

MCUXpresso SDK Documentation

Release 25.09.00

NXP
Sep 19, 2025

Table of contents

1	Middleware	3
1.1	Boot	3
1.1.1	MCUXpresso SDK : mcuxsdk-middleware-mcuboot_opensource	3
1.1.2	MCUboot	4
1.2	Motor Control	5
1.2.1	FreeMASTER	5
2	RTOS	43
2.1	FreeRTOS	43
2.1.1	FreeRTOS kernel	43
2.1.2	FreeRTOS drivers	49
2.1.3	backoffalgorithm	49
2.1.4	corehttp	52
2.1.5	corejson	54
2.1.6	coremqtt	57
2.1.7	coremqtt-agent	60
2.1.8	corepkcs11	64
2.1.9	freertos-plus-tcp	67

This documentation contains information specific to the imx95lpd5evk19 board.

Chapter 1

Middleware

1.1 Boot

1.1.1 MCUXpresso SDK : mcuxsdk-middleware-mcuboot_opensource

Overview

This repository is a fork of MCUBoot (<https://github.com/mcu-tools/mcuboot>) for MCUXpresso SDK delivery and it contains the components officially provided in NXP MCUXpresso SDK. This repository is part of the MCUXpresso SDK overall delivery which is composed of several sub-repositories/projects. Navigate to the top/parent repository (mcuxsdk-manifests) for the complete delivery of MCUXpresso SDK.

Documentation

Overall details can be reviewed here: [MCUXpresso SDK Online Documentation](#)

Visit [MCUboot - Documentation](#) to review details on the contents in this sub-repo.

Setup

Instructions on how to install the MCUXpresso SDK provided from GitHub via west manifest
[Getting Started with SDK - Detailed Installation Instructions](#)

Contribution

Contributions are not currently accepted. If the intended contribution is not related to NXP specific code, consider contributing directly to the upstream MCUBoot project. Once this MCUBoot fork is synchronized with the upstream project, such contributions will end up here as well. If the intended contribution is a bugfix or improvement for NXP porting layer or for code added or modified by NXP, please open an issue or contact NXP support.

NXP Fork

This fork of MCUBoot contains specific modifications and enhancements for NXP MCUXpresso SDK integration.

See *changelog* for details.

1.1.2 MCUBoot

This is MCUBoot version 2.2.0

MCUBoot is a secure bootloader for 32-bits microcontrollers. It defines a common infrastructure for the bootloader and the system flash layout on microcontroller systems, and provides a secure bootloader that enables easy software upgrade.

MCUBoot is not dependent on any specific operating system and hardware and relies on hardware porting layers from the operating system it works with. Currently, MCUBoot works with the following operating systems and SoCs:

- [Zephyr](#)
- [Apache Mynewt](#)
- [Apache NuttX](#)
- [RIOT](#)
- [Mbed OS](#)
- [Espressif](#)
- [Cypress/Infineon](#)

RIOT is supported only as a boot target. We will accept any new port contributed by the community once it is good enough.

MCUBoot How-tos

See the following pages for instructions on using MCUBoot with different operating systems and SoCs:

- [Zephyr](#)
- [Apache Mynewt](#)
- [Apache NuttX](#)
- [RIOT](#)
- [Mbed OS](#)
- [Espressif](#)
- [Cypress/Infineon](#)

There are also instructions for the *Simulator*.

Roadmap

The issues being planned and worked on are tracked using GitHub issues. To give your input, visit [MCUboot GitHub Issues](#).

Source files

You can find additional documentation on the bootloader in the source files. For more information, use the following links:

- [boot/bootutil](#) - The core of the bootloader itself.
- [boot/boot_serial](#) - Support for serial upgrade within the bootloader itself.
- [boot/zephyr](#) - Port of the bootloader to Zephyr.
- [boot/mynewt](#) - Bootloader application for Apache Mynewt.
- [boot/nuttx](#) - Bootloader application and port of MCUboot interfaces for Apache NuttX.
- [boot/mbed](#) - Port of the bootloader to Mbed OS.
- [boot/espressif](#) - Bootloader application and MCUboot port for Espressif SoCs.
- [boot/cypress](#) - Bootloader application and MCUboot port for Cypress/Infineon SoCs.
- [imgtool](#) - A tool to securely sign firmware images for booting by MCUboot.
- [sim](#) - A bootloader simulator for testing and regression.

Joining the project

Developers are welcome!

Use the following links to join or see more about the project:

- [Our developer mailing list](#)
- [Our Discord channel](#) [Get your invite](#)

1.2 Motor Control

1.2.1 FreeMASTER

Communication Driver User Guide

Introduction

What is FreeMASTER? FreeMASTER is a PC-based application developed by NXP for NXP customers. It is a versatile tool usable as a real-time monitor, visualization tool, and a graphical control panel of embedded applications based on the NXP processing units.

This document describes the embedded-side software driver which implements an interface between the application and the host PC. The interface covers the following communication:

- **Serial** UART communication either over plain RS232 interface or more typically over a USB-to-Serial either external or built in a debugger probe.
- **USB** direct connection to target microcontroller
- **CAN bus**

- **TCP/IP network** wired or WiFi
- **Segger J-Link RTT**
- **JTAG** debug port communication
- ...and all of the above also using a **Zephyr** generic drivers.

The driver also supports so-called “packet-driven BDM” interface which enables a protocol-based communication over a debugging port. The BDM stands for Background Debugging Module and its physical implementation is different on each platform. Some platforms leverage a semi-standard JTAG interface, other platforms provide a custom implementation called BDM. Regardless of the name, this debugging interface enables non-intrusive access to the memory space while the target CPU is running. For basic memory read and write operations, there is no communication driver required on the target when communicating with the host PC. Use this driver to get more advanced FreeMASTER protocol features over the BDM interface. The driver must be configured for the packet-driven BDM mode, in which the host PC uses the debugging interface to write serial command frames directly to the target memory buffer. The same method is then used to read response frames from that memory buffer.

Similar to “packet-driven BDM”, the FreeMASTER also supports a communication over [J-Link RTT](<https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-transfer/>) interface defined by SEGGER Microcontroller GmbH for ARM CortexM-based microcontrollers. This method also uses JTAG physical interface and enables high-speed real time communication to run over the same channel as used for application debugging.

Driver version 3 This document describes version 3 of the FreeMASTER Communication Driver. This version features the implementation of the new Serial Protocol, which significantly extends the features and security of its predecessor. The new protocol internal number is v4 and its specification is available in the documentation accompanying the driver code.

Driver V3 is deployed to modern 32-bit MCU platforms first, so the portfolio of supported platforms is smaller than for the previous V2 versions. It is recommended to keep using the V2 driver for legacy platforms, such as S08, S12, ColdFire, or Power Architecture. Reach out to [FreeMASTER community](#) or to the local NXP representative with requests for more information or to port the V3 driver to legacy MCU devices.

Thanks to a layered approach, the new driver simplifies the porting of the driver to new UART, CAN or networking communication interfaces significantly. Users are encouraged to port the driver to more NXP MCU platforms and contribute the code back to NXP for integration into future releases. Existing code and low-level driver layers may be used as an example when porting to new targets.

