
MCUXpresso SDK Documentation
Release 25.09.00

NXP
Sep 19, 2025

Table of contents

1 LPCXpresso54S018 3
1.1 Overview . 3
1.2 Getting Started with MCUXpresso SDK Package . 4

1.2.1 Getting Started with MCUXpresso SDK Package 4
1.3 Getting Started with MCUXpresso SDK GitHub . 56

1.3.1 Getting Started with MCUXpresso SDK Repository 56
1.4 Release Notes . 69

1.4.1 MCUXpresso SDK Release Notes . 69
1.5 ChangeLog . 74

1.5.1 MCUXpresso SDK Changelog . 74
1.6 Driver API Reference Manual . 128
1.7 Middleware Documentation . 128

1.7.1 FreeMASTER . 128
1.7.2 AWS IoT . 128
1.7.3 FreeRTOS . 128
1.7.4 lwIP . 128
1.7.5 File systemFatfs . 128

2 LPC54S018 129
2.1 AES: AES encryption decryption driver . 129
2.2 Clock Driver . 133
2.3 CRC: Cyclic Redundancy Check Driver . 163
2.4 CTIMER: Standard counter/timers . 166
2.5 DMA: Direct Memory Access Controller Driver . 176
2.6 DMIC: Digital Microphone . 193
2.7 DMIC DMA Driver . 193
2.8 DMIC Driver . 195
2.9 EMC: External Memory Controller Driver . 204
2.10 FLEXCOMM: FLEXCOMM Driver . 211
2.11 FLEXCOMM Driver . 211
2.12 FMEAS: Frequency Measure Driver . 211
2.13 GINT: Group GPIO Input Interrupt Driver . 212
2.14 I2C: Inter-Integrated Circuit Driver . 215
2.15 I2C DMA Driver . 215
2.16 I2C Driver . 217
2.17 I2C Master Driver . 221
2.18 I2C Slave Driver . 230
2.19 I2S: I2S Driver . 239
2.20 I2S DMA Driver . 239
2.21 I2S Driver . 243
2.22 IAP: In Application Programming Driver . 251
2.23 INPUTMUX: Input Multiplexing Driver . 254
2.24 Common Driver . 260
2.25 ADC: 12-bit SAR Analog-to-Digital Converter Driver . 272
2.26 ENET: Ethernet Driver . 284
2.27 GPIO: General Purpose I/O . 311

i

2.28 IOCON: I/O pin configuration . 313
2.29 LCDC: LCD Controller Driver . 315
2.30 MCAN: Controller Area Network Driver . 325
2.31 MRT: Multi-Rate Timer . 348
2.32 OTP: One-Time Programmable memory and API . 352
2.33 PINT: Pin Interrupt and Pattern Match Driver . 355
2.34 Power Driver . 364
2.35 PUF: Physical Unclonable Function . 368
2.36 Reset Driver . 371
2.37 RIT: Repetitive Interrupt Timer . 375
2.38 RNG: Random Number Generator . 379
2.39 RTC: Real Time Clock . 379
2.40 SCTimer: SCTimer/PWM (SCT) . 385
2.41 SDIF: SD/MMC/SDIO card interface . 402
2.42 SHA: SHA encryption decryption driver . 418
2.43 Sha_algorithm_level_api . 419
2.44 SPI: Serial Peripheral Interface Driver . 421
2.45 SPI DMA Driver . 421
2.46 SPI Driver . 425
2.47 SPIFI: SPIFI flash interface driver . 433
2.48 SPIFI DMA Driver . 442
2.49 SPIFI Driver . 442
2.50 USART: Universal Synchronous/Asynchronous Receiver/Transmitter Driver 442
2.51 USART DMA Driver . 442
2.52 USART Driver . 445
2.53 UTICK: MictoTick Timer Driver . 460
2.54 WWDT: Windowed Watchdog Timer Driver . 462

3 Middleware 467
3.1 Motor Control . 467

3.1.1 FreeMASTER . 467

4 RTOS 505
4.1 FreeRTOS . 505

4.1.1 FreeRTOS kernel . 505
4.1.2 FreeRTOS drivers . 511
4.1.3 backoffalgorithm . 511
4.1.4 corehttp . 514
4.1.5 corejson . 516
4.1.6 coremqtt . 519
4.1.7 coremqtt-agent . 522
4.1.8 corepkcs11 . 526
4.1.9 freertos-plus-tcp . 529

ii

MCUXpresso SDK Documentation, Release 25.09.00

This documentation contains information specific to the lpcxpresso54s018 board.

Table of contents 1

MCUXpresso SDK Documentation, Release 25.09.00

2 Table of contents

Chapter 1

LPCXpresso54S018

1.1 Overview

The LPCXpresso54S018 board provides a powerful and flexible platform for easy evaluation of
the LPC54S00 family of microcontrollers. This board is an LPCXpresso V3 style, the latest gener-
ation of the original and highly successful LPCXpresso board family. These boards provide Ar-
duino UNO compatible shield connectors with additional expansion ports around the Arduino
footprint and also a PMod/host interface port. These boards feature an on-board LPC-Link2 de-
bug probe based on the LPC4322MCU for a performance debug experience over high speed USB,
with easy firmware update options to support CMSIS-DSP or a special version of J-link OBD from
SEGGER. The board can also be used with an external debug probe such as those from SEGGER
and P&E.

The LPC54S00 series is fully supported by NXPs MCUXpresso suite of free software and tools,
which include an Eclipse-based IDE, configuration tools and extensive SDK drivers/examples
available at https://mcuxpresso.nxp.com. MCUXpresso SDK includes project files for use with
IDEs from lead partners Keil and IAR, and these IDEs are also fully supported by theMCUXpresso
pin, clock and peripheral configuration tools.

The LPCXpresso54S018 board includes an extensive set of connectors and on-board peripherals
to enable full evaluation of the targetMCU and development of highly functional prototypes. The
on-board peripherals are complemented by a set of drivers and examples in the MCUXpresso
SDK.

MCU device and part on board is shown below:

• Device: LPC54S018

• PartNumber: LPC54S018JET180

3

https://mcuxpresso.nxp.com

MCUXpresso SDK Documentation, Release 25.09.00

1.2 Getting Started with MCUXpresso SDK Package

1.2.1 Getting Started with MCUXpresso SDK Package

Overview

The NXP MCUXpresso software and tools offer comprehensive development solutions designed
to optimize, ease, and help accelerate embedded system development of applications based on
general purpose, crossover, and Bluetooth-enabled MCUs from NXP. The MCUXpresso SDK in-
cludes a flexible set of peripheral drivers designed to speed up and simplify development of
embedded applications. Along with the peripheral drivers, theMCUXpresso SDK provides an ex-
tensive and rich set of example applications covering everything from basic peripheral use case
examples to full demo applications. The MCUXpresso SDK contains optional RTOS integrations
such as FreeRTOS andAzure RTOS, and various othermiddleware to support rapid development.

For supported toolchain versions, seeMCUXpresso SDK Release Notes (document MCUXSDKRN).

For more details about MCUXpresso SDK, see MCUXpresso Software Development Kit (SDK).

MCUXpresso SDK board support package folders

MCUXpresso SDK board support package provides example applications for NXP development
and evaluation boards for Arm Cortex-M cores including Freedom, Tower System, and LPCX-
presso boards. Board support packages are found inside the top-level boards folder and each
supported board has its own folder (an MCUXpresso SDK package can support multiple boards).
Within each <board_name> folder, there are various subfolders to classify the type of examples
it contains. These include (but are not limited to):

• cmsis_driver_examples: Simple applications intended to show how to use CMSIS drivers.

• demo_apps: Full-featured applications that highlight key functionality and use cases of the
target MCU. These applications typically use multiple MCU peripherals and may leverage
stacks and middleware.

• driver_examples: Simple applications that show how to use the MCUXpresso SDK’s periph-
eral drivers for a single use case. These applications typically only use a single peripheral
but there are cases wheremultiple peripherals are used (for example, SPI conversion using
DMA).

• emwin_examples: Applications that use the emWin GUI widgets.

4 Chapter 1. LPCXpresso54S018

http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.09.00

• rtos_examples: Basic FreeRTOS OS examples that show the use of various RTOS objects
(semaphores, queues, and so on) and interfaces with the MCUXpresso SDK’s RTOS drivers

• usb_examples: Applications that use the USB host/device/OTG stack.

Example application structure This section describes how the various types of example ap-
plications interact with the other components in the MCUXpresso SDK. To get a comprehensive
understanding of all MCUXpresso SDK components and folder structure, see MCUXpresso SDK
API Reference Manual.

Each <board_name> folder in the boards directory contains a comprehensive set of examples
that are relevant to that specific piece of hardware. Although we use the hello_world exam-
ple (part of the demo_apps folder), the same general rules apply to any type of example in the
<board_name> folder.

In the hello_world application folder you see the following contents:

All files in the application folder are specific to that example, so it is easy to copy and paste an
existing example to start developing a custom application based on a project provided in the
MCUXpresso SDK.

Locating example application source files When opening an example application in any of
the supported IDEs, various source files are referenced. The MCUXpresso SDK devices folder is
the central component to all example applications. It means that the examples reference the
same source files and, if one of these files is modified, it could potentially impact the behavior of
other examples.

The main areas of the MCUXpresso SDK tree used in all example applications are:

• devices/<device_name>: The device’s CMSIS header file, MCUXpresso SDK feature file, and
a few other files

• devices/<device_name>/cmsis_drivers: All the CMSIS drivers for your specific MCU

• devices/<device_name>/drivers: All of the peripheral drivers for your specific MCU

• devices/<device_name>/<tool_name>: Toolchain-specific startup code, including vector ta-
ble definitions

• devices/<device_name>/utilities: Items such as the debug console that are used by many of
the example applications

1.2. Getting Started with MCUXpresso SDK Package 5

MCUXpresso SDK Documentation, Release 25.09.00

• devices/<devices_name>/project: Project template used in CMSIS PACK new project creation

For examples containing middleware/stacks or an RTOS, there are references to the appropriate
source code. Middleware source files are located in the middleware folder and RTOSes are in the
rtos folder. The core files of each of these are shared, so modifying one could have potential
impacts on other projects that depend on that file.

Run a demo using MCUXpresso IDE

Note: Ensure that the MCUXpresso IDE toolchain is included when generating the MCUXpresso
SDK package.

This section describes the steps required to configure MCUXpresso IDE to build, run, and debug
example applications. The hello_world demo application targeted for the hardware platform is
used as an example, though these steps can be applied to any example application in the MCUX-
presso SDK.

Select the workspace location Every time MCUXpresso IDE launches, it prompts the user to
select a workspace location. MCUXpresso IDE is built on top of Eclipse which uses workspace
to store information about its current configuration, and in some use cases, source files for the
projects are in the workspace. The location of the workspace can be anywhere, but it is recom-
mended that the workspace be located outside the MCUXpresso SDK tree.

Build an example application To build an example application, follow these steps.

1. Drag and drop the SDK zip file into the Installed SDKs view to install an SDK. In thewindow
that appears, click OK and wait until the import has finished.

2. On the Quickstart Panel, click Import SDK example(s)….

6 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

3. Expand the demo_apps folder and select hello_world.

4. Click Next.

1.2. Getting Started with MCUXpresso SDK Package 7

MCUXpresso SDK Documentation, Release 25.09.00

5. Ensure Redlib: Use floating-point version of printf is selected if the example prints
floating-point numbers on the terminalfor demo applications such as adc_basic, adc_burst,
adc_dma, and adc_interrupt. Otherwise, it is not necessary to select this option. Then, click
Finish.

Run an example application For more information on debug probe support in the MCUX-
presso IDE, see community.nxp.com.

To download and run the application, perform the following steps:

1. Ensure the host driver for the debugger firmware has been installed. See On-board debug-
ger.

2. Connect the development platform to your PC via a USB cable.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug serial port number (to determine the COM port number, see How to determine COM
port. Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_DEBUG_UART_BAUDRATE variable in board.h file)

2. No parity

8 Chapter 1. LPCXpresso54S018

https://community.nxp.com/message/630901

MCUXpresso SDK Documentation, Release 25.09.00

3. 8 data bits

4. 1 stopbit

4. On the Quickstart Panel, click Debug to launch the debug session.

5. Thefirst time youdebug a project, theDebugEmulator Selectiondialog is displayed, show-
ing all supported probes that are attached to your computer. Select the probe through
which you want to debug and click OK. (For any future debug sessions, the stored probe
selection is automatically used, unless the probe cannot be found.)

1.2. Getting Started with MCUXpresso SDK Package 9

MCUXpresso SDK Documentation, Release 25.09.00

6. The application is downloaded to the target and automatically runs to main().

7. Start the application by clicking Resume.

The hello_world application is now running and a banner is displayed on the terminal. If not,
check your terminal settings and connections.

10 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

Build amulticore example application This section describes the steps required to configure
MCUXpresso IDE to build, run, and debug multicore example applications. The following steps
can be applied to any multicore example application in the MCUXpresso SDK. Here, the dual-
core version of hello_world example application targeted for the LPCXpresso54114 hardware
platform is used as an example.

1. Multicore examples are imported into the workspace in a similar way as single core ap-
plications, explained in Build an example application. When the SDK zip package for
LPCXpresso54114 is installed and available in the Installed SDKs view, click Import SDK
example(s)… on the Quickstart Panel. In the window that appears, expand the LPCxx
folder and select LPC54114J256. Then, select lpcxpresso54114 and click Next.

2. Expand the multicore_examples/hello_world folder and select cm4. The cm0plus counterpart
project is automatically imported with the cm4 project, because themulticore examples are
linked together and there is no need to select it explicitly. Click Finish.

1.2. Getting Started with MCUXpresso SDK Package 11

MCUXpresso SDK Documentation, Release 25.09.00

3. Now, two projects should be imported into the workspace. To start building the
multicore application, highlight the lpcxpresso54114_multicore_examples_hello_world_cm4
project (multicore master project) in the Project Explorer. Then choose the appropriate
build target, Debug or Release, by clicking the downward facing arrow next to the ham-
mer icon, as shown in the figure. For this example, select Debug.

The project starts building after the build target is selected. Because of the project reference
settings in multicore projects, triggering the build of the primary core application (cm4) also
causes the referenced auxiliary core application (cm0plus) to build.

Note: When the Release build is requested, it is necessary to change the build configuration of
both the primary and auxiliary core application projects first. To do this, select both projects in
the Project Explorer view and then right click which displays the context-sensitive menu. Select
Build Configurations -> Set Active -> Release. This alternate navigation using the menu item
is Project -> Build Configuration -> Set Active -> Release. After switching to the Release build
configuration, the build of the multicore example can be started by triggering the primary core
application (cm4) build.

12 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

Run a multicore example application The primary core debugger handles flashing of both
the primary and the auxiliary core applications into the SoC flashmemory. To download and run
the multicore application, switch to the primary core application project and perform all steps
as described in Run an example application. These steps are common for both single-core
applications and the primary side of dual-core applications, ensuring both sides of themulticore
application are properly loaded and started. However, there is one additional dialogue that is
specific tomulticore examples which requires selecting the target core. See the following figures
as reference.

1.2. Getting Started with MCUXpresso SDK Package 13

MCUXpresso SDK Documentation, Release 25.09.00

14 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

After clicking the “Resume All Debug sessions” button, the hello_world multicore application
runs and a banner is displayed on the terminal. If this is not the case, check your terminal
settings and connections.

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary
core has been released from the reset and running correctly. It is also possible to de-
bug both sides of the multicore application in parallel. After creating the debug ses-
sion for the primary core, perform same steps also for the auxiliary core application.
Highlight the lpcxpresso54114_multicore_examples_hello_world_cm0plus project (multicore
slave project) in the Project Explorer. On the Quickstart Panel, click “Debug ‘lpcx-
presso54114_multicore_examples_hello_world_cm0plus’ [Debug]” to launch the second debug

1.2. Getting Started with MCUXpresso SDK Package 15

MCUXpresso SDK Documentation, Release 25.09.00

session.

16 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

Now, the two debug sessions should be opened, and the debug controls can be used for both
debug sessions depending on the debug session selection. Keep the primary core debug session
selected by clicking the “Resume” button. The hello_worldmulticore application then starts run-
ning. The primary core application starts the auxiliary core application during runtime, and the
auxiliary core application stops at the beginning of themain() function. The debug session of the
auxiliary core application is highlighted. After clicking the “Resume” button, it is applied to the
auxiliary core debug session. Therefore, the auxiliary core application continues its execution.

1.2. Getting Started with MCUXpresso SDK Package 17

MCUXpresso SDK Documentation, Release 25.09.00

At this point, it is possible to suspend and resume individual cores independently. It is also pos-
sible to make synchronous suspension and resumption of both the cores. This is done either
by selecting both opened debug sessions (multiple selections) and clicking the “Suspend” / “Re-
sume” control button, or just using the “Suspend All Debug sessions” and the “Resume All Debug
sessions” buttons.

18 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

1.2. Getting Started with MCUXpresso SDK Package 19

MCUXpresso SDK Documentation, Release 25.09.00

Build a TrustZone example application This section describes the steps required to configure
MCUXpresso IDE to build, run, and debug TrustZone example applications. The TrustZone ver-
sion of the hello_world example application targeted for theMIMXRT595-EVK hardware platform
is used as an example, though these steps can be applied to any TrustZone example application
in the MCUXpresso SDK.

1. TrustZone examples are imported into the workspace in a similar way as single core ap-
plications. When the SDK zip package for MIMXRT595-EVK is installed and available in
the Installed SDKs view, click Import SDK example(s)… on the Quickstart Panel. In the
window that appears, expand theMIMXRT500 folder and selectMIMXRT595S. Then, select
evkmimxrt595 and click Next.

2. Expand the trustzone_examples/ folder and select hello_world_s. Because TrustZone exam-
ples are linked together, the non-secure project is automatically imported with the secure
project, and there is no need to select it explicitly. Then, click Finish.

20 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

3. Now, two projects should be imported into the workspace. To start building the TrustZone
application, highlight the evkmimxrt595_hello_world_s project (TrustZone master project)
in the Project Explorer. Then, choose the appropriate build target, Debug or Release, by
clicking the downward facing arrownext to the hammer icon, as shown in following figure.
For this example, select the Debug target.

The project starts building after the build target is selected. It is requested to build the
application for the secure project first, because the non-secure project must know the se-
cure project since CMSE library when running the linker. It is not possible to finish the
non-secure project linker when the secure project since CMSE library is not ready.

Note: When the Release build is requested, it is necessary to change the build configu-
ration of both the secure and non-secure application projects first. To do this, select both
projects in the Project Explorer view by clicking to select the first project, then using shift-
click or control-click to select the second project. Right click in the Project Explorer view to
display the context-sensitivemenu and select Build Configurations > Set Active >Release.
This is also possible by using the menu item of Project > Build Configuration >Set Active
>Release. After switching to the Release build configuration. Build the application for the
secure project first.

1.2. Getting Started with MCUXpresso SDK Package 21

MCUXpresso SDK Documentation, Release 25.09.00

Run a TrustZone example application To download and run the application, perform all
steps as described in Run an example application. These steps are common for single core,
and TrustZone applications, ensuring <board_name>_hello_world_s is selected for debugging.

In the Quickstart Panel, click Debug to launch the second debug session.

22 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

Now, the TrustZone sessions should be opened. Click Resume. The hello_world TrustZone appli-
cation then starts running, and the secure application starts the non-secure application during
runtime.

Run a demo application using IAR

This section describes the steps required to build, run, and debug example applications provided
in the MCUXpresso SDK.

Note: IAR Embedded Workbench for Arm version 8.32.3 is used in the following example, and
the IAR toolchain should correspond to the latest supported version, as described in theMCUX-
presso SDK Release Notes.

Build an example application Do the following steps to build the hello_world example appli-
cation.

1. Open the desired demo application workspace. Most example application workspace files
can be located using the following path:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/iar

Other example applications may have additional folders in their path.

2. Select the desired build target from the drop-down menu.

For this example, select hello_world – debug.

1.2. Getting Started with MCUXpresso SDK Package 23

MCUXpresso SDK Documentation, Release 25.09.00

3. To build the demo application, clickMake, highlighted in red in following figure.

4. The build completes without errors.

Run an example application To download and run the application, perform these steps:

1. Ensure the host driver for the debugger firmware has been installed. See On-board debug-
ger.

2. Connect the development platform to your PC via USB cable.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug COM port (to determine the COM port number, see How to determine COM port).
Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_DEBUG_UART_BAUDRATE variable in the board.h file)

2. No parity

3. 8 data bits

24 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

4. 1 stopbit

4. In IAR, click the Download and Debug button to download the application to the target.

5. The application is then downloaded to the target and automatically runs to themain() func-
tion.

6. Run the code by clicking the Go button.

1.2. Getting Started with MCUXpresso SDK Package 25

MCUXpresso SDK Documentation, Release 25.09.00

7. The hello_world application is now running and a banner is displayed on the terminal. If it
does not appear, check your terminal settings and connections.

Build a multicore example application This section describes the steps to build and run a
dual-core application. The demo applications workspace files are located in this folder:

<install_dir>/boards/<board_name>/multicore_examples/<application_name>/<core_type>/iar

Begin with a simple dual-core version of the HelloWorld application. Themulticore HelloWorld
IAR workspaces are located in this folder:

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm0plus/iar/hello_world_cm0plus.
↪→eww

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm4/iar/hello_world_cm4.eww

Build both applications separately by clicking the Make button. Build the application for the
auxiliary core (cm0plus) first, because the primary core application project (cm4) must know
the auxiliary core application binary when running the linker. It is not possible to finish the
primary core linker when the auxiliary core application binary is not ready.

Run a multicore example application The primary core debugger handles flashing both pri-
mary and the auxiliary core applications into the SoC flash memory. To download and run the
multicore application, switch to the primary core application project and perform steps 1 – 4 as
described in Run an example application. These steps are common for both single core and
dual-core applications in IAR.

After clicking the “Download and Debug” button, the auxiliary core project is opened in the sep-
arate EWARM instance. Both the primary and auxiliary images are loaded into the device flash
memory and the primary core application is executed. It stops at the default C language entry
point in the *main()*function.

Run both cores by clicking the “Start all cores” button to start the multicore application.

During the primary core code execution, the auxiliary core is released from the reset. The
hello_world multicore application is now running and a banner is displayed on the terminal.
If this does not appear, check the terminal settings and connections.

26 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary core has
been released from the reset and is running correctly. When both cores are running, use the
“Stop all cores”, and “Start all cores” control buttons to stop or run both cores simultaneously.

Build a TrustZone example application This section describes the particular steps that must
be done in order to build and run a TrustZone application. The demo applications workspace
files are located in this folder:

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/[<core_type>]/iar/
↪→<application_name>_ns/iar

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/[<core_type>]/iar/
↪→<application_name>_s/iar

Begin with a simple TrustZone version of the Hello World application. The TrustZone Hello
World IAR workspaces are located in this folder:

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_ns/iar/hello_world_
↪→ns.eww

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_s/iar/hello_world_s.
↪→eww

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_s/iar/hello_world.eww

This project hello_world.eww contains both secure and non-secure projects in one workspace and
it allows the user to easily transition from one project to another. Build both applications sep-
arately by clicking Make. It is requested to build the application for the secure project first,
because the non-secure project must know the secure project, since the CMSE library is running
the linker. It is not possible to finish the non-secure project linker with the secure project since
CMSE library is not ready.

Run a TrustZone example application The secure project is configured to download both
secure and non-secure output files, so debugging can be fully managed from the secure project.
To download and run the TrustZone application, switch to the secure application project and
perform steps 1 – 4 as described in Run an example application. These steps are common for
both single core, and TrustZone applications in IAR. After clicking Download and Debug, both
the secure and non-secure images are loaded into the devicememory, and the secure application
is executed. It stops at the Reset_Handler function.

1.2. Getting Started with MCUXpresso SDK Package 27

MCUXpresso SDK Documentation, Release 25.09.00

Run the code by clicking Go to start the application.

The TrustZone hello_world application is now running and a banner is displayed on the terminal.
If this is not true, check your terminal settings and connections.

Note: If the application is running in RAM (debug/release build target), in Op-
tions**>**Debugger > Download tab, disable Use flash loader(s). This can avoid the _ns
download issue on i.MXRT500.

28 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

Run a demo using Keil MDK/μVision

This section describes the steps required to build, run, and debug example applications provided
in the MCUXpresso SDK.

Install CMSIS device pack After the MDK tools are installed, Cortex Microcontroller Software
Interface Standard (CMSIS) device packs must be installed to fully support the device from a
debug perspective. These packs include things such as memory map information, register defi-
nitions, and flash programming algorithms. Follow these steps to install the appropriate CMSIS
pack.

1. Open the MDK IDE, which is called μVision. In the IDE, select the Pack Installer icon.

2. After the installation finishes, close the Pack Installer window and return to the μVision
IDE.

Build an example application
1. Open the desired example application workspace in:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/mdk

The workspace file is named as <demo_name>.uvmpw. For this specific example, the actual
path is:

1.2. Getting Started with MCUXpresso SDK Package 29

MCUXpresso SDK Documentation, Release 25.09.00

2. To build the demo project, select Rebuild, highlighted in red.

3. The build completes without errors.

Run an example application To download and run the application, perform these steps:

1. Ensure the host driver for the debugger firmware has been installed. See On-board debug-
ger.

2. Connect the development platform to your PC via USB cable using USB connector.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm and connect to the
debug serial port number (to determine the COM port number, see How to determine COM
port. Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_DEBUG_UART_BAUDRATE variable in the board.h file)

2. No parity

3. 8 data bits

4. 1 stopbit

4. In μVision, after the application is built, click the Download button to download the appli-
cation to the target.

30 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

5. After clicking theDownload button, the application downloads to the target and is running.
To debug the application, click the Start/Stop Debug Session button, highlighted in red.

6. Run the code by clicking the Run button to start the application.

The hello_world application is now running and a banner is displayed on the terminal. If
this does not appear, check your terminal settings and connections.

1.2. Getting Started with MCUXpresso SDK Package 31

MCUXpresso SDK Documentation, Release 25.09.00

Build a multicore example application This section describes the steps to build and run a
dual-core application. The demo applications workspace files are located in this folder:

<install_dir>/boards/<board_name>/multicore_examples/<application_name>/<core_type>/mdk

Begin with a simple dual-core version of the HelloWorld application. Themulticore HelloWorld
Keil MSDK/μVision workspaces are located in this folder:

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm0plus/mdk/hello_world_
↪→cm0plus.uvmpw

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm4/mdk/hello_world_cm4.uvmpw

Build both applications separately by clicking the Rebuild button. Build the application for the
auxiliary core (cm0plus) first because the primary core application project (cm4) must know the
auxiliary core application binarywhen running the linker. It is not possible to finish the primary
core linker when the auxiliary core application binary is not ready.

Run a multicore example application The primary core debugger flashes both the primary
and the auxiliary core applications into the SoC flash memory. To download and run the mul-
ticore application, switch to the primary core application project and perform steps 1 – 5 as
described in Run an example application. These steps are common for both single-core and
dual-core applications in μVision.

Both the primary and the auxiliary image is loaded into the device flash memory. After clicking
the “Run” button, the primary core application is executed. During the primary core code execu-
tion, the auxiliary core is released from the reset. The hello_world multicore application is now
running and a banner is displayed on the terminal. If this does not appear, check your terminal
settings and connections.

32 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

An LED controlled by the auxiliary core starts flashing indicating that the auxiliary core has been
released from the reset and is running correctly.

Attach the running application of the auxiliary core by opening the auxiliary core project in
the second μVision instance and clicking the “Start/Stop Debug Session” button. After this, the
second debug session is opened and the auxiliary core application can be debugged.

Armdescribesmulticore debugging using theNXP LPC54114 Cortex-M4/M0+ dual-core processor
and Keil uVision IDE in Application Note 318 at www.keil.com/appnotes/docs/apnt_318.asp. The
associated video can be found here.

Build a TrustZone example application This section describes the particular steps that must
be done in order to build and run a TrustZone application. The demo applications workspace
files are located in this folder:

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/<application_name>_ns/
↪→mdk

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/<application_name>_s/
↪→mdk

Begin with a simple TrustZone version of the Hello World application. The TrustZone Hello
World Keil MSDK/μVision workspaces are located in this folder:

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_ns/mdk/hello_world_
↪→ns.uvmpw

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_s/mdk/hello_world_s.
↪→uvmpw

1.2. Getting Started with MCUXpresso SDK Package 33

http://www.keil.com/appnotes/docs/apnt_318.asp
https://www.youtube.com/watch?v=lMX-2lrv7Zs

MCUXpresso SDK Documentation, Release 25.09.00

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_s/mdk/hello_world.
↪→uvmpw

This project hello_world.uvmpw contains both secure and non-secure projects in one workspace
and it allows the user to easily transition from one project to another.

Build both applications separately by clicking Rebuild. It is requested to build the application
for the secure project first, because the non-secure project must know the secure project since
CMSE library is running the linker. It is not possible to finish the non-secure project linker with
the secure project because CMSE library is not ready.

Run a TrustZone example application The secure project is configured to download both
secure and non-secure output files so debugging can be fully managed from the secure project.

To download and run the TrustZone application, switch to the secure application project and
perform steps as described in Run an example application. These steps are common for single
core, dual-core, and TrustZone applications in μVision. After clicking Download and Debug,
both the secure and non-secure images are loaded into the device flash memory, and the secure
application is executed. It stops at the main() function.

Run the code by clicking Run to start the application.

The hello_world application is now running and a banner is displayed on the terminal. If not,
check your terminal settings and connections.

34 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

Run a demo using Arm GCC

This section describes the steps to configure the command-line Arm GCC tools to build, run, and
debug demo applications and necessary driver libraries provided in the MCUXpresso SDK. The
hello_world demo application is targeted which is used as an example.

Set up toolchain This section contains the steps to install the necessary components required
to build and run anMCUXpresso SDKdemoapplicationwith theArmGCC toolchain, as supported
by the MCUXpresso SDK. There are many ways to use Arm GCC tools, but this example focuses
on a Windows operating system environment.

Install GCC Arm Embedded tool chain Download and run the installer from GNU Arm Em-
bedded Toolchain. This is the actual toolset (in other words, compiler, linker, and so on). The
GCC toolchain should correspond to the latest supported version, as described in MCUXpresso
SDK Release Notes.

Install MinGW (only required on Windows OS) The Minimalist GNU for Windows (MinGW)
development tools provide a set of tools that are not dependent on third-party C-Runtime DLLs
(such as Cygwin). The build environment used by the MCUXpresso SDK does not use the MinGW
build tools, but does leverage the base install of both MinGW and MSYS. MSYS provides a basic
shell with a Unix-like interface and tools.

1. Download the latest MinGWmingw-get-setup installer from MinGW.

2. Run the installer. The recommended installation path is C:\MinGW, however, you may
install to any location.

Note: The installation path cannot contain any spaces.

3. Ensure that themingw32-base andmsys-base are selected under Basic Setup.

4. In the Installation menu, click Apply Changes and follow the remaining instructions to
complete the installation.

5. Add the appropriate item to the Windows operating system path environment variable.
It can be found under Control Panel->System and Security->System->Advanced System
Settings in the Environment Variables… section. The path is:

1.2. Getting Started with MCUXpresso SDK Package 35

http://sourceforge.net/projects/mingw/files/Installer/

MCUXpresso SDK Documentation, Release 25.09.00

<mingw_install_dir>\bin

Assuming the default installation path, C:\MinGW, an example is shown below. If the path
is not set correctly, the toolchain will not work.

Note: If you have C:\MinGW\msys\x.x\bin in your PATH variable (as required by Kinetis
SDK 1.0.0), remove it to ensure that the new GCC build system works correctly.

Add a new system environment variable for ARMGCC_DIR Create a new system environ-
ment variable and name it as ARMGCC_DIR. The value of this variable should point to the Arm
GCC Embedded tool chain installation path. For this example, the path is:

C:\Program Files (x86)\GNU Tools Arm Embedded\8 2018-q4-major

See the installation folder of the GNU Arm GCC Embedded tools for the exact pathname of your
installation.

36 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

Short path should be used for path setting, you could convert the path to short path by running
command for %I in (.) do echo %~sI in above path.

Install CMake

Windows OS
1. Download CMake 3.0.x from www.cmake.org/cmake/resources/software.html.

2. Install CMake, ensuring that the option Add CMake to system PATH is selected when in-
stalling. The user chooses to select whether it is installed into the PATH for all users or just
the current user. In this example, it is installed for all users.

1.2. Getting Started with MCUXpresso SDK Package 37

http://www.cmake.org/cmake/resources/software.html

MCUXpresso SDK Documentation, Release 25.09.00

3. Follow the remaining instructions of the installer.

4. You may need to reboot your system for the PATH changes to take effect.

5. Make sure sh.exe is not in the Environment Variable PATH. This is a limitation of
mingw32-make.

Linux OS It depends on the distributions of Linux Operation System. Here we use Ubuntu as
an example.

Open shell and use following commands to install cmake and its version. Ensure the cmake
version is above 3.0.x.

$ sudo apt-get install cmake
$ cmake --version

Build an example application To build an example application, follow these steps.

1. Open a GCC Arm Embedded tool chain command window. To launch the window, from
the Windows operating system Startmenu, go to Programs >GNU Tools Arm Embedded
<version> and select GCC Command Prompt.

38 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

2. Change the directory to the example application project directory which has a path similar
to the following:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc

For this example, the exact path is:

Note: To change directories, use the cd command.

3. Type build_debug.bat on the command line or double click on build_debug.bat file in
Windows Explorer to build it. The output is as shown in following figure.

Run an example application This section describes steps to run a demo application using J-
Link GDB Server application. To install J-Link host driver and update the on-board debugger
firmware to Jlink firmware, see On-board debugger.

After the J-Link interface is configured and connected, follow these steps to download and run
the demo applications:

1. Connect the development platform to your PC via USB cable between the on-board debug-
ger USB connector and the PC USB connector. If using a standalone J-Link debug pod, con-
nect it to the SWD/JTAG connector of the board.

2. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug serial port number (to determine the COM port number, see How to determine COM
port). Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_DEBUG_UART_BAUDRATE variable in board.h file)

2. No parity

3. 8 data bits

4. 1 stop bit

1.2. Getting Started with MCUXpresso SDK Package 39

MCUXpresso SDK Documentation, Release 25.09.00

3. To launch the application, open the Windows Startmenu and select Programs > SEGGER
> J-Link <version> J-Link GDB Server.
Note: It is assumed that the J-Link software is already installed.

The SEGGER J-Link GDB Server Config settings dialog appears.
4. Make sure to check the following options.

1. Target interface: The debug connection on board uses internal SWD signaling. In
case of a wrong setting J-Link is unable to communicate with device under test.

2. Script file: If required, a J-Link init script file can be used for board initialization.
The file with the “.jlinkscript” file extension is located in the <install_dir>/boards/
<board_name>/ directory.

3. Under the Server settings, check the GDB port for connection with the gdb target re-
mote command. For more information, see step 9.

4. There is a command line version of J-LinkGDB server “JLinkGDBServerCL.exe”. Typical
path is C:\Program Files\SEGGER\JLink\. To start the J-Link GDB server with the same
settings as are selected in the UI, you can use these command line options.

40 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

1.2. Getting Started with MCUXpresso SDK Package 41

MCUXpresso SDK Documentation, Release 25.09.00

5. After it is connected, the screen should look like this figure:

6. If not already running, open a GCCArmEmbedded tool chain commandwindow. To launch
the window, from theWindows operating system Start menu, go to Programs - GNU Tools
Arm Embedded <version> and select GCC Command Prompt.

7. Change to the directory that contains the example application output. The output can be
found in using one of these paths, depending on the build target selected:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/debug

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/release

8. Run the arm-none-eabi-gdb.exe <application_name>.elf command. For this example, it is
arm-none-eabi-gdb.exe hello_world.elf.

42 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

9. Run these commands:

1. target remote localhost:2331

2. monitor reset

3. monitor halt

4. load

5. monitor reset

10. The application is now downloaded and halted. Execute the monitor go command to start
the demo application.

The hello_world application is now running and a banner is displayed on the terminal. If
this does not appear, check your terminal settings and connections.

Build a multicore example application This section describes the steps to build and run a
dual-core application. The demo application build scripts are located in this folder:

<install_dir>/boards/<board_name>/multicore_examples/<application_name>/<core_type>/armgcc

Begin with a simple dual-core version of the HelloWorld application. Themulticore HelloWorld
GCC build scripts are located in this folder:

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm0plus/armgcc/build_debug.bat

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm4/armgcc/build_debug.bat

1.2. Getting Started with MCUXpresso SDK Package 43

MCUXpresso SDK Documentation, Release 25.09.00

Build both applications separately following steps for single core examples as described in Build
an example application.

Run a multicore example application When running a multicore application, the same pre-
requisites for J-Link/J-Link OpenSDA firmware, and the serial console as for the single-core ap-
plication, applies, as described in Run an example application.
The primary core debugger handles flashing of both the primary and the auxiliary core appli-
cations into the SoC flash memory. To download and run the multicore application, switch to
the primary core application project and perform steps 1 to 10, as described in Run an example
application. These steps are common for both single-core and dual-core applications in Arm
GCC.

Both the primary and the auxiliary image is loaded into the SPI flash memory. After execution
of the monitor go command, the primary core application is executed. During the primary core
code execution, the auxiliary core code is reallocated from the flashmemory to the RAM, and the
auxiliary core is released from the reset. The hello_world multicore application is now running

44 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

and a banner is displayed on the terminal. If this is not true, check your terminal settings and
connections.

Build a TrustZone example application This section describes the steps to build and run a
TrustZone application. The demo application build scripts are located in this folder:

1.2. Getting Started with MCUXpresso SDK Package 45

MCUXpresso SDK Documentation, Release 25.09.00

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/[<core_type>]/
↪→<application_name>_ns/armgcc

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/[<core_type>]/
↪→<application_name>_s/armgcc

Begin with a simple TrustZone version of the Hello World application. The TrustZone Hello
World GCC build scripts are located in this folder:

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_ns/armgcc/build_
↪→debug.bat

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_s/armgcc/build_
↪→debug.bat

Build both applications separately, following steps for single core examples as described inBuild
an example application. It is requested to build the application for the secure project first,
because the non-secure project must know the secure project, since CMSE library is running the
linker. It is not possible to finish the non-secure project linker with the secure project because
the CMSE library is not ready.

46 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

Run a TrustZone example application When running a TrustZone application, the same pre-
requisites for J-Link/J-Link OpenSDA firmware, and the serial console as for the single core ap-
plication, apply, as described in Run an example application.
To download and run the TrustZone application, perform steps 1 to 10, as described in Run an
example application. These steps are common for both single core and TrustZone applications
in Arm GCC.

Then, run these commands:

1. arm-none-eabi-gdb.exe

2. target remote localhost:2331

3. monitor reset

4. monitor halt

5. monitor exec SetFlashDLNoRMWThreshold = 0x20000

6. load <install_dir>/boards/evkmimxrt595/trustzone_examples/hello_world/hello_world_ns/
armgcc/debug/hello_world_ns.elf

7. load <install_dir>/boards/evkmimxrt595/trustzone_examples/hello_world/hello_world_s/
armgcc/debug/hello_world_s.elf

8. monitor reset

The application is now downloaded and halted. Execute the c command to start the demo appli-
cation.

1.2. Getting Started with MCUXpresso SDK Package 47

MCUXpresso SDK Documentation, Release 25.09.00

MCUXpresso Config Tools

MCUXpresso Config Tools can help configure the processor and generate initialization code for
the on chip peripherals. The tools are able to modify any existing example project, or create a
new configuration for the selected board or processor. The generated code is designed to be used
with MCUXpresso SDK version 24.12.00 or later.

Following table describes the tools included in the MCUXpresso Config Tools.

48 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

Config Tool Description Im-
age

Pins tool For configuration of pin routing and pin electrical properties.

Clock tool For system clock configuration

Peripher-
als tools

For configuration of other peripherals

TEE tool Configures access policies for memory area and peripherals helping to
protect and isolate sensitive parts of the application.

Device
Config-
uration
tool

Configures Device Configuration Data (DCD) contained in the program
image that the Boot ROM code interprets to set up various on-chip pe-
ripherals prior to the program launch.

MCUXpresso Config Tools can be accessed in the following products:

• Integrated in the MCUXpresso IDE. Config tools are integrated with both compiler and de-
bugger which makes it the easiest way to begin the development.

• Standalone version available for download from www.nxp.com/mcuxpresso. Recom-
mended for customers using IAR Embedded Workbench, Keil MDK µVision, or Arm GCC.

• Online version available on mcuxpresso.nxp.com. Recommended doing a quick evalua-
tion of the processor or use the tool without installation.

Each version of the product contains a specific Quick Start Guide document MCUXpresso IDE
Config Tools installation folder that can help start your work.

How to determine COM port

This section describes the steps necessary to determine the debug COM port number of your
NXP hardware development platform. All NXP boards shipwith a factory programmed, onboard
debug interface, whether it is based on MCU-Link or the legacy OpenSDA, LPC-Link2, P&E Micro
OSJTAG interface. To determinewhat your specific board shipswith, seeDefault debug interfaces.

1. Linux: The serial port can be determined by running the following command after the USB
Serial is connected to the host:

$ dmesg | grep ”ttyUSB”
[503175.307873] usb 3-12: cp210x converter now attached to ttyUSB0
[503175.309372] usb 3-12: cp210x converter now attached to ttyUSB1

There are two ports, one is for core0 debug console and the other is for core1.

2. Windows: To determine the COM port open Device Manager in the Windows operating
system. Click the Startmenu and type Device Manager in the search bar.

In the Device Manager, expand the Ports (COM & LPT) section to view the available ports.
The COM port names are different for all the NXP boards.

1. CMSIS-DAP/mbed/DAPLink interface:

1.2. Getting Started with MCUXpresso SDK Package 49

http://www.nxp.com/mcuxpresso
http://mcuxpresso.nxp.com

MCUXpresso SDK Documentation, Release 25.09.00

2. P&E Micro:

3. J-Link:

4. P&E Micro OSJTAG:

5. MRB-KW01:

On-board Debugger

This section describes the on-board debuggers used on NXP development boards.

On-boarddebuggerMCU-Link MCU-Link is a powerful and cost effective debug probe that can
beused seamlesslywithMCUXpresso IDE, and is also compatiblewith 3rd party IDEs that support
CMSIS-DAP protocol. MCU-Link also includes a USB to UART bridge feature (VCOM) that can be
used to provide a serial connection between the target MCU and a host computer. MCU-Link
features a high-speed USB interface for high performance debug. MCU-Link is compatible with
Windows, MacOS and Linux. A free utility from NXP provides an easy way to install firmware
updates.

On-boardMCU-Link debugger supports CMSIS-DAP and J-Link firmware. See the table in Default
debug interfaces to determine the default debug interface that comes loaded on your specific
hardware platform.

The corresponding host driver must be installed before debugging.
• For boards with CMSIS-DAP firmware, visit developer.mbed.org/handbook/Windows-
serial-configuration and follow the instructions to install the Windows operating system
serial driver. If running on Linux OS, this step is not required.

• If using J-Link with either a standalone debug pod or MCU-Link, install the J-Link software
(drivers and utilities) from www.segger.com/jlink-software.html.

Updating MCU-Link firmware This firmware in this debug interface may be updated using
the host computer utility called MCU-Link. This typically used when switching between the de-
fault debugger protocol (CMSIS-DAP) to SEGGER J-Link, or for updating this firmware with new
releases of these. This section contains the steps to reprogram the debug probe firmware.

Note: If MCUXpresso IDE is used and the jumper making DFUlink is installed on the board (JP5
on some boards, but consult the board user manual or schematic for specific jumper number),
MCU-Link debug probe boots to DFU mode, and MCUXpresso IDE automatically downloads the

50 Chapter 1. LPCXpresso54S018

http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration
https://www.segger.com/downloads/jlink/

MCUXpresso SDK Documentation, Release 25.09.00

CMSIS-DAP firmware to the probe before flash memory programming (after clicking Debug).
Using DFU mode ensures that most up-to-date/compatible firmware is used with MCUXpresso
IDE.

NXP provides the MCU-Link utility, which is the recommended tool for programming the latest
versions of CMSIS-DAP and J-Link firmware onto MCU-Link or NXP boards. The utility can be
downloaded from MCU-Link.

These steps show how to update the debugger firmware on your board for Windows operating
system.

1. Install the MCU-Link utility.

2. Unplug the board’s USB cable.

3. Make the DFU link (install the jumper labeled DFUlink).

4. Connect the probe to the host via USB (use Link USB connector).

5. Open a command shell and call the appropriate script located in the MCU-Link installation
directory (<MCU-Link install dir>).

1. To program CMSIS-DAP debug firmware: <MCU-Link install dir>/scripts/
program_CMSIS

2. To program J-Link debug firmware: <MCU-Link install dir>/scripts/program_JLINK

6. Remove DFU link (remove the jumper installed in Step 3).

7. Repower the board by removing the USB cable and plugging it in again.

On-board debugger LPC-Link LPC-Link 2 is an extensible debug probe that can be used seam-
lessly with MCUXpresso IDE, and is also compatible with 3rd party IDEs that support CMSIS-DAP
protocol. MCU-Link also includes a USB to UART bridge feature (VCOM) that can be used to pro-
vide a serial connection between the target MCU and a host computer. LPC-Link 2 is compati-
ble with Windows, MacOS and Linux. A free utility from NXP provides an easy way to install
firmware updates.

On-board LPC-Link 2 debugger supports CMSIS-DAP and J-Link firmware. See the table inDefault
debug interfaces to determine the default debug interface that comes loaded on your specific
hardware platform.

The corresponding host driver must be installed before debugging.
• For boards with CMSIS-DAP firmware, visit developer.mbed.org/handbook/Windows-
serial-configuration and follow the instructions to install the Windows operating system
serial driver. If running on Linux OS, this step is not required.

• If using J-Link with either a standalone debug pod or MCU-Link, install the J-Link software
(drivers and utilities) from www.segger.com/jlink-software.html.

Updating LPC-Link firmware The LPCXpresso hardware platform comes with a CMSIS-DAP-
compatible debug interface (known as LPC-Link2). This firmware in this debug interface may
be updated using the host computer utility called LPCScrypt. This typically used when switch-
ing between the default debugger protocol (CMSIS-DAP) to SEGGER J-Link, or for updating this
firmware with new releases of these. This section contains the steps to reprogram the debug
probe firmware.

Note: If MCUXpresso IDE is used and the jumper making DFUlink is installed on the board (JP5
on some boards, but consult the board user manual or schematic for specific jumper number),
LPC-Link2 debug probe boots to DFU mode, and MCUXpresso IDE automatically downloads the
CMSIS-DAP firmware to the probe before flash memory programming (after clicking Debug).
Using DFU mode ensures that most up-to-date/compatible firmware is used with MCUXpresso
IDE.

1.2. Getting Started with MCUXpresso SDK Package 51

https://www.nxp.com/design/design-center/software/development-software/mcu-link-debug-probe-architecture:MCU-LINK-ARCHITECTURE
http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration
https://www.segger.com/downloads/jlink/

MCUXpresso SDK Documentation, Release 25.09.00

NXP provides the LPCScrypt utility, which is the recommended tool for programming the latest
versions of CMSIS-DAP and J-Link firmware onto LPC-Link2 or LPCXpresso boards. The utility
can be downloaded from LPCScrypt.

These steps show how to update the debugger firmware on your board for Windows operating
system. For Linux OS, follow the instructions described in LPCScrypt user guide (LPCScrypt,
select LPCScrypt, and then the documentation tab).

1. Install the LPCScript utility.

2. Unplug the board’s USB cable.

3. Make the DFU link (install the jumper labeled DFUlink).

4. Connect the probe to the host via USB (use Link USB connector).

5. Open a command shell and call the appropriate script located in the LPCScrypt installation
directory (<LPCScrypt install dir>).

1. To program CMSIS-DAP debug firmware: <LPCScrypt install dir>/scripts/
program_CMSIS

2. To program J-Link debug firmware: <LPCScrypt install dir>/scripts/program_JLINK

6. Remove DFU link (remove the jumper installed in Step 3).

7. Repower the board by removing the USB cable and plugging it in again.

On-board debugger OpenSDA OpenSDA/OpenSDAv2 is a serial and debug adapter that is built
into several NXP evaluation boards. It provides a bridge between your computer (or other USB
host) and the embedded target processor, which can be used for debugging, flash programming,
and serial communication, all over a simple USB cable.

The difference is the firmware implementation: OpenSDA: Programmed with the proprietary
P&E Micro developed bootloader. P&E Micro is the default debug interface app. OpenSDAv2:
Programmed with the open-sourced CMSIS-DAP/mbed bootloader. CMSIS-DAP is the default de-
bug interface app.

See the table in Default debug interfaces to determine the default debug interface that comes
loaded on your specific hardware platform.

The corresponding host driver must be installed before debugging.
• For boards with CMSIS-DAP firmware, visit developer.mbed.org/handbook/Windows-
serial-configuration and follow the instructions to install the Windows operating system
serial driver. If running on Linux OS, this step is not required.

• For boards with a P&EMicro interface, see PEmicro to download and install the P&EMicro
Hardware Interface Drivers package.

Updating OpenSDA firmware Any NXP hardware platform that comes with an OpenSDA-
compatible debug interface has the ability to update the OpenSDA firmware. This typically
means to switch from the default application (either CMSIS-DAP or P&E Micro) to a SEGGER
J-Link. This section contains the steps to switch the OpenSDA firmware to a J-Link interface.
However, the steps can be applied to restoring the original image also. For reference, OpenSDA
firmware files can be found at the links below:

• J-Link: Download appropriate image from www.segger.com/opensda.html. Choose the ap-
propriate J-Link binary based on the table in Default debug interfaces. Any OpenSDA v1.0
interface should use the standard OpenSDA download (in other words, the one with no
version). For OpenSDA 2.0 or 2.1, select the corresponding binary.

• CMSIS-DAP: CMSIS-DAP OpenSDA firmware is available at www.nxp.com/opensda.

52 Chapter 1. LPCXpresso54S018

https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/lpcscrypt:LPCSCRYPT
https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/lpcscrypt:LPCSCRYPT
http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration
http://www.pemicro.com/support/downloads_find.cfm
http://www.segger.com/opensda.html
http://www.nxp.com/opensda

MCUXpresso SDK Documentation, Release 25.09.00

• P&E Micro: Downloading P&E Micro OpenSDA firmware images requires registration with
P&E Micro (www.pemicro.com).

Perform the following steps to update the OpenSDA firmware on your board for Windows and
Linux OS users:

1. Unplug the board’s USB cable.

2. Press the Reset button on the board. While still holding the button, plug the USB cable back
into the board.

3. When the board re-enumerates, it shows up as a disk drive calledMAINTENANCE.

4. Drag and drop the new firmware image onto the MAINTENANCE drive.

Note: If for any reason the firmware update fails, the board can always reenter mainte-
nance mode by holding down Reset button and power cycling.

These steps show how to update the OpenSDA firmware on your board for Mac OS users.

1. Unplug the board’s USB cable.

2. Press the Reset button of the board. While still holding the button, plug the USB cable back
into the board.

3. For boards with OpenSDA v2.0 or v2.1, it shows up as a disk drive called BOOTLOADER in
Finder. Boards with OpenSDA v1.0 may or may not show up depending on the bootloader
version. If you see the drive in Finder, proceed to the next step. If you do not see the drive
in Finder, use a PC with Windows OS 7 or an earlier version to either update the OpenSDA
firmware, or update the OpenSDA bootloader to version 1.11 or later. The bootloader up-
date instructions and image can be obtained from P&E Microcomputer website.

4. For OpenSDA v2.1 and OpenSDA v1.0 (with bootloader 1.11 or later) users, drag the new
firmware image onto the BOOTLOADER drive in Finder.

5. For OpenSDA v2.0 users, type these commands in a Terminal window:

> sudo mount -u -w -o sync /Volumes/BOOTLOADER
> cp -X <path to update file> /Volumes/BOOTLOADER

Note: If for any reason the firmware update fails, the board can always reenter bootloader
mode by holding down the Reset button and power cycling.

On-board debugger Multilink An on-board Multilink debug circuit provides a JTAG interface
and a power supply input through a single micro-USB connector. It is a hardware interface that
allows PC software to debug and program a target processor through its debug port.

The host driver must be installed before debugging.
• See PE micro to download and install the P&E Micro Hardware Interface Drivers package.

On-board debugger OSJTAG An on-board OSJTAG debug circuit provides a JTAG interface and
apower supply input througha singlemicro-USB connector. It is a hardware interface that allows
PC software to debug and program a target processor through its debug port.

The host driver must be installed before debugging.
• See PE micro to download and install the P&E Micro Hardware Interface Drivers package.

1.2. Getting Started with MCUXpresso SDK Package 53

http://www.pemicro.com/opensda/index.cfm
http://www.pemicro.com/support/downloads_find.cfm
http://www.pemicro.com/support/downloads_find.cfm

MCUXpresso SDK Documentation, Release 25.09.00

Default debug interfaces

The MCUXpresso SDK supports various hardware platforms that come loaded with various fac-
tory programmed debug interface configurations. The following table lists the hardware plat-
forms supported by the MCUXpresso SDK, their default debug firmware, and any version infor-
mation that helps differentiate a specific interface configuration.

Hardware platform Default debugger firmware On-board debugger probe
EVK-MCIMX7ULP N/A N/A
EVK-MIMX8MM N/A N/A
EVK-MIMX8MN N/A N/A
EVK-MIMX8MNDDR3L N/A N/A
EVK-MIMX8MP N/A N/A
EVK-MIMX8MQ N/A N/A
EVK-MIMX8ULP N/A N/A
EVK-MIMXRT1010 CMSIS-DAP LPC-Link2
EVK-MIMXRT1015 CMSIS-DAP LPC-Link2
EVK-MIMXRT1020 CMSIS-DAP LPC-Link2
EVK-MIMXRT1064 CMSIS-DAP LPC-Link2
EVK-MIMXRT595 CMSIS-DAP LPC-Link2
EVK-MIMXRT685 CMSIS-DAP LPC-Link2
EVK9-MIMX8ULP N/A N/A
EVKB-IMXRT1050 CMSIS-DAP LPC-Link2
FRDM-K22F CMSIS-DAP OpenSDA v2
FRDM-K32L2A4S CMSIS-DAP OpenSDA v2
FRDM-K32L2B CMSIS-DAP OpenSDA v2
FRDM-K32L3A6 CMSIS-DAP OpenSDA v2
FRDM-KE02Z40M P&E Micro OpenSDA v1
FRDM-KE15Z CMSIS-DAP OpenSDA v2
FRDM-KE16Z CMSIS-DAP OpenSDA v2
FRDM-KE17Z CMSIS-DAP OpenSDA v2
FRDM-KE17Z512 CMSIS-DAP MCU-Link
FRDM-MCXA153 CMSIS-DAP MCU-Link
FRDM-MCXA156 CMSIS-DAP MCU-Link
FRDM-MCXA266 CMSIS-DAP MCU-Link
FRDM-MCXA344 CMSIS-DAP MCU-Link
FRDM-MCXA346 CMSIS-DAP MCU-Link
FRDM-MCXA366 CMSIS-DAP MCU-Link
FRDM-MCXC041 CMSIS-DAP MCU-Link
FRDM-MCXC242 CMSIS-DAP MCU-Link
FRDM-MCXC444 CMSIS-DAP MCU-Link
FRDM-MCXE247 CMSIS-DAP MCU-Link
FRDM-MCXE31B CMSIS-DAP MCU-Link
FRDM-MCXN236 CMSIS-DAP MCU-Link
FRDM-MCXN947 CMSIS-DAP MCU-Link
FRDM-MCXW23 CMSIS-DAP MCU-Link
FRDM-MCXW71 CMSIS-DAP MCU-Link
FRDM-MCXW72 CMSIS-DAP MCU-Link
FRDM-RW612 CMSIS-DAP MCU-Link
IMX943-EVK N/A N/A
IMX95LP4XEVK-15 N/A N/A
IMX95LPD5EVK-19 N/A N/A
IMX95VERDINEVK N/A N/A
KW45B41Z-EVK CMSIS-DAP MCU-Link
KW45B41Z-LOC CMSIS-DAP MCU-Link
KW47-EVK CMSIS-DAP MCU-Link

continues on next page

54 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

Table 1 – continued from previous page
Hardware platform Default debugger firmware On-board debugger probe
KW47-LOC CMSIS-DAP MCU-Link
LPC845BREAKOUT CMSIS-DAP LPC-Link2
LPCXpresso51U68 CMSIS-DAP LPC-Link2
LPCXpresso54628 CMSIS-DAP LPC-Link2
LPCXpresso54S018 CMSIS-DAP LPC-Link2
LPCXpresso54S018M CMSIS-DAP LPC-Link2
LPCXpresso55S06 CMSIS-DAP LPC-Link2
LPCXpresso55S16 CMSIS-DAP LPC-Link2
LPCXpresso55S28 CMSIS-DAP LPC-Link2
LPCXpresso55S36 CMSIS-DAP MCU-Link
LPCXpresso55S69 CMSIS-DAP LPC-Link2
LPCXpresso802 CMSIS-DAP LPC-Link2
LPCXpresso804 CMSIS-DAP LPC-Link2
LPCXpresso824MAX CMSIS-DAP LPC-Link2
LPCXpresso845MAX CMSIS-DAP LPC-Link2
LPCXpresso860MAX CMSIS-DAP LPC-Link2
MC56F80000-EVK P&E Micro Multilink
MC56F81000-EVK P&E Micro Multilink
MC56F83000-EVK P&E Micro OSJTAG
MCIMX93-EVK N/A N/A
MCIMX93-QSB N/A N/A
MCIMX93AUTO-EVK N/A N/A
MCX-N5XX-EVK CMSIS-DAP MCU-Link
MCX-N9XX-EVK CMSIS-DAP MCU-Link
MCX-W71-EVK CMSIS-DAP MCU-Link
MCX-W72-EVK CMSIS-DAP MCU-Link
MIMXRT1024-EVK CMSIS-DAP LPC-Link2
MIMXRT1040-EVK CMSIS-DAP LPC-Link2
MIMXRT1060-EVKB CMSIS-DAP LPC-Link2
MIMXRT1060-EVKC CMSIS-DAP MCU-Link
MIMXRT1160-EVK CMSIS-DAP LPC-Link2
MIMXRT1170-EVKB CMSIS-DAP MCU-Link
MIMXRT1180-EVK CMSIS-DAP MCU-Link
MIMXRT685-AUD-EVK CMSIS-DAP LPC-Link2
MIMXRT700-EVK CMSIS-DAP MCU-Link
RD-RW612-BGA CMSIS-DAP MCU-Link
TWR-KM34Z50MV3 P&E Micro OpenSDA v1
TWR-KM34Z75M P&E Micro OpenSDA v1
TWR-KM35Z75M CMSIS-DAP OpenSDA v2
TWR-MC56F8200 P&E Micro OSJTAG
TWR-MC56F8400 P&E Micro OSJTAG

How to define IRQ handler in CPP files

With MCUXpresso SDK, users could define their own IRQ handler in application level to over-
ride the default IRQ handler. For example, to override the default PIT_IRQHandler define in
startup_DEVICE.s, application code like app.c can be implement like:

// c
void PIT_IRQHandler(void)
{

// Your code
}

1.2. Getting Started with MCUXpresso SDK Package 55

MCUXpresso SDK Documentation, Release 25.09.00

When application file is CPP file, like app.cpp, then extern ”C” should be used to ensure the func-
tion prototype alignment.

// cpp
extern ”C” {

void PIT_IRQHandler(void);
}
void PIT_IRQHandler(void)
{

// Your code
}

1.3 Getting Started with MCUXpresso SDK GitHub

1.3.1 Getting Started with MCUXpresso SDK Repository

Installation

NOTE
If the installation instruction asks/selects whether to have the tool installation path added to
the PATH variable, agree/select the choice. This option ensures that the tool can be used in any
terminal in any path. Verify the installation after each tool installation.

Install Prerequisites with MCUXpresso Installer The MCUXpresso Installer offers a quick
and easy way to install the basic tools needed. The MCUXpresso Installer can be obtained from
https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Dependency-Installation. The MCUX-
presso Installer is an automated installation process, simply select MCUXpresso SDK Developer
from the menu and click install. If you prefer to install the basic tools manually, refer to the next
section.

56 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

Alternative: Manual Installation

Basic tools

Git Git is a free and open source distributed version control system. Git is designed to handle
everything from small to large projects with speed and efficiency. To install Git, visit the official
Git website. Download the appropriate version(you may use the latest one) for your operating
system (Windows, macOS, Linux). Then run the installer and follow the installation instructions.

User git --version to check the version if you have a version installed.

Then configure your username and email using the commands:

git config --global user.name ”Your Name”
git config --global user.email ”youremail@example.com”

Python Install python 3.10 or latest. Follow the Python Download guide.

Use python --version to check the version if you have a version installed.

West Please use the west version equal or greater than 1.2.0

Note: you can add option '--default-timeout=1000' if you meet connection issue. Or you may set a different␣
↪→source using option '-i'.
for example, in China you could try: pip install -U west -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install -U west

1.3. Getting Started with MCUXpresso SDK GitHub 57

https://git-scm.com/
https://wiki.python.org/moin/BeginnersGuide/Download

MCUXpresso SDK Documentation, Release 25.09.00

Build And Configuration System

CMake It is strongly recommended to use CMake version equal or later than 3.30.0. You can get
latest CMake distributions from the official CMake download page.

For Windows, you can directly use the .msi installer like cmake-3.31.4-windows-x86_64.msi to
install.

For Linux, CMake can be installed using the system packagemanager or by getting binaries from
the official CMake download page.

After installation, you can use cmake --version to check the version.

Ninja Please use the ninja version equal or later than 1.12.1.

By default, Windows comes with the Ninja program. If the default Ninja version is too old, you
can directly download the ninja binary and register the ninja executor location path into your
system path variable to work.

For Linux, you can use your system package manager or you can directly download the ninja
binary to work.

After installation, you can use ninja --version to check the version.

Kconfig MCUXpresso SDK uses Kconfig python implementation. We customize it based on our
needs and integrate it into our build and configuration system. The Kconfiglib sources are placed
under mcuxsdk/scripts/kconfig folder.

Please make sure python environment is setup ready then you can use the Kconfig.

Ruby Our build system supports IDE project generation for iar, mdk, codewarrior and xtensa
to provide OOBE from build to debug. This feature is implemented with ruby. You can follow
the guide ruby environment setup to setup the ruby environment. Since we provide a built-in
portable ruby, it is just a simple one cmd installation.

If you only work with CLI, you can skip this step.

Toolchain MCUXpresso SDK supports all mainstream toolchains for embedded development.
You can install your used or interested toolchains following the guides.

Toolchain Download and Installation Guide Note
Armgcc Arm GNU Toolchain Install Guide ARMGCC is default

toolchain
IAR IAR Installation and Licensing quick ref-

erence guide
MDK MDK Installation

Armclang Installing Arm Compiler for Embedded

Zephyr Zephyr SDK

Codewarrior NXP CodeWarrior

Xtensa Tensilica Tools

NXP S32Compiler RISC-
V Zen-V

NXP Website

58 Chapter 1. LPCXpresso54S018

https://cmake.org/download/
https://github.com/Kitware/CMake/releases/download/v3.31.4/cmake-3.31.4-windows-x86_64.msi
https://cmake.org/download/
https://github.com/ninja-build/ninja/releases
https://github.com/ninja-build/ninja/wiki/Pre-built-Ninja-packages
https://github.com/ninja-build/ninja/releases
https://github.com/ninja-build/ninja/releases
https://learn.arm.com/install-guides/gcc/arm-gnu/
https://www.iar.com/siteassets/knowledge/support/tech-notes/qr_lms2.pdf
https://www.iar.com/siteassets/knowledge/support/tech-notes/qr_lms2.pdf
https://developer.arm.com/documentation/109350/v6/Installation?lang=en
https://developer.arm.com/documentation/100748/0618/Getting-Started/Installing-Arm-Compiler-for-Embedded
https://docs.zephyrproject.org/latest/develop/toolchains/zephyr_sdk.html
https://www.nxp.com/design/design-center/software/development-software/codewarrior-development-tools:CW_HOME
https://tensilicatools.com/platforms/
https://www.nxp.com/search?keyword=NXP%2520S32Compiler%2520RISC-V&start=0

MCUXpresso SDK Documentation, Release 25.09.00

After you have installed the toolchains, register them in the system environment variables. This
will allow the west build to recognize them:

Toolchain Environ-
ment
Variable

Example Cmd
Line Ar-
gument

Armgcc AR-
MGCC_DIR

C:\armgcc for windows/usr for Linux. Typically
arm-none-eabi-* is installed under /usr/bin

–
toolchain
armgcc

IAR IAR_DIR C:\iar\ewarm-9.60.3 for Windows/opt/iarsystems/
bxarm-9.60.3 for Linux

–
toolchain
iar

MDK MDK_DIR C:\Keil_v5 for Windows.MDK IDE is not officially sup-
ported with Linux.

–
toolchain
mdk

Armclang ARM-
CLANG_DIR

C:\ArmCompilerforEmbedded6.22 for Windows/opt/
ArmCompilerforEmbedded6.21 for Linux

–
toolchain
mdk

Zephyr ZEPHYR_SDK_INSTALL_DIRc:\NXP\zephyr-sdk-<version> for windows/opt/
zephyr-sdk-<version> for Linux

–
toolchain
zephyr

CodeWar-
rior

CW_DIR C:\Freescale\CW MCU v11.2 for windowsCodeWarrior is
not supported with Linux

–
toolchain
code-
warrior

Xtensa XCC_DIR C:\xtensa\XtDevTools\install\tools\RI-2023.11-win32\
XtensaTools for windows/opt/xtensa/XtDevTools/
install/tools/RI-2023.11-Linux/XtensaTools for Linux

–
toolchain
xtensa

NXP
S32Compiler
RISC-V
Zen-V

RISCVL-
LVM_DIR

C:\riscv-llvm-win32_b298_b298_2024.08.12 for Win-
dows/opt/riscv-llvm-Linux-x64_b298_b298_2024.08.12
for Linux

–
toolchain
riscvl-
lvm

• The <toolchain>_DIR is the root installation folder, not the binary location folder. For IAR,
it is directory containing following installation folders:

• MDK IDE using armclang toolchain only officially supports Windows. In Linux, please di-
rectly use armclang toolchain by setting ARMCLANG_DIR. In Windows, since most Keil
users will install MDK IDE instead of standalone armclang toolchain, the MDK_DIR has
higher priority than ARMCLANG_DIR.

• For Xtensa toolchain, please set the XTENSA_CORE environment variable. Here’s an ex-
ample list:

1.3. Getting Started with MCUXpresso SDK GitHub 59

MCUXpresso SDK Documentation, Release 25.09.00

Device Core XTENSA_CORE
RT500 fusion1 nxp_rt500_RI23_11_newlib
RT600 hifi4 nxp_rt600_RI23_11_newlib
RT700 hifi1 rt700_hifi1_RI23_11_nlib
RT700 hifi4 t700_hifi4_RI23_11_nlib
i.MX8ULP fusion1 fusion_nxp02_dsp_prod

• In Windows, the short path is used in environment variables. If any toolchain is using
the long path, you can open a command window from the toolchain folder and use below
command to get the short path: for %i in (.) do echo %~fsi

Tool installation check Once installed, open a terminal or command prompt and type the
associated command to verify the installation.

If you see the version number, you have successfully installed the tool. Else, check whether the
tool’s installation path is added into the PATH variable. You can add the installation path to the
PATH with the commands below:

• Windows: Open command prompt or powershell, run below command to show the user
PATH variable.

reg query HKEY_CURRENT_USER\Environment /v PATH

The tool installation path should be C:\Users\xxx\AppData\Local\Programs\Git\cmd. If the
path is not seen in the output from above, append the path value to the PATH variable with
the command below:

reg add HKEY_CURRENT_USER\Environment /v PATH /d ”%PATH%;C:\Users\xxx\AppData\
↪→Local\Programs\Git\cmd”

Then close the command prompt or powershell and verify the tool command again.

• Linux:

1. Open the $HOME/.bashrc file using a text editor, such as vim.

2. Go to the end of the file.

3. Add the line which appends the tool installation path to the PATH variable and export
PATH at the end of the file. For example, export PATH=”/Directory1:$PATH”.

4. Save and exit.

5. Execute the script with source .bashrc or reboot the system to make the changes live. To
verify the changes, run echo $PATH.

• macOS:

1. Open the $HOME/.bash_profile file using a text editor, such as nano.

2. Go to the end of the file.

3. Add the line which appends the tool installation path to the PATH variable and export
PATH at the end of the file. For example, export PATH=”/Directory1:$PATH”.

4. Save and exit.

5. Execute the script with source .bash_profile or reboot the system to make the changes
live. To verify the changes, run echo $PATH.

60 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

Get MCUXpresso SDK Repo

Establish SDK Workspace To get the MCUXpresso SDK repository, use the west tool to clone
the manifest repository and checkout all the west projects.

Initialize west with the manifest repository
west init -m https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/ mcuxpresso-sdk

Update the west projects
cd mcuxpresso-sdk
west update

Allow the usage of west extensions provided by MCUXpresso SDK
west config commands.allow_extensions true

Install Python Dependency(If do tool installation manually) To create a Python virtual en-
vironment in the west workspace core repo directory mcuxsdk, follow these steps:

1. Navigate to the core directory:

cd mcuxsdk

2. [Optional] Create and activate the virtual environment: If you don’t want to use the python
virtual environment, skip this step. We strongly suggest you use venv to avoid conflicts
with other projects using python.

python -m venv .venv

For Linux/MacOS
source .venv/bin/activate

For Windows
.\.venv\Scripts\activate
If you are using powershell and see the issue that the activate script cannot be run.
You may fix the issue by opening the powershell as administrator and run below command:
powershell Set-ExecutionPolicy RemoteSigned
then run above activate command again.

Once activated, your shell will be prefixed with (.venv). The virtual environment can be
deactivated at any time by running deactivate command.

Remember to activate the virtual environment every time you start working in this
directory. If you are using some modern shell like zsh, there are some powerful plugins to
help you auto switch venv among workspaces. For example, zsh-autoswitch-virtualenv.

3. Install the required Python packages:

Note: you can add option '--default-timeout=1000' if you meet connection issue. Or you may set a␣
↪→different source using option '-i'.
for example, in China you could try: pip3 install -r mcuxsdk/scripts/requirements.txt -i https://pypi.
↪→tuna.tsinghua.edu.cn/simple
pip install -r scripts/requirements.txt

Explore Contents

This section helps you build basic understanding of current fundamental project content and
guides you how to build and run the provided example project in whole SDK delivery.

1.3. Getting Started with MCUXpresso SDK GitHub 61

https://github.com/MichaelAquilina/zsh-autoswitch-virtualenv

MCUXpresso SDK Documentation, Release 25.09.00

Folder View The whole MCUXpresso SDK project, after you have done the west init and west
update operations follow the guideline at Getting Started Guide, have below folder structure:

Folder Description
mani-
fests

Manifest repo, contains the manifest file to initialize and update the west
workspace.

mcuxsdk The MCUXpresso SDK source code, examples, middleware integration and script
files.

All the projects record in the Manifest repo are checked out to the folder mcuxsdk/, the layout of
mcuxsdk folder is shown as below:

Folder Description
arch Arch related files such as ARM CMSIS core files, RISC-V files and the build files related

to the architecture.
cmake The cmake modules, files which organize the build system.
com-
po-
nents

Software components.

de-
vices

Device support package which categorized by device series. For each device, header
file, feature file, startup file and linker files are provided, also device specific drivers
are included.

docs Documentation source and build configuration for this sphinx built online documen-
tation.

drivers Peripheral drivers.
ex-
am-
ples

Various demos and examples, support files on different supported boards. For each
board support, there are board configuration files.

mid-
dle-
ware

Middleware components integrated into SDK.

rtos Rtos components integrated into SDK.
scripts Script files for the west extension command and build system support.
svd Svd files for devices, this is optional because of large size. Customers runwest manifest

config group.filter +optional and west update mcux-soc-svd to get this folder.

Examples Project The examples project is part of the whole SDK delivery, and locates in the
folder mcuxsdk/examples of west workspace.

Examples files are placed in folder of <example_category>, these examples include (but are not
limited to)

• demo_apps: Basic demo set to start using SDK, including hello_world and led_blinky.

• driver_examples: Simple applications that show how to use the peripheral drivers for a
single use case. These applications typically only use a single peripheral but there are cases
where multiple peripherals are used (for example, SPI transfer using DMA).

Board porting layers are placed in folder of _boards/<board_name>which aims at providing the
board specific parts for examples code mentioned above.

Run a demo using MCUXpresso for VS Code

This section explains how to configureMCUXpresso for VS Code to build, run, and debug example
applications. This guide uses the hello_world demo application as an example. However, these

62 Chapter 1. LPCXpresso54S018

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests

MCUXpresso SDK Documentation, Release 25.09.00

steps can be applied to any example application in the MCUXpresso SDK.

Build an example application This section assumes that the user has already obtained the
SDK as outlined in Get MCUXpresso SDK Repo.

To build an example application:

1. Import the SDK into your workspace. Click Import Repository from the QUICKSTART
PANEL.

Note: You can import the SDK in several ways. Refer to MCUXpresso for VS Code Wiki for
details.

Select Local if you’ve already obtained the SDK as seen inGetMCUXpresso SDK Repo. Select
your location and click Import.

2. Click Import Example from Repository from the QUICKSTART PANEL.

In the dropdown menu, select the MCUXpresso SDK, the Arm GNU Toolchain, your board,
template, and application type. Click Import.

1.3. Getting Started with MCUXpresso SDK GitHub 63

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Working-with-MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.09.00

Note: The MCUXpresso SDK projects can be imported as Repository applications or Free-
standing applications. The difference between the two is the import location. Projects im-
ported as Repository examples will be located inside the MCUXpresso SDK, whereas Free-
standing examples can be imported to a user-defined location. Select between these by
designating your selection in the App type dropdown menu.

3. VS Code will prompt you to confirm if the imported files are trusted. Click Yes.
4. Navigate to the PROJECTS view. Find your project and click the Build Project icon.

The integrated terminal will open at the bottom and will display the build output.

64 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

Run an example application Note: for full details on MCUXpresso for VS Code debug probe
support, see MCUXpresso for VS Code Wiki.

1. Open the Serial Monitor from the VS Code’s integrated terminal. Select the VCom Port for
your device and set the baud rate to 115200.

2. Navigate to the PROJECTS view and click the play button to initiate a debug session.

The debug session will begin. The debug controls are initially at the top.

1.3. Getting Started with MCUXpresso SDK GitHub 65

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/DebugK

MCUXpresso SDK Documentation, Release 25.09.00

.

3. Click Continue on the debug controls to resume execution of the code. Observe the output
on the Serial Monitor.

Running a demo using ARMGCC CLI/IAR/MDK

Supported Boards Use the west extension west list_project to understand the board support
scope for a specified example. All supported build command will be listed in output:

west list_project -p examples/demo_apps/hello_world [-t armgcc]

INFO: [1][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evk9mimx8ulp -Dcore_id=cm33]
INFO: [2][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkbimxrt1050]
INFO: [3][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣

(continues on next page)

66 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
↪→evkbmimxrt1060]
INFO: [4][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkbmimxrt1170 -Dcore_id=cm4]
INFO: [5][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkbmimxrt1170 -Dcore_id=cm7]
INFO: [6][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkcmimxrt1060]
INFO: [7][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkmcimx7ulp]
...

The supported toolchains andbuild targets for an example are decidedby the example-self exam-
ple.yml and board example.yml, please refer Example Toolchains and Targets for more details.

Build the project Usewest build -h to see help information for west build command. Compared
to zephyr’s west build, MCUXpresso SDK’s west build command provides following additional
options for mcux examples:

• --toolchain: specify the toolchain for this build, default armgcc.

• --config: value for CMAKE_BUILD_TYPE. If not provided, build system will get all the ex-
ample supported build targets and use the first debug target as the default one. Please refer
Example Toolchains and Targets for more details about example supported build targets.

Here are some typical usages for generating a SDK example:

Generate example with default settings, default used device is the mainset MK22F51212
west build -b frdmk22f examples/demo_apps/hello_world

Just print cmake commands, do not execute it
west build -b frdmk22f examples/demo_apps/hello_world --dry-run

Generate example with other toolchain like iar, default armgcc
west build -b frdmk22f examples/demo_apps/hello_world --toolchain iar

Generate example with other config type
west build -b frdmk22f examples/demo_apps/hello_world --config release

Generate example with other devices with --device
west build -b frdmk22f examples/demo_apps/hello_world --device MK22F12810 --config release

For multicore devices, you shall specify the corresponding core id by passing the command line
argument -Dcore_id. For example

west build -b evkbmimxrt1170 examples/demo_apps/hello_world --toolchain iar -Dcore_id=cm7 --config␣
↪→flexspi_nor_debug

For shield, please use the --shield to specify the shield to run, like

west build -b mimxrt700evk --shield a8974 examples/issdk_examples/sensors/fxls8974cf/fxls8974cf_poll -
↪→Dcore_id=cm33_core0

Sysbuild(System build) To support multicore project building, we ported Sysbuild from
Zephyr. It supports combine multiple projects for compilation. You can build all projects by
adding --sysbuild for main application. For example:

west build -b evkbmimxrt1170 --sysbuild ./examples/multicore_examples/hello_world/primary -Dcore_
↪→id=cm7 --config flexspi_nor_debug --toolchain=armgcc -p always

For more details, please refer to System build.

1.3. Getting Started with MCUXpresso SDK GitHub 67

MCUXpresso SDK Documentation, Release 25.09.00

Config a Project Example in MCUXpresso SDK is configured and tested with pre-defined con-
figuration. You can follow steps blow to change the configuration.

1. Run cmake configuration

west build -b evkbmimxrt1170 examples/demo_apps/hello_world -Dcore_id=cm7 --cmake-only -p

Please note the project will be built without --cmake-only parameter.

2. Run guiconfig target

west build -t guiconfig

Then you will get the Kconfig GUI launched, like

You can reconfigure the project by selecting/deselecting Kconfig options.

After saving and closing the Kconfig GUI, you can directly run west build to build with the new
configuration.

68 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

Flash Note: Please refer Flash and Debug The Example to enable west flash/debug support.

Flash the hello_world example:

west flash -r linkserver

Debug Start a gdb interface by following command:

west debug -r linkserver

Work with IDE Project The above build functionalities are all with CLI. If you want to use
the toolchain IDE to work to enjoy the better user experience especially for debugging or you
are already used to develop with IDEs like IAR, MDK, Xtensa and CodeWarrior in the embedded
world, you can play with our IDE project generation functionality.

This is the cmd to generate the evkbmimxrt1170 hello_world IAR IDE project files.

west build -b evkbmimxrt1170 examples/demo_apps/hello_world --toolchain iar -Dcore_id=cm7 --config␣
↪→flexspi_nor_debug -p always -t guiproject

By default, the IDE project files are generated inmcuxsdk/build/<toolchain> folder, you can open
the project file with the IDE tool to work:

Note, please follow the Installation to setup the environment especially make sure that ruby has
been installed.

1.4 Release Notes

1.4.1 MCUXpresso SDK Release Notes

Overview

The MCUXpresso SDK is a comprehensive software enablement package designed to simplify
and accelerate application development with Arm Cortex-M-based devices from NXP, including
its general purpose, crossover and Bluetooth-enabled MCUs. MCUXpresso SW and Tools for DSC

1.4. Release Notes 69

MCUXpresso SDK Documentation, Release 25.09.00

further extends the SDK support to current 32-bit Digital Signal Controllers. The MCUXpresso
SDK includes production-grade software with integrated RTOS (optional), integrated enabling
software technologies (stacks and middleware), reference software, and more.

In addition to working seamlessly with the MCUXpresso IDE, the MCUXpresso SDK also supports
and provides example projects for various toolchains. The Development tools chapter in the
associated Release Notes provides details about toolchain support for your board. Support for
the MCUXpresso Config Tools allows easy cloning of existing SDK examples and demos, allowing
users to leverage the existing software examples provided by the SDK for their own projects.

Underscoring our commitment to high quality, the MCUXpresso SDK is MISRA compliant and
checked with Coverity static analysis tools. For details on MCUXpresso SDK, see MCUXpresso-
SDK: Software Development Kit for MCUXpresso.

MCUXpresso SDK

As part of the MCUXpresso software and tools, MCUXpresso SDK is the evolution of Kinetis SDK,
includes support for LPC, DSC,PN76, and i.MX System-on-Chip (SoC). The same drivers, APIs, and
middleware are still available with support for Kinetis, LPC, DSC, and i.MX silicon. The MCUX-
presso SDK adds support for the MCUXpresso IDE, an Eclipse-based toolchain that works with
all MCUXpresso SDKs. Easily import your SDK into the new toolchain to access to all of the avail-
able components, examples, and demos for your target silicon. In addition to the MCUXpresso
IDE, support for the MCUXpresso Config Tools allows easy cloning of existing SDK examples and
demos, allowing users to leverage the existing software examples provided by the SDK for their
own projects.

In order to maintain compatibility with legacy Freescale code, the filenames and source code in
MCUXpresso SDK containing the legacy Freescale prefix FSL has been left as is. The FSL prefix
has been redefined as the NXP Foundation Software Library.

Development tools

The MCUXpresso SDK was tested with following development tools. Same versions or above are
recommended.

• MCUXpresso IDE, Rev. 25.06.xx

• IAR Embedded Workbench for Arm, version is 9.60.4

• Keil MDK, version is 5.42

• MCUXpresso for VS Code v25.09

• GCC Arm Embedded Toolchain 14.2.x

Supported development systems

This release supports board and devices listed in following table. The board and devices in bold
were tested in this release.

70 Chapter 1. LPCXpresso54S018

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.09.00

De-
vel-
op-
ment
boards

MCU devices

LPCX-
presso54S018

LPC54005JBD100, LPC54005JET100, LPC54016JBD100, LPC54016JBD208,
LPC54016JET100, LPC54016JET180, LPC54018JBD208, LPC54018JET180,
LPC54S005JBD100, LPC54S005JET100, LPC54S016JBD100, LPC54S016JBD208,
LPC54S016JET100, LPC54S016JET180, LPC54S018JBD208, LPC54S018JET180

MCUXpresso SDK release package

The MCUXpresso SDK release package content is aligned with the silicon subfamily it supports.
This includes the boards, CMSIS, devices, middleware, and RTOS support.

Device support The device folder contains the whole software enablement available for the
specific System-on-Chip (SoC) subfamily. This folder includes clock-specific implementation,
device register header files, device register feature header files, and the system configuration
source files. Included with the standard SoC support are folders containing peripheral drivers,
toolchain support, and a standard debug console. The device-specific header files provide a di-
rect access to themicrocontroller peripheral registers. The device header file provides an overall
SoCmemorymapped register definition. The folder also includes the feature header file for each
peripheral on themicrocontroller. The toolchain folder contains the startup code and linker files
for each supported toolchain. The startup code efficiently transfers the code execution to the
main() function.

Board support The boards folder provides the board-specific demo applications, driver exam-
ples, and middleware examples.

Demo application and other examples The demo applications demonstrate the usage of the
peripheral drivers to achieve a system level solution. Each demo application contains a readme
file that describes the operation of the demo and required setup steps. The driver examples
demonstrate the capabilities of the peripheral drivers. Each example implements a common
use case to help demonstrate the driver functionality.

RTOS

FreeRTOS Real-time operating system for microcontrollers from Amazon

Middleware

CMSIS DSP Library The MCUXpresso SDK is shipped with the standard CMSIS development
pack, including the prebuilt libraries.

MCU Boot MCU Boot (formerly KBOOT) NXP/Freescale proprietary loader

coreHTTP coreHTTP

1.4. Release Notes 71

MCUXpresso SDK Documentation, Release 25.09.00

USB Host, Device, OTG Stack See the MCUXpresso SDK USB Stack User’s Guide (document
MCUXSDKUSBSUG) for more information.

TinyCBOR Concise Binary Object Representation (CBOR) Library

SDMMC stack The SDMMC software is integrated with MCUXpresso SDK to support
SD/MMC/SDIO standard specification. This also includes a host adapter layer for bare-
metal/RTOS applications.

PKCS#11 The PKCS#11 standard specifies an application programming interface (API), called
“Cryptoki,” for devices that hold cryptographic information and perform cryptographic func-
tions. Cryptoki follows a simple object based approach, addressing the goals of technology in-
dependence (any kind of device) and resource sharing (multiple applications accessing multiple
devices), presenting to applications a common, logical view of the device called a “cryptographic
token”.

mbedTLS mbedtls SSL/TLS library v2.x

lwIP The lwIP TCP/IP stack is pre-integrated with MCUXpresso SDK and runs on top of the
MCUXpresso SDK Ethernet driver with Ethernet-capable devices/boards.

For details, see the lwIP TCPIP Stack and MCUXpresso SDK Integration User’s Guide (document
MCUXSDKLWIPUG).

lwIP is a small independent implementation of the TCP/IP protocol suite.

LVGL LVGL Open Source Graphics Library

llhttp HTTP parser llhttp

LittleFS LittleFS filesystem stack

FreeMASTER FreeMASTER communication driver for 32-bit platforms.

File systemFatfs The FatFs file system is integrated with theMCUXpresso SDK and can be used
to access either the SD card or the USB memory stick when the SD card driver or the USB Mass
Storage Device class implementation is used.

emWin TheMCUXpresso SDK is pre-integrated with the SEGGER emWin GUI middleware. The
AppWizard provides developers and designers with a flexible tool to create stunning user inter-
face applications, without writing any code.

AWS IoT Amazon Web Service (AWS) IoT Core SDK.

72 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

Release contents

Provides an overview of the MCUXpresso SDK release package contents and locations.

Deliverable Location
Boards INSTALL_DIR/boards
Demo Applications INSTALL_DIR/boards/<board_name>/demo_apps
Driver Examples INSTALL_DIR/boards/<board_name>/driver_examples
eIQ examples INSTALL_DIR/boards/<board_name>/eiq_examples
Board Project Template for MCUXpresso IDE NPW INSTALL_DIR/boards/<board_name>/project_template
Driver, SoC header files, extension header files and
feature header files, utilities

INSTALL_DIR/devices/<device_name>

CMSIS drivers INSTALL_DIR/devices/<device_name>/cmsis_drivers
Peripheral drivers INSTALL_DIR/devices/<device_name>/drivers
Toolchain linker files and startup code INSTALL_DIR/devices/<device_name>/<toolchain_name>
Utilities such as debug console INSTALL_DIR/devices/<device_name>/utilities
Device Project Template for MCUXpresso IDE NPW INSTALL_DIR/devices/<device_name>/project_template
CMSIS Arm Cortex-M header files, DSP library source INSTALL_DIR/CMSIS
Components and board device drivers INSTALL_DIR/components
RTOS INSTALL_DIR/rtos
Release Notes, Getting Started Document and other
documents

INSTALL_DIR/docs

Tools such as shared cmake files INSTALL_DIR/tools
Middleware INSTALL_DIR/middleware

Known issues

This section lists the known issues, limitations, and/or workarounds.

Cannot add SDK components into FreeRTOS projects

It is not possible to add any SDK components into FreeRTOS project using the MCUXpresso IDE
New Project wizard.

Debug SRAM target with J-Link on MCUXpresso IDE issue

If using the J-Link to Debug SRAM target on the IDE, when clicking the Restart button, the debug
fails. The issue is caused because the integrity of the SRAM image cannot be guaranteed after it
has been executed, and the MCUXpresso IDE does not reload the code before restarting. Plain
load images (images loaded from external SPI flash to SRAMX by the ROM bootloader then ex-
ecuted) cannot be debugged using MCUXpresso version 11.0.0. Code should be developed using
the SRAM debug method, then programmed into flash once debugging is completed. For more
information, see the Getting Started with MCUXpresso SDK User’s Guide (document MCUXSDKG-
SUG).

Example freertos_spi fails in MCUXpresso IDE

The example freertos_spi fails in the MCUXpresso IDE environment.

1.4. Release Notes 73

MCUXpresso SDK Documentation, Release 25.09.00

USB high-speed interrupt endpoint issue

If the user wants to use a high-speed interrupt endpoint, themaximumpacket size should be 512
bytes.

Example freertos_spi fails in MCUXpresso IDE

The example freertos_spi fails in the MCUXpresso IDE environment.

The usart_wakeup_deepsleep doesn’t work

The example doesn’t work.

Affected toolchains: mcux Affected platforms: lpcxpresso54s018

1.5 ChangeLog

1.5.1 MCUXpresso SDK Changelog

Board Support Files

board

[25.06.00]
• Initial version

clock_config

[25.06.00]
• Initial version

pin_mux

[25.06.00]
• Initial version

LPC_ADC

[2.6.0]
• New Features

– Added new feature macro to distinguish whether the GPADC_CTRL0_GPADC_TSAMP
control bit is on the device.

74 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

– Added new variable extendSampleTimeNumber to indicate the ADC extend sample
time.

• Bugfix

– Fixed the bug that incorrectly sets the PASS_ENABLE bit based on the sample time
setting.

[2.5.3]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.5.2]
• Improvements

– Integrated different sequence’s sample time numbers into one variable.

• Bug Fixes

– Fixed violation of MISRA C-2012 rule 20.9 .

[2.5.1]
• Bug Fixes

– Fixed ADC conversion sequence priority misconfiguration issue in the
ADC_SetConvSeqAHighPriority() and ADC_SetConvSeqBHighPriority() APIs.

• Improvements

– Supported configuration ADC conversion sequence sampling time.

[2.5.0]
• Improvements

– Add missing parameter tag of ADC_DoOffsetCalibration().

• Bug Fixes

– RemovedaduplicatedAPIwith typo inname: ADC_EnableShresholdCompareInterrupt().

[2.4.1]
• Bug Fixes

– Enabled self-calibration after clock divider be changed to make sure the frequency
update be taken.

[2.4.0]
• New Features

– Added new API ADC_DoOffsetCalibration() which supports a specific operation fre-
quency.

• Other Changes

– Marked the ADC_DoSelfCalibration(ADC_Type *base) as deprecated.

• Bug Fixes

1.5. ChangeLog 75

MCUXpresso SDK Documentation, Release 25.09.00

– Fixed the violations of MISRA C-2012 rules:

* Rule 10.1 10.3 10.4 10.7 10.8 17.7.

[2.3.2]
• Improvements

– Added delay after enabling using the ADC GPADC_CTRL0 LDO_POWER_EN bit for
JN5189/QN9090.

• New Features

– Added support for platforms which have only one ADC sequence control/result regis-
ter.

[2.3.1]
• Bug Fixes

– Avoided writing ADC STARTUP register in ADC_Init().

– Fixed Coverity zero divider error in ADC_DoSelfCalibration().

[2.3.0]
• Improvements

– Updated “ADC_Init()””ADC_GetChannelConversionResult()” API and “adc_resolution_t”
structure to match QN9090.

– Added “ADC_EnableTemperatureSensor” API.

[2.2.1]
• Improvements

– Added a brief delay in uSec after ADC calibration start.

[2.2.0]
• Improvements

– Updated “ADC_DoSelfCalibration” API and “adc_config_t” structure to match LPC845.

[2.1.0]
• Improvements

– Renamed “ADC_EnableShresholdCompareInterrupt” to “ADC_EnableThresholdCompareInterrupt”.

[2.0.0]
• Initial version.

76 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

AES

[2.0.3]
• Edit aes_one_block() function to be interrupt safe.

[2.0.2]
• Fix MISRA-2012 issues.

[2.0.1]
• Improvements

– GCM constant time tag comparison.

[2.0.0]
• Initial version.

CLOCK

[2.3.3]
• Improvements

– Added lost comments for some enumerations.

[2.3.2]
• Bug Fixes

– Fixed violation of MISRA C-2012 rule 5.7

[2.3.1]
• Bug Fixes

– Fixed MISRA C-2012 rule 10.1, rule 10.4, rule 10.8, rule 15.5 and so on.

– Fixed IAR warning Pa082 for the clock driver.

[2.3.0]
• New feature:

– Moved SDK_DelayAtLeastUs function from clock driver to common driver.

[2.2.0]
• New Feature:

– add new APIs including CLOCK_GetEmcClkFreq and CLOCK_GetMCanClkFreq due to
removing some variables in enum clock_name_t

1.5. ChangeLog 77

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.0]
• Bug Fix:

– Fix flexcomm0-9 clock calculation.

– Correct the return frequency of CLOCK_GetFrgClkFreq.

– Fix the bug in function CLOCK_GetPllConfig() to refine the cache feature.

– Update the code to suppress the incorrect configuration in
CLOCK_GetUsbPLLOutFromSetup().

– Fix C++ build errors in CLOCK_GetClockAttachId() and CLOCK_AttachClk().

• New feature

– Adding new API CLOCK_DelayAtLeastUs() implemented by DWT to allow users set de-
lay in unit of microsecond.

[2.0.4]
• Bug Fix:

– Fix attach incorrect attach_id.

[2.0.3]
• New Feature:

– add get actual clock attach id api to allow users to obtain the actual clock source in
target register.

• Bug Fix:

– The attach clock and get actual clock attach id apis should check combination of two
clock source.

• Optimization:

– Make the judgement statments more clear.

– Strengthen the compatibility of clock attatch id.

– Remove some unmeaningful definitions and add some useful ones to enhance read-
ability.

[2.0.2]
• Change CLOCK_SetupFROClocking from a macro to a function for different FRO setting ad-
dress per different ROM version.

[2.0.1]
• some minor fixes.

[2.0.0]
• initial version.

78 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

COMMON

[2.6.0]
• Bug Fixes

– Fix CERT-C violations.

[2.5.0]
• New Features

– Added new APIs InitCriticalSectionMeasurementContext, DisableGlobalIRQEx and En-
ableGlobalIRQEx so that user canmeasure the execution time of the protected sections.

[2.4.3]
• Improvements

– Enable irqs that mount under irqsteer interrupt extender.

[2.4.2]
• Improvements

– Add themacros to convert peripheral address to secure address or non-secure address.

[2.4.1]
• Improvements

– Improve for the macro redefinition error when integrated with zephyr.

[2.4.0]
• New Features

– Added EnableIRQWithPriority, IRQ_SetPriority, and IRQ_ClearPendingIRQ for ARM.

– Added MSDK_EnableCpuCycleCounter, MSDK_GetCpuCycleCount for ARM.

[2.3.3]
• New Features

– Added NETC into status group.

[2.3.2]
• Improvements

– Make driver aarch64 compatible

[2.3.1]
• Bug Fixes

– Fixed MAKE_VERSION overflow on 16-bit platforms.

1.5. ChangeLog 79

MCUXpresso SDK Documentation, Release 25.09.00

[2.3.0]
• Improvements

– Split the driver to common part and CPU architecture related part.

[2.2.10]
• Bug Fixes

– Fixed the ATOMIC macros build error in cpp files.

[2.2.9]
• Bug Fixes

– Fixed MISRA C-2012 issue, 5.6, 5.8, 8.4, 8.5, 8.6, 10.1, 10.4, 17.7, 21.3.

– Fixed SDK_Malloc issue that not allocate memory with required size.

[2.2.8]
• Improvements

– Included stddef.h header file for MDK tool chain.

• New Features:

– Added atomic modification macros.

[2.2.7]
• Other Change

– Added MECC status group definition.

[2.2.6]
• Other Change

– Added more status group definition.

• Bug Fixes

– Undef __VECTOR_TABLE to avoid duplicate definition in cmsis_clang.h

[2.2.5]
• Bug Fixes

– Fixed MISRA C-2012 rule-15.5.

[2.2.4]
• Bug Fixes

– Fixed MISRA C-2012 rule-10.4.

80 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

[2.2.3]
• New Features

– Provided better accuracy of SDK_DelayAtLeastUs with DWT, use macro
SDK_DELAY_USE_DWT to enable this feature.

– Modified the Cortex-M7 delay count divisor based on latest tests on RT series boards,
this setting lets result be closer to actual delay time.

[2.2.2]
• New Features

– Added include RTE_Components.h for CMSIS pack RTE.

[2.2.1]
• Bug Fixes

– Fixed violation of MISRA C-2012 Rule 3.1, 10.1, 10.3, 10.4, 11.6, 11.9.

[2.2.0]
• New Features

– Moved SDK_DelayAtLeastUs function from clock driver to common driver.

[2.1.4]
• New Features

– Added OTFAD into status group.

[2.1.3]
• Bug Fixes

– MISRA C-2012 issue fixed.

* Fixed the rule: rule-10.3.

[2.1.2]
• Improvements

– Add SUPPRESS_FALL_THROUGH_WARNING() macro for the usage of suppressing
fallthrough warning.

[2.1.1]
• Bug Fixes

– Deleted and optimized repeated macro.

1.5. ChangeLog 81

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.0]
• New Features

– Added IRQ operation for XCC toolchain.

– Added group IDs for newly supported drivers.

[2.0.2]
• Bug Fixes

– MISRA C-2012 issue fixed.

* Fixed the rule: rule-10.4.

[2.0.1]
• Improvements

– Removed the implementation of LPC8XX Enable/DisableDeepSleepIRQ() function.

– Addednew featuremacro switch “FSL_FEATURE_HAS_NO_NONCACHEABLE_SECTION”
for specific SoCs which have no noncacheable sections, that helps avoid an unneces-
sary complex in link file and the startup file.

– Updated the align(x) to attribute(aligned(x)) to support MDK v6 armclang compiler.

[2.0.0]
• Initial version.

CRC

[2.1.1]
• Fix MISRA issue.

[2.1.0]
• Add CRC_WriteSeed function.

[2.0.2]
• Fix MISRA issue.

[2.0.1]
• Fixed KPSDK-13362. MDK compiler issue when writing to WR_DATA with -O3 optimize for
time.

[2.0.0]
• Initial version.

82 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

CTIMER

[2.3.3]
• Bug Fixes

– Fix CERT INT30-C INT31-C issue.

– Make API CTIMER_SetupPwm and CTIMER_UpdatePwmDutycycle return fail if pulse
width register overflow.

[2.3.2]
• Bug Fixes

– Clear unexpected DMA request generated by RESET_PeripheralReset in API
CTIMER_Init to avoid trigger DMA by mistake.

[2.3.1]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.7 and 12.2.

[2.3.0]
• Improvements

– Added the CTIMER_SetPrescale(), CTIMER_GetCaptureValue(),
CTIMER_EnableResetMatchChannel(), CTIMER_EnableStopMatchChannel(),
CTIMER_EnableRisingEdgeCapture(), CTIMER_EnableFallingEdgeCapture(),
CTIMER_SetShadowValue(),APIs Interface to reduce code complexity.

[2.2.2]
• Bug Fixes

– Fixed SetupPwm() API only can use match 3 as period channel issue.

[2.2.1]
• Bug Fixes

– Fixed use specified channel to setting the PWM period in SetupPwmPeriod() API.

– Fixed Coverity Out-of-bounds issue.

[2.2.0]
• Improvements

– Updated three API Interface to support Users to flexibly configure the PWMperiod and
PWM output.

• Bug Fixes

– MISRA C-2012 issue fixed: rule 8.4.

1.5. ChangeLog 83

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.0]
• Improvements

– Added the CTIMER_GetOutputMatchStatus() API Interface.

– Added feature macro for FSL_FEATURE_CTIMER_HAS_NO_CCR_CAP2 and
FSL_FEATURE_CTIMER_HAS_NO_IR_CR2INT.

[2.0.3]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.3, 10.4, 10.6, 10.7 and 11.9.

[2.0.2]
• New Features

– Added new API “CTIMER_GetTimerCountValue” to get the current timer count value.

– Added a control macro to enable/disable the RESET and CLOCK code in current driver.

– Added a new feature macro to update the API of CTimer driver for lpc8n04.

[2.0.1]
• Improvements

– API Interface Change

* Changed API interface by adding CTIMER_SetupPwmPeriod API and
CTIMER_UpdatePwmPulsePeriod API, which both can set up the right PWM
with high resolution.

[2.0.0]
• Initial version.

LPC_DMA

[2.5.3]
• Improvements

– Add assert in DMA_SetChannelXferConfig to prevent XFERCOUNT value overflow.

[2.5.2]
• Bug Fixes

– Use separate “SET” and “CLR” registers to modify shared registers for all channels, in
case of thread-safe issue.

[2.5.1]
• Bug Fixes

– Fixed violation of the MISRA C-2012 rule 11.6.

84 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

[2.5.0]
• Improvements

– Added a new api DMA_SetChannelXferConfig to set DMA xfer config.

[2.4.4]
• Bug Fixes

– Fixed the issue that DMA_IRQHandle might generate redundant callbacks.

– Fixed the issue that DMA driver cannot support channel bigger then 32.

– Fixed violation of the MISRA C-2012 rule 13.5.

[2.4.3]
• Improvements

– Added features FSL_FEATURE_DMA_DESCRIPTOR_ALIGN_SIZEn/FSL_FEATURE_DMA0_DESCRIPTOR_ALIGN_SIZE/FSL_FEATURE_DMA1_DESCRIPTOR_ALIGN_SIZE
to support the descriptor align size not constant in the two instances.

[2.4.2]
• Bug Fixes

– Fixed violation of the MISRA C-2012 rule 8.4.

[2.4.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 5.7, 8.3.

[2.4.0]
• Improvements

– AddednewAPIsDMA_LoadChannelDescriptor/DMA_ChannelIsBusy to support polling
transfer case.

• Bug Fixes

– Added address alignment check for descriptor source and destination address.

– Added DMA_ALLOCATE_DATA_TRANSFER_BUFFER for application buffer allocation.

– Fixed the sign-compare warning.

– Fixed violations of the MISRA C-2012 rules 18.1, 10.4, 11.6, 10.7, 14.4, 16.3, 20.7, 10.8,
16.1, 17.7, 10.3, 3.1, 18.1.

[2.3.0]
• Bug Fixes

– Removed DMA_HandleIRQ prototype definition from header file.

– Added DMA_IRQHandle prototype definition in header file.

1.5. ChangeLog 85

MCUXpresso SDK Documentation, Release 25.09.00

[2.2.5]
• Improvements

– Added newAPI DMA_SetupChannelDescriptor to support configuring wrap descriptor.

– Added wrap support in function DMA_SubmitChannelTransfer.

[2.2.4]
• Bug Fixes

– Fixed the issue that macro DMA_CHANNEL_CFER used wrong parameter to calculate
DSTINC.

[2.2.3]
• Bug Fixes

– Improved DMA driver Deinit function for correct logic order.

• Improvements

– Added API DMA_SubmitChannelTransferParameter to support creating head descrip-
tor directly.

– Added API DMA_SubmitChannelDescriptor to support ping pong transfer.

– AddedmacroDMA_ALLOCATE_HEAD_DESCRIPTOR/DMA_ALLOCATE_LINK_DESCRIPTOR
to simplify DMA descriptor allocation.

[2.2.2]
• Bug Fixes

– Do not use software trigger when hardware trigger is enabled.

[2.2.1]
• Bug Fixes

– Fixed Coverity issue.

[2.2.0]
• Improvements

– Changed API DMA_SetupDMADescriptor to non-static.

– Marked APIs below as deprecated.

* DMA_PrepareTransfer.

* DMA_Submit transfer.

– Added new APIs as below:

* DMA_SetChannelConfig.

* DMA_PrepareChannelTransfer.

* DMA_InstallDescriptorMemory.

* DMA_SubmitChannelTransfer.

* DMA_SetChannelConfigValid.

86 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

* DMA_DoChannelSoftwareTrigger.

* DMA_LoadChannelTransferConfig.

[2.0.1]
• Improvements

– Added volatile for DMA descriptor member xfercfg to avoid optimization.

[2.0.0]
• Initial version.

DMIC

[2.3.3]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8.

[2.3.2]
• New Features

– Supported 4 channels in driver.

[2.3.1]
• Bug Fixes

– Fixed the issue that DMIC_EnableChannelDma and DMIC_EnableChannelFifo did not
clean relevant bits.

[2.3.0]
• Improvements

– AddednewapisDMIC_ResetChannelDecimator/DMIC_EnableChannelGlobalSync/DMIC_DisableChannelGlobalSync.

[2.2.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 14.4, 17.7, 10.4, 10.3, 10.8, 14.3.

[2.2.0]
• Bug Fixes

– Corrected the usage of feature FSL_FEATURE_DMIC_IO_HAS_NO_BYPASS.

1.5. ChangeLog 87

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.1]
• Improvements

– Added feature FSL_FEATURE_DMIC_HAS_NO_IOCFG for IOCFG register.

[2.1.0]
• New Features

– Added API DMIC_EnbleChannelInterrupt/DMIC_EnbleChannelDma to replace API
DMIC_SetOperationMode.

– Added API DMIC_SetIOCFG and marked DMIC_ConfigIO as deprecated.

– Added API DMIC_EnableChannelSignExtend to support sign extend feature.

[2.0.5]
• Improvements

– Changed some parameters’ value of DMIC_FifoChannel API, such as enable, resetn,
and trig_level. This is not possible for the current code logic, so it improves the
DMIC_FifoChannel logic and fixes incorrect math logic.

[2.0.4]
• Bug Fixes

– Fixed the issue that DMIC DMA driver(ver2.0.3) did not support calling
DMIC_TransferReceiveDMA in DMA callback as it did before version 2.0.3. But
calling DMIC_TransferReceiveDMA in callback is not recommended.

[2.0.3]
• New Features

• Supported linked transfer in DMIC DMA driver.

• Added new API DMIC_EnableChannelFifo/DMIC_DoFifoReset/DMIC_InstallDMADescriptor.

[2.0.2]
• New Features

– Supported more channels in driver.

[2.0.1]
• New Features

– Added a control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.0]
• Initial version.

88 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

DMIC_DMA

[2.4.2]
• Bug Fixes

– Fixed coverity High Impact finding

[2.4.1]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8.

[2.4.0]
• Bug Fixes

– Fixed the issue that DMIC_TransferAbortReceiveDMA can not disable dmic and dma
request issue.

[2.3.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.3.

[2.3.0]
• Refer DMIC driver change log 2.0.1 to 2.3.0

EMC

[2.0.4]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.1, 10.3, 10.4, 10.8, 11.9, 14.2, 14.3, 14.4.

[2.0.3]
• Improvements

– Used SDK_DelayAtLeastUs instead of for loop during the dynamic memory initializa-
tion.

[2.0.3]
• Improvements

– Replaced deprecated enumerator CLOCK_GetFreq(kCLOCK_EMC) with
CLOCK_GetEmcClkFreq().

[2.0.2]
• New Features

– Added control macro to enable/disable the CLOCK code in current driver.

1.5. ChangeLog 89

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.1]
• Improvements

– Added const for two BASE values.

[2.0.0]
• Initial version.

LPC_ENET

[2.3.5]
• Bug Fixes

– Fixed ENET_GetMacAddr address byte order not matching ENET_SetMacAddr.

[2.3.4]
• Bug Fixes

– Fixed the issue that free wrong buffer address when one frame stores in multiple
buffers and memory pool is not enough to allocate these buffers to receive one com-
plete frame.

– Fixed the issue that ENET_DropFrame checks the buffer descriptor flag after it has been
re-initialized.

– Fixed the ENET_GetRxFrame FCS calculation issue.

– Fixed the issue that there’s no valid error type in the return structure when Rx error
bit is set.

[2.3.3]
• Bug Fixes

– Fixed the issue that ENET_SetSMI uses wrong clock source to calculate the divisor.

[2.3.2]
• New features

– Added hardware checksum acceleration support.

• Bug Fixes

– Fixed the issue that enable/disable interrupt APIs miss part of configuration.

[2.3.1]
• Improvements

– update ENET_SetSYSControl to support mcx family.

90 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

[2.3.0]
• Improvements

– Added MDIO access wrapper APIs for ease of use.

[2.2.0]
• Bug Fixes

– Corrected the timestamp retrieving code in ReadFrame.

• New Features

– Supported zero copy Rx with new APIs.

• Improvements

– Removed 4 bytes CRC data in ReadFrame function, not give them to user.

– Deleted previous timestamp rings which store Tx/Rx timestamp temporarily for fur-
ther retrieving. Now get Rx timestamp directly with receiving frame API, and get Tx
timestamp in Tx over interrupt handler callback.

– Added channel parameter for the SendFrame function, let user to decide which kind
of frame can be sent from specified channel.

– Supported scattered Tx buffers andmore Tx configurations in SendFramewhich aren’t
integrated.

– Adjusted the callback location in Tx reclaim function. When use multiple BDs for Tx,
only last BD transmit over interrupt event calls the callback. It simplifies the usage of
Tx reclaiming.

– Added interrupt configuration in config parameter for ENET_Init() to simplify the in-
terrupt enable.

– Changed the Tx/Rx descriptor name to common name rather than previous read for-
mat name which make user confused when driver uses it as write-back format.

[2.1.5]
• Bug Fixes

– Fixed violations of theMISRAC-2012 rules 3.1,5.8,8.4,8.6,10.1,10.3,10.4,10.6,10.8,11.6,11.9,12.2,14.4,15.6,17.7,21.15.

