

This structure holds the configuration settings for the MRT peripheral. To initialize this
structure to reasonable defaults, call the MRT_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

Public Members

bool enableMultiTask
true: Timers run in multi-task mode; false: Timers run in hardware status mode

2.37 OSTIMER: OS Event Timer Driver

void OSTIMER_Init(OSTIMER_Type *base)
Initializes an OSTIMER by turning its bus clock on.

302 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

void OSTIMER_Deinit(OSTIMER_Type *base)
Deinitializes a OSTIMER instance.

This function shuts down OSTIMER bus clock

Parameters
• base – OSTIMER peripheral base address.

uint64_t OSTIMER_GrayToDecimal(uint64_t gray)
Translate the value from gray-code to decimal.

Parameters
• gray – The gray value input.

Returns
The decimal value.

static inline uint64_t OSTIMER_DecimalToGray(uint64_t dec)
Translate the value from decimal to gray-code.

Parameters
• dec – The decimal value.

Returns
The gray code of the input value.

uint32_t OSTIMER_GetStatusFlags(OSTIMER_Type *base)
Get OSTIMER status Flags.

This returns the status flag. Currently, only match interrupt flag can be got.

Parameters
• base – OSTIMER peripheral base address.

Returns
status register value

void OSTIMER_ClearStatusFlags(OSTIMER_Type *base, uint32_t mask)
Clear Status Interrupt Flags.

This clears intrrupt status flag. Currently, only match interrupt flag can be cleared.

Parameters
• base – OSTIMER peripheral base address.

• mask – Clear bit mask.

Returns
none

status_t OSTIMER_SetMatchRawValue(OSTIMER_Type *base, uint64_t count, ostimer_callback_t
cb)

Set the match raw value for OSTIMER.

This function will set a match value for OSTIMER with an optional callback. And this call-
back will be called while the data in dedicated pair match register is equals to the value
of central EVTIMER. Please note that, the data format may be gray-code, if so, please using
OSTIMER_SetMatchValue().

Parameters
• base – OSTIMER peripheral base address.

• count – OSTIMER timer match value.(Value may be gray-code format)

2.37. OSTIMER: OS Event Timer Driver 303

MCUXpresso SDK Documentation, Release 25.09.00

• cb – OSTIMER callback (can be left as NULL if none, otherwise should be a
void func(void)).

Return values
• kStatus_Success – - Set match raw value and enable interrupt Successfully.

• kStatus_Fail – - Set match raw value fail.

status_t OSTIMER_SetMatchValue(OSTIMER_Type *base, uint64_t count, ostimer_callback_t cb)
Set the match value for OSTIMER.

This function will set a match value for OSTIMER with an optional callback. And this call-
back will be called while the data in dedicated pair match register is equals to the value of
central OS TIMER.

Parameters
• base – OSTIMER peripheral base address.

• count – OSTIMER timer match value.(Value is decimal format, and this
value will be translate to Gray code in API if the IP counter is gray en-
coded.)

• cb – OSTIMER callback (can be left as NULL if none, otherwise should be a
void func(void)).

Return values
• kStatus_Success – - Set match value and enable interrupt Successfully.

• kStatus_Fail – - Set match value fail.

static inline void OSTIMER_SetMatchRegister(OSTIMER_Type *base, uint64_t value)
Set value to OSTIMER MATCH register directly.

This function writes the input value to OSTIMER MATCH register directly, it does not
touch any other registers. Note that, the data format is gray-code. The function OS-
TIMER_DecimalToGray could convert decimal value to gray code.

Parameters
• base – OSTIMER peripheral base address.

• value – OSTIMER timer match value (Value is gray-code format).

static inline uint64_t OSTIMER_GetMatchRegister(OSTIMER_Type *base)
Get the match value from OSTIMER.

This functionwill get thematch value fromOSTIMER. The value of timermatch is gray code
format.

Parameters
• base – OSTIMER peripheral base address.

Returns
Value of match register, data format is gray code.

static inline uint64_t OSTIMER_GetMatchValue(OSTIMER_Type *base)
Get the match value from OSTIMER.

This function will get a match value from OSTIMER.

Parameters
• base – OSTIMER peripheral base address.

Returns
Value of match register.

304 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

static inline void OSTIMER_EnableMatchInterrupt(OSTIMER_Type *base)
Enable the OSTIMER counter match interrupt.

Enable the timer counter match interrupt. The interrupt happens when OSTIMER counter
matches the value in MATCH registers.

Parameters
• base – OSTIMER peripheral base address.

static inline void OSTIMER_DisableMatchInterrupt(OSTIMER_Type *base)
Disable the OSTIMER counter match interrupt.

Disable the timer counter match interrupt. The interrupt happens when OSTIMER counter
matches the value in MATCH registers.

Parameters
• base – OSTIMER peripheral base address.

static inline uint64_t OSTIMER_GetCurrentTimerRawValue(OSTIMER_Type *base)
Get current timer raw count value from OSTIMER.

This function will get the timer count value from OS timer register. The raw value of timer
count may be gray code format.

Parameters
• base – OSTIMER peripheral base address.

Returns
Raw value of OSTIMER, may be gray code format.

uint64_t OSTIMER_GetCurrentTimerValue(OSTIMER_Type *base)
Get current timer count value from OSTIMER.

This function will get a decimal timer count value. If the RAW value of timer count is gray
code format, it will be translated to decimal data internally.

Parameters
• base – OSTIMER peripheral base address.

Returns
Value of OSTIMER which will be formated to decimal value.

static inline uint64_t OSTIMER_GetCaptureRawValue(OSTIMER_Type *base)
Get the capture value from OSTIMER.

This function will get a captured value fromOSTIMER. The Raw value of timer capturemay
be gray code format.

Parameters
• base – OSTIMER peripheral base address.

Returns
Raw value of capture register, data format may be gray code.

uint64_t OSTIMER_GetCaptureValue(OSTIMER_Type *base)
Get the capture value from OSTIMER.

This function will get a capture decimal-value from OSTIMER. If the RAW value of timer
count is gray code format, it will be translated to decimal data internally.

Parameters
• base – OSTIMER peripheral base address.

2.37. OSTIMER: OS Event Timer Driver 305

MCUXpresso SDK Documentation, Release 25.09.00

Returns
Value of capture register, data format is decimal.

void OSTIMER_HandleIRQ(OSTIMER_Type *base, ostimer_callback_t cb)
OS timer interrupt Service Handler.

This function handles the interrupt and refers to the callback array in the driver to callback
user (as per request in OSTIMER_SetMatchValue()). if no user callback is scheduled, the
interrupt will simply be cleared.

Parameters
• base – OS timer peripheral base address.

• cb – callback scheduled for this instance of OS timer

Returns
none

FSL_OSTIMER_DRIVER_VERSION
OSTIMER driver version.

enum _ostimer_flags
OSTIMER status flags.

Values:

enumerator kOSTIMER_MatchInterruptFlag
Match interrupt flag bit, sets if the match value was reached.

typedef void (*ostimer_callback_t)(void)
ostimer callback function.

2.38 PINT: Pin Interrupt and Pattern Match Driver

FSL_PINT_DRIVER_VERSION

enum _pint_pin_enable
PINT Pin Interrupt enable type.

Values:

enumerator kPINT_PinIntEnableNone
Do not generate Pin Interrupt

enumerator kPINT_PinIntEnableRiseEdge
Generate Pin Interrupt on rising edge

enumerator kPINT_PinIntEnableFallEdge
Generate Pin Interrupt on falling edge

enumerator kPINT_PinIntEnableBothEdges
Generate Pin Interrupt on both edges

enumerator kPINT_PinIntEnableLowLevel
Generate Pin Interrupt on low level

enumerator kPINT_PinIntEnableHighLevel
Generate Pin Interrupt on high level

306 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enum _pint_int
PINT Pin Interrupt type.

Values:

enumerator kPINT_PinInt0
Pin Interrupt 0

enumerator kPINT_SecPinInt0
Secure Pin Interrupt 0

enum _pint_pmatch_input_src
PINT Pattern Match bit slice input source type.

Values:

enumerator kPINT_PatternMatchInp0Src
Input source 0

enumerator kPINT_PatternMatchInp1Src
Input source 1

enumerator kPINT_PatternMatchInp2Src
Input source 2

enumerator kPINT_PatternMatchInp3Src
Input source 3

enumerator kPINT_PatternMatchInp4Src
Input source 4

enumerator kPINT_PatternMatchInp5Src
Input source 5

enumerator kPINT_PatternMatchInp6Src
Input source 6

enumerator kPINT_PatternMatchInp7Src
Input source 7

enumerator kPINT_SecPatternMatchInp0Src
Input source 0

enumerator kPINT_SecPatternMatchInp1Src
Input source 1

enum _pint_pmatch_bslice
PINT Pattern Match bit slice type.

Values:

enumerator kPINT_PatternMatchBSlice0
Bit slice 0

enumerator kPINT_SecPatternMatchBSlice0
Bit slice 0

enum _pint_pmatch_bslice_cfg
PINT Pattern Match configuration type.

Values:

enumerator kPINT_PatternMatchAlways
Always Contributes to product term match

2.38. PINT: Pin Interrupt and Pattern Match Driver 307

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPINT_PatternMatchStickyRise
Sticky Rising edge

enumerator kPINT_PatternMatchStickyFall
Sticky Falling edge

enumerator kPINT_PatternMatchStickyBothEdges
Sticky Rising or Falling edge

enumerator kPINT_PatternMatchHigh
High level

enumerator kPINT_PatternMatchLow
Low level

enumerator kPINT_PatternMatchNever
Never contributes to product term match

enumerator kPINT_PatternMatchBothEdges
Either rising or falling edge

typedef enum _pint_pin_enable pint_pin_enable_t
PINT Pin Interrupt enable type.

typedef enum _pint_int pint_pin_int_t
PINT Pin Interrupt type.

typedef enum _pint_pmatch_input_src pint_pmatch_input_src_t
PINT Pattern Match bit slice input source type.

typedef enum _pint_pmatch_bslice pint_pmatch_bslice_t
PINT Pattern Match bit slice type.

typedef enum _pint_pmatch_bslice_cfg pint_pmatch_bslice_cfg_t
PINT Pattern Match configuration type.

typedef struct _pint_status pint_status_t
PINT event status.

typedef void (*pint_cb_t)(pint_pin_int_t pintr, pint_status_t *status)
PINT Callback function.

typedef struct _pint_pmatch_cfg pint_pmatch_cfg_t

void PINT_Init(PINT_Type *base)
Initialize PINT peripheral.

This function initializes the PINT peripheral and enables the clock.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

void PINT_SetCallback(PINT_Type *base, pint_cb_t callback)
Set PINT callback.

This function set the callback for PINT interupt handler.

Parameters
• base – Base address of the PINT peripheral.

• callback – Callback.

308 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

Return values
None. –

void PINT_PinInterruptConfig(PINT_Type *base, pint_pin_int_t intr, pint_pin_enable_t enable)
Configure PINT peripheral pin interrupt.

This function configures a given pin interrupt.

Parameters
• base – Base address of the PINT peripheral.

• intr – Pin interrupt.

• enable – Selects detection logic.

Return values
None. –

void PINT_PinInterruptGetConfig(PINT_Type *base, pint_pin_int_t pintr, pint_pin_enable_t
*enable)

Get PINT peripheral pin interrupt configuration.

This function returns the configuration of a given pin interrupt.

Parameters
• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

• enable – Pointer to store the detection logic.

Return values
None. –

void PINT_PinInterruptClrStatus(PINT_Type *base, pint_pin_int_t pintr)
Clear Selected pin interrupt status only when the pin was triggered by edge-sensitive.

This function clears the selected pin interrupt status.

Parameters
• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

Return values
None. –

static inline uint32_t PINT_PinInterruptGetStatus(PINT_Type *base, pint_pin_int_t pintr)
Get Selected pin interrupt status.

This function returns the selected pin interrupt status.

Parameters
• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

Return values
status – = 0 No pin interrupt request. = 1 Selected Pin interrupt request active.

void PINT_PinInterruptClrStatusAll(PINT_Type *base)
Clear all pin interrupts status only when pins were triggered by edge-sensitive.

This function clears the status of all pin interrupts.

Parameters
• base – Base address of the PINT peripheral.

2.38. PINT: Pin Interrupt and Pattern Match Driver 309

MCUXpresso SDK Documentation, Release 25.09.00

Return values
None. –

static inline uint32_t PINT_PinInterruptGetStatusAll(PINT_Type *base)
Get all pin interrupts status.

This function returns the status of all pin interrupts.

Parameters
• base – Base address of the PINT peripheral.

Return values
status – Each bit position indicates the status of corresponding pin interrupt.
= 0 No pin interrupt request. = 1 Pin interrupt request active.

static inline void PINT_PinInterruptClrFallFlag(PINT_Type *base, pint_pin_int_t pintr)
Clear Selected pin interrupt fall flag.

This function clears the selected pin interrupt fall flag.

Parameters
• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

Return values
None. –

static inline uint32_t PINT_PinInterruptGetFallFlag(PINT_Type *base, pint_pin_int_t pintr)
Get selected pin interrupt fall flag.

This function returns the selected pin interrupt fall flag.

Parameters
• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

Return values
flag – = 0 Falling edge has not been detected. = 1 Falling edge has been detected.

static inline void PINT_PinInterruptClrFallFlagAll(PINT_Type *base)
Clear all pin interrupt fall flags.

This function clears the fall flag for all pin interrupts.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

static inline uint32_t PINT_PinInterruptGetFallFlagAll(PINT_Type *base)
Get all pin interrupt fall flags.

This function returns the fall flag of all pin interrupts.

Parameters
• base – Base address of the PINT peripheral.

Return values
flags – Each bit position indicates the falling edge detection of the correspond-
ing pin interrupt. 0 Falling edge has not been detected. = 1 Falling edge has
been detected.

310 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

static inline void PINT_PinInterruptClrRiseFlag(PINT_Type *base, pint_pin_int_t pintr)
Clear Selected pin interrupt rise flag.

This function clears the selected pin interrupt rise flag.

Parameters
• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

Return values
None. –

static inline uint32_t PINT_PinInterruptGetRiseFlag(PINT_Type *base, pint_pin_int_t pintr)
Get selected pin interrupt rise flag.

This function returns the selected pin interrupt rise flag.

Parameters
• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

Return values
flag – = 0 Rising edge has not been detected. = 1 Rising edge has been detected.

static inline void PINT_PinInterruptClrRiseFlagAll(PINT_Type *base)
Clear all pin interrupt rise flags.

This function clears the rise flag for all pin interrupts.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

static inline uint32_t PINT_PinInterruptGetRiseFlagAll(PINT_Type *base)
Get all pin interrupt rise flags.

This function returns the rise flag of all pin interrupts.

Parameters
• base – Base address of the PINT peripheral.

Return values
flags – Each bit position indicates the rising edge detection of the correspond-
ing pin interrupt. 0 Rising edge has not been detected. = 1 Rising edge has
been detected.

void PINT_PatternMatchConfig(PINT_Type *base, pint_pmatch_bslice_t bslice, pint_pmatch_cfg_t
*cfg)

Configure PINT pattern match.

This function configures a given pattern match bit slice.

Parameters
• base – Base address of the PINT peripheral.

• bslice – Pattern match bit slice number.

• cfg – Pointer to bit slice configuration.

Return values
None. –

2.38. PINT: Pin Interrupt and Pattern Match Driver 311

MCUXpresso SDK Documentation, Release 25.09.00

void PINT_PatternMatchGetConfig(PINT_Type *base, pint_pmatch_bslice_t bslice,
pint_pmatch_cfg_t *cfg)

Get PINT pattern match configuration.

This function returns the configuration of a given pattern match bit slice.

Parameters
• base – Base address of the PINT peripheral.

• bslice – Pattern match bit slice number.

• cfg – Pointer to bit slice configuration.

Return values
None. –

static inline uint32_t PINT_PatternMatchGetStatus(PINT_Type *base, pint_pmatch_bslice_t
bslice)

Get pattern match bit slice status.

This function returns the status of selected bit slice.

Parameters
• base – Base address of the PINT peripheral.

• bslice – Pattern match bit slice number.

Return values
status – = 0 Match has not been detected. = 1 Match has been detected.

static inline uint32_t PINT_PatternMatchGetStatusAll(PINT_Type *base)
Get status of all pattern match bit slices.

This function returns the status of all bit slices.

Parameters
• base – Base address of the PINT peripheral.

Return values
status – Each bit position indicates the match status of corresponding bit slice.
= 0 Match has not been detected. = 1 Match has been detected.

uint32_t PINT_PatternMatchResetDetectLogic(PINT_Type *base)
Reset pattern match detection logic.

This function resets the patternmatch detection logic if any of the product term ismatching.

Parameters
• base – Base address of the PINT peripheral.

Return values
pmstatus – Each bit position indicates the match status of corresponding bit
slice. = 0 Match was detected. = 1 Match was not detected.

static inline void PINT_PatternMatchEnable(PINT_Type *base)
Enable pattern match function.

This function enables the pattern match function.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

312 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

static inline void PINT_PatternMatchDisable(PINT_Type *base)
Disable pattern match function.

This function disables the pattern match function.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

static inline void PINT_PatternMatchEnableRXEV(PINT_Type *base)
Enable RXEV output.

This function enables the pattern match RXEV output.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

static inline void PINT_PatternMatchDisableRXEV(PINT_Type *base)
Disable RXEV output.

This function disables the pattern match RXEV output.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

void PINT_EnableCallback(PINT_Type *base)
Enable callback.

This function enables the interrupt for the selected PINT peripheral. Although the pin(s)
are monitored as soon as they are enabled, the callback function is not enabled until this
function is called.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

void PINT_DisableCallback(PINT_Type *base)
Disable callback.

This function disables the interrupt for the selected PINT peripheral. Although the pins are
still being monitored but the callback function is not called.

Parameters
• base – Base address of the peripheral.

Return values
None. –

void PINT_Deinit(PINT_Type *base)
Deinitialize PINT peripheral.

This function disables the PINT clock.

Parameters
• base – Base address of the PINT peripheral.

2.38. PINT: Pin Interrupt and Pattern Match Driver 313

MCUXpresso SDK Documentation, Release 25.09.00

Return values
None. –

void PINT_EnableCallbackByIndex(PINT_Type *base, pint_pin_int_t pintIdx)
enable callback by pin index.

This function enables callback by pin index instead of enabling all pins.

Parameters
• base – Base address of the peripheral.

• pintIdx – pin index.

Return values
None. –

void PINT_DisableCallbackByIndex(PINT_Type *base, pint_pin_int_t pintIdx)
disable callback by pin index.

This function disables callback by pin index instead of disabling all pins.

Parameters
• base – Base address of the peripheral.

• pintIdx – pin index.

Return values
None. –

PINT_USE_LEGACY_CALLBACK

PININT_BITSLICE_SRC_START

PININT_BITSLICE_SRC_MASK

PININT_BITSLICE_CFG_START

PININT_BITSLICE_CFG_MASK

PININT_BITSLICE_ENDP_MASK

PINT_PIN_INT_LEVEL

PINT_PIN_INT_EDGE

PINT_PIN_INT_FALL_OR_HIGH_LEVEL

PINT_PIN_INT_RISE

PINT_PIN_RISE_EDGE

PINT_PIN_FALL_EDGE

PINT_PIN_BOTH_EDGE

PINT_PIN_LOW_LEVEL

PINT_PIN_HIGH_LEVEL

struct _pint_status
#include <fsl_pint.h> PINT event status.

struct _pint_pmatch_cfg
#include <fsl_pint.h>

314 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

2.39 PLU: Programmable Logic Unit

void PLU_Init(PLU_Type *base)
Enable the PLU clock and reset the module.

Note: This API should be called at the beginning of the application using the PLU driver.

Parameters
• base – PLU peripheral base address

void PLU_Deinit(PLU_Type *base)
Gate the PLU clock.

Parameters
• base – PLU peripheral base address

static inline void PLU_SetLutInputSource(PLU_Type *base, plu_lut_index_t lutIndex,
plu_lut_in_index_t lutInIndex, plu_lut_input_source_t
inputSrc)

Set Input source of LUT.

Note: An external clock must be applied to the PLU_CLKIN input when using FFs. For each
LUT, the slot associated with the output from LUTn itself is tied low.

Parameters
• base – PLU peripheral base address.

• lutIndex – LUT index (see plu_lut_index_t typedef enumeration).

• lutInIndex – LUT input index (see plu_lut_in_index_t typedef enumeration).

• inputSrc – LUT input source (see plu_lut_input_source_t typedef enumera-
tion).

static inline void PLU_SetOutputSource(PLU_Type *base, plu_output_index_t outputIndex,
plu_output_source_t outputSrc)

Set Output source of PLU.

Note: An external clock must be applied to the PLU_CLKIN input when using FFs.

Parameters
• base – PLU peripheral base address.

• outputIndex – PLU output index (see plu_output_index_t typedef enumera-
tion).

• outputSrc – PLU output source (see plu_output_source_t typedef enumera-
tion).

static inline void PLU_SetLutTruthTable(PLU_Type *base, plu_lut_index_t lutIndex, uint32_t
truthTable)

Set Truth Table of LUT.

Parameters
• base – PLU peripheral base address.

• lutIndex – LUT index (see plu_lut_index_t typedef enumeration).

• truthTable – Truth Table value.

2.39. PLU: Programmable Logic Unit 315

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t PLU_ReadOutputState(PLU_Type *base)
Read the current state of the 8 designated PLU Outputs.

Note: The PLU bus clockmust be re-enabled prior to reading the Outpus Register if PLU bus
clock is shut-off.

Parameters
• base – PLU peripheral base address.

Returns
Current PLU output state value.

void PLU_GetDefaultWakeIntConfig(plu_wakeint_config_t *config)
Gets an available pre-defined settings for wakeup/interrupt control.

This function initializes the initial configuration structure with an available settings. The
default values are:

config->filterMode = kPLU_WAKEINT_FILTER_MODE_BYPASS;
config->clockSource = kPLU_WAKEINT_FILTER_CLK_SRC_1MHZ_LPOSC;

Parameters
• config – Pointer to configuration structure.

void PLU_EnableWakeIntRequest(PLU_Type *base, uint32_t interruptMask, const
plu_wakeint_config_t *config)

Enable PLU outputs wakeup/interrupt request.

This function enables Any of the eight selected PLU outputs to contribute to an asyn-
chronous wake-up or an interrupt request.

Note: If a PLU_CLKIN is provided, the raw wake-up/interrupt request will be set
on the rising-edge of the PLU_CLKIN whenever the raw request signal is high.
This registered signal will be glitch-free and just use the default wakeint config by
PLU_GetDefaultWakeIntConfig(). If not, have to specify the filter mode and clock source
to eliminate the glitches caused by long and widely disparate delays through the network
of LUTs making up the PLU. This way may increase power consumption in low-power op-
erating modes and inject delay before the wake-up/interrupt request is generated.

Parameters
• base – PLU peripheral base address.

• interruptMask – PLU interrupt mask (see _plu_interrupt_mask enumera-
tion).

• config – Pointer to configuration structure (see plu_wakeint_config_t type-
def enumeration)

static inline void PLU_LatchInterrupt(PLU_Type *base)
Latch an interrupt.

This function latches the interrupt and then it can be cleared with
PLU_ClearLatchedInterrupt().

Note: This mode is not compatible with use of the glitch filter. If this bit is set, the FIL-
TER MODE should be set to kPLU_WAKEINT_FILTER_MODE_BYPASS (Bypass Mode) and
PLU_CLKIN should be provided. If this bit is set, the wake-up/interrupt request will be set
on the rising-edge of PLU_CLKIN whenever the raw wake-up/interrupt signal is high. The
request must be cleared by software.

Parameters
• base – PLU peripheral base address.

316 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

void PLU_ClearLatchedInterrupt(PLU_Type *base)
Clear the latched interrupt.

This function clears the wake-up/interrupt request flag latched by PLU_LatchInterrupt()

Note: It is not necessary for the PLUbus clock to be enabled in order towrite-to or read-back
this bit.

Parameters
• base – PLU peripheral base address.

FSL_PLU_DRIVER_VERSION
Version 2.2.1

enum _plu_lut_index
Index of LUT.

Values:

enumerator kPLU_LUT_0
5-input Look-up Table 0

enumerator kPLU_LUT_1
5-input Look-up Table 1

enumerator kPLU_LUT_2
5-input Look-up Table 2

enumerator kPLU_LUT_3
5-input Look-up Table 3

enumerator kPLU_LUT_4
5-input Look-up Table 4

enumerator kPLU_LUT_5
5-input Look-up Table 5

enumerator kPLU_LUT_6
5-input Look-up Table 6

enumerator kPLU_LUT_7
5-input Look-up Table 7

enumerator kPLU_LUT_8
5-input Look-up Table 8

enumerator kPLU_LUT_9
5-input Look-up Table 9

enumerator kPLU_LUT_10
5-input Look-up Table 10

enumerator kPLU_LUT_11
5-input Look-up Table 11

enumerator kPLU_LUT_12
5-input Look-up Table 12

enumerator kPLU_LUT_13
5-input Look-up Table 13

enumerator kPLU_LUT_14
5-input Look-up Table 14

2.39. PLU: Programmable Logic Unit 317

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPLU_LUT_15
5-input Look-up Table 15

enumerator kPLU_LUT_16
5-input Look-up Table 16

enumerator kPLU_LUT_17
5-input Look-up Table 17

enumerator kPLU_LUT_18
5-input Look-up Table 18

enumerator kPLU_LUT_19
5-input Look-up Table 19

enumerator kPLU_LUT_20
5-input Look-up Table 20

enumerator kPLU_LUT_21
5-input Look-up Table 21

enumerator kPLU_LUT_22
5-input Look-up Table 22

enumerator kPLU_LUT_23
5-input Look-up Table 23

enumerator kPLU_LUT_24
5-input Look-up Table 24

enumerator kPLU_LUT_25
5-input Look-up Table 25

enum _plu_lut_in_index
Inputs of LUT. 5 input present for each LUT.

Values:

enumerator kPLU_LUT_IN_0
LUT input 0

enumerator kPLU_LUT_IN_1
LUT input 1

enumerator kPLU_LUT_IN_2
LUT input 2

enumerator kPLU_LUT_IN_3
LUT input 3

enumerator kPLU_LUT_IN_4
LUT input 4

enum _plu_lut_input_source
Available sources of LUT input.

Values:

enumerator kPLU_LUT_IN_SRC_PLU_IN_0
Select PLU input 0 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_PLU_IN_1
Select PLU input 1 to be connected to LUTn Input x

318 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPLU_LUT_IN_SRC_PLU_IN_2
Select PLU input 2 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_PLU_IN_3
Select PLU input 3 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_PLU_IN_4
Select PLU input 4 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_PLU_IN_5
Select PLU input 5 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_0
Select LUT output 0 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_1
Select LUT output 1 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_2
Select LUT output 2 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_3
Select LUT output 3 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_4
Select LUT output 4 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_5
Select LUT output 5 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_6
Select LUT output 6 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_7
Select LUT output 7 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_8
Select LUT output 8 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_9
Select LUT output 9 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_10
Select LUT output 10 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_11
Select LUT output 11 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_12
Select LUT output 12 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_13
Select LUT output 13 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_14
Select LUT output 14 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_15
Select LUT output 15 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_16
Select LUT output 16 to be connected to LUTn Input x

2.39. PLU: Programmable Logic Unit 319

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPLU_LUT_IN_SRC_LUT_OUT_17
Select LUT output 17 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_18
Select LUT output 18 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_19
Select LUT output 19 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_20
Select LUT output 20 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_21
Select LUT output 21 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_22
Select LUT output 22 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_23
Select LUT output 23 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_24
Select LUT output 24 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_25
Select LUT output 25 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_FLIPFLOP_0
Select Flip-Flops state 0 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_FLIPFLOP_1
Select Flip-Flops state 1 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_FLIPFLOP_2
Select Flip-Flops state 2 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_FLIPFLOP_3
Select Flip-Flops state 3 to be connected to LUTn Input x

enum _plu_output_index
PLU output multiplexer registers.

Values:

enumerator kPLU_OUTPUT_0
PLU OUTPUT 0

enumerator kPLU_OUTPUT_1
PLU OUTPUT 1

enumerator kPLU_OUTPUT_2
PLU OUTPUT 2

enumerator kPLU_OUTPUT_3
PLU OUTPUT 3

enumerator kPLU_OUTPUT_4
PLU OUTPUT 4

enumerator kPLU_OUTPUT_5
PLU OUTPUT 5

320 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPLU_OUTPUT_6
PLU OUTPUT 6

enumerator kPLU_OUTPUT_7
PLU OUTPUT 7

enum _plu_output_source
Available sources of PLU output.

Values:

enumerator kPLU_OUT_SRC_LUT_0
Select LUT0 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_1
Select LUT1 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_2
Select LUT2 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_3
Select LUT3 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_4
Select LUT4 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_5
Select LUT5 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_6
Select LUT6 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_7
Select LUT7 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_8
Select LUT8 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_9
Select LUT9 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_10
Select LUT10 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_11
Select LUT11 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_12
Select LUT12 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_13
Select LUT13 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_14
Select LUT14 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_15
Select LUT15 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_16
Select LUT16 output to be connected to PLU output

2.39. PLU: Programmable Logic Unit 321

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPLU_OUT_SRC_LUT_17
Select LUT17 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_18
Select LUT18 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_19
Select LUT19 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_20
Select LUT20 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_21
Select LUT21 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_22
Select LUT22 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_23
Select LUT23 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_24
Select LUT24 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_25
Select LUT25 output to be connected to PLU output

enumerator kPLU_OUT_SRC_FLIPFLOP_0
Select Flip-Flops state(0) to be connected to PLU output

enumerator kPLU_OUT_SRC_FLIPFLOP_1
Select Flip-Flops state(1) to be connected to PLU output

enumerator kPLU_OUT_SRC_FLIPFLOP_2
Select Flip-Flops state(2) to be connected to PLU output

enumerator kPLU_OUT_SRC_FLIPFLOP_3
Select Flip-Flops state(3) to be connected to PLU output

enum _plu_interrupt_mask
The enumerator of PLU Interrupt.

Values:

enumerator kPLU_OUTPUT_0_INTERRUPT_MASK
Select PLU output 0 contribute to interrupt/wake-up generation

enumerator kPLU_OUTPUT_1_INTERRUPT_MASK
Select PLU output 1 contribute to interrupt/wake-up generation

enumerator kPLU_OUTPUT_2_INTERRUPT_MASK
Select PLU output 2 contribute to interrupt/wake-up generation

enumerator kPLU_OUTPUT_3_INTERRUPT_MASK
Select PLU output 3 contribute to interrupt/wake-up generation

enumerator kPLU_OUTPUT_4_INTERRUPT_MASK
Select PLU output 4 contribute to interrupt/wake-up generation

enumerator kPLU_OUTPUT_5_INTERRUPT_MASK
Select PLU output 5 contribute to interrupt/wake-up generation

322 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPLU_OUTPUT_6_INTERRUPT_MASK
Select PLU output 6 contribute to interrupt/wake-up generation

enumerator kPLU_OUTPUT_7_INTERRUPT_MASK
Select PLU output 7 contribute to interrupt/wake-up generation

enum _plu_wakeint_filter_mode
Control input of the PLU, add filtering for glitch.

Values:

enumerator kPLU_WAKEINT_FILTER_MODE_BYPASS
Select Bypass mode

enumerator kPLU_WAKEINT_FILTER_MODE_1_CLK_PERIOD
Filter 1 clock period

enumerator kPLU_WAKEINT_FILTER_MODE_2_CLK_PERIOD
Filter 2 clock period

enumerator kPLU_WAKEINT_FILTER_MODE_3_CLK_PERIOD
Filter 3 clock period

enum _plu_wakeint_filter_clock_source
Clock source for filter mode.

Values:

enumerator kPLU_WAKEINT_FILTER_CLK_SRC_1MHZ_LPOSC
Select the 1MHz low-power oscillator as the filter clock

enumerator kPLU_WAKEINT_FILTER_CLK_SRC_12MHZ_FRO
Select the 12MHz FRO as the filer clock

enumerator kPLU_WAKEINT_FILTER_CLK_SRC_ALT
Select a third clock source

typedef enum _plu_lut_index plu_lut_index_t
Index of LUT.

typedef enum _plu_lut_in_index plu_lut_in_index_t
Inputs of LUT. 5 input present for each LUT.

typedef enum _plu_lut_input_source plu_lut_input_source_t
Available sources of LUT input.

typedef enum _plu_output_index plu_output_index_t
PLU output multiplexer registers.

typedef enum _plu_output_source plu_output_source_t
Available sources of PLU output.

typedef enum _plu_wakeint_filter_mode plu_wakeint_filter_mode_t
Control input of the PLU, add filtering for glitch.

typedef enum _plu_wakeint_filter_clock_source plu_wakeint_filter_clock_source_t
Clock source for filter mode.

typedef struct _plu_wakeint_config plu_wakeint_config_t
Wake configuration.

struct _plu_wakeint_config
#include <fsl_plu.h>Wake configuration.

2.39. PLU: Programmable Logic Unit 323

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

plu_wakeint_filter_mode_t filterMode
Filter Mode.

plu_wakeint_filter_clock_source_t clockSource
The clock source for filter mode.

2.40 Power Driver

enum _power_mode_config
Values:

enumerator kPmu_Sleep

enumerator kPmu_Deep_Sleep

enumerator kPmu_PowerDown

enumerator kPmu_Deep_PowerDown

enum pd_bits
Analog components power modes control during low power modes.

Values:

enumerator kPDRUNCFG_PD_DCDC

enumerator kPDRUNCFG_PD_BIAS

enumerator kPDRUNCFG_PD_BODCORE

enumerator kPDRUNCFG_PD_BODVBAT

enumerator kPDRUNCFG_PD_FRO1M

enumerator kPDRUNCFG_PD_FRO192M

enumerator kPDRUNCFG_PD_FRO32K

enumerator kPDRUNCFG_PD_XTAL32K

enumerator kPDRUNCFG_PD_XTAL32M

enumerator kPDRUNCFG_PD_PLL0

enumerator kPDRUNCFG_PD_PLL1

enumerator kPDRUNCFG_PD_COMP

enumerator kPDRUNCFG_PD_TEMPSENS

enumerator kPDRUNCFG_PD_GPADC

enumerator kPDRUNCFG_PD_LDOMEM

enumerator kPDRUNCFG_PD_LDODEEPSLEEP

enumerator kPDRUNCFG_PD_LDOGPADC

enumerator kPDRUNCFG_PD_LDOXO32M

324 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPDRUNCFG_PD_LDOFLASHNV

enumerator kPDRUNCFG_PD_RNG

enumerator kPDRUNCFG_PD_PLL0_SSCG

enumerator kPDRUNCFG_PD_ROM

enumerator kPDRUNCFG_ForceUnsigned

enum _power_bod_vbat_level
BOD VBAT level.

Values:

enumerator kPOWER_BodVbatLevel1000mv
Brown out detector VBAT level 1V

enumerator kPOWER_BodVbatLevel1100mv
Brown out detector VBAT level 1.1V

enumerator kPOWER_BodVbatLevel1200mv
Brown out detector VBAT level 1.2V

enumerator kPOWER_BodVbatLevel1300mv
Brown out detector VBAT level 1.3V

enumerator kPOWER_BodVbatLevel1400mv
Brown out detector VBAT level 1.4V

enumerator kPOWER_BodVbatLevel1500mv
Brown out detector VBAT level 1.5V

enumerator kPOWER_BodVbatLevel1600mv
Brown out detector VBAT level 1.6V

enumerator kPOWER_BodVbatLevel1650mv
Brown out detector VBAT level 1.65V

enumerator kPOWER_BodVbatLevel1700mv
Brown out detector VBAT level 1.7V

enumerator kPOWER_BodVbatLevel1750mv
Brown out detector VBAT level 1.75V

enumerator kPOWER_BodVbatLevel1800mv
Brown out detector VBAT level 1.8V

enumerator kPOWER_BodVbatLevel1900mv
Brown out detector VBAT level 1.9V

enumerator kPOWER_BodVbatLevel2000mv
Brown out detector VBAT level 2V

enumerator kPOWER_BodVbatLevel2100mv
Brown out detector VBAT level 2.1V

enumerator kPOWER_BodVbatLevel2200mv
Brown out detector VBAT level 2.2V

enumerator kPOWER_BodVbatLevel2300mv
Brown out detector VBAT level 2.3V

2.40. Power Driver 325

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPOWER_BodVbatLevel2400mv
Brown out detector VBAT level 2.4V

enumerator kPOWER_BodVbatLevel2500mv
Brown out detector VBAT level 2.5V

enumerator kPOWER_BodVbatLevel2600mv
Brown out detector VBAT level 2.6V

enumerator kPOWER_BodVbatLevel2700mv
Brown out detector VBAT level 2.7V

enumerator kPOWER_BodVbatLevel2806mv
Brown out detector VBAT level 2.806V

enumerator kPOWER_BodVbatLevel2900mv
Brown out detector VBAT level 2.9V

enumerator kPOWER_BodVbatLevel3000mv
Brown out detector VBAT level 3.0V

enumerator kPOWER_BodVbatLevel3100mv
Brown out detector VBAT level 3.1V

enumerator kPOWER_BodVbatLevel3200mv
Brown out detector VBAT level 3.2V

enumerator kPOWER_BodVbatLevel3300mv
Brown out detector VBAT level 3.3V

enum _power_bod_hyst
BOD Hysteresis control.

Values:

enumerator kPOWER_BodHystLevel25mv
BOD Hysteresis control level 25mv

enumerator kPOWER_BodHystLevel50mv
BOD Hysteresis control level 50mv

enumerator kPOWER_BodHystLevel75mv
BOD Hysteresis control level 75mv

enumerator kPOWER_BodHystLevel100mv
BOD Hysteresis control level 100mv

enum _power_bod_core_level
BOD core level.

Values:

enumerator kPOWER_BodCoreLevel600mv
Brown out detector core level 600mV

enumerator kPOWER_BodCoreLevel650mv
Brown out detector core level 650mV

enumerator kPOWER_BodCoreLevel700mv
Brown out detector core level 700mV

enumerator kPOWER_BodCoreLevel750mv
Brown out detector core level 750mV

326 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPOWER_BodCoreLevel800mv
Brown out detector core level 800mV

enumerator kPOWER_BodCoreLevel850mv
Brown out detector core level 850mV

enumerator kPOWER_BodCoreLevel900mv
Brown out detector core level 900mV

enumerator kPOWER_BodCoreLevel950mv
Brown out detector core level 950mV

enum _power_device_reset_cause
Device Reset Causes.

Values:

enumerator kRESET_CAUSE_POR
Power On Reset

enumerator kRESET_CAUSE_PADRESET
Hardware Pin Reset

enumerator kRESET_CAUSE_BODRESET
Brown-out Detector reset (either BODVBAT or BODCORE)

enumerator kRESET_CAUSE_ARMSYSTEMRESET
ARM System Reset

enumerator kRESET_CAUSE_WDTRESET
Watchdog Timer Reset

enumerator kRESET_CAUSE_SWRRESET
Software Reset

enumerator kRESET_CAUSE_CDOGRESET
Code Watchdog Reset

enumerator kRESET_CAUSE_DPDRESET_WAKEUPIO
Any of the 4 wake-up pins

enumerator kRESET_CAUSE_DPDRESET_RTC
Real Time Counter (RTC)

enumerator kRESET_CAUSE_DPDRESET_OSTIMER
OS Event Timer (OSTIMER)

enumerator kRESET_CAUSE_DPDRESET_WAKEUPIO_RTC
Any of the 4 wake-up pins and RTC (it is not possible to distinguish which of these 2
events occured first)

enumerator kRESET_CAUSE_DPDRESET_WAKEUPIO_OSTIMER
Any of the 4 wake-up pins and OSTIMER (it is not possible to distinguish which of these
2 events occured first)

enumerator kRESET_CAUSE_DPDRESET_RTC_OSTIMER
Real Time Counter or OS Event Timer (it is not possible to distinguish which of these 2
events occured first)

enumerator kRESET_CAUSE_DPDRESET_WAKEUPIO_RTC_OSTIMER
Any of the 4 wake-up pins (it is not possible to distinguish which of these 3 events
occured first)

2.40. Power Driver 327

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kRESET_CAUSE_NOT_RELEVANT
No reset cause (for example, this code is used when waking up from DEEP-SLEEP low
power mode)

enumerator kRESET_CAUSE_NOT_DETERMINISTIC
Unknown Reset Cause. Should be treated like “Hardware Pin Reset” from an applica-
tion point of view.

enum _power_device_boot_mode
Device Boot Modes.

Values:

enumerator kBOOT_MODE_POWER_UP
All non Low Power Mode wake up (Power On Reset, Pin Reset, BoD Reset, ARM System
Reset …)

enumerator kBOOT_MODE_LP_DEEP_SLEEP
Wake up from DEEP-SLEEP Low Power mode

enumerator kBOOT_MODE_LP_POWER_DOWN
Wake up from POWER-DOWN Low Power mode

enumerator kBOOT_MODE_LP_DEEP_POWER_DOWN
Wake up from DEEP-POWER-DOWN Low Power mode

typedef enum _power_mode_config power_mode_cfg_t

typedef enum pd_bits pd_bit_t
Analog components power modes control during low power modes.

typedef enum _power_bod_vbat_level power_bod_vbat_level_t
BOD VBAT level.

typedef enum _power_bod_hyst power_bod_hyst_t
BOD Hysteresis control.

typedef enum _power_bod_core_level power_bod_core_level_t
BOD core level.

typedef enum _power_device_reset_cause power_device_reset_cause_t
Device Reset Causes.

typedef enum _power_device_boot_mode power_device_boot_mode_t
Device Boot Modes.

static inline void POWER_EnablePD(pd_bit_t en)
API to enable PDRUNCFG bit in the Syscon. Note that enabling the bit powers down the
peripheral.

Parameters
• en – peripheral for which to enable the PDRUNCFG bit

Returns
none

static inline void POWER_DisablePD(pd_bit_t en)
API to disable PDRUNCFG bit in the Syscon. Note that disabling the bit powers up the pe-
ripheral.