Note: Using the FreeMASTER tool and FreeMASTER Communication Driver is only allowed in systems based on NXP microcontroller or microprocessor unit. Use with non-NXP MCU platforms is **not permitted** by the license terms.

Target platforms The driver implementation uses the following abstraction mechanisms which simplify driver porting and supporting new communication modules:

- **General CPU Platform** (see source code in the `src/platforms` directory). The code in this layer is only specific to native data type sizes and CPU architectures (for example; alignment-aware memory copy routines). This driver version brings two generic implementations of 32-bit platforms supporting both little-endian and big-endian architectures. There are also implementations customized for the 56F800E family of digital signal controllers and S12Z MCUs. **Zephyr** is treated as a specific CPU platform as it brings unified user configuration (`Kconfig`) and generic hardware device drivers. With Zephyr, the transport layer and low-level communication layers described below are configured automatically using `Kconfig` and Device Tree technologies.

- **Transport Communication Layer** - The Serial, CAN, Networking, PD-BDM, and other methods of transport logic are implemented as a driver layer called `FMSTR_TRANSPORT` with a uniform API. A support of the Network transport also extends single-client modes of operation which are native for Serial, USB and CAN by a concept of multiple client sessions.
- **Low-level Communication Driver** - Each type of transport further defines a low-level API used to access the physical communication module. For example, the Serial transport defines a character-oriented API implemented by different serial communication modules like UART, LPUART, USART, and also USB-CDC. Similarly, the CAN transport defines a message-oriented API implemented by the FlexCAN or MCAN modules. Moreover, there are multiple different implementations for the same kind of communication peripherals. The difference between the implementation is in the way the low-level hardware registers are accessed. The `mcuxsdk` folder contains implementations which use MCUXpresso SDK drivers. These drivers should be used in applications based on the NXP MCUXpresso SDK. The “ampsdk” drivers target automotive-specific MCUs and their respective SDKs. The “dreg” implementations use a plain C-language access to hardware register addresses which makes it a universal and the most portable solution. In this case, users are encouraged to add more drivers for other communication modules or other respective SDKs and contribute the code back to NXP for integration.

The low-level drivers defined for the Networking transport enable datagram-oriented UDP and stream TCP communication. This implementation is demonstrated using the lwIP software stack but shall be portable to other TCP/IP stacks. It may sound surprisingly, but also the Segger J-Link RTT communication driver is linked to the Networking transport (RTT is stream oriented communication handled similarly to TCP).

Replacing existing drivers For all supported platforms, the driver described in this document replaces the V2 implementation and also older driver implementations that were available separately for individual platforms (PC Master SCI drivers).

Clocks, pins, and peripheral initialization The FreeMASTER communication driver is only responsible for runtime processing of the communication and must be integrated with an user application code to function properly. The user application code is responsible for general initialization of clock sources, pin multiplexers, and peripheral registers related to the communication speed. Such initialization should be done before calling the `FMSTR_Init` function.

It is recommended to develop the user application using one of the Software Development Kits (SDKs) available from third parties or directly from NXP, such as MCUXpresso SDK, MCUXpresso IDE, and related tools. This approach simplifies the general configuration process significantly.

MCUXpresso SDK The MCUXpresso SDK is a software package provided by NXP which contains the device initialization code, linker files, and software drivers with example applications for the NXP family of MCUs. The MCUXpresso Config Tools may be used to generate the clock-setup and pin-multiplexer setup code suitable for the selected processor.

The MCUXpresso SDK also contains this FreeMASTER communication driver as a “middleware” component which may be downloaded along with the example applications from <https://mcuxpresso.nxp.com/en/welcome>.

MCUXpresso SDK on GitHub The FreeMASTER communication driver is also released as one of the middleware components of the MCUXpresso SDK on the GitHub. This release enables direct integration of the FreeMASTER source code Git repository into a target applications including Zephyr applications.

Related links:

- The official FreeMASTER middleware repository.

- [Online version of this document](#)

FreeMASTER in Zephyr The FreeMASTER middleware repository can be used with MCUXpresso SDK as well as a Zephyr module. Zephyr-specific samples which include examples of Kconfig and Device Tree configurations for Serial, USB and Network communications are available in separate repository. West manifest in this sample repository fetches the full Zephyr package including the FreeMASTER middleware repository used as a Zephyr module.

Example applications

MCUX SDK Example applications There are several example applications available for each supported MCU platform.

- **fmstr_uart** demonstrates a plain serial transmission, typically connecting to a computer's physical or virtual COM port. The typical transmission speed is 115200 bps.
- **fmstr_can** demonstrates CAN bus communication. This requires a suitable CAN interface connected to the computer and interconnected with the target MCU using a properly terminated CAN bus. The typical transmission speed is 500 kbps. A FreeMASTER-over-CAN communication plug-in must be used.
- **fmstr_usb_cdc** uses an on-chip USB controller to implement a CDC communication class. It is connected directly to a computer's USB port and creates a virtual COM port device. The typical transmission speed is above 1 Mbps.
- **fmstr_net** demonstrates the Network communication over UDP or TCP protocol. Existing examples use lwIP stack to implement the communication, but in general, it shall be possible to use any other TCP/IP stack to achieve the same functionality.
- **fmstr_wifi** is the fmstr_net application modified to use a WiFi network interface instead of a wired Ethernet connection.
- **fmstr_rtt** demonstrates the communication over SEGGER J-Link RTT interface. Both fmstr_net and fmstr_rtt examples require the FreeMASTER TCP/UDP communication plug-in to be used on the PC host side.
- **fmstr_eonce** uses the real-time data unit on the JTAG EOnCE module of the 56F800E family to implement pseudo-serial communication over the JTAG port. The typical transmission speed is around 10 kbps. This communication requires FreeMASTER JTAG/EOnCE communication plug-in.
- **fmstr_pdbdm** uses JTAG or BDM debugging interface to access the target RAM directly while the CPU is running. Note that such approach can be used with any MCU application, even without any special driver code. The computer reads from and writes into the RAM directly without CPU intervention. The Packet-Driven BDM (PD-BDM) communication uses the same memory access to exchange command and response frames. With PD-BDM, the FreeMASTER tool is able to go beyond basic memory read/write operations and accesses also advanced features like Recorder, TSA, or Pipes. The typical transmission speed is around 10 kbps. A PD-BDM communication plug-in must be used in FreeMASTER and configured properly for the selected debugging interface. Note that this communication cannot be used while a debugging interface is used by a debugger session.
- **fmstr_any** is a special example application which demonstrates how the NXP MCUXpresso Config Tools can be used to configure pins, clocks, peripherals, interrupts, and even the FreeMASTER "middleware" driver features in a graphical and user friendly way. The user can switch between the Serial, CAN, and other ways of communication and generate the required initialization code automatically.

Zephyr sample applications Zephyr sample applications demonstrate Kconfig and Device Tree configuration which configure the FreeMASTER middleware module for a selected communication option (Serial, CAN, Network or RTT).

Refer to *readme.md* files in each sample directory for description of configuration options required to implement FreeMASTER connectivity.

Description

This section shows how to add the FreeMASTER Communication Driver into application and how to configure the connection to the FreeMASTER visualization tool.