[2.1.4]
• Bug Fixes

– Fixed the MDC clock divider setting issue occurring when core clock range exceeds
150M.

[2.1.3]
• In ENET_StartRxTx, updated to enable TX and RX at the same time to avoid issue where
ENET module could not work under 10 M.

• Changed to use CLOCK_GetCoreSysClkFreq() instead of SystemCoreClock to get accurate
core clock.

1.5. ChangeLog 91

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.2]
• Bug Fixes

– Fixed ENET receive issue where it sometimes lost some unicast packets. The
issue is caused by the program timing issue for writing MAC_ADDR_LOW and
MAC_ADDR_HIGH.

[2.1.1]
• New Features

– Added a control macro to enable/disable the CLOCK code in current driver.

[2.1.0]
• New Features

– Added two APIs to set the ENET to ACCPET or reject the multicast frames.

[2.0.0]
• Initial version.

FLEXCOMM

[2.0.2]
• Bug Fixes

– Fixed typos in FLEXCOMM15_DriverIRQHandler().

– Fixed MISRA issues.

* Fixed rules 10.1, 10.3, 10.4, 10.7, 10.8, 11.3, 11.6, 11.8, 11.9, 13.5.

• Improvements

– Added instance calculation in FLEXCOMM16_DriverIRQHandler() to align with Flex-
comm 14 and 15.

[2.0.1]
• Improvements

– Added more IRQHandler code in drivers to adapt new devices.

[2.0.0]
• Initial version.

FMEAS

[2.1.1]
• Bug Fixes

– MISRA C-2012 issues fixed: rule 10.4, rule 10.8.

92 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.0]
• Updated “FMEAS_GetFrequency”,”FMEAS_StartMeasure”,”FMEAS_IsMeasureComplete”
API and add definition to match ASYNC_SYSCON.

[2.0.0]
• Initial version ported from LPCOpen.

GINT

[2.1.1]
• Improvements

– Added support for platforms with PORT_POL and PORT_ENA registers without arrays.

[2.1.0]
• Improvements

– Updated for platforms which only has one port.

[2.0.3]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.8.

[2.0.2]
• Bug Fixes

– Fixed issue for MISRA-2012 check.

* Fixed rule 17.7.

[2.0.1]
• Added control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.0]
• Initial version.

GPIO

[2.1.7]
• Improvements

– Enhanced GPIO_PinInit to enable clock internally.

1.5. ChangeLog 93

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.6]
• Bug Fixes

– Clear bit before set it within GPIO_SetPinInterruptConfig() API.

[2.1.5]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 3.1, 10.6, 10.7, 17.7.

[2.1.4]
• Improvements

– Added API GPIO_PortGetInterruptStatus to retrieve interrupt status for whole port.

– Corrected typos in header file.

[2.1.3]
• Improvements

– Updated “GPIO_PinInit” API. If it has DIRCLR and DIRSET registers, use them at set 1
or clean 0.

[2.1.2]
• Improvements

– Removed deprecated APIs.

[2.1.1]
• Improvements

– API interface changes:

* Refined naming of APIs while keeping all original APIs, marking them as depre-
cated. Original APIs will be removed in next release. The mainin change is updat-
ing APIs with prefix of _PinXXX() and _PorortXXX

[2.1.0]
• New Features

– Added GPIO initialize API.

[2.0.0]
• Initial version.

94 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

I2C

[2.3.3]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.1.

– Fixed issue that if master only sends address without data during I2C interrupt trans-
fer, address nack cannot be detected.

[2.3.2]
• Improvement

– Enable or disable timeout option according to enableTimeout.

• Bug Fixes

– Fixed timeout value calculation error.

– Fixed bug that the interrupt transfer cannot recover from the timeout error.

[2.3.1]
• Improvement

– Before master transfer with transactional APIs, enable master function while disable
slave function and vise versa for slave transfer to avoid the one affecting the other.

• Bug Fixes

– Fixed bug in I2C_SlaveEnable that the slave enable/disable should not affect the other
register bits.

[2.3.0]
• Improvement

– Added new return codes kStatus_I2C_EventTimeout and kStatus_I2C_SclLowTimeout,
and added the check for event timeout and SCL timeout in I2C master transfer.

– Fixed bug in slave transfer that the address match event should be invoked before not
after slave transmit/receive event.

[2.2.0]
• New Features

– Added enumeration _i2c_status_flags to include all previous master and slave status
flags, and added missing status flags.

– Modified I2C_GetStatusFlags to get all I2C flags.

– Added API I2C_ClearStatusFlags to clear all clearable flags not just master flags.

– Modifiedmaster transactional APIs to enable bus event timeout interrupt during trans-
fer, to avoid glitch on bus causing transfer hangs indefinitely.

• Bug Fixes

– Fixed bug that status flags and interrupt enablemasks share the same enumerations by
adding enumeration _i2c_interrupt_enable for all master and slave interrupt sources.

1.5. ChangeLog 95

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.0]
• Bug Fixes

– Fixed bug that during master transfer, when master is nacked during slave probing
or sending subaddress, the return status should be kStatus_I2C_Addr_Nak rather than
kStatus_I2C_Nak.

• Bug Fixes

– Fixed MISRA issues.

* Fixed rules 10.1, 10.4, 13.5.

• New Features

– Added macro I2C_MASTER_TRANSMIT_IGNORE_LAST_NACK, so that user can config-
ure whether to ignore the last byte being nacked by slave during master transfer.

[2.0.8]
• Bug Fixes

– Fixed I2C_MasterSetBaudRate issue that MSTSCLLOW andMSTSCLHIGH are incorrect
when MSTTIME is odd.

[2.0.7]
• Bug Fixes

– Two dividers, CLKDIV and MSTTIME are used to configure baudrate. According to
reference manual, in order to generate 400kHz baudrate, the clock frequency after
CLKDIV must be less than 2mHz. Fixed the bug that, the clock frequency after CLKDIV
may be larger than 2mHz using the previous calculation method.

– Fixed MISRA 10.1 issues.

– Fixedwrongbaudrate calculationwhen feature FSL_FEATURE_I2C_PREPCLKFRG_8MHZ
is enabled.

[2.0.6]
• New Features

– Added master timeout self-recovery support for feature
FSL_FEATURE_I2C_TIMEOUT_RECOVERY.

• Bug Fixes

– Eliminated IAR Pa082 warning.

– Fixed MISRA issues.

* Fixed rules 10.1, 10.3, 10.4, 10.7, 10.8, 11.3, 11.6, 11.8, 11.9, 13.5.

[2.0.5]
• Bug Fixes

– Fixed wrong assignment for datasize in I2C_InitTransferStateMachineDMA.

– Fixedwrongworking flow in I2C_RunTransferStateMachineDMA to ensuremaster can
work in no start flag and no stop flag mode.

96 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

– Fixed wrong working flow in I2C_RunTransferStateMachine and added kReceive-
DataBeginState in _i2c_transfer_states to ensure master can work in no start flag and
no stop flag mode.

– Fixed wrong handle state in I2C_MasterTransferDMAHandleIRQ. After all the data has
been transfered or nak is returned, handle state should be changed to idle.

• Improvements

– Rounded up the calculated divider value in I2C_MasterSetBaudRate.

[2.0.4]
• Improvements

– Updated the I2C_WATI_TIMEOUT macro to unified name I2C_RETRY_TIMES

– Updated the “I2C_MasterSetBaudRate” API to support baudrate configuration for fea-
ture QN9090.

• Bug Fixes

– Fixed build warnning caused by uninitialized variable.

– Fixed COVERITY issue of unchecked return value in I2C_RTOS_Transfer.

[2.0.3]
• Improvements

– Unified the component full name to FLEXCOMM I2C(DMA/FREERTOS) driver.

[2.0.2]
• Improvements

– In slave IRQ:

1. Changed slave receive process to first set the I2C_SLVCTL_SLVCONTINUE_MASK to
acknowledge the received data, then do data receive.

2. Improved slave transmit process to set the I2C_SLVCTL_SLVCONTINUE_MASK im-
mediately after writing the data.

[2.0.1]
• Improvements

– Added I2C_WATI_TIMEOUTmacro to allow users to specify the timeout times for wait-
ing flags in functional API and blocking transfer API.

[2.0.0]
• Initial version.

I2S

[2.3.2]
• Bug Fixes

– Fixed warning for comparison between pointer and integer.

1.5. ChangeLog 97

MCUXpresso SDK Documentation, Release 25.09.00

[2.3.1]
• Bug Fixes

– Updated the value of TX/RX software transfer statemachine after transfer contents are
submitted to avoid race condition.

[2.3.0]
• Improvements

– Addedapi I2S_InstallDMADescriptorMemory/I2S_TransferSendLoopDMA/I2S_TransferReceiveLoopDMA
to support loop transfer.

– Added api I2S_EmptyTxFifo to support blocking flush tx fifo.

– Updated api I2S_TransferAbortDMA by removed the blocking flush tx fifo from this
function.

• Bug Fixes

– Removed the while loop in abort transfer function to fix the dead loop issue under
specific user case.

[2.2.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 8.4.

[2.2.1]
• Improvements

– Added feature FSL_FEATURE_FLEXCOMM_INSTANCE_I2S_SUPPORT_SECONDARY_CHANNELn
for the SOC has parts of instance support secondary channel.

• Bug Fixes

– Added volatile statement for the state variable of i2s_handle and enable the mainline
channel pair before enable interrupt to avoid the issue of code excution reordering
which may cause the interrupt generated unexpectedly.

[2.2.0]
• Improvements

– Added 8/16/24 bits mono data format transfer support in I2S driver.

– Added new apis I2S_SetBitClockRate.

• Bug Fixes

– Fixed the PA082 build warning.

– Fixed the sign-compare warning.

– Fixed violations of the MISRA C-2012 rules 10.4, 10.8, 11.9, 10.1, 11.3, 13.5, 11.8, 10.3,
10.7.

– Fixed the Operand don’t affect result Coverity issue.

98 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.0]
• Improvements

– Added a feature for the FLEXCOMMwhich supports I2S and has interconnection with
DMIC.

– Used a feature to control PDMDATA instead of I2S_CFG1_PDMDATA.

– Addedmember bytesPerFrame in i2s_dma_handle_t, used for DMA transferwidth con-
figure, instead of using sizeof(uint32_t) hardcode.

– Used the macro provided by DMA driver to define the I2S DMA descriptor.

• Bug Fixes

– Fixed the issue that I2S DMA driver always generated duplicate callback.

[2.0.3]
• New Features

– Added a feature to remove configuration for the second channel on LPC51U68.

[2.0.2]
• New Features

– Added ENABLE_IRQ handle after register I2S interrupt handle.

[2.0.1]
• Improvements

– Unified the component full name to FLEXCOMM I2S (DMA) driver.

[2.0.0]
• Initial version.

I2S_DMA

[2.3.3]
• Bug Fixes

– Fixed data size limit does not match the macro DMA_MAX_TRANSFER_BYTES issue.

[2.3.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.3.

[2.3.1]
• Refer I2S driver change log 2.0.1 to 2.3.1

1.5. ChangeLog 99

MCUXpresso SDK Documentation, Release 25.09.00

IAP

[2.0.7]
• Bug Fixes

– Fixed IAP_ReinvokeISP bug that can’t support UART ISP auto baud detection.

[2.0.6]
• Bug Fixes

– Fixed IAP_ReinvokeISP wrong parameter setting.

[2.0.5]
• New Feature

– Added support config flash memory access time.

[2.0.4]
• Bug Fixes

– Fixed the violations of MISRA 2012 rules 9.1

[2.0.3]
• New Features

– Added support for LPC 845’s FAIM operation.

– Added support for LPC 80x’s fixed reference clock for flash controller.

– Added support for LPC 5411x’s Read UID command useless situation.

• Improvements

– Improved the document and code structure.

• Bug Fixes

– Fixed the violations of MISRA 2012 rules:

* Rule 10.1 10.3 10.4 17.7

[2.0.2]
• New Features

– Added an API to read generated signature.

• Bug Fixes

– Fixed the incorrect board support of IAP_ExtendedFlashSignatureRead().

[2.0.1]
• New Features

– Added an API to read factory settings for some calibration registers.

• Improvements

– Updated the size of result array in part APIs.

100 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.0]
• Initial version.

INPUTMUX

[2.0.9]
• Improvements

– Use INPUTMUX_CLOCKS to initialize the inputmux module clock to adapt to multiple
inputmux instances.

– Modify the API base type from INPUTMUX_Type to void.

[2.0.8]
• Improvements

– Updated a feature macro usage for function INPUTMUX_EnableSignal.

[2.0.7]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.0.6]
• Bug Fixes

– Fixed the documentation wrong in API INPUTMUX_AttachSignal.

[2.0.5]
• Bug Fixes

– Fixed build error because some devices has no sct.

[2.0.4]
• Bug Fixes

– Fixed violations of theMISRA C-2012 rule 10.4, 12.2 in INPUTMUX_EnableSignal() func-
tion.

[2.0.3]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.4, 10.7, 12.2.

[2.0.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.4, 12.2.

1.5. ChangeLog 101

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.1]
• Support channel mux setting in INPUTMUX_EnableSignal().

[2.0.0]
• Initial version.

IOCON

[2.2.0]
• Improvements

– Removed duplicate macro defintions.

– Renamed ‘IOCON_I2C_SLEW’macro to ‘IOCON_I2C_MODE’ tomatch its companion ‘IO-
CON_GPIO_MODE’. The original is kept as a deprecated symbol.

[2.1.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.3.

[2.1.1]
• Updated left shift formatwithmask value instead of a constant value to automatically adapt
to all platforms.

[2.1.0]
• Added a new IOCON_PinMuxSet() function with a feature IOCON_ONE_DIMENSION for
LPC845MAX board.

[2.0.0]
• Initial version.

LPC_LCDC

[2.0.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 3.1, 10.3, 10.4, 10.6, 10.7, 10.8, 14.4, 17.7.

[2.0.1]
• New Features

– Added a control macro to enable/disable the RESET and CLOCK code in current driver.

102 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.0]
• Initial version.

MCAN

[2.4.2]
• Bug Fixes

– Fixed MISRA issue rule-10.3, rule-10.6, rule-10.7 and rule-15.7.

[2.4.1]
• Bug Fixes

– Fixed incorrect fifo1 status on message lost.

[2.4.0]
• Improvements

– AddMCAN_CalculateSpecifiedTimingValues() API to get CANbit timing parameterwith
user-defined settings.

– Add MCAN_FDCalculateSpecifiedTimingValues() API to get CANFD bit timing parame-
ter with user-defined settings.

[2.3.2]
• Bug Fixes

– Fix MISRA C-2012 issue 10.1 and 10.4.

[2.3.1]
• Bug Fixes

– Fixed the issue that MCAN_TransferSendNonBlocking() API can’t send remote frame.

[2.3.0]
• Improvements

– Add MCAN_SetMessageRamConfig() API to perform global message RAM configure.

– Add MCAN_EnterInitialMode() API.

[2.2.0]
• Improvements

– Add MCAN_SetBaudRate/MCAN_SetBaudRateFD APIs to make users easy to set CAN
baud rate.

1.5. ChangeLog 103

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.8]
• Bug Fixes

– Add check FIFO status code in MCAN_ReadRxFifo() to avoid read back empty frame
and wrong trigger the FIFO index increase.

[2.1.7]
• Bug Fixes

– Fixed the clear error flags issue in MCAN_TransferHandleIRQ() API.

– Fixed the Solve Tx interrupt issue inMCAN_TransferHandleIRQ() API whichmay abort
the unhandled transfers.

– Remove disable global tx interrupt from MCAN_TransferAbortSend API.

[2.1.6]
• Bug Fixes

– Fixed the issue of writing 1 in the following functions.

– MCAN_TransmitAddRequest

– MCAN_TransmitCancelRequest

– MCAN_ClearRxBufferStatusFlag

[2.1.5]
• Bug Fixes

– Fix MISRA C-2012 issue.

[2.1.4]
• Improvements

– Updated improve timing APIs to make it can calculate the CiA recommended timing
configuration.

– Implement Transmitter Delay Compensation feature.

– Modify the default baudRateFD value to 2M.

• Bug Fixes

– Fixed the code error issue in MCAN_ClearStatusFlag() to avoid clear all flags.

[2.1.3]
• Bug Fixes

– Fixed the code error issue and simplified the algorithm in improved timing APIs.

* MCAN_CalculateImprovedTimingValues

* MCAN_FDCalculateImprovedTimingValues

104 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.2]
• Bug Fixes

– Fixed the non-divisible case in improved timing APIs.

* MCAN_CalculateImprovedTimingValues

* MCAN_FDCalculateImprovedTimingValues

[2.1.1]
• Bug Fixes

– MISRA C-2012 issue check.

* Fixed rules, containing: rule-10.1, rule-10.3, rule-10.4, rule-10.6, rule-10.7, rule-
10.8, rule-11.9, rule-14.4, rule-15.5, rule-15.6, rule-15.7, rule-17.7, rule-18.4, rule-2.2,
rule-21.15, rule-5.8, rule-8.3.

* Fixed the Coverity issue of BAD_SHIFT in MCAN.

* Fixed the issue of Pa082 warning.

* Fixed the issue of dropping interrupt flags in handler function.

[2.1.0]
• Bug Fixes

– Fixed Coverity issue FORWARD_NULL.

– Fixed Clang issue.

– Fixed legacy issue in the driver and changed default bus data baud rate for CANFD.

• Improvements

– Implemented feature for improved timing configuration.

[2.0.3]
• Improvements

– Used memset to initialize the structure before using.

– Added function definition comment in c file.

– Updated source file license to SPDX BSD_3.

– Corrected capital mistake of Fifo and fifo.

– Reset the MCAN module in LPC drivers after clock enable.

[2.0.2]
• Bug Fixes

– Picked MISRA fixed in release 8 branch.

– MISRA C 2012 fixed regarding FlexCAN and MCAN address update.

• Improvements

– Implemented for delay/retry in MCAN driver.

1.5. ChangeLog 105

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.1]
• Improvements

– LPC54608 chip did not support the FD feature, so added a feature macro for it.

[2.0.0]
• Initial version.

MRT

[2.0.5]
• Bug Fixes

– Fixed CERT INT31-C violations.

[2.0.4]
• Improvements

– Don’t reset MRT when there is not system level MRT reset functions.

[2.0.3]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.1 and 10.4.

– Fixed the wrong count value assertion in MRT_StartTimer API.

[2.0.2]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.4.

[2.0.1]
• Added control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.0]
• Initial version.

OTP

[2.0.1]
• Bug Fixes

– Fixed MISRA-C 2012 violations.

106 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.0]
• Initial version.

PINT

[2.2.0]
• Fixed

– Fixed the issue that clear interrupt flag when it’s not handled. This causes events to be
lost.

• Changed

– Used one callback for one PINT instance. It’s unnecessary to provide different callbacks
for all PINT events.

[2.1.13]
• Improvements

– Added instance array for PINT to adapt more devices.

– Used release reset instead of reset PINT which may clear other related registers out of
PINT.

[2.1.12]
• Bug Fixes

– Fixed coverity issue.

[2.1.11]
• Bug Fixes

– Fixed MISRA C-2012 rule 10.7 violation.

[2.1.10]
• New Features

– Added the driver support for MCXN10 platform with combined interrupt handler.

[2.1.9]
• Bug Fixes

– Fixed MISRA-2012 rule 8.4.

[2.1.8]
• Bug Fixes

– Fixed MISRA-2012 rule 10.1 rule 10.4 rule 10.8 rule 18.1 rule 20.9.

1.5. ChangeLog 107

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.7]
• Improvements

– Added fully support for the SECPINT, making it can be used just like PINT.

[2.1.6]
• Bug Fixes

– Fixed the bug of not enabling common pint clock when enabling security pint clock.

[2.1.5]
• Bug Fixes

– Fixed issue for MISRA-2012 check.

* Fixed rule 10.1 rule 10.3 rule 10.4 rule 10.8 rule 14.4.

– Changed interrupt init order to make pin interrupt configuration more reasonable.

[2.1.4]
• Improvements

– Added feature to control distinguish PINT/SECPINT relevant interrupt/clock configura-
tions for PINT_Init and PINT_Deinit API.

– Swapped the order of clearing PIN interrupt status flag and clearing pending NVIC
interrupt in PINT_EnableCallback and PINT_EnableCallbackByIndex function.

– Bug Fixes

* Fixed build issue caused by incorrect macro definitions.

[2.1.3]
• Bug fix:

– Updated PINT_PinInterruptClrStatus to clear PINT interrupt status when the bit is as-
serted and check whether was triggered by edge-sensitive mode.

– Write 1 to IST corresponding bit will clear interrupt status only in edge-sensitivemode
and will switch the active level for this pin in level-sensitive mode.

– Fixed MISRA c-2012 rule 10.1, rule 10.6, rule 10.7.

– Added FSL_FEATURE_SECPINT_NUMBER_OF_CONNECTED_OUTPUTS to distinguish
IRQ relevant array definitions for SECPINT/PINT on lpc55s69 board.

– Fixed PINT driver c++ build error and remove index offset operation.

[2.1.2]
• Improvement:

– Improved way of initialization for SECPINT/PINT in PINT_Init API.

[2.1.1]
• Improvement:

– Enabled secure pint interrupt and add secure interrupt handle.

108 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.0]
• Added PINT_EnableCallbackByIndex/PINT_DisableCallbackByIndex APIs to enable/disable
callback by index.

[2.0.2]
• Added control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.1]
• Bug fix:

– Updated PINT driver to clear interrupt only in Edge sensitive.

[2.0.0]
• Initial version.

POWER

[2.1.0]
• New features

– Added BOD control APIs.

[2.0.0]
• initial version.

PUF

[2.2.0]
• Add support for kPUF_KeySlot4.

• Add new PUF_ClearKey() function, that clears a desired PUF internal HW key register.

[2.1.6]
• Changed wait time in PUF_Init(), when initialization fails it will try PUF_Powercycle() with
shorter time. If this shorter time will also fail, initialization will be tried with worst case
time as before.

[2.1.5]
• Use common SDK delay in puf_wait_usec().

[2.1.4]
• Replace register uint32_t ticksCount with volatile uint32_t ticksCount in puf_wait_usec() to
prevent optimization out delay loop.

1.5. ChangeLog 109

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.3]
• Fix MISRA C-2012 issue.

[2.1.2]
• Update: Add automatic big to little endian swap for user (pre-shared) keys destinated to
secret hardware bus (PUF key index 0).

[2.1.1]
• Fix ARMGCC build warning .

[2.1.0]
• Align driver with PUF SRAM controller registers on LPCXpresso55s16.

• Update initizalition logic .

[2.0.3]
• Fix MISRA C-2012 issue.

[2.0.2]
• New feature:

– Add PUF configuration structure and support for PUF SRAM controller.

• Improvements:

– Remove magic constants.

[2.0.1]
• Bug Fixes:

– Fixed puf_wait_usec function optimization issue.

[2.0.0]
• Initial version.

RESET

[2.4.0]
• Improvements

– Add RESET_ReleasePeripheralReset API.

[2.0.1]
• Update component full_name to “Reset Driver”.

110 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.0]
• initial version.

RIT

[2.1.2]
• Bug Fixes

– Fixed CERT INT31-C violations.

[2.1.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.3, 11.9, 17.7.

[2.1.0]
• Bug Fixes

– Fixed issue for wrong implementation of clearing counter API in RIT driver.

[2.0.2]
• New Features

– Added control macro to enable/disable the CLOCK code in current driver.

[2.0.1]
• Bug Fixes

– Fixed incorrect comments of some APIs.

[2.0.0]
• Initial version.

RNG

[2.1.0]
• Renamed function RNG_GetRandomData() to RNG_GetRandomDataWord(). Added func-
tion RNG_GetRandomData() which discarding next 32 words after reading RNG register
which results into better entropy, as is recommended in UM.

• API is aligned with other RNG driver, having similar functionality as other RNG/TRNG
drivers.

[2.0.0]
• Initial version.

1.5. ChangeLog 111

MCUXpresso SDK Documentation, Release 25.09.00

RTC

[2.2.0]
• New Features

– Created new APIs for the RTC driver.

* RTC_EnableSubsecCounter

* RTC_GetSubsecValue

[2.1.3]
• Bug Fixes

– Fixed issue that RTC_GetWakeupCount may return wrong value.

[2.1.2]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.1, 10.4 and 10.7.

[2.1.1]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.3 and 11.9.

[2.1.0]
• Bug Fixes

– Created new APIs for the RTC driver.

* RTC_EnableTimer

* RTC_EnableWakeUpTimerInterruptFromDPD

* RTC_EnableAlarmTimerInterruptFromDPD

* RTC_EnableWakeupTimer

* RTC_GetEnabledWakeupTimer

* RTC_SetSecondsTimerMatch

* RTC_GetSecondsTimerMatch

* RTC_SetSecondsTimerCount

* RTC_GetSecondsTimerCount

– deprecated legacy APIs for the RTC driver.

* RTC_StartTimer

* RTC_StopTimer

* RTC_EnableInterrupts

* RTC_DisableInterrupts

* RTC_GetEnabledInterrupts

112 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.0]
• Initial version.

SCTIMER

[2.5.1]
• Bug Fixes

– Fixed bug in SCTIMER_SetupCaptureAction: When kSCTIMER_Counter_H is selected,
events 12-15 and capture registers 12-15 CAPn_H field can’t be used.

[2.5.0]
• Improvements

– Add SCTIMER_GetCaptureValue API to get capture value in capture registers.

[2.4.9]
• Improvements

– Supported platforms which don’t have system level SCTIMER reset.

[2.4.8]
• Bug Fixes

– Fixed the issue that the SCTIMER_UpdatePwmDutycycle() can’t writes MATCH_H bit
and RELOADn_H.

[2.4.7]
• Bug Fixes

– Fixed the issue that the SCTIMER_UpdatePwmDutycycle() can’t configure 100% duty
cycle PWM.

[2.4.6]
• Bug Fixes

– Fixed the issuewhere theH registerwas notwritten as aword alongwith the L register.

– Fixed the issue that the SCTIMER_SetCOUNTValue() is not configured with high 16 bits
in unify mode.

[2.4.5]
• Bug Fixes

– Fix SCT_EV_STATE_STATEMSKn macro build error.

1.5. ChangeLog 113

MCUXpresso SDK Documentation, Release 25.09.00

[2.4.4]
• Bug Fixes

– Fix MISRA C-2012 issue 10.8.

[2.4.3]
• Bug Fixes

– Fixed the wrong way of writing CAPCTRL and REGMODE registers in SC-
TIMER_SetupCaptureAction.

[2.4.2]
• Bug Fixes

– Fixed SCTIMER_SetupPwm 100% duty cycle issue.

[2.4.1]
• Bug Fixes

– Fixed the issue that MATCHn_H bit and RELOADn_H bit could not be written.

[2.4.0]

[2.3.0]
• Bug Fixes

– Fixed the potential overflow issue of pulseperiod variable in SC-
TIMER_SetupPwm/SCTIMER_UpdatePwmDutycycle API.

– Fixed the issue of SCTIMER_CreateAndScheduleEvent API does not correctlyworkwith
32 bit unified counter.

– Fixed the issue of position of clear counter operation in SCTIMER_Init API.

• Improvements

– Update SCTIMER_SetupPwm/SCTIMER_UpdatePwmDutycycle to support generate 0%
and 100% PWM signal.

– Add SCTIMER_SetupEventActiveDirection API to configure event activity direction.

– Update SCTIMER_StartTimer/SCTIMER_StopTimer API to support start/stop low
counter and high counter at the same time.

– Add SCTIMER_SetCounterState/SCTIMER_GetCounterState API to write/read counter
current state value.

– Update APIs to make it meaningful.

* SCTIMER_SetEventInState

* SCTIMER_ClearEventInState

* SCTIMER_GetEventInState

114 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

[2.2.0]
• Improvements

– Updated for 16-bit register access.

[2.1.3]
• Bug Fixes

– Fixed the issue of uninitialized variables in SCTIMER_SetupPwm.

– Fixed the issue that the Low 16-bit and high 16-bit work independently in SCTIMER
driver.

• Improvements

– Added an enumerable macro of unify counter for user.

* kSCTIMER_Counter_U

– Created new APIs for the RTC driver.

* SCTIMER_SetupStateLdMethodAction

* SCTIMER_SetupNextStateActionwithLdMethod

* SCTIMER_SetCOUNTValue

* SCTIMER_GetCOUNTValue

* SCTIMER_SetEventInState

* SCTIMER_ClearEventInState

* SCTIMER_GetEventInState

– Deprecated legacy APIs for the RTC driver.

* SCTIMER_SetupNextStateAction

[2.1.2]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.3, 10.4, 10.6, 10.7, 11.9, 14.2 and 15.5.

[2.1.1]
• Improvements

– Updated the register and macro names to align with the header of devices.

[2.1.0]
• Bug Fixes

– Fixed issue where SCT application level Interrupt handler function is occupied by SCT
driver.

– Fixed issue where wrong value for INSYNC field inside SCTIMER_Init function.

– Fixed issue to changeDefault value for INSYNCfield inside SCTIMER_GetDefaultConfig.

1.5. ChangeLog 115

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.1]
• New Features

– Added control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.0]
• Initial version.

SDIF

[2.1.0]
• Improvements

– Removed reduntant member endianMode in sdif_config_t.

– Added error status check in function SDIF_WaitCommandDone.

– Fixed the read fifo data incomplete issue in interrupt non-dma mode.

[2.0.15]
• Bug Fixes

– Cleared the interrupt status before enable the interrupt to avoid interrupt generate
unexpectedly.

– Fixed the SDIF_ReadDataPortBlocking blocking at wrong condition issue.

• Improvements

– Enabled the functionality of timeout parameter in SDIF_SendCommand.

– Added the error recovery while sending sync clock command timeout.

[2.0.14]
• Improvements

– Used different status code for command and data interrupt callback.

• Bug Fixes

– Fixed the DMA descriptor attribute field unreset when configuing the current transfer
DMA descriptor issue which may cause the transfer terminate unexpected.

[2.0.13]
• Improvements

– Disabled redundant interrupt per different transfer request.

– Disabled interrupt and reset command/data pointer in handle when transfer com-
pletes.

• Bug Fixes

– Fixed the PA082 build warning.

– Fixed violations of the MISRA C-2012 rules 14.4, 17.7, 10.4, 10.3, 10.8, 14.3, 10.1, 16.4,
15.7, 12.2, 11.3, 11.9.

116 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.12]
• Bug Fixes

– Fixed the issue that SDIF_ConfigClockDelay didn’t reset the delay field before write.

– Removed useless fifo reset code in transfer function.

– Fixed the divider overflow issue in function SDIF_SetCardClock.

[2.0.11]
• Improvements

– Added API SDIF_GetEnabledInterruptStatus/SDIF_GetEnabledDMAInterruptStatus
and used in SDIF_TransferHandleIRQ.

– Removed useless members interruptFlags/dmaInterruptFlags in the sdif_handle_t.

– Improved SDIF_SendCommand with return success directly when timeout is 0.

– Added timeout error check when sending update clock command in
SDIF_SetCardClock.

– Removed START_CMD status polling for normal command sending in
SDIF_TransferBloking/SDIF_TransferNonBlocking.

– Disabled timeout parameter in function SDIF_SendCommand.

• Bug Fixes

– Added delay cycle for the default speed mode(400 K and 25 M) to fix the timing issue
when different AHB clocks are configured.

[2.0.10]
• Bug Fixes

– Fixed the issue that API SDIF_EnableCardClock could not clear the clock enable bit.

[2.0.9]
• Bug Fixes

– Fixed MDK 66-D warning.

[2.0.8]
• New Features

– Added control macro to enable/disable the RESET and CLOCK code in current driver.

– Disabled useless interrupt while DMA is used.

– Updated SDIF driver for one instance support two cards.

[2.0.7]
• Bug Fixes

– Enlarged the timeout value to avoid a command conflict issue.

1.5. ChangeLog 117

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.6]
• Bug Fixes

– Removed assert(srcClock_Hz <= FSL_FEATURE_SDIF_MAX_SOURCE_CLOCK).

– Used hardware reset instead of software reset during initialization.

[2.0.5]
• New Features

– Added non-word aligned data address and DMA descriptor address transfer support.
Once one of the above addresses is not aligned, switch to host transfer mode.

• Bug Fixes

– Fixed the issue that DMA suspended during initialization.

– Removed useless memset function call.

[2.0.4]
• Improvements

– Added cardInserted/cardRemoved callback function.

– Added host base address/user data parameter for all call back functions.

[2.0.3]
• Improvements

– Improved Clock Delay macro to allow the user to redefine and remove useless delay
for clock below 25 MHz.

[2.0.2]
• Bug Fixes

– Fixed the issue that the status flag could not be cleared entirely after transfer complete.

[2.0.1]
• New Features

– Improved interrupt transfer callback.

• Bug Fixes

– Added assert to limit the SDIF source clock below 52 MHz.

[2.0.0]
• Initial version.

118 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

SHA

[2.3.2]
• Add -O2 optimization for GCC to sha_process_message_data_master(), because without it
the function hangs under some conditions.

[2.3.1]
• Modified sha_process_message_data_master() to ensure that MEMCTRL will be written
within 64 cycles of writing last word to INDATA as is mentioned in errata, even with differ-
ent optimization levels.

[2.3.0]
• Modified SHA_Update to use blocking version of AHB Master mode when its available
on chip. Added SHA_UpdateNonBlocking() function which uses nonblocking AHB Master
mode.

• Fixed incorrect calculation of SHA when calling SHA_Update multiple times when is CPU
used to load data.

• Added Reset into SHA_ClkInit and SHA_ClkDeinit function.

[2.2.2]
• Modified SHA_Finish function. While using pseudo DMA with maximum optimization,
compiler optimize out condition. Which caused block in this function and did not check
flag, which has been set in interrupt.

[2.2.1]
• MISRA C-2012 issue fix.

[2.2.0]
• Support MEMADDR pseudo DMA for loading input data in SHA_Update function (LPCX-
presso54018 and LPCXpresso54628).

[2.1.1]
• MISRA C-2012 issue fixed: rule 10.3, 10.4, 11.9, 14.4, 16.4 and 17.7.

[2.1.0]
• Updated “sha_ldm_stm_16_words” “sha_one_block” API to match QN9090. QN9090 has no
ALIAS register.

• Added “SHA_ClkInit” “SHA_ClkInit”

[2.0.0]
• Initial version.

1.5. ChangeLog 119

MCUXpresso SDK Documentation, Release 25.09.00

SPI

[2.3.2]
• Bug Fixes

– Fixed the txData from void * to const void * in transmit API

[2.3.1]
• Improvements

– Changed SPI_DUMMYDATA to 0x00.

[2.3.0]
• Update version.

[2.2.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules.

[2.2.1]
• Bug Fixes

– Fixed MISRA 2012 10.4 issue.

– Added code to clear FIFOs before transfer using DMA.

[2.2.0]
• Bug Fixes

– Fixed bug that slave gets stuck during interrupt transfer.

[2.1.1]
• Improvements

– Added timeout mechanism when waiting certain states in transfer driver.

• Bug Fixes

– Fixed MISRA 10.1, 5.7 issues.

[2.1.0]
• Bug Fixes

– Fixed Coverity issue of incrementing null pointer in SPI_TransferHandleIRQInternal.

– Eliminated IAR Pa082 warnings.

– Fixed MISRA issues.

* Fixed rules 10.1, 10.3, 10.4, 10.7, 10.8, 11.3, 11.6, 11.8, 11.9, 13.5.

• New Features

120 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

– Modified the definition of SPI_SSELPOL_MASK to support the socs that have only 3
SSEL pins.

[2.0.4]
• Bug Fixes

– Fixed the bug of using read only mode in DMA transfer. In DMA transfer mode, if
transfer->txData is NULL, code attempts to read data from the address of 0x0 for con-
figuring the last frame.

– Fixed wrong assignment of handle->state. During transfer handle->state should be
kSPI_Busy rather than kStatus_SPI_Busy.

• Improvements

– Rounded up the calculated divider value in SPI_MasterSetBaud.

[2.0.3]
• Improvements

– Added “SPI_FIFO_DEPTH(base)” with more definition.

[2.0.2]
• Improvements

– Unified the component full name to FLEXCOMM SPI(DMA/FREERTOS) driver.

[2.0.1]
• Changed the data buffer from uint32_t to uint8_t which matches the real applications for
SPI DMA driver.

• Added dummy data setup API to allow users to configure the dummy data to be transferred.

• Added new APIs for half-duplex transfer function. Users can not only send and receive
data by one API in polling/interrupt/DMA way, but choose either to transmit first or to re-
ceive first. Besides, the PCS pin can be configured as assert status in transmission (between
transmit and receive) by setting the isPcsAssertInTransfer to true.

[2.0.0]
• Initial version.

SPI_DMA

[2.2.2]
• Bug Fixes

– Fixed the bug half duplex mode can’t be used if data size is larger than 1024 bytes.

[2.2.1]
• Bug Fixes

– Fixed MISRA 2012 11.6 issue..

1.5. ChangeLog 121

MCUXpresso SDK Documentation, Release 25.09.00

[2.2.0]
• Improvements

– Supported dataSize larger than 1024 data transmit.

SPI Flash Interface

[2.0.3]
• Bug Fixes

• MISRA C-2012 issue fixed: rule 10.3, 10.4, and 14.4.

[2.0.2]
• Bug Fixes

– Fixed the command function set issue. After the command being set, there will be no
wait for the CMD flag, as it may have been cleared by CS deassert.

[2.0.1]
• New Features

– Added an API to read/write 1/2 Bytes data from/to SPIFI. This interface is useful for
flash command, which only needs 1/2 Bytes data. The previous driver needed users
to make sure of the minimum length being 4, which might cause issues in some flash
commands.

[2.0.0]
• Initial version.

USART

[2.8.5]
• Bug Fixes

– Fixed race condition during call of USART_EnableTxDMA and USART_EnableRxDMA.

[2.8.4]
• Bug Fixes

– Fixed exclusive access in USART_TransferReceiveNonBlocking and US-
ART_TransferSendNonBlocking.

[2.8.3]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.3, 11.8.

122 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

[2.8.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 14.2.

[2.8.1]
• Bug Fixes

– Fixed the Baud Rate Generator(BRG) configuration in 32kHz mode.

[2.8.0]
• New Features

– Added the rx timeout interrupts and status flags of bus status.

– Added new rx timeout configuration item in usart_config_t.

– Added API USART_SetRxTimeoutConfig for rx timeout configuration.

• Improvements

– When the calculated baudrate cannot meet user’s configuration, lower OSR value is
allewed to use.

[2.7.0]
• New Features

– Added the missing interrupts and status flags of bus status.

– Added the check of tx error, noise error framing error and parity error in interrupt
handler.

[2.6.0]
• Improvements

– Used separate data for TX and RX in usart_transfer_t.

• Bug Fixes

– Fixed bug that when ring buffer is used, if some data is received in ring buffer first
before calling USART_TransferReceiveNonBlocking, the received data count returned
by USART_TransferGetReceiveCount is wrong.

• New Features

– Added missing API USART_TransferGetSendCountDMA get send count using DMA.

[2.5.0]
• New Features

– Added APIs USART_GetRxFifoCount/USART_GetTxFifoCount to get rx/tx FIFO data
count.

– Added APIs USART_SetRxFifoWatermark/USART_SetTxFifoWatermark to set rx/tx FIFO
water mark.

• Bug Fixes

– Fixed DMA transfer blocking issue by enabling tx idle interrupt after DMA transmis-
sion finishes.

1.5. ChangeLog 123

MCUXpresso SDK Documentation, Release 25.09.00

[2.4.0]
• New Features

– Modified usart_config_t, USART_Init and USART_GetDefaultConfig APIs so that the
hardware flow control can be enabled during module initialization.

• Bug Fixes

– Fixed MISRA 10.4 violation.

[2.3.1]
• Bug Fixes

– Fixed bug that operation on INTENSET, INTENCLR, FIFOINTENSET and FIFOINTENCLR
should use bitwise operation not ‘or’ operation.

– Fixed bug that if rx interrupt occurrs before TX interrupt is enabled and after txData-
Size is configured, the data will be sent early by mistake, thus TX interrupt will be
enabled after data is sent out.

• Improvements

– Added check for baud rate’s accuracy that returns kSta-
tus_USART_BaudrateNotSupport when the best achieved baud rate is not within
3% error of configured baud rate.

[2.3.0]
• New Features

– Added APIs to configure 9-bit data mode, set slave address and send address.

– Modified USART_TransferReceiveNonBlocking and USART_TransferHandleIRQ to use
9-bit mode in multi-slave system.

[2.2.0]
• New Features

– Added the feature of supporting USART working at 32 kHz clocking mode.

• Improvements

– Modified USART_TransferHandleIRQ so that txState will be set to idle only when all
data has been sent out to bus.

– Modified USART_TransferGetSendCount so that this API returns the real byte count
that USART has sent out rather than the software buffer status.

– Added timeout mechanism when waiting for certain states in transfer driver.

• Bug Fixes

– Fixed MISRA 10.1 issues.

– Fixed bug that operation on INTENSET, INTENCLR, FIFOINTENSET and FIFOINTENCLR
should use bitwise operation not ‘or’ operation.

– Fixed bug that if rx interrupt occurrs before TX interrupt is enabled and after txData-
Size is configured, the data will be sent early by mistake, thus TX interrupt will be
enabled after data is sent out.

124 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.1]
• Improvements

– Added check for transmitter idle in USART_TransferHandleIRQ and US-
ART_TransferSendDMACallback to ensure all the data would be sent out to bus.

– Modified USART_ReadBlocking so that if more than one receiver errors occur, all status
flags will be cleared and the most severe error status will be returned.

• Bug Fixes

– Eliminated IAR Pa082 warnings.

– Fixed MISRA issues.

* Fixed rules 10.1, 10.3, 10.4, 10.7, 10.8, 11.3, 11.6, 11.8, 11.9, 13.5.

[2.1.0]
• New Features

– Added features to allow users to configure the USART to synchronous transfer(master
and slave) mode.

• Bug Fixes

– Modified USART_SetBaudRate to get more acurate configuration.

[2.0.3]
• New Features

– Added new APIs to allow users to enable the CTS which determines whether CTS is
used for flow control.

[2.0.2]
• Bug Fixes

– Fixed the bug where transfer abort APIs could not disable the interrupts. The FIFOIN-
TENSET register should not be used to disable the interrupts, so use the FIFOINTENCLR
register instead.

[2.0.1]
• Improvements

– Unified the component full name to FLEXCOMM USART (DMA/FREERTOS) driver.

[2.0.0]
• Initial version.

USART_DMA

[2.6.0]
• Refer USART driver change log 2.0.1 to 2.6.0

1.5. ChangeLog 125

MCUXpresso SDK Documentation, Release 25.09.00

UTICK

[2.0.5]
• Improvements

– Improved for SOC RW610.

[2.0.4]
• Bug Fixes

– Fixed compile fail issue of no-supporting PD configuration in utick driver.

[2.0.3]
• Bug Fixes

– Fixed violations of MISRA C-2012 rules: 8.4, 14.4, 17.7

[2.0.2]
• Added new feature definition macro to enable/disable power control in drivers for some
devices have no power control function.

[2.0.1]
• Added control macro to enable/disable the CLOCK code in current driver.

[2.0.0]
• Initial version.

WWDT

[2.1.10]
• Bug Fixes

– Chek WWDT_RSTS instead of FSL_FEATURE_WWDT_HAS_NO_RESET to determine
whether the peripheral can be reset.

[2.1.9]
• Bug Fixes

– Fixed violation of the MISRA C-2012 rule 10.4.

[2.1.8]
• Improvements

– Updated the “WWDT_Init” API to add wait operation. Which can avoid the TV value
read by CPU still be 0xFF (reset value) after WWDT_Init function returns.

126 Chapter 1. LPCXpresso54S018

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.7]
• Bug Fixes

– Fixed the issue that the watchdog reset event affected the system from PMC.

– Fixed the issue of setting watchdog WDPROTECT field without considering the back-
wards compatibility.

– Fixed the issue of clearing bit fields by mistake in the function of
WWDT_ClearStatusFlags.

[2.1.5]
• Bug Fixes

– deprecated a unusable API in WWWDT driver.

* WWDT_Disable

[2.1.4]
• Bug Fixes

– Fixed violation of the MISRA C-2012 rules Rule 10.1, 10.3, 10.4 and 11.9.

– Fixed the issue of the inseparable process interrupted by other interrupt source.

* WWDT_Init

[2.1.3]
• Bug Fixes

– Fixed legacy issue when initializing the MOD register.

[2.1.2]
• Improvements

– Updated the “WWDT_ClearStatusFlags” API and “WWDT_GetStatusFlags” API tomatch
QN9090. WDTOF is not set in case of WD reset. Get info from PMC instead.

[2.1.1]
• New Features

– Added new feature definition macro for devices which have no LCOK control bit in
MOD register.

– Implemented delay/retry in WWDT driver.

[2.1.0]
• Improvements

– Added new parameter in configuration when initializingWWDTmodule. This param-
eter, which must be set, allows the user to deliver the WWDT clock frequency.

1.5. ChangeLog 127

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.0]
• Initial version.

1.6 Driver API Reference Manual

This section provides a link to the Driver API RM, detailing available drivers and their usage to
help you integrate hardware efficiently.

LPC54S018

1.7 Middleware Documentation

Find links to detailed middleware documentation for key components. While not all onboard
middleware is covered, this serves as a useful reference for configuration and development.

1.7.1 FreeMASTER

freemaster

1.7.2 AWS IoT

aws_iot

1.7.3 FreeRTOS

FreeRTOS

1.7.4 lwIP

lwip

1.7.5 File systemFatfs

fatfs

128 Chapter 1. LPCXpresso54S018

Chapter 2

LPC54S018

2.1 AES: AES encryption decryption driver

status_t AES_SetKey(AES_Type *base, const uint8_t *key, size_t keySize)
Sets AES key.

Sets AES key.

Parameters
• base – AES peripheral base address

• key – Input key to use for encryption or decryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

Returns
Status from Set Key operation

status_t AES_EncryptEcb(AES_Type *base, const uint8_t *plaintext, uint8_t *ciphertext, size_t
size)

Encrypts AES using the ECB block mode.

Encrypts AES using the ECB block mode.

Parameters
• base – AES peripheral base address

• plaintext – Input plain text to encrypt

• ciphertext – [out] Output cipher text
• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

Returns
Status from encrypt operation

status_t AES_DecryptEcb(AES_Type *base, const uint8_t *ciphertext, uint8_t *plaintext, size_t
size)

Decrypts AES using the ECB block mode.

Decrypts AES using the ECB block mode.

Parameters
• base – AES peripheral base address

• ciphertext – Input ciphertext to decrypt

• plaintext – [out] Output plain text

129

MCUXpresso SDK Documentation, Release 25.09.00

• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

Returns
Status from decrypt operation

status_t AES_EncryptCbc(AES_Type *base, const uint8_t *plaintext, uint8_t *ciphertext, size_t
size, const uint8_t iv[16])

Encrypts AES using CBC block mode.

Parameters
• base – AES peripheral base address

• plaintext – Input plain text to encrypt

• ciphertext – [out] Output cipher text
• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

• iv – Input initial vector to combine with the first input block.

Returns
Status from encrypt operation

status_t AES_DecryptCbc(AES_Type *base, const uint8_t *ciphertext, uint8_t *plaintext, size_t
size, const uint8_t iv[16])

Decrypts AES using CBC block mode.

Parameters
• base – AES peripheral base address

• ciphertext – Input cipher text to decrypt

• plaintext – [out] Output plain text

• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

• iv – Input initial vector to combine with the first input block.

Returns
Status from decrypt operation

status_t AES_EncryptCfb(AES_Type *base, const uint8_t *plaintext, uint8_t *ciphertext, size_t
size, const uint8_t iv[16])

Encrypts AES using CFB block mode.

Parameters
• base – AES peripheral base address

• plaintext – Input plain text to encrypt

• ciphertext – [out] Output cipher text
• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

• iv – Input Initial vector to be used as the first input block.

Returns
Status from encrypt operation

status_t AES_DecryptCfb(AES_Type *base, const uint8_t *ciphertext, uint8_t *plaintext, size_t
size, const uint8_t iv[16])

Decrypts AES using CFB block mode.

Parameters
• base – AES peripheral base address

• ciphertext – Input cipher text to decrypt

130 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

• plaintext – [out] Output plain text

• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

• iv – Input Initial vector to be used as the first input block.

Returns
Status from decrypt operation

status_t AES_EncryptOfb(AES_Type *base, const uint8_t *plaintext, uint8_t *ciphertext, size_t
size, const uint8_t iv[16])

Encrypts AES using OFB block mode.

Parameters
• base – AES peripheral base address

• plaintext – Input plain text to encrypt

• ciphertext – [out] Output cipher text
• size – Size of input and output data in bytes.

• iv – Input Initial vector to be used as the first input block.

Returns
Status from encrypt operation

status_t AES_DecryptOfb(AES_Type *base, const uint8_t *ciphertext, uint8_t *plaintext, size_t
size, const uint8_t iv[16])

Decrypts AES using OFB block mode.

Parameters
• base – AES peripheral base address

• ciphertext – Input cipher text to decrypt

• plaintext – [out] Output plain text

• size – Size of input and output data in bytes.

• iv – Input Initial vector to be used as the first input block.

Returns
Status from decrypt operation

status_t AES_CryptCtr(AES_Type *base, const uint8_t *input, uint8_t *output, size_t size,
uint8_t counter[16], uint8_t counterlast[16], size_t *szLeft)

Encrypts or decrypts AES using CTR block mode.

Encrypts or decrypts AES using CTR block mode. AES CTR mode uses only forward AES
cipher and same algorithm for encryption and decryption. The only difference between
encryption and decryption is that, for encryption, the input argument is plain text and the
output argument is cipher text. For decryption, the input argument is cipher text and the
output argument is plain text.

Parameters
• base – AES peripheral base address

• input – Input data for CTR block mode

• output – [out] Output data for CTR block mode

• size – Size of input and output data in bytes

• counter – [inout] Input counter (updates on return)

• counterlast – [out] Output cipher of last counter, for chained CTR calls.
NULL can be passed if chained calls are not used.

2.1. AES: AES encryption decryption driver 131

MCUXpresso SDK Documentation, Release 25.09.00

• szLeft – [out] Output number of bytes in left unused in counterlast block.
NULL can be passed if chained calls are not used.

Returns
Status from crypt operation

status_t AES_EncryptTagGcm(AES_Type *base, const uint8_t *plaintext, uint8_t *ciphertext,
size_t size, const uint8_t *iv, size_t ivSize, const uint8_t *aad,
size_t aadSize, uint8_t *tag, size_t tagSize)

Encrypts AES and tags using GCM block mode.

Encrypts AES and optionally tags using GCM block mode. If plaintext is NULL, only the
GHASH is calculated and output in the ‘tag’ field.

Parameters
• base – AES peripheral base address

• plaintext – Input plain text to encrypt

• ciphertext – [out] Output cipher text.
• size – Size of input and output data in bytes

• iv – Input initial vector

• ivSize – Size of the IV

• aad – Input additional authentication data

• aadSize – Input size in bytes of AAD

• tag – [out] Output hash tag. Set to NULL to skip tag processing.

• tagSize – Input size of the tag to generate, in bytes. Must be 4,8,12,13,14,15
or 16.

Returns
Status from encrypt operation

status_t AES_DecryptTagGcm(AES_Type *base, const uint8_t *ciphertext, uint8_t *plaintext,
size_t size, const uint8_t *iv, size_t ivSize, const uint8_t *aad,
size_t aadSize, const uint8_t *tag, size_t tagSize)

Decrypts AES and authenticates using GCM block mode.

Decrypts AES and optionally authenticates using GCM block mode. If ciphertext is NULL,
only the GHASH is calculated and compared with the received GHASH in ‘tag’ field.

Parameters
• base – AES peripheral base address

• ciphertext – Input cipher text to decrypt

• plaintext – [out] Output plain text.

• size – Size of input and output data in bytes

• iv – Input initial vector

• ivSize – Size of the IV

• aad – Input additional authentication data

• aadSize – Input size in bytes of AAD

• tag – Input hash tag to compare. Set to NULL to skip tag processing.

• tagSize – Input size of the tag, in bytes. Must be 4, 8, 12, 13, 14, 15, or 16.

Returns
Status from decrypt operation

132 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

AES_BLOCK_SIZE
AES block size in bytes

AES_IV_SIZE
AES Input Vector size in bytes

FSL_AES_DRIVER_VERSION
Defines LPC AES driver version 2.0.3.

Change log:

• Version 2.0.3

– Edit aes_one_block() function to be interrupt safe.

• Version 2.0.2

– Fix MISRA-2012 issues

• Version 2.0.1

– GCM constant time tag comparison

• Version 2.0.0

– initial version

2.2 Clock Driver

enum _clock_ip_name
Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.

Values:

enumerator kCLOCK_IpInvalid
Invalid Ip Name.

enumerator kCLOCK_Rom
Clock gate name: Rom.

enumerator kCLOCK_Sram1
Clock gate name: Sram1.

enumerator kCLOCK_Sram2
Clock gate name: Sram2.

enumerator kCLOCK_Sram3
Clock gate name: Sram3.

enumerator kCLOCK_Spifi
Clock gate name: Spifi.

enumerator kCLOCK_InputMux
Clock gate name: InputMux.

enumerator kCLOCK_Iocon
Clock gate name: Iocon.

enumerator kCLOCK_Gpio0
Clock gate name: Gpio0.

enumerator kCLOCK_Gpio1
Clock gate name: Gpio1.

2.2. Clock Driver 133

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_Gpio2
Clock gate name: Gpio2.

enumerator kCLOCK_Gpio3
Clock gate name: Gpio3.

enumerator kCLOCK_Pint
Clock gate name: Pint.

enumerator kCLOCK_Gint
Clock gate name: Gint.

enumerator kCLOCK_Dma
Clock gate name: Dma.

enumerator kCLOCK_Crc
Clock gate name: Crc.

enumerator kCLOCK_Wwdt
Clock gate name: Wwdt.

enumerator kCLOCK_Rtc
Clock gate name: Rtc.

enumerator kCLOCK_Adc0
Clock gate name: Adc0.

enumerator kCLOCK_Mrt
Clock gate name: Mrt.

enumerator kCLOCK_Rit
Clock gate name: Rit.

enumerator kCLOCK_Sct0
Clock gate name: Sct0.

enumerator kCLOCK_Mcan0
Clock gate name: Mcan0.

enumerator kCLOCK_Mcan1
Clock gate name: Mcan1.

enumerator kCLOCK_Utick
Clock gate name: Utick.

enumerator kCLOCK_FlexComm0
Clock gate name: FlexComm0.

enumerator kCLOCK_FlexComm1
Clock gate name: FlexComm1.

enumerator kCLOCK_FlexComm2
Clock gate name: FlexComm2.

enumerator kCLOCK_FlexComm3
Clock gate name: FlexComm3.

enumerator kCLOCK_FlexComm4
Clock gate name: FlexComm4.

enumerator kCLOCK_FlexComm5
Clock gate name: FlexComm5.

134 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_FlexComm6
Clock gate name: FlexComm6.

enumerator kCLOCK_FlexComm7
Clock gate name: FlexComm7.

enumerator kCLOCK_MinUart0
Clock gate name: MinUart0.

enumerator kCLOCK_MinUart1
Clock gate name: MinUart1.

enumerator kCLOCK_MinUart2
Clock gate name: MinUart2.

enumerator kCLOCK_MinUart3
Clock gate name: MinUart3.

enumerator kCLOCK_MinUart4
Clock gate name: MinUart4.

enumerator kCLOCK_MinUart5
Clock gate name: MinUart5.

enumerator kCLOCK_MinUart6
Clock gate name: MinUart6.

enumerator kCLOCK_MinUart7
Clock gate name: MinUart7.

enumerator kCLOCK_LSpi0
Clock gate name: LSpi0.

enumerator kCLOCK_LSpi1
Clock gate name: LSpi1.

enumerator kCLOCK_LSpi2
Clock gate name: LSpi2.

enumerator kCLOCK_LSpi3
Clock gate name: LSpi3.

enumerator kCLOCK_LSpi4
Clock gate name: LSpi4.

enumerator kCLOCK_LSpi5
Clock gate name: LSpi5.

enumerator kCLOCK_LSpi6
Clock gate name: LSpi6.

enumerator kCLOCK_LSpi7
Clock gate name: LSpi7.

enumerator kCLOCK_BI2c0
Clock gate name: BI2c0.

enumerator kCLOCK_BI2c1
Clock gate name: BI2c1.

enumerator kCLOCK_BI2c2
Clock gate name: BI2c2.

2.2. Clock Driver 135

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_BI2c3
Clock gate name: BI2c3.

enumerator kCLOCK_BI2c4
Clock gate name: BI2c4.

enumerator kCLOCK_BI2c5
Clock gate name: BI2c5.

enumerator kCLOCK_BI2c6
Clock gate name: BI2c6.

enumerator kCLOCK_BI2c7
Clock gate name: BI2c7.

enumerator kCLOCK_FlexI2s0
Clock gate name: FlexI2s0.

enumerator kCLOCK_FlexI2s1
Clock gate name: FlexI2s1.

enumerator kCLOCK_FlexI2s2
Clock gate name: FlexI2s2.

enumerator kCLOCK_FlexI2s3
Clock gate name: FlexI2s3.

enumerator kCLOCK_FlexI2s4
Clock gate name: FlexI2s4.

enumerator kCLOCK_FlexI2s5
Clock gate name: FlexI2s5.

enumerator kCLOCK_FlexI2s6
Clock gate name: FlexI2s6.

enumerator kCLOCK_FlexI2s7
Clock gate name: FlexI2s7.

enumerator kCLOCK_DMic
Clock gate name: DMic.

enumerator kCLOCK_Ct32b2
Clock gate name: Ct32b2.

enumerator kCLOCK_Usbd0
Clock gate name: Usbd0.

enumerator kCLOCK_Ct32b0
Clock gate name: Ct32b0.

enumerator kCLOCK_Ct32b1
Clock gate name: Ct32b1.

enumerator kCLOCK_BodyBias0
Clock gate name: BodyBias0.

enumerator kCLOCK_EzhArchB0
Clock gate name: EzhArchB0.

enumerator kCLOCK_Lcd
Clock gate name: Lcd.

136 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_Sdio
Clock gate name: Sdio.

enumerator kCLOCK_Usbh1
Clock gate name: Usbh1.

enumerator kCLOCK_Usbd1
Clock gate name: Usbd1.

enumerator kCLOCK_UsbRam1
Clock gate name: UsbRam1.

enumerator kCLOCK_Emc
Clock gate name: Emc.

enumerator kCLOCK_Eth
Clock gate name: Eth.

enumerator kCLOCK_Gpio4
Clock gate name: Gpio4.

enumerator kCLOCK_Gpio5
Clock gate name: Gpio5.

enumerator kCLOCK_Aes
Clock gate name: Aes.

enumerator kCLOCK_Otp
Clock gate name: Otp.

enumerator kCLOCK_Rng
Clock gate name: Rng.

enumerator kCLOCK_FlexComm8
Clock gate name: FlexComm8.

enumerator kCLOCK_FlexComm9
Clock gate name: FlexComm9.

enumerator kCLOCK_MinUart8
Clock gate name: MinUart8.

enumerator kCLOCK_MinUart9
Clock gate name: MinUart9.

enumerator kCLOCK_LSpi8
Clock gate name: LSpi8.

enumerator kCLOCK_LSpi9
Clock gate name: LSpi9.

enumerator kCLOCK_BI2c8
Clock gate name: BI2c8.

enumerator kCLOCK_BI2c9
Clock gate name: BI2c9.

enumerator kCLOCK_FlexI2s8
Clock gate name: FlexI2s8.

enumerator kCLOCK_FlexI2s9
Clock gate name: FlexI2s9.

2.2. Clock Driver 137

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_Usbhmr0
Clock gate name: Usbhmr0.

enumerator kCLOCK_Usbhsl0
Clock gate name: Usbhsl0.

enumerator kCLOCK_Sha0
Clock gate name: Sha0.

enumerator kCLOCK_SmartCard0
Clock gate name: SmartCard0.

enumerator kCLOCK_SmartCard1
Clock gate name: SmartCard1.

enumerator kCLOCK_FlexComm10
Clock gate name: FlexComm10.

enumerator kCLOCK_Puf
Clock gate name: Puf.

enumerator kCLOCK_Ct32b3
Clock gate name: Ct32b3.

enumerator kCLOCK_Ct32b4
Clock gate name: Ct32b4.

enum _clock_name
Clock name used to get clock frequency.

Values:

enumerator kCLOCK_CoreSysClk
Core/system clock (aka MAIN_CLK)

enumerator kCLOCK_BusClk
Bus clock (AHB clock)

enumerator kCLOCK_ClockOut
CLOCKOUT

enumerator kCLOCK_FroHf
FRO48/96

enumerator kCLOCK_UsbPll
USB1 PLL

enumerator kCLOCK_Mclk
MCLK

enumerator kCLOCK_Fro12M
FRO12M

enumerator kCLOCK_ExtClk
External Clock

enumerator kCLOCK_PllOut
PLL Output

enumerator kCLOCK_UsbClk
USB input

138 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_WdtOsc
Watchdog Oscillator

enumerator kCLOCK_Frg
Frg Clock

enumerator kCLOCK_AsyncApbClk
Async APB clock

enum _async_clock_src
Clock source selections for the asynchronous APB clock.

Values:

enumerator kCLOCK_AsyncMainClk
Main System clock

enumerator kCLOCK_AsyncFro12Mhz
12MHz FRO

enumerator kCLOCK_AsyncAudioPllClk
Async Audio PLL clock.

enumerator kCLOCK_AsyncI2cClkFc6
Async I2C clock.

enum _clock_attach_id
The enumerator of clock attach Id.

Values:

enumerator kSYSTICK_DIV_CLK_to_SYSTICKCLK
Attach SYSTICK_DIV_CLK to SYSTICKCLK.

enumerator kWDT_OSC_to_SYSTICKCLK
Attach WDT_OSC to SYSTICKCLK.

enumerator kOSC32K_to_SYSTICKCLK
Attach OSC32K to SYSTICKCLK.

enumerator kFRO12M_to_SYSTICKCLK
Attach FRO12M to SYSTICKCLK.

enumerator kNONE_to_SYSTICKCLK
Attach NONE to SYSTICKCLK.

enumerator kFRO12M_to_MAIN_CLK
Attach FRO12M to MAIN_CLK.

enumerator kEXT_CLK_to_MAIN_CLK
Attach EXT_CLK to MAIN_CLK.

enumerator kWDT_OSC_to_MAIN_CLK
Attach WDT_OSC to MAIN_CLK.

enumerator kFRO_HF_to_MAIN_CLK
Attach FRO_HF to MAIN_CLK.

enumerator kSYS_PLL_to_MAIN_CLK
Attach SYS_PLL to MAIN_CLK.

enumerator kOSC32K_to_MAIN_CLK
Attach OSC32K to MAIN_CLK.

2.2. Clock Driver 139

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kMAIN_CLK_to_CLKOUT
Attach MAIN_CLK to CLKOUT.

enumerator kEXT_CLK_to_CLKOUT
Attach EXT_CLK to CLKOUT.

enumerator kWDT_OSC_to_CLKOUT
Attach WDT_OSC to CLKOUT.

enumerator kFRO_HF_to_CLKOUT
Attach FRO_HF to CLKOUT.

enumerator kSYS_PLL_to_CLKOUT
Attach SYS_PLL to CLKOUT.

enumerator kUSB_PLL_to_CLKOUT
Attach USB_PLL to CLKOUT.

enumerator kAUDIO_PLL_to_CLKOUT
Attach AUDIO_PLL to CLKOUT.

enumerator kOSC32K_OSC_to_CLKOUT
Attach OSC32K_OSC to CLKOUT.

enumerator kFRO12M_to_SYS_PLL
Attach FRO12M to SYS_PLL.

enumerator kEXT_CLK_to_SYS_PLL
Attach EXT_CLK to SYS_PLL.

enumerator kWDT_OSC_to_SYS_PLL
Attach WDT_OSC to SYS_PLL.

enumerator kOSC32K_to_SYS_PLL
Attach OSC32K to SYS_PLL.

enumerator kNONE_to_SYS_PLL
Attach NONE to SYS_PLL.

enumerator kFRO12M_to_AUDIO_PLL
Attach FRO12M to AUDIO_PLL.

enumerator kEXT_CLK_to_AUDIO_PLL
Attach EXT_CLK to AUDIO_PLL.

enumerator kNONE_to_AUDIO_PLL
Attach NONE to AUDIO_PLL.

enumerator kMAIN_CLK_to_SPIFI_CLK
Attach MAIN_CLK to SPIFI_CLK.

enumerator kSYS_PLL_to_SPIFI_CLK
Attach SYS_PLL to SPIFI_CLK.

enumerator kUSB_PLL_to_SPIFI_CLK
Attach USB_PLL to SPIFI_CLK.

enumerator kFRO_HF_to_SPIFI_CLK
Attach FRO_HF to SPIFI_CLK.

enumerator kAUDIO_PLL_to_SPIFI_CLK
Attach AUDIO_PLL to SPIFI_CLK.

140 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kNONE_to_SPIFI_CLK
Attach NONE to SPIFI_CLK.

enumerator kFRO_HF_to_ADC_CLK
Attach FRO_HF to ADC_CLK.

enumerator kSYS_PLL_to_ADC_CLK
Attach SYS_PLL to ADC_CLK.

enumerator kUSB_PLL_to_ADC_CLK
Attach USB_PLL to ADC_CLK.

enumerator kAUDIO_PLL_to_ADC_CLK
Attach AUDIO_PLL to ADC_CLK.

enumerator kNONE_to_ADC_CLK
Attach NONE to ADC_CLK.

enumerator kFRO_HF_to_USB0_CLK
Attach FRO_HF to USB0_CLK.

enumerator kSYS_PLL_to_USB0_CLK
Attach SYS_PLL to USB0_CLK.

enumerator kUSB_PLL_to_USB0_CLK
Attach USB_PLL to USB0_CLK.

enumerator kNONE_to_USB0_CLK
Attach NONE to USB0_CLK.

enumerator kFRO_HF_to_USB1_CLK
Attach FRO_HF to USB1_CLK.

enumerator kSYS_PLL_to_USB1_CLK
Attach SYS_PLL to USB1_CLK.

enumerator kUSB_PLL_to_USB1_CLK
Attach USB_PLL to USB1_CLK.

enumerator kNONE_to_USB1_CLK
Attach NONE to USB1_CLK.

enumerator kFRO12M_to_FLEXCOMM0
Attach FRO12M to FLEXCOMM0.

enumerator kFRO_HF_to_FLEXCOMM0
Attach FRO_HF to FLEXCOMM0.

enumerator kAUDIO_PLL_to_FLEXCOMM0
Attach AUDIO_PLL to FLEXCOMM0.

enumerator kMCLK_to_FLEXCOMM0
Attach MCLK to FLEXCOMM0.

enumerator kFRG_to_FLEXCOMM0
Attach FRG to FLEXCOMM0.

enumerator kNONE_to_FLEXCOMM0
Attach NONE to FLEXCOMM0.

enumerator kFRO12M_to_FLEXCOMM1
Attach FRO12M to FLEXCOMM1.

2.2. Clock Driver 141

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kFRO_HF_to_FLEXCOMM1
Attach FRO_HF to FLEXCOMM1.

enumerator kAUDIO_PLL_to_FLEXCOMM1
Attach AUDIO_PLL to FLEXCOMM1.

enumerator kMCLK_to_FLEXCOMM1
Attach MCLK to FLEXCOMM1.

enumerator kFRG_to_FLEXCOMM1
Attach FRG to FLEXCOMM1.

enumerator kNONE_to_FLEXCOMM1
Attach NONE to FLEXCOMM1.

enumerator kFRO12M_to_FLEXCOMM2
Attach FRO12M to FLEXCOMM2.

enumerator kFRO_HF_to_FLEXCOMM2
Attach FRO_HF to FLEXCOMM2.

enumerator kAUDIO_PLL_to_FLEXCOMM2
Attach AUDIO_PLL to FLEXCOMM2.

enumerator kMCLK_to_FLEXCOMM2
Attach MCLK to FLEXCOMM2.

enumerator kFRG_to_FLEXCOMM2
Attach FRG to FLEXCOMM2.

enumerator kNONE_to_FLEXCOMM2
Attach NONE to FLEXCOMM2.

enumerator kFRO12M_to_FLEXCOMM3
Attach FRO12M to FLEXCOMM3.

enumerator kFRO_HF_to_FLEXCOMM3
Attach FRO_HF to FLEXCOMM3.

enumerator kAUDIO_PLL_to_FLEXCOMM3
Attach AUDIO_PLL to FLEXCOMM3.

enumerator kMCLK_to_FLEXCOMM3
Attach MCLK to FLEXCOMM3.

enumerator kFRG_to_FLEXCOMM3
Attach FRG to FLEXCOMM3.

enumerator kNONE_to_FLEXCOMM3
Attach NONE to FLEXCOMM3.

enumerator kFRO12M_to_FLEXCOMM4
Attach FRO12M to FLEXCOMM4.

enumerator kFRO_HF_to_FLEXCOMM4
Attach FRO_HF to FLEXCOMM4.

enumerator kAUDIO_PLL_to_FLEXCOMM4
Attach AUDIO_PLL to FLEXCOMM4.

enumerator kMCLK_to_FLEXCOMM4
Attach MCLK to FLEXCOMM4.

142 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kFRG_to_FLEXCOMM4
Attach FRG to FLEXCOMM4.

enumerator kNONE_to_FLEXCOMM4
Attach NONE to FLEXCOMM4.

enumerator kFRO12M_to_FLEXCOMM5
Attach FRO12M to FLEXCOMM5.

enumerator kFRO_HF_to_FLEXCOMM5
Attach FRO_HF to FLEXCOMM5.

enumerator kAUDIO_PLL_to_FLEXCOMM5
Attach AUDIO_PLL to FLEXCOMM5.

enumerator kMCLK_to_FLEXCOMM5
Attach MCLK to FLEXCOMM5.

enumerator kFRG_to_FLEXCOMM5
Attach FRG to FLEXCOMM5.

enumerator kNONE_to_FLEXCOMM5
Attach NONE to FLEXCOMM5.

enumerator kFRO12M_to_FLEXCOMM6
Attach FRO12M to FLEXCOMM6.

enumerator kFRO_HF_to_FLEXCOMM6
Attach FRO_HF to FLEXCOMM6.

enumerator kAUDIO_PLL_to_FLEXCOMM6
Attach AUDIO_PLL to FLEXCOMM6.

enumerator kMCLK_to_FLEXCOMM6
Attach MCLK to FLEXCOMM6.

enumerator kFRG_to_FLEXCOMM6
Attach FRG to FLEXCOMM6.

enumerator kNONE_to_FLEXCOMM6
Attach NONE to FLEXCOMM6.

enumerator kFRO12M_to_FLEXCOMM7
Attach FRO12M to FLEXCOMM7.

enumerator kFRO_HF_to_FLEXCOMM7
Attach FRO_HF to FLEXCOMM7.

enumerator kAUDIO_PLL_to_FLEXCOMM7
Attach AUDIO_PLL to FLEXCOMM7.

enumerator kMCLK_to_FLEXCOMM7
Attach MCLK to FLEXCOMM7.

enumerator kFRG_to_FLEXCOMM7
Attach FRG to FLEXCOMM7.

enumerator kNONE_to_FLEXCOMM7
Attach NONE to FLEXCOMM7.

enumerator kFRO12M_to_FLEXCOMM8
Attach FRO12M to FLEXCOMM8.

2.2. Clock Driver 143

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kFRO_HF_to_FLEXCOMM8
Attach FRO_HF to FLEXCOMM8.

enumerator kAUDIO_PLL_to_FLEXCOMM8
Attach AUDIO_PLL to FLEXCOMM8.

enumerator kMCLK_to_FLEXCOMM8
Attach MCLK to FLEXCOMM8.

enumerator kFRG_to_FLEXCOMM8
Attach FRG to FLEXCOMM8.

enumerator kNONE_to_FLEXCOMM8
Attach NONE to FLEXCOMM8.

enumerator kFRO12M_to_FLEXCOMM9
Attach FRO12M to FLEXCOMM9.

enumerator kFRO_HF_to_FLEXCOMM9
Attach FRO_HF to FLEXCOMM9.

enumerator kAUDIO_PLL_to_FLEXCOMM9
Attach AUDIO_PLL to FLEXCOMM9.

enumerator kMCLK_to_FLEXCOMM9
Attach MCLK to FLEXCOMM9.

enumerator kFRG_to_FLEXCOMM9
Attach FRG to FLEXCOMM9.

enumerator kNONE_to_FLEXCOMM9
Attach NONE to FLEXCOMM9.

enumerator kMAIN_CLK_to_FLEXCOMM10
Attach MAIN_CLK to FLEXCOMM10.

enumerator kSYS_PLL_to_FLEXCOMM10
Attach SYS_PLL to FLEXCOMM10.

enumerator kUSB_PLL_to_FLEXCOMM10
Attach USB_PLL to FLEXCOMM10.

enumerator kFRO_HF_to_FLEXCOMM10
Attach FRO_HF to FLEXCOMM10.

enumerator kAUDIO_PLL_to_FLEXCOMM10
Attach AUDIO_PLL to FLEXCOMM10.

enumerator kNONE_to_FLEXCOMM10
Attach NONE to FLEXCOMM10.

enumerator kFRO_HF_to_MCLK
Attach FRO_HF to MCLK.

enumerator kAUDIO_PLL_to_MCLK
Attach AUDIO_PLL to MCLK.

enumerator kNONE_to_MCLK
Attach NONE to MCLK.

enumerator kMAIN_CLK_to_FRG
Attach MAIN_CLK to FRG.

144 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSYS_PLL_to_FRG
Attach SYS_PLL to FRG.

enumerator kFRO12M_to_FRG
Attach FRO12M to FRG.

enumerator kFRO_HF_to_FRG
Attach FRO_HF to FRG.

enumerator kNONE_to_FRG
Attach NONE to FRG.

enumerator kFRO12M_to_DMIC
Attach FRO12M to DMIC.

enumerator kFRO_HF_DIV_to_DMIC
Attach FRO_HF_DIV to DMIC.

enumerator kAUDIO_PLL_to_DMIC
Attach AUDIO_PLL to DMIC.

enumerator kMCLK_to_DMIC
Attach MCLK to DMIC.

enumerator kMAIN_CLK_to_DMIC
Attach MAIN_CLK to DMIC.

enumerator kWDT_OSC_to_DMIC
Attach WDT_OSC to DMIC.

enumerator kNONE_to_DMIC
Attach NONE to DMIC.

enumerator kMAIN_CLK_to_SCT_CLK
Attach MAIN_CLK to SCT_CLK.

enumerator kSYS_PLL_to_SCT_CLK
Attach SYS_PLL to SCT_CLK.

enumerator kFRO_HF_to_SCT_CLK
Attach FRO_HF to SCT_CLK.

enumerator kAUDIO_PLL_to_SCT_CLK
Attach AUDIO_PLL to SCT_CLK.

enumerator kNONE_to_SCT_CLK
Attach NONE to SCT_CLK.

enumerator kMAIN_CLK_to_LCD_CLK
Attach MAIN_CLK to LCD_CLK.

enumerator kLCDCLKIN_to_LCD_CLK
Attach LCDCLKIN to LCD_CLK.

enumerator kFRO_HF_to_LCD_CLK
Attach FRO_HF to LCD_CLK.

enumerator kNONE_to_LCD_CLK
Attach NONE to LCD_CLK.

enumerator kMAIN_CLK_to_SDIO_CLK
Attach MAIN_CLK to SDIO_CLK.

2.2. Clock Driver 145

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSYS_PLL_to_SDIO_CLK
Attach SYS_PLL to SDIO_CLK.

enumerator kUSB_PLL_to_SDIO_CLK
Attach USB_PLL to SDIO_CLK.

enumerator kFRO_HF_to_SDIO_CLK
Attach FRO_HF to SDIO_CLK.

enumerator kAUDIO_PLL_to_SDIO_CLK
Attach AUDIO_PLL to SDIO_CLK.

enumerator kNONE_to_SDIO_CLK
Attach NONE to SDIO_CLK.

enumerator kMAIN_CLK_to_ASYNC_APB
Attach MAIN_CLK to ASYNC_APB.

enumerator kFRO12M_to_ASYNC_APB
Attach FRO12M to ASYNC_APB.

enumerator kAUDIO_PLL_to_ASYNC_APB
Attach AUDIO_PLL to ASYNC_APB.

enumerator kI2C_CLK_FC6_to_ASYNC_APB
Attach I2C_CLK_FC6 to ASYNC_APB.

enumerator kNONE_to_NONE
Attach NONE to NONE.

enum _clock_div_name
Clock dividers.

Values:

enumerator kCLOCK_DivSystickClk
Systick Clock Divider.

enumerator kCLOCK_DivArmTrClkDiv
Arm Tr Clk Div Divider.

enumerator kCLOCK_DivCan0Clk
Can0 Clock Divider.

enumerator kCLOCK_DivCan1Clk
Can1 Clock Divider.

enumerator kCLOCK_DivSmartCard0Clk
Smart Card0 Clock Divider.

enumerator kCLOCK_DivSmartCard1Clk
Smart Card1 Clock Divider.

enumerator kCLOCK_DivAhbClk
Ahb Clock Divider.

enumerator kCLOCK_DivClkOut
Clk Out Divider.

enumerator kCLOCK_DivFrohfClk
Frohf Clock Divider.

146 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_DivSpifiClk
Spifi Clock Divider.

enumerator kCLOCK_DivAdcAsyncClk
Adc Async Clock Divider.

enumerator kCLOCK_DivUsb0Clk
Usb0 Clock Divider.

enumerator kCLOCK_DivUsb1Clk
Usb1 Clock Divider.

enumerator kCLOCK_DivFrg
Frg Divider.

enumerator kCLOCK_DivDmicClk
Dmic Clock Divider.

enumerator kCLOCK_DivMClk
I2S MCLK Clock Divider.

enumerator kCLOCK_DivLcdClk
Lcd Clock Divider.

enumerator kCLOCK_DivSctClk
Sct Clock Divider.

enumerator kCLOCK_DivEmcClk
Emc Clock Divider.

enumerator kCLOCK_DivSdioClk
Sdio clock divider.

enum _pll_error
PLL status definitions.

Values:

enumerator kStatus_PLL_Success
PLL operation was successful

enumerator kStatus_PLL_OutputTooLow
PLL output rate request was too low

enumerator kStatus_PLL_OutputTooHigh
PLL output rate request was too high

enumerator kStatus_PLL_InputTooLow
PLL input rate is too low

enumerator kStatus_PLL_InputTooHigh
PLL input rate is too high

enumerator kStatus_PLL_OutsideIntLimit
Requested output rate isn’t possible

enumerator kStatus_PLL_CCOTooLow
Requested CCO rate isn’t possible

enumerator kStatus_PLL_CCOTooHigh
Requested CCO rate isn’t possible

2.2. Clock Driver 147

MCUXpresso SDK Documentation, Release 25.09.00

enum _clock_usb_src
USB clock source definition.

Values:

enumerator kCLOCK_UsbSrcFro
Use FRO 96 or 48 MHz.

enumerator kCLOCK_UsbSrcSystemPll
Use System PLL output.

enumerator kCLOCK_UsbSrcMainClock
Use Main clock.

enumerator kCLOCK_UsbSrcUsbPll
Use USB PLL clock.

enumerator kCLOCK_UsbSrcNone
Use None, this may be selected in order to reduce power when no output is needed.

enum _usb_pll_psel
USB PDEL Divider.

Values:

enumerator pSel_Divide_1

enumerator pSel_Divide_2

enumerator pSel_Divide_4

enumerator pSel_Divide_8

typedef enum _clock_ip_name clock_ip_name_t
Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.

typedef enum _clock_name clock_name_t
Clock name used to get clock frequency.

typedef enum _async_clock_src async_clock_src_t
Clock source selections for the asynchronous APB clock.

typedef enum _clock_attach_id clock_attach_id_t
The enumerator of clock attach Id.

typedef enum _clock_div_name clock_div_name_t
Clock dividers.

typedef struct _pll_config pll_config_t
PLL configuration structure.

This structure can be used to configure the settings for a PLL setup structure. Fill in the
desired configuration for the PLL and call the PLL setup function to fill in a PLL setup struc-
ture.

typedef struct _pll_setup pll_setup_t
PLL setup structure This structure can be used to pre-build a PLL setup configuration at
run-time and quickly set the PLL to the configuration. It can be populated with the PLL
setup function. If powering up or waiting for PLL lock, the PLL input clock source should
be configured prior to PLL setup.

typedef enum _pll_error pll_error_t
PLL status definitions.

148 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _clock_usb_src clock_usb_src_t
USB clock source definition.

typedef enum _usb_pll_psel usb_pll_psel
USB PDEL Divider.

typedef struct _usb_pll_setup usb_pll_setup_t
PLL setup structure This structure can be used to pre-build a USB PLL setup configuration
at run-time and quickly set the usb PLL to the configuration. It can be populated with the
USB PLL setup function. If powering up or waiting for USB PLL lock, the PLL input clock
source should be configured prior to USB PLL setup.

static inline void CLOCK_EnableClock(clock_ip_name_t clk)

static inline void CLOCK_DisableClock(clock_ip_name_t clk)

void CLOCK_SetupFROClocking(uint32_t froFreq)
Initialize the Core clock to given frequency (12, 48 or 96 MHz), this API is implememnt in
ROM code. Turns on FRO and uses default CCO, if freq is 12000000, then high speed out-
put is off, else high speed output is enabled. Usage: CLOCK_SetupFROClocking(frequency),
(frequency must be one of 12, 48 or 96 MHz) Note: Need to make sure ROM and OTP has
power(PDRUNCFG0[17,29]= 0U) before calling this API since this API is implemented in
ROM code and the FROHF TRIM value is stored in OTP.

Parameters
• froFreq – target fro frequency.

Returns
Nothing

void CLOCK_AttachClk(clock_attach_id_t connection)
Configure the clock selection muxes.

Parameters
• connection – : Clock to be configured.

Returns
Nothing

clock_attach_id_t CLOCK_GetClockAttachId(clock_attach_id_t attachId)
Get the actual clock attach id. This fuction uses the offset in input attach id, then it reads
the actual source value in the register and combine the offset to obtain an actual attach id.

Parameters
• attachId – : Clock attach id to get.

Returns
Clock source value.

void CLOCK_SetClkDiv(clock_div_name_t div_name, uint32_t divided_by_value, bool reset)
Setup peripheral clock dividers.

Parameters
• div_name – : Clock divider name

• divided_by_value – Value to be divided

• reset – : Whether to reset the divider counter.

Returns
Nothing

2.2. Clock Driver 149

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t CLOCK_GetFreq(clock_name_t clockName)
Return Frequency of selected clock.

Returns
Frequency of selected clock

uint32_t CLOCK_GetFro12MFreq(void)
Return Frequency of FRO 12MHz.

Returns
Frequency of FRO 12MHz

uint32_t CLOCK_GetClockOutClkFreq(void)
Return Frequency of ClockOut.

Returns
Frequency of ClockOut

uint32_t CLOCK_GetSpifiClkFreq(void)
Return Frequency of Spifi Clock.

Returns
Frequency of Spifi.

uint32_t CLOCK_GetAdcClkFreq(void)
Return Frequency of Adc Clock.

Returns
Frequency of Adc Clock.

uint32_t CLOCK_GetMCanClkFreq(uint32_t MCanSel)
brief Return Frequency of MCAN Clock param MCanSel : 0U: MCAN0; 1U: MCAN1 return
Frequency of MCAN Clock

uint32_t CLOCK_GetUsb0ClkFreq(void)
Return Frequency of Usb0 Clock.

Returns
Frequency of Usb0 Clock.

uint32_t CLOCK_GetUsb1ClkFreq(void)
Return Frequency of Usb1 Clock.

Returns
Frequency of Usb1 Clock.

uint32_t CLOCK_GetMclkClkFreq(void)
Return Frequency of MClk Clock.

Returns
Frequency of MClk Clock.

uint32_t CLOCK_GetSctClkFreq(void)
Return Frequency of SCTimer Clock.

Returns
Frequency of SCTimer Clock.

uint32_t CLOCK_GetSdioClkFreq(void)
Return Frequency of SDIO Clock.

Returns
Frequency of SDIO Clock.

150 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t CLOCK_GetLcdClkFreq(void)
Return Frequency of LCD Clock.

Returns
Frequency of LCD Clock.

uint32_t CLOCK_GetLcdClkIn(void)
Return Frequency of LCD CLKIN Clock.

Returns
Frequency of LCD CLKIN Clock.

uint32_t CLOCK_GetExtClkFreq(void)
Return Frequency of External Clock.

Returns
Frequency of External Clock. If no external clock is used returns 0.

uint32_t CLOCK_GetWdtOscFreq(void)
Return Frequency of Watchdog Oscillator.

Returns
Frequency of Watchdog Oscillator

uint32_t CLOCK_GetFroHfFreq(void)
Return Frequency of High-Freq output of FRO.

Returns
Frequency of High-Freq output of FRO

uint32_t CLOCK_GetFrgClkFreq(void)
Return Frequency of frg.

Returns
Frequency of FRG

uint32_t CLOCK_GetDmicClkFreq(void)
Return Frequency of dmic.

Returns
Frequency of DMIC

uint32_t CLOCK_SetFRGClock(uint32_t freq)
Set FRG Clk.

Returns
1: if set FRG CLK successfully. 0: if set FRG CLK fail.

uint32_t CLOCK_GetPllOutFreq(void)
Return Frequency of PLL.

Returns
Frequency of PLL

uint32_t CLOCK_GetUsbPllOutFreq(void)
Return Frequency of USB PLL.

Returns
Frequency of PLL

uint32_t CLOCK_GetAudioPllOutFreq(void)
Return Frequency of AUDIO PLL.

Returns
Frequency of PLL

2.2. Clock Driver 151

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t CLOCK_GetOsc32KFreq(void)
Return Frequency of 32kHz osc.

Returns
Frequency of 32kHz osc

uint32_t CLOCK_GetCoreSysClkFreq(void)
Return Frequency of Core System.

Returns
Frequency of Core System

uint32_t CLOCK_GetI2SMClkFreq(void)
Return Frequency of I2S MCLK Clock.

Returns
Frequency of I2S MCLK Clock

uint32_t CLOCK_GetFlexCommClkFreq(uint32_t id)
Return Frequency of Flexcomm functional Clock.

Returns
Frequency of Flexcomm functional Clock

uint32_t CLOCK_GetFRGInputClock(void)
return FRG Clk

Returns
Frequency of FRG CLK.

__STATIC_INLINE async_clock_src_t CLOCK_GetAsyncApbClkSrc (void)
Return Asynchronous APB Clock source.

Returns
Asynchronous APB CLock source

uint32_t CLOCK_GetAsyncApbClkFreq(void)
Return Frequency of Asynchronous APB Clock.

Returns
Frequency of Asynchronous APB Clock Clock

__STATIC_INLINE uint32_t CLOCK_GetEmcClkFreq (void)
Return EMC source.

Returns
EMC source

uint32_t CLOCK_GetAudioPLLInClockRate(void)
Return Audio PLL input clock rate.

Returns
Audio PLL input clock rate

uint32_t CLOCK_GetSystemPLLInClockRate(void)
Return System PLL input clock rate.

Returns
System PLL input clock rate

uint32_t CLOCK_GetSystemPLLOutClockRate(bool recompute)
Return System PLL output clock rate.

152 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

Note: The PLL rate is cached in the driver in a variable as the rate computation func-
tion can take some time to perform. It is recommended to use ‘false’ with the ‘recompute’
parameter.

Parameters
• recompute – : Forces a PLL rate recomputation if true

Returns
System PLL output clock rate

uint32_t CLOCK_GetAudioPLLOutClockRate(bool recompute)
Return System AUDIO PLL output clock rate.

Note: The AUDIO PLL rate is cached in the driver in a variable as the rate computation
function can take some time to perform. It is recommended to use ‘false’ with the ‘recom-
pute’ parameter.

Parameters
• recompute – : Forces a AUDIO PLL rate recomputation if true

Returns
System AUDIO PLL output clock rate

uint32_t CLOCK_GetUsbPLLOutClockRate(bool recompute)
Return System USB PLL output clock rate.

Note: The USB PLL rate is cached in the driver in a variable as the rate computation func-
tion can take some time to perform. It is recommended to use ‘false’ with the ‘recompute’
parameter.

Parameters
• recompute – : Forces a USB PLL rate recomputation if true

Returns
System USB PLL output clock rate

__STATIC_INLINE void CLOCK_SetBypassPLL (bool bypass)
Enables and disables PLL bypass mode.

bypass : true to bypass PLL (PLL output = PLL input, false to disable bypass

Returns
System PLL output clock rate

__STATIC_INLINE bool CLOCK_IsSystemPLLLocked (void)
Check if PLL is locked or not.

Returns
true if the PLL is locked, false if not locked

__STATIC_INLINE bool CLOCK_IsUsbPLLLocked (void)
Check if USB PLL is locked or not.

Returns
true if the USB PLL is locked, false if not locked

2.2. Clock Driver 153

MCUXpresso SDK Documentation, Release 25.09.00

__STATIC_INLINE bool CLOCK_IsAudioPLLLocked (void)
Check if AUDIO PLL is locked or not.

Returns
true if the AUDIO PLL is locked, false if not locked

__STATIC_INLINE void CLOCK_Enable_SysOsc (bool enable)
Enables and disables SYS OSC.

enable : true to enable SYS OSC, false to disable SYS OSC

void CLOCK_SetStoredPLLClockRate(uint32_t rate)
Store the current PLL rate.

Parameters
• rate – Current rate of the PLL

Returns
Nothing

void CLOCK_SetStoredAudioPLLClockRate(uint32_t rate)
Store the current AUDIO PLL rate.

Parameters
• rate – Current rate of the PLL

Returns
Nothing

uint32_t CLOCK_GetSystemPLLOutFromSetup(pll_setup_t *pSetup)
Return System PLL output clock rate from setup structure.

Parameters
• pSetup – : Pointer to a PLL setup structure

Returns
System PLL output clock rate the setup structure will generate

uint32_t CLOCK_GetAudioPLLOutFromSetup(pll_setup_t *pSetup)
Return System AUDIO PLL output clock rate from setup structure.

Parameters
• pSetup – : Pointer to a PLL setup structure

Returns
System PLL output clock rate the setup structure will generate

uint32_t CLOCK_GetAudioPLLOutFromFractSetup(pll_setup_t *pSetup)
Return System AUDIO PLL output clock rate from audio fractioanl setup structure.

Parameters
• pSetup – : Pointer to a PLL setup structure

Returns
System PLL output clock rate the setup structure will generate

uint32_t CLOCK_GetUsbPLLOutFromSetup(const usb_pll_setup_t *pSetup)
Return System USB PLL output clock rate from setup structure.

Parameters
• pSetup – : Pointer to a PLL setup structure

Returns
System PLL output clock rate the setup structure will generate

154 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

pll_error_t CLOCK_SetupPLLData(pll_config_t *pControl, pll_setup_t *pSetup)
Set PLL output based on the passed PLL setup data.

Note: Actual frequency for setup may vary from the desired frequency based on the accu-
racy of input clocks, rounding, non-fractional PLL mode, etc.

Parameters
• pControl – : Pointer to populated PLL control structure to generate setup
with

• pSetup – : Pointer to PLL setup structure to be filled

Returns
PLL_ERROR_SUCCESS on success, or PLL setup error code

pll_error_t CLOCK_SetupAudioPLLData(pll_config_t *pControl, pll_setup_t *pSetup)
Set AUDIO PLL output based on the passed AUDIO PLL setup data.

Note: Actual frequency for setup may vary from the desired frequency based on the accu-
racy of input clocks, rounding, non-fractional PLL mode, etc.

Parameters
• pControl – : Pointer to populated PLL control structure to generate setup
with

• pSetup – : Pointer to PLL setup structure to be filled

Returns
PLL_ERROR_SUCCESS on success, or PLL setup error code

pll_error_t CLOCK_SetupSystemPLLPrec(pll_setup_t *pSetup, uint32_t flagcfg)
Set PLL output from PLL setup structure (precise frequency)

Note: This function will power off the PLL, setup the PLL with the new setup data, and
then optionally powerup the PLL, wait for PLL lock, and adjust system voltages to the new
PLL rate. The function will not alter any source clocks (ie, main systen clock) that may use
the PLL, so these should be setup prior to and after exiting the function.

Parameters
• pSetup – : Pointer to populated PLL setup structure

• flagcfg – : Flag configuration for PLL config structure

Returns
PLL_ERROR_SUCCESS on success, or PLL setup error code

pll_error_t CLOCK_SetupAudioPLLPrec(pll_setup_t *pSetup, uint32_t flagcfg)
Set AUDIO PLL output from AUDIOPLL setup structure (precise frequency)

Note: This function will power off the PLL, setup the PLL with the new setup data, and
then optionally powerup the AUDIO PLL, wait for PLL lock, and adjust system voltages to
the newAUDIOPLL rate. The functionwill not alter any source clocks (ie, main systen clock)
thatmay use the AUDIO PLL, so these should be setup prior to and after exiting the function.

2.2. Clock Driver 155

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• pSetup – : Pointer to populated PLL setup structure

• flagcfg – : Flag configuration for PLL config structure

Returns
PLL_ERROR_SUCCESS on success, or PLL setup error code

pll_error_t CLOCK_SetupAudioPLLPrecFract(pll_setup_t *pSetup, uint32_t flagcfg)

Set AUDIO PLL output from AUDIOPLL setup structure using the Audio Fractional divider
register(precise

frequency)

Note: This function will power off the PLL, setup the PLL with the new setup data, and
then optionally powerup the AUDIO PLL, wait for PLL lock, and adjust system voltages to
the newAUDIOPLL rate. The functionwill not alter any source clocks (ie, main systen clock)
thatmay use the AUDIO PLL, so these should be setup prior to and after exiting the function.

Parameters
• pSetup – : Pointer to populated PLL setup structure

• flagcfg – : Flag configuration for PLL config structure

Returns
PLL_ERROR_SUCCESS on success, or PLL setup error code

pll_error_t CLOCK_SetPLLFreq(const pll_setup_t *pSetup)
Set PLL output from PLL setup structure (precise frequency)

Note: This function will power off the PLL, setup the PLL with the new setup data, and
then optionally powerup the PLL, wait for PLL lock, and adjust system voltages to the new
PLL rate. The function will not alter any source clocks (ie, main systen clock) that may use
the PLL, so these should be setup prior to and after exiting the function.

Parameters
• pSetup – : Pointer to populated PLL setup structure

Returns
kStatus_PLL_Success on success, or PLL setup error code

pll_error_t CLOCK_SetAudioPLLFreq(const pll_setup_t *pSetup)
Set Audio PLL output from Audio PLL setup structure (precise frequency)

Note: This function will power off the PLL, setup the Audio PLL with the new setup data,
and then optionally powerup the PLL, wait for Audio PLL lock, and adjust system voltages
to the new PLL rate. The function will not alter any source clocks (ie, main systen clock)
that may use the Audio PLL, so these should be setup prior to and after exiting the function.

Parameters
• pSetup – : Pointer to populated PLL setup structure

Returns
kStatus_PLL_Success on success, or Audio PLL setup error code

156 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

pll_error_t CLOCK_SetUsbPLLFreq(const usb_pll_setup_t *pSetup)
Set USB PLL output from USB PLL setup structure (precise frequency)

Note: This functionwill power off the USB PLL, setup the PLLwith the new setup data, and
then optionally powerup the USB PLL, wait for USB PLL lock, and adjust system voltages to
the new USB PLL rate. The function will not alter any source clocks (ie, usb pll clock) that
may use the USB PLL, so these should be setup prior to and after exiting the function.

Parameters
• pSetup – : Pointer to populated USB PLL setup structure

Returns
kStatus_PLL_Success on success, or USB PLL setup error code

void CLOCK_SetupSystemPLLMult(uint32_t multiply_by, uint32_t input_freq)
Set PLL output based on the multiplier and input frequency.

Note: Unlike the Chip_Clock_SetupSystemPLLPrec() function, this function does not dis-
able or enable PLL power, wait for PLL lock, or adjust system voltages. These must be done
in the application. The function will not alter any source clocks (ie, main systen clock) that
may use the PLL, so these should be setup prior to and after exiting the function.

Parameters
• multiply_by – : multiplier

• input_freq – : Clock input frequency of the PLL

Returns
Nothing

static inline void CLOCK_DisableUsbDevicefs0Clock(clock_ip_name_t clk)
Disable USB clock.

Disable USB clock.

bool CLOCK_EnableUsbfs0DeviceClock(clock_usb_src_t src, uint32_t freq)
Enable USB Device FS clock.

Parameters
• src – : clock source

• freq – clock frequency Enable USB Device Full Speed clock.

bool CLOCK_EnableUsbfs0HostClock(clock_usb_src_t src, uint32_t freq)
Enable USB HOST FS clock.

Parameters
• src – : clock source

• freq – clock frequency Enable USB HOST Full Speed clock.

void CLOCK_SetStoredUsbPLLClockRate(uint32_t rate)
Set the current Usb PLL Rate.

bool CLOCK_EnableUsbhs0DeviceClock(clock_usb_src_t src, uint32_t freq)
Enable USB Device HS clock.

Parameters

2.2. Clock Driver 157

MCUXpresso SDK Documentation, Release 25.09.00

• src – : clock source

• freq – clock frequency Enable USB Device High Speed clock.

bool CLOCK_EnableUsbhs0HostClock(clock_usb_src_t src, uint32_t freq)
Enable USB HOST HS clock.

Parameters
• src – : clock source

• freq – clock frequency Enable USB HOST High Speed clock.

FSL_CLOCK_DRIVER_VERSION
CLOCK driver version 2.3.3.

FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL
Configure whether driver controls clock.

When set to 0, peripheral drivers will enable clock in initialize function and disable clock in
de-initialize function. When set to 1, peripheral driverwill not control the clock, application
could control the clock out of the driver.

Note: All drivers share this feature switcher. If it is set to 1, application should handle
clock enable and disable for all drivers.

CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT
User-defined the size of cache for CLOCK_PllGetConfig() function.

Once define this MACRO to be non-zero value, CLOCK_PllGetConfig() function would cache
the recent calulation and accelerate the execution to get the right settings.

SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY

ADC_CLOCKS
Clock ip name array for ADC.

ROM_CLOCKS
Clock ip name array for ROM.

SRAM_CLOCKS
Clock ip name array for SRAM.

FLASH_CLOCKS
Clock ip name array for FLASH.

FMC_CLOCKS
Clock ip name array for FMC.

EEPROM_CLOCKS
Clock ip name array for EEPROM.

SPIFI_CLOCKS
Clock ip name array for SPIFI.

INPUTMUX_CLOCKS
Clock ip name array for INPUTMUX.

IOCON_CLOCKS
Clock ip name array for IOCON.

GPIO_CLOCKS
Clock ip name array for GPIO.

158 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

PINT_CLOCKS
Clock ip name array for PINT.

GINT_CLOCKS
Clock ip name array for GINT.

DMA_CLOCKS
Clock ip name array for DMA.

CRC_CLOCKS
Clock ip name array for CRC.

WWDT_CLOCKS
Clock ip name array for WWDT.

RTC_CLOCKS
Clock ip name array for RTC.

ADC0_CLOCKS
Clock ip name array for ADC0.

MRT_CLOCKS
Clock ip name array for MRT.

RIT_CLOCKS
Clock ip name array for RIT.

SCT_CLOCKS
Clock ip name array for SCT0.

MCAN_CLOCKS
Clock ip name array for MCAN.

UTICK_CLOCKS
Clock ip name array for UTICK.

FLEXCOMM_CLOCKS
Clock ip name array for FLEXCOMM.

LPUART_CLOCKS
Clock ip name array for LPUART.

BI2C_CLOCKS
Clock ip name array for BI2C.

LPSI_CLOCKS
Clock ip name array for LSPI.

FLEXI2S_CLOCKS
Clock ip name array for FLEXI2S.

DMIC_CLOCKS
Clock ip name array for DMIC.

CTIMER_CLOCKS
Clock ip name array for CT32B.

LCD_CLOCKS
Clock ip name array for LCD.

SDIO_CLOCKS
Clock ip name array for SDIO.

2.2. Clock Driver 159

MCUXpresso SDK Documentation, Release 25.09.00

USBRAM_CLOCKS
Clock ip name array for USBRAM.

EMC_CLOCKS
Clock ip name array for EMC.

ETH_CLOCKS
Clock ip name array for ETH.

AES_CLOCKS
Clock ip name array for AES.

OTP_CLOCKS
Clock ip name array for OTP.

RNG_CLOCKS
Clock ip name array for RNG.

USBHMR0_CLOCKS
Clock ip name array for USBHMR0.

USBHSL0_CLOCKS
Clock ip name array for USBHSL0.

SHA0_CLOCKS
Clock ip name array for SHA0.

SMARTCARD_CLOCKS
Clock ip name array for SMARTCARD.

USBD_CLOCKS
Clock ip name array for USBD.

USBH_CLOCKS
Clock ip name array for USBH.

CLK_GATE_REG_OFFSET_SHIFT
Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.

CLK_GATE_REG_OFFSET_MASK

CLK_GATE_BIT_SHIFT_SHIFT

CLK_GATE_BIT_SHIFT_MASK

CLK_GATE_DEFINE(reg_offset, bit_shift)

CLK_GATE_ABSTRACT_REG_OFFSET(x)

CLK_GATE_ABSTRACT_BITS_SHIFT(x)

AHB_CLK_CTRL0

AHB_CLK_CTRL1

AHB_CLK_CTRL2

ASYNC_CLK_CTRL0

CLK_ATTACH_ID(mux, sel, pos)
Clock Mux Switches The encoding is as follows each connection identified is 32bits wide
while 24bits are valuable starting from LSB upwards.

[4 bits for choice, 0 means invalid choice] [8 bits mux ID]*

160 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

MUX_A_OFFSET(mux)

MUX_A(mux, sel)

MUX_B(mux, sel, selector)

GET_ID_ITEM(connection)

GET_ID_NEXT_ITEM(connection)

GET_ID_ITEM_MUX(connection)

GET_ID_ITEM_SEL(connection)

GET_ID_SELECTOR(connection)

CLR_ID_ITEM_SEL(connection)

CM_STICKCLKSEL

CM_MAINCLKSELA

CM_MAINCLKSELB

CM_CLKOUTCLKSELA

CM_SYSPLLCLKSEL

CM_AUDPLLCLKSEL

CM_SPIFICLKSEL

CM_ADCASYNCCLKSEL

CM_USB0CLKSEL

CM_USB1CLKSEL

CM_FXCOMCLKSEL0

CM_FXCOMCLKSEL1

CM_FXCOMCLKSEL2

CM_FXCOMCLKSEL3

CM_FXCOMCLKSEL4

CM_FXCOMCLKSEL5

CM_FXCOMCLKSEL6

CM_FXCOMCLKSEL7

CM_FXCOMCLKSEL8

CM_FXCOMCLKSEL9

CM_FXCOMCLKSEL10

CM_MCLKCLKSEL

CM_FRGCLKSEL

CM_DMICCLKSEL

2.2. Clock Driver 161

MCUXpresso SDK Documentation, Release 25.09.00

CM_SCTCLKSEL

CM_LCDCLKSEL

CM_SDIOCLKSEL

CM_ASYNCAPB

PLL_CONFIGFLAG_USEINRATE
PLL configuration structure flags for ‘flags’ field These flags control how the PLL configu-
ration function sets up the PLL setup structure.

When the PLL_CONFIGFLAG_USEINRATE flag is selected, the ‘InputRate’ field in the
configuration structure must be assigned with the expected PLL frequency. If the
PLL_CONFIGFLAG_USEINRATE is not used, ‘InputRate’ is ignored in the configuration func-
tion and the driverwill determine the PLL rate from the currently selected PLL source. This
flag might be used to configure the PLL input clock more accurately when using the WDT
oscillator or a more dyanmic CLKIN source.

When the PLL_CONFIGFLAG_FORCENOFRACT flag is selected, the PLL hardware for the
automatic bandwidth selection, Spread Spectrum (SS) support, and fractional M-divider
are not used.

Flag to use InputRate in PLL configuration structure for setup

PLL_CONFIGFLAG_FORCENOFRACT
Force non-fractional output mode, PLL output will not use the fractional, automatic band-
width, or \ SS hardware

PLL_SETUPFLAG_POWERUP
PLL setup structure flags for ‘flags’ field These flags control how the PLL setup function sets
up the PLL.

Setup will power on the PLL after setup

PLL_SETUPFLAG_WAITLOCK
Setup will wait for PLL lock, implies the PLL will be pwoered on

PLL_SETUPFLAG_ADGVOLT
Optimize system voltage for the new PLL rate

uint32_t desiredRate
Desired PLL rate in Hz

uint32_t inputRate
PLL input clock in Hz, only used if PLL_CONFIGFLAG_USEINRATE flag is set

uint32_t flags
PLL configuration flags, Or’ed value of PLL_CONFIGFLAG_* definitions

uint32_t pllctrl
PLL control register SYSPLLCTRL

uint32_t pllndec
PLL NDEC register SYSPLLNDEC

uint32_t pllpdec
PLL PDEC register SYSPLLPDEC

uint32_t pllmdec
PLL MDEC registers SYSPLLPDEC

162 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t pllRate
Acutal PLL rate

uint32_t audpllfrac
only aduio PLL has this function

uint32_t flags
PLL setup flags, Or’ed value of PLL_SETUPFLAG_* definitions

uint8_t msel
USB PLL control register msel:1U-256U

uint8_t psel
USB PLL control register psel:only support inter 1U 2U 4U 8U

uint8_t nsel
USB PLL control register nsel:only suppoet inter 1U 2U 3U 4U

bool direct
USB PLL CCO output control

bool bypass
USB PLL inout clock bypass control

bool fbsel
USB PLL ineter mode and non-integer mode control

uint32_t inputRate
USB PLL input rate

struct _pll_config
#include <fsl_clock.h> PLL configuration structure.

This structure can be used to configure the settings for a PLL setup structure. Fill in the
desired configuration for the PLL and call the PLL setup function to fill in a PLL setup struc-
ture.

struct _pll_setup
#include <fsl_clock.h> PLL setup structure This structure can be used to pre-build a PLL
setup configuration at run-time and quickly set the PLL to the configuration. It can be pop-
ulated with the PLL setup function. If powering up or waiting for PLL lock, the PLL input
clock source should be configured prior to PLL setup.

struct _usb_pll_setup
#include <fsl_clock.h> PLL setup structure This structure can be used to pre-build a USB PLL
setup configuration at run-time and quickly set the usb PLL to the configuration. It can be
populated with the USB PLL setup function. If powering up or waiting for USB PLL lock,
the PLL input clock source should be configured prior to USB PLL setup.

2.3 CRC: Cyclic Redundancy Check Driver

FSL_CRC_DRIVER_VERSION
CRC driver version. Version 2.1.1.

Current version: 2.1.1

Change log:

• Version 2.0.0

– initial version

2.3. CRC: Cyclic Redundancy Check Driver 163

MCUXpresso SDK Documentation, Release 25.09.00

• Version 2.0.1

– add explicit type cast when writing to WR_DATA

• Version 2.0.2

– Fix MISRA issue

• Version 2.1.0

– Add CRC_WriteSeed function

• Version 2.1.1

– Fix MISRA issue

enum _crc_polynomial
CRC polynomials to use.

Values:

enumerator kCRC_Polynomial_CRC_CCITT
x^16+x^12+x^5+1

enumerator kCRC_Polynomial_CRC_16
x^16+x^15+x^2+1

enumerator kCRC_Polynomial_CRC_32
x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1

typedef enum _crc_polynomial crc_polynomial_t
CRC polynomials to use.

typedef struct _crc_config crc_config_t
CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

void CRC_Init(CRC_Type *base, const crc_config_t *config)
Enables and configures the CRC peripheral module.

This functions enables the CRC peripheral clock in the LPC SYSCON block. It also configures
the CRC engine and starts checksum computation by writing the seed.

Parameters
• base – CRC peripheral address.

• config – CRC module configuration structure.

static inline void CRC_Deinit(CRC_Type *base)
Disables the CRC peripheral module.

This functions disables the CRC peripheral clock in the LPC SYSCON block.

Parameters
• base – CRC peripheral address.

void CRC_Reset(CRC_Type *base)
resets CRC peripheral module.

Parameters
• base – CRC peripheral address.

164 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

void CRC_WriteSeed(CRC_Type *base, uint32_t seed)
Write seed to CRC peripheral module.

Parameters
• base – CRC peripheral address.

• seed – CRC Seed value.

void CRC_GetDefaultConfig(crc_config_t *config)
Loads default values to CRC protocol configuration structure.