Parameters
• en – peripheral for which to disable the PDRUNCFG bit

328 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

Returns
none

void POWER_SetBodVbatLevel(power_bod_vbat_level_t level, power_bod_hyst_t hyst, bool
enBodVbatReset)

set BOD VBAT level.

Parameters
• level – BOD detect level

• hyst – BoD Hysteresis control

• enBodVbatReset – VBAT brown out detect reset

static inline void POWER_EnableDeepSleep(void)
API to enable deep sleep bit in the ARM Core.

Returns
none

static inline void POWER_DisableDeepSleep(void)
API to disable deep sleep bit in the ARM Core.

Returns
none

void POWER_CycleCpuAndFlash(void)
Shut off the Flash and execute the _WFI(), then power up the Flash after wake-up event
This MUST BE EXECUTED outside the Flash: either from ROM or from SRAM. The rest could
stay in Flash. But, for consistency, it is preferable to have all functions defined in this file
implemented in ROM.

Returns
Nothing

void POWER_EnterDeepSleep(uint32_t exclude_from_pd, uint32_t sram_retention_ctrl, uint64_t
wakeup_interrupts, uint32_t hardware_wake_ctrl)

Configures and enters in DEEP-SLEEP low power mode.

Parameters
• exclude_from_pd –

• sram_retention_ctrl –

• wakeup_interrupts –

• hardware_wake_ctrl –

Returns
Nothing

!!! IMPORTANT NOTES :

0 - CPU0 & System CLock frequency is switched to FRO12MHz and is NOT re-
stored back by the API. 1 - CPU0 Interrupt Enable registers (NVIC->ISER) are
modified by this function. They are restored back in case of CPU retention or
if POWERDOWN is not taken (for instance because an interrupt is pending). 2
- The Non Maskable Interrupt (NMI) is disabled and its configuration before
calling this functionwill be restored back if POWERDOWN is not taken (for in-
stance because an RTC or OSTIMER interrupt is pending). 3 - The HARD FAULT
handler should execute from SRAM. (The Hard fault handler should initiate a
full chip reset) reset)

2.40. Power Driver 329

MCUXpresso SDK Documentation, Release 25.09.00

void POWER_EnterPowerDown(uint32_t exclude_from_pd, uint32_t sram_retention_ctrl,
uint64_t wakeup_interrupts, uint32_t cpu_retention_ctrl)

Configures and enters in POWERDOWN low power mode.

Parameters
• exclude_from_pd –

• sram_retention_ctrl –

• wakeup_interrupts –

• cpu_retention_ctrl – 0 = CPU retention is disable / 1 = CPU retention is en-
abled, all other values are RESERVED.

Returns
Nothing

!!! IMPORTANT NOTES :

0 - CPU0 & System CLock frequency is switched to FRO12MHz and is NOT re-
stored back by the API. 1 - CPU0 Interrupt Enable registers (NVIC->ISER) are
modified by this function. They are restored back in case of CPU retention
or if POWERDOWN is not taken (for instance because an interrupt is pend-
ing). 2 - The Non Maskable Interrupt (NMI) is disabled and its configuration
before calling this function will be restored back if POWERDOWN is not taken
(for instance because an RTC or OSTIMER interrupt is pending). 3 - In case
of CPU retention, it is the responsability of the user to make sure that SRAM
instance containing the stack used to call this function WILL BE preserved
during low power (via parameter “sram_retention_ctrl”) 4 - The HARD FAULT
handler should execute from SRAM. (The Hard fault handler should initiate a
full chip reset) reset)

void POWER_EnterDeepPowerDown(uint32_t exclude_from_pd, uint32_t sram_retention_ctrl,
uint64_t wakeup_interrupts, uint32_t wakeup_io_ctrl)

Configures and enters in DEEPPOWERDOWN low power mode.

Parameters
• exclude_from_pd –

• sram_retention_ctrl –

• wakeup_interrupts –

• wakeup_io_ctrl –

Returns
Nothing

!!! IMPORTANT NOTES :

0 - CPU0 & System CLock frequency is switched to FRO12MHz and is NOT re-
stored back by the API. 1 - CPU0 Interrupt Enable registers (NVIC->ISER) are
modified by this function. They are restored back if DEEPPOWERDOWN is not
taken (for instance because an RTC or OSTIMER interrupt is pending). 2 - The
NonMaskable Interrupt (NMI) is disabled and its configuration before calling
this function will be restored back if DEEPPOWERDOWN is not taken (for in-
stance because an RTC or OSTIMER interrupt is pending). 3 - The HARD FAULT
handler should execute from SRAM. (The Hard fault handler should initiate a
full chip reset)

void POWER_EnterSleep(void)
Configures and enters in SLEEP low power mode.

330 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

Returns
Nothing

void POWER_SetVoltageForFreq(uint32_t system_freq_hz)
Power LibraryAPI to choose normal regulation and set the voltage for the desired operating
frequency.

Parameters
• system_freq_hz – - The desired frequency (in Hertz) at which the part
would like to operate, note that the voltage and flash wait states should
be set before changing frequency

Returns
none

void POWER_Xtal16mhzCapabankTrim(int32_t pi32_16MfXtalIecLoadpF_x100, int32_t
pi32_16MfXtalPPcbParCappF_x100, int32_t
pi32_16MfXtalNPcbParCappF_x100)

Sets board-specific trim values for 16MHz XTAL.

Note: Following default Values can be used: pi32_32MfXtalIecLoadpF_x100 Load capaci-
tance, pF x 100 : 600 pi32_32MfXtalPPcbParCappF_x100 PCB +ve parasitic capacitance, pF
x 100 : 20 pi32_32MfXtalNPcbParCappF_x100 PCB -ve parasitic capacitance, pF x 100 : 40

Parameters
• pi32_16MfXtalIecLoadpF_x100 – Load capacitance, pF x 100. For example,
6pF becomes 600, 1.2pF becomes 120

• pi32_16MfXtalPPcbParCappF_x100 – PCB +ve parasitic capacitance, pF x
100. For example, 6pF becomes 600, 1.2pF becomes 120

• pi32_16MfXtalNPcbParCappF_x100 – PCB -ve parasitic capacitance, pF x
100. For example, 6pF becomes 600, 1.2pF becomes 120

Returns
none

void POWER_Xtal32khzCapabankTrim(int32_t pi32_32kfXtalIecLoadpF_x100, int32_t
pi32_32kfXtalPPcbParCappF_x100, int32_t
pi32_32kfXtalNPcbParCappF_x100)

Sets board-specific trim values for 32kHz XTAL.

Note: Following default Values can be used: pi32_32kfXtalIecLoadpF_x100 Load capaci-
tance, pF x 100 : 600 pi32_32kfXtalPPcbParCappF_x100 PCB +ve parasitic capacitance, pF x
100 : 40 pi32_32kfXtalNPcbParCappF_x100 PCB -ve parasitic capacitance, pF x 100 : 40

Parameters
• pi32_32kfXtalIecLoadpF_x100 – Load capacitance, pF x 100. For example,
6pF becomes 600, 1.2pF becomes 120

• pi32_32kfXtalPPcbParCappF_x100 – PCB +ve parasitic capacitance, pF x
100. For example, 6pF becomes 600, 1.2pF becomes 120

• pi32_32kfXtalNPcbParCappF_x100 – PCB -ve parasitic capacitance, pF x
100. For example, 6pF becomes 600, 1.2pF becomes 120

Returns
none

2.40. Power Driver 331

MCUXpresso SDK Documentation, Release 25.09.00

void POWER_SetXtal16mhzLdo(void)
Enables and sets LDO for 16MHz XTAL.

Returns
none

void POWER_SetXtal16mhzTrim(uint32_t amp, uint32_t gm)
Set up 16-MHz XTAL Trimmings.

Parameters
• amp – Amplitude

• gm – Transconductance

Returns
none

void POWER_GetWakeUpCause(power_device_reset_cause_t *p_reset_cause,
power_device_boot_mode_t *p_boot_mode, uint32_t
*p_wakeupio_cause)

Return some key information related to the device reset causes / wake-up sources, for all
power modes.

Parameters
• p_reset_cause – : the device reset cause, according to the definition of
power_device_reset_cause_t type.

• p_boot_mode – : the device boot mode, according to the definition of
power_device_boot_mode_t type.

• p_wakeupio_cause – the wake-up pin sources, according to the definition
of register PMC->WAKEIOCAUSE[3:0].

Returns
Nothing

!!! IMPORTANT ERRATA - IMPORTANT ERRATA - IMPORTANT ERRATA !!
↪→!

!!! valid ONLY for LPC55S69 (not for LPC55S16 and LPC55S06) !!!
!!! when FALLING EDGE DETECTION is enabled on wake-up pins: !!!
- 1. p_wakeupio_cause is NOT ACCURATE
- 2. Spurious kRESET_CAUSE_DPDRESET_WAKEUPIO* event is reported when

several wake-up sources are enabled during DEEP-POWER-DOWN
(like enabling wake-up on RTC and Falling edge wake-up pins)

FSL_POWER_DRIVER_VERSION
power driver version 2.3.2.

LOWPOWER_SRAMRETCTRL_RETEN_RAMX0
SRAM instances retention control during low power modes.

Enable SRAMX_0 retention when entering in Low power modes

LOWPOWER_SRAMRETCTRL_RETEN_RAMX1
Enable SRAMX_1 retention when entering in Low power modes

LOWPOWER_SRAMRETCTRL_RETEN_RAMX2
Enable SRAMX_2 retention when entering in Low power modes

LOWPOWER_SRAMRETCTRL_RETEN_RAMX3
Enable SRAMX_3 retention when entering in Low power modes

332 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

LOWPOWER_SRAMRETCTRL_RETEN_RAM00
Enable SRAM0_0 retention when entering in Low power modes

LOWPOWER_SRAMRETCTRL_RETEN_RAM10
Enable SRAM1_0 retention when entering in Low power modes

LOWPOWER_SRAMRETCTRL_RETEN_RAM20
Enable SRAM2_0 retention when entering in Low power modes

LOWPOWER_SRAMRETCTRL_RETEN_RAM3
Enable SRAM3 retention when entering in Low power modes

WAKEUP_SYS
Low Power Modes Wake up sources.

WAKEUP_SDMA0
[SLEEP, DEEP SLEEP]

WAKEUP_GPIO_GLOBALINT0
[SLEEP, DEEP SLEEP, POWER DOWN]

WAKEUP_GPIO_GLOBALINT1
[SLEEP, DEEP SLEEP, POWER DOWN]

WAKEUP_GPIO_INT0_0
[SLEEP, DEEP SLEEP]

WAKEUP_GPIO_INT0_1
[SLEEP, DEEP SLEEP]

WAKEUP_GPIO_INT0_2
[SLEEP, DEEP SLEEP]

WAKEUP_GPIO_INT0_3
[SLEEP, DEEP SLEEP]

WAKEUP_UTICK
[SLEEP,]

WAKEUP_MRT
[SLEEP,]

WAKEUP_CTIMER0
[SLEEP, DEEP SLEEP]

WAKEUP_CTIMER1
[SLEEP, DEEP SLEEP]

WAKEUP_SCT
[SLEEP,]

WAKEUP_CTIMER3
[SLEEP, DEEP SLEEP]

WAKEUP_FLEXCOMM0
[SLEEP, DEEP SLEEP]

WAKEUP_FLEXCOMM1
[SLEEP, DEEP SLEEP]

WAKEUP_FLEXCOMM2
[SLEEP, DEEP SLEEP]

2.40. Power Driver 333

MCUXpresso SDK Documentation, Release 25.09.00

WAKEUP_FLEXCOMM3
[SLEEP, DEEP SLEEP, POWER DOWN]

WAKEUP_FLEXCOMM4
[SLEEP, DEEP SLEEP]

WAKEUP_FLEXCOMM5
[SLEEP, DEEP SLEEP]

WAKEUP_FLEXCOMM6
[SLEEP, DEEP SLEEP]

WAKEUP_FLEXCOMM7
[SLEEP, DEEP SLEEP]

WAKEUP_ADC
[SLEEP,]

WAKEUP_ACMP
[SLEEP, DEEP SLEEP, POWER DOWN]

WAKEUP_RTC_LITE_ALARM_WAKEUP
[SLEEP, DEEP SLEEP, POWER DOWN, DEEP POWER DOWN]

WAKEUP_GPIO_INT0_4
[SLEEP, DEEP SLEEP]

WAKEUP_GPIO_INT0_5
[SLEEP, DEEP SLEEP]

WAKEUP_GPIO_INT0_6
[SLEEP, DEEP SLEEP]

WAKEUP_GPIO_INT0_7
[SLEEP, DEEP SLEEP]

WAKEUP_CTIMER2
[SLEEP, DEEP SLEEP]

WAKEUP_CTIMER4
[SLEEP, DEEP SLEEP]

WAKEUP_OS_EVENT_TIMER
[SLEEP, DEEP SLEEP, POWER DOWN, DEEP POWER DOWN]

CAN0_INT0
[SLEEP,]

CAN1_INT0
[SLEEP,]

WAKEUP_SEC_HYPERVISOR_CALL
[SLEEP,]

WAKEUP_SEC_GPIO_INT0_0
[SLEEP, DEEP SLEEP]

WAKEUP_SEC_GPIO_INT0_1
[SLEEP, DEEP SLEEP]

WAKEUP_PLU
[SLEEP, DEEP SLEEP]

334 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

WAKEUP_SEC_VIO

WAKEUP_SHA
[SLEEP,]

WAKEUP_CASPER
[SLEEP,]

WAKEUP_PUF
[SLEEP,]

WAKEUP_SDMA1
[SLEEP, DEEP SLEEP]

WAKEUP_LSPI_HS
[SLEEP, DEEP SLEEP]

WAKEUP_ALLWAKEUPIOS
[, DEEP POWER DOWN]

LOWPOWER_HWWAKE_FORCED
Sleep Postpone.

Force peripheral clocking to stay on during deep-sleep mode.

LOWPOWER_HWWAKE_PERIPHERALS
Wake for Flexcomms. Any Flexcomm FIFO reaching the level specified by its own TXLVL
will cause \ peripheral clocking to wake up temporarily while the related status is asserted

LOWPOWER_HWWAKE_SDMA0
Wake for DMA0. DMA0 being busy will cause peripheral clocking to remain running until
DMA \ completes. Used in conjonction with LOWPOWER_HWWAKE_PERIPHERALS

LOWPOWER_HWWAKE_SDMA1
Wake for DMA1. DMA0 being busy will cause peripheral clocking to remain running until
DMA \ completes. Used in conjonction with LOWPOWER_HWWAKE_PERIPHERALS

LOWPOWER_HWWAKE_ENABLE_FRO192M
Need to be set if FRO192M is disable - via PDCTRL0 - in Deep Sleep mode and
any of \ LOWPOWER_HWWAKE_PERIPHERALS, LOWPOWER_HWWAKE_SDMA0 or LOW-
POWER_HWWAKE_SDMA1 is set

LOWPOWER_CPURETCTRL_ENA_DISABLE
In POWER DOWNmode, CPU Retention is disabled

LOWPOWER_CPURETCTRL_ENA_ENABLE
In POWER DOWNmode, CPU Retention is enabled

LOWPOWER_WAKEUPIOSRC_PIO0_INDEX
Wake up I/O sources.

Pin P1(1)

LOWPOWER_WAKEUPIOSRC_PIO1_INDEX
Pin P0(28)

LOWPOWER_WAKEUPIOSRC_PIO2_INDEX
Pin P1(18)

LOWPOWER_WAKEUPIOSRC_PIO3_INDEX
Pin P1(30)

2.40. Power Driver 335

MCUXpresso SDK Documentation, Release 25.09.00

LOWPOWER_WAKEUPIOSRC_DISABLE
Wake up is disable

LOWPOWER_WAKEUPIOSRC_RISING
Wake up on rising edge

LOWPOWER_WAKEUPIOSRC_FALLING
Wake up on falling edge

LOWPOWER_WAKEUPIOSRC_RISING_FALLING
Wake up on both rising or falling edges

LOWPOWER_WAKEUPIOSRC_PIO0MODE_INDEX
Pin P1(1)

LOWPOWER_WAKEUPIOSRC_PIO1MODE_INDEX
Pin P0(28)

LOWPOWER_WAKEUPIOSRC_PIO2MODE_INDEX
Pin P1(18)

LOWPOWER_WAKEUPIOSRC_PIO3MODE_INDEX
Pin P1(30)

LOWPOWER_WAKEUPIOSRC_IO_MODE_PLAIN
Wake up Pad is plain input

LOWPOWER_WAKEUPIOSRC_IO_MODE_PULLDOWN
Wake up Pad is pull-down

LOWPOWER_WAKEUPIOSRC_IO_MODE_PULLUP
Wake up Pad is pull-up

LOWPOWER_WAKEUPIOSRC_IO_MODE_REPEATER
Wake up Pad is in repeater

LOWPOWER_WAKEUPIO_PIO0_PULLUPDOWN_INDEX
Wake-up I/O 0 pull-up/down configuration index

LOWPOWER_WAKEUPIO_PIO1_PULLUPDOWN_INDEX
Wake-up I/O 1 pull-up/down configuration index

LOWPOWER_WAKEUPIO_PIO2_PULLUPDOWN_INDEX
Wake-up I/O 2 pull-up/down configuration index

LOWPOWER_WAKEUPIO_PIO3_PULLUPDOWN_INDEX
Wake-up I/O 3 pull-up/down configuration index

LOWPOWER_WAKEUPIO_PIO0_PULLUPDOWN_MASK
Wake-up I/O 0 pull-up/down mask

LOWPOWER_WAKEUPIO_PIO1_PULLUPDOWN_MASK
Wake-up I/O 1 pull-up/down mask

LOWPOWER_WAKEUPIO_PIO2_PULLUPDOWN_MASK
Wake-up I/O 2 pull-up/down mask

LOWPOWER_WAKEUPIO_PIO3_PULLUPDOWN_MASK
Wake-up I/O 3 pull-up/down mask

LOWPOWER_WAKEUPIO_PULLDOWN
Select pull-down

336 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

LOWPOWER_WAKEUPIO_PULLUP
Select pull-up

LOWPOWER_WAKEUPIO_PIO0_DISABLEPULLUPDOWN_INDEX
Wake-up I/O 0 pull-up/down disable/enable control index

LOWPOWER_WAKEUPIO_PIO1_DISABLEPULLUPDOWN_INDEX
Wake-up I/O 1 pull-up/down disable/enable control index

LOWPOWER_WAKEUPIO_PIO2_DISABLEPULLUPDOWN_INDEX
Wake-up I/O 2 pull-up/down disable/enable control index

LOWPOWER_WAKEUPIO_PIO3_DISABLEPULLUPDOWN_INDEX
Wake-up I/O 3 pull-up/down disable/enable control index

LOWPOWER_WAKEUPIO_PIO0_DISABLEPULLUPDOWN_MASK
Wake-up I/O 0 pull-up/down disable/enable mask

LOWPOWER_WAKEUPIO_PIO1_DISABLEPULLUPDOWN_MASK
Wake-up I/O 1 pull-up/down disable/enable mask

LOWPOWER_WAKEUPIO_PIO2_DISABLEPULLUPDOWN_MASK
Wake-up I/O 2 pull-up/down disable/enable mask

LOWPOWER_WAKEUPIO_PIO3_DISABLEPULLUPDOWN_MASK
Wake-up I/O 3 pull-up/down disable/enable mask

LOWPOWER_WAKEUPIO_PIO0_USEEXTERNALPULLUPDOWN_INDEX
Wake-up I/O 0 use external pull-up/down disable/enable control index

LOWPOWER_WAKEUPIO_PIO1_USEEXTERNALPULLUPDOWN_INDEX
Wake-up I/O 1 use external pull-up/down disable/enable control index

LOWPOWER_WAKEUPIO_PIO2_USEEXTERNALPULLUPDOWN_INDEX
Wake-up I/O 2 use external pull-up/down disable/enable control index

LOWPOWER_WAKEUPIO_PIO3_USEEXTERNALPULLUPDOWN_INDEX
Wake-up I/O 3 use external pull-up/down disable/enable control index

LOWPOWER_WAKEUPIO_PIO0_USEEXTERNALPULLUPDOWN_MASK
Wake-up I/O 0 use external pull-up/down \ disable/enable mask, 0: disable, 1: enable

LOWPOWER_WAKEUPIO_PIO1_USEEXTERNALPULLUPDOWN_MASK
Wake-up I/O 1 use external pull-up/down \ disable/enable mask, 0: disable, 1: enable

LOWPOWER_WAKEUPIO_PIO2_USEEXTERNALPULLUPDOWN_MASK
Wake-up I/O 2 use external pull-up/down \ disable/enable mask, 0: disable, 1: enable

LOWPOWER_WAKEUPIO_PIO3_USEEXTERNALPULLUPDOWN_MASK
Wake-up I/O 3 use external pull-up/down \ disable/enable mask, 0: disable, 1: enable

2.41 PRINCE: PRINCE bus crypto engine

FSL_PRINCE_DRIVER_VERSION
PRINCE driver version 2.6.0.

Current version: 2.6.0

Change log:

• Version 2.0.0

2.41. PRINCE: PRINCE bus crypto engine 337

MCUXpresso SDK Documentation, Release 25.09.00

– Initial version.

• Version 2.1.0

– Update for the A1 rev. of LPC55Sxx serie.

• Version 2.2.0

– Add runtime checking of the A0 and A1 rev. of LPC55Sxx serie to support both
silicone revisions.

• Version 2.3.0

– Add support for LPC55S1x and LPC55S2x series

• Version 2.3.0

– Fix MISRA-2012 issues.

• Version 2.3.1

– Add support for LPC55S0x series

• Version 2.3.2

– Fix documentation of enumeration. Extend PRINCE example.

• Version 2.4.0

– Add support for LPC55S3x series

• Version 2.5.0

– Add PRINCE_Config() and PRINCE_Reconfig() features.

• Version 2.5.1

– Fix build error due to renamed symbols

• Version 2.6.0

– Renamed CSS to ELS

enum _skboot_status
Secure status enumeration.

Values:

enumerator kStatus_SKBOOT_Success
PRINCE Success

enumerator kStatus_SKBOOT_Fail
PRINCE Fail

enumerator kStatus_SKBOOT_InvalidArgument
PRINCE Invalid argument

enumerator kStatus_SKBOOT_KeyStoreMarkerInvalid
PRINCE Invalid marker

enum _secure_bool
Secure boolean enumeration.

Values:

enumerator kSECURE_TRUE
PRINCE true

enumerator kSECURE_FALSE
PRINCE false

338 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enum _prince_region
Prince region.

Values:

enumerator kPRINCE_Region0
PRINCE region 0

enumerator kPRINCE_Region1
PRINCE region 1

enumerator kPRINCE_Region2
PRINCE region 2

enum _prince_lock
Prince lock.

Values:

enumerator kPRINCE_Region0Lock
PRINCE region 0 lock

enumerator kPRINCE_Region1Lock
PRINCE region 1 lock

enumerator kPRINCE_Region2Lock
PRINCE region 2 lock

enumerator kPRINCE_MaskLock
PRINCE mask register lock

enum _prince_flags
Prince flag.

Values:

enumerator kPRINCE_Flag_None
PRINCE Flag None

enumerator kPRINCE_Flag_EraseCheck
PRINCE Flag Erase check

enumerator kPRINCE_Flag_WriteCheck
PRINCE Flag Write check

typedef enum _skboot_status skboot_status_t
Secure status enumeration.

typedef enum _secure_bool secure_bool_t
Secure boolean enumeration.

typedef enum _prince_region prince_region_t
Prince region.

typedef enum _prince_lock prince_lock_t
Prince lock.

typedef enum _prince_flags prince_flags_t
Prince flag.

static inline void PRINCE_EncryptEnable(PRINCE_Type *base)
Enable data encryption.

This function enables PRINCE on-the-fly data encryption.

2.41. PRINCE: PRINCE bus crypto engine 339

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• base – PRINCE peripheral address.

static inline void PRINCE_EncryptDisable(PRINCE_Type *base)
Disable data encryption.

This function disables PRINCE on-the-fly data encryption.

Parameters
• base – PRINCE peripheral address.

static inline bool PRINCE_IsEncryptEnable(PRINCE_Type *base)
Is Enable data encryption.

This function test if PRINCE on-the-fly data encryption is enabled.

Parameters
• base – PRINCE peripheral address.

Returns
true if enabled, false if not

static inline void PRINCE_SetMask(PRINCE_Type *base, uint64_t mask)
Sets PRINCE data mask.

This function sets the PRINCE mask that is used to mask decrypted data.

Parameters
• base – PRINCE peripheral address.

• mask – 64-bit data mask value.

static inline void PRINCE_SetLock(PRINCE_Type *base, uint32_t lock)
Locks access for specified region registers or data mask register.

This function sets lock on specified region registers or mask register.

Parameters
• base – PRINCE peripheral address.

• lock – registers to lock. This is a logical OR of members of the enumeration
prince_lock_t

status_t PRINCE_GenNewIV(prince_region_t region, uint8_t *iv_code, bool store, flash_config_t
*flash_context)

Generate new IV code.

This function generates new IV code and stores it into the persistent memory. Ensure about
800 bytes free space on the stack when calling this routine with the store parameter set to
true!

Parameters
• region – PRINCE region index.

• iv_code – IV code pointer used for storing the newly generated 52 bytes
long IV code.

• store – flag to allow storing the newly generated IV code into the persistent
memory (FFR).

• flash_context – pointer to the flash driver context structure.

Returns
kStatus_Success upon success

340 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

Returns
kStatus_Fail otherwise, kStatus_Fail is also returned if the key code for the
particular PRINCE region is not present in the keystore (though new IV code
has been provided)

status_t PRINCE_LoadIV(prince_region_t region, uint8_t *iv_code)
Load IV code.

This function enables IV code loading into the PRINCE bus encryption engine.

Parameters
• region – PRINCE region index.

• iv_code – IV code pointer used for passing the IV code.

Returns
kStatus_Success upon success

Returns
kStatus_Fail otherwise

status_t PRINCE_SetEncryptForAddressRange(prince_region_t region, uint32_t start_address,
uint32_t length, flash_config_t *flash_context, bool
regenerate_iv)

Allow encryption/decryption for specified address range.

This function sets the encryption/decryption for specified address range. The SRmask value
for the selected Prince region is calculated from provided start_address and length param-
eters. This calculated value is OR’ed with the actual SR mask value and stored into the
PRINCE SR_ENABLE register and also into the persistent memory (FFR) to be used after the
device reset. It is possible to define several nonadjacent encrypted areas within one Prince
regionwhen calling this function repeatedly. If the length parameter is set to 0, the SRmask
value is set to 0 and thus the encryption/decryption for the whole selected Prince region is
disabled. Ensure about 800 bytes free space on the stack when calling this routine!

Parameters
• region – PRINCE region index.

• start_address – start address of the area to be encrypted/decrypted.

• length – length of the area to be encrypted/decrypted.

• flash_context – pointer to the flash driver context structure.

• regenerate_iv – flag to allow IV code regenerating, storing into the persis-
tent memory (FFR) and loading into the PRINCE engine

Returns
kStatus_Success upon success

Returns
kStatus_Fail otherwise

status_t PRINCE_GetRegionSREnable(PRINCE_Type *base, prince_region_t region, uint32_t
*sr_enable)

Gets the PRINCE Sub-Region Enable register.

This function gets PRINCE SR_ENABLE register.

Parameters
• base – PRINCE peripheral address.

• region – PRINCE region index.

• sr_enable – Sub-Region Enable register pointer.

2.41. PRINCE: PRINCE bus crypto engine 341

MCUXpresso SDK Documentation, Release 25.09.00

Returns
kStatus_Success upon success

Returns
kStatus_InvalidArgument

status_t PRINCE_GetRegionBaseAddress(PRINCE_Type *base, prince_region_t region, uint32_t
*region_base_addr)

Gets the PRINCE region base address register.

This function gets PRINCE BASE_ADDR register.

Parameters
• base – PRINCE peripheral address.

• region – PRINCE region index.

• region_base_addr – Region base address pointer.

Returns
kStatus_Success upon success

Returns
kStatus_InvalidArgument

status_t PRINCE_SetRegionIV(PRINCE_Type *base, prince_region_t region, const uint8_t iv[8])
Sets the PRINCE region IV.

This function sets specified AES IV for the given region.

Parameters
• base – PRINCE peripheral address.

• region – Selection of the PRINCE region to be configured.

• iv – 64-bit AES IV in little-endian byte order.

status_t PRINCE_SetRegionBaseAddress(PRINCE_Type *base, prince_region_t region, uint32_t
region_base_addr)

Sets the PRINCE region base address.

This function configures PRINCE region base address.

Parameters
• base – PRINCE peripheral address.

• region – Selection of the PRINCE region to be configured.

• region_base_addr – Base Address for region.

status_t PRINCE_SetRegionSREnable(PRINCE_Type *base, prince_region_t region, uint32_t
sr_enable)

Sets the PRINCE Sub-Region Enable register.

This function configures PRINCE SR_ENABLE register.

Parameters
• base – PRINCE peripheral address.

• region – Selection of the PRINCE region to be configured.

• sr_enable – Sub-Region Enable register value.

342 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

status_t PRINCE_FlashEraseWithChecker(flash_config_t *config, uint32_t start, uint32_t
lengthInBytes, uint32_t key)

Erases the flash sectors encompassed by parameters passed into function.

This function erases the appropriate number of flash sectors based on the desired start ad-
dress and length. It deals with the flash erase function complenentary to the standard erase
API of the IAP1 driver. This implementation additionally checks if the whole encrypted
PRINCE subregions are erased at once to avoid secrets revealing. The checker implemen-
tation is limited to one contiguous PRINCE-controlled memory area.

Parameters
• config – The pointer to the flash driver context structure.

• start – The start address of the desired flash memory to be erased. The
start address needs to be prince-sburegion-aligned.

• lengthInBytes – The length, given in bytes (not words or long-words) to be
erased. Must be prince-sburegion-size-aligned.

• key – The value used to validate all flash erase APIs.

Returns
kStatus_FLASH_Success API was executed successfully.

Returns
kStatus_FLASH_InvalidArgument An invalid argument is provided.

Returns
kStatus_FLASH_AlignmentError The parameter is not aligned with the speci-
fied baseline.

Returns
kStatus_FLASH_AddressError The address is out of range.

Returns
kStatus_FLASH_EraseKeyError The API erase key is invalid.

Returns
kStatus_FLASH_CommandFailure Run-time error during the command exe-
cution.

Returns
kStatus_FLASH_CommandNotSupported Flash API is not supported.

Returns
kStatus_FLASH_EccError A correctable or uncorrectable error during com-
mand execution.

Returns
kStatus_FLASH_EncryptedRegionsEraseNotDoneAtOnce Encrypted flash sub-
regions are not erased at once.

status_t PRINCE_FlashProgramWithChecker(flash_config_t *config, uint32_t start, uint8_t *src,
uint32_t lengthInBytes)

Programs flash with data at locations passed in through parameters.

This function programs the flash memory with the desired data for a given flash area as
determined by the start address and the length. It deals with the flash program function
complenentary to the standard program API of the IAP1 driver. This implementation addi-
tionally checks if thewhole PRINCE subregions are programmed at once to avoid secrets re-
vealing. The checker implementation is limited to one contiguous PRINCE-controlledmem-
ory area.

Parameters
• config – The pointer to the flash driver context structure.

2.41. PRINCE: PRINCE bus crypto engine 343

MCUXpresso SDK Documentation, Release 25.09.00

• start – The start address of the desired flash memory to be programmed.
Must be prince-sburegion-aligned.

• src – A pointer to the source buffer of data that is to be programmed into
the flash.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
programmed. Must be prince-sburegion-size-aligned.

Returns
kStatus_FLASH_Success API was executed successfully.

Returns
kStatus_FLASH_InvalidArgument An invalid argument is provided.

Returns
kStatus_FLASH_AlignmentError Parameter is not aligned with the specified
baseline.

Returns
kStatus_FLASH_AddressError Address is out of range.

Returns
kStatus_FLASH_AccessError Invalid instruction codes and out-of bounds ad-
dresses.

Returns
kStatus_FLASH_CommandFailure Run-time error during the command exe-
cution.

Returns
kStatus_FLASH_CommandFailure Run-time error during the command exe-
cution.

Returns
kStatus_FLASH_CommandNotSupported Flash API is not supported.

Returns
kStatus_FLASH_EccError A correctable or uncorrectable error during com-
mand execution.

Returns
kStatus_FLASH_SizeError Encrypted flash subregions are not programmed at
once.

FSL_PRINCE_DRIVER_SUBREGION_SIZE_IN_KB

FSL_PRINCE_DRIVER_MAX_FLASH_ADDR

ALIGN_DOWN(x, a)

2.42 PUF: Physical Unclonable Function

FSL_PUF_DRIVER_VERSION
PUF driver version. Version 2.2.0.

Current version: 2.2.0

Change log:

• 2.0.0

– Initial version.

• 2.0.1

344 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

– Fixed puf_wait_usec function optimization issue.

• 2.0.2

– Add PUF configuration structure and support for PUF SRAM controller. Remove
magic constants.

• 2.0.3

– Fix MISRA C-2012 issue.

• 2.1.0

– Align driver with PUF SRAM controller registers on LPCXpresso55s16.

– Update initizalition logic .

• 2.1.1

– Fix ARMGCC build warning .

• 2.1.2

– Update: Add automatic big to little endian swap for user (pre-shared) keys desti-
nated to secret hardware bus (PUF key index 0).

• 2.1.3

– Fix MISRA C-2012 issue.

• 2.1.4

– Replace register uint32_t ticksCount with volatile uint32_t ticksCount in
puf_wait_usec() to prevent optimization out delay loop.

• 2.1.5

– Use common SDK delay in puf_wait_usec()

• 2.1.6

– Changed wait time in PUF_Init(), when initialization fails it will try
PUF_Powercycle() with shorter time. If this shorter time will also fail, initial-
ization will be tried with worst case time as before.

• 2.2.0

• Add support for kPUF_KeySlot4.

• Add new PUF_ClearKey() function, that clears a desired PUF internal HW key register.

enum _puf_key_index_register
Values:

enumerator kPUF_KeyIndex_00

enumerator kPUF_KeyIndex_01

enumerator kPUF_KeyIndex_02

enumerator kPUF_KeyIndex_03

enumerator kPUF_KeyIndex_04

enumerator kPUF_KeyIndex_05

enumerator kPUF_KeyIndex_06

enumerator kPUF_KeyIndex_07

enumerator kPUF_KeyIndex_08

2.42. PUF: Physical Unclonable Function 345

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPUF_KeyIndex_09

enumerator kPUF_KeyIndex_10

enumerator kPUF_KeyIndex_11

enumerator kPUF_KeyIndex_12

enumerator kPUF_KeyIndex_13

enumerator kPUF_KeyIndex_14

enumerator kPUF_KeyIndex_15

enum _puf_min_max
Values:

enumerator kPUF_KeySizeMin

enumerator kPUF_KeySizeMax

enumerator kPUF_KeyIndexMax

enum _puf_key_slot
PUF key slot.

Values:

enumerator kPUF_KeySlot0
PUF key slot 0

enumerator kPUF_KeySlot1
PUF key slot 1

PUF status return codes.

Values:

enumerator kStatus_EnrollNotAllowed

enumerator kStatus_StartNotAllowed

typedef enum _puf_key_index_register puf_key_index_register_t

typedef enum _puf_min_max puf_min_max_t

typedef enum _puf_key_slot puf_key_slot_t
PUF key slot.

PUF_GET_KEY_CODE_SIZE_FOR_KEY_SIZE(x)
Get Key Code size in bytes from key size in bytes at compile time.

PUF_MIN_KEY_CODE_SIZE

PUF_ACTIVATION_CODE_SIZE

KEYSTORE_PUF_DISCHARGE_TIME_FIRST_TRY_MS

KEYSTORE_PUF_DISCHARGE_TIME_MAX_MS

struct puf_config_t
#include <fsl_puf.h>

346 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

2.43 Reset Driver

enum _SYSCON_RSTn
Enumeration for peripheral reset control bits.

Defines the enumeration for peripheral reset control bits in PRESETC-
TRL/ASYNCPRESETCTRL registers

Values:

enumerator kROM_RST_SHIFT_RSTn
ROM reset control

enumerator kSRAM1_RST_SHIFT_RSTn
SRAM1 reset control

enumerator kSRAM2_RST_SHIFT_RSTn
SRAM2 reset control

enumerator kFLASH_RST_SHIFT_RSTn
Flash controller reset control

enumerator kFMC_RST_SHIFT_RSTn
Flash accelerator reset control

enumerator kMUX0_RST_SHIFT_RSTn
Input mux0 reset control

enumerator kIOCON_RST_SHIFT_RSTn
IOCON reset control

enumerator kGPIO0_RST_SHIFT_RSTn
GPIO0 reset control

enumerator kGPIO1_RST_SHIFT_RSTn
GPIO1 reset control

enumerator kPINT_RST_SHIFT_RSTn
Pin interrupt (PINT) reset control

enumerator kGINT_RST_SHIFT_RSTn
Grouped interrupt (PINT) reset control.

enumerator kDMA0_RST_SHIFT_RSTn
DMA reset control

enumerator kCRC_RST_SHIFT_RSTn
CRC reset control

enumerator kWWDT_RST_SHIFT_RSTn
Watchdog timer reset control

enumerator kRTC_RST_SHIFT_RSTn
RTC reset control

enumerator kMAILBOX_RST_SHIFT_RSTn
Mailbox reset control

enumerator kADC0_RST_SHIFT_RSTn
ADC0 reset control

enumerator kMRT_RST_SHIFT_RSTn
Multi-rate timer (MRT) reset control

2.43. Reset Driver 347

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kOSTIMER0_RST_SHIFT_RSTn
OSTimer0 reset control

enumerator kSCT0_RST_SHIFT_RSTn
SCTimer/PWM 0 (SCT0) reset control

enumerator kMCAN_RST_SHIFT_RSTn
MCAN reset control

enumerator kUTICK_RST_SHIFT_RSTn
Micro-tick timer reset control

enumerator kFC0_RST_SHIFT_RSTn
Flexcomm Interface 0 reset control

enumerator kFC1_RST_SHIFT_RSTn
Flexcomm Interface 1 reset control

enumerator kFC2_RST_SHIFT_RSTn
Flexcomm Interface 2 reset control

enumerator kFC3_RST_SHIFT_RSTn
Flexcomm Interface 3 reset control

enumerator kFC4_RST_SHIFT_RSTn
Flexcomm Interface 4 reset control

enumerator kFC5_RST_SHIFT_RSTn
Flexcomm Interface 5 reset control

enumerator kFC6_RST_SHIFT_RSTn
Flexcomm Interface 6 reset control

enumerator kFC7_RST_SHIFT_RSTn
Flexcomm Interface 7 reset control

enumerator kCTIMER2_RST_SHIFT_RSTn
CTimer 2 reset control

enumerator kCTIMER0_RST_SHIFT_RSTn
CTimer 0 reset control

enumerator kCTIMER1_RST_SHIFT_RSTn
CTimer 1 reset control

enumerator kEZHA_RST_SHIFT_RSTn
EZHA reset control

enumerator kEZHB_RST_SHIFT_RSTn
EZHB reset control

enumerator kDMA1_RST_SHIFT_RSTn
DMA1 reset control

enumerator kCMP_RST_SHIFT_RSTn
CMP reset control

enumerator kSRAM3_RST_SHIFT_RSTn
SRAM3 reset control

enumerator kFREQME_RST_SHIFT_RSTn
FREQME reset control

348 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCDOG_RST_SHIFT_RSTn
Code Watchdog reset control

enumerator kRNG_RST_SHIFT_RSTn
RNG reset control

enumerator kSYSCTL_RST_SHIFT_RSTn
SYSCTL reset control

enumerator kHASHCRYPT_RST_SHIFT_RSTn
HASHCRYPT reset control

enumerator kPLULUT_RST_SHIFT_RSTn
PLU LUT reset control

enumerator kCTIMER3_RST_SHIFT_RSTn
CTimer 3 reset control

enumerator kCTIMER4_RST_SHIFT_RSTn
CTimer 4 reset control

enumerator kPUF_RST_SHIFT_RSTn
PUF reset control

enumerator kCASPER_RST_SHIFT_RSTn
CASPER reset control

enumerator kANALOGCTL_RST_SHIFT_RSTn
ANALOG_CTL reset control

enumerator kHSLSPI_RST_SHIFT_RSTn
HS LSPI reset control

enumerator kGPIOSEC_RST_SHIFT_RSTn
GPIO Secure reset control

enumerator kGPIOSECINT_RST_SHIFT_RSTn
GPIO Secure int reset control

typedef enum _SYSCON_RSTn SYSCON_RSTn_t
Enumeration for peripheral reset control bits.

Defines the enumeration for peripheral reset control bits in PRESETC-
TRL/ASYNCPRESETCTRL registers

typedef SYSCON_RSTn_t reset_ip_name_t

void RESET_SetPeripheralReset(reset_ip_name_t peripheral)
Assert reset to peripheral.

Asserts reset signal to specified peripheral module.

Parameters
• peripheral – Assert reset to this peripheral. The enum argument contains
encoding of reset register and reset bit position in the reset register.

void RESET_ClearPeripheralReset(reset_ip_name_t peripheral)
Clear reset to peripheral.

Clears reset signal to specified peripheral module, allows it to operate.

Parameters
• peripheral – Clear reset to this peripheral. The enum argument contains
encoding of reset register and reset bit position in the reset register.

2.43. Reset Driver 349

MCUXpresso SDK Documentation, Release 25.09.00

void RESET_PeripheralReset(reset_ip_name_t peripheral)
Reset peripheral module.

Reset peripheral module.

Parameters
• peripheral – Peripheral to reset. The enum argument contains encoding of
reset register and reset bit position in the reset register.

static inline void RESET_ReleasePeripheralReset(reset_ip_name_t peripheral)
Release peripheral module.