Features The FreeMASTER driver implements the FreeMASTER protocol V4 and provides the following features which may be accessed using the FreeMASTER visualization tool:

- Read/write access to any memory location on the target.
- Optional password protection of the read, read/write, and read/write/flash access levels.
- Atomic bit manipulation on the target memory (bit-wise write access).
- Optimal size-aligned access to memory which is also suitable to access the peripheral register space.
- Oscilloscope access—real-time access to target variables. The sample rate may be limited by the communication speed.
- Recorder—access to the fast transient recorder running on the board as a part of the FreeMASTER driver. The sample rate is only limited by the MCU CPU speed. The length of the data recorded depends on the amount of available memory.
- Multiple instances of Oscilloscopes and Recorders without the limitation of maximum number of variables.
- Application commands—high-level message delivery from the PC to the application.
- TSA tables—describing the data types, variables, files, or hyperlinks exported by the target application. The TSA newly supports also non-memory mapped resources like external EEPROM or SD Card files.
- Pipes—enabling the buffered stream-oriented data exchange for a general-purpose terminal-like communication, diagnostic data streaming, or other data exchange.

The FreeMASTER driver features:

- Full FreeMASTER protocol V4 implementation with a new V4 style of CRC used.
- Layered approach supporting Serial, CAN, Network, PD-BDM, and other transports.
- Layered low-level Serial transport driver architecture enabling to select UART, LPUART, USART, and other physical implementations of serial interfaces, including USB-CDC.
- Layered low-level CAN transport driver architecture enabling to select FlexCAN, msCAN, MCAN, and other physical implementations of the CAN interface.
- Layered low-level Networking transport enabling to select TCP, UDP or J-Link RTT communication.
- TSA support to write-protect memory regions or individual variables and to deny the access to the unsafe memory.
- The pipe callback handlers are invoked whenever new data is available for reading from the pipe.

- Two Serial Single-Wire modes of operation are enabled. The “external” mode has the RX and TX shorted on-board. The “true” single-wire mode interconnects internally when the MCU or UART modules support it.

The following sections briefly describe all FreeMASTER features implemented by the driver. See the PC-based FreeMASTER User Manual for more details on how to use the features to monitor, tune, or control an embedded application.

Board Detection The FreeMASTER protocol V4 defines the standard set of configuration values which the host PC tool reads to identify the target and to access other target resources properly. The configuration includes the following parameters:

- Version of the driver and the version of the protocol implemented.
- MTU as the Maximum size of the Transmission Unit (for example; communication buffer size).
- Application name, description, and version strings.
- Application build date and time as a string.
- Target processor byte ordering (little/big endian).
- Protection level that requires password authentication.
- Number of the Recorder and Oscilloscope instances.
- RAM Base Address for optimized memory access commands.

Memory Read This basic feature enables the host PC to read any data memory location by specifying the address and size of the required memory area. The device response frame must be shorter than the MTU to fit into the outgoing communication buffer. To read a device memory of any size, the host uses the information retrieved during the Board Detection and splits the large-block request to multiple partial requests.

The driver uses size-aligned operations to read the target memory (for example; uses proper read-word instruction when an address is aligned to 4 bytes).

Memory Write Similarly to the Memory Read operation, the Memory Write feature enables to write to any RAM memory location on the target device. A single write command frame must be shorter than the MTU to fit into the target communication buffer. Larger requests must be split into smaller ones.

The driver uses size-aligned operations to write to the target memory (for example; uses proper write-word instruction when an address is aligned to 4 bytes).

Masked Memory Write To implement the write access to a single bit or a group of bits of target variables, the Masked Memory Write feature is available in the FreeMASTER protocol and it is supported by the driver using the Read-Modify-Write approach.

Be careful when writing to bit fields of volatile variables that are also modified in an application interrupt. The interrupt may be serviced in the middle of a read-modify-write operation and it may cause data corruption.

Oscilloscope The protocol and driver enables any number of variables to be read at once with a single request from the host. This feature is called Oscilloscope and the FreeMASTER tool uses it to display a real-time graph of variable values.

The driver can be configured to support any number of Oscilloscope instances and enable simultaneously running graphs to be displayed on the host computer screen.

Recorder The protocol enables the host to select target variables whose values are then periodically recorded into a dedicated on-board memory buffer. After such data sampling stops (either on a host request or by evaluating a threshold-crossing condition), the data buffer is downloaded to the host and displayed as a graph. The data sampling rate is not limited by the speed of the communication line, so it enables displaying the variable transitions in a very high resolution.

The driver can be configured to support multiple Recorder instances and enable multiple recorder graphs to be displayed on the host screen. Having multiple recorders also enables setting the recording point differently for each instance. For example; one instance may be recording data in a general timer interrupt while another instance may record at a specific control algorithm time in the PWM interrupt.

TSA With the TSA feature, data types and variables can be described directly in the application source code. Such information is later provided to the FreeMASTER tool which may use it instead of reading symbol data from the application ELF executable file.

The information is encoded as so-called TSA tables which become direct part of the application code. The TSA tables contain descriptors of variables that shall be visible to the host tool. The descriptors can describe the memory areas by specifying the address and size of the memory block or more conveniently using the C variable names directly. Different set of TSA descriptors can be used to encode information about the structure types, unions, enumerations, or arrays.

The driver also supports special types of TSA table entries to describe user resources like external EEPROM and SD Card files, memory-mapped files, virtual directories, web URL hyperlinks, and constant enumerations.

TSA Safety When the TSA is enabled in the application, the TSA Safety can be enabled and validate the memory accesses directly by the embedded-side driver. When the TSA Safety is turned on, any memory request received from the host is validated and accepted only if it belongs to a TSA-described object. The TSA entries can be declared as Read-Write or Read-Only so that the driver can actively deny the write access to the Read-Only objects.

Application commands The Application Commands are high-level messages that can be delivered from the PC Host to the embedded application for further processing. The embedded application can either poll the status, or be called back when a new Application Command arrives to be processed. After the embedded application acknowledges that the command is handled, the host receives the Result Code and reads the other return data from memory. Both the Application Commands and the Result Codes are specific to a given application and it is user's responsibility to define them. The FreeMASTER protocol and the FreeMASTER driver only implement the delivery channel and a set of API calls to enable the Application Command processing in general.

Pipes The Pipes enable buffered and stream-oriented data exchange between the PC Host and the target application. Any pipe can be written to and read from at both ends (either on the PC or the MCU). The data transmission is acknowledged using the special FreeMASTER protocol commands. It is guaranteed that the data bytes are delivered from the writer to the reader in a proper order and without losses.

Serial single-wire operation The MCU Serial Communication Driver natively supports normal dual-wire operation. Because the protocol is half-duplex only, the driver can also operate in two single-wire modes:

- “External” single-wire operation where the Receiver and Transmitter pins are shorted on the board. This mode is supported by default in the MCU driver because the Receiver and Transmitter units are enabled or disabled whenever needed. It is also easy to extend this operation for the RS485 communication.

- “True” single-wire mode which uses only a single pin and the direction switching is made by the UART module. This mode of operation must be enabled by defining the FM-STR_SERIAL_SINGLEWIRE configuration option.