Loads default values to CRC protocol configuration structure. The default values are:

config->polynomial = kCRC_Polynomial_CRC_CCITT;
config->reverseIn = false;
config->complementIn = false;
config->reverseOut = false;
config->complementOut = false;
config->seed = 0xFFFFU;

Parameters
• config – CRC protocol configuration structure

void CRC_GetConfig(CRC_Type *base, crc_config_t *config)
Loads actual values configured in CRC peripheral to CRC protocol configuration structure.

The values, including seed, can be used to resume CRC calculation later.

Parameters
• base – CRC peripheral address.

• config – CRC protocol configuration structure

void CRC_WriteData(CRC_Type *base, const uint8_t *data, size_t dataSize)
Writes data to the CRC module.

Writes input data buffer bytes to CRC data register.

Parameters
• base – CRC peripheral address.

• data – Input data stream, MSByte in data[0].

• dataSize – Size of the input data buffer in bytes.

static inline uint32_t CRC_Get32bitResult(CRC_Type *base)
Reads 32-bit checksum from the CRC module.

Reads CRC data register.

Parameters
• base – CRC peripheral address.

Returns
final 32-bit checksum, after configured bit reverse and complement opera-
tions.

static inline uint16_t CRC_Get16bitResult(CRC_Type *base)
Reads 16-bit checksum from the CRC module.

Reads CRC data register.

Parameters
• base – CRC peripheral address.

2.3. CRC: Cyclic Redundancy Check Driver 165

MCUXpresso SDK Documentation, Release 25.09.00

Returns
final 16-bit checksum, after configured bit reverse and complement opera-
tions.

CRC_DRIVER_USE_CRC16_CCITT_FALSE_AS_DEFAULT
Default configuration structure filled by CRC_GetDefaultConfig(). Uses CRC-16/CCITT-FALSE
as default.

struct _crc_config
#include <fsl_crc.h> CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

Public Members

crc_polynomial_t polynomial
CRC polynomial.

bool reverseIn
Reverse bits on input.

bool complementIn
Perform 1’s complement on input.

bool reverseOut
Reverse bits on output.

bool complementOut
Perform 1’s complement on output.

uint32_t seed
Starting checksum value.

2.4 CTIMER: Standard counter/timers

void CTIMER_Init(CTIMER_Type *base, const ctimer_config_t *config)
Ungates the clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application before using the driver.

Parameters
• base – Ctimer peripheral base address

• config – Pointer to the user configuration structure.

void CTIMER_Deinit(CTIMER_Type *base)
Gates the timer clock.

Parameters
• base – Ctimer peripheral base address

void CTIMER_GetDefaultConfig(ctimer_config_t *config)
Fills in the timers configuration structure with the default settings.

The default values are:

166 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

config->mode = kCTIMER_TimerMode;
config->input = kCTIMER_Capture_0;
config->prescale = 0;

Parameters
• config – Pointer to the user configuration structure.

status_t CTIMER_SetupPwmPeriod(CTIMER_Type *base, const ctimer_match_t
pwmPeriodChannel, ctimer_match_tmatchChannel,
uint32_t pwmPeriod, uint32_t pulsePeriod, bool enableInt)

Configures the PWM signal parameters.

Enables PWM mode on the match channel passed in and will then setup the match value
and other match parameters to generate a PWM signal. This function can manually assign
the specified channel to set the PWM cycle.

Note: When setting PWM output frommultiple output pins, all should use the same PWM
period

Parameters
• base – Ctimer peripheral base address

• pwmPeriodChannel – Specify the channel to control the PWM period

• matchChannel – Match pin to be used to output the PWM signal

• pwmPeriod – PWM period match value

• pulsePeriod – Pulse width match value

• enableInt – Enable interrupt when the timer value reaches thematch value
of the PWM pulse, if it is 0 then no interrupt will be generated.

Returns
kStatus_Success on success kStatus_Fail If matchChannel is equal to pwmPeri-
odChannel; this channel is reserved to set the PWM cycle If PWM pulse width
register value is larger than 0xFFFFFFFF.

status_t CTIMER_SetupPwm(CTIMER_Type *base, const ctimer_match_t pwmPeriodChannel,
ctimer_match_tmatchChannel, uint8_t dutyCyclePercent, uint32_t
pwmFreq_Hz, uint32_t srcClock_Hz, bool enableInt)

Configures the PWM signal parameters.

Enables PWM mode on the match channel passed in and will then setup the match value
and other match parameters to generate a PWM signal. This function can manually assign
the specified channel to set the PWM cycle.

Note: When setting PWM output frommultiple output pins, all should use the same PWM
frequency. Please use CTIMER_SetupPwmPeriod to set up the PWMwith high resolution.

Parameters
• base – Ctimer peripheral base address

• pwmPeriodChannel – Specify the channel to control the PWM period

• matchChannel – Match pin to be used to output the PWM signal

• dutyCyclePercent – PWMpulse width; the value should be between 0 to 100

2.4. CTIMER: Standard counter/timers 167

MCUXpresso SDK Documentation, Release 25.09.00

• pwmFreq_Hz – PWM signal frequency in Hz

• srcClock_Hz – Timer counter clock in Hz

• enableInt – Enable interrupt when the timer value reaches thematch value
of the PWM pulse, if it is 0 then no interrupt will be generated.

static inline void CTIMER_UpdatePwmPulsePeriod(CTIMER_Type *base, ctimer_match_t
matchChannel, uint32_t pulsePeriod)

Updates the pulse period of an active PWM signal.

Parameters
• base – Ctimer peripheral base address

• matchChannel – Match pin to be used to output the PWM signal

• pulsePeriod – New PWM pulse width match value

status_t CTIMER_UpdatePwmDutycycle(CTIMER_Type *base, const ctimer_match_t
pwmPeriodChannel, ctimer_match_tmatchChannel,
uint8_t dutyCyclePercent)

Updates the duty cycle of an active PWM signal.

Note: Please use CTIMER_SetupPwmPeriod to update the PWMwith high resolution. This
function can manually assign the specified channel to set the PWM cycle.

Parameters
• base – Ctimer peripheral base address

• pwmPeriodChannel – Specify the channel to control the PWM period

• matchChannel – Match pin to be used to output the PWM signal

• dutyCyclePercent – New PWM pulse width; the value should be between 0
to 100

Returns
kStatus_Success on success kStatus_Fail If PWM pulse width register value is
larger than 0xFFFFFFFF.

static inline void CTIMER_EnableInterrupts(CTIMER_Type *base, uint32_t mask)
Enables the selected Timer interrupts.

Parameters
• base – Ctimer peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration ctimer_interrupt_enable_t

static inline void CTIMER_DisableInterrupts(CTIMER_Type *base, uint32_t mask)
Disables the selected Timer interrupts.

Parameters
• base – Ctimer peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration ctimer_interrupt_enable_t

static inline uint32_t CTIMER_GetEnabledInterrupts(CTIMER_Type *base)
Gets the enabled Timer interrupts.

Parameters

168 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

• base – Ctimer peripheral base address

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
ctimer_interrupt_enable_t

static inline uint32_t CTIMER_GetStatusFlags(CTIMER_Type *base)
Gets the Timer status flags.

Parameters
• base – Ctimer peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
ctimer_status_flags_t

static inline void CTIMER_ClearStatusFlags(CTIMER_Type *base, uint32_t mask)
Clears the Timer status flags.

Parameters
• base – Ctimer peripheral base address

• mask – The status flags to clear. This is a logical OR of members of the
enumeration ctimer_status_flags_t

static inline void CTIMER_StartTimer(CTIMER_Type *base)
Starts the Timer counter.

Parameters
• base – Ctimer peripheral base address

static inline void CTIMER_StopTimer(CTIMER_Type *base)
Stops the Timer counter.

Parameters
• base – Ctimer peripheral base address

FSL_CTIMER_DRIVER_VERSION
Version 2.3.3

enum _ctimer_capture_channel
List of Timer capture channels.

Values:

enumerator kCTIMER_Capture_0
Timer capture channel 0

enumerator kCTIMER_Capture_1
Timer capture channel 1

enumerator kCTIMER_Capture_3
Timer capture channel 3

enum _ctimer_capture_edge
List of capture edge options.

Values:

enumerator kCTIMER_Capture_RiseEdge
Capture on rising edge

2.4. CTIMER: Standard counter/timers 169

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCTIMER_Capture_FallEdge
Capture on falling edge

enumerator kCTIMER_Capture_BothEdge
Capture on rising and falling edge

enum _ctimer_match
List of Timer match registers.

Values:

enumerator kCTIMER_Match_0
Timer match register 0

enumerator kCTIMER_Match_1
Timer match register 1

enumerator kCTIMER_Match_2
Timer match register 2

enumerator kCTIMER_Match_3
Timer match register 3

enum _ctimer_external_match
List of external match.

Values:

enumerator kCTIMER_External_Match_0
External match 0

enumerator kCTIMER_External_Match_1
External match 1

enumerator kCTIMER_External_Match_2
External match 2

enumerator kCTIMER_External_Match_3
External match 3

enum _ctimer_match_output_control
List of output control options.

Values:

enumerator kCTIMER_Output_NoAction
No action is taken

enumerator kCTIMER_Output_Clear
Clear the EM bit/output to 0

enumerator kCTIMER_Output_Set
Set the EM bit/output to 1

enumerator kCTIMER_Output_Toggle
Toggle the EM bit/output

enum _ctimer_timer_mode
List of Timer modes.

Values:

enumerator kCTIMER_TimerMode

170 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCTIMER_IncreaseOnRiseEdge

enumerator kCTIMER_IncreaseOnFallEdge

enumerator kCTIMER_IncreaseOnBothEdge

enum _ctimer_interrupt_enable
List of Timer interrupts.

Values:

enumerator kCTIMER_Match0InterruptEnable
Match 0 interrupt

enumerator kCTIMER_Match1InterruptEnable
Match 1 interrupt

enumerator kCTIMER_Match2InterruptEnable
Match 2 interrupt

enumerator kCTIMER_Match3InterruptEnable
Match 3 interrupt

enum _ctimer_status_flags
List of Timer flags.

Values:

enumerator kCTIMER_Match0Flag
Match 0 interrupt flag

enumerator kCTIMER_Match1Flag
Match 1 interrupt flag

enumerator kCTIMER_Match2Flag
Match 2 interrupt flag

enumerator kCTIMER_Match3Flag
Match 3 interrupt flag

enum ctimer_callback_type_t
Callback type when registering for a callback. When registering a callback an array of
function pointers is passed the size could be 1 or 8, the callback type will tell that.

Values:

enumerator kCTIMER_SingleCallback
Single Callback type where there is only one callback for the timer. based on the status
flags different channels needs to be handled differently

enumerator kCTIMER_MultipleCallback
Multiple Callback type where there can be 8 valid callbacks, one per channel. for both
match/capture

typedef enum _ctimer_capture_channel ctimer_capture_channel_t
List of Timer capture channels.

typedef enum _ctimer_capture_edge ctimer_capture_edge_t
List of capture edge options.

typedef enum _ctimer_match ctimer_match_t
List of Timer match registers.

2.4. CTIMER: Standard counter/timers 171

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _ctimer_external_match ctimer_external_match_t
List of external match.

typedef enum _ctimer_match_output_control ctimer_match_output_control_t
List of output control options.

typedef enum _ctimer_timer_mode ctimer_timer_mode_t
List of Timer modes.

typedef enum _ctimer_interrupt_enable ctimer_interrupt_enable_t
List of Timer interrupts.

typedef enum _ctimer_status_flags ctimer_status_flags_t
List of Timer flags.

typedef void (*ctimer_callback_t)(uint32_t flags)

typedef struct _ctimer_match_config ctimer_match_config_t
Match configuration.

This structure holds the configuration settings for each match register.

typedef struct _ctimer_config ctimer_config_t
Timer configuration structure.

This structure holds the configuration settings for the Timer peripheral. To initialize this
structure to reasonable defaults, call the CTIMER_GetDefaultConfig() function and pass a
pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

void CTIMER_SetupMatch(CTIMER_Type *base, ctimer_match_tmatchChannel, const
ctimer_match_config_t *config)

Setup the match register.

User configuration is used to setup the match value and action to be taken when a match
occurs.

Parameters
• base – Ctimer peripheral base address

• matchChannel – Match register to configure

• config – Pointer to the match configuration structure

uint32_t CTIMER_GetOutputMatchStatus(CTIMER_Type *base, uint32_t matchChannel)
Get the status of output match.

This function gets the status of output MAT, whether or not this output is connected to a
pin. This status is driven to the MAT pins if the match function is selected via IOCON. 0 =
LOW. 1 = HIGH.

Parameters
• base – Ctimer peripheral base address

• matchChannel – External match channel, user can obtain the status of mul-
tiple match channels at the same time by using the logic of “|” enumera-
tion ctimer_external_match_t

Returns
The mask of external match channel status flags. Users need to use the
_ctimer_external_match type to decode the return variables.

172 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

void CTIMER_SetupCapture(CTIMER_Type *base, ctimer_capture_channel_t capture,
ctimer_capture_edge_t edge, bool enableInt)

Setup the capture.

Parameters
• base – Ctimer peripheral base address

• capture – Capture channel to configure

• edge – Edge on the channel that will trigger a capture

• enableInt – Flag to enable channel interrupts, if enabled then the registered
call back is called upon capture

static inline uint32_t CTIMER_GetTimerCountValue(CTIMER_Type *base)
Get the timer count value from TC register.

Parameters
• base – Ctimer peripheral base address.

Returns
return the timer count value.

void CTIMER_RegisterCallBack(CTIMER_Type *base, ctimer_callback_t *cb_func,
ctimer_callback_type_t cb_type)

Register callback.

This function configures CTimer Callback in following modes:

• Single Callback: cb_func should be pointer to callback function pointer
For example: ctimer_callback_t ctimer_callback = pwm_match_callback;
CTIMER_RegisterCallBack(CTIMER, &ctimer_callback, kCTIMER_SingleCallback);

• Multiple Callback: cb_func should be pointer to array of callback func-
tion pointers Each element corresponds to Interrupt Flag in IR reg-
ister. For example: ctimer_callback_t ctimer_callback_table[] = {
ctimer_match0_callback, NULL, NULL, ctimer_match3_callback, NULL, NULL,
NULL, NULL}; CTIMER_RegisterCallBack(CTIMER, &ctimer_callback_table[0], kC-
TIMER_MultipleCallback);

Parameters
• base – Ctimer peripheral base address

• cb_func – Pointer to callback function pointer

• cb_type – callback function type, singular or multiple

static inline void CTIMER_Reset(CTIMER_Type *base)
Reset the counter.

The timer counter and prescale counter are reset on the next positive edge of the APB clock.

Parameters
• base – Ctimer peripheral base address

static inline void CTIMER_SetPrescale(CTIMER_Type *base, uint32_t prescale)
Setup the timer prescale value.

Specifies the maximum value for the Prescale Counter.

Parameters
• base – Ctimer peripheral base address

• prescale – Prescale value

2.4. CTIMER: Standard counter/timers 173

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t CTIMER_GetCaptureValue(CTIMER_Type *base, ctimer_capture_channel_t
capture)

Get capture channel value.

Get the counter/timer value on the corresponding capture channel.

Parameters
• base – Ctimer peripheral base address

• capture – Select capture channel

Returns
The timer count capture value.

static inline void CTIMER_EnableResetMatchChannel(CTIMER_Type *base, ctimer_match_t
match, bool enable)

Enable reset match channel.

Set the specified match channel reset operation.

Parameters
• base – Ctimer peripheral base address

• match – match channel used

• enable – Enable match channel reset operation.

static inline void CTIMER_EnableStopMatchChannel(CTIMER_Type *base, ctimer_match_t
match, bool enable)

Enable stop match channel.

Set the specified match channel stop operation.

Parameters
• base – Ctimer peripheral base address.

• match – match channel used.

• enable – Enable match channel stop operation.

static inline void CTIMER_EnableMatchChannelReload(CTIMER_Type *base, ctimer_match_t
match, bool enable)

Enable reload channel falling edge.

Enable the specified match channel reload match shadow value.

Parameters
• base – Ctimer peripheral base address.

• match – match channel used.

• enable – Enable .

static inline void CTIMER_EnableRisingEdgeCapture(CTIMER_Type *base,
ctimer_capture_channel_t capture, bool
enable)

Enable capture channel rising edge.

Sets the specified capture channel for rising edge capture.

Parameters
• base – Ctimer peripheral base address.

• capture – capture channel used.

• enable – Enable rising edge capture.

174 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

static inline void CTIMER_EnableFallingEdgeCapture(CTIMER_Type *base,
ctimer_capture_channel_t capture, bool
enable)

Enable capture channel falling edge.

Sets the specified capture channel for falling edge capture.

Parameters
• base – Ctimer peripheral base address.

• capture – capture channel used.

• enable – Enable falling edge capture.

static inline void CTIMER_SetShadowValue(CTIMER_Type *base, ctimer_match_tmatch,
uint32_t matchvalue)

Set the specified match shadow channel.

Parameters
• base – Ctimer peripheral base address.

• match – match channel used.

• matchvalue – Reload the value of the corresponding match register.

struct _ctimer_match_config
#include <fsl_ctimer.h>Match configuration.

This structure holds the configuration settings for each match register.

Public Members

uint32_t matchValue
This is stored in the match register

bool enableCounterReset
true: Match will reset the counter false: Match will not reser the counter

bool enableCounterStop
true: Match will stop the counter false: Match will not stop the counter

ctimer_match_output_control_t outControl
Action to be taken on a match on the EM bit/output

bool outPinInitState
Initial value of the EM bit/output

bool enableInterrupt
true: Generate interrupt upon match false: Do not generate interrupt on match

struct _ctimer_config
#include <fsl_ctimer.h> Timer configuration structure.

This structure holds the configuration settings for the Timer peripheral. To initialize this
structure to reasonable defaults, call the CTIMER_GetDefaultConfig() function and pass a
pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

2.4. CTIMER: Standard counter/timers 175

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

ctimer_timer_mode_t mode
Timer mode

ctimer_capture_channel_t input
Input channel to increment the timer, used only in timer modes that rely on this input
signal to increment TC

uint32_t prescale
Prescale value

2.5 DMA: Direct Memory Access Controller Driver

void DMA_Init(DMA_Type *base)
Initializes DMA peripheral.

This function enable the DMA clock, set descriptor table and enable DMA peripheral.

Parameters
• base – DMA peripheral base address.

void DMA_Deinit(DMA_Type *base)
Deinitializes DMA peripheral.

This function gates the DMA clock.

Parameters
• base – DMA peripheral base address.

void DMA_InstallDescriptorMemory(DMA_Type *base, void *addr)
Install DMA descriptor memory.

This function used to register DMA descriptor memory for linked transfer, a typical case
is ping pong transfer which will request more than one DMA descriptor memory space,
althrough current DMA driver has a default DMA descriptor buffer, but it support one DMA
descriptor for one channel only.

Parameters
• base – DMA base address.

• addr – DMA descriptor address

static inline bool DMA_ChannelIsActive(DMA_Type *base, uint32_t channel)
Return whether DMA channel is processing transfer.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

Returns
True for active state, false otherwise.

static inline bool DMA_ChannelIsBusy(DMA_Type *base, uint32_t channel)
Return whether DMA channel is busy.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

176 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

Returns
True for busy state, false otherwise.

static inline void DMA_EnableChannelInterrupts(DMA_Type *base, uint32_t channel)
Enables the interrupt source for the DMA transfer.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

static inline void DMA_DisableChannelInterrupts(DMA_Type *base, uint32_t channel)
Disables the interrupt source for the DMA transfer.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

static inline void DMA_EnableChannel(DMA_Type *base, uint32_t channel)
Enable DMA channel.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

static inline void DMA_DisableChannel(DMA_Type *base, uint32_t channel)
Disable DMA channel.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

static inline void DMA_EnableChannelPeriphRq(DMA_Type *base, uint32_t channel)
Set PERIPHREQEN of channel configuration register.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

static inline void DMA_DisableChannelPeriphRq(DMA_Type *base, uint32_t channel)
Get PERIPHREQEN value of channel configuration register.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

Returns
True for enabled PeriphRq, false for disabled.

void DMA_ConfigureChannelTrigger(DMA_Type *base, uint32_t channel, dma_channel_trigger_t
*trigger)

Set trigger settings of DMA channel.

Deprecated:
Do not use this function. It has been superceded by DMA_SetChannelConfig.

Parameters

2.5. DMA: Direct Memory Access Controller Driver 177

MCUXpresso SDK Documentation, Release 25.09.00

• base – DMA peripheral base address.

• channel – DMA channel number.

• trigger – trigger configuration.

void DMA_SetChannelConfig(DMA_Type *base, uint32_t channel, dma_channel_trigger_t
*trigger, bool isPeriph)

set channel config.

This function provide a interface to configure channel configuration reisters.

Parameters
• base – DMA base address.

• channel – DMA channel number.

• trigger – channel configurations structure.

• isPeriph – true is periph request, false is not.

static inline uint32_t DMA_SetChannelXferConfig(bool reload, bool clrTrig, bool intA, bool intB,
uint8_t width, uint8_t srcInc, uint8_t dstInc,
uint32_t bytes)

DMA channel xfer transfer configurations.

Parameters
• reload – true is reload link descriptor after current exhaust, false is not

• clrTrig – true is clear trigger status, wait software trigger, false is not

• intA – enable interruptA

• intB – enable interruptB

• width – transfer width

• srcInc – source address interleave size

• dstInc – destination address interleave size

• bytes – transfer bytes

Returns
The vaule of xfer config

uint32_t DMA_GetRemainingBytes(DMA_Type *base, uint32_t channel)
Gets the remaining bytes of the current DMA descriptor transfer.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

Returns
The number of bytes which have not been transferred yet.

static inline void DMA_SetChannelPriority(DMA_Type *base, uint32_t channel, dma_priority_t
priority)

Set priority of channel configuration register.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

• priority – Channel priority value.

178 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

static inline dma_priority_t DMA_GetChannelPriority(DMA_Type *base, uint32_t channel)
Get priority of channel configuration register.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

Returns
Channel priority value.

static inline void DMA_SetChannelConfigValid(DMA_Type *base, uint32_t channel)
Set channel configuration valid.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

static inline void DMA_DoChannelSoftwareTrigger(DMA_Type *base, uint32_t channel)
Do software trigger for the channel.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

static inline void DMA_LoadChannelTransferConfig(DMA_Type *base, uint32_t channel, uint32_t
xfer)

Load channel transfer configurations.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

• xfer – transfer configurations.

void DMA_CreateDescriptor(dma_descriptor_t *desc, dma_xfercfg_t *xfercfg, void *srcAddr, void
*dstAddr, void *nextDesc)

Create application specific DMA descriptor to be used in a chain in transfer.

Deprecated:
Do not use this function. It has been superceded by DMA_SetupDescriptor.

Parameters
• desc – DMA descriptor address.

• xfercfg – Transfer configuration for DMA descriptor.

• srcAddr – Address of last item to transmit

• dstAddr – Address of last item to receive.

• nextDesc – Address of next descriptor in chain.

void DMA_SetupDescriptor(dma_descriptor_t *desc, uint32_t xfercfg, void *srcStartAddr, void
*dstStartAddr, void *nextDesc)

setup dma descriptor

Note: This function do not support configure wrap descriptor.

Parameters

2.5. DMA: Direct Memory Access Controller Driver 179

MCUXpresso SDK Documentation, Release 25.09.00

• desc – DMA descriptor address.

• xfercfg – Transfer configuration for DMA descriptor.

• srcStartAddr – Start address of source address.

• dstStartAddr – Start address of destination address.

• nextDesc – Address of next descriptor in chain.

void DMA_SetupChannelDescriptor(dma_descriptor_t *desc, uint32_t xfercfg, void *srcStartAddr,
void *dstStartAddr, void *nextDesc, dma_burst_wrap_t
wrapType, uint32_t burstSize)

setup dma channel descriptor

Note: This function support configure wrap descriptor.

Parameters
• desc – DMA descriptor address.

• xfercfg – Transfer configuration for DMA descriptor.

• srcStartAddr – Start address of source address.

• dstStartAddr – Start address of destination address.

• nextDesc – Address of next descriptor in chain.

• wrapType – burst wrap type.

• burstSize – burst size, reference _dma_burst_size.

void DMA_LoadChannelDescriptor(DMA_Type *base, uint32_t channel, dma_descriptor_t
*descriptor)

load channel transfer decriptor.

This function can be used to load desscriptor to driver internal channel descriptor that is
used to start DMA transfer, the head descriptor table is defined in DMA driver, it is useful
for the case:

a. for the polling transfer, application can allocate a local descriptor memory table to
prepare a descriptor firstly and then call this api to load the configured descriptor to
driver descriptor table.

DMA_Init(DMA0);
DMA_EnableChannel(DMA0, DEMO_DMA_CHANNEL);
DMA_SetupDescriptor(desc, xferCfg, s_srcBuffer, &s_destBuffer[0], NULL);
DMA_LoadChannelDescriptor(DMA0, DEMO_DMA_CHANNEL, (dma_descriptor_t *)desc);
DMA_DoChannelSoftwareTrigger(DMA0, DEMO_DMA_CHANNEL);
while(DMA_ChannelIsBusy(DMA0, DEMO_DMA_CHANNEL))
{}

Parameters
• base – DMA base address.

• channel – DMA channel.

• descriptor – configured DMA descriptor.

void DMA_AbortTransfer(dma_handle_t *handle)
Abort running transfer by handle.

This function aborts DMA transfer specified by handle.

Parameters
• handle – DMA handle pointer.

180 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

void DMA_CreateHandle(dma_handle_t *handle, DMA_Type *base, uint32_t channel)
Creates the DMA handle.

This function is called if using transaction API for DMA. This function initializes the internal
state of DMA handle.

Parameters
• handle – DMA handle pointer. The DMA handle stores callback function
and parameters.

• base – DMA peripheral base address.

• channel – DMA channel number.

void DMA_SetCallback(dma_handle_t *handle, dma_callback callback, void *userData)
Installs a callback function for the DMA transfer.

This callback is called in DMA IRQ handler. Use the callback to do something after the
current major loop transfer completes.

Parameters
• handle – DMA handle pointer.

• callback – DMA callback function pointer.

• userData – Parameter for callback function.

void DMA_PrepareTransfer(dma_transfer_config_t *config, void *srcAddr, void *dstAddr,
uint32_t byteWidth, uint32_t transferBytes, dma_transfer_type_t
type, void *nextDesc)

Prepares the DMA transfer structure.

Deprecated:
Do not use this function. It has been superceded by DMA_PrepareChannelTransfer.
This function prepares the transfer configuration structure according to the user input.

Note: The data address and the data width must be consistent. For example, if the SRC is
4 bytes, so the source address must be 4 bytes aligned, or it shall result in source address
error(SAE).

Parameters
• config – The user configuration structure of type dma_transfer_t.

• srcAddr – DMA transfer source address.

• dstAddr – DMA transfer destination address.

• byteWidth – DMA transfer destination address width(bytes).

• transferBytes – DMA transfer bytes to be transferred.

• type – DMA transfer type.

• nextDesc – Chain custom descriptor to transfer.

void DMA_PrepareChannelTransfer(dma_channel_config_t *config, void *srcStartAddr, void
*dstStartAddr, uint32_t xferCfg, dma_transfer_type_t type,
dma_channel_trigger_t *trigger, void *nextDesc)

Prepare channel transfer configurations.

This function used to prepare channel transfer configurations.

2.5. DMA: Direct Memory Access Controller Driver 181

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• config – Pointer to DMA channel transfer configuration structure.

• srcStartAddr – source start address.

• dstStartAddr – destination start address.

• xferCfg – xfer configuration, user can reference DMA_CHANNEL_XFER
about to how to get xferCfg value.

• type – transfer type.

• trigger – DMA channel trigger configurations.

• nextDesc – address of next descriptor.

status_t DMA_SubmitTransfer(dma_handle_t *handle, dma_transfer_config_t *config)
Submits the DMA transfer request.

Deprecated:
Do not use this function. It has been superceded by DMA_SubmitChannelTransfer.

This function submits the DMA transfer request according to the transfer configuration
structure. If the user submits the transfer request repeatedly, this function packs an un-
processed request as a TCD and enables scatter/gather feature to process it in the next time.

Parameters
• handle – DMA handle pointer.

• config – Pointer to DMA transfer configuration structure.

Return values
• kStatus_DMA_Success – It means submit transfer request succeed.

• kStatus_DMA_QueueFull – It means TCD queue is full. Submit transfer re-
quest is not allowed.

• kStatus_DMA_Busy – It means the given channel is busy, need to submit
request later.

void DMA_SubmitChannelTransferParameter(dma_handle_t *handle, uint32_t xferCfg, void
*srcStartAddr, void *dstStartAddr, void *nextDesc)

Submit channel transfer paramter directly.

This function used to configue channel head descriptor that is used to start DMA transfer,
the head descriptor table is defined in DMA driver, it is useful for the case:

a. for the single transfer, application doesn’t need to allocate descriptor table, the head
descriptor can be used for it.

DMA_SetChannelConfig(base, channel, trigger, isPeriph);
DMA_CreateHandle(handle, base, channel)
DMA_SubmitChannelTransferParameter(handle, DMA_CHANNEL_XFER(reload, clrTrig,␣

↪→intA, intB, width, srcInc, dstInc,
bytes), srcStartAddr, dstStartAddr, NULL);

DMA_StartTransfer(handle)

b. for the linked transfer, application should responsible for link descriptor, for example,
if 4 transfer is required, then application should prepare three descriptor table with
macro , the head descriptor in driver can be used for the first transfer descriptor.

182 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

define link descriptor table in application with macro
DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc[3]);

DMA_SetupDescriptor(nextDesc0, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc1);

DMA_SetupDescriptor(nextDesc1, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc2);

DMA_SetupDescriptor(nextDesc2, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, NULL);

DMA_SetChannelConfig(base, channel, trigger, isPeriph);
DMA_CreateHandle(handle, base, channel)
DMA_SubmitChannelTransferParameter(handle, DMA_CHANNEL_XFER(reload, clrTrig,␣

↪→intA, intB, width, srcInc, dstInc,
bytes), srcStartAddr, dstStartAddr, nextDesc0);

DMA_StartTransfer(handle);

Parameters
• handle – Pointer to DMA handle.

• xferCfg – xfer configuration, user can reference DMA_CHANNEL_XFER
about to how to get xferCfg value.

• srcStartAddr – source start address.

• dstStartAddr – destination start address.

• nextDesc – address of next descriptor.

void DMA_SubmitChannelDescriptor(dma_handle_t *handle, dma_descriptor_t *descriptor)
Submit channel descriptor.

This function used to configue channel head descriptor that is used to start DMA transfer,
the head descriptor table is defined in DMA driver, this functiono is typical for the ping
pong case:

a. for the ping pong case, application should responsible for the descriptor, for example,
application should prepare two descriptor table with macro.

define link descriptor table in application with macro
DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc[2]);

DMA_SetupDescriptor(nextDesc0, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc1);

DMA_SetupDescriptor(nextDesc1, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc0);

DMA_SetChannelConfig(base, channel, trigger, isPeriph);
DMA_CreateHandle(handle, base, channel)
DMA_SubmitChannelDescriptor(handle, nextDesc0);
DMA_StartTransfer(handle);

Parameters
• handle – Pointer to DMA handle.

• descriptor – descriptor to submit.

2.5. DMA: Direct Memory Access Controller Driver 183

MCUXpresso SDK Documentation, Release 25.09.00

status_t DMA_SubmitChannelTransfer(dma_handle_t *handle, dma_channel_config_t *config)
Submits the DMA channel transfer request.

This function submits the DMA transfer request according to the transfer configuration
structure. If the user submits the transfer request repeatedly, this function packs an un-
processed request as a TCD and enables scatter/gather feature to process it in the next time.
It is used for the case:

a. for the single transfer, application doesn’t need to allocate descriptor table, the head
descriptor can be used for it.

DMA_CreateHandle(handle, base, channel)
DMA_PrepareChannelTransfer(config,srcStartAddr,dstStartAddr,xferCfg,type,trigger,NULL);
DMA_SubmitChannelTransfer(handle, config)
DMA_StartTransfer(handle)

b. for the linked transfer, application should responsible for link descriptor, for example,
if 4 transfer is required, then application should prepare three descriptor table with
macro , the head descriptor in driver can be used for the first transfer descriptor.

define link descriptor table in application with macro
DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc);
DMA_SetupDescriptor(nextDesc0, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,

↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc1);

DMA_SetupDescriptor(nextDesc1, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc2);

DMA_SetupDescriptor(nextDesc2, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, NULL);

DMA_CreateHandle(handle, base, channel)
DMA_PrepareChannelTransfer(config,srcStartAddr,dstStartAddr,xferCfg,type,trigger,

↪→nextDesc0);
DMA_SubmitChannelTransfer(handle, config)
DMA_StartTransfer(handle)

c. for the ping pong case, application should responsible for link descriptor, for example,
application should prepare two descriptor table with macro , the head descriptor in
driver can be used for the first transfer descriptor.

define link descriptor table in application with macro
DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc);

DMA_SetupDescriptor(nextDesc0, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc1);

DMA_SetupDescriptor(nextDesc1, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc0);

DMA_CreateHandle(handle, base, channel)
DMA_PrepareChannelTransfer(config,srcStartAddr,dstStartAddr,xferCfg,type,trigger,

↪→nextDesc0);
DMA_SubmitChannelTransfer(handle, config)
DMA_StartTransfer(handle)

Parameters
• handle – DMA handle pointer.

• config – Pointer to DMA transfer configuration structure.

Return values

184 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

• kStatus_DMA_Success – It means submit transfer request succeed.

• kStatus_DMA_QueueFull – It means TCD queue is full. Submit transfer re-
quest is not allowed.

• kStatus_DMA_Busy – It means the given channel is busy, need to submit
request later.

void DMA_StartTransfer(dma_handle_t *handle)
DMA start transfer.

This function enables the channel request. User can call this function after submitting the
transfer request It will trigger transfer start with software trigger only when hardware
trigger is not used.

Parameters
• handle – DMA handle pointer.

void DMA_IRQHandle(DMA_Type *base)
DMA IRQ handler for descriptor transfer complete.

This function clears the channel major interrupt flag and call the callback function if it is
not NULL.

Parameters
• base – DMA base address.

FSL_DMA_DRIVER_VERSION
DMA driver version.

Version 2.5.3.

_dma_transfer_status DMA transfer status

Values:

enumerator kStatus_DMA_Busy
Channel is busy and can’t handle the transfer request.

_dma_addr_interleave_size dma address interleave size

Values:

enumerator kDMA_AddressInterleave0xWidth
dma source/destination address no interleave

enumerator kDMA_AddressInterleave1xWidth
dma source/destination address interleave 1xwidth

enumerator kDMA_AddressInterleave2xWidth
dma source/destination address interleave 2xwidth

enumerator kDMA_AddressInterleave4xWidth
dma source/destination address interleave 3xwidth

_dma_transfer_width dma transfer width

Values:

enumerator kDMA_Transfer8BitWidth
dma channel transfer bit width is 8 bit

2.5. DMA: Direct Memory Access Controller Driver 185

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kDMA_Transfer16BitWidth
dma channel transfer bit width is 16 bit

enumerator kDMA_Transfer32BitWidth
dma channel transfer bit width is 32 bit

enum _dma_priority
DMA channel priority.

Values:

enumerator kDMA_ChannelPriority0
Highest channel priority - priority 0

enumerator kDMA_ChannelPriority1
Channel priority 1

enumerator kDMA_ChannelPriority2
Channel priority 2

enumerator kDMA_ChannelPriority3
Channel priority 3

enumerator kDMA_ChannelPriority4
Channel priority 4

enumerator kDMA_ChannelPriority5
Channel priority 5

enumerator kDMA_ChannelPriority6
Channel priority 6

enumerator kDMA_ChannelPriority7
Lowest channel priority - priority 7

enum _dma_int
DMA interrupt flags.

Values:

enumerator kDMA_IntA
DMA interrupt flag A

enumerator kDMA_IntB
DMA interrupt flag B

enumerator kDMA_IntError
DMA interrupt flag error

enum _dma_trigger_type
DMA trigger type.

Values:

enumerator kDMA_NoTrigger
Trigger is disabled

enumerator kDMA_LowLevelTrigger
Low level active trigger

enumerator kDMA_HighLevelTrigger
High level active trigger

186 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kDMA_FallingEdgeTrigger
Falling edge active trigger

enumerator kDMA_RisingEdgeTrigger
Rising edge active trigger

_dma_burst_size DMA burst size

Values:

enumerator kDMA_BurstSize1
burst size 1 transfer

enumerator kDMA_BurstSize2
burst size 2 transfer

enumerator kDMA_BurstSize4
burst size 4 transfer

enumerator kDMA_BurstSize8
burst size 8 transfer

enumerator kDMA_BurstSize16
burst size 16 transfer

enumerator kDMA_BurstSize32
burst size 32 transfer

enumerator kDMA_BurstSize64
burst size 64 transfer

enumerator kDMA_BurstSize128
burst size 128 transfer

enumerator kDMA_BurstSize256
burst size 256 transfer

enumerator kDMA_BurstSize512
burst size 512 transfer

enumerator kDMA_BurstSize1024
burst size 1024 transfer

enum _dma_trigger_burst
DMA trigger burst.

Values:

enumerator kDMA_SingleTransfer
Single transfer

enumerator kDMA_LevelBurstTransfer
Burst transfer driven by level trigger

enumerator kDMA_EdgeBurstTransfer1
Perform 1 transfer by edge trigger

enumerator kDMA_EdgeBurstTransfer2
Perform 2 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer4
Perform 4 transfers by edge trigger

2.5. DMA: Direct Memory Access Controller Driver 187

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kDMA_EdgeBurstTransfer8
Perform 8 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer16
Perform 16 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer32
Perform 32 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer64
Perform 64 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer128
Perform 128 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer256
Perform 256 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer512
Perform 512 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer1024
Perform 1024 transfers by edge trigger

enum _dma_burst_wrap
DMA burst wrapping.

Values:

enumerator kDMA_NoWrap
Wrapping is disabled

enumerator kDMA_SrcWrap
Wrapping is enabled for source

enumerator kDMA_DstWrap
Wrapping is enabled for destination

enumerator kDMA_SrcAndDstWrap
Wrapping is enabled for source and destination

enum _dma_transfer_type
DMA transfer type.

Values:

enumerator kDMA_MemoryToMemory
Transfer from memory to memory (increment source and destination)

enumerator kDMA_PeripheralToMemory
Transfer from peripheral to memory (increment only destination)

enumerator kDMA_MemoryToPeripheral
Transfer from memory to peripheral (increment only source)

enumerator kDMA_StaticToStatic
Peripheral to static memory (do not increment source or destination)

typedef struct _dma_descriptor dma_descriptor_t
DMA descriptor structure.

typedef struct _dma_xfercfg dma_xfercfg_t
DMA transfer configuration.

188 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _dma_priority dma_priority_t
DMA channel priority.

typedef enum _dma_int dma_irq_t
DMA interrupt flags.

typedef enum _dma_trigger_type dma_trigger_type_t
DMA trigger type.

typedef enum _dma_trigger_burst dma_trigger_burst_t
DMA trigger burst.

typedef enum _dma_burst_wrap dma_burst_wrap_t
DMA burst wrapping.

typedef enum _dma_transfer_type dma_transfer_type_t
DMA transfer type.

typedef struct _dma_channel_trigger dma_channel_trigger_t
DMA channel trigger.

typedef struct _dma_channel_config dma_channel_config_t
DMA channel trigger.

typedef struct _dma_transfer_config dma_transfer_config_t
DMA transfer configuration.

typedef void (*dma_callback)(struct _dma_handle *handle, void *userData, bool transferDone,
uint32_t intmode)

Define Callback function for DMA.

typedef struct _dma_handle dma_handle_t
DMA transfer handle structure.

DMA_MAX_TRANSFER_COUNT
DMA max transfer size.

FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(x)
DMA channel numbers.

FSL_FEATURE_DMA_MAX_CHANNELS

FSL_FEATURE_DMA_ALL_CHANNELS

FSL_FEATURE_DMA_LINK_DESCRIPTOR_ALIGN_SIZE
DMA head link descriptor table align size.

DMA_ALLOCATE_HEAD_DESCRIPTORS(name, number)
DMA head descriptor table allocate macro To simplify user interface, this macro will help
allocate descriptor memory, user just need to provide the name and the number for the
allocate descriptor.

Parameters
• name – Allocate decriptor name.

• number – Number of descriptor to be allocated.

DMA_ALLOCATE_HEAD_DESCRIPTORS_AT_NONCACHEABLE(name, number)
DMA head descriptor table allocate macro at noncacheable section To simplify user inter-
face, this macro will help allocate descriptor memory at noncacheable section, user just
need to provide the name and the number for the allocate descriptor.

Parameters

2.5. DMA: Direct Memory Access Controller Driver 189

MCUXpresso SDK Documentation, Release 25.09.00

• name – Allocate decriptor name.

• number – Number of descriptor to be allocated.

DMA_ALLOCATE_LINK_DESCRIPTORS(name, number)
DMA link descriptor table allocate macro To simplify user interface, this macro will help
allocate descriptor memory, user just need to provide the name and the number for the
allocate descriptor.

Parameters
• name – Allocate decriptor name.

• number – Number of descriptor to be allocated.

DMA_ALLOCATE_LINK_DESCRIPTORS_AT_NONCACHEABLE(name, number)
DMA link descriptor table allocate macro at noncacheable section To simplify user inter-
face, this macro will help allocate descriptor memory at noncacheable section, user just
need to provide the name and the number for the allocate descriptor.

Parameters
• name – Allocate decriptor name.

• number – Number of descriptor to be allocated.

DMA_ALLOCATE_DATA_TRANSFER_BUFFER(name, width)
DMA transfer buffer address need to align with the transfer width.

DMA_CHANNEL_GROUP(channel)

DMA_CHANNEL_INDEX(base, channel)

DMA_COMMON_REG_GET(base, channel, reg)
DMA linked descriptor address algin size.

DMA_COMMON_CONST_REG_GET(base, channel, reg)

DMA_COMMON_REG_SET(base, channel, reg, value)

DMA_DESCRIPTOR_END_ADDRESS(start, inc, bytes, width)
DMA descriptor end address calculate.

Parameters
• start – start address

• inc – address interleave size

• bytes – transfer bytes

• width – transfer width

DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes)

struct _dma_descriptor
#include <fsl_dma.h> DMA descriptor structure.

Public Members

volatile uint32_t xfercfg
Transfer configuration

void *srcEndAddr
Last source address of DMA transfer

190 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

void *dstEndAddr
Last destination address of DMA transfer

void *linkToNextDesc
Address of next DMA descriptor in chain

struct _dma_xfercfg
#include <fsl_dma.h> DMA transfer configuration.

Public Members

bool valid
Descriptor is ready to transfer

bool reload
Reload channel configuration register after current descriptor is exhausted

bool swtrig
Perform software trigger. Transfer if fired when ‘valid’ is set

bool clrtrig
Clear trigger

bool intA
Raises IRQ when transfer is done and set IRQA status register flag

bool intB
Raises IRQ when transfer is done and set IRQB status register flag

uint8_t byteWidth
Byte width of data to transfer

uint8_t srcInc
Increment source address by ‘srcInc’ x ‘byteWidth’

uint8_t dstInc
Increment destination address by ‘dstInc’ x ‘byteWidth’

uint16_t transferCount
Number of transfers

struct _dma_channel_trigger
#include <fsl_dma.h> DMA channel trigger.

Public Members

dma_trigger_type_t type
Select hardware trigger as edge triggered or level triggered.

dma_trigger_burst_t burst
Select whether hardware triggers cause a single or burst transfer.

dma_burst_wrap_t wrap
Select wrap type, source wrap or dest wrap, or both.

struct _dma_channel_config
#include <fsl_dma.h> DMA channel trigger.

2.5. DMA: Direct Memory Access Controller Driver 191

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

void *srcStartAddr
Source data address

void *dstStartAddr
Destination data address

void *nextDesc
Chain custom descriptor

uint32_t xferCfg
channel transfer configurations

dma_channel_trigger_t *trigger
DMA trigger type

bool isPeriph
select the request type

struct _dma_transfer_config
#include <fsl_dma.h> DMA transfer configuration.

Public Members

uint8_t *srcAddr
Source data address

uint8_t *dstAddr
Destination data address

uint8_t *nextDesc
Chain custom descriptor

dma_xfercfg_t xfercfg
Transfer options

bool isPeriph
DMA transfer is driven by peripheral

struct _dma_handle
#include <fsl_dma.h> DMA transfer handle structure.

Public Members

dma_callback callback
Callback function. Invoked when transfer of descriptor with interrupt flag finishes

void *userData
Callback function parameter

DMA_Type *base
DMA peripheral base address

uint8_t channel
DMA channel number

192 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

2.6 DMIC: Digital Microphone

2.7 DMIC DMA Driver

status_t DMIC_TransferCreateHandleDMA(DMIC_Type *base, dmic_dma_handle_t *handle,
dmic_dma_transfer_callback_t callback, void
*userData, dma_handle_t *rxDmaHandle)

Initializes the DMIC handle which is used in transactional functions.

Parameters
• base – DMIC peripheral base address.

• handle – Pointer to dmic_dma_handle_t structure.

• callback – Callback function.

• userData – User data.

• rxDmaHandle – User-requested DMA handle for RX DMA transfer.

status_t DMIC_TransferReceiveDMA(DMIC_Type *base, dmic_dma_handle_t *handle,
dmic_transfer_t *xfer, uint32_t channel)

Receives data using DMA.

This function receives data using DMA. This is a non-blocking function, which returns right
away. When all data is received, the receive callback function is called.

Parameters
• base – USART peripheral base address.

• handle – Pointer to usart_dma_handle_t structure.

• xfer – DMIC DMA transfer structure. See dmic_transfer_t.

• channel – DMIC start channel number.

Return values
kStatus_Success –

void DMIC_TransferAbortReceiveDMA(DMIC_Type *base, dmic_dma_handle_t *handle)
Aborts the received data using DMA.

This function aborts the received data using DMA.

Parameters
• base – DMIC peripheral base address

• handle – Pointer to dmic_dma_handle_t structure

status_t DMIC_TransferGetReceiveCountDMA(DMIC_Type *base, dmic_dma_handle_t *handle,
uint32_t *count)

Get the number of bytes that have been received.

This function gets the number of bytes that have been received.

Parameters
• base – DMIC peripheral base address.

• handle – DMIC handle pointer.

• count – Receive bytes count.

Return values
• kStatus_NoTransferInProgress – No receive in progress.

2.6. DMIC: Digital Microphone 193

MCUXpresso SDK Documentation, Release 25.09.00

• kStatus_InvalidArgument – Parameter is invalid.

• kStatus_Success – Get successfully through the parameter count;

void DMIC_InstallDMADescriptorMemory(dmic_dma_handle_t *handle, void *linkAddr, size_t
linkNum)

Install DMA descriptor memory.

This function used to register DMA descriptor memory for linked transfer, a typical case
is ping pong transfer which will request more than one DMA descriptor memory space,
it should be called after DMIC_TransferCreateHandleDMA. User should be take care about
the address of DMA descriptor pool which required align with 16BYTE at least.

Parameters
• handle – Pointer to DMA channel transfer handle.

• linkAddr – DMA link descriptor address.

• linkNum – DMA link descriptor number.

FSL_DMIC_DMA_DRIVER_VERSION
DMIC DMA driver version 2.4.2.

typedef struct _dmic_transfer dmic_transfer_t
DMIC transfer structure.

typedef struct _dmic_dma_handle dmic_dma_handle_t

typedef void (*dmic_dma_transfer_callback_t)(DMIC_Type *base, dmic_dma_handle_t *handle,
status_t status, void *userData)

DMIC transfer callback function.

struct _dmic_transfer
#include <fsl_dmic_dma.h> DMIC transfer structure.

Public Members

void *data
The buffer of data to be transfer.

uint8_t dataWidth
DMIC support 16bit/32bit

size_t dataSize
The byte count to be transfer.

uint8_t dataAddrInterleaveSize
destination address interleave size

struct _dmic_transfer *linkTransfer
use to support link transfer

struct _dmic_dma_handle
#include <fsl_dmic_dma.h> DMIC DMA handle.

Public Members

DMIC_Type *base
DMIC peripheral base address.

194 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

dma_handle_t *rxDmaHandle
The DMA RX channel used.

dmic_dma_transfer_callback_t callback
Callback function.

void *userData
DMIC callback function parameter.

size_t transferSize
Size of the data to receive.

volatile uint8_t state
Internal state of DMIC DMA transfer

uint32_t channel
DMIC channel used.

bool isChannelValid
DMIC channel initialization flag

dma_descriptor_t *desLink
descriptor pool pointer

size_t linkNum
number of descriptor in descriptors pool

2.8 DMIC Driver

uint32_t DMIC_GetInstance(DMIC_Type *base)
Get the DMIC instance from peripheral base address.

Parameters
• base – DMIC peripheral base address.

Returns
DMIC instance.

void DMIC_Init(DMIC_Type *base)
Turns DMIC Clock on.

Parameters
• base – : DMIC base

Returns
Nothing

void DMIC_DeInit(DMIC_Type *base)
Turns DMIC Clock off.

Parameters
• base – : DMIC base

Returns
Nothing

void DMIC_ConfigIO(DMIC_Type *base, dmic_io_t config)
Configure DMIC io.

2.8. DMIC Driver 195

MCUXpresso SDK Documentation, Release 25.09.00

Deprecated:
Do not use this function. It has been superceded by DMIC_SetIOCFG

Parameters
• base – : The base address of DMIC interface

• config – : DMIC io configuration

Returns
Nothing

static inline void DMIC_SetIOCFG(DMIC_Type *base, uint32_t sel)
Stereo PDM select.

Parameters
• base – : The base address of DMIC interface

• sel – : Reference dmic_io_t, can be a single or combination value of
dmic_io_t.

Returns
Nothing

void DMIC_SetOperationMode(DMIC_Type *base, operation_mode_tmode)
Set DMIC operating mode.

Deprecated:
Do not use this function. It has been superceded by DMIC_EnableChannelInterrupt,
DMIC_EnableChannelDma.

Parameters
• base – : The base address of DMIC interface

• mode – : DMIC mode

Returns
Nothing

void DMIC_Use2fs(DMIC_Type *base, bool use2fs)
Configure Clock scaling.

Parameters
• base – : The base address of DMIC interface

• use2fs – : clock scaling

Returns
Nothing

void DMIC_CfgChannelDc(DMIC_Type *base, dmic_channel_t channel, dc_removal_t
dc_cut_level, uint32_t post_dc_gain_reduce, bool saturate16bit)

Configure DMIC channel.

Parameters
• base – : The base address of DMIC interface

• channel – : DMIC channel

• dc_cut_level – : dc_removal_t, Cut off Frequency

• post_dc_gain_reduce – : Fine gain adjustment in the form of a number of
bits to downshift.

196 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

• saturate16bit – : If selects 16-bit saturation.

void DMIC_ConfigChannel(DMIC_Type *base, dmic_channel_t channel, stereo_side_t side,
dmic_channel_config_t *channel_config)

Configure DMIC channel.

Parameters
• base – : The base address of DMIC interface

• channel – : DMIC channel

• side – : stereo_side_t, choice of left or right

• channel_config – : Channel configuration

Returns
Nothing

void DMIC_EnableChannnel(DMIC_Type *base, uint32_t channelmask)
Enable a particualr channel.

Parameters
• base – : The base address of DMIC interface

• channelmask – reference _dmic_channel_mask

Returns
Nothing

void DMIC_FifoChannel(DMIC_Type *base, uint32_t channel, uint32_t trig_level, uint32_t
enable, uint32_t resetn)

Configure fifo settings for DMIC channel.

Parameters
• base – : The base address of DMIC interface

• channel – : DMIC channel

• trig_level – : FIFO trigger level

• enable – : FIFO level

• resetn – : FIFO reset

Returns
Nothing

static inline void DMIC_EnableChannelInterrupt(DMIC_Type *base, dmic_channel_t channel,
bool enable)

Enable a particualr channel interrupt request.

Parameters
• base – : The base address of DMIC interface

• channel – : Channel selection

• enable – : true is enable, false is disable

static inline void DMIC_EnableChannelDma(DMIC_Type *base, dmic_channel_t channel, bool
enable)

Enable a particualr channel dma request.

Parameters
• base – : The base address of DMIC interface

• channel – : Channel selection

2.8. DMIC Driver 197

MCUXpresso SDK Documentation, Release 25.09.00

• enable – : true is enable, false is disable

static inline void DMIC_EnableChannelFifo(DMIC_Type *base, dmic_channel_t channel, bool
enable)

Enable a particualr channel fifo.

Parameters
• base – : The base address of DMIC interface

• channel – : Channel selection

• enable – : true is enable, false is disable

static inline void DMIC_DoFifoReset(DMIC_Type *base, dmic_channel_t channel)
Channel fifo reset.

Parameters
• base – : The base address of DMIC interface

• channel – : Channel selection

static inline uint32_t DMIC_FifoGetStatus(DMIC_Type *base, uint32_t channel)
Get FIFO status.

Parameters
• base – : The base address of DMIC interface

• channel – : DMIC channel

Returns
FIFO status

static inline void DMIC_FifoClearStatus(DMIC_Type *base, uint32_t channel, uint32_t mask)
Clear FIFO status.

Parameters
• base – : The base address of DMIC interface

• channel – : DMIC channel

• mask – : Bits to be cleared

Returns
FIFO status

static inline uint32_t DMIC_FifoGetData(DMIC_Type *base, uint32_t channel)
Get FIFO data.

Parameters
• base – : The base address of DMIC interface

• channel – : DMIC channel

Returns
FIFO data

static inline uint32_t DMIC_FifoGetAddress(DMIC_Type *base, uint32_t channel)
Get FIFO address.

Parameters
• base – : The base address of DMIC interface

• channel – : DMIC channel

Returns
FIFO data

198 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

void DMIC_EnableIntCallback(DMIC_Type *base, dmic_callback_t cb)
Enable callback.

This function enables the interrupt for the selected DMIC peripheral. The callback function
is not enabled until this function is called.

Parameters
• base – Base address of the DMIC peripheral.

• cb – callback Pointer to store callback function.

Return values
None. –

void DMIC_DisableIntCallback(DMIC_Type *base, dmic_callback_t cb)
Disable callback.

This function disables the interrupt for the selected DMIC peripheral.

Parameters
• base – Base address of the DMIC peripheral.

• cb – callback Pointer to store callback function..

Return values
None. –

static inline void DMIC_SetGainNoiseEstHwvad(DMIC_Type *base, uint32_t value)
Sets the gain value for the noise estimator.

Parameters
• base – DMIC base pointer

• value – gain value for the noise estimator.

Return values
None. –

static inline void DMIC_SetGainSignalEstHwvad(DMIC_Type *base, uint32_t value)
Sets the gain value for the signal estimator.

Parameters
• base – DMIC base pointer

• value – gain value for the signal estimator.

Return values
None. –

static inline void DMIC_SetFilterCtrlHwvad(DMIC_Type *base, uint32_t value)
Sets the hwvad filter cutoff frequency parameter.

Parameters
• base – DMIC base pointer

• value – cut off frequency value.

Return values
None. –

static inline void DMIC_SetInputGainHwvad(DMIC_Type *base, uint32_t value)
Sets the input gain of hwvad.

Parameters
• base – DMIC base pointer

2.8. DMIC Driver 199

MCUXpresso SDK Documentation, Release 25.09.00

• value – input gain value for hwvad.

Return values
None. –

static inline void DMIC_CtrlClrIntrHwvad(DMIC_Type *base, bool st10)
Clears hwvad internal interrupt flag.

Parameters
• base – DMIC base pointer

• st10 – bit value.

Return values
None. –

static inline void DMIC_FilterResetHwvad(DMIC_Type *base, bool rstt)
Resets hwvad filters.

Parameters
• base – DMIC base pointer

• rstt – Reset bit value.

Return values
None. –

static inline uint16_t DMIC_GetNoiseEnvlpEst(DMIC_Type *base)
Gets the value from output of the filter z7.

Parameters
• base – DMIC base pointer

Return values
output – of filter z7.

void DMIC_HwvadEnableIntCallback(DMIC_Type *base, dmic_hwvad_callback_t vadcb)
Enable hwvad callback.

This function enables the hwvad interrupt for the selected DMIC peripheral. The callback
function is not enabled until this function is called.

Parameters
• base – Base address of the DMIC peripheral.

• vadcb – callback Pointer to store callback function.

Return values
None. –

void DMIC_HwvadDisableIntCallback(DMIC_Type *base, dmic_hwvad_callback_t vadcb)
Disable callback.

This function disables the hwvad interrupt for the selected DMIC peripheral.

Parameters
• base – Base address of the DMIC peripheral.

• vadcb – callback Pointer to store callback function..

Return values
None. –

FSL_DMIC_DRIVER_VERSION
DMIC driver version 2.3.3.

200 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

_dmic_status DMIC transfer status.

Values:

enumerator kStatus_DMIC_Busy
DMIC is busy

enumerator kStatus_DMIC_Idle
DMIC is idle

enumerator kStatus_DMIC_OverRunError
DMIC over run Error

enumerator kStatus_DMIC_UnderRunError
DMIC under run Error

enum _operation_mode
DMIC different operation modes.

Values:

enumerator kDMIC_OperationModeInterrupt
Interrupt mode

enumerator kDMIC_OperationModeDma
DMA mode

enum _stereo_side
DMIC left/right values.

Values:

enumerator kDMIC_Left
Left Stereo channel

enumerator kDMIC_Right
Right Stereo channel

enum pdm_div_t
DMIC Clock pre-divider values.

Values:

enumerator kDMIC_PdmDiv1
DMIC pre-divider set in divide by 1

enumerator kDMIC_PdmDiv2
DMIC pre-divider set in divide by 2

enumerator kDMIC_PdmDiv3
DMIC pre-divider set in divide by 3

enumerator kDMIC_PdmDiv4
DMIC pre-divider set in divide by 4

enumerator kDMIC_PdmDiv6
DMIC pre-divider set in divide by 6

enumerator kDMIC_PdmDiv8
DMIC pre-divider set in divide by 8

enumerator kDMIC_PdmDiv12
DMIC pre-divider set in divide by 12

2.8. DMIC Driver 201

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kDMIC_PdmDiv16
DMIC pre-divider set in divide by 16

enumerator kDMIC_PdmDiv24
DMIC pre-divider set in divide by 24

enumerator kDMIC_PdmDiv32
DMIC pre-divider set in divide by 32

enumerator kDMIC_PdmDiv48
DMIC pre-divider set in divide by 48

enumerator kDMIC_PdmDiv64
DMIC pre-divider set in divide by 64

enumerator kDMIC_PdmDiv96
DMIC pre-divider set in divide by 96

enumerator kDMIC_PdmDiv128
DMIC pre-divider set in divide by 128

enum _compensation
Pre-emphasis Filter coefficient value for 2FS and 4FS modes.

Values:

enumerator kDMIC_CompValueZero
Compensation 0

enumerator kDMIC_CompValueNegativePoint16
Compensation -0.16

enumerator kDMIC_CompValueNegativePoint15
Compensation -0.15

enumerator kDMIC_CompValueNegativePoint13
Compensation -0.13

enum _dc_removal
DMIC DC filter control values.

Values:

enumerator kDMIC_DcNoRemove
Flat response no filter

enumerator kDMIC_DcCut155
Cut off Frequency is 155 Hz

enumerator kDMIC_DcCut78
Cut off Frequency is 78 Hz

enumerator kDMIC_DcCut39
Cut off Frequency is 39 Hz

enum _dmic_io
DMIC IO configiration.

Values:

enumerator kDMIC_PdmDual
Two separate pairs of PDM wires

202 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kDMIC_PdmStereo
Stereo data0

enumerator kDMIC_PdmBypass
Clk Bypass clocks both channels

enumerator kDMIC_PdmBypassClk0
Clk Bypass clocks only channel0

enumerator kDMIC_PdmBypassClk1
Clk Bypas clocks only channel1

enum _dmic_channel
DMIC Channel number.

Values:

enumerator kDMIC_Channel0
DMIC channel 0

enumerator kDMIC_Channel1
DMIC channel 1

enumerator kDMIC_ChannelMAX
Maximum number of DMIC channels

_dmic_channel_mask DMIC Channel mask.

Values:

enumerator kDMIC_EnableChannel0
DMIC channel 0 mask

enumerator kDMIC_EnableChannel1
DMIC channel 1 mask

enum _dmic_phy_sample_rate
DMIC and decimator sample rates.

Values:

enumerator kDMIC_PhyFullSpeed
Decimator gets one sample per each chosen clock edge of PDM interface

enumerator kDMIC_PhyHalfSpeed
PDM clock to Microphone is halved, decimator receives each sample twice

typedef enum _operation_mode operation_mode_t
DMIC different operation modes.

typedef enum _stereo_side stereo_side_t
DMIC left/right values.

typedef enum _compensation compensation_t
Pre-emphasis Filter coefficient value for 2FS and 4FS modes.

typedef enum _dc_removal dc_removal_t
DMIC DC filter control values.

typedef enum _dmic_io dmic_io_t
DMIC IO configiration.

2.8. DMIC Driver 203

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _dmic_channel dmic_channel_t
DMIC Channel number.

typedef enum _dmic_phy_sample_rate dmic_phy_sample_rate_t
DMIC and decimator sample rates.

typedef struct _dmic_channel_config dmic_channel_config_t
DMIC Channel configuration structure.

typedef void (*dmic_callback_t)(void)
DMIC Callback function.

typedef void (*dmic_hwvad_callback_t)(void)
HWVAD Callback function.

struct _dmic_channel_config
#include <fsl_dmic.h> DMIC Channel configuration structure.

Public Members

pdm_div_t divhfclk
DMIC Clock pre-divider values

uint32_t osr
oversampling rate(CIC decimation rate) for PCM

uint32_t gainshft
4FS PCM data gain control

compensation_t preac2coef
Pre-emphasis Filter coefficient value for 2FS

compensation_t preac4coef
Pre-emphasis Filter coefficient value for 4FS

dc_removal_t dc_cut_level
DMIC DC filter control values.

uint32_t post_dc_gain_reduce
Fine gain adjustment in the form of a number of bits to downshift

dmic_phy_sample_rate_t sample_rate
DMIC and decimator sample rates

bool saturate16bit
Selects 16-bit saturation. 0 means results roll over if out range and do not saturate. 1
means if the result overflows, it saturates at 0xFFFF for positive overflow and 0x8000
for negative overflow.

2.9 EMC: External Memory Controller Driver

void EMC_Init(EMC_Type *base, emc_basic_config_t *config)
Initializes the basic for EMC. This function ungates the EMC clock, initializes the emc system
configure and enable the EMC module. This function must be called in the first step to
initialize the external memory.

Parameters
• base – EMC peripheral base address.

204 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

• config – The EMC basic configuration.

void EMC_DynamicMemInit(EMC_Type *base, emc_dynamic_timing_config_t *timing,
emc_dynamic_chip_config_t *config, uint32_t totalChips)

Initializes the dynamic memory controller. This function initializes the dynamic memory
controller in external memory controller. This function must be called after EMC_Init and
before accessing the external dynamic memory.

Parameters
• base – EMC peripheral base address.

• timing – The timing and latency for dynamica memory controller setting.
It shall be used for all dynamica memory chips, threfore the worst timing
value for all used chips must be given.

• config – The EMC dynamic memory controller chip independent configu-
ration pointer. This configuration pointer is actually pointer to a configra-
tion array. the array number depends on the “totalChips”.

• totalChips – The total dynamic memory chip numbers been used or the
length of the “emc_dynamic_chip_config_t” type memory.

void EMC_StaticMemInit(EMC_Type *base, uint32_t *extWait_Ns, emc_static_chip_config_t
*config, uint32_t totalChips)

Initializes the static memory controller. This function initializes the static memory con-
troller in external memory controller. This function must be called after EMC_Init and
before accessing the external static memory.

Parameters
• base – EMC peripheral base address.

• extWait_Ns – The extended wait timeout or the read/write transfer time.
This is common for all static memory chips and set with NULL if not re-
quired.

• config – The EMC static memory controller chip independent configuration
pointer. This configuration pointer is actually pointer to a configration
array. the array number depends on the “totalChips”.

• totalChips – The total static memory chip numbers been used or the length
of the “emc_static_chip_config_t” type memory.

void EMC_Deinit(EMC_Type *base)
Deinitializes the EMC module and gates the clock. This function gates the EMC controller
clock. As a result, the EMC module doesn’t work after calling this function.

Parameters
• base – EMC peripheral base address.

static inline void EMC_Enable(EMC_Type *base, bool enable)
Enables/disables the EMC module.

Parameters
• base – EMC peripheral base address.

• enable – True enable EMC module, false disable.

static inline void EMC_EnableDynamicMemControl(EMC_Type *base, bool enable)
Enables/disables the EMC Dynaimc memory controller.

Parameters
• base – EMC peripheral base address.

2.9. EMC: External Memory Controller Driver 205

MCUXpresso SDK Documentation, Release 25.09.00

• enable – True enable EMC dynamic memory controller, false disable.

static inline void EMC_MirrorChipAddr(EMC_Type *base, bool enable)
Enables/disables the EMC address mirror. Enable the address mirror the EMC_CS1is mir-
rored to both EMC_CS0 and EMC_DYCS0memory areas. Disable the address mirror enables
EMC_cS0 and EMC_DYCS0 memory to be accessed.

Parameters
• base – EMC peripheral base address.

• enable – True enable the address mirror, false disable the address mirror.

static inline void EMC_EnterSelfRefreshCommand(EMC_Type *base, bool enable)
Enter the self-refresh mode for dynamic memory controller. This function provided self-
refresh mode enter or exit for application.

Parameters
• base – EMC peripheral base address.

• enable – True enter the self-refreshmode, false to exit self-refresh and enter
the normal mode.

static inline bool EMC_IsInSelfrefreshMode(EMC_Type *base)
Get the operating mode of the EMC. This function can be used to get the operating mode of
the EMC.

Parameters
• base – EMC peripheral base address.

Returns
The EMC in self-refresh mode if true, else in normal mode.

static inline void EMC_EnterLowPowerMode(EMC_Type *base, bool enable)
Enter/exit the low-power mode.

Parameters
• base – EMC peripheral base address.

• enable – True Enter the low-power mode, false exit low-power mode and
return to normal mode.

FSL_EMC_DRIVER_VERSION
EMC driver version.

enum _emc_static_memwidth
Define EMC memory width for static memory device.

Values:

enumerator kEMC_8BitWidth
8 bit memory width.

enumerator kEMC_16BitWidth
16 bit memory width.

enumerator kEMC_32BitWidth
32 bit memory width.

enum _emc_static_special_config
Define EMC static configuration.

Values:

206 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kEMC_AsynchronosPageEnable
Enable the asynchronous page mode. page length four.

enumerator kEMC_ActiveHighChipSelect
Chip select active high.

enumerator kEMC_ByteLaneStateAllLow
Reads/writes the respective valuie bits in BLS3:0 are low.

enumerator kEMC_ExtWaitEnable
Extended wait enable.

enumerator kEMC_BufferEnable
Buffer enable.

enum _emc_dynamic_device
EMC dynamic memory device.

Values:

enumerator kEMC_Sdram
Dynamic memory device: SDRAM.

enumerator kEMC_Lpsdram
Dynamic memory device: Low-power SDRAM.

enum _emc_dynamic_read
EMC dynamic read strategy.

Values:

enumerator kEMC_NoDelay
No delay.

enumerator kEMC_Cmddelay
Command delayed strategy, using EMCCLKDELAY.

enumerator kEMC_CmdDelayPulseOneclk
Command delayed strategy pluse one clock cycle using EMCCLKDELAY.

enumerator kEMC_CmddelayPulsetwoclk
Command delayed strategy pulse two clock cycle using EMCCLKDELAY.

enum _emc_endian_mode
EMC endian mode.

Values:

enumerator kEMC_LittleEndian
Little endian mode.

enumerator kEMC_BigEndian
Big endian mode.

enum _emc_fbclk_src
EMC Feedback clock input source select.

Values:

enumerator kEMC_IntloopbackEmcclk
Use the internal loop back from EMC_CLK output.

enumerator kEMC_EMCFbclkInput
Use the external EMC_FBCLK input.

2.9. EMC: External Memory Controller Driver 207

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _emc_static_memwidth emc_static_memwidth_t
Define EMC memory width for static memory device.

typedef enum _emc_static_special_config emc_static_special_config_t
Define EMC static configuration.

typedef enum _emc_dynamic_device emc_dynamic_device_t
EMC dynamic memory device.

typedef enum _emc_dynamic_read emc_dynamic_read_t
EMC dynamic read strategy.

typedef enum _emc_endian_mode emc_endian_mode_t
EMC endian mode.

typedef enum _emc_fbclk_src emc_fbclk_src_t
EMC Feedback clock input source select.

typedef struct _emc_dynamic_timing_config emc_dynamic_timing_config_t
EMC dynamic timing/delay configure structure.

typedef struct _emc_dynamic_chip_config emc_dynamic_chip_config_t
EMC dynamic memory controller independent chip configuration structure. Please take
refer to the address mapping table in the RM in EMC chapter when you set the “devAd-
drMap”. Choose the right Bit 14 Bit12 ~ Bit 7 group in the table according to the bus
width/banks/row/colum length for you device. Set devAddrMap with the value make up
with the seven bits (bit14 bit12 ~ bit 7) and inset the bit 13 with 0. for example, if the bit 14
and bit12 ~ bit7 is 1000001 is choosen according to the 32bit high-performance bus width
with 2 banks, 11 row lwngth, 8 column length. Set devAddrMap with 0x81.

typedef struct _emc_static_chip_config emc_static_chip_config_t
EMC static memory controller independent chip configuration structure.

typedef struct _emc_basic_config emc_basic_config_t
EMC module basic configuration structure.

Defines the static memory controller configure structure and uses the EMC_Init() function
to make necessary initializations.

EMC_STATIC_MEMDEV_NUM
Define the chip numbers for dynamic and static memory devices.

EMC_DYNAMIC_MEMDEV_NUM

EMC_ADDRMAP_SHIFT

EMC_ADDRMAP_MASK

EMC_ADDRMAP(x)

EMC_HZ_ONEMHZ

EMC_MILLISECS_ONESEC

EMC_SDRAM_MODE_CL_SHIFT

EMC_SDRAM_MODE_CL_MASK

EMC_SDRAM_NOP_DELAY_US
EDMA_SDRAM NOP command wait us.

EMC_SDRAM_PRECHARGE_DELAY_US
EDMA_SDRAM precharge command wait us.

208 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

EMC_SDRAM_AUTO_REFRESH_DELAY_US
EDMA_SDRAM auto refresh wait us.

struct _emc_dynamic_timing_config
#include <fsl_emc.h> EMC dynamic timing/delay configure structure.

Public Members

uint32_t refreshPeriod_Nanosec
The refresh period in unit of nanosecond.

uint32_t tRp_Ns
Precharge command period in unit of nanosecond.

uint32_t tRas_Ns
Active to precharge command period in unit of nanosecond.

uint32_t tSrex_Ns
Self-refresh exit time in unit of nanosecond.

uint32_t tApr_Ns
Last data out to active command time in unit of nanosecond.

uint32_t tDal_Ns
Data-in to active command in unit of nanosecond.

uint32_t tWr_Ns
Write recovery time in unit of nanosecond.

uint32_t tRc_Ns
Active to active command period in unit of nanosecond.

uint32_t tRfc_Ns
Auto-refresh period and auto-refresh to active command period in unit of nanosecond.

uint32_t tXsr_Ns
Exit self-refresh to active command time in unit of nanosecond.

uint32_t tRrd_Ns
Active bank A to active bank B latency in unit of nanosecond.

uint8_t tMrd_Nclk
Load mode register to active command time in unit of EMCCLK cycles.

struct _emc_dynamic_chip_config
#include <fsl_emc.h> EMC dynamic memory controller independent chip configuration
structure. Please take refer to the address mapping table in the RM in EMC chapter when
you set the “devAddrMap”. Choose the right Bit 14 Bit12 ~ Bit 7 group in the table according
to the bus width/banks/row/colum length for you device. Set devAddrMap with the value
make up with the seven bits (bit14 bit12 ~ bit 7) and inset the bit 13 with 0. for example, if
the bit 14 and bit12 ~ bit7 is 1000001 is choosen according to the 32bit high-performance
bus width with 2 banks, 11 row lwngth, 8 column length. Set devAddrMap with 0x81.

Public Members

uint8_t chipIndex
Chip Index, range from 0 ~ EMC_DYNAMIC_MEMDEV_NUM - 1.

emc_dynamic_device_t dynamicDevice
All chips shall use the same device setting. mixed use are not supported.

2.9. EMC: External Memory Controller Driver 209

MCUXpresso SDK Documentation, Release 25.09.00

uint8_t rAS_Nclk
Active to read/write delay tRCD.

uint16_t sdramModeReg
Sdram mode register setting.

uint16_t sdramExtModeReg
Used for low-power sdram device. The extended mode register.

uint8_t devAddrMap
dynamic device address mapping, choose the address mapping for your specific de-
vice.

struct _emc_static_chip_config
#include <fsl_emc.h> EMC static memory controller independent chip configuration struc-
ture.

Public Members

emc_static_memwidth_t memWidth
Memory width.

uint32_t specailConfig
Static configuration,a logical OR of “emc_static_special_config_t”.

uint32_t tWaitWriteEn_Ns
The delay form chip select to write enable in unit of nanosecond.

uint32_t tWaitOutEn_Ns
The delay from chip selcet to output enable in unit of nanosecond.

uint32_t tWaitReadNoPage_Ns
In No-page mode, the delay from chip select to read access in unit of nanosecond.

uint32_t tWaitReadPage_Ns
In page mode, the read after the first read wait states in unit of nanosecond.

uint32_t tWaitWrite_Ns
The delay from chip select to write access in unit of nanosecond.

uint32_t tWaitTurn_Ns
The Bus turn-around time in unit of nanosecond.

struct _emc_basic_config
#include <fsl_emc.h> EMC module basic configuration structure.

Defines the static memory controller configure structure and uses the EMC_Init() function
to make necessary initializations.

Public Members

emc_endian_mode_t endian
Endian mode .

emc_fbclk_src_t fbClkSrc
The feedback clock source.

uint8_t emcClkDiv
EMC_CLK = AHB_CLK / (emc_clkDiv + 1).

210 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

2.10 FLEXCOMM: FLEXCOMM Driver

2.11 FLEXCOMM Driver

FSL_FLEXCOMM_DRIVER_VERSION
FlexCOMM driver version 2.0.2.

enum FLEXCOMM_PERIPH_T
FLEXCOMM peripheral modes.

Values:

enumerator FLEXCOMM_PERIPH_NONE
No peripheral

enumerator FLEXCOMM_PERIPH_USART
USART peripheral

enumerator FLEXCOMM_PERIPH_SPI
SPI Peripheral

enumerator FLEXCOMM_PERIPH_I2C
I2C Peripheral

enumerator FLEXCOMM_PERIPH_I2S_TX
I2S TX Peripheral

enumerator FLEXCOMM_PERIPH_I2S_RX
I2S RX Peripheral

typedef void (*flexcomm_irq_handler_t)(void *base, void *handle)
Typedef for interrupt handler.

IRQn_Type const kFlexcommIrqs[]
Array with IRQ number for each FLEXCOMMmodule.

uint32_t FLEXCOMM_GetInstance(void *base)
Returns instance number for FLEXCOMMmodule with given base address.

status_t FLEXCOMM_Init(void *base, FLEXCOMM_PERIPH_T periph)
Initializes FLEXCOMM and selects peripheral mode according to the second parameter.

void FLEXCOMM_SetIRQHandler(void *base, flexcomm_irq_handler_t handler, void
*flexcommHandle)

Sets IRQ handler for given FLEXCOMM module. It is used by drivers register IRQ handler
according to FLEXCOMMmode.

2.12 FMEAS: Frequency Measure Driver

static inline void FMEAS_StartMeasure(FMEAS_SYSCON_Type *base)
Starts a frequency measurement cycle.

Parameters
• base – : SYSCON peripheral base address.

2.10. FLEXCOMM: FLEXCOMM Driver 211

MCUXpresso SDK Documentation, Release 25.09.00

static inline bool FMEAS_IsMeasureComplete(FMEAS_SYSCON_Type *base)
Indicates when a frequency measurement cycle is complete.

Parameters
• base – : SYSCON peripheral base address.

Returns
true if a measurement cycle is active, otherwise false.

uint32_t FMEAS_GetFrequency(FMEAS_SYSCON_Type *base, uint32_t refClockRate)
Returns the computed value for a frequency measurement cycle.

Parameters
• base – : SYSCON peripheral base address.

• refClockRate – : Reference clock rate used during the frequency measure-
ment cycle.

Returns
Frequency in Hz.

FSL_FMEAS_DRIVER_VERSION
Defines LPC Frequency Measure driver version 2.1.1.

typedef SYSCON_Type FMEAS_SYSCON_Type

FMEAS_SYSCON_FREQMECTRL_CAPVAL_MASK

FMEAS_SYSCON_FREQMECTRL_CAPVAL_SHIFT

FMEAS_SYSCON_FREQMECTRL_CAPVAL

FMEAS_SYSCON_FREQMECTRL_PROG_MASK

FMEAS_SYSCON_FREQMECTRL_PROG_SHIFT

FMEAS_SYSCON_FREQMECTRL_PROG

2.13 GINT: Group GPIO Input Interrupt Driver

FSL_GINT_DRIVER_VERSION
Driver version.

enum _gint_comb
GINT combine inputs type.

Values:

enumerator kGINT_CombineOr
A grouped interrupt is generated when any one of the enabled inputs is active

enumerator kGINT_CombineAnd
A grouped interrupt is generated when all enabled inputs are active

enum _gint_trig
GINT trigger type.

Values:

enumerator kGINT_TrigEdge
Edge triggered based on polarity

212 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kGINT_TrigLevel
Level triggered based on polarity

enum _gint_port
Values:

enumerator kGINT_Port0

enumerator kGINT_Port1

typedef enum _gint_comb gint_comb_t
GINT combine inputs type.

typedef enum _gint_trig gint_trig_t
GINT trigger type.

typedef enum _gint_port gint_port_t

typedef void (*gint_cb_t)(void)
GINT Callback function.

void GINT_Init(GINT_Type *base)
Initialize GINT peripheral.

This function initializes the GINT peripheral and enables the clock.

Parameters
• base – Base address of the GINT peripheral.

Return values
None. –

void GINT_SetCtrl(GINT_Type *base, gint_comb_t comb, gint_trig_t trig, gint_cb_t callback)
Setup GINT peripheral control parameters.

This function sets the control parameters of GINT peripheral.

Parameters
• base – Base address of the GINT peripheral.

• comb – Controls if the enabled inputs are logically ORed or ANDed for in-
terrupt generation.

• trig – Controls if the enabled inputs are level or edge sensitive based on
polarity.

• callback – This function is called when configured group interrupt is gen-
erated.

Return values
None. –

void GINT_GetCtrl(GINT_Type *base, gint_comb_t *comb, gint_trig_t *trig, gint_cb_t *callback)
Get GINT peripheral control parameters.

This function returns the control parameters of GINT peripheral.

Parameters
• base – Base address of the GINT peripheral.

• comb – Pointer to store combine input value.

• trig – Pointer to store trigger value.

• callback – Pointer to store callback function.

2.13. GINT: Group GPIO Input Interrupt Driver 213

MCUXpresso SDK Documentation, Release 25.09.00

Return values
None. –

void GINT_ConfigPins(GINT_Type *base, gint_port_t port, uint32_t polarityMask, uint32_t
enableMask)

Configure GINT peripheral pins.

This function enables and controls the polarity of enabled pin(s) of a given port.

Parameters
• base – Base address of the GINT peripheral.

• port – Port number.

• polarityMask – Each bit position selects the polarity of the corresponding
enabled pin. 0 = The pin is active LOW. 1 = The pin is active HIGH.

• enableMask – Each bit position selects if the corresponding pin is enabled
or not. 0 = The pin is disabled. 1 = The pin is enabled.

Return values
None. –

void GINT_GetConfigPins(GINT_Type *base, gint_port_t port, uint32_t *polarityMask, uint32_t
*enableMask)

Get GINT peripheral pin configuration.

This function returns the pin configuration of a given port.

Parameters
• base – Base address of the GINT peripheral.

• port – Port number.

• polarityMask – Pointer to store the polaritymask Each bit position indicates
the polarity of the corresponding enabled pin. 0 = The pin is active LOW.
1 = The pin is active HIGH.

• enableMask – Pointer to store the enable mask. Each bit position indicates
if the corresponding pin is enabled or not. 0 = The pin is disabled. 1 = The
pin is enabled.

Return values
None. –

void GINT_EnableCallback(GINT_Type *base)
Enable callback.

This function enables the interrupt for the selected GINT peripheral. Although the pin(s)
are monitored as soon as they are enabled, the callback function is not enabled until this
function is called.

Parameters
• base – Base address of the GINT peripheral.

Return values
None. –

void GINT_DisableCallback(GINT_Type *base)
Disable callback.

This function disables the interrupt for the selected GINT peripheral. Although the pins are
still being monitored but the callback function is not called.

Parameters

214 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

• base – Base address of the peripheral.

Return values
None. –

static inline void GINT_ClrStatus(GINT_Type *base)
Clear GINT status.

This function clears the GINT status bit.

Parameters
• base – Base address of the GINT peripheral.

Return values
None. –

static inline uint32_t GINT_GetStatus(GINT_Type *base)
Get GINT status.

This function returns the GINT status.

Parameters
• base – Base address of the GINT peripheral.

Return values
status – = 0 No group interrupt request. = 1 Group interrupt request active.

void GINT_Deinit(GINT_Type *base)
Deinitialize GINT peripheral.

This function disables the GINT clock.

Parameters
• base – Base address of the GINT peripheral.

Return values
None. –

2.14 I2C: Inter-Integrated Circuit Driver

2.15 I2C DMA Driver

void I2C_MasterTransferCreateHandleDMA(I2C_Type *base, i2c_master_dma_handle_t *handle,
i2c_master_dma_transfer_callback_t callback, void
*userData, dma_handle_t *dmaHandle)

Init the I2C handle which is used in transactional functions.

Parameters
• base – I2C peripheral base address

• handle – pointer to i2c_master_dma_handle_t structure

• callback – pointer to user callback function

• userData – user param passed to the callback function

• dmaHandle – DMA handle pointer

2.14. I2C: Inter-Integrated Circuit Driver 215

MCUXpresso SDK Documentation, Release 25.09.00

status_t I2C_MasterTransferDMA(I2C_Type *base, i2c_master_dma_handle_t *handle,
i2c_master_transfer_t *xfer)

Performs a master dma non-blocking transfer on the I2C bus.

Parameters
• base – I2C peripheral base address

• handle – pointer to i2c_master_dma_handle_t structure

• xfer – pointer to transfer structure of i2c_master_transfer_t

Return values
• kStatus_Success – Sucessully complete the data transmission.

• kStatus_I2C_Busy – Previous transmission still not finished.

• kStatus_I2C_Timeout – Transfer error, wait signal timeout.

• kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.

• kStataus_I2C_Nak – Transfer error, receive Nak during transfer.

status_t I2C_MasterTransferGetCountDMA(I2C_Type *base, i2c_master_dma_handle_t *handle,
size_t *count)

Get master transfer status during a dma non-blocking transfer.

Parameters
• base – I2C peripheral base address

• handle – pointer to i2c_master_dma_handle_t structure

• count –Number of bytes transferred so far by the non-blocking transaction.

void I2C_MasterTransferAbortDMA(I2C_Type *base, i2c_master_dma_handle_t *handle)
Abort a master dma non-blocking transfer in a early time.

Parameters
• base – I2C peripheral base address

• handle – pointer to i2c_master_dma_handle_t structure

FSL_I2C_DMA_DRIVER_VERSION
I2C DMA driver version.

typedef struct _i2c_master_dma_handle i2c_master_dma_handle_t
I2C master dma handle typedef.

typedef void (*i2c_master_dma_transfer_callback_t)(I2C_Type *base, i2c_master_dma_handle_t
*handle, status_t status, void *userData)

I2C master dma transfer callback typedef.

typedef void (*flexcomm_i2c_dma_master_irq_handler_t)(I2C_Type *base,
i2c_master_dma_handle_t *handle)

Typedef for master dma handler.

I2C_MAX_DMA_TRANSFER_COUNT
Maximum lenght of single DMA transfer (determined by capability of the DMA engine)

struct _i2c_master_dma_handle
#include <fsl_i2c_dma.h> I2C master dma transfer structure.

216 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

uint8_t state
Transfer state machine current state.

uint32_t transferCount
Indicates progress of the transfer

uint32_t remainingBytesDMA
Remaining byte count to be transferred using DMA.

uint8_t *buf
Buffer pointer for current state.

bool checkAddrNack
Whether to check the nack signal is detected during addressing.

dma_handle_t *dmaHandle
The DMA handler used.

i2c_master_transfer_t transfer
Copy of the current transfer info.

i2c_master_dma_transfer_callback_t completionCallback
Callback function called after dma transfer finished.

void *userData
Callback parameter passed to callback function.

2.16 I2C Driver

FSL_I2C_DRIVER_VERSION
I2C driver version.

I2C status return codes.

Values:

enumerator kStatus_I2C_Busy
The master is already performing a transfer.

enumerator kStatus_I2C_Idle
The slave driver is idle.

enumerator kStatus_I2C_Nak
The slave device sent a NAK in response to a byte.

enumerator kStatus_I2C_InvalidParameter
Unable to proceed due to invalid parameter.

enumerator kStatus_I2C_BitError
Transferred bit was not seen on the bus.

enumerator kStatus_I2C_ArbitrationLost
Arbitration lost error.

enumerator kStatus_I2C_NoTransferInProgress
Attempt to abort a transfer when one is not in progress.

2.16. I2C Driver 217

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus_I2C_DmaRequestFail
DMA request failed.

enumerator kStatus_I2C_StartStopError
Start and stop error.

enumerator kStatus_I2C_UnexpectedState
Unexpected state.

enumerator kStatus_I2C_Timeout
Timeout when waiting for I2C master/slave pending status to set to continue transfer.

enumerator kStatus_I2C_Addr_Nak
NAK received for Address

enumerator kStatus_I2C_EventTimeout
Timeout waiting for bus event.

enumerator kStatus_I2C_SclLowTimeout
Timeout SCL signal remains low.

enum _i2c_status_flags
I2C status flags.

Note: These enums are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2C_MasterPendingFlag
The I2C module is waiting for software interaction. bit 0

enumerator kI2C_MasterArbitrationLostFlag
The arbitration of the bus was lost. There was collision on the bus. bit 4

enumerator kI2C_MasterStartStopErrorFlag
There was an error during start or stop phase of the transaction. bit 6

enumerator kI2C_MasterIdleFlag
The I2C master idle status. bit 5

enumerator kI2C_MasterRxReadyFlag
The I2C master rx ready status. bit 1

enumerator kI2C_MasterTxReadyFlag
The I2C master tx ready status. bit 2

enumerator kI2C_MasterAddrNackFlag
The I2C master address nack status. bit 7

enumerator kI2C_MasterDataNackFlag
The I2C master data nack status. bit 3

enumerator kI2C_SlavePendingFlag
The I2C module is waiting for software interaction. bit 8

enumerator kI2C_SlaveNotStretching
Indicates whether the slave is currently stretching clock (0 = yes, 1 = no). bit 11

enumerator kI2C_SlaveSelected
Indicates whether the slave is selected by an address match. bit 14

218 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kI2C_SaveDeselected
Indicates that slave was previously deselected (deselect event took place, w1c). bit 15

enumerator kI2C_SlaveAddressedFlag
One of the I2C slave’s 4 addresses is matched. bit 22

enumerator kI2C_SlaveReceiveFlag
Slave receive data available. bit 9

enumerator kI2C_SlaveTransmitFlag
Slave data can be transmitted. bit 10

enumerator kI2C_SlaveAddress0MatchFlag
Slave address0 match. bit 20

enumerator kI2C_SlaveAddress1MatchFlag
Slave address1 match. bit 12

enumerator kI2C_SlaveAddress2MatchFlag
Slave address2 match. bit 13

enumerator kI2C_SlaveAddress3MatchFlag
Slave address3 match. bit 21

enumerator kI2C_MonitorReadyFlag
The I2C monitor ready interrupt. bit 16

enumerator kI2C_MonitorOverflowFlag
The monitor data overrun interrupt. bit 17

enumerator kI2C_MonitorActiveFlag
The monitor is active. bit 18

enumerator kI2C_MonitorIdleFlag
The monitor idle interrupt. bit 19

enumerator kI2C_EventTimeoutFlag
The bus event timeout interrupt. bit 24

enumerator kI2C_SclTimeoutFlag
The SCL timeout interrupt. bit 25

enumerator kI2C_MasterAllClearFlags

enumerator kI2C_SlaveAllClearFlags

enumerator kI2C_CommonAllClearFlags

enum _i2c_interrupt_enable
I2C interrupt enable.

Note: These enums are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2C_MasterPendingInterruptEnable
The I2C master communication pending interrupt.

enumerator kI2C_MasterArbitrationLostInterruptEnable
The I2C master arbitration lost interrupt.

2.16. I2C Driver 219

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kI2C_MasterStartStopErrorInterruptEnable
The I2C master start/stop timing error interrupt.

enumerator kI2C_SlavePendingInterruptEnable
The I2C slave communication pending interrupt.

enumerator kI2C_SlaveNotStretchingInterruptEnable
The I2C slave not streching interrupt, deep-sleep mode can be entered only when this
interrupt occurs.

enumerator kI2C_SlaveDeselectedInterruptEnable
The I2C slave deselection interrupt.

enumerator kI2C_MonitorReadyInterruptEnable
The I2C monitor ready interrupt.

enumerator kI2C_MonitorOverflowInterruptEnable
The monitor data overrun interrupt.

enumerator kI2C_MonitorIdleInterruptEnable
The monitor idle interrupt.

enumerator kI2C_EventTimeoutInterruptEnable
The bus event timeout interrupt.

enumerator kI2C_SclTimeoutInterruptEnable
The SCL timeout interrupt.

enumerator kI2C_MasterAllInterruptEnable

enumerator kI2C_SlaveAllInterruptEnable

enumerator kI2C_CommonAllInterruptEnable

I2C_RETRY_TIMES
Retry times for waiting flag.

I2C_MASTER_TRANSMIT_IGNORE_LAST_NACK
Whether to ignore the nack signal of the last byte during master transmit.

I2C_STAT_MSTCODE_IDLE
Master Idle State Code

I2C_STAT_MSTCODE_RXREADY
Master Receive Ready State Code

I2C_STAT_MSTCODE_TXREADY
Master Transmit Ready State Code

I2C_STAT_MSTCODE_NACKADR
Master NACK by slave on address State Code

I2C_STAT_MSTCODE_NACKDAT
Master NACK by slave on data State Code

I2C_STAT_SLVST_ADDR

I2C_STAT_SLVST_RX

I2C_STAT_SLVST_TX

220 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

2.17 I2C Master Driver

void I2C_MasterGetDefaultConfig(i2c_master_config_t *masterConfig)
Provides a default configuration for the I2C master peripheral.

This function provides the following default configuration for the I2C master peripheral:

masterConfig->enableMaster = true;
masterConfig->baudRate_Bps = 100000U;
masterConfig->enableTimeout = false;

After calling this function, you can override any settings in order to customize the configu-
ration, prior to initializing the master driver with I2C_MasterInit().

Parameters
• masterConfig – [out] User provided configuration structure for default val-
ues. Refer to i2c_master_config_t.

void I2C_MasterInit(I2C_Type *base, const i2c_master_config_t *masterConfig, uint32_t
srcClock_Hz)

Initializes the I2C master peripheral.

This function enables the peripheral clock and initializes the I2C master peripheral as de-
scribed by the user provided configuration. A software reset is performed prior to config-
uration.

Parameters
• base – The I2C peripheral base address.

• masterConfig – User provided peripheral configuration. Use
I2C_MasterGetDefaultConfig() to get a set of defaults that you can
override.

• srcClock_Hz – Frequency in Hertz of the I2C functional clock. Used to cal-
culate the baud rate divisors, filter widths, and timeout periods.

void I2C_MasterDeinit(I2C_Type *base)
Deinitializes the I2C master peripheral.

This function disables the I2C master peripheral and gates the clock. It also performs a
software reset to restore the peripheral to reset conditions.

Parameters
• base – The I2C peripheral base address.

uint32_t I2C_GetInstance(I2C_Type *base)
Returns an instance number given a base address.

If an invalid base address is passed, debug builds will assert. Release builds will just return
instance number 0.

Parameters
• base – The I2C peripheral base address.

Returns
I2C instance number starting from 0.

static inline void I2C_MasterReset(I2C_Type *base)
Performs a software reset.

Restores the I2C master peripheral to reset conditions.

Parameters

2.17. I2C Master Driver 221

MCUXpresso SDK Documentation, Release 25.09.00

• base – The I2C peripheral base address.

static inline void I2C_MasterEnable(I2C_Type *base, bool enable)
Enables or disables the I2C module as master.

Parameters
• base – The I2C peripheral base address.

• enable – Pass true to enable or false to disable the specified I2C as master.

uint32_t I2C_GetStatusFlags(I2C_Type *base)
Gets the I2C status flags.

A bit mask with the state of all I2C status flags is returned. For each flag, the corresponding
bit in the return value is set if the flag is asserted.

See also:
_i2c_status_flags.

Parameters
• base – The I2C peripheral base address.

Returns
State of the status flags:

• 1: related status flag is set.

• 0: related status flag is not set.

static inline void I2C_ClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C status flag state.

Refer to kI2C_CommonAllClearStatusFlags, kI2C_MasterAllClearStatusFlags and
kI2C_SlaveAllClearStatusFlags to see the clearable flags. Attempts to clear other flags
has no effect.

See also:
_i2c_status_flags, _i2c_master_status_flags and _i2c_slave_status_flags.

Parameters
• base – The I2C peripheral base address.

• statusMask – A bitmask of status flags that are to be cleared. The
mask is composed of the members in kI2C_CommonAllClearStatusFlags,
kI2C_MasterAllClearStatusFlags and kI2C_SlaveAllClearStatusFlags. You
may pass the result of a previous call to I2C_GetStatusFlags().

static inline void I2C_MasterClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C master status flag state.

Deprecated:
Do not use this function. It has been superceded by I2C_ClearStatusFlags The following
status register flags can be cleared:

• kI2C_MasterArbitrationLostFlag

• kI2C_MasterStartStopErrorFlag

222 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

Attempts to clear other flags has no effect.

See also:
_i2c_status_flags.

Parameters
• base – The I2C peripheral base address.

• statusMask – A bitmask of status flags that are to be cleared. The mask is
composed of _i2c_status_flags enumerators OR’d together. You may pass
the result of a previous call to I2C_GetStatusFlags().

static inline void I2C_EnableInterrupts(I2C_Type *base, uint32_t interruptMask)
Enables the I2C interrupt requests.

Parameters
• base – The I2C peripheral base address.

• interruptMask – Bit mask of interrupts to enable. See _i2c_interrupt_enable
for the set of constants that should be OR’d together to form the bit mask.

static inline void I2C_DisableInterrupts(I2C_Type *base, uint32_t interruptMask)
Disables the I2C interrupt requests.

Parameters
• base – The I2C peripheral base address.

• interruptMask – Bitmask of interrupts to disable. See _i2c_interrupt_enable
for the set of constants that should be OR’d together to form the bit mask.

static inline uint32_t I2C_GetEnabledInterrupts(I2C_Type *base)
Returns the set of currently enabled I2C interrupt requests.

Parameters
• base – The I2C peripheral base address.

Returns
A bitmask composed of _i2c_interrupt_enable enumerators OR’d together to
indicate the set of enabled interrupts.

void I2C_MasterSetBaudRate(I2C_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
Sets the I2C bus frequency for master transactions.

The I2Cmaster is automatically disabled and re-enabled as necessary to configure the baud
rate. Do not call this function during a transfer, or the transfer is aborted.

Parameters
• base – The I2C peripheral base address.

• srcClock_Hz – I2C functional clock frequency in Hertz.

• baudRate_Bps – Requested bus frequency in bits per second.

void I2C_MasterSetTimeoutValue(I2C_Type *base, uint8_t timeout_Ms, uint32_t srcClock_Hz)
Sets the I2C bus timeout value.

If the SCL signal remains low or bus does not have event longer than the timeout value,
kI2C_SclTimeoutFlag or kI2C_EventTimeoutFlag is set. This can indicete the bus is held by
slave or any fault occurs to the I2C module.

Parameters

2.17. I2C Master Driver 223

MCUXpresso SDK Documentation, Release 25.09.00

• base – The I2C peripheral base address.

• timeout_Ms – Timeout value in millisecond.

• srcClock_Hz – I2C functional clock frequency in Hertz.

static inline bool I2C_MasterGetBusIdleState(I2C_Type *base)
Returns whether the bus is idle.

Requires the master mode to be enabled.

Parameters
• base – The I2C peripheral base address.

Return values
• true – Bus is busy.

• false – Bus is idle.

status_t I2C_MasterStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)
Sends a START on the I2C bus.

This function is used to initiate a new master mode transfer by sending the START signal.
The slave address is sent following the I2C START signal.

Parameters
• base – I2C peripheral base pointer

• address – 7-bit slave device address.

• direction – Master transfer directions(transmit/receive).

Return values
• kStatus_Success – Successfully send the start signal.

• kStatus_I2C_Busy – Current bus is busy.

status_t I2C_MasterStop(I2C_Type *base)
Sends a STOP signal on the I2C bus.

Return values
• kStatus_Success – Successfully send the stop signal.

• kStatus_I2C_Timeout – Send stop signal failed, timeout.

static inline status_t I2C_MasterRepeatedStart(I2C_Type *base, uint8_t address, i2c_direction_t
direction)

Sends a REPEATED START on the I2C bus.

Parameters
• base – I2C peripheral base pointer

• address – 7-bit slave device address.

• direction – Master transfer directions(transmit/receive).

Return values
• kStatus_Success – Successfully send the start signal.

• kStatus_I2C_Busy – Current bus is busy but not occupied by current I2C
master.

224 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

status_t I2C_MasterWriteBlocking(I2C_Type *base, const void *txBuff, size_t txSize, uint32_t
flags)

Performs a polling send transfer on the I2C bus.

Sends up to txSize number of bytes to the previously addressed slave device. The slavemay
reply with a NAK to any byte in order to terminate the transfer early. If this happens, this
function returns kStatus_I2C_Nak.

Parameters
• base – The I2C peripheral base address.

• txBuff – The pointer to the data to be transferred.

• txSize – The length in bytes of the data to be transferred.

• flags – Transfer control flag to control special behavior like suppressing
start or stop, for normal transfers use kI2C_TransferDefaultFlag

Return values
• kStatus_Success – Data was sent successfully.

• kStatus_I2C_Busy – Another master is currently utilizing the bus.

• kStatus_I2C_Nak – The slave device sent a NAK in response to a byte.

• kStatus_I2C_ArbitrationLost – Arbitration lost error.

status_t I2C_MasterReadBlocking(I2C_Type *base, void *rxBuff, size_t rxSize, uint32_t flags)
Performs a polling receive transfer on the I2C bus.

Parameters
• base – The I2C peripheral base address.

• rxBuff – The pointer to the data to be transferred.

• rxSize – The length in bytes of the data to be transferred.

• flags – Transfer control flag to control special behavior like suppressing
start or stop, for normal transfers use kI2C_TransferDefaultFlag

Return values
• kStatus_Success – Data was received successfully.

• kStatus_I2C_Busy – Another master is currently utilizing the bus.

• kStatus_I2C_Nak – The slave device sent a NAK in response to a byte.

• kStatus_I2C_ArbitrationLost – Arbitration lost error.

status_t I2C_MasterTransferBlocking(I2C_Type *base, i2c_master_transfer_t *xfer)
Performs a master polling transfer on the I2C bus.

Note: The API does not return until the transfer succeeds or fails due to arbitration lost or
receiving a NAK.

Parameters
• base – I2C peripheral base address.

• xfer – Pointer to the transfer structure.

Return values
• kStatus_Success – Successfully complete the data transmission.

• kStatus_I2C_Busy – Previous transmission still not finished.

2.17. I2C Master Driver 225

MCUXpresso SDK Documentation, Release 25.09.00

• kStatus_I2C_Timeout – Transfer error, wait signal timeout.

• kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.

• kStataus_I2C_Nak – Transfer error, receive NAK during transfer.

• kStataus_I2C_Addr_Nak – Transfer error, receive NAK during addressing.

void I2C_MasterTransferCreateHandle(I2C_Type *base, i2c_master_handle_t *handle,
i2c_master_transfer_callback_t callback, void *userData)

Creates a new handle for the I2C master non-blocking APIs.

The creation of a handle is for use with the non-blocking APIs. Once a handle is created,
there is not a corresponding destroy handle. If the user wants to terminate a transfer, the
I2C_MasterTransferAbort() API shall be called.

Parameters
• base – The I2C peripheral base address.

• handle – [out] Pointer to the I2C master driver handle.

• callback – User provided pointer to the asynchronous callback function.

• userData – User provided pointer to the application callback data.

status_t I2C_MasterTransferNonBlocking(I2C_Type *base, i2c_master_handle_t *handle,
i2c_master_transfer_t *xfer)

Performs a non-blocking transaction on the I2C bus.

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to the I2C master driver handle.

• xfer – The pointer to the transfer descriptor.

Return values
• kStatus_Success – The transaction was started successfully.

• kStatus_I2C_Busy – Either another master is currently utilizing the bus,
or a non-blocking transaction is already in progress.

status_t I2C_MasterTransferGetCount(I2C_Type *base, i2c_master_handle_t *handle, size_t
*count)

Returns number of bytes transferred so far.

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to the I2C master driver handle.

• count – [out]Number of bytes transferred so far by the non-blocking trans-
action.

Return values
• kStatus_Success –

• kStatus_I2C_Busy –

status_t I2C_MasterTransferAbort(I2C_Type *base, i2c_master_handle_t *handle)
Terminates a non-blocking I2C master transmission early.

Note: It is not safe to call this function from an IRQ handler that has a higher priority than
the I2C peripheral’s IRQ priority.

226 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to the I2C master driver handle.

Return values
• kStatus_Success – A transaction was successfully aborted.

• kStatus_I2C_Timeout – Timeout during polling for flags.

void I2C_MasterTransferHandleIRQ(I2C_Type *base, i2c_master_handle_t *handle)
Reusable routine to handle master interrupts.

Note: This function does not need to be called unless you are reimplementing the non-
blocking API’s interrupt handler routines to add special functionality.

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to the I2C master driver handle.

enum _i2c_direction
Direction of master and slave transfers.

Values:

enumerator kI2C_Write
Master transmit.

enumerator kI2C_Read
Master receive.

enum _i2c_master_transfer_flags
Transfer option flags.

Note: These enumerations are intended to be OR’d together to form a bit mask of options
for the _i2c_master_transfer::flags field.

Values:

enumerator kI2C_TransferDefaultFlag
Transfer starts with a start signal, stops with a stop signal.

enumerator kI2C_TransferNoStartFlag
Don’t send a start condition, address, and sub address

enumerator kI2C_TransferRepeatedStartFlag
Send a repeated start condition

enumerator kI2C_TransferNoStopFlag
Don’t send a stop condition.

enum _i2c_transfer_states
States for the state machine used by transactional APIs.

Values:

enumerator kIdleState

enumerator kTransmitSubaddrState

2.17. I2C Master Driver 227

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kTransmitDataState

enumerator kReceiveDataBeginState

enumerator kReceiveDataState

enumerator kReceiveLastDataState

enumerator kStartState

enumerator kStopState

enumerator kWaitForCompletionState

typedef enum _i2c_direction i2c_direction_t
Direction of master and slave transfers.

typedef struct _i2c_master_config i2c_master_config_t
Structure with settings to initialize the I2C master module.

This structure holds configuration settings for the I2C peripheral. To initialize this structure
to reasonable defaults, call the I2C_MasterGetDefaultConfig() function and pass a pointer
to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

typedef struct _i2c_master_transfer i2c_master_transfer_t
I2C master transfer typedef.

typedef struct _i2c_master_handle i2c_master_handle_t
I2C master handle typedef.

typedef void (*i2c_master_transfer_callback_t)(I2C_Type *base, i2c_master_handle_t *handle,
status_t completionStatus, void *userData)

Master completion callback function pointer type.

This callback is used only for the non-blockingmaster transfer API. Specify the callback you
wish to use in the call to I2C_MasterTransferCreateHandle().

Param base
The I2C peripheral base address.

Param completionStatus
Either kStatus_Success or an error code describing how the transfer com-
pleted.

Param userData
Arbitrary pointer-sized value passed from the application.

struct _i2c_master_config
#include <fsl_i2c.h> Structure with settings to initialize the I2C master module.

This structure holds configuration settings for the I2C peripheral. To initialize this structure
to reasonable defaults, call the I2C_MasterGetDefaultConfig() function and pass a pointer
to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members

bool enableMaster
Whether to enable master mode.

228 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t baudRate_Bps
Desired baud rate in bits per second.

bool enableTimeout
Enable internal timeout function.

uint8_t timeout_Ms
Event timeout and SCL low timeout value.

struct _i2c_master_transfer
#include <fsl_i2c.h> Non-blocking transfer descriptor structure.

This structure is used to pass transaction parameters to the
I2C_MasterTransferNonBlocking() API.

Public Members

uint32_t flags
Bit mask of options for the transfer. See enumeration _i2c_master_transfer_flags for
available options. Set to 0 or kI2C_TransferDefaultFlag for normal transfers.

uint8_t slaveAddress
The 7-bit slave address.

i2c_direction_t direction
Either kI2C_Read or kI2C_Write.

uint32_t subaddress
Sub address. Transferred MSB first.

size_t subaddressSize
Length of sub address to send in bytes. Maximum size is 4 bytes.

void *data
Pointer to data to transfer.

size_t dataSize
Number of bytes to transfer.

struct _i2c_master_handle
#include <fsl_i2c.h> Driver handle for master non-blocking APIs.

Note: The contents of this structure are private and subject to change.

Public Members

uint8_t state
Transfer state machine current state.

uint32_t transferCount
Indicates progress of the transfer

uint32_t remainingBytes
Remaining byte count in current state.

uint8_t *buf
Buffer pointer for current state.

2.17. I2C Master Driver 229

MCUXpresso SDK Documentation, Release 25.09.00

bool checkAddrNack
Whether to check the nack signal is detected during addressing.

i2c_master_transfer_t transfer
Copy of the current transfer info.

i2c_master_transfer_callback_t completionCallback
Callback function pointer.

void *userData
Application data passed to callback.

2.18 I2C Slave Driver

void I2C_SlaveGetDefaultConfig(i2c_slave_config_t *slaveConfig)
Provides a default configuration for the I2C slave peripheral.

This function provides the following default configuration for the I2C slave peripheral:

slaveConfig->enableSlave = true;
slaveConfig->address0.disable = false;
slaveConfig->address0.address = 0u;
slaveConfig->address1.disable = true;
slaveConfig->address2.disable = true;
slaveConfig->address3.disable = true;
slaveConfig->busSpeed = kI2C_SlaveStandardMode;

After calling this function, override any settings to customize the configuration, prior to
initializing the master driver with I2C_SlaveInit(). Be sure to override at least the ad-
dress0.addressmember of the configuration structure with the desired slave address.

Parameters
• slaveConfig – [out] User provided configuration structure that is set to de-
fault values. Refer to i2c_slave_config_t.

status_t I2C_SlaveInit(I2C_Type *base, const i2c_slave_config_t *slaveConfig, uint32_t
srcClock_Hz)

Initializes the I2C slave peripheral.

This function enables the peripheral clock and initializes the I2C slave peripheral as de-
scribed by the user provided configuration.

Parameters
• base – The I2C peripheral base address.

• slaveConfig – User provided peripheral configuration. Use
I2C_SlaveGetDefaultConfig() to get a set of defaults that you can override.

• srcClock_Hz – Frequency in Hertz of the I2C functional clock. Used to cal-
culate CLKDIV value to provide enough data setup time for master when
slave stretches the clock.

void I2C_SlaveSetAddress(I2C_Type *base, i2c_slave_address_register_t addressRegister, uint8_t
address, bool addressDisable)

Configures Slave Address n register.

This function writes new value to Slave Address register.

Parameters
• base – The I2C peripheral base address.

230 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

• addressRegister – The module supports multiple address registers. The pa-
rameter determines which one shall be changed.

• address – The slave address to be stored to the address register for match-
ing.

• addressDisable – Disable matching of the specified address register.

void I2C_SlaveDeinit(I2C_Type *base)
Deinitializes the I2C slave peripheral.

This function disables the I2C slave peripheral and gates the clock. It also performs a soft-
ware reset to restore the peripheral to reset conditions.

Parameters
• base – The I2C peripheral base address.

static inline void I2C_SlaveEnable(I2C_Type *base, bool enable)
Enables or disables the I2C module as slave.

Parameters
• base – The I2C peripheral base address.

• enable – True to enable or flase to disable.

static inline void I2C_SlaveClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C status flag state.