Release peripheral module.

Parameters
• peripheral – Peripheral to release. The enum argument contains encoding
of reset register and reset bit position in the reset register.

FSL_RESET_DRIVER_VERSION
reset driver version 2.4.0

ADC_RSTS
Array initializers with peripheral reset bits

MCAN_RSTS

CRC_RSTS

CTIMER_RSTS

DMA_RSTS_N

FLEXCOMM_RSTS

GINT_RSTS

GPIO_RSTS_N

INPUTMUX_RSTS

IOCON_RSTS

FLASH_RSTS

MRT_RSTS

PINT_RSTS

CDOG_RSTS

RNG_RSTS

SCT_RSTS

UTICK_RSTS

WWDT_RSTS

PLU_RSTS_N

OSTIMER_RSTS

CASPER_RSTS

HASHCRYPT_RSTS

PUF_RSTS

350 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

2.44 RNG: Random Number Generator

FSL_RNG_DRIVER_VERSION
RNG driver version. Version 2.0.3.

Current version: 2.0.3

Change log:

• Version 2.0.0

– Initial version

• Version 2.0.1

– Fix MISRA C-2012 issue.

• Version 2.0.2

– Add RESET_PeripheralReset function inside RNG_Init and RNG_Deinit functions.

• Version 2.0.3

– Modified RNG_Init and RNG_GetRandomData functions, added
rng_accumulateEntropy and rng_readEntropy functions.

– These changes are reflecting recommended usage of RNG according to device UM.

void RNG_Init(RNG_Type *base)
Initializes the RNG.

This function initializes the RNG. When called, the RNG module and ring oscillator is en-
abled.

Parameters
• base – RNG base address

Returns
If successful, returns the kStatus_RNG_Success. Otherwise, it returns an error.

void RNG_Deinit(RNG_Type *base)
Shuts down the RNG.

This function shuts down the RNG.

Parameters
• base – RNG base address.

status_t RNG_GetRandomData(RNG_Type *base, void *data, size_t dataSize)
Gets random data.

This function gets random data from the RNG.

Parameters
• base – RNG base address.

• data – Pointer address used to store random data.

• dataSize – Size of the buffer pointed by the data parameter.

Returns
random data

static inline uint32_t RNG_GetRandomWord(RNG_Type *base)
Returns random 32-bit number.

This function gets random number from the RNG.

2.44. RNG: Random Number Generator 351

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• base – RNG base address.

Returns
random number

2.45 RTC: Real Time Clock

void RTC_Init(RTC_Type *base)
Un-gate the RTC clock and enable the RTC oscillator.

Note: This API should be called at the beginning of the application using the RTC driver.

Parameters
• base – RTC peripheral base address

static inline void RTC_Deinit(RTC_Type *base)
Stop the timer and gate the RTC clock.

Parameters
• base – RTC peripheral base address

status_t RTC_SetDatetime(RTC_Type *base, const rtc_datetime_t *datetime)
Set the RTC date and time according to the given time structure.

The RTC counter must be stopped prior to calling this function as writes to the RTC seconds
register will fail if the RTC counter is running.

Parameters
• base – RTC peripheral base address

• datetime – Pointer to structure where the date and time details to set are
stored

Returns
kStatus_Success: Success in setting the time and starting the RTC kSta-
tus_InvalidArgument: Error because the datetime format is incorrect

void RTC_GetDatetime(RTC_Type *base, rtc_datetime_t *datetime)
Get the RTC time and stores it in the given time structure.

Parameters
• base – RTC peripheral base address

• datetime – Pointer to structure where the date and time details are stored.

status_t RTC_SetAlarm(RTC_Type *base, const rtc_datetime_t *alarmTime)
Set the RTC alarm time.

The function checks whether the specified alarm time is greater than the present time. If
not, the function does not set the alarm and returns an error.

Parameters
• base – RTC peripheral base address

• alarmTime – Pointer to structure where the alarm time is stored.

352 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

Returns
kStatus_Success: success in setting the RTC alarm kStatus_InvalidArgument:
Error because the alarm datetime format is incorrect kStatus_Fail: Error be-
cause the alarm time has already passed

void RTC_GetAlarm(RTC_Type *base, rtc_datetime_t *datetime)
Return the RTC alarm time.

Parameters
• base – RTC peripheral base address

• datetime – Pointer to structure where the alarm date and time details are
stored.

static inline void RTC_EnableWakeupTimer(RTC_Type *base, bool enable)
Enable the RTC wake-up timer (1KHZ).

After calling this function, the RTC driver will use/un-use the RTC wake-up (1KHZ) at the
same time.

Parameters
• base – RTC peripheral base address

• enable – Use/Un-use the RTC wake-up timer.

– true: Use RTC wake-up timer at the same time.

– false: Un-use RTCwake-up timer, RTC only use the normal seconds timer
by default.

static inline uint32_t RTC_GetEnabledWakeupTimer(RTC_Type *base)
Get the enabled status of the RTC wake-up timer (1KHZ).

Parameters
• base – RTC peripheral base address

Returns
The enabled status of RTC wake-up timer (1KHZ).

static inline void RTC_EnableSubsecCounter(RTC_Type *base, bool enable)
Enable the RTC Sub-second counter (32KHZ).

Note: Only enable sub-second counter after RTC_ENA bit has been set to 1.

Parameters
• base – RTC peripheral base address

• enable – Enable/Disable RTC sub-second counter.

– true: Enable RTC sub-second counter.

– false: Disable RTC sub-second counter.

static inline uint32_t RTC_GetSubsecValue(const RTC_Type *base)
A read of 32KHZ sub-seconds counter.

Parameters
• base – RTC peripheral base address

Returns
Current value of the SUBSEC register

2.45. RTC: Real Time Clock 353

MCUXpresso SDK Documentation, Release 25.09.00

static inline void RTC_EnableWakeUpTimerInterruptFromDPD(RTC_Type *base, bool enable)
Enable the wake-up timer interrupt from deep power down mode.

Parameters
• base – RTC peripheral base address

• enable – Enable/Disable wake-up timer interrupt from deep power down
mode.

– true: Enable wake-up timer interrupt from deep power down mode.

– false: Disable wake-up timer interrupt from deep power down mode.

static inline void RTC_EnableAlarmTimerInterruptFromDPD(RTC_Type *base, bool enable)
Enable the alarm timer interrupt from deep power down mode.

Parameters
• base – RTC peripheral base address

• enable – Enable/Disable alarm timer interrupt from deep power down
mode.

– true: Enable alarm timer interrupt from deep power down mode.

– false: Disable alarm timer interrupt from deep power down mode.

static inline void RTC_EnableInterrupts(RTC_Type *base, uint32_t mask)
Enables the selected RTC interrupts.

Deprecated:
Do not use this function. It has been superceded by
RTC_EnableAlarmTimerInterruptFromDPDandRTC_EnableWakeUpTimerInterruptFromDPD

Parameters
• base – RTC peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration rtc_interrupt_enable_t

static inline void RTC_DisableInterrupts(RTC_Type *base, uint32_t mask)
Disables the selected RTC interrupts.

Deprecated:
Do not use this function. It has been superceded by
RTC_EnableAlarmTimerInterruptFromDPDandRTC_EnableWakeUpTimerInterruptFromDPD

Parameters
• base – RTC peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration rtc_interrupt_enable_t

static inline uint32_t RTC_GetEnabledInterrupts(RTC_Type *base)
Get the enabled RTC interrupts.

354 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

Deprecated:
Do not use this function. It will be deleted in next release version.

Parameters
• base – RTC peripheral base address

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
rtc_interrupt_enable_t

static inline uint32_t RTC_GetStatusFlags(RTC_Type *base)
Get the RTC status flags.

Parameters
• base – RTC peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
rtc_status_flags_t

static inline void RTC_ClearStatusFlags(RTC_Type *base, uint32_t mask)
Clear the RTC status flags.

Parameters
• base – RTC peripheral base address

• mask – The status flags to clear. This is a logical OR of members of the
enumeration rtc_status_flags_t

static inline void RTC_EnableTimer(RTC_Type *base, bool enable)
Enable the RTC timer counter.

After calling this function, the RTC inner counter increments once a secondwhen only using
the RTC seconds timer (1hz), while the RTC innerwake-up timer countdown once amillisec-
ondwhen using RTCwake-up timer (1KHZ) at the same time. RTC timer contain two timers,
one is the RTC normal seconds timer, the other one is the RTC wake-up timer, the RTC en-
able bit is the master switch for the whole RTC timer, so user can use the RTC seconds (1HZ)
timer independly, but they can’t use the RTC wake-up timer (1KHZ) independently.

Parameters
• base – RTC peripheral base address

• enable – Enable/Disable RTC Timer counter.

– true: Enable RTC Timer counter.

– false: Disable RTC Timer counter.

static inline void RTC_StartTimer(RTC_Type *base)
Starts the RTC time counter.

Deprecated:
Do not use this function. It has been superceded by RTC_EnableTimer

After calling this function, the timer counter increments once a second provided SR[TOF]
or SR[TIF] are not set.

Parameters
• base – RTC peripheral base address

2.45. RTC: Real Time Clock 355

MCUXpresso SDK Documentation, Release 25.09.00

static inline void RTC_StopTimer(RTC_Type *base)
Stops the RTC time counter.

Deprecated:
Do not use this function. It has been superceded by RTC_EnableTimer

RTC’s seconds register can be written to only when the timer is stopped.

Parameters
• base – RTC peripheral base address

FSL_RTC_DRIVER_VERSION
Version 2.2.0

enum _rtc_interrupt_enable
List of RTC interrupts.

Values:

enumerator kRTC_AlarmInterruptEnable
Alarm interrupt.

enumerator kRTC_WakeupInterruptEnable
Wake-up interrupt.

enum _rtc_status_flags
List of RTC flags.

Values:

enumerator kRTC_AlarmFlag
Alarm flag

enumerator kRTC_WakeupFlag
1kHz wake-up timer flag

typedef enum _rtc_interrupt_enable rtc_interrupt_enable_t
List of RTC interrupts.

typedef enum _rtc_status_flags rtc_status_flags_t
List of RTC flags.

typedef struct _rtc_datetime rtc_datetime_t
Structure is used to hold the date and time.

static inline void RTC_SetSecondsTimerMatch(RTC_Type *base, uint32_t matchValue)
Set the RTC seconds timer (1HZ) MATCH value.

Parameters
• base – RTC peripheral base address

• matchValue – The value to be set into the RTC MATCH register

static inline uint32_t RTC_GetSecondsTimerMatch(RTC_Type *base)
Read actual RTC seconds timer (1HZ) MATCH value.

Parameters
• base – RTC peripheral base address

Returns
The actual RTC seconds timer (1HZ) MATCH value.

356 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

static inline void RTC_SetSecondsTimerCount(RTC_Type *base, uint32_t countValue)
Set the RTC seconds timer (1HZ) COUNT value.

Parameters
• base – RTC peripheral base address

• countValue – The value to be loaded into the RTC COUNT register

static inline uint32_t RTC_GetSecondsTimerCount(RTC_Type *base)
Read the actual RTC seconds timer (1HZ) COUNT value.

Parameters
• base – RTC peripheral base address

Returns
The actual RTC seconds timer (1HZ) COUNT value.

static inline void RTC_SetWakeupCount(RTC_Type *base, uint16_t wakeupValue)
Enable the RTC wake-up timer (1KHZ) and set countdown value to the RTC WAKE register.

Parameters
• base – RTC peripheral base address

• wakeupValue – The value to be loaded into the WAKE register in RTC wake-
up timer (1KHZ).

static inline uint16_t RTC_GetWakeupCount(RTC_Type *base)
Read the actual value from the WAKE register value in RTC wake-up timer (1KHZ)

Read the WAKE register twice and compare the result, if the value match,the time can be
used.

Parameters
• base – RTC peripheral base address

Returns
The actual value of the WAKE register value in RTC wake-up timer (1KHZ).

static inline void RTC_Reset(RTC_Type *base)
Perform a software reset on the RTC module.

This resets all RTC registers to their reset value. The bit is cleared by software explicitly
clearing it.

Parameters
• base – RTC peripheral base address

struct _rtc_datetime
#include <fsl_rtc.h> Structure is used to hold the date and time.

Public Members

uint16_t year
Range from 1970 to 2099.

uint8_t month
Range from 1 to 12.

uint8_t day
Range from 1 to 31 (depending on month).

2.45. RTC: Real Time Clock 357

MCUXpresso SDK Documentation, Release 25.09.00

uint8_t hour
Range from 0 to 23.

uint8_t minute
Range from 0 to 59.

uint8_t second
Range from 0 to 59.

2.46 SCTimer: SCTimer/PWM (SCT)

status_t SCTIMER_Init(SCT_Type *base, const sctimer_config_t *config)
Ungates the SCTimer clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the SCTimer
driver.

Parameters
• base – SCTimer peripheral base address

• config – Pointer to the user configuration structure.

Returns
kStatus_Success indicates success; Else indicates failure.

void SCTIMER_Deinit(SCT_Type *base)
Gates the SCTimer clock.

Parameters
• base – SCTimer peripheral base address

void SCTIMER_GetDefaultConfig(sctimer_config_t *config)
Fills in the SCTimer configuration structure with the default settings.

The default values are:

config->enableCounterUnify = true;
config->clockMode = kSCTIMER_System_ClockMode;
config->clockSelect = kSCTIMER_Clock_On_Rise_Input_0;
config->enableBidirection_l = false;
config->enableBidirection_h = false;
config->prescale_l = 0U;
config->prescale_h = 0U;
config->outInitState = 0U;
config->inputsync = 0xFU;

Parameters
• config – Pointer to the user configuration structure.

status_t SCTIMER_SetupPwm(SCT_Type *base, const sctimer_pwm_signal_param_t
*pwmParams, sctimer_pwm_mode_tmode, uint32_t
pwmFreq_Hz, uint32_t srcClock_Hz, uint32_t *event)

Configures the PWM signal parameters.

Call this function to configure the PWM signal period, mode, duty cycle, and edge. This
function will create 2 events; one of the events will trigger on match with the pulse value
and the other will trigger when the counter matches the PWM period. The PWM period

358 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

event is also used as a limit event to reset the counter or change direction. Both events
are enabled for the same state. The state number can be retrieved by calling the function
SCTIMER_GetCurrentStateNumber(). The counter is set to operate as one 32-bit counter
(unify bit is set to 1). The counter operates in bi-directionalmodewhen generating a center-
aligned PWM.

Note: When setting PWM output from multiple output pins, they all should use the same
PWMmode i.e all PWM’s should be either edge-aligned or center-aligned. When using this
API, the PWM signal frequency of all the initialized channels must be the same. Other-
wise all the initialized channels’ PWM signal frequency is equal to the last call to the API’s
pwmFreq_Hz.

Parameters
• base – SCTimer peripheral base address

• pwmParams – PWM parameters to configure the output

• mode – PWM operation mode, options available in enumeration sc-
timer_pwm_mode_t

• pwmFreq_Hz – PWM signal frequency in Hz

• srcClock_Hz – SCTimer counter clock in Hz

• event – Pointer to a variablewhere the PWMperiod event number is stored

Returns
kStatus_Success on success kStatus_Fail If we have hit the limit in terms of
number of events created or if an incorrect PWM dutycylce is passed in.

void SCTIMER_UpdatePwmDutycycle(SCT_Type *base, sctimer_out_t output, uint8_t
dutyCyclePercent, uint32_t event)

Updates the duty cycle of an active PWM signal.

Before calling this function, the counter is set to operate as one 32-bit counter (unify bit is
set to 1).

Parameters
• base – SCTimer peripheral base address

• output – The output to configure

• dutyCyclePercent – New PWM pulse width; the value should be between 1
to 100

• event – Event number associated with this PWM signal. This was returned
to the user by the function SCTIMER_SetupPwm().

static inline void SCTIMER_EnableInterrupts(SCT_Type *base, uint32_t mask)
Enables the selected SCTimer interrupts.

Parameters
• base – SCTimer peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration sctimer_interrupt_enable_t

static inline void SCTIMER_DisableInterrupts(SCT_Type *base, uint32_t mask)
Disables the selected SCTimer interrupts.

Parameters
• base – SCTimer peripheral base address

2.46. SCTimer: SCTimer/PWM (SCT) 359

MCUXpresso SDK Documentation, Release 25.09.00

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration sctimer_interrupt_enable_t

static inline uint32_t SCTIMER_GetEnabledInterrupts(SCT_Type *base)
Gets the enabled SCTimer interrupts.

Parameters
• base – SCTimer peripheral base address

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
sctimer_interrupt_enable_t

static inline uint32_t SCTIMER_GetStatusFlags(SCT_Type *base)
Gets the SCTimer status flags.

Parameters
• base – SCTimer peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration sc-
timer_status_flags_t

static inline void SCTIMER_ClearStatusFlags(SCT_Type *base, uint32_t mask)
Clears the SCTimer status flags.

Parameters
• base – SCTimer peripheral base address

• mask – The status flags to clear. This is a logical OR of members of the
enumeration sctimer_status_flags_t

static inline void SCTIMER_StartTimer(SCT_Type *base, uint32_t countertoStart)
Starts the SCTimer counter.

Note: In 16-bit mode, we can enable both Counter_L and Counter_H, In 32-bit mode, we
only can select Counter_U.

Parameters
• base – SCTimer peripheral base address

• countertoStart – The SCTimer counters to enable. This is a logical OR of
members of the enumeration sctimer_counter_t.

static inline void SCTIMER_StopTimer(SCT_Type *base, uint32_t countertoStop)
Halts the SCTimer counter.

Parameters
• base – SCTimer peripheral base address

• countertoStop – The SCTimer counters to stop. This is a logical OR of mem-
bers of the enumeration sctimer_counter_t.

status_t SCTIMER_CreateAndScheduleEvent(SCT_Type *base, sctimer_event_t howToMonitor,
uint32_t matchValue, uint32_t whichIO,
sctimer_counter_t whichCounter, uint32_t *event)

Create an event that is triggered on a match or IO and schedule in current state.

This function will configure an event using the options provided by the user. If the event
type uses the counter match, then the function will set the user provided match value into
a match register and put this match register number into the event control register. The

360 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

event is enabled for the current state and the event number is increased by one at the end.
The function returns the event number; this event number can be used to configure actions
to be done when this event is triggered.

Parameters
• base – SCTimer peripheral base address

• howToMonitor – Event type; options are available in the enumeration sc-
timer_interrupt_enable_t

• matchValue – Thematch value that will be programmed to amatch register

• whichIO – The input or output that will be involved in event triggering.
This field is ignored if the event type is “match only”

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

• event – Pointer to a variable where the new event number is stored

Returns
kStatus_Success on success kStatus_Error if we have hit the limit in terms of
number of events created or if we have reached the limit in terms of number
of match registers

void SCTIMER_ScheduleEvent(SCT_Type *base, uint32_t event)
Enable an event in the current state.

This function will allow the event passed in to trigger in the current state. The event
must be created earlier by either calling the function SCTIMER_SetupPwm() or function
SCTIMER_CreateAndScheduleEvent() .

Parameters
• base – SCTimer peripheral base address

• event – Event number to enable in the current state

status_t SCTIMER_IncreaseState(SCT_Type *base)
Increase the state by 1.

All future events created by calling the function SCTIMER_ScheduleEvent() will be enabled
in this new state.

Parameters
• base – SCTimer peripheral base address

Returns
kStatus_Success on success kStatus_Error if we have hit the limit in terms of
states used

uint32_t SCTIMER_GetCurrentState(SCT_Type *base)
Provides the current state.

User can use this to set the next state by calling the function SC-
TIMER_SetupNextStateAction().

Parameters
• base – SCTimer peripheral base address

Returns
The current state

static inline void SCTIMER_SetCounterState(SCT_Type *base, sctimer_counter_t whichCounter,
uint32_t state)

2.46. SCTimer: SCTimer/PWM (SCT) 361

MCUXpresso SDK Documentation, Release 25.09.00

Set the counter current state.

The function is to set the state variable bit field of STATE register. Writing to the STATE_L,
STATE_H, or unified register is only allowed when the corresponding counter is halted
(HALT bits are set to 1 in the CTRL register).

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

• state – The counter current state number (only support range from 0~31).

static inline uint16_t SCTIMER_GetCounterState(SCT_Type *base, sctimer_counter_t
whichCounter)

Get the counter current state value.

The function is to get the state variable bit field of STATE register.

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

Returns
The the counter current state value.

status_t SCTIMER_SetupCaptureAction(SCT_Type *base, sctimer_counter_t whichCounter,
uint32_t *captureRegister, uint32_t event)

Setup capture of the counter value on trigger of a selected event.

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

• captureRegister – Pointer to a variable where the capture register number
will be returned. User can read the captured value from this registerwhen
the specified event is triggered.

• event – Event number that will trigger the capture

Returns
kStatus_Success on success kStatus_Error if we have hit the limit in terms of
number of match/capture registers available

void SCTIMER_SetCallback(SCT_Type *base, sctimer_event_callback_t callback, uint32_t event)
Receive noticification when the event trigger an interrupt.

If the interrupt for the event is enabled by the user, then a callback can be registered which
will be invoked when the event is triggered

Parameters
• base – SCTimer peripheral base address

• event – Event number that will trigger the interrupt

• callback – Function to invoke when the event is triggered

362 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

static inline void SCTIMER_SetupStateLdMethodAction(SCT_Type *base, uint32_t event, bool
fgLoad)

Change the load method of transition to the specified state.

Change the loadmethod of transition, it will be triggered by the event number that is passed
in by the user.

Parameters
• base – SCTimer peripheral base address

• event – Event number that will change the method to trigger the state tran-
sition

• fgLoad – The method to load highest-numbered event occurring for that
state to the STATE register.

– true: Load the STATEV value to STATE when the event occurs to be the
next state.

– false: Add the STATEV value to STATE when the event occurs to be the
next state.

static inline void SCTIMER_SetupNextStateActionwithLdMethod(SCT_Type *base, uint32_t
nextState, uint32_t event, bool
fgLoad)

Transition to the specified state with Load method.

This transition will be triggered by the event number that is passed in by the user, the
method decide how to load the highest-numbered event occurring for that state to the
STATE register.

Parameters
• base – SCTimer peripheral base address

• nextState – The next state SCTimer will transition to

• event – Event number that will trigger the state transition

• fgLoad – Themethod to load the highest-numbered event occurring for that
state to the STATE register.

– true: Load the STATEV value to STATE when the event occurs to be the
next state.

– false: Add the STATEV value to STATE when the event occurs to be the
next state.

static inline void SCTIMER_SetupNextStateAction(SCT_Type *base, uint32_t nextState, uint32_t
event)

Transition to the specified state.

Deprecated:
Do not use this function. It has been superceded by SC-
TIMER_SetupNextStateActionwithLdMethod

This transition will be triggered by the event number that is passed in by the user.

Parameters
• base – SCTimer peripheral base address

• nextState – The next state SCTimer will transition to

• event – Event number that will trigger the state transition

2.46. SCTimer: SCTimer/PWM (SCT) 363

MCUXpresso SDK Documentation, Release 25.09.00

static inline void SCTIMER_SetupEventActiveDirection(SCT_Type *base,
sctimer_event_active_direction_t
activeDirection, uint32_t event)

Setup event active direction when the counters are operating in BIDIR mode.

Parameters
• base – SCTimer peripheral base address

• activeDirection – Event generation active direction, see sc-
timer_event_active_direction_t.

• event – Event number that need setup the active direction.

static inline void SCTIMER_SetupOutputSetAction(SCT_Type *base, uint32_t whichIO, uint32_t
event)

Set the Output.

This output will be set when the event number that is passed in by the user is triggered.

Parameters
• base – SCTimer peripheral base address

• whichIO – The output to set

• event – Event number that will trigger the output change

static inline void SCTIMER_SetupOutputClearAction(SCT_Type *base, uint32_t whichIO,
uint32_t event)

Clear the Output.

This output will be clearedwhen the event number that is passed in by the user is triggered.

Parameters
• base – SCTimer peripheral base address

• whichIO – The output to clear

• event – Event number that will trigger the output change

void SCTIMER_SetupOutputToggleAction(SCT_Type *base, uint32_t whichIO, uint32_t event)
Toggle the output level.

This change in the output level is triggered by the event number that is passed in by the
user.

Parameters
• base – SCTimer peripheral base address

• whichIO – The output to toggle

• event – Event number that will trigger the output change

static inline void SCTIMER_SetupCounterLimitAction(SCT_Type *base, sctimer_counter_t
whichCounter, uint32_t event)

Limit the running counter.

The counter is limited when the event number that is passed in by the user is triggered.

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

• event – Event number that will trigger the counter to be limited

364 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

static inline void SCTIMER_SetupCounterStopAction(SCT_Type *base, sctimer_counter_t
whichCounter, uint32_t event)

Stop the running counter.

The counter is stopped when the event number that is passed in by the user is triggered.

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

• event – Event number that will trigger the counter to be stopped

static inline void SCTIMER_SetupCounterStartAction(SCT_Type *base, sctimer_counter_t
whichCounter, uint32_t event)

Re-start the stopped counter.

The counter will re-start when the event number that is passed in by the user is triggered.

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

• event – Event number that will trigger the counter to re-start

static inline void SCTIMER_SetupCounterHaltAction(SCT_Type *base, sctimer_counter_t
whichCounter, uint32_t event)

Halt the running counter.

The counter is disabled (halted) when the event number that is passed in by the user is
triggered. When the counter is halted, all further events are disabled. The HALT condition
can only be removed by calling the SCTIMER_StartTimer() function.

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

• event – Event number that will trigger the counter to be halted

static inline void SCTIMER_SetupDmaTriggerAction(SCT_Type *base, uint32_t dmaNumber,
uint32_t event)

Generate a DMA request.

DMA request will be triggered by the event number that is passed in by the user.

Parameters
• base – SCTimer peripheral base address

• dmaNumber – The DMA request to generate

• event – Event number that will trigger the DMA request

static inline void SCTIMER_SetCOUNTValue(SCT_Type *base, sctimer_counter_t whichCounter,
uint32_t value)

Set the value of counter.

The function is to set the value of Count register, Writing to the COUNT_L, COUNT_H, or
unified register is only allowed when the corresponding counter is halted (HALT bits are
set to 1 in the CTRL register).

Parameters

2.46. SCTimer: SCTimer/PWM (SCT) 365

MCUXpresso SDK Documentation, Release 25.09.00

• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

• value – the counter value update to the COUNT register.

static inline uint32_t SCTIMER_GetCOUNTValue(SCT_Type *base, sctimer_counter_t
whichCounter)

Get the value of counter.

The function is to read the value of Count register, software can read the counter registers
at any time..

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

Returns
The value of counter selected.

static inline void SCTIMER_SetEventInState(SCT_Type *base, uint32_t event, uint32_t state)
Set the state mask bit field of EV_STATE register.

Parameters
• base – SCTimer peripheral base address

• event – The EV_STATE register be set.

• state – The state value in which the event is enabled to occur.

static inline void SCTIMER_ClearEventInState(SCT_Type *base, uint32_t event, uint32_t state)
Clear the state mask bit field of EV_STATE register.

Parameters
• base – SCTimer peripheral base address

• event – The EV_STATE register be clear.

• state – The state value in which the event is disabled to occur.

static inline bool SCTIMER_GetEventInState(SCT_Type *base, uint32_t event, uint32_t state)
Get the state mask bit field of EV_STATE register.

Note: This function is to check whether the event is enabled in a specific state.

Parameters
• base – SCTimer peripheral base address

• event – The EV_STATE register be read.

• state – The state value.

Returns
The the state mask bit field of EV_STATE register.

• true: The event is enable in state.

• false: The event is disable in state.

366 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t SCTIMER_GetCaptureValue(SCT_Type *base, sctimer_counter_t
whichCounter, uint8_t capChannel)

Get the value of capture register.

This function returns the captured value upon occurrence of the events selected by the
corresponding Capture Control registers occurred.

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

• capChannel – SCTimer capture register of capture channel.

Returns
The SCTimer counter value at which this register was last captured.

void SCTIMER_EventHandleIRQ(SCT_Type *base)
SCTimer interrupt handler.

Parameters
• base – SCTimer peripheral base address.

FSL_SCTIMER_DRIVER_VERSION
Version

enum _sctimer_pwm_mode
SCTimer PWM operation modes.

Values:

enumerator kSCTIMER_EdgeAlignedPwm
Edge-aligned PWM

enumerator kSCTIMER_CenterAlignedPwm
Center-aligned PWM

enum _sctimer_counter
SCTimer counters type.

Values:

enumerator kSCTIMER_Counter_L
16-bit Low counter.

enumerator kSCTIMER_Counter_H
16-bit High counter.

enumerator kSCTIMER_Counter_U
32-bit Unified counter.

enum _sctimer_input
List of SCTimer input pins.

Values:

enumerator kSCTIMER_Input_0
SCTIMER input 0

enumerator kSCTIMER_Input_1
SCTIMER input 1

2.46. SCTimer: SCTimer/PWM (SCT) 367

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSCTIMER_Input_2
SCTIMER input 2

enumerator kSCTIMER_Input_3
SCTIMER input 3

enumerator kSCTIMER_Input_4
SCTIMER input 4

enumerator kSCTIMER_Input_5
SCTIMER input 5

enumerator kSCTIMER_Input_6
SCTIMER input 6

enumerator kSCTIMER_Input_7
SCTIMER input 7

enum _sctimer_out
List of SCTimer output pins.

Values:

enumerator kSCTIMER_Out_0
SCTIMER output 0

enumerator kSCTIMER_Out_1
SCTIMER output 1

enumerator kSCTIMER_Out_2
SCTIMER output 2

enumerator kSCTIMER_Out_3
SCTIMER output 3

enumerator kSCTIMER_Out_4
SCTIMER output 4

enumerator kSCTIMER_Out_5
SCTIMER output 5

enumerator kSCTIMER_Out_6
SCTIMER output 6

enumerator kSCTIMER_Out_7
SCTIMER output 7

enumerator kSCTIMER_Out_8
SCTIMER output 8

enumerator kSCTIMER_Out_9
SCTIMER output 9

enum _sctimer_pwm_level_select
SCTimer PWM output pulse mode: high-true, low-true or no output.

Values:

enumerator kSCTIMER_LowTrue
Low true pulses

enumerator kSCTIMER_HighTrue
High true pulses

368 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enum _sctimer_clock_mode
SCTimer clock mode options.

Values:

enumerator kSCTIMER_System_ClockMode
System Clock Mode

enumerator kSCTIMER_Sampled_ClockMode
Sampled System Clock Mode

enumerator kSCTIMER_Input_ClockMode
SCT Input Clock Mode

enumerator kSCTIMER_Asynchronous_ClockMode
Asynchronous Mode

enum _sctimer_clock_select
SCTimer clock select options.

Values:

enumerator kSCTIMER_Clock_On_Rise_Input_0
Rising edges on input 0

enumerator kSCTIMER_Clock_On_Fall_Input_0
Falling edges on input 0

enumerator kSCTIMER_Clock_On_Rise_Input_1
Rising edges on input 1

enumerator kSCTIMER_Clock_On_Fall_Input_1
Falling edges on input 1

enumerator kSCTIMER_Clock_On_Rise_Input_2
Rising edges on input 2

enumerator kSCTIMER_Clock_On_Fall_Input_2
Falling edges on input 2

enumerator kSCTIMER_Clock_On_Rise_Input_3
Rising edges on input 3

enumerator kSCTIMER_Clock_On_Fall_Input_3
Falling edges on input 3

enumerator kSCTIMER_Clock_On_Rise_Input_4
Rising edges on input 4

enumerator kSCTIMER_Clock_On_Fall_Input_4
Falling edges on input 4

enumerator kSCTIMER_Clock_On_Rise_Input_5
Rising edges on input 5

enumerator kSCTIMER_Clock_On_Fall_Input_5
Falling edges on input 5

enumerator kSCTIMER_Clock_On_Rise_Input_6
Rising edges on input 6

enumerator kSCTIMER_Clock_On_Fall_Input_6
Falling edges on input 6

2.46. SCTimer: SCTimer/PWM (SCT) 369

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSCTIMER_Clock_On_Rise_Input_7
Rising edges on input 7

enumerator kSCTIMER_Clock_On_Fall_Input_7
Falling edges on input 7

enum _sctimer_conflict_resolution
SCTimer output conflict resolution options.

Specifies what action should be taken if multiple events dictate that a given output should
be both set and cleared at the same time

Values:

enumerator kSCTIMER_ResolveNone
No change

enumerator kSCTIMER_ResolveSet
Set output

enumerator kSCTIMER_ResolveClear
Clear output

enumerator kSCTIMER_ResolveToggle
Toggle output

enum _sctimer_event_active_direction
List of SCTimer event generation active direction when the counters are operating in BIDIR
mode.

Values:

enumerator kSCTIMER_ActiveIndependent
This event is triggered regardless of the count direction.

enumerator kSCTIMER_ActiveInCountUp
This event is triggered only during up-counting when BIDIR = 1.

enumerator kSCTIMER_ActiveInCountDown
This event is triggered only during down-counting when BIDIR = 1.

enum _sctimer_event
List of SCTimer event types.

Values:

enumerator kSCTIMER_InputLowOrMatchEvent

enumerator kSCTIMER_InputRiseOrMatchEvent

enumerator kSCTIMER_InputFallOrMatchEvent

enumerator kSCTIMER_InputHighOrMatchEvent

enumerator kSCTIMER_MatchEventOnly

enumerator kSCTIMER_InputLowEvent

enumerator kSCTIMER_InputRiseEvent

enumerator kSCTIMER_InputFallEvent

enumerator kSCTIMER_InputHighEvent

enumerator kSCTIMER_InputLowAndMatchEvent

370 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSCTIMER_InputRiseAndMatchEvent

enumerator kSCTIMER_InputFallAndMatchEvent

enumerator kSCTIMER_InputHighAndMatchEvent

enumerator kSCTIMER_OutputLowOrMatchEvent

enumerator kSCTIMER_OutputRiseOrMatchEvent

enumerator kSCTIMER_OutputFallOrMatchEvent

enumerator kSCTIMER_OutputHighOrMatchEvent

enumerator kSCTIMER_OutputLowEvent

enumerator kSCTIMER_OutputRiseEvent

enumerator kSCTIMER_OutputFallEvent

enumerator kSCTIMER_OutputHighEvent

enumerator kSCTIMER_OutputLowAndMatchEvent

enumerator kSCTIMER_OutputRiseAndMatchEvent

enumerator kSCTIMER_OutputFallAndMatchEvent

enumerator kSCTIMER_OutputHighAndMatchEvent

enum _sctimer_interrupt_enable
List of SCTimer interrupts.

Values:

enumerator kSCTIMER_Event0InterruptEnable
Event 0 interrupt

enumerator kSCTIMER_Event1InterruptEnable
Event 1 interrupt

enumerator kSCTIMER_Event2InterruptEnable
Event 2 interrupt

enumerator kSCTIMER_Event3InterruptEnable
Event 3 interrupt

enumerator kSCTIMER_Event4InterruptEnable
Event 4 interrupt

enumerator kSCTIMER_Event5InterruptEnable
Event 5 interrupt

enumerator kSCTIMER_Event6InterruptEnable
Event 6 interrupt

enumerator kSCTIMER_Event7InterruptEnable
Event 7 interrupt

enumerator kSCTIMER_Event8InterruptEnable
Event 8 interrupt

enumerator kSCTIMER_Event9InterruptEnable
Event 9 interrupt

2.46. SCTimer: SCTimer/PWM (SCT) 371

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSCTIMER_Event10InterruptEnable
Event 10 interrupt

enumerator kSCTIMER_Event11InterruptEnable
Event 11 interrupt

enumerator kSCTIMER_Event12InterruptEnable
Event 12 interrupt

enum _sctimer_status_flags
List of SCTimer flags.

Values:

enumerator kSCTIMER_Event0Flag
Event 0 Flag

enumerator kSCTIMER_Event1Flag
Event 1 Flag

enumerator kSCTIMER_Event2Flag
Event 2 Flag

enumerator kSCTIMER_Event3Flag
Event 3 Flag

enumerator kSCTIMER_Event4Flag
Event 4 Flag

enumerator kSCTIMER_Event5Flag
Event 5 Flag

enumerator kSCTIMER_Event6Flag
Event 6 Flag

enumerator kSCTIMER_Event7Flag
Event 7 Flag

enumerator kSCTIMER_Event8Flag
Event 8 Flag

enumerator kSCTIMER_Event9Flag
Event 9 Flag

enumerator kSCTIMER_Event10Flag
Event 10 Flag

enumerator kSCTIMER_Event11Flag
Event 11 Flag

enumerator kSCTIMER_Event12Flag
Event 12 Flag

enumerator kSCTIMER_BusErrorLFlag
Bus error due to write when L counter was not halted

enumerator kSCTIMER_BusErrorHFlag
Bus error due to write when H counter was not halted

typedef enum _sctimer_pwm_mode sctimer_pwm_mode_t
SCTimer PWM operation modes.

372 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _sctimer_counter sctimer_counter_t
SCTimer counters type.

typedef enum _sctimer_input sctimer_input_t
List of SCTimer input pins.

typedef enum _sctimer_out sctimer_out_t
List of SCTimer output pins.

typedef enum _sctimer_pwm_level_select sctimer_pwm_level_select_t
SCTimer PWM output pulse mode: high-true, low-true or no output.

typedef struct _sctimer_pwm_signal_param sctimer_pwm_signal_param_t
Options to configure a SCTimer PWM signal.

typedef enum _sctimer_clock_mode sctimer_clock_mode_t
SCTimer clock mode options.

typedef enum _sctimer_clock_select sctimer_clock_select_t
SCTimer clock select options.

typedef enum _sctimer_conflict_resolution sctimer_conflict_resolution_t
SCTimer output conflict resolution options.

Specifies what action should be taken if multiple events dictate that a given output should
be both set and cleared at the same time

typedef enum _sctimer_event_active_direction sctimer_event_active_direction_t
List of SCTimer event generation active direction when the counters are operating in BIDIR
mode.

typedef enum _sctimer_event sctimer_event_t
List of SCTimer event types.

typedef void (*sctimer_event_callback_t)(void)
SCTimer callback typedef.

typedef enum _sctimer_interrupt_enable sctimer_interrupt_enable_t
List of SCTimer interrupts.

typedef enum _sctimer_status_flags sctimer_status_flags_t
List of SCTimer flags.

typedef struct _sctimer_config sctimer_config_t
SCTimer configuration structure.

This structure holds the configuration settings for the SCTimer peripheral. To initialize this
structure to reasonable defaults, call the SCTMR_GetDefaultConfig() function and pass a
pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

SCT_EV_STATE_STATEMSKn(x)

struct _sctimer_pwm_signal_param
#include <fsl_sctimer.h> Options to configure a SCTimer PWM signal.

Public Members

sctimer_out_t output
The output pin to use to generate the PWM signal

2.46. SCTimer: SCTimer/PWM (SCT) 373

MCUXpresso SDK Documentation, Release 25.09.00

sctimer_pwm_level_select_t level
PWM output active level select.

uint8_t dutyCyclePercent
PWMpulsewidth, value should be between 0 to 100 0 = always inactive signal (0% duty
cycle) 100 = always active signal (100% duty cycle).

struct _sctimer_config
#include <fsl_sctimer.h> SCTimer configuration structure.

This structure holds the configuration settings for the SCTimer peripheral. To initialize this
structure to reasonable defaults, call the SCTMR_GetDefaultConfig() function and pass a
pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

Public Members

bool enableCounterUnify
true: SCT operates as a unified 32-bit counter; false: SCT operates as two 16-bit coun-
ters. User can use the 16-bit low counter and the 16-bit high counters at the same time;
for Hardware limit, user can not use unified 32-bit counter and any 16-bit low/high
counter at the same time.

sctimer_clock_mode_t clockMode
SCT clock mode value

sctimer_clock_select_t clockSelect
SCT clock select value

bool enableBidirection_l
true: Up-down count mode for the L or unified counter false: Up count mode only for
the L or unified counter

bool enableBidirection_h
true: Up-down count mode for the H or unified counter false: Up count mode only for
the H or unified counter. This field is used only if the enableCounterUnify is set to false

uint8_t prescale_l
Prescale value to produce the L or unified counter clock

uint8_t prescale_h
Prescale value to produce the H counter clock. This field is used only if the enable-
CounterUnify is set to false

uint8_t outInitState
Defines the initial output value

uint8_t inputsync
SCT INSYNC value, INSYNC field in the CONFIG register, from bit9 to bit 16. it is used to
define synchronization for input N: bit 9 = input 0 bit 10 = input 1 bit 11 = input 2 bit 12
= input 3 All other bits are reserved (bit13 ~bit 16). HowUser to set the the value for the
member inputsync. IE: delay for input0, and input 1, bypasses for input 2 and input
3 MACRO definition in user level. #define INPUTSYNC0 (0U) #define INPUTSYNC1 (1U)
#define INPUTSYNC2 (2U) #define INPUTSYNC3 (3U) User Code. sctimerInfo.inputsync
= (1 « INPUTSYNC2) | (1 « INPUTSYNC3);

2.47 skboot_authenticate

374 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enum _skboot_status
SKBOOT return status.

Values:

enumerator kStatus_SKBOOT_Success
SKBOOT return success status.

enumerator kStatus_SKBOOT_Fail
SKBOOT return fail status.

enumerator kStatus_SKBOOT_InvalidArgument
SKBOOT return invalid argument status.

enumerator kStatus_SKBOOT_KeyStoreMarkerInvalid
SKBOOT return Keystore invalid Marker status.

enumerator kStatus_SKBOOT_HashcryptFinishedWithStatusSuccess
SKBOOT return Hashcrypt finished with the success status.

enumerator kStatus_SKBOOT_HashcryptFinishedWithStatusFail
SKBOOT return Hashcrypt finished with the fail status.

enum _secure_bool
Secure bool flag.