Multi-session support With networking interface it is possible for multiple clients to access the target MCU simultaneously. Reading and writing of target memory is processed atomically so there is no risk of data corruption. The state-full resources such as Recorders or Oscilloscopes are locked to a client session upon first use and access is denied to other clients until lock is released..

Zephyr-specific

Dedicated communication task FreeMASTER communication may run isolated in a dedicated task. The task automates the FMSTR_Init and FMSTR_Poll calls together with periodic activities enabling the FreeMASTER UI to fetch information about tasks and CPU utilization. The task can be started automatically or manually, and it must be assigned a priority to be able to react on interrupts and other communication events. Refer to Zephyr FreeMASTER sample applications which all use this communication task.

Zephyr shell and logging over FreeMASTER pipe FreeMASTER implements a shell backend which may use FreeMASTER pipe as a I/O terminal and logging output. Refer to Zephyr FreeMASTER sample applications which all use this feature.

Automatic TSA tables TSA tables can be declared as “automatic” in Zephyr which make them automatically registered in the table list. This may be very useful when there are many TSA tables or when the tables are defined in different (often unrelated) libraries linked together. In this case user does not need to build a list of all tables manually.

Driver files The driver source files can be found in a top-level src folder, further divided into the sub-folders:

- **src/platforms** platform-specific folder—one folder exists for each supported processor platform (for example; 32-bit Little Endian platform). Each such folder contains a platform header file with data types and a code which implements the potentially platform-specific operations, such as aligned memory access.
- **src/common** folder—contains the common driver source files shared by the driver for all supported platforms. All the .c files must be added to the project, compiled, and linked together with the application.
 - *freemaster.h* - master driver header file, which declares the common data types, macros, and prototypes of the FreeMASTER driver API functions.
 - *freemaster_cfg.h.example* - this file can serve as an example of the FreeMASTER driver configuration file. Save this file into a project source code folder and rename it to *freemaster_cfg.h*. The FreeMASTER driver code includes this file to get the project-specific configuration options and to optimize the compilation of the driver.
 - *freemaster_defcfg.h* - defines the default values for each FreeMASTER configuration option if the option is not set in the *freemaster_cfg.h* file.
 - *freemaster_protocol.h* - defines the FreeMASTER protocol constants used internally by the driver.
 - *freemaster_protocol.c* - implements the FreeMASTER protocol decoder and handles the basic Get Configuration Value, Memory Read, and Memory Write commands.

- *freemaster_rec.c* - handles the Recorder-specific commands and implements the Recorder sampling and triggering routines. When the Recorder is disabled by the FreeMASTER driver configuration file, this file only compiles to empty API functions.
- *freemaster_scope.c* - handles the Oscilloscope-specific commands. If the Oscilloscope is disabled by the FreeMASTER driver configuration file, this file compiles as void.
- *freemaster_pipes.c* - implements the Pipes functionality when the Pipes feature is enabled.
- *freemaster_appcmd.c* - handles the communication commands used to deliver and execute the Application Commands within the context of the embedded application. When the Application Commands are disabled by the FreeMASTER driver configuration file, this file only compiles to empty API functions.
- *freemaster_tsa.c* - handles the commands specific to the TSA feature. This feature enables the FreeMASTER host tool to obtain the TSA memory descriptors declared in the embedded application. If the TSA is disabled by the FreeMASTER driver configuration file, this file compiles as void.
- *freemaster_tsa.h* - contains the declaration of the macros used to define the TSA memory descriptors. This file is indirectly included into the user application code (via *freemaster.h*).
- *freemaster_sha.c* - implements the SHA-1 hash code used in the password authentication algorithm.
- *freemaster_private.h* - contains the declarations of functions and data types used internally in the driver. It also contains the C pre-processor statements to perform the compile-time verification of the user configuration provided in the *freemaster_cfg.h* file.
- *freemaster_serial.c* - implements the serial protocol logic including the CRC, FIFO queuing, and other communication-related operations. This code calls the functions of the low-level communication driver indirectly via a character-oriented API exported by the specific low-level driver.
- *freemaster_serial.h* - defines the low-level character-oriented Serial API.
- *freemaster_can.c* - implements the CAN protocol logic including the CAN message preparation, signalling using the first data byte in the CAN frame, and other communication-related operations. This code calls the functions of the low-level communication driver indirectly via a message-oriented API exported by the specific low-level driver.
- *freemaster_can.h* - defines the low-level message-oriented CAN API.
- *freemaster_net.c* - implements the Network protocol transport logic including multiple session management code.
- *freemaster_net.h* - definitions related to the Network transport.
- *freemaster_pdbdm.c* - implements the packet-driven BDM communication buffer and other communication-related operations.
- *freemaster_utils.c* - aligned memory copy routines, circular buffer management and other utility functions
- *freemaster_utils.h* - definitions related to utility code.
- **src/drivers/[sdk]/serial** - contains the code related to the serial communication implemented using one of the supported SDK frameworks.
 - *freemaster_serial_XXX.c* and *.h* - implement low-level access to the communication peripheral registers. Different files exist for the UART, LPUART, USART, and other kinds of Serial communication modules.

- **src/drivers/[sdk]/can** - contains the code related to the serial communication implemented using one of the supported SDK frameworks.
 - *freemaster_XXX.c* and *.h* - implement low-level access to the communication peripheral registers. Different files exist for the FlexCAN, msCAN, MCAN, and other kinds of CAN communication modules.
- **src/drivers/[sdk]/network** - contains low-level code adapting the FreeMASTER Network transport to an underlying TCP/IP or RTT stack.
 - *freemaster_net_lwip_tcp.c* and *_udp.c* - default networking implementation of TCP and UDP transports using lwIP stack.
 - *freemaster_net_segger_rtt.c* - implementation of network transport using Segger J-Link RTT interface

Driver configuration The driver is configured using a single header file (*freemaster_cfg.h*). Create this file and save it together with other project source files before compiling the driver code. All FreeMASTER driver source files include the *freemaster_cfg.h* file and use the macros defined here for the conditional and parameterized compilation. The C compiler must locate the configuration file when compiling the driver files. Typically, it can be achieved by putting this file into a folder where the other project-specific included files are stored.

As a starting point to create the configuration file, get the *freemaster_cfg.h.example* file, rename it to *freemaster_cfg.h*, and save it into the project area.

Note: It is NOT recommended to leave the *freemaster_cfg.h* file in the FreeMASTER driver source code folder. The configuration file must be placed at a project-specific location, so that it does not affect the other applications that use the same driver.

Configurable items This section describes the configuration options which can be defined in *freemaster_cfg.h*.

Interrupt modes

```
#define FMSTR_LONG_INTR [0|1]
#define FMSTR_SHORT_INTR [0|1]
#define FMSTR_POLL_DRIVEN [0|1]
```

Value Type boolean (0 or 1)

Description Exactly one of the three macros must be defined to non-zero. The others must be defined to zero or left undefined. The non-zero-defined constant selects the interrupt mode of the driver. See [Driver interrupt modes](#).