The following status register flags can be cleared:

• slave deselected flag

Attempts to clear other flags has no effect.

See also:
_i2c_slave_flags.

Parameters
• base – The I2C peripheral base address.

• statusMask – A bitmask of status flags that are to be cleared. The mask is
composed of _i2c_slave_flags enumerators OR’d together. You may pass
the result of a previous call to I2C_SlaveGetStatusFlags().

status_t I2C_SlaveWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize)
Performs a polling send transfer on the I2C bus.

The function executes blocking address phase and blocking data phase.

Parameters
• base – The I2C peripheral base address.

• txBuff – The pointer to the data to be transferred.

• txSize – The length in bytes of the data to be transferred.

Returns
kStatus_Success Data has been sent.

Returns
kStatus_Fail Unexpected slave state (master data write while master read
from slave is expected).

2.18. I2C Slave Driver 231

MCUXpresso SDK Documentation, Release 25.09.00

status_t I2C_SlaveReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize)
Performs a polling receive transfer on the I2C bus.

The function executes blocking address phase and blocking data phase.

Parameters
• base – The I2C peripheral base address.

• rxBuff – The pointer to the data to be transferred.

• rxSize – The length in bytes of the data to be transferred.

Returns
kStatus_Success Data has been received.

Returns
kStatus_Fail Unexpected slave state (master data read while master write to
slave is expected).

void I2C_SlaveTransferCreateHandle(I2C_Type *base, i2c_slave_handle_t *handle,
i2c_slave_transfer_callback_t callback, void *userData)

Creates a new handle for the I2C slave non-blocking APIs.

The creation of a handle is for use with the non-blocking APIs. Once a handle is created,
there is not a corresponding destroy handle. If the user wants to terminate a transfer, the
I2C_SlaveTransferAbort() API shall be called.

Parameters
• base – The I2C peripheral base address.

• handle – [out] Pointer to the I2C slave driver handle.

• callback – User provided pointer to the asynchronous callback function.

• userData – User provided pointer to the application callback data.

status_t I2C_SlaveTransferNonBlocking(I2C_Type *base, i2c_slave_handle_t *handle, uint32_t
eventMask)

Starts accepting slave transfers.

Call this API after calling I2C_SlaveInit() and I2C_SlaveTransferCreateHandle() to start pro-
cessing transactions driven by an I2C master. The slave monitors the I2C bus and pass
events to the callback that was passed into the call to I2C_SlaveTransferCreateHandle().
The callback is always invoked from the interrupt context.

If no slave Tx transfer is busy, a master read from slave request invokes
kI2C_SlaveTransmitEvent callback. If no slave Rx transfer is busy, a master write to
slave request invokes kI2C_SlaveReceiveEvent callback.

The set of events received by the callback is customizable. To do so, set the eventMask pa-
rameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events
you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are
always enabled and do not need to be included in the mask. Alternatively, you can pass
0 to get a default set of only the transmit and receive events that are always enabled. In
addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all
events.

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to i2c_slave_handle_t structure which stores the transfer
state.

232 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

• eventMask – Bitmask formed byOR’ing together i2c_slave_transfer_event_t
enumerators to specify which events to send to the callback. Other ac-
cepted values are 0 to get a default set of only the transmit and receive
events, and kI2C_SlaveAllEvents to enable all events.

Return values
• kStatus_Success – Slave transfers were successfully started.

• kStatus_I2C_Busy – Slave transfers have already been started on this han-
dle.

status_t I2C_SlaveSetSendBuffer(I2C_Type *base, volatile i2c_slave_transfer_t *transfer, const
void *txData, size_t txSize, uint32_t eventMask)

Starts accepting master read from slave requests.

The function can be called in response to kI2C_SlaveTransmitEvent callback to start a new
slave Tx transfer from within the transfer callback.

The set of events received by the callback is customizable. To do so, set the eventMask pa-
rameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events
you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are
always enabled and do not need to be included in the mask. Alternatively, you can pass
0 to get a default set of only the transmit and receive events that are always enabled. In
addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all
events.

Parameters
• base – The I2C peripheral base address.

• transfer – Pointer to i2c_slave_transfer_t structure.

• txData – Pointer to data to send to master.

• txSize – Size of txData in bytes.

• eventMask – Bitmask formed byOR’ing together i2c_slave_transfer_event_t
enumerators to specify which events to send to the callback. Other ac-
cepted values are 0 to get a default set of only the transmit and receive
events, and kI2C_SlaveAllEvents to enable all events.

Return values
• kStatus_Success – Slave transfers were successfully started.

• kStatus_I2C_Busy – Slave transfers have already been started on this han-
dle.

status_t I2C_SlaveSetReceiveBuffer(I2C_Type *base, volatile i2c_slave_transfer_t *transfer, void
*rxData, size_t rxSize, uint32_t eventMask)

Starts accepting master write to slave requests.

The function can be called in response to kI2C_SlaveReceiveEvent callback to start a new
slave Rx transfer from within the transfer callback.

The set of events received by the callback is customizable. To do so, set the eventMask pa-
rameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events
you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are
always enabled and do not need to be included in the mask. Alternatively, you can pass
0 to get a default set of only the transmit and receive events that are always enabled. In
addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all
events.

Parameters
• base – The I2C peripheral base address.

2.18. I2C Slave Driver 233

MCUXpresso SDK Documentation, Release 25.09.00

• transfer – Pointer to i2c_slave_transfer_t structure.

• rxData – Pointer to data to store data from master.

• rxSize – Size of rxData in bytes.

• eventMask – Bitmask formed byOR’ing together i2c_slave_transfer_event_t
enumerators to specify which events to send to the callback. Other ac-
cepted values are 0 to get a default set of only the transmit and receive
events, and kI2C_SlaveAllEvents to enable all events.

Return values
• kStatus_Success – Slave transfers were successfully started.

• kStatus_I2C_Busy – Slave transfers have already been started on this han-
dle.

static inline uint32_t I2C_SlaveGetReceivedAddress(I2C_Type *base, volatile i2c_slave_transfer_t
*transfer)

Returns the slave address sent by the I2C master.

This function should only be called from the address match event callback
kI2C_SlaveAddressMatchEvent.

Parameters
• base – The I2C peripheral base address.

• transfer – The I2C slave transfer.

Returns
The 8-bit address matched by the I2C slave. Bit 0 contains the R/w direction
bit, and the 7-bit slave address is in the upper 7 bits.

void I2C_SlaveTransferAbort(I2C_Type *base, i2c_slave_handle_t *handle)
Aborts the slave non-blocking transfers.

Note: This API could be called at any time to stop slave for handling the bus events.

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to i2c_slave_handle_t structure which stores the transfer
state.

Return values
• kStatus_Success –

• kStatus_I2C_Idle –

status_t I2C_SlaveTransferGetCount(I2C_Type *base, i2c_slave_handle_t *handle, size_t *count)
Gets the slave transfer remaining bytes during a interrupt non-blocking transfer.

Parameters
• base – I2C base pointer.

• handle – pointer to i2c_slave_handle_t structure.

• count –Number of bytes transferred so far by the non-blocking transaction.

Return values
• kStatus_InvalidArgument – count is Invalid.

• kStatus_Success – Successfully return the count.

234 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

void I2C_SlaveTransferHandleIRQ(I2C_Type *base, i2c_slave_handle_t *handle)
Reusable routine to handle slave interrupts.

Note: This function does not need to be called unless you are reimplementing the non
blocking API’s interrupt handler routines to add special functionality.

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to i2c_slave_handle_t structure which stores the transfer
state.

enum _i2c_slave_address_register
I2C slave address register.

Values:

enumerator kI2C_SlaveAddressRegister0
Slave Address 0 register.

enumerator kI2C_SlaveAddressRegister1
Slave Address 1 register.

enumerator kI2C_SlaveAddressRegister2
Slave Address 2 register.

enumerator kI2C_SlaveAddressRegister3
Slave Address 3 register.

enum _i2c_slave_address_qual_mode
I2C slave address match options.

Values:

enumerator kI2C_QualModeMask
The SLVQUAL0 field (qualAddress) is used as a logical mask for matching address0.

enumerator kI2C_QualModeExtend
The SLVQUAL0 (qualAddress) field is used to extend address 0 matching in a range of
addresses.

enum _i2c_slave_bus_speed
I2C slave bus speed options.

Values:

enumerator kI2C_SlaveStandardMode

enumerator kI2C_SlaveFastMode

enumerator kI2C_SlaveFastModePlus

enumerator kI2C_SlaveHsMode

enum _i2c_slave_transfer_event
Set of events sent to the callback for non blocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created
by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() in order to specify
which events to enable. Then, when the slave callback is invoked, it is passed the current
event through its transfer parameter.

2.18. I2C Slave Driver 235

MCUXpresso SDK Documentation, Release 25.09.00

Note: These enumerations are meant to be OR’d together to form a bit mask of events.

Values:

enumerator kI2C_SlaveAddressMatchEvent
Received the slave address after a start or repeated start.

enumerator kI2C_SlaveTransmitEvent
Callback is requested to provide data to transmit (slave-transmitter role).

enumerator kI2C_SlaveReceiveEvent
Callback is requested to provide a buffer inwhich to place received data (slave-receiver
role).

enumerator kI2C_SlaveCompletionEvent
All data in the active transfer have been consumed.

enumerator kI2C_SlaveDeselectedEvent
The slave function has become deselected (SLVSEL flag changing from 1 to 0.

enumerator kI2C_SlaveAllEvents
Bit mask of all available events.

enum _i2c_slave_fsm
I2C slave software finite state machine states.

Values:

enumerator kI2C_SlaveFsmAddressMatch

enumerator kI2C_SlaveFsmReceive

enumerator kI2C_SlaveFsmTransmit

typedef enum _i2c_slave_address_register i2c_slave_address_register_t
I2C slave address register.

typedef struct _i2c_slave_address i2c_slave_address_t
Data structure with 7-bit Slave address and Slave address disable.

typedef enum _i2c_slave_address_qual_mode i2c_slave_address_qual_mode_t
I2C slave address match options.

typedef enum _i2c_slave_bus_speed i2c_slave_bus_speed_t
I2C slave bus speed options.

typedef struct _i2c_slave_config i2c_slave_config_t
Structure with settings to initialize the I2C slave module.

This structure holds configuration settings for the I2C slave peripheral. To initialize this
structure to reasonable defaults, call the I2C_SlaveGetDefaultConfig() function and pass a
pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

typedef enum _i2c_slave_transfer_event i2c_slave_transfer_event_t
Set of events sent to the callback for non blocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created
by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() in order to specify
which events to enable. Then, when the slave callback is invoked, it is passed the current
event through its transfer parameter.

236 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

Note: These enumerations are meant to be OR’d together to form a bit mask of events.

typedef struct _i2c_slave_handle i2c_slave_handle_t
I2C slave handle typedef.

typedef struct _i2c_slave_transfer i2c_slave_transfer_t
I2C slave transfer structure.

typedef void (*i2c_slave_transfer_callback_t)(I2C_Type *base, volatile i2c_slave_transfer_t
*transfer, void *userData)

Slave event callback function pointer type.

This callback is used only for the slave non-blocking transfer API. To install a callback, use
the I2C_SlaveSetCallback() function after you have created a handle.

Param base
Base address for the I2C instance on which the event occurred.

Param transfer
Pointer to transfer descriptor containing values passed to and/or from the call-
back.

Param userData
Arbitrary pointer-sized value passed from the application.

typedef enum _i2c_slave_fsm i2c_slave_fsm_t
I2C slave software finite state machine states.

typedef void (*flexcomm_i2c_master_irq_handler_t)(I2C_Type *base, i2c_master_handle_t
*handle)

Typedef for master interrupt handler.

typedef void (*flexcomm_i2c_slave_irq_handler_t)(I2C_Type *base, i2c_slave_handle_t *handle)
Typedef for slave interrupt handler.

struct _i2c_slave_address
#include <fsl_i2c.h> Data structure with 7-bit Slave address and Slave address disable.

Public Members

uint8_t address
7-bit Slave address SLVADR.

bool addressDisable
Slave address disable SADISABLE.

struct _i2c_slave_config
#include <fsl_i2c.h> Structure with settings to initialize the I2C slave module.

This structure holds configuration settings for the I2C slave peripheral. To initialize this
structure to reasonable defaults, call the I2C_SlaveGetDefaultConfig() function and pass a
pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members

i2c_slave_address_t address0
Slave’s 7-bit address and disable.

2.18. I2C Slave Driver 237

MCUXpresso SDK Documentation, Release 25.09.00

i2c_slave_address_t address1
Alternate slave 7-bit address and disable.

i2c_slave_address_t address2
Alternate slave 7-bit address and disable.

i2c_slave_address_t address3
Alternate slave 7-bit address and disable.

i2c_slave_address_qual_mode_t qualMode
Qualify mode for slave address 0.

uint8_t qualAddress
Slave address qualifier for address 0.

i2c_slave_bus_speed_t busSpeed
Slave bus speed mode. If the slave function stretches SCL to allow for software re-
sponse, it must provide sufficient data setup time to the master before releasing the
stretched clock. This is accomplished by inserting one clock time of CLKDIV at that
point. The busSpeed value is used to configure CLKDIV such that one clock time is
greater than the tSU;DAT value noted in the I2C bus specification for the I2C mode that
is being used. If the busSpeed mode is unknown at compile time, use the longest data
setup time kI2C_SlaveStandardMode (250 ns)

bool enableSlave
Enable slave mode.

struct _i2c_slave_transfer
#include <fsl_i2c.h> I2C slave transfer structure.

Public Members

i2c_slave_handle_t *handle
Pointer to handle that contains this transfer.

i2c_slave_transfer_event_t event
Reason the callback is being invoked.

uint8_t receivedAddress
Matching address send by master. 7-bits plus R/nW bit0

uint32_t eventMask
Mask of enabled events.

uint8_t *rxData
Transfer buffer for receive data

const uint8_t *txData
Transfer buffer for transmit data

size_t txSize
Transfer size

size_t rxSize
Transfer size

size_t transferredCount
Number of bytes transferred during this transfer.

238 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

status_t completionStatus
Success or error code describing how the transfer completed. Only applies for
kI2C_SlaveCompletionEvent.

struct _i2c_slave_handle
#include <fsl_i2c.h> I2C slave handle structure.

Note: The contents of this structure are private and subject to change.

Public Members

volatile i2c_slave_transfer_t transfer
I2C slave transfer.

volatile bool isBusy
Whether transfer is busy.

volatile i2c_slave_fsm_t slaveFsm
slave transfer state machine.

i2c_slave_transfer_callback_t callback
Callback function called at transfer event.

void *userData
Callback parameter passed to callback.

2.19 I2S: I2S Driver

2.20 I2S DMA Driver

void I2S_TxTransferCreateHandleDMA(I2S_Type *base, i2s_dma_handle_t *handle, dma_handle_t
*dmaHandle, i2s_dma_transfer_callback_t callback, void
*userData)

Initializes handle for transfer of audio data.

Parameters
• base – I2S base pointer.

• handle – pointer to handle structure.

• dmaHandle – pointer to dma handle structure.

• callback – function to be called back when transfer is done or fails.

• userData – pointer to data passed to callback.

status_t I2S_TxTransferSendDMA(I2S_Type *base, i2s_dma_handle_t *handle, i2s_transfer_t
transfer)

Begins or queue sending of the given data.

Parameters
• base – I2S base pointer.

• handle – pointer to handle structure.

• transfer – data buffer.

2.19. I2S: I2S Driver 239

MCUXpresso SDK Documentation, Release 25.09.00

Return values
• kStatus_Success –

• kStatus_I2S_Busy – if all queue slots are occupied with unsent buffers.

void I2S_TransferAbortDMA(I2S_Type *base, i2s_dma_handle_t *handle)
Aborts transfer of data.

Parameters
• base – I2S base pointer.

• handle – pointer to handle structure.

void I2S_RxTransferCreateHandleDMA(I2S_Type *base, i2s_dma_handle_t *handle, dma_handle_t
*dmaHandle, i2s_dma_transfer_callback_t callback, void
*userData)

Initializes handle for reception of audio data.

Parameters
• base – I2S base pointer.

• handle – pointer to handle structure.

• dmaHandle – pointer to dma handle structure.

• callback – function to be called back when transfer is done or fails.

• userData – pointer to data passed to callback.

status_t I2S_RxTransferReceiveDMA(I2S_Type *base, i2s_dma_handle_t *handle, i2s_transfer_t
transfer)

Begins or queue reception of data into given buffer.

Parameters
• base – I2S base pointer.

• handle – pointer to handle structure.

• transfer – data buffer.

Return values
• kStatus_Success –

• kStatus_I2S_Busy – if all queue slots are occupied with buffers which are
not full.

void I2S_DMACallback(dma_handle_t *handle, void *userData, bool transferDone, uint32_t tcds)
Invoked from DMA interrupt handler.

Parameters
• handle – pointer to DMA handle structure.

• userData – argument for user callback.

• transferDone – if transfer was done.

• tcds –

void I2S_TransferInstallLoopDMADescriptorMemory(i2s_dma_handle_t *handle, void
*dmaDescriptorAddr, size_t
dmaDescriptorNum)

Install DMA descriptor memory for loop transfer only.

This function used to register DMA descriptor memory for the i2s loop dma transfer.

240 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

It must be callbed before I2S_TransferSendLoopDMA/I2S_TransferReceiveLoopDMA and
after I2S_RxTransferCreateHandleDMA/I2S_TxTransferCreateHandleDMA.

User should be take care about the address of DMA descriptor pool which required align
with 16BYTE at least.

Parameters
• handle – Pointer to i2s DMA transfer handle.

• dmaDescriptorAddr – DMA descriptor start address.

• dmaDescriptorNum – DMA descriptor number.

status_t I2S_TransferSendLoopDMA(I2S_Type *base, i2s_dma_handle_t *handle, i2s_transfer_t
*xfer, uint32_t loopTransferCount)

Send link transfer data using DMA.

This function receives data using DMA. This is a non-blocking function, which returns right
away. When all data is received, the receive callback function is called.

This function support loop transfer, such as A->B->…->A, the loop transfer chain will be
converted into a chain of descriptor and submit to dma. Application must be aware of that
themore counts of the loop transfer, thenmore DMAdescriptormemory required, user can
use function I2S_InstallDMADescriptorMemory to register the dma descriptor memory.

As the DMA support maximum 1024 transfer count, so application must be aware of that
this transfer function support maximum 1024 samples in each transfer, otherwise assert
error or error status will be returned. Once the loop transfer start, application can use
function I2S_TransferAbortDMA to stop the loop transfer.

Parameters
• base – I2S peripheral base address.

• handle – Pointer to usart_dma_handle_t structure.

• xfer – I2S DMA transfer structure. See i2s_transfer_t.

• loopTransferCount – loop count

Return values
kStatus_Success –

status_t I2S_TransferReceiveLoopDMA(I2S_Type *base, i2s_dma_handle_t *handle, i2s_transfer_t
*xfer, uint32_t loopTransferCount)

Receive link transfer data using DMA.

This function receives data using DMA. This is a non-blocking function, which returns right
away. When all data is received, the receive callback function is called.

This function support loop transfer, such as A->B->…->A, the loop transfer chain will be
converted into a chain of descriptor and submit to dma. Application must be aware of that
themore counts of the loop transfer, thenmore DMAdescriptormemory required, user can
use function I2S_InstallDMADescriptorMemory to register the dma descriptor memory.

As the DMA support maximum 1024 transfer count, so application must be aware of that
this transfer function support maximum 1024 samples in each transfer, otherwise assert
error or error status will be returned. Once the loop transfer start, application can use
function I2S_TransferAbortDMA to stop the loop transfer.

Parameters
• base – I2S peripheral base address.

• handle – Pointer to usart_dma_handle_t structure.

• xfer – I2S DMA transfer structure. See i2s_transfer_t.

2.20. I2S DMA Driver 241

MCUXpresso SDK Documentation, Release 25.09.00

• loopTransferCount – loop count

Return values
kStatus_Success –

FSL_I2S_DMA_DRIVER_VERSION
I2S DMA driver version 2.3.3.

typedef struct _i2s_dma_handle i2s_dma_handle_t
Members not to be accessed / modified outside of the driver.

typedef void (*i2s_dma_transfer_callback_t)(I2S_Type *base, i2s_dma_handle_t *handle, status_t
completionStatus, void *userData)

Callback function invoked from DMA API on completion.

Param base
I2S base pointer.

Param handle
pointer to I2S transaction.

Param completionStatus
status of the transaction.

Param userData
optional pointer to user arguments data.

struct _i2s_dma_handle
#include <fsl_i2s_dma.h> i2s dma handle

Public Members

uint32_t state
Internal state of I2S DMA transfer

uint8_t bytesPerFrame
bytes per frame

i2s_dma_transfer_callback_t completionCallback
Callback function pointer

void *userData
Application data passed to callback

dma_handle_t *dmaHandle
DMA handle

volatile i2s_transfer_t i2sQueue[(4U)]
Transfer queue storing transfer buffers

volatile uint8_t queueUser
Queue index where user’s next transfer will be stored

volatile uint8_t queueDriver
Queue index of buffer actually used by the driver

dma_descriptor_t *i2sLoopDMADescriptor
descriptor pool pointer

size_t i2sLoopDMADescriptorNum
number of descriptor in descriptors pool

242 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

2.21 I2S Driver

void I2S_TxInit(I2S_Type *base, const i2s_config_t *config)
Initializes the FLEXCOMM peripheral for I2S transmit functionality.

Ungates the FLEXCOMM clock and configures the module for I2S transmission using a con-
figuration structure. The configuration structure can be custom filled or set with default
values by I2S_TxGetDefaultConfig().

Note: This API should be called at the beginning of the application to use the I2S driver.

Parameters
• base – I2S base pointer.

• config – pointer to I2S configuration structure.

void I2S_RxInit(I2S_Type *base, const i2s_config_t *config)
Initializes the FLEXCOMM peripheral for I2S receive functionality.

Ungates the FLEXCOMM clock and configures the module for I2S receive using a configura-
tion structure. The configuration structure can be custom filled or set with default values
by I2S_RxGetDefaultConfig().

Note: This API should be called at the beginning of the application to use the I2S driver.

Parameters
• base – I2S base pointer.

• config – pointer to I2S configuration structure.

void I2S_TxGetDefaultConfig(i2s_config_t *config)
Sets the I2S Tx configuration structure to default values.

This API initializes the configuration structure for use in I2S_TxInit(). The initialized struc-
ture can remain unchanged in I2S_TxInit(), or it can bemodified before calling I2S_TxInit().
Example:

i2s_config_t config;
I2S_TxGetDefaultConfig(&config);

Default values:

config->masterSlave = kI2S_MasterSlaveNormalMaster;
config->mode = kI2S_ModeI2sClassic;
config->rightLow = false;
config->leftJust = false;
config->pdmData = false;
config->sckPol = false;
config->wsPol = false;
config->divider = 1;
config->oneChannel = false;
config->dataLength = 16;
config->frameLength = 32;
config->position = 0;
config->watermark = 4;
config->txEmptyZero = true;
config->pack48 = false;

2.21. I2S Driver 243

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• config – pointer to I2S configuration structure.

void I2S_RxGetDefaultConfig(i2s_config_t *config)
Sets the I2S Rx configuration structure to default values.

This API initializes the configuration structure for use in I2S_RxInit(). The initialized struc-
ture can remain unchanged in I2S_RxInit(), or it can bemodified before calling I2S_RxInit().
Example:

i2s_config_t config;
I2S_RxGetDefaultConfig(&config);

Default values:

config->masterSlave = kI2S_MasterSlaveNormalSlave;
config->mode = kI2S_ModeI2sClassic;
config->rightLow = false;
config->leftJust = false;
config->pdmData = false;
config->sckPol = false;
config->wsPol = false;
config->divider = 1;
config->oneChannel = false;
config->dataLength = 16;
config->frameLength = 32;
config->position = 0;
config->watermark = 4;
config->txEmptyZero = false;
config->pack48 = false;

Parameters
• config – pointer to I2S configuration structure.

void I2S_Deinit(I2S_Type *base)
De-initializes the I2S peripheral.

This API gates the FLEXCOMM clock. The I2S module can’t operate unless I2S_TxInit or
I2S_RxInit is called to enable the clock.

Parameters
• base – I2S base pointer.

void I2S_SetBitClockRate(I2S_Type *base, uint32_t sourceClockHz, uint32_t sampleRate,
uint32_t bitWidth, uint32_t channelNumbers)

Transmitter/Receiver bit clock rate configurations.

Parameters
• base – SAI base pointer.

• sourceClockHz – bit clock source frequency.

• sampleRate – audio data sample rate.

• bitWidth – audio data bitWidth.

• channelNumbers – audio channel numbers.

void I2S_TxTransferCreateHandle(I2S_Type *base, i2s_handle_t *handle, i2s_transfer_callback_t
callback, void *userData)

Initializes handle for transfer of audio data.

Parameters

244 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

• base – I2S base pointer.

• handle – pointer to handle structure.

• callback – function to be called back when transfer is done or fails.

• userData – pointer to data passed to callback.

status_t I2S_TxTransferNonBlocking(I2S_Type *base, i2s_handle_t *handle, i2s_transfer_t
transfer)

Begins or queue sending of the given data.

Parameters
• base – I2S base pointer.

• handle – pointer to handle structure.

• transfer – data buffer.

Return values
• kStatus_Success –

• kStatus_I2S_Busy – if all queue slots are occupied with unsent buffers.

void I2S_TxTransferAbort(I2S_Type *base, i2s_handle_t *handle)
Aborts sending of data.

Parameters
• base – I2S base pointer.

• handle – pointer to handle structure.

void I2S_RxTransferCreateHandle(I2S_Type *base, i2s_handle_t *handle, i2s_transfer_callback_t
callback, void *userData)

Initializes handle for reception of audio data.

Parameters
• base – I2S base pointer.

• handle – pointer to handle structure.

• callback – function to be called back when transfer is done or fails.

• userData – pointer to data passed to callback.

status_t I2S_RxTransferNonBlocking(I2S_Type *base, i2s_handle_t *handle, i2s_transfer_t
transfer)

Begins or queue reception of data into given buffer.

Parameters
• base – I2S base pointer.

• handle – pointer to handle structure.

• transfer – data buffer.

Return values
• kStatus_Success –

• kStatus_I2S_Busy – if all queue slots are occupied with buffers which are
not full.

void I2S_RxTransferAbort(I2S_Type *base, i2s_handle_t *handle)
Aborts receiving of data.

Parameters

2.21. I2S Driver 245

MCUXpresso SDK Documentation, Release 25.09.00

• base – I2S base pointer.

• handle – pointer to handle structure.

status_t I2S_TransferGetCount(I2S_Type *base, i2s_handle_t *handle, size_t *count)
Returns number of bytes transferred so far.

Parameters
• base – I2S base pointer.

• handle – pointer to handle structure.

• count – [out] number of bytes transferred so far by the non-blocking trans-
action.

Return values
• kStatus_Success –

• kStatus_NoTransferInProgress – there is no non-blocking transaction cur-
rently in progress.

status_t I2S_TransferGetErrorCount(I2S_Type *base, i2s_handle_t *handle, size_t *count)
Returns number of buffer underruns or overruns.

Parameters
• base – I2S base pointer.

• handle – pointer to handle structure.

• count – [out] number of transmit errors encountered so far by the non-
blocking transaction.

Return values
• kStatus_Success –

• kStatus_NoTransferInProgress – there is no non-blocking transaction cur-
rently in progress.

static inline void I2S_Enable(I2S_Type *base)
Enables I2S operation.

Parameters
• base – I2S base pointer.

void I2S_EnableSecondaryChannel(I2S_Type *base, uint32_t channel, bool oneChannel, uint32_t
position)

Enables I2S secondary channel.

Parameters
• base – I2S base pointer.

• channel – seondary channel channel number, reference
_i2s_secondary_channel.

• oneChannel – true is treated as single channel, functionality left channel for
this pair.

• position – define the locationwithin the frameof the data, should not bigger
than 0x1FFU.

static inline void I2S_DisableSecondaryChannel(I2S_Type *base, uint32_t channel)
Disables I2S secondary channel.

Parameters

246 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

• base – I2S base pointer.

• channel – seondary channel channel number, reference
_i2s_secondary_channel.

static inline void I2S_Disable(I2S_Type *base)
Disables I2S operation.

Parameters
• base – I2S base pointer.

static inline void I2S_EnableInterrupts(I2S_Type *base, uint32_t interruptMask)
Enables I2S FIFO interrupts.

Parameters
• base – I2S base pointer.

• interruptMask – bit mask of interrupts to enable. See i2s_flags_t for the set
of constants that should be OR’d together to form the bit mask.

static inline void I2S_DisableInterrupts(I2S_Type *base, uint32_t interruptMask)
Disables I2S FIFO interrupts.

Parameters
• base – I2S base pointer.

• interruptMask – bit mask of interrupts to enable. See i2s_flags_t for the set
of constants that should be OR’d together to form the bit mask.

static inline uint32_t I2S_GetEnabledInterrupts(I2S_Type *base)
Returns the set of currently enabled I2S FIFO interrupts.

Parameters
• base – I2S base pointer.

Returns
A bitmask composed of i2s_flags_t enumerators OR’d together to indicate the
set of enabled interrupts.

status_t I2S_EmptyTxFifo(I2S_Type *base)
Flush the valid data in TX fifo.

Parameters
• base – I2S base pointer.

Returns
kStatus_Fail empty TX fifo failed, kStatus_Success empty tx fifo success.

void I2S_TxHandleIRQ(I2S_Type *base, i2s_handle_t *handle)
Invoked from interrupt handler when transmit FIFO level decreases.

Parameters
• base – I2S base pointer.

• handle – pointer to handle structure.

void I2S_RxHandleIRQ(I2S_Type *base, i2s_handle_t *handle)
Invoked from interrupt handler when receive FIFO level decreases.

Parameters
• base – I2S base pointer.

• handle – pointer to handle structure.

2.21. I2S Driver 247

MCUXpresso SDK Documentation, Release 25.09.00

FSL_I2S_DRIVER_VERSION
I2S driver version 2.3.2.

_i2s_status I2S status codes.

Values:

enumerator kStatus_I2S_BufferComplete
Transfer from/into a single buffer has completed

enumerator kStatus_I2S_Done
All buffers transfers have completed

enumerator kStatus_I2S_Busy
Already performing a transfer and cannot queue another buffer

enum _i2s_flags
I2S flags.

Note: These enums are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2S_TxErrorFlag
TX error interrupt

enumerator kI2S_TxLevelFlag
TX level interrupt

enumerator kI2S_RxErrorFlag
RX error interrupt

enumerator kI2S_RxLevelFlag
RX level interrupt

enum _i2s_master_slave
Master / slave mode.

Values:

enumerator kI2S_MasterSlaveNormalSlave
Normal slave

enumerator kI2S_MasterSlaveWsSyncMaster
WS synchronized master

enumerator kI2S_MasterSlaveExtSckMaster
Master using existing SCK

enumerator kI2S_MasterSlaveNormalMaster
Normal master

enum _i2s_mode
I2S mode.

Values:

enumerator kI2S_ModeI2sClassic
I2S classic mode

enumerator kI2S_ModeDspWs50
DSP mode, WS having 50% duty cycle

248 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kI2S_ModeDspWsShort
DSP mode, WS having one clock long pulse

enumerator kI2S_ModeDspWsLong
DSP mode, WS having one data slot long pulse

_i2s_secondary_channel I2S secondary channel.

Values:

enumerator kI2S_SecondaryChannel1
secondary channel 1

enumerator kI2S_SecondaryChannel2
secondary channel 2

enumerator kI2S_SecondaryChannel3
secondary channel 3

typedef enum _i2s_flags i2s_flags_t
I2S flags.

Note: These enums are meant to be OR’d together to form a bit mask.

typedef enum _i2s_master_slave i2s_master_slave_t
Master / slave mode.

typedef enum _i2s_mode i2s_mode_t
I2S mode.

typedef struct _i2s_config i2s_config_t
I2S configuration structure.

typedef struct _i2s_transfer i2s_transfer_t
Buffer to transfer from or receive audio data into.

typedef struct _i2s_handle i2s_handle_t
Transactional state of the intialized transfer or receive I2S operation.

typedef void (*i2s_transfer_callback_t)(I2S_Type *base, i2s_handle_t *handle, status_t
completionStatus, void *userData)

Callback function invoked from transactional API on completion of a single buffer transfer.

Param base
I2S base pointer.

Param handle
pointer to I2S transaction.

Param completionStatus
status of the transaction.

Param userData
optional pointer to user arguments data.

I2S_NUM_BUFFERS
Number of buffers .

struct _i2s_config
#include <fsl_i2s.h> I2S configuration structure.

2.21. I2S Driver 249

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

i2s_master_slave_t masterSlave
Master / slave configuration

i2s_mode_t mode
I2S mode

bool rightLow
Right channel data in low portion of FIFO

bool leftJust
Left justify data in FIFO

bool pdmData
Data source is the D-Mic subsystem

bool sckPol
SCK polarity

bool wsPol
WS polarity

uint16_t divider
Flexcomm function clock divider (1 - 4096)

bool oneChannel
true mono, false stereo

uint8_t dataLength
Data length (4 - 32)

uint16_t frameLength
Frame width (4 - 512)

uint16_t position
Data position in the frame

uint8_t watermark
FIFO trigger level

bool txEmptyZero
Transmit zero when buffer becomes empty or last item

bool pack48
Packing format for 48-bit data (false - 24 bit values, true - alternating 32-bit and 16-bit
values)

struct _i2s_transfer
#include <fsl_i2s.h> Buffer to transfer from or receive audio data into.

Public Members

uint8_t *data
Pointer to data buffer.

size_t dataSize
Buffer size in bytes.

struct _i2s_handle
#include <fsl_i2s.h>Members not to be accessed / modified outside of the driver.

250 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

volatile uint32_t state
State of transfer

i2s_transfer_callback_t completionCallback
Callback function pointer

void *userData
Application data passed to callback

bool oneChannel
true mono, false stereo

uint8_t dataLength
Data length (4 - 32)

bool pack48
Packing format for 48-bit data (false - 24 bit values, true - alternating 32-bit and 16-bit
values)

uint8_t watermark
FIFO trigger level

bool useFifo48H
When dataLength 17-24: true use FIFOWR48H, false use FIFOWR

volatile i2s_transfer_t i2sQueue[(4U)]
Transfer queue storing transfer buffers

volatile uint8_t queueUser
Queue index where user’s next transfer will be stored

volatile uint8_t queueDriver
Queue index of buffer actually used by the driver

volatile uint32_t errorCount
Number of buffer underruns/overruns

volatile uint32_t transferCount
Number of bytes transferred

2.22 IAP: In Application Programming Driver

status_t IAP_ReadPartID(uint32_t *partID)
Read part identification number.

This function is used to read the part identification number.

Parameters
• partID – Address to store the part identification number.

Return values
kStatus_IAP_Success – Api has been executed successfully.

status_t IAP_ReadBootCodeVersion(uint32_t *bootCodeVersion)
Read boot code version number.

This function is used to read the boot code version number.

2.22. IAP: In Application Programming Driver 251

MCUXpresso SDK Documentation, Release 25.09.00

note Boot code version is two 32-bit words. Word 0 is themajor version, word 1 is theminor
version.

Parameters
• bootCodeVersion – Address to store the boot code version.

Return values
kStatus_IAP_Success – Api has been executed successfully.

void IAP_ReinvokeISP(uint8_t ispType, uint32_t *status)
Reinvoke ISP.

This function is used to invoke the boot loader in ISP mode. It maps boot vectors and con-
figures the peripherals for ISP.

note The error response will be returned when IAP is disabled or an invalid ISP type se-
lection appears. The call won’t return unless an error occurs, so there can be no status
code.

Parameters
• ispType – ISP type selection.

• status – store the possible status.

Return values
kStatus_IAP_ReinvokeISPConfig – reinvoke configuration error.

status_t IAP_ReadUniqueID(uint32_t *uniqueID)
Read unique identification.

This function is used to read the unique id.

Parameters
• uniqueID – store the uniqueID.

Return values
kStatus_IAP_Success – Api has been executed successfully.

FSL_IAP_DRIVER_VERSION

iap status codes.

Values:

enumerator kStatus_IAP_Success
Api is executed successfully

enumerator kStatus_IAP_InvalidCommand
Invalid command

enumerator kStatus_IAP_SrcAddrError
Source address is not on word boundary

enumerator kStatus_IAP_DstAddrError
Destination address is not on a correct boundary

enumerator kStatus_IAP_SrcAddrNotMapped
Source address is not mapped in the memory map

enumerator kStatus_IAP_DstAddrNotMapped
Destination address is not mapped in the memory map

252 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus_IAP_CountError
Byte count is not multiple of 4 or is not a permitted value

enumerator kStatus_IAP_InvalidSector
Sector/page number is invalid or end sector/page number is greater than start sec-
tor/page number

enumerator kStatus_IAP_SectorNotblank
One or more sectors are not blank

enumerator kStatus_IAP_NotPrepared
Command to prepare sector for write operation has not been executed

enumerator kStatus_IAP_CompareError
Destination and source memory contents do not match

enumerator kStatus_IAP_Busy
Flash programming hardware interface is busy

enumerator kStatus_IAP_ParamError
Insufficient number of parameters or invalid parameter

enumerator kStatus_IAP_AddrError
Address is not on word boundary

enumerator kStatus_IAP_AddrNotMapped
Address is not mapped in the memory map

enumerator kStatus_IAP_NoPower
Flash memory block is powered down

enumerator kStatus_IAP_NoClock
Flash memory block or controller is not clocked

enumerator kStatus_IAP_ReinvokeISPConfig
Reinvoke configuration error

enum _iap_commands
iap command codes.

Values:

enumerator kIapCmd_IAP_ReadFactorySettings
Read the factory settings

enumerator kIapCmd_IAP_PrepareSectorforWrite
Prepare Sector for write

enumerator kIapCmd_IAP_CopyRamToFlash
Copy RAM to flash

enumerator kIapCmd_IAP_EraseSector
Erase Sector

enumerator kIapCmd_IAP_BlankCheckSector
Blank check sector

enumerator kIapCmd_IAP_ReadPartId
Read part id

enumerator kIapCmd_IAP_Read_BootromVersion
Read bootrom version

2.22. IAP: In Application Programming Driver 253

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kIapCmd_IAP_Compare
Compare

enumerator kIapCmd_IAP_ReinvokeISP
Reinvoke ISP

enumerator kIapCmd_IAP_ReadUid
Read Uid

enumerator kIapCmd_IAP_ErasePage
Erase Page

enumerator kIapCmd_IAP_ReadSignature
Read Signature

enumerator kIapCmd_IAP_ExtendedReadSignature
Extended Read Signature

enumerator kIapCmd_IAP_ReadEEPROMPage
Read EEPROM page

enumerator kIapCmd_IAP_WriteEEPROMPage
Write EEPROM page

enum _flash_access_time
Flash memory access time.

Values:

enumerator kFlash_IAP_OneSystemClockTime

enumerator kFlash_IAP_TwoSystemClockTime
1 system clock flash access time

enumerator kFlash_IAP_ThreeSystemClockTime
2 system clock flash access time

2.23 INPUTMUX: Input Multiplexing Driver

enum _inputmux_connection_t
INPUTMUX connections type.

Values:

enumerator kINPUTMUX_SctGpi0ToSct0
SCT INMUX.

enumerator kINPUTMUX_SctGpi1ToSct0

enumerator kINPUTMUX_SctGpi2ToSct0

enumerator kINPUTMUX_SctGpi3ToSct0

enumerator kINPUTMUX_SctGpi4ToSct0

enumerator kINPUTMUX_SctGpi5ToSct0

enumerator kINPUTMUX_SctGpi6ToSct0

enumerator kINPUTMUX_SctGpi7ToSct0

254 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kINPUTMUX_T0Out0ToSct0

enumerator kINPUTMUX_T1Out0ToSct0

enumerator kINPUTMUX_T2Out0ToSct0

enumerator kINPUTMUX_T3Out0ToSct0

enumerator kINPUTMUX_T4Out0ToSct0

enumerator kINPUTMUX_AdcThcmpIrqToSct0

enumerator kINPUTMUX_GpioIntBmatchToSct0

enumerator kINPUTMUX_Usb0FrameToggleToSct0

enumerator kINPUTMUX_Usb1FrameToggleToSct0

enumerator kINPUTMUX_ArmTxevToSct0

enumerator kINPUTMUX_DebugHaltedToSct0

enumerator kINPUTMUX_SmartCard0TxActivreToSct0

enumerator kINPUTMUX_SmartCard0RxActivreToSct0

enumerator kINPUTMUX_SmartCard1TxActivreToSct0

enumerator kINPUTMUX_SmartCard1RxActivreToSct0

enumerator kINPUTMUX_I2s6SclkToSct0

enumerator kINPUTMUX_I2sS7clkToSct0
Frequency measure.

enumerator kINPUTMUX_MainOscToFreqmeas

enumerator kINPUTMUX_Fro12MhzToFreqmeas

enumerator kINPUTMUX_Fro96MhzToFreqmeas

enumerator kINPUTMUX_WdtOscToFreqmeas

enumerator kINPUTMUX_32KhzOscToFreqmeas

enumerator kINPUTMUX_MainClkToFreqmeas

enumerator kINPUTMUX_FreqmeGpioClk_a

enumerator kINPUTMUX_FreqmeGpioClk_b
Pin Interrupt.

enumerator kINPUTMUX_GpioPort0Pin0ToPintsel

enumerator kINPUTMUX_GpioPort0Pin1ToPintsel

enumerator kINPUTMUX_GpioPort0Pin2ToPintsel

enumerator kINPUTMUX_GpioPort0Pin3ToPintsel

enumerator kINPUTMUX_GpioPort0Pin4ToPintsel

enumerator kINPUTMUX_GpioPort0Pin5ToPintsel

enumerator kINPUTMUX_GpioPort0Pin6ToPintsel

2.23. INPUTMUX: Input Multiplexing Driver 255

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kINPUTMUX_GpioPort0Pin7ToPintsel

enumerator kINPUTMUX_GpioPort0Pin8ToPintsel

enumerator kINPUTMUX_GpioPort0Pin9ToPintsel

enumerator kINPUTMUX_GpioPort0Pin10ToPintsel

enumerator kINPUTMUX_GpioPort0Pin11ToPintsel

enumerator kINPUTMUX_GpioPort0Pin12ToPintsel

enumerator kINPUTMUX_GpioPort0Pin13ToPintsel

enumerator kINPUTMUX_GpioPort0Pin14ToPintsel

enumerator kINPUTMUX_GpioPort0Pin15ToPintsel

enumerator kINPUTMUX_GpioPort0Pin16ToPintsel

enumerator kINPUTMUX_GpioPort0Pin17ToPintsel

enumerator kINPUTMUX_GpioPort0Pin18ToPintsel

enumerator kINPUTMUX_GpioPort0Pin19ToPintsel

enumerator kINPUTMUX_GpioPort0Pin20ToPintsel

enumerator kINPUTMUX_GpioPort0Pin21ToPintsel

enumerator kINPUTMUX_GpioPort0Pin22ToPintsel

enumerator kINPUTMUX_GpioPort0Pin23ToPintsel

enumerator kINPUTMUX_GpioPort0Pin24ToPintsel

enumerator kINPUTMUX_GpioPort0Pin25ToPintsel

enumerator kINPUTMUX_GpioPort0Pin26ToPintsel

enumerator kINPUTMUX_GpioPort0Pin27ToPintsel

enumerator kINPUTMUX_GpioPort0Pin28ToPintsel

enumerator kINPUTMUX_GpioPort0Pin29ToPintsel

enumerator kINPUTMUX_GpioPort0Pin30ToPintsel

enumerator kINPUTMUX_GpioPort0Pin31ToPintsel

enumerator kINPUTMUX_GpioPort1Pin0ToPintsel

enumerator kINPUTMUX_GpioPort1Pin1ToPintsel

enumerator kINPUTMUX_GpioPort1Pin2ToPintsel

enumerator kINPUTMUX_GpioPort1Pin3ToPintsel

enumerator kINPUTMUX_GpioPort1Pin4ToPintsel

enumerator kINPUTMUX_GpioPort1Pin5ToPintsel

enumerator kINPUTMUX_GpioPort1Pin6ToPintsel

enumerator kINPUTMUX_GpioPort1Pin7ToPintsel

256 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kINPUTMUX_GpioPort1Pin8ToPintsel

enumerator kINPUTMUX_GpioPort1Pin9ToPintsel

enumerator kINPUTMUX_GpioPort1Pin10ToPintsel

enumerator kINPUTMUX_GpioPort1Pin11ToPintsel

enumerator kINPUTMUX_GpioPort1Pin12ToPintsel

enumerator kINPUTMUX_GpioPort1Pin13ToPintsel

enumerator kINPUTMUX_GpioPort1Pin14ToPintsel

enumerator kINPUTMUX_GpioPort1Pin15ToPintsel

enumerator kINPUTMUX_GpioPort1Pin16ToPintsel

enumerator kINPUTMUX_GpioPort1Pin17ToPintsel

enumerator kINPUTMUX_GpioPort1Pin18ToPintsel

enumerator kINPUTMUX_GpioPort1Pin19ToPintsel

enumerator kINPUTMUX_GpioPort1Pin20ToPintsel

enumerator kINPUTMUX_GpioPort1Pin21ToPintsel

enumerator kINPUTMUX_GpioPort1Pin22ToPintsel

enumerator kINPUTMUX_GpioPort1Pin23ToPintsel

enumerator kINPUTMUX_GpioPort1Pin24ToPintsel

enumerator kINPUTMUX_GpioPort1Pin25ToPintsel

enumerator kINPUTMUX_GpioPort1Pin26ToPintsel

enumerator kINPUTMUX_GpioPort1Pin27ToPintsel

enumerator kINPUTMUX_GpioPort1Pin28ToPintsel

enumerator kINPUTMUX_GpioPort1Pin29ToPintsel

enumerator kINPUTMUX_GpioPort1Pin30ToPintsel

enumerator kINPUTMUX_GpioPort1Pin31ToPintsel
DMA ITRIG.

enumerator kINPUTMUX_Adc0SeqaIrqToDma

enumerator kINPUTMUX_Adc0SeqbIrqToDma

enumerator kINPUTMUX_Sct0DmaReq0ToDma

enumerator kINPUTMUX_Sct0DmaReq1ToDma

enumerator kINPUTMUX_PinInt0ToDma

enumerator kINPUTMUX_PinInt1ToDma

enumerator kINPUTMUX_PinInt2ToDma

enumerator kINPUTMUX_PinInt3ToDma

2.23. INPUTMUX: Input Multiplexing Driver 257

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kINPUTMUX_Ctimer0M0ToDma

enumerator kINPUTMUX_Ctimer0M1ToDma

enumerator kINPUTMUX_Ctimer1M0ToDma

enumerator kINPUTMUX_Ctimer1M1ToDma

enumerator kINPUTMUX_Ctimer2M0ToDma

enumerator kINPUTMUX_Ctimer2M1ToDma

enumerator kINPUTMUX_Ctimer3M0ToDma

enumerator kINPUTMUX_Ctimer3M1ToDma

enumerator kINPUTMUX_Ctimer4M0ToDma

enumerator kINPUTMUX_Ctimer4M1ToDma

enumerator kINPUTMUX_Otrig0ToDma

enumerator kINPUTMUX_Otrig1ToDma

enumerator kINPUTMUX_Otrig2ToDma

enumerator kINPUTMUX_Otrig3ToDma

enumerator AES256_INPUT_DMA_REQ

enumerator AES256_OUTPUT_DMA_REQ
DMA OTRIG.

enumerator kINPUTMUX_DmaFlexcomm0RxTrigoutToTriginChannels

enumerator kINPUTMUX_DmaFlexcomm0TxTrigoutToTriginChannels

enumerator kINPUTMUX_DmaFlexcomm1RxTrigoutToTriginChannels

enumerator kINPUTMUX_DmaFlexcomm1TxTrigoutToTriginChannels

enumerator kINPUTMUX_DmaFlexcomm2RxTrigoutToTriginChannels

enumerator kINPUTMUX_DmaFlexcomm2TxTrigoutToTriginChannels

enumerator kINPUTMUX_DmaFlexcomm3RxTrigoutToTriginChannels

enumerator kINPUTMUX_DmaFlexcomm3TxTrigoutToTriginChannels

enumerator kINPUTMUX_DmaFlexcomm4RxTrigoutToTriginChannels

enumerator kINPUTMUX_DmaFlexcomm4TxTrigoutToTriginChannels

enumerator kINPUTMUX_DmaFlexcomm5RxTrigoutToTriginChannels

enumerator kINPUTMUX_DmaFlexcomm5TxTrigoutToTriginChannels

enumerator kINPUTMUX_DmaFlexcomm6RxTrigoutToTriginChannels

enumerator kINPUTMUX_DmaFlexcomm6TxTrigoutToTriginChannels

enumerator kINPUTMUX_DmaFlexcomm7RxTrigoutToTriginChannels

enumerator kINPUTMUX_DmaFlexcomm7TxTrigoutToTriginChannels

258 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kINPUTMUX_DmaDmic0Ch0TrigoutToTriginChannels

enumerator kINPUTMUX_Dmamic0Ch1TrigoutToTriginChannels

enumerator kINPUTMUX_DmaSpifi0TrigoutToTriginChannels

enumerator kINPUTMUX_DmaSha_TrigoutToTriginChannels

enumerator kINPUTMUX_DmaFlexcomm8RxTrigoutToTriginChannels

enumerator kINPUTMUX_DmaFlexcomm8TxTrigoutToTriginChannels

enumerator kINPUTMUX_DmaFlexcomm9RxTrigoutToTriginChannels

enumerator kINPUTMUX_DmaFlexcomm9TxTrigoutToTriginChannels

enumerator kINPUTMUX_DmaSmartcard0RxTrigoutToTriginChannels

enumerator kINPUTMUX_DmaSmartcard0TxTrigoutToTriginChannels

enumerator kINPUTMUX_DmaSmartcard1RxTrigoutToTriginChannels

enumerator kINPUTMUX_DmaSmartcard1TxTrigoutToTriginChannels

enumerator kINPUTMUX_DmaFlexcomm10RxTrigoutToTriginChannels

enumerator kINPUTMUX_DmaFlexcomm10TxTrigoutToTriginChannels

typedef enum _inputmux_connection_t inputmux_connection_t
INPUTMUX connections type.

SCT0_PMUX_ID
Periphinmux IDs.

PINTSEL_PMUX_ID

DMA_TRIG0_PMUX_ID

DMA_OTRIG_PMUX_ID

FREQMEAS_PMUX_ID

PMUX_SHIFT

FSL_INPUTMUX_DRIVER_VERSION
Group interrupt driver version for SDK.

void INPUTMUX_Init(void *base)
Initialize INPUTMUX peripheral.

This function enables the INPUTMUX clock.

Parameters
• base – Base address of the INPUTMUX peripheral.

Return values
None. –

void INPUTMUX_AttachSignal(void *base, uint32_t index, inputmux_connection_t connection)
Attaches a signal.

This function attaches multiplexed signals from INPUTMUX to target signals. For example,
to attach GPIO PORT0 Pin 5 to PINT peripheral, do the following:

2.23. INPUTMUX: Input Multiplexing Driver 259

MCUXpresso SDK Documentation, Release 25.09.00

INPUTMUX_AttachSignal(INPUTMUX, 2, kINPUTMUX_GpioPort0Pin5ToPintsel);

In this example, INTMUX has 8 registers for PINT, PINT_SEL0~PINT_SEL7. With parameter
index specified as 2, this function configures register PINT_SEL2.

Parameters
• base – Base address of the INPUTMUX peripheral.

• index – The serial number of destination register in the group of INPUT-
MUX registers with same name.

• connection – Applies signal from source signals collection to target signal.

Return values
None. –

void INPUTMUX_Deinit(void *base)
Deinitialize INPUTMUX peripheral.

This function disables the INPUTMUX clock.

Parameters
• base – Base address of the INPUTMUX peripheral.

Return values
None. –

2.24 Common Driver

FSL_COMMON_DRIVER_VERSION
common driver version.

DEBUG_CONSOLE_DEVICE_TYPE_NONE
No debug console.

DEBUG_CONSOLE_DEVICE_TYPE_UART
Debug console based on UART.

DEBUG_CONSOLE_DEVICE_TYPE_LPUART
Debug console based on LPUART.

DEBUG_CONSOLE_DEVICE_TYPE_LPSCI
Debug console based on LPSCI.

DEBUG_CONSOLE_DEVICE_TYPE_USBCDC
Debug console based on USBCDC.

DEBUG_CONSOLE_DEVICE_TYPE_FLEXCOMM
Debug console based on FLEXCOMM.

DEBUG_CONSOLE_DEVICE_TYPE_IUART
Debug console based on i.MX UART.

DEBUG_CONSOLE_DEVICE_TYPE_VUSART
Debug console based on LPC_VUSART.

DEBUG_CONSOLE_DEVICE_TYPE_MINI_USART
Debug console based on LPC_USART.

260 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

DEBUG_CONSOLE_DEVICE_TYPE_SWO
Debug console based on SWO.

DEBUG_CONSOLE_DEVICE_TYPE_QSCI
Debug console based on QSCI.

MIN(a, b)
Computes the minimum of a and b.

MAX(a, b)
Computes the maximum of a and b.

UINT16_MAX
Max value of uint16_t type.

UINT32_MAX
Max value of uint32_t type.

SDK_ATOMIC_LOCAL_ADD(addr, val)
Add value val from the variable at address address.

SDK_ATOMIC_LOCAL_SUB(addr, val)
Subtract value val to the variable at address address.

SDK_ATOMIC_LOCAL_SET(addr, bits)
Set the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_CLEAR(addr, bits)
Clear the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_TOGGLE(addr, bits)
Toggle the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_CLEAR_AND_SET(addr, clearBits, setBits)
For the variable at address address, clear the bits specifiled by clearBits and set the bits
specifiled by setBits.

SDK_ATOMIC_LOCAL_COMPARE_AND_SET(addr, expected, newValue)
For the variable at address address, check whether the value equal to expected. If value
same as expected then update newValue to address and return true , else return false .

SDK_ATOMIC_LOCAL_TEST_AND_SET(addr, newValue)
For the variable at address address, set as newValue value and return old value.

USEC_TO_COUNT(us, clockFreqInHz)
Macro to convert a microsecond period to raw count value

COUNT_TO_USEC(count, clockFreqInHz)
Macro to convert a raw count value to microsecond

MSEC_TO_COUNT(ms, clockFreqInHz)
Macro to convert a millisecond period to raw count value

COUNT_TO_MSEC(count, clockFreqInHz)
Macro to convert a raw count value to millisecond

SDK_ISR_EXIT_BARRIER

SDK_SIZEALIGN(var, alignbytes)
Macro to define a variable with L1 d-cache line size alignment

Macro to define a variable with L2 cache line size alignment

Macro to change a value to a given size aligned value

2.24. Common Driver 261

MCUXpresso SDK Documentation, Release 25.09.00

AT_NONCACHEABLE_SECTION(var)
Define a variable var, and place it in non-cacheable section.

AT_NONCACHEABLE_SECTION_ALIGN(var, alignbytes)
Define a variable var, and place it in non-cacheable section, the start address of the variable
is aligned to alignbytes.

AT_NONCACHEABLE_SECTION_INIT(var)
Define a variable var with initial value, and place it in non-cacheable section.

AT_NONCACHEABLE_SECTION_ALIGN_INIT(var, alignbytes)
Define a variable var with initial value, and place it in non-cacheable section, the start
address of the variable is aligned to alignbytes.

enum _status_groups
Status group numbers.

Values:

enumerator kStatusGroup_Generic
Group number for generic status codes.

enumerator kStatusGroup_FLASH
Group number for FLASH status codes.

enumerator kStatusGroup_LPSPI
Group number for LPSPI status codes.

enumerator kStatusGroup_FLEXIO_SPI
Group number for FLEXIO SPI status codes.

enumerator kStatusGroup_DSPI
Group number for DSPI status codes.

enumerator kStatusGroup_FLEXIO_UART
Group number for FLEXIO UART status codes.

enumerator kStatusGroup_FLEXIO_I2C
Group number for FLEXIO I2C status codes.

enumerator kStatusGroup_LPI2C
Group number for LPI2C status codes.

enumerator kStatusGroup_UART
Group number for UART status codes.

enumerator kStatusGroup_I2C
Group number for UART status codes.

enumerator kStatusGroup_LPSCI
Group number for LPSCI status codes.

enumerator kStatusGroup_LPUART
Group number for LPUART status codes.

enumerator kStatusGroup_SPI
Group number for SPI status code.

enumerator kStatusGroup_XRDC
Group number for XRDC status code.

enumerator kStatusGroup_SEMA42
Group number for SEMA42 status code.

262 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_SDHC
Group number for SDHC status code

enumerator kStatusGroup_SDMMC
Group number for SDMMC status code

enumerator kStatusGroup_SAI
Group number for SAI status code

enumerator kStatusGroup_MCG
Group number for MCG status codes.

enumerator kStatusGroup_SCG
Group number for SCG status codes.

enumerator kStatusGroup_SDSPI
Group number for SDSPI status codes.

enumerator kStatusGroup_FLEXIO_I2S
Group number for FLEXIO I2S status codes

enumerator kStatusGroup_FLEXIO_MCULCD
Group number for FLEXIO LCD status codes

enumerator kStatusGroup_FLASHIAP
Group number for FLASHIAP status codes

enumerator kStatusGroup_FLEXCOMM_I2C
Group number for FLEXCOMM I2C status codes

enumerator kStatusGroup_I2S
Group number for I2S status codes

enumerator kStatusGroup_IUART
Group number for IUART status codes

enumerator kStatusGroup_CSI
Group number for CSI status codes

enumerator kStatusGroup_MIPI_DSI
Group number for MIPI DSI status codes

enumerator kStatusGroup_SDRAMC
Group number for SDRAMC status codes.

enumerator kStatusGroup_POWER
Group number for POWER status codes.

enumerator kStatusGroup_ENET
Group number for ENET status codes.

enumerator kStatusGroup_PHY
Group number for PHY status codes.

enumerator kStatusGroup_TRGMUX
Group number for TRGMUX status codes.

enumerator kStatusGroup_SMARTCARD
Group number for SMARTCARD status codes.

enumerator kStatusGroup_LMEM
Group number for LMEM status codes.

2.24. Common Driver 263

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_QSPI
Group number for QSPI status codes.

enumerator kStatusGroup_DMA
Group number for DMA status codes.

enumerator kStatusGroup_EDMA
Group number for EDMA status codes.

enumerator kStatusGroup_DMAMGR
Group number for DMAMGR status codes.

enumerator kStatusGroup_FLEXCAN
Group number for FlexCAN status codes.

enumerator kStatusGroup_LTC
Group number for LTC status codes.

enumerator kStatusGroup_FLEXIO_CAMERA
Group number for FLEXIO CAMERA status codes.

enumerator kStatusGroup_LPC_SPI
Group number for LPC_SPI status codes.

enumerator kStatusGroup_LPC_USART
Group number for LPC_USART status codes.

enumerator kStatusGroup_DMIC
Group number for DMIC status codes.

enumerator kStatusGroup_SDIF
Group number for SDIF status codes.

enumerator kStatusGroup_SPIFI
Group number for SPIFI status codes.

enumerator kStatusGroup_OTP
Group number for OTP status codes.

enumerator kStatusGroup_MCAN
Group number for MCAN status codes.

enumerator kStatusGroup_CAAM
Group number for CAAM status codes.

enumerator kStatusGroup_ECSPI
Group number for ECSPI status codes.

enumerator kStatusGroup_USDHC
Group number for USDHC status codes.

enumerator kStatusGroup_LPC_I2C
Group number for LPC_I2C status codes.

enumerator kStatusGroup_DCP
Group number for DCP status codes.

enumerator kStatusGroup_MSCAN
Group number for MSCAN status codes.

enumerator kStatusGroup_ESAI
Group number for ESAI status codes.

264 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_FLEXSPI
Group number for FLEXSPI status codes.

enumerator kStatusGroup_MMDC
Group number for MMDC status codes.

enumerator kStatusGroup_PDM
Group number for MIC status codes.

enumerator kStatusGroup_SDMA
Group number for SDMA status codes.

enumerator kStatusGroup_ICS
Group number for ICS status codes.

enumerator kStatusGroup_SPDIF
Group number for SPDIF status codes.

enumerator kStatusGroup_LPC_MINISPI
Group number for LPC_MINISPI status codes.

enumerator kStatusGroup_HASHCRYPT
Group number for Hashcrypt status codes

enumerator kStatusGroup_LPC_SPI_SSP
Group number for LPC_SPI_SSP status codes.

enumerator kStatusGroup_I3C
Group number for I3C status codes

enumerator kStatusGroup_LPC_I2C_1
Group number for LPC_I2C_1 status codes.

enumerator kStatusGroup_NOTIFIER
Group number for NOTIFIER status codes.

enumerator kStatusGroup_DebugConsole
Group number for debug console status codes.

enumerator kStatusGroup_SEMC
Group number for SEMC status codes.

enumerator kStatusGroup_ApplicationRangeStart
Starting number for application groups.

enumerator kStatusGroup_IAP
Group number for IAP status codes

enumerator kStatusGroup_SFA
Group number for SFA status codes

enumerator kStatusGroup_SPC
Group number for SPC status codes.

enumerator kStatusGroup_PUF
Group number for PUF status codes.

enumerator kStatusGroup_TOUCH_PANEL
Group number for touch panel status codes

enumerator kStatusGroup_VBAT
Group number for VBAT status codes

2.24. Common Driver 265

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_XSPI
Group number for XSPI status codes

enumerator kStatusGroup_PNGDEC
Group number for PNGDEC status codes

enumerator kStatusGroup_JPEGDEC
Group number for JPEGDEC status codes

enumerator kStatusGroup_AUDMIX
Group number for AUDMIX status codes

enumerator kStatusGroup_HAL_GPIO
Group number for HAL GPIO status codes.

enumerator kStatusGroup_HAL_UART
Group number for HAL UART status codes.

enumerator kStatusGroup_HAL_TIMER
Group number for HAL TIMER status codes.

enumerator kStatusGroup_HAL_SPI
Group number for HAL SPI status codes.

enumerator kStatusGroup_HAL_I2C
Group number for HAL I2C status codes.

enumerator kStatusGroup_HAL_FLASH
Group number for HAL FLASH status codes.

enumerator kStatusGroup_HAL_PWM
Group number for HAL PWM status codes.

enumerator kStatusGroup_HAL_RNG
Group number for HAL RNG status codes.

enumerator kStatusGroup_HAL_I2S
Group number for HAL I2S status codes.

enumerator kStatusGroup_HAL_ADC_SENSOR
Group number for HAL ADC SENSOR status codes.

enumerator kStatusGroup_TIMERMANAGER
Group number for TiMER MANAGER status codes.

enumerator kStatusGroup_SERIALMANAGER
Group number for SERIAL MANAGER status codes.

enumerator kStatusGroup_LED
Group number for LED status codes.

enumerator kStatusGroup_BUTTON
Group number for BUTTON status codes.

enumerator kStatusGroup_EXTERN_EEPROM
Group number for EXTERN EEPROM status codes.

enumerator kStatusGroup_SHELL
Group number for SHELL status codes.

enumerator kStatusGroup_MEM_MANAGER
Group number for MEMMANAGER status codes.

266 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_LIST
Group number for List status codes.

enumerator kStatusGroup_OSA
Group number for OSA status codes.

enumerator kStatusGroup_COMMON_TASK
Group number for Common task status codes.

enumerator kStatusGroup_MSG
Group number for messaging status codes.

enumerator kStatusGroup_SDK_OCOTP
Group number for OCOTP status codes.

enumerator kStatusGroup_SDK_FLEXSPINOR
Group number for FLEXSPINOR status codes.

enumerator kStatusGroup_CODEC
Group number for codec status codes.

enumerator kStatusGroup_ASRC
Group number for codec status ASRC.

enumerator kStatusGroup_OTFAD
Group number for codec status codes.

enumerator kStatusGroup_SDIOSLV
Group number for SDIOSLV status codes.

enumerator kStatusGroup_MECC
Group number for MECC status codes.

enumerator kStatusGroup_ENET_QOS
Group number for ENET_QOS status codes.

enumerator kStatusGroup_LOG
Group number for LOG status codes.

enumerator kStatusGroup_I3CBUS
Group number for I3CBUS status codes.

enumerator kStatusGroup_QSCI
Group number for QSCI status codes.

enumerator kStatusGroup_ELEMU
Group number for ELEMU status codes.

enumerator kStatusGroup_QUEUEDSPI
Group number for QSPI status codes.

enumerator kStatusGroup_POWER_MANAGER
Group number for POWER_MANAGER status codes.

enumerator kStatusGroup_IPED
Group number for IPED status codes.

enumerator kStatusGroup_ELS_PKC
Group number for ELS PKC status codes.

enumerator kStatusGroup_CSS_PKC
Group number for CSS PKC status codes.

2.24. Common Driver 267

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_HOSTIF
Group number for HOSTIF status codes.

enumerator kStatusGroup_CLIF
Group number for CLIF status codes.

enumerator kStatusGroup_BMA
Group number for BMA status codes.

enumerator kStatusGroup_NETC
Group number for NETC status codes.

enumerator kStatusGroup_ELE
Group number for ELE status codes.

enumerator kStatusGroup_GLIKEY
Group number for GLIKEY status codes.

enumerator kStatusGroup_AON_POWER
Group number for AON_POWER status codes.

enumerator kStatusGroup_AON_COMMON
Group number for AON_COMMON status codes.

enumerator kStatusGroup_ENDAT3
Group number for ENDAT3 status codes.

enumerator kStatusGroup_HIPERFACE
Group number for HIPERFACE status codes.

enumerator kStatusGroup_NPX
Group number for NPX status codes.

enumerator kStatusGroup_ELA_CSEC
Group number for ELA_CSEC status codes.

enumerator kStatusGroup_FLEXIO_T_FORMAT
Group number for T-format status codes.

enumerator kStatusGroup_FLEXIO_A_FORMAT
Group number for A-format status codes.

Generic status return codes.

Values:

enumerator kStatus_Success
Generic status for Success.

enumerator kStatus_Fail
Generic status for Fail.

enumerator kStatus_ReadOnly
Generic status for read only failure.

enumerator kStatus_OutOfRange
Generic status for out of range access.

enumerator kStatus_InvalidArgument
Generic status for invalid argument check.

268 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus_Timeout
Generic status for timeout.

enumerator kStatus_NoTransferInProgress
Generic status for no transfer in progress.

enumerator kStatus_Busy
Generic status for module is busy.

enumerator kStatus_NoData
Generic status for no data is found for the operation.

typedef int32_t status_t
Type used for all status and error return values.

void *SDK_Malloc(size_t size, size_t alignbytes)
Allocate memory with given alignment and aligned size.

This is provided to support the dynamically allocated memory used in cache-able region.

Parameters
• size – The length required to malloc.

• alignbytes – The alignment size.

Return values
The – allocated memory.

void SDK_Free(void *ptr)
Free memory.

Parameters
• ptr – The memory to be release.

void SDK_DelayAtLeastUs(uint32_t delayTime_us, uint32_t coreClock_Hz)
Delay at least for some time. Please note that, this API uses while loop for delay, different
run-time environmentsmake the timenot precise, if precise delay countwas needed, please
implement a new delay function with hardware timer.

Parameters
• delayTime_us – Delay time in unit of microsecond.

• coreClock_Hz – Core clock frequency with Hz.

static inline status_t EnableIRQ(IRQn_Type interrupt)
Enable specific interrupt.

Enable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For
example, there areNVIC and intmux. Here the interrupts connected toNVIC are the LEVEL1
interrupts, because they are routed to the core directly. The interrupts connected to intmux
are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only enables the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ number.

Return values
• kStatus_Success – Interrupt enabled successfully

• kStatus_Fail – Failed to enable the interrupt

2.24. Common Driver 269

MCUXpresso SDK Documentation, Release 25.09.00

static inline status_t DisableIRQ(IRQn_Type interrupt)
Disable specific interrupt.

Disable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For
example, there areNVIC and intmux. Here the interrupts connected toNVIC are the LEVEL1
interrupts, because they are routed to the core directly. The interrupts connected to intmux
are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only disables the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ number.

Return values
• kStatus_Success – Interrupt disabled successfully

• kStatus_Fail – Failed to disable the interrupt

static inline status_t EnableIRQWithPriority(IRQn_Type interrupt, uint8_t priNum)
Enable the IRQ, and also set the interrupt priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ to Enable.

• priNum – Priority number set to interrupt controller register.

Return values
• kStatus_Success – Interrupt priority set successfully

• kStatus_Fail – Failed to set the interrupt priority.

static inline status_t IRQ_SetPriority(IRQn_Type interrupt, uint8_t priNum)
Set the IRQ priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ to set.

• priNum – Priority number set to interrupt controller register.

Return values
• kStatus_Success – Interrupt priority set successfully

• kStatus_Fail – Failed to set the interrupt priority.

270 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

static inline status_t IRQ_ClearPendingIRQ(IRQn_Type interrupt)
Clear the pending IRQ flag.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The flag which IRQ to clear.

Return values
• kStatus_Success – Interrupt priority set successfully

• kStatus_Fail – Failed to set the interrupt priority.

static inline uint32_t DisableGlobalIRQ(void)
Disable the global IRQ.

Disable the global interrupt and return the current primask register. User is required to
provided the primask register for the EnableGlobalIRQ().

Returns
Current primask value.

static inline void EnableGlobalIRQ(uint32_t primask)
Enable the global IRQ.

Set the primask register with the provided primask value but not just enable the primask.
The idea is for the convenience of integration of RTOS. some RTOS get its ownmanagement
mechanism of primask. User is required to use the EnableGlobalIRQ() and DisableGlob-
alIRQ() in pair.

Parameters
• primask – value of primask register to be restored. The primask value is
supposed to be provided by the DisableGlobalIRQ().

void EnableDeepSleepIRQ(IRQn_Type interrupt)
Enable specific interrupt for wake-up from deep-sleep mode.

Enable the interrupt for wake-up from deep sleep mode. Some interrupts are typically
used in sleepmode only andwill not occur during deep-sleepmode because relevant clocks
are stopped. However, it is possible to enable those clocks (significantly increasing power
consumption in the reduced power mode), making these wake-ups possible.

Note: This function also enables the interrupt in the NVIC (EnableIRQ() is called internaly).

Parameters
• interrupt – The IRQ number.

void DisableDeepSleepIRQ(IRQn_Type interrupt)
Disable specific interrupt for wake-up from deep-sleep mode.

Disable the interrupt for wake-up from deep sleep mode. Some interrupts are typically
used in sleepmode only andwill not occur during deep-sleepmode because relevant clocks
are stopped. However, it is possible to enable those clocks (significantly increasing power
consumption in the reduced power mode), making these wake-ups possible.

2.24. Common Driver 271

MCUXpresso SDK Documentation, Release 25.09.00

Note: This function also disables the interrupt in the NVIC (DisableIRQ() is called inter-
naly).

Parameters
• interrupt – The IRQ number.

static inline bool _SDK_AtomicLocalCompareAndSet(uint32_t *addr, uint32_t expected, uint32_t
newValue)

static inline uint32_t _SDK_AtomicTestAndSet(uint32_t *addr, uint32_t newValue)

FSL_DRIVER_TRANSFER_DOUBLE_WEAK_IRQ
Macro to use the default weak IRQ handler in drivers.

MAKE_STATUS(group, code)
Construct a status code value from a group and code number.

MAKE_VERSION(major, minor, bugfix)
Construct the version number for drivers.

The driver version is a 32-bit number, for both 32-bit platforms(such as CortexM) and 16-bit
platforms(such as DSC).

| Unused || Major Version || Minor Version || Bug Fix |
31 25 24 17 16 9 8 0

ARRAY_SIZE(x)
Computes the number of elements in an array.

UINT64_H(X)
Macro to get upper 32 bits of a 64-bit value

UINT64_L(X)
Macro to get lower 32 bits of a 64-bit value

SUPPRESS_FALL_THROUGH_WARNING()
For switch case code block, if case section ends without “break;” statement, there wil be
fallthrough warning with compiler flag -Wextra or -Wimplicit-fallthrough=n when using
armgcc. To suppress this warning, “SUPPRESS_FALL_THROUGH_WARNING();” need to be
added at the end of each case section which misses “break;”statement.

MSDK_REG_SECURE_ADDR(x)
Convert the register address to the one used in secure mode.

MSDK_REG_NONSECURE_ADDR(x)
Convert the register address to the one used in non-secure mode.

MSDK_INVALID_IRQ_HANDLER
Invalid IRQ handler address.

2.25 ADC: 12-bit SAR Analog-to-Digital Converter Driver

void ADC_Init(ADC_Type *base, const adc_config_t *config)
Initialize the ADC module.

Parameters
• base – ADC peripheral base address.

272 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

• config – Pointer to configuration structure, see to adc_config_t.

void ADC_Deinit(ADC_Type *base)
Deinitialize the ADC module.

Parameters
• base – ADC peripheral base address.

void ADC_GetDefaultConfig(adc_config_t *config)
Gets an available pre-defined settings for initial configuration.

This function initializes the initial configuration structure with an available settings. The
default values are:

config->clockMode = kADC_ClockSynchronousMode;
config->clockDividerNumber = 0U;
config->resolution = kADC_Resolution12bit;
config->enableBypassCalibration = false;
config->sampleTimeNumber = 0U;
config->extendSampleTimeNumber = kADC_ExtendSampleTimeNotUsed;

Parameters
• config – Pointer to configuration structure.

bool ADC_DoSelfCalibration(ADC_Type *base)
Do the hardware self-calibration.

Deprecated:
Do not use this function. It has been superceded by ADC_DoOffsetCalibration.

To calibrate the ADC, set the ADC clock to 500 kHz. In order to achieve the specified ADC
accuracy, the A/D convertermust be recalibrated, at aminimum, following every chip reset
before initiating normal ADC operation.

Parameters
• base – ADC peripheral base address.

Return values
• true – Calibration succeed.

• false – Calibration failed.

bool ADC_DoOffsetCalibration(ADC_Type *base, uint32_t frequency)
Do the hardware offset-calibration.

To calibrate the ADC, set the ADC clock to no more then 30 MHz. In order to achieve the
specified ADC accuracy, the A/D converter must be recalibrated, at a minimum, following
every chip reset before initiating normal ADC operation.

Parameters
• base – ADC peripheral base address.

• frequency – The clock frequency that ADC operates at.

Return values
• true – Calibration succeed.

• false – Calibration failed.

2.25. ADC: 12-bit SAR Analog-to-Digital Converter Driver 273

MCUXpresso SDK Documentation, Release 25.09.00

static inline void ADC_EnableConvSeqA(ADC_Type *base, bool enable)
Enable the conversion sequence A.

In order to avoid spuriously triggering the sequence, the trigger to conversion sequence
should be ready before the sequence is ready. when the sequence is disabled, the trig-
ger would be ignored. Also, it is suggested to disable the sequence during changing the
sequence’s setting.

Parameters
• base – ADC peripheral base address.

• enable – Switcher to enable the feature or not.

void ADC_SetConvSeqAConfig(ADC_Type *base, const adc_conv_seq_config_t *config)
Configure the conversion sequence A.

Parameters
• base – ADC peripheral base address.

• config – Pointer to configuration structure, see to adc_conv_seq_config_t.

static inline void ADC_DoSoftwareTriggerConvSeqA(ADC_Type *base)
Do trigger the sequence’s conversion by software.

Parameters
• base – ADC peripheral base address.

static inline void ADC_EnableConvSeqABurstMode(ADC_Type *base, bool enable)
Enable the burst conversion of sequence A.

Enable the burst mode would cause the conversion sequence to be cntinuously cycled
through. Other triggers would be ignored while this mode is enabled. Repeated conver-
sions could be halted by disabling this mode. And the sequence currently in process will
be completed before cnversions are terminated. Note that a new sequence could begin just
before the burst mode is disabled.

Parameters
• base – ADC peripheral base address.

• enable – Switcher to enable this feature.

static inline void ADC_SetConvSeqAHighPriority(ADC_Type *base)
Set the high priority for conversion sequence A.

Parameters
• base – ADC peripheral bass address.

static inline void ADC_EnableConvSeqB(ADC_Type *base, bool enable)
Enable the conversion sequence B.

In order to avoid spuriously triggering the sequence, the trigger to conversion sequence
should be ready before the sequence is ready. when the sequence is disabled, the trig-
ger would be ignored. Also, it is suggested to disable the sequence during changing the
sequence’s setting.

Parameters
• base – ADC peripheral base address.

• enable – Switcher to enable the feature or not.

274 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

void ADC_SetConvSeqBConfig(ADC_Type *base, const adc_conv_seq_config_t *config)
Configure the conversion sequence B.

Parameters
• base – ADC peripheral base address.

• config – Pointer to configuration structure, see to adc_conv_seq_config_t.

static inline void ADC_DoSoftwareTriggerConvSeqB(ADC_Type *base)
Do trigger the sequence’s conversion by software.

Parameters
• base – ADC peripheral base address.

static inline void ADC_EnableConvSeqBBurstMode(ADC_Type *base, bool enable)
Enable the burst conversion of sequence B.

Enable the burst mode would cause the conversion sequence to be continuously cycled
through. Other triggers would be ignored while this mode is enabled. Repeated conver-
sions could be halted by disabling this mode. And the sequence currently in process will
be completed before cnversions are terminated. Note that a new sequence could begin just
before the burst mode is disabled.

Parameters
• base – ADC peripheral base address.

• enable – Switcher to enable this feature.

static inline void ADC_SetConvSeqBHighPriority(ADC_Type *base)
Set the high priority for conversion sequence B.

Parameters
• base – ADC peripheral bass address.

bool ADC_GetConvSeqAGlobalConversionResult(ADC_Type *base, adc_result_info_t *info)
Get the global ADC conversion infomation of sequence A.

Parameters
• base – ADC peripheral base address.

• info – Pointer to information structure, see to adc_result_info_t;

Return values
• true – The conversion result is ready.

• false – The conversion result is not ready yet.

bool ADC_GetConvSeqBGlobalConversionResult(ADC_Type *base, adc_result_info_t *info)
Get the global ADC conversion infomation of sequence B.

Parameters
• base – ADC peripheral base address.

• info – Pointer to information structure, see to adc_result_info_t;

Return values
• true – The conversion result is ready.

• false – The conversion result is not ready yet.

2.25. ADC: 12-bit SAR Analog-to-Digital Converter Driver 275

MCUXpresso SDK Documentation, Release 25.09.00

bool ADC_GetChannelConversionResult(ADC_Type *base, uint32_t channel, adc_result_info_t
*info)

Get the channel’s ADC conversion completed under each conversion sequence.

Parameters
• base – ADC peripheral base address.

• channel – The indicated channel number.

• info – Pointer to information structure, see to adc_result_info_t;

Return values
• true – The conversion result is ready.

• false – The conversion result is not ready yet.

static inline void ADC_SetThresholdPair0(ADC_Type *base, uint32_t lowValue, uint32_t
highValue)

Set the threshhold pair 0 with low and high value.

Parameters
• base – ADC peripheral base address.

• lowValue – LOW threshold value.

• highValue – HIGH threshold value.

static inline void ADC_SetThresholdPair1(ADC_Type *base, uint32_t lowValue, uint32_t
highValue)

Set the threshhold pair 1 with low and high value.

Parameters
• base – ADC peripheral base address.

• lowValue – LOW threshold value. The available value is with 12-bit.

• highValue – HIGH threshold value. The available value is with 12-bit.

static inline void ADC_SetChannelWithThresholdPair0(ADC_Type *base, uint32_t channelMask)
Set given channels to apply the threshold pare 0.

Parameters
• base – ADC peripheral base address.

• channelMask – Indicated channels’ mask.

static inline void ADC_SetChannelWithThresholdPair1(ADC_Type *base, uint32_t channelMask)
Set given channels to apply the threshold pare 1.

Parameters
• base – ADC peripheral base address.

• channelMask – Indicated channels’ mask.

static inline void ADC_EnableInterrupts(ADC_Type *base, uint32_t mask)
Enable interrupts for conversion sequences.

Parameters
• base – ADC peripheral base address.

• mask – Mask of interrupt mask value for global block except each channal,
see to _adc_interrupt_enable.

276 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

static inline void ADC_DisableInterrupts(ADC_Type *base, uint32_t mask)
Disable interrupts for conversion sequence.

Parameters
• base – ADC peripheral base address.

• mask – Mask of interrupt mask value for global block except each channel,
see to _adc_interrupt_enable.

static inline void ADC_EnableThresholdCompareInterrupt(ADC_Type *base, uint32_t channel,
adc_threshold_interrupt_mode_tmode)

Enable the interrupt of threshold compare event for each channel.

Parameters
• base – ADC peripheral base address.

• channel – Channel number.

• mode – Interrupt mode for threshold compare event, see to
adc_threshold_interrupt_mode_t.

static inline uint32_t ADC_GetStatusFlags(ADC_Type *base)
Get status flags of ADC module.

Parameters
• base – ADC peripheral base address.

Returns
Mask of status flags of module, see to _adc_status_flags.

static inline void ADC_ClearStatusFlags(ADC_Type *base, uint32_t mask)
Clear status flags of ADC module.

Parameters
• base – ADC peripheral base address.

• mask – Mask of status flags of module, see to _adc_status_flags.

FSL_ADC_DRIVER_VERSION
ADC driver version 2.6.0.

enum _adc_status_flags
Flags.

Values:

enumerator kADC_ThresholdCompareFlagOnChn0
Threshold comparison event on Channel 0.

enumerator kADC_ThresholdCompareFlagOnChn1
Threshold comparison event on Channel 1.

enumerator kADC_ThresholdCompareFlagOnChn2
Threshold comparison event on Channel 2.

enumerator kADC_ThresholdCompareFlagOnChn3
Threshold comparison event on Channel 3.

enumerator kADC_ThresholdCompareFlagOnChn4
Threshold comparison event on Channel 4.

enumerator kADC_ThresholdCompareFlagOnChn5
Threshold comparison event on Channel 5.

2.25. ADC: 12-bit SAR Analog-to-Digital Converter Driver 277

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kADC_ThresholdCompareFlagOnChn6
Threshold comparison event on Channel 6.

enumerator kADC_ThresholdCompareFlagOnChn7
Threshold comparison event on Channel 7.

enumerator kADC_ThresholdCompareFlagOnChn8
Threshold comparison event on Channel 8.

enumerator kADC_ThresholdCompareFlagOnChn9
Threshold comparison event on Channel 9.

enumerator kADC_ThresholdCompareFlagOnChn10
Threshold comparison event on Channel 10.

enumerator kADC_ThresholdCompareFlagOnChn11
Threshold comparison event on Channel 11.

enumerator kADC_OverrunFlagForChn0
Mirror the OVERRUN status flag from the result register for ADC channel 0.

enumerator kADC_OverrunFlagForChn1
Mirror the OVERRUN status flag from the result register for ADC channel 1.

enumerator kADC_OverrunFlagForChn2
Mirror the OVERRUN status flag from the result register for ADC channel 2.

enumerator kADC_OverrunFlagForChn3
Mirror the OVERRUN status flag from the result register for ADC channel 3.

enumerator kADC_OverrunFlagForChn4
Mirror the OVERRUN status flag from the result register for ADC channel 4.

enumerator kADC_OverrunFlagForChn5
Mirror the OVERRUN status flag from the result register for ADC channel 5.

enumerator kADC_OverrunFlagForChn6
Mirror the OVERRUN status flag from the result register for ADC channel 6.

enumerator kADC_OverrunFlagForChn7
Mirror the OVERRUN status flag from the result register for ADC channel 7.

enumerator kADC_OverrunFlagForChn8
Mirror the OVERRUN status flag from the result register for ADC channel 8.

enumerator kADC_OverrunFlagForChn9
Mirror the OVERRUN status flag from the result register for ADC channel 9.

enumerator kADC_OverrunFlagForChn10
Mirror the OVERRUN status flag from the result register for ADC channel 10.

enumerator kADC_OverrunFlagForChn11
Mirror the OVERRUN status flag from the result register for ADC channel 11.

enumerator kADC_GlobalOverrunFlagForSeqA
Mirror the glabal OVERRUN status flag for conversion sequence A.

enumerator kADC_GlobalOverrunFlagForSeqB
Mirror the global OVERRUN status flag for conversion sequence B.

enumerator kADC_ConvSeqAInterruptFlag
Sequence A interrupt/DMA trigger.

278 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kADC_ConvSeqBInterruptFlag
Sequence B interrupt/DMA trigger.

enumerator kADC_ThresholdCompareInterruptFlag
Threshold comparision interrupt flag.

enumerator kADC_OverrunInterruptFlag
Overrun interrupt flag.

enum _adc_interrupt_enable
Interrupts.

Note: Not all the interrupt options are listed here

Values:

enumerator kADC_ConvSeqAInterruptEnable
Enable interrupt upon completion of each individual conversion in sequence A, or
entire sequence.

enumerator kADC_ConvSeqBInterruptEnable
Enable interrupt upon completion of each individual conversion in sequence B, or en-
tire sequence.

enumerator kADC_OverrunInterruptEnable
Enable the detection of an overrun condition on any of the channel data registers will
cause an overrun interrupt/DMA trigger.

enum _adc_clock_mode
Define selection of clock mode.

Values:

enumerator kADC_ClockSynchronousMode
The ADC clock would be derived from the system clock based on “clockDividerNum-
ber”.

enumerator kADC_ClockAsynchronousMode
The ADC clock would be based on the SYSCON block’s divider.

enum _adc_resolution
Define selection of resolution.

Values:

enumerator kADC_Resolution6bit
6-bit resolution.

enumerator kADC_Resolution8bit
8-bit resolution.

enumerator kADC_Resolution10bit
10-bit resolution.

enumerator kADC_Resolution12bit
12-bit resolution.

enum _adc_voltage_range
Definfe range of the analog supply voltage VDDA.

Values:

2.25. ADC: 12-bit SAR Analog-to-Digital Converter Driver 279

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kADC_HighVoltageRange

enumerator kADC_LowVoltageRange

enum _adc_trigger_polarity
Define selection of polarity of selected input trigger for conversion sequence.

Values:

enumerator kADC_TriggerPolarityNegativeEdge
A negative edge launches the conversion sequence on the trigger(s).

enumerator kADC_TriggerPolarityPositiveEdge
A positive edge launches the conversion sequence on the trigger(s).

enum _adc_priority
Define selection of conversion sequence’s priority.

Values:

enumerator kADC_PriorityLow
This sequence would be preempted when another sequence is started.

enumerator kADC_PriorityHigh
This sequence would preempt other sequence even when it is started.

enum _adc_seq_interrupt_mode
Define selection of conversion sequence’s interrupt.

Values:

enumerator kADC_InterruptForEachConversion
The sequence interrupt/DMA trigger will be set at the end of each individual ADC con-
version inside this conversion sequence.

enumerator kADC_InterruptForEachSequence
The sequence interrupt/DMA trigger will be set when the entire set of this sequence
conversions completes.

enum _adc_threshold_compare_status
Define status of threshold compare result.

Values:

enumerator kADC_ThresholdCompareInRange
LOW threshold <= conversion value <= HIGH threshold.

enumerator kADC_ThresholdCompareBelowRange
conversion value < LOW threshold.

enumerator kADC_ThresholdCompareAboveRange
conversion value > HIGH threshold.

enum _adc_threshold_crossing_status
Define status of threshold crossing detection result.

Values:

enumerator kADC_ThresholdCrossingNoDetected
No threshold Crossing detected.

enumerator kADC_ThresholdCrossingDownward
Downward Threshold Crossing detected.

280 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kADC_ThresholdCrossingUpward
Upward Threshold Crossing Detected.

enum _adc_threshold_interrupt_mode
Define interrupt mode for threshold compare event.

Values:

enumerator kADC_ThresholdInterruptDisabled
Threshold comparison interrupt is disabled.

enumerator kADC_ThresholdInterruptOnOutside
Threshold comparison interrupt is enabled on outside threshold.

enumerator kADC_ThresholdInterruptOnCrossing
Threshold comparison interrupt is enabled on crossing threshold.

enum _adc_inforesultshift
Define the info result mode of different resolution.

Values:

enumerator kADC_Resolution12bitInfoResultShift
Info result shift of Resolution12bit.

enumerator kADC_Resolution10bitInfoResultShift
Info result shift of Resolution10bit.

enumerator kADC_Resolution8bitInfoResultShift
Info result shift of Resolution8bit.

enumerator kADC_Resolution6bitInfoResultShift
Info result shift of Resolution6bit.

enum _adc_tempsensor_common_mode
Define common modes for Temerature sensor.

Values:

enumerator kADC_HighNegativeOffsetAdded
Temperature sensor common mode: high negative offset added.

enumerator kADC_IntermediateNegativeOffsetAdded
Temperature sensor common mode: intermediate negative offset added.

enumerator kADC_NoOffsetAdded
Temperature sensor common mode: no offset added.

enumerator kADC_LowPositiveOffsetAdded
Temperature sensor common mode: low positive offset added.

enum _adc_second_control
Define source impedance modes for GPADC control.

Values:

enumerator kADC_Impedance621Ohm
Extand ADC sampling time according to source impedance 1: 0.621 kOhm.

enumerator kADC_Impedance55kOhm
Extand ADC sampling time according to source impedance 20 (default): 55 kOhm.

enumerator kADC_Impedance87kOhm
Extand ADC sampling time according to source impedance 31: 87 kOhm.

2.25. ADC: 12-bit SAR Analog-to-Digital Converter Driver 281

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kADC_NormalFunctionalMode
TEST mode: Normal functional mode.

enumerator kADC_MultiplexeTestMode
TEST mode: Multiplexer test mode.

enumerator kADC_ADCInUnityGainMode
TEST mode: ADC in unity gain mode.

typedef enum _adc_clock_mode adc_clock_mode_t
Define selection of clock mode.

typedef enum _adc_resolution adc_resolution_t
Define selection of resolution.

typedef enum _adc_voltage_range adc_vdda_range_t
Definfe range of the analog supply voltage VDDA.

typedef enum _adc_trigger_polarity adc_trigger_polarity_t
Define selection of polarity of selected input trigger for conversion sequence.

typedef enum _adc_priority adc_priority_t
Define selection of conversion sequence’s priority.

typedef enum _adc_seq_interrupt_mode adc_seq_interrupt_mode_t
Define selection of conversion sequence’s interrupt.

typedef enum _adc_threshold_compare_status adc_threshold_compare_status_t
Define status of threshold compare result.

typedef enum _adc_threshold_crossing_status adc_threshold_crossing_status_t
Define status of threshold crossing detection result.

typedef enum _adc_threshold_interrupt_mode adc_threshold_interrupt_mode_t
Define interrupt mode for threshold compare event.

typedef enum _adc_inforesultshift adc_inforesult_t
Define the info result mode of different resolution.

typedef enum _adc_tempsensor_common_mode adc_tempsensor_common_mode_t
Define common modes for Temerature sensor.

typedef enum _adc_second_control adc_second_control_t
Define source impedance modes for GPADC control.

typedef struct _adc_config adc_config_t
Define structure for configuring the block.

typedef struct _adc_conv_seq_config adc_conv_seq_config_t
Define structure for configuring conversion sequence.

typedef struct _adc_result_info adc_result_info_t
Define structure of keeping conversion result information.

struct _adc_config
#include <fsl_adc.h> Define structure for configuring the block.

Public Members

adc_clock_mode_t clockMode
Select the clock mode for ADC converter.

282 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t clockDividerNumber
This field is only available when using kADC_ClockSynchronousMode for “clockMode”
field. The divider would be plused by 1 based on the value in this field. The available
range is in 8 bits.

adc_resolution_t resolution
Select the conversion bits.

bool enableBypassCalibration
By default, a calibration cycle must be performed each time the chip is powered-up.
Re-calibration may be warranted periodically - especially if operating conditions have
changed. To enable this option would avoid the need to calibrate if offset error is not
a concern in the application.

uint32_t sampleTimeNumber
By default, with value as “0U”, the sample period would be 2.5 ADC clocks. Then, to
plus the “sampleTimeNumber” value here. The available value range is in 3 bits.

bool enableLowPowerMode
If disable low-power mode, ADC remains activated even when no conversions are re-
quested. If enable low-power mode, The ADC is automatically powered-down when
no conversions are taking place.

adc_vdda_range_t voltageRange
Configure the ADC for the appropriate operating range of the analog supply voltage
VDDA. Failure to set the area correctly causes the ADC to return incorrect conversion
results.

struct _adc_conv_seq_config
#include <fsl_adc.h> Define structure for configuring conversion sequence.

Public Members

uint32_t channelMask
Selects which one or more of the ADC channels will be sampled and converted when
this sequence is launched. Themasked channels would be involved in current conver-
sion sequence, beginning with the lowest-order. The available range is in 12-bit.

uint32_t triggerMask
Selects which one or more of the available hardware trigger sources will cause this
conversion sequence to be initiated. The available range is 6-bit.

adc_trigger_polarity_t triggerPolarity
Select the trigger to launch conversion sequence.

bool enableSyncBypass
To enable this feature allows the hardware trigger input to bypass synchronization
flip-flop stages and therefore shorten the time between the trigger input signal and
the start of a conversion.

bool enableSingleStep
When enabling this feature, a trigger will launch a single conversion on the next chan-
nel in the sequence instead of the default response of launching an entire sequence of
conversions.

adc_seq_interrupt_mode_t interruptMode
Select the interrpt/DMA trigger mode.

struct _adc_result_info
#include <fsl_adc.h> Define structure of keeping conversion result information.

2.25. ADC: 12-bit SAR Analog-to-Digital Converter Driver 283

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

uint32_t result
Keep the conversion data value.

adc_threshold_compare_status_t thresholdCompareStatus
Keep the threshold compare status.

adc_threshold_crossing_status_t thresholdCorssingStatus
Keep the threshold crossing status.

uint32_t channelNumber
Keep the channel number for this conversion.

bool overrunFlag
Keep the status whether the conversion is overrun or not.

2.26 ENET: Ethernet Driver

void ENET_GetDefaultConfig(enet_config_t *config)
Gets the ENET default configuration structure.

The purpose of this API is to get the default ENET configure structure for ENET_Init(). User
may use the initialized structure unchanged in ENET_Init(), or modify some fields of the
structure before calling ENET_Init(). Example:

enet_config_t config;
ENET_GetDefaultConfig(&config);

Parameters
• config – The ENET mac controller configuration structure pointer.

void ENET_Init(ENET_Type *base, const enet_config_t *config, uint8_t *macAddr, uint32_t
refclkSrc_Hz)

Initializes the ENET module.

This function ungates themodule clock and initializes it with the ENET basic configuration.

Note: As our transactional transmit API use the zero-copy transmit buffer. So there are
two thing we emphasize here:

a. Tx buffer free/requeue for application should be done in the Tx interrupt handler.
Please set callback: kENET_TxIntEvent with Tx buffer free/requeue process APIs.

b. The Tx interrupt is forced to open.

Parameters
• base – ENET peripheral base address.

• config – ENET mac configuration structure pointer. The “enet_config_t”
type mac configuration return from ENET_GetDefaultConfig can be used
directly. It is also possible to verify the Mac configuration using other
methods.

• macAddr – ENETmac address of Ethernet device. This MAC address should
be provided.

• refclkSrc_Hz – ENET input reference clock.

284 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

void ENET_Deinit(ENET_Type *base)
Deinitializes the ENET module.

This function gates the module clock and disables the ENET module.

Parameters
• base – ENET peripheral base address.

status_t ENET_DescriptorInit(ENET_Type *base, enet_config_t *config, enet_buffer_config_t
*bufferConfig)

Initialize for all ENET descriptors.

Note: This function finishes all Tx/Rx descriptors initialization. The descriptor initializa-
tion should be called after ENET_Init().

Parameters
• base – ENET peripheral base address.

• config – The configuration for ENET.

• bufferConfig – All buffers configuration.

status_t ENET_RxBufferAllocAll(ENET_Type *base, enet_handle_t *handle)
Allocates Rx buffers for all BDs. It’s used for zero copy Rx. In zero copy Rx case, Rx buffers
are dynamic. This function will populate initial buffers in all BDs for receiving. Then
ENET_GetRxFrame() is used to get Rx frame with zero copy, it will allocate new buffer to
replace the buffer in BD taken by application, application should free those buffers after
they’re used.

Note: This function should be called after ENET_CreateHandler() and buffer allocating
callback function should be ready.

Parameters
• base – ENET peripheral base address.

• handle – The ENET handler structure. This is the same handler pointer
used in the ENET_Init.

void ENET_RxBufferFreeAll(ENET_Type *base, enet_handle_t *handle)
Frees Rx buffers in all BDs. It’s used for zero copy Rx. In zero copy Rx case, Rx buffers are
dynamic. This function will free left buffers in all BDs.

Parameters
• base – ENET peripheral base address.

• handle – The ENET handler structure. This is the same handler pointer
used in the ENET_Init.

void ENET_StartRxTx(ENET_Type *base, uint8_t txRingNum, uint8_t rxRingNum)
Starts the ENET Tx/Rx. This function enable the Tx/Rx and starts the Tx/Rx DMA. This shall
be set after ENET initialization and before starting to receive the data.

Note: This must be called after all the ENET initilization. And should be called when the
ENET receive/transmit is required.

Parameters

2.26. ENET: Ethernet Driver 285

MCUXpresso SDK Documentation, Release 25.09.00

• base – ENET peripheral base address.

• rxRingNum – The number of the used Rx rings. It shall not be larger than
the ENET_RING_NUM_MAX(2). If the ringNum is set with 1, the ring 0 will
be used.

• txRingNum – The number of the used Tx rings. It shall not be larger than
the ENET_RING_NUM_MAX(2). If the ringNum is set with 1, the ring 0 will
be used.

void ENET_SetISRHandler(ENET_Type *base, enet_isr_t ISRHandler)
Set the second level IRQ handler.

Parameters
• base – ENET peripheral base address.

• ISRHandler – The handler to install.

static inline void ENET_SetMII(ENET_Type *base, enet_mii_speed_t speed, enet_mii_duplex_t
duplex)

Sets the ENET MII speed and duplex.

This API is provided to dynamically change the speed and dulpex for MAC.

Parameters
• base – ENET peripheral base address.

• speed – The speed of the RMII mode.

• duplex – The duplex of the RMII mode.

void ENET_SetSMI(ENET_Type *base)
Sets the ENET SMI(serial management interface)- MII management interface.

Parameters
• base – ENET peripheral base address.

static inline bool ENET_IsSMIBusy(ENET_Type *base)
Checks if the SMI is busy.

Parameters
• base – ENET peripheral base address.

Returns
The status of MII Busy status.

static inline uint16_t ENET_ReadSMIData(ENET_Type *base)
Reads data from the PHY register through SMI interface.

Parameters
• base – ENET peripheral base address.

Returns
The data read from PHY

void ENET_StartSMIWrite(ENET_Type *base, uint8_t phyAddr, uint8_t regAddr, uint16_t data)
Sends the MDIO IEEE802.3 Clause 22 format write command.

Parameters
• base – ENET peripheral base address.

• phyAddr – The PHY address.

• regAddr – The PHY register.

286 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

• data – The data written to PHY.

void ENET_StartSMIRead(ENET_Type *base, uint8_t phyAddr, uint8_t regAddr)
Sends the MDIO IEEE802.3 Clause 22 format read command.

Parameters
• base – ENET peripheral base address.

• phyAddr – The PHY address.

• regAddr – The PHY register.

status_t ENET_MDIOWrite(ENET_Type *base, uint8_t phyAddr, uint8_t regAddr, uint16_t data)
MDIO write with IEEE802.3 Clause 22 format.

Parameters
• base – ENET peripheral base address.

• phyAddr – The PHY address.

• regAddr – The PHY register.

• data – The data written to PHY.

Returns
kStatus_Success MDIO access succeeds.

Returns
kStatus_Timeout MDIO access timeout.

status_t ENET_MDIORead(ENET_Type *base, uint8_t phyAddr, uint8_t regAddr, uint16_t
*pData)

MDIO read with IEEE802.3 Clause 22 format.

Parameters
• base – ENET peripheral base address.

• phyAddr – The PHY address.

• regAddr – The PHY register.

• pData – The data read from PHY.

Returns
kStatus_Success MDIO access succeeds.

Returns
kStatus_Timeout MDIO access timeout.

uint32_t ENET_GetInstance(ENET_Type *base)
Get the ENET instance from peripheral base address.

Parameters
• base – ENET peripheral base address.

Returns
ENET instance.

static inline void ENET_SetMacAddr(ENET_Type *base, uint8_t *macAddr)
Sets the ENET module Mac address.

Parameters
• base – ENET peripheral base address.

• macAddr – The six-byte Mac address pointer. The pointer is allocated by
application and input into the API.

2.26. ENET: Ethernet Driver 287

MCUXpresso SDK Documentation, Release 25.09.00

void ENET_GetMacAddr(ENET_Type *base, uint8_t *macAddr)
Gets the ENET module Mac address.

Parameters
• base – ENET peripheral base address.

• macAddr – The six-byte Mac address pointer. The pointer is allocated by
application and input into the API.

static inline void ENET_AcceptAllMulticast(ENET_Type *base)
Enable ENET device to accept all multicast frames.

Parameters
• base – ENET peripheral base address.

static inline void ENET_RejectAllMulticast(ENET_Type *base)
ENET device reject to accept all multicast frames.

Parameters
• base – ENET peripheral base address.

void ENET_EnterPowerDown(ENET_Type *base, uint32_t *wakeFilter)
Set the MAC to enter into power down mode. the remote power wake up frame and magic
frame can wake up the ENET from the power down mode.

Parameters
• base – ENET peripheral base address.

• wakeFilter – The wakeFilter provided to configure the wake up frame fitl-
ter. Set the wakeFilter to NULL is not required. But if you have the filter
requirement, please make sure the wakeFilter pointer shall be eight con-
tinous 32-bits configuration.

static inline void ENET_ExitPowerDown(ENET_Type *base)
Set the MAC to exit power down mode. Eixt from the power down mode and recover to
normal work mode.

Parameters
• base – ENET peripheral base address.

void ENET_EnableInterrupts(ENET_Type *base, uint32_t mask)
Enables the ENET DMA and MAC interrupts.

This function enables the ENET interrupt according to the provided mask. The mask is a
logical OR of enet_dma_interrupt_enable_t and enet_mac_interrupt_enable_t. For example,
to enable the dma and mac interrupt, do the following.

ENET_EnableInterrupts(ENET, kENET_DmaRx | kENET_DmaTx | kENET_MacPmt);

Parameters
• base – ENET peripheral base address.

• mask – ENET interrupts to enable. This is a logical OR of both enumeration
:: enet_dma_interrupt_enable_t and enet_mac_interrupt_enable_t.

void ENET_DisableInterrupts(ENET_Type *base, uint32_t mask)
Disables the ENET DMA and MAC interrupts.

This function disables the ENET interrupt according to the provided mask. The mask is a
logical OR of enet_dma_interrupt_enable_t and enet_mac_interrupt_enable_t. For example,
to disable the dma and mac interrupt, do the following.

288 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

ENET_DisableInterrupts(ENET, kENET_DmaRx | kENET_DmaTx | kENET_MacPmt);

Parameters
• base – ENET peripheral base address.

• mask – ENET interrupts to disables. This is a logical OR of both enumera-
tion :: enet_dma_interrupt_enable_t and enet_mac_interrupt_enable_t.

static inline uint32_t ENET_GetDmaInterruptStatus(ENET_Type *base, uint8_t channel)
Gets the ENET DMA interrupt status flag.

Parameters
• base – ENET peripheral base address.

• channel – The DMA Channel. Shall not be larger than
ENET_RING_NUM_MAX.

Returns
The event status of the interrupt source. This is the logical OR of members of
the enumeration :: enet_dma_interrupt_enable_t.

static inline void ENET_ClearDmaInterruptStatus(ENET_Type *base, uint8_t channel, uint32_t
mask)

Clear the ENET DMA interrupt status flag.

Parameters
• base – ENET peripheral base address.

• channel – The DMA Channel. Shall not be larger than
ENET_RING_NUM_MAX.

• mask – The event status of the interrupt source. This is the logical OR of
members of the enumeration :: enet_dma_interrupt_enable_t.

static inline uint32_t ENET_GetMacInterruptStatus(ENET_Type *base)
Gets the ENET MAC interrupt status flag.

Parameters
• base – ENET peripheral base address.

Returns
The event status of the interrupt source. Use the enum in
enet_mac_interrupt_enable_t and right shift ENET_MACINT_ENUM_OFFSET
to mask the returned value to get the exact interrupt status.

void ENET_ClearMacInterruptStatus(ENET_Type *base, uint32_t mask)
Clears the ENET mac interrupt events status flag.

This function clears enabled ENET interrupts according to the provided mask. The mask is
a logical OR of enumeration members. See the enet_mac_interrupt_enable_t. For example,
to clear the TX frame interrupt and RX frame interrupt, do the following.

ENET_ClearMacInterruptStatus(ENET, kENET_MacPmt);

Parameters
• base – ENET peripheral base address.

• mask – ENET interrupt source to be cleared. This is the logical OR of mem-
bers of the enumeration :: enet_mac_interrupt_enable_t.

2.26. ENET: Ethernet Driver 289

MCUXpresso SDK Documentation, Release 25.09.00

static inline bool ENET_IsTxDescriptorDmaOwn(enet_tx_bd_struct_t *txDesc)
Get the Tx descriptor DMA Own flag.

Parameters
• txDesc – The given Tx descriptor.

Return values
True – the dma own Tx descriptor, false application own Tx descriptor.

void ENET_SetupTxDescriptor(enet_tx_bd_struct_t *txDesc, void *buffer1, uint32_t bytes1, void
*buffer2, uint32_t bytes2, uint32_t framelen, bool intEnable, bool
tsEnable, enet_desc_flag_t flag, uint8_t slotNum)

Setup a given Tx descriptor. This function is a low level functional API to setup or prepare
a given Tx descriptor.

Note: This must be called after all the ENET initilization. And should be called when the
ENET receive/transmit is required. Transmit buffers are ‘zero-copy’ buffers, so the buffer
must remain in memory until the packet has been fully transmitted. The buffers should be
free or requeued in the transmit interrupt irq handler.

Parameters
• txDesc – The given Tx descriptor.

• buffer1 – The first buffer address in the descriptor.

• bytes1 – The bytes in the fist buffer.

• buffer2 – The second buffer address in the descriptor.

• bytes2 – The bytes in the second buffer.

• framelen – The length of the frame to be transmitted.

• intEnable – Interrupt enable flag.

• tsEnable – The timestamp enable.

• flag – The flag of this Tx desciriptor, see “enet_desc_flag_t” .

• slotNum – The slot num used for AV mode only.

static inline void ENET_UpdateTxDescriptorTail(ENET_Type *base, uint8_t channel, uint32_t
txDescTailAddrAlign)

Update the Tx descriptor tail pointer. This function is a low level functional API to update
the the Tx descriptor tail. This is called after you setup a new Tx descriptor to update the
tail pointer to make the new descritor accessable by DMA.

Parameters
• base – ENET peripheral base address.

• channel – The Tx DMA channel.

• txDescTailAddrAlign – The new Tx tail pointer address.

static inline void ENET_UpdateRxDescriptorTail(ENET_Type *base, uint8_t channel, uint32_t
rxDescTailAddrAlign)

Update the Rx descriptor tail pointer. This function is a low level functional API to update
the the Rx descriptor tail. This is called after you setup a newRx descriptor to update the tail
pointer to make the new descritor accessable by DMA and to anouse the Rx poll command
for DMA.

Parameters

290 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

• base – ENET peripheral base address.

• channel – The Rx DMA channel.

• rxDescTailAddrAlign – The new Rx tail pointer address.

static inline uint32_t ENET_GetRxDescriptor(enet_rx_bd_struct_t *rxDesc)
Gets the context in the ENET Rx descriptor. This function is a low level functional API to get
the the status flag from a given Rx descriptor.

Note: This must be called after all the ENET initilization. And should be called when the
ENET receive/transmit is required.

Parameters
• rxDesc – The given Rx descriptor.

Return values
The – RDES3 regions for write-back format Rx buffer descriptor.

void ENET_UpdateRxDescriptor(enet_rx_bd_struct_t *rxDesc, void *buffer1, void *buffer2, bool
intEnable, bool doubleBuffEnable)

Updates the buffers and the own status for a given Rx descriptor. This function is a low
level functional API to Updates the buffers and the own status for a given Rx descriptor.

Note: This must be called after all the ENET initilization. And should be called when the
ENET receive/transmit is required.

Parameters
• rxDesc – The given Rx descriptor.

• buffer1 – The first buffer address in the descriptor.

• buffer2 – The second buffer address in the descriptor.

• intEnable – Interrupt enable flag.

• doubleBuffEnable – The double buffer enable flag.

void ENET_CreateHandler(ENET_Type *base, enet_handle_t *handle, enet_config_t *config,
enet_buffer_config_t *bufferConfig, enet_callback_t callback, void
*userData)

Create ENET Handler.