Values:

enumerator kSECURE_TRUE
Secure true flag.

enumerator kSECURE_FALSE
Secure false flag.

enumerator kSECURE_CALLPROTECT_SECURITY_FLAGS
Secure call protect the security flag.

enumerator kSECURE_CALLPROTECT_IS_APP_READY
Secure call protect the app is ready flag.

enumerator kSECURE_TRACKER_VERIFIED
Secure tracker verified flag.

typedef enum _skboot_status skboot_status_t
SKBOOT return status.

typedef enum _secure_bool secure_bool_t
Secure bool flag.

skboot_status_t skboot_authenticate(const uint8_t *imageStartAddr, secure_bool_t
*isSignVerified)

Authenticate entry function with ARENA allocator init.

This is called by ROM boot or by ROM API g_skbootAuthenticateInterface

void HASH_IRQHandler(void)
Interface for image authentication API.

2.48 SPI: Serial Peripheral Interface Driver

2.49 SPI DMA Driver

2.48. SPI: Serial Peripheral Interface Driver 375

MCUXpresso SDK Documentation, Release 25.09.00

status_t SPI_MasterTransferCreateHandleDMA(SPI_Type *base, spi_dma_handle_t *handle,
spi_dma_callback_t callback, void *userData,
dma_handle_t *txHandle, dma_handle_t
*rxHandle)

Initialize the SPI master DMA handle.

This function initializes the SPI master DMA handle which can be used for other SPI master
transactional APIs. Usually, for a specified SPI instance, user need only call this API once to
get the initialized handle.

Parameters
• base – SPI peripheral base address.

• handle – SPI handle pointer.

• callback – User callback function called at the end of a transfer.

• userData – User data for callback.

• txHandle – DMA handle pointer for SPI Tx, the handle shall be static allo-
cated by users.

• rxHandle – DMA handle pointer for SPI Rx, the handle shall be static allo-
cated by users.

status_t SPI_MasterTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_transfer_t
*xfer)

Perform a non-blocking SPI transfer using DMA.

Note: This interface returned immediately after transfer initiates, users should call
SPI_GetTransferStatus to poll the transfer status to check whether SPI transfer finished.

Parameters
• base – SPI peripheral base address.

• handle – SPI DMA handle pointer.

• xfer – Pointer to dma transfer structure.

Return values
• kStatus_Success – Successfully start a transfer.

• kStatus_InvalidArgument – Input argument is invalid.

• kStatus_SPI_Busy – SPI is not idle, is running another transfer.

status_t SPI_MasterHalfDuplexTransferDMA(SPI_Type *base, spi_dma_handle_t *handle,
spi_half_duplex_transfer_t *xfer)

Transfers a block of data using a DMA method.

This function using polling way to do the first half transimission and using DMA way to do
the srcond half transimission, the transfer mechanism is half-duplex. When do the second
half transimission, code will return right away. When all data is transferred, the callback
function is called.

Parameters
• base – SPI base pointer

• handle – A pointer to the spi_master_dma_handle_t structure which stores
the transfer state.

• xfer – A pointer to the spi_half_duplex_transfer_t structure.

376 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

Returns
status of status_t.

static inline status_t SPI_SlaveTransferCreateHandleDMA(SPI_Type *base, spi_dma_handle_t
*handle, spi_dma_callback_t callback,
void *userData, dma_handle_t
*txHandle, dma_handle_t *rxHandle)

Initialize the SPI slave DMA handle.

This function initializes the SPI slave DMA handle which can be used for other SPI master
transactional APIs. Usually, for a specified SPI instance, user need only call this API once to
get the initialized handle.

Parameters
• base – SPI peripheral base address.

• handle – SPI handle pointer.

• callback – User callback function called at the end of a transfer.

• userData – User data for callback.

• txHandle – DMA handle pointer for SPI Tx, the handle shall be static allo-
cated by users.

• rxHandle – DMA handle pointer for SPI Rx, the handle shall be static allo-
cated by users.

static inline status_t SPI_SlaveTransferDMA(SPI_Type *base, spi_dma_handle_t *handle,
spi_transfer_t *xfer)

Perform a non-blocking SPI transfer using DMA.

Note: This interface returned immediately after transfer initiates, users should call
SPI_GetTransferStatus to poll the transfer status to check whether SPI transfer finished.

Parameters
• base – SPI peripheral base address.

• handle – SPI DMA handle pointer.

• xfer – Pointer to dma transfer structure.

Return values
• kStatus_Success – Successfully start a transfer.

• kStatus_InvalidArgument – Input argument is invalid.

• kStatus_SPI_Busy – SPI is not idle, is running another transfer.

void SPI_MasterTransferAbortDMA(SPI_Type *base, spi_dma_handle_t *handle)
Abort a SPI transfer using DMA.

Parameters
• base – SPI peripheral base address.

• handle – SPI DMA handle pointer.

status_t SPI_MasterTransferGetCountDMA(SPI_Type *base, spi_dma_handle_t *handle, size_t
*count)

Gets the master DMA transfered bytes.

This function gets the master DMA transfered bytes.

2.49. SPI DMA Driver 377

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• base – SPI peripheral base address.

• handle – A pointer to the spi_dma_handle_t structure which stores the
transfer state.

• count – A number of bytes transferred by the non-blocking transaction.

Returns
status of status_t.

static inline void SPI_SlaveTransferAbortDMA(SPI_Type *base, spi_dma_handle_t *handle)
Abort a SPI transfer using DMA.

Parameters
• base – SPI peripheral base address.

• handle – SPI DMA handle pointer.

static inline status_t SPI_SlaveTransferGetCountDMA(SPI_Type *base, spi_dma_handle_t
*handle, size_t *count)

Gets the slave DMA transfered bytes.

This function gets the slave DMA transfered bytes.

Parameters
• base – SPI peripheral base address.

• handle – A pointer to the spi_dma_handle_t structure which stores the
transfer state.

• count – A number of bytes transferred by the non-blocking transaction.

Returns
status of status_t.

FSL_SPI_DMA_DRIVER_VERSION
SPI DMA driver version.

typedef struct _spi_dma_handle spi_dma_handle_t

typedef void (*spi_dma_callback_t)(SPI_Type *base, spi_dma_handle_t *handle, status_t status,
void *userData)

SPI DMA callback called at the end of transfer.

struct _spi_dma_handle
#include <fsl_spi_dma.h> SPI DMA transfer handle, users should not touch the content of
the handle.

Public Members

SPI_Type *base
SPI base address

volatile bool txInProgress
Send transfer finished

volatile bool rxInProgress
Receive transfer finished

uint8_t bytesPerFrame
Bytes in a frame for SPI transfer

378 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

uint8_t lastwordBytes
The Bytes of lastword for master

uint16_t txDummy
The dummy data for TX.

uint32_t lastword
The last word for master TX.

dma_handle_t *txHandle
DMA handler for SPI send

dma_handle_t *rxHandle
DMA handler for SPI receive

spi_dma_callback_t callback
Callback for SPI DMA transfer

void *userData
User Data for SPI DMA callback

uint32_t state
Internal state of SPI DMA transfer

size_t transferSize
Bytes need to be transfer

uint32_t instance
Index of SPI instance

const uint8_t *txNextData
The pointer of next time tx data

size_t txRemainingBytes
lastwordBytes + txRemainingBytes is number of data to be send [in bytes]

uint8_t *rxNextData
The pointer of next time rx data

size_t rxRemainingBytes
Number of data to be received [in bytes]

bool isSlave
SPI work in slave mode.

2.50 SPI Driver

FSL_SPI_DRIVER_VERSION
SPI driver version.

enum _spi_xfer_option
SPI transfer option.

Values:

enumerator kSPI_FrameDelay
A delay may be inserted, defined in the DLY register.

enumerator kSPI_FrameAssert
SSEL will be deasserted at the end of a transfer

2.50. SPI Driver 379

MCUXpresso SDK Documentation, Release 25.09.00

enum _spi_shift_direction
SPI data shifter direction options.

Values:

enumerator kSPI_MsbFirst
Data transfers start with most significant bit.

enumerator kSPI_LsbFirst
Data transfers start with least significant bit.

enum _spi_clock_polarity
SPI clock polarity configuration.

Values:

enumerator kSPI_ClockPolarityActiveHigh
Active-high SPI clock (idles low).

enumerator kSPI_ClockPolarityActiveLow
Active-low SPI clock (idles high).

enum _spi_clock_phase
SPI clock phase configuration.

Values:

enumerator kSPI_ClockPhaseFirstEdge
First edge on SCK occurs at the middle of the first cycle of a data transfer.

enumerator kSPI_ClockPhaseSecondEdge
First edge on SCK occurs at the start of the first cycle of a data transfer.

enum _spi_txfifo_watermark
txFIFO watermark values

Values:

enumerator kSPI_TxFifo0
SPI tx watermark is empty

enumerator kSPI_TxFifo1
SPI tx watermark at 1 item

enumerator kSPI_TxFifo2
SPI tx watermark at 2 items

enumerator kSPI_TxFifo3
SPI tx watermark at 3 items

enumerator kSPI_TxFifo4
SPI tx watermark at 4 items

enumerator kSPI_TxFifo5
SPI tx watermark at 5 items

enumerator kSPI_TxFifo6
SPI tx watermark at 6 items

enumerator kSPI_TxFifo7
SPI tx watermark at 7 items

380 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enum _spi_rxfifo_watermark
rxFIFO watermark values

Values:

enumerator kSPI_RxFifo1
SPI rx watermark at 1 item

enumerator kSPI_RxFifo2
SPI rx watermark at 2 items

enumerator kSPI_RxFifo3
SPI rx watermark at 3 items

enumerator kSPI_RxFifo4
SPI rx watermark at 4 items

enumerator kSPI_RxFifo5
SPI rx watermark at 5 items

enumerator kSPI_RxFifo6
SPI rx watermark at 6 items

enumerator kSPI_RxFifo7
SPI rx watermark at 7 items

enumerator kSPI_RxFifo8
SPI rx watermark at 8 items

enum _spi_data_width
Transfer data width.

Values:

enumerator kSPI_Data4Bits
4 bits data width

enumerator kSPI_Data5Bits
5 bits data width

enumerator kSPI_Data6Bits
6 bits data width

enumerator kSPI_Data7Bits
7 bits data width

enumerator kSPI_Data8Bits
8 bits data width

enumerator kSPI_Data9Bits
9 bits data width

enumerator kSPI_Data10Bits
10 bits data width

enumerator kSPI_Data11Bits
11 bits data width

enumerator kSPI_Data12Bits
12 bits data width

enumerator kSPI_Data13Bits
13 bits data width

2.50. SPI Driver 381

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSPI_Data14Bits
14 bits data width

enumerator kSPI_Data15Bits
15 bits data width

enumerator kSPI_Data16Bits
16 bits data width

enum _spi_ssel
Slave select.

Values:

enumerator kSPI_Ssel0
Slave select 0

enumerator kSPI_Ssel1
Slave select 1

enumerator kSPI_Ssel2
Slave select 2

enumerator kSPI_Ssel3
Slave select 3

enum _spi_spol
ssel polarity

Values:

enumerator kSPI_Spol0ActiveHigh

enumerator kSPI_Spol1ActiveHigh

enumerator kSPI_Spol3ActiveHigh

enumerator kSPI_SpolActiveAllHigh

enumerator kSPI_SpolActiveAllLow

SPI transfer status.

Values:

enumerator kStatus_SPI_Busy
SPI bus is busy

enumerator kStatus_SPI_Idle
SPI is idle

enumerator kStatus_SPI_Error
SPI error

enumerator kStatus_SPI_BaudrateNotSupport
Baudrate is not support in current clock source

enumerator kStatus_SPI_Timeout
SPI timeout polling status flags.

enum _spi_interrupt_enable
SPI interrupt sources.

Values:

382 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSPI_RxLvlIrq
Rx level interrupt

enumerator kSPI_TxLvlIrq
Tx level interrupt

enum _spi_statusflags
SPI status flags.

Values:

enumerator kSPI_TxEmptyFlag
txFifo is empty

enumerator kSPI_TxNotFullFlag
txFifo is not full

enumerator kSPI_RxNotEmptyFlag
rxFIFO is not empty

enumerator kSPI_RxFullFlag
rxFIFO is full

typedef enum _spi_xfer_option spi_xfer_option_t
SPI transfer option.

typedef enum _spi_shift_direction spi_shift_direction_t
SPI data shifter direction options.

typedef enum _spi_clock_polarity spi_clock_polarity_t
SPI clock polarity configuration.

typedef enum _spi_clock_phase spi_clock_phase_t
SPI clock phase configuration.

typedef enum _spi_txfifo_watermark spi_txfifo_watermark_t
txFIFO watermark values

typedef enum _spi_rxfifo_watermark spi_rxfifo_watermark_t
rxFIFO watermark values

typedef enum _spi_data_width spi_data_width_t
Transfer data width.

typedef enum _spi_ssel spi_ssel_t
Slave select.

typedef enum _spi_spol spi_spol_t
ssel polarity

typedef struct _spi_delay_config spi_delay_config_t
SPI delay time configure structure. Note: The DLY register controls several programmable
delays related to SPI signalling, it stands for how many SPI clock time will be inserted. The
maxinun value of these delay time is 15.

typedef struct _spi_master_config spi_master_config_t
SPI master user configure structure.

typedef struct _spi_slave_config spi_slave_config_t
SPI slave user configure structure.

typedef struct _spi_transfer spi_transfer_t
SPI transfer structure.

2.50. SPI Driver 383

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _spi_half_duplex_transfer spi_half_duplex_transfer_t
SPI half-duplex(master only) transfer structure.

typedef struct _spi_config spi_config_t
Internal configuration structure used in ‘spi’ and ‘spi_dma’ driver.

typedef struct _spi_master_handle spi_master_handle_t
Master handle type.

typedef spi_master_handle_t spi_slave_handle_t
Slave handle type.

typedef void (*spi_master_callback_t)(SPI_Type *base, spi_master_handle_t *handle, status_t
status, void *userData)

SPI master callback for finished transmit.

typedef void (*spi_slave_callback_t)(SPI_Type *base, spi_slave_handle_t *handle, status_t status,
void *userData)

SPI slave callback for finished transmit.

typedef void (*flexcomm_spi_master_irq_handler_t)(SPI_Type *base, spi_master_handle_t
*handle)

Typedef for master interrupt handler.

typedef void (*flexcomm_spi_slave_irq_handler_t)(SPI_Type *base, spi_slave_handle_t *handle)
Typedef for slave interrupt handler.

volatile uint8_t s_dummyData[]
SPI default SSEL COUNT.

Global variable for dummy data value setting.

SPI_DUMMYDATA
SPI dummy transfer data, the data is sent while txBuff is NULL.

SPI_RETRY_TIMES
Retry times for waiting flag.

SPI_DATA(n)

SPI_CTRLMASK

SPI_ASSERTNUM_SSEL(n)

SPI_DEASSERTNUM_SSEL(n)

SPI_DEASSERT_ALL

SPI_FIFOWR_FLAGS_MASK

SPI_FIFOTRIG_TXLVL_GET(base)

SPI_FIFOTRIG_RXLVL_GET(base)

struct _spi_delay_config
#include <fsl_spi.h> SPI delay time configure structure. Note: The DLY register controls
several programmable delays related to SPI signalling, it stands for how many SPI clock
time will be inserted. The maxinun value of these delay time is 15.

384 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

uint8_t preDelay
Delay between SSEL assertion and the beginning of transfer.

uint8_t postDelay
Delay between the end of transfer and SSEL deassertion.

uint8_t frameDelay
Delay between frame to frame.

uint8_t transferDelay
Delay between transfer to transfer.

struct _spi_master_config
#include <fsl_spi.h> SPI master user configure structure.

Public Members

bool enableLoopback
Enable loopback for test purpose

bool enableMaster
Enable SPI at initialization time

spi_clock_polarity_t polarity
Clock polarity

spi_clock_phase_t phase
Clock phase

spi_shift_direction_t direction
MSB or LSB

uint32_t baudRate_Bps
Baud Rate for SPI in Hz

spi_data_width_t dataWidth
Width of the data

spi_ssel_t sselNum
Slave select number

spi_spol_t sselPol
Configure active CS polarity

uint8_t txWatermark
txFIFO watermark

uint8_t rxWatermark
rxFIFO watermark

spi_delay_config_t delayConfig
Delay configuration.

struct _spi_slave_config
#include <fsl_spi.h> SPI slave user configure structure.

2.50. SPI Driver 385

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

bool enableSlave
Enable SPI at initialization time

spi_clock_polarity_t polarity
Clock polarity

spi_clock_phase_t phase
Clock phase

spi_shift_direction_t direction
MSB or LSB

spi_data_width_t dataWidth
Width of the data

spi_spol_t sselPol
Configure active CS polarity

uint8_t txWatermark
txFIFO watermark

uint8_t rxWatermark
rxFIFO watermark

struct _spi_transfer
#include <fsl_spi.h> SPI transfer structure.

Public Members

const uint8_t *txData
Send buffer

uint8_t *rxData
Receive buffer

uint32_t configFlags
Additional option to control transfer, spi_xfer_option_t.

size_t dataSize
Transfer bytes

struct _spi_half_duplex_transfer
#include <fsl_spi.h> SPI half-duplex(master only) transfer structure.

Public Members

const uint8_t *txData
Send buffer

uint8_t *rxData
Receive buffer

size_t txDataSize
Transfer bytes for transmit

size_t rxDataSize
Transfer bytes

386 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t configFlags
Transfer configuration flags, spi_xfer_option_t.

bool isPcsAssertInTransfer
If PCS pin keep assert between transmit and receive. true for assert and false for de-
assert.

bool isTransmitFirst
True for transmit first and false for receive first.

struct _spi_config
#include <fsl_spi.h> Internal configuration structure used in ‘spi’ and ‘spi_dma’ driver.

struct _spi_master_handle
#include <fsl_spi.h> SPI transfer handle structure.

Public Members

const uint8_t *volatile txData
Transfer buffer

uint8_t *volatile rxData
Receive buffer

volatile size_t txRemainingBytes
Number of data to be transmitted [in bytes]

volatile size_t rxRemainingBytes
Number of data to be received [in bytes]

volatile int8_t toReceiveCount
The number of data expected to receive in data width. Since the received count and
sent count should be the same to complete the transfer, if the sent count is x and the
received count is y, toReceiveCount is x-y.

size_t totalByteCount
A number of transfer bytes

volatile uint32_t state
SPI internal state

spi_master_callback_t callback
SPI callback

void *userData
Callback parameter

uint8_t dataWidth
Width of the data [Valid values: 1 to 16]

uint8_t sselNum
Slave select number to be asserted when transferring data [Valid values: 0 to 3]

uint32_t configFlags
Additional option to control transfer

uint8_t txWatermark
txFIFO watermark

uint8_t rxWatermark
rxFIFO watermark

2.50. SPI Driver 387

MCUXpresso SDK Documentation, Release 25.09.00

2.51 SYSCTL: I2S bridging and signal sharing Configuration

void SYSCTL_Init(SYSCTL_Type *base)
SYSCTL initial.

Parameters
• base – Base address of the SYSCTL peripheral.

void SYSCTL_Deinit(SYSCTL_Type *base)
SYSCTL deinit.

Parameters
• base – Base address of the SYSCTL peripheral.

void SYSCTL_SetFlexcommShareSet(SYSCTL_Type *base, uint32_t flexCommIndex, uint32_t
sckSet, uint32_t wsSet, uint32_t dataInSet, uint32_t
dataOutSet)

SYSCTL share set configure for flexcomm.

Parameters
• base – Base address of the SYSCTL peripheral.

• flexCommIndex – index of flexcomm, reference _sysctl_share_src

• sckSet – share set for sck,reference _sysctl_share_set_index

• wsSet – share set for ws, reference _sysctl_share_set_index

• dataInSet – share set for data in, reference _sysctl_share_set_index

• dataOutSet – share set for data out, reference _sysctl_dataout_mask

void SYSCTL_SetShareSet(SYSCTL_Type *base, uint32_t flexCommIndex,
sysctl_fcctrlsel_signal_t signal, uint32_t set)

SYSCTL share set configure for separate signal.

Parameters
• base – Base address of the SYSCTL peripheral

• flexCommIndex – index of flexcomm,reference _sysctl_share_src

• signal – FCCTRLSEL signal shift

• set – share set for sck, reference _sysctl_share_set_index

void SYSCTL_SetShareSetSrc(SYSCTL_Type *base, uint32_t setIndex, uint32_t sckShareSrc,
uint32_t wsShareSrc, uint32_t dataInShareSrc, uint32_t
dataOutShareSrc)

SYSCTL share set source configure.

Parameters
• base – Base address of the SYSCTL peripheral

• setIndex – index of share set, reference _sysctl_share_set_index

• sckShareSrc – sck source for this share set,reference _sysctl_share_src

• wsShareSrc – ws source for this share set,reference _sysctl_share_src

• dataInShareSrc – data in source for this share set,reference
_sysctl_share_src

• dataOutShareSrc – data out source for this share set,reference
_sysctl_dataout_mask

388 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

void SYSCTL_SetShareSignalSrc(SYSCTL_Type *base, uint32_t setIndex,
sysctl_sharedctrlset_signal_t signal, uint32_t shareSrc)

SYSCTL sck source configure.

Parameters
• base – Base address of the SYSCTL peripheral

• setIndex – index of share set, reference _sysctl_share_set_index

• signal – FCCTRLSEL signal shift

• shareSrc – sck source fro this share set,reference _sysctl_share_src

FSL_SYSCTL_DRIVER_VERSION
Group sysctl driver version for SDK.

Version 2.0.5.

enum _sysctl_share_set_index
SYSCTL share set.

Values:

enumerator kSYSCTL_ShareSet0
share set 0

enumerator kSYSCTL_ShareSet1
share set 1

enum _sysctl_fcctrlsel_signal
SYSCTL flexcomm signal.

Values:

enumerator kSYSCTL_FlexcommSignalSCK
SCK signal

enumerator kSYSCTL_FlexcommSignalWS
WS signal

enumerator kSYSCTL_FlexcommSignalDataIn
Data in signal

enumerator kSYSCTL_FlexcommSignalDataOut
Data out signal

enum _sysctl_share_src
SYSCTL flexcomm index.

Values:

enumerator kSYSCTL_Flexcomm0
share set 0

enumerator kSYSCTL_Flexcomm1
share set 1

enumerator kSYSCTL_Flexcomm2
share set 2

enumerator kSYSCTL_Flexcomm4
share set 4

enumerator kSYSCTL_Flexcomm5
share set 5

2.51. SYSCTL: I2S bridging and signal sharing Configuration 389

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSYSCTL_Flexcomm6
share set 6

enumerator kSYSCTL_Flexcomm7
share set 7

enum _sysctl_dataout_mask
SYSCTL shared data out mask.

Values:

enumerator kSYSCTL_Flexcomm0DataOut
share set 0

enumerator kSYSCTL_Flexcomm1DataOut
share set 1

enumerator kSYSCTL_Flexcomm2DataOut
share set 2

enumerator kSYSCTL_Flexcomm4DataOut
share set 4

enumerator kSYSCTL_Flexcomm5DataOut
share set 5

enumerator kSYSCTL_Flexcomm6DataOut
share set 6

enumerator kSYSCTL_Flexcomm7DataOut
share set 7

enum _sysctl_sharedctrlset_signal
SYSCTL flexcomm signal.

Values:

enumerator kSYSCTL_SharedCtrlSignalSCK
SCK signal

enumerator kSYSCTL_SharedCtrlSignalWS
WS signal

enumerator kSYSCTL_SharedCtrlSignalDataIn
Data in signal

enumerator kSYSCTL_SharedCtrlSignalDataOut
Data out signal

typedef enum _sysctl_fcctrlsel_signal sysctl_fcctrlsel_signal_t
SYSCTL flexcomm signal.

typedef enum _sysctl_sharedctrlset_signal sysctl_sharedctrlset_signal_t
SYSCTL flexcomm signal.

2.52 USART: Universal Synchronous/Asynchronous Re-
ceiver/Transmitter Driver

2.53 USART DMA Driver

390 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

status_t USART_TransferCreateHandleDMA(USART_Type *base, usart_dma_handle_t *handle,
usart_dma_transfer_callback_t callback, void
*userData, dma_handle_t *txDmaHandle,
dma_handle_t *rxDmaHandle)

Initializes the USART handle which is used in transactional functions.

Parameters
• base – USART peripheral base address.

• handle – Pointer to usart_dma_handle_t structure.

• callback – Callback function.

• userData – User data.

• txDmaHandle – User-requested DMA handle for TX DMA transfer.

• rxDmaHandle – User-requested DMA handle for RX DMA transfer.

status_t USART_TransferSendDMA(USART_Type *base, usart_dma_handle_t *handle,
usart_transfer_t *xfer)

Sends data using DMA.

This function sends data using DMA. This is a non-blocking function, which returns right
away. When all data is sent, the send callback function is called.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• xfer – USART DMA transfer structure. See usart_transfer_t.

Return values
• kStatus_Success – if succeed, others failed.

• kStatus_USART_TxBusy – Previous transfer on going.

• kStatus_InvalidArgument – Invalid argument.

status_t USART_TransferReceiveDMA(USART_Type *base, usart_dma_handle_t *handle,
usart_transfer_t *xfer)

Receives data using DMA.

This function receives data using DMA. This is a non-blocking function, which returns right
away. When all data is received, the receive callback function is called.

Parameters
• base – USART peripheral base address.

• handle – Pointer to usart_dma_handle_t structure.

• xfer – USART DMA transfer structure. See usart_transfer_t.

Return values
• kStatus_Success – if succeed, others failed.

• kStatus_USART_RxBusy – Previous transfer on going.

• kStatus_InvalidArgument – Invalid argument.

void USART_TransferAbortSendDMA(USART_Type *base, usart_dma_handle_t *handle)
Aborts the sent data using DMA.

This function aborts send data using DMA.

Parameters

2.53. USART DMA Driver 391

MCUXpresso SDK Documentation, Release 25.09.00

• base – USART peripheral base address

• handle – Pointer to usart_dma_handle_t structure

void USART_TransferAbortReceiveDMA(USART_Type *base, usart_dma_handle_t *handle)
Aborts the received data using DMA.

This function aborts the received data using DMA.

Parameters
• base – USART peripheral base address

• handle – Pointer to usart_dma_handle_t structure

status_t USART_TransferGetReceiveCountDMA(USART_Type *base, usart_dma_handle_t *handle,
uint32_t *count)

Get the number of bytes that have been received.

This function gets the number of bytes that have been received.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• count – Receive bytes count.

Return values
• kStatus_NoTransferInProgress – No receive in progress.

• kStatus_InvalidArgument – Parameter is invalid.

• kStatus_Success – Get successfully through the parameter count;

status_t USART_TransferGetSendCountDMA(USART_Type *base, usart_dma_handle_t *handle,
uint32_t *count)

Get the number of bytes that have been sent.

This function gets the number of bytes that have been sent.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• count – Sent bytes count.

Return values
• kStatus_NoTransferInProgress – No receive in progress.

• kStatus_InvalidArgument – Parameter is invalid.

• kStatus_Success – Get successfully through the parameter count;

FSL_USART_DMA_DRIVER_VERSION
USART dma driver version.

typedef struct _usart_dma_handle usart_dma_handle_t

typedef void (*usart_dma_transfer_callback_t)(USART_Type *base, usart_dma_handle_t *handle,
status_t status, void *userData)

UART transfer callback function.

struct _usart_dma_handle
#include <fsl_usart_dma.h> UART DMA handle.

392 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

USART_Type *base
UART peripheral base address.

usart_dma_transfer_callback_t callback
Callback function.

void *userData
UART callback function parameter.

size_t rxDataSizeAll
Size of the data to receive.

size_t txDataSizeAll
Size of the data to send out.

dma_handle_t *txDmaHandle
The DMA TX channel used.

dma_handle_t *rxDmaHandle
The DMA RX channel used.

volatile uint8_t txState
TX transfer state.

volatile uint8_t rxState
RX transfer state

2.54 USART Driver

status_t USART_Init(USART_Type *base, const usart_config_t *config, uint32_t srcClock_Hz)
Initializes a USART instance with user configuration structure and peripheral clock.

This function configures the USART module with the user-defined settings. The user can
configure the configuration structure and also get the default configuration by using the
USART_GetDefaultConfig() function. Example below shows how to use this API to configure
USART.

usart_config_t usartConfig;
usartConfig.baudRate_Bps = 115200U;
usartConfig.parityMode = kUSART_ParityDisabled;
usartConfig.stopBitCount = kUSART_OneStopBit;
USART_Init(USART1, &usartConfig, 20000000U);

Parameters
• base – USART peripheral base address.

• config – Pointer to user-defined configuration structure.

• srcClock_Hz – USART clock source frequency in HZ.

Return values
• kStatus_USART_BaudrateNotSupport – Baudrate is not support in current
clock source.

• kStatus_InvalidArgument – USART base address is not valid

• kStatus_Success – Status USART initialize succeed

2.54. USART Driver 393

MCUXpresso SDK Documentation, Release 25.09.00

void USART_Deinit(USART_Type *base)
Deinitializes a USART instance.

This function waits for TX complete, disables TX and RX, and disables the USART clock.

Parameters
• base – USART peripheral base address.

void USART_GetDefaultConfig(usart_config_t *config)
Gets the default configuration structure.

This function initializes the USART configuration structure to a default value. The
default values are: usartConfig->baudRate_Bps = 115200U; usartConfig->parityMode =
kUSART_ParityDisabled; usartConfig->stopBitCount = kUSART_OneStopBit; usartConfig-
>bitCountPerChar = kUSART_8BitsPerChar; usartConfig->loopback = false; usartConfig-
>enableTx = false; usartConfig->enableRx = false;

Parameters
• config – Pointer to configuration structure.

status_t USART_SetBaudRate(USART_Type *base, uint32_t baudrate_Bps, uint32_t srcClock_Hz)
Sets the USART instance baud rate.

This function configures the USART module baud rate. This function is used to update the
USART module baud rate after the USART module is initialized by the USART_Init.

USART_SetBaudRate(USART1, 115200U, 20000000U);

Parameters
• base – USART peripheral base address.

• baudrate_Bps – USART baudrate to be set.

• srcClock_Hz – USART clock source frequency in HZ.

Return values
• kStatus_USART_BaudrateNotSupport – Baudrate is not support in current
clock source.

• kStatus_Success – Set baudrate succeed.

• kStatus_InvalidArgument – One or more arguments are invalid.

status_t USART_Enable32kMode(USART_Type *base, uint32_t baudRate_Bps, bool
enableMode32k, uint32_t srcClock_Hz)

Enable 32 kHz mode which USART uses clock from the RTC oscillator as the clock source.

Please note that in order to use a 32 kHz clock to operate USART properly, the RTC oscillator
and its 32 kHz output must be manully enabled by user, by calling RTC_Init and setting
SYSCON_RTCOSCCTRL_EN bit to 1. And in 32kHz clocking mode the USART can only work
at 9600 baudrate or at the baudrate that 9600 can evenly divide, eg: 4800, 3200.

Parameters
• base – USART peripheral base address.

• baudRate_Bps – USART baudrate to be set..

• enableMode32k – true is 32k mode, false is normal mode.

• srcClock_Hz – USART clock source frequency in HZ.

Return values

394 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

• kStatus_USART_BaudrateNotSupport – Baudrate is not support in current
clock source.

• kStatus_Success – Set baudrate succeed.

• kStatus_InvalidArgument – One or more arguments are invalid.

void USART_Enable9bitMode(USART_Type *base, bool enable)
Enable 9-bit data mode for USART.

This function set the 9-bit mode for USART module. The 9th bit is not used for parity thus
can be modified by user.

Parameters
• base – USART peripheral base address.

• enable – true to enable, false to disable.

static inline void USART_SetMatchAddress(USART_Type *base, uint8_t address)
Set the USART slave address.

This function configures the address for USART module that works as slave in 9-bit data
mode. When the address detection is enabled, the frame it receices with MSB being 1 is
considered as an address frame, otherwise it is considered as data frame. Once the address
frame matches slave’s own addresses, this slave is addressed. This address frame and its
following data frames are stored in the receive buffer, otherwise the frames will be dis-
carded. To un-address a slave, just send an address frame with unmatched address.

Note: Any USART instance joined in themulti-slave system canwork as slave. The position
of the address mark is the same as the parity bit when parity is enabled for 8 bit and 9 bit
data formats.

Parameters
• base – USART peripheral base address.

• address – USART slave address.

static inline void USART_EnableMatchAddress(USART_Type *base, bool match)
Enable the USART match address feature.

Parameters
• base – USART peripheral base address.

• match – true to enable match address, false to disable.

static inline uint32_t USART_GetStatusFlags(USART_Type *base)
Get USART status flags.

This function get all USART status flags, the flags are returned as the logical OR value of
the enumerators _usart_flags. To check a specific status, compare the return value with
enumerators in _usart_flags. For example, to check whether the TX is empty:

if (kUSART_TxFifoNotFullFlag & USART_GetStatusFlags(USART1))
{

...
}

Parameters
• base – USART peripheral base address.

2.54. USART Driver 395

MCUXpresso SDK Documentation, Release 25.09.00

Returns
USART status flags which are ORed by the enumerators in the _usart_flags.

static inline void USART_ClearStatusFlags(USART_Type *base, uint32_t mask)
Clear USART status flags.

This function clear supported USART status flags. The mask is a logical OR of enumeration
members. See kUSART_AllClearFlags. For example:

USART_ClearStatusFlags(USART1, kUSART_TxError | kUSART_RxError)

Parameters
• base – USART peripheral base address.

• mask – status flags to be cleared.

static inline void USART_EnableInterrupts(USART_Type *base, uint32_t mask)
Enables USART interrupts according to the provided mask.

This function enables the USART interrupts according to the provided mask. The mask is a
logical OR of enumeration members. See _usart_interrupt_enable. For example, to enable
TX empty interrupt and RX full interrupt:

USART_EnableInterrupts(USART1, kUSART_TxLevelInterruptEnable | kUSART_
↪→RxLevelInterruptEnable);

Parameters
• base – USART peripheral base address.

• mask – The interrupts to enable. Logical OR of _usart_interrupt_enable.

static inline void USART_DisableInterrupts(USART_Type *base, uint32_t mask)
Disables USART interrupts according to a provided mask.

This function disables the USART interrupts according to a provided mask. The mask is
a logical OR of enumeration members. See _usart_interrupt_enable. This example shows
how to disable the TX empty interrupt and RX full interrupt:

USART_DisableInterrupts(USART1, kUSART_TxLevelInterruptEnable | kUSART_
↪→RxLevelInterruptEnable);

Parameters
• base – USART peripheral base address.

• mask – The interrupts to disable. Logical OR of _usart_interrupt_enable.

static inline uint32_t USART_GetEnabledInterrupts(USART_Type *base)
Returns enabled USART interrupts.

This function returns the enabled USART interrupts.

Parameters
• base – USART peripheral base address.

static inline void USART_EnableTxDMA(USART_Type *base, bool enable)
Enable DMA for Tx.

static inline void USART_EnableRxDMA(USART_Type *base, bool enable)
Enable DMA for Rx.

396 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

static inline void USART_EnableCTS(USART_Type *base, bool enable)
Enable CTS. This function will determine whether CTS is used for flow control.

Parameters
• base – USART peripheral base address.

• enable – Enable CTS or not, true for enable and false for disable.

static inline void USART_EnableContinuousSCLK(USART_Type *base, bool enable)
Continuous Clock generation. By default, SCLK is only output while data is being transmit-
ted in synchronousmode. Enable this funciton, SCLKwill run continuously in synchronous
mode, allowing characters to be received on Un_RxD independently from transmission on
Un_TXD).

Parameters
• base – USART peripheral base address.

• enable – Enable Continuous Clock generation mode or not, true for enable
and false for disable.

static inline void USART_EnableAutoClearSCLK(USART_Type *base, bool enable)
Enable Continuous Clock generation bit auto clear. While enable this cuntion, the Contin-
uous Clock bit is automatically cleared when a complete character has been received. This
bit is cleared at the same time.

Parameters
• base – USART peripheral base address.

• enable – Enable auto clear or not, true for enable and false for disable.

static inline void USART_SetRxFifoWatermark(USART_Type *base, uint8_t water)
Sets the rx FIFO watermark.

Parameters
• base – USART peripheral base address.

• water – Rx FIFO watermark.

static inline void USART_SetTxFifoWatermark(USART_Type *base, uint8_t water)
Sets the tx FIFO watermark.

Parameters
• base – USART peripheral base address.

• water – Tx FIFO watermark.

static inline void USART_WriteByte(USART_Type *base, uint8_t data)
Writes to the FIFOWR register.

This function writes data to the txFIFO directly. The upper layer must ensure that txFIFO
has space for data to write before calling this function.

Parameters
• base – USART peripheral base address.

• data – The byte to write.

static inline uint8_t USART_ReadByte(USART_Type *base)
Reads the FIFORD register directly.

This function reads data from the rxFIFO directly. The upper layer must ensure that the
rxFIFO is not empty before calling this function.

Parameters

2.54. USART Driver 397

MCUXpresso SDK Documentation, Release 25.09.00

• base – USART peripheral base address.

Returns
The byte read from USART data register.

static inline uint8_t USART_GetRxFifoCount(USART_Type *base)
Gets the rx FIFO data count.

Parameters
• base – USART peripheral base address.

Returns
rx FIFO data count.

static inline uint8_t USART_GetTxFifoCount(USART_Type *base)
Gets the tx FIFO data count.

Parameters
• base – USART peripheral base address.

Returns
tx FIFO data count.

void USART_SendAddress(USART_Type *base, uint8_t address)
Transmit an address frame in 9-bit data mode.

Parameters
• base – USART peripheral base address.

• address – USART slave address.

status_t USART_WriteBlocking(USART_Type *base, const uint8_t *data, size_t length)
Writes to the TX register using a blocking method.

This function polls the TX register, waits for the TX register to be empty or for the TX FIFO
to have room and writes data to the TX buffer.

Parameters
• base – USART peripheral base address.

• data – Start address of the data to write.

• length – Size of the data to write.

Return values
• kStatus_USART_Timeout – Transmission timed out and was aborted.

• kStatus_InvalidArgument – Invalid argument.

• kStatus_Success – Successfully wrote all data.

status_t USART_ReadBlocking(USART_Type *base, uint8_t *data, size_t length)
Read RX data register using a blocking method.

This function polls the RX register, waits for the RX register to be full or for RX FIFO to have
data and read data from the TX register.

Parameters
• base – USART peripheral base address.

• data – Start address of the buffer to store the received data.

• length – Size of the buffer.

Return values

398 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

• kStatus_USART_FramingError – Receiver overrun happened while receiv-
ing data.

• kStatus_USART_ParityError – Noise error happened while receiving data.

• kStatus_USART_NoiseError – Framing error happened while receiving
data.

• kStatus_USART_RxError – Overflow or underflow rxFIFO happened.

• kStatus_USART_Timeout – Transmission timed out and was aborted.

• kStatus_Success – Successfully received all data.

status_t USART_TransferCreateHandle(USART_Type *base, usart_handle_t *handle,
usart_transfer_callback_t callback, void *userData)

Initializes the USART handle.

This function initializes the USART handlewhich can be used for other USART transactional
APIs. Usually, for a specified USART instance, call this API once to get the initialized handle.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• callback – The callback function.

• userData – The parameter of the callback function.

status_t USART_TransferSendNonBlocking(USART_Type *base, usart_handle_t *handle,
usart_transfer_t *xfer)

Transmits a buffer of data using the interrupt method.

This function sends data using an interrupt method. This is a non-blocking function, which
returns directly without waiting for all data to be written to the TX register. When all data
is written to the TX register in the IRQ handler, the USART driver calls the callback function
and passes the kStatus_USART_TxIdle as status parameter.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• xfer – USART transfer structure. See usart_transfer_t.

Return values
• kStatus_Success – Successfully start the data transmission.

• kStatus_USART_TxBusy – Previous transmission still not finished, data
not all written to TX register yet.

• kStatus_InvalidArgument – Invalid argument.

void USART_TransferStartRingBuffer(USART_Type *base, usart_handle_t *handle, uint8_t
*ringBuffer, size_t ringBufferSize)

Sets up the RX ring buffer.

This function sets up the RX ring buffer to a specific USART handle.

When the RX ring buffer is used, data received are stored into the ring buffer even when
the user doesn’t call the USART_TransferReceiveNonBlocking() API. If there is already data
received in the ring buffer, the user can get the received data from the ring buffer directly.

2.54. USART Driver 399

MCUXpresso SDK Documentation, Release 25.09.00

Note: When using the RX ring buffer, one byte is reserved for internal use. In other words,
if ringBufferSize is 32, then only 31 bytes are used for saving data.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• ringBuffer – Start address of the ring buffer for background receiving. Pass
NULL to disable the ring buffer.

• ringBufferSize – size of the ring buffer.

void USART_TransferStopRingBuffer(USART_Type *base, usart_handle_t *handle)
Aborts the background transfer and uninstalls the ring buffer.

This function aborts the background transfer and uninstalls the ring buffer.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

size_t USART_TransferGetRxRingBufferLength(usart_handle_t *handle)
Get the length of received data in RX ring buffer.

Parameters
• handle – USART handle pointer.

Returns
Length of received data in RX ring buffer.

void USART_TransferAbortSend(USART_Type *base, usart_handle_t *handle)
Aborts the interrupt-driven data transmit.

This function aborts the interrupt driven data sending. The user can get the remainBtyes
to find out how many bytes are still not sent out.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

status_t USART_TransferGetSendCount(USART_Type *base, usart_handle_t *handle, uint32_t
*count)

Get the number of bytes that have been sent out to bus.

This function gets the number of bytes that have been sent out to bus by interrupt method.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• count – Send bytes count.

Return values
• kStatus_NoTransferInProgress – No send in progress.

• kStatus_InvalidArgument – Parameter is invalid.

• kStatus_Success – Get successfully through the parameter count;

400 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

status_t USART_TransferReceiveNonBlocking(USART_Type *base, usart_handle_t *handle,
usart_transfer_t *xfer, size_t *receivedBytes)

Receives a buffer of data using an interrupt method.