- FMSTR_LONG_INTR — long interrupt mode
- FMSTR_SHORT_INTR — short interrupt mode
- FMSTR_POLL_DRIVEN — poll-driven mode

Note: Some options may not be supported by all communication interfaces. For example, the FMSTR_SHORT_INTR option is not supported by the USB_CDC interface.

Protocol transport

```
#define FMSTR_TRANSPORT [identifier]
```

Value Type Driver identifiers are structure instance names defined in FreeMASTER source code. Specify one of existing instances to make use of the protocol transport.

Description Use one of the pre-defined constants, as implemented by the FreeMASTER code. The current driver supports the following transports:

- **FMSTR_SERIAL** - serial communication protocol
- **FMSTR_CAN** - using CAN communication
- **FMSTR_PDBDM** - using packet-driven BDM communication
- **FMSTR_NET** - network communication using TCP or UDP protocol

Serial transport This section describes configuration parameters used when serial transport is used:

```
#define FMSTR_TRANSPORT FMSTR_SERIAL
```

FMSTR_SERIAL_DRV Select what low-level driver interface will be used when implementing the Serial communication.

```
#define FMSTR_SERIAL_DRV [identifier]
```

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers code. Specify one of existing serial driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see */drivers/mcuxsdk/serial* implementation):

- **FMSTR_SERIAL_MCUX_UART** - UART driver
- **FMSTR_SERIAL_MCUX_LPUART** - LPUART driver
- **FMSTR_SERIAL_MCUX_USART** - USART driver
- **FMSTR_SERIAL_MCUX_MINIUSART** - miniUSART driver
- **FMSTR_SERIAL_MCUX_QSCI** - DSC QSCI driver
- **FMSTR_SERIAL_MCUX_USB** - USB/CDC class driver (also see code in the */support/mcuxsdk_usb* folder)
- **FMSTR_SERIAL_56F800E_EONCE** - DSC JTAG EOnCE driver

Other SDKs or BSPs may define custom low-level driver interface structure which may be used as **FMSTR_SERIAL_DRV**. For example:

- **FMSTR_SERIAL_DREG_UART** - demonstrates the low-level interface implemented without the MCUXpresso SDK and using direct access to peripheral registers.

FMSTR_SERIAL_BASE

```
#define FMSTR_SERIAL_BASE [address|symbol]
```

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the UART, LPUART, USART, or other serial peripheral module to be used for the communication. This value is not defined by default. User application should call FMSTR_SetSerialBaseAddress() to select the peripheral module.

FMSTR_COMM_BUFFER_SIZE

```
#define FMSTR_COMM_BUFFER_SIZE [number]
```

Value Type 0 or a value in range 32...255

Description Specify the size of the communication buffer to be allocated by the driver. Default value, which suits all driver features, is used when this option is defined as 0.

FMSTR_COMM_RQUEUE_SIZE

```
#define FMSTR_COMM_RQUEUE_SIZE [number]
```

Value Type Value in range 0...255

Description Specify the size of the FIFO receiver queue used to quickly receive and store characters in the FMSTR_SHORT_INTR interrupt mode. The default value is 32 B.

FMSTR_SERIAL_SINGLEWIRE

```
#define FMSTR_SERIAL_SINGLEWIRE [0|1]
```

Value Type Boolean 0 or 1.

Description Set to non-zero to enable the “True” single-wire mode which uses a single MCU pin to communicate. The low-level driver enables the pin direction switching when the MCU peripheral supports it.

CAN Bus transport This section describes configuration parameters used when CAN transport is used:

```
#define FMSTR_TRANSPORT FMSTR_CAN
```

FMSTR_CAN_DRV Select what low-level driver interface will be used when implementing the CAN communication.

```
#define FMSTR_CAN_DRV [identifier]
```

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers code. Specify one of existing CAN driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see `/drivers/mcuxsdk/can implementation`):

- **FMSTR_CAN_MCUX_FLEXCAN** - FlexCAN driver
- **FMSTR_CAN_MCUX_MCAN** - MCAN driver
- **FMSTR_CAN_MCUX_MSCAN** - msCAN driver
- **FMSTR_CAN_MCUX_DSCFLEXCAN** - DSC FlexCAN driver
- **FMSTR_CAN_MCUX_DSCMSCAN** - DSC msCAN driver

Other SDKs or BSPs may define the custom low-level driver interface structure which may be used as `FMSTR_CAN_DRV`.

FMSTR_CAN_BASE

```
#define FMSTR_CAN_BASE [address|symbol]
```

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the FlexCAN, msCAN, or other CAN peripheral module to be used for the communication. This value is not defined by default. User application should call `FMSTR_SetCanBaseAddress()` to select the peripheral module.

FMSTR_CAN_CMDID

```
#define FMSTR_CAN_CMDID [number]
```

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for FreeMASTER commands (direction from PC Host tool to target application). When declaring 29-bit identifier, combine the numeric value with `FMSTR_CAN_EXTID` bit. Default value is 0x7AA.

FMSTR_CAN_RSPID

```
#define FMSTR_CAN_RSPID [number]
```

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for responding messages (direction from target application to PC Host tool). When declaring 29-bit identifier, combine the numeric value with `FMSTR_CAN_EXTID` bit. Note that both `CMDID` and `RSPID` values may be the same. Default value is 0x7AA.

FMSTR_FLEXCAN_TXMB

```
#define FMSTR_FLEXCAN_TXMB [number]
```

Value Type Number in range of 0..N where N is number of CAN message-buffers supported by HW module.

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN message buffer for CAN frame transmission. Default value is 0.

FMSTR_FLEXCAN_RXMB

```
#define FMSTR_FLEXCAN_RXMB [number]
```

Value Type Number in range of 0..N where N is number of CAN message-buffers supported by HW module.

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN message buffer for CAN frame reception. Note that the FreeMASTER driver may also operate with a common message buffer used by both TX and RX directions. Default value is 1.

Network transport This section describes configuration parameters used when Network transport is used:

```
#define FMSTR_TRANSPORT FMSTR_NET
```

FMSTR_NET_DRV

 Select network interface implementation.

```
#define FMSTR_NET_DRV [identifier]
```

Value Type Identifiers are structure instance names defined in FreeMASTER drivers code. Specify one of existing NET driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see */drivers/mcuxsdk/network implementation*):

- **FMSTR_NET_LWIP_TCP** - TCP communication using lwIP stack
- **FMSTR_NET_LWIP_UDP** - UDP communication using lwIP stack
- **FMSTR_NET_SEGGER_RTT** - Communication using SEGGER J-Link RTT interface

Other SDKs or BSPs may define the custom networking interface which may be used as FMSTR_CAN_DRV.

Add another row below:

FMSTR_NET_PORT

```
#define FMSTR_NET_PORT [number]
```

Value Type TCP or UDP port number (short integer)

Description Specifies the server port number used by TCP or UDP protocols.

FMSTR_NET_BLOCKING_TIMEOUT

```
#define FMSTR_NET_BLOCKING_TIMEOUT [number]
```

Value Type Timeout as number of milliseconds

Description This value specifies a timeout in milliseconds for which the network socket operations may block the execution inside *FMSTR_Poll*. This may be set high (e.g. 250) when a dedicated RTOS task is used to handle FreeMASTER protocol polling. Set to a lower value when the polling task is also responsible for other operations. Set to 0 to attempt to use non-blocking socket operations.