This is a transactional API and it’s provided to store all datas which are needed during the
whole transactional process. This API should not be used when you use functional APIs to
do data Tx/Rx. This is funtion will store many data/flag for transactional use.

Parameters
• base – ENET peripheral base address.

• handle – ENET handler.

• config – ENET configuration.

• bufferConfig – ENET buffer configuration.

• callback – The callback function.

• userData – The application data.

2.26. ENET: Ethernet Driver 291

MCUXpresso SDK Documentation, Release 25.09.00

status_t ENET_GetRxFrameSize(ENET_Type *base, enet_handle_t *handle, uint32_t *length,
uint8_t channel)

Gets the size of the read frame. This function gets a received frame size from the ENET
buffer descriptors.

Note: The FCS of the frame is automatically removed by MAC and the size is the length
without the FCS. After calling ENET_GetRxFrameSize, ENET_ReadFrame() should be called
to update the receive buffers If the result is not “kStatus_ENET_RxFrameEmpty”.

Parameters
• base – ENET peripheral base address.

• handle – The ENET handler structure. This is the same handler pointer
used in the ENET_Init.

• length – The length of the valid frame received.

• channel – The DMAC channel for the Rx.

Return values
• kStatus_ENET_RxFrameEmpty – No frame received. Should not call
ENET_ReadFrame to read frame.

• kStatus_ENET_RxFrameError – Data error happens. ENET_ReadFrame
should be called with NULL data and NULL length to update the receive
buffers.

• kStatus_Success – Receive a frame Successfully then the ENET_ReadFrame
should be called with the right data buffer and the captured data length
input.

status_t ENET_ReadFrame(ENET_Type *base, enet_handle_t *handle, uint8_t *data, uint32_t
length, uint8_t channel, enet_ptp_time_t *timestamp)

Reads a frame from the ENET device. This function reads a frame from the ENET DMA
descriptors. The ENET_GetRxFrameSize should be used to get the size of the prepared data
buffer. For example use Rx dma channel 0:

uint32_t length;
enet_handle_t g_handle;
Comment: Get the received frame size firstly.
status = ENET_GetRxFrameSize(&g_handle, &length, 0);
if (length != 0)
{

Comment: Allocate memory here with the size of ”length”
uint8_t *data = memory allocate interface;
if (!data)
{

ENET_ReadFrame(ENET, &g_handle, NULL, 0, 0);
}
else
{

status = ENET_ReadFrame(ENET, &g_handle, data, length, 0);
}

}
else if (status == kStatus_ENET_RxFrameError)
{

Comment: Update the received buffer when a error frame is received.
ENET_ReadFrame(ENET, &g_handle, NULL, 0, 0);

}

292 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• base – ENET peripheral base address.

• handle – The ENET handler structure. This is the same handler pointer
used in the ENET_Init.

• data – The data buffer provided by user to store the frame which memory
size should be at least “length”.

• length – The size of the data buffer which is still the length of the received
frame.

• channel – The Rx DMA channel. Shall not be larger than 2.

• timestamp – The timestamp address to store received timestamp.

Returns
The execute status, successful or failure.

status_t ENET_GetRxFrame(ENET_Type *base, enet_handle_t *handle, enet_rx_frame_struct_t
*rxFrame, uint8_t channel)

Receives one frame in specified BD ring with zero copy.

This function will use the user-defined allocate and free callback. Every time application
gets one frame through this function, driver will allocate new buffers for the BDs whose
buffers have been taken by application.

Note: This function will drop current frame and update related BDs as available for DMA
if new buffers allocating fails. Application must provide a memory pool including at least
BD number + 1 buffers(+2 if enable double buffer) to make this function work normally.

Parameters
• base – ENET peripheral base address.

• handle – The ENET handler pointer. This is the same handler pointer used
in the ENET_Init.

• rxFrame – The received frame information structure provided by user.

• channel – The Rx DMA channel. Shall not be larger than 2.

Return values
• kStatus_Success – Succeed to get one frame and allocate new memory for
Rx buffer.

• kStatus_ENET_RxFrameEmpty – There’s no Rx frame in the BD.

• kStatus_ENET_RxFrameError – There’s issue in this receiving. In this func-
tion, issue frame will be dropped.

• kStatus_ENET_RxFrameDrop – There’s no new buffer memory for BD,
dropped this frame.

status_t ENET_SendFrame(ENET_Type *base, enet_handle_t *handle, enet_tx_frame_struct_t
*txFrame, uint8_t channel)

Transmits an ENET frame.

Note: The CRC is automatically appended to the data. Input the data to send without the
CRC. This API uses input buffer for Tx, application should reclaim the buffer after Tx is over.

Parameters

2.26. ENET: Ethernet Driver 293

MCUXpresso SDK Documentation, Release 25.09.00

• base – ENET peripheral base address.

• handle – The ENET handler pointer. This is the same handler pointer used
in the ENET_Init.

• txFrame – The Tx frame structure.

• channel – Channel to send the frame, same with queue index.

Return values
• kStatus_Success – Send frame succeed.

• kStatus_ENET_TxFrameBusy – Transmit buffer descriptor is busy under
transmission. The transmit busy happens when the data send rate is over
the MAC capacity. The waiting mechanism is recommended to be added
after each call return with kStatus_ENET_TxFrameBusy. Also need to pay
attention to reclaim Tx frame after Tx is over.

• kStatus_ENET_TxFrameOverLen – Transmit frme length exceeds the
0x3FFF limit defined by the driver.

void ENET_ReclaimTxDescriptor(ENET_Type *base, enet_handle_t *handle, uint8_t channel)
Reclaim Tx descriptors. This function is used to update the Tx descriptor status and store
the Tx timestamp when the 1588 feature is enabled. This is called by the transmit interupt
IRQ handler after the complete of a frame transmission.

Parameters
• base – ENET peripheral base address.

• handle – The ENET handler pointer. This is the same handler pointer used
in the ENET_Init.

• channel – The Tx DMA channnel.

void ENET_IRQHandler(ENET_Type *base, enet_handle_t *handle)
The ENET IRQ handler.

Parameters
• base – ENET peripheral base address.

• handle – The ENET handler pointer.

FSL_ENET_DRIVER_VERSION
Defines the driver version.

ENET_RXDESCRIP_RD_BUFF1VALID_MASK
Defines for read format.

Buffer1 address valid.

ENET_RXDESCRIP_RD_BUFF2VALID_MASK
Buffer2 address valid.

ENET_RXDESCRIP_RD_IOC_MASK
Interrupt enable on complete.

ENET_RXDESCRIP_RD_OWN_MASK
Own bit.

ENET_RXDESCRIP_WR_ERR_MASK
Defines for write back format.

ENET_RXDESCRIP_WR_PYLOAD_MASK

ENET_RXDESCRIP_WR_PTPMSGTYPE_MASK

294 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

ENET_RXDESCRIP_WR_PTPTYPE_MASK

ENET_RXDESCRIP_WR_PTPVERSION_MASK

ENET_RXDESCRIP_WR_PTPTSA_MASK

ENET_RXDESCRIP_WR_PACKETLEN_MASK

ENET_RXDESCRIP_WR_ERRSUM_MASK

ENET_RXDESCRIP_WR_TYPE_MASK

ENET_RXDESCRIP_WR_DE_MASK

ENET_RXDESCRIP_WR_RE_MASK

ENET_RXDESCRIP_WR_OE_MASK

ENET_RXDESCRIP_WR_RS0V_MASK

ENET_RXDESCRIP_WR_RS1V_MASK

ENET_RXDESCRIP_WR_RS2V_MASK

ENET_RXDESCRIP_WR_LD_MASK

ENET_RXDESCRIP_WR_FD_MASK

ENET_RXDESCRIP_WR_CTXT_MASK

ENET_RXDESCRIP_WR_OWN_MASK

ENET_TXDESCRIP_RD_BL1_MASK
Defines for read format.

ENET_TXDESCRIP_RD_BL2_MASK

ENET_TXDESCRIP_RD_BL1(n)

ENET_TXDESCRIP_RD_BL2(n)

ENET_TXDESCRIP_RD_TTSE_MASK

ENET_TXDESCRIP_RD_IOC_MASK

ENET_TXDESCRIP_RD_FL_MASK

ENET_TXDESCRIP_RD_FL(n)

ENET_TXDESCRIP_RD_CIC(n)

ENET_TXDESCRIP_RD_TSE_MASK

ENET_TXDESCRIP_RD_SLOT(n)

ENET_TXDESCRIP_RD_SAIC(n)

ENET_TXDESCRIP_RD_CPC(n)

ENET_TXDESCRIP_RD_LDFD(n)

ENET_TXDESCRIP_RD_LD_MASK

ENET_TXDESCRIP_RD_FD_MASK

2.26. ENET: Ethernet Driver 295

MCUXpresso SDK Documentation, Release 25.09.00

ENET_TXDESCRIP_RD_CTXT_MASK

ENET_TXDESCRIP_RD_OWN_MASK

ENET_TXDESCRIP_WB_TTSS_MASK
Defines for write back format.

ENET_ABNORM_INT_MASK

ENET_NORM_INT_MASK

ENET_FRAME_MAX_FRAMELEN
Default maximum ethernet frame size.

ENET_FCS_LEN
Ethernet Rx frame FCS length.

ENET_ADDR_ALIGNMENT
Recommended ethernet buffer alignment.

ENET_BUFF_ALIGNMENT
Receive buffer alignment shall be 4bytes-aligned.

ENET_RING_NUM_MAX
The maximum number of Tx/Rx descriptor rings.

ENET_MTL_RXFIFOSIZE
The Rx fifo size.

ENET_MTL_TXFIFOSIZE
The Tx fifo size.

ENET_MACINT_ENUM_OFFSET
The offset for mac interrupt in enum type.

ENET_FRAME_TX_LEN_LIMITATION
The Tx frame length software limitation.

ENET_FRAME_RX_ERROR_BITS(x)
The Rx frame error bits field.

Defines the status return codes for transaction.

Values:

enumerator kStatus_ENET_InitMemoryFail
Status code 4000. Init failed since buffer memory was not enough.

enumerator kStatus_ENET_RxFrameError
Status code 4001. A frame received but data error occurred.

enumerator kStatus_ENET_RxFrameFail
Status code 4002. Failed to receive a frame.

enumerator kStatus_ENET_RxFrameEmpty
Status code 4003. No frame arrived.

enumerator kStatus_ENET_RxFrameDrop
Status code 4004. Rx frame was dropped since there’s no buffer memory.

enumerator kStatus_ENET_TxFrameBusy
Status code 4005. There were no resources for Tx operation.

296 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus_ENET_TxFrameFail
Status code 4006. Transmit frame failed.

enumerator kStatus_ENET_TxFrameOverLen
Status code 4007. Failed to send an oversize frame.

enum _enet_mii_mode
Defines the MII/RMII mode for data interface between the MAC and the PHY.

Values:

enumerator kENET_MiiMode
MII mode for data interface.

enumerator kENET_RmiiMode
RMII mode for data interface.

enum _enet_mii_speed
Defines the 10/100 Mbps speed for the MII data interface.

Values:

enumerator kENET_MiiSpeed10M
Speed 10 Mbps.

enumerator kENET_MiiSpeed100M
Speed 100 Mbps.

enum _enet_mii_duplex
Defines the half or full duplex for the MII data interface.

Values:

enumerator kENET_MiiHalfDuplex
Half duplex mode.

enumerator kENET_MiiFullDuplex
Full duplex mode.

enum _enet_mii_normal_opcode
Define the MII opcode for normal MDIO_CLAUSES_22 Frame.

Values:

enumerator kENET_MiiWriteFrame
Write frame operation for a valid MII management frame.

enumerator kENET_MiiReadFrame
Read frame operation for a valid MII management frame.

enum _enet_dma_burstlen
Define the DMA maximum transmit burst length.

Values:

enumerator kENET_BurstLen1
DMA burst length 1.

enumerator kENET_BurstLen2
DMA burst length 2.

enumerator kENET_BurstLen4
DMA burst length 4.

2.26. ENET: Ethernet Driver 297

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kENET_BurstLen8
DMA burst length 8.

enumerator kENET_BurstLen16
DMA burst length 16.

enumerator kENET_BurstLen32
DMA burst length 32.

enumerator kENET_BurstLen64
DMA burst length 64. eight times enabled.

enumerator kENET_BurstLen128
DMA burst length 128. eight times enabled.

enumerator kENET_BurstLen256
DMA burst length 256. eight times enabled.

enum _enet_desc_flag
Define the flag for the descriptor.

Values:

enumerator kENET_MiddleFlag
It’s a middle descriptor of the frame.

enumerator kENET_LastFlagOnly
It’s the last descriptor of the frame.

enumerator kENET_FirstFlagOnly
It’s the first descriptor of the frame.

enumerator kENET_FirstLastFlag
It’s the first and last descriptor of the frame.

enum _enet_systime_op
Define the system time adjust operation control.

Values:

enumerator kENET_SystimeAdd
System time add to.

enumerator kENET_SystimeSubtract
System time subtract.

enum _enet_ts_rollover_type
Define the system time rollover control.

Values:

enumerator kENET_BinaryRollover
System time binary rollover.

enumerator kENET_DigitalRollover
System time digital rollover.

enum _enet_special_config
Defines some special configuration for ENET.

These control flags are provided for special user requirements. Normally, these is no need
to set this control flags for ENET initialization. But if you have some special requirements,
set the flags to specialControl in the enet_config_t.

298 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

Note: “kENET_StoreAndForward” is recommended to be set when the
ENET_PTP1588FEATURE_REQUIRED is defined or else the timestamp will be mess-up
when the overflow happens.

Values:

enumerator kENET_DescDoubleBuffer
The double buffer is used in the Tx/Rx descriptor.

enumerator kENET_StoreAndForward
The Rx/Tx store and forward enable.

enumerator kENET_PromiscuousEnable
The promiscuous enabled.

enumerator kENET_FlowControlEnable
The flow control enabled.

enumerator kENET_BroadCastRxDisable
The broadcast disabled.

enumerator kENET_MulticastAllEnable
All multicast are passed.

enumerator kENET_8023AS2KPacket
8023as support for 2K packets.

enumerator kENET_RxChecksumOffloadEnable
The Rx checksum offload enabled.

enum _enet_dma_interrupt_enable
List of DMA interrupts supported by the ENET interrupt. This enumeration uses one-hot
encoding to allow a logical OR of multiple members.

Values:

enumerator kENET_DmaTx
Tx interrupt.

enumerator kENET_DmaTxStop
Tx stop interrupt.

enumerator kENET_DmaTxBuffUnavail
Tx buffer unavailable.

enumerator kENET_DmaRx
Rx interrupt.

enumerator kENET_DmaRxBuffUnavail
Rx buffer unavailable.

enumerator kENET_DmaRxStop
Rx stop.

enumerator kENET_DmaRxWatchdogTimeout
Rx watchdog timeout.

enumerator kENET_DmaEarlyTx
Early transmit.

enumerator kENET_DmaEarlyRx
Early receive.

2.26. ENET: Ethernet Driver 299

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kENET_DmaBusErr
Fatal bus error.

enum _enet_mac_interrupt_enable
List of mac interrupts supported by the ENET interrupt. This enumeration uses one-hot
encoding to allow a logical OR of multiple members.

Values:

enumerator kENET_MacPmt

enumerator kENET_MacTimestamp

enum _enet_event
Defines the common interrupt event for callback use.

Values:

enumerator kENET_RxIntEvent
Receive interrupt event.

enumerator kENET_TxIntEvent
Transmit interrupt event.

enumerator kENET_WakeUpIntEvent
Wake up interrupt event.

enumerator kENET_TimeStampIntEvent
Time stamp interrupt event.

enum _enet_dma_tx_sche
Define the DMA transmit arbitration for multi-queue.

Values:

enumerator kENET_FixPri
Fixed priority. channel 0 has lower priority than channel 1.

enumerator kENET_WeightStrPri
Weighted(burst length) strict priority.

enumerator kENET_WeightRoundRobin
Weighted (weight factor) round robin.

enum _enet_mtl_multiqueue_txsche
Define the MTL Tx scheduling algorithm for multiple queues/rings.

Values:

enumerator kENET_txWeightRR
Tx weight round-robin.

enumerator kENET_txStrPrio
Tx strict priority.

enum _enet_mtl_multiqueue_rxsche
Define the MTL Rx scheduling algorithm for multiple queues/rings.

Values:

enumerator kENET_rxStrPrio
Tx weight round-robin, Rx strict priority.

enumerator kENET_rxWeightStrPrio
Tx strict priority, Rx weight strict priority.

300 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enum _enet_mtl_rxqueuemap
Define the MTL Rx queue and DMA channel mapping.

Values:

enumerator kENET_StaticDirctMap
The received fame in Rx Qn(n = 0,1) direclty map to dma channel n.

enumerator kENET_DynamicMap
The received frame in Rx Qn(n = 0,1) map to the dma channel m(m = 0,1) related with
the same Mac.

enum _enet_ptp_event_type
Defines the ENET PTP message related constant.

Values:

enumerator kENET_PtpEventMsgType
PTP event message type.

enumerator kENET_PtpSrcPortIdLen
PTP message sequence id length.

enumerator kENET_PtpEventPort
PTP event port number.

enumerator kENET_PtpGnrlPort
PTP general port number.

enum _enet_tx_offload
Define the Tx checksum offload options.

Values:

enumerator kENET_TxOffloadDisable
Disable Tx checksum offload.

enumerator kENET_TxOffloadIPHeader
Enable IP header checksum calculation and insertion.

enumerator kENET_TxOffloadIPHeaderPlusPayload
Enable IP header and payload checksum calculation and insertion.

enumerator kENET_TxOffloadAll
Enable IP header, payload and pseudo header checksum calculation and insertion.

typedef enum _enet_mii_mode enet_mii_mode_t
Defines the MII/RMII mode for data interface between the MAC and the PHY.

typedef enum _enet_mii_speed enet_mii_speed_t
Defines the 10/100 Mbps speed for the MII data interface.

typedef enum _enet_mii_duplex enet_mii_duplex_t
Defines the half or full duplex for the MII data interface.

typedef enum _enet_mii_normal_opcode enet_mii_normal_opcode_t
Define the MII opcode for normal MDIO_CLAUSES_22 Frame.

typedef enum _enet_dma_burstlen enet_dma_burstlen_t
Define the DMA maximum transmit burst length.

typedef enum _enet_desc_flag enet_desc_flag_t
Define the flag for the descriptor.

2.26. ENET: Ethernet Driver 301

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _enet_systime_op enet_systime_op_t
Define the system time adjust operation control.

typedef enum _enet_ts_rollover_type enet_ts_rollover_type_t
Define the system time rollover control.

typedef enum _enet_special_config enet_special_config_t
Defines some special configuration for ENET.

These control flags are provided for special user requirements. Normally, these is no need
to set this control flags for ENET initialization. But if you have some special requirements,
set the flags to specialControl in the enet_config_t.

Note: “kENET_StoreAndForward” is recommended to be set when the
ENET_PTP1588FEATURE_REQUIRED is defined or else the timestamp will be mess-up
when the overflow happens.

typedef enum _enet_dma_interrupt_enable enet_dma_interrupt_enable_t
List of DMA interrupts supported by the ENET interrupt. This enumeration uses one-hot
encoding to allow a logical OR of multiple members.

typedef enum _enet_mac_interrupt_enable enet_mac_interrupt_enable_t
List of mac interrupts supported by the ENET interrupt. This enumeration uses one-hot
encoding to allow a logical OR of multiple members.

typedef enum _enet_event enet_event_t
Defines the common interrupt event for callback use.

typedef enum _enet_dma_tx_sche enet_dma_tx_sche_t
Define the DMA transmit arbitration for multi-queue.

typedef enum _enet_mtl_multiqueue_txsche enet_mtl_multiqueue_txsche_t
Define the MTL Tx scheduling algorithm for multiple queues/rings.

typedef enum _enet_mtl_multiqueue_rxsche enet_mtl_multiqueue_rxsche_t
Define the MTL Rx scheduling algorithm for multiple queues/rings.

typedef enum _enet_mtl_rxqueuemap enet_mtl_rxqueuemap_t
Define the MTL Rx queue and DMA channel mapping.

typedef enum _enet_ptp_event_type enet_ptp_event_type_t
Defines the ENET PTP message related constant.

typedef enum _enet_tx_offload enet_tx_offload_t
Define the Tx checksum offload options.

typedef struct _enet_rx_bd_struct enet_rx_bd_struct_t
Defines the receive descriptor structure It has the read-format andwrite-back format struc-
tures. They both have the same size with different region definition. So we define common
name as the recive descriptor structure. When initialize the buffer descriptors, read-format
region mask bits should be used. When Rx frame has been in the buffer descriptors, write-
back format region store the Rx result information.

typedef struct _enet_tx_bd_struct enet_tx_bd_struct_t
Defines the transmit descriptor structure It has the read-format and write-back format
structure. They both has the same size with different region definition. So we define com-
mon name as the transmit descriptor structure. When initialize the buffer descriptors for
Tx, read-format regionmask bits should be used. When frame has been transmitted, write-
back format region store the Tx result information.

302 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _enet_tx_bd_config_struct enet_tx_bd_config_struct_t
Defines the Tx BD configuration structure.

typedef struct _enet_ptp_time enet_ptp_time_t
Defines the ENET PTP time stamp structure.

typedef struct enet_tx_reclaim_info enet_tx_reclaim_info_t
Defines the Tx reclaim information structure.

typedef struct _enet_tx_dirty_ring enet_tx_dirty_ring_t
Defines the ENET transmit dirty addresses ring/queue structure.

typedef struct _enet_buffer_config enet_buffer_config_t
Defines the buffer descriptor configure structure.

Notes:

a. The receive and transmit descriptor start address pointer and tail pointer must be
word-aligned.

b. The recommended minimum Tx/Rx ring length is 4.

c. The Tx/Rx descriptor tail address shall be the address pointer to the address just af-
ter the end of the last last descriptor. because only the descriptors between the start
address and the tail address will be used by DMA.

d. The decriptor address is the start address of all used contiguous memory. for exam-
ple, the rxDescStartAddrAlign is the start address of rxRingLen contiguous descriptor
memorise for Rx descriptor ring 0.

e. The “*rxBufferstartAddr” is the first element of rxRingLen (2*rxRingLen for double
buffers) Rx buffers. It means the *rxBufferStartAddr is the Rx buffer for the first de-
scriptor the *rxBufferStartAddr + 1 is the Rx buffer for the second descriptor or the Rx
buffer for the second buffer in the first descriptor. So please make sure the rxBuffer-
StartAddr is the address of a rxRingLen or 2*rxRingLen array.

typedef struct enet_multiqueue_config enet_multiqueue_config_t
Defines the configuration when multi-queue is used.

typedef void *(*enet_rx_alloc_callback_t)(ENET_Type *base, void *userData, uint8_t channel)
Defines the Rx memory buffer alloc function pointer.

typedef void (*enet_rx_free_callback_t)(ENET_Type *base, void *buffer, void *userData, uint8_t
channel)

Defines the Rx memory buffer free function pointer.

typedef struct _enet_config enet_config_t
Defines the basic configuration structure for the ENET device.

Note:

a. Default the signal queue is used so the “multiqueueCfg” is set default with NULL. Set
the pointer with a valid configration pointer if the multiple queues are required. If
multiple queue is enabled, please make sure the buffer configuration for all are pre-
pared also.

typedef struct _enet_handle enet_handle_t

typedef void (*enet_callback_t)(ENET_Type *base, enet_handle_t *handle, enet_event_t event,
uint8_t channel, enet_tx_reclaim_info_t *txReclaimInfo, void *userData)

ENET callback function.

typedef struct _enet_tx_bd_ring enet_tx_bd_ring_t
Defines the ENET transmit buffer descriptor ring/queue structure.

2.26. ENET: Ethernet Driver 303

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _enet_rx_bd_ring enet_rx_bd_ring_t
Defines the ENET receive buffer descriptor ring/queue structure.

typedef struct _enet_buffer_struct enet_buffer_struct_t

typedef struct _enet_rx_frame_attribute_struct enet_rx_frame_attribute_t
Rx frame attribute structure.

typedef struct _enet_rx_frame_error enet_rx_frame_error_t
Defines the Rx frame error structure.

typedef struct _enet_rx_frame_struct enet_rx_frame_struct_t
Defines the Rx frame data structure.

typedef struct _enet_tx_config_struct enet_tx_config_struct_t

typedef struct _enet_tx_frame_struct enet_tx_frame_struct_t

typedef void (*enet_isr_t)(ENET_Type *base, enet_handle_t *handle)

const clock_ip_name_t s_enetClock[]
Pointers to enet clocks for each instance.

struct _enet_rx_bd_struct
#include <fsl_enet.h> Defines the receive descriptor structure It has the read-format and
write-back format structures. They both have the same sizewith different region definition.
So we define common name as the recive descriptor structure. When initialize the buffer
descriptors, read-format region mask bits should be used. When Rx frame has been in the
buffer descriptors, write-back format region store the Rx result information.

Public Members

__IO uint32_t rdes0
Receive descriptor 0

__IO uint32_t rdes1
Receive descriptor 1

__IO uint32_t rdes2
Receive descriptor 2

__IO uint32_t rdes3
Receive descriptor 3

struct _enet_tx_bd_struct
#include <fsl_enet.h> Defines the transmit descriptor structure It has the read-format and
write-back format structure. They both has the same size with different region definition.
Sowe define common name as the transmit descriptor structure. When initialize the buffer
descriptors for Tx, read-format region mask bits should be used. When frame has been
transmitted, write-back format region store the Tx result information.

Public Members

__IO uint32_t tdes0
Transmit descriptor 0

__IO uint32_t tdes1
Transmit descriptor 1

304 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

__IO uint32_t tdes2
Transmit descriptor 2

__IO uint32_t tdes3
Transmit descriptor 3

struct _enet_tx_bd_config_struct
#include <fsl_enet.h> Defines the Tx BD configuration structure.

Public Members

void *buffer1
The first buffer address in the descriptor.

uint32_t bytes1
The bytes in the fist buffer.

void *buffer2
The second buffer address in the descriptor.

uint32_t bytes2
The bytes in the second buffer.

uint32_t framelen
The length of the frame to be transmitted.

bool intEnable
Interrupt enable flag.

bool tsEnable
The timestamp enable.

enet_tx_offload_t txOffloadOps
The Tx checksum offload option, only vaild for Queue 0.

enet_desc_flag_t flag
The flag of this tx desciriptor, see “enet_qos_desc_flag”.

uint8_t slotNum
The slot number used for AV mode only.

struct _enet_ptp_time
#include <fsl_enet.h> Defines the ENET PTP time stamp structure.

Public Members

uint64_t second
Second.

uint32_t nanosecond
Nanosecond.

struct enet_tx_reclaim_info
#include <fsl_enet.h> Defines the Tx reclaim information structure.

2.26. ENET: Ethernet Driver 305

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

void *context
User specified data, could be buffer address for free

bool isTsAvail
Flag indicates timestamp available status

enet_ptp_time_t timeStamp
Timestamp of frame

struct _enet_tx_dirty_ring
#include <fsl_enet.h> Defines the ENET transmit dirty addresses ring/queue structure.

Public Members

enet_tx_reclaim_info_t *txDirtyBase
Dirty buffer descriptor base address pointer.

uint16_t txGenIdx
Tx generate index.

uint16_t txConsumIdx
Tx consume index.

uint16_t txRingLen
Tx ring length.

bool isFull
Tx ring is full flag, add this parameter to avoid waste one element.

struct _enet_buffer_config
#include <fsl_enet.h> Defines the buffer descriptor configure structure.

Notes:

a. The receive and transmit descriptor start address pointer and tail pointer must be
word-aligned.

b. The recommended minimum Tx/Rx ring length is 4.

c. The Tx/Rx descriptor tail address shall be the address pointer to the address just af-
ter the end of the last last descriptor. because only the descriptors between the start
address and the tail address will be used by DMA.

d. The decriptor address is the start address of all used contiguous memory. for exam-
ple, the rxDescStartAddrAlign is the start address of rxRingLen contiguous descriptor
memorise for Rx descriptor ring 0.

e. The “*rxBufferstartAddr” is the first element of rxRingLen (2*rxRingLen for double
buffers) Rx buffers. It means the *rxBufferStartAddr is the Rx buffer for the first de-
scriptor the *rxBufferStartAddr + 1 is the Rx buffer for the second descriptor or the Rx
buffer for the second buffer in the first descriptor. So please make sure the rxBuffer-
StartAddr is the address of a rxRingLen or 2*rxRingLen array.

Public Members

uint8_t rxRingLen
The length of receive buffer descriptor ring.

306 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

uint8_t txRingLen
The length of transmit buffer descriptor ring.

enet_tx_bd_struct_t *txDescStartAddrAlign
Aligned transmit descriptor start address.

enet_tx_bd_struct_t *txDescTailAddrAlign
Aligned transmit descriptor tail address.

enet_tx_reclaim_info_t *txDirtyStartAddr
Start address of the dirty Tx frame information.

enet_rx_bd_struct_t *rxDescStartAddrAlign
Aligned receive descriptor start address.

enet_rx_bd_struct_t *rxDescTailAddrAlign
Aligned receive descriptor tail address.

uint32_t *rxBufferStartAddr
Start address of the Rx buffers.

uint32_t rxBuffSizeAlign
Aligned receive data buffer size.

struct enet_multiqueue_config
#include <fsl_enet.h> Defines the configuration when multi-queue is used.

Public Members

enet_dma_tx_sche_t dmaTxSche
Transmit arbitation.

enet_dma_burstlen_t burstLen
Burset len for the queue 1.

uint8_t txdmaChnWeight[(2U)]
Transmit channel weight.

enet_mtl_multiqueue_txsche_t mtltxSche
Transmit schedule for multi-queue.

enet_mtl_multiqueue_rxsche_t mtlrxSche
Receive schedule for multi-queue.

uint8_t rxqueweight[(2U)]
Refer to the MTL RxQ Control register.

uint32_t txqueweight[(2U)]
Refer to the MTL TxQ QuantumWeight register.

uint8_t rxqueuePrio[(2U)]
Receive queue priority.

uint8_t txqueuePrio[(2U)]
Refer to Transmit Queue Priority Mapping register.

enet_mtl_rxqueuemap_t mtlrxQuemap
Rx queue DMA Channel mapping.

2.26. ENET: Ethernet Driver 307

MCUXpresso SDK Documentation, Release 25.09.00

struct _enet_config
#include <fsl_enet.h> Defines the basic configuration structure for the ENET device.

Note:

a. Default the signal queue is used so the “multiqueueCfg” is set default with NULL. Set
the pointer with a valid configration pointer if the multiple queues are required. If
multiple queue is enabled, please make sure the buffer configuration for all are pre-
pared also.

Public Members

uint16_t specialControl
The logicl or of enet_special_config_t

enet_multiqueue_config_t *multiqueueCfg
Use both Tx/Rx queue(dma channel) 0 and 1.

uint32_t interrupt
MAC interrupt source. A logical OR of enet_dma_interrupt_enable_t and
enet_mac_interrupt_enable_t.

enet_mii_mode_t miiMode
MII mode.

enet_mii_speed_t miiSpeed
MII Speed.

enet_mii_duplex_t miiDuplex
MII duplex.

uint16_t pauseDuration
Used in the Tx flow control frame, only valid when kENET_FlowControlEnable is set.

enet_rx_alloc_callback_t rxBuffAlloc
Callback to alloc memory, must be provided for zero-copy Rx.

enet_rx_free_callback_t rxBuffFree
Callback to free memory, must be provided for zero-copy Rx.

struct _enet_tx_bd_ring
#include <fsl_enet.h> Defines the ENET transmit buffer descriptor ring/queue structure.

Public Members

enet_tx_bd_struct_t *txBdBase
Buffer descriptor base address pointer.

uint16_t txGenIdx
Tx generate index.

uint16_t txConsumIdx
Tx consum index.

volatile uint16_t txDescUsed
Tx descriptor used number.

uint16_t txRingLen
Tx ring length.

struct _enet_rx_bd_ring
#include <fsl_enet.h> Defines the ENET receive buffer descriptor ring/queue structure.

308 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

enet_rx_bd_struct_t *rxBdBase
Buffer descriptor base address pointer.

uint16_t rxGenIdx
The current available receive buffer descriptor pointer.

uint16_t rxRingLen
Receive ring length.

uint32_t rxBuffSizeAlign
Receive buffer size.

struct _enet_handle
#include <fsl_enet.h> Defines the ENET handler structure.

Public Members

bool multiQueEnable
Multi-queue enable status.

bool doubleBuffEnable
The double buffer enable status.

bool rxintEnable
Rx interrupt enable status.

enet_rx_bd_ring_t rxBdRing[(2U)]
Receive buffer descriptor.

enet_tx_bd_ring_t txBdRing[(2U)]
Transmit buffer descriptor.

enet_tx_dirty_ring_t txDirtyRing[(2U)]
Transmit dirty buffers addresses.

uint32_t *rxBufferStartAddr[(2U)]
The Init-Rx buffers used for reinit corrupted BD due to write-back operation.

uint32_t txLenLimitation[(2U)]
Tx frame length limitation.

enet_callback_t callback
Callback function.

void *userData
Callback function parameter.

enet_rx_alloc_callback_t rxBuffAlloc
Callback to alloc memory, must be provided for zero-copy Rx.

enet_rx_free_callback_t rxBuffFree
Callback to free memory, must be provided for zero-copy Rx.

struct _enet_buffer_struct
#include <fsl_enet.h>

2.26. ENET: Ethernet Driver 309

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

void *buffer
The buffer stores the whole or partial frame.

uint16_t length
The byte length of this buffer.

struct _enet_rx_frame_attribute_struct
#include <fsl_enet.h> Rx frame attribute structure.

Public Members

bool isTsAvail
Rx frame timestamp is available or not.

enet_ptp_time_t timestamp
The nanosecond part timestamp of this Rx frame.

struct _enet_rx_frame_error
#include <fsl_enet.h> Defines the Rx frame error structure.

Public Members

bool statsDribbleErr
The received packet has a non-integer multiple of bytes (odd nibbles).

bool statsRxErr
Receive error.

bool statsOverflowErr
Rx FIFO overflow error.

bool statsWatchdogTimeoutErr
Receive watchdog timeout.

bool statsGaintPacketErr
Receive error.

bool statsRxFcsErr
Receive CRC error.

struct _enet_rx_frame_struct
#include <fsl_enet.h> Defines the Rx frame data structure.

Public Members

enet_buffer_struct_t *rxBuffArray
Rx frame buffer structure.

uint16_t totLen
Rx frame total length.

enet_rx_frame_attribute_t rxAttribute
Rx frame attribute structure.

enet_rx_frame_error_t rxFrameError
Rx frame error.

struct _enet_tx_config_struct
#include <fsl_enet.h>

310 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

uint8_t intEnable
Enable interrupt every time one BD is completed.

uint8_t tsEnable
Transmit timestamp enable.

uint8_t slotNum
Slot number control bits in AV mode.

enet_tx_offload_t txOffloadOps
Tx checksum offload option.

struct _enet_tx_frame_struct
#include <fsl_enet.h>

Public Members

enet_buffer_struct_t *txBuffArray
Tx frame buffer structure.

uint32_t txBuffNum
Buffer number of this Tx frame.

enet_tx_config_struct_t txConfig
Tx extra configuation.

void *context
Driver reclaims and gives it in Tx over callback.

2.27 GPIO: General Purpose I/O

void GPIO_PortInit(GPIO_Type *base, uint32_t port)
Initializes the GPIO peripheral.

This function ungates the GPIO clock.

Parameters
• base – GPIO peripheral base pointer.

• port – GPIO port number.

void GPIO_PinInit(GPIO_Type *base, uint32_t port, uint32_t pin, const gpio_pin_config_t
*config)

Initializes a GPIO pin used by the board.

To initialize the GPIO, define a pin configuration, either input or output, in the user file.
Then, call the GPIO_PinInit() function.

This is an example to define an input pin or output pin configuration:

Define a digital input pin configuration,
gpio_pin_config_t config =
{
kGPIO_DigitalInput,
0,

}
Define a digital output pin configuration,

(continues on next page)

2.27. GPIO: General Purpose I/O 311

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
gpio_pin_config_t config =
{
kGPIO_DigitalOutput,
0,

}

Parameters
• base – GPIO peripheral base pointer(Typically GPIO)

• port – GPIO port number

• pin – GPIO pin number

• config – GPIO pin configuration pointer

static inline void GPIO_PinWrite(GPIO_Type *base, uint32_t port, uint32_t pin, uint8_t output)
Sets the output level of the one GPIO pin to the logic 1 or 0.

Parameters
• base – GPIO peripheral base pointer(Typically GPIO)

• port – GPIO port number

• pin – GPIO pin number

• output – GPIO pin output logic level.

– 0: corresponding pin output low-logic level.

– 1: corresponding pin output high-logic level.

static inline uint32_t GPIO_PinRead(GPIO_Type *base, uint32_t port, uint32_t pin)
Reads the current input value of the GPIO PIN.

Parameters
• base – GPIO peripheral base pointer(Typically GPIO)

• port – GPIO port number

• pin – GPIO pin number

Return values
GPIO – port input value

• 0: corresponding pin input low-logic level.

• 1: corresponding pin input high-logic level.

FSL_GPIO_DRIVER_VERSION
LPC GPIO driver version.

enum _gpio_pin_direction
LPC GPIO direction definition.

Values:

enumerator kGPIO_DigitalInput
Set current pin as digital input

enumerator kGPIO_DigitalOutput
Set current pin as digital output

typedef enum _gpio_pin_direction gpio_pin_direction_t
LPC GPIO direction definition.

312 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _gpio_pin_config gpio_pin_config_t
The GPIO pin configuration structure.

Every pin can only be configured as either output pin or input pin at a time. If configured
as a input pin, then leave the outputConfig unused.

static inline void GPIO_PortSet(GPIO_Type *base, uint32_t port, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 1.

Parameters
• base – GPIO peripheral base pointer(Typically GPIO)

• port – GPIO port number

• mask – GPIO pin number macro

static inline void GPIO_PortClear(GPIO_Type *base, uint32_t port, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 0.

Parameters
• base – GPIO peripheral base pointer(Typically GPIO)

• port – GPIO port number

• mask – GPIO pin number macro

static inline void GPIO_PortToggle(GPIO_Type *base, uint32_t port, uint32_t mask)
Reverses current output logic of the multiple GPIO pins.

Parameters
• base – GPIO peripheral base pointer(Typically GPIO)

• port – GPIO port number

• mask – GPIO pin number macro

struct _gpio_pin_config
#include <fsl_gpio.h> The GPIO pin configuration structure.

Every pin can only be configured as either output pin or input pin at a time. If configured
as a input pin, then leave the outputConfig unused.

Public Members

gpio_pin_direction_t pinDirection
GPIO direction, input or output

uint8_t outputLogic
Set default output logic, no use in input

2.28 IOCON: I/O pin configuration

FSL_IOCON_DRIVER_VERSION
IOCON driver version.

typedef struct _iocon_group iocon_group_t
Array of IOCON pin definitions passed to IOCON_SetPinMuxing() must be in this format.

2.28. IOCON: I/O pin configuration 313

MCUXpresso SDK Documentation, Release 25.09.00

__STATIC_INLINE void IOCON_PinMuxSet (IOCON_Type *base, uint8_t port, uint8_t pin,
uint32_t modefunc)

Sets I/O Control pin mux.

Parameters
• base – : The base of IOCON peripheral on the chip

• port – : GPIO port to mux

• pin – : GPIO pin to mux

• modefunc – : OR’ed values of type IOCON_*

Returns
Nothing

__STATIC_INLINE void IOCON_SetPinMuxing (IOCON_Type *base,
const iocon_group_t *pinArray, uint32_t arrayLength)

Set all I/O Control pin muxing.

Parameters
• base – : The base of IOCON peripheral on the chip

• pinArray – : Pointer to array of pin mux selections

• arrayLength – : Number of entries in pinArray

Returns
Nothing

FSL_COMPONENT_ID

IOCON_FUNC0
IOCON function and mode selection definitions.

Note: See the UserManual for specificmodes and functions supported by the various pins.
Selects pin function 0

IOCON_FUNC1
Selects pin function 1

IOCON_FUNC2
Selects pin function 2

IOCON_FUNC3
Selects pin function 3

IOCON_FUNC4
Selects pin function 4

IOCON_FUNC5
Selects pin function 5

IOCON_FUNC6
Selects pin function 6

IOCON_FUNC7
Selects pin function 7

struct _iocon_group
#include <fsl_iocon.h> Array of IOCON pin definitions passed to IOCON_SetPinMuxing()
must be in this format.

314 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

2.29 LCDC: LCD Controller Driver

status_t LCDC_Init(LCD_Type *base, const lcdc_config_t *config, uint32_t srcClock_Hz)
Initialize the LCD module.

Parameters
• base – LCD peripheral base address.

• config – Pointer to configuration structure, see to lcdc_config_t.

• srcClock_Hz – The LCD input clock (LCDCLK) frequency in Hz.

Return values
• kStatus_Success – LCD is initialized successfully.

• kStatus_InvalidArgument – Initlialize failed because of invalid argument.

void LCDC_Deinit(LCD_Type *base)
Deinitialize the LCD module.

Parameters
• base – LCD peripheral base address.

void LCDC_GetDefaultConfig(lcdc_config_t *config)
Gets default pre-defined settings for initial configuration.

This function initializes the configuration structure. The default values are:

config->panelClock_Hz = 0U;
config->ppl = 0U;
config->hsw = 0U;
config->hfp = 0U;
config->hbp = 0U;
config->lpp = 0U;
config->vsw = 0U;
config->vfp = 0U;
config->vbp = 0U;
config->acBiasFreq = 1U;
config->polarityFlags = 0U;
config->enableLineEnd = false;
config->lineEndDelay = 0U;
config->upperPanelAddr = 0U;
config->lowerPanelAddr = 0U;
config->bpp = kLCDC_1BPP;
config->dataFormat = kLCDC_LittleEndian;
config->swapRedBlue = false;
config->display = kLCDC_DisplayTFT;

Parameters
• config – Pointer to configuration structure.

static inline void LCDC_Start(LCD_Type *base)
Start to output LCD timing signal.

The LCD power up sequence should be:

a. Apply power to LCD, here all output signals are held low.

b. When LCD power stablized, call LCDC_Start to output the timing signals.

c. Apply contrast voltage to LCD panel. Delay if the display requires.

d. Call LCDC_PowerUp.

2.29. LCDC: LCD Controller Driver 315

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• base – LCD peripheral base address.

static inline void LCDC_Stop(LCD_Type *base)
Stop the LCD timing signal.

The LCD power down sequence should be:

a. Call LCDC_PowerDown.

b. Delay if the display requires. Disable contrast voltage to LCD panel.

c. Call LCDC_Stop to disable the timing signals.

d. Disable power to LCD.

Parameters
• base – LCD peripheral base address.

static inline void LCDC_PowerUp(LCD_Type *base)
Power up the LCD and output the pixel signal.

Parameters
• base – LCD peripheral base address.

static inline void LCDC_PowerDown(LCD_Type *base)
Power down the LCD and disable the output pixel signal.

Parameters
• base – LCD peripheral base address.

void LCDC_SetPanelAddr(LCD_Type *base, lcdc_panel_t panel, uint32_t addr)
Sets panel frame base address.

Parameters
• base – LCD peripheral base address.

• panel – Which panel to set.

• addr – Frame base address, must be doubleword(64-bit) aligned.

void LCDC_SetPalette(LCD_Type *base, const uint32_t *palette, uint8_t count_words)
Sets palette.

Parameters
• base – LCD peripheral base address.

• palette – Pointer to the palette array.

• count_words – Length of the palette array to set (how many words), it
should not be larger than LCDC_PALETTE_SIZE_WORDS.

static inline void LCDC_SetVerticalInterruptMode(LCD_Type *base,
lcdc_vertical_compare_interrupt_mode_t
mode)

Sets the vertical compare interrupt mode.

Parameters
• base – LCD peripheral base address.

• mode – The vertical compare interrupt mode.

316 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

void LCDC_EnableInterrupts(LCD_Type *base, uint32_t mask)
Enable LCD interrupts.

Example to enable LCD base address update interrupt and vertical compare interrupt:

LCDC_EnableInterrupts(LCD, kLCDC_BaseAddrUpdateInterrupt | kLCDC_
↪→VerticalCompareInterrupt);

Parameters
• base – LCD peripheral base address.

• mask – Interrupts to enable, it is OR’ed value of _lcdc_interrupts.

void LCDC_DisableInterrupts(LCD_Type *base, uint32_t mask)
Disable LCD interrupts.

Example to disable LCD base address update interrupt and vertical compare interrupt:

LCDC_DisableInterrupts(LCD, kLCDC_BaseAddrUpdateInterrupt | kLCDC_
↪→VerticalCompareInterrupt);

Parameters
• base – LCD peripheral base address.

• mask – Interrupts to disable, it is OR’ed value of _lcdc_interrupts.

uint32_t LCDC_GetInterruptsPendingStatus(LCD_Type *base)
Get LCD interrupt pending status.

Example:

uint32_t status;

status = LCDC_GetInterruptsPendingStatus(LCD);

if (kLCDC_BaseAddrUpdateInterrupt & status)
{

LCD base address update interrupt occurred.
}

if (kLCDC_VerticalCompareInterrupt & status)
{

LCD vertical compare interrupt occurred.
}

Parameters
• base – LCD peripheral base address.

Returns
Interrupts pending status, it is OR’ed value of _lcdc_interrupts.

uint32_t LCDC_GetEnabledInterruptsPendingStatus(LCD_Type *base)
Get LCD enabled interrupt pending status.

This function is similar with LCDC_GetInterruptsPendingStatus, the only difference is, this
function only returns the pending status of the interrupts that have been enabled using
LCDC_EnableInterrupts.

Parameters
• base – LCD peripheral base address.

2.29. LCDC: LCD Controller Driver 317

MCUXpresso SDK Documentation, Release 25.09.00

Returns
Interrupts pending status, it is OR’ed value of _lcdc_interrupts.

void LCDC_ClearInterruptsStatus(LCD_Type *base, uint32_t mask)
Clear LCD interrupts pending status.

Example to clear LCD base address update interrupt and vertical compare interrupt pend-
ing status:

LCDC_ClearInterruptsStatus(LCD, kLCDC_BaseAddrUpdateInterrupt | kLCDC_
↪→VerticalCompareInterrupt);

Parameters
• base – LCD peripheral base address.

• mask – Interrupts to disable, it is OR’ed value of _lcdc_interrupts.

void LCDC_SetCursorConfig(LCD_Type *base, const lcdc_cursor_config_t *config)
Set the hardware cursor configuration.

This function should be called before enabling the hardware cursor. It supports initializing
multiple cursor images at a time when using 32x32 pixels cursor.

For example:

uint32_t cursor0Img[LCDC_CURSOR_IMG_32X32_WORDS] = {...};
uint32_t cursor2Img[LCDC_CURSOR_IMG_32X32_WORDS] = {...};

lcdc_cursor_config_t cursorConfig;

LCDC_CursorGetDefaultConfig(&cursorConfig);

cursorConfig.image[0] = cursor0Img;
cursorConfig.image[2] = cursor2Img;

LCDC_SetCursorConfig(LCD, &cursorConfig);

LCDC_ChooseCursor(LCD, 0);
LCDC_SetCursorPosition(LCD, 0, 0);

LCDC_EnableCursor(LCD);

In this example, cursor 0 and cursor 2 image data are initialized, but cursor 1 and cur-
sor 3 image data are not initialized because image[1] and image[2] are all NULL. With
this, application could initializes all cursor images it will use at the beginning and call
LCDC_SetCursorImage directly to display the one which it needs.

Parameters
• base – LCD peripheral base address.

• config – Pointer to the hardware cursor configuration structure.

void LCDC_CursorGetDefaultConfig(lcdc_cursor_config_t *config)
Get the hardware cursor default configuration.

The default configuration values are:

config->size = kLCDC_CursorSize32;
config->syncMode = kLCDC_CursorAsync;
config->palette0.red = 0U;
config->palette0.green = 0U;
config->palette0.blue = 0U;
config->palette1.red = 255U;

(continues on next page)

318 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
config->palette1.green = 255U;
config->palette1.blue = 255U;
config->image[0] = (uint32_t *)0;
config->image[1] = (uint32_t *)0;
config->image[2] = (uint32_t *)0;
config->image[3] = (uint32_t *)0;

Parameters
• config – Pointer to the hardware cursor configuration structure.

static inline void LCDC_EnableCursor(LCD_Type *base, bool enable)
Enable or disable the cursor.

Parameters
• base – LCD peripheral base address.

• enable – True to enable, false to disable.

static inline void LCDC_ChooseCursor(LCD_Type *base, uint8_t index)
Choose which cursor to display.

When using 32x32 cursor, the number of cursors supports is LCDC_CURSOR_COUNT. When
using 64x64 cursor, the LCD only supports one cursor. This function selects which cursor
to display when using 32x32 cursor. When synchronization mode is kLCDC_CursorSync,
the change effects in the next frame. When synchronization mode is kLCDC_CursorAsync,
change effects immediately.

Note: The function LCDC_SetCursorPosition must be called after this function to show the
new cursor.

Parameters
• base – LCD peripheral base address.

• index – Index of the cursor to display.

void LCDC_SetCursorPosition(LCD_Type *base, int32_t positionX, int32_t positionY)
Set the position of cursor.

When synchronization mode is kLCDC_CursorSync, position change effects in the next
frame. When synchronization mode is kLCDC_CursorAsync, position change effects im-
mediately.

Parameters
• base – LCD peripheral base address.

• positionX – X ordinate of the cursor top-left measured in pixels

• positionY – Y ordinate of the cursor top-left measured in pixels

void LCDC_SetCursorImage(LCD_Type *base, lcdc_cursor_size_t size, uint8_t index, const
uint32_t *image)

Set the cursor image.

The interrupt kLCDC_CursorInterrupt indicates that last cursor pixel is displayed. When
the hardware cursor is enabled,

Parameters
• base – LCD peripheral base address.

2.29. LCDC: LCD Controller Driver 319

MCUXpresso SDK Documentation, Release 25.09.00

• size – The cursor size.

• index – Index of the cursor to set when using 32x32 cursor.

• image – Pointer to the cursor image. When using 32x32 cursor, the im-
age size should be LCDC_CURSOR_IMG_32X32_WORDS.When using 64x64
cursor, the image size should be LCDC_CURSOR_IMG_64X64_WORDS.

FSL_LCDC_DRIVER_VERSION
LCDC driver version.

enum _lcdc_polarity_flags
LCD sigal polarity flags.

Values:

enumerator kLCDC_InvertVsyncPolarity
Invert the VSYNC polarity, set to active low.

enumerator kLCDC_InvertHsyncPolarity
Invert the HSYNC polarity, set to active low.

enumerator kLCDC_InvertClkPolarity
Invert the panel clock polarity, set to drive data on falling edge.

enumerator kLCDC_InvertDePolarity
Invert the data enable (DE) polarity, set to active low.

enum _lcdc_bpp
LCD bits per pixel.

Values:

enumerator kLCDC_1BPP
1 bpp.

enumerator kLCDC_2BPP
2 bpp.

enumerator kLCDC_4BPP
4 bpp.

enumerator kLCDC_8BPP
8 bpp.

enumerator kLCDC_16BPP
16 bpp.

enumerator kLCDC_24BPP
24 bpp, TFT panel only.

enumerator kLCDC_16BPP565
16 bpp, 5:6:5 mode.

enumerator kLCDC_12BPP
12 bpp, 4:4:4 mode.

enum _lcdc_display
The types of display panel.

Values:

enumerator kLCDC_DisplayTFT
Active matrix TFT panels with up to 24-bit bus interface.

320 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kLCDC_DisplaySingleMonoSTN4Bit
Single-panel monochrome STN (4-bit bus interface).

enumerator kLCDC_DisplaySingleMonoSTN8Bit
Single-panel monochrome STN (8-bit bus interface).

enumerator kLCDC_DisplayDualMonoSTN4Bit
Dual-panel monochrome STN (4-bit bus interface).

enumerator kLCDC_DisplayDualMonoSTN8Bit
Dual-panel monochrome STN (8-bit bus interface).

enumerator kLCDC_DisplaySingleColorSTN8Bit
Single-panel color STN (8-bit bus interface).

enumerator kLCDC_DisplayDualColorSTN8Bit
Dual-panel coor STN (8-bit bus interface).

enum _lcdc_data_format
LCD panel buffer data format.

Values:

enumerator kLCDC_LittleEndian
Little endian byte, little endian pixel.

enumerator kLCDC_BigEndian
Big endian byte, big endian pixel.

enumerator kLCDC_WinCeMode
little-endian byte, big-endian pixel for Windows CE mode.

enum _lcdc_vertical_compare_interrupt_mode
LCD vertical compare interrupt mode.

Values:

enumerator kLCDC_StartOfVsync
Generate vertical compare interrupt at start of VSYNC.

enumerator kLCDC_StartOfBackPorch
Generate vertical compare interrupt at start of back porch.

enumerator kLCDC_StartOfActiveVideo
Generate vertical compare interrupt at start of active video.

enumerator kLCDC_StartOfFrontPorch
Generate vertical compare interrupt at start of front porch.

enum _lcdc_interrupts
LCD interrupts.

Values:

enumerator kLCDC_CursorInterrupt
Cursor image read finished interrupt.

enumerator kLCDC_FifoUnderflowInterrupt
FIFO underflow interrupt.

enumerator kLCDC_BaseAddrUpdateInterrupt
Panel frame base address update interrupt.

2.29. LCDC: LCD Controller Driver 321

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kLCDC_VerticalCompareInterrupt
Vertical compare interrupt.

enumerator kLCDC_AhbErrorInterrupt
AHB master error interrupt.

enum _lcdc_panel
LCD panel frame.

Values:

enumerator kLCDC_UpperPanel
Upper panel frame.

enumerator kLCDC_LowerPanel
Lower panel frame.

enum _lcdc_cursor_size
LCD hardware cursor size.

Values:

enumerator kLCDC_CursorSize32
32x32 pixel cursor.

enumerator kLCDC_CursorSize64
64x64 pixel cursor.

enum _lcdc_cursor_sync_mode
LCD hardware cursor frame synchronization mode.

Values:

enumerator kLCDC_CursorAsync
Cursor change will be displayed immediately.

enumerator kLCDC_CursorSync
Cursor change will be displayed in next frame.

typedef enum _lcdc_bpp lcdc_bpp_t
LCD bits per pixel.

typedef enum _lcdc_display lcdc_display_t
The types of display panel.

typedef enum _lcdc_data_format lcdc_data_format_t
LCD panel buffer data format.

typedef struct _lcdc_config lcdc_config_t
LCD configuration structure.

typedef enum _lcdc_vertical_compare_interrupt_mode lcdc_vertical_compare_interrupt_mode_t
LCD vertical compare interrupt mode.

typedef enum _lcdc_panel lcdc_panel_t
LCD panel frame.

typedef enum _lcdc_cursor_size lcdc_cursor_size_t
LCD hardware cursor size.

typedef struct _lcdc_cursor_palette lcdc_cursor_palette_t
LCD hardware cursor palette.

322 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _lcdc_cursor_sync_mode lcdc_cursor_sync_mode_t
LCD hardware cursor frame synchronization mode.

typedef struct _lcdc_cursor_config lcdc_cursor_config_t
LCD hardware cursor configuration structure.

LCDC_CURSOR_COUNT
How many hardware cursors supports.

LCDC_CURSOR_IMG_BPP
LCD cursor image bits per pixel.

LCDC_CURSOR_IMG_32X32_WORDS
LCD 32x32 cursor image size in word(32-bit).

LCDC_CURSOR_IMG_64X64_WORDS
LCD 64x64 cursor image size in word(32-bit).

LCDC_PALETTE_SIZE_WORDS
LCD palette size in words(32-bit).

struct _lcdc_config
#include <fsl_lcdc.h> LCD configuration structure.

Public Members

uint32_t panelClock_Hz
Panel clock in Hz.

uint16_t ppl
Pixels per line, it must could be divided by 16.

uint8_t hsw
HSYNC pulse width.

uint8_t hfp
Horizontal front porch.

uint8_t hbp
Horizontal back porch.

uint16_t lpp
Lines per panal.

uint8_t vsw
VSYNC pulse width.

uint8_t vfp
Vrtical front porch.

uint8_t vbp
Vertical back porch.

uint8_t acBiasFreq
The number of line clocks between AC bias pin toggling. Only used for STN display.

uint16_t polarityFlags
OR’ed value of _lcdc_polarity_flags, used to contol the signal polarity.

bool enableLineEnd
Enable line end or not, the line end is a positive pulse with 4 panel clock.

2.29. LCDC: LCD Controller Driver 323

MCUXpresso SDK Documentation, Release 25.09.00

uint8_t lineEndDelay
The panel clocks between the last pixel of line and the start of line end.

uint32_t upperPanelAddr
LCD upper panel base address, must be double-word(64-bit) align.

uint32_t lowerPanelAddr
LCD lower panel base address, must be double-word(64-bit) align.

lcdc_bpp_t bpp
LCD bits per pixel.

lcdc_data_format_t dataFormat
Data format.

bool swapRedBlue
Set true to use BGR format, set false to choose RGB format.

lcdc_display_t display
The display type.

struct _lcdc_cursor_palette
#include <fsl_lcdc.h> LCD hardware cursor palette.

Public Members

uint8_t red
Red color component.

uint8_t green
Red color component.

uint8_t blue
Red color component.

struct _lcdc_cursor_config
#include <fsl_lcdc.h> LCD hardware cursor configuration structure.

Public Members

lcdc_cursor_size_t size
Cursor size.

lcdc_cursor_sync_mode_t syncMode
Cursor synchronization mode.

lcdc_cursor_palette_t palette0
Cursor palette 0.

lcdc_cursor_palette_t palette1
Cursor palette 1.

uint32_t *image[4U]
Pointer to cursor image data.

324 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

2.30 MCAN: Controller Area Network Driver

voidMCAN_Init(CAN_Type *base, constmcan_config_t *config, uint32_t sourceClock_Hz)
Initializes an MCAN instance.

This function initializes the MCANmodule with user-defined settings. This example shows
how to set up the mcan_config_t parameters and how to call the MCAN_Init function by
passing in these parameters.

mcan_config_t config;
config->baudRateA = 500000U;
config->baudRateD = 1000000U;
config->enableCanfdNormal = false;
config->enableCanfdSwitch = false;
config->enableLoopBackInt = false;
config->enableLoopBackExt = false;
config->enableBusMon = false;
MCAN_Init(CANFD0, &config, 8000000UL);

Parameters
• base – MCAN peripheral base address.

• config – Pointer to the user-defined configuration structure.

• sourceClock_Hz – MCAN Protocol Engine clock source frequency in Hz.

voidMCAN_Deinit(CAN_Type *base)
Deinitializes an MCAN instance.

This function deinitializes the MCAN module.

Parameters
• base – MCAN peripheral base address.

voidMCAN_GetDefaultConfig(mcan_config_t *config)
Gets the default configuration structure.

This function initializes the MCAN configuration structure to default values. The
default values are as follows. config->baudRateA = 500000U; config->baudRateD =
1000000U; config->enableCanfdNormal = false; config->enableCanfdSwitch = false; config-
>enableLoopBackInt = false; config->enableLoopBackExt = false; config->enableBusMon =
false;

Parameters
• config – Pointer to the MCAN configuration structure.

static inline voidMCAN_EnterInitialMode(CAN_Type *base)
MCAN enters initialization mode.

After enter initialization mode, users can write access to the protected configuration regis-
ters.

Parameters
• base – MCAN peripheral base address.

static inline voidMCAN_EnterNormalMode(CAN_Type *base)
MCAN enters normal mode.

After initialization, INIT bit in CCCR register must be cleared to enter normal mode thus
synchronizes to the CAN bus and ready for communication.

Parameters

2.30. MCAN: Controller Area Network Driver 325

MCUXpresso SDK Documentation, Release 25.09.00

• base – MCAN peripheral base address.

static inline voidMCAN_SetMsgRAMBase(CAN_Type *base, uint32_t value)
Sets the MCAN Message RAM base address.

This function sets the Message RAM base address.

Parameters
• base – MCAN peripheral base address.

• value – Desired Message RAM base.

static inline uint32_tMCAN_GetMsgRAMBase(CAN_Type *base)
Gets the MCAN Message RAM base address.

This function gets the Message RAM base address.

Parameters
• base – MCAN peripheral base address.

Returns
Message RAM base address.

boolMCAN_CalculateImprovedTimingValues(uint32_t baudRate, uint32_t sourceClock_Hz,
mcan_timing_config_t *pconfig)

Calculates the improved timing values by specific baudrates for classical CAN.

Parameters
• baudRate – The classical CAN speed in bps defined by user

• sourceClock_Hz – The Source clock data speed in bps. Zero to disable bau-
drate switching

• pconfig – Pointer to the MCAN timing configuration structure.

Returns
TRUE if timing configuration found, FALSE if failed to find configuration

boolMCAN_CalculateSpecifiedTimingValues(uint32_t sourceClock_Hz,mcan_timing_config_t
*pconfig, constmcan_timing_param_t
*pParamConfig)

Calculates the specified timing values for classical CAN with user-defined settings.

User can specify baudrates, sample point position, bus length, and transceiver propagation
delay. This example shows how to set up the mcan_timing_param_t parameters and how
to call the this function by passing in these parameters.

mcan_timing_config_t timing_config;
mcan_timing_param_t timing_param;
timing_param.busLength = 1U;
timing_param.propTxRx = 230U;
timing_param.nominalbaudRate = 500000U;
timing_param.nominalSP = 800U;
MCAN_CalculateSpecifiedTimingValues(MCAN_CLK_FREQ, &timing_config, &timing_param);

Note that due to integer division will sacrifice the precision, actual sample point may not
equal to expected. If actual sample point is not in allowed 2% range, this function will re-
turn false. So it is better to select higher source clock when baudrate is relatively high. This
will ensure more time quanta and higher precision of sample point. Parameter busLength
and propTxRx are optional and intended to verify whether propagation delay is too long
to corrupt sample point. User can set these parameter zero if you do not want to consider
this factor.

Parameters

326 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

• sourceClock_Hz – The Source clock data speed in bps.

• pconfig – Pointer to the MCAN timing configuration structure.

• config – Pointer to the MCAN timing parameters structure.

Returns
TRUE if timing configuration found, FALSE if failed to find configuration

voidMCAN_SetArbitrationTimingConfig(CAN_Type *base, constmcan_timing_config_t *config)
Sets the MCAN protocol arbitration phase timing characteristic.

This function gives user settings to CAN bus timing characteristic. The function is for an ex-
perienced user. For less experienced users, call the MCAN_Init() and fill the baud rate field
with a desired value. This provides the default arbitration phase timing characteristics.

Note that calling MCAN_SetArbitrationTimingConfig() overrides the baud rate set in
MCAN_Init().

Parameters
• base – MCAN peripheral base address.

• config – Pointer to the timing configuration structure.

status_tMCAN_SetBaudRate(CAN_Type *base, uint32_t sourceClock_Hz, uint32_t
baudRate_Bps)

Set Baud Rate of MCAN classic mode.

This function set the baud rate of MCAN base on MCAN_CalculateImprovedTimingValues()
API calculated timing values.

Parameters
• base – MCAN peripheral base address.

• sourceClock_Hz – Source Clock in Hz.

• baudRate_Bps – Baud Rate in Bps.

Returns
kStatus_Success - Set CAN baud rate (only has Nominal phase) successfully.

boolMCAN_FDCalculateImprovedTimingValues(uint32_t baudRate, uint32_t baudRateFD,
uint32_t sourceClock_Hz,mcan_timing_config_t
*pconfig)

Calculates the improved timing values by specific baudrates for CANFD.

Parameters
• baudRate – The CANFD bus control speed in bps defined by user

• baudRateFD – The CANFD bus data speed in bps defined by user

• sourceClock_Hz – The Source clock data speed in bps.

• pconfig – Pointer to the MCAN timing configuration structure.

Returns
TRUE if timing configuration found, FALSE if failed to find configuration

boolMCAN_FDCalculateSpecifiedTimingValues(uint32_t sourceClock_Hz,mcan_timing_config_t
*pconfig, constmcan_timing_param_t
*pParamConfig)

Calculates the specified timing values for CANFD with user-defined settings.

User can specify baudrates, sample point position, bus length, and transceiver propagation
delay. This example shows how to set up the mcan_timing_param_t parameters and how
to call the this function by passing in these parameters.

2.30. MCAN: Controller Area Network Driver 327

MCUXpresso SDK Documentation, Release 25.09.00

mcan_timing_config_t timing_config;
mcan_timing_param_t timing_param;
timing_param.busLength = 1U;
timing_param.propTxRx = 230U;
timing_param.nominalbaudRate = 500000U;
timing_param.nominalSP = 800U;
timing_param.databaudRate = 4000000U;
timing_param.dataSP = 700U;
MCAN_FDCalculateSpecifiedTimingValues(MCAN_CLK_FREQ, &timing_config, &timing_param);

Note that due to integer division will sacrifice the precision, actual sample point may not
equal to expected. So it is better to select higher source clock when baudrate is relatively
high. Select higher nominal baudrate when source clock is relatively high because large
clock predividerwill lead to less time quanta in data phase. This functionwill set predivider
in arbitration phase equal to data phase. These methods will ensure more time quanta and
higher precision of sample point. Parameter busLength and propTxRx are optional and
intended to verify whether propagation delay is too long to corrupt sample point. User can
set these parameter zero if you do not want to consider this factor.

Parameters
• sourceClock_Hz – The Source clock data speed in bps.

• pconfig – Pointer to the MCAN timing configuration structure.

• config – Pointer to the MCAN timing parameters structure.

Returns
TRUE if timing configuration found, FALSE if failed to find configuration

status_tMCAN_SetBaudRateFD(CAN_Type *base, uint32_t sourceClock_Hz, uint32_t
baudRateN_Bps, uint32_t baudRateD_Bps)

Set Baud Rate of MCAN FD mode.

This function set the baud rate of MCAN FD base on
MCAN_FDCalculateImprovedTimingValues API calculated timing values.

Parameters
• base – MCAN peripheral base address.

• sourceClock_Hz – Source Clock in Hz.

• baudRateN_Bps – Nominal Baud Rate in Bps.

• baudRateD_Bps – Data Baud Rate in Bps.

Returns
kStatus_Success - Set CAN FD baud rate (include Nominal and Data phase) suc-
cessfully.

voidMCAN_SetDataTimingConfig(CAN_Type *base, constmcan_timing_config_t *config)
Sets the MCAN protocol data phase timing characteristic.

This function gives user settings to CAN bus timing characteristic. The function is for an
experienced user. For less experienced users, call the MCAN_Init() and fill the baud rate
field with a desired value. This provides the default data phase timing characteristics.

Note that calling MCAN_SetArbitrationTimingConfig() overrides the baud rate set in
MCAN_Init().

Parameters
• base – MCAN peripheral base address.

• config – Pointer to the timing configuration structure.

328 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

voidMCAN_SetRxFifo0Config(CAN_Type *base, constmcan_rx_fifo_config_t *config)
Configures an MCAN receive fifo 0 buffer.

This function sets start address, element size, watermark, operation mode and datafield
size of the recieve fifo 0.

Parameters
• base – MCAN peripheral base address.

• config – The receive fifo 0 configuration structure.

voidMCAN_SetRxFifo1Config(CAN_Type *base, constmcan_rx_fifo_config_t *config)
Configures an MCAN receive fifo 1 buffer.

This function sets start address, element size, watermark, operation mode and datafield
size of the recieve fifo 1.

Parameters
• base – MCAN peripheral base address.

• config – The receive fifo 1 configuration structure.

voidMCAN_SetRxBufferConfig(CAN_Type *base, constmcan_rx_buffer_config_t *config)
Configures an MCAN receive buffer.

This function sets start address and datafield size of the recieve buffer.

Parameters
• base – MCAN peripheral base address.

• config – The receive buffer configuration structure.

voidMCAN_SetTxEventFifoConfig(CAN_Type *base, constmcan_tx_fifo_config_t *config)
Configures an MCAN transmit event fifo.

This function sets start address, element size, watermark of the transmit event fifo.

Parameters
• base – MCAN peripheral base address.

• config – The transmit event fifo configuration structure.

voidMCAN_SetTxBufferConfig(CAN_Type *base, constmcan_tx_buffer_config_t *config)
Configures an MCAN transmit buffer.

This function sets start address, element size, fifo/queue mode and datafield size of the
transmit buffer.

Parameters
• base – MCAN peripheral base address.

• config – The transmit buffer configuration structure.

voidMCAN_SetFilterConfig(CAN_Type *base, constmcan_frame_filter_config_t *config)
Set filter configuration.

This function sets remote and non masking frames in global filter configuration, also the
start address, list size in standard/extended ID filter configuration.

Parameters
• base – MCAN peripheral base address.

• config – The MCAN filter configuration.

2.30. MCAN: Controller Area Network Driver 329

MCUXpresso SDK Documentation, Release 25.09.00

status_tMCAN_SetMessageRamConfig(CAN_Type *base, constmcan_memory_config_t *config)
Set Message RAM related configuration.

Note: This function include Standard/extended ID filter, Rx FIFO 0/1, Rx buffer, Tx event
FIFO and Tx buffer configurations

Parameters
• base – MCAN peripheral base address.

• config – The MCAN filter configuration.

Return values
• kStatus_Success – - Message RAM related configuration Successfully.

• kStatus_Fail – - Message RAM related configure fail due to wrong address
parameter.

voidMCAN_SetSTDFilterElement(CAN_Type *base, constmcan_frame_filter_config_t *config,
constmcan_std_filter_element_config_t *filter, uint8_t idx)

Set standard message ID filter element configuration.

Parameters
• base – MCAN peripheral base address.

• config – The MCAN filter configuration.

• filter – The MCAN standard message ID filter element configuration.

• idx – The standard message ID filter element index.

voidMCAN_SetEXTFilterElement(CAN_Type *base, constmcan_frame_filter_config_t *config,
constmcan_ext_filter_element_config_t *filter, uint8_t idx)

Set extended message ID filter element configuration.

Parameters
• base – MCAN peripheral base address.

• config – The MCAN filter configuration.

• filter – The MCAN extended message ID filter element configuration.

• idx – The extended message ID filter element index.

static inline uint32_tMCAN_GetStatusFlag(CAN_Type *base, uint32_t mask)
Gets the MCAN module interrupt flags.

This function gets all MCAN interrupt status flags.

Parameters
• base – MCAN peripheral base address.

• mask – The ORed MCAN interrupt mask.

Returns
MCAN status flags which are ORed.

static inline voidMCAN_ClearStatusFlag(CAN_Type *base, uint32_t mask)
Clears the MCAN module interrupt flags.

This function clears MCAN interrupt status flags.

Parameters
• base – MCAN peripheral base address.

330 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

• mask – The ORed MCAN interrupt mask.

static inline boolMCAN_GetRxBufferStatusFlag(CAN_Type *base, uint8_t idx)
Gets the new data flag of specific Rx Buffer.

This function gets new data flag of specific Rx Buffer.

Parameters
• base – MCAN peripheral base address.

• idx – Rx Buffer index.

Returns
Rx Buffer new data status flag.

static inline voidMCAN_ClearRxBufferStatusFlag(CAN_Type *base, uint8_t idx)
Clears the new data flag of specific Rx Buffer.

This function clears new data flag of specific Rx Buffer.

Parameters
• base – MCAN peripheral base address.

• idx – Rx Buffer index.

static inline voidMCAN_EnableInterrupts(CAN_Type *base, uint32_t line, uint32_t mask)
Enables MCAN interrupts according to the provided interrupt line and mask.

This function enables the MCAN interrupts according to the provided interrupt line and
mask. The mask is a logical OR of enumeration members.

Parameters
• base – MCAN peripheral base address.

• line – Interrupt line number, 0 or 1.

• mask – The interrupts to enable.

static inline voidMCAN_EnableTransmitBufferInterrupts(CAN_Type *base, uint8_t idx)
Enables MCAN Tx Buffer interrupts according to the provided index.

This function enables the MCAN Tx Buffer interrupts.

Parameters
• base – MCAN peripheral base address.

• idx – Tx Buffer index.

static inline voidMCAN_DisableTransmitBufferInterrupts(CAN_Type *base, uint8_t idx)
Disables MCAN Tx Buffer interrupts according to the provided index.

This function disables the MCAN Tx Buffer interrupts.

Parameters
• base – MCAN peripheral base address.

• idx – Tx Buffer index.

static inline voidMCAN_DisableInterrupts(CAN_Type *base, uint32_t mask)
Disables MCAN interrupts according to the provided mask.

This function disables the MCAN interrupts according to the provided mask. The mask is a
logical OR of enumeration members.

Parameters
• base – MCAN peripheral base address.

2.30. MCAN: Controller Area Network Driver 331

MCUXpresso SDK Documentation, Release 25.09.00

• mask – The interrupts to disable.

uint32_tMCAN_IsTransmitRequestPending(CAN_Type *base, uint8_t idx)
Gets the Tx buffer request pending status.

This function returns Tx Message Buffer transmission request pending status.

Parameters
• base – MCAN peripheral base address.

• idx – The MCAN Tx Buffer index.

uint32_tMCAN_IsTransmitOccurred(CAN_Type *base, uint8_t idx)
Gets the Tx buffer transmission occurred status.

This function returns Tx Message Buffer transmission occurred status.

Parameters
• base – MCAN peripheral base address.

• idx – The MCAN Tx Buffer index.

status_tMCAN_WriteTxBuffer(CAN_Type *base, uint8_t idx, constmcan_tx_buffer_frame_t
*pTxFrame)

Writes an MCAN Message to the Transmit Buffer.

This function writes a CAN Message to the specified Transmit Message Buffer and changes
the Message Buffer state to start CAN Message transmit. After that the function returns
immediately.

Parameters
• base – MCAN peripheral base address.

• idx – The MCAN Tx Buffer index.

• pTxFrame – Pointer to CAN message frame to be sent.

status_tMCAN_ReadRxBuffer(CAN_Type *base, uint8_t idx,mcan_rx_buffer_frame_t
*pRxFrame)

Reads an MCAN Message from Rx Buffer.

This function reads a CAN message from the Rx Buffer in the Message RAM.

Parameters
• base – MCAN peripheral base address.

• idx – The MCAN Rx Buffer index.

• pRxFrame – Pointer to CAN message frame structure for reception.

Return values
kStatus_Success – - Read Message from Rx Buffer successfully.

status_tMCAN_ReadRxFifo(CAN_Type *base, uint8_t fifoBlock,mcan_rx_buffer_frame_t
*pRxFrame)

Reads an MCAN Message from Rx FIFO.

This function reads a CAN message from the Rx FIFO in the Message RAM.

Parameters
• base – MCAN peripheral base address.

• fifoBlock – Rx FIFO block 0 or 1.

• pRxFrame – Pointer to CAN message frame structure for reception.

332 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

Return values
kStatus_Success – - Read Message from Rx FIFO successfully.

static inline voidMCAN_TransmitAddRequest(CAN_Type *base, uint8_t idx)
Tx Buffer add request to send message out.

This function add sending request to corresponding Tx Buffer.

Parameters
• base – MCAN peripheral base address.

• idx – Tx Buffer index.

static inline voidMCAN_TransmitCancelRequest(CAN_Type *base, uint8_t idx)
Tx Buffer cancel sending request.

This function clears Tx buffer request pending bit.

Parameters
• base – MCAN peripheral base address.

• idx – Tx Buffer index.

status_tMCAN_TransferSendBlocking(CAN_Type *base, uint8_t idx,mcan_tx_buffer_frame_t
*pTxFrame)

Performs a polling send transaction on the CAN bus.

Note that a transfer handle does not need to be created before calling this API.

Parameters
• base – MCAN peripheral base pointer.

• idx – The MCAN buffer index.

• pTxFrame – Pointer to CAN message frame to be sent.

Return values
• kStatus_Success – - Write Tx Message Buffer Successfully.

• kStatus_Fail – - Tx Message Buffer is currently in use.

status_tMCAN_TransferReceiveBlocking(CAN_Type *base, uint8_t idx,mcan_rx_buffer_frame_t
*pRxFrame)

Performs a polling receive transaction on the CAN bus.

Note that a transfer handle does not need to be created before calling this API.

Parameters
• base – MCAN peripheral base pointer.

• idx – The MCAN buffer index.

• pRxFrame – Pointer to CAN message frame structure for reception.

Return values
• kStatus_Success – - Read Rx Message Buffer Successfully.

• kStatus_Fail – - No new message.

status_tMCAN_TransferReceiveFifoBlocking(CAN_Type *base, uint8_t fifoBlock,
mcan_rx_buffer_frame_t *pRxFrame)

Performs a polling receive transaction from Rx FIFO on the CAN bus.

Note that a transfer handle does not need to be created before calling this API.

Parameters

2.30. MCAN: Controller Area Network Driver 333

MCUXpresso SDK Documentation, Release 25.09.00

• base – MCAN peripheral base pointer.

• fifoBlock – Rx FIFO block, 0 or 1.

• pRxFrame – Pointer to CAN message frame structure for reception.

Return values
• kStatus_Success – - Read Message from Rx FIFO successfully.

• kStatus_Fail – - No new message in Rx FIFO.

voidMCAN_TransferCreateHandle(CAN_Type *base,mcan_handle_t *handle,
mcan_transfer_callback_t callback, void *userData)

Initializes the MCAN handle.

This function initializes theMCAN handle, which can be used for otherMCAN transactional
APIs. Usually, for a specified MCAN instance, call this API once to get the initialized handle.

Parameters
• base – MCAN peripheral base address.

• handle – MCAN handle pointer.

• callback – The callback function.

• userData – The parameter of the callback function.

status_tMCAN_TransferSendNonBlocking(CAN_Type *base,mcan_handle_t *handle,
mcan_buffer_transfer_t *xfer)

Sends a message using IRQ.

This function sends a message using IRQ. This is a non-blocking function, which returns
right away. When messages have been sent out, the send callback function is called.

Parameters
• base – MCAN peripheral base address.

• handle – MCAN handle pointer.

• xfer – MCAN Buffer transfer structure. See the mcan_buffer_transfer_t.

Return values
• kStatus_Success – Start Tx Buffer sending process successfully.

• kStatus_Fail – Write Tx Buffer failed.

• kStatus_MCAN_TxBusy – Tx Buffer is in use.

status_tMCAN_TransferReceiveFifoNonBlocking(CAN_Type *base, uint8_t fifoBlock,
mcan_handle_t *handle,mcan_fifo_transfer_t
*xfer)

Receives a message from Rx FIFO using IRQ.

This function receives a message using IRQ. This is a non-blocking function, which returns
right away. When all messages have been received, the receive callback function is called.

Parameters
• base – MCAN peripheral base address.

• handle – MCAN handle pointer.

• fifoBlock – Rx FIFO block, 0 or 1.

• xfer – MCAN Rx FIFO transfer structure. See the mcan_fifo_transfer_t.

Return values
• kStatus_Success – - Start Rx FIFO receiving process successfully.

334 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

• kStatus_MCAN_RxFifo0Busy – - Rx FIFO 0 is currently in use.

• kStatus_MCAN_RxFifo1Busy – - Rx FIFO 1 is currently in use.

voidMCAN_TransferAbortSend(CAN_Type *base,mcan_handle_t *handle, uint8_t bufferIdx)
Aborts the interrupt driven message send process.

This function aborts the interrupt driven message send process.

Parameters
• base – MCAN peripheral base address.

• handle – MCAN handle pointer.

• bufferIdx – The MCAN Buffer index.

voidMCAN_TransferAbortReceiveFifo(CAN_Type *base, uint8_t fifoBlock,mcan_handle_t
*handle)

Aborts the interrupt driven message receive from Rx FIFO process.

This function aborts the interrupt driven message receive from Rx FIFO process.

Parameters
• base – MCAN peripheral base address.

• fifoBlock – MCAN Fifo block, 0 or 1.

• handle – MCAN handle pointer.

voidMCAN_TransferHandleIRQ(CAN_Type *base,mcan_handle_t *handle)
MCAN IRQ handle function.

This function handles the MCAN Error, the Buffer, and the Rx FIFO IRQ request.

Parameters
• base – MCAN peripheral base address.

• handle – MCAN handle pointer.

FSL_MCAN_DRIVER_VERSION
MCAN driver version.

MCAN transfer status.

Values:

enumerator kStatus_MCAN_TxBusy
Tx Buffer is Busy.

enumerator kStatus_MCAN_TxIdle
Tx Buffer is Idle.

enumerator kStatus_MCAN_RxBusy
Rx Buffer is Busy.

enumerator kStatus_MCAN_RxIdle
Rx Buffer is Idle.

enumerator kStatus_MCAN_RxFifo0New
New message written to Rx FIFO 0.

enumerator kStatus_MCAN_RxFifo0Idle
Rx FIFO 0 is Idle.

2.30. MCAN: Controller Area Network Driver 335

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus_MCAN_RxFifo0Watermark
Rx FIFO 0 fill level reached watermark.

enumerator kStatus_MCAN_RxFifo0Full
Rx FIFO 0 full.

enumerator kStatus_MCAN_RxFifo0Lost
Rx FIFO 0 message lost.

enumerator kStatus_MCAN_RxFifo1New
New message written to Rx FIFO 1.

enumerator kStatus_MCAN_RxFifo1Idle
Rx FIFO 1 is Idle.

enumerator kStatus_MCAN_RxFifo1Watermark
Rx FIFO 1 fill level reached watermark.

enumerator kStatus_MCAN_RxFifo1Full
Rx FIFO 1 full.

enumerator kStatus_MCAN_RxFifo1Lost
Rx FIFO 1 message lost.

enumerator kStatus_MCAN_RxFifo0Busy
Rx FIFO 0 is busy.

enumerator kStatus_MCAN_RxFifo1Busy
Rx FIFO 1 is busy.

enumerator kStatus_MCAN_ErrorStatus
MCAN Module Error and Status.

enumerator kStatus_MCAN_UnHandled
UnHadled Interrupt asserted.

enum _mcan_flags
MCAN status flags.

This provides constants for the MCAN status flags for use in theMCAN functions. Note: The
CPU read action clears MCAN_ErrorFlag, therefore user need to read MCAN_ErrorFlag and
distinguish which error is occur using _mcan_error_flags enumerations.

Values:

enumerator kMCAN_AccesstoRsvdFlag
CAN Synchronization Status.

enumerator kMCAN_ProtocolErrDIntFlag
Tx Warning Interrupt Flag.

enumerator kMCAN_ProtocolErrAIntFlag
Rx Warning Interrupt Flag.

enumerator kMCAN_BusOffIntFlag
Tx Error Warning Status.

enumerator kMCAN_ErrorWarningIntFlag
Rx Error Warning Status.

enumerator kMCAN_ErrorPassiveIntFlag
Rx Error Warning Status.

336 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enum _mcan_rx_fifo_flags
MCAN Rx FIFO status flags.

The MCAN Rx FIFO Status enumerations are used to determine the status of the Rx FIFO.

Values:

enumerator kMCAN_RxFifo0NewFlag
Rx FIFO 0 new message flag.

enumerator kMCAN_RxFifo0WatermarkFlag
Rx FIFO 0 watermark reached flag.

enumerator kMCAN_RxFifo0FullFlag
Rx FIFO 0 full flag.

enumerator kMCAN_RxFifo0LostFlag
Rx FIFO 0 message lost flag.

enumerator kMCAN_RxFifo1NewFlag
Rx FIFO 0 new message flag.

enumerator kMCAN_RxFifo1WatermarkFlag
Rx FIFO 0 watermark reached flag.

enumerator kMCAN_RxFifo1FullFlag
Rx FIFO 0 full flag.

enumerator kMCAN_RxFifo1LostFlag
Rx FIFO 0 message lost flag.

enum _mcan_tx_flags
MCAN Tx status flags.

The MCAN Tx Status enumerations are used to determine the status of the Tx Buffer/Event
FIFO.

Values:

enumerator kMCAN_TxTransmitCompleteFlag
Transmission completed flag.

enumerator kMCAN_TxTransmitCancelFinishFlag
Transmission cancellation finished flag.

enumerator kMCAN_TxEventFifoLostFlag
Tx Event FIFO element lost.

enumerator kMCAN_TxEventFifoFullFlag
Tx Event FIFO full.

enumerator kMCAN_TxEventFifoWatermarkFlag
Tx Event FIFO fill level reached watermark.

enumerator kMCAN_TxEventFifoNewFlag
Tx Handler wrote Tx Event FIFO element flag.

enumerator kMCAN_TxEventFifoEmptyFlag
Tx FIFO empty flag.

enum _mcan_interrupt_enable
MCAN interrupt configuration structure, default settings all disabled.

This structure contains the settings for all of the MCAN Module interrupt configurations.

Values:

2.30. MCAN: Controller Area Network Driver 337

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kMCAN_BusOffInterruptEnable
Bus Off interrupt.

enumerator kMCAN_ErrorInterruptEnable
Error interrupt.

enumerator kMCAN_WarningInterruptEnable
Rx Warning interrupt.

enum _mcan_frame_idformat
MCAN frame format.

Values:

enumerator kMCAN_FrameIDStandard
Standard frame format attribute.

enumerator kMCAN_FrameIDExtend
Extend frame format attribute.

enum _mcan_frame_type
MCAN frame type.

Values:

enumerator kMCAN_FrameTypeData
Data frame type attribute.

enumerator kMCAN_FrameTypeRemote
Remote frame type attribute.

enum _mcan_bytes_in_datafield
MCAN frame datafield size.

Values:

enumerator kMCAN_8ByteDatafield
8 byte data field.

enumerator kMCAN_12ByteDatafield
12 byte data field.

enumerator kMCAN_16ByteDatafield
16 byte data field.

enumerator kMCAN_20ByteDatafield
20 byte data field.

enumerator kMCAN_24ByteDatafield
24 byte data field.

enumerator kMCAN_32ByteDatafield
32 byte data field.

enumerator kMCAN_48ByteDatafield
48 byte data field.

enumerator kMCAN_64ByteDatafield
64 byte data field.

enum _mcan_fifo_type
MCAN Rx FIFO block number.

Values:

338 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kMCAN_Fifo0
CAN Rx FIFO 0.

enumerator kMCAN_Fifo1
CAN Rx FIFO 1.

enum _mcan_fifo_opmode_config
MCAN FIFO Operation Mode.

Values:

enumerator kMCAN_FifoBlocking
FIFO blocking mode.

enumerator kMCAN_FifoOverwrite
FIFO overwrite mode.

enum _mcan_txmode_config
MCAN Tx FIFO/Queue Mode.

Values:

enumerator kMCAN_txFifo
Tx FIFO operation.

enumerator kMCAN_txQueue
Tx Queue operation.

enum _mcan_remote_frame_config
MCAN remote frames treatment.

Values:

enumerator kMCAN_filterFrame
Filter remote frames.

enumerator kMCAN_rejectFrame
Reject all remote frames.

enum _mcan_nonmasking_frame_config
MCAN non-masking frames treatment.

Values:

enumerator kMCAN_acceptinFifo0
Accept non-masking frames in Rx FIFO 0.

enumerator kMCAN_acceptinFifo1
Accept non-masking frames in Rx FIFO 1.

enumerator kMCAN_reject0
Reject non-masking frames.

enumerator kMCAN_reject1
Reject non-masking frames.

enum _mcan_fec_config
MCAN Filter Element Configuration.

Values:

enumerator kMCAN_disable
Disable filter element.

2.30. MCAN: Controller Area Network Driver 339

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kMCAN_storeinFifo0
Store in Rx FIFO 0 if filter matches.

enumerator kMCAN_storeinFifo1
Store in Rx FIFO 1 if filter matches.

enumerator kMCAN_reject
Reject ID if filter matches.

enumerator kMCAN_setprio
Set priority if filter matches.

enumerator kMCAN_setpriofifo0
Set priority and store in FIFO 0 if filter matches.

enumerator kMCAN_setpriofifo1
Set priority and store in FIFO 1 if filter matches.

enumerator kMCAN_storeinbuffer
Store into Rx Buffer or as debug message.

enum _mcan_std_filter_type
MCAN Filter Type.

Values:

enumerator kMCAN_range
Range filter from SFID1 to SFID2.

enumerator kMCAN_dual
Dual ID filter for SFID1 or SFID2.

enumerator kMCAN_classic
Classic filter: SFID1 = filter, SFID2 = mask.

enumerator kMCAN_disableORrange2
Filter element disabled for standard filter or Range filter, XIDAMmask not applied for
extended filter.

typedef enum _mcan_frame_idformat mcan_frame_idformat_t
MCAN frame format.

typedef enum _mcan_frame_type mcan_frame_type_t
MCAN frame type.

typedef enum _mcan_bytes_in_datafield mcan_bytes_in_datafield_t
MCAN frame datafield size.

typedef struct _mcan_tx_buffer_frame mcan_tx_buffer_frame_t
MCAN Tx Buffer structure.

typedef struct _mcan_rx_buffer_frame mcan_rx_buffer_frame_t
MCAN Rx FIFO/Buffer structure.

typedef enum _mcan_fifo_type mcan_fifo_type_t
MCAN Rx FIFO block number.

typedef enum _mcan_fifo_opmode_config mcan_fifo_opmode_config_t
MCAN FIFO Operation Mode.

typedef enum _mcan_txmode_config mcan_txmode_config_t
MCAN Tx FIFO/Queue Mode.

340 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _mcan_remote_frame_config mcan_remote_frame_config_t
MCAN remote frames treatment.

typedef enum _mcan_nonmasking_frame_config mcan_nonmasking_frame_config_t
MCAN non-masking frames treatment.

typedef enum _mcan_fec_config mcan_fec_config_t
MCAN Filter Element Configuration.

typedef struct _mcan_rx_fifo_config mcan_rx_fifo_config_t
MCAN Rx FIFO configuration.

typedef struct _mcan_rx_buffer_config mcan_rx_buffer_config_t
MCAN Rx Buffer configuration.

typedef struct _mcan_tx_fifo_config mcan_tx_fifo_config_t
MCAN Tx Event FIFO configuration.

typedef struct _mcan_tx_buffer_config mcan_tx_buffer_config_t
MCAN Tx Buffer configuration.

typedef enum _mcan_std_filter_type mcan_filter_type_t
MCAN Filter Type.

typedef struct _mcan_std_filter_element_config mcan_std_filter_element_config_t
MCAN Standard Message ID Filter Element.

typedef struct _mcan_ext_filter_element_config mcan_ext_filter_element_config_t
MCAN Extended Message ID Filter Element.

typedef struct _mcan_frame_filter_config mcan_frame_filter_config_t
MCAN Rx filter configuration.

typedef struct _mcan_timing_config mcan_timing_config_t
MCAN protocol timing characteristic configuration structure.

typedef struct _mcan_timing_param mcan_timing_param_t
MCAN bit timing parameter configuration structure.

typedef struct _mcan_memory_config mcan_memory_config_t
MCAN Message RAM related configuration structure.

typedef struct _mcan_config mcan_config_t
MCAN module configuration structure.

typedef struct _mcan_buffer_transfer mcan_buffer_transfer_t
MCAN Buffer transfer.

typedef struct _mcan_fifo_transfer mcan_fifo_transfer_t
MCAN Rx FIFO transfer.

typedef struct _mcan_handle mcan_handle_t
MCAN handle structure definition.

typedef void (*mcan_transfer_callback_t)(CAN_Type *base,mcan_handle_t *handle, status_t
status, uint32_t result, void *userData)

MCAN transfer callback function.

The MCAN transfer callback returns a value from the underlying layer. If the status equals
to kStatus_MCAN_ErrorStatus, the result parameter is the Content of MCAN status register
which can be used to get the working status(or error status) of MCAN module. If the status
equals to other MCAN Message Buffer transfer status, the result is the index of Message
Buffer that generate transfer event. If the status equals to other MCAN Message Buffer
transfer status, the result is meaningless and should be Ignored.

2.30. MCAN: Controller Area Network Driver 341

MCUXpresso SDK Documentation, Release 25.09.00

MCAN_RETRY_TIMES

struct _mcan_tx_buffer_frame
#include <fsl_mcan.h>MCAN Tx Buffer structure.

Public Members

uint8_t size
classical CAN is 8(bytes), FD is 12/64 such.

struct _mcan_rx_buffer_frame
#include <fsl_mcan.h>MCAN Rx FIFO/Buffer structure.

Public Members

uint8_t size
classical CAN is 8(bytes), FD is 12/64 such.

struct _mcan_rx_fifo_config
#include <fsl_mcan.h>MCAN Rx FIFO configuration.

Public Members

uint32_t address
FIFOn start address.

uint32_t elementSize
FIFOn element number.

uint32_t watermark
FIFOn watermark level.

mcan_fifo_opmode_config_t opmode
FIFOn blocking/overwrite mode.

mcan_bytes_in_datafield_t datafieldSize
Data field size per frame, size>8 is for CANFD.

struct _mcan_rx_buffer_config
#include <fsl_mcan.h>MCAN Rx Buffer configuration.

Public Members

uint32_t address
Rx Buffer start address.

mcan_bytes_in_datafield_t datafieldSize
Data field size per frame, size>8 is for CANFD.

struct _mcan_tx_fifo_config
#include <fsl_mcan.h>MCAN Tx Event FIFO configuration.

342 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

uint32_t address
Event fifo start address.

uint32_t elementSize
FIFOn element number.

uint32_t watermark
FIFOn watermark level.

struct _mcan_tx_buffer_config
#include <fsl_mcan.h>MCAN Tx Buffer configuration.

Public Members

uint32_t address
Tx Buffers Start Address.

uint32_t dedicatedSize
Number of Dedicated Transmit Buffers.

uint32_t fqSize
Transmit FIFO/Queue Size.

mcan_txmode_config_t mode
Tx FIFO/Queue Mode.

mcan_bytes_in_datafield_t datafieldSize
Data field size per frame, size>8 is for CANFD.

struct _mcan_std_filter_element_config
#include <fsl_mcan.h>MCAN Standard Message ID Filter Element.

Public Members

uint32_t sfid2
Standard Filter ID 2.

uint32_t __pad0__
Reserved.

uint32_t sfid1
Standard Filter ID 1.

uint32_t sfec
Standard Filter Element Configuration.

uint32_t sft
Standard Filter Type.

struct _mcan_ext_filter_element_config
#include <fsl_mcan.h>MCAN Extended Message ID Filter Element.

Public Members

uint32_t efid1
Extended Filter ID 1.

2.30. MCAN: Controller Area Network Driver 343

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t efec
Extended Filter Element Configuration.

uint32_t efid2
Extended Filter ID 2.

uint32_t __pad0__
Reserved.

uint32_t eft
Extended Filter Type.

struct _mcan_frame_filter_config
#include <fsl_mcan.h>MCAN Rx filter configuration.

Public Members

uint32_t address
Filter start address.

uint32_t listSize
Filter list size.

mcan_frame_idformat_t idFormat
Frame format.

mcan_remote_frame_config_t remFrame
Remote frame treatment.

mcan_nonmasking_frame_config_t nmFrame
Non-masking frame treatment.

struct _mcan_timing_config
#include <fsl_mcan.h>MCAN protocol timing characteristic configuration structure.

Public Members

uint16_t preDivider
Nominal Clock Pre-scaler Division Factor.

uint8_t rJumpwidth
Nominal Re-sync Jump Width.

uint8_t seg1
Nominal Time Segment 1.

uint8_t seg2
Nominal Time Segment 2.

uint16_t datapreDivider
Data Clock Pre-scaler Division Factor.

uint8_t datarJumpwidth
Data Re-sync Jump Width.

uint8_t dataseg1
Data Time Segment 1.

uint8_t dataseg2
Data Time Segment 2.

344 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

struct _mcan_timing_param
#include <fsl_mcan.h>MCAN bit timing parameter configuration structure.

Public Members

uint32_t busLength
Maximum Bus length in meter.

uint32_t propTxRx
Transceiver propagation delay in nanosecond.

uint32_t nominalbaudRate
Baud rate of Arbitration phase in bps.

uint32_t nominalSP
Sample point of Arbitration phase, range in 10 ~ 990, 800 means 80%.

uint32_t databaudRate
Baud rate of Data phase in bps.

uint32_t dataSP
Sample point of Data phase, range in 0 ~ 1000, 800 means 80%.

struct _mcan_memory_config
#include <fsl_mcan.h>MCAN Message RAM related configuration structure.

Public Members

uint32_t baseAddr
Message RAM base address, should be 4k alignment.

struct _mcan_config
#include <fsl_mcan.h>MCAN module configuration structure.

Public Members

uint32_t baudRateA
Baud rate of Arbitration phase in bps.

uint32_t baudRateD
Baud rate of Data phase in bps.

bool enableCanfdNormal
Enable or Disable CANFD normal.

bool enableCanfdSwitch
Enable or Disable CANFD with baudrate switch.

bool enableLoopBackInt
Enable or Disable Internal Back.

bool enableLoopBackExt
Enable or Disable External Loop Back.

bool enableBusMon
Enable or Disable Bus Monitoring Mode.

mcan_timing_config_t timingConfig
Protocol timing .

2.30. MCAN: Controller Area Network Driver 345

MCUXpresso SDK Documentation, Release 25.09.00

struct _mcan_buffer_transfer
#include <fsl_mcan.h>MCAN Buffer transfer.

Public Members

mcan_tx_buffer_frame_t *frame
The buffer of CAN Message to be transfer.

uint8_t bufferIdx
The index of Message buffer used to transfer Message.

struct _mcan_fifo_transfer
#include <fsl_mcan.h>MCAN Rx FIFO transfer.

Public Members

mcan_rx_buffer_frame_t *frame
The buffer of CAN Message to be received from Rx FIFO.

struct _mcan_handle
#include <fsl_mcan.h>MCAN handle structure.

Public Members

mcan_transfer_callback_t callback
Callback function.

void *userData
MCAN callback function parameter.

mcan_tx_buffer_frame_t *volatile bufferFrameBuf[64]
The buffer for received data from Buffers.

mcan_rx_buffer_frame_t *volatile rxFifoFrameBuf
The buffer for received data from Rx FIFO.

volatile uint8_t bufferState[64]
Message Buffer transfer state.

volatile uint8_t rxFifoState
Rx FIFO transfer state.

struct __unnamed11__

Public Members

uint32_t id
CAN Frame Identifier.

uint32_t rtr
CAN Frame Type(DATA or REMOTE).

uint32_t xtd
CAN Frame Type(STD or EXT).

uint32_t esi
CAN Frame Error State Indicator.

struct __unnamed13__

346 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

uint32_t dlc
Data Length Code 9 10 11 12 13 14 15 Number of data bytes 12 16 20 24 32 48 64

uint32_t brs
Bit Rate Switch.

uint32_t fdf
CAN FD format.

uint32_t __pad1__
Reserved.

uint32_t efc
Event FIFO control.

uint32_t mm
Message Marker.

struct __unnamed15__

Public Members

uint32_t id
CAN Frame Identifier.

uint32_t rtr
CAN Frame Type(DATA or REMOTE).

uint32_t xtd
CAN Frame Type(STD or EXT).

uint32_t esi
CAN Frame Error State Indicator.

struct __unnamed17__

Public Members

uint32_t rxts
Rx Timestamp.

uint32_t dlc
Data Length Code 9 10 11 12 13 14 15 Number of data bytes 12 16 20 24 32 48 64

uint32_t brs
Bit Rate Switch.

uint32_t fdf
CAN FD format.

uint32_t __pad0__
Reserved.

uint32_t fidx
Filter Index.

uint32_t anmf
Accepted Non-matching Frame.

2.30. MCAN: Controller Area Network Driver 347

MCUXpresso SDK Documentation, Release 25.09.00

2.31 MRT: Multi-Rate Timer

voidMRT_Init(MRT_Type *base, constmrt_config_t *config)
Ungates the MRT clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the MRT driver.

Parameters
• base – Multi-Rate timer peripheral base address

• config – Pointer to user’s MRT config structure. If MRT has MULTITASK bit
field in MODCFG reigster, param config is useless.

voidMRT_Deinit(MRT_Type *base)
Gate the MRT clock.

Parameters
• base – Multi-Rate timer peripheral base address

static inline voidMRT_GetDefaultConfig(mrt_config_t *config)
Fill in the MRT config struct with the default settings.

The default values are:

config->enableMultiTask = false;

Parameters
• config – Pointer to user’s MRT config structure.

static inline voidMRT_SetupChannelMode(MRT_Type *base,mrt_chnl_t channel, const
mrt_timer_mode_tmode)

Sets up an MRT channel mode.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Channel that is being configured.

• mode – Timer mode to use for the channel.

static inline voidMRT_EnableInterrupts(MRT_Type *base,mrt_chnl_t channel, uint32_t mask)
Enables the MRT interrupt.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration mrt_interrupt_enable_t

static inline voidMRT_DisableInterrupts(MRT_Type *base,mrt_chnl_t channel, uint32_t mask)
Disables the selected MRT interrupt.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number

348 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

• mask – The interrupts to disable. This is a logical OR of members of the
enumeration mrt_interrupt_enable_t

static inline uint32_tMRT_GetEnabledInterrupts(MRT_Type *base,mrt_chnl_t channel)
Gets the enabled MRT interrupts.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
mrt_interrupt_enable_t

static inline uint32_tMRT_GetStatusFlags(MRT_Type *base,mrt_chnl_t channel)
Gets the MRT status flags.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number

Returns
The status flags. This is the logical OR of members of the enumeration
mrt_status_flags_t

static inline voidMRT_ClearStatusFlags(MRT_Type *base,mrt_chnl_t channel, uint32_t mask)
Clears the MRT status flags.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number

• mask – The status flags to clear. This is a logical OR of members of the
enumeration mrt_status_flags_t

voidMRT_UpdateTimerPeriod(MRT_Type *base,mrt_chnl_t channel, uint32_t count, bool
immediateLoad)

Used to update the timer period in units of count.

The new value will be immediately loaded or will be loaded at the end of the current time
interval. For one-shot interrupt mode the new value will be immediately loaded.

Note: User can call the utility macros provided in fsl_common.h to convert to ticks

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number

• count – Timer period in units of ticks

• immediateLoad – true: Load the new value immediately into the TIMER reg-
ister; false: Load the new value at the end of current timer interval

static inline uint32_tMRT_GetCurrentTimerCount(MRT_Type *base,mrt_chnl_t channel)
Reads the current timer counting value.

This function returns the real-time timer counting value, in a range from0 to a timer period.

2.31. MRT: Multi-Rate Timer 349

MCUXpresso SDK Documentation, Release 25.09.00

Note: User can call the utility macros provided in fsl_common.h to convert ticks to usec or
msec

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number

Returns
Current timer counting value in ticks

static inline voidMRT_StartTimer(MRT_Type *base,mrt_chnl_t channel, uint32_t count)
Starts the timer counting.

After calling this function, timers load period value, counts down to 0 and depending on
the timer mode it will either load the respective start value again or stop.

Note: User can call the utility macros provided in fsl_common.h to convert to ticks

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number.

• count – Timer period in units of ticks. Count can contain the LOAD bit,
which control the force load feature.

static inline voidMRT_StopTimer(MRT_Type *base,mrt_chnl_t channel)
Stops the timer counting.

This function stops the timer from counting.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number.

static inline uint32_tMRT_GetIdleChannel(MRT_Type *base)
Find the available channel.

This function returns the lowest available channel number.

Parameters
• base – Multi-Rate timer peripheral base address

static inline voidMRT_ReleaseChannel(MRT_Type *base,mrt_chnl_t channel)
Release the channel when the timer is using the multi-task mode.

In multi-task mode, the INUSE flags allow more control over when MRT channels are
released for further use. The user can hold on to a channel acquired by calling
MRT_GetIdleChannel() for as long as it is needed and release it by calling this function.
This removes the need to ask for an available channel for every use.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number.

FSL_MRT_DRIVER_VERSION

350 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enum _mrt_chnl
List of MRT channels.

Values:

enumerator kMRT_Channel_0
MRT channel number 0

enumerator kMRT_Channel_1
MRT channel number 1

enumerator kMRT_Channel_2
MRT channel number 2

enumerator kMRT_Channel_3
MRT channel number 3

enum _mrt_timer_mode
List of MRT timer modes.

Values:

enumerator kMRT_RepeatMode
Repeat Interrupt mode

enumerator kMRT_OneShotMode
One-shot Interrupt mode

enumerator kMRT_OneShotStallMode
One-shot stall mode

enum _mrt_interrupt_enable
List of MRT interrupts.

Values:

enumerator kMRT_TimerInterruptEnable
Timer interrupt enable

enum _mrt_status_flags
List of MRT status flags.

Values:

enumerator kMRT_TimerInterruptFlag
Timer interrupt flag

enumerator kMRT_TimerRunFlag
Indicates state of the timer

typedef enum _mrt_chnl mrt_chnl_t
List of MRT channels.

typedef enum _mrt_timer_mode mrt_timer_mode_t
List of MRT timer modes.

typedef enum _mrt_interrupt_enable mrt_interrupt_enable_t
List of MRT interrupts.

typedef enum _mrt_status_flags mrt_status_flags_t
List of MRT status flags.

2.31. MRT: Multi-Rate Timer 351

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _mrt_config mrt_config_t
MRT configuration structure.

This structure holds the configuration settings for the MRT peripheral. To initialize this
structure to reasonable defaults, call the MRT_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

struct _mrt_config
#include <fsl_mrt.h>MRT configuration structure.

This structure holds the configuration settings for the MRT peripheral. To initialize this
structure to reasonable defaults, call the MRT_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

Public Members

bool enableMultiTask
true: Timers run in multi-task mode; false: Timers run in hardware status mode

2.32 OTP: One-Time Programmable memory and API

FSL_OTP_DRIVER_VERSION
OTP driver version 2.0.1.

Current version: 2.0.1

Change log:

• Version 2.0.1

– Fixed MISRA-C 2012 violations.

• Version 2.0.0

– Initial version.

enum _otp_bank
Bank bit flags.

Values:

enumerator kOTP_Bank0
Bank 0.

enumerator kOTP_Bank1
Bank 1.

enumerator kOTP_Bank2
Bank 2.

enumerator kOTP_Bank3
Bank 3.

enum _otp_word
Bank word bit flags.

Values:

352 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kOTP_Word0
Word 0.

enumerator kOTP_Word1
Word 1.

enumerator kOTP_Word2
Word 2.

enumerator kOTP_Word3
Word 3.

enum _otp_lock
Lock modifications of a read or write access to a bank register.

Values:

enumerator kOTP_LockDontLock
Do not lock.

enumerator kOTP_LockLock
Lock till reset.

enum _otp_status
OTP error codes.

Values:

enumerator kStatus_OTP_WrEnableInvalid
Write enable invalid.

enumerator kStatus_OTP_SomeBitsAlreadyProgrammed
Some bits already programmed.

enumerator kStatus_OTP_AllDataOrMaskZero
All data or mask zero.

enumerator kStatus_OTP_WriteAccessLocked
Write access locked.

enumerator kStatus_OTP_ReadDataMismatch
Read data mismatch.

enumerator kStatus_OTP_UsbIdEnabled
USB ID enabled.

enumerator kStatus_OTP_EthMacEnabled
Ethernet MAC enabled.

enumerator kStatus_OTP_AesKeysEnabled
AES keys enabled.

enumerator kStatus_OTP_IllegalBank
Illegal bank.

enumerator kStatus_OTP_ShufflerConfigNotValid
Shuffler config not valid.

enumerator kStatus_OTP_ShufflerNotEnabled
Shuffler not enabled.

enumerator kStatus_OTP_ShufflerCanOnlyProgSingleKey
Shuffler can only program single key.

2.32. OTP: One-Time Programmable memory and API 353

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus_OTP_IllegalProgramData
Illegal program data.

enumerator kStatus_OTP_ReadAccessLocked
Read access locked.

typedef enum _otp_bank otp_bank_t
Bank bit flags.

typedef enum _otp_word otp_word_t
Bank word bit flags.

typedef enum _otp_lock otp_lock_t
Lock modifications of a read or write access to a bank register.

static inline status_t OTP_Init(void)
Initializes OTP controller.

Returns
kStatus_Success upon successful execution, error status otherwise.

static inline status_t OTP_EnableBankWriteMask(otp_bank_t bankMask)
Unlock one or more OTP banks for write access.

Parameters
• bankMask – bit flag that specifies which banks to unlock.

Returns
kStatus_Success upon successful execution, error status otherwise.

static inline status_t OTP_DisableBankWriteMask(otp_bank_t bankMask)
Lock one or more OTP banks for write access.

Parameters
• bankMask – bit flag that specifies which banks to lock.

Returns
kStatus_Success upon successful execution, error status otherwise.

static inline status_t OTP_EnableBankWriteLock(uint32_t bankIndex, otp_word_t
regEnableMask, otp_word_t regDisableMask,
otp_lock_t lockWrite)

Locks or unlocks write access to a register of an OTP bank and possibly lock un/locking of
it.

Parameters
• bankIndex – OTP bank index, 0 = bank 0, 1 = bank 1 etc.