This function receives data using an interrupt method. This is a non-blocking function,
which returns without waiting for all data to be received. If the RX ring buffer is used and
not empty, the data in the ring buffer is copied and the parameter receivedBytes shows how
many bytes are copied from the ring buffer. After copying, if the data in the ring buffer
is not enough to read, the receive request is saved by the USART driver. When the new
data arrives, the receive request is serviced first. When all data is received, the USART
driver notifies the upper layer through a callback function and passes the status parameter
kStatus_USART_RxIdle. For example, the upper layer needs 10 bytes but there are only 5
bytes in the ring buffer. The 5 bytes are copied to the xfer->data and this function returns
with the parameter receivedBytes set to 5. For the left 5 bytes, newly arrived data is saved
from the xfer->data[5]. When 5 bytes are received, the USART driver notifies the upper
layer. If the RX ring buffer is not enabled, this function enables the RX and RX interrupt to
receive data to the xfer->data. When all data is received, the upper layer is notified.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• xfer – USART transfer structure, see usart_transfer_t.

• receivedBytes – Bytes received from the ring buffer directly.

Return values
• kStatus_Success – Successfully queue the transfer into transmit queue.

• kStatus_USART_RxBusy – Previous receive request is not finished.

• kStatus_InvalidArgument – Invalid argument.

void USART_TransferAbortReceive(USART_Type *base, usart_handle_t *handle)
Aborts the interrupt-driven data receiving.

This function aborts the interrupt-driven data receiving. The user can get the remainBytes
to find out how many bytes not received yet.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

status_t USART_TransferGetReceiveCount(USART_Type *base, usart_handle_t *handle, uint32_t
*count)

Get the number of bytes that have been received.

This function gets the number of bytes that have been received.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• count – Receive bytes count.

Return values
• kStatus_NoTransferInProgress – No receive in progress.

• kStatus_InvalidArgument – Parameter is invalid.

• kStatus_Success – Get successfully through the parameter count;

2.54. USART Driver 401

MCUXpresso SDK Documentation, Release 25.09.00

void USART_TransferHandleIRQ(USART_Type *base, usart_handle_t *handle)
USART IRQ handle function.

This function handles the USART transmit and receive IRQ request.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

FSL_USART_DRIVER_VERSION
USART driver version.

Error codes for the USART driver.

Values:

enumerator kStatus_USART_TxBusy
Transmitter is busy.

enumerator kStatus_USART_RxBusy
Receiver is busy.

enumerator kStatus_USART_TxIdle
USART transmitter is idle.

enumerator kStatus_USART_RxIdle
USART receiver is idle.

enumerator kStatus_USART_TxError
Error happens on txFIFO.

enumerator kStatus_USART_RxError
Error happens on rxFIFO.

enumerator kStatus_USART_RxRingBufferOverrun
Error happens on rx ring buffer

enumerator kStatus_USART_NoiseError
USART noise error.

enumerator kStatus_USART_FramingError
USART framing error.

enumerator kStatus_USART_ParityError
USART parity error.

enumerator kStatus_USART_BaudrateNotSupport
Baudrate is not support in current clock source

enum _usart_sync_mode
USART synchronous mode.

Values:

enumerator kUSART_SyncModeDisabled
Asynchronous mode.

enumerator kUSART_SyncModeSlave
Synchronous slave mode.

enumerator kUSART_SyncModeMaster
Synchronous master mode.

402 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enum _usart_parity_mode
USART parity mode.

Values:

enumerator kUSART_ParityDisabled
Parity disabled

enumerator kUSART_ParityEven
Parity enabled, type even, bit setting: PE|PT = 10

enumerator kUSART_ParityOdd
Parity enabled, type odd, bit setting: PE|PT = 11

enum _usart_stop_bit_count
USART stop bit count.

Values:

enumerator kUSART_OneStopBit
One stop bit

enumerator kUSART_TwoStopBit
Two stop bits

enum _usart_data_len
USART data size.

Values:

enumerator kUSART_7BitsPerChar
Seven bit mode

enumerator kUSART_8BitsPerChar
Eight bit mode

enum _usart_clock_polarity
USART clock polarity configuration, used in sync mode.

Values:

enumerator kUSART_RxSampleOnFallingEdge
Un_RXD is sampled on the falling edge of SCLK.

enumerator kUSART_RxSampleOnRisingEdge
Un_RXD is sampled on the rising edge of SCLK.

enum _usart_txfifo_watermark
txFIFO watermark values

Values:

enumerator kUSART_TxFifo0
USART tx watermark is empty

enumerator kUSART_TxFifo1
USART tx watermark at 1 item

enumerator kUSART_TxFifo2
USART tx watermark at 2 items

enumerator kUSART_TxFifo3
USART tx watermark at 3 items

2.54. USART Driver 403

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUSART_TxFifo4
USART tx watermark at 4 items

enumerator kUSART_TxFifo5
USART tx watermark at 5 items

enumerator kUSART_TxFifo6
USART tx watermark at 6 items

enumerator kUSART_TxFifo7
USART tx watermark at 7 items

enum _usart_rxfifo_watermark
rxFIFO watermark values

Values:

enumerator kUSART_RxFifo1
USART rx watermark at 1 item

enumerator kUSART_RxFifo2
USART rx watermark at 2 items

enumerator kUSART_RxFifo3
USART rx watermark at 3 items

enumerator kUSART_RxFifo4
USART rx watermark at 4 items

enumerator kUSART_RxFifo5
USART rx watermark at 5 items

enumerator kUSART_RxFifo6
USART rx watermark at 6 items

enumerator kUSART_RxFifo7
USART rx watermark at 7 items

enumerator kUSART_RxFifo8
USART rx watermark at 8 items

enum _usart_interrupt_enable
USART interrupt configuration structure, default settings all disabled.

Values:

enumerator kUSART_TxErrorInterruptEnable

enumerator kUSART_RxErrorInterruptEnable

enumerator kUSART_TxLevelInterruptEnable

enumerator kUSART_RxLevelInterruptEnable

enumerator kUSART_TxIdleInterruptEnable
Transmitter idle.

enumerator kUSART_CtsChangeInterruptEnable
Change in the state of the CTS input.

enumerator kUSART_RxBreakChangeInterruptEnable
Break condition asserted or deasserted.

404 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUSART_RxStartInterruptEnable
Rx start bit detected.

enumerator kUSART_FramingErrorInterruptEnable
Framing error detected.

enumerator kUSART_ParityErrorInterruptEnable
Parity error detected.

enumerator kUSART_NoiseErrorInterruptEnable
Noise error detected.

enumerator kUSART_AutoBaudErrorInterruptEnable
Auto baudrate error detected.

enumerator kUSART_AllInterruptEnables

enum _usart_flags
USART status flags.

This provides constants for the USART status flags for use in the USART functions.

Values:

enumerator kUSART_TxError
TXERR bit, sets if TX buffer is error

enumerator kUSART_RxError
RXERR bit, sets if RX buffer is error

enumerator kUSART_TxFifoEmptyFlag
TXEMPTY bit, sets if TX buffer is empty

enumerator kUSART_TxFifoNotFullFlag
TXNOTFULL bit, sets if TX buffer is not full

enumerator kUSART_RxFifoNotEmptyFlag
RXNOEMPTY bit, sets if RX buffer is not empty

enumerator kUSART_RxFifoFullFlag
RXFULL bit, sets if RX buffer is full

enumerator kUSART_RxIdleFlag
Receiver idle.

enumerator kUSART_TxIdleFlag
Transmitter idle.

enumerator kUSART_CtsAssertFlag
CTS signal high.

enumerator kUSART_CtsChangeFlag
CTS signal changed interrupt status.

enumerator kUSART_BreakDetectFlag
Break detected. Self cleared when rx pin goes high again.

enumerator kUSART_BreakDetectChangeFlag
Break detect change interrupt flag. A change in the state of receiver break detection.

enumerator kUSART_RxStartFlag
Rx start bit detected interrupt flag.

2.54. USART Driver 405

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUSART_FramingErrorFlag
Framing error interrupt flag.

enumerator kUSART_ParityErrorFlag
parity error interrupt flag.

enumerator kUSART_NoiseErrorFlag
Noise error interrupt flag.

enumerator kUSART_AutobaudErrorFlag
Auto baudrate error interrupt flag, caused by the baudrate counter timeout before the
end of start bit.

enumerator kUSART_AllClearFlags

typedef enum _usart_sync_mode usart_sync_mode_t
USART synchronous mode.

typedef enum _usart_parity_mode usart_parity_mode_t
USART parity mode.

typedef enum _usart_stop_bit_count usart_stop_bit_count_t
USART stop bit count.

typedef enum _usart_data_len usart_data_len_t
USART data size.

typedef enum _usart_clock_polarity usart_clock_polarity_t
USART clock polarity configuration, used in sync mode.

typedef enum _usart_txfifo_watermark usart_txfifo_watermark_t
txFIFO watermark values

typedef enum _usart_rxfifo_watermark usart_rxfifo_watermark_t
rxFIFO watermark values

typedef struct _usart_config usart_config_t
USART configuration structure.

typedef struct _usart_transfer usart_transfer_t
USART transfer structure.

typedef struct _usart_handle usart_handle_t

typedef void (*usart_transfer_callback_t)(USART_Type *base, usart_handle_t *handle, status_t
status, void *userData)

USART transfer callback function.

typedef void (*flexcomm_usart_irq_handler_t)(USART_Type *base, usart_handle_t *handle)
Typedef for usart interrupt handler.

uint32_t USART_GetInstance(USART_Type *base)
Returns instance number for USART peripheral base address.

USART_FIFOTRIG_TXLVL_GET(base)

USART_FIFOTRIG_RXLVL_GET(base)

UART_RETRY_TIMES
Retry times for waiting flag.

Defining to zero means to keep waiting for the flag until it is assert/deassert in blocking
transfer, otherwise the program will wait until the UART_RETRY_TIMES counts down to 0,
if the flag still remains unchanged then program will return kStatus_USART_Timeout. It is

406 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

not advised to use this macro in formal application to prevent any hardware error because
the actual wait period is affected by the compiler and optimization.

struct _usart_config
#include <fsl_usart.h> USART configuration structure.

Public Members

uint32_t baudRate_Bps
USART baud rate

usart_parity_mode_t parityMode
Parity mode, disabled (default), even, odd

usart_stop_bit_count_t stopBitCount
Number of stop bits, 1 stop bit (default) or 2 stop bits

usart_data_len_t bitCountPerChar
Data length - 7 bit, 8 bit

bool loopback
Enable peripheral loopback

bool enableRx
Enable RX

bool enableTx
Enable TX

bool enableContinuousSCLK
USART continuous Clock generation enable in synchronous master mode.

bool enableMode32k
USART uses 32 kHz clock from the RTC oscillator as the clock source.

bool enableHardwareFlowControl
Enable hardware control RTS/CTS

usart_txfifo_watermark_t txWatermark
txFIFO watermark

usart_rxfifo_watermark_t rxWatermark
rxFIFO watermark

usart_sync_mode_t syncMode
Transfer mode select - asynchronous, synchronous master, synchronous slave.

usart_clock_polarity_t clockPolarity
Selects the clock polarity and sampling edge in synchronous mode.

struct _usart_transfer
#include <fsl_usart.h> USART transfer structure.

Public Members

size_t dataSize
The byte count to be transfer.

struct _usart_handle
#include <fsl_usart.h> USART handle structure.

2.54. USART Driver 407

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

const uint8_t *volatile txData
Address of remaining data to send.

volatile size_t txDataSize
Size of the remaining data to send.

size_t txDataSizeAll
Size of the data to send out.

uint8_t *volatile rxData
Address of remaining data to receive.

volatile size_t rxDataSize
Size of the remaining data to receive.

size_t rxDataSizeAll
Size of the data to receive.

uint8_t *rxRingBuffer
Start address of the receiver ring buffer.

size_t rxRingBufferSize
Size of the ring buffer.

volatile uint16_t rxRingBufferHead
Index for the driver to store received data into ring buffer.

volatile uint16_t rxRingBufferTail
Index for the user to get data from the ring buffer.

usart_transfer_callback_t callback
Callback function.

void *userData
USART callback function parameter.

volatile uint8_t txState
TX transfer state.

volatile uint8_t rxState
RX transfer state

uint8_t txWatermark
txFIFO watermark

uint8_t rxWatermark
rxFIFO watermark

union __unnamed32__

Public Members

uint8_t *data
The buffer of data to be transfer.

uint8_t *rxData
The buffer to receive data.

const uint8_t *txData
The buffer of data to be sent.

408 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

2.55 UTICK: MictoTick Timer Driver

void UTICK_Init(UTICK_Type *base)
Initializes an UTICK by turning its bus clock on.

void UTICK_Deinit(UTICK_Type *base)
Deinitializes a UTICK instance.

This function shuts down Utick bus clock

Parameters
• base – UTICK peripheral base address.

uint32_t UTICK_GetStatusFlags(UTICK_Type *base)
Get Status Flags.

This returns the status flag

Parameters
• base – UTICK peripheral base address.

Returns
status register value

void UTICK_ClearStatusFlags(UTICK_Type *base)
Clear Status Interrupt Flags.

This clears intr status flag

Parameters
• base – UTICK peripheral base address.

Returns
none

void UTICK_SetTick(UTICK_Type *base, utick_mode_tmode, uint32_t count, utick_callback_t
cb)

Starts UTICK.

This function starts a repeat/onetime countdown with an optional callback

Parameters
• base – UTICK peripheral base address.

• mode – UTICK timer mode (ie kUTICK_onetime or kUTICK_repeat)

• count – UTICK timer mode (ie kUTICK_onetime or kUTICK_repeat)

• cb – UTICK callback (can be left as NULL if none, otherwise should be a
void func(void))

Returns
none

void UTICK_HandleIRQ(UTICK_Type *base, utick_callback_t cb)
UTICK Interrupt Service Handler.

This function handles the interrupt and refers to the callback array in the driver to callback
user (as per request in UTICK_SetTick()). if no user callback is scheduled, the interrupt will
simply be cleared.

Parameters
• base – UTICK peripheral base address.

2.55. UTICK: MictoTick Timer Driver 409

MCUXpresso SDK Documentation, Release 25.09.00

• cb – callback scheduled for this instance of UTICK

Returns
none

FSL_UTICK_DRIVER_VERSION
UTICK driver version 2.0.5.

enum _utick_mode
UTICK timer operational mode.

Values:

enumerator kUTICK_Onetime
Trigger once

enumerator kUTICK_Repeat
Trigger repeatedly

typedef enum _utick_mode utick_mode_t
UTICK timer operational mode.

typedef void (*utick_callback_t)(void)
UTICK callback function.

2.56 WWDT: Windowed Watchdog Timer Driver

voidWWDT_GetDefaultConfig(wwdt_config_t *config)
Initializes WWDT configure structure.

This function initializes the WWDT configure structure to default value. The default value
are:

config->enableWwdt = true;
config->enableWatchdogReset = false;
config->enableWatchdogProtect = false;
config->enableLockOscillator = false;
config->windowValue = 0xFFFFFFU;
config->timeoutValue = 0xFFFFFFU;
config->warningValue = 0;

See also:
wwdt_config_t

Parameters
• config – Pointer to WWDT config structure.

voidWWDT_Init(WWDT_Type *base, const wwdt_config_t *config)
Initializes the WWDT.

This function initializes the WWDT. When called, the WWDT runs according to the config-
uration.

Example:

wwdt_config_t config;
WWDT_GetDefaultConfig(&config);
config.timeoutValue = 0x7ffU;
WWDT_Init(wwdt_base,&config);

410 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• base – WWDT peripheral base address

• config – The configuration of WWDT

voidWWDT_Deinit(WWDT_Type *base)
Shuts down the WWDT.

This function shuts down the WWDT.

Parameters
• base – WWDT peripheral base address

static inline voidWWDT_Enable(WWDT_Type *base)
Enables the WWDT module.

This function write value into WWDT_MOD register to enable the WWDT, it is a write-once
bit; once this bit is set to one and a watchdog feed is performed, the watchdog timer will
run permanently.

Parameters
• base – WWDT peripheral base address

static inline voidWWDT_Disable(WWDT_Type *base)
Disables the WWDT module.

Deprecated:
Do not use this function. It will be deleted in next release version, for once the bit field
of WDEN written with a 1, it can not be re-written with a 0.

This function write value into WWDT_MOD register to disable the WWDT.

Parameters
• base – WWDT peripheral base address

static inline uint32_tWWDT_GetStatusFlags(WWDT_Type *base)
Gets all WWDT status flags.

This function gets all status flags.

Example for getting Timeout Flag:

uint32_t status;
status = WWDT_GetStatusFlags(wwdt_base) & kWWDT_TimeoutFlag;

Parameters
• base – WWDT peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
_wwdt_status_flags_t

voidWWDT_ClearStatusFlags(WWDT_Type *base, uint32_t mask)
Clear WWDT flag.

This function clears WWDT status flag.

Example for clearing warning flag:

WWDT_ClearStatusFlags(wwdt_base, kWWDT_WarningFlag);

Parameters

2.56. WWDT: Windowed Watchdog Timer Driver 411

MCUXpresso SDK Documentation, Release 25.09.00

• base – WWDT peripheral base address

• mask – The status flags to clear. This is a logical OR of members of the
enumeration _wwdt_status_flags_t

static inline voidWWDT_SetWarningValue(WWDT_Type *base, uint32_t warningValue)
Set the WWDT warning value.

TheWDWARNINT register determines the watchdog timer counter value that will generate
awatchdog interrupt. When thewatchdog timer counter is no longer greater than the value
defined by WARNINT, an interrupt will be generated after the subsequent WDCLK.

Parameters
• base – WWDT peripheral base address

• warningValue – WWDT warning value.

static inline voidWWDT_SetTimeoutValue(WWDT_Type *base, uint32_t timeoutCount)
Set the WWDT timeout value.

This function sets the timeout value. Every time a feed sequence occurs the value in the TC
register is loaded into theWatchdog timer. Writing a value below 0xFFwill cause 0xFF to be
loaded into the TC register. Thus the minimum time-out interval is TWDCLK*256*4. If en-
ableWatchdogProtect flag is true in wwdt_config_t config structure, any attempt to change
the timeout value before the watchdog counter is below the warning and window values
will cause a watchdog reset and set the WDTOF flag.

Parameters
• base – WWDT peripheral base address

• timeoutCount – WWDT timeout value, count of WWDT clock tick.

static inline voidWWDT_SetWindowValue(WWDT_Type *base, uint32_t windowValue)
Sets the WWDT window value.

The WINDOW register determines the highest TV value allowed when a watchdog feed is
performed. If a feed sequence occurs when timer value is greater than the value in WIN-
DOW, a watchdog event will occur. To disable windowing, set windowValue to 0xFFFFFF
(maximum possible timer value) so windowing is not in effect.

Parameters
• base – WWDT peripheral base address

• windowValue – WWDT window value.

voidWWDT_Refresh(WWDT_Type *base)
Refreshes the WWDT timer.

This function feeds the WWDT. This function should be called before WWDT timer is in
timeout. Otherwise, a reset is asserted.

Parameters
• base – WWDT peripheral base address

FSL_WWDT_DRIVER_VERSION
Defines WWDT driver version.

WWDT_FIRST_WORD_OF_REFRESH
First word of refresh sequence

WWDT_SECOND_WORD_OF_REFRESH
Second word of refresh sequence

412 Chapter 2. LPC55S06

MCUXpresso SDK Documentation, Release 25.09.00

enum _wwdt_status_flags_t
WWDT status flags.

This structure contains the WWDT status flags for use in the WWDT functions.

Values:

enumerator kWWDT_TimeoutFlag
Time-out flag, set when the timer times out

enumerator kWWDT_WarningFlag
Warning interrupt flag, set when timer is below the value WDWARNINT

typedef struct _wwdt_config wwdt_config_t
Describes WWDT configuration structure.

struct _wwdt_config
#include <fsl_wwdt.h> Describes WWDT configuration structure.

Public Members

bool enableWwdt
Enables or disables WWDT

bool enableWatchdogReset
true: Watchdog timeout will cause a chip reset false: Watchdog timeout will not cause
a chip reset

bool enableWatchdogProtect
true: Enable watchdog protect i.e timeout value can only be changed after counter is
below warning & window values false: Disable watchdog protect; timeout value can
be changed at any time

uint32_t windowValue
Window value, set this to 0xFFFFFF if windowing is not in effect

uint32_t timeoutValue
Timeout value

uint32_t warningValue
Watchdog time counter value that will generate a warning interrupt. Set this to 0 for
no warning

uint32_t clockFreq_Hz
Watchdog clock source frequency.

2.56. WWDT: Windowed Watchdog Timer Driver 413

MCUXpresso SDK Documentation, Release 25.09.00

414 Chapter 2. LPC55S06

Chapter 3

Middleware

3.1 Motor Control

3.1.1 FreeMASTER

Communication Driver User Guide

Introduction

What is FreeMASTER? FreeMASTER is a PC-based application developed by NXP for NXP cus-
tomers. It is a versatile tool usable as a real-time monitor, visualization tool, and a graphical
control panel of embedded applications based on the NXP processing units.

This document describes the embedded-side software driver which implements an interface be-
tween the application and the host PC. The interface covers the following communication:

• Serial UART communication either over plain RS232 interface or more typically over a
USB-to-Serial either external or built in a debugger probe.

• USB direct connection to target microcontroller

• CAN bus
• TCP/IP network wired or WiFi

• Segger J-Link RTT
• JTAG debug port communication

• …and all of the above also using a Zephyr generic drivers.
The driver also supports so-called “packet-drivenBDM” interfacewhich enables a protocol-based
communication over a debugging port. The BDM stands for Background Debugging Module
and its physical implementation is different on each platform. Some platforms leverage a semi-
standard JTAG interface, other platforms provide a custom implementation called BDM. Regard-
less of the name, this debugging interface enables non-intrusive access to the memory space
while the target CPU is running. For basic memory read and write operations, there is no com-
munication driver required on the target when communicating with the host PC. Use this driver
to getmore advanced FreeMASTER protocol features over the BDM interface. The drivermust be
configured for the packet-driven BDM mode, in which the host PC uses the debugging interface
to write serial command frames directly to the target memory buffer. The same method is then
used to read response frames from that memory buffer.

415

https://www.nxp.com/freemaster

MCUXpresso SDK Documentation, Release 25.09.00

Similar to “packet-driven BDM”, the FreeMASTER also supports a communication over
[J-Link RTT]((https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-
transfer/) interface defined by SEGGER Microcontroller GmbH for ARM CortexM-based micro-
controllers. This method also uses JTAG physical interface and enables high-speed real time
communication to run over the same channel as used for application debugging.

Driver version 3 This document describes version 3 of the FreeMASTER Communication
Driver. This version features the implementation of the new Serial Protocol, which significantly
extends the features and security of its predecessor. The new protocol internal number is v4 and
its specification is available in the documentation accompanying the driver code.

Driver V3 is deployed to modern 32-bit MCU platforms first, so the portfolio of supported plat-
forms is smaller than for the previous V2 versions. It is recommended to keep using the V2 driver
for legacy platforms, such as S08, S12, ColdFire, or Power Architecture. Reach out to FreeMAS-
TER community or to the local NXP representative with requests for more information or to port
the V3 driver to legacy MCU devices.

Thanks to a layered approach, the new driver simplifies the porting of the driver to new UART,
CAN or networking communication interfaces significantly. Users are encouraged to port the
driver to more NXP MCU platforms and contribute the code back to NXP for integration into
future releases. Existing code and low-level driver layers may be used as an example when
porting to new targets.

Note: Using the FreeMASTER tool and FreeMASTER Communication Driver is only allowed in
systemsbased onNXPmicrocontroller ormicroprocessor unit. Usewith non-NXPMCUplatforms
is not permitted by the license terms.

Target platforms The driver implementation uses the following abstraction mechanisms
which simplify driver porting and supporting new communication modules:

• General CPU Platform (see source code in the src/platforms directory). The code in
this layer is only specific to native data type sizes and CPU architectures (for example;
alignment-aware memory copy routines). This driver version brings two generic imple-
mentations of 32-bit platforms supporting both little-endian and big-endian architectures.
There are also implementations customized for the 56F800E family of digital signal con-
trollers and S12Z MCUs. Zephyr is treated as a specific CPU platform as it brings unified
user configuration (Kconfig) and generic hardware device drivers. With Zephyr, the trans-
port layer and low-level communication layers described below are configured automati-
cally using Kconfig and Device Tree technologies.

• Transport CommunicationLayer - The Serial, CAN,Networking, PD-BDM, and othermeth-
ods of transport logic are implemented as a driver layer called FMSTR_TRANSPORT with a
uniform API. A support of the Network transport also extends single-client modes of oper-
ation which are native for Serial, USB and CAN by a concept of multiple client sessions.

• Low-level Communication Driver - Each type of transport further defines a low-level
API used to access the physical communication module. For example, the Serial trans-
port defines a character-orientedAPI implemented by different serial communicationmod-
ules like UART, LPUART, USART, and also USB-CDC. Similarly, the CAN transport defines a
message-oriented API implemented by the FlexCAN or MCAN modules. Moreover, there
are multiple different implementations for the same kind of communication peripherals.
The difference between the implementation is in the way the low-level hardware regis-
ters are accessed. The mcuxsdk folder contains implementations which use MCUXpresso
SDK drivers. These drivers should be used in applications based on the NXP MCUXpresso
SDK. The “ampsdk” drivers target automotive-specific MCUs and their respective SDKs.
The “dreg” implementations use a plain C-language access to hardware register addresses
which makes it a universal and the most portable solution. In this case, users are encour-
aged to add more drivers for other communication modules or other respective SDKs and
contribute the code back to NXP for integration.

416 Chapter 3. Middleware

https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster
https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster

MCUXpresso SDK Documentation, Release 25.09.00

The low-level drivers defined for the Networking transport enable datagram-oriented UDP
and stream TCP communication. This implementation is demonstrated using the lwIP soft-
ware stack but shall be portable to other TCP/IP stacks. It may sound surprisingly, but also
the Segger J-Link RTT communication driver is linked to the Networking transport (RTT is
stream oriented communication handled similarly to TCP).

Replacing existing drivers For all supported platforms, the driver described in this document
replaces the V2 implementation and also older driver implementations that were available sep-
arately for individual platforms (PC Master SCI drivers).

Clocks, pins, and peripheral initialization The FreeMASTER communication driver is only
responsible for runtime processing of the communication and must be integrated with an user
application code to function properly. The user application code is responsible for general initial-
ization of clock sources, pinmultiplexers, and peripheral registers related to the communication
speed. Such initialization should be done before calling the FMSTR_Init function.

It is recommended to develop the user application using one of the Software Development Kits
(SDKs) available from third parties or directly from NXP, such as MCUXpresso SDK, MCUXpresso
IDE, and related tools. This approach simplifies the general configuration process significantly.

MCUXpresso SDK TheMCUXpresso SDK is a software package providedbyNXPwhich contains
the device initialization code, linker files, and software driverswith example applications for the
NXP family of MCUs. The MCUXpresso Config Tools may be used to generate the clock-setup and
pin-multiplexer setup code suitable for the selected processor.

The MCUXpresso SDK also contains this FreeMASTER communication driver as a “middle-
ware” component which may be downloaded along with the example applications from https:
//mcuxpresso.nxp.com/en/welcome.

MCUXpresso SDK on GitHub The FreeMASTER communication driver is also released as one
of the middleware components of the MCUXpresso SDK on the GitHub. This release enables
direct integration of the FreeMASTER source code Git repository into a target applications in-
cluding Zephyr applications.

Related links:

• The official FreeMASTER middleware repository.

• Online version of this document

FreeMASTER in Zephyr The FreeMASTER middleware repository can be used with MCUX-
presso SDK as well as a Zephyr module. Zephyr-specific samples which include examples of
Kconfig and Device Tree configurations for Serial, USB and Network communications are avail-
able in separate repository. West manifest in this sample repository fetches the full Zephyr pack-
age including the FreeMASTER middleware repository used as a Zephyr module.

Example applications

MCUX SDK Example applications There are several example applications available for each
supported MCU platform.

• fmstr_uart demonstrates a plain serial transmission, typically connecting to a computer’s
physical or virtual COM port. The typical transmission speed is 115200 bps.

3.1. Motor Control 417

https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/user_guide/user_guide.html#multi-session-support

MCUXpresso SDK Documentation, Release 25.09.00

• fmstr_can demonstrates CAN bus communication. This requires a suitable CAN interface
connected to the computer and interconnected with the target MCU using a properly ter-
minated CAN bus. The typical transmission speed is 500 kbps. A FreeMASTER-over-CAN
communication plug-in must be used.

• fmstr_usb_cdc uses an on-chip USB controller to implement a CDC communication class.
It is connected directly to a computer’s USB port and creates a virtual COM port device. The
typical transmission speed is above 1 Mbps.

• fmstr_net demonstrates the Network communication over UDP or TCP protocol. Existing
examples use lwIP stack to implement the communication, but in general, it shall be possi-
ble to use any other TCP/IP stack to achieve the same functionality.

• fmstr_wifi is the fmstr_net application modified to use aWiFi network interface instead of
a wired Ethernet connection.

• fmstr_rtt demonstrates the communication over SEGGER J-Link RTT interface. Both fm-
str_net and fmstr_rtt examples require the FreeMASTER TCP/UDP communication plug-in
to be used on the PC host side.

• fmstr_eonce uses the real-time data unit on the JTAG EOnCEmodule of the 56F800E family
to implement pseudo-serial communication over the JTAG port. The typical transmission
speed is around 10 kbps. This communication requires FreeMASTER JTAG/EOnCE commu-
nication plug-in.

• fmstr_pdbdm uses JTAG or BDM debugging interface to access the target RAM directly
while the CPU is running. Note that such approach can be used with any MCU applica-
tion, even without any special driver code. The computer reads from and writes into the
RAMdirectly without CPU intervention. The Packet-Driven BDM (PD-BDM) communication
uses the same memory access to exchange command and response frames. With PD-BDM,
the FreeMASTER tool is able to go beyond basic memory read/write operations and ac-
cesses also advanced features like Recorder, TSA, or Pipes. The typical transmission speed
is around 10 kbps. A PD-BDM communication plug-in must be used in FreeMASTER and
configured properly for the selected debugging interface. Note that this communication
cannot be used while a debugging interface is used by a debugger session.

• fmstr_any is a special example application which demonstrates how the NXPMCUXpresso
Config Tools can be used to configure pins, clocks, peripherals, interrupts, and even the
FreeMASTER “middleware” driver features in a graphical and user friendly way. The user
can switch between the Serial, CAN, and other ways of communication and generate the
required initialization code automatically.

Zephyr sample spplications Zephyr sample applications demonstrate Kconfig and Device
Tree configuration which configure the FreeMASTER middleware module for a selected com-
munication option (Serial, CAN, Network or RTT).

Refer to readme.md files in each sample directory for description of configuration options re-
quired to implement FreeMASTER connectivity.

Description

This section shows how to add the FreeMASTER Communication Driver into application and how
to configure the connection to the FreeMASTER visualization tool.

Features The FreeMASTER driver implements the FreeMASTER protocol V4 and provides the
following features which may be accessed using the FreeMASTER visualization tool:

• Read/write access to any memory location on the target.

• Optional password protection of the read, read/write, and read/write/flash access levels.

418 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

• Atomic bit manipulation on the target memory (bit-wise write access).

• Optimal size-aligned access to memory which is also suitable to access the peripheral reg-
ister space.

• Oscilloscope access—real-time access to target variables. The sample rate may be limited
by the communication speed.

• Recorder— access to the fast transient recorder running on the board as a part of the
FreeMASTER driver. The sample rate is only limited by the MCU CPU speed. The length
of the data recorded depends on the amount of available memory.

• Multiple instances of Oscilloscopes andRecorderswithout the limitation ofmaximumnum-
ber of variables.

• Application commands—high-level message delivery from the PC to the application.

• TSA tables—describing the data types, variables, files, or hyperlinks exported by the target
application. The TSA newly supports also non-memory mapped resources like external
EEPROM or SD Card files.

• Pipes—enabling the buffered stream-oriented data exchange for a general-purpose
terminal-like communication, diagnostic data streaming, or other data exchange.

The FreeMASTER driver features:

• Full FreeMASTER protocol V4 implementation with a new V4 style of CRC used.

• Layered approach supporting Serial, CAN, Network, PD-BDM, and other transports.

• Layered low-level Serial transport driver architecture enabling to select UART, LPUART,
USART, and other physical implementations of serial interfaces, including USB-CDC.

• Layered low-level CAN transport driver architecture enabling to select FlexCAN, msCAN,
MCAN, and other physical implementations of the CAN interface.

• Layered low-level Networking transport enabling to select TCP, UDP or J-Link RTT commu-
nication.

• TSA support towrite-protectmemory regions or individual variables and to deny the access
to the unsafe memory.

• The pipe callback handlers are invoked whenever new data is available for reading from
the pipe.

• Two Serial Single-Wire modes of operation are enabled. The “external” mode has the RX
and TX shorted on-board. The “true” single-wire mode interconnects internally when the
MCU or UART modules support it.

The following sections briefly describe all FreeMASTER features implemented by the driver. See
the PC-based FreeMASTER User Manual for more details on how to use the features to monitor,
tune, or control an embedded application.

BoardDetection The FreeMASTER protocol V4 defines the standard set of configuration values
which the host PC tool reads to identify the target and to access other target resources properly.
The configuration includes the following parameters:

• Version of the driver and the version of the protocol implemented.

• MTU as the Maximum size of the Transmission Unit (for example; communication buffer
size).

• Application name, description, and version strings.

• Application build date and time as a string.

• Target processor byte ordering (little/big endian).

• Protection level that requires password authentication.

3.1. Motor Control 419

MCUXpresso SDK Documentation, Release 25.09.00

• Number of the Recorder and Oscilloscope instances.

• RAM Base Address for optimized memory access commands.

Memory Read This basic feature enables the host PC to read any data memory location by
specifying the address and size of the required memory area. The device response frame must
be shorter than theMTU to fit into the outgoing communication buffer. To read a devicememory
of any size, the host uses the information retrieved during the Board Detection and splits the
large-block request to multiple partial requests.

The driver uses size-aligned operations to read the target memory (for example; uses proper
read-word instruction when an address is aligned to 4 bytes).

MemoryWrite Similarly to the Memory Read operation, the MemoryWrite feature enables to
write to any RAMmemory location on the target device. A single write command framemust be
shorter than the MTU to fit into the target communication buffer. Larger requests must be split
into smaller ones.

The driver uses size-aligned operations to write to the target memory (for example; uses proper
write-word instruction when an address is aligned to 4 bytes).

MaskedMemoryWrite To implement thewrite access to a single bit or a group of bits of target
variables, the Masked Memory Write feature is available in the FreeMASTER protocol and it is
supported by the driver using the Read-Modify-Write approach.

Be careful when writing to bit fields of volatile variables that are also modified in an application
interrupt. The interrupt may be serviced in the middle of a read-modify-write operation and it
may cause data corruption.

Oscilloscope The protocol and driver enables any number of variables to be read at once with
a single request from the host. This feature is called Oscilloscope and the FreeMASTER tool uses
it to display a real-time graph of variable values.

The driver can be configured to support any number of Oscilloscope instances and enable simul-
taneously running graphs to be displayed on the host computer screen.

Recorder The protocol enables the host to select target variableswhose values are then period-
ically recorded into a dedicated on-board memory buffer. After such data sampling stops (either
on a host request or by evaluating a threshold-crossing condition), the data buffer is downloaded
to the host and displayed as a graph. The data sampling rate is not limited by the speed of the
communication line, so it enables displaying the variable transitions in a very high resolution.

The driver can be configured to support multiple Recorder instances and enable multiple
recorder graphs to be displayed on the host screen. Having multiple recorders also enables set-
ting the recording point differently for each instance. For example; one instance may be record-
ing data in a general timer interrupt while another instance may record at a specific control
algorithm time in the PWM interrupt.

TSA With the TSA feature, data types and variables can be described directly in the application
source code. Such information is later provided to the FreeMASTER toolwhichmay use it instead
of reading symbol data from the application ELF executable file.

The information is encoded as so-called TSA tables which become direct part of the application
code. The TSA tables contain descriptors of variables that shall be visible to the host tool. The
descriptors can describe the memory areas by specifying the address and size of the memory

420 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

block or more conveniently using the C variable names directly. Different set of TSA descriptors
can be used to encode information about the structure types, unions, enumerations, or arrays.

The driver also supports special types of TSA table entries to describe user resources like external
EEPROM and SD Card files, memory-mapped files, virtual directories, web URL hyperlinks, and
constant enumerations.

TSA Safety When the TSA is enabled in the application, the TSA Safety can be enabled and
validate the memory accesses directly by the embedded-side driver. When the TSA Safety is
turned on, anymemory request received from thehost is validated and accepted only if it belongs
to a TSA-described object. The TSA entries can be declared as Read-Write or Read-Only so that
the driver can actively deny the write access to the Read-Only objects.

Application commands The Application Commands are high-level messages that can be de-
livered from the PC Host to the embedded application for further processing. The embedded
application can either poll the status, or be called back when a new Application Command ar-
rives to be processed. After the embedded application acknowledges that the command is han-
dled, the host receives the Result Code and reads the other return data from memory. Both the
Application Commands and the Result Codes are specific to a given application and it is user’s
responsibility to define them. The FreeMASTER protocol and the FreeMASTER driver only imple-
ment the delivery channel and a set of API calls to enable the Application Command processing
in general.

Pipes The Pipes enable buffered and stream-oriented data exchange between the PC Host and
the target application. Any pipe can be written to and read from at both ends (either on the
PC or the MCU). The data transmission is acknowledged using the special FreeMASTER protocol
commands. It is guaranteed that the data bytes are delivered from the writer to the reader in a
proper order and without losses.

Serial single-wire operation TheMCUSerial CommunicationDriver natively supports normal
dual-wire operation. Because the protocol is half-duplex only, the driver can also operate in two
single-wire modes:

• “External” single-wire operation where the Receiver and Transmitter pins are shorted on
the board. This mode is supported by default in the MCU driver because the Receiver and
Transmitter units are enabled or disabled whenever needed. It is also easy to extend this
operation for the RS485 communication.

• “True” single-wire mode which uses only a single pin and the direction switching is made
by the UART module. This mode of operation must be enabled by defining the FM-
STR_SERIAL_SINGLEWIRE configuration option.

Multi-session support With networking interface it is possible for multiple clients to access
the target MCU simultaneously. Reading and writing of target memory is processed atomically
so there is no risk of data corruption. The state-full resources such as Recorders or Oscilloscopes
are locked to a client session upon first use and access is denied to other clients until lock is
released..

Zephyr-specific

3.1. Motor Control 421

MCUXpresso SDK Documentation, Release 25.09.00

Dedicated communication task FreeMASTER communicationmay run isolated in a dedicated
task. The task automates the FMSTR_Init and FMSTR_Poll calls together with periodic activities
enabling the FreeMASTER UI to fetch information about tasks and CPU utilization. The task can
be started automatically or manually, and it must be assigned a priority to be able to react on
interrupts and other communication events. Refer to Zephyr FreeMASTER sample applications
which all use this communication task.

Zephyr shell and logging over FreeMASTER pipe FreeMASTER implements a shell backend
whichmay use FreeMASTER pipe as a I/O terminal and logging output. Refer to Zephyr FreeMAS-
TER sample applications which all use this feature.

Automatic TSA tables TSA tables can be declared as “automatic” in Zephyr which make them
automatically registered in the table list. This may be very useful when there are many TSA
tables or when the tables are defined in different (often unrelated) libraries linked together. In
this case user does not need to build a list of all tables manually.

Driver files The driver source files can be found in a top-level src folder, further divided into
the sub-folders:

• src/platforms platform-specific folder—one folder exists for each supported processor
platform (for example; 32-bit Little Endian platform). Each such folder contains a platform
header file with data types and a code which implements the potentially platform-specific
operations, such as aligned memory access.

• src/common folder—contains the common driver source files shared by the driver for all
supported platforms. All the .c files must be added to the project, compiled, and linked
together with the application.

– freemaster.h - master driver header file, which declares the common data types,
macros, and prototypes of the FreeMASTER driver API functions.

– freemaster_cfg.h.example - this file can serve as an example of the FreeMASTER driver
configuration file. Save this file into a project source code folder and rename it to
freemaster_cfg.h. The FreeMASTER driver code includes this file to get the project-
specific configuration options and to optimize the compilation of the driver.

– freemaster_defcfg.h - defines the default values for each FreeMASTER configuration
option if the option is not set in the freemaster_cfg.h file.

– freemaster_protocol.h - defines the FreeMASTER protocol constants used internally by
the driver.

– freemaster_protocol.c - implements the FreeMASTER protocol decoder and handles the
basic Get Configuration Value, Memory Read, and Memory Write commands.

– freemaster_rec.c - handles the Recorder-specific commands and implements the
Recorder sampling and triggering routines. When the Recorder is disabled by the
FreeMASTER driver configuration file, this file only compiles to empty API functions.

– freemaster_scope.c - handles the Oscilloscope-specific commands. If the Oscilloscope is
disabled by the FreeMASTER driver configuration file, this file compiles as void.

– freemaster_pipes.c - implements the Pipes functionality when the Pipes feature is en-
abled.

– freemaster_appcmd.c - handles the communication commands used to deliver and exe-
cute theApplicationCommandswithin the context of the embedded application. When
the Application Commands are disabled by the FreeMASTER driver configuration file,
this file only compiles to empty API functions.

422 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

– freemaster_tsa.c - handles the commands specific to the TSA feature. This feature en-
ables the FreeMASTER host tool to obtain the TSA memory descriptors declared in the
embedded application. If the TSA is disabled by the FreeMASTER driver configuration
file, this file compiles as void.

– freemaster_tsa.h - contains the declaration of the macros used to define the TSA mem-
ory descriptors. This file is indirectly included into the user application code (via
freemaster.h).

– freemaster_sha.c - implements the SHA-1 hash code used in the password authentica-
tion algorithm.

– freemaster_private.h - contains the declarations of functions and data types used in-
ternally in the driver. It also contains the C pre-processor statements to perform the
compile-time verification of the user configuration provided in the freemaster_cfg.h
file.