FMSTR_NET_AUTODISCOVERY

```
#define FMSTR_NET_AUTODISCOVERY [0|1]
```

Value Type Boolean 0 or 1.

Description This option enables the FreeMASTER driver to use a separate UDP socket to broadcast auto-discovery messages to network. This helps the FreeMASTER tool to discover the target device address, port and protocol options.

Debugging options

FMSTR_DISABLE

```
#define FMSTR_DISABLE [0|1]
```

Value Type boolean (0 or 1)

Description Define as non-zero to disable all FreeMASTER features, exclude the driver code from build, and compile all its API functions empty. This may be useful to remove FreeMASTER without modifying any application source code. Default value is 0 (false).

FMSTR_DEBUG_TX

```
#define FMSTR_DEBUG_TX [0|1]
```

Value Type Boolean 0 or 1.

Description Define as non-zero to enable the driver to periodically transmit test frames out on the selected communication interface (SCI or CAN). With the debug transmission enabled, it is simpler to detect problems in the baudrate or other communication configuration settings.

The test frames are transmitted until the first valid command frame is received from the PC Host tool. The test frame is a valid error status frame, as defined by the protocol format. On the serial line, the test frame consists of three printable characters (+©W) which are easy to capture using the serial terminal tools.

This feature requires the FMSTR_Poll() function to be called periodically. Default value is 0 (false).

FMSTR_APPLICATION_STR

```
#define FMSTR_APPLICATION_STR
```

Value Type String.

Description Name of the application visible in FreeMASTER host application.

Memory access

FMSTR_USE_READMEM

```
#define FMSTR_USE_READMEM [0|1]
```

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Memory Read command and enable FreeMASTER to have read access to memory and variables. The access can be further restricted by using a TSA feature.

Default value is 1 (true).

FMSTR_USE_WRITEMEM

```
#define FMSTR_USE_WRITEMEM [0|1]
```

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Memory Write command. The default value is 1 (true).

Oscilloscope options

FMSTR_USE_SCOPE

```
#define FMSTR_USE_SCOPE [number]
```

Value Type Integer number.

Description Number of Oscilloscope instances to be supported. Set to 0 to disable the Oscilloscope feature.

Default value is 0.

FMSTR_MAX_SCOPE_VARS

```
#define FMSTR_MAX_SCOPE_VARS [number]
```

Value Type Integer number larger than 2.

Description Number of variables to be supported by each Oscilloscope instance. Default value is 8.

Recorder options

FMSTR_USE_RECORDER

```
#define FMSTR_USE_RECORDER [number]
```

Value Type Integer number.

Description Number of Recorder instances to be supported. Set to 0 to disable the Recorder feature.

Default value is 0.

FMSTR_REC_BUFF_SIZE

```
#define FMSTR_REC_BUFF_SIZE [number]
```

Value Type Integer number larger than 2.

Description Defines the size of the memory buffer used by the Recorder instance #0. Default: not defined, user shall call 'FMSTRRecorderCreate()' API function to specify this parameter in run time.

FMSTR_REC_TIMEBASE

```
#define FMSTR_REC_TIMEBASE [time specification]
```

Value Type Number (nanoseconds time).

Description Defines the base sampling rate in nanoseconds (sampling speed) Recorder instance #0.

Use one of the following macros:

- FMSTR_REC_BASE_SECONDS(x)
- FMSTR_REC_BASE_MILLISEC(x)
- FMSTR_REC_BASE_MICROSEC(x)
- FMSTR_REC_BASE_NANOSEC(x)

Default: not defined, user shall call 'FMSTRRecorderCreate()' API function to specify this parameter in run time.

FMSTR_REC_FLOAT_TRIG

```
#define FMSTR_REC_FLOAT_TRIG [0|1]
```

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the floating-point triggering. Be aware that floating-point triggering may grow the code size by linking the floating-point standard library. Default value is 0 (false).

Application Commands options

FMSTR_USE_APPCMD

```
#define FMSTR_USE_APPCMD [0|1]
```

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Application Commands feature. Default value is 0 (false).

FMSTR_APPCMD_BUFF_SIZE

```
#define FMSTR_APPCMD_BUFF_SIZE [size]
```

Value Type Numeric buffer size in range 1..255

Description The size of the Application Command data buffer allocated by the driver. The buffer stores the (optional) parameters of the Application Command which waits to be processed.

FMSTR_MAX_APPCMD_CALLS

```
#define FMSTR_MAX_APPCMD_CALLS [number]
```

Value Type Number in range 0..255

Description The number of different Application Commands that can be assigned a callback handler function using FMSTR_RegisterAppCmdCall(). Default value is 0.

TSA options

FMSTR_USE_TSA

```
#define FMSTR_USE_TSA [0|1]
```

Value Type Boolean 0 or 1.

Description Enable the FreeMASTER TSA feature to be used. With this option enabled, the TSA tables defined in the applications are made available to the FreeMASTER host tool. Default value is 0 (false).

FMSTR_USE_TSA_SAFETY

```
#define FMSTR_USE_TSA_SAFETY [0|1]
```

Value Type Boolean 0 or 1.

Description Enable the memory access validation in the FreeMASTER driver. With this option, the host tool is not able to access the memory which is not described by at least one TSA descriptor. Also a write access is denied for objects defined as read-only in TSA tables. Default value is 0 (false).

FMSTR_USE_TSA_INROM

```
#define FMSTR_USE_TSA_INROM [0|1]
```

Value Type Boolean 0 or 1.

Description Declare all TSA descriptors as *const*, which enables the linker to put the data into the flash memory. The actual result depends on linker settings or the linker commands used in the project. Default value is 0 (false).

FMSTR_USE_TSA_DYNAMIC

```
#define FMSTR_USE_TSA_DYNAMIC [0|1]
```

Value Type Boolean 0 or 1.

Description Enable runtime-defined TSA entries to be added to the TSA table by the FMSTR_SetUpTsaBuff() and FMSTR_TsaAddVar() functions. Default value is 0 (false).

Pipes options

FMSTR_USE_PIPES

```
#define FMSTR_USE_PIPES [0|1]
```

Value Type Boolean 0 or 1.

Description Enable the FreeMASTER Pipes feature to be used. Default value is 0 (false).

FMSTR_MAX_PIPES_COUNT

```
#define FMSTR_MAX_PIPES_COUNT [number]
```

Value Type Number in range 1..63.

Description The number of simultaneous pipe connections to support. The default value is 1.

Driver interrupt modes To implement the communication, the FreeMASTER driver handles the Serial or CAN module's receive and transmit requests. Use the *freemaster_cfg.h* configuration file to select whether the driver processes the communication automatically in the interrupt service routine handler or if it only polls the status of the module (typically during the application idle time).

This section describes each of the interrupt mode in more details.

Completely Interrupt-Driven operation Activated using:

```
#define FMSTR_LONG_INTR 1
```

In this mode, both the communication and the FreeMASTER protocol decoding is done in the *FMSTR_SerialIsr*, *FMSTR_CanIsr*, or other interrupt service routine. Because the protocol execution may be a lengthy task (especially with the TSA-Safety enabled) it is recommended to use this mode only if the interrupt prioritization scheme is possible in the application and the FreeMASTER interrupt is assigned to a lower (the lowest) priority.