• regEnableMask – bit flag that specifies for which words to enable writing.

• regDisableMask – bit flag that specifies for which words to disable writing.

• lockWrite – specifies if access set can be modified or is locked till reset.

Returns
kStatus_Success upon successful execution, error status otherwise.

static inline status_t OTP_EnableBankReadLock(uint32_t bankIndex, otp_word_t
regEnableMask, otp_word_t regDisableMask,
otp_lock_t lockWrite)

Locks or unlocks read access to a register of an OTP bank and possibly lock un/locking of it.

Parameters
• bankIndex – OTP bank index, 0 = bank 0, 1 = bank 1 etc.

354 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

• regEnableMask – bit flag that specifies for which words to enable reading.

• regDisableMask – bit flag that specifies for which words to disable reading.

• lockWrite – specifies if access set can be modified or is locked till reset.

Returns
kStatus_Success upon successful execution, error status otherwise.

static inline status_t OTP_ProgramRegister(uint32_t bankIndex, uint32_t regIndex, uint32_t
value)

Program a single register in an OTP bank.

Parameters
• bankIndex – OTP bank index, 0 = bank 0, 1 = bank 1 etc.

• regIndex – OTP register index.

• value – value to write.

Returns
kStatus_Success upon successful execution, error status otherwise.

static inline uint32_t OTP_GetDriverVersion(void)
Returns the version of the OTP driver in ROM.

Returns
version.

FSL_COMPONENT_ID

_OTP_ERR_BASE

_OTP_MAKE_STATUS(errorCode)

2.33 PINT: Pin Interrupt and Pattern Match Driver

FSL_PINT_DRIVER_VERSION

enum _pint_pin_enable
PINT Pin Interrupt enable type.

Values:

enumerator kPINT_PinIntEnableNone
Do not generate Pin Interrupt

enumerator kPINT_PinIntEnableRiseEdge
Generate Pin Interrupt on rising edge

enumerator kPINT_PinIntEnableFallEdge
Generate Pin Interrupt on falling edge

enumerator kPINT_PinIntEnableBothEdges
Generate Pin Interrupt on both edges

enumerator kPINT_PinIntEnableLowLevel
Generate Pin Interrupt on low level

enumerator kPINT_PinIntEnableHighLevel
Generate Pin Interrupt on high level

2.33. PINT: Pin Interrupt and Pattern Match Driver 355

MCUXpresso SDK Documentation, Release 25.09.00

enum _pint_int
PINT Pin Interrupt type.

Values:

enumerator kPINT_PinInt0
Pin Interrupt 0

enum _pint_pmatch_input_src
PINT Pattern Match bit slice input source type.

Values:

enumerator kPINT_PatternMatchInp0Src
Input source 0

enumerator kPINT_PatternMatchInp1Src
Input source 1

enumerator kPINT_PatternMatchInp2Src
Input source 2

enumerator kPINT_PatternMatchInp3Src
Input source 3

enumerator kPINT_PatternMatchInp4Src
Input source 4

enumerator kPINT_PatternMatchInp5Src
Input source 5

enumerator kPINT_PatternMatchInp6Src
Input source 6

enumerator kPINT_PatternMatchInp7Src
Input source 7

enumerator kPINT_SecPatternMatchInp0Src
Input source 0

enumerator kPINT_SecPatternMatchInp1Src
Input source 1

enum _pint_pmatch_bslice
PINT Pattern Match bit slice type.

Values:

enumerator kPINT_PatternMatchBSlice0
Bit slice 0

enum _pint_pmatch_bslice_cfg
PINT Pattern Match configuration type.

Values:

enumerator kPINT_PatternMatchAlways
Always Contributes to product term match

enumerator kPINT_PatternMatchStickyRise
Sticky Rising edge

enumerator kPINT_PatternMatchStickyFall
Sticky Falling edge

356 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPINT_PatternMatchStickyBothEdges
Sticky Rising or Falling edge

enumerator kPINT_PatternMatchHigh
High level

enumerator kPINT_PatternMatchLow
Low level

enumerator kPINT_PatternMatchNever
Never contributes to product term match

enumerator kPINT_PatternMatchBothEdges
Either rising or falling edge

typedef enum _pint_pin_enable pint_pin_enable_t
PINT Pin Interrupt enable type.

typedef enum _pint_int pint_pin_int_t
PINT Pin Interrupt type.

typedef enum _pint_pmatch_input_src pint_pmatch_input_src_t
PINT Pattern Match bit slice input source type.

typedef enum _pint_pmatch_bslice pint_pmatch_bslice_t
PINT Pattern Match bit slice type.

typedef enum _pint_pmatch_bslice_cfg pint_pmatch_bslice_cfg_t
PINT Pattern Match configuration type.

typedef struct _pint_status pint_status_t
PINT event status.

typedef void (*pint_cb_t)(pint_pin_int_t pintr, pint_status_t *status)
PINT Callback function.

typedef struct _pint_pmatch_cfg pint_pmatch_cfg_t

void PINT_Init(PINT_Type *base)
Initialize PINT peripheral.

This function initializes the PINT peripheral and enables the clock.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

void PINT_SetCallback(PINT_Type *base, pint_cb_t callback)
Set PINT callback.

This function set the callback for PINT interupt handler.

Parameters
• base – Base address of the PINT peripheral.

• callback – Callback.

Return values
None. –

2.33. PINT: Pin Interrupt and Pattern Match Driver 357

MCUXpresso SDK Documentation, Release 25.09.00

void PINT_PinInterruptConfig(PINT_Type *base, pint_pin_int_t intr, pint_pin_enable_t enable)
Configure PINT peripheral pin interrupt.

This function configures a given pin interrupt.

Parameters
• base – Base address of the PINT peripheral.

• intr – Pin interrupt.

• enable – Selects detection logic.

Return values
None. –

void PINT_PinInterruptGetConfig(PINT_Type *base, pint_pin_int_t pintr, pint_pin_enable_t
*enable)

Get PINT peripheral pin interrupt configuration.

This function returns the configuration of a given pin interrupt.

Parameters
• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

• enable – Pointer to store the detection logic.

Return values
None. –

void PINT_PinInterruptClrStatus(PINT_Type *base, pint_pin_int_t pintr)
Clear Selected pin interrupt status only when the pin was triggered by edge-sensitive.

This function clears the selected pin interrupt status.

Parameters
• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

Return values
None. –

static inline uint32_t PINT_PinInterruptGetStatus(PINT_Type *base, pint_pin_int_t pintr)
Get Selected pin interrupt status.

This function returns the selected pin interrupt status.

Parameters
• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

Return values
status – = 0 No pin interrupt request. = 1 Selected Pin interrupt request active.

void PINT_PinInterruptClrStatusAll(PINT_Type *base)
Clear all pin interrupts status only when pins were triggered by edge-sensitive.

This function clears the status of all pin interrupts.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

358 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t PINT_PinInterruptGetStatusAll(PINT_Type *base)
Get all pin interrupts status.

This function returns the status of all pin interrupts.

Parameters
• base – Base address of the PINT peripheral.

Return values
status – Each bit position indicates the status of corresponding pin interrupt.
= 0 No pin interrupt request. = 1 Pin interrupt request active.

static inline void PINT_PinInterruptClrFallFlag(PINT_Type *base, pint_pin_int_t pintr)
Clear Selected pin interrupt fall flag.

This function clears the selected pin interrupt fall flag.

Parameters
• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

Return values
None. –

static inline uint32_t PINT_PinInterruptGetFallFlag(PINT_Type *base, pint_pin_int_t pintr)
Get selected pin interrupt fall flag.

This function returns the selected pin interrupt fall flag.

Parameters
• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

Return values
flag – = 0 Falling edge has not been detected. = 1 Falling edge has been detected.

static inline void PINT_PinInterruptClrFallFlagAll(PINT_Type *base)
Clear all pin interrupt fall flags.

This function clears the fall flag for all pin interrupts.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

static inline uint32_t PINT_PinInterruptGetFallFlagAll(PINT_Type *base)
Get all pin interrupt fall flags.

This function returns the fall flag of all pin interrupts.

Parameters
• base – Base address of the PINT peripheral.

Return values
flags – Each bit position indicates the falling edge detection of the correspond-
ing pin interrupt. 0 Falling edge has not been detected. = 1 Falling edge has
been detected.

2.33. PINT: Pin Interrupt and Pattern Match Driver 359

MCUXpresso SDK Documentation, Release 25.09.00

static inline void PINT_PinInterruptClrRiseFlag(PINT_Type *base, pint_pin_int_t pintr)
Clear Selected pin interrupt rise flag.

This function clears the selected pin interrupt rise flag.

Parameters
• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

Return values
None. –

static inline uint32_t PINT_PinInterruptGetRiseFlag(PINT_Type *base, pint_pin_int_t pintr)
Get selected pin interrupt rise flag.

This function returns the selected pin interrupt rise flag.

Parameters
• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

Return values
flag – = 0 Rising edge has not been detected. = 1 Rising edge has been detected.

static inline void PINT_PinInterruptClrRiseFlagAll(PINT_Type *base)
Clear all pin interrupt rise flags.

This function clears the rise flag for all pin interrupts.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

static inline uint32_t PINT_PinInterruptGetRiseFlagAll(PINT_Type *base)
Get all pin interrupt rise flags.

This function returns the rise flag of all pin interrupts.

Parameters
• base – Base address of the PINT peripheral.

Return values
flags – Each bit position indicates the rising edge detection of the correspond-
ing pin interrupt. 0 Rising edge has not been detected. = 1 Rising edge has
been detected.

void PINT_PatternMatchConfig(PINT_Type *base, pint_pmatch_bslice_t bslice, pint_pmatch_cfg_t
*cfg)

Configure PINT pattern match.

This function configures a given pattern match bit slice.

Parameters
• base – Base address of the PINT peripheral.

• bslice – Pattern match bit slice number.

• cfg – Pointer to bit slice configuration.

Return values
None. –

360 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

void PINT_PatternMatchGetConfig(PINT_Type *base, pint_pmatch_bslice_t bslice,
pint_pmatch_cfg_t *cfg)

Get PINT pattern match configuration.

This function returns the configuration of a given pattern match bit slice.

Parameters
• base – Base address of the PINT peripheral.

• bslice – Pattern match bit slice number.

• cfg – Pointer to bit slice configuration.

Return values
None. –

static inline uint32_t PINT_PatternMatchGetStatus(PINT_Type *base, pint_pmatch_bslice_t
bslice)

Get pattern match bit slice status.

This function returns the status of selected bit slice.

Parameters
• base – Base address of the PINT peripheral.

• bslice – Pattern match bit slice number.

Return values
status – = 0 Match has not been detected. = 1 Match has been detected.

static inline uint32_t PINT_PatternMatchGetStatusAll(PINT_Type *base)
Get status of all pattern match bit slices.

This function returns the status of all bit slices.

Parameters
• base – Base address of the PINT peripheral.

Return values
status – Each bit position indicates the match status of corresponding bit slice.
= 0 Match has not been detected. = 1 Match has been detected.

uint32_t PINT_PatternMatchResetDetectLogic(PINT_Type *base)
Reset pattern match detection logic.

This function resets the patternmatch detection logic if any of the product term ismatching.

Parameters
• base – Base address of the PINT peripheral.

Return values
pmstatus – Each bit position indicates the match status of corresponding bit
slice. = 0 Match was detected. = 1 Match was not detected.

static inline void PINT_PatternMatchEnable(PINT_Type *base)
Enable pattern match function.

This function enables the pattern match function.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

2.33. PINT: Pin Interrupt and Pattern Match Driver 361

MCUXpresso SDK Documentation, Release 25.09.00

static inline void PINT_PatternMatchDisable(PINT_Type *base)
Disable pattern match function.

This function disables the pattern match function.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

static inline void PINT_PatternMatchEnableRXEV(PINT_Type *base)
Enable RXEV output.

This function enables the pattern match RXEV output.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

static inline void PINT_PatternMatchDisableRXEV(PINT_Type *base)
Disable RXEV output.

This function disables the pattern match RXEV output.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

void PINT_EnableCallback(PINT_Type *base)
Enable callback.

This function enables the interrupt for the selected PINT peripheral. Although the pin(s)
are monitored as soon as they are enabled, the callback function is not enabled until this
function is called.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

void PINT_DisableCallback(PINT_Type *base)
Disable callback.

This function disables the interrupt for the selected PINT peripheral. Although the pins are
still being monitored but the callback function is not called.

Parameters
• base – Base address of the peripheral.

Return values
None. –

void PINT_Deinit(PINT_Type *base)
Deinitialize PINT peripheral.

This function disables the PINT clock.

Parameters
• base – Base address of the PINT peripheral.

362 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

Return values
None. –

void PINT_EnableCallbackByIndex(PINT_Type *base, pint_pin_int_t pintIdx)
enable callback by pin index.

This function enables callback by pin index instead of enabling all pins.

Parameters
• base – Base address of the peripheral.

• pintIdx – pin index.

Return values
None. –

void PINT_DisableCallbackByIndex(PINT_Type *base, pint_pin_int_t pintIdx)
disable callback by pin index.

This function disables callback by pin index instead of disabling all pins.

Parameters
• base – Base address of the peripheral.

• pintIdx – pin index.

Return values
None. –

PINT_USE_LEGACY_CALLBACK

PININT_BITSLICE_SRC_START

PININT_BITSLICE_SRC_MASK

PININT_BITSLICE_CFG_START

PININT_BITSLICE_CFG_MASK

PININT_BITSLICE_ENDP_MASK

PINT_PIN_INT_LEVEL

PINT_PIN_INT_EDGE

PINT_PIN_INT_FALL_OR_HIGH_LEVEL

PINT_PIN_INT_RISE

PINT_PIN_RISE_EDGE

PINT_PIN_FALL_EDGE

PINT_PIN_BOTH_EDGE

PINT_PIN_LOW_LEVEL

PINT_PIN_HIGH_LEVEL

struct _pint_status
#include <fsl_pint.h> PINT event status.

struct _pint_pmatch_cfg
#include <fsl_pint.h>

2.33. PINT: Pin Interrupt and Pattern Match Driver 363

MCUXpresso SDK Documentation, Release 25.09.00

2.34 Power Driver

enum pd_bits
Values:

enumerator kPDRUNCFG_LP_REG

enumerator kPDRUNCFG_PD_FRO_EN

enumerator kPDRUNCFG_PD_TS

enumerator kPDRUNCFG_PD_BOD_RESET

enumerator kPDRUNCFG_PD_BOD_INTR

enumerator kPDRUNCFG_PD_VD2_ANA

enumerator kPDRUNCFG_PD_ADC0

enumerator kPDRUNCFG_PD_RAM0

enumerator kPDRUNCFG_PD_RAM1

enumerator kPDRUNCFG_PD_RAM2

enumerator kPDRUNCFG_PD_RAM3

enumerator kPDRUNCFG_PD_ROM

enumerator kPDRUNCFG_PD_VDDA

enumerator kPDRUNCFG_PD_WDT_OSC

enumerator kPDRUNCFG_PD_USB0_PHY

enumerator kPDRUNCFG_PD_SYS_PLL0

enumerator kPDRUNCFG_PD_VREFP

enumerator kPDRUNCFG_PD_FLASH_BG

enumerator kPDRUNCFG_PD_VD3

enumerator kPDRUNCFG_PD_VD4

enumerator kPDRUNCFG_PD_VD5

enumerator kPDRUNCFG_PD_VD6

enumerator kPDRUNCFG_REQ_DELAY

enumerator kPDRUNCFG_FORCE_RBB

enumerator kPDRUNCFG_PD_USB1_PHY

enumerator kPDRUNCFG_PD_USB_PLL

enumerator kPDRUNCFG_PD_AUDIO_PLL

enumerator kPDRUNCFG_PD_SYS_OSC

enumerator kPDRUNCFG_PD_EEPROM

enumerator kPDRUNCFG_PD_rng

364 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPDRUNCFG_ForceUnsigned

enum _power_mode_config
Values:

enumerator kPmu_Sleep

enumerator kPmu_Deep_Sleep

enumerator kPmu_Deep_PowerDown

enum _power_bod_status
The enumeration of BOD status flags.

Values:

enumerator kBod_ResetStatusFlag
BOD reset has occurred.

enumerator kBod_InterruptStatusFlag
BOD interrupt has occurred

enum _power_bod_reset_level
The enumeration of BOD reset level.

Values:

enumerator kBod_ResetLevel0
Reset Level0: 1.62V.

enumerator kBod_ResetLevel1
Reset Level0: 1.68V.

enumerator kBod_ResetLevel2
Reset Level0: 2.21V.

enumerator kBod_ResetLevel3
Reset Level0: 2.85V.

enum _power_bod_interrupt_level
The enumeration of BOD interrupt level.

Values:

enumerator kBod_InterruptLevel0
Interrupt level: 1.63V.

enumerator kBod_InterruptLevel1
Interrupt level: 1.68V.

enumerator kBod_InterruptLevel2
Interrupt level: 1.95V.

enumerator kBod_InterruptLevel3
Interrupt level: 2.86V.

typedef enum pd_bits pd_bit_t

typedef enum _power_mode_config power_mode_cfg_t

typedef enum _power_bod_status power_bod_status_t
The enumeration of BOD status flags.

typedef enum _power_bod_reset_level power_bod_reset_level_t
The enumeration of BOD reset level.

2.34. Power Driver 365

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _power_bod_interrupt_level power_bod_interrupt_level_t
The enumeration of BOD interrupt level.

typedef struct _power_bod_config power_bod_config_t
The configuration of power bod, including reset level, interrupt level, and so on.

FSL_POWER_DRIVER_VERSION
power driver version 2.2.0.

MAKE_PD_BITS(reg, slot)

PDRCFG0

PDRCFG1

static inline void POWER_EnablePD(pd_bit_t en)
API to enable PDRUNCFG bit in the Syscon. Note that enabling the bit powers down the
peripheral.

Parameters
• en – peripheral for which to enable the PDRUNCFG bit

Returns
none

static inline void POWER_DisablePD(pd_bit_t en)
API to disable PDRUNCFG bit in the Syscon. Note that disabling the bit powers up the pe-
ripheral.

Parameters
• en – peripheral for which to disable the PDRUNCFG bit

Returns
none

static inline void POWER_EnableDeepSleep(void)
API to enable deep sleep bit in the ARM Core.

Returns
none

static inline void POWER_DisableDeepSleep(void)
API to disable deep sleep bit in the ARM Core.

Returns
none

void POWER_OtpReload(void)
Power Library API to reload OTP. This API must be called if VD6 is power down and power
back again since FROHF TRIM value is store in OTP. If not, when calling FROHF settng API
in clock driver then the FROHF clock out put will be inaccurate.

Returns
none

void POWER_SetPLL(void)
Power Library API to power the PLLs.

Returns
none

366 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

void POWER_SetUsbPhy(void)
Power Library API to power the USB PHY.

Returns
none

void POWER_EnterPowerMode(power_mode_cfg_tmode, uint64_t exclude_from_pd)
Power Library API to enter different power modes.

Parameters
• mode – power mode

• exclude_from_pd – Bit mask of the PDRUNCFG0(low 32bits) and
PDRUNCFG1(high 32bits) that needs to be powered on during power
mode selected.

Returns
none

void POWER_EnterSleep(void)
Power Library API to enter sleep mode.

Returns
none

void POWER_EnterDeepSleep(uint64_t exclude_from_pd)
Power Library API to enter deep sleep mode.

Parameters
• exclude_from_pd – Bit mask of the PDRUNCFG0(low 32bits) and
PDRUNCFG1(high 32bits) bits that needs to be powered on during
deep sleep

Returns
none

void POWER_EnterDeepPowerDown(uint64_t exclude_from_pd)
Power Library API to enter deep power down mode.

Parameters
• exclude_from_pd – Bit mask of the PDRUNCFG0(low 32bits) and
PDRUNCFG1(high 32bits) that needs to be powered on during deep
power down mode, but this is has no effect as the voltages are cut off.

Returns
none

void POWER_SetVoltageForFreq(uint32_t freq)
Power LibraryAPI to choose normal regulation and set the voltage for the desired operating
frequency.

Parameters
• freq – - The desired frequency at which the part would like to operate, note
that the voltage and flash wait states should be set before changing fre-
quency

Returns
none

uint32_t POWER_GetLibVersion(void)
Power Library API to return the library version.

Returns
version number of the power library

2.34. Power Driver 367

MCUXpresso SDK Documentation, Release 25.09.00

void POWER_InitBod(const power_bod_config_t *bodConfig)
Initialize BOD, including enabling/disabling BOD interrupt, enabling/disabling BOD reset,
setting BOD interrupt level, and reset level.

Parameters
• bodConfig – Pointer the the structure power_bod_config_t.

void POWER_GetDefaultBodConfig(power_bod_config_t *bodConfig)
Get default BOD configuration.

bodConfig->enableReset = true;
bodConfig->resetLevel = kBod_ResetLevel0;
bodConfig->enableInterrupt = false;
bodConfig->interruptLevel = kBod_InterruptLevel0;

Parameters
• bodConfig – Pointer the the structure power_bod_config_t.

static inline void POWER_DeinitBod(void)
De-initialize BOD.

static inline uint32_t POWER_GetBodStatusFlags(void)
Get Bod status flags.

Returns
uint32_t

static inline void POWER_ClearBodStatusFlags(uint32_t mask)
Clear Bod status flags.

Parameters
• mask – The mask of status flags to clear, should be the OR’ed value of
power_bod_status_t.

bool enableReset
Enable/disable BOD reset function.

power_bod_reset_level_t resetLevel
BOD reset level, please refer to power_bod_reset_level_t.

bool enableInterrupt
Enable/disable BOD interrupt function.

power_bod_interrupt_level_t interruptLevel
BOD interrupt level, please refer to power_bod_interrupt_level_t.

struct _power_bod_config
#include <fsl_power.h>The configuration of power bod, including reset level, interrupt level,
and so on.

2.35 PUF: Physical Unclonable Function

FSL_PUF_DRIVER_VERSION
PUF driver version. Version 2.2.0.

Current version: 2.2.0

Change log:

• 2.0.0

368 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

– Initial version.

• 2.0.1

– Fixed puf_wait_usec function optimization issue.

• 2.0.2

– Add PUF configuration structure and support for PUF SRAM controller. Remove
magic constants.

• 2.0.3

– Fix MISRA C-2012 issue.

• 2.1.0

– Align driver with PUF SRAM controller registers on LPCXpresso55s16.

– Update initizalition logic .

• 2.1.1

– Fix ARMGCC build warning .

• 2.1.2

– Update: Add automatic big to little endian swap for user (pre-shared) keys desti-
nated to secret hardware bus (PUF key index 0).

• 2.1.3

– Fix MISRA C-2012 issue.

• 2.1.4

– Replace register uint32_t ticksCount with volatile uint32_t ticksCount in
puf_wait_usec() to prevent optimization out delay loop.

• 2.1.5

– Use common SDK delay in puf_wait_usec()

• 2.1.6

– Changed wait time in PUF_Init(), when initialization fails it will try
PUF_Powercycle() with shorter time. If this shorter time will also fail, initial-
ization will be tried with worst case time as before.

• 2.2.0

• Add support for kPUF_KeySlot4.

• Add new PUF_ClearKey() function, that clears a desired PUF internal HW key register.

enum _puf_key_index_register
Values:

enumerator kPUF_KeyIndex_00

enumerator kPUF_KeyIndex_01

enumerator kPUF_KeyIndex_02

enumerator kPUF_KeyIndex_03

enumerator kPUF_KeyIndex_04

enumerator kPUF_KeyIndex_05

enumerator kPUF_KeyIndex_06

2.35. PUF: Physical Unclonable Function 369

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPUF_KeyIndex_07

enumerator kPUF_KeyIndex_08

enumerator kPUF_KeyIndex_09

enumerator kPUF_KeyIndex_10

enumerator kPUF_KeyIndex_11

enumerator kPUF_KeyIndex_12

enumerator kPUF_KeyIndex_13

enumerator kPUF_KeyIndex_14

enumerator kPUF_KeyIndex_15

enum _puf_min_max
Values:

enumerator kPUF_KeySizeMin

enumerator kPUF_KeySizeMax

enumerator kPUF_KeyIndexMax

enum _puf_key_slot
PUF key slot.

Values:

enumerator kPUF_KeySlot0
PUF key slot 0

enumerator kPUF_KeySlot1
PUF key slot 1

PUF status return codes.

Values:

enumerator kStatus_EnrollNotAllowed

enumerator kStatus_StartNotAllowed

typedef enum _puf_key_index_register puf_key_index_register_t

typedef enum _puf_min_max puf_min_max_t

typedef enum _puf_key_slot puf_key_slot_t
PUF key slot.

PUF_GET_KEY_CODE_SIZE_FOR_KEY_SIZE(x)
Get Key Code size in bytes from key size in bytes at compile time.

PUF_MIN_KEY_CODE_SIZE

PUF_ACTIVATION_CODE_SIZE

KEYSTORE_PUF_DISCHARGE_TIME_FIRST_TRY_MS

KEYSTORE_PUF_DISCHARGE_TIME_MAX_MS

struct puf_config_t
#include <fsl_puf.h>

370 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

2.36 Reset Driver

enum _SYSCON_RSTn
Enumeration for peripheral reset control bits.

Defines the enumeration for peripheral reset control bits in PRESETC-
TRL/ASYNCPRESETCTRL registers

Values:

enumerator kSPIFI_RST_SHIFT_RSTn
SPIFI reset control

enumerator kMUX_RST_SHIFT_RSTn
Input mux reset control

enumerator kIOCON_RST_SHIFT_RSTn
IOCON reset control

enumerator kGPIO0_RST_SHIFT_RSTn
GPIO0 reset control

enumerator kGPIO1_RST_SHIFT_RSTn
GPIO1 reset control

enumerator kGPIO2_RST_SHIFT_RSTn
GPIO2 reset control

enumerator kGPIO3_RST_SHIFT_RSTn
GPIO3 reset control

enumerator kPINT_RST_SHIFT_RSTn
Pin interrupt (PINT) reset control

enumerator kGINT_RST_SHIFT_RSTn
Grouped interrupt (PINT) reset control.

enumerator kDMA_RST_SHIFT_RSTn
DMA reset control

enumerator kCRC_RST_SHIFT_RSTn
CRC reset control

enumerator kWWDT_RST_SHIFT_RSTn
Watchdog timer reset control

enumerator kADC0_RST_SHIFT_RSTn
ADC0 reset control

enumerator kMRT_RST_SHIFT_RSTn
Multi-rate timer (MRT) reset control

enumerator kSCT0_RST_SHIFT_RSTn
SCTimer/PWM 0 (SCT0) reset control

enumerator kMCAN0_RST_SHIFT_RSTn
MCAN0 reset control

enumerator kMCAN1_RST_SHIFT_RSTn
MCAN1 reset control

enumerator kUTICK_RST_SHIFT_RSTn
Micro-tick timer reset control

2.36. Reset Driver 371

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kFC0_RST_SHIFT_RSTn
Flexcomm Interface 0 reset control

enumerator kFC1_RST_SHIFT_RSTn
Flexcomm Interface 1 reset control

enumerator kFC2_RST_SHIFT_RSTn
Flexcomm Interface 2 reset control

enumerator kFC3_RST_SHIFT_RSTn
Flexcomm Interface 3 reset control

enumerator kFC4_RST_SHIFT_RSTn
Flexcomm Interface 4 reset control

enumerator kFC5_RST_SHIFT_RSTn
Flexcomm Interface 5 reset control

enumerator kFC6_RST_SHIFT_RSTn
Flexcomm Interface 6 reset control

enumerator kFC7_RST_SHIFT_RSTn
Flexcomm Interface 7 reset control

enumerator kDMIC_RST_SHIFT_RSTn
Digital microphone interface reset control

enumerator kCT32B2_RST_SHIFT_RSTn
CT32B2 reset control

enumerator kUSB0D_RST_SHIFT_RSTn
USB0D reset control

enumerator kCT32B0_RST_SHIFT_RSTn
CT32B0 reset control

enumerator kCT32B1_RST_SHIFT_RSTn
CT32B1 reset control

enumerator kLCD_RST_SHIFT_RSTn
LCD reset control

enumerator kSDIO_RST_SHIFT_RSTn
SDIO reset control

enumerator kUSB1H_RST_SHIFT_RSTn
USB1H reset control

enumerator kUSB1D_RST_SHIFT_RSTn
USB1D reset control

enumerator kUSB1RAM_RST_SHIFT_RSTn
USB1RAM reset control

enumerator kEMC_RST_SHIFT_RSTn
EMC reset control

enumerator kETH_RST_SHIFT_RSTn
ETH reset control

enumerator kGPIO4_RST_SHIFT_RSTn
GPIO4 reset control

372 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kGPIO5_RST_SHIFT_RSTn
GPIO5 reset control

enumerator kAES_RST_SHIFT_RSTn
AES reset control

enumerator kOTP_RST_SHIFT_RSTn
OTP reset control

enumerator kRNG_RST_SHIFT_RSTn
RNG reset control

enumerator kFC8_RST_SHIFT_RSTn
Flexcomm Interface 8 reset control

enumerator kFC9_RST_SHIFT_RSTn
Flexcomm Interface 9 reset control

enumerator kUSB0HMR_RST_SHIFT_RSTn
USB0HMR reset control

enumerator kUSB0HSL_RST_SHIFT_RSTn
USB0HSL reset control

enumerator kSHA_RST_SHIFT_RSTn
SHA reset control

enumerator kSC0_RST_SHIFT_RSTn
SC0 reset control

enumerator kSC1_RST_SHIFT_RSTn
SC1 reset control

enumerator kFC10_RST_SHIFT_RSTn
Flexcomm Interface 10 reset control

enumerator kPUF_RST_SHIFT_RSTn
PUF reset control

enumerator kCT32B3_RST_SHIFT_RSTn
CT32B3 reset control

enumerator kCT32B4_RST_SHIFT_RSTn
CT32B4 reset control

typedef enum _SYSCON_RSTn SYSCON_RSTn_t
Enumeration for peripheral reset control bits.

Defines the enumeration for peripheral reset control bits in PRESETC-
TRL/ASYNCPRESETCTRL registers

typedef SYSCON_RSTn_t reset_ip_name_t

void RESET_SetPeripheralReset(reset_ip_name_t peripheral)
Assert reset to peripheral.

Asserts reset signal to specified peripheral module.

Parameters
• peripheral – Assert reset to this peripheral. The enum argument contains
encoding of reset register and reset bit position in the reset register.

2.36. Reset Driver 373

MCUXpresso SDK Documentation, Release 25.09.00

void RESET_ClearPeripheralReset(reset_ip_name_t peripheral)
Clear reset to peripheral.

Clears reset signal to specified peripheral module, allows it to operate.

Parameters
• peripheral – Clear reset to this peripheral. The enum argument contains
encoding of reset register and reset bit position in the reset register.

void RESET_PeripheralReset(reset_ip_name_t peripheral)
Reset peripheral module.

Reset peripheral module.

Parameters
• peripheral – Peripheral to reset. The enum argument contains encoding of
reset register and reset bit position in the reset register.

static inline void RESET_ReleasePeripheralReset(reset_ip_name_t peripheral)
Release peripheral module.

Release peripheral module.

Parameters
• peripheral – Peripheral to release. The enum argument contains encoding
of reset register and reset bit position in the reset register.

FSL_RESET_DRIVER_VERSION
reset driver version 2.4.0

ADC_RSTS
Array initializers with peripheral reset bits

AES_RSTS

CRC_RSTS

CTIMER_RSTS

DMA_RSTS_N

DMIC_RSTS

EMC_RSTS

ETH_RST

FLEXCOMM_RSTS

GINT_RSTS

GPIO_RSTS_N

INPUTMUX_RSTS

IOCON_RSTS

FLASH_RSTS

LCD_RSTS

MRT_RSTS

MCAN_RSTS

374 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

OTP_RSTS

PINT_RSTS

RNG_RSTS

SDIO_RST

SCT_RSTS

SHA_RST

SPIFI_RSTS

USB0D_RST

USB0HMR_RST

USB0HSL_RST

USB1H_RST

USB1D_RST

USB1RAM_RST

UTICK_RSTS

WWDT_RSTS

USB1RAM_RSTS

USB1H_RSTS

USB1D_RSTS

USB0HSL_RSTS

USB0HMR_RSTS

USB0D_RSTS

SHA_RSTS

SDIO_RSTS

ETH_RSTS

2.37 RIT: Repetitive Interrupt Timer

void RIT_Init(RIT_Type *base, const rit_config_t *config)
Ungates the RIT clock, enables the RIT module, and configures the peripheral for basic op-
erations.

Note: This API should be called at the beginning of the application using the RIT driver.

Parameters
• base – RIT peripheral base address

• config – Pointer to the user’s RIT config structure

2.37. RIT: Repetitive Interrupt Timer 375

MCUXpresso SDK Documentation, Release 25.09.00

void RIT_Deinit(RIT_Type *base)
Gates the RIT clock and disables the RIT module.

Parameters
• base – RIT peripheral base address

void RIT_GetDefaultConfig(rit_config_t *config)
Fills in the RIT configuration structure with the default settings.

The default values are as follows.

config->enableRunInDebug = false;

Parameters
• config – Pointer to the onfiguration structure.

static inline uint32_t RIT_GetStatusFlags(RIT_Type *base)
Gets the RIT status flags.

Parameters
• base – RIT peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
rit_status_flags_t

static inline void RIT_ClearStatusFlags(RIT_Type *base, uint32_t mask)
Clears the RIT status flags.

Parameters
• base – RIT peripheral base address

• mask – The status flags to clear. This is a logical OR of members of the
enumeration rit_status_flags_t

void RIT_SetTimerCompare(RIT_Type *base, uint64_t count)
Sets the timer period in units of count.

This function sets the RI compare value. If the counter value equals to the compare value,
it will generate an interrupt.

Note: Users can call the utility macros provided in fsl_common.h to convert to ticks

Parameters
• base – RIT peripheral base address

• count – Timer period in units of ticks

void RIT_SetMaskBit(RIT_Type *base, uint64_t count)
Sets the mask bit of count compare.

This function sets the RI mask value. A 1 written to any bit will force the compare to be
true for the corresponding bit of the counter and compare register (causes the comparison
of the register bits to be always true).

Note: Users can call the utility macros provided in fsl_common.h to convert to ticks

Parameters

376 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

• base – RIT peripheral base address

• count – Timer period in units of ticks

uint64_t RIT_GetCompareTimerCount(RIT_Type *base)
Reads the current value of compare register.

Note: Users can call the utility macros provided in fsl_common.h to convert ticks to usec
or msec

Parameters
• base – RIT peripheral base address

Returns
Current RI compare value

uint64_t RIT_GetCounterTimerCount(RIT_Type *base)
Reads the current timer counting value of counter register.

This function returns the real-time timer counting value, in a range from0 to a timer period.

Note: Users can call the utility macros provided in fsl_common.h to convert ticks to usec
or msec

Parameters
• base – RIT peripheral base address

Returns
Current timer counting value in ticks

uint64_t RIT_GetMaskTimerCount(RIT_Type *base)
Reads the current value of mask register.

Note: Users can call the utility macros provided in fsl_common.h to convert ticks to usec
or msec

Parameters
• base – RIT peripheral base address

Returns
Current RI mask value

static inline void RIT_StartTimer(RIT_Type *base)
Starts the timer counting.

After calling this function, timers load initial value(0U), count up to desired value or over-
flow then the counter will count up again.

Parameters
• base – RIT peripheral base address

static inline void RIT_StopTimer(RIT_Type *base)
Stops the timer counting.

This function stop timer counting. Timer reload their new value after the next time they
call the RIT_StartTimer.

2.37. RIT: Repetitive Interrupt Timer 377

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• base – RIT peripheral base address

FSL_RIT_DRIVER_VERSION
Version 2.1.2

enum _rit_status_flags
List of RIT status flags.

Values:

enumerator kRIT_TimerFlag
Timer flag

typedef enum _rit_status_flags rit_status_flags_t
List of RIT status flags.

typedef struct _rit_config rit_config_t
RIT config structure.

This structure holds the configuration settings for the RIT peripheral. To initialize this struc-
ture to reasonable defaults, call the RIT_GetDefaultConfig() function and pass a pointer to
your config structure instance.

The config struct can be made const so it resides in flash

static inline void RIT_ClearCounter(RIT_Type *base, bool enable)
Sets the Timer Counter auto clear or not.

This function set the counter auto clear or not whenever the counter value equals
the masked compare value specified by the contents of COMPVAL/COMPVAL_H and
MASK/MASK_H registers..

Deprecated:
Do not use this function. It has been superceded by RIT_SetCountAutoClear.

static inline void RIT_SetCountAutoClear(RIT_Type *base, bool enable)
Sets the Timer Counter auto clear or not.

This function set the counter auto clear or not whenever the counter value equals
the masked compare value specified by the contents of COMPVAL/COMPVAL_H and
MASK/MASK_H registers..

Parameters
• base – RIT peripheral base address

• enable – Enable/disable Counter auto clear when value equals the compare
value.

– true: Enable Counter auto clear.

– false: Disable Counter auto clear.

struct _rit_config
#include <fsl_rit.h> RIT config structure.

This structure holds the configuration settings for the RIT peripheral. To initialize this struc-
ture to reasonable defaults, call the RIT_GetDefaultConfig() function and pass a pointer to
your config structure instance.

The config struct can be made const so it resides in flash

378 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

bool enableRunInDebug
true: The timer is halted when the processor is halted for debugging.; false: Debug has
no effect on the timer operation.

2.38 RNG: Random Number Generator

FSL_RNG_DRIVER_VERSION
RNG driver version 2.1.0.

Current version: 2.1.0

Change log:

• Version 2.0.0

– Initial version.

• Version 2.1.0

– Renamed function RNG_GetRandomData() to RNG_GetRandomDataWord(). Added
function RNG_GetRandomData() which discarding next 32 words after reading
RNG register which results into better entropy, as is recommended in UM.

– API is aligned with other RNG driver, having similar functionality as other
RNG/TRNG drivers.

status_t RNG_GetRandomData(void *data, size_t dataSize)
Gets random data.

This function gets random data from the RNG.

Parameters
• data – Pointer address used to store random data.

• dataSize – Size of the buffer pointed by the data parameter.

Returns
Status from operation

static inline uint32_t RNG_GetRandomDataWord(void)
Gets random data.

This function returns single 32 bit random number. For each read word next 32 words
should be discarded to achieve better entropy.

Returns
random data

FSL_COMPONENT_ID

2.39 RTC: Real Time Clock

void RTC_Init(RTC_Type *base)
Un-gate the RTC clock and enable the RTC oscillator.

Note: This API should be called at the beginning of the application using the RTC driver.

2.38. RNG: Random Number Generator 379

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• base – RTC peripheral base address

static inline void RTC_Deinit(RTC_Type *base)
Stop the timer and gate the RTC clock.

Parameters
• base – RTC peripheral base address

status_t RTC_SetDatetime(RTC_Type *base, const rtc_datetime_t *datetime)
Set the RTC date and time according to the given time structure.

The RTC counter must be stopped prior to calling this function as writes to the RTC seconds
register will fail if the RTC counter is running.

Parameters
• base – RTC peripheral base address

• datetime – Pointer to structure where the date and time details to set are
stored

Returns
kStatus_Success: Success in setting the time and starting the RTC kSta-
tus_InvalidArgument: Error because the datetime format is incorrect

void RTC_GetDatetime(RTC_Type *base, rtc_datetime_t *datetime)
Get the RTC time and stores it in the given time structure.

Parameters
• base – RTC peripheral base address

• datetime – Pointer to structure where the date and time details are stored.

status_t RTC_SetAlarm(RTC_Type *base, const rtc_datetime_t *alarmTime)
Set the RTC alarm time.

The function checks whether the specified alarm time is greater than the present time. If
not, the function does not set the alarm and returns an error.

Parameters
• base – RTC peripheral base address

• alarmTime – Pointer to structure where the alarm time is stored.

Returns
kStatus_Success: success in setting the RTC alarm kStatus_InvalidArgument:
Error because the alarm datetime format is incorrect kStatus_Fail: Error be-
cause the alarm time has already passed

void RTC_GetAlarm(RTC_Type *base, rtc_datetime_t *datetime)
Return the RTC alarm time.

Parameters
• base – RTC peripheral base address

• datetime – Pointer to structure where the alarm date and time details are
stored.

static inline void RTC_EnableWakeupTimer(RTC_Type *base, bool enable)
Enable the RTC wake-up timer (1KHZ).

After calling this function, the RTC driver will use/un-use the RTC wake-up (1KHZ) at the
same time.

380 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• base – RTC peripheral base address

• enable – Use/Un-use the RTC wake-up timer.

– true: Use RTC wake-up timer at the same time.

– false: Un-use RTCwake-up timer, RTC only use the normal seconds timer
by default.

static inline uint32_t RTC_GetEnabledWakeupTimer(RTC_Type *base)
Get the enabled status of the RTC wake-up timer (1KHZ).

Parameters
• base – RTC peripheral base address

Returns
The enabled status of RTC wake-up timer (1KHZ).

static inline void RTC_EnableWakeUpTimerInterruptFromDPD(RTC_Type *base, bool enable)
Enable the wake-up timer interrupt from deep power down mode.

Parameters
• base – RTC peripheral base address

• enable – Enable/Disable wake-up timer interrupt from deep power down
mode.

– true: Enable wake-up timer interrupt from deep power down mode.

– false: Disable wake-up timer interrupt from deep power down mode.

static inline void RTC_EnableAlarmTimerInterruptFromDPD(RTC_Type *base, bool enable)
Enable the alarm timer interrupt from deep power down mode.

Parameters
• base – RTC peripheral base address

• enable – Enable/Disable alarm timer interrupt from deep power down
mode.

– true: Enable alarm timer interrupt from deep power down mode.

– false: Disable alarm timer interrupt from deep power down mode.

static inline void RTC_EnableInterrupts(RTC_Type *base, uint32_t mask)
Enables the selected RTC interrupts.

Deprecated:
Do not use this function. It has been superceded by
RTC_EnableAlarmTimerInterruptFromDPDandRTC_EnableWakeUpTimerInterruptFromDPD

Parameters
• base – RTC peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration rtc_interrupt_enable_t

static inline void RTC_DisableInterrupts(RTC_Type *base, uint32_t mask)
Disables the selected RTC interrupts.

2.39. RTC: Real Time Clock 381

MCUXpresso SDK Documentation, Release 25.09.00

Deprecated:
Do not use this function. It has been superceded by
RTC_EnableAlarmTimerInterruptFromDPDandRTC_EnableWakeUpTimerInterruptFromDPD

Parameters
• base – RTC peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration rtc_interrupt_enable_t

static inline uint32_t RTC_GetEnabledInterrupts(RTC_Type *base)
Get the enabled RTC interrupts.

Deprecated:
Do not use this function. It will be deleted in next release version.

Parameters
• base – RTC peripheral base address

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
rtc_interrupt_enable_t

static inline uint32_t RTC_GetStatusFlags(RTC_Type *base)
Get the RTC status flags.

Parameters
• base – RTC peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
rtc_status_flags_t

static inline void RTC_ClearStatusFlags(RTC_Type *base, uint32_t mask)
Clear the RTC status flags.

Parameters
• base – RTC peripheral base address

• mask – The status flags to clear. This is a logical OR of members of the
enumeration rtc_status_flags_t

static inline void RTC_EnableTimer(RTC_Type *base, bool enable)
Enable the RTC timer counter.

After calling this function, the RTC inner counter increments once a secondwhen only using
the RTC seconds timer (1hz), while the RTC innerwake-up timer countdown once amillisec-
ondwhen using RTCwake-up timer (1KHZ) at the same time. RTC timer contain two timers,
one is the RTC normal seconds timer, the other one is the RTC wake-up timer, the RTC en-
able bit is the master switch for the whole RTC timer, so user can use the RTC seconds (1HZ)
timer independly, but they can’t use the RTC wake-up timer (1KHZ) independently.

Parameters
• base – RTC peripheral base address

• enable – Enable/Disable RTC Timer counter.

– true: Enable RTC Timer counter.

– false: Disable RTC Timer counter.

382 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

static inline void RTC_StartTimer(RTC_Type *base)
Starts the RTC time counter.

Deprecated:
Do not use this function. It has been superceded by RTC_EnableTimer

After calling this function, the timer counter increments once a second provided SR[TOF]
or SR[TIF] are not set.

Parameters
• base – RTC peripheral base address

static inline void RTC_StopTimer(RTC_Type *base)
Stops the RTC time counter.

Deprecated:
Do not use this function. It has been superceded by RTC_EnableTimer

RTC’s seconds register can be written to only when the timer is stopped.

Parameters
• base – RTC peripheral base address

FSL_RTC_DRIVER_VERSION
Version 2.2.0

enum _rtc_interrupt_enable
List of RTC interrupts.

Values:

enumerator kRTC_AlarmInterruptEnable
Alarm interrupt.

enumerator kRTC_WakeupInterruptEnable
Wake-up interrupt.

enum _rtc_status_flags
List of RTC flags.

Values:

enumerator kRTC_AlarmFlag
Alarm flag

enumerator kRTC_WakeupFlag
1kHz wake-up timer flag

typedef enum _rtc_interrupt_enable rtc_interrupt_enable_t
List of RTC interrupts.

typedef enum _rtc_status_flags rtc_status_flags_t
List of RTC flags.

typedef struct _rtc_datetime rtc_datetime_t
Structure is used to hold the date and time.

2.39. RTC: Real Time Clock 383

MCUXpresso SDK Documentation, Release 25.09.00

static inline void RTC_SetSecondsTimerMatch(RTC_Type *base, uint32_t matchValue)
Set the RTC seconds timer (1HZ) MATCH value.

Parameters
• base – RTC peripheral base address

• matchValue – The value to be set into the RTC MATCH register

static inline uint32_t RTC_GetSecondsTimerMatch(RTC_Type *base)
Read actual RTC seconds timer (1HZ) MATCH value.

Parameters
• base – RTC peripheral base address

Returns
The actual RTC seconds timer (1HZ) MATCH value.

static inline void RTC_SetSecondsTimerCount(RTC_Type *base, uint32_t countValue)
Set the RTC seconds timer (1HZ) COUNT value.

Parameters
• base – RTC peripheral base address

• countValue – The value to be loaded into the RTC COUNT register

static inline uint32_t RTC_GetSecondsTimerCount(RTC_Type *base)
Read the actual RTC seconds timer (1HZ) COUNT value.

Parameters
• base – RTC peripheral base address

Returns
The actual RTC seconds timer (1HZ) COUNT value.

static inline void RTC_SetWakeupCount(RTC_Type *base, uint16_t wakeupValue)
Enable the RTC wake-up timer (1KHZ) and set countdown value to the RTC WAKE register.

Parameters
• base – RTC peripheral base address

• wakeupValue – The value to be loaded into the WAKE register in RTC wake-
up timer (1KHZ).

static inline uint16_t RTC_GetWakeupCount(RTC_Type *base)
Read the actual value from the WAKE register value in RTC wake-up timer (1KHZ)

Read the WAKE register twice and compare the result, if the value match,the time can be
used.

Parameters
• base – RTC peripheral base address

Returns
The actual value of the WAKE register value in RTC wake-up timer (1KHZ).

static inline void RTC_Reset(RTC_Type *base)
Perform a software reset on the RTC module.

This resets all RTC registers to their reset value. The bit is cleared by software explicitly
clearing it.

Parameters
• base – RTC peripheral base address

384 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

struct _rtc_datetime
#include <fsl_rtc.h> Structure is used to hold the date and time.

Public Members

uint16_t year
Range from 1970 to 2099.

uint8_t month
Range from 1 to 12.

uint8_t day
Range from 1 to 31 (depending on month).

uint8_t hour
Range from 0 to 23.

uint8_t minute
Range from 0 to 59.

uint8_t second
Range from 0 to 59.

2.40 SCTimer: SCTimer/PWM (SCT)

status_t SCTIMER_Init(SCT_Type *base, const sctimer_config_t *config)
Ungates the SCTimer clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the SCTimer
driver.

Parameters
• base – SCTimer peripheral base address

• config – Pointer to the user configuration structure.

Returns
kStatus_Success indicates success; Else indicates failure.

void SCTIMER_Deinit(SCT_Type *base)
Gates the SCTimer clock.

Parameters
• base – SCTimer peripheral base address

void SCTIMER_GetDefaultConfig(sctimer_config_t *config)
Fills in the SCTimer configuration structure with the default settings.

The default values are:

config->enableCounterUnify = true;
config->clockMode = kSCTIMER_System_ClockMode;
config->clockSelect = kSCTIMER_Clock_On_Rise_Input_0;
config->enableBidirection_l = false;
config->enableBidirection_h = false;
config->prescale_l = 0U;

(continues on next page)

2.40. SCTimer: SCTimer/PWM (SCT) 385

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
config->prescale_h = 0U;
config->outInitState = 0U;
config->inputsync = 0xFU;

Parameters
• config – Pointer to the user configuration structure.

status_t SCTIMER_SetupPwm(SCT_Type *base, const sctimer_pwm_signal_param_t
*pwmParams, sctimer_pwm_mode_tmode, uint32_t
pwmFreq_Hz, uint32_t srcClock_Hz, uint32_t *event)

Configures the PWM signal parameters.

Call this function to configure the PWM signal period, mode, duty cycle, and edge. This
function will create 2 events; one of the events will trigger on match with the pulse value
and the other will trigger when the counter matches the PWM period. The PWM period
event is also used as a limit event to reset the counter or change direction. Both events
are enabled for the same state. The state number can be retrieved by calling the function
SCTIMER_GetCurrentStateNumber(). The counter is set to operate as one 32-bit counter
(unify bit is set to 1). The counter operates in bi-directionalmodewhen generating a center-
aligned PWM.

Note: When setting PWM output from multiple output pins, they all should use the same
PWMmode i.e all PWM’s should be either edge-aligned or center-aligned. When using this
API, the PWM signal frequency of all the initialized channels must be the same. Other-
wise all the initialized channels’ PWM signal frequency is equal to the last call to the API’s
pwmFreq_Hz.

Parameters
• base – SCTimer peripheral base address

• pwmParams – PWM parameters to configure the output

• mode – PWM operation mode, options available in enumeration sc-
timer_pwm_mode_t

• pwmFreq_Hz – PWM signal frequency in Hz

• srcClock_Hz – SCTimer counter clock in Hz

• event – Pointer to a variablewhere the PWMperiod event number is stored

Returns
kStatus_Success on success kStatus_Fail If we have hit the limit in terms of
number of events created or if an incorrect PWM dutycylce is passed in.

void SCTIMER_UpdatePwmDutycycle(SCT_Type *base, sctimer_out_t output, uint8_t
dutyCyclePercent, uint32_t event)

Updates the duty cycle of an active PWM signal.

Before calling this function, the counter is set to operate as one 32-bit counter (unify bit is
set to 1).

Parameters
• base – SCTimer peripheral base address

• output – The output to configure

• dutyCyclePercent – New PWM pulse width; the value should be between 1
to 100

386 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

• event – Event number associated with this PWM signal. This was returned
to the user by the function SCTIMER_SetupPwm().

static inline void SCTIMER_EnableInterrupts(SCT_Type *base, uint32_t mask)
Enables the selected SCTimer interrupts.

Parameters
• base – SCTimer peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration sctimer_interrupt_enable_t

static inline void SCTIMER_DisableInterrupts(SCT_Type *base, uint32_t mask)
Disables the selected SCTimer interrupts.

Parameters
• base – SCTimer peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration sctimer_interrupt_enable_t

static inline uint32_t SCTIMER_GetEnabledInterrupts(SCT_Type *base)
Gets the enabled SCTimer interrupts.

Parameters
• base – SCTimer peripheral base address

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
sctimer_interrupt_enable_t

static inline uint32_t SCTIMER_GetStatusFlags(SCT_Type *base)
Gets the SCTimer status flags.

Parameters
• base – SCTimer peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration sc-
timer_status_flags_t

static inline void SCTIMER_ClearStatusFlags(SCT_Type *base, uint32_t mask)
Clears the SCTimer status flags.

Parameters
• base – SCTimer peripheral base address

• mask – The status flags to clear. This is a logical OR of members of the
enumeration sctimer_status_flags_t

static inline void SCTIMER_StartTimer(SCT_Type *base, uint32_t countertoStart)
Starts the SCTimer counter.

Note: In 16-bit mode, we can enable both Counter_L and Counter_H, In 32-bit mode, we
only can select Counter_U.

Parameters
• base – SCTimer peripheral base address

• countertoStart – The SCTimer counters to enable. This is a logical OR of
members of the enumeration sctimer_counter_t.

2.40. SCTimer: SCTimer/PWM (SCT) 387

MCUXpresso SDK Documentation, Release 25.09.00

static inline void SCTIMER_StopTimer(SCT_Type *base, uint32_t countertoStop)
Halts the SCTimer counter.

Parameters
• base – SCTimer peripheral base address

• countertoStop – The SCTimer counters to stop. This is a logical OR of mem-
bers of the enumeration sctimer_counter_t.

status_t SCTIMER_CreateAndScheduleEvent(SCT_Type *base, sctimer_event_t howToMonitor,
uint32_t matchValue, uint32_t whichIO,
sctimer_counter_t whichCounter, uint32_t *event)

Create an event that is triggered on a match or IO and schedule in current state.

This function will configure an event using the options provided by the user. If the event
type uses the counter match, then the function will set the user provided match value into
a match register and put this match register number into the event control register. The
event is enabled for the current state and the event number is increased by one at the end.
The function returns the event number; this event number can be used to configure actions
to be done when this event is triggered.

Parameters
• base – SCTimer peripheral base address

• howToMonitor – Event type; options are available in the enumeration sc-
timer_interrupt_enable_t

• matchValue – Thematch value that will be programmed to amatch register

• whichIO – The input or output that will be involved in event triggering.
This field is ignored if the event type is “match only”

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

• event – Pointer to a variable where the new event number is stored

Returns
kStatus_Success on success kStatus_Error if we have hit the limit in terms of
number of events created or if we have reached the limit in terms of number
of match registers

void SCTIMER_ScheduleEvent(SCT_Type *base, uint32_t event)
Enable an event in the current state.

This function will allow the event passed in to trigger in the current state. The event
must be created earlier by either calling the function SCTIMER_SetupPwm() or function
SCTIMER_CreateAndScheduleEvent() .

Parameters
• base – SCTimer peripheral base address

• event – Event number to enable in the current state

status_t SCTIMER_IncreaseState(SCT_Type *base)
Increase the state by 1.

All future events created by calling the function SCTIMER_ScheduleEvent() will be enabled
in this new state.

Parameters
• base – SCTimer peripheral base address

388 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

Returns
kStatus_Success on success kStatus_Error if we have hit the limit in terms of
states used

uint32_t SCTIMER_GetCurrentState(SCT_Type *base)
Provides the current state.

User can use this to set the next state by calling the function SC-
TIMER_SetupNextStateAction().

Parameters
• base – SCTimer peripheral base address

Returns
The current state

static inline void SCTIMER_SetCounterState(SCT_Type *base, sctimer_counter_t whichCounter,
uint32_t state)

Set the counter current state.

The function is to set the state variable bit field of STATE register. Writing to the STATE_L,
STATE_H, or unified register is only allowed when the corresponding counter is halted
(HALT bits are set to 1 in the CTRL register).

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

• state – The counter current state number (only support range from 0~31).

static inline uint16_t SCTIMER_GetCounterState(SCT_Type *base, sctimer_counter_t
whichCounter)

Get the counter current state value.

The function is to get the state variable bit field of STATE register.

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

Returns
The the counter current state value.

status_t SCTIMER_SetupCaptureAction(SCT_Type *base, sctimer_counter_t whichCounter,
uint32_t *captureRegister, uint32_t event)

Setup capture of the counter value on trigger of a selected event.

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

• captureRegister – Pointer to a variable where the capture register number
will be returned. User can read the captured value from this registerwhen
the specified event is triggered.

• event – Event number that will trigger the capture

2.40. SCTimer: SCTimer/PWM (SCT) 389

MCUXpresso SDK Documentation, Release 25.09.00

Returns
kStatus_Success on success kStatus_Error if we have hit the limit in terms of
number of match/capture registers available

void SCTIMER_SetCallback(SCT_Type *base, sctimer_event_callback_t callback, uint32_t event)
Receive noticification when the event trigger an interrupt.

If the interrupt for the event is enabled by the user, then a callback can be registered which
will be invoked when the event is triggered

Parameters
• base – SCTimer peripheral base address

• event – Event number that will trigger the interrupt

• callback – Function to invoke when the event is triggered

static inline void SCTIMER_SetupStateLdMethodAction(SCT_Type *base, uint32_t event, bool
fgLoad)

Change the load method of transition to the specified state.

Change the loadmethod of transition, it will be triggered by the event number that is passed
in by the user.

Parameters
• base – SCTimer peripheral base address

• event – Event number that will change the method to trigger the state tran-
sition

• fgLoad – The method to load highest-numbered event occurring for that
state to the STATE register.

– true: Load the STATEV value to STATE when the event occurs to be the
next state.

– false: Add the STATEV value to STATE when the event occurs to be the
next state.

static inline void SCTIMER_SetupNextStateActionwithLdMethod(SCT_Type *base, uint32_t
nextState, uint32_t event, bool
fgLoad)

Transition to the specified state with Load method.

This transition will be triggered by the event number that is passed in by the user, the
method decide how to load the highest-numbered event occurring for that state to the
STATE register.

Parameters
• base – SCTimer peripheral base address

• nextState – The next state SCTimer will transition to

• event – Event number that will trigger the state transition

• fgLoad – Themethod to load the highest-numbered event occurring for that
state to the STATE register.

– true: Load the STATEV value to STATE when the event occurs to be the
next state.

– false: Add the STATEV value to STATE when the event occurs to be the
next state.

390 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

static inline void SCTIMER_SetupNextStateAction(SCT_Type *base, uint32_t nextState, uint32_t
event)

Transition to the specified state.

Deprecated:
Do not use this function. It has been superceded by SC-
TIMER_SetupNextStateActionwithLdMethod

This transition will be triggered by the event number that is passed in by the user.

Parameters
• base – SCTimer peripheral base address

• nextState – The next state SCTimer will transition to

• event – Event number that will trigger the state transition

static inline void SCTIMER_SetupEventActiveDirection(SCT_Type *base,
sctimer_event_active_direction_t
activeDirection, uint32_t event)

Setup event active direction when the counters are operating in BIDIR mode.

Parameters
• base – SCTimer peripheral base address

• activeDirection – Event generation active direction, see sc-
timer_event_active_direction_t.

• event – Event number that need setup the active direction.

static inline void SCTIMER_SetupOutputSetAction(SCT_Type *base, uint32_t whichIO, uint32_t
event)

Set the Output.

This output will be set when the event number that is passed in by the user is triggered.

Parameters
• base – SCTimer peripheral base address

• whichIO – The output to set

• event – Event number that will trigger the output change

static inline void SCTIMER_SetupOutputClearAction(SCT_Type *base, uint32_t whichIO,
uint32_t event)

Clear the Output.

This output will be clearedwhen the event number that is passed in by the user is triggered.

Parameters
• base – SCTimer peripheral base address

• whichIO – The output to clear

• event – Event number that will trigger the output change

void SCTIMER_SetupOutputToggleAction(SCT_Type *base, uint32_t whichIO, uint32_t event)
Toggle the output level.

This change in the output level is triggered by the event number that is passed in by the
user.

Parameters

2.40. SCTimer: SCTimer/PWM (SCT) 391

MCUXpresso SDK Documentation, Release 25.09.00

• base – SCTimer peripheral base address

• whichIO – The output to toggle

• event – Event number that will trigger the output change

static inline void SCTIMER_SetupCounterLimitAction(SCT_Type *base, sctimer_counter_t
whichCounter, uint32_t event)

Limit the running counter.

The counter is limited when the event number that is passed in by the user is triggered.

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

• event – Event number that will trigger the counter to be limited

static inline void SCTIMER_SetupCounterStopAction(SCT_Type *base, sctimer_counter_t
whichCounter, uint32_t event)

Stop the running counter.

The counter is stopped when the event number that is passed in by the user is triggered.

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

• event – Event number that will trigger the counter to be stopped

static inline void SCTIMER_SetupCounterStartAction(SCT_Type *base, sctimer_counter_t
whichCounter, uint32_t event)

Re-start the stopped counter.

The counter will re-start when the event number that is passed in by the user is triggered.

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

• event – Event number that will trigger the counter to re-start

static inline void SCTIMER_SetupCounterHaltAction(SCT_Type *base, sctimer_counter_t
whichCounter, uint32_t event)

Halt the running counter.

The counter is disabled (halted) when the event number that is passed in by the user is
triggered. When the counter is halted, all further events are disabled. The HALT condition
can only be removed by calling the SCTIMER_StartTimer() function.

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

• event – Event number that will trigger the counter to be halted

392 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

static inline void SCTIMER_SetupDmaTriggerAction(SCT_Type *base, uint32_t dmaNumber,
uint32_t event)

Generate a DMA request.

DMA request will be triggered by the event number that is passed in by the user.

Parameters
• base – SCTimer peripheral base address

• dmaNumber – The DMA request to generate

• event – Event number that will trigger the DMA request

static inline void SCTIMER_SetCOUNTValue(SCT_Type *base, sctimer_counter_t whichCounter,
uint32_t value)

Set the value of counter.

The function is to set the value of Count register, Writing to the COUNT_L, COUNT_H, or
unified register is only allowed when the corresponding counter is halted (HALT bits are
set to 1 in the CTRL register).

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

• value – the counter value update to the COUNT register.

static inline uint32_t SCTIMER_GetCOUNTValue(SCT_Type *base, sctimer_counter_t
whichCounter)

Get the value of counter.

The function is to read the value of Count register, software can read the counter registers
at any time..

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

Returns
The value of counter selected.

static inline void SCTIMER_SetEventInState(SCT_Type *base, uint32_t event, uint32_t state)
Set the state mask bit field of EV_STATE register.

Parameters
• base – SCTimer peripheral base address

• event – The EV_STATE register be set.

• state – The state value in which the event is enabled to occur.

static inline void SCTIMER_ClearEventInState(SCT_Type *base, uint32_t event, uint32_t state)
Clear the state mask bit field of EV_STATE register.

Parameters
• base – SCTimer peripheral base address

• event – The EV_STATE register be clear.

• state – The state value in which the event is disabled to occur.

2.40. SCTimer: SCTimer/PWM (SCT) 393

MCUXpresso SDK Documentation, Release 25.09.00

static inline bool SCTIMER_GetEventInState(SCT_Type *base, uint32_t event, uint32_t state)
Get the state mask bit field of EV_STATE register.

Note: This function is to check whether the event is enabled in a specific state.

Parameters
• base – SCTimer peripheral base address

• event – The EV_STATE register be read.

• state – The state value.

Returns
The the state mask bit field of EV_STATE register.

• true: The event is enable in state.

• false: The event is disable in state.

static inline uint32_t SCTIMER_GetCaptureValue(SCT_Type *base, sctimer_counter_t
whichCounter, uint8_t capChannel)

Get the value of capture register.

This function returns the captured value upon occurrence of the events selected by the
corresponding Capture Control registers occurred.

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

• capChannel – SCTimer capture register of capture channel.

Returns
The SCTimer counter value at which this register was last captured.

void SCTIMER_EventHandleIRQ(SCT_Type *base)
SCTimer interrupt handler.

Parameters
• base – SCTimer peripheral base address.

FSL_SCTIMER_DRIVER_VERSION
Version

enum _sctimer_pwm_mode
SCTimer PWM operation modes.

Values:

enumerator kSCTIMER_EdgeAlignedPwm
Edge-aligned PWM

enumerator kSCTIMER_CenterAlignedPwm
Center-aligned PWM

enum _sctimer_counter
SCTimer counters type.

Values:

394 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSCTIMER_Counter_L
16-bit Low counter.

enumerator kSCTIMER_Counter_H
16-bit High counter.

enumerator kSCTIMER_Counter_U
32-bit Unified counter.

enum _sctimer_input
List of SCTimer input pins.

Values:

enumerator kSCTIMER_Input_0
SCTIMER input 0

enumerator kSCTIMER_Input_1
SCTIMER input 1

enumerator kSCTIMER_Input_2
SCTIMER input 2

enumerator kSCTIMER_Input_3
SCTIMER input 3

enumerator kSCTIMER_Input_4
SCTIMER input 4

enumerator kSCTIMER_Input_5
SCTIMER input 5

enumerator kSCTIMER_Input_6
SCTIMER input 6

enumerator kSCTIMER_Input_7
SCTIMER input 7

enum _sctimer_out
List of SCTimer output pins.

Values:

enumerator kSCTIMER_Out_0
SCTIMER output 0

enumerator kSCTIMER_Out_1
SCTIMER output 1

enumerator kSCTIMER_Out_2
SCTIMER output 2

enumerator kSCTIMER_Out_3
SCTIMER output 3

enumerator kSCTIMER_Out_4
SCTIMER output 4

enumerator kSCTIMER_Out_5
SCTIMER output 5

enumerator kSCTIMER_Out_6
SCTIMER output 6

2.40. SCTimer: SCTimer/PWM (SCT) 395

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSCTIMER_Out_7
SCTIMER output 7

enumerator kSCTIMER_Out_8
SCTIMER output 8

enumerator kSCTIMER_Out_9
SCTIMER output 9

enum _sctimer_pwm_level_select
SCTimer PWM output pulse mode: high-true, low-true or no output.

Values:

enumerator kSCTIMER_LowTrue
Low true pulses

enumerator kSCTIMER_HighTrue
High true pulses

enum _sctimer_clock_mode
SCTimer clock mode options.

Values:

enumerator kSCTIMER_System_ClockMode
System Clock Mode

enumerator kSCTIMER_Sampled_ClockMode
Sampled System Clock Mode

enumerator kSCTIMER_Input_ClockMode
SCT Input Clock Mode

enumerator kSCTIMER_Asynchronous_ClockMode
Asynchronous Mode

enum _sctimer_clock_select
SCTimer clock select options.

Values:

enumerator kSCTIMER_Clock_On_Rise_Input_0
Rising edges on input 0

enumerator kSCTIMER_Clock_On_Fall_Input_0
Falling edges on input 0

enumerator kSCTIMER_Clock_On_Rise_Input_1
Rising edges on input 1

enumerator kSCTIMER_Clock_On_Fall_Input_1
Falling edges on input 1

enumerator kSCTIMER_Clock_On_Rise_Input_2
Rising edges on input 2

enumerator kSCTIMER_Clock_On_Fall_Input_2
Falling edges on input 2

enumerator kSCTIMER_Clock_On_Rise_Input_3
Rising edges on input 3

396 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSCTIMER_Clock_On_Fall_Input_3
Falling edges on input 3

enumerator kSCTIMER_Clock_On_Rise_Input_4
Rising edges on input 4

enumerator kSCTIMER_Clock_On_Fall_Input_4
Falling edges on input 4

enumerator kSCTIMER_Clock_On_Rise_Input_5
Rising edges on input 5

enumerator kSCTIMER_Clock_On_Fall_Input_5
Falling edges on input 5

enumerator kSCTIMER_Clock_On_Rise_Input_6
Rising edges on input 6

enumerator kSCTIMER_Clock_On_Fall_Input_6
Falling edges on input 6

enumerator kSCTIMER_Clock_On_Rise_Input_7
Rising edges on input 7

enumerator kSCTIMER_Clock_On_Fall_Input_7
Falling edges on input 7

enum _sctimer_conflict_resolution
SCTimer output conflict resolution options.

Specifies what action should be taken if multiple events dictate that a given output should
be both set and cleared at the same time

Values:

enumerator kSCTIMER_ResolveNone
No change

enumerator kSCTIMER_ResolveSet
Set output

enumerator kSCTIMER_ResolveClear
Clear output

enumerator kSCTIMER_ResolveToggle
Toggle output

enum _sctimer_event_active_direction
List of SCTimer event generation active direction when the counters are operating in BIDIR
mode.

Values:

enumerator kSCTIMER_ActiveIndependent
This event is triggered regardless of the count direction.

enumerator kSCTIMER_ActiveInCountUp
This event is triggered only during up-counting when BIDIR = 1.

enumerator kSCTIMER_ActiveInCountDown
This event is triggered only during down-counting when BIDIR = 1.

2.40. SCTimer: SCTimer/PWM (SCT) 397

MCUXpresso SDK Documentation, Release 25.09.00

enum _sctimer_event
List of SCTimer event types.

Values:

enumerator kSCTIMER_InputLowOrMatchEvent

enumerator kSCTIMER_InputRiseOrMatchEvent

enumerator kSCTIMER_InputFallOrMatchEvent

enumerator kSCTIMER_InputHighOrMatchEvent

enumerator kSCTIMER_MatchEventOnly

enumerator kSCTIMER_InputLowEvent

enumerator kSCTIMER_InputRiseEvent

enumerator kSCTIMER_InputFallEvent

enumerator kSCTIMER_InputHighEvent

enumerator kSCTIMER_InputLowAndMatchEvent

enumerator kSCTIMER_InputRiseAndMatchEvent

enumerator kSCTIMER_InputFallAndMatchEvent

enumerator kSCTIMER_InputHighAndMatchEvent

enumerator kSCTIMER_OutputLowOrMatchEvent

enumerator kSCTIMER_OutputRiseOrMatchEvent

enumerator kSCTIMER_OutputFallOrMatchEvent

enumerator kSCTIMER_OutputHighOrMatchEvent

enumerator kSCTIMER_OutputLowEvent

enumerator kSCTIMER_OutputRiseEvent

enumerator kSCTIMER_OutputFallEvent

enumerator kSCTIMER_OutputHighEvent

enumerator kSCTIMER_OutputLowAndMatchEvent

enumerator kSCTIMER_OutputRiseAndMatchEvent

enumerator kSCTIMER_OutputFallAndMatchEvent

enumerator kSCTIMER_OutputHighAndMatchEvent

enum _sctimer_interrupt_enable
List of SCTimer interrupts.

Values:

enumerator kSCTIMER_Event0InterruptEnable
Event 0 interrupt

enumerator kSCTIMER_Event1InterruptEnable
Event 1 interrupt

398 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSCTIMER_Event2InterruptEnable
Event 2 interrupt

enumerator kSCTIMER_Event3InterruptEnable
Event 3 interrupt

enumerator kSCTIMER_Event4InterruptEnable
Event 4 interrupt

enumerator kSCTIMER_Event5InterruptEnable
Event 5 interrupt

enumerator kSCTIMER_Event6InterruptEnable
Event 6 interrupt

enumerator kSCTIMER_Event7InterruptEnable
Event 7 interrupt

enumerator kSCTIMER_Event8InterruptEnable
Event 8 interrupt

enumerator kSCTIMER_Event9InterruptEnable
Event 9 interrupt

enumerator kSCTIMER_Event10InterruptEnable
Event 10 interrupt

enumerator kSCTIMER_Event11InterruptEnable
Event 11 interrupt

enumerator kSCTIMER_Event12InterruptEnable
Event 12 interrupt

enum _sctimer_status_flags
List of SCTimer flags.

Values:

enumerator kSCTIMER_Event0Flag
Event 0 Flag

enumerator kSCTIMER_Event1Flag
Event 1 Flag

enumerator kSCTIMER_Event2Flag
Event 2 Flag

enumerator kSCTIMER_Event3Flag
Event 3 Flag

enumerator kSCTIMER_Event4Flag
Event 4 Flag

enumerator kSCTIMER_Event5Flag
Event 5 Flag

enumerator kSCTIMER_Event6Flag
Event 6 Flag

enumerator kSCTIMER_Event7Flag
Event 7 Flag

2.40. SCTimer: SCTimer/PWM (SCT) 399

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSCTIMER_Event8Flag
Event 8 Flag

enumerator kSCTIMER_Event9Flag
Event 9 Flag

enumerator kSCTIMER_Event10Flag
Event 10 Flag

enumerator kSCTIMER_Event11Flag
Event 11 Flag

enumerator kSCTIMER_Event12Flag
Event 12 Flag

enumerator kSCTIMER_BusErrorLFlag
Bus error due to write when L counter was not halted

enumerator kSCTIMER_BusErrorHFlag
Bus error due to write when H counter was not halted

typedef enum _sctimer_pwm_mode sctimer_pwm_mode_t
SCTimer PWM operation modes.

typedef enum _sctimer_counter sctimer_counter_t
SCTimer counters type.

typedef enum _sctimer_input sctimer_input_t
List of SCTimer input pins.

typedef enum _sctimer_out sctimer_out_t
List of SCTimer output pins.

typedef enum _sctimer_pwm_level_select sctimer_pwm_level_select_t
SCTimer PWM output pulse mode: high-true, low-true or no output.

typedef struct _sctimer_pwm_signal_param sctimer_pwm_signal_param_t
Options to configure a SCTimer PWM signal.

typedef enum _sctimer_clock_mode sctimer_clock_mode_t
SCTimer clock mode options.

typedef enum _sctimer_clock_select sctimer_clock_select_t
SCTimer clock select options.

typedef enum _sctimer_conflict_resolution sctimer_conflict_resolution_t
SCTimer output conflict resolution options.

Specifies what action should be taken if multiple events dictate that a given output should
be both set and cleared at the same time

typedef enum _sctimer_event_active_direction sctimer_event_active_direction_t
List of SCTimer event generation active direction when the counters are operating in BIDIR
mode.

typedef enum _sctimer_event sctimer_event_t
List of SCTimer event types.

typedef void (*sctimer_event_callback_t)(void)
SCTimer callback typedef.

typedef enum _sctimer_interrupt_enable sctimer_interrupt_enable_t
List of SCTimer interrupts.

400 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _sctimer_status_flags sctimer_status_flags_t
List of SCTimer flags.

typedef struct _sctimer_config sctimer_config_t
SCTimer configuration structure.

This structure holds the configuration settings for the SCTimer peripheral. To initialize this
structure to reasonable defaults, call the SCTMR_GetDefaultConfig() function and pass a
pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

SCT_EV_STATE_STATEMSKn(x)

struct _sctimer_pwm_signal_param
#include <fsl_sctimer.h> Options to configure a SCTimer PWM signal.

Public Members

sctimer_out_t output
The output pin to use to generate the PWM signal

sctimer_pwm_level_select_t level
PWM output active level select.

uint8_t dutyCyclePercent
PWMpulsewidth, value should be between 0 to 100 0 = always inactive signal (0% duty
cycle) 100 = always active signal (100% duty cycle).

struct _sctimer_config
#include <fsl_sctimer.h> SCTimer configuration structure.

This structure holds the configuration settings for the SCTimer peripheral. To initialize this
structure to reasonable defaults, call the SCTMR_GetDefaultConfig() function and pass a
pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

Public Members

bool enableCounterUnify
true: SCT operates as a unified 32-bit counter; false: SCT operates as two 16-bit coun-
ters. User can use the 16-bit low counter and the 16-bit high counters at the same time;
for Hardware limit, user can not use unified 32-bit counter and any 16-bit low/high
counter at the same time.

sctimer_clock_mode_t clockMode
SCT clock mode value

sctimer_clock_select_t clockSelect
SCT clock select value

bool enableBidirection_l
true: Up-down count mode for the L or unified counter false: Up count mode only for
the L or unified counter

bool enableBidirection_h
true: Up-down count mode for the H or unified counter false: Up count mode only for
the H or unified counter. This field is used only if the enableCounterUnify is set to false

2.40. SCTimer: SCTimer/PWM (SCT) 401

MCUXpresso SDK Documentation, Release 25.09.00

uint8_t prescale_l
Prescale value to produce the L or unified counter clock

uint8_t prescale_h
Prescale value to produce the H counter clock. This field is used only if the enable-
CounterUnify is set to false

uint8_t outInitState
Defines the initial output value

uint8_t inputsync
SCT INSYNC value, INSYNC field in the CONFIG register, from bit9 to bit 16. it is used to
define synchronization for input N: bit 9 = input 0 bit 10 = input 1 bit 11 = input 2 bit 12
= input 3 All other bits are reserved (bit13 ~bit 16). HowUser to set the the value for the
member inputsync. IE: delay for input0, and input 1, bypasses for input 2 and input
3 MACRO definition in user level. #define INPUTSYNC0 (0U) #define INPUTSYNC1 (1U)
#define INPUTSYNC2 (2U) #define INPUTSYNC3 (3U) User Code. sctimerInfo.inputsync
= (1 « INPUTSYNC2) | (1 « INPUTSYNC3);

2.41 SDIF: SD/MMC/SDIO card interface

FSL_SDIF_DRIVER_VERSION
Driver version 2.0.15.

_sdif_status SDIF status

Values:

enumerator kStatus_SDIF_DescriptorBufferLenError
Set DMA descriptor failed

enumerator kStatus_SDIF_InvalidArgument
invalid argument status

enumerator kStatus_SDIF_SyncCmdTimeout
sync command to CIU timeout status

enumerator kStatus_SDIF_SendCmdFail
send command to card fail

enumerator kStatus_SDIF_SendCmdErrorBufferFull
send command to card fail, due to command buffer full user need to resend this com-
mand

enumerator kStatus_SDIF_DMATransferFailWithFBE
DMA transfer data fail with fatal bus error , to do with this error :issue a hard re-
set/controller reset

enumerator kStatus_SDIF_DMATransferDescriptorUnavailable
DMA descriptor unavailable

enumerator kStatus_SDIF_DataTransferFail
transfer data fail

enumerator kStatus_SDIF_ResponseError
response error

402 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus_SDIF_DMAAddrNotAlign
DMA address not align

enumerator kStatus_SDIF_BusyTransferring
SDIF transfer busy status

enumerator kStatus_SDIF_DataTransferSuccess
transfer data success

enumerator kStatus_SDIF_SendCmdSuccess
transfer command success

_sdif_capability_flag Host controller capabilities flag mask

Values:

enumerator kSDIF_SupportHighSpeedFlag
Support high-speed

enumerator kSDIF_SupportDmaFlag
Support DMA

enumerator kSDIF_SupportSuspendResumeFlag
Support suspend/resume

enumerator kSDIF_SupportV330Flag
Support voltage 3.3V

enumerator kSDIF_Support4BitFlag
Support 4 bit mode

enumerator kSDIF_Support8BitFlag
Support 8 bit mode

_sdif_reset_type define the reset type

Values:

enumerator kSDIF_ResetController
reset controller,will reset: BIU/CIU interface CIU and state ma-
chine,ABORT_READ_DATA,SEND_IRQ_RESPONSE and READ_WAIT bits of control
register,START_CMD bit of the command register

enumerator kSDIF_ResetFIFO
reset data FIFO

enumerator kSDIF_ResetDMAInterface
reset DMA interface

enumerator kSDIF_ResetAll
reset all

enum _sdif_bus_width
define the card bus width type

Values:

enumerator kSDIF_Bus1BitWidth
1bit bus width, 1bit mode and 4bit mode share one register bit

enumerator kSDIF_Bus4BitWidth
4bit mode mask

2.41. SDIF: SD/MMC/SDIO card interface 403

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSDIF_Bus8BitWidth
support 8 bit mode

_sdif_command_flags define the command flags

Values:

enumerator kSDIF_CmdResponseExpect
command request response

enumerator kSDIF_CmdResponseLengthLong
command response length long

enumerator kSDIF_CmdCheckResponseCRC
request check command response CRC

enumerator kSDIF_DataExpect
request data transfer,either read/write

enumerator kSDIF_DataWriteToCard
data transfer direction

enumerator kSDIF_DataStreamTransfer
data transfer mode :stream/block transfer command

enumerator kSDIF_DataTransferAutoStop
data transfer with auto stop at the end of

enumerator kSDIF_WaitPreTransferComplete
wait pre transfer complete before sending this cmd

enumerator kSDIF_TransferStopAbort
when host issue stop or abort cmd to stop data transfer ,this bit should set so that
cmd/data state-machines of CIU can return to idle correctly

enumerator kSDIF_SendInitialization
send initialization 80 clocks for SD card after power on

enumerator kSDIF_CmdUpdateClockRegisterOnly
send cmd update the CIU clock register only

enumerator kSDIF_CmdtoReadCEATADevice
host is perform read access to CE-ATA device

enumerator kSDIF_CmdExpectCCS
command expect command completion signal signal

enumerator kSDIF_BootModeEnable
this bit should only be set for mandatory boot mode

enumerator kSDIF_BootModeExpectAck
boot mode expect ack

enumerator kSDIF_BootModeDisable
when software set this bit along with START_CMD, CIU terminates the boot operation

enumerator kSDIF_BootModeAlternate
select boot mode ,alternate or mandatory

enumerator kSDIF_CmdVoltageSwitch
this bit set for CMD11 only

404 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSDIF_CmdDataUseHoldReg
cmd and data send to card through the HOLD register

_sdif_command_type The command type

Values:

enumerator kCARD_CommandTypeNormal
Normal command

enumerator kCARD_CommandTypeSuspend
Suspend command

enumerator kCARD_CommandTypeResume
Resume command

enumerator kCARD_CommandTypeAbort
Abort command

_sdif_response_type The command response type.

Define the command response type from card to host controller.

Values:

enumerator kCARD_ResponseTypeNone
Response type: none

enumerator kCARD_ResponseTypeR1
Response type: R1

enumerator kCARD_ResponseTypeR1b
Response type: R1b

enumerator kCARD_ResponseTypeR2
Response type: R2

enumerator kCARD_ResponseTypeR3
Response type: R3

enumerator kCARD_ResponseTypeR4
Response type: R4

enumerator kCARD_ResponseTypeR5
Response type: R5

enumerator kCARD_ResponseTypeR5b
Response type: R5b

enumerator kCARD_ResponseTypeR6
Response type: R6

enumerator kCARD_ResponseTypeR7
Response type: R7

_sdif_interrupt_mask define the interrupt mask flags

Values:

enumerator kSDIF_CardDetect
mask for card detect

2.41. SDIF: SD/MMC/SDIO card interface 405

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSDIF_ResponseError
command response error

enumerator kSDIF_CommandDone
command transfer over

enumerator kSDIF_DataTransferOver
data transfer over flag

enumerator kSDIF_WriteFIFORequest
write FIFO request

enumerator kSDIF_ReadFIFORequest
read FIFO request

enumerator kSDIF_ResponseCRCError
response CRC error

enumerator kSDIF_DataCRCError
data CRC error

enumerator kSDIF_ResponseTimeout
response timeout

enumerator kSDIF_DataReadTimeout
read data timeout

enumerator kSDIF_DataStarvationByHostTimeout
data starvation by host time out

enumerator kSDIF_FIFOError
indicate the FIFO under run or overrun error

enumerator kSDIF_HardwareLockError
hardware lock write error

enumerator kSDIF_DataStartBitError
start bit error

enumerator kSDIF_AutoCmdDone
indicate the auto command done

enumerator kSDIF_DataEndBitError
end bit error

enumerator kSDIF_SDIOInterrupt
interrupt from the SDIO card

enumerator kSDIF_CommandTransferStatus
command transfer status collection

enumerator kSDIF_DataTransferStatus
data transfer status collection

enumerator kSDIF_DataTransferError

enumerator kSDIF_AllInterruptStatus
all interrupt mask

_sdif_dma_status define the internal DMA status flags

Values:

406 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSDIF_DMATransFinishOneDescriptor
DMA transfer finished for one DMA descriptor

enumerator kSDIF_DMARecvFinishOneDescriptor
DMA receive finished for one DMA descriptor

enumerator kSDIF_DMAFatalBusError
DMA fatal bus error

enumerator kSDIF_DMADescriptorUnavailable
DMA descriptor unavailable

enumerator kSDIF_DMACardErrorSummary
card error summary

enumerator kSDIF_NormalInterruptSummary
normal interrupt summary

enumerator kSDIF_AbnormalInterruptSummary
abnormal interrupt summary

enumerator kSDIF_DMAAllStatus

_sdif_dma_descriptor_flag define the internal DMA descriptor flag

Deprecated:
Do not use this enum anymore, please use SDIF_DMA_DESCRIPTOR_XXX_FLAG in-
stead.

Values:

enumerator kSDIF_DisableCompleteInterrupt
disable the complete interrupt flag for the ends in the buffer pointed to by this descrip-
tor

enumerator kSDIF_DMADescriptorDataBufferEnd
indicate this descriptor contain the last data buffer of data

enumerator kSDIF_DMADescriptorDataBufferStart
indicate this descriptor contain the first data buffer of data,if first buffer size is 0,next
descriptor contain the begin of the data

enumerator kSDIF_DMASecondAddrChained
indicate that the second addr in the descriptor is the next descriptor addr not the data
buffer

enumerator kSDIF_DMADescriptorEnd
indicate that the descriptor list reached its final descriptor

enumerator kSDIF_DMADescriptorOwnByDMA
indicate the descriptor is own by SD/MMC DMA

enum _sdif_dma_mode
define the internal DMA mode

Values:

enumerator kSDIF_ChainDMAMode

enumerator kSDIF_DualDMAMode

2.41. SDIF: SD/MMC/SDIO card interface 407

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _sdif_bus_width sdif_bus_width_t
define the card bus width type

typedef enum _sdif_dma_mode sdif_dma_mode_t
define the internal DMA mode

typedef struct _sdif_dma_descriptor sdif_dma_descriptor_t
define the internal DMA descriptor

typedef struct _sdif_dma_config sdif_dma_config_t
Defines the internal DMA configure structure.

typedef struct _sdif_data sdif_data_t
Card data descriptor.

typedef struct _sdif_command sdif_command_t
Card command descriptor.

Define card command-related attribute.

typedef struct _sdif_transfer sdif_transfer_t
Transfer state.

typedef struct _sdif_config sdif_config_t
Data structure to initialize the sdif.

typedef struct _sdif_capability sdif_capability_t
SDIF capability information. Defines a structure to get the capability information of SDIF.

typedef struct _sdif_transfer_callback sdif_transfer_callback_t
sdif callback functions.

typedef struct _sdif_handle sdif_handle_t
sdif handle

Defines the structure to save the sdif state information and callback function. The detail
interrupt status when send command or transfer data can be obtained from interruptFlags
field by using mask defined in sdif_interrupt_flag_t;

Note: All the fields except interruptFlags and transferredWords must be allocated by the
user.

typedef status_t (*sdif_transfer_function_t)(SDIF_Type *base, sdif_transfer_t *content)
sdif transfer function.

typedef struct _sdif_host sdif_host_t
sdif host descriptor

void SDIF_Init(SDIF_Type *base, sdif_config_t *config)
SDIF module initialization function.

Configures the SDIF according to the user configuration.

Parameters
• base – SDIF peripheral base address.

• config – SDIF configuration information.

void SDIF_Deinit(SDIF_Type *base)
SDIF module deinit function. user should call this function follow with IP reset.

Parameters

408 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

• base – SDIF peripheral base address.

bool SDIF_SendCardActive(SDIF_Type *base, uint32_t timeout)
SDIF send initialize 80 clocks for SD card after initial.

Parameters
• base – SDIF peripheral base address.

• timeout – timeout value

static inline void SDIF_EnableCardClock(SDIF_Type *base, bool enable)
SDIF module enable/disable card clock.

Parameters
• base – SDIF peripheral base address.

• enable – enable/disable flag

static inline void SDIF_EnableLowPowerMode(SDIF_Type *base, bool enable)
SDIF module enable/disable module disable the card clock to enter low power mode when
card is idle,for SDIF cards, if interrupts must be detected, clock should not be stopped.

Parameters
• base – SDIF peripheral base address.

• enable – enable/disable flag

static inline void SDIF_EnableCardPower(SDIF_Type *base, bool enable)
enable/disable the card power. once turn power on, software should wait for regula-
tor/switch ramp-up time before trying to initialize card.

Parameters
• base – SDIF peripheral base address.

• enable – enable/disable flag.

void SDIF_SetCardBusWidth(SDIF_Type *base, sdif_bus_width_t type)
set card data bus width

Parameters
• base – SDIF peripheral base address.

• type – bus width type

static inline uint32_t SDIF_DetectCardInsert(SDIF_Type *base, bool data3)
SDIF module detect card insert status function.

Parameters
• base – SDIF peripheral base address.

• data3 – indicate use data3 as card insert detect pin

Return values
1 – card is inserted 0 card is removed

uint32_t SDIF_SetCardClock(SDIF_Type *base, uint32_t srcClock_Hz, uint32_t target_HZ)
Sets the card bus clock frequency.

Parameters
• base – SDIF peripheral base address.

• srcClock_Hz – SDIF source clock frequency united in Hz.

• target_HZ – card bus clock frequency united in Hz.

2.41. SDIF: SD/MMC/SDIO card interface 409

MCUXpresso SDK Documentation, Release 25.09.00

Returns
The nearest frequency of busClock_Hz configured to SD bus.

bool SDIF_Reset(SDIF_Type *base, uint32_t mask, uint32_t timeout)
reset the different block of the interface.

Parameters
• base – SDIF peripheral base address.

• mask – indicate which block to reset.

• timeout – timeout value,set to wait the bit self clear

Returns
reset result.

static inline uint32_t SDIF_GetCardWriteProtect(SDIF_Type *base)
get the card write protect status

Parameters
• base – SDIF peripheral base address.

static inline void SDIF_AssertHardwareReset(SDIF_Type *base)
toggle state on hardware reset PIN This is used which card has a reset PIN typically.

Parameters
• base – SDIF peripheral base address.

status_t SDIF_SendCommand(SDIF_Type *base, sdif_command_t *cmd, uint32_t timeout)
send command to the card

This api include polling the status of the bit START_COMMAND, if 0 used as timeout value,
then this function will return directly without polling the START_CMD status.

Parameters
• base – SDIF peripheral base address.

• cmd – configuration collection

• timeout – the timeout value of polling START_CMD auto clear status.

Returns
command excute status

static inline void SDIF_EnableGlobalInterrupt(SDIF_Type *base, bool enable)
SDIF enable/disable global interrupt.

Parameters
• base – SDIF peripheral base address.

• enable – enable/disable flag

static inline void SDIF_EnableInterrupt(SDIF_Type *base, uint32_t mask)
SDIF enable interrupt.

Parameters
• base – SDIF peripheral base address.

• mask – mask

static inline void SDIF_DisableInterrupt(SDIF_Type *base, uint32_t mask)
SDIF disable interrupt.

Parameters

410 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

• base – SDIF peripheral base address.

• mask – mask

static inline uint32_t SDIF_GetInterruptStatus(SDIF_Type *base)
SDIF get interrupt status.

Parameters
• base – SDIF peripheral base address.

static inline uint32_t SDIF_GetEnabledInterruptStatus(SDIF_Type *base)
SDIF get enabled interrupt status.

Parameters
• base – SDIF peripheral base address.

static inline void SDIF_ClearInterruptStatus(SDIF_Type *base, uint32_t mask)
SDIF clear interrupt status.

Parameters
• base – SDIF peripheral base address.

• mask – mask to clear

void SDIF_TransferCreateHandle(SDIF_Type *base, sdif_handle_t *handle,
sdif_transfer_callback_t *callback, void *userData)

Creates the SDIF handle. register call back function for interrupt and enable the interrupt.

Parameters
• base – SDIF peripheral base address.

• handle – SDIF handle pointer.

• callback – Structure pointer to contain all callback functions.

• userData – Callback function parameter.

static inline void SDIF_EnableDmaInterrupt(SDIF_Type *base, uint32_t mask)
SDIF enable DMA interrupt.

Parameters
• base – SDIF peripheral base address.

• mask – mask to set

static inline void SDIF_DisableDmaInterrupt(SDIF_Type *base, uint32_t mask)
SDIF disable DMA interrupt.

Parameters
• base – SDIF peripheral base address.

• mask – mask to clear

static inline uint32_t SDIF_GetInternalDMAStatus(SDIF_Type *base)
SDIF get internal DMA status.

Parameters
• base – SDIF peripheral base address.

Returns
the internal DMA status register

2.41. SDIF: SD/MMC/SDIO card interface 411

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t SDIF_GetEnabledDMAInterruptStatus(SDIF_Type *base)
SDIF get enabled internal DMA interrupt status.

Parameters
• base – SDIF peripheral base address.

Returns
the internal DMA status register

static inline void SDIF_ClearInternalDMAStatus(SDIF_Type *base, uint32_t mask)
SDIF clear internal DMA status.

Parameters
• base – SDIF peripheral base address.

• mask – mask to clear

status_t SDIF_InternalDMAConfig(SDIF_Type *base, sdif_dma_config_t *config, const uint32_t
*data, uint32_t dataSize)

SDIF internal DMA config function.

Parameters
• base – SDIF peripheral base address.

• config – DMA configuration collection

• data – buffer pointer

• dataSize – buffer size

static inline void SDIF_EnableInternalDMA(SDIF_Type *base, bool enable)
SDIF internal DMA enable.

Parameters
• base – SDIF peripheral base address.

• enable – internal DMA enable or disable flag.

static inline void SDIF_SendReadWait(SDIF_Type *base)
SDIF send read wait to SDIF card function.

Parameters
• base – SDIF peripheral base address.

bool SDIF_AbortReadData(SDIF_Type *base, uint32_t timeout)
SDIF abort the read data when SDIF card is in suspend state Once assert this bit,data state
machinewill be reset which iswaiting for the next blocking data,used in SDIO card suspend
sequence,should call after suspend cmd send.

Parameters
• base – SDIF peripheral base address.

• timeout – timeout value to wait this bit self clear which indicate the data
machine reset to idle

static inline void SDIF_EnableCEATAInterrupt(SDIF_Type *base, bool enable)
SDIF enable/disable CE-ATA card interrupt this bit should set togetherwith the card register.

Parameters
• base – SDIF peripheral base address.

• enable – enable/disable flag

412 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

status_t SDIF_TransferNonBlocking(SDIF_Type *base, sdif_handle_t *handle, sdif_dma_config_t
*dmaConfig, sdif_transfer_t *transfer)

SDIF transfer function data/cmd in a non-blocking way this API should be use in interrupt
mode, when use this API user must call SDIF_TransferCreateHandle first, all status check
through interrupt.

Parameters
• base – SDIF peripheral base address.

• handle – handle

• dmaConfig – config structure This parameter can be config as:

a. NULL In this condition, polling transfer mode is selected

b. avaliable DMA config In this condition, DMA transfer mode is selected

• transfer – transfer configuration collection

status_t SDIF_TransferBlocking(SDIF_Type *base, sdif_dma_config_t *dmaConfig, sdif_transfer_t
*transfer)

SDIF transfer function data/cmd in a blocking way.

Parameters
• base – SDIF peripheral base address.

• dmaConfig – config structure

a. NULL In this condition, polling transfer mode is selected

b. avaliable DMA config In this condition, DMA transfer mode is selected

• transfer – transfer configuration collection

status_t SDIF_ReleaseDMADescriptor(SDIF_Type *base, sdif_dma_config_t *dmaConfig)
SDIF release the DMA descriptor to DMA engine this function should be called when DMA
descriptor unavailable status occurs.

Parameters
• base – SDIF peripheral base address.

• dmaConfig – DMA config pointer

void SDIF_GetCapability(SDIF_Type *base, sdif_capability_t *capability)
SDIF return the controller capability.

Parameters
• base – SDIF peripheral base address.

• capability – capability pointer

static inline uint32_t SDIF_GetControllerStatus(SDIF_Type *base)
SDIF return the controller status.

Parameters
• base – SDIF peripheral base address.

static inline void SDIF_SendCCSD(SDIF_Type *base, bool withAutoStop)
SDIF send command complete signal disable to CE-ATA card.

Parameters
• base – SDIF peripheral base address.

• withAutoStop – auto stop flag

2.41. SDIF: SD/MMC/SDIO card interface 413

MCUXpresso SDK Documentation, Release 25.09.00

void SDIF_ConfigClockDelay(uint32_t target_HZ, uint32_t divider)
SDIF config the clock delay This function is used to config the cclk_in delay to sample and
driver the data ,should meet the min setup time and hold time, and user need to config this
parameter according to your board setting.

Parameters
• target_HZ – freq work mode

• divider – not used in this function anymore, use DELAY value instead of
phase directly.

SDIF_CLOCK_RANGE_NEED_DELAY
SDIOCLKCTRL setting Below clock delay setting should depend on specific platform, so it
can be redefined when timing mismatch issue occur. Such as: response error/CRC error
and so on.

clock range value which need to add delay to avoid timing issue

SDIF_HIGHSPEED_SAMPLE_DELAY
High speed mode clk_sample fixed delay.

12 * 250ps = 3ns

SDIF_HIGHSPEED_DRV_DELAY
High speed mode clk_drv fixed delay.

31 * 250ps = 7.75ns

SDIF_HIGHSPEED_SAMPLE_PHASE_SHIFT
High speed mode clk_sample phase shift.

SDIF_HIGHSPEED_DRV_PHASE_SHIFT
High speed mode clk_drv phase shift.

SDIF_DEFAULT_MODE_SAMPLE_DELAY
default mode sample fixed delay

12 * 250ps = 3ns

SDIF_DEFAULT_MODE_DRV_DELAY
31 * 250ps = 7.75ns

SDIF_INTERNAL_DMA_ADDR_ALIGN
SDIF internal DMA descriptor address and the data buffer address align.

SDIF_DMA_DESCRIPTOR_DISABLE_COMPLETE_INT_FLAG
SDIF DMA descriptor flag.

SDIF_DMA_DESCRIPTOR_DATA_BUFFER_END_FLAG

SDIF_DMA_DESCRIPTOR_DATA_BUFFER_START_FLAG

SDIF_DMA_DESCRIPTOR_SECOND_ADDR_CHAIN_FLAG

SDIF_DMA_DESCRIPTOR_DESCRIPTOR_END_FLAG

SDIF_DMA_DESCRIPTOR_OWN_BY_DMA_FLAG

struct _sdif_dma_descriptor
#include <fsl_sdif.h> define the internal DMA descriptor

414 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

uint32_t dmaDesAttribute
internal DMA attribute control and status

uint32_t dmaDataBufferSize
internal DMA transfer buffer size control

const uint32_t *dmaDataBufferAddr0
internal DMA buffer 0 addr ,the buffer size must be 32bit aligned

const uint32_t *dmaDataBufferAddr1
internal DMA buffer 1 addr ,the buffer size must be 32bit aligned

struct _sdif_dma_config
#include <fsl_sdif.h> Defines the internal DMA configure structure.

Public Members

bool enableFixBurstLen
fix burst len enable/disable flag,When set, the AHBwill use only SINGLE, INCR4, INCR8
or INCR16 during start of normal burst transfers. When reset, the AHBwill use SINGLE
and INCR burst transfer operations

sdif_dma_mode_t mode
define the DMA mode

uint8_t dmaDesSkipLen
define the descriptor skip length ,the length between two descriptor this field is special
for dual DMA mode

uint32_t *dmaDesBufferStartAddr
internal DMA descriptor start address

uint32_t dmaDesBufferLen
internal DMA buffer descriptor buffer len ,user need to pay attention to the dma de-
scriptor buffer length if it is bigger enough for your transfer

struct _sdif_data
#include <fsl_sdif.h> Card data descriptor.

Public Members

bool streamTransfer
indicate this is a stream data transfer command

bool enableAutoCommand12
indicate if auto stop will send when data transfer over

bool enableIgnoreError
indicate if enable ignore error when transfer data

size_t blockSize
Block size, take care when configure this parameter

uint32_t blockCount
Block count

uint32_t *rxData
data buffer to receive

2.41. SDIF: SD/MMC/SDIO card interface 415

MCUXpresso SDK Documentation, Release 25.09.00

const uint32_t *txData
data buffer to transfer

struct _sdif_command
#include <fsl_sdif.h> Card command descriptor.

Define card command-related attribute.

Public Members

uint32_t index
Command index

uint32_t argument
Command argument

uint32_t response[4U]
Response for this command

uint32_t type
define the command type

uint32_t responseType
Command response type

uint32_t flags
Cmd flags

uint32_t responseErrorFlags
response error flags, need to check the flags when receive the cmd response

struct _sdif_transfer
#include <fsl_sdif.h> Transfer state.

Public Members

sdif_data_t *data
Data to transfer

sdif_command_t *command
Command to send

struct _sdif_config
#include <fsl_sdif.h> Data structure to initialize the sdif.

Public Members

uint8_t responseTimeout
command response timeout value

uint32_t cardDetDebounce_Clock
define the debounce clock count which will used in card detect logic,typical value is
5-25ms

uint32_t dataTimeout
data timeout value

struct _sdif_capability
#include <fsl_sdif.h> SDIF capability information. Defines a structure to get the capability
information of SDIF.

416 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

uint32_t sdVersion
support SD card/sdio version

uint32_t mmcVersion
support emmc card version

uint32_t maxBlockLength
Maximum block length united as byte

uint32_t maxBlockCount
Maximum byte count can be transfered

uint32_t flags
Capability flags to indicate the support information

struct _sdif_transfer_callback
#include <fsl_sdif.h> sdif callback functions.

Public Members

void (*cardInserted)(SDIF_Type *base, void *userData)
card insert call back

void (*cardRemoved)(SDIF_Type *base, void *userData)
card remove call back

void (*SDIOInterrupt)(SDIF_Type *base, void *userData)
SDIO card interrupt occurs

void (*DMADesUnavailable)(SDIF_Type *base, void *userData)
DMA descriptor unavailable

void (*CommandReload)(SDIF_Type *base, void *userData)
command buffer full,need re-load

void (*TransferComplete)(SDIF_Type *base, void *handle, status_t status, void *userData)
Transfer complete callback

struct _sdif_handle
#include <fsl_sdif.h> sdif handle

Defines the structure to save the sdif state information and callback function. The detail
interrupt status when send command or transfer data can be obtained from interruptFlags
field by using mask defined in sdif_interrupt_flag_t;

Note: All the fields except interruptFlags and transferredWords must be allocated by the
user.

Public Members

sdif_data_t *volatile data
Data to transfer

sdif_command_t *volatile command
Command to send

2.41. SDIF: SD/MMC/SDIO card interface 417

MCUXpresso SDK Documentation, Release 25.09.00

volatile uint32_t transferredWords
Words transferred by polling way

sdif_transfer_callback_t callback
Callback function

void *userData
Parameter for transfer complete callback

struct _sdif_host
#include <fsl_sdif.h> sdif host descriptor

Public Members

SDIF_Type *base
sdif peripheral base address

uint32_t sourceClock_Hz
sdif source clock frequency united in Hz

sdif_config_t config
sdif configuration

sdif_transfer_function_t transfer
sdif transfer function

sdif_capability_t capability
sdif capability information

2.42 SHA: SHA encryption decryption driver

FSL_SHA_DRIVER_VERSION
Defines LPC SHA driver version 2.3.2.

Current version: 2.3.2

Change log:

• Version 2.0.0

– Initial version

• Version 2.1.0

– Updated “sha_ldm_stm_16_words” “sha_one_block” API tomatchQN9090. QN9090
has no ALIAS register.

– Added “SHA_ClkInit” “SHA_ClkInit”

• Version 2.1.1

– MISRA C-2012 issue fixed: rule 10.3, 10.4, 11.9, 14.4, 16.4 and 17.7.

• Version 2.2.0

– Support MEMADDR pseudo DMA for loading input data in SHA_Update function
(LPCXpresso54018 and LPCXpresso54628).

• Version 2.2.1

– MISRA C-2012 issue fix.

418 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

• Version 2.2.2 Modified SHA_Finish function. While using pseudo DMAwith maximum
optimization, compiler optimize out condition. Which caused block in this function
and did not check state, which has been set in interrupt.

• Version 2.3.0 Modified SHA_Update to use blocking version of AHBMaster mode when
its available on chip. Added SHA_UpdateNonBlocking() functionwhich uses nonblock-
ing AHB Master mode. Fixed incorrect calculation of SHA when calling SHA_Update
multiple times when is CPU used to load data. Added Reset into SHA_ClkInit and
SHA_ClkDeinit function.

• Version 2.3.1 Modified sha_process_message_data_master() to ensure that MEMCTRL
will be written within 64 cycles of writing last word to INDATA as is mentioned in
errata, even with different optimization levels.

• Version 2.3.2 Add -O2 optimization for GCC to sha_process_message_data_master(), be-
cause without it the function hangs under some conditions.

enum _sha_algo_t
Supported cryptographic block cipher functions for HASH creation

Values:

enumerator kSHA_Sha1
SHA_1

enumerator kSHA_Sha256
SHA_256

typedef enum _sha_algo_t sha_algo_t
Supported cryptographic block cipher functions for HASH creation

typedef struct _sha_ctx_t sha_ctx_t
Storage type used to save hash context.

typedef void (*sha_callback_t)(SHA_Type *base, sha_ctx_t *ctx, status_t status, void *userData)
background hash callback function.

SHA_CTX_SIZE
SHA Context size.

struct _sha_ctx_t
#include <fsl_sha.h> Storage type used to save hash context.

2.43 Sha_algorithm_level_api

status_t SHA_Init(SHA_Type *base, sha_ctx_t *ctx, sha_algo_t algo)
Initialize HASH context.

This function initializes new hash context.

Parameters
• base – SHA peripheral base address

• ctx – [out] Output hash context

• algo – Underlaying algorithm to use for hash computation. Either SHA-1 or
SHA-256.

Returns
Status of initialization

2.43. Sha_algorithm_level_api 419

MCUXpresso SDK Documentation, Release 25.09.00

status_t SHA_Update(SHA_Type *base, sha_ctx_t *ctx, const uint8_t *message, size_t
messageSize)

Add data to current HASH.

Add data to current HASH. This can be called repeatedly with an arbitrary amount of data
to be hashed.

Parameters
• base – SHA peripheral base address

• ctx – [inout] HASH context

• message – Input message

• messageSize – Size of input message in bytes

Returns
Status of the hash update operation

status_t SHA_Finish(SHA_Type *base, sha_ctx_t *ctx, uint8_t *output, size_t *outputSize)
Finalize hashing.

Outputs the final hash and erases the context. SHA-1 or SHA-256 padding bits are automat-
ically added by this function.

Parameters
• base – SHA peripheral base address

• ctx – [inout] HASH context

• output – [out] Output hash data

• outputSize – [inout] On input, determines the size of bytes of the output
array. On output, tells how many bytes have been written to output.

Returns
Status of the hash finish operation

void SHA_SetCallback(SHA_Type *base, sha_ctx_t *ctx, sha_callback_t callback, void *userData)
Initializes the SHA handle for background hashing.

This function initializes the hash context for background hashing (Non-blocking) APIs. This
is less typical interface to hash function, but can be used for parallel processing, when
main CPU has something else to do. Example is digital signature RSASSA-PKCS1-V1_5-
VERIFY((n,e),M,S) algorithm, where background hashing of M can be started, then CPU can
compute S^e mod n (in parallel with background hashing) and once the digest becomes
available, CPU can proceed to comparison of EM with EM’.

Parameters
• base – SHA peripheral base address.

• ctx – [out] Hash context.

• callback – Callback function.

• userData – User data (to be passed as an argument to callback function,
once callback is invoked from isr).

status_t SHA_UpdateNonBlocking(SHA_Type *base, sha_ctx_t *ctx, const uint8_t *input, size_t
inputSize)

Create running hash on given data.

Configures the SHA to compute new running hash as AHBmaster and returns immediately.
SHA AHBMaster mode supports only aligned input address and can be called only once per
continuous block of data. Every call to this function must be preceded with SHA_Init() and
finished with _SHA_Finish(). Once callback function is invoked by SHA isr, it should set

420 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

a flag for the main application to finalize the hashing (padding) and to read out the final
digest by calling SHA_Finish().

Parameters
• base – SHA peripheral base address

• ctx – Specifies callback. Last incomplete 512-bit block of the input is copied
into clear buffer for padding.

• input – 32-bit word aligned pointer to Input data.

• inputSize – Size of input data in bytes (must be word aligned)

Returns
Status of the hash update operation.

void SHA_ClkInit(SHA_Type *base)
Start SHA clock.

Start SHA clock

Parameters
• base – SHA peripheral base address

void SHA_ClkDeinit(SHA_Type *base)
Stop SHA clock.

Stop SHA clock

Parameters
• base – SHA peripheral base address

2.44 SPI: Serial Peripheral Interface Driver

2.45 SPI DMA Driver

status_t SPI_MasterTransferCreateHandleDMA(SPI_Type *base, spi_dma_handle_t *handle,
spi_dma_callback_t callback, void *userData,
dma_handle_t *txHandle, dma_handle_t
*rxHandle)

Initialize the SPI master DMA handle.

This function initializes the SPI master DMA handle which can be used for other SPI master
transactional APIs. Usually, for a specified SPI instance, user need only call this API once to
get the initialized handle.

Parameters
• base – SPI peripheral base address.

• handle – SPI handle pointer.

• callback – User callback function called at the end of a transfer.

• userData – User data for callback.

• txHandle – DMA handle pointer for SPI Tx, the handle shall be static allo-
cated by users.

• rxHandle – DMA handle pointer for SPI Rx, the handle shall be static allo-
cated by users.

2.44. SPI: Serial Peripheral Interface Driver 421

MCUXpresso SDK Documentation, Release 25.09.00

status_t SPI_MasterTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_transfer_t
*xfer)

Perform a non-blocking SPI transfer using DMA.