– freemaster_serial.c - implements the serial protocol logic including the CRC, FIFO queu-
ing, and other communication-related operations. This code calls the functions of the
low-level communication driver indirectly via a character-oriented API exported by
the specific low-level driver.

– freemaster_serial.h - defines the low-level character-oriented Serial API.

– freemaster_can.c - implements the CAN protocol logic including the CAN message
preparation, signalling using the first data byte in the CAN frame, and other
communication-related operations. This code calls the functions of the low-level com-
munication driver indirectly via a message-oriented API exported by the specific low-
level driver.

– freemaster_can.h - defines the low-level message-oriented CAN API.

– freemaster_net.c - implements the Network protocol transport logic including multiple
session management code.

– freemaster_net.h - definitions related to the Network transport.

– freemaster_pdbdm.c - implements the packet-driven BDM communication buffer and
other communication-related operations.

– freemaster_utils.c - aligned memory copy routines, circular buffer management and
other utility functions

– freemaster_utils.h - definitions related to utility code.

• src/drivers/[sdk]/serial - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

– freemaster_serial_XXX.c and .h - implement low-level access to the communication pe-
ripheral registers. Different files exist for the UART, LPUART, USART, and other kinds
of Serial communication modules.

• src/drivers/[sdk]/can - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

– freemaster_XXX.c and .h - implement low-level access to the communication peripheral
registers. Different files exist for the FlexCAN, msCAN, MCAN, and other kinds of CAN
communication modules.

• src/drivers/[sdk]/network - contains low-level code adapting the FreeMASTER Network
transport to an underlying TCP/IP or RTT stack.

– freemaster_net_lwip_tcp.c and _udp.c - default networking implementation of TCP and
UDP transports using lwIP stack.

– freemaster_net_segger_rtt.c - implementation of network transport using Segger J-Link
RTT interface

3.1. Motor Control 423

MCUXpresso SDK Documentation, Release 25.09.00

Driver configuration The driver is configured using a single header file (freemaster_cfg.h).
Create this file and save it together with other project source files before compiling the driver
code. All FreeMASTER driver source files include the freemaster_cfg.h file and use the macros
defined here for the conditional and parameterized compilation. The C compiler must locate the
configuration file when compiling the driver files. Typically, it can be achieved by putting this
file into a folder where the other project-specific included files are stored.

As a starting point to create the configuration file, get the freemaster_cfg.h.example file, rename
it to freemaster_cfg.h, and save it into the project area.

Note: It is NOT recommended to leave the freemaster_cfg.h file in the FreeMASTER driver source
code folder. The configuration filemust be placed at a project-specific location, so that it does not
affect the other applications that use the same driver.

Configurable items This section describes the configuration options which can be defined in
freemaster_cfg.h.

Interrupt modes
#define FMSTR_LONG_INTR [0|1]
#define FMSTR_SHORT_INTR [0|1]
#define FMSTR_POLL_DRIVEN [0|1]

Value Type boolean (0 or 1)

Description Exactly one of the three macros must be defined to non-zero. The others must be
defined to zero or left undefined. The non-zero-defined constant selects the interrupt mode of
the driver. See Driver interrupt modes.

• FMSTR_LONG_INTR— long interrupt mode

• FMSTR_SHORT_INTR— short interrupt mode

• FMSTR_POLL_DRIVEN— poll-driven mode

Note: Some options may not be supported by all communication interfaces. For example, the
FMSTR_SHORT_INTR option is not supported by the USB_CDC interface.

Protocol transport
#define FMSTR_TRANSPORT [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER source
code. Specify one of existing instances to make use of the protocol transport.

Description Use one of the pre-defined constants, as implemented by the FreeMASTER code.
The current driver supports the following transports:

• FMSTR_SERIAL - serial communication protocol

• FMSTR_CAN - using CAN communication

• FMSTR_PDBDM - using packet-driven BDM communication

• FMSTR_NET - network communication using TCP or UDP protocol

424 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Serial transport This section describes configuration parameters used when serial transport
is used:

#define FMSTR_TRANSPORT FMSTR_SERIAL

FMSTR_SERIAL_DRV Select what low-level driver interface will be used when implementing
the Serial communication.

#define FMSTR_SERIAL_DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing serial driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/serial implementation):

• FMSTR_SERIAL_MCUX_UART - UART driver

• FMSTR_SERIAL_MCUX_LPUART - LPUART driver

• FMSTR_SERIAL_MCUX_USART - USART driver

• FMSTR_SERIAL_MCUX_MINIUSART - miniUSART driver

• FMSTR_SERIAL_MCUX_QSCI - DSC QSCI driver

• FMSTR_SERIAL_MCUX_USB - USB/CDC class driver (also see code in the /sup-
port/mcuxsdk_usb folder)

• FMSTR_SERIAL_56F800E_EONCE - DSC JTAG EOnCE driver

Other SDKs or BSPs may define custom low-level driver interface structure which may be used
as FMSTR_SERIAL_DRV. For example:

• FMSTR_SERIAL_DREG_UART - demonstrates the low-level interface implementedwithout
the MCUXpresso SDK and using direct access to peripheral registers.

FMSTR_SERIAL_BASE
#define FMSTR_SERIAL_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the UART, LPUART, USART, or other serial peripheral
module to be used for the communication. This value is not defined by default. User application
should call FMSTR_SetSerialBaseAddress() to select the peripheral module.

FMSTR_COMM_BUFFER_SIZE
#define FMSTR_COMM_BUFFER_SIZE [number]

Value Type 0 or a value in range 32…255

Description Specify the size of the communication buffer to be allocated by the driver.
Default value, which suits all driver features, is used when this option is defined as 0.

3.1. Motor Control 425

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_COMM_RQUEUE_SIZE
#define FMSTR_COMM_RQUEUE_SIZE [number]

Value Type Value in range 0…255

Description Specify the size of the FIFO receiver queue used to quickly receive and store char-
acters in the FMSTR_SHORT_INTR interrupt mode.
The default value is 32 B.

FMSTR_SERIAL_SINGLEWIRE
#define FMSTR_SERIAL_SINGLEWIRE [0|1]

Value Type Boolean 0 or 1.

Description Set to non-zero to enable the “True” single-wire mode which uses a single MCU
pin to communicate. The low-level driver enables the pin direction switching when the MCU
peripheral supports it.

CANBus transport This section describes configuration parameters usedwhen CAN transport
is used:

#define FMSTR_TRANSPORT FMSTR_CAN

FMSTR_CAN_DRV Select what low-level driver interface will be used when implementing the
CAN communication.

#define FMSTR_CAN_DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing CAN driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/can implementation):

• FMSTR_CAN_MCUX_FLEXCAN - FlexCAN driver

• FMSTR_CAN_MCUX_MCAN - MCAN driver

• FMSTR_CAN_MCUX_MSCAN - msCAN driver

• FMSTR_CAN_MCUX_DSCFLEXCAN - DSC FlexCAN driver

• FMSTR_CAN_MCUX_DSCMSCAN - DSC msCAN driver

Other SDKs or BSPs may define the custom low-level driver interface structure which may be
used as FMSTR_CAN_DRV.

FMSTR_CAN_BASE

426 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

#define FMSTR_CAN_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the FlexCAN, msCAN, or other CAN peripheral module
to be used for the communication. This value is not defined by default. User application should
call FMSTR_SetCanBaseAddress() to select the peripheral module.

FMSTR_CAN_CMDID
#define FMSTR_CAN_CMDID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CANmessage identifier used for FreeMASTER commands (direction from PC Host
tool to target application). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Default value is 0x7AA.

FMSTR_CAN_RSPID
#define FMSTR_CAN_RSPID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for responding messages (direction from target ap-
plication to PC Host tool). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Note that both CMDID and RSPID values may be the same. Default value
is 0x7AA.

FMSTR_FLEXCAN_TXMB
#define FMSTR_FLEXCAN_TXMB [number]

Value Type Number in range of 0..N where N is number of CANmessage-buffers supported by
HWmodule.

Description Only usedwhen the FlexCAN low-level driver is used. Define the FlexCANmessage
buffer for CAN frame transmission. Default value is 0.

FMSTR_FLEXCAN_RXMB
#define FMSTR_FLEXCAN_RXMB [number]

Value Type Number in range of 0..N where N is number of CANmessage-buffers supported by
HWmodule.

3.1. Motor Control 427

MCUXpresso SDK Documentation, Release 25.09.00

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN mes-
sage buffer for CAN frame reception. Note that the FreeMASTER driver may also operate with a
common message buffer used by both TX and RX directions. Default value is 1.

Network transport This section describes configuration parameters used when Network
transport is used:

#define FMSTR_TRANSPORT FMSTR_NET

FMSTR_NET_DRV Select network interface implementation.

#define FMSTR_NET_DRV [identifier]

Value Type Identifiers are structure instance names defined in FreeMASTER drivers code.
Specify one of existing NET driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/network implementation):

• FMSTR_NET_LWIP_TCP - TCP communication using lwIP stack

• FMSTR_NET_LWIP_UDP - UDP communication using lwIP stack

• FMSTR_NET_SEGGER_RTT - Communication using SEGGER J-Link RTT interface

Other SDKs or BSPs may define the custom networking interface which may be used as FM-
STR_CAN_DRV.

Add another row below:

FMSTR_NET_PORT
#define FMSTR_NET_PORT [number]

Value Type TCP or UDP port number (short integer)

Description Specifies the server port number used by TCP or UDP protocols.

FMSTR_NET_BLOCKING_TIMEOUT
#define FMSTR_NET_BLOCKING_TIMEOUT [number]

Value Type Timeout as number of milliseconds

Description This value specifies a timeout in milliseconds for which the network socket op-
erations may block the execution inside FMSTR_Poll. This may be set high (e.g. 250) when a
dedicated RTOS task is used to handle FreeMASTER protocol polling. Set to a lower value when
the polling task is also responsible for other operations. Set to 0 to attempt to use non-blocking
socket operations.

428 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_NET_AUTODISCOVERY
#define FMSTR_NET_AUTODISCOVERY [0|1]

Value Type Boolean 0 or 1.

Description This option enables the FreeMASTER driver to use a separate UDP socket to broad-
cast auto-discovery messages to network. This helps the FreeMASTER tool to discover the target
device address, port and protocol options.

Debugging options

FMSTR_DISABLE
#define FMSTR_DISABLE [0|1]

Value Type boolean (0 or 1)

Description Define as non-zero to disable all FreeMASTER features, exclude the driver code
from build, and compile all its API functions empty. This may be useful to remove FreeMASTER
without modifying any application source code. Default value is 0 (false).

FMSTR_DEBUG_TX
#define FMSTR_DEBUG_TX [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to enable the driver to periodically transmit test frames out on
the selected communication interface (SCI or CAN). With the debug transmission enabled, it is
simpler to detect problems in the baudrate or other communication configuration settings.

The test frames are transmitted until the first valid command frame is received from the PC Host
tool. The test frame is a valid error status frame, as defined by the protocol format. On the serial
line, the test frame consists of three printable characters (+©W) which are easy to capture using
the serial terminal tools.

This feature requires the FMSTR_Poll() function to be called periodically. Default value is 0 (false).

FMSTR_APPLICATION_STR
#define FMSTR_APPLICATION_STR

Value Type String.

Description Name of the application visible in FreeMASTER host application.

Memory access

3.1. Motor Control 429

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_USE_READMEM
#define FMSTR_USE_READMEM [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Memory Read command and enable
FreeMASTER to have read access to memory and variables. The access can be further restricted
by using a TSA feature.
Default value is 1 (true).

FMSTR_USE_WRITEMEM
#define FMSTR_USE_WRITEMEM [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Memory Write command.
The default value is 1 (true).

Oscilloscope options

FMSTR_USE_SCOPE
#define FMSTR_USE_SCOPE [number]

Value Type Integer number.

Description Number of Oscilloscope instances to be supported. Set to 0 to disable the Oscillo-
scope feature.
Default value is 0.

FMSTR_MAX_SCOPE_VARS
#define FMSTR_MAX_SCOPE_VARS [number]

Value Type Integer number larger than 2.

Description Number of variables to be supported by each Oscilloscope instance.
Default value is 8.

Recorder options

FMSTR_USE_RECORDER
#define FMSTR_USE_RECORDER [number]

430 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Value Type Integer number.

Description Number of Recorder instances to be supported. Set to 0 to disable the Recorder
feature.
Default value is 0.

FMSTR_REC_BUFF_SIZE
#define FMSTR_REC_BUFF_SIZE [number]

Value Type Integer number larger than 2.

Description Defines the size of the memory buffer used by the Recorder instance #0.
Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_TIMEBASE
#define FMSTR_REC_TIMEBASE [time specification]

Value Type Number (nanoseconds time).

Description Defines the base sampling rate in nanoseconds (sampling speed) Recorder in-
stance #0.

Use one of the following macros:

• FMSTR_REC_BASE_SECONDS(x)

• FMSTR_REC_BASE_MILLISEC(x)

• FMSTR_REC_BASE_MICROSEC(x)

• FMSTR_REC_BASE_NANOSEC(x)

Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_FLOAT_TRIG
#define FMSTR_REC_FLOAT_TRIG [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the floating-point triggering. Be aware that
floating-point triggering may grow the code size by linking the floating-point standard library.

Default value is 0 (false).

Application Commands options

3.1. Motor Control 431

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_USE_APPCMD
#define FMSTR_USE_APPCMD [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Application Commands feature.
Default value is 0 (false).

FMSTR_APPCMD_BUFF_SIZE
#define FMSTR_APPCMD_BUFF_SIZE [size]

Value Type Numeric buffer size in range 1..255

Description The size of the Application Command data buffer allocated by the driver. The
buffer stores the (optional) parameters of the Application Commandwhichwaits to be processed.

FMSTR_MAX_APPCMD_CALLS
#define FMSTR_MAX_APPCMD_CALLS [number]

Value Type Number in range 0..255

Description The number of different Application Commands that can be assigned a callback
handler function using FMSTR_RegisterAppCmdCall(). Default value is 0.

TSA options

FMSTR_USE_TSA
#define FMSTR_USE_TSA [0|1]

Value Type Boolean 0 or 1.

Description Enable the FreeMASTER TSA feature to be used. With this option enabled, the TSA
tables defined in the applications are made available to the FreeMASTER host tool.
Default value is 0 (false).

FMSTR_USE_TSA_SAFETY
#define FMSTR_USE_TSA_SAFETY [0|1]

Value Type Boolean 0 or 1.

432 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Description Enable thememory access validation in the FreeMASTER driver. With this option,
the host tool is not able to access the memory which is not described by at least one TSA descrip-
tor. Also a write access is denied for objects defined as read-only in TSA tables.
Default value is 0 (false).

FMSTR_USE_TSA_INROM
#define FMSTR_USE_TSA_INROM [0|1]

Value Type Boolean 0 or 1.

Description Declare all TSA descriptors as const, which enables the linker to put the data into
the flash memory. The actual result depends on linker settings or the linker commands used in
the project.
Default value is 0 (false).

FMSTR_USE_TSA_DYNAMIC
#define FMSTR_USE_TSA_DYNAMIC [0|1]

Value Type Boolean 0 or 1.

Description Enable runtime-defined TSA entries to be added to the TSA table by the FM-
STR_SetUpTsaBuff() and FMSTR_TsaAddVar() functions.
Default value is 0 (false).

Pipes options

FMSTR_USE_PIPES
#define FMSTR_USE_PIPES [0|1]

Value Type Boolean 0 or 1.

Description Enable the FreeMASTER Pipes feature to be used.
Default value is 0 (false).

FMSTR_MAX_PIPES_COUNT
#define FMSTR_MAX_PIPES_COUNT [number]

Value Type Number in range 1..63.

Description The number of simultaneous pipe connections to support.
The default value is 1.

3.1. Motor Control 433

MCUXpresso SDK Documentation, Release 25.09.00

Driver interrupt modes To implement the communication, the FreeMASTER driver handles
the Serial or CANmodule’s receive and transmit requests. Use the freemaster_cfg.h configuration
file to select whether the driver processes the communication automatically in the interrupt
service routine handler or if it only polls the status of themodule (typically during the application
idle time).

This section describes each of the interrupt mode in more details.

Completely Interrupt-Driven operation Activated using:

#define FMSTR_LONG_INTR 1

In this mode, both the communication and the FreeMASTER protocol decoding is done in the
FMSTR_SerialIsr, FMSTR_CanIsr, or other interrupt service routine. Because the protocol execu-
tionmay be a lengthy task (especially with the TSA-Safety enabled) it is recommended to use this
mode only if the interrupt prioritization scheme is possible in the application and the FreeMAS-
TER interrupt is assigned to a lower (the lowest) priority.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_SerialIsr or FM-
STR_CanIsr functions from that handler.

Mixed Interrupt and Polling Modes Activated using:

#define FMSTR_SHORT_INTR 1

In this mode, the communication processing time is split between the interrupt routine and the
main application loop or task. The raw communication is handled by the FMSTR_SerialIsr, FM-
STR_CanIsr, or other interrupt service routine, while the protocol decoding and execution is han-
dled by the FMSTR_Poll routine. Call FMSTR_Poll during the idle time in the application main
loop.

The interrupt processing in this mode is relatively fast and deterministic. Upon a serial-receive
event, the received character is only placed into a FIFO-like queue and it is not further processed.
Upon a CAN receive event, the received frame is stored into a receive buffer. When transmitting,
the characters are fetched from the prepared transmit buffer.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_SerialIsr or FM-
STR_CanIsr functions from that handler.

When the serial interface is used as the serial communication interface, ensure that the FM-
STR_Poll function is called at least once per N character time periods. N is the length of the
FreeMASTER FIFO queue (FMSTR_COMM_RQUEUE_SIZE) and the character time is the time
needed to transmit or receive a single byte over the SCI line.

Completely Poll-driven
#define FMSTR_POLL_DRIVEN 1

In this mode, both the communication and the FreeMASTER protocol decoding are done in the
FMSTR_Poll routine. No interrupts are needed and the FMSTR_SerialIsr, FMSTR_CanIsr, and sim-
ilar handlers compile to an empty code.

When using this mode, ensure that the FMSTR_Poll function is called by the application at least
once per the serial “character time” which is the time needed to transmit or receive a single
character.

In the latter twomodes (FMSTR_SHORT_INTR and FMSTR_POLL_DRIVEN), the protocol handling
takes place in the FMSTR_Poll routine. An application interrupt can occur in the middle of the

434 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Read Memory or Write Memory commands’ execution and corrupt the variable being accessed
by the FreeMASTER driver. In these two modes, some issues or glitches may occur when using
FreeMASTER to visualize or monitor volatile variables modified in interrupt servicing code.

The same issuemay appear even in the full interruptmode (FMSTR_LONG_INTR), if volatile vari-
ables are modified in the interrupt code with a priority higher than the priority of the commu-
nication interrupt.

Data types Simple portability was one of the main requirements when writing the FreeMAS-
TER driver. This is why the driver code uses the privately-declared data types and the vast ma-
jority of the platform-dependent code is separated in the platform-dependent source files. The
data types used in the driver API are all defined in the platform-specific header file.

To prevent name conflicts with the symbols used in the application, all data types, macros, and
functions have the FMSTR_ prefix. The only global variables used in the driver are the transport
and low-level API structures exported from the driver-implementation layer to upper layers.
Other than that, all private variables are declared as static and named using the fmstr_ prefix.

Communication interface initialization The FreeMASTER driver does not perform neither
the initialization nor the configuration of the peripheral module that it uses to communicate. It
is the application startup code responsibility to configure the communicationmodule before the
FreeMASTER driver is initialized by the FMSTR_Init call.

When the Serial communication module is used as the FreeMASTER communication interface,
configure the UART receive and transmit pins, the serial communication baud rate, parity (no-
parity), the character length (eight bits), and the number of stop bits (one) before initializing the
FreeMASTER driver. For either the long or the short interrupt modes of the driver (see Driver
interrupt modes), configure the interrupt controller and register an application-specific inter-
rupt handler for all interrupt sources related to the selected serial peripheral module. Call the
FMSTR_SerialIsr function from the application handler.

When a CANmodule is used as the FreeMASTER communication interface, configure the CAN re-
ceive and transmit pins and the CAN module bit rate before initializing the FreeMASTER driver.
For either the long or the short interrupt modes of the driver (see Driver interrupt modes), con-
figure the interrupt controller and register an application-specific interrupt handler for all in-
terrupt sources related to the selected CAN peripheral module. Call the FMSTR_CanIsr function
from the application handler.

Note: It is not necessary to enable or unmask the serial nor the CAN interrupts before initializing
the FreeMASTER driver. The driver enables or disables the interrupts and communication lines,
as required during runtime.

FreeMASTER Recorder calls When using the FreeMASTER Recorder in the application (FM-
STR_USE_RECORDER > 0), call the FMSTR_RecorderCreate function early after FMSTR_Init to set
up each recorder instance to be used in the application. Then call the FMSTR_Recorder func-
tion periodically in the code where the data recording should occur. A typical place to call the
Recorder routine is at the timer or PWM interrupts, but it can be anywhere else. The exam-
ple applications provided together with the driver code call the FMSTR_Recorder in the main
application loop.

In applications where FMSTR_Recorder is called periodically with a constant period, specify the
period in the Recorder configuration structure before calling FMSTR_RecorderCreate. This set-
ting enables the PC Host FreeMASTER tool to display the X-axis of the Recorder graph properly
scaled for the time domain.

Driver usage Start using or evaluating FreeMASTER by opening some of the example applica-
tions available in the driver setup package.

3.1. Motor Control 435

MCUXpresso SDK Documentation, Release 25.09.00

Follow these steps to enable the basic FreeMASTER connectivity in the application:

• Make sure that all *.c files of the FreeMASTER driver from the
src/common/platforms/[your_platform] folder are a part of the project. See Driver files
for more details.

• Configure the FreeMASTER driver by creating or editing the freemaster_cfg.h file and by
saving it into the application project directory. See Driver configuration for more details.

• Include the freemaster.h file into any application source file that makes the FreeMASTER
API calls.

• Initialize the Serial or CAN modules. Set the baud rate, parity, and other parameters of
the communication. Do not enable the communication interrupts in the interrupt mask
registers.

• For the FMSTR_LONG_INTR and FMSTR_SHORT_INTR modes, install the application-
specific interrupt routine and call the FMSTR_SerialIsr or FMSTR_CanIsr functions from
this handler.

• Call the FMSTR_Init function early on in the application initialization code.

• Call the FMSTR_RecorderCreate functions for each Recorder instance to enable the
Recorder feature.

• In the main application loop, call the FMSTR_Poll API function periodically when the appli-
cation is idle.

• For the FMSTR_SHORT_INTR and FMSTR_LONG_INTRmodes, enable the interrupts globally
so that the interrupts can be handled by the CPU.

Communication troubleshooting The most common problem that causes communication is-
sues is a wrong baud rate setting or a wrong pin multiplexer setting of the target MCU. When
a communication between the PC Host running FreeMASTER and the target MCU cannot be es-
tablished, try enabling the FMSTR_DEBUG_TX option in the freemaster_cfg.h file and call the FM-
STR_Poll function periodically in the main application task loop.

With this feature enabled, the FreeMASTER driver periodically transmits a test frame through
the Serial or CAN lines. Use a logic analyzer or an oscilloscope to monitor the signals at the
communication pins of the CPU device to examine whether the bit rate and signal polarity are
configured properly.

Driver API

This section describes the driver Application Programmers’ Interface (API) needed to initialize
and use the FreeMASTER serial communication driver.

Control API There are three key functions to initialize and use the driver.

FMSTR_Init

Prototype
FMSTR_BOOL FMSTR_Init(void);

• Declaration: freemaster.h

• Implementation: freemaster_protocol.c

436 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Description This function initializes the internal variables of the FreeMASTER driver and en-
ables the communication interface. This function does not change the configuration of the se-
lected communicationmodule. The hardware module must be initialized before the FMSTR_Init
function is called.

A call to this function must occur before calling any other FreeMASTER driver API functions.

FMSTR_Poll

Prototype
void FMSTR_Poll(void);

• Declaration: freemaster.h

• Implementation: freemaster_protocol.c

Description In the poll-driven or short interrupt modes, this function handles the protocol
decoding and execution (see Driver interrupt modes). In the poll-driven mode, this function also
handles the communication interface with the PC. Typically, the FMSTR_Poll function is called
during the “idle” time in the main application task loop.

To prevent the receive data overflow (loss) on a serial interface, make sure that the FMSTR_Poll
function is called at least once per the time calculated as:

N * Tchar

where:

• N is equal to the length of the receive FIFO queue (configured by the FM-
STR_COMM_RQUEUE_SIZE macro). N is 1 for the poll-driven mode.

• Tchar is the character time, which is the time needed to transmit or receive a single byte
over the SCI line.

Note: In the long interrupt mode, this function typically compiles as an empty function and can
still be called. It is worthwhile to call this function regardless of the interrupt mode used in
the application. This approach enables a convenient switching between the different interrupt
modes only by changing the configuration macros in the freemaster_cfg.h file.

FMSTR_SerialIsr / FMSTR_CanIsr

Prototype
void FMSTR_SerialIsr(void);
void FMSTR_CanIsr(void);

• Declaration: freemaster.h

• Implementation: hw-specific low-level driver C file

Description This function contains the interrupt-processing code of the FreeMASTER driver.
In long or short interrupt modes (see Driver interrupt modes), this function must be called from
the application interrupt service routine registered for the communication interrupt vector. On
platforms where the communication module uses multiple interrupt vectors, the application
should register a handler for all vectors and call this function at each interrupt.

Note: In a poll-driven mode, this function is compiled as an empty function and does not have
to be used.

3.1. Motor Control 437

MCUXpresso SDK Documentation, Release 25.09.00

Recorder API

FMSTR_RecorderCreate

Prototype
FMSTR_BOOL FMSTR_RecorderCreate(FMSTR_INDEX recIndex, FMSTR_REC_BUFF* buffCfg);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function registers a recorder instance and enables it to be used by the PC
Host tool. Call this function for all recorder instances from 0 to the maximum number de-
fined by the FMSTR_USE_RECORDER configuration option (minus one). An exception to this
requirement is the recorder of instance 0 which may be automatically configured by FM-
STR_Init when the freemaster_cfg.h configuration file defines the FMSTR_REC_BUFF_SIZE and
FMSTR_REC_TIMEBASE options.

For more information, see Configurable items.

FMSTR_Recorder

Prototype
void FMSTR_Recorder(FMSTR_INDEX recIndex);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function takes a sample of the variables being recorded using the FreeMAS-
TER Recorder instance recIndex. If the selected Recorder is not active when the FMSTR_Recorder
function is being called, the function returns immediately. When the Recorder is active, the val-
ues of the variables being recorded are copied into the recorder buffer and the trigger conditions
are evaluated.

If a trigger condition is satisfied, the Recorder enters the post-triggermode, where it counts down
the follow-up samples (number of FMSTR_Recorder function calls) and de-activates the Recorder
when the required post-trigger samples are finished.

The FMSTR_Recorder function is typically called in the timer or PWM interrupt service routines.
This function can also be called in the application main loop (for testing purposes).

FMSTR_RecorderTrigger

Prototype
void FMSTR_RecorderTrigger(FMSTR_INDEX recIndex);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

438 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Description This function forces the Recorder trigger condition to happen, which causes the
Recorder to be automatically deactivated after the post-trigger samples are sampled. Use this
function in the application code for programmatic control over the Recorder triggering. This
can be useful when a more complex triggering conditions need to be used.

FastRecorderAPI The Fast Recorder feature is not available in the FreeMASTERdriver version
3. This feature was heavily dependent on the target platform and it was only available for the
56F8xxxx DSCs.

TSA Tables When the TSA is enabled in the FreeMASTER driver configuration file (by setting
the FMSTR_USE_TSA macro to a non-zero value), it defines the so-called TSA tables in the appli-
cation. This section describes the macros that must to be used to define the TSA tables.

There can be any number of TSA tables spread across the application source files. There must
be always exactly one TSA Table List defined, which informs the FreeMASTER driver about the
active TSA tables.

When there is at least one TSA table and one TSA Table List defined in the application, the TSA
information automatically appears in the FreeMASTER symbols list. The symbols can then be
used to create FreeMASTER variables for visualization or control.

TSA table definition The TSA table describes the static or global variables together with their
address, size, type, and access-protection information. If the TSA-described variables are of a
structure type, the TSA table may also describe this type and provide an access to the individual
structure members of the variable.

The TSA table definition begins with the FMSTR_TSA_TABLE_BEGIN macro with a table_id iden-
tifying the table. The table_id shall be a valid C-langiage symbol.

FMSTR_TSA_TABLE_BEGIN(table_id)

After this opening macro, the TSA descriptors are placed using these macros:

/* Adding variable descriptors */
FMSTR_TSA_RW_VAR(name, type) /* read/write variable entry */
FMSTR_TSA_RO_VAR(name, type) /* read-only variable entry */

/* Description of complex data types */
FMSTR_TSA_STRUCT(struct_name) /* structure or union type entry */
FMSTR_TSA_MEMBER(struct_name, member_name, type) /* structure member entry */

/* Memory blocks */
FMSTR_TSA_RW_MEM(name, type, address, size) /* read/write memory block */
FMSTR_TSA_RO_MEM(name, type, address, size) /* read-only memory block */

The table is closed using the FMSTR_TSA_TABLE_END macro:

FMSTR_TSA_TABLE_END()

TSA descriptor parameters The TSA descriptor macros accept these parameters:

• name—variable name. The variable must be defined before the TSA descriptor references
it.

• type — variable or member type. Only one of the pre-defined type constants may be used
(see below).

• struct_name — structure type name. The type must be defined (typedef) before the TSA
descriptor references it.

3.1. Motor Control 439

MCUXpresso SDK Documentation, Release 25.09.00

• member_name— structure member name.

Note: The structure member descriptors (FMSTR_TSA_MEMBER) must immediately follow the
parent structure descriptor (FMSTR_TSA_STRUCT) in the table.

Note: To write-protect the variables in the FreeMASTER driver (FMSTR_TSA_RO_VAR), enable
the TSA-Safety feature in the configuration file.

TSA variable types The table lists type identifiers which can be used in TSA descriptors:

Constant Description
FMSTR_TSA_UINTn Unsigned integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_SINTn Signed integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_FRACn Fractional number of size n bits (n=16,32,64).
FMSTR_TSA_FRAC_Q(m,n) Signed fractional number in general Q form (m+n+1 total bits)
FMSTR_TSA_FRAC_UQ(m,n) Unsigned fractional number in general UQ form (m+n total

bits)
FMSTR_TSA_FLOAT 4-byte standard IEEE floating-point type
FMSTR_TSA_DOUBLE 8-byte standard IEEE floating-point type
FMSTR_TSA_POINTER Generic pointer type defined (platform-specific 16 or 32 bit)
FM-
STR_TSA_USERTYPE(name)

Structure or union type declared with FMSTR_TSA_STRUCT
record

TSA table list There shall be exactly one TSA Table List in the application. The list contains
one entry for each TSA table defined anywhere in the application.

The TSA Table List begins with the FMSTR_TSA_TABLE_LIST_BEGIN macro and continues with
the TSA table entries for each table.

FMSTR_TSA_TABLE_LIST_BEGIN()

FMSTR_TSA_TABLE(table_id)
FMSTR_TSA_TABLE(table_id2)
FMSTR_TSA_TABLE(table_id3)
...

The list is closed with the FMSTR_TSA_TABLE_LIST_END macro:

FMSTR_TSA_TABLE_LIST_END()

TSA Active Content entries FreeMASTER v2.0 and higher supports TSA Active Content, en-
abling the TSA tables to describe the memory-mapped files, virtual directories, and URL hyper-
links. FreeMASTER can access such objects similarly to accessing the files and folders on the
local hard drive.

With this set of TSA entries, the FreeMASTER pages can be embedded directly into the target
MCU flash and accessed by FreeMASTER directly over the communication line. The HTML-coded
pages rendered inside the FreeMASTER window can access the TSA Active Content resources
using a special URL referencing the fmstr: protocol.

This example provides an overview of the supported TSA Active Content entries:

FMSTR_TSA_TABLE_BEGIN(files_and_links)

/* Directory entry applies to all subsequent MEMFILE entries */
FMSTR_TSA_DIRECTORY(”/text_files”) /* entering a new virtual directory */

(continues on next page)

440 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
/* The readme.txt file will be accessible at the fmstr://text_files/readme.txt URL */
FMSTR_TSA_MEMFILE(”readme.txt”, readme_txt, sizeof(readme_txt)) /* memory-mapped file */

/* Files can also be specified with a full path so the DIRECTORY entry does not apply */
FMSTR_TSA_MEMFILE(”/index.htm”, index, sizeof(index)) /* memory-mapped file */
FMSTR_TSA_MEMFILE(”/prj/demo.pmp”, demo_pmp, sizeof(demo_pmp)) /* memory-mapped file */

/* Hyperlinks can point to a local MEMFILE object or to the Internet */
FMSTR_TSA_HREF(”Board's Built-in Welcome Page”, ”/index.htm”)
FMSTR_TSA_HREF(”FreeMASTER Home Page”, ”http://www.nxp.com/freemaster”)

/* Project file links simplify opening the projects from any URLs */
FMSTR_TSA_PROJECT(”Demonstration Project (embedded)”, ”/prj/demo.pmp”)
FMSTR_TSA_PROJECT(”Full Project (online)”, ”http://mycompany.com/prj/demo.pmp”)

FMSTR_TSA_TABLE_END()

TSA API

FMSTR_SetUpTsaBuff

Prototype
FMSTR_BOOL FMSTR_SetUpTsaBuff(FMSTR_ADDR buffAddr, FMSTR_SIZE buffSize);

• Declaration: freemaster.h

• Implementation: freemaster_tsa.c

Arguments
• buffAddr [in] - address of the memory buffer for the dynamic TSA table

• buffSize [in] - size of the memory buffer which determines the maximum number of TSA
entries to be added in the runtime

Description This functionmust be used to assign the RAMmemory buffer to the TSA subsystem
when FMSTR_USE_TSA_DYNAMIC is enabled. The memory buffer is then used to store the TSA
entries added dynamically to the runtime TSA table using the FMSTR_TsaAddVar function call.
The runtime TSA table is processed by the FreeMASTER PC Host tool along with all static tables
as soon as the communication port is open.

The size of the memory buffer determines the number of TSA entries that can be added dynam-
ically. Depending on the MCU platform, one TSA entry takes either 8 or 16 bytes.

FMSTR_TsaAddVar

Prototype
FMSTR_BOOL FMSTR_TsaAddVar(FMSTR_TSATBL_STRPTR tsaName, FMSTR_TSATBL_STRPTR␣
↪→tsaType,

FMSTR_TSATBL_VOIDPTR varAddr, FMSTR_SIZE32 varSize,
FMSTR_SIZE flags);

• Declaration: freemaster.h

3.1. Motor Control 441

MCUXpresso SDK Documentation, Release 25.09.00

• Implementation: freemaster_tsa.c

Arguments
• tsaName [in] - name of the object

• tsaType [in] - name of the object type

• varAddr [in] - address of the object

• varSize [in] - size of the object

• flags [in] - access flags; a combination of these values:

– FMSTR_TSA_INFO_RO_VAR— read-only memory-mapped object (typically a variable)

– FMSTR_TSA_INFO_RW_VAR— read/write memory-mapped object

– FMSTR_TSA_INFO_NON_VAR — other entry, describing structure types, structure
members, enumerations, and other types

Description This function can be called only when the dynamic TSA table is enabled by the
FMSTR_USE_TSA_DYNAMIC configuration option and when the FMSTR_SetUpTsaBuff function
call is made to assign the dynamic TSA table memory. This function adds an entry into the dy-
namic TSA table. It can be used to register a read-only or read/write memory object or describe
an item of the user-defined type.

See TSA table definition for more details about the TSA table entries.

Application Commands API

FMSTR_GetAppCmd

Prototype
FMSTR_APPCMD_CODE FMSTR_GetAppCmd(void);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Description This function can be used to detect if there is an Application Command waiting
to be processed by the application. If no command is pending, this function returns the FM-
STR_APPCMDRESULT_NOCMD constant. Otherwise, this function returns the code of the Appli-
cation Command that must be processed. Use the FMSTR_AppCmdAck call to acknowledge the
Application Command after it is processed and to return the appropriate result code to the host.

The FMSTR_GetAppCmd function does not report the commands for which a callback handler
function exists. If the FMSTR_GetAppCmd function is called when a callback-registered com-
mand is pending (and before it is actually processed by the callback function), this function re-
turns FMSTR_APPCMDRESULT_NOCMD.

FMSTR_GetAppCmdData

442 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Prototype
FMSTR_APPCMD_PDATA FMSTR_GetAppCmdData(FMSTR_SIZE* dataLen);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• dataLen [out] - pointer to the variable that receives the length of the data available in the
buffer. It can be NULL when this information is not needed.

Description This function can be used to retrieve the Application Command data when the
application determines that an Application Command is pending (see FMSTR_GetAppCmd).

There is just a single buffer to hold the Application Command data (the buffer length is FM-
STR_APPCMD_BUFF_SIZE bytes). If the data are to be used in the application after the command
is processed by the FMSTR_AppCmdAck call, copy the data out to a private buffer.

FMSTR_AppCmdAck

Prototype
void FMSTR_AppCmdAck(FMSTR_APPCMD_RESULT resultCode);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• resultCode [in] - the result code which is to be returned to FreeMASTER

Description This function is used when the Application Command processing finishes in the
application. The resultCode passed to this function is returned back to the host and the driver is
re-initialized to expect the next Application Command.

After this function is called and before the next Application Command arrives, the return value
of the FMSTR_GetAppCmd function is FMSTR_APPCMDRESULT_NOCMD.

FMSTR_AppCmdSetResponseData

Prototype
void FMSTR_AppCmdSetResponseData(FMSTR_ADDR resultDataAddr, FMSTR_SIZE resultDataLen);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

3.1. Motor Control 443

MCUXpresso SDK Documentation, Release 25.09.00

Arguments
• resultDataAddr [in] - pointer to the data buffer that is to be copied to the Application Com-
mand data buffer

• resultDataLen [in] - length of the data to be copied. It must not exceed the FM-
STR_APPCMD_BUFF_SIZE value.

Description This function can be used before the Application Command processing finishes,
when there are data to be returned back to the PC.

The response data buffer is copied into the Application Command data buffer, from where it is
accessed when the host requires it. Do not use FMSTR_GetAppCmdData and the data buffer after
FMSTR_AppCmdSetResponseData is called.

Note: The current version of FreeMASTER does not support the Application Command response
data.

FMSTR_RegisterAppCmdCall

Prototype
FMSTR_BOOL FMSTR_RegisterAppCmdCall(FMSTR_APPCMD_CODE appCmdCode, FMSTR_
↪→PAPPCMDFUNC callbackFunc);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• appCmdCode [in] - the Application Command code for which the callback is to be registered

• callbackFunc [in] - pointer to the callback function that is to be registered. Use NULL to
unregister a callback registered previously with this Application Command.

Return value This function returns a non-zero value when the callback function was success-
fully registered or unregistered. It can return zero when trying to register a callback function
for more than FMSTR_MAX_APPCMD_CALLS different Application Commands.

Description This function can be used to register the given function as a callback handler for
the Application Command. The Application Command is identified using single-byte code. The
callback function is invoked automatically by the FreeMASTER driverwhen the protocol decoder
obtains a request to get the application command result code.

The prototype of the callback function is

FMSTR_APPCMD_RESULT HandlerFunction(FMSTR_APPCMD_CODE nAppcmd,
FMSTR_APPCMD_PDATA pData, FMSTR_SIZE nDataLen);

Where:

• nAppcmd -Application Command code

• pData—points to the Application Command data received (if any)

• nDataLen—information about the Application Command data length

444 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

The return value of the callback function is used as the Application Command Result Code and
returned to FreeMASTER.

Note: The FMSTR_MAX_APPCMD_CALLS configurationmacro defines howmanydifferent Appli-
cation Commands may be handled by a callback function. When FMSTR_MAX_APPCMD_CALLS
is undefined or defined as zero, the FMSTR_RegisterAppCmdCall function always fails.

Pipes API

FMSTR_PipeOpen

Prototype
FMSTR_HPIPE FMSTR_PipeOpen(FMSTR_PIPE_PORT pipePort, FMSTR_PPIPEFUNC pipeCallback,
↪→

FMSTR_ADDR pipeRxBuff, FMSTR_PIPE_SIZE pipeRxSize,
FMSTR_ADDR pipeTxBuff, FMSTR_PIPE_SIZE pipeTxSize,
FMSTR_U8 type, const FMSTR_CHAR *name);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipePort [in] - port number that identifies the pipe for the client

• pipeCallback [in] - pointer to the callback function that is calledwhenever a pipe data status
changes

• pipeRxBuff [in] - address of the receive memory buffer

• pipeRxSize [in] - size of the receive memory buffer

• pipeTxBuff [in] - address of the transmit memory buffer

• pipeTxSize [in] - size of the transmit memory buffer

• type [in] - a combination of FMSTR_PIPE_MODE_xxx and FMSTR_PIPE_SIZE_xxx constants
describing primary pipe data format and usage. This type helps FreeMASTER decide how
to access the pipe by default. Optional, use 0 when undetermined.

• name [in] - user name of the pipe port. This name is visible to the FreeMASTER user when
creating the graphical pipe interface.

Description This function initializes a new pipe and makes it ready to accept or send the data
to the PCHost client. The receivememory buffer is used to store the received data before they are
read out by the FMSTR_PipeRead call. When this buffer gets full, the PC Host client denies the
data transmission into this pipe until there is enough free space again. The transmit memory
buffer is used to store the data transmitted by the application to the PC Host client using the
FMSTR_PipeWrite call. The transmit buffer can get full when the PC Host is disconnected or
when it is slow in receiving and reading out the pipe data.

The function returns the pipe handle which must be stored and used in the subsequent calls to
manage the pipe object.