In this mode, the application code must register its own interrupt handler for all interrupt vectors related to the selected communication interface and call the *FMSTR_SerialIsr* or *FMSTR_CanIsr* functions from that handler.

Mixed Interrupt and Polling Modes Activated using:

```
#define FMSTR_SHORT_INTR 1
```

In this mode, the communication processing time is split between the interrupt routine and the main application loop or task. The raw communication is handled by the *FMSTR_SerialIsr*, *FMSTR_CanIsr*, or other interrupt service routine, while the protocol decoding and execution is handled by the *FMSTR_Poll* routine. Call *FMSTR_Poll* during the idle time in the application main loop.

The interrupt processing in this mode is relatively fast and deterministic. Upon a serial-receive event, the received character is only placed into a FIFO-like queue and it is not further processed. Upon a CAN receive event, the received frame is stored into a receive buffer. When transmitting, the characters are fetched from the prepared transmit buffer.

In this mode, the application code must register its own interrupt handler for all interrupt vectors related to the selected communication interface and call the *FMSTR_SerialIsr* or *FMSTR_CanIsr* functions from that handler.

When the serial interface is used as the serial communication interface, ensure that the *FMSTR_Poll* function is called at least once per *N* character time periods. *N* is the length of the FreeMASTER FIFO queue (*FMSTR_COMM_RQUEUE_SIZE*) and the character time is the time needed to transmit or receive a single byte over the SCI line.

Completely Poll-driven

```
#define FMSTR_POLL_DRIVEN 1
```

In this mode, both the communication and the FreeMASTER protocol decoding are done in the [FMSTR_Poll](#) routine. No interrupts are needed and the [FMSTR_SerialIsr](#), [FMSTR_CanIsr](#), and similar handlers compile to an empty code.

When using this mode, ensure that the [FMSTR_Poll](#) function is called by the application at least once per the serial “character time” which is the time needed to transmit or receive a single character.

In the latter two modes ([FMSTR_SHORT_INTR](#) and [FMSTR_POLL_DRIVEN](#)), the protocol handling takes place in the FMSTR_Poll routine. An application interrupt can occur in the middle of the Read Memory or Write Memory commands’ execution and corrupt the variable being accessed by the FreeMASTER driver. In these two modes, some issues or glitches may occur when using FreeMASTER to visualize or monitor volatile variables modified in interrupt servicing code.

The same issue may appear even in the full interrupt mode ([FMSTR_LONG_INTR](#)), if volatile variables are modified in the interrupt code with a priority higher than the priority of the communication interrupt.

Data types Simple portability was one of the main requirements when writing the FreeMASTER driver. This is why the driver code uses the privately-declared data types and the vast majority of the platform-dependent code is separated in the platform-dependent source files. The data types used in the driver API are all defined in the platform-specific header file.

To prevent name conflicts with the symbols used in the application, all data types, macros, and functions have the FMSTR_ prefix. The only global variables used in the driver are the transport and low-level API structures exported from the driver-implementation layer to upper layers. Other than that, all private variables are declared as static and named using the fmstr_ prefix.

Communication interface initialization The FreeMASTER driver does not perform neither the initialization nor the configuration of the peripheral module that it uses to communicate. It is the application startup code responsibility to configure the communication module before the FreeMASTER driver is initialized by the FMSTR_Init call.

When the Serial communication module is used as the FreeMASTER communication interface, configure the UART receive and transmit pins, the serial communication baud rate, parity (no-parity), the character length (eight bits), and the number of stop bits (one) before initializing the FreeMASTER driver. For either the long or the short interrupt modes of the driver (see [Driver interrupt modes](#)), configure the interrupt controller and register an application-specific interrupt handler for all interrupt sources related to the selected serial peripheral module. Call the FMSTR_SerialIsr function from the application handler.

When a CAN module is used as the FreeMASTER communication interface, configure the CAN receive and transmit pins and the CAN module bit rate before initializing the FreeMASTER driver. For either the long or the short interrupt modes of the driver (see [Driver interrupt modes](#)), configure the interrupt controller and register an application-specific interrupt handler for all interrupt sources related to the selected CAN peripheral module. Call the FMSTR_CanIsr function from the application handler.

Note: It is not necessary to enable or unmask the serial nor the CAN interrupts before initializing the FreeMASTER driver. The driver enables or disables the interrupts and communication lines, as required during runtime.

FreeMASTER Recorder calls When using the FreeMASTER Recorder in the application ([FMSTR_USE_RECORDER > 0](#)), call the FMSTRRecorderCreate function early after FMSTR_Init to set

up each recorder instance to be used in the application. Then call the FMSTR_Recorder function periodically in the code where the data recording should occur. A typical place to call the Recorder routine is at the timer or PWM interrupts, but it can be anywhere else. The example applications provided together with the driver code call the FMSTR_Recorder in the main application loop.

In applications where FMSTR_Recorder is called periodically with a constant period, specify the period in the Recorder configuration structure before calling FMSTRRecorderCreate. This setting enables the PC Host FreeMASTER tool to display the X-axis of the Recorder graph properly scaled for the time domain.

Driver usage Start using or evaluating FreeMASTER by opening some of the example applications available in the driver setup package.

Follow these steps to enable the basic FreeMASTER connectivity in the application:

- Make sure that all `*.c` files of the FreeMASTER driver from the `src/common/platforms/[your_platform]` folder are a part of the project. See [Driver files](#) for more details.
- Configure the FreeMASTER driver by creating or editing the `freemaster_cfg.h` file and by saving it into the application project directory. See [Driver configuration](#) for more details.
- Include the `freemaster.h` file into any application source file that makes the FreeMASTER API calls.
- Initialize the Serial or CAN modules. Set the baud rate, parity, and other parameters of the communication. Do not enable the communication interrupts in the interrupt mask registers.
- For the FMSTR_LONG_INTR and FMSTR_SHORT_INTR modes, install the application-specific interrupt routine and call the FMSTR_SerialIsr or FMSTR_CanIsr functions from this handler.
- Call the FMSTR_Init function early on in the application initialization code.
- Call the FMSTRRecorderCreate functions for each Recorder instance to enable the Recorder feature.
- In the main application loop, call the FMSTR_Poll API function periodically when the application is idle.
- For the FMSTR_SHORT_INTR and FMSTR_LONG_INTR modes, enable the interrupts globally so that the interrupts can be handled by the CPU.

Communication troubleshooting The most common problem that causes communication issues is a wrong baud rate setting or a wrong pin multiplexer setting of the target MCU. When a communication between the PC Host running FreeMASTER and the target MCU cannot be established, try enabling the FMSTR_DEBUG_TX option in the `freemaster_cfg.h` file and call the FMSTR_Poll function periodically in the main application task loop.

With this feature enabled, the FreeMASTER driver periodically transmits a test frame through the Serial or CAN lines. Use a logic analyzer or an oscilloscope to monitor the signals at the communication pins of the CPU device to examine whether the bit rate and signal polarity are configured properly.