Note: This interface returned immediately after transfer initiates, users should call
SPI_GetTransferStatus to poll the transfer status to check whether SPI transfer finished.

Parameters
• base – SPI peripheral base address.

• handle – SPI DMA handle pointer.

• xfer – Pointer to dma transfer structure.

Return values
• kStatus_Success – Successfully start a transfer.

• kStatus_InvalidArgument – Input argument is invalid.

• kStatus_SPI_Busy – SPI is not idle, is running another transfer.

status_t SPI_MasterHalfDuplexTransferDMA(SPI_Type *base, spi_dma_handle_t *handle,
spi_half_duplex_transfer_t *xfer)

Transfers a block of data using a DMA method.

This function using polling way to do the first half transimission and using DMA way to do
the srcond half transimission, the transfer mechanism is half-duplex. When do the second
half transimission, code will return right away. When all data is transferred, the callback
function is called.

Parameters
• base – SPI base pointer

• handle – A pointer to the spi_master_dma_handle_t structure which stores
the transfer state.

• xfer – A pointer to the spi_half_duplex_transfer_t structure.

Returns
status of status_t.

static inline status_t SPI_SlaveTransferCreateHandleDMA(SPI_Type *base, spi_dma_handle_t
*handle, spi_dma_callback_t callback,
void *userData, dma_handle_t
*txHandle, dma_handle_t *rxHandle)

Initialize the SPI slave DMA handle.

This function initializes the SPI slave DMA handle which can be used for other SPI master
transactional APIs. Usually, for a specified SPI instance, user need only call this API once to
get the initialized handle.

Parameters
• base – SPI peripheral base address.

• handle – SPI handle pointer.

• callback – User callback function called at the end of a transfer.

• userData – User data for callback.

• txHandle – DMA handle pointer for SPI Tx, the handle shall be static allo-
cated by users.

422 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

• rxHandle – DMA handle pointer for SPI Rx, the handle shall be static allo-
cated by users.

static inline status_t SPI_SlaveTransferDMA(SPI_Type *base, spi_dma_handle_t *handle,
spi_transfer_t *xfer)

Perform a non-blocking SPI transfer using DMA.

Note: This interface returned immediately after transfer initiates, users should call
SPI_GetTransferStatus to poll the transfer status to check whether SPI transfer finished.

Parameters
• base – SPI peripheral base address.

• handle – SPI DMA handle pointer.

• xfer – Pointer to dma transfer structure.

Return values
• kStatus_Success – Successfully start a transfer.

• kStatus_InvalidArgument – Input argument is invalid.

• kStatus_SPI_Busy – SPI is not idle, is running another transfer.

void SPI_MasterTransferAbortDMA(SPI_Type *base, spi_dma_handle_t *handle)
Abort a SPI transfer using DMA.

Parameters
• base – SPI peripheral base address.

• handle – SPI DMA handle pointer.

status_t SPI_MasterTransferGetCountDMA(SPI_Type *base, spi_dma_handle_t *handle, size_t
*count)

Gets the master DMA transfered bytes.

This function gets the master DMA transfered bytes.

Parameters
• base – SPI peripheral base address.

• handle – A pointer to the spi_dma_handle_t structure which stores the
transfer state.

• count – A number of bytes transferred by the non-blocking transaction.

Returns
status of status_t.

static inline void SPI_SlaveTransferAbortDMA(SPI_Type *base, spi_dma_handle_t *handle)
Abort a SPI transfer using DMA.

Parameters
• base – SPI peripheral base address.

• handle – SPI DMA handle pointer.

static inline status_t SPI_SlaveTransferGetCountDMA(SPI_Type *base, spi_dma_handle_t
*handle, size_t *count)

Gets the slave DMA transfered bytes.

This function gets the slave DMA transfered bytes.

2.45. SPI DMA Driver 423

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• base – SPI peripheral base address.

• handle – A pointer to the spi_dma_handle_t structure which stores the
transfer state.

• count – A number of bytes transferred by the non-blocking transaction.

Returns
status of status_t.

FSL_SPI_DMA_DRIVER_VERSION
SPI DMA driver version.

typedef struct _spi_dma_handle spi_dma_handle_t

typedef void (*spi_dma_callback_t)(SPI_Type *base, spi_dma_handle_t *handle, status_t status,
void *userData)

SPI DMA callback called at the end of transfer.

struct _spi_dma_handle
#include <fsl_spi_dma.h> SPI DMA transfer handle, users should not touch the content of
the handle.

Public Members

SPI_Type *base
SPI base address

volatile bool txInProgress
Send transfer finished

volatile bool rxInProgress
Receive transfer finished

uint8_t bytesPerFrame
Bytes in a frame for SPI transfer

uint8_t lastwordBytes
The Bytes of lastword for master

uint16_t txDummy
The dummy data for TX.

uint32_t lastword
The last word for master TX.

dma_handle_t *txHandle
DMA handler for SPI send

dma_handle_t *rxHandle
DMA handler for SPI receive

spi_dma_callback_t callback
Callback for SPI DMA transfer

void *userData
User Data for SPI DMA callback

uint32_t state
Internal state of SPI DMA transfer

424 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

size_t transferSize
Bytes need to be transfer

uint32_t instance
Index of SPI instance

const uint8_t *txNextData
The pointer of next time tx data

size_t txRemainingBytes
lastwordBytes + txRemainingBytes is number of data to be send [in bytes]

uint8_t *rxNextData
The pointer of next time rx data

size_t rxRemainingBytes
Number of data to be received [in bytes]

bool isSlave
SPI work in slave mode.

2.46 SPI Driver

FSL_SPI_DRIVER_VERSION
SPI driver version.

enum _spi_xfer_option
SPI transfer option.

Values:

enumerator kSPI_FrameDelay
A delay may be inserted, defined in the DLY register.

enumerator kSPI_FrameAssert
SSEL will be deasserted at the end of a transfer

enum _spi_shift_direction
SPI data shifter direction options.

Values:

enumerator kSPI_MsbFirst
Data transfers start with most significant bit.

enumerator kSPI_LsbFirst
Data transfers start with least significant bit.

enum _spi_clock_polarity
SPI clock polarity configuration.

Values:

enumerator kSPI_ClockPolarityActiveHigh
Active-high SPI clock (idles low).

enumerator kSPI_ClockPolarityActiveLow
Active-low SPI clock (idles high).

2.46. SPI Driver 425

MCUXpresso SDK Documentation, Release 25.09.00

enum _spi_clock_phase
SPI clock phase configuration.

Values:

enumerator kSPI_ClockPhaseFirstEdge
First edge on SCK occurs at the middle of the first cycle of a data transfer.

enumerator kSPI_ClockPhaseSecondEdge
First edge on SCK occurs at the start of the first cycle of a data transfer.

enum _spi_txfifo_watermark
txFIFO watermark values

Values:

enumerator kSPI_TxFifo0
SPI tx watermark is empty

enumerator kSPI_TxFifo1
SPI tx watermark at 1 item

enumerator kSPI_TxFifo2
SPI tx watermark at 2 items

enumerator kSPI_TxFifo3
SPI tx watermark at 3 items

enumerator kSPI_TxFifo4
SPI tx watermark at 4 items

enumerator kSPI_TxFifo5
SPI tx watermark at 5 items

enumerator kSPI_TxFifo6
SPI tx watermark at 6 items

enumerator kSPI_TxFifo7
SPI tx watermark at 7 items

enum _spi_rxfifo_watermark
rxFIFO watermark values

Values:

enumerator kSPI_RxFifo1
SPI rx watermark at 1 item

enumerator kSPI_RxFifo2
SPI rx watermark at 2 items

enumerator kSPI_RxFifo3
SPI rx watermark at 3 items

enumerator kSPI_RxFifo4
SPI rx watermark at 4 items

enumerator kSPI_RxFifo5
SPI rx watermark at 5 items

enumerator kSPI_RxFifo6
SPI rx watermark at 6 items

426 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSPI_RxFifo7
SPI rx watermark at 7 items

enumerator kSPI_RxFifo8
SPI rx watermark at 8 items

enum _spi_data_width
Transfer data width.

Values:

enumerator kSPI_Data4Bits
4 bits data width

enumerator kSPI_Data5Bits
5 bits data width

enumerator kSPI_Data6Bits
6 bits data width

enumerator kSPI_Data7Bits
7 bits data width

enumerator kSPI_Data8Bits
8 bits data width

enumerator kSPI_Data9Bits
9 bits data width

enumerator kSPI_Data10Bits
10 bits data width

enumerator kSPI_Data11Bits
11 bits data width

enumerator kSPI_Data12Bits
12 bits data width

enumerator kSPI_Data13Bits
13 bits data width

enumerator kSPI_Data14Bits
14 bits data width

enumerator kSPI_Data15Bits
15 bits data width

enumerator kSPI_Data16Bits
16 bits data width

enum _spi_ssel
Slave select.

Values:

enumerator kSPI_Ssel0
Slave select 0

enumerator kSPI_Ssel1
Slave select 1

enumerator kSPI_Ssel2
Slave select 2

2.46. SPI Driver 427

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSPI_Ssel3
Slave select 3

enum _spi_spol
ssel polarity

Values:

enumerator kSPI_Spol0ActiveHigh

enumerator kSPI_Spol1ActiveHigh

enumerator kSPI_Spol3ActiveHigh

enumerator kSPI_SpolActiveAllHigh

enumerator kSPI_SpolActiveAllLow

SPI transfer status.

Values:

enumerator kStatus_SPI_Busy
SPI bus is busy

enumerator kStatus_SPI_Idle
SPI is idle

enumerator kStatus_SPI_Error
SPI error

enumerator kStatus_SPI_BaudrateNotSupport
Baudrate is not support in current clock source

enumerator kStatus_SPI_Timeout
SPI timeout polling status flags.

enum _spi_interrupt_enable
SPI interrupt sources.

Values:

enumerator kSPI_RxLvlIrq
Rx level interrupt

enumerator kSPI_TxLvlIrq
Tx level interrupt

enum _spi_statusflags
SPI status flags.

Values:

enumerator kSPI_TxEmptyFlag
txFifo is empty

enumerator kSPI_TxNotFullFlag
txFifo is not full

enumerator kSPI_RxNotEmptyFlag
rxFIFO is not empty

enumerator kSPI_RxFullFlag
rxFIFO is full

428 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _spi_xfer_option spi_xfer_option_t
SPI transfer option.

typedef enum _spi_shift_direction spi_shift_direction_t
SPI data shifter direction options.

typedef enum _spi_clock_polarity spi_clock_polarity_t
SPI clock polarity configuration.

typedef enum _spi_clock_phase spi_clock_phase_t
SPI clock phase configuration.

typedef enum _spi_txfifo_watermark spi_txfifo_watermark_t
txFIFO watermark values

typedef enum _spi_rxfifo_watermark spi_rxfifo_watermark_t
rxFIFO watermark values

typedef enum _spi_data_width spi_data_width_t
Transfer data width.

typedef enum _spi_ssel spi_ssel_t
Slave select.

typedef enum _spi_spol spi_spol_t
ssel polarity

typedef struct _spi_delay_config spi_delay_config_t
SPI delay time configure structure. Note: The DLY register controls several programmable
delays related to SPI signalling, it stands for how many SPI clock time will be inserted. The
maxinun value of these delay time is 15.

typedef struct _spi_master_config spi_master_config_t
SPI master user configure structure.

typedef struct _spi_slave_config spi_slave_config_t
SPI slave user configure structure.

typedef struct _spi_transfer spi_transfer_t
SPI transfer structure.

typedef struct _spi_half_duplex_transfer spi_half_duplex_transfer_t
SPI half-duplex(master only) transfer structure.

typedef struct _spi_config spi_config_t
Internal configuration structure used in ‘spi’ and ‘spi_dma’ driver.

typedef struct _spi_master_handle spi_master_handle_t
Master handle type.

typedef spi_master_handle_t spi_slave_handle_t
Slave handle type.

typedef void (*spi_master_callback_t)(SPI_Type *base, spi_master_handle_t *handle, status_t
status, void *userData)

SPI master callback for finished transmit.

typedef void (*spi_slave_callback_t)(SPI_Type *base, spi_slave_handle_t *handle, status_t status,
void *userData)

SPI slave callback for finished transmit.

2.46. SPI Driver 429

MCUXpresso SDK Documentation, Release 25.09.00

typedef void (*flexcomm_spi_master_irq_handler_t)(SPI_Type *base, spi_master_handle_t
*handle)

Typedef for master interrupt handler.

typedef void (*flexcomm_spi_slave_irq_handler_t)(SPI_Type *base, spi_slave_handle_t *handle)
Typedef for slave interrupt handler.

volatile uint8_t s_dummyData[]
SPI default SSEL COUNT.

Global variable for dummy data value setting.

SPI_DUMMYDATA
SPI dummy transfer data, the data is sent while txBuff is NULL.

SPI_RETRY_TIMES
Retry times for waiting flag.

SPI_DATA(n)

SPI_CTRLMASK

SPI_ASSERTNUM_SSEL(n)

SPI_DEASSERTNUM_SSEL(n)

SPI_DEASSERT_ALL

SPI_FIFOWR_FLAGS_MASK

SPI_FIFOTRIG_TXLVL_GET(base)

SPI_FIFOTRIG_RXLVL_GET(base)

struct _spi_delay_config
#include <fsl_spi.h> SPI delay time configure structure. Note: The DLY register controls
several programmable delays related to SPI signalling, it stands for how many SPI clock
time will be inserted. The maxinun value of these delay time is 15.

Public Members

uint8_t preDelay
Delay between SSEL assertion and the beginning of transfer.

uint8_t postDelay
Delay between the end of transfer and SSEL deassertion.

uint8_t frameDelay
Delay between frame to frame.

uint8_t transferDelay
Delay between transfer to transfer.

struct _spi_master_config
#include <fsl_spi.h> SPI master user configure structure.

Public Members

bool enableLoopback
Enable loopback for test purpose

430 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

bool enableMaster
Enable SPI at initialization time

spi_clock_polarity_t polarity
Clock polarity

spi_clock_phase_t phase
Clock phase

spi_shift_direction_t direction
MSB or LSB

uint32_t baudRate_Bps
Baud Rate for SPI in Hz

spi_data_width_t dataWidth
Width of the data

spi_ssel_t sselNum
Slave select number

spi_spol_t sselPol
Configure active CS polarity

uint8_t txWatermark
txFIFO watermark

uint8_t rxWatermark
rxFIFO watermark

spi_delay_config_t delayConfig
Delay configuration.

struct _spi_slave_config
#include <fsl_spi.h> SPI slave user configure structure.

Public Members

bool enableSlave
Enable SPI at initialization time

spi_clock_polarity_t polarity
Clock polarity

spi_clock_phase_t phase
Clock phase

spi_shift_direction_t direction
MSB or LSB

spi_data_width_t dataWidth
Width of the data

spi_spol_t sselPol
Configure active CS polarity

uint8_t txWatermark
txFIFO watermark

uint8_t rxWatermark
rxFIFO watermark

struct _spi_transfer
#include <fsl_spi.h> SPI transfer structure.

2.46. SPI Driver 431

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

const uint8_t *txData
Send buffer

uint8_t *rxData
Receive buffer

uint32_t configFlags
Additional option to control transfer, spi_xfer_option_t.

size_t dataSize
Transfer bytes

struct _spi_half_duplex_transfer
#include <fsl_spi.h> SPI half-duplex(master only) transfer structure.

Public Members

const uint8_t *txData
Send buffer

uint8_t *rxData
Receive buffer

size_t txDataSize
Transfer bytes for transmit

size_t rxDataSize
Transfer bytes

uint32_t configFlags
Transfer configuration flags, spi_xfer_option_t.

bool isPcsAssertInTransfer
If PCS pin keep assert between transmit and receive. true for assert and false for de-
assert.

bool isTransmitFirst
True for transmit first and false for receive first.

struct _spi_config
#include <fsl_spi.h> Internal configuration structure used in ‘spi’ and ‘spi_dma’ driver.

struct _spi_master_handle
#include <fsl_spi.h> SPI transfer handle structure.

Public Members

const uint8_t *volatile txData
Transfer buffer

uint8_t *volatile rxData
Receive buffer

volatile size_t txRemainingBytes
Number of data to be transmitted [in bytes]

volatile size_t rxRemainingBytes
Number of data to be received [in bytes]

432 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

volatile int8_t toReceiveCount
The number of data expected to receive in data width. Since the received count and
sent count should be the same to complete the transfer, if the sent count is x and the
received count is y, toReceiveCount is x-y.

size_t totalByteCount
A number of transfer bytes

volatile uint32_t state
SPI internal state

spi_master_callback_t callback
SPI callback

void *userData
Callback parameter

uint8_t dataWidth
Width of the data [Valid values: 1 to 16]

uint8_t sselNum
Slave select number to be asserted when transferring data [Valid values: 0 to 3]

uint32_t configFlags
Additional option to control transfer

uint8_t txWatermark
txFIFO watermark

uint8_t rxWatermark
rxFIFO watermark

2.47 SPIFI: SPIFI flash interface driver

void SPIFI_TransferTxCreateHandleDMA(SPIFI_Type *base, spifi_dma_handle_t *handle,
spifi_dma_callback_t callback, void *userData,
dma_handle_t *dmaHandle)

Initializes the SPIFI handle for send which is used in transactional functions and set the
callback.

Parameters
• base – SPIFI peripheral base address

• handle – Pointer to spifi_dma_handle_t structure

• callback – SPIFI callback, NULL means no callback.

• userData – User callback function data.

• dmaHandle – User requested DMA handle for DMA transfer

void SPIFI_TransferRxCreateHandleDMA(SPIFI_Type *base, spifi_dma_handle_t *handle,
spifi_dma_callback_t callback, void *userData,
dma_handle_t *dmaHandle)

Initializes the SPIFI handle for receive which is used in transactional functions and set the
callback.

Parameters
• base – SPIFI peripheral base address

• handle – Pointer to spifi_dma_handle_t structure

2.47. SPIFI: SPIFI flash interface driver 433

MCUXpresso SDK Documentation, Release 25.09.00

• callback – SPIFI callback, NULL means no callback.

• userData – User callback function data.

• dmaHandle – User requested DMA handle for DMA transfer

status_t SPIFI_TransferSendDMA(SPIFI_Type *base, spifi_dma_handle_t *handle, spifi_transfer_t
*xfer)

Transfers SPIFI data using an DMA non-blocking method.

This function writes data to the SPIFI transmit FIFO. This function is non-blocking.

Parameters
• base – Pointer to QuadSPI Type.

• handle – Pointer to spifi_dma_handle_t structure

• xfer – SPIFI transfer structure.

status_t SPIFI_TransferReceiveDMA(SPIFI_Type *base, spifi_dma_handle_t *handle,
spifi_transfer_t *xfer)

Receives data using an DMA non-blocking method.

This function receive data from the SPIFI receive buffer/FIFO. This function is non-blocking.

Parameters
• base – Pointer to QuadSPI Type.

• handle – Pointer to spifi_dma_handle_t structure

• xfer – SPIFI transfer structure.

void SPIFI_TransferAbortSendDMA(SPIFI_Type *base, spifi_dma_handle_t *handle)
Aborts the sent data using DMA.

This function aborts the sent data using DMA.

Parameters
• base – SPIFI peripheral base address.

• handle – Pointer to spifi_dma_handle_t structure

void SPIFI_TransferAbortReceiveDMA(SPIFI_Type *base, spifi_dma_handle_t *handle)
Aborts the receive data using DMA.

This function abort receive data which using DMA.

Parameters
• base – SPIFI peripheral base address.

• handle – Pointer to spifi_dma_handle_t structure

status_t SPIFI_TransferGetSendCountDMA(SPIFI_Type *base, spifi_dma_handle_t *handle, size_t
*count)

Gets the transferred counts of send.

Parameters
• base – Pointer to QuadSPI Type.

• handle – Pointer to spifi_dma_handle_t structure.

• count – Bytes sent.

Return values
• kStatus_Success – Succeed get the transfer count.

434 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

• kStatus_NoTransferInProgress – There is not a non-blocking transaction cur-
rently in progress.

status_t SPIFI_TransferGetReceiveCountDMA(SPIFI_Type *base, spifi_dma_handle_t *handle,
size_t *count)

Gets the status of the receive transfer.

Parameters
• base – Pointer to QuadSPI Type.

• handle – Pointer to spifi_dma_handle_t structure

• count – Bytes received.

Return values
• kStatus_Success – Succeed get the transfer count.

• kStatus_NoTransferInProgress – There is not a non-blocking transaction cur-
rently in progress.

uint32_t SPIFI_GetInstance(SPIFI_Type *base)
Get the SPIFI instance from peripheral base address.

Parameters
• base – SPIFI peripheral base address.

Returns
SPIFI instance.

void SPIFI_Init(SPIFI_Type *base, const spifi_config_t *config)
Initializes the SPIFI with the user configuration structure.

This function configures the SPIFI module with the user-defined configuration.

Parameters
• base – SPIFI peripheral base address.

• config – The pointer to the configuration structure.

void SPIFI_GetDefaultConfig(spifi_config_t *config)
Get SPIFI default configure settings.

Parameters
• config – SPIFI config structure pointer.

void SPIFI_Deinit(SPIFI_Type *base)
Deinitializes the SPIFI regions.

Parameters
• base – SPIFI peripheral base address.

void SPIFI_SetCommand(SPIFI_Type *base, spifi_command_t *cmd)
Set SPIFI flash command.

Parameters
• base – SPIFI peripheral base address.

• cmd – SPIFI command structure pointer.

static inline void SPIFI_SetCommandAddress(SPIFI_Type *base, uint32_t addr)
Set SPIFI command address.

Parameters

2.47. SPIFI: SPIFI flash interface driver 435

MCUXpresso SDK Documentation, Release 25.09.00

• base – SPIFI peripheral base address.

• addr – Address value for the command.

static inline void SPIFI_SetIntermediateData(SPIFI_Type *base, uint32_t val)
Set SPIFI intermediate data.

Before writing a command wihch needs specific intermediate value, users shall call this
function to write it. The main use of this function for current serial flash is to select no-
opcode mode and cancelling this mode. As dummy cycle do not care about the value, no
need to call this function.

Parameters
• base – SPIFI peripheral base address.

• val – Intermediate data.

static inline void SPIFI_SetCacheLimit(SPIFI_Type *base, uint32_t val)
Set SPIFI Cache limit value.

SPIFI includes caching of prevously-accessed data to improve performance. Software can
write an address to this function, to prevent such caching at and above the address.

Parameters
• base – SPIFI peripheral base address.

• val – Zero-based upper limit of cacheable memory.

static inline void SPIFI_ResetCommand(SPIFI_Type *base)
Reset the command field of SPIFI.

This function is used to abort the current command or memory mode.

Parameters
• base – SPIFI peripheral base address.

void SPIFI_SetMemoryCommand(SPIFI_Type *base, spifi_command_t *cmd)
Set SPIFI flash AHB read command.

Call this function means SPIFI enters to memory mode, while users need to use command,
a SPIFI_ResetCommand shall be called.

Parameters
• base – SPIFI peripheral base address.

• cmd – SPIFI command structure pointer.

static inline void SPIFI_EnableInterrupt(SPIFI_Type *base, uint32_t mask)
Enable SPIFI interrupt.

The interrupt is triggered only in command mode, and it means the command now is fin-
ished.

Parameters
• base – SPIFI peripheral base address.

• mask – SPIFI interrupt enable mask. It is a logic OR of members the enu-
meration :: spifi_interrupt_enable_t

static inline void SPIFI_DisableInterrupt(SPIFI_Type *base, uint32_t mask)
Disable SPIFI interrupt.

The interrupt is triggered only in command mode, and it means the command now is fin-
ished.

Parameters

436 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

• base – SPIFI peripheral base address.

• mask – SPIFI interrupt enable mask. It is a logic OR of members the enu-
meration :: spifi_interrupt_enable_t

static inline uint32_t SPIFI_GetStatusFlag(SPIFI_Type *base)
Get the status of all interrupt flags for SPIFI.

Parameters
• base – SPIFI peripheral base address.

Returns
SPIFI flag status

FSL_SPIFI_DMA_DRIVER_VERSION
SPIFI DMA driver version 2.0.3.

FSL_SPIFI_DRIVER_VERSION
SPIFI driver version 2.0.3.

Status structure of SPIFI.

Values:

enumerator kStatus_SPIFI_Idle
SPIFI is in idle state

enumerator kStatus_SPIFI_Busy
SPIFI is busy

enumerator kStatus_SPIFI_Error
Error occurred during SPIFI transfer

enum _spifi_interrupt_enable
SPIFI interrupt source.

Values:

enumerator kSPIFI_CommandFinishInterruptEnable
Interrupt while command finished

enum _spifi_spi_mode
SPIFI SPI mode select.

Values:

enumerator kSPIFI_SPISckLow
SCK low after last bit of command, keeps low while CS high

enumerator kSPIFI_SPISckHigh
SCK high after last bit of command and while CS high

enum _spifi_dual_mode
SPIFI dual mode select.

Values:

enumerator kSPIFI_QuadMode
SPIFI uses IO3:0

enumerator kSPIFI_DualMode
SPIFI uses IO1:0

2.47. SPIFI: SPIFI flash interface driver 437

MCUXpresso SDK Documentation, Release 25.09.00

enum _spifi_data_direction
SPIFI data direction.

Values:

enumerator kSPIFI_DataInput
Data input from serial flash.

enumerator kSPIFI_DataOutput
Data output to serial flash.

enum _spifi_command_format
SPIFI command opcode format.

Values:

enumerator kSPIFI_CommandAllSerial
All fields of command are serial.

enumerator kSPIFI_CommandDataQuad
Only data field is dual/quad, others are serial.

enumerator kSPIFI_CommandOpcodeSerial
Only opcode field is serial, others are quad/dual.

enumerator kSPIFI_CommandAllQuad
All fields of command are dual/quad mode.

enum _spifi_command_type
SPIFI command type.

Values:

enumerator kSPIFI_CommandOpcodeOnly
Command only have opcode, no address field

enumerator kSPIFI_CommandOpcodeAddrOneByte
Command have opcode and also one byte address field

enumerator kSPIFI_CommandOpcodeAddrTwoBytes
Command have opcode and also two bytes address field

enumerator kSPIFI_CommandOpcodeAddrThreeBytes
Command have opcode and also three bytes address field.

enumerator kSPIFI_CommandOpcodeAddrFourBytes
Command have opcode and also four bytes address field

enumerator kSPIFI_CommandNoOpcodeAddrThreeBytes
Command have no opcode and three bytes address field

enumerator kSPIFI_CommandNoOpcodeAddrFourBytes
Command have no opcode and four bytes address field

SPIFI status flags.

Values:

enumerator kSPIFI_MemoryCommandWriteFinished
Memory command write finished

enumerator kSPIFI_CommandWriteFinished
Command write finished

438 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSPIFI_InterruptRequest
CMD flag from 1 to 0, means command execute finished

typedef struct _spifi_dma_handle spifi_dma_handle_t

typedef void (*spifi_dma_callback_t)(SPIFI_Type *base, spifi_dma_handle_t *handle, status_t
status, void *userData)

SPIFI DMA transfer callback function for finish and error.

typedef enum _spifi_interrupt_enable spifi_interrupt_enable_t
SPIFI interrupt source.

typedef enum _spifi_spi_mode spifi_spi_mode_t
SPIFI SPI mode select.

typedef enum _spifi_dual_mode spifi_dual_mode_t
SPIFI dual mode select.

typedef enum _spifi_data_direction spifi_data_direction_t
SPIFI data direction.

typedef enum _spifi_command_format spifi_command_format_t
SPIFI command opcode format.

typedef enum _spifi_command_type spifi_command_type_t
SPIFI command type.

typedef struct _spifi_command spifi_command_t
SPIFI command structure.

typedef struct _spifi_config spifi_config_t
SPIFI region configuration structure.

typedef struct _spifi_transfer spifi_transfer_t
Transfer structure for SPIFI.

static inline void SPIFI_EnableDMA(SPIFI_Type *base, bool enable)
Enable or disable DMA request for SPIFI.

Parameters
• base – SPIFI peripheral base address.

• enable – True means enable DMA and false means disable DMA.

static inline uint32_t SPIFI_GetDataRegisterAddress(SPIFI_Type *base)
Gets the SPIFI data register address.

This API is used to provide a transfer address for the SPIFI DMA transfer configuration.

Parameters
• base – SPIFI base pointer

Returns
data register address

static inline void SPIFI_WriteData(SPIFI_Type *base, uint32_t data)
Write a word data in address of SPIFI.

Users can write a page or at least a word data into SPIFI address.

Parameters
• base – SPIFI peripheral base address.

• data – Data need be write.

2.47. SPIFI: SPIFI flash interface driver 439

MCUXpresso SDK Documentation, Release 25.09.00

static inline void SPIFI_WriteDataByte(SPIFI_Type *base, uint8_t data)
Write a byte data in address of SPIFI.

Users can write a byte data into SPIFI address.

Parameters
• base – SPIFI peripheral base address.

• data – Data need be write.

void SPIFI_WriteDataHalfword(SPIFI_Type *base, uint16_t data)
Write a halfword data in address of SPIFI.

Users can write a halfword data into SPIFI address.

Parameters
• base – SPIFI peripheral base address.

• data – Data need be write.

static inline uint32_t SPIFI_ReadData(SPIFI_Type *base)
Read data from serial flash.

Users should notice before call this function, the data length field in command register shall
larger than 4, otherwise a hardfault will happen.

Parameters
• base – SPIFI peripheral base address.

Returns
Data input from flash.

static inline uint8_t SPIFI_ReadDataByte(SPIFI_Type *base)
Read a byte data from serial flash.

Parameters
• base – SPIFI peripheral base address.

Returns
Data input from flash.

uint16_t SPIFI_ReadDataHalfword(SPIFI_Type *base)
Read a halfword data from serial flash.

Parameters
• base – SPIFI peripheral base address.

Returns
Data input from flash.

struct _spifi_dma_handle
#include <fsl_spifi_dma.h> SPIFI DMA transfer handle, users should not touch the content
of the handle.

Public Members

dma_handle_t *dmaHandle
DMA handler for SPIFI send

size_t transferSize
Bytes need to transfer.

440 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t state
Internal state for SPIFI DMA transfer

spifi_dma_callback_t callback
Callback for users while transfer finish or error occurred

void *userData
User callback parameter

struct _spifi_command
#include <fsl_spifi.h> SPIFI command structure.

Public Members

uint16_t dataLen
How many data bytes are needed in this command.

bool isPollMode
For command need to read data from serial flash

spifi_data_direction_t direction
Data direction of this command.

uint8_t intermediateBytes
How many intermediate bytes needed

spifi_command_format_t format
Command format

spifi_command_type_t type
Command type

uint8_t opcode
Command opcode value

struct _spifi_config
#include <fsl_spifi.h> SPIFI region configuration structure.

Public Members

uint16_t timeout
SPI transfer timeout, the unit is SCK cycles

uint8_t csHighTime
CS high time cycles

bool disablePrefetch
True means SPIFI will not attempt a speculative prefetch.

bool disableCachePrefech
Disable prefetch of cache line

bool isFeedbackClock
Is data sample uses feedback clock.

spifi_spi_mode_t spiMode
SPIFI spi mode select

bool isReadFullClockCycle
If enable read full clock cycle.

2.47. SPIFI: SPIFI flash interface driver 441

MCUXpresso SDK Documentation, Release 25.09.00

spifi_dual_mode_t dualMode
SPIFI dual mode, dual or quad.

struct _spifi_transfer
#include <fsl_spifi.h> Transfer structure for SPIFI.

Public Members

uint8_t *data
Pointer to data to transmit

size_t dataSize
Bytes to be transmit

2.48 SPIFI DMA Driver

2.49 SPIFI Driver

2.50 USART: Universal Synchronous/Asynchronous Re-
ceiver/Transmitter Driver

2.51 USART DMA Driver

status_t USART_TransferCreateHandleDMA(USART_Type *base, usart_dma_handle_t *handle,
usart_dma_transfer_callback_t callback, void
*userData, dma_handle_t *txDmaHandle,
dma_handle_t *rxDmaHandle)

Initializes the USART handle which is used in transactional functions.

Parameters
• base – USART peripheral base address.

• handle – Pointer to usart_dma_handle_t structure.

• callback – Callback function.

• userData – User data.

• txDmaHandle – User-requested DMA handle for TX DMA transfer.

• rxDmaHandle – User-requested DMA handle for RX DMA transfer.

status_t USART_TransferSendDMA(USART_Type *base, usart_dma_handle_t *handle,
usart_transfer_t *xfer)

Sends data using DMA.

This function sends data using DMA. This is a non-blocking function, which returns right
away. When all data is sent, the send callback function is called.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• xfer – USART DMA transfer structure. See usart_transfer_t.

442 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

Return values
• kStatus_Success – if succeed, others failed.

• kStatus_USART_TxBusy – Previous transfer on going.

• kStatus_InvalidArgument – Invalid argument.

status_t USART_TransferReceiveDMA(USART_Type *base, usart_dma_handle_t *handle,
usart_transfer_t *xfer)

Receives data using DMA.

This function receives data using DMA. This is a non-blocking function, which returns right
away. When all data is received, the receive callback function is called.

Parameters
• base – USART peripheral base address.

• handle – Pointer to usart_dma_handle_t structure.

• xfer – USART DMA transfer structure. See usart_transfer_t.

Return values
• kStatus_Success – if succeed, others failed.

• kStatus_USART_RxBusy – Previous transfer on going.

• kStatus_InvalidArgument – Invalid argument.

void USART_TransferAbortSendDMA(USART_Type *base, usart_dma_handle_t *handle)
Aborts the sent data using DMA.

This function aborts send data using DMA.

Parameters
• base – USART peripheral base address

• handle – Pointer to usart_dma_handle_t structure

void USART_TransferAbortReceiveDMA(USART_Type *base, usart_dma_handle_t *handle)
Aborts the received data using DMA.

This function aborts the received data using DMA.

Parameters
• base – USART peripheral base address

• handle – Pointer to usart_dma_handle_t structure

status_t USART_TransferGetReceiveCountDMA(USART_Type *base, usart_dma_handle_t *handle,
uint32_t *count)

Get the number of bytes that have been received.

This function gets the number of bytes that have been received.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• count – Receive bytes count.

Return values
• kStatus_NoTransferInProgress – No receive in progress.

• kStatus_InvalidArgument – Parameter is invalid.

2.51. USART DMA Driver 443

MCUXpresso SDK Documentation, Release 25.09.00

• kStatus_Success – Get successfully through the parameter count;

status_t USART_TransferGetSendCountDMA(USART_Type *base, usart_dma_handle_t *handle,
uint32_t *count)

Get the number of bytes that have been sent.

This function gets the number of bytes that have been sent.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• count – Sent bytes count.

Return values
• kStatus_NoTransferInProgress – No receive in progress.

• kStatus_InvalidArgument – Parameter is invalid.

• kStatus_Success – Get successfully through the parameter count;

FSL_USART_DMA_DRIVER_VERSION
USART dma driver version.

typedef struct _usart_dma_handle usart_dma_handle_t

typedef void (*usart_dma_transfer_callback_t)(USART_Type *base, usart_dma_handle_t *handle,
status_t status, void *userData)

UART transfer callback function.

struct _usart_dma_handle
#include <fsl_usart_dma.h> UART DMA handle.

Public Members

USART_Type *base
UART peripheral base address.

usart_dma_transfer_callback_t callback
Callback function.

void *userData
UART callback function parameter.

size_t rxDataSizeAll
Size of the data to receive.

size_t txDataSizeAll
Size of the data to send out.

dma_handle_t *txDmaHandle
The DMA TX channel used.

dma_handle_t *rxDmaHandle
The DMA RX channel used.

volatile uint8_t txState
TX transfer state.

volatile uint8_t rxState
RX transfer state

444 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

2.52 USART Driver

status_t USART_Init(USART_Type *base, const usart_config_t *config, uint32_t srcClock_Hz)
Initializes a USART instance with user configuration structure and peripheral clock.

This function configures the USART module with the user-defined settings. The user can
configure the configuration structure and also get the default configuration by using the
USART_GetDefaultConfig() function. Example below shows how to use this API to configure
USART.

usart_config_t usartConfig;
usartConfig.baudRate_Bps = 115200U;
usartConfig.parityMode = kUSART_ParityDisabled;
usartConfig.stopBitCount = kUSART_OneStopBit;
USART_Init(USART1, &usartConfig, 20000000U);

Parameters
• base – USART peripheral base address.

• config – Pointer to user-defined configuration structure.

• srcClock_Hz – USART clock source frequency in HZ.

Return values
• kStatus_USART_BaudrateNotSupport – Baudrate is not support in current
clock source.

• kStatus_InvalidArgument – USART base address is not valid

• kStatus_Success – Status USART initialize succeed

void USART_Deinit(USART_Type *base)
Deinitializes a USART instance.

This function waits for TX complete, disables TX and RX, and disables the USART clock.

Parameters
• base – USART peripheral base address.

void USART_GetDefaultConfig(usart_config_t *config)
Gets the default configuration structure.

This function initializes the USART configuration structure to a default value. The
default values are: usartConfig->baudRate_Bps = 115200U; usartConfig->parityMode =
kUSART_ParityDisabled; usartConfig->stopBitCount = kUSART_OneStopBit; usartConfig-
>bitCountPerChar = kUSART_8BitsPerChar; usartConfig->loopback = false; usartConfig-
>enableTx = false; usartConfig->enableRx = false;

Parameters
• config – Pointer to configuration structure.

status_t USART_SetBaudRate(USART_Type *base, uint32_t baudrate_Bps, uint32_t srcClock_Hz)
Sets the USART instance baud rate.

This function configures the USART module baud rate. This function is used to update the
USART module baud rate after the USART module is initialized by the USART_Init.

USART_SetBaudRate(USART1, 115200U, 20000000U);

Parameters
• base – USART peripheral base address.

2.52. USART Driver 445

MCUXpresso SDK Documentation, Release 25.09.00

• baudrate_Bps – USART baudrate to be set.

• srcClock_Hz – USART clock source frequency in HZ.

Return values
• kStatus_USART_BaudrateNotSupport – Baudrate is not support in current
clock source.

• kStatus_Success – Set baudrate succeed.

• kStatus_InvalidArgument – One or more arguments are invalid.

status_t USART_Enable32kMode(USART_Type *base, uint32_t baudRate_Bps, bool
enableMode32k, uint32_t srcClock_Hz)

Enable 32 kHz mode which USART uses clock from the RTC oscillator as the clock source.

Please note that in order to use a 32 kHz clock to operate USART properly, the RTC oscillator
and its 32 kHz output must be manully enabled by user, by calling RTC_Init and setting
SYSCON_RTCOSCCTRL_EN bit to 1. And in 32kHz clocking mode the USART can only work
at 9600 baudrate or at the baudrate that 9600 can evenly divide, eg: 4800, 3200.

Parameters
• base – USART peripheral base address.

• baudRate_Bps – USART baudrate to be set..

• enableMode32k – true is 32k mode, false is normal mode.

• srcClock_Hz – USART clock source frequency in HZ.

Return values
• kStatus_USART_BaudrateNotSupport – Baudrate is not support in current
clock source.

• kStatus_Success – Set baudrate succeed.

• kStatus_InvalidArgument – One or more arguments are invalid.

void USART_Enable9bitMode(USART_Type *base, bool enable)
Enable 9-bit data mode for USART.

This function set the 9-bit mode for USART module. The 9th bit is not used for parity thus
can be modified by user.

Parameters
• base – USART peripheral base address.

• enable – true to enable, false to disable.

static inline void USART_SetMatchAddress(USART_Type *base, uint8_t address)
Set the USART slave address.

This function configures the address for USART module that works as slave in 9-bit data
mode. When the address detection is enabled, the frame it receices with MSB being 1 is
considered as an address frame, otherwise it is considered as data frame. Once the address
frame matches slave’s own addresses, this slave is addressed. This address frame and its
following data frames are stored in the receive buffer, otherwise the frames will be dis-
carded. To un-address a slave, just send an address frame with unmatched address.

Note: Any USART instance joined in themulti-slave system canwork as slave. The position
of the address mark is the same as the parity bit when parity is enabled for 8 bit and 9 bit
data formats.

446 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• base – USART peripheral base address.

• address – USART slave address.

static inline void USART_EnableMatchAddress(USART_Type *base, bool match)
Enable the USART match address feature.

Parameters
• base – USART peripheral base address.

• match – true to enable match address, false to disable.

static inline uint32_t USART_GetStatusFlags(USART_Type *base)
Get USART status flags.

This function get all USART status flags, the flags are returned as the logical OR value of
the enumerators _usart_flags. To check a specific status, compare the return value with
enumerators in _usart_flags. For example, to check whether the TX is empty:

if (kUSART_TxFifoNotFullFlag & USART_GetStatusFlags(USART1))
{

...
}

Parameters
• base – USART peripheral base address.

Returns
USART status flags which are ORed by the enumerators in the _usart_flags.

static inline void USART_ClearStatusFlags(USART_Type *base, uint32_t mask)
Clear USART status flags.

This function clear supported USART status flags. The mask is a logical OR of enumeration
members. See kUSART_AllClearFlags. For example:

USART_ClearStatusFlags(USART1, kUSART_TxError | kUSART_RxError)

Parameters
• base – USART peripheral base address.

• mask – status flags to be cleared.

static inline void USART_EnableInterrupts(USART_Type *base, uint32_t mask)
Enables USART interrupts according to the provided mask.

This function enables the USART interrupts according to the provided mask. The mask is a
logical OR of enumeration members. See _usart_interrupt_enable. For example, to enable
TX empty interrupt and RX full interrupt:

USART_EnableInterrupts(USART1, kUSART_TxLevelInterruptEnable | kUSART_
↪→RxLevelInterruptEnable);

Parameters
• base – USART peripheral base address.

• mask – The interrupts to enable. Logical OR of _usart_interrupt_enable.

2.52. USART Driver 447

MCUXpresso SDK Documentation, Release 25.09.00

static inline void USART_DisableInterrupts(USART_Type *base, uint32_t mask)
Disables USART interrupts according to a provided mask.

This function disables the USART interrupts according to a provided mask. The mask is
a logical OR of enumeration members. See _usart_interrupt_enable. This example shows
how to disable the TX empty interrupt and RX full interrupt:

USART_DisableInterrupts(USART1, kUSART_TxLevelInterruptEnable | kUSART_
↪→RxLevelInterruptEnable);

Parameters
• base – USART peripheral base address.

• mask – The interrupts to disable. Logical OR of _usart_interrupt_enable.

static inline uint32_t USART_GetEnabledInterrupts(USART_Type *base)
Returns enabled USART interrupts.

This function returns the enabled USART interrupts.

Parameters
• base – USART peripheral base address.

static inline void USART_EnableTxDMA(USART_Type *base, bool enable)
Enable DMA for Tx.

static inline void USART_EnableRxDMA(USART_Type *base, bool enable)
Enable DMA for Rx.

static inline void USART_EnableCTS(USART_Type *base, bool enable)
Enable CTS. This function will determine whether CTS is used for flow control.

Parameters
• base – USART peripheral base address.

• enable – Enable CTS or not, true for enable and false for disable.

static inline void USART_EnableContinuousSCLK(USART_Type *base, bool enable)
Continuous Clock generation. By default, SCLK is only output while data is being transmit-
ted in synchronousmode. Enable this funciton, SCLKwill run continuously in synchronous
mode, allowing characters to be received on Un_RxD independently from transmission on
Un_TXD).

Parameters
• base – USART peripheral base address.

• enable – Enable Continuous Clock generation mode or not, true for enable
and false for disable.

static inline void USART_EnableAutoClearSCLK(USART_Type *base, bool enable)
Enable Continuous Clock generation bit auto clear. While enable this cuntion, the Contin-
uous Clock bit is automatically cleared when a complete character has been received. This
bit is cleared at the same time.

Parameters
• base – USART peripheral base address.

• enable – Enable auto clear or not, true for enable and false for disable.

448 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

static inline void USART_SetRxFifoWatermark(USART_Type *base, uint8_t water)
Sets the rx FIFO watermark.

Parameters
• base – USART peripheral base address.

• water – Rx FIFO watermark.

static inline void USART_SetTxFifoWatermark(USART_Type *base, uint8_t water)
Sets the tx FIFO watermark.

Parameters
• base – USART peripheral base address.

• water – Tx FIFO watermark.

static inline void USART_WriteByte(USART_Type *base, uint8_t data)
Writes to the FIFOWR register.

This function writes data to the txFIFO directly. The upper layer must ensure that txFIFO
has space for data to write before calling this function.

Parameters
• base – USART peripheral base address.

• data – The byte to write.

static inline uint8_t USART_ReadByte(USART_Type *base)
Reads the FIFORD register directly.

This function reads data from the rxFIFO directly. The upper layer must ensure that the
rxFIFO is not empty before calling this function.

Parameters
• base – USART peripheral base address.

Returns
The byte read from USART data register.

static inline uint8_t USART_GetRxFifoCount(USART_Type *base)
Gets the rx FIFO data count.

Parameters
• base – USART peripheral base address.

Returns
rx FIFO data count.

static inline uint8_t USART_GetTxFifoCount(USART_Type *base)
Gets the tx FIFO data count.

Parameters
• base – USART peripheral base address.

Returns
tx FIFO data count.

void USART_SendAddress(USART_Type *base, uint8_t address)
Transmit an address frame in 9-bit data mode.

Parameters
• base – USART peripheral base address.

• address – USART slave address.

2.52. USART Driver 449

MCUXpresso SDK Documentation, Release 25.09.00

status_t USART_WriteBlocking(USART_Type *base, const uint8_t *data, size_t length)
Writes to the TX register using a blocking method.

This function polls the TX register, waits for the TX register to be empty or for the TX FIFO
to have room and writes data to the TX buffer.

Parameters
• base – USART peripheral base address.

• data – Start address of the data to write.

• length – Size of the data to write.

Return values
• kStatus_USART_Timeout – Transmission timed out and was aborted.

• kStatus_InvalidArgument – Invalid argument.

• kStatus_Success – Successfully wrote all data.

status_t USART_ReadBlocking(USART_Type *base, uint8_t *data, size_t length)
Read RX data register using a blocking method.

This function polls the RX register, waits for the RX register to be full or for RX FIFO to have
data and read data from the TX register.

Parameters
• base – USART peripheral base address.

• data – Start address of the buffer to store the received data.

• length – Size of the buffer.

Return values
• kStatus_USART_FramingError – Receiver overrun happened while receiv-
ing data.

• kStatus_USART_ParityError – Noise error happened while receiving data.

• kStatus_USART_NoiseError – Framing error happened while receiving
data.

• kStatus_USART_RxError – Overflow or underflow rxFIFO happened.

• kStatus_USART_Timeout – Transmission timed out and was aborted.

• kStatus_Success – Successfully received all data.

status_t USART_TransferCreateHandle(USART_Type *base, usart_handle_t *handle,
usart_transfer_callback_t callback, void *userData)

Initializes the USART handle.

This function initializes the USART handlewhich can be used for other USART transactional
APIs. Usually, for a specified USART instance, call this API once to get the initialized handle.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• callback – The callback function.

• userData – The parameter of the callback function.

450 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

status_t USART_TransferSendNonBlocking(USART_Type *base, usart_handle_t *handle,
usart_transfer_t *xfer)

Transmits a buffer of data using the interrupt method.

This function sends data using an interrupt method. This is a non-blocking function, which
returns directly without waiting for all data to be written to the TX register. When all data
is written to the TX register in the IRQ handler, the USART driver calls the callback function
and passes the kStatus_USART_TxIdle as status parameter.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• xfer – USART transfer structure. See usart_transfer_t.

Return values
• kStatus_Success – Successfully start the data transmission.

• kStatus_USART_TxBusy – Previous transmission still not finished, data
not all written to TX register yet.

• kStatus_InvalidArgument – Invalid argument.

void USART_TransferStartRingBuffer(USART_Type *base, usart_handle_t *handle, uint8_t
*ringBuffer, size_t ringBufferSize)

Sets up the RX ring buffer.

This function sets up the RX ring buffer to a specific USART handle.

When the RX ring buffer is used, data received are stored into the ring buffer even when
the user doesn’t call the USART_TransferReceiveNonBlocking() API. If there is already data
received in the ring buffer, the user can get the received data from the ring buffer directly.

Note: When using the RX ring buffer, one byte is reserved for internal use. In other words,
if ringBufferSize is 32, then only 31 bytes are used for saving data.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• ringBuffer – Start address of the ring buffer for background receiving. Pass
NULL to disable the ring buffer.

• ringBufferSize – size of the ring buffer.

void USART_TransferStopRingBuffer(USART_Type *base, usart_handle_t *handle)
Aborts the background transfer and uninstalls the ring buffer.

This function aborts the background transfer and uninstalls the ring buffer.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

size_t USART_TransferGetRxRingBufferLength(usart_handle_t *handle)
Get the length of received data in RX ring buffer.

Parameters
• handle – USART handle pointer.

2.52. USART Driver 451

MCUXpresso SDK Documentation, Release 25.09.00

Returns
Length of received data in RX ring buffer.

void USART_TransferAbortSend(USART_Type *base, usart_handle_t *handle)
Aborts the interrupt-driven data transmit.

This function aborts the interrupt driven data sending. The user can get the remainBtyes
to find out how many bytes are still not sent out.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

status_t USART_TransferGetSendCount(USART_Type *base, usart_handle_t *handle, uint32_t
*count)

Get the number of bytes that have been sent out to bus.

This function gets the number of bytes that have been sent out to bus by interrupt method.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• count – Send bytes count.

Return values
• kStatus_NoTransferInProgress – No send in progress.

• kStatus_InvalidArgument – Parameter is invalid.

• kStatus_Success – Get successfully through the parameter count;

status_t USART_TransferReceiveNonBlocking(USART_Type *base, usart_handle_t *handle,
usart_transfer_t *xfer, size_t *receivedBytes)

Receives a buffer of data using an interrupt method.

This function receives data using an interrupt method. This is a non-blocking function,
which returns without waiting for all data to be received. If the RX ring buffer is used and
not empty, the data in the ring buffer is copied and the parameter receivedBytes shows how
many bytes are copied from the ring buffer. After copying, if the data in the ring buffer
is not enough to read, the receive request is saved by the USART driver. When the new
data arrives, the receive request is serviced first. When all data is received, the USART
driver notifies the upper layer through a callback function and passes the status parameter
kStatus_USART_RxIdle. For example, the upper layer needs 10 bytes but there are only 5
bytes in the ring buffer. The 5 bytes are copied to the xfer->data and this function returns
with the parameter receivedBytes set to 5. For the left 5 bytes, newly arrived data is saved
from the xfer->data[5]. When 5 bytes are received, the USART driver notifies the upper
layer. If the RX ring buffer is not enabled, this function enables the RX and RX interrupt to
receive data to the xfer->data. When all data is received, the upper layer is notified.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• xfer – USART transfer structure, see usart_transfer_t.

• receivedBytes – Bytes received from the ring buffer directly.

Return values
• kStatus_Success – Successfully queue the transfer into transmit queue.

• kStatus_USART_RxBusy – Previous receive request is not finished.

452 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

• kStatus_InvalidArgument – Invalid argument.

void USART_TransferAbortReceive(USART_Type *base, usart_handle_t *handle)
Aborts the interrupt-driven data receiving.

This function aborts the interrupt-driven data receiving. The user can get the remainBytes
to find out how many bytes not received yet.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

status_t USART_TransferGetReceiveCount(USART_Type *base, usart_handle_t *handle, uint32_t
*count)

Get the number of bytes that have been received.

This function gets the number of bytes that have been received.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• count – Receive bytes count.

Return values
• kStatus_NoTransferInProgress – No receive in progress.

• kStatus_InvalidArgument – Parameter is invalid.

• kStatus_Success – Get successfully through the parameter count;

void USART_TransferHandleIRQ(USART_Type *base, usart_handle_t *handle)
USART IRQ handle function.

This function handles the USART transmit and receive IRQ request.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

FSL_USART_DRIVER_VERSION
USART driver version.

Error codes for the USART driver.

Values:

enumerator kStatus_USART_TxBusy
Transmitter is busy.

enumerator kStatus_USART_RxBusy
Receiver is busy.

enumerator kStatus_USART_TxIdle
USART transmitter is idle.

enumerator kStatus_USART_RxIdle
USART receiver is idle.

enumerator kStatus_USART_TxError
Error happens on txFIFO.

2.52. USART Driver 453

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus_USART_RxError
Error happens on rxFIFO.

enumerator kStatus_USART_RxRingBufferOverrun
Error happens on rx ring buffer

enumerator kStatus_USART_NoiseError
USART noise error.

enumerator kStatus_USART_FramingError
USART framing error.

enumerator kStatus_USART_ParityError
USART parity error.

enumerator kStatus_USART_BaudrateNotSupport
Baudrate is not support in current clock source

enum _usart_sync_mode
USART synchronous mode.

Values:

enumerator kUSART_SyncModeDisabled
Asynchronous mode.

enumerator kUSART_SyncModeSlave
Synchronous slave mode.

enumerator kUSART_SyncModeMaster
Synchronous master mode.

enum _usart_parity_mode
USART parity mode.

Values:

enumerator kUSART_ParityDisabled
Parity disabled

enumerator kUSART_ParityEven
Parity enabled, type even, bit setting: PE|PT = 10

enumerator kUSART_ParityOdd
Parity enabled, type odd, bit setting: PE|PT = 11

enum _usart_stop_bit_count
USART stop bit count.

Values:

enumerator kUSART_OneStopBit
One stop bit

enumerator kUSART_TwoStopBit
Two stop bits

enum _usart_data_len
USART data size.

Values:

enumerator kUSART_7BitsPerChar
Seven bit mode

454 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUSART_8BitsPerChar
Eight bit mode

enum _usart_clock_polarity
USART clock polarity configuration, used in sync mode.

Values:

enumerator kUSART_RxSampleOnFallingEdge
Un_RXD is sampled on the falling edge of SCLK.

enumerator kUSART_RxSampleOnRisingEdge
Un_RXD is sampled on the rising edge of SCLK.

enum _usart_txfifo_watermark
txFIFO watermark values

Values:

enumerator kUSART_TxFifo0
USART tx watermark is empty

enumerator kUSART_TxFifo1
USART tx watermark at 1 item

enumerator kUSART_TxFifo2
USART tx watermark at 2 items

enumerator kUSART_TxFifo3
USART tx watermark at 3 items

enumerator kUSART_TxFifo4
USART tx watermark at 4 items

enumerator kUSART_TxFifo5
USART tx watermark at 5 items

enumerator kUSART_TxFifo6
USART tx watermark at 6 items

enumerator kUSART_TxFifo7
USART tx watermark at 7 items

enum _usart_rxfifo_watermark
rxFIFO watermark values

Values:

enumerator kUSART_RxFifo1
USART rx watermark at 1 item

enumerator kUSART_RxFifo2
USART rx watermark at 2 items

enumerator kUSART_RxFifo3
USART rx watermark at 3 items

enumerator kUSART_RxFifo4
USART rx watermark at 4 items

enumerator kUSART_RxFifo5
USART rx watermark at 5 items

2.52. USART Driver 455

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUSART_RxFifo6
USART rx watermark at 6 items

enumerator kUSART_RxFifo7
USART rx watermark at 7 items

enumerator kUSART_RxFifo8
USART rx watermark at 8 items

enum _usart_interrupt_enable
USART interrupt configuration structure, default settings all disabled.

Values:

enumerator kUSART_TxErrorInterruptEnable

enumerator kUSART_RxErrorInterruptEnable

enumerator kUSART_TxLevelInterruptEnable

enumerator kUSART_RxLevelInterruptEnable

enumerator kUSART_TxIdleInterruptEnable
Transmitter idle.

enumerator kUSART_CtsChangeInterruptEnable
Change in the state of the CTS input.

enumerator kUSART_RxBreakChangeInterruptEnable
Break condition asserted or deasserted.

enumerator kUSART_RxStartInterruptEnable
Rx start bit detected.

enumerator kUSART_FramingErrorInterruptEnable
Framing error detected.

enumerator kUSART_ParityErrorInterruptEnable
Parity error detected.

enumerator kUSART_NoiseErrorInterruptEnable
Noise error detected.

enumerator kUSART_AutoBaudErrorInterruptEnable
Auto baudrate error detected.

enumerator kUSART_AllInterruptEnables

enum _usart_flags
USART status flags.

This provides constants for the USART status flags for use in the USART functions.

Values:

enumerator kUSART_TxError
TXERR bit, sets if TX buffer is error

enumerator kUSART_RxError
RXERR bit, sets if RX buffer is error

enumerator kUSART_TxFifoEmptyFlag
TXEMPTY bit, sets if TX buffer is empty

456 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUSART_TxFifoNotFullFlag
TXNOTFULL bit, sets if TX buffer is not full

enumerator kUSART_RxFifoNotEmptyFlag
RXNOEMPTY bit, sets if RX buffer is not empty

enumerator kUSART_RxFifoFullFlag
RXFULL bit, sets if RX buffer is full

enumerator kUSART_RxIdleFlag
Receiver idle.

enumerator kUSART_TxIdleFlag
Transmitter idle.

enumerator kUSART_CtsAssertFlag
CTS signal high.

enumerator kUSART_CtsChangeFlag
CTS signal changed interrupt status.

enumerator kUSART_BreakDetectFlag
Break detected. Self cleared when rx pin goes high again.

enumerator kUSART_BreakDetectChangeFlag
Break detect change interrupt flag. A change in the state of receiver break detection.

enumerator kUSART_RxStartFlag
Rx start bit detected interrupt flag.

enumerator kUSART_FramingErrorFlag
Framing error interrupt flag.

enumerator kUSART_ParityErrorFlag
parity error interrupt flag.

enumerator kUSART_NoiseErrorFlag
Noise error interrupt flag.

enumerator kUSART_AutobaudErrorFlag
Auto baudrate error interrupt flag, caused by the baudrate counter timeout before the
end of start bit.

enumerator kUSART_AllClearFlags

typedef enum _usart_sync_mode usart_sync_mode_t
USART synchronous mode.

typedef enum _usart_parity_mode usart_parity_mode_t
USART parity mode.

typedef enum _usart_stop_bit_count usart_stop_bit_count_t
USART stop bit count.

typedef enum _usart_data_len usart_data_len_t
USART data size.

typedef enum _usart_clock_polarity usart_clock_polarity_t
USART clock polarity configuration, used in sync mode.

typedef enum _usart_txfifo_watermark usart_txfifo_watermark_t
txFIFO watermark values

2.52. USART Driver 457

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _usart_rxfifo_watermark usart_rxfifo_watermark_t
rxFIFO watermark values

typedef struct _usart_config usart_config_t
USART configuration structure.

typedef struct _usart_transfer usart_transfer_t
USART transfer structure.

typedef struct _usart_handle usart_handle_t

typedef void (*usart_transfer_callback_t)(USART_Type *base, usart_handle_t *handle, status_t
status, void *userData)

USART transfer callback function.

typedef void (*flexcomm_usart_irq_handler_t)(USART_Type *base, usart_handle_t *handle)
Typedef for usart interrupt handler.

uint32_t USART_GetInstance(USART_Type *base)
Returns instance number for USART peripheral base address.

USART_FIFOTRIG_TXLVL_GET(base)

USART_FIFOTRIG_RXLVL_GET(base)

UART_RETRY_TIMES
Retry times for waiting flag.

Defining to zero means to keep waiting for the flag until it is assert/deassert in blocking
transfer, otherwise the program will wait until the UART_RETRY_TIMES counts down to 0,
if the flag still remains unchanged then program will return kStatus_USART_Timeout. It is
not advised to use this macro in formal application to prevent any hardware error because
the actual wait period is affected by the compiler and optimization.

struct _usart_config
#include <fsl_usart.h> USART configuration structure.

Public Members

uint32_t baudRate_Bps
USART baud rate

usart_parity_mode_t parityMode
Parity mode, disabled (default), even, odd

usart_stop_bit_count_t stopBitCount
Number of stop bits, 1 stop bit (default) or 2 stop bits

usart_data_len_t bitCountPerChar
Data length - 7 bit, 8 bit

bool loopback
Enable peripheral loopback

bool enableRx
Enable RX

bool enableTx
Enable TX

bool enableContinuousSCLK
USART continuous Clock generation enable in synchronous master mode.

458 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

bool enableMode32k
USART uses 32 kHz clock from the RTC oscillator as the clock source.

bool enableHardwareFlowControl
Enable hardware control RTS/CTS

usart_txfifo_watermark_t txWatermark
txFIFO watermark

usart_rxfifo_watermark_t rxWatermark
rxFIFO watermark

usart_sync_mode_t syncMode
Transfer mode select - asynchronous, synchronous master, synchronous slave.

usart_clock_polarity_t clockPolarity
Selects the clock polarity and sampling edge in synchronous mode.

struct _usart_transfer
#include <fsl_usart.h> USART transfer structure.

Public Members

size_t dataSize
The byte count to be transfer.

struct _usart_handle
#include <fsl_usart.h> USART handle structure.

Public Members

const uint8_t *volatile txData
Address of remaining data to send.

volatile size_t txDataSize
Size of the remaining data to send.

size_t txDataSizeAll
Size of the data to send out.

uint8_t *volatile rxData
Address of remaining data to receive.

volatile size_t rxDataSize
Size of the remaining data to receive.

size_t rxDataSizeAll
Size of the data to receive.

uint8_t *rxRingBuffer
Start address of the receiver ring buffer.

size_t rxRingBufferSize
Size of the ring buffer.

volatile uint16_t rxRingBufferHead
Index for the driver to store received data into ring buffer.

volatile uint16_t rxRingBufferTail
Index for the user to get data from the ring buffer.

2.52. USART Driver 459

MCUXpresso SDK Documentation, Release 25.09.00

usart_transfer_callback_t callback
Callback function.

void *userData
USART callback function parameter.

volatile uint8_t txState
TX transfer state.

volatile uint8_t rxState
RX transfer state

uint8_t txWatermark
txFIFO watermark

uint8_t rxWatermark
rxFIFO watermark

union __unnamed36__

Public Members

uint8_t *data
The buffer of data to be transfer.

uint8_t *rxData
The buffer to receive data.

const uint8_t *txData
The buffer of data to be sent.

2.53 UTICK: MictoTick Timer Driver

void UTICK_Init(UTICK_Type *base)
Initializes an UTICK by turning its bus clock on.

void UTICK_Deinit(UTICK_Type *base)
Deinitializes a UTICK instance.

This function shuts down Utick bus clock

Parameters
• base – UTICK peripheral base address.

uint32_t UTICK_GetStatusFlags(UTICK_Type *base)
Get Status Flags.

This returns the status flag

Parameters
• base – UTICK peripheral base address.

Returns
status register value

460 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

void UTICK_ClearStatusFlags(UTICK_Type *base)
Clear Status Interrupt Flags.

This clears intr status flag

Parameters
• base – UTICK peripheral base address.

Returns
none

void UTICK_SetTick(UTICK_Type *base, utick_mode_tmode, uint32_t count, utick_callback_t
cb)

Starts UTICK.

This function starts a repeat/onetime countdown with an optional callback

Parameters
• base – UTICK peripheral base address.

• mode – UTICK timer mode (ie kUTICK_onetime or kUTICK_repeat)

• count – UTICK timer mode (ie kUTICK_onetime or kUTICK_repeat)

• cb – UTICK callback (can be left as NULL if none, otherwise should be a
void func(void))

Returns
none

void UTICK_HandleIRQ(UTICK_Type *base, utick_callback_t cb)
UTICK Interrupt Service Handler.

This function handles the interrupt and refers to the callback array in the driver to callback
user (as per request in UTICK_SetTick()). if no user callback is scheduled, the interrupt will
simply be cleared.

Parameters
• base – UTICK peripheral base address.

• cb – callback scheduled for this instance of UTICK

Returns
none

FSL_UTICK_DRIVER_VERSION
UTICK driver version 2.0.5.

enum _utick_mode
UTICK timer operational mode.

Values:

enumerator kUTICK_Onetime
Trigger once

enumerator kUTICK_Repeat
Trigger repeatedly

typedef enum _utick_mode utick_mode_t
UTICK timer operational mode.

typedef void (*utick_callback_t)(void)
UTICK callback function.

2.53. UTICK: MictoTick Timer Driver 461

MCUXpresso SDK Documentation, Release 25.09.00

2.54 WWDT: Windowed Watchdog Timer Driver

voidWWDT_GetDefaultConfig(wwdt_config_t *config)
Initializes WWDT configure structure.

This function initializes the WWDT configure structure to default value. The default value
are:

config->enableWwdt = true;
config->enableWatchdogReset = false;
config->enableWatchdogProtect = false;
config->enableLockOscillator = false;
config->windowValue = 0xFFFFFFU;
config->timeoutValue = 0xFFFFFFU;
config->warningValue = 0;

See also:
wwdt_config_t

Parameters
• config – Pointer to WWDT config structure.

voidWWDT_Init(WWDT_Type *base, const wwdt_config_t *config)
Initializes the WWDT.

This function initializes the WWDT. When called, the WWDT runs according to the config-
uration.

Example:

wwdt_config_t config;
WWDT_GetDefaultConfig(&config);
config.timeoutValue = 0x7ffU;
WWDT_Init(wwdt_base,&config);

Parameters
• base – WWDT peripheral base address

• config – The configuration of WWDT

voidWWDT_Deinit(WWDT_Type *base)
Shuts down the WWDT.

This function shuts down the WWDT.

Parameters
• base – WWDT peripheral base address

static inline voidWWDT_Enable(WWDT_Type *base)
Enables the WWDT module.

This function write value into WWDT_MOD register to enable the WWDT, it is a write-once
bit; once this bit is set to one and a watchdog feed is performed, the watchdog timer will
run permanently.

Parameters
• base – WWDT peripheral base address

462 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

static inline voidWWDT_Disable(WWDT_Type *base)
Disables the WWDT module.

Deprecated:
Do not use this function. It will be deleted in next release version, for once the bit field
of WDEN written with a 1, it can not be re-written with a 0.

This function write value into WWDT_MOD register to disable the WWDT.

Parameters
• base – WWDT peripheral base address

static inline uint32_tWWDT_GetStatusFlags(WWDT_Type *base)
Gets all WWDT status flags.

This function gets all status flags.

Example for getting Timeout Flag:

uint32_t status;
status = WWDT_GetStatusFlags(wwdt_base) & kWWDT_TimeoutFlag;

Parameters
• base – WWDT peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
_wwdt_status_flags_t

voidWWDT_ClearStatusFlags(WWDT_Type *base, uint32_t mask)
Clear WWDT flag.

This function clears WWDT status flag.

Example for clearing warning flag:

WWDT_ClearStatusFlags(wwdt_base, kWWDT_WarningFlag);

Parameters
• base – WWDT peripheral base address

• mask – The status flags to clear. This is a logical OR of members of the
enumeration _wwdt_status_flags_t

static inline voidWWDT_SetWarningValue(WWDT_Type *base, uint32_t warningValue)
Set the WWDT warning value.

TheWDWARNINT register determines the watchdog timer counter value that will generate
awatchdog interrupt. When thewatchdog timer counter is no longer greater than the value
defined by WARNINT, an interrupt will be generated after the subsequent WDCLK.

Parameters
• base – WWDT peripheral base address

• warningValue – WWDT warning value.

static inline voidWWDT_SetTimeoutValue(WWDT_Type *base, uint32_t timeoutCount)
Set the WWDT timeout value.

This function sets the timeout value. Every time a feed sequence occurs the value in the TC
register is loaded into theWatchdog timer. Writing a value below 0xFFwill cause 0xFF to be

2.54. WWDT: Windowed Watchdog Timer Driver 463

MCUXpresso SDK Documentation, Release 25.09.00

loaded into the TC register. Thus the minimum time-out interval is TWDCLK*256*4. If en-
ableWatchdogProtect flag is true in wwdt_config_t config structure, any attempt to change
the timeout value before the watchdog counter is below the warning and window values
will cause a watchdog reset and set the WDTOF flag.

Parameters
• base – WWDT peripheral base address

• timeoutCount – WWDT timeout value, count of WWDT clock tick.

static inline voidWWDT_SetWindowValue(WWDT_Type *base, uint32_t windowValue)
Sets the WWDT window value.

The WINDOW register determines the highest TV value allowed when a watchdog feed is
performed. If a feed sequence occurs when timer value is greater than the value in WIN-
DOW, a watchdog event will occur. To disable windowing, set windowValue to 0xFFFFFF
(maximum possible timer value) so windowing is not in effect.

Parameters
• base – WWDT peripheral base address

• windowValue – WWDT window value.

voidWWDT_Refresh(WWDT_Type *base)
Refreshes the WWDT timer.

This function feeds the WWDT. This function should be called before WWDT timer is in
timeout. Otherwise, a reset is asserted.

Parameters
• base – WWDT peripheral base address

FSL_WWDT_DRIVER_VERSION
Defines WWDT driver version.

WWDT_FIRST_WORD_OF_REFRESH
First word of refresh sequence

WWDT_SECOND_WORD_OF_REFRESH
Second word of refresh sequence

enum _wwdt_status_flags_t
WWDT status flags.

This structure contains the WWDT status flags for use in the WWDT functions.

Values:

enumerator kWWDT_TimeoutFlag
Time-out flag, set when the timer times out

enumerator kWWDT_WarningFlag
Warning interrupt flag, set when timer is below the value WDWARNINT

typedef struct _wwdt_config wwdt_config_t
Describes WWDT configuration structure.

struct _wwdt_config
#include <fsl_wwdt.h> Describes WWDT configuration structure.

464 Chapter 2. LPC54S018

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

bool enableWwdt
Enables or disables WWDT

bool enableWatchdogReset
true: Watchdog timeout will cause a chip reset false: Watchdog timeout will not cause
a chip reset

bool enableWatchdogProtect
true: Enable watchdog protect i.e timeout value can only be changed after counter is
below warning & window values false: Disable watchdog protect; timeout value can
be changed at any time

bool enableLockOscillator
true: Disabling or powering down the watchdog oscillator is prevented Once set, this
bit can only be cleared by a reset false: Do not lock oscillator

uint32_t windowValue
Window value, set this to 0xFFFFFF if windowing is not in effect

uint32_t timeoutValue
Timeout value

uint32_t warningValue
Watchdog time counter value that will generate a warning interrupt. Set this to 0 for
no warning

uint32_t clockFreq_Hz
Watchdog clock source frequency.

2.54. WWDT: Windowed Watchdog Timer Driver 465

MCUXpresso SDK Documentation, Release 25.09.00

466 Chapter 2. LPC54S018

Chapter 3

Middleware

3.1 Motor Control

3.1.1 FreeMASTER

Communication Driver User Guide

Introduction

What is FreeMASTER? FreeMASTER is a PC-based application developed by NXP for NXP cus-
tomers. It is a versatile tool usable as a real-time monitor, visualization tool, and a graphical
control panel of embedded applications based on the NXP processing units.

This document describes the embedded-side software driver which implements an interface be-
tween the application and the host PC. The interface covers the following communication:

• Serial UART communication either over plain RS232 interface or more typically over a
USB-to-Serial either external or built in a debugger probe.

• USB direct connection to target microcontroller

• CAN bus
• TCP/IP network wired or WiFi

• Segger J-Link RTT
• JTAG debug port communication

• …and all of the above also using a Zephyr generic drivers.
The driver also supports so-called “packet-drivenBDM” interfacewhich enables a protocol-based
communication over a debugging port. The BDM stands for Background Debugging Module
and its physical implementation is different on each platform. Some platforms leverage a semi-
standard JTAG interface, other platforms provide a custom implementation called BDM. Regard-
less of the name, this debugging interface enables non-intrusive access to the memory space
while the target CPU is running. For basic memory read and write operations, there is no com-
munication driver required on the target when communicating with the host PC. Use this driver
to getmore advanced FreeMASTER protocol features over the BDM interface. The drivermust be
configured for the packet-driven BDM mode, in which the host PC uses the debugging interface
to write serial command frames directly to the target memory buffer. The same method is then
used to read response frames from that memory buffer.

467

https://www.nxp.com/freemaster

MCUXpresso SDK Documentation, Release 25.09.00

Similar to “packet-driven BDM”, the FreeMASTER also supports a communication over
[J-Link RTT]((https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-
transfer/) interface defined by SEGGER Microcontroller GmbH for ARM CortexM-based micro-
controllers. This method also uses JTAG physical interface and enables high-speed real time
communication to run over the same channel as used for application debugging.

Driver version 3 This document describes version 3 of the FreeMASTER Communication
Driver. This version features the implementation of the new Serial Protocol, which significantly
extends the features and security of its predecessor. The new protocol internal number is v4 and
its specification is available in the documentation accompanying the driver code.

Driver V3 is deployed to modern 32-bit MCU platforms first, so the portfolio of supported plat-
forms is smaller than for the previous V2 versions. It is recommended to keep using the V2 driver
for legacy platforms, such as S08, S12, ColdFire, or Power Architecture. Reach out to FreeMAS-
TER community or to the local NXP representative with requests for more information or to port
the V3 driver to legacy MCU devices.

Thanks to a layered approach, the new driver simplifies the porting of the driver to new UART,
CAN or networking communication interfaces significantly. Users are encouraged to port the
driver to more NXP MCU platforms and contribute the code back to NXP for integration into
future releases. Existing code and low-level driver layers may be used as an example when
porting to new targets.

Note: Using the FreeMASTER tool and FreeMASTER Communication Driver is only allowed in
systemsbased onNXPmicrocontroller ormicroprocessor unit. Usewith non-NXPMCUplatforms
is not permitted by the license terms.

Target platforms The driver implementation uses the following abstraction mechanisms
which simplify driver porting and supporting new communication modules:

• General CPU Platform (see source code in the src/platforms directory). The code in
this layer is only specific to native data type sizes and CPU architectures (for example;
alignment-aware memory copy routines). This driver version brings two generic imple-
mentations of 32-bit platforms supporting both little-endian and big-endian architectures.
There are also implementations customized for the 56F800E family of digital signal con-
trollers and S12Z MCUs. Zephyr is treated as a specific CPU platform as it brings unified
user configuration (Kconfig) and generic hardware device drivers. With Zephyr, the trans-
port layer and low-level communication layers described below are configured automati-
cally using Kconfig and Device Tree technologies.

• Transport CommunicationLayer - The Serial, CAN,Networking, PD-BDM, and othermeth-
ods of transport logic are implemented as a driver layer called FMSTR_TRANSPORT with a
uniform API. A support of the Network transport also extends single-client modes of oper-
ation which are native for Serial, USB and CAN by a concept of multiple client sessions.

• Low-level Communication Driver - Each type of transport further defines a low-level
API used to access the physical communication module. For example, the Serial trans-
port defines a character-orientedAPI implemented by different serial communicationmod-
ules like UART, LPUART, USART, and also USB-CDC. Similarly, the CAN transport defines a
message-oriented API implemented by the FlexCAN or MCAN modules. Moreover, there
are multiple different implementations for the same kind of communication peripherals.
The difference between the implementation is in the way the low-level hardware regis-
ters are accessed. The mcuxsdk folder contains implementations which use MCUXpresso
SDK drivers. These drivers should be used in applications based on the NXP MCUXpresso
SDK. The “ampsdk” drivers target automotive-specific MCUs and their respective SDKs.
The “dreg” implementations use a plain C-language access to hardware register addresses
which makes it a universal and the most portable solution. In this case, users are encour-
aged to add more drivers for other communication modules or other respective SDKs and
contribute the code back to NXP for integration.

468 Chapter 3. Middleware

https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster
https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster

MCUXpresso SDK Documentation, Release 25.09.00

The low-level drivers defined for the Networking transport enable datagram-oriented UDP
and stream TCP communication. This implementation is demonstrated using the lwIP soft-
ware stack but shall be portable to other TCP/IP stacks. It may sound surprisingly, but also
the Segger J-Link RTT communication driver is linked to the Networking transport (RTT is
stream oriented communication handled similarly to TCP).

Replacing existing drivers For all supported platforms, the driver described in this document
replaces the V2 implementation and also older driver implementations that were available sep-
arately for individual platforms (PC Master SCI drivers).

Clocks, pins, and peripheral initialization The FreeMASTER communication driver is only
responsible for runtime processing of the communication and must be integrated with an user
application code to function properly. The user application code is responsible for general initial-
ization of clock sources, pinmultiplexers, and peripheral registers related to the communication
speed. Such initialization should be done before calling the FMSTR_Init function.

It is recommended to develop the user application using one of the Software Development Kits
(SDKs) available from third parties or directly from NXP, such as MCUXpresso SDK, MCUXpresso
IDE, and related tools. This approach simplifies the general configuration process significantly.

MCUXpresso SDK TheMCUXpresso SDK is a software package providedbyNXPwhich contains
the device initialization code, linker files, and software driverswith example applications for the
NXP family of MCUs. The MCUXpresso Config Tools may be used to generate the clock-setup and
pin-multiplexer setup code suitable for the selected processor.

The MCUXpresso SDK also contains this FreeMASTER communication driver as a “middle-
ware” component which may be downloaded along with the example applications from https:
//mcuxpresso.nxp.com/en/welcome.

MCUXpresso SDK on GitHub The FreeMASTER communication driver is also released as one
of the middleware components of the MCUXpresso SDK on the GitHub. This release enables
direct integration of the FreeMASTER source code Git repository into a target applications in-
cluding Zephyr applications.

Related links:

• The official FreeMASTER middleware repository.

• Online version of this document

FreeMASTER in Zephyr The FreeMASTER middleware repository can be used with MCUX-
presso SDK as well as a Zephyr module. Zephyr-specific samples which include examples of
Kconfig and Device Tree configurations for Serial, USB and Network communications are avail-
able in separate repository. West manifest in this sample repository fetches the full Zephyr pack-
age including the FreeMASTER middleware repository used as a Zephyr module.

Example applications

MCUX SDK Example applications There are several example applications available for each
supported MCU platform.

• fmstr_uart demonstrates a plain serial transmission, typically connecting to a computer’s
physical or virtual COM port. The typical transmission speed is 115200 bps.

3.1. Motor Control 469

https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/user_guide/user_guide.html#multi-session-support

MCUXpresso SDK Documentation, Release 25.09.00

• fmstr_can demonstrates CAN bus communication. This requires a suitable CAN interface
connected to the computer and interconnected with the target MCU using a properly ter-
minated CAN bus. The typical transmission speed is 500 kbps. A FreeMASTER-over-CAN
communication plug-in must be used.

• fmstr_usb_cdc uses an on-chip USB controller to implement a CDC communication class.
It is connected directly to a computer’s USB port and creates a virtual COM port device. The
typical transmission speed is above 1 Mbps.

• fmstr_net demonstrates the Network communication over UDP or TCP protocol. Existing
examples use lwIP stack to implement the communication, but in general, it shall be possi-
ble to use any other TCP/IP stack to achieve the same functionality.

• fmstr_wifi is the fmstr_net application modified to use aWiFi network interface instead of
a wired Ethernet connection.

• fmstr_rtt demonstrates the communication over SEGGER J-Link RTT interface. Both fm-
str_net and fmstr_rtt examples require the FreeMASTER TCP/UDP communication plug-in
to be used on the PC host side.

• fmstr_eonce uses the real-time data unit on the JTAG EOnCEmodule of the 56F800E family
to implement pseudo-serial communication over the JTAG port. The typical transmission
speed is around 10 kbps. This communication requires FreeMASTER JTAG/EOnCE commu-
nication plug-in.

• fmstr_pdbdm uses JTAG or BDM debugging interface to access the target RAM directly
while the CPU is running. Note that such approach can be used with any MCU applica-
tion, even without any special driver code. The computer reads from and writes into the
RAMdirectly without CPU intervention. The Packet-Driven BDM (PD-BDM) communication
uses the same memory access to exchange command and response frames. With PD-BDM,
the FreeMASTER tool is able to go beyond basic memory read/write operations and ac-
cesses also advanced features like Recorder, TSA, or Pipes. The typical transmission speed
is around 10 kbps. A PD-BDM communication plug-in must be used in FreeMASTER and
configured properly for the selected debugging interface. Note that this communication
cannot be used while a debugging interface is used by a debugger session.

• fmstr_any is a special example application which demonstrates how the NXPMCUXpresso
Config Tools can be used to configure pins, clocks, peripherals, interrupts, and even the
FreeMASTER “middleware” driver features in a graphical and user friendly way. The user
can switch between the Serial, CAN, and other ways of communication and generate the
required initialization code automatically.

Zephyr sample spplications Zephyr sample applications demonstrate Kconfig and Device
Tree configuration which configure the FreeMASTER middleware module for a selected com-
munication option (Serial, CAN, Network or RTT).

Refer to readme.md files in each sample directory for description of configuration options re-
quired to implement FreeMASTER connectivity.

Description

This section shows how to add the FreeMASTER Communication Driver into application and how
to configure the connection to the FreeMASTER visualization tool.

Features The FreeMASTER driver implements the FreeMASTER protocol V4 and provides the
following features which may be accessed using the FreeMASTER visualization tool:

• Read/write access to any memory location on the target.

• Optional password protection of the read, read/write, and read/write/flash access levels.

470 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

• Atomic bit manipulation on the target memory (bit-wise write access).

• Optimal size-aligned access to memory which is also suitable to access the peripheral reg-
ister space.

• Oscilloscope access—real-time access to target variables. The sample rate may be limited
by the communication speed.

• Recorder— access to the fast transient recorder running on the board as a part of the
FreeMASTER driver. The sample rate is only limited by the MCU CPU speed. The length
of the data recorded depends on the amount of available memory.

• Multiple instances of Oscilloscopes andRecorderswithout the limitation ofmaximumnum-
ber of variables.

• Application commands—high-level message delivery from the PC to the application.

• TSA tables—describing the data types, variables, files, or hyperlinks exported by the target
application. The TSA newly supports also non-memory mapped resources like external
EEPROM or SD Card files.

• Pipes—enabling the buffered stream-oriented data exchange for a general-purpose
terminal-like communication, diagnostic data streaming, or other data exchange.

The FreeMASTER driver features:

• Full FreeMASTER protocol V4 implementation with a new V4 style of CRC used.

• Layered approach supporting Serial, CAN, Network, PD-BDM, and other transports.

• Layered low-level Serial transport driver architecture enabling to select UART, LPUART,
USART, and other physical implementations of serial interfaces, including USB-CDC.

• Layered low-level CAN transport driver architecture enabling to select FlexCAN, msCAN,
MCAN, and other physical implementations of the CAN interface.

• Layered low-level Networking transport enabling to select TCP, UDP or J-Link RTT commu-
nication.

• TSA support towrite-protectmemory regions or individual variables and to deny the access
to the unsafe memory.

• The pipe callback handlers are invoked whenever new data is available for reading from
the pipe.

• Two Serial Single-Wire modes of operation are enabled. The “external” mode has the RX
and TX shorted on-board. The “true” single-wire mode interconnects internally when the
MCU or UART modules support it.

The following sections briefly describe all FreeMASTER features implemented by the driver. See
the PC-based FreeMASTER User Manual for more details on how to use the features to monitor,
tune, or control an embedded application.

BoardDetection The FreeMASTER protocol V4 defines the standard set of configuration values
which the host PC tool reads to identify the target and to access other target resources properly.
The configuration includes the following parameters:

• Version of the driver and the version of the protocol implemented.

• MTU as the Maximum size of the Transmission Unit (for example; communication buffer
size).

• Application name, description, and version strings.

• Application build date and time as a string.

• Target processor byte ordering (little/big endian).

• Protection level that requires password authentication.

3.1. Motor Control 471

MCUXpresso SDK Documentation, Release 25.09.00

• Number of the Recorder and Oscilloscope instances.

• RAM Base Address for optimized memory access commands.

Memory Read This basic feature enables the host PC to read any data memory location by
specifying the address and size of the required memory area. The device response frame must
be shorter than theMTU to fit into the outgoing communication buffer. To read a devicememory
of any size, the host uses the information retrieved during the Board Detection and splits the
large-block request to multiple partial requests.

The driver uses size-aligned operations to read the target memory (for example; uses proper
read-word instruction when an address is aligned to 4 bytes).

MemoryWrite Similarly to the Memory Read operation, the MemoryWrite feature enables to
write to any RAMmemory location on the target device. A single write command framemust be
shorter than the MTU to fit into the target communication buffer. Larger requests must be split
into smaller ones.

The driver uses size-aligned operations to write to the target memory (for example; uses proper
write-word instruction when an address is aligned to 4 bytes).

MaskedMemoryWrite To implement thewrite access to a single bit or a group of bits of target
variables, the Masked Memory Write feature is available in the FreeMASTER protocol and it is
supported by the driver using the Read-Modify-Write approach.

Be careful when writing to bit fields of volatile variables that are also modified in an application
interrupt. The interrupt may be serviced in the middle of a read-modify-write operation and it
may cause data corruption.

Oscilloscope The protocol and driver enables any number of variables to be read at once with
a single request from the host. This feature is called Oscilloscope and the FreeMASTER tool uses
it to display a real-time graph of variable values.

The driver can be configured to support any number of Oscilloscope instances and enable simul-
taneously running graphs to be displayed on the host computer screen.

Recorder The protocol enables the host to select target variableswhose values are then period-
ically recorded into a dedicated on-board memory buffer. After such data sampling stops (either
on a host request or by evaluating a threshold-crossing condition), the data buffer is downloaded
to the host and displayed as a graph. The data sampling rate is not limited by the speed of the
communication line, so it enables displaying the variable transitions in a very high resolution.

The driver can be configured to support multiple Recorder instances and enable multiple
recorder graphs to be displayed on the host screen. Having multiple recorders also enables set-
ting the recording point differently for each instance. For example; one instance may be record-
ing data in a general timer interrupt while another instance may record at a specific control
algorithm time in the PWM interrupt.

TSA With the TSA feature, data types and variables can be described directly in the application
source code. Such information is later provided to the FreeMASTER toolwhichmay use it instead
of reading symbol data from the application ELF executable file.

The information is encoded as so-called TSA tables which become direct part of the application
code. The TSA tables contain descriptors of variables that shall be visible to the host tool. The
descriptors can describe the memory areas by specifying the address and size of the memory

472 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

block or more conveniently using the C variable names directly. Different set of TSA descriptors
can be used to encode information about the structure types, unions, enumerations, or arrays.

The driver also supports special types of TSA table entries to describe user resources like external
EEPROM and SD Card files, memory-mapped files, virtual directories, web URL hyperlinks, and
constant enumerations.

TSA Safety When the TSA is enabled in the application, the TSA Safety can be enabled and
validate the memory accesses directly by the embedded-side driver. When the TSA Safety is
turned on, anymemory request received from thehost is validated and accepted only if it belongs
to a TSA-described object. The TSA entries can be declared as Read-Write or Read-Only so that
the driver can actively deny the write access to the Read-Only objects.

Application commands The Application Commands are high-level messages that can be de-
livered from the PC Host to the embedded application for further processing. The embedded
application can either poll the status, or be called back when a new Application Command ar-
rives to be processed. After the embedded application acknowledges that the command is han-
dled, the host receives the Result Code and reads the other return data from memory. Both the
Application Commands and the Result Codes are specific to a given application and it is user’s
responsibility to define them. The FreeMASTER protocol and the FreeMASTER driver only imple-
ment the delivery channel and a set of API calls to enable the Application Command processing
in general.

Pipes The Pipes enable buffered and stream-oriented data exchange between the PC Host and
the target application. Any pipe can be written to and read from at both ends (either on the
PC or the MCU). The data transmission is acknowledged using the special FreeMASTER protocol
commands. It is guaranteed that the data bytes are delivered from the writer to the reader in a
proper order and without losses.

Serial single-wire operation TheMCUSerial CommunicationDriver natively supports normal
dual-wire operation. Because the protocol is half-duplex only, the driver can also operate in two
single-wire modes:

• “External” single-wire operation where the Receiver and Transmitter pins are shorted on
the board. This mode is supported by default in the MCU driver because the Receiver and
Transmitter units are enabled or disabled whenever needed. It is also easy to extend this
operation for the RS485 communication.

• “True” single-wire mode which uses only a single pin and the direction switching is made
by the UART module. This mode of operation must be enabled by defining the FM-
STR_SERIAL_SINGLEWIRE configuration option.

Multi-session support With networking interface it is possible for multiple clients to access
the target MCU simultaneously. Reading and writing of target memory is processed atomically
so there is no risk of data corruption. The state-full resources such as Recorders or Oscilloscopes
are locked to a client session upon first use and access is denied to other clients until lock is
released..

Zephyr-specific

3.1. Motor Control 473

MCUXpresso SDK Documentation, Release 25.09.00

Dedicated communication task FreeMASTER communicationmay run isolated in a dedicated
task. The task automates the FMSTR_Init and FMSTR_Poll calls together with periodic activities
enabling the FreeMASTER UI to fetch information about tasks and CPU utilization. The task can
be started automatically or manually, and it must be assigned a priority to be able to react on
interrupts and other communication events. Refer to Zephyr FreeMASTER sample applications
which all use this communication task.

Zephyr shell and logging over FreeMASTER pipe FreeMASTER implements a shell backend
whichmay use FreeMASTER pipe as a I/O terminal and logging output. Refer to Zephyr FreeMAS-
TER sample applications which all use this feature.

Automatic TSA tables TSA tables can be declared as “automatic” in Zephyr which make them
automatically registered in the table list. This may be very useful when there are many TSA
tables or when the tables are defined in different (often unrelated) libraries linked together. In
this case user does not need to build a list of all tables manually.

Driver files The driver source files can be found in a top-level src folder, further divided into
the sub-folders:

• src/platforms platform-specific folder—one folder exists for each supported processor
platform (for example; 32-bit Little Endian platform). Each such folder contains a platform
header file with data types and a code which implements the potentially platform-specific
operations, such as aligned memory access.

• src/common folder—contains the common driver source files shared by the driver for all
supported platforms. All the .c files must be added to the project, compiled, and linked
together with the application.

– freemaster.h - master driver header file, which declares the common data types,
macros, and prototypes of the FreeMASTER driver API functions.

– freemaster_cfg.h.example - this file can serve as an example of the FreeMASTER driver
configuration file. Save this file into a project source code folder and rename it to
freemaster_cfg.h. The FreeMASTER driver code includes this file to get the project-
specific configuration options and to optimize the compilation of the driver.

– freemaster_defcfg.h - defines the default values for each FreeMASTER configuration
option if the option is not set in the freemaster_cfg.h file.

– freemaster_protocol.h - defines the FreeMASTER protocol constants used internally by
the driver.

– freemaster_protocol.c - implements the FreeMASTER protocol decoder and handles the
basic Get Configuration Value, Memory Read, and Memory Write commands.

– freemaster_rec.c - handles the Recorder-specific commands and implements the
Recorder sampling and triggering routines. When the Recorder is disabled by the
FreeMASTER driver configuration file, this file only compiles to empty API functions.

– freemaster_scope.c - handles the Oscilloscope-specific commands. If the Oscilloscope is
disabled by the FreeMASTER driver configuration file, this file compiles as void.

– freemaster_pipes.c - implements the Pipes functionality when the Pipes feature is en-
abled.

– freemaster_appcmd.c - handles the communication commands used to deliver and exe-
cute theApplicationCommandswithin the context of the embedded application. When
the Application Commands are disabled by the FreeMASTER driver configuration file,
this file only compiles to empty API functions.

474 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

– freemaster_tsa.c - handles the commands specific to the TSA feature. This feature en-
ables the FreeMASTER host tool to obtain the TSA memory descriptors declared in the
embedded application. If the TSA is disabled by the FreeMASTER driver configuration
file, this file compiles as void.

– freemaster_tsa.h - contains the declaration of the macros used to define the TSA mem-
ory descriptors. This file is indirectly included into the user application code (via
freemaster.h).

– freemaster_sha.c - implements the SHA-1 hash code used in the password authentica-
tion algorithm.

– freemaster_private.h - contains the declarations of functions and data types used in-
ternally in the driver. It also contains the C pre-processor statements to perform the
compile-time verification of the user configuration provided in the freemaster_cfg.h
file.

– freemaster_serial.c - implements the serial protocol logic including the CRC, FIFO queu-
ing, and other communication-related operations. This code calls the functions of the
low-level communication driver indirectly via a character-oriented API exported by
the specific low-level driver.

– freemaster_serial.h - defines the low-level character-oriented Serial API.

– freemaster_can.c - implements the CAN protocol logic including the CAN message
preparation, signalling using the first data byte in the CAN frame, and other
communication-related operations. This code calls the functions of the low-level com-
munication driver indirectly via a message-oriented API exported by the specific low-
level driver.

– freemaster_can.h - defines the low-level message-oriented CAN API.

– freemaster_net.c - implements the Network protocol transport logic including multiple
session management code.

– freemaster_net.h - definitions related to the Network transport.

– freemaster_pdbdm.c - implements the packet-driven BDM communication buffer and
other communication-related operations.

– freemaster_utils.c - aligned memory copy routines, circular buffer management and
other utility functions

– freemaster_utils.h - definitions related to utility code.

• src/drivers/[sdk]/serial - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

– freemaster_serial_XXX.c and .h - implement low-level access to the communication pe-
ripheral registers. Different files exist for the UART, LPUART, USART, and other kinds
of Serial communication modules.

• src/drivers/[sdk]/can - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

– freemaster_XXX.c and .h - implement low-level access to the communication peripheral
registers. Different files exist for the FlexCAN, msCAN, MCAN, and other kinds of CAN
communication modules.

• src/drivers/[sdk]/network - contains low-level code adapting the FreeMASTER Network
transport to an underlying TCP/IP or RTT stack.

– freemaster_net_lwip_tcp.c and _udp.c - default networking implementation of TCP and
UDP transports using lwIP stack.

– freemaster_net_segger_rtt.c - implementation of network transport using Segger J-Link
RTT interface

3.1. Motor Control 475

MCUXpresso SDK Documentation, Release 25.09.00

Driver configuration The driver is configured using a single header file (freemaster_cfg.h).
Create this file and save it together with other project source files before compiling the driver
code. All FreeMASTER driver source files include the freemaster_cfg.h file and use the macros
defined here for the conditional and parameterized compilation. The C compiler must locate the
configuration file when compiling the driver files. Typically, it can be achieved by putting this
file into a folder where the other project-specific included files are stored.

As a starting point to create the configuration file, get the freemaster_cfg.h.example file, rename
it to freemaster_cfg.h, and save it into the project area.

Note: It is NOT recommended to leave the freemaster_cfg.h file in the FreeMASTER driver source
code folder. The configuration filemust be placed at a project-specific location, so that it does not
affect the other applications that use the same driver.

Configurable items This section describes the configuration options which can be defined in
freemaster_cfg.h.

Interrupt modes
#define FMSTR_LONG_INTR [0|1]
#define FMSTR_SHORT_INTR [0|1]
#define FMSTR_POLL_DRIVEN [0|1]

Value Type boolean (0 or 1)

Description Exactly one of the three macros must be defined to non-zero. The others must be
defined to zero or left undefined. The non-zero-defined constant selects the interrupt mode of
the driver. See Driver interrupt modes.

• FMSTR_LONG_INTR— long interrupt mode

• FMSTR_SHORT_INTR— short interrupt mode

• FMSTR_POLL_DRIVEN— poll-driven mode

Note: Some options may not be supported by all communication interfaces. For example, the
FMSTR_SHORT_INTR option is not supported by the USB_CDC interface.

Protocol transport
#define FMSTR_TRANSPORT [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER source
code. Specify one of existing instances to make use of the protocol transport.

Description Use one of the pre-defined constants, as implemented by the FreeMASTER code.
The current driver supports the following transports:

• FMSTR_SERIAL - serial communication protocol

• FMSTR_CAN - using CAN communication

• FMSTR_PDBDM - using packet-driven BDM communication

• FMSTR_NET - network communication using TCP or UDP protocol

476 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Serial transport This section describes configuration parameters used when serial transport
is used:

#define FMSTR_TRANSPORT FMSTR_SERIAL

FMSTR_SERIAL_DRV Select what low-level driver interface will be used when implementing
the Serial communication.

#define FMSTR_SERIAL_DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing serial driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/serial implementation):

• FMSTR_SERIAL_MCUX_UART - UART driver

• FMSTR_SERIAL_MCUX_LPUART - LPUART driver

• FMSTR_SERIAL_MCUX_USART - USART driver

• FMSTR_SERIAL_MCUX_MINIUSART - miniUSART driver

• FMSTR_SERIAL_MCUX_QSCI - DSC QSCI driver

• FMSTR_SERIAL_MCUX_USB - USB/CDC class driver (also see code in the /sup-
port/mcuxsdk_usb folder)

• FMSTR_SERIAL_56F800E_EONCE - DSC JTAG EOnCE driver

Other SDKs or BSPs may define custom low-level driver interface structure which may be used
as FMSTR_SERIAL_DRV. For example:

• FMSTR_SERIAL_DREG_UART - demonstrates the low-level interface implementedwithout
the MCUXpresso SDK and using direct access to peripheral registers.

FMSTR_SERIAL_BASE
#define FMSTR_SERIAL_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the UART, LPUART, USART, or other serial peripheral
module to be used for the communication. This value is not defined by default. User application
should call FMSTR_SetSerialBaseAddress() to select the peripheral module.

FMSTR_COMM_BUFFER_SIZE
#define FMSTR_COMM_BUFFER_SIZE [number]

Value Type 0 or a value in range 32…255

Description Specify the size of the communication buffer to be allocated by the driver.
Default value, which suits all driver features, is used when this option is defined as 0.

3.1. Motor Control 477

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_COMM_RQUEUE_SIZE
#define FMSTR_COMM_RQUEUE_SIZE [number]

Value Type Value in range 0…255

Description Specify the size of the FIFO receiver queue used to quickly receive and store char-
acters in the FMSTR_SHORT_INTR interrupt mode.
The default value is 32 B.

FMSTR_SERIAL_SINGLEWIRE
#define FMSTR_SERIAL_SINGLEWIRE [0|1]

Value Type Boolean 0 or 1.

Description Set to non-zero to enable the “True” single-wire mode which uses a single MCU
pin to communicate. The low-level driver enables the pin direction switching when the MCU
peripheral supports it.

CANBus transport This section describes configuration parameters usedwhen CAN transport
is used:

#define FMSTR_TRANSPORT FMSTR_CAN

FMSTR_CAN_DRV Select what low-level driver interface will be used when implementing the
CAN communication.

#define FMSTR_CAN_DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing CAN driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/can implementation):

• FMSTR_CAN_MCUX_FLEXCAN - FlexCAN driver

• FMSTR_CAN_MCUX_MCAN - MCAN driver

• FMSTR_CAN_MCUX_MSCAN - msCAN driver

• FMSTR_CAN_MCUX_DSCFLEXCAN - DSC FlexCAN driver

• FMSTR_CAN_MCUX_DSCMSCAN - DSC msCAN driver

Other SDKs or BSPs may define the custom low-level driver interface structure which may be
used as FMSTR_CAN_DRV.

FMSTR_CAN_BASE

478 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

#define FMSTR_CAN_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the FlexCAN, msCAN, or other CAN peripheral module
to be used for the communication. This value is not defined by default. User application should
call FMSTR_SetCanBaseAddress() to select the peripheral module.

FMSTR_CAN_CMDID
#define FMSTR_CAN_CMDID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CANmessage identifier used for FreeMASTER commands (direction from PC Host
tool to target application). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Default value is 0x7AA.

FMSTR_CAN_RSPID
#define FMSTR_CAN_RSPID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for responding messages (direction from target ap-
plication to PC Host tool). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Note that both CMDID and RSPID values may be the same. Default value
is 0x7AA.

FMSTR_FLEXCAN_TXMB
#define FMSTR_FLEXCAN_TXMB [number]

Value Type Number in range of 0..N where N is number of CANmessage-buffers supported by
HWmodule.

Description Only usedwhen the FlexCAN low-level driver is used. Define the FlexCANmessage
buffer for CAN frame transmission. Default value is 0.

FMSTR_FLEXCAN_RXMB
#define FMSTR_FLEXCAN_RXMB [number]

Value Type Number in range of 0..N where N is number of CANmessage-buffers supported by
HWmodule.

3.1. Motor Control 479

MCUXpresso SDK Documentation, Release 25.09.00

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN mes-
sage buffer for CAN frame reception. Note that the FreeMASTER driver may also operate with a
common message buffer used by both TX and RX directions. Default value is 1.

Network transport This section describes configuration parameters used when Network
transport is used:

#define FMSTR_TRANSPORT FMSTR_NET

FMSTR_NET_DRV Select network interface implementation.

#define FMSTR_NET_DRV [identifier]

Value Type Identifiers are structure instance names defined in FreeMASTER drivers code.
Specify one of existing NET driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/network implementation):

• FMSTR_NET_LWIP_TCP - TCP communication using lwIP stack

• FMSTR_NET_LWIP_UDP - UDP communication using lwIP stack

• FMSTR_NET_SEGGER_RTT - Communication using SEGGER J-Link RTT interface

Other SDKs or BSPs may define the custom networking interface which may be used as FM-
STR_CAN_DRV.

Add another row below:

FMSTR_NET_PORT
#define FMSTR_NET_PORT [number]

Value Type TCP or UDP port number (short integer)

Description Specifies the server port number used by TCP or UDP protocols.

FMSTR_NET_BLOCKING_TIMEOUT
#define FMSTR_NET_BLOCKING_TIMEOUT [number]

Value Type Timeout as number of milliseconds

Description This value specifies a timeout in milliseconds for which the network socket op-
erations may block the execution inside FMSTR_Poll. This may be set high (e.g. 250) when a
dedicated RTOS task is used to handle FreeMASTER protocol polling. Set to a lower value when
the polling task is also responsible for other operations. Set to 0 to attempt to use non-blocking
socket operations.

480 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_NET_AUTODISCOVERY
#define FMSTR_NET_AUTODISCOVERY [0|1]

Value Type Boolean 0 or 1.

Description This option enables the FreeMASTER driver to use a separate UDP socket to broad-
cast auto-discovery messages to network. This helps the FreeMASTER tool to discover the target
device address, port and protocol options.

Debugging options

FMSTR_DISABLE
#define FMSTR_DISABLE [0|1]

Value Type boolean (0 or 1)

Description Define as non-zero to disable all FreeMASTER features, exclude the driver code
from build, and compile all its API functions empty. This may be useful to remove FreeMASTER
without modifying any application source code. Default value is 0 (false).

FMSTR_DEBUG_TX
#define FMSTR_DEBUG_TX [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to enable the driver to periodically transmit test frames out on
the selected communication interface (SCI or CAN). With the debug transmission enabled, it is
simpler to detect problems in the baudrate or other communication configuration settings.

The test frames are transmitted until the first valid command frame is received from the PC Host
tool. The test frame is a valid error status frame, as defined by the protocol format. On the serial
line, the test frame consists of three printable characters (+©W) which are easy to capture using
the serial terminal tools.

This feature requires the FMSTR_Poll() function to be called periodically. Default value is 0 (false).

FMSTR_APPLICATION_STR
#define FMSTR_APPLICATION_STR

Value Type String.

Description Name of the application visible in FreeMASTER host application.

Memory access

3.1. Motor Control 481

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_USE_READMEM
#define FMSTR_USE_READMEM [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Memory Read command and enable
FreeMASTER to have read access to memory and variables. The access can be further restricted
by using a TSA feature.
Default value is 1 (true).

FMSTR_USE_WRITEMEM
#define FMSTR_USE_WRITEMEM [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Memory Write command.
The default value is 1 (true).

Oscilloscope options

FMSTR_USE_SCOPE
#define FMSTR_USE_SCOPE [number]

Value Type Integer number.

Description Number of Oscilloscope instances to be supported. Set to 0 to disable the Oscillo-
scope feature.
Default value is 0.

FMSTR_MAX_SCOPE_VARS
#define FMSTR_MAX_SCOPE_VARS [number]

Value Type Integer number larger than 2.

Description Number of variables to be supported by each Oscilloscope instance.
Default value is 8.

Recorder options

FMSTR_USE_RECORDER
#define FMSTR_USE_RECORDER [number]

482 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Value Type Integer number.

Description Number of Recorder instances to be supported. Set to 0 to disable the Recorder
feature.
Default value is 0.

FMSTR_REC_BUFF_SIZE
#define FMSTR_REC_BUFF_SIZE [number]

Value Type Integer number larger than 2.

Description Defines the size of the memory buffer used by the Recorder instance #0.
Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_TIMEBASE
#define FMSTR_REC_TIMEBASE [time specification]

Value Type Number (nanoseconds time).

Description Defines the base sampling rate in nanoseconds (sampling speed) Recorder in-
stance #0.

Use one of the following macros:

• FMSTR_REC_BASE_SECONDS(x)

• FMSTR_REC_BASE_MILLISEC(x)

• FMSTR_REC_BASE_MICROSEC(x)

• FMSTR_REC_BASE_NANOSEC(x)

Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_FLOAT_TRIG
#define FMSTR_REC_FLOAT_TRIG [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the floating-point triggering. Be aware that
floating-point triggering may grow the code size by linking the floating-point standard library.

Default value is 0 (false).

Application Commands options

3.1. Motor Control 483

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_USE_APPCMD
#define FMSTR_USE_APPCMD [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Application Commands feature.
Default value is 0 (false).

FMSTR_APPCMD_BUFF_SIZE
#define FMSTR_APPCMD_BUFF_SIZE [size]

Value Type Numeric buffer size in range 1..255

Description The size of the Application Command data buffer allocated by the driver. The
buffer stores the (optional) parameters of the Application Commandwhichwaits to be processed.

FMSTR_MAX_APPCMD_CALLS
#define FMSTR_MAX_APPCMD_CALLS [number]

Value Type Number in range 0..255

Description The number of different Application Commands that can be assigned a callback
handler function using FMSTR_RegisterAppCmdCall(). Default value is 0.

TSA options

FMSTR_USE_TSA
#define FMSTR_USE_TSA [0|1]

Value Type Boolean 0 or 1.

Description Enable the FreeMASTER TSA feature to be used. With this option enabled, the TSA
tables defined in the applications are made available to the FreeMASTER host tool.
Default value is 0 (false).

FMSTR_USE_TSA_SAFETY
#define FMSTR_USE_TSA_SAFETY [0|1]

Value Type Boolean 0 or 1.

484 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Description Enable thememory access validation in the FreeMASTER driver. With this option,
the host tool is not able to access the memory which is not described by at least one TSA descrip-
tor. Also a write access is denied for objects defined as read-only in TSA tables.
Default value is 0 (false).

FMSTR_USE_TSA_INROM
#define FMSTR_USE_TSA_INROM [0|1]

Value Type Boolean 0 or 1.

Description Declare all TSA descriptors as const, which enables the linker to put the data into
the flash memory. The actual result depends on linker settings or the linker commands used in
the project.
Default value is 0 (false).

FMSTR_USE_TSA_DYNAMIC
#define FMSTR_USE_TSA_DYNAMIC [0|1]

Value Type Boolean 0 or 1.

Description Enable runtime-defined TSA entries to be added to the TSA table by the FM-
STR_SetUpTsaBuff() and FMSTR_TsaAddVar() functions.
Default value is 0 (false).

Pipes options

FMSTR_USE_PIPES
#define FMSTR_USE_PIPES [0|1]

Value Type Boolean 0 or 1.

Description Enable the FreeMASTER Pipes feature to be used.
Default value is 0 (false).

FMSTR_MAX_PIPES_COUNT
#define FMSTR_MAX_PIPES_COUNT [number]

Value Type Number in range 1..63.

Description The number of simultaneous pipe connections to support.
The default value is 1.

3.1. Motor Control 485

MCUXpresso SDK Documentation, Release 25.09.00

Driver interrupt modes To implement the communication, the FreeMASTER driver handles
the Serial or CANmodule’s receive and transmit requests. Use the freemaster_cfg.h configuration
file to select whether the driver processes the communication automatically in the interrupt
service routine handler or if it only polls the status of themodule (typically during the application
idle time).

This section describes each of the interrupt mode in more details.

Completely Interrupt-Driven operation Activated using:

#define FMSTR_LONG_INTR 1

In this mode, both the communication and the FreeMASTER protocol decoding is done in the
FMSTR_SerialIsr, FMSTR_CanIsr, or other interrupt service routine. Because the protocol execu-
tionmay be a lengthy task (especially with the TSA-Safety enabled) it is recommended to use this
mode only if the interrupt prioritization scheme is possible in the application and the FreeMAS-
TER interrupt is assigned to a lower (the lowest) priority.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_SerialIsr or FM-
STR_CanIsr functions from that handler.

Mixed Interrupt and Polling Modes Activated using:

#define FMSTR_SHORT_INTR 1

In this mode, the communication processing time is split between the interrupt routine and the
main application loop or task. The raw communication is handled by the FMSTR_SerialIsr, FM-
STR_CanIsr, or other interrupt service routine, while the protocol decoding and execution is han-
dled by the FMSTR_Poll routine. Call FMSTR_Poll during the idle time in the application main
loop.

The interrupt processing in this mode is relatively fast and deterministic. Upon a serial-receive
event, the received character is only placed into a FIFO-like queue and it is not further processed.
Upon a CAN receive event, the received frame is stored into a receive buffer. When transmitting,
the characters are fetched from the prepared transmit buffer.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_SerialIsr or FM-
STR_CanIsr functions from that handler.