The callback function (if specified) is called whenever new data are received through the pipe
and available for reading. This callback is also called when the data waiting in the transmit
buffer are successfully pushed to the PC Host and the transmit buffer free space increases. The
prototype of the callback function provided by the user application must be as follows. The
PipeHandler name is only a placeholder and must be defined by the application.

3.1. Motor Control 445

MCUXpresso SDK Documentation, Release 25.09.00

void PipeHandler(FMSTR_HPIPE pipeHandle);

FMSTR_PipeClose

Prototype
void FMSTR_PipeClose(FMSTR_HPIPE pipeHandle);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

Description This function de-initializes the pipe object. No data can be received or sent on the
pipe after this call.

FMSTR_PipeWrite

Prototype
FMSTR_PIPE_SIZE FMSTR_PipeWrite(FMSTR_HPIPE pipeHandle, FMSTR_ADDR pipeData,

FMSTR_PIPE_SIZE pipeDataLen, FMSTR_PIPE_SIZE writeGranularity);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

• pipeData [in] - address of the data to be written

• pipeDataLen [in] - length of the data to be written

• writeGranularity [in] - size of the minimum unit of data which is to be written

Description This function puts the user-specified data into the pipe’s transmit memory buffer
and schedules it for transmission. This function returns the number of bytes that were success-
fully written into the buffer. This number may be smaller than the number of the requested
bytes if there is not enough free space in the transmit buffer.

The writeGranularity argument can be used to split the data into smaller chunks, each of the
size given by the writeGranularity value. The FMSTR_PipeWrite function writes as many data
chunks as possible into the transmit buffer and does not attempt to write an incomplete chunk.
This feature can prove to be useful to avoid the intermediate caching when writing an array of
integer values or other multi-byte data items. When making the nGranularity value equal to the
nLength value, all data are considered as one chunk which is either written successfully as a
whole or not at all. The nGranularity value of 0 or 1 disables the data-chunk approach.

FMSTR_PipeRead

446 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Prototype
FMSTR_PIPE_SIZE FMSTR_PipeRead(FMSTR_HPIPE pipeHandle, FMSTR_ADDR pipeData,

FMSTR_PIPE_SIZE pipeDataLen, FMSTR_PIPE_SIZE readGranularity);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

• pipeData [in] - address of the data buffer to be filled with the received data

• pipeDataLen [in] - length of the data to be read

• readGranularity [in] - size of the minimum unit of data which is to be read

Description This function copies the data received from the pipe from its receive buffer to the
user buffer for further processing. The function returns the number of bytes that were success-
fully copied to the buffer. This number may be smaller than the number of the requested bytes
if there is not enough data bytes available in the receive buffer.

The readGranularity argument can be used to copy the data in larger chunks in the same way as
described in the FMSTR_PipeWrite function.

API data types This section describes the data types used in the FreeMASTER driver. The infor-
mationprovidedhere canbeusefulwhenmodifying or porting the FreeMASTERCommunication
Driver to new NXP platforms.

Note: The licensing conditions prohibit use of FreeMASTER and the FreeMASTER Communica-
tion Driver with non-NXP MPU or MCU products.

Public common types The table belowdescribes the public data types used in the FreeMASTER
driver API calls. The data types are declared in the freemaster.h header file.

3.1. Motor Control 447

MCUXpresso SDK Documentation, Release 25.09.00

Type name Description
FM-
STR_ADDR

Data type used to hold the memory address. Onmost platforms, this is normally
a C-pointer, but it may also be a pure integer type.

For exam-
ple, this
type is
defined as
long inte-
ger on the
56F8xxx
platform
where
the 24-bit
addresses
must be
supported,
but the
C-pointer
may be
only 16
bits wide
in some
compiler
configura-
tions.
FM-
STR_SIZE

Data type used to hold the memory block size.

It is re-
quired
that this
type is un-
signed and
at least 16
bits wide
integer.
FM-
STR_BOOL

Data type used as a general boolean type.

This type
is used
only in
zero/non-
zero con-
ditions in
the driver
code.
FM-
STR_APPCMD_CODE

Data type used to hold the Application Command code.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCMD_DATA

Data type used to create the Application Command data buffer.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCMD_RESULT

Data type used to hold the Application Command result code.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_PAPPCMDFUNC

Pointer to the Application Command handler function.

See FM-
STR_RegisterAppCmdCall
for more
details.

448 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Public TSA types The table describes the TSA-specific public data types. These types are de-
clared in the freemaster_tsa.h header file, which is included in the user application indirectly by
the freemaster.h file.

FM-
STR_TSA_TINDEX

Data type used to hold a descriptor index in the TSA table or a table index in the
list of TSA tables.

By default,
this is
defined
as FM-
STR_SIZE.
FM-
STR_TSA_TSIZE

Data type used to hold a memory block size, as used in the TSA descriptors.

By default,
this is
defined
as FM-
STR_SIZE.

Public Pipes types The table describes the data types used by the FreeMASTER Pipes API:

FM-
STR_HPIPE

Pipe handle that identifies the open-pipe object.

Generally,
this is a
pointer
to a void
type.
FM-
STR_PIPE_PORT

Integer type required to hold at least 7 bits of data.

Generally,
this is an
unsigned
8-bit or
16-bit type.
FM-
STR_PIPE_SIZE

Integer type required to hold at least 16 bits of data.

This is
used to
store the
data buffer
sizes.
FM-
STR_PPIPEFUNC

Pointer to the pipe handler function.

See FM-
STR_PipeOpen
for more
details.

Internal types The table describes the data types used internally by the FreeMASTER driver.
The data types are declared in the platform-specific header file and they are not available in the
application code.

3.1. Motor Control 449

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_U8 The smallest memory entity.
On the vast
majority of
platforms,
this is an
unsigned
8-bit inte-
ger.
On the
56F8xx
DSP plat-
form, this
is defined
as an un-
signed
16-bit inte-
ger.
FM-
STR_U16

Unsigned 16-bit integer.

FM-
STR_U32

Unsigned 32-bit integer.

FMSTR_S8 Signed 8-bit integer.
FM-
STR_S16

Signed 16-bit integer.

FM-
STR_S32

Signed 32-bit integer.

FM-
STR_FLOAT

4-byte standard IEEE floating-point type.

FM-
STR_FLAGS

Data type forming a union with a structure of flag bit-fields.

FM-
STR_SIZE8

Data type holding a general size value, at least 8 bits wide.

FM-
STR_INDEX

General for-loop index. Must be signed, at least 16 bits wide.

FM-
STR_BCHR

A single character in the communication buffer.

Typically,
this is
an 8-bit
unsigned
integer,
except for
the DSP
platforms
where it
is a 16-bit
integer.
FM-
STR_BPTR

A pointer to the communication buffer (an array of FMSTR_BCHR).

Document references

Links
• This document online: https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/
freemaster/doc/index.html

450 Chapter 3. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html

MCUXpresso SDK Documentation, Release 25.09.00

• FreeMASTER tool home: www.nxp.com/freemaster

• FreeMASTER community area: community.nxp.com/community/freemaster

• FreeMASTER GitHub code repo: https://github.com/nxp-mcuxpresso/mcux-freemaster

• MCUXpresso SDK home: www.nxp.com/mcuxpresso

• MCUXpresso SDK builder: mcuxpresso.nxp.com/en

Documents
• FreeMASTER Usage Serial Driver Implementation (document AN4752)

• Integrating FreeMASTER Time Debugging ToolWith CodeWarrior ForMicrocontrollers v10.X
Project (document AN4771)

• Flash Driver Library For MC56F847xx And MC56F827xx DSC Family (document AN4860)

Revision history This Table summarizes the changes done to this document since the initial
release.

3.1. Motor Control 451

https://www.nxp.com/freemaster
https://community.nxp.com/community/freemaster
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://www.nxp.com/mcuxpresso
https://mcuxpresso.nxp.com/en
http://www.nxp.com/doc/AN4752
http://www.nxp.com/doc/AN4771
http://www.nxp.com/doc/AN4860

MCUXpresso SDK Documentation, Release 25.09.00

Revi-
sion

Date Description

1.0 03/2006 Limited initial release
2.0 09/2007 Updated for FreeMASTER version. New Freescale doc-

ument template used.
2.1 12/2007 Added description of the newFast Recorder feature and

its API.
2.2 04/2010 Added support for MPC56xx platform, Added new API

for use CAN interface.
2.3 04/2011 Added support for Kxx Kinetis platform andMQX oper-

ating system.
2.4 06/2011 Serial driver update, adds support for USB CDC inter-

face.
2.5 08/2011 Added Packet Driven BDM interface.
2.7 12/2013 Added FLEXCAN32 interface, byte access and isr call-

back configuration option.
2.8 06/2014 Removed obsolete license text, see the software pack-

age content for up-to-date license.
2.9 03/2015 Update for driver version 1.8.2 and 1.9: FreeMAS-

TER Pipes, TSA Active Content, LIN Transport Layer
support, DEBUG-TX communication troubleshooting,
Kinetis SDK support.

3.0 08/2016 Update for driver version 2.0: Added support for
MPC56xx, MPC57xx, KEAxx and S32Kxx platforms.
New NXP document template as well as new license
agreement used. added MCAN interface. Folders struc-
ture at the installation destination was rearranged.

4.0 04/2019 Update for driver released as part of FreeMASTER v3.0
and MCUXpresso SDK 2.6. Updated to match new V4
serial communication protocol and new configuration
options. This version of the document removes sub-
stantial portion of outdated information related to S08,
S12, ColdFire, Power and other legacy platforms.

4.1 04/2020 Minor update for FreeMASTER driver included in
MCUXpresso SDK 2.8.

4.2 09/2020 Added example applications description and informa-
tion about the MCUXpresso Config Tools. Fixed the
pipe-related API description.

4.3 10/2024 Added description ofNetwork and Segger J-Link RTT in-
terface configuration. Accompanying the MCUXpresso
SDK version 24.12.00.

4.4 04/2025 Added Zephyr-specific information. Accompanying the
MCUXpresso SDK version 25.06.00.

452 Chapter 3. Middleware

Chapter 4

RTOS

4.1 FreeRTOS

4.1.1 FreeRTOS kernel

Open source RTOS kernel for small devices.

FreeRTOS kernel for MCUXpresso SDK Readme

FreeRTOS kernel for MCUXpresso SDK

Overview The purpose of this document is to describes the FreeRTOS kernel repo integration
into the NXP MCUXpresso Software Development Kit: mcuxsdk. MCUXpresso SDK provides a
comprehensive development solutions designed to optimize, ease, and help accelerate embed-
ded system development of applications based on MCUs from NXP. This project involves the
FreeRTOS kernel repo fork with:

• cmake andKconfig support to allow the configuration andbuild inMCUXpresso SDK ecosys-
tem

• FreeRTOS OS additions, such as FreeRTOS driver wrappers, RTOS ready FatFs file system,
and the implementation of FreeRTOS tickless mode

The history of changes in FreeRTOS kernel repo for MCUXpresso SDK are summarized in
CHANGELOG_mcuxsdk.md file.

The MCUXpresso SDK framework also contains a set of FreeRTOS examples which show basic
FreeRTOS OS features. This makes it easy to start a new FreeRTOS project or begin experiment-
ing with FreeRTOS OS. Selected drivers and middleware are RTOS ready with related FreeRTOS
adaptation layer.

FreeRTOS example applications The FreeRTOS examples are written to demonstrate basic
FreeRTOS features and the interaction between peripheral drivers and the RTOS.

List of examples The list of freertos_examples, their description and availability for individual
supportedMCUXpresso SDK development boards can be obtained here: https://mcuxpresso.nxp.
com/mcuxsdk/latest/html/examples/freertos_examples/index.html

453

https://github.com/FreeRTOS/FreeRTOS
https://github.com/nxp-mcuxpresso/mcuxsdk-manifests
https://github.com/nxp-mcuxpresso/mcux-freertos-drivers
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/examples/freertos_examples/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/examples/freertos_examples/index.html

MCUXpresso SDK Documentation, Release 25.09.00

Location of examples The FreeRTOS examples are located in mcuxsdk-examples repository,
see the freertos_examples folder.

OnceusingMCUXpresso SDKzip packages created via theMCUXpresso SDKBuilder the FreeRTOS
kernel library and associated freertos_examples are added into final zip package once FreeRTOS
components is selected on the Developer Environment Settings page:

The FreeRTOS examples in MCUXpresso SDK zip packages are located in <MCUXpres-
soSDK_install_dir>/boards/<board_name>/freertos_examples/ subfolders.

Building a FreeRTOS example application For information how to use the cmake andKconfig
based build and configuration system and how to build freertos_examples visit: MCUXpresso
SDK documentation for Build And Configuration MCUXpresso SDK Getting Start Guide

Tip: To list all FreeRTOS example projects and targets that can be built via the west build com-
mand, use this west list_project command in mcuxsdk workspace:

west list_project -p examples/freertos_examples

FreeRTOS aware debugger plugin NXP provides FreeRTOS task aware debugger for GDB. The
plugin is compatible with Eclipse-based (MCUXpressoIDE) and is available after the installation.

FreeRTOS kernel for MCUXpresso SDK ChangeLog

Changelog FreeRTOS kernel for MCUXpresso SDK All notable changes to this project will be
documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

454 Chapter 4. RTOS

https://github.com/nxp-mcuxpresso/mcuxsdk-examples
https://mcuxpresso.nxp.com
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/develop/build_system/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/develop/build_system/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/repo.html#gsd-index
https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html

MCUXpresso SDK Documentation, Release 25.09.00

[Unreleased]

Added
• Kconfig added CONFIG_FREERTOS_USE_CUSTOM_CONFIG_FRAGMENT config to op-
tionally include custom FreeRTOSConfig fragment
include file FreeRTOSConfig_frag.h. File must be provided by application.

• Added missing Kconfig option for configUSE_PICOLIBC_TLS.

• Add correct header files to build when configUSE_NEWLIB_REENTRANT and confi-
gUSE_PICOLIBC_TLS is selected in config.

[11.1.0_rev0]
• update amazon freertos version

[11.0.1_rev0]
• update amazon freertos version

[10.5.1_rev0]
• update amazon freertos version

[10.4.3_rev1]
• Apply CM33 security fix from10.4.3-LTS-Patch-2. See rtos\freertos\freertos_kernel\History.txt

• Apply CM33 security fix from10.4.3-LTS-Patch-1. See rtos\freertos\freertos_kernel\History.txt

[10.4.3_rev0]
• update amazon freertos version.

[10.4.3_rev0]
• update amazon freertos version.

[9.0.0_rev3]
• New features:

– Tickless idle mode support for Cortex-A7. Add fsl_tickless_epit.c and
fsl_tickless_generic.h in portable/IAR/ARM_CA9 folder.

– Enabled float context saving in IAR for Cortex-A7. Added confi-
gUSE_TASK_FPU_SUPPORT macros. Modified port.c and portmacro.h in
portable/IAR/ARM_CA9 folder.

• Other changes:

– Transformed ARM_CM core specific tickless low power support into generic form un-
der freertos/Source/portable/low_power_tickless/.

4.1. FreeRTOS 455

MCUXpresso SDK Documentation, Release 25.09.00

[9.0.0_rev2]
• New features:

– Enabled MCUXpresso thread aware debugging. Add freertos_tasks_c_additions.h
and configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H and configFR-
TOS_MEMORY_SCHEME macros.

[9.0.0_rev1]
• New features:

– Enabled -flto optimization in GCC by adding attribute((used)) for vTaskSwitchContext.

– Enabled KDS Task Aware Debugger. Apply FreeRTOS patch to enable confi-
gRECORD_STACK_HIGH_ADDRESS macro. Modified files are task.c and FreeRTOS.h.

[9.0.0_rev0]
• New features:

– Example freertos_sem_static.

– Static allocation support RTOS driver wrappers.

• Other changes:

– Tickless idle rework. Support for different timers is in separated files
(fsl_tickless_systick.c, fsl_tickless_lptmr.c).

– Removed configuration option configSYSTICK_USE_LOW_POWER_TIMER. Low power
timer is now selected by linking of apropriate file fsl_tickless_lptmr.c.

– Removed configOVERRIDE_DEFAULT_TICK_CONFIGURATION in RVDS port. Use of at-
tribute((weak)) is the preferred solution. Not same as _weak!

[8.2.3]
• New features:

– Tickless idle mode support.

– Added template application for Kinetis Expert (KEx) tool (template_application).

• Other changes:

– Folder structure reduction. Keep only Kinetis related parts.

FreeRTOS kernel Readme

MCUXpresso SDK: FreeRTOS kernel This repository is a fork of FreeRTOS kernel
(https://github.com/FreeRTOS/FreeRTOS-Kernel)(11.1.0). Modifications have been made to adapt
to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable FreeRTOS kernel repo
sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which is
composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

For more information about the FreeRTOS kernel repo adoption see README_mcuxsdk.md:
FreeRTOS kernel for MCUXpresso SDK Readme document.

456 Chapter 4. RTOS

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/rtos/freertos/freertos-kernel/README_mcuxsdk.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/rtos/freertos/freertos-kernel/README_mcuxsdk.html
https://github.com/FreeRTOS/FreeRTOS-Kernel/actions/workflows/unit-tests.yml?query=branch%3Amain+event%3Apush+workflow%3A%22CMock+Unit+Tests%22++

MCUXpresso SDK Documentation, Release 25.09.00

Getting started This repository contains FreeRTOS kernel source/header files and kernel ports
only. This repository is referenced as a submodule in FreeRTOS/FreeRTOS repository, which
contains pre-configured demo application projects under FreeRTOS/Demo directory.

The easiest way to use FreeRTOS is to start with one of the pre-configured demo application
projects. That way you will have the correct FreeRTOS source files included, and the correct
include paths configured. Once a demo application is building and executing you can remove
the demoapplicationfiles, and start to add in your ownapplication sourcefiles. See the FreeRTOS
Kernel Quick Start Guide for detailed instructions and other useful links.

Additionally, for FreeRTOS kernel feature information refer to the Developer Documentation,
and API Reference.

Also for contributing and creating a Pull Request please refer to the instructions here.

Getting help If you have any questions or need assistance troubleshooting your FreeRTOS
project, we have an active community that canhelp on the FreeRTOSCommunity Support Forum.

To consume FreeRTOS-Kernel

Consume with CMake If using CMake, it is recommended to use this repository using Fetch-
Content. Add the following into your project’s main or a subdirectory’s CMakeLists.txt:

• Define the source and version/tag you want to use:

FetchContent_Declare(freertos_kernel
GIT_REPOSITORY https://github.com/FreeRTOS/FreeRTOS-Kernel.git
GIT_TAG main #Note: Best practice to use specific git-hash or tagged version

)

In case you prefer to add it as a git submodule, do:

git submodule add https://github.com/FreeRTOS/FreeRTOS-Kernel.git <path of the submodule>
git submodule update --init

• Add a freertos_config library (typically an INTERFACE library) The following assumes the
directory structure:

– include/FreeRTOSConfig.h

add_library(freertos_config INTERFACE)

target_include_directories(freertos_config SYSTEM
INTERFACE

include
)

target_compile_definitions(freertos_config
INTERFACE
projCOVERAGE_TEST=0

)

In case you installed FreeRTOS-Kernel as a submodule, you will have to add it as a subdirectory:

add_subdirectory(${FREERTOS_PATH})

• Configure the FreeRTOS-Kernel and make it available

– this particular example supports a native and cross-compiled build option.

4.1. FreeRTOS 457

https://github.com/FreeRTOS/FreeRTOS
https://www.FreeRTOS.org/FreeRTOS-quick-start-guide.html
https://www.FreeRTOS.org/FreeRTOS-quick-start-guide.html
https://www.FreeRTOS.org/features.html
https://www.FreeRTOS.org/a00106.html
https://forums.freertos.org

MCUXpresso SDK Documentation, Release 25.09.00

set(FREERTOS_HEAP ”4” CACHE STRING ”” FORCE)
Select the native compile PORT
set(FREERTOS_PORT ”GCC_POSIX” CACHE STRING ”” FORCE)
Select the cross-compile PORT
if (CMAKE_CROSSCOMPILING)
set(FREERTOS_PORT ”GCC_ARM_CA9” CACHE STRING ”” FORCE)

endif()

FetchContent_MakeAvailable(freertos_kernel)

• In case of cross compilation, you should also add the following to freertos_config:

target_compile_definitions(freertos_config INTERFACE ${definitions})
target_compile_options(freertos_config INTERFACE ${options})

Consuming stand-alone - Cloning this repository To clone using HTTPS:

git clone https://github.com/FreeRTOS/FreeRTOS-Kernel.git

Using SSH:

git clone git@github.com:FreeRTOS/FreeRTOS-Kernel.git

Repository structure
• The root of this repository contains the three files that are common to every port - list.c,
queue.c and tasks.c. The kernel is containedwithin these three files. croutine.c implements
the optional co-routine functionality - which is normally only used on verymemory limited
systems.

• The ./portable directory contains the files that are specific to a particular microcontroller
and/or compiler. See the readme file in the ./portable directory for more information.

• The ./include directory contains the real time kernel header files.

• The ./template_configurationdirectory contains a sampleFreeRTOSConfig.h to help jumpstart
a new project. See the FreeRTOSConfig.h file for instructions.

Code Formatting FreeRTOS files are formatted using the “uncrustify” tool. The configuration
file used by uncrustify can be found in the FreeRTOS/CI-CD-GitHub-Actions’s uncrustify.cfg file.

Line Endings File checked into the FreeRTOS-Kernel repository use unix-style LF line endings
for the best compatibility with git.

For optimal compatibility with Microsoft Windows tools, it is best to enable the git autocrlf fea-
ture. You can enable this setting for the current repository using the following command:

git config core.autocrlf true

Git History Optimizations Some commits in this repository perform large refactors which
touch many lines and lead to unwanted behavior when using the git blame command. You can
configure git to ignore the list of large refactor commits in this repository with the following
command:

git config blame.ignoreRevsFile .git-blame-ignore-revs

458 Chapter 4. RTOS

https://github.com/uncrustify/uncrustify
https://github.com/FreeRTOS/CI-CD-Github-Actions
https://github.com/FreeRTOS/CI-CD-Github-Actions/tree/main/formatting

MCUXpresso SDK Documentation, Release 25.09.00

Spelling and Formatting We recommend using Visual Studio Code, commonly referred to as
VSCode, when working on the FreeRTOS-Kernel. The FreeRTOS-Kernel also uses cSpell as part
of its spelling check. The config file for which can be found at cspell.config.yaml There is addi-
tionally a cSpell plugin for VSCode that can be used as well. .cSpellWords.txt contains words
that are not traditionally found in an English dictionary. It is used by the spellchecker to ver-
ify the various jargon, variable names, and other odd words used in the FreeRTOS code base
are correct. If your pull request fails to pass the spelling and you believe this is a mistake, then
add the word to .cSpellWords.txt. When adding a word please then sort the list, which can be
done by running the bash command: sort -u .cSpellWords.txt -o .cSpellWords.txt Note that only
the FreeRTOS-Kernel Source Files, include, portable/MemMang, and portable/Common files are
checked for proper spelling, and formatting at this time.

4.1.2 FreeRTOS drivers

This is set of NXP provided FreeRTOS reentrant bus drivers.

4.1.3 backoffalgorithm

Algorithm for calculating exponential backoff with jitter for network retry attempts.

Readme

MCUXpresso SDK: backoffAlgorithm Library This repository is a fork of backoffAlgorithm
library (https://github.com/FreeRTOS/backoffalgorithm)(1.3.0). Modifications have beenmade to
adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable backoffAlgorithm
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repositorymcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

backoffAlgorithm Library This repository contains the backoffAlgorithm library, a utility li-
brary to calculate backoff period using an exponential backoff with jitter algorithm for retry-
ing network operations (like failed network connection with server). This library uses the “Full
Jitter” strategy for the exponential backoff with jitter algorithm. More information about the
algorithm can be seen in the Exponential Backoff and Jitter AWS blog.

The backoffAlgorithm library is distributed under theMIT Open Source License.

Exponential backoff with jitter is typically used when retrying a failed network connection or
operation request with the server. An exponential backoff with jitter helps to mitigate failed
network operations with servers, that are caused due to network congestion or high request
load on the server, by spreading out retry requests across multiple devices attempting network
operations. Besides, in an environment with poor connectivity, a client can get disconnected at
any time. A backoff strategy helps the client to conserve battery by not repeatedly attempting
reconnections when they are unlikely to succeed.

See memory requirements for this library here.

backoffAlgorithm v1.3.0 source code is part of the FreeRTOS 202210.00 LTS release.
backoffAlgorithm v1.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

4.1. FreeRTOS 459

https://code.visualstudio.com
https://cspell.org/
https://marketplace.visualstudio.com/items?itemName=streetsidesoftware.code-spell-checker
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
https://github.com/FreeRTOS/backoffAlgorithm/tree/v1.3.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/backoffAlgorithm/tree/v1.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00

Reference example The example below shows how to use the backoffAlgorithm library on a
POSIX platform to retry a DNS resolution query for amazon.com.

#include ”backoff_algorithm.h”
#include <stdlib.h>
#include <string.h>
#include <netdb.h>
#include <unistd.h>
#include <time.h>

/* The maximum number of retries for the example code. */
#define RETRY_MAX_ATTEMPTS (5U)

/* The maximum back-off delay (in milliseconds) for between retries in the example. */
#define RETRY_MAX_BACKOFF_DELAY_MS (5000U)

/* The base back-off delay (in milliseconds) for retry configuration in the example. */
#define RETRY_BACKOFF_BASE_MS (500U)

int main()
{

/* Variables used in this example. */
BackoffAlgorithmStatus_t retryStatus = BackoffAlgorithmSuccess;
BackoffAlgorithmContext_t retryParams;
char serverAddress[] = ”amazon.com”;
uint16_t nextRetryBackoff = 0;

int32_t dnsStatus = -1;
struct addrinfo hints;
struct addrinfo ** pListHead = NULL;
struct timespec tp;

/* Add hints to retrieve only TCP sockets in getaddrinfo. */
(void) memset(&hints, 0, sizeof(hints));

/* Address family of either IPv4 or IPv6. */
hints.ai_family = AF_UNSPEC;
/* TCP Socket. */
hints.ai_socktype = (int32_t) SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;

/* Initialize reconnect attempts and interval. */
BackoffAlgorithm_InitializeParams(&retryParams,

RETRY_BACKOFF_BASE_MS,
RETRY_MAX_BACKOFF_DELAY_MS,
RETRY_MAX_ATTEMPTS);

/* Seed the pseudo random number generator used in this example (with call to
* rand() function provided by ISO C standard library) for use in backoff period
* calculation when retrying failed DNS resolution. */

/* Get current time to seed pseudo random number generator. */
(void) clock_gettime(CLOCK_REALTIME, &tp);
/* Seed pseudo random number generator with seconds. */
srand(tp.tv_sec);

do
{

/* Perform a DNS lookup on the given host name. */
dnsStatus = getaddrinfo(serverAddress, NULL, &hints, pListHead);

(continues on next page)

460 Chapter 4. RTOS

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
/* Retry if DNS resolution query failed. */
if(dnsStatus != 0)
{

/* Generate a random number and get back-off value (in milliseconds) for the next retry.
* Note: It is recommended to use a random number generator that is seeded with
* device-specific entropy source so that backoff calculation across devices is different
* and possibility of network collision between devices attempting retries can be avoided.
*
* For the simplicity of this code example, the pseudo random number generator, rand()
* function is used. */
retryStatus = BackoffAlgorithm_GetNextBackoff(&retryParams, rand(), &nextRetryBackoff);

/* Wait for the calculated backoff period before the next retry attempt of querying DNS.
* As usleep() takes nanoseconds as the parameter, we multiply the backoff period by 1000. */
(void) usleep(nextRetryBackoff * 1000U);

}
} while((dnsStatus != 0) && (retryStatus != BackoffAlgorithmRetriesExhausted));

return dnsStatus;
}

Building the library A compiler that supports C90 or later such as gcc is required to build the
library.

Additionally, the library uses a header file introduced in ISO C99, stdint.h. For compilers that do
not provide this header file, the source/include directory contains stdint.readme, which can be
renamed to stdint.h to build the backoffAlgorithm library.

For instance, if the example above is copied to a file named example.c, gcc can be used like so:

gcc -I source/include example.c source/backoff_algorithm.c -o example
./example

gcc can also produce an output file to be linked:

gcc -I source/include -c source/backoff_algorithm.c

Building unit tests

Checkout Unity Submodule By default, the submodules in this repository are configured with
update=none in .gitmodules, to avoid increasing clone time and disk space usage of other reposi-
tories (like amazon-freertos that submodules this repository).

To build unit tests, the submodule dependency of Unity is required. Use the following command
to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/Unity

Platform Prerequisites
• For running unit tests

– C89 or later compiler like gcc

– CMake 3.13.0 or later

• For running the coverage target, gcov is additionally required.

4.1. FreeRTOS 461

https://github.com/aws/amazon-freertos

MCUXpresso SDK Documentation, Release 25.09.00

Steps to build Unit Tests
1. Go to the root directory of this repository. (Make sure that the Unity submodule is cloned

as described above.)

2. Create build directory: mkdir build && cd build

3. Run cmake while inside build directory: cmake -S ../test

4. Run this command to build the library and unit tests: make all

5. The generated test executables will be present in build/bin/tests folder.

6. Run ctest to execute all tests and view the test run summary.

Contributing See CONTRIBUTING.md for information on contributing.

4.1.4 corehttp

C language HTTP client library designed for embedded platforms.

MCUXpresso SDK: coreHTTP Client Library

This repository is a fork of coreHTTPClient library (https://github.com/FreeRTOS/corehttp)(3.0.0).
Modifications have been made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig
added to enable coreHTTP Client repo sources build in MCUXpresso SDK. It is part of the MCUX-
presso SDK overall delivery which is composed of several sub-repositories/projects. Navigate
to the top/parent repository mcuxsdk-manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-
manifests) for the complete delivery of MCUXpresso SDK.

coreHTTP Client Library

This repository contains a C language HTTP client library designed for embedded platforms. It
has no dependencies on any additional libraries other than the standard C library, llhttp, and
a customer-implemented transport interface. This library is distributed under the MIT Open
Source License.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8. This library has also undergone both static code analysis from
Coverity static analysis, and validation of memory safety and data structure invariance through
the CBMC automated reasoning tool.

See memory requirements for this library here.

coreHTTP v3.0.0 source code is part of the FreeRTOS 202210.00 LTS release.
coreHTTP v2.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

coreHTTP Config File The HTTP client library exposes configurationmacros that are required
for building the library. A list of all the configurations and their default values are defined in
core_http_config_defaults.h. To provide custom values for the configuration macros, a custom
config file named core_http_config.h can be provided by the user application to the library.

By default, a core_http_config.h custom config is required to build the library. To dis-
able this requirement and build the library with default configuration values, provide
HTTP_DO_NOT_USE_CUSTOM_CONFIG as a compile time preprocessor macro.

The HTTP client library can be built by either:

462 Chapter 4. RTOS

https://github.com/nodejs/llhttp
https://www.gnu.org/software/complexity/manual/complexity.html
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/coreHTTP/tree/v3.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/coreHTTP/tree/v2.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00

• Defining a core_http_config.h file in the application, and adding it to the include directories
for the library build. OR

• Defining the HTTP_DO_NOT_USE_CUSTOM_CONFIG preprocessor macro for the li-
brary build.

Building the Library The httpFilePaths.cmake file contains the information of all source files
and header include paths required to build the HTTP client library.

As mentioned in the previous section, either a custom config file (i.e. core_http_config.h) OR
HTTP_DO_NOT_USE_CUSTOM_CONFIGmacro needs to be provided to build theHTTP client
library.

For a CMake example of building the HTTP library with the httpFilePaths.cmake file, refer to the
coverity_analysis library target in test/CMakeLists.txt file.

Building Unit Tests

Platform Prerequisites
• For running unit tests, the following are required:

– C90 compiler like gcc
– CMake 3.13.0 or later
– Ruby 2.0.0 or later is required for this repository’s CMock test framework.

• For running the coverage target, the following are required:

– gcov
– lcov

Steps to build Unit Tests
1. Go to the root directory of this repository.

2. Run the cmake command: cmake -S test -B build -DBUILD_CLONE_SUBMODULES=ON

3. Run this command to build the library and unit tests: make -C build all

4. The generated test executables will be present in build/bin/tests folder.

5. Run cd build && ctest to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Reference examples The AWS IoT Device SDK for Embedded C repository contains demos of
using theHTTP client library here on a POSIX platform. These can be used as reference examples
for the library API.

Documentation

4.1. FreeRTOS 463

https://github.com/ThrowTheSwitch/CMock
https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/http

MCUXpresso SDK Documentation, Release 25.09.00

Existing Documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location
AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of coreHTTP may differ across repositories.

Generating Documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Contributing See CONTRIBUTING.md for information on contributing.

4.1.5 corejson

JSON parser.

Readme

MCUXpresso SDK: coreJSON Library This repository is a fork of coreJSON library
(https://github.com/FreeRTOS/corejson)(3.2.0). Modifications have been made to adapt to NXP
MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable coreJSON repo sources build
in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which is com-
posed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

coreJSONLibrary This repository contains the coreJSON library, a parser that strictly enforces
the ECMA-404 JSON standard and is suitable for low memory footprint embedded devices. The
coreJSON library is distributed under theMIT Open Source License.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations frommandatory rules in theMISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis from Coverity static analy-
sis, and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.

coreJSON v3.2.0 source code is part of the FreeRTOS 202210.00 LTS release.
coreJSON v3.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

Reference example

464 Chapter 4. RTOS

https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/coreHTTP/docs/doxygen/output/html/index.html
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/coreJSON/tree/v3.2.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/coreJSON/tree/v3.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00

#include <stdio.h>
#include ”core_json.h”

int main()
{

// Variables used in this example.
JSONStatus_t result;
char buffer[] = ”{\”foo\”:\”abc\”,\”bar\”:{\”foo\”:\”xyz\”}}”;
size_t bufferLength = sizeof(buffer) - 1;
char queryKey[] = ”bar.foo”;
size_t queryKeyLength = sizeof(queryKey) - 1;
char * value;
size_t valueLength;

// Calling JSON_Validate() is not necessary if the document is guaranteed to be valid.
result = JSON_Validate(buffer, bufferLength);

if(result == JSONSuccess)
{

result = JSON_Search(buffer, bufferLength, queryKey, queryKeyLength,
&value, &valueLength);

}

if(result == JSONSuccess)
{

// The pointer ”value” will point to a location in the ”buffer”.
char save = value[valueLength];
// After saving the character, set it to a null byte for printing.
value[valueLength] = '\0';
// ”Found: bar.foo -> xyz” will be printed.
printf(”Found: %s -> %s\n”, queryKey, value);
// Restore the original character.
value[valueLength] = save;

}

return 0;
}

A search may descend through nested objects when the queryKey contains matching key strings
joined by a separator, .. In the example above, bar has the value {”foo”:”xyz”}. Therefore, a search
for query key bar.foo would output xyz.

Building coreJSON A compiler that supports C90 or later such as gcc is required to build the
library.

Additionally, the library uses 2 header files introduced in ISO C99, stdbool.h and stdint.h. For com-
pilers that do not provide this header file, the source/include directory contains stdbool.readme
and stdint.readme, which can be renamed to stdbool.h and stdint.h respectively.

For instance, if the example above is copied to a file named example.c, gcc can be used like so:

gcc -I source/include example.c source/core_json.c -o example
./example

gcc can also produce an output file to be linked:

gcc -I source/include -c source/core_json.c

Documentation

4.1. FreeRTOS 465

MCUXpresso SDK Documentation, Release 25.09.00

Existing documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location
AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of the coreJSON library may differ across repositories.

Generating documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Building unit tests

Checkout Unity Submodule By default, the submodules in this repository are configured with
update=none in .gitmodules, to avoid increasing clone time and disk space usage of other reposi-
tories (like amazon-freertos that submodules this repository).

To build unit tests, the submodule dependency of Unity is required. Use the following command
to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/Unity

Platform Prerequisites
• For running unit tests

– C90 compiler like gcc

– CMake 3.13.0 or later

– Ruby 2.0.0 or later is additionally required for the Unity test framework (that we use).

• For running the coverage target, gcov is additionally required.

Steps to build Unit Tests
1. Go to the root directory of this repository. (Make sure that the Unity submodule is cloned

as described above.)

2. Create build directory: mkdir build && cd build

3. Run cmake while inside build directory: cmake -S ../test

4. Run this command to build the library and unit tests: make all

5. The generated test executables will be present in build/bin/tests folder.

6. Run ctest to execute all tests and view the test run summary.

466 Chapter 4. RTOS

https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/coreJSON/docs/doxygen/output/html/index.html
https://github.com/aws/amazon-freertos

MCUXpresso SDK Documentation, Release 25.09.00

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Contributing See CONTRIBUTING.md for information on contributing.

4.1.6 coremqtt

MQTT publish/subscribe messaging library.

MCUXpresso SDK: coreMQTT Library

This repository is a fork of coreMQTT library (https://github.com/FreeRTOS/coremqtt)(2.1.1).
Modifications have been made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kcon-
fig added to enable coreMQTT repo sources build in MCUXpresso SDK. It is part of the MCUX-
presso SDK overall delivery which is composed of several sub-repositories/projects. Navigate
to the top/parent repository mcuxsdk-manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-
manifests) for the complete delivery of MCUXpresso SDK.

coreMQTT Client Library

This repository contains the coreMQTT library that has been optimized for a low memory foot-
print. The coreMQTT library is compliant with the MQTT 3.1.1 standard. It has no dependencies
on any additional libraries other than the standard C library, a customer-implemented network
transport interface, and optionally a user-implemented platform time function. This library is
distributed under theMIT Open Source License.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations frommandatory rules in theMISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis from Coverity static analy-
sis, and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.

coreMQTT v2.1.1 source code is part of the FreeRTOS 202210.01 LTS release.

MQTT Config File The MQTT client library exposes build configuration macros that are re-
quired for building the library. A list of all the configurations and their default values are de-
fined in core_mqtt_config_defaults.h. To provide custom values for the configuration macros, a
custom config file named core_mqtt_config.h can be provided by the application to the library.

By default, a core_mqtt_config.h custom config is required to build the library. To dis-
able this requirement and build the library with default configuration values, provide
MQTT_DO_NOT_USE_CUSTOM_CONFIG as a compile time preprocessor macro.

Thus, the MQTT library can be built by either:
• Defining a core_mqtt_config.h file in the application, and adding it to the include directories
list of the library
OR

• Defining the MQTT_DO_NOT_USE_CUSTOM_CONFIG preprocessor macro for the li-
brary build.

4.1. FreeRTOS 467

https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/coreMQTT/tree/v2.1.1/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.01-LTS

MCUXpresso SDK Documentation, Release 25.09.00

Sending metrics to AWS IoT When establishing a connection with AWS IoT, users can option-
ally report the Operating System, Hardware Platform and MQTT client version information of
their device to AWS. This information can help AWS IoT provide faster issue resolution and tech-
nical support. If users want to report this information, they can send a specially formatted string
(see below) in the username field of the MQTT CONNECT packet.

Format

The format of the username string with metrics is:

<Actual_Username>?SDK=<OS_Name>&Version=<OS_Version>&Platform=<Hardware_Platform>&
↪→MQTTLib=<MQTT_Library_name>@<MQTT_Library_version>

Where

• <Actual_Username> is the actual username used for authentication, if username and pass-
word are used for authentication. When username and password based authentication is
not used, this is an empty value.

• <OS_Name> is the Operating System the application is running on (e.g. FreeRTOS)

• <OS_Version> is the version number of the Operating System (e.g. V10.4.3)

• <Hardware_Platform> is the Hardware Platform the application is running on (e.g. Win-
Sim)

• <MQTT_Library_name> is the MQTT Client library being used (e.g. coreMQTT)

• <MQTT_Library_version> is the version of the MQTT Client library being used (e.g. 1.0.2)

Example

• Actual_Username = “iotuser”, OS_Name = FreeRTOS, OS_Version = V10.4.3, Hard-
ware_Platform_Name =WinSim, MQTT_Library_Name = coremqtt, MQTT_Library_version
= 2.1.1. If username is not used, then “iotuser” can be removed.

/* Username string:
* iotuser?SDK=FreeRTOS&Version=v10.4.3&Platform=WinSim&MQTTLib=coremqtt@2.1.1
*/

#define OS_NAME ”FreeRTOS”
#define OS_VERSION ”V10.4.3”
#define HARDWARE_PLATFORM_NAME ”WinSim”
#define MQTT_LIB ”coremqtt@2.1.1”

#define USERNAME_STRING ”iotuser?SDK=” OS_NAME ”&Version=” OS_VERSION ”&
↪→Platform=” HARDWARE_PLATFORM_NAME ”&MQTTLib=” MQTT_LIB
#define USERNAME_STRING_LENGTH ((uint16_t) (sizeof(USERNAME_STRING) - 1))

MQTTConnectInfo_t connectInfo;
connectInfo.pUserName = USERNAME_STRING;
connectInfo.userNameLength = USERNAME_STRING_LENGTH;
mqttStatus = MQTT_Connect(pMqttContext, &connectInfo, NULL, CONNACK_RECV_TIMEOUT_MS,␣
↪→pSessionPresent);

Upgrading to v2.0.0 and above With coreMQTT versions >=v2.0.0, there are breaking changes.
Please refer to the coreMQTT version >=v2.0.0 Migration Guide.

Building the Library ThemqttFilePaths.cmake file contains the information of all source files
and the header include path required to build the MQTT library.

Additionally, the MQTT library requires two header files that are not part of the ISO C90 stan-
dard library, stdbool.h and stdint.h. For compilers that do not provide these header files, the

468 Chapter 4. RTOS

MCUXpresso SDK Documentation, Release 25.09.00

source/include directory contains the files stdbool.readme and stdint.readme, which can be re-
named to stdbool.h and stdint.h, respectively, to provide the type definitions required by MQTT.

As mentioned in the previous section, either a custom config file (i.e. core_mqtt_config.h) OR
MQTT_DO_NOT_USE_CUSTOM_CONFIG macro needs to be provided to build the MQTT li-
brary.

For a CMake example of building the MQTT library with themqttFilePaths.cmake file, refer to the
coverity_analysis library target in test/CMakeLists.txt file.

Building Unit Tests

Checkout CMock Submodule By default, the submodules in this repository are configured
with update=none in .gitmodules to avoid increasing clone time and disk space usage of other
repositories (like amazon-freertos that submodules this repository).

To build unit tests, the submodule dependency of CMock is required. Use the following command
to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/CMock

Platform Prerequisites
• Docker

or the following:

• For running unit tests

– C90 compiler like gcc
– CMake 3.13.0 or later
– Ruby 2.0.0 or later is additionally required for the CMock test framework (that we
use).

• For running the coverage target, gcov and lcov are additionally required.

Steps to build Unit Tests
1. If using docker, launch the container:

1. docker build -t coremqtt .

2. docker run -it -v ”$PWD”:/workspaces/coreMQTT -w /workspaces/coreMQTT coremqtt

2. Go to the root directory of this repository. (Make sure that the CMock submodule is cloned
as described above)

3. Run the cmake command: cmake -S test -B build

4. Run this command to build the library and unit tests: make -C build all

5. The generated test executables will be present in build/bin/tests folder.

6. Run cd build && ctest to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

4.1. FreeRTOS 469

https://github.com/aws/amazon-freertos
https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html

MCUXpresso SDK Documentation, Release 25.09.00

Reference examples Please refer to the demos of the MQTT client library in the following
locations for reference examples on POSIX and FreeRTOS platforms:

Plat-
form

Location Transport Interface Implementation

POSIX AWS IoT Device SDK for Embed-
ded C

POSIX sockets for TCP/IP and OpenSSL for TLS
stack

FreeR-
TOS

FreeRTOS/FreeRTOS FreeRTOS+TCP for TCP/IP and mbedTLS for
TLS stack

FreeR-
TOS

FreeRTOS AWS Reference Inte-
grations

Based on Secure Sockets Abstraction

Documentation

Existing Documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location
AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of coreMQTT may differ across repositories.

Generating Documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Contributing See CONTRIBUTING.md for information on contributing.

4.1.7 coremqtt-agent

The coreMQTT Agent library is a high level API that adds thread safety to the coreMQTT library.

Readme

MCUXpresso SDK: coreMQTT Agent Library This repository is a fork of coreMQTT Agent
library (https://github.com/FreeRTOS/coremqtt-agent)(1.2.0). Modifications have been made to
adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable coreMQTT Agent
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repositorymcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

470 Chapter 4. RTOS

https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/mqtt
https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/mqtt
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo
https://github.com/aws/amazon-freertos/tree/main/demos/coreMQTT
https://github.com/aws/amazon-freertos/tree/main/demos/coreMQTT
https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/coreMQTT/docs/doxygen/output/html/index.html

MCUXpresso SDK Documentation, Release 25.09.00

coreMQTT Agent Library The coreMQTT Agent library is a high level API that adds thread
safety to the coreMQTT library. The library provides thread safe equivalents to the coreMQTT’s
APIs, greatly simplifying its use in multi-threaded environments. The coreMQTT Agent library
manages the MQTT connection by serializing the access to the coreMQTT library and reduc-
ing implementation overhead (e.g., removing the need for the application to repeatedly call to
MQTT_ProcessLoop). This allows yourmulti-threaded applications to share the sameMQTT con-
nection, and enables you to design an embedded application without having to worry about
coreMQTT thread safety.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations frommandatory rules in theMISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis from Coverity static analy-
sis, and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.

Cloning this repository This repo uses Git Submodules to bring in dependent components.

To clone using HTTPS:

git clone https://github.com/FreeRTOS/coreMQTT-Agent.git --recurse-submodules

Using SSH:

git clone git@github.com:FreeRTOS/coreMQTT-Agent.git --recurse-submodules

If you have downloaded the repo without using the --recurse-submodules argument, you need to
run:

git submodule update --init --recursive

coreMQTT Agent Library Configurations The MQTT Agent library uses the same
core_mqtt_config.h configuration file as coreMQTT, with the addition of configuration con-
stants listed at the top of core_mqtt_agent.h and core_mqtt_agent_command_functions.h.
Documentation for these configurations can be found here.

To provide values for these configuration values, they must be either:

• Defined in core_mqtt_config.h used by coreMQTT OR
• Passed as compile time preprocessor macros

Porting the coreMQTT Agent Library In order to use the MQTT Agent library on a platform,
you need to supply thread safe functions for the agent’smessaging interface.

Messaging Interface Each of the following functions must be thread safe.

4.1. FreeRTOS 471

https://github.com/FreeRTOS/coreMQTT
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://freertos.org/Documentation/api-ref/coreMQTT-Agent/docs/doxygen/output/html/core_mqtt_agent_config.html

MCUXpresso SDK Documentation, Release 25.09.00

Function
Pointer

Description

MQTTA-
gentMes-
sage-
Send_t

A function that sends commands (as MQTTAgentCommand_t * pointers) to be re-
ceived by MQTTAgent_CommandLoop. This can be implemented by pushing to a
thread safe queue.

MQTTA-
gentMes-
sageRecv_t

A function used byMQTTAgent_CommandLoop to receiveMQTTAgentCommand_t
* pointers that were sent by API functions. This can be implemented by receiving
from a thread safe queue.

MQTTA-
gentCom-
mand-
Get_t

A function that returns a pointer to an allocatedMQTTAgentCommand_t structure,
which is used to hold information and arguments for a command to be executed in
MQTTAgent_CommandLoop(). If using dynamicmemory, this can be implemented
using malloc().

MQT-
TAgent-
Comman-
dRelease_t

A function called to indicate that a command structure that had been allocated
with the MQTTAgentCommandGet_t function pointer will no longer be used by
the agent, so it may be freed or marked as not in use. If using dynamic memory,
this can be implemented with free().

Reference implementations for the interface functions can be found in the reference examples
below.

Additional Considerations

Static Memory If only static allocation is used, then theMQTTAgentCommandGet_t andMQT-
TAgentCommandRelease_t could instead be implemented with a pool of MQTTAgentCommand_t
structures, with a queue or semaphore used to control access and provide thread safety. The
below reference examples use static memory with a command pool.

Subscription Management The MQTT Agent does not track subscriptions for MQTT topics.
The receipt of any incoming PUBLISH packet will result in the invocation of a single MQTTA-
gentIncomingPublishCallback_t callback, which is passed to MQTTAgent_Init() for initialization.
If it is desired for different handlers to be invoked for different incoming topics, then the pub-
lish callback will have to manage subscriptions and fan out messages. A platform independent
subscription manager example is implemented in the reference examples below.

Building theLibrary You canbuild theMQTTAgent source files that are in the sourcedirectory,
and add source/include to your compiler’s include path. Additionally, the MQTT Agent library
requires the coreMQTT library, whose files follow the same source/ and source/include pattern as
the agent library; its build instructions can be found here.

If using CMake, themqttAgentFilePaths.cmake file contains the above information of the source
files and the header include path from this repository. The same information is found for
coreMQTT from mqttFilePaths.cmake in the coreMQTT submodule.

For a CMake example of building the MQTT Agent library with themqttAgentFilePaths.cmake file,
refer to the coverity_analysis library target in test/CMakeLists.txt file.

Building Unit Tests

472 Chapter 4. RTOS

https://github.com/FreeRTOS/coreMQTT#building-the-library

MCUXpresso SDK Documentation, Release 25.09.00

Checkout CMock Submodule To build unit tests, the submodule dependency of CMock is re-
quired. Use the following command to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/CMock

Unit Test Platform Prerequisites
• For running unit tests

– C90 compiler like gcc
– CMake 3.13.0 or later
– Ruby 2.0.0 or later is additionally required for the CMock test framework (that we
use).

• For running the coverage target, gcov and lcov are additionally required.

Steps to build Unit Tests
1. Go to the root directory of this repository. (Make sure that the CMock submodule is cloned

as described above)

2. Run the cmake command: cmake -S test -B build

3. Run this command to build the library and unit tests: make -C build all

4. The generated test executables will be present in build/bin/tests folder.

5. Run cd build && ctest to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Reference examples Please refer to the demos of the MQTT Agent library in the following
locations for reference examples on FreeRTOS platforms:

Location
coreMQTT Agent Demos
FreeRTOS/FreeRTOS

Documentation The MQTT Agent API documentation can be found here.

Generating documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages yourself, please run the following command from the root
of this repository:

doxygen docs/doxygen/config.doxyfile

Getting help You can use your Github login to get support from both the FreeRTOS community
and directly from the primary FreeRTOS developers on our active support forum. You can find
a list of frequently asked questions here.

4.1. FreeRTOS 473

https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://github.com/FreeRTOS/coreMQTT-Agent-Demos
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/coreMQTT_Windows_Simulator/MQTT_Multitask
https://freertos.org/Documentation/api-ref/coreMQTT-Agent/docs/doxygen/output/html/index.html
https://forums.freertos.org
https://www.freertos.org/FAQ.html

MCUXpresso SDK Documentation, Release 25.09.00

Contributing See CONTRIBUTING.md for information on contributing.

License This library is licensed under the MIT License. See the LICENSE file.

4.1.8 corepkcs11

PKCS #11 key management library.

Readme

MCUXpresso SDK: corePKCS11 Library This repository is a fork of PKCS #11 keymanagement
library (https://github.com/FreeRTOS/corePKCS11/tree/v3.5.0)(v3.5.0). Modifications have been
made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable corepkcs11
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repositorymcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

corePKCS11 Library PKCS #11 is a standardized and widely used API for manipulating com-
mon cryptographic objects. It is important because the functions it specifies allow application
software to use, create, modify, and delete cryptographic objects, without ever exposing those
objects to the application’s memory. For example, FreeRTOS AWS reference integrations use a
small subset of the PKCS #11 API to, among other things, access the secret (private) key neces-
sary to create a network connection that is authenticated and secured by the Transport Layer
Security (TLS) protocol – without the application ever ‘seeing’ the key.

The Cryptoki or PKCS #11 standard defines a platform-independent API to manage and use cryp-
tographic tokens. The name, “PKCS #11”, is used interchangeably to refer to the API itself and
the standard which defines it.

This repository contains a software based mock implementation of the PKCS #11 interface (API)
that uses the cryptographic functionality provided by Mbed TLS. Using a software mock enables
rapid development and flexibility, but it is expected that the mock be replaced by an implemen-
tation specific to your chosen secure key storage in production devices.

Only a subset of the PKCS #11 standard is implemented, with a focus on operations involving
asymmetric keys, random number generation, and hashing.

The targeted use cases include certificate and keymanagement for TLS authentication and code-
sign signature verification, on small embedded devices.

corePKCS11 is implemented on PKCS #11 v2.4.0, the full PKCS #11 standard can be found on the
oasis website.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations frommandatory rules in theMISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis fromCoverity static analysis
and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.

corePKCS11 v3.5.0 source code is part of the FreeRTOS 202210.00 LTS release.
corePKCS11 v3.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

474 Chapter 4. RTOS

https://en.wikipedia.org/wiki/PKCS_11
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/corePKCS11/tree/v3.5.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/corePKCS11/tree/v3.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00

Purpose Generally vendors for secure cryptoprocessors such as Trusted Platform Module
(TPM), Hardware Security Module (HSM), Secure Element, or any other type of secure hard-
ware enclave, distribute a PKCS #11 implementation with the hardware. The purpose of the
corePKCS11 software only mock library is therefore to provide a non hardware specific PKCS
#11 implementation that allows for rapid prototyping and development before switching to a
cryptoprocessor specific PKCS #11 implementation in production devices.

Since the PKCS #11 interface is defined as part of the PKCS #11 specification replacing this li-
brary with another implementation should require little porting effort, as the interface will not
change. The system tests distributed in this repository can be leveraged to verify the behavior
of a different implementation is similar to corePKCS11.

corePKCS11 Configuration The corePKCS11 library exposes preprocessor macros whichmust
be defined prior to building the library. A list of all the configurations and their default values
are defined in the doxygen documentation for this library.

Build Prerequisites

Library Usage For building the library the following are required:

• A C99 compiler
• mbedcrypto library from mbedtls version 2.x or 3.x.

• pkcs11 API header(s) available from OASIS or OpenSC

Optionally, variables from the pkcsFilePaths.cmake file may be referenced if your project uses
cmake.

Integration and Unit Tests In order to run the integration and unit test suites the following
are dependencies are necessary:

• C Compiler
• CMake 3.13.0 or later
• Ruby 2.0.0 or later required by CMock.

• Python 3 required for configuring mbedtls.

• git required for fetching dependencies.

• GNU Make or Ninja
Thembedtls, CMock, andUnity libraries are downloaded and built automatically using the cmake
FetchContent feature.

Coverage Measurement and Instrumentation The following software is required to run the
coverage target:

• Linux, MacOS, or another POSIX-like environment.

• A recent version of GCC or Clang with support for gcov-like coverage instrumentation.

• gcov binary corresponding to your chosen compiler

• lcov from the Linux Test Project

• perl needed to run the lcov utility.

Coverage builds are validated on recent versions of Ubuntu Linux.

4.1. FreeRTOS 475

https://en.wikipedia.org/wiki/Trusted_Platform_Module
https://en.wikipedia.org/wiki/Hardware_security_module
https://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://github.com/ARMmbed/mbedtls
https://github.com/oasis-tcs/pkcs11
https://github.com/OpenSC/libp11/blob/master/src/pkcs11.h
https://github.com/linux-test-project/lcov

MCUXpresso SDK Documentation, Release 25.09.00

Running the Integration and Unit Tests
1. Navigate to the root directory of this repository in your shell.

2. Run cmake to construct a build tree: cmake -S test -B build

• You may specify your preferred build tool by appending -G'Unix Makefiles' or -GNinja
to the command above.

• You may append -DUNIT_TESTS=0 or -DSYSTEM_TESTS=0 to disable Unit Tests or
Integration Tests respectively.

3. Build the test binaries: cmake --build ./build --target all

4. Run ctest --test-dir ./build or cmake --build ./build --target test to run the tests without captur-
ing coverage.

5. Run cmake --build ./build --target coverage to run the tests and capture coverage data.

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Reference examples The FreeRTOS-Labs repository contains demos using the PKCS #11 li-
brary here using FreeRTOS on theWindows simulator platform. These can be used as reference
examples for the library API.

Porting Guide Documentation for porting corePKCS11 to a new platform can be found on the
AWS docs web page.

corePKCS11 is not meant to be ported to projects that have a TPM, HSM, or other hardware for
offloading crypto-processing. This library is specifically meant to be used for development and
prototyping.

Related Example Implementations These projects implement the PKCS #11 interface on real
hardware and have similar behavior to corePKCS11. It is preferred to use these, over coreP-
KCS11, as they allow for offloading Cryptography to separate hardware.

• ARM’s Platform Security Architecture.

• Microchip’s cryptoauthlib.

• Infineon’s Optiga Trust X.

Documentation

Existing Documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location
AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of corePKCS11 may differ across repositories.

476 Chapter 4. RTOS

https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://github.com/FreeRTOS/FreeRTOS-Labs/tree/master/FreeRTOS-Plus/Demo/FreeRTOS_Plus_PKCS11_Windows_Simulator/examples
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-pkcs.html
https://github.com/Linaro/freertos-pkcs11-psa
https://github.com/MicrochipTech/cryptoauthlib
https://github.com/aws/amazon-freertos/blob/main/vendors/infineon/secure_elements/pkcs11/iot_pkcs11_trustx.c
https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/corePKCS11/docs/doxygen/output/html/index.html

MCUXpresso SDK Documentation, Release 25.09.00

Generating Documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Security See CONTRIBUTING for more information.

License This library is licensed under the MIT-0 License. See the LICENSE file.

4.1.9 freertos-plus-tcp

Open source RTOS FreeRTOS Plus TCP.

Readme

MCUXpresso SDK: FreeRTOS-Plus-TCPLibrary This repository is a fork of FreeRTOS-Plus-TCP
library (https://github.com/FreeRTOS/freertos-plus-tcp)(4.3.3). Modifications have been made to
adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable FreeRTOS-Plus-TCP
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repositorymcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

FreeRTOS-Plus-TCP Library FreeRTOS-Plus-TCP is a lightweight TCP/IP stack for FreeRTOS. It
provides a familiar Berkeley sockets interface, making it as simple to use and learn as possi-
ble. FreeRTOS-Plus-TCP’s features and RAM footprint are fully scalable, making FreeRTOS-Plus-
TCP equally applicable to smaller lower throughput microcontrollers as well as larger higher
throughput microprocessors.

This library has undergone static code analysis and checks for compliance with the MISRA cod-
ing standard. Any deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. The library is validated for memory safety and data structure invariance through
the CBMC automated reasoning tool for the functions that parse data originating from the net-
work. The library is also protocol tested using Maxwell protocol tester for both IPv4 and IPv6.

FreeRTOS-Plus-TCP Library V4.2.2 source code is part of the FreeRTOS 202406.01 LTS re-
lease.

Getting started The easiest way to use version 4.0.0 and later of FreeRTOS-Plus-TCP is to refer
the Getting started Guide (found here) Another way is to start with the pre-configured IPv4Win-
dows Simulator demo (found in this directory) or IPv6Multi-endpointWindows Simulator demo
(found in this directory). That way you will have the correct FreeRTOS source files included, and
the correct include paths configured. Once a demo application is building and executing you can
remove the demo application files, and start to add in your own application source files. See the
FreeRTOS Kernel Quick Start Guide for detailed instructions and other useful links.

Additionally, for FreeRTOS-Plus-TCP source code organization refer to the Documentation, and
API Reference.

4.1. FreeRTOS 477

https://www.misra.org.uk/
https://www.misra.org.uk/
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/MISRA.md
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/MISRA.md
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/tree/V4.2.2/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202406.01-LTS
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/GettingStarted.md
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/FreeRTOS_Plus_TCP_Minimal_Windows_Simulator
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/FreeRTOS_Plus_TCP_IPv6_Demo/IPv6_Multi_WinSim_demo
https://www.freertos.org/Documentation/01-FreeRTOS-quick-start/01-Beginners-guide/02-Quick-start-guide
http://www.FreeRTOS.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/TCP_Networking_Tutorial.html
https://freertos.org/Documentation/03-Libraries/02-FreeRTOS-plus/02-FreeRTOS-plus-TCP/09-API-reference/01-FreeRTOS-plus-TCP-APIs

MCUXpresso SDK Documentation, Release 25.09.00

Getting help If you have any questions or need assistance troubleshooting your FreeRTOS
project, we have an active community that canhelp on the FreeRTOSCommunity Support Forum.
Please also refer to FAQ for frequently asked questions.

Also see the Submitting a bugs/feature request section of CONTRIBUTING.md for more details.

Note: All the remaining sections are generic and applies to all the versions from V3.0.0 onwards.

Upgrading to V4.3.0 and above For users of STM32 network interfaces:

Starting from version V4.3.0, the STM32 network interfaces have been consolidated into a sin-
gle unified implementation located at source/portable/NetworkInterface/STM32/NetworkInterface.c,
supporting STM32 F4, F7, and H7 series microcontrollers, with newly added support for STM32
H5. The new interface has been tested with the STM32 HAL Ethernet (ETH) drivers, avail-
able at source/portable/NetworkInterface/STM32/Drivers. For compatibility, the legacy interfaces
(STM32Fxx and STM32Hxx) have been retained and relocated to source/portable/NetworkInterface/
STM32/Legacy.

Upgrading to V3.0.0 and V3.1.0 In version 3.0.0 or 3.1.0, the folder structure of FreeRTOS-Plus-
TCP has changed and the files have been broken down into smaller logically separated mod-
ules. This changemakes the codemoremodular and conducive to unit-tests. FreeRTOS-Plus-TCP
V3.0.0 improves the robustness, security, and modularity of the library. Version 3.0.0 adds com-
prehensive unit test coverage for all lines and branches of code and has undergone protocol
testing, and penetration testing by AWS Security to reduce the exposure to security vulnerabili-
ties. Additionally, the source files have been moved to a source directory. This change requires
modification of any existing project(s) to include the modified source files and directories.

FreeRTOS-Plus-TCP V3.1.0 source code(.c .h) is part of the FreeRTOS 202210.00 LTS release.

Generating pre V3.0.0 folder structure for backward compatibility: If you wish to continue
using a version earlier than V3.0.0 i.e. continue to use your existing source code organization, a
script is provided to generate the folder structure similar to this.

Note: After running the script, while the .c files will have same names as the pre V3.0.0 source,
the files in the include directory will have different names and the number of files will differ as
well. This should, however, not pose any problems to most projects as projects generally include
all files in a given directory.

Running the script to generate pre V3.0.0 folder structure: For running the script, you will need
Python version > 3.7. You can download/install it from here.

Once python is downloaded and installed, you can verify the version from your termi-
nal/command window by typing python --version.

To run the script, you should switch to the FreeRTOS-Plus-TCP directory Then run python <Path/
to/the/script>/GenerateOriginalFiles.py.

To consume FreeRTOS+TCP

Consume with CMake If using CMake, it is recommended to use this repository using Fetch-
Content. Add the following into your project’s main or a subdirectory’s CMakeLists.txt:

• Define the source and version/tag you want to use:

FetchContent_Declare(freertos_plus_tcp
GIT_REPOSITORY https://github.com/FreeRTOS/FreeRTOS-Plus-TCP.git
GIT_TAG main #Note: Best practice to use specific git-hash or tagged version

(continues on next page)

478 Chapter 4. RTOS

https://forums.freertos.org
https://www.freertos.org/Why-FreeRTOS/FAQs
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/.github/CONTRIBUTING.md#submitting-a-bugsfeature-request
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/tree/V3.1.0
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/tree/f118c8415b4373e3d6e6dbd2d5a116f7eaf27b63
https://www.python.org/downloads/

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
GIT_SUBMODULES ”” # Don't grab any submodules since not latest

)

• Configure the FreeRTOS-Kernel and make it available

– this particular example supports a native and cross-compiled build option.

Select the native compile PORT
set(FREERTOS_PLUS_TCP_NETWORK_IF ”POSIX” CACHE STRING ”” FORCE)
Or: select a cross-compile PORT
if (CMAKE_CROSSCOMPILING)
Eg. STM32Hxx version of port
set(FREERTOS_PLUS_TCP_NETWORK_IF ”STM32HXX” CACHE STRING ”” FORCE)

endif()

FetchContent_MakeAvailable(freertos_plus_tcp)

Consuming stand-alone This repository uses Git Submodules to bring in dependent compo-
nents.

Note: If you download the ZIP file provided by GitHub UI, you will not get the contents of the
submodules. (The ZIP file is also not a valid Git repository)

To clone using HTTPS:

git clone https://github.com/FreeRTOS/FreeRTOS-Plus-TCP.git ./FreeRTOS-Plus-TCP
cd ./FreeRTOS-Plus-TCP
git submodule update --checkout --init --recursive tools/CMock test/FreeRTOS-Kernel

Using SSH:

git clone git@github.com:FreeRTOS/FreeRTOS-Plus-TCP.git ./FreeRTOS-Plus-TCP
cd ./FreeRTOS-Plus-TCP
git submodule update --checkout --init --recursive tools/CMock test/FreeRTOS-Kernel

Porting The porting guide is available on this page.

Repository structure This repository contains the FreeRTOS-Plus-TCP repository and a num-
ber of supplementary libraries for testing/PR Checks. Below is the breakdown of what each di-
rectory contains:

• tools

– This directory contains the tools and related files (CMock/uncrustify) required to run
tests/checks on the TCP source code.

• tests

– This directory contains all the tests (unit tests and CBMC) and the dependencies
(FreeRTOS-Kernel/Litani-port) the tests require.

• source/portable

– This directory contains the portable files required to compile the FreeRTOS-Plus-TCP
source code for different hardware/compilers.

• source/include

– The include directory has all the ‘core’ header files of FreeRTOS-Plus-TCP source.

• source

4.1. FreeRTOS 479

https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://www.freertos.org/Documentation/03-Libraries/02-FreeRTOS-plus/02-FreeRTOS-plus-TCP/10-Porting/01-FreeRTOS_TCP_Porting
https://github.com/FreeRTOS/FreeRTOS-Kernel
https://github.com/awslabs/aws-build-accumulator

MCUXpresso SDK Documentation, Release 25.09.00

– This directory contains all the [.c] source files.

Note At this time it is recommended to use BufferAllocation_2.c in which case it is essential to
use the heap_4.c memory allocation scheme. See memory management.

Kernel sources The FreeRTOS Kernel Source is in FreeRTOS/FreeRTOS-Kernel repository, and
it is consumed by testing/PR checks as a submodule in this repository.

The version of the FreeRTOS Kernel Source in use could be accessed at ./test/FreeRTOS-Kernel
directory.

CBMC The test/cbmc/proofs directory contains CBMC proofs.

To learn more about CBMC and proofs specifically, review the training material here.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

480 Chapter 4. RTOS

http://www.FreeRTOS.org/a00111.html
https://github.com/FreeRTOS/FreeRTOS-Kernel
https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html

	LPCXpresso55S06
	Overview
	Getting Started with MCUXpresso SDK Package
	Getting Started with Package

	Getting Started with MCUXpresso SDK GitHub
	Getting Started with MCUXpresso SDK Repository
	Installation
	Install Prerequisites with MCUXpresso Installer
	Alternative: Manual Installation
	Basic tools
	Git
	Python
	West
	Build And Configuration System
	CMake
	Ninja
	Kconfig
	Ruby
	Toolchain
	Tool installation check

	Get MCUXpresso SDK Repo
	Establish SDK Workspace
	Install Python Dependency(If do tool installation manually)

	Explore Contents
	Folder View
	Examples Project

	Run a demo using MCUXpresso for VS Code
	Build an example application
	Run an example application

	Running a demo using ARMGCC CLI/IAR/MDK
	Supported Boards
	Build the project
	Sysbuild(System build)

	Config a Project
	Flash
	Debug
	Work with IDE Project

	Release Notes
	MCUXpresso SDK Release Notes
	Overview
	MCUXpresso SDK
	Development tools
	Supported development systems
	MCUXpresso SDK release package
	Device support
	Board support
	Demo application and other examples

	RTOS
	FreeRTOS

	Middleware
	CMSIS DSP Library
	coreHTTP
	PSA Test Suite
	mbedTLS
	USB Type-C PD Stack
	USB Host, Device, OTG Stack
	TinyCBOR
	TF-M
	PKCS#11
	mbedTLS
	LVGL
	llhttp
	FreeMASTER
	File systemFatfs
	emWin
	NXP PSA CRYPTO DRIVER

	Release contents
	Known issues
	Cannot add SDK components into FreeRTOS projects
	Examples hello_world_ns, secure_faults_ns, and secure_faults_trdc_ns have incorrect library path in GUI projects

	ChangeLog
	MCUXpresso SDK Changelog
	Board Support Files
	board
	[25.06.00]

	clock_config
	[25.06.00]

	pin_mux
	[25.06.00]

	ANACTRL
	[2.4.0]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	CASSPER
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.10]
	[2.0.9]
	[2.0.8]
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	CDOG
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	CLOCK
	[2.3.8]
	[2.3.7]
	[2.3.6]
	[2.3.5]
	[2.3.4]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	CMP
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	COMMON
	[2.6.0]
	[2.5.0]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.10]
	[2.2.9]
	[2.2.8]
	[2.2.7]
	[2.2.6]
	[2.2.5]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	CRC
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	CTIMER
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	LPC_DMA
	[2.5.3]
	[2.5.2]
	[2.5.1]
	[2.5.0]
	[2.4.4]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.0]
	[2.2.5]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.0.1]
	[2.0.0]

	FLEXCOMM
	[2.0.2]
	[2.0.1]
	[2.0.0]

	GINT
	[2.1.1]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	GPIO
	[2.1.7]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	HASHCRYPT
	[2.0.0]
	[2.0.1]
	[2.0.2]
	[2.0.3]
	[2.0.4]
	[2.1.0]
	[2.1.1]
	[2.1.2]
	[2.1.3]
	[2.1.4]
	[2.1.5]
	[2.2.0]
	[2.2.1]
	[2.2.2]
	[2.2.3]
	[2.2.4]
	[2.2.5]
	[2.2.6]
	[2.2.7]
	[2.2.8]
	[2.2.9]
	[2.2.10]
	[2.2.11]
	[2.2.12]
	[2.2.13]
	[2.2.14]
	[2.2.15]
	[2.2.16]
	[2.2.17]

	I2C
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.0]
	[2.0.8]
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	I2S
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	I2S_DMA
	[2.3.3]
	[2.3.2]
	[2.3.1]

	IAP
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	INPUTMUX
	[2.0.9]
	[2.0.8]
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	IOCON
	[2.2.0]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	LPADC
	[2.9.3]
	[2.9.2]
	[2.9.1]
	[2.9.0]
	[2.8.4]
	[2.8.3]
	[2.8.2]
	[2.8.1]
	[2.8.0]
	[2.7.2]
	[2.7.1]
	[2.7.0]
	[2.6.2]
	[2.6.1]
	[2.6.0]
	[2.5.2]
	[2.5.1]
	[2.5.0]
	[2.4.0]
	[2.3.0]
	[2.2.1]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	MCAN
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.8]
	[2.1.7]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	MRT
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	OSTIMER
	[2.2.5]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	PINT
	[2.2.0]
	[2.1.13]
	[2.1.12]
	[2.1.11]
	[2.1.10]
	[2.1.9]
	[2.1.8]
	[2.1.7]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	PLU
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	PRINCE
	[2.0.0]

	PUF
	[2.2.0]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	RESET
	[2.4.0]
	[2.3.3]
	[2.0.1]
	[2.0.0]

	RNG
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	RTC
	[2.2.0]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	SCTIMER
	[2.5.1]
	[2.5.0]
	[2.4.9]
	[2.4.8]
	[2.4.7]
	[2.4.6]
	[2.4.5]
	[2.4.4]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.0]
	[2.2.0]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	SPI
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	SPI_DMA
	[2.2.2]
	[2.2.1]
	[2.2.0]

	SYSCTL
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	USART
	[2.8.5]
	[2.8.4]
	[2.8.3]
	[2.8.2]
	[2.8.1]
	[2.8.0]
	[2.7.0]
	[2.6.0]
	[2.5.0]
	[2.4.0]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	USART_DMA
	[2.6.0]

	UTICK
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	WWDT
	[2.1.10]
	[2.1.9]
	[2.1.8]
	[2.1.7]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	Driver API Reference Manual
	Middleware Documentation
	FreeMASTER
	FreeRTOS
	File systemFatfs

	LPC55S06
	ANACTRL: Analog Control Driver
	CASPER: The Cryptographic Accelerator and Signal Processing Engine with RAM sharing
	casper_driver
	casper_driver_pkha
	CDOG
	Clock Driver
	CMP: Analog Comparator Driver
	CRC: Cyclic Redundancy Check Driver
	CTIMER: Standard counter/timers
	DMA: Direct Memory Access Controller Driver
	IAP: In Application Programming Driver
	IAP_FFR Driver
	FLEXCOMM: FLEXCOMM Driver
	FLEXCOMM Driver
	GINT: Group GPIO Input Interrupt Driver
	Hashcrypt: The Cryptographic Accelerator
	Hashcrypt Background HASH
	Hashcrypt common functions
	Hashcrypt AES
	Hashcrypt HASH
	I2C: Inter-Integrated Circuit Driver
	I2C DMA Driver
	I2C Driver
	I2C Master Driver
	I2C Slave Driver
	I2S: I2S Driver
	I2S DMA Driver
	I2S Driver
	INPUTMUX: Input Multiplexing Driver
	IAP_KBP Driver
	Common Driver
	LPADC: 12-bit SAR Analog-to-Digital Converter Driver
	GPIO: General Purpose I/O
	IOCON: I/O pin configuration
	MCAN: Controller Area Network Driver
	MRT: Multi-Rate Timer
	OSTIMER: OS Event Timer Driver
	PINT: Pin Interrupt and Pattern Match Driver
	PLU: Programmable Logic Unit
	Power Driver
	PRINCE: PRINCE bus crypto engine
	PUF: Physical Unclonable Function
	Reset Driver
	RNG: Random Number Generator
	RTC: Real Time Clock
	SCTimer: SCTimer/PWM (SCT)
	skboot_authenticate
	SPI: Serial Peripheral Interface Driver
	SPI DMA Driver
	SPI Driver
	SYSCTL: I2S bridging and signal sharing Configuration
	USART: Universal Synchronous/Asynchronous Receiver/Transmitter Driver
	USART DMA Driver
	USART Driver
	UTICK: MictoTick Timer Driver
	WWDT: Windowed Watchdog Timer Driver

	Middleware
	Motor Control
	FreeMASTER
	Introduction
	What is FreeMASTER?
	Driver version 3
	Target platforms
	Replacing existing drivers
	Clocks, pins, and peripheral initialization
	MCUXpresso SDK
	MCUXpresso SDK on GitHub
	FreeMASTER in Zephyr

	Example applications
	MCUX SDK Example applications
	Zephyr sample spplications

	Description
	Features
	Board Detection
	Memory Read
	Memory Write
	Masked Memory Write
	Oscilloscope
	Recorder
	TSA
	TSA Safety
	Application commands
	Pipes
	Serial single-wire operation
	Multi-session support
	Zephyr-specific
	Dedicated communication task
	Zephyr shell and logging over FreeMASTER pipe
	Automatic TSA tables

	Driver files
	Driver configuration
	Configurable items
	Interrupt modes
	Value Type
	Description
	Protocol transport
	Value Type
	Description
	Serial transport
	FMSTR_SERIAL_DRV
	Value Type
	Description
	FMSTR_SERIAL_BASE
	Value Type
	Description
	FMSTR_COMM_BUFFER_SIZE
	Value Type
	Description
	FMSTR_COMM_RQUEUE_SIZE
	Value Type
	Description
	FMSTR_SERIAL_SINGLEWIRE
	Value Type
	Description
	CAN Bus transport
	FMSTR_CAN_DRV
	Value Type
	Description
	FMSTR_CAN_BASE
	Value Type
	Description
	FMSTR_CAN_CMDID
	Value Type
	Description
	FMSTR_CAN_RSPID
	Value Type
	Description
	FMSTR_FLEXCAN_TXMB
	Value Type
	Description
	FMSTR_FLEXCAN_RXMB
	Value Type
	Description
	Network transport
	FMSTR_NET_DRV
	Value Type
	Description
	FMSTR_NET_PORT
	Value Type
	Description
	FMSTR_NET_BLOCKING_TIMEOUT
	Value Type
	Description
	FMSTR_NET_AUTODISCOVERY
	Value Type
	Description
	Debugging options
	FMSTR_DISABLE
	Value Type
	Description
	FMSTR_DEBUG_TX
	Value Type
	Description
	FMSTR_APPLICATION_STR
	Value Type
	Description
	Memory access
	FMSTR_USE_READMEM
	Value Type
	Description
	FMSTR_USE_WRITEMEM
	Value Type
	Description
	Oscilloscope options
	FMSTR_USE_SCOPE
	Value Type
	Description
	FMSTR_MAX_SCOPE_VARS
	Value Type
	Description
	Recorder options
	FMSTR_USE_RECORDER
	Value Type
	Description
	FMSTR_REC_BUFF_SIZE
	Value Type
	Description
	FMSTR_REC_TIMEBASE
	Value Type
	Description
	FMSTR_REC_FLOAT_TRIG
	Value Type
	Description
	Application Commands options
	FMSTR_USE_APPCMD
	Value Type
	Description
	FMSTR_APPCMD_BUFF_SIZE
	Value Type
	Description
	FMSTR_MAX_APPCMD_CALLS
	Value Type
	Description
	TSA options
	FMSTR_USE_TSA
	Value Type
	Description
	FMSTR_USE_TSA_SAFETY
	Value Type
	Description
	FMSTR_USE_TSA_INROM
	Value Type
	Description
	FMSTR_USE_TSA_DYNAMIC
	Value Type
	Description
	Pipes options
	FMSTR_USE_PIPES
	Value Type
	Description
	FMSTR_MAX_PIPES_COUNT
	Value Type
	Description

	Driver interrupt modes
	Completely Interrupt-Driven operation
	Mixed Interrupt and Polling Modes
	Completely Poll-driven

	Data types
	Communication interface initialization
	FreeMASTER Recorder calls
	Driver usage
	Communication troubleshooting

	Driver API
	Control API
	FMSTR_Init
	Prototype
	Description
	FMSTR_Poll
	Prototype
	Description
	FMSTR_SerialIsr / FMSTR_CanIsr
	Prototype
	Description

	Recorder API
	FMSTR_RecorderCreate
	Prototype
	Description
	FMSTR_Recorder
	Prototype
	Description
	FMSTR_RecorderTrigger
	Prototype
	Description

	Fast Recorder API
	TSA Tables
	TSA table definition
	TSA descriptor parameters
	TSA variable types
	TSA table list
	TSA Active Content entries

	TSA API
	FMSTR_SetUpTsaBuff
	Prototype
	Arguments
	Description
	FMSTR_TsaAddVar
	Prototype
	Arguments
	Description

	Application Commands API
	FMSTR_GetAppCmd
	Prototype
	Description
	FMSTR_GetAppCmdData
	Prototype
	Arguments
	Description
	FMSTR_AppCmdAck
	Prototype
	Arguments
	Description
	FMSTR_AppCmdSetResponseData
	Prototype
	Arguments
	Description
	FMSTR_RegisterAppCmdCall
	Prototype
	Arguments
	Return value
	Description

	Pipes API
	FMSTR_PipeOpen
	Prototype
	Arguments
	Description
	FMSTR_PipeClose
	Prototype
	Arguments
	Description
	FMSTR_PipeWrite
	Prototype
	Arguments
	Description
	FMSTR_PipeRead
	Prototype
	Arguments
	Description

	API data types
	Public common types
	Public TSA types
	Public Pipes types
	Internal types

	Document references
	Links
	Documents
	Revision history

	RTOS
	FreeRTOS
	FreeRTOS kernel
	FreeRTOS kernel for MCUXpresso SDK Readme
	FreeRTOS kernel for MCUXpresso SDK
	Overview
	FreeRTOS example applications
	List of examples
	Location of examples
	Building a FreeRTOS example application
	FreeRTOS aware debugger plugin

	FreeRTOS kernel for MCUXpresso SDK ChangeLog
	Changelog FreeRTOS kernel for MCUXpresso SDK
	[Unreleased]
	Added
	[11.1.0_rev0]
	[11.0.1_rev0]
	[10.5.1_rev0]
	[10.4.3_rev1]
	[10.4.3_rev0]
	[10.4.3_rev0]
	[9.0.0_rev3]
	[9.0.0_rev2]
	[9.0.0_rev1]
	[9.0.0_rev0]
	[8.2.3]

	FreeRTOS kernel Readme
	MCUXpresso SDK: FreeRTOS kernel
	Getting started
	Getting help
	To consume FreeRTOS-Kernel
	Consume with CMake
	Consuming stand-alone - Cloning this repository
	Repository structure
	Code Formatting
	Line Endings
	Git History Optimizations
	Spelling and Formatting

	FreeRTOS drivers
	backoffalgorithm
	Readme
	MCUXpresso SDK: backoffAlgorithm Library
	backoffAlgorithm Library
	Reference example
	Building the library
	Building unit tests
	Checkout Unity Submodule
	Platform Prerequisites
	Steps to build Unit Tests
	Contributing

	corehttp
	MCUXpresso SDK: coreHTTP Client Library
	coreHTTP Client Library
	coreHTTP Config File
	Building the Library
	Building Unit Tests
	Platform Prerequisites
	Steps to build Unit Tests

	CBMC
	Reference examples
	Documentation
	Existing Documentation
	Generating Documentation

	Contributing

	corejson
	Readme
	MCUXpresso SDK: coreJSON Library
	coreJSON Library
	Reference example
	Building coreJSON
	Documentation
	Existing documentation
	Generating documentation
	Building unit tests
	Checkout Unity Submodule
	Platform Prerequisites
	Steps to build Unit Tests
	CBMC
	Contributing

	coremqtt
	MCUXpresso SDK: coreMQTT Library
	coreMQTT Client Library
	MQTT Config File
	Sending metrics to AWS IoT
	Upgrading to v2.0.0 and above
	Building the Library
	Building Unit Tests
	Checkout CMock Submodule
	Platform Prerequisites
	Steps to build Unit Tests

	CBMC
	Reference examples
	Documentation
	Existing Documentation
	Generating Documentation

	Contributing

	coremqtt-agent
	Readme
	MCUXpresso SDK: coreMQTT Agent Library
	coreMQTT Agent Library
	Cloning this repository
	coreMQTT Agent Library Configurations
	Porting the coreMQTT Agent Library
	Messaging Interface
	Additional Considerations
	Static Memory
	Subscription Management
	Building the Library
	Building Unit Tests
	Checkout CMock Submodule
	Unit Test Platform Prerequisites
	Steps to build Unit Tests
	CBMC
	Reference examples
	Documentation
	Generating documentation
	Getting help
	Contributing
	License

	corepkcs11
	Readme
	MCUXpresso SDK: corePKCS11 Library
	corePKCS11 Library
	Purpose
	corePKCS11 Configuration
	Build Prerequisites
	Library Usage
	Integration and Unit Tests
	Coverage Measurement and Instrumentation
	Running the Integration and Unit Tests
	CBMC
	Reference examples
	Porting Guide
	Related Example Implementations
	Documentation
	Existing Documentation
	Generating Documentation
	Security
	License

	freertos-plus-tcp
	Readme
	MCUXpresso SDK: FreeRTOS-Plus-TCP Library
	FreeRTOS-Plus-TCP Library
	Getting started
	Getting help
	Upgrading to V4.3.0 and above
	Upgrading to V3.0.0 and V3.1.0
	Generating pre V3.0.0 folder structure for backward compatibility:
	To consume FreeRTOS+TCP
	Consume with CMake
	Consuming stand-alone
	Porting
	Repository structure
	Note
	Kernel sources
	CBMC