When the serial interface is used as the serial communication interface, ensure that the FM-
STR_Poll function is called at least once per N character time periods. N is the length of the
FreeMASTER FIFO queue (FMSTR_COMM_RQUEUE_SIZE) and the character time is the time
needed to transmit or receive a single byte over the SCI line.

Completely Poll-driven
#define FMSTR_POLL_DRIVEN 1

In this mode, both the communication and the FreeMASTER protocol decoding are done in the
FMSTR_Poll routine. No interrupts are needed and the FMSTR_SerialIsr, FMSTR_CanIsr, and sim-
ilar handlers compile to an empty code.

When using this mode, ensure that the FMSTR_Poll function is called by the application at least
once per the serial “character time” which is the time needed to transmit or receive a single
character.

In the latter twomodes (FMSTR_SHORT_INTR and FMSTR_POLL_DRIVEN), the protocol handling
takes place in the FMSTR_Poll routine. An application interrupt can occur in the middle of the

486 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Read Memory or Write Memory commands’ execution and corrupt the variable being accessed
by the FreeMASTER driver. In these two modes, some issues or glitches may occur when using
FreeMASTER to visualize or monitor volatile variables modified in interrupt servicing code.

The same issuemay appear even in the full interruptmode (FMSTR_LONG_INTR), if volatile vari-
ables are modified in the interrupt code with a priority higher than the priority of the commu-
nication interrupt.

Data types Simple portability was one of the main requirements when writing the FreeMAS-
TER driver. This is why the driver code uses the privately-declared data types and the vast ma-
jority of the platform-dependent code is separated in the platform-dependent source files. The
data types used in the driver API are all defined in the platform-specific header file.

To prevent name conflicts with the symbols used in the application, all data types, macros, and
functions have the FMSTR_ prefix. The only global variables used in the driver are the transport
and low-level API structures exported from the driver-implementation layer to upper layers.
Other than that, all private variables are declared as static and named using the fmstr_ prefix.

Communication interface initialization The FreeMASTER driver does not perform neither
the initialization nor the configuration of the peripheral module that it uses to communicate. It
is the application startup code responsibility to configure the communicationmodule before the
FreeMASTER driver is initialized by the FMSTR_Init call.

When the Serial communication module is used as the FreeMASTER communication interface,
configure the UART receive and transmit pins, the serial communication baud rate, parity (no-
parity), the character length (eight bits), and the number of stop bits (one) before initializing the
FreeMASTER driver. For either the long or the short interrupt modes of the driver (see Driver
interrupt modes), configure the interrupt controller and register an application-specific inter-
rupt handler for all interrupt sources related to the selected serial peripheral module. Call the
FMSTR_SerialIsr function from the application handler.

When a CANmodule is used as the FreeMASTER communication interface, configure the CAN re-
ceive and transmit pins and the CAN module bit rate before initializing the FreeMASTER driver.
For either the long or the short interrupt modes of the driver (see Driver interrupt modes), con-
figure the interrupt controller and register an application-specific interrupt handler for all in-
terrupt sources related to the selected CAN peripheral module. Call the FMSTR_CanIsr function
from the application handler.

Note: It is not necessary to enable or unmask the serial nor the CAN interrupts before initializing
the FreeMASTER driver. The driver enables or disables the interrupts and communication lines,
as required during runtime.

FreeMASTER Recorder calls When using the FreeMASTER Recorder in the application (FM-
STR_USE_RECORDER > 0), call the FMSTR_RecorderCreate function early after FMSTR_Init to set
up each recorder instance to be used in the application. Then call the FMSTR_Recorder func-
tion periodically in the code where the data recording should occur. A typical place to call the
Recorder routine is at the timer or PWM interrupts, but it can be anywhere else. The exam-
ple applications provided together with the driver code call the FMSTR_Recorder in the main
application loop.

In applications where FMSTR_Recorder is called periodically with a constant period, specify the
period in the Recorder configuration structure before calling FMSTR_RecorderCreate. This set-
ting enables the PC Host FreeMASTER tool to display the X-axis of the Recorder graph properly
scaled for the time domain.

Driver usage Start using or evaluating FreeMASTER by opening some of the example applica-
tions available in the driver setup package.

3.1. Motor Control 487

MCUXpresso SDK Documentation, Release 25.09.00

Follow these steps to enable the basic FreeMASTER connectivity in the application:

• Make sure that all *.c files of the FreeMASTER driver from the
src/common/platforms/[your_platform] folder are a part of the project. See Driver files
for more details.

• Configure the FreeMASTER driver by creating or editing the freemaster_cfg.h file and by
saving it into the application project directory. See Driver configuration for more details.

• Include the freemaster.h file into any application source file that makes the FreeMASTER
API calls.

• Initialize the Serial or CAN modules. Set the baud rate, parity, and other parameters of
the communication. Do not enable the communication interrupts in the interrupt mask
registers.

• For the FMSTR_LONG_INTR and FMSTR_SHORT_INTR modes, install the application-
specific interrupt routine and call the FMSTR_SerialIsr or FMSTR_CanIsr functions from
this handler.

• Call the FMSTR_Init function early on in the application initialization code.

• Call the FMSTR_RecorderCreate functions for each Recorder instance to enable the
Recorder feature.

• In the main application loop, call the FMSTR_Poll API function periodically when the appli-
cation is idle.

• For the FMSTR_SHORT_INTR and FMSTR_LONG_INTRmodes, enable the interrupts globally
so that the interrupts can be handled by the CPU.

Communication troubleshooting The most common problem that causes communication is-
sues is a wrong baud rate setting or a wrong pin multiplexer setting of the target MCU. When
a communication between the PC Host running FreeMASTER and the target MCU cannot be es-
tablished, try enabling the FMSTR_DEBUG_TX option in the freemaster_cfg.h file and call the FM-
STR_Poll function periodically in the main application task loop.

With this feature enabled, the FreeMASTER driver periodically transmits a test frame through
the Serial or CAN lines. Use a logic analyzer or an oscilloscope to monitor the signals at the
communication pins of the CPU device to examine whether the bit rate and signal polarity are
configured properly.

Driver API

This section describes the driver Application Programmers’ Interface (API) needed to initialize
and use the FreeMASTER serial communication driver.

Control API There are three key functions to initialize and use the driver.

FMSTR_Init

Prototype
FMSTR_BOOL FMSTR_Init(void);

• Declaration: freemaster.h

• Implementation: freemaster_protocol.c

488 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Description This function initializes the internal variables of the FreeMASTER driver and en-
ables the communication interface. This function does not change the configuration of the se-
lected communicationmodule. The hardware module must be initialized before the FMSTR_Init
function is called.

A call to this function must occur before calling any other FreeMASTER driver API functions.

FMSTR_Poll

Prototype
void FMSTR_Poll(void);

• Declaration: freemaster.h

• Implementation: freemaster_protocol.c

Description In the poll-driven or short interrupt modes, this function handles the protocol
decoding and execution (see Driver interrupt modes). In the poll-driven mode, this function also
handles the communication interface with the PC. Typically, the FMSTR_Poll function is called
during the “idle” time in the main application task loop.

To prevent the receive data overflow (loss) on a serial interface, make sure that the FMSTR_Poll
function is called at least once per the time calculated as:

N * Tchar

where:

• N is equal to the length of the receive FIFO queue (configured by the FM-
STR_COMM_RQUEUE_SIZE macro). N is 1 for the poll-driven mode.

• Tchar is the character time, which is the time needed to transmit or receive a single byte
over the SCI line.

Note: In the long interrupt mode, this function typically compiles as an empty function and can
still be called. It is worthwhile to call this function regardless of the interrupt mode used in
the application. This approach enables a convenient switching between the different interrupt
modes only by changing the configuration macros in the freemaster_cfg.h file.

FMSTR_SerialIsr / FMSTR_CanIsr

Prototype
void FMSTR_SerialIsr(void);
void FMSTR_CanIsr(void);

• Declaration: freemaster.h

• Implementation: hw-specific low-level driver C file

Description This function contains the interrupt-processing code of the FreeMASTER driver.
In long or short interrupt modes (see Driver interrupt modes), this function must be called from
the application interrupt service routine registered for the communication interrupt vector. On
platforms where the communication module uses multiple interrupt vectors, the application
should register a handler for all vectors and call this function at each interrupt.

Note: In a poll-driven mode, this function is compiled as an empty function and does not have
to be used.

3.1. Motor Control 489

MCUXpresso SDK Documentation, Release 25.09.00

Recorder API

FMSTR_RecorderCreate

Prototype
FMSTR_BOOL FMSTR_RecorderCreate(FMSTR_INDEX recIndex, FMSTR_REC_BUFF* buffCfg);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function registers a recorder instance and enables it to be used by the PC
Host tool. Call this function for all recorder instances from 0 to the maximum number de-
fined by the FMSTR_USE_RECORDER configuration option (minus one). An exception to this
requirement is the recorder of instance 0 which may be automatically configured by FM-
STR_Init when the freemaster_cfg.h configuration file defines the FMSTR_REC_BUFF_SIZE and
FMSTR_REC_TIMEBASE options.

For more information, see Configurable items.

FMSTR_Recorder

Prototype
void FMSTR_Recorder(FMSTR_INDEX recIndex);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function takes a sample of the variables being recorded using the FreeMAS-
TER Recorder instance recIndex. If the selected Recorder is not active when the FMSTR_Recorder
function is being called, the function returns immediately. When the Recorder is active, the val-
ues of the variables being recorded are copied into the recorder buffer and the trigger conditions
are evaluated.

If a trigger condition is satisfied, the Recorder enters the post-triggermode, where it counts down
the follow-up samples (number of FMSTR_Recorder function calls) and de-activates the Recorder
when the required post-trigger samples are finished.

The FMSTR_Recorder function is typically called in the timer or PWM interrupt service routines.
This function can also be called in the application main loop (for testing purposes).

FMSTR_RecorderTrigger

Prototype
void FMSTR_RecorderTrigger(FMSTR_INDEX recIndex);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

490 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Description This function forces the Recorder trigger condition to happen, which causes the
Recorder to be automatically deactivated after the post-trigger samples are sampled. Use this
function in the application code for programmatic control over the Recorder triggering. This
can be useful when a more complex triggering conditions need to be used.

FastRecorderAPI The Fast Recorder feature is not available in the FreeMASTERdriver version
3. This feature was heavily dependent on the target platform and it was only available for the
56F8xxxx DSCs.

TSA Tables When the TSA is enabled in the FreeMASTER driver configuration file (by setting
the FMSTR_USE_TSA macro to a non-zero value), it defines the so-called TSA tables in the appli-
cation. This section describes the macros that must to be used to define the TSA tables.

There can be any number of TSA tables spread across the application source files. There must
be always exactly one TSA Table List defined, which informs the FreeMASTER driver about the
active TSA tables.

When there is at least one TSA table and one TSA Table List defined in the application, the TSA
information automatically appears in the FreeMASTER symbols list. The symbols can then be
used to create FreeMASTER variables for visualization or control.

TSA table definition The TSA table describes the static or global variables together with their
address, size, type, and access-protection information. If the TSA-described variables are of a
structure type, the TSA table may also describe this type and provide an access to the individual
structure members of the variable.

The TSA table definition begins with the FMSTR_TSA_TABLE_BEGIN macro with a table_id iden-
tifying the table. The table_id shall be a valid C-langiage symbol.

FMSTR_TSA_TABLE_BEGIN(table_id)

After this opening macro, the TSA descriptors are placed using these macros:

/* Adding variable descriptors */
FMSTR_TSA_RW_VAR(name, type) /* read/write variable entry */
FMSTR_TSA_RO_VAR(name, type) /* read-only variable entry */

/* Description of complex data types */
FMSTR_TSA_STRUCT(struct_name) /* structure or union type entry */
FMSTR_TSA_MEMBER(struct_name, member_name, type) /* structure member entry */

/* Memory blocks */
FMSTR_TSA_RW_MEM(name, type, address, size) /* read/write memory block */
FMSTR_TSA_RO_MEM(name, type, address, size) /* read-only memory block */

The table is closed using the FMSTR_TSA_TABLE_END macro:

FMSTR_TSA_TABLE_END()

TSA descriptor parameters The TSA descriptor macros accept these parameters:

• name—variable name. The variable must be defined before the TSA descriptor references
it.

• type — variable or member type. Only one of the pre-defined type constants may be used
(see below).

• struct_name — structure type name. The type must be defined (typedef) before the TSA
descriptor references it.

3.1. Motor Control 491

MCUXpresso SDK Documentation, Release 25.09.00

• member_name— structure member name.

Note: The structure member descriptors (FMSTR_TSA_MEMBER) must immediately follow the
parent structure descriptor (FMSTR_TSA_STRUCT) in the table.

Note: To write-protect the variables in the FreeMASTER driver (FMSTR_TSA_RO_VAR), enable
the TSA-Safety feature in the configuration file.

TSA variable types The table lists type identifiers which can be used in TSA descriptors:

Constant Description
FMSTR_TSA_UINTn Unsigned integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_SINTn Signed integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_FRACn Fractional number of size n bits (n=16,32,64).
FMSTR_TSA_FRAC_Q(m,n) Signed fractional number in general Q form (m+n+1 total bits)
FMSTR_TSA_FRAC_UQ(m,n) Unsigned fractional number in general UQ form (m+n total

bits)
FMSTR_TSA_FLOAT 4-byte standard IEEE floating-point type
FMSTR_TSA_DOUBLE 8-byte standard IEEE floating-point type
FMSTR_TSA_POINTER Generic pointer type defined (platform-specific 16 or 32 bit)
FM-
STR_TSA_USERTYPE(name)

Structure or union type declared with FMSTR_TSA_STRUCT
record

TSA table list There shall be exactly one TSA Table List in the application. The list contains
one entry for each TSA table defined anywhere in the application.

The TSA Table List begins with the FMSTR_TSA_TABLE_LIST_BEGIN macro and continues with
the TSA table entries for each table.

FMSTR_TSA_TABLE_LIST_BEGIN()

FMSTR_TSA_TABLE(table_id)
FMSTR_TSA_TABLE(table_id2)
FMSTR_TSA_TABLE(table_id3)
...

The list is closed with the FMSTR_TSA_TABLE_LIST_END macro:

FMSTR_TSA_TABLE_LIST_END()

TSA Active Content entries FreeMASTER v2.0 and higher supports TSA Active Content, en-
abling the TSA tables to describe the memory-mapped files, virtual directories, and URL hyper-
links. FreeMASTER can access such objects similarly to accessing the files and folders on the
local hard drive.

With this set of TSA entries, the FreeMASTER pages can be embedded directly into the target
MCU flash and accessed by FreeMASTER directly over the communication line. The HTML-coded
pages rendered inside the FreeMASTER window can access the TSA Active Content resources
using a special URL referencing the fmstr: protocol.

This example provides an overview of the supported TSA Active Content entries:

FMSTR_TSA_TABLE_BEGIN(files_and_links)

/* Directory entry applies to all subsequent MEMFILE entries */
FMSTR_TSA_DIRECTORY(”/text_files”) /* entering a new virtual directory */

(continues on next page)

492 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
/* The readme.txt file will be accessible at the fmstr://text_files/readme.txt URL */
FMSTR_TSA_MEMFILE(”readme.txt”, readme_txt, sizeof(readme_txt)) /* memory-mapped file */

/* Files can also be specified with a full path so the DIRECTORY entry does not apply */
FMSTR_TSA_MEMFILE(”/index.htm”, index, sizeof(index)) /* memory-mapped file */
FMSTR_TSA_MEMFILE(”/prj/demo.pmp”, demo_pmp, sizeof(demo_pmp)) /* memory-mapped file */

/* Hyperlinks can point to a local MEMFILE object or to the Internet */
FMSTR_TSA_HREF(”Board's Built-in Welcome Page”, ”/index.htm”)
FMSTR_TSA_HREF(”FreeMASTER Home Page”, ”http://www.nxp.com/freemaster”)

/* Project file links simplify opening the projects from any URLs */
FMSTR_TSA_PROJECT(”Demonstration Project (embedded)”, ”/prj/demo.pmp”)
FMSTR_TSA_PROJECT(”Full Project (online)”, ”http://mycompany.com/prj/demo.pmp”)

FMSTR_TSA_TABLE_END()

TSA API

FMSTR_SetUpTsaBuff

Prototype
FMSTR_BOOL FMSTR_SetUpTsaBuff(FMSTR_ADDR buffAddr, FMSTR_SIZE buffSize);

• Declaration: freemaster.h

• Implementation: freemaster_tsa.c

Arguments
• buffAddr [in] - address of the memory buffer for the dynamic TSA table

• buffSize [in] - size of the memory buffer which determines the maximum number of TSA
entries to be added in the runtime

Description This functionmust be used to assign the RAMmemory buffer to the TSA subsystem
when FMSTR_USE_TSA_DYNAMIC is enabled. The memory buffer is then used to store the TSA
entries added dynamically to the runtime TSA table using the FMSTR_TsaAddVar function call.
The runtime TSA table is processed by the FreeMASTER PC Host tool along with all static tables
as soon as the communication port is open.

The size of the memory buffer determines the number of TSA entries that can be added dynam-
ically. Depending on the MCU platform, one TSA entry takes either 8 or 16 bytes.

FMSTR_TsaAddVar

Prototype
FMSTR_BOOL FMSTR_TsaAddVar(FMSTR_TSATBL_STRPTR tsaName, FMSTR_TSATBL_STRPTR␣
↪→tsaType,

FMSTR_TSATBL_VOIDPTR varAddr, FMSTR_SIZE32 varSize,
FMSTR_SIZE flags);

• Declaration: freemaster.h

3.1. Motor Control 493

MCUXpresso SDK Documentation, Release 25.09.00

• Implementation: freemaster_tsa.c

Arguments
• tsaName [in] - name of the object

• tsaType [in] - name of the object type

• varAddr [in] - address of the object

• varSize [in] - size of the object

• flags [in] - access flags; a combination of these values:

– FMSTR_TSA_INFO_RO_VAR— read-only memory-mapped object (typically a variable)

– FMSTR_TSA_INFO_RW_VAR— read/write memory-mapped object

– FMSTR_TSA_INFO_NON_VAR — other entry, describing structure types, structure
members, enumerations, and other types

Description This function can be called only when the dynamic TSA table is enabled by the
FMSTR_USE_TSA_DYNAMIC configuration option and when the FMSTR_SetUpTsaBuff function
call is made to assign the dynamic TSA table memory. This function adds an entry into the dy-
namic TSA table. It can be used to register a read-only or read/write memory object or describe
an item of the user-defined type.

See TSA table definition for more details about the TSA table entries.

Application Commands API

FMSTR_GetAppCmd

Prototype
FMSTR_APPCMD_CODE FMSTR_GetAppCmd(void);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Description This function can be used to detect if there is an Application Command waiting
to be processed by the application. If no command is pending, this function returns the FM-
STR_APPCMDRESULT_NOCMD constant. Otherwise, this function returns the code of the Appli-
cation Command that must be processed. Use the FMSTR_AppCmdAck call to acknowledge the
Application Command after it is processed and to return the appropriate result code to the host.

The FMSTR_GetAppCmd function does not report the commands for which a callback handler
function exists. If the FMSTR_GetAppCmd function is called when a callback-registered com-
mand is pending (and before it is actually processed by the callback function), this function re-
turns FMSTR_APPCMDRESULT_NOCMD.

FMSTR_GetAppCmdData

494 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Prototype
FMSTR_APPCMD_PDATA FMSTR_GetAppCmdData(FMSTR_SIZE* dataLen);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• dataLen [out] - pointer to the variable that receives the length of the data available in the
buffer. It can be NULL when this information is not needed.

Description This function can be used to retrieve the Application Command data when the
application determines that an Application Command is pending (see FMSTR_GetAppCmd).

There is just a single buffer to hold the Application Command data (the buffer length is FM-
STR_APPCMD_BUFF_SIZE bytes). If the data are to be used in the application after the command
is processed by the FMSTR_AppCmdAck call, copy the data out to a private buffer.

FMSTR_AppCmdAck

Prototype
void FMSTR_AppCmdAck(FMSTR_APPCMD_RESULT resultCode);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• resultCode [in] - the result code which is to be returned to FreeMASTER

Description This function is used when the Application Command processing finishes in the
application. The resultCode passed to this function is returned back to the host and the driver is
re-initialized to expect the next Application Command.

After this function is called and before the next Application Command arrives, the return value
of the FMSTR_GetAppCmd function is FMSTR_APPCMDRESULT_NOCMD.

FMSTR_AppCmdSetResponseData

Prototype
void FMSTR_AppCmdSetResponseData(FMSTR_ADDR resultDataAddr, FMSTR_SIZE resultDataLen);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

3.1. Motor Control 495

MCUXpresso SDK Documentation, Release 25.09.00

Arguments
• resultDataAddr [in] - pointer to the data buffer that is to be copied to the Application Com-
mand data buffer

• resultDataLen [in] - length of the data to be copied. It must not exceed the FM-
STR_APPCMD_BUFF_SIZE value.

Description This function can be used before the Application Command processing finishes,
when there are data to be returned back to the PC.

The response data buffer is copied into the Application Command data buffer, from where it is
accessed when the host requires it. Do not use FMSTR_GetAppCmdData and the data buffer after
FMSTR_AppCmdSetResponseData is called.

Note: The current version of FreeMASTER does not support the Application Command response
data.

FMSTR_RegisterAppCmdCall

Prototype
FMSTR_BOOL FMSTR_RegisterAppCmdCall(FMSTR_APPCMD_CODE appCmdCode, FMSTR_
↪→PAPPCMDFUNC callbackFunc);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• appCmdCode [in] - the Application Command code for which the callback is to be registered

• callbackFunc [in] - pointer to the callback function that is to be registered. Use NULL to
unregister a callback registered previously with this Application Command.

Return value This function returns a non-zero value when the callback function was success-
fully registered or unregistered. It can return zero when trying to register a callback function
for more than FMSTR_MAX_APPCMD_CALLS different Application Commands.

Description This function can be used to register the given function as a callback handler for
the Application Command. The Application Command is identified using single-byte code. The
callback function is invoked automatically by the FreeMASTER driverwhen the protocol decoder
obtains a request to get the application command result code.

The prototype of the callback function is

FMSTR_APPCMD_RESULT HandlerFunction(FMSTR_APPCMD_CODE nAppcmd,
FMSTR_APPCMD_PDATA pData, FMSTR_SIZE nDataLen);

Where:

• nAppcmd -Application Command code

• pData—points to the Application Command data received (if any)

• nDataLen—information about the Application Command data length

496 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

The return value of the callback function is used as the Application Command Result Code and
returned to FreeMASTER.

Note: The FMSTR_MAX_APPCMD_CALLS configurationmacro defines howmanydifferent Appli-
cation Commands may be handled by a callback function. When FMSTR_MAX_APPCMD_CALLS
is undefined or defined as zero, the FMSTR_RegisterAppCmdCall function always fails.

Pipes API

FMSTR_PipeOpen

Prototype
FMSTR_HPIPE FMSTR_PipeOpen(FMSTR_PIPE_PORT pipePort, FMSTR_PPIPEFUNC pipeCallback,
↪→

FMSTR_ADDR pipeRxBuff, FMSTR_PIPE_SIZE pipeRxSize,
FMSTR_ADDR pipeTxBuff, FMSTR_PIPE_SIZE pipeTxSize,
FMSTR_U8 type, const FMSTR_CHAR *name);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipePort [in] - port number that identifies the pipe for the client

• pipeCallback [in] - pointer to the callback function that is calledwhenever a pipe data status
changes

• pipeRxBuff [in] - address of the receive memory buffer

• pipeRxSize [in] - size of the receive memory buffer

• pipeTxBuff [in] - address of the transmit memory buffer

• pipeTxSize [in] - size of the transmit memory buffer

• type [in] - a combination of FMSTR_PIPE_MODE_xxx and FMSTR_PIPE_SIZE_xxx constants
describing primary pipe data format and usage. This type helps FreeMASTER decide how
to access the pipe by default. Optional, use 0 when undetermined.

• name [in] - user name of the pipe port. This name is visible to the FreeMASTER user when
creating the graphical pipe interface.

Description This function initializes a new pipe and makes it ready to accept or send the data
to the PCHost client. The receivememory buffer is used to store the received data before they are
read out by the FMSTR_PipeRead call. When this buffer gets full, the PC Host client denies the
data transmission into this pipe until there is enough free space again. The transmit memory
buffer is used to store the data transmitted by the application to the PC Host client using the
FMSTR_PipeWrite call. The transmit buffer can get full when the PC Host is disconnected or
when it is slow in receiving and reading out the pipe data.

The function returns the pipe handle which must be stored and used in the subsequent calls to
manage the pipe object.

The callback function (if specified) is called whenever new data are received through the pipe
and available for reading. This callback is also called when the data waiting in the transmit
buffer are successfully pushed to the PC Host and the transmit buffer free space increases. The
prototype of the callback function provided by the user application must be as follows. The
PipeHandler name is only a placeholder and must be defined by the application.

3.1. Motor Control 497

MCUXpresso SDK Documentation, Release 25.09.00

void PipeHandler(FMSTR_HPIPE pipeHandle);

FMSTR_PipeClose

Prototype
void FMSTR_PipeClose(FMSTR_HPIPE pipeHandle);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

Description This function de-initializes the pipe object. No data can be received or sent on the
pipe after this call.

FMSTR_PipeWrite

Prototype
FMSTR_PIPE_SIZE FMSTR_PipeWrite(FMSTR_HPIPE pipeHandle, FMSTR_ADDR pipeData,

FMSTR_PIPE_SIZE pipeDataLen, FMSTR_PIPE_SIZE writeGranularity);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

• pipeData [in] - address of the data to be written

• pipeDataLen [in] - length of the data to be written

• writeGranularity [in] - size of the minimum unit of data which is to be written

Description This function puts the user-specified data into the pipe’s transmit memory buffer
and schedules it for transmission. This function returns the number of bytes that were success-
fully written into the buffer. This number may be smaller than the number of the requested
bytes if there is not enough free space in the transmit buffer.

The writeGranularity argument can be used to split the data into smaller chunks, each of the
size given by the writeGranularity value. The FMSTR_PipeWrite function writes as many data
chunks as possible into the transmit buffer and does not attempt to write an incomplete chunk.
This feature can prove to be useful to avoid the intermediate caching when writing an array of
integer values or other multi-byte data items. When making the nGranularity value equal to the
nLength value, all data are considered as one chunk which is either written successfully as a
whole or not at all. The nGranularity value of 0 or 1 disables the data-chunk approach.

FMSTR_PipeRead

498 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Prototype
FMSTR_PIPE_SIZE FMSTR_PipeRead(FMSTR_HPIPE pipeHandle, FMSTR_ADDR pipeData,

FMSTR_PIPE_SIZE pipeDataLen, FMSTR_PIPE_SIZE readGranularity);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

• pipeData [in] - address of the data buffer to be filled with the received data

• pipeDataLen [in] - length of the data to be read

• readGranularity [in] - size of the minimum unit of data which is to be read

Description This function copies the data received from the pipe from its receive buffer to the
user buffer for further processing. The function returns the number of bytes that were success-
fully copied to the buffer. This number may be smaller than the number of the requested bytes
if there is not enough data bytes available in the receive buffer.

The readGranularity argument can be used to copy the data in larger chunks in the same way as
described in the FMSTR_PipeWrite function.

API data types This section describes the data types used in the FreeMASTER driver. The infor-
mationprovidedhere canbeusefulwhenmodifying or porting the FreeMASTERCommunication
Driver to new NXP platforms.

Note: The licensing conditions prohibit use of FreeMASTER and the FreeMASTER Communica-
tion Driver with non-NXP MPU or MCU products.

Public common types The table belowdescribes the public data types used in the FreeMASTER
driver API calls. The data types are declared in the freemaster.h header file.

3.1. Motor Control 499

MCUXpresso SDK Documentation, Release 25.09.00

Type name Description
FM-
STR_ADDR

Data type used to hold the memory address. Onmost platforms, this is normally
a C-pointer, but it may also be a pure integer type.

For exam-
ple, this
type is
defined as
long inte-
ger on the
56F8xxx
platform
where
the 24-bit
addresses
must be
supported,
but the
C-pointer
may be
only 16
bits wide
in some
compiler
configura-
tions.
FM-
STR_SIZE

Data type used to hold the memory block size.

It is re-
quired
that this
type is un-
signed and
at least 16
bits wide
integer.
FM-
STR_BOOL

Data type used as a general boolean type.

This type
is used
only in
zero/non-
zero con-
ditions in
the driver
code.
FM-
STR_APPCMD_CODE

Data type used to hold the Application Command code.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCMD_DATA

Data type used to create the Application Command data buffer.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCMD_RESULT

Data type used to hold the Application Command result code.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_PAPPCMDFUNC

Pointer to the Application Command handler function.

See FM-
STR_RegisterAppCmdCall
for more
details.

500 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Public TSA types The table describes the TSA-specific public data types. These types are de-
clared in the freemaster_tsa.h header file, which is included in the user application indirectly by
the freemaster.h file.

FM-
STR_TSA_TINDEX

Data type used to hold a descriptor index in the TSA table or a table index in the
list of TSA tables.

By default,
this is
defined
as FM-
STR_SIZE.
FM-
STR_TSA_TSIZE

Data type used to hold a memory block size, as used in the TSA descriptors.

By default,
this is
defined
as FM-
STR_SIZE.

Public Pipes types The table describes the data types used by the FreeMASTER Pipes API:

FM-
STR_HPIPE

Pipe handle that identifies the open-pipe object.

Generally,
this is a
pointer
to a void
type.
FM-
STR_PIPE_PORT

Integer type required to hold at least 7 bits of data.

Generally,
this is an
unsigned
8-bit or
16-bit type.
FM-
STR_PIPE_SIZE

Integer type required to hold at least 16 bits of data.

This is
used to
store the
data buffer
sizes.
FM-
STR_PPIPEFUNC

Pointer to the pipe handler function.

See FM-
STR_PipeOpen
for more
details.

Internal types The table describes the data types used internally by the FreeMASTER driver.
The data types are declared in the platform-specific header file and they are not available in the
application code.

3.1. Motor Control 501

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_U8 The smallest memory entity.
On the vast
majority of
platforms,
this is an
unsigned
8-bit inte-
ger.
On the
56F8xx
DSP plat-
form, this
is defined
as an un-
signed
16-bit inte-
ger.
FM-
STR_U16

Unsigned 16-bit integer.

FM-
STR_U32

Unsigned 32-bit integer.

FMSTR_S8 Signed 8-bit integer.
FM-
STR_S16

Signed 16-bit integer.

FM-
STR_S32

Signed 32-bit integer.

FM-
STR_FLOAT

4-byte standard IEEE floating-point type.

FM-
STR_FLAGS

Data type forming a union with a structure of flag bit-fields.

FM-
STR_SIZE8

Data type holding a general size value, at least 8 bits wide.

FM-
STR_INDEX

General for-loop index. Must be signed, at least 16 bits wide.

FM-
STR_BCHR

A single character in the communication buffer.

Typically,
this is
an 8-bit
unsigned
integer,
except for
the DSP
platforms
where it
is a 16-bit
integer.
FM-
STR_BPTR

A pointer to the communication buffer (an array of FMSTR_BCHR).

Document references

Links
• This document online: https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/
freemaster/doc/index.html

502 Chapter 3. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html

MCUXpresso SDK Documentation, Release 25.09.00

• FreeMASTER tool home: www.nxp.com/freemaster

• FreeMASTER community area: community.nxp.com/community/freemaster

• FreeMASTER GitHub code repo: https://github.com/nxp-mcuxpresso/mcux-freemaster

• MCUXpresso SDK home: www.nxp.com/mcuxpresso

• MCUXpresso SDK builder: mcuxpresso.nxp.com/en

Documents
• FreeMASTER Usage Serial Driver Implementation (document AN4752)

• Integrating FreeMASTER Time Debugging ToolWith CodeWarrior ForMicrocontrollers v10.X
Project (document AN4771)

• Flash Driver Library For MC56F847xx And MC56F827xx DSC Family (document AN4860)

Revision history This Table summarizes the changes done to this document since the initial
release.

3.1. Motor Control 503

https://www.nxp.com/freemaster
https://community.nxp.com/community/freemaster
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://www.nxp.com/mcuxpresso
https://mcuxpresso.nxp.com/en
http://www.nxp.com/doc/AN4752
http://www.nxp.com/doc/AN4771
http://www.nxp.com/doc/AN4860

MCUXpresso SDK Documentation, Release 25.09.00

Revi-
sion

Date Description

1.0 03/2006 Limited initial release
2.0 09/2007 Updated for FreeMASTER version. New Freescale doc-

ument template used.
2.1 12/2007 Added description of the newFast Recorder feature and

its API.
2.2 04/2010 Added support for MPC56xx platform, Added new API

for use CAN interface.
2.3 04/2011 Added support for Kxx Kinetis platform andMQX oper-

ating system.
2.4 06/2011 Serial driver update, adds support for USB CDC inter-

face.
2.5 08/2011 Added Packet Driven BDM interface.
2.7 12/2013 Added FLEXCAN32 interface, byte access and isr call-

back configuration option.
2.8 06/2014 Removed obsolete license text, see the software pack-

age content for up-to-date license.
2.9 03/2015 Update for driver version 1.8.2 and 1.9: FreeMAS-

TER Pipes, TSA Active Content, LIN Transport Layer
support, DEBUG-TX communication troubleshooting,
Kinetis SDK support.

3.0 08/2016 Update for driver version 2.0: Added support for
MPC56xx, MPC57xx, KEAxx and S32Kxx platforms.
New NXP document template as well as new license
agreement used. added MCAN interface. Folders struc-
ture at the installation destination was rearranged.

4.0 04/2019 Update for driver released as part of FreeMASTER v3.0
and MCUXpresso SDK 2.6. Updated to match new V4
serial communication protocol and new configuration
options. This version of the document removes sub-
stantial portion of outdated information related to S08,
S12, ColdFire, Power and other legacy platforms.

4.1 04/2020 Minor update for FreeMASTER driver included in
MCUXpresso SDK 2.8.

4.2 09/2020 Added example applications description and informa-
tion about the MCUXpresso Config Tools. Fixed the
pipe-related API description.

4.3 10/2024 Added description ofNetwork and Segger J-Link RTT in-
terface configuration. Accompanying the MCUXpresso
SDK version 24.12.00.

4.4 04/2025 Added Zephyr-specific information. Accompanying the
MCUXpresso SDK version 25.06.00.

504 Chapter 3. Middleware

Chapter 4

RTOS

4.1 FreeRTOS

4.1.1 FreeRTOS kernel

Open source RTOS kernel for small devices.

FreeRTOS kernel for MCUXpresso SDK Readme

FreeRTOS kernel for MCUXpresso SDK

Overview The purpose of this document is to describes the FreeRTOS kernel repo integration
into the NXP MCUXpresso Software Development Kit: mcuxsdk. MCUXpresso SDK provides a
comprehensive development solutions designed to optimize, ease, and help accelerate embed-
ded system development of applications based on MCUs from NXP. This project involves the
FreeRTOS kernel repo fork with:

• cmake andKconfig support to allow the configuration andbuild inMCUXpresso SDK ecosys-
tem

• FreeRTOS OS additions, such as FreeRTOS driver wrappers, RTOS ready FatFs file system,
and the implementation of FreeRTOS tickless mode

The history of changes in FreeRTOS kernel repo for MCUXpresso SDK are summarized in
CHANGELOG_mcuxsdk.md file.

The MCUXpresso SDK framework also contains a set of FreeRTOS examples which show basic
FreeRTOS OS features. This makes it easy to start a new FreeRTOS project or begin experiment-
ing with FreeRTOS OS. Selected drivers and middleware are RTOS ready with related FreeRTOS
adaptation layer.

FreeRTOS example applications The FreeRTOS examples are written to demonstrate basic
FreeRTOS features and the interaction between peripheral drivers and the RTOS.

List of examples The list of freertos_examples, their description and availability for individual
supportedMCUXpresso SDK development boards can be obtained here: https://mcuxpresso.nxp.
com/mcuxsdk/latest/html/examples/freertos_examples/index.html

505

https://github.com/FreeRTOS/FreeRTOS
https://github.com/nxp-mcuxpresso/mcuxsdk-manifests
https://github.com/nxp-mcuxpresso/mcux-freertos-drivers
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/examples/freertos_examples/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/examples/freertos_examples/index.html

MCUXpresso SDK Documentation, Release 25.09.00

Location of examples The FreeRTOS examples are located in mcuxsdk-examples repository,
see the freertos_examples folder.

OnceusingMCUXpresso SDKzip packages created via theMCUXpresso SDKBuilder the FreeRTOS
kernel library and associated freertos_examples are added into final zip package once FreeRTOS
components is selected on the Developer Environment Settings page:

The FreeRTOS examples in MCUXpresso SDK zip packages are located in <MCUXpres-
soSDK_install_dir>/boards/<board_name>/freertos_examples/ subfolders.

Building a FreeRTOS example application For information how to use the cmake andKconfig
based build and configuration system and how to build freertos_examples visit: MCUXpresso
SDK documentation for Build And Configuration MCUXpresso SDK Getting Start Guide

Tip: To list all FreeRTOS example projects and targets that can be built via the west build com-
mand, use this west list_project command in mcuxsdk workspace:

west list_project -p examples/freertos_examples

FreeRTOS aware debugger plugin NXP provides FreeRTOS task aware debugger for GDB. The
plugin is compatible with Eclipse-based (MCUXpressoIDE) and is available after the installation.

FreeRTOS kernel for MCUXpresso SDK ChangeLog

Changelog FreeRTOS kernel for MCUXpresso SDK All notable changes to this project will be
documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

506 Chapter 4. RTOS

https://github.com/nxp-mcuxpresso/mcuxsdk-examples
https://mcuxpresso.nxp.com
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/develop/build_system/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/develop/build_system/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/repo.html#gsd-index
https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html

MCUXpresso SDK Documentation, Release 25.09.00

[Unreleased]

Added
• Kconfig added CONFIG_FREERTOS_USE_CUSTOM_CONFIG_FRAGMENT config to op-
tionally include custom FreeRTOSConfig fragment
include file FreeRTOSConfig_frag.h. File must be provided by application.

• Added missing Kconfig option for configUSE_PICOLIBC_TLS.

• Add correct header files to build when configUSE_NEWLIB_REENTRANT and confi-
gUSE_PICOLIBC_TLS is selected in config.

[11.1.0_rev0]
• update amazon freertos version

[11.0.1_rev0]
• update amazon freertos version

[10.5.1_rev0]
• update amazon freertos version

[10.4.3_rev1]
• Apply CM33 security fix from10.4.3-LTS-Patch-2. See rtos\freertos\freertos_kernel\History.txt

• Apply CM33 security fix from10.4.3-LTS-Patch-1. See rtos\freertos\freertos_kernel\History.txt

[10.4.3_rev0]
• update amazon freertos version.

[10.4.3_rev0]
• update amazon freertos version.

[9.0.0_rev3]
• New features:

– Tickless idle mode support for Cortex-A7. Add fsl_tickless_epit.c and
fsl_tickless_generic.h in portable/IAR/ARM_CA9 folder.

– Enabled float context saving in IAR for Cortex-A7. Added confi-
gUSE_TASK_FPU_SUPPORT macros. Modified port.c and portmacro.h in
portable/IAR/ARM_CA9 folder.

• Other changes:

– Transformed ARM_CM core specific tickless low power support into generic form un-
der freertos/Source/portable/low_power_tickless/.

4.1. FreeRTOS 507

MCUXpresso SDK Documentation, Release 25.09.00

[9.0.0_rev2]
• New features:

– Enabled MCUXpresso thread aware debugging. Add freertos_tasks_c_additions.h
and configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H and configFR-
TOS_MEMORY_SCHEME macros.

[9.0.0_rev1]
• New features:

– Enabled -flto optimization in GCC by adding attribute((used)) for vTaskSwitchContext.

– Enabled KDS Task Aware Debugger. Apply FreeRTOS patch to enable confi-
gRECORD_STACK_HIGH_ADDRESS macro. Modified files are task.c and FreeRTOS.h.

[9.0.0_rev0]
• New features:

– Example freertos_sem_static.

– Static allocation support RTOS driver wrappers.

• Other changes:

– Tickless idle rework. Support for different timers is in separated files
(fsl_tickless_systick.c, fsl_tickless_lptmr.c).

– Removed configuration option configSYSTICK_USE_LOW_POWER_TIMER. Low power
timer is now selected by linking of apropriate file fsl_tickless_lptmr.c.

– Removed configOVERRIDE_DEFAULT_TICK_CONFIGURATION in RVDS port. Use of at-
tribute((weak)) is the preferred solution. Not same as _weak!

[8.2.3]
• New features:

– Tickless idle mode support.

– Added template application for Kinetis Expert (KEx) tool (template_application).

• Other changes:

– Folder structure reduction. Keep only Kinetis related parts.

FreeRTOS kernel Readme

MCUXpresso SDK: FreeRTOS kernel This repository is a fork of FreeRTOS kernel
(https://github.com/FreeRTOS/FreeRTOS-Kernel)(11.1.0). Modifications have been made to adapt
to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable FreeRTOS kernel repo
sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which is
composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

For more information about the FreeRTOS kernel repo adoption see README_mcuxsdk.md:
FreeRTOS kernel for MCUXpresso SDK Readme document.

508 Chapter 4. RTOS

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/rtos/freertos/freertos-kernel/README_mcuxsdk.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/rtos/freertos/freertos-kernel/README_mcuxsdk.html
https://github.com/FreeRTOS/FreeRTOS-Kernel/actions/workflows/unit-tests.yml?query=branch%3Amain+event%3Apush+workflow%3A%22CMock+Unit+Tests%22++

MCUXpresso SDK Documentation, Release 25.09.00

Getting started This repository contains FreeRTOS kernel source/header files and kernel ports
only. This repository is referenced as a submodule in FreeRTOS/FreeRTOS repository, which
contains pre-configured demo application projects under FreeRTOS/Demo directory.

The easiest way to use FreeRTOS is to start with one of the pre-configured demo application
projects. That way you will have the correct FreeRTOS source files included, and the correct
include paths configured. Once a demo application is building and executing you can remove
the demoapplicationfiles, and start to add in your ownapplication sourcefiles. See the FreeRTOS
Kernel Quick Start Guide for detailed instructions and other useful links.

Additionally, for FreeRTOS kernel feature information refer to the Developer Documentation,
and API Reference.

Also for contributing and creating a Pull Request please refer to the instructions here.

Getting help If you have any questions or need assistance troubleshooting your FreeRTOS
project, we have an active community that canhelp on the FreeRTOSCommunity Support Forum.

To consume FreeRTOS-Kernel

Consume with CMake If using CMake, it is recommended to use this repository using Fetch-
Content. Add the following into your project’s main or a subdirectory’s CMakeLists.txt:

• Define the source and version/tag you want to use:

FetchContent_Declare(freertos_kernel
GIT_REPOSITORY https://github.com/FreeRTOS/FreeRTOS-Kernel.git
GIT_TAG main #Note: Best practice to use specific git-hash or tagged version

)

In case you prefer to add it as a git submodule, do:

git submodule add https://github.com/FreeRTOS/FreeRTOS-Kernel.git <path of the submodule>
git submodule update --init

• Add a freertos_config library (typically an INTERFACE library) The following assumes the
directory structure:

– include/FreeRTOSConfig.h

add_library(freertos_config INTERFACE)

target_include_directories(freertos_config SYSTEM
INTERFACE

include
)

target_compile_definitions(freertos_config
INTERFACE
projCOVERAGE_TEST=0

)

In case you installed FreeRTOS-Kernel as a submodule, you will have to add it as a subdirectory:

add_subdirectory(${FREERTOS_PATH})

• Configure the FreeRTOS-Kernel and make it available

– this particular example supports a native and cross-compiled build option.

4.1. FreeRTOS 509

https://github.com/FreeRTOS/FreeRTOS
https://www.FreeRTOS.org/FreeRTOS-quick-start-guide.html
https://www.FreeRTOS.org/FreeRTOS-quick-start-guide.html
https://www.FreeRTOS.org/features.html
https://www.FreeRTOS.org/a00106.html
https://forums.freertos.org

MCUXpresso SDK Documentation, Release 25.09.00

set(FREERTOS_HEAP ”4” CACHE STRING ”” FORCE)
Select the native compile PORT
set(FREERTOS_PORT ”GCC_POSIX” CACHE STRING ”” FORCE)
Select the cross-compile PORT
if (CMAKE_CROSSCOMPILING)
set(FREERTOS_PORT ”GCC_ARM_CA9” CACHE STRING ”” FORCE)

endif()

FetchContent_MakeAvailable(freertos_kernel)

• In case of cross compilation, you should also add the following to freertos_config:

target_compile_definitions(freertos_config INTERFACE ${definitions})
target_compile_options(freertos_config INTERFACE ${options})

Consuming stand-alone - Cloning this repository To clone using HTTPS:

git clone https://github.com/FreeRTOS/FreeRTOS-Kernel.git

Using SSH:

git clone git@github.com:FreeRTOS/FreeRTOS-Kernel.git

Repository structure
• The root of this repository contains the three files that are common to every port - list.c,
queue.c and tasks.c. The kernel is containedwithin these three files. croutine.c implements
the optional co-routine functionality - which is normally only used on verymemory limited
systems.

• The ./portable directory contains the files that are specific to a particular microcontroller
and/or compiler. See the readme file in the ./portable directory for more information.

• The ./include directory contains the real time kernel header files.

• The ./template_configurationdirectory contains a sampleFreeRTOSConfig.h to help jumpstart
a new project. See the FreeRTOSConfig.h file for instructions.

Code Formatting FreeRTOS files are formatted using the “uncrustify” tool. The configuration
file used by uncrustify can be found in the FreeRTOS/CI-CD-GitHub-Actions’s uncrustify.cfg file.

Line Endings File checked into the FreeRTOS-Kernel repository use unix-style LF line endings
for the best compatibility with git.

For optimal compatibility with Microsoft Windows tools, it is best to enable the git autocrlf fea-
ture. You can enable this setting for the current repository using the following command:

git config core.autocrlf true

Git History Optimizations Some commits in this repository perform large refactors which
touch many lines and lead to unwanted behavior when using the git blame command. You can
configure git to ignore the list of large refactor commits in this repository with the following
command:

git config blame.ignoreRevsFile .git-blame-ignore-revs

510 Chapter 4. RTOS

https://github.com/uncrustify/uncrustify
https://github.com/FreeRTOS/CI-CD-Github-Actions
https://github.com/FreeRTOS/CI-CD-Github-Actions/tree/main/formatting

MCUXpresso SDK Documentation, Release 25.09.00

Spelling and Formatting We recommend using Visual Studio Code, commonly referred to as
VSCode, when working on the FreeRTOS-Kernel. The FreeRTOS-Kernel also uses cSpell as part
of its spelling check. The config file for which can be found at cspell.config.yaml There is addi-
tionally a cSpell plugin for VSCode that can be used as well. .cSpellWords.txt contains words
that are not traditionally found in an English dictionary. It is used by the spellchecker to ver-
ify the various jargon, variable names, and other odd words used in the FreeRTOS code base
are correct. If your pull request fails to pass the spelling and you believe this is a mistake, then
add the word to .cSpellWords.txt. When adding a word please then sort the list, which can be
done by running the bash command: sort -u .cSpellWords.txt -o .cSpellWords.txt Note that only
the FreeRTOS-Kernel Source Files, include, portable/MemMang, and portable/Common files are
checked for proper spelling, and formatting at this time.

4.1.2 FreeRTOS drivers

This is set of NXP provided FreeRTOS reentrant bus drivers.

4.1.3 backoffalgorithm

Algorithm for calculating exponential backoff with jitter for network retry attempts.

Readme

MCUXpresso SDK: backoffAlgorithm Library This repository is a fork of backoffAlgorithm
library (https://github.com/FreeRTOS/backoffalgorithm)(1.3.0). Modifications have beenmade to
adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable backoffAlgorithm
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repositorymcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

backoffAlgorithm Library This repository contains the backoffAlgorithm library, a utility li-
brary to calculate backoff period using an exponential backoff with jitter algorithm for retry-
ing network operations (like failed network connection with server). This library uses the “Full
Jitter” strategy for the exponential backoff with jitter algorithm. More information about the
algorithm can be seen in the Exponential Backoff and Jitter AWS blog.

The backoffAlgorithm library is distributed under theMIT Open Source License.

Exponential backoff with jitter is typically used when retrying a failed network connection or
operation request with the server. An exponential backoff with jitter helps to mitigate failed
network operations with servers, that are caused due to network congestion or high request
load on the server, by spreading out retry requests across multiple devices attempting network
operations. Besides, in an environment with poor connectivity, a client can get disconnected at
any time. A backoff strategy helps the client to conserve battery by not repeatedly attempting
reconnections when they are unlikely to succeed.

See memory requirements for this library here.

backoffAlgorithm v1.3.0 source code is part of the FreeRTOS 202210.00 LTS release.
backoffAlgorithm v1.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

4.1. FreeRTOS 511

https://code.visualstudio.com
https://cspell.org/
https://marketplace.visualstudio.com/items?itemName=streetsidesoftware.code-spell-checker
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
https://github.com/FreeRTOS/backoffAlgorithm/tree/v1.3.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/backoffAlgorithm/tree/v1.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00

Reference example The example below shows how to use the backoffAlgorithm library on a
POSIX platform to retry a DNS resolution query for amazon.com.

#include ”backoff_algorithm.h”
#include <stdlib.h>
#include <string.h>
#include <netdb.h>
#include <unistd.h>
#include <time.h>

/* The maximum number of retries for the example code. */
#define RETRY_MAX_ATTEMPTS (5U)

/* The maximum back-off delay (in milliseconds) for between retries in the example. */
#define RETRY_MAX_BACKOFF_DELAY_MS (5000U)

/* The base back-off delay (in milliseconds) for retry configuration in the example. */
#define RETRY_BACKOFF_BASE_MS (500U)

int main()
{

/* Variables used in this example. */
BackoffAlgorithmStatus_t retryStatus = BackoffAlgorithmSuccess;
BackoffAlgorithmContext_t retryParams;
char serverAddress[] = ”amazon.com”;
uint16_t nextRetryBackoff = 0;

int32_t dnsStatus = -1;
struct addrinfo hints;
struct addrinfo ** pListHead = NULL;
struct timespec tp;

/* Add hints to retrieve only TCP sockets in getaddrinfo. */
(void) memset(&hints, 0, sizeof(hints));

/* Address family of either IPv4 or IPv6. */
hints.ai_family = AF_UNSPEC;
/* TCP Socket. */
hints.ai_socktype = (int32_t) SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;

/* Initialize reconnect attempts and interval. */
BackoffAlgorithm_InitializeParams(&retryParams,

RETRY_BACKOFF_BASE_MS,
RETRY_MAX_BACKOFF_DELAY_MS,
RETRY_MAX_ATTEMPTS);

/* Seed the pseudo random number generator used in this example (with call to
* rand() function provided by ISO C standard library) for use in backoff period
* calculation when retrying failed DNS resolution. */

/* Get current time to seed pseudo random number generator. */
(void) clock_gettime(CLOCK_REALTIME, &tp);
/* Seed pseudo random number generator with seconds. */
srand(tp.tv_sec);

do
{

/* Perform a DNS lookup on the given host name. */
dnsStatus = getaddrinfo(serverAddress, NULL, &hints, pListHead);

(continues on next page)

512 Chapter 4. RTOS

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
/* Retry if DNS resolution query failed. */
if(dnsStatus != 0)
{

/* Generate a random number and get back-off value (in milliseconds) for the next retry.
* Note: It is recommended to use a random number generator that is seeded with
* device-specific entropy source so that backoff calculation across devices is different
* and possibility of network collision between devices attempting retries can be avoided.
*
* For the simplicity of this code example, the pseudo random number generator, rand()
* function is used. */
retryStatus = BackoffAlgorithm_GetNextBackoff(&retryParams, rand(), &nextRetryBackoff);

/* Wait for the calculated backoff period before the next retry attempt of querying DNS.
* As usleep() takes nanoseconds as the parameter, we multiply the backoff period by 1000. */
(void) usleep(nextRetryBackoff * 1000U);

}
} while((dnsStatus != 0) && (retryStatus != BackoffAlgorithmRetriesExhausted));

return dnsStatus;
}

Building the library A compiler that supports C90 or later such as gcc is required to build the
library.

Additionally, the library uses a header file introduced in ISO C99, stdint.h. For compilers that do
not provide this header file, the source/include directory contains stdint.readme, which can be
renamed to stdint.h to build the backoffAlgorithm library.

For instance, if the example above is copied to a file named example.c, gcc can be used like so:

gcc -I source/include example.c source/backoff_algorithm.c -o example
./example

gcc can also produce an output file to be linked:

gcc -I source/include -c source/backoff_algorithm.c

Building unit tests

Checkout Unity Submodule By default, the submodules in this repository are configured with
update=none in .gitmodules, to avoid increasing clone time and disk space usage of other reposi-
tories (like amazon-freertos that submodules this repository).

To build unit tests, the submodule dependency of Unity is required. Use the following command
to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/Unity

Platform Prerequisites
• For running unit tests

– C89 or later compiler like gcc

– CMake 3.13.0 or later

• For running the coverage target, gcov is additionally required.

4.1. FreeRTOS 513

https://github.com/aws/amazon-freertos

MCUXpresso SDK Documentation, Release 25.09.00

Steps to build Unit Tests
1. Go to the root directory of this repository. (Make sure that the Unity submodule is cloned

as described above.)

2. Create build directory: mkdir build && cd build

3. Run cmake while inside build directory: cmake -S ../test

4. Run this command to build the library and unit tests: make all

5. The generated test executables will be present in build/bin/tests folder.

6. Run ctest to execute all tests and view the test run summary.

Contributing See CONTRIBUTING.md for information on contributing.

4.1.4 corehttp

C language HTTP client library designed for embedded platforms.

MCUXpresso SDK: coreHTTP Client Library

This repository is a fork of coreHTTPClient library (https://github.com/FreeRTOS/corehttp)(3.0.0).
Modifications have been made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig
added to enable coreHTTP Client repo sources build in MCUXpresso SDK. It is part of the MCUX-
presso SDK overall delivery which is composed of several sub-repositories/projects. Navigate
to the top/parent repository mcuxsdk-manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-
manifests) for the complete delivery of MCUXpresso SDK.

coreHTTP Client Library

This repository contains a C language HTTP client library designed for embedded platforms. It
has no dependencies on any additional libraries other than the standard C library, llhttp, and
a customer-implemented transport interface. This library is distributed under the MIT Open
Source License.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8. This library has also undergone both static code analysis from
Coverity static analysis, and validation of memory safety and data structure invariance through
the CBMC automated reasoning tool.

See memory requirements for this library here.

coreHTTP v3.0.0 source code is part of the FreeRTOS 202210.00 LTS release.
coreHTTP v2.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

coreHTTP Config File The HTTP client library exposes configurationmacros that are required
for building the library. A list of all the configurations and their default values are defined in
core_http_config_defaults.h. To provide custom values for the configuration macros, a custom
config file named core_http_config.h can be provided by the user application to the library.

By default, a core_http_config.h custom config is required to build the library. To dis-
able this requirement and build the library with default configuration values, provide
HTTP_DO_NOT_USE_CUSTOM_CONFIG as a compile time preprocessor macro.

The HTTP client library can be built by either:

514 Chapter 4. RTOS

https://github.com/nodejs/llhttp
https://www.gnu.org/software/complexity/manual/complexity.html
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/coreHTTP/tree/v3.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/coreHTTP/tree/v2.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00

• Defining a core_http_config.h file in the application, and adding it to the include directories
for the library build. OR

• Defining the HTTP_DO_NOT_USE_CUSTOM_CONFIG preprocessor macro for the li-
brary build.

Building the Library The httpFilePaths.cmake file contains the information of all source files
and header include paths required to build the HTTP client library.

As mentioned in the previous section, either a custom config file (i.e. core_http_config.h) OR
HTTP_DO_NOT_USE_CUSTOM_CONFIGmacro needs to be provided to build theHTTP client
library.

For a CMake example of building the HTTP library with the httpFilePaths.cmake file, refer to the
coverity_analysis library target in test/CMakeLists.txt file.

Building Unit Tests

Platform Prerequisites
• For running unit tests, the following are required:

– C90 compiler like gcc
– CMake 3.13.0 or later
– Ruby 2.0.0 or later is required for this repository’s CMock test framework.

• For running the coverage target, the following are required:

– gcov
– lcov

Steps to build Unit Tests
1. Go to the root directory of this repository.

2. Run the cmake command: cmake -S test -B build -DBUILD_CLONE_SUBMODULES=ON

3. Run this command to build the library and unit tests: make -C build all

4. The generated test executables will be present in build/bin/tests folder.

5. Run cd build && ctest to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Reference examples The AWS IoT Device SDK for Embedded C repository contains demos of
using theHTTP client library here on a POSIX platform. These can be used as reference examples
for the library API.

Documentation

4.1. FreeRTOS 515

https://github.com/ThrowTheSwitch/CMock
https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/http

MCUXpresso SDK Documentation, Release 25.09.00

Existing Documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location
AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of coreHTTP may differ across repositories.

Generating Documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Contributing See CONTRIBUTING.md for information on contributing.

4.1.5 corejson

JSON parser.

Readme

MCUXpresso SDK: coreJSON Library This repository is a fork of coreJSON library
(https://github.com/FreeRTOS/corejson)(3.2.0). Modifications have been made to adapt to NXP
MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable coreJSON repo sources build
in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which is com-
posed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

coreJSONLibrary This repository contains the coreJSON library, a parser that strictly enforces
the ECMA-404 JSON standard and is suitable for low memory footprint embedded devices. The
coreJSON library is distributed under theMIT Open Source License.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations frommandatory rules in theMISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis from Coverity static analy-
sis, and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.

coreJSON v3.2.0 source code is part of the FreeRTOS 202210.00 LTS release.
coreJSON v3.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

Reference example

516 Chapter 4. RTOS

https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/coreHTTP/docs/doxygen/output/html/index.html
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/coreJSON/tree/v3.2.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/coreJSON/tree/v3.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00

#include <stdio.h>
#include ”core_json.h”

int main()
{

// Variables used in this example.
JSONStatus_t result;
char buffer[] = ”{\”foo\”:\”abc\”,\”bar\”:{\”foo\”:\”xyz\”}}”;
size_t bufferLength = sizeof(buffer) - 1;
char queryKey[] = ”bar.foo”;
size_t queryKeyLength = sizeof(queryKey) - 1;
char * value;
size_t valueLength;

// Calling JSON_Validate() is not necessary if the document is guaranteed to be valid.
result = JSON_Validate(buffer, bufferLength);

if(result == JSONSuccess)
{

result = JSON_Search(buffer, bufferLength, queryKey, queryKeyLength,
&value, &valueLength);

}

if(result == JSONSuccess)
{

// The pointer ”value” will point to a location in the ”buffer”.
char save = value[valueLength];
// After saving the character, set it to a null byte for printing.
value[valueLength] = '\0';
// ”Found: bar.foo -> xyz” will be printed.
printf(”Found: %s -> %s\n”, queryKey, value);
// Restore the original character.
value[valueLength] = save;

}

return 0;
}

A search may descend through nested objects when the queryKey contains matching key strings
joined by a separator, .. In the example above, bar has the value {”foo”:”xyz”}. Therefore, a search
for query key bar.foo would output xyz.

Building coreJSON A compiler that supports C90 or later such as gcc is required to build the
library.

Additionally, the library uses 2 header files introduced in ISO C99, stdbool.h and stdint.h. For com-
pilers that do not provide this header file, the source/include directory contains stdbool.readme
and stdint.readme, which can be renamed to stdbool.h and stdint.h respectively.

For instance, if the example above is copied to a file named example.c, gcc can be used like so:

gcc -I source/include example.c source/core_json.c -o example
./example

gcc can also produce an output file to be linked:

gcc -I source/include -c source/core_json.c

Documentation

4.1. FreeRTOS 517

MCUXpresso SDK Documentation, Release 25.09.00

Existing documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location
AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of the coreJSON library may differ across repositories.

Generating documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Building unit tests

Checkout Unity Submodule By default, the submodules in this repository are configured with
update=none in .gitmodules, to avoid increasing clone time and disk space usage of other reposi-
tories (like amazon-freertos that submodules this repository).

To build unit tests, the submodule dependency of Unity is required. Use the following command
to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/Unity

Platform Prerequisites
• For running unit tests

– C90 compiler like gcc

– CMake 3.13.0 or later

– Ruby 2.0.0 or later is additionally required for the Unity test framework (that we use).

• For running the coverage target, gcov is additionally required.

Steps to build Unit Tests
1. Go to the root directory of this repository. (Make sure that the Unity submodule is cloned

as described above.)

2. Create build directory: mkdir build && cd build

3. Run cmake while inside build directory: cmake -S ../test

4. Run this command to build the library and unit tests: make all

5. The generated test executables will be present in build/bin/tests folder.

6. Run ctest to execute all tests and view the test run summary.

518 Chapter 4. RTOS

https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/coreJSON/docs/doxygen/output/html/index.html
https://github.com/aws/amazon-freertos

MCUXpresso SDK Documentation, Release 25.09.00

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Contributing See CONTRIBUTING.md for information on contributing.

4.1.6 coremqtt

MQTT publish/subscribe messaging library.

MCUXpresso SDK: coreMQTT Library

This repository is a fork of coreMQTT library (https://github.com/FreeRTOS/coremqtt)(2.1.1).
Modifications have been made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kcon-
fig added to enable coreMQTT repo sources build in MCUXpresso SDK. It is part of the MCUX-
presso SDK overall delivery which is composed of several sub-repositories/projects. Navigate
to the top/parent repository mcuxsdk-manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-
manifests) for the complete delivery of MCUXpresso SDK.

coreMQTT Client Library

This repository contains the coreMQTT library that has been optimized for a low memory foot-
print. The coreMQTT library is compliant with the MQTT 3.1.1 standard. It has no dependencies
on any additional libraries other than the standard C library, a customer-implemented network
transport interface, and optionally a user-implemented platform time function. This library is
distributed under theMIT Open Source License.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations frommandatory rules in theMISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis from Coverity static analy-
sis, and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.

coreMQTT v2.1.1 source code is part of the FreeRTOS 202210.01 LTS release.

MQTT Config File The MQTT client library exposes build configuration macros that are re-
quired for building the library. A list of all the configurations and their default values are de-
fined in core_mqtt_config_defaults.h. To provide custom values for the configuration macros, a
custom config file named core_mqtt_config.h can be provided by the application to the library.

By default, a core_mqtt_config.h custom config is required to build the library. To dis-
able this requirement and build the library with default configuration values, provide
MQTT_DO_NOT_USE_CUSTOM_CONFIG as a compile time preprocessor macro.

Thus, the MQTT library can be built by either:
• Defining a core_mqtt_config.h file in the application, and adding it to the include directories
list of the library
OR

• Defining the MQTT_DO_NOT_USE_CUSTOM_CONFIG preprocessor macro for the li-
brary build.

4.1. FreeRTOS 519

https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/coreMQTT/tree/v2.1.1/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.01-LTS

MCUXpresso SDK Documentation, Release 25.09.00

Sending metrics to AWS IoT When establishing a connection with AWS IoT, users can option-
ally report the Operating System, Hardware Platform and MQTT client version information of
their device to AWS. This information can help AWS IoT provide faster issue resolution and tech-
nical support. If users want to report this information, they can send a specially formatted string
(see below) in the username field of the MQTT CONNECT packet.

Format

The format of the username string with metrics is:

<Actual_Username>?SDK=<OS_Name>&Version=<OS_Version>&Platform=<Hardware_Platform>&
↪→MQTTLib=<MQTT_Library_name>@<MQTT_Library_version>

Where

• <Actual_Username> is the actual username used for authentication, if username and pass-
word are used for authentication. When username and password based authentication is
not used, this is an empty value.

• <OS_Name> is the Operating System the application is running on (e.g. FreeRTOS)

• <OS_Version> is the version number of the Operating System (e.g. V10.4.3)

• <Hardware_Platform> is the Hardware Platform the application is running on (e.g. Win-
Sim)

• <MQTT_Library_name> is the MQTT Client library being used (e.g. coreMQTT)

• <MQTT_Library_version> is the version of the MQTT Client library being used (e.g. 1.0.2)

Example

• Actual_Username = “iotuser”, OS_Name = FreeRTOS, OS_Version = V10.4.3, Hard-
ware_Platform_Name =WinSim, MQTT_Library_Name = coremqtt, MQTT_Library_version
= 2.1.1. If username is not used, then “iotuser” can be removed.

/* Username string:
* iotuser?SDK=FreeRTOS&Version=v10.4.3&Platform=WinSim&MQTTLib=coremqtt@2.1.1
*/

#define OS_NAME ”FreeRTOS”
#define OS_VERSION ”V10.4.3”
#define HARDWARE_PLATFORM_NAME ”WinSim”
#define MQTT_LIB ”coremqtt@2.1.1”

#define USERNAME_STRING ”iotuser?SDK=” OS_NAME ”&Version=” OS_VERSION ”&
↪→Platform=” HARDWARE_PLATFORM_NAME ”&MQTTLib=” MQTT_LIB
#define USERNAME_STRING_LENGTH ((uint16_t) (sizeof(USERNAME_STRING) - 1))

MQTTConnectInfo_t connectInfo;
connectInfo.pUserName = USERNAME_STRING;
connectInfo.userNameLength = USERNAME_STRING_LENGTH;
mqttStatus = MQTT_Connect(pMqttContext, &connectInfo, NULL, CONNACK_RECV_TIMEOUT_MS,␣
↪→pSessionPresent);

Upgrading to v2.0.0 and above With coreMQTT versions >=v2.0.0, there are breaking changes.
Please refer to the coreMQTT version >=v2.0.0 Migration Guide.

Building the Library ThemqttFilePaths.cmake file contains the information of all source files
and the header include path required to build the MQTT library.

Additionally, the MQTT library requires two header files that are not part of the ISO C90 stan-
dard library, stdbool.h and stdint.h. For compilers that do not provide these header files, the

520 Chapter 4. RTOS

MCUXpresso SDK Documentation, Release 25.09.00

source/include directory contains the files stdbool.readme and stdint.readme, which can be re-
named to stdbool.h and stdint.h, respectively, to provide the type definitions required by MQTT.

As mentioned in the previous section, either a custom config file (i.e. core_mqtt_config.h) OR
MQTT_DO_NOT_USE_CUSTOM_CONFIG macro needs to be provided to build the MQTT li-
brary.

For a CMake example of building the MQTT library with themqttFilePaths.cmake file, refer to the
coverity_analysis library target in test/CMakeLists.txt file.

Building Unit Tests

Checkout CMock Submodule By default, the submodules in this repository are configured
with update=none in .gitmodules to avoid increasing clone time and disk space usage of other
repositories (like amazon-freertos that submodules this repository).

To build unit tests, the submodule dependency of CMock is required. Use the following command
to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/CMock

Platform Prerequisites
• Docker

or the following:

• For running unit tests

– C90 compiler like gcc
– CMake 3.13.0 or later
– Ruby 2.0.0 or later is additionally required for the CMock test framework (that we
use).

• For running the coverage target, gcov and lcov are additionally required.

Steps to build Unit Tests
1. If using docker, launch the container:

1. docker build -t coremqtt .

2. docker run -it -v ”$PWD”:/workspaces/coreMQTT -w /workspaces/coreMQTT coremqtt

2. Go to the root directory of this repository. (Make sure that the CMock submodule is cloned
as described above)

3. Run the cmake command: cmake -S test -B build

4. Run this command to build the library and unit tests: make -C build all

5. The generated test executables will be present in build/bin/tests folder.

6. Run cd build && ctest to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

4.1. FreeRTOS 521

https://github.com/aws/amazon-freertos
https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html

MCUXpresso SDK Documentation, Release 25.09.00

Reference examples Please refer to the demos of the MQTT client library in the following
locations for reference examples on POSIX and FreeRTOS platforms:

Plat-
form

Location Transport Interface Implementation

POSIX AWS IoT Device SDK for Embed-
ded C

POSIX sockets for TCP/IP and OpenSSL for TLS
stack

FreeR-
TOS

FreeRTOS/FreeRTOS FreeRTOS+TCP for TCP/IP and mbedTLS for
TLS stack

FreeR-
TOS

FreeRTOS AWS Reference Inte-
grations

Based on Secure Sockets Abstraction

Documentation

Existing Documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location
AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of coreMQTT may differ across repositories.

Generating Documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Contributing See CONTRIBUTING.md for information on contributing.

4.1.7 coremqtt-agent

The coreMQTT Agent library is a high level API that adds thread safety to the coreMQTT library.

Readme

MCUXpresso SDK: coreMQTT Agent Library This repository is a fork of coreMQTT Agent
library (https://github.com/FreeRTOS/coremqtt-agent)(1.2.0). Modifications have been made to
adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable coreMQTT Agent
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repositorymcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

522 Chapter 4. RTOS

https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/mqtt
https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/mqtt
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo
https://github.com/aws/amazon-freertos/tree/main/demos/coreMQTT
https://github.com/aws/amazon-freertos/tree/main/demos/coreMQTT
https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/coreMQTT/docs/doxygen/output/html/index.html

MCUXpresso SDK Documentation, Release 25.09.00

coreMQTT Agent Library The coreMQTT Agent library is a high level API that adds thread
safety to the coreMQTT library. The library provides thread safe equivalents to the coreMQTT’s
APIs, greatly simplifying its use in multi-threaded environments. The coreMQTT Agent library
manages the MQTT connection by serializing the access to the coreMQTT library and reduc-
ing implementation overhead (e.g., removing the need for the application to repeatedly call to
MQTT_ProcessLoop). This allows yourmulti-threaded applications to share the sameMQTT con-
nection, and enables you to design an embedded application without having to worry about
coreMQTT thread safety.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations frommandatory rules in theMISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis from Coverity static analy-
sis, and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.

Cloning this repository This repo uses Git Submodules to bring in dependent components.

To clone using HTTPS:

git clone https://github.com/FreeRTOS/coreMQTT-Agent.git --recurse-submodules

Using SSH:

git clone git@github.com:FreeRTOS/coreMQTT-Agent.git --recurse-submodules

If you have downloaded the repo without using the --recurse-submodules argument, you need to
run:

git submodule update --init --recursive

coreMQTT Agent Library Configurations The MQTT Agent library uses the same
core_mqtt_config.h configuration file as coreMQTT, with the addition of configuration con-
stants listed at the top of core_mqtt_agent.h and core_mqtt_agent_command_functions.h.
Documentation for these configurations can be found here.

To provide values for these configuration values, they must be either:

• Defined in core_mqtt_config.h used by coreMQTT OR
• Passed as compile time preprocessor macros

Porting the coreMQTT Agent Library In order to use the MQTT Agent library on a platform,
you need to supply thread safe functions for the agent’smessaging interface.

Messaging Interface Each of the following functions must be thread safe.

4.1. FreeRTOS 523

https://github.com/FreeRTOS/coreMQTT
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://freertos.org/Documentation/api-ref/coreMQTT-Agent/docs/doxygen/output/html/core_mqtt_agent_config.html

MCUXpresso SDK Documentation, Release 25.09.00

Function
Pointer

Description

MQTTA-
gentMes-
sage-
Send_t

A function that sends commands (as MQTTAgentCommand_t * pointers) to be re-
ceived by MQTTAgent_CommandLoop. This can be implemented by pushing to a
thread safe queue.

MQTTA-
gentMes-
sageRecv_t

A function used byMQTTAgent_CommandLoop to receiveMQTTAgentCommand_t
* pointers that were sent by API functions. This can be implemented by receiving
from a thread safe queue.

MQTTA-
gentCom-
mand-
Get_t

A function that returns a pointer to an allocatedMQTTAgentCommand_t structure,
which is used to hold information and arguments for a command to be executed in
MQTTAgent_CommandLoop(). If using dynamicmemory, this can be implemented
using malloc().

MQT-
TAgent-
Comman-
dRelease_t

A function called to indicate that a command structure that had been allocated
with the MQTTAgentCommandGet_t function pointer will no longer be used by
the agent, so it may be freed or marked as not in use. If using dynamic memory,
this can be implemented with free().

Reference implementations for the interface functions can be found in the reference examples
below.

Additional Considerations

Static Memory If only static allocation is used, then theMQTTAgentCommandGet_t andMQT-
TAgentCommandRelease_t could instead be implemented with a pool of MQTTAgentCommand_t
structures, with a queue or semaphore used to control access and provide thread safety. The
below reference examples use static memory with a command pool.

Subscription Management The MQTT Agent does not track subscriptions for MQTT topics.
The receipt of any incoming PUBLISH packet will result in the invocation of a single MQTTA-
gentIncomingPublishCallback_t callback, which is passed to MQTTAgent_Init() for initialization.
If it is desired for different handlers to be invoked for different incoming topics, then the pub-
lish callback will have to manage subscriptions and fan out messages. A platform independent
subscription manager example is implemented in the reference examples below.

Building theLibrary You canbuild theMQTTAgent source files that are in the sourcedirectory,
and add source/include to your compiler’s include path. Additionally, the MQTT Agent library
requires the coreMQTT library, whose files follow the same source/ and source/include pattern as
the agent library; its build instructions can be found here.

If using CMake, themqttAgentFilePaths.cmake file contains the above information of the source
files and the header include path from this repository. The same information is found for
coreMQTT from mqttFilePaths.cmake in the coreMQTT submodule.

For a CMake example of building the MQTT Agent library with themqttAgentFilePaths.cmake file,
refer to the coverity_analysis library target in test/CMakeLists.txt file.

Building Unit Tests

524 Chapter 4. RTOS

https://github.com/FreeRTOS/coreMQTT#building-the-library

MCUXpresso SDK Documentation, Release 25.09.00

Checkout CMock Submodule To build unit tests, the submodule dependency of CMock is re-
quired. Use the following command to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/CMock

Unit Test Platform Prerequisites
• For running unit tests

– C90 compiler like gcc
– CMake 3.13.0 or later
– Ruby 2.0.0 or later is additionally required for the CMock test framework (that we
use).

• For running the coverage target, gcov and lcov are additionally required.

Steps to build Unit Tests
1. Go to the root directory of this repository. (Make sure that the CMock submodule is cloned

as described above)

2. Run the cmake command: cmake -S test -B build

3. Run this command to build the library and unit tests: make -C build all

4. The generated test executables will be present in build/bin/tests folder.

5. Run cd build && ctest to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Reference examples Please refer to the demos of the MQTT Agent library in the following
locations for reference examples on FreeRTOS platforms:

Location
coreMQTT Agent Demos
FreeRTOS/FreeRTOS

Documentation The MQTT Agent API documentation can be found here.

Generating documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages yourself, please run the following command from the root
of this repository:

doxygen docs/doxygen/config.doxyfile

Getting help You can use your Github login to get support from both the FreeRTOS community
and directly from the primary FreeRTOS developers on our active support forum. You can find
a list of frequently asked questions here.

4.1. FreeRTOS 525

https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://github.com/FreeRTOS/coreMQTT-Agent-Demos
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/coreMQTT_Windows_Simulator/MQTT_Multitask
https://freertos.org/Documentation/api-ref/coreMQTT-Agent/docs/doxygen/output/html/index.html
https://forums.freertos.org
https://www.freertos.org/FAQ.html

MCUXpresso SDK Documentation, Release 25.09.00

Contributing See CONTRIBUTING.md for information on contributing.

License This library is licensed under the MIT License. See the LICENSE file.

4.1.8 corepkcs11

PKCS #11 key management library.

Readme

MCUXpresso SDK: corePKCS11 Library This repository is a fork of PKCS #11 keymanagement
library (https://github.com/FreeRTOS/corePKCS11/tree/v3.5.0)(v3.5.0). Modifications have been
made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable corepkcs11
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repositorymcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

corePKCS11 Library PKCS #11 is a standardized and widely used API for manipulating com-
mon cryptographic objects. It is important because the functions it specifies allow application
software to use, create, modify, and delete cryptographic objects, without ever exposing those
objects to the application’s memory. For example, FreeRTOS AWS reference integrations use a
small subset of the PKCS #11 API to, among other things, access the secret (private) key neces-
sary to create a network connection that is authenticated and secured by the Transport Layer
Security (TLS) protocol – without the application ever ‘seeing’ the key.

The Cryptoki or PKCS #11 standard defines a platform-independent API to manage and use cryp-
tographic tokens. The name, “PKCS #11”, is used interchangeably to refer to the API itself and
the standard which defines it.

This repository contains a software based mock implementation of the PKCS #11 interface (API)
that uses the cryptographic functionality provided by Mbed TLS. Using a software mock enables
rapid development and flexibility, but it is expected that the mock be replaced by an implemen-
tation specific to your chosen secure key storage in production devices.

Only a subset of the PKCS #11 standard is implemented, with a focus on operations involving
asymmetric keys, random number generation, and hashing.

The targeted use cases include certificate and keymanagement for TLS authentication and code-
sign signature verification, on small embedded devices.

corePKCS11 is implemented on PKCS #11 v2.4.0, the full PKCS #11 standard can be found on the
oasis website.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations frommandatory rules in theMISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis fromCoverity static analysis
and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.

corePKCS11 v3.5.0 source code is part of the FreeRTOS 202210.00 LTS release.
corePKCS11 v3.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

526 Chapter 4. RTOS

https://en.wikipedia.org/wiki/PKCS_11
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/corePKCS11/tree/v3.5.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/corePKCS11/tree/v3.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00

Purpose Generally vendors for secure cryptoprocessors such as Trusted Platform Module
(TPM), Hardware Security Module (HSM), Secure Element, or any other type of secure hard-
ware enclave, distribute a PKCS #11 implementation with the hardware. The purpose of the
corePKCS11 software only mock library is therefore to provide a non hardware specific PKCS
#11 implementation that allows for rapid prototyping and development before switching to a
cryptoprocessor specific PKCS #11 implementation in production devices.

Since the PKCS #11 interface is defined as part of the PKCS #11 specification replacing this li-
brary with another implementation should require little porting effort, as the interface will not
change. The system tests distributed in this repository can be leveraged to verify the behavior
of a different implementation is similar to corePKCS11.

corePKCS11 Configuration The corePKCS11 library exposes preprocessor macros whichmust
be defined prior to building the library. A list of all the configurations and their default values
are defined in the doxygen documentation for this library.

Build Prerequisites

Library Usage For building the library the following are required:

• A C99 compiler
• mbedcrypto library from mbedtls version 2.x or 3.x.

• pkcs11 API header(s) available from OASIS or OpenSC

Optionally, variables from the pkcsFilePaths.cmake file may be referenced if your project uses
cmake.

Integration and Unit Tests In order to run the integration and unit test suites the following
are dependencies are necessary:

• C Compiler
• CMake 3.13.0 or later
• Ruby 2.0.0 or later required by CMock.

• Python 3 required for configuring mbedtls.

• git required for fetching dependencies.

• GNU Make or Ninja
Thembedtls, CMock, andUnity libraries are downloaded and built automatically using the cmake
FetchContent feature.

Coverage Measurement and Instrumentation The following software is required to run the
coverage target:

• Linux, MacOS, or another POSIX-like environment.

• A recent version of GCC or Clang with support for gcov-like coverage instrumentation.

• gcov binary corresponding to your chosen compiler

• lcov from the Linux Test Project

• perl needed to run the lcov utility.

Coverage builds are validated on recent versions of Ubuntu Linux.

4.1. FreeRTOS 527

https://en.wikipedia.org/wiki/Trusted_Platform_Module
https://en.wikipedia.org/wiki/Hardware_security_module
https://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://github.com/ARMmbed/mbedtls
https://github.com/oasis-tcs/pkcs11
https://github.com/OpenSC/libp11/blob/master/src/pkcs11.h
https://github.com/linux-test-project/lcov

MCUXpresso SDK Documentation, Release 25.09.00

Running the Integration and Unit Tests
1. Navigate to the root directory of this repository in your shell.

2. Run cmake to construct a build tree: cmake -S test -B build

• You may specify your preferred build tool by appending -G'Unix Makefiles' or -GNinja
to the command above.

• You may append -DUNIT_TESTS=0 or -DSYSTEM_TESTS=0 to disable Unit Tests or
Integration Tests respectively.

3. Build the test binaries: cmake --build ./build --target all

4. Run ctest --test-dir ./build or cmake --build ./build --target test to run the tests without captur-
ing coverage.

5. Run cmake --build ./build --target coverage to run the tests and capture coverage data.

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Reference examples The FreeRTOS-Labs repository contains demos using the PKCS #11 li-
brary here using FreeRTOS on theWindows simulator platform. These can be used as reference
examples for the library API.

Porting Guide Documentation for porting corePKCS11 to a new platform can be found on the
AWS docs web page.

corePKCS11 is not meant to be ported to projects that have a TPM, HSM, or other hardware for
offloading crypto-processing. This library is specifically meant to be used for development and
prototyping.

Related Example Implementations These projects implement the PKCS #11 interface on real
hardware and have similar behavior to corePKCS11. It is preferred to use these, over coreP-
KCS11, as they allow for offloading Cryptography to separate hardware.

• ARM’s Platform Security Architecture.

• Microchip’s cryptoauthlib.

• Infineon’s Optiga Trust X.

Documentation

Existing Documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location
AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of corePKCS11 may differ across repositories.

528 Chapter 4. RTOS

https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://github.com/FreeRTOS/FreeRTOS-Labs/tree/master/FreeRTOS-Plus/Demo/FreeRTOS_Plus_PKCS11_Windows_Simulator/examples
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-pkcs.html
https://github.com/Linaro/freertos-pkcs11-psa
https://github.com/MicrochipTech/cryptoauthlib
https://github.com/aws/amazon-freertos/blob/main/vendors/infineon/secure_elements/pkcs11/iot_pkcs11_trustx.c
https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/corePKCS11/docs/doxygen/output/html/index.html

MCUXpresso SDK Documentation, Release 25.09.00

Generating Documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Security See CONTRIBUTING for more information.

License This library is licensed under the MIT-0 License. See the LICENSE file.

4.1.9 freertos-plus-tcp

Open source RTOS FreeRTOS Plus TCP.

Readme

MCUXpresso SDK: FreeRTOS-Plus-TCPLibrary This repository is a fork of FreeRTOS-Plus-TCP
library (https://github.com/FreeRTOS/freertos-plus-tcp)(4.3.3). Modifications have been made to
adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable FreeRTOS-Plus-TCP
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repositorymcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

FreeRTOS-Plus-TCP Library FreeRTOS-Plus-TCP is a lightweight TCP/IP stack for FreeRTOS. It
provides a familiar Berkeley sockets interface, making it as simple to use and learn as possi-
ble. FreeRTOS-Plus-TCP’s features and RAM footprint are fully scalable, making FreeRTOS-Plus-
TCP equally applicable to smaller lower throughput microcontrollers as well as larger higher
throughput microprocessors.

This library has undergone static code analysis and checks for compliance with the MISRA cod-
ing standard. Any deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. The library is validated for memory safety and data structure invariance through
the CBMC automated reasoning tool for the functions that parse data originating from the net-
work. The library is also protocol tested using Maxwell protocol tester for both IPv4 and IPv6.

FreeRTOS-Plus-TCP Library V4.2.2 source code is part of the FreeRTOS 202406.01 LTS re-
lease.

Getting started The easiest way to use version 4.0.0 and later of FreeRTOS-Plus-TCP is to refer
the Getting started Guide (found here) Another way is to start with the pre-configured IPv4Win-
dows Simulator demo (found in this directory) or IPv6Multi-endpointWindows Simulator demo
(found in this directory). That way you will have the correct FreeRTOS source files included, and
the correct include paths configured. Once a demo application is building and executing you can
remove the demo application files, and start to add in your own application source files. See the
FreeRTOS Kernel Quick Start Guide for detailed instructions and other useful links.

Additionally, for FreeRTOS-Plus-TCP source code organization refer to the Documentation, and
API Reference.

4.1. FreeRTOS 529

https://www.misra.org.uk/
https://www.misra.org.uk/
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/MISRA.md
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/MISRA.md
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/tree/V4.2.2/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202406.01-LTS
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/GettingStarted.md
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/FreeRTOS_Plus_TCP_Minimal_Windows_Simulator
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/FreeRTOS_Plus_TCP_IPv6_Demo/IPv6_Multi_WinSim_demo
https://www.freertos.org/Documentation/01-FreeRTOS-quick-start/01-Beginners-guide/02-Quick-start-guide
http://www.FreeRTOS.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/TCP_Networking_Tutorial.html
https://freertos.org/Documentation/03-Libraries/02-FreeRTOS-plus/02-FreeRTOS-plus-TCP/09-API-reference/01-FreeRTOS-plus-TCP-APIs

MCUXpresso SDK Documentation, Release 25.09.00

Getting help If you have any questions or need assistance troubleshooting your FreeRTOS
project, we have an active community that canhelp on the FreeRTOSCommunity Support Forum.
Please also refer to FAQ for frequently asked questions.

Also see the Submitting a bugs/feature request section of CONTRIBUTING.md for more details.

Note: All the remaining sections are generic and applies to all the versions from V3.0.0 onwards.

Upgrading to V4.3.0 and above For users of STM32 network interfaces:

Starting from version V4.3.0, the STM32 network interfaces have been consolidated into a sin-
gle unified implementation located at source/portable/NetworkInterface/STM32/NetworkInterface.c,
supporting STM32 F4, F7, and H7 series microcontrollers, with newly added support for STM32
H5. The new interface has been tested with the STM32 HAL Ethernet (ETH) drivers, avail-
able at source/portable/NetworkInterface/STM32/Drivers. For compatibility, the legacy interfaces
(STM32Fxx and STM32Hxx) have been retained and relocated to source/portable/NetworkInterface/
STM32/Legacy.

Upgrading to V3.0.0 and V3.1.0 In version 3.0.0 or 3.1.0, the folder structure of FreeRTOS-Plus-
TCP has changed and the files have been broken down into smaller logically separated mod-
ules. This changemakes the codemoremodular and conducive to unit-tests. FreeRTOS-Plus-TCP
V3.0.0 improves the robustness, security, and modularity of the library. Version 3.0.0 adds com-
prehensive unit test coverage for all lines and branches of code and has undergone protocol
testing, and penetration testing by AWS Security to reduce the exposure to security vulnerabili-
ties. Additionally, the source files have been moved to a source directory. This change requires
modification of any existing project(s) to include the modified source files and directories.

FreeRTOS-Plus-TCP V3.1.0 source code(.c .h) is part of the FreeRTOS 202210.00 LTS release.

Generating pre V3.0.0 folder structure for backward compatibility: If you wish to continue
using a version earlier than V3.0.0 i.e. continue to use your existing source code organization, a
script is provided to generate the folder structure similar to this.

Note: After running the script, while the .c files will have same names as the pre V3.0.0 source,
the files in the include directory will have different names and the number of files will differ as
well. This should, however, not pose any problems to most projects as projects generally include
all files in a given directory.

Running the script to generate pre V3.0.0 folder structure: For running the script, you will need
Python version > 3.7. You can download/install it from here.

Once python is downloaded and installed, you can verify the version from your termi-
nal/command window by typing python --version.

To run the script, you should switch to the FreeRTOS-Plus-TCP directory Then run python <Path/
to/the/script>/GenerateOriginalFiles.py.

To consume FreeRTOS+TCP

Consume with CMake If using CMake, it is recommended to use this repository using Fetch-
Content. Add the following into your project’s main or a subdirectory’s CMakeLists.txt:

• Define the source and version/tag you want to use:

FetchContent_Declare(freertos_plus_tcp
GIT_REPOSITORY https://github.com/FreeRTOS/FreeRTOS-Plus-TCP.git
GIT_TAG main #Note: Best practice to use specific git-hash or tagged version

(continues on next page)

530 Chapter 4. RTOS

https://forums.freertos.org
https://www.freertos.org/Why-FreeRTOS/FAQs
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/.github/CONTRIBUTING.md#submitting-a-bugsfeature-request
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/tree/V3.1.0
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/tree/f118c8415b4373e3d6e6dbd2d5a116f7eaf27b63
https://www.python.org/downloads/

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
GIT_SUBMODULES ”” # Don't grab any submodules since not latest

)

• Configure the FreeRTOS-Kernel and make it available

– this particular example supports a native and cross-compiled build option.

Select the native compile PORT
set(FREERTOS_PLUS_TCP_NETWORK_IF ”POSIX” CACHE STRING ”” FORCE)
Or: select a cross-compile PORT
if (CMAKE_CROSSCOMPILING)
Eg. STM32Hxx version of port
set(FREERTOS_PLUS_TCP_NETWORK_IF ”STM32HXX” CACHE STRING ”” FORCE)

endif()

FetchContent_MakeAvailable(freertos_plus_tcp)

Consuming stand-alone This repository uses Git Submodules to bring in dependent compo-
nents.

Note: If you download the ZIP file provided by GitHub UI, you will not get the contents of the
submodules. (The ZIP file is also not a valid Git repository)

To clone using HTTPS:

git clone https://github.com/FreeRTOS/FreeRTOS-Plus-TCP.git ./FreeRTOS-Plus-TCP
cd ./FreeRTOS-Plus-TCP
git submodule update --checkout --init --recursive tools/CMock test/FreeRTOS-Kernel

Using SSH:

git clone git@github.com:FreeRTOS/FreeRTOS-Plus-TCP.git ./FreeRTOS-Plus-TCP
cd ./FreeRTOS-Plus-TCP
git submodule update --checkout --init --recursive tools/CMock test/FreeRTOS-Kernel

Porting The porting guide is available on this page.

Repository structure This repository contains the FreeRTOS-Plus-TCP repository and a num-
ber of supplementary libraries for testing/PR Checks. Below is the breakdown of what each di-
rectory contains:

• tools

– This directory contains the tools and related files (CMock/uncrustify) required to run
tests/checks on the TCP source code.

• tests

– This directory contains all the tests (unit tests and CBMC) and the dependencies
(FreeRTOS-Kernel/Litani-port) the tests require.

• source/portable

– This directory contains the portable files required to compile the FreeRTOS-Plus-TCP
source code for different hardware/compilers.

• source/include

– The include directory has all the ‘core’ header files of FreeRTOS-Plus-TCP source.

• source

4.1. FreeRTOS 531

https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://www.freertos.org/Documentation/03-Libraries/02-FreeRTOS-plus/02-FreeRTOS-plus-TCP/10-Porting/01-FreeRTOS_TCP_Porting
https://github.com/FreeRTOS/FreeRTOS-Kernel
https://github.com/awslabs/aws-build-accumulator

MCUXpresso SDK Documentation, Release 25.09.00

– This directory contains all the [.c] source files.

Note At this time it is recommended to use BufferAllocation_2.c in which case it is essential to
use the heap_4.c memory allocation scheme. See memory management.

Kernel sources The FreeRTOS Kernel Source is in FreeRTOS/FreeRTOS-Kernel repository, and
it is consumed by testing/PR checks as a submodule in this repository.

The version of the FreeRTOS Kernel Source in use could be accessed at ./test/FreeRTOS-Kernel
directory.

CBMC The test/cbmc/proofs directory contains CBMC proofs.

To learn more about CBMC and proofs specifically, review the training material here.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

532 Chapter 4. RTOS

http://www.FreeRTOS.org/a00111.html
https://github.com/FreeRTOS/FreeRTOS-Kernel
https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html

	LPCXpresso54S018
	Overview
	Getting Started with MCUXpresso SDK Package
	Getting Started with MCUXpresso SDK Package
	Overview
	MCUXpresso SDK board support package folders
	Example application structure
	Locating example application source files

	Run a demo using MCUXpresso IDE
	Select the workspace location
	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application
	Build a TrustZone example application
	Run a TrustZone example application

	Run a demo application using IAR
	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application
	Build a TrustZone example application
	Run a TrustZone example application

	Run a demo using Keil MDK/μVision
	Install CMSIS device pack
	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application
	Build a TrustZone example application
	Run a TrustZone example application

	Run a demo using Arm GCC
	Set up toolchain
	Install GCC Arm Embedded tool chain
	Install MinGW (only required on Windows OS)
	Add a new system environment variable for ARMGCC_DIR
	Install CMake
	Windows OS
	Linux OS

	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application
	Build a TrustZone example application
	Run a TrustZone example application

	MCUXpresso Config Tools
	How to determine COM port
	On-board Debugger
	On-board debugger MCU-Link
	Updating MCU-Link firmware

	On-board debugger LPC-Link
	Updating LPC-Link firmware

	On-board debugger OpenSDA
	Updating OpenSDA firmware

	On-board debugger Multilink
	On-board debugger OSJTAG

	Default debug interfaces
	How to define IRQ handler in CPP files

	Getting Started with MCUXpresso SDK GitHub
	Getting Started with MCUXpresso SDK Repository
	Installation
	Install Prerequisites with MCUXpresso Installer
	Alternative: Manual Installation
	Basic tools
	Git
	Python
	West
	Build And Configuration System
	CMake
	Ninja
	Kconfig
	Ruby
	Toolchain
	Tool installation check

	Get MCUXpresso SDK Repo
	Establish SDK Workspace
	Install Python Dependency(If do tool installation manually)

	Explore Contents
	Folder View
	Examples Project

	Run a demo using MCUXpresso for VS Code
	Build an example application
	Run an example application

	Running a demo using ARMGCC CLI/IAR/MDK
	Supported Boards
	Build the project
	Sysbuild(System build)

	Config a Project
	Flash
	Debug
	Work with IDE Project

	Release Notes
	MCUXpresso SDK Release Notes
	Overview
	MCUXpresso SDK
	Development tools
	Supported development systems
	MCUXpresso SDK release package
	Device support
	Board support
	Demo application and other examples

	RTOS
	FreeRTOS

	Middleware
	CMSIS DSP Library
	MCU Boot
	coreHTTP
	USB Host, Device, OTG Stack
	TinyCBOR
	SDMMC stack
	PKCS#11
	mbedTLS
	lwIP
	LVGL
	llhttp
	LittleFS
	FreeMASTER
	File systemFatfs
	emWin
	AWS IoT

	Release contents
	Known issues
	Cannot add SDK components into FreeRTOS projects
	Debug SRAM target with J-Link on MCUXpresso IDE issue
	Example freertos_spi fails in MCUXpresso IDE
	USB high-speed interrupt endpoint issue
	Example freertos_spi fails in MCUXpresso IDE
	The usart_wakeup_deepsleep doesn’t work

	ChangeLog
	MCUXpresso SDK Changelog
	Board Support Files
	board
	[25.06.00]

	clock_config
	[25.06.00]

	pin_mux
	[25.06.00]

	LPC_ADC
	[2.6.0]
	[2.5.3]
	[2.5.2]
	[2.5.1]
	[2.5.0]
	[2.4.1]
	[2.4.0]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.0]

	AES
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	CLOCK
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.0]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	COMMON
	[2.6.0]
	[2.5.0]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.10]
	[2.2.9]
	[2.2.8]
	[2.2.7]
	[2.2.6]
	[2.2.5]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	CRC
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	CTIMER
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	LPC_DMA
	[2.5.3]
	[2.5.2]
	[2.5.1]
	[2.5.0]
	[2.4.4]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.0]
	[2.2.5]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.0.1]
	[2.0.0]

	DMIC
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.1]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	DMIC_DMA
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.1]
	[2.3.0]

	EMC
	[2.0.4]
	[2.0.3]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	LPC_ENET
	[2.3.5]
	[2.3.4]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	FLEXCOMM
	[2.0.2]
	[2.0.1]
	[2.0.0]

	FMEAS
	[2.1.1]
	[2.1.0]
	[2.0.0]

	GINT
	[2.1.1]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	GPIO
	[2.1.7]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	I2C
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.0]
	[2.0.8]
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	I2S
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	I2S_DMA
	[2.3.3]
	[2.3.2]
	[2.3.1]

	IAP
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	INPUTMUX
	[2.0.9]
	[2.0.8]
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	IOCON
	[2.2.0]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	LPC_LCDC
	[2.0.2]
	[2.0.1]
	[2.0.0]

	MCAN
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.8]
	[2.1.7]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	MRT
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	OTP
	[2.0.1]
	[2.0.0]

	PINT
	[2.2.0]
	[2.1.13]
	[2.1.12]
	[2.1.11]
	[2.1.10]
	[2.1.9]
	[2.1.8]
	[2.1.7]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	POWER
	[2.1.0]
	[2.0.0]

	PUF
	[2.2.0]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	RESET
	[2.4.0]
	[2.0.1]
	[2.0.0]

	RIT
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	RNG
	[2.1.0]
	[2.0.0]

	RTC
	[2.2.0]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	SCTIMER
	[2.5.1]
	[2.5.0]
	[2.4.9]
	[2.4.8]
	[2.4.7]
	[2.4.6]
	[2.4.5]
	[2.4.4]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.0]
	[2.2.0]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	SDIF
	[2.1.0]
	[2.0.15]
	[2.0.14]
	[2.0.13]
	[2.0.12]
	[2.0.11]
	[2.0.10]
	[2.0.9]
	[2.0.8]
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	SHA
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	SPI
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	SPI_DMA
	[2.2.2]
	[2.2.1]
	[2.2.0]

	SPI Flash Interface
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	USART
	[2.8.5]
	[2.8.4]
	[2.8.3]
	[2.8.2]
	[2.8.1]
	[2.8.0]
	[2.7.0]
	[2.6.0]
	[2.5.0]
	[2.4.0]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	USART_DMA
	[2.6.0]

	UTICK
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	WWDT
	[2.1.10]
	[2.1.9]
	[2.1.8]
	[2.1.7]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	Driver API Reference Manual
	Middleware Documentation
	FreeMASTER
	AWS IoT
	FreeRTOS
	lwIP
	File systemFatfs

	LPC54S018
	AES: AES encryption decryption driver
	Clock Driver
	CRC: Cyclic Redundancy Check Driver
	CTIMER: Standard counter/timers
	DMA: Direct Memory Access Controller Driver
	DMIC: Digital Microphone
	DMIC DMA Driver
	DMIC Driver
	EMC: External Memory Controller Driver
	FLEXCOMM: FLEXCOMM Driver
	FLEXCOMM Driver
	FMEAS: Frequency Measure Driver
	GINT: Group GPIO Input Interrupt Driver
	I2C: Inter-Integrated Circuit Driver
	I2C DMA Driver
	I2C Driver
	I2C Master Driver
	I2C Slave Driver
	I2S: I2S Driver
	I2S DMA Driver
	I2S Driver
	IAP: In Application Programming Driver
	INPUTMUX: Input Multiplexing Driver
	Common Driver
	ADC: 12-bit SAR Analog-to-Digital Converter Driver
	ENET: Ethernet Driver
	GPIO: General Purpose I/O
	IOCON: I/O pin configuration
	LCDC: LCD Controller Driver
	MCAN: Controller Area Network Driver
	MRT: Multi-Rate Timer
	OTP: One-Time Programmable memory and API
	PINT: Pin Interrupt and Pattern Match Driver
	Power Driver
	PUF: Physical Unclonable Function
	Reset Driver
	RIT: Repetitive Interrupt Timer
	RNG: Random Number Generator
	RTC: Real Time Clock
	SCTimer: SCTimer/PWM (SCT)
	SDIF: SD/MMC/SDIO card interface
	SHA: SHA encryption decryption driver
	Sha_algorithm_level_api
	SPI: Serial Peripheral Interface Driver
	SPI DMA Driver
	SPI Driver
	SPIFI: SPIFI flash interface driver
	SPIFI DMA Driver
	SPIFI Driver
	USART: Universal Synchronous/Asynchronous Receiver/Transmitter Driver
	USART DMA Driver
	USART Driver
	UTICK: MictoTick Timer Driver
	WWDT: Windowed Watchdog Timer Driver

	Middleware
	Motor Control
	FreeMASTER
	Introduction
	What is FreeMASTER?
	Driver version 3
	Target platforms
	Replacing existing drivers
	Clocks, pins, and peripheral initialization
	MCUXpresso SDK
	MCUXpresso SDK on GitHub
	FreeMASTER in Zephyr

	Example applications
	MCUX SDK Example applications
	Zephyr sample spplications

	Description
	Features
	Board Detection
	Memory Read
	Memory Write
	Masked Memory Write
	Oscilloscope
	Recorder
	TSA
	TSA Safety
	Application commands
	Pipes
	Serial single-wire operation
	Multi-session support
	Zephyr-specific
	Dedicated communication task
	Zephyr shell and logging over FreeMASTER pipe
	Automatic TSA tables

	Driver files
	Driver configuration
	Configurable items
	Interrupt modes
	Value Type
	Description
	Protocol transport
	Value Type
	Description
	Serial transport
	FMSTR_SERIAL_DRV
	Value Type
	Description
	FMSTR_SERIAL_BASE
	Value Type
	Description
	FMSTR_COMM_BUFFER_SIZE
	Value Type
	Description
	FMSTR_COMM_RQUEUE_SIZE
	Value Type
	Description
	FMSTR_SERIAL_SINGLEWIRE
	Value Type
	Description
	CAN Bus transport
	FMSTR_CAN_DRV
	Value Type
	Description
	FMSTR_CAN_BASE
	Value Type
	Description
	FMSTR_CAN_CMDID
	Value Type
	Description
	FMSTR_CAN_RSPID
	Value Type
	Description
	FMSTR_FLEXCAN_TXMB
	Value Type
	Description
	FMSTR_FLEXCAN_RXMB
	Value Type
	Description
	Network transport
	FMSTR_NET_DRV
	Value Type
	Description
	FMSTR_NET_PORT
	Value Type
	Description
	FMSTR_NET_BLOCKING_TIMEOUT
	Value Type
	Description
	FMSTR_NET_AUTODISCOVERY
	Value Type
	Description
	Debugging options
	FMSTR_DISABLE
	Value Type
	Description
	FMSTR_DEBUG_TX
	Value Type
	Description
	FMSTR_APPLICATION_STR
	Value Type
	Description
	Memory access
	FMSTR_USE_READMEM
	Value Type
	Description
	FMSTR_USE_WRITEMEM
	Value Type
	Description
	Oscilloscope options
	FMSTR_USE_SCOPE
	Value Type
	Description
	FMSTR_MAX_SCOPE_VARS
	Value Type
	Description
	Recorder options
	FMSTR_USE_RECORDER
	Value Type
	Description
	FMSTR_REC_BUFF_SIZE
	Value Type
	Description
	FMSTR_REC_TIMEBASE
	Value Type
	Description
	FMSTR_REC_FLOAT_TRIG
	Value Type
	Description
	Application Commands options
	FMSTR_USE_APPCMD
	Value Type
	Description
	FMSTR_APPCMD_BUFF_SIZE
	Value Type
	Description
	FMSTR_MAX_APPCMD_CALLS
	Value Type
	Description
	TSA options
	FMSTR_USE_TSA
	Value Type
	Description
	FMSTR_USE_TSA_SAFETY
	Value Type
	Description
	FMSTR_USE_TSA_INROM
	Value Type
	Description
	FMSTR_USE_TSA_DYNAMIC
	Value Type
	Description
	Pipes options
	FMSTR_USE_PIPES
	Value Type
	Description
	FMSTR_MAX_PIPES_COUNT
	Value Type
	Description

	Driver interrupt modes
	Completely Interrupt-Driven operation
	Mixed Interrupt and Polling Modes
	Completely Poll-driven

	Data types
	Communication interface initialization
	FreeMASTER Recorder calls
	Driver usage
	Communication troubleshooting

	Driver API
	Control API
	FMSTR_Init
	Prototype
	Description
	FMSTR_Poll
	Prototype
	Description
	FMSTR_SerialIsr / FMSTR_CanIsr
	Prototype
	Description

	Recorder API
	FMSTR_RecorderCreate
	Prototype
	Description
	FMSTR_Recorder
	Prototype
	Description
	FMSTR_RecorderTrigger
	Prototype
	Description

	Fast Recorder API
	TSA Tables
	TSA table definition
	TSA descriptor parameters
	TSA variable types
	TSA table list
	TSA Active Content entries

	TSA API
	FMSTR_SetUpTsaBuff
	Prototype
	Arguments
	Description
	FMSTR_TsaAddVar
	Prototype
	Arguments
	Description

	Application Commands API
	FMSTR_GetAppCmd
	Prototype
	Description
	FMSTR_GetAppCmdData
	Prototype
	Arguments
	Description
	FMSTR_AppCmdAck
	Prototype
	Arguments
	Description
	FMSTR_AppCmdSetResponseData
	Prototype
	Arguments
	Description
	FMSTR_RegisterAppCmdCall
	Prototype
	Arguments
	Return value
	Description

	Pipes API
	FMSTR_PipeOpen
	Prototype
	Arguments
	Description
	FMSTR_PipeClose
	Prototype
	Arguments
	Description
	FMSTR_PipeWrite
	Prototype
	Arguments
	Description
	FMSTR_PipeRead
	Prototype
	Arguments
	Description

	API data types
	Public common types
	Public TSA types
	Public Pipes types
	Internal types

	Document references
	Links
	Documents
	Revision history

	RTOS
	FreeRTOS
	FreeRTOS kernel
	FreeRTOS kernel for MCUXpresso SDK Readme
	FreeRTOS kernel for MCUXpresso SDK
	Overview
	FreeRTOS example applications
	List of examples
	Location of examples
	Building a FreeRTOS example application
	FreeRTOS aware debugger plugin

	FreeRTOS kernel for MCUXpresso SDK ChangeLog
	Changelog FreeRTOS kernel for MCUXpresso SDK
	[Unreleased]
	Added
	[11.1.0_rev0]
	[11.0.1_rev0]
	[10.5.1_rev0]
	[10.4.3_rev1]
	[10.4.3_rev0]
	[10.4.3_rev0]
	[9.0.0_rev3]
	[9.0.0_rev2]
	[9.0.0_rev1]
	[9.0.0_rev0]
	[8.2.3]

	FreeRTOS kernel Readme
	MCUXpresso SDK: FreeRTOS kernel
	Getting started
	Getting help
	To consume FreeRTOS-Kernel
	Consume with CMake
	Consuming stand-alone - Cloning this repository
	Repository structure
	Code Formatting
	Line Endings
	Git History Optimizations
	Spelling and Formatting

	FreeRTOS drivers
	backoffalgorithm
	Readme
	MCUXpresso SDK: backoffAlgorithm Library
	backoffAlgorithm Library
	Reference example
	Building the library
	Building unit tests
	Checkout Unity Submodule
	Platform Prerequisites
	Steps to build Unit Tests
	Contributing

	corehttp
	MCUXpresso SDK: coreHTTP Client Library
	coreHTTP Client Library
	coreHTTP Config File
	Building the Library
	Building Unit Tests
	Platform Prerequisites
	Steps to build Unit Tests

	CBMC
	Reference examples
	Documentation
	Existing Documentation
	Generating Documentation

	Contributing

	corejson
	Readme
	MCUXpresso SDK: coreJSON Library
	coreJSON Library
	Reference example
	Building coreJSON
	Documentation
	Existing documentation
	Generating documentation
	Building unit tests
	Checkout Unity Submodule
	Platform Prerequisites
	Steps to build Unit Tests
	CBMC
	Contributing

	coremqtt
	MCUXpresso SDK: coreMQTT Library
	coreMQTT Client Library
	MQTT Config File
	Sending metrics to AWS IoT
	Upgrading to v2.0.0 and above
	Building the Library
	Building Unit Tests
	Checkout CMock Submodule
	Platform Prerequisites
	Steps to build Unit Tests

	CBMC
	Reference examples
	Documentation
	Existing Documentation
	Generating Documentation

	Contributing

	coremqtt-agent
	Readme
	MCUXpresso SDK: coreMQTT Agent Library
	coreMQTT Agent Library
	Cloning this repository
	coreMQTT Agent Library Configurations
	Porting the coreMQTT Agent Library
	Messaging Interface
	Additional Considerations
	Static Memory
	Subscription Management
	Building the Library
	Building Unit Tests
	Checkout CMock Submodule
	Unit Test Platform Prerequisites
	Steps to build Unit Tests
	CBMC
	Reference examples
	Documentation
	Generating documentation
	Getting help
	Contributing
	License

	corepkcs11
	Readme
	MCUXpresso SDK: corePKCS11 Library
	corePKCS11 Library
	Purpose
	corePKCS11 Configuration
	Build Prerequisites
	Library Usage
	Integration and Unit Tests
	Coverage Measurement and Instrumentation
	Running the Integration and Unit Tests
	CBMC
	Reference examples
	Porting Guide
	Related Example Implementations
	Documentation
	Existing Documentation
	Generating Documentation
	Security
	License

	freertos-plus-tcp
	Readme
	MCUXpresso SDK: FreeRTOS-Plus-TCP Library
	FreeRTOS-Plus-TCP Library
	Getting started
	Getting help
	Upgrading to V4.3.0 and above
	Upgrading to V3.0.0 and V3.1.0
	Generating pre V3.0.0 folder structure for backward compatibility:
	To consume FreeRTOS+TCP
	Consume with CMake
	Consuming stand-alone
	Porting
	Repository structure
	Note
	Kernel sources
	CBMC