Driver API

This section describes the driver Application Programmers' Interface (API) needed to initialize and use the FreeMASTER serial communication driver.

Control API There are three key functions to initialize and use the driver.

FMSTR_Init

Prototype

```
FMSTR_BOOL FMSTR_Init(void);
```

- Declaration: *freemaster.h*
- Implementation: *freemaster_protocol.c*

Description This function initializes the internal variables of the FreeMASTER driver and enables the communication interface. This function does not change the configuration of the selected communication module. The hardware module must be initialized before the *FMSTR_Init* function is called.

A call to this function must occur before calling any other FreeMASTER driver API functions.

FMSTR_Poll

Prototype

```
void FMSTR_Poll(void);
```

- Declaration: *freemaster.h*
- Implementation: *freemaster_protocol.c*

Description In the poll-driven or short interrupt modes, this function handles the protocol decoding and execution (see *Driver interrupt modes*). In the poll-driven mode, this function also handles the communication interface with the PC. Typically, the *FMSTR_Poll* function is called during the “idle” time in the main application task loop.

To prevent the receive data overflow (loss) on a serial interface, make sure that the *FMSTR_Poll* function is called at least once per the time calculated as:

$N * Tchar$

where:

- N is equal to the length of the receive FIFO queue (configured by the *FMSTR_COMM_RQUEUE_SIZE* macro). N is 1 for the poll-driven mode.
- $Tchar$ is the character time, which is the time needed to transmit or receive a single byte over the SCI line.

Note: In the long interrupt mode, this function typically compiles as an empty function and can still be called. It is worthwhile to call this function regardless of the interrupt mode used in the application. This approach enables a convenient switching between the different interrupt modes only by changing the configuration macros in the *freemaster_cfg.h* file.

FMSTR_SerialIsr / FMSTR_CanIsr

Prototype

```
void FMSTR_SerialIsr(void);
void FMSTR_CanIsr(void);
```

- Declaration: *freemaster.h*
- Implementation: *hw-specific low-level driver C file*

Description This function contains the interrupt-processing code of the FreeMASTER driver. In long or short interrupt modes (see [Driver interrupt modes](#)), this function must be called from the application interrupt service routine registered for the communication interrupt vector. On platforms where the communication module uses multiple interrupt vectors, the application should register a handler for all vectors and call this function at each interrupt.

Note: In a poll-driven mode, this function is compiled as an empty function and does not have to be used.

Recorder API

FMSTR_RecorderCreate

Prototype

```
FMSTR_BOOL FMSTR_RecorderCreate(FMSTR_INDEX recIndex, FMSTR_REC_BUFF* buffCfg);
```

- Declaration: *freemaster.h*
- Implementation: *freemaster_rec.c*

Description This function registers a recorder instance and enables it to be used by the PC Host tool. Call this function for all recorder instances from 0 to the maximum number defined by the FMSTR_USE_RECORDER configuration option (minus one). An exception to this requirement is the recorder of instance 0 which may be automatically configured by FMSTR_Init when the *freemaster_cfg.h* configuration file defines the *FMSTR_REC_BUFF_SIZE* and *FMSTR_REC_TIMEBASE* options.

For more information, see [Configurable items](#).

FMSTR_Recorder

Prototype

```
void FMSTR_Recorder(FMSTR_INDEX recIndex);
```

- Declaration: *freemaster.h*
- Implementation: *freemaster_rec.c*

Description This function takes a sample of the variables being recorded using the FreeMASTER Recorder instance *recIndex*. If the selected Recorder is not active when the *FMSTR_Recorder* function is being called, the function returns immediately. When the Recorder is active, the values of the variables being recorded are copied into the recorder buffer and the trigger conditions are evaluated.

If a trigger condition is satisfied, the Recorder enters the post-trigger mode, where it counts down the follow-up samples (number of *FMSTRRecorder* function calls) and de-activates the Recorder when the required post-trigger samples are finished.

The *FMSTRRecorder* function is typically called in the timer or PWM interrupt service routines. This function can also be called in the application main loop (for testing purposes).

FMSTRRecorderTrigger

Prototype

```
void FMSTRRecorderTrigger(FMSTR_INDEX recIndex);
```

- Declaration: *freemaster.h*
- Implementation: *freemaster_rec.c*

Description This function forces the Recorder trigger condition to happen, which causes the Recorder to be automatically deactivated after the post-trigger samples are sampled. Use this function in the application code for programmatic control over the Recorder triggering. This can be useful when a more complex triggering conditions need to be used.

Fast Recorder API The Fast Recorder feature is not available in the FreeMASTER driver version 3. This feature was heavily dependent on the target platform and it was only available for the 56F8xxxx DSCs.

TSA Tables When the TSA is enabled in the FreeMASTER driver configuration file (by setting the FMSTR_USE_TSA macro to a non-zero value), it defines the so-called TSA tables in the application. This section describes the macros that must be used to define the TSA tables.

There can be any number of TSA tables spread across the application source files. There must be always exactly one TSA Table List defined, which informs the FreeMASTER driver about the active TSA tables.

When there is at least one TSA table and one TSA Table List defined in the application, the TSA information automatically appears in the FreeMASTER symbols list. The symbols can then be used to create FreeMASTER variables for visualization or control.

TSA table definition The TSA table describes the static or global variables together with their address, size, type, and access-protection information. If the TSA-described variables are of a structure type, the TSA table may also describe this type and provide an access to the individual structure members of the variable.

The TSA table definition begins with the FMSTR_TSA_TABLE_BEGIN macro with a *table_id* identifying the table. The *table_id* shall be a valid C-language symbol.

```
FMSTR_TSA_TABLE_BEGIN(table_id)
```

After this opening macro, the TSA descriptors are placed using these macros:

```
/* Adding variable descriptors */
FMSTR_TSA_RW_VAR(name, type) /* read/write variable entry */
FMSTR_TSA_RO_VAR(name, type) /* read-only variable entry */

/* Description of complex data types */
FMSTR_TSA_STRUCT(struct_name) /* structure or union type entry */
```

(continues on next page)

(continued from previous page)

```
FMSTR_TSA_MEMBER(struct_name, member_name, type) /* structure member entry */
```

```
/* Memory blocks */
```

```
FMSTR_TSA_RW_MEM(name, type, address, size) /* read/write memory block */
```

```
FMSTR_TSA_RO_MEM(name, type, address, size) /* read-only memory block */
```

The table is closed using the FMSTR_TSA_TABLE_END macro:

```
FMSTR_TSA_TABLE_END()
```

TSA descriptor parameters The TSA descriptor macros accept these parameters:

- *name* — variable name. The variable must be defined before the TSA descriptor references it.
- *type* — variable or member type. Only one of the pre-defined type constants may be used (see below).
- *struct_name* — structure type name. The type must be defined (typedef) before the TSA descriptor references it.
- *member_name* — structure member name.

Note: The structure member descriptors (FMSTR_TSA_MEMBER) must immediately follow the parent structure descriptor (FMSTR_TSA_STRUCT) in the table.

Note: To write-protect the variables in the FreeMASTER driver (FMSTR_TSA_RO_VAR), enable the TSA-Safety feature in the configuration file.

TSA variable types The table lists *type* identifiers which can be used in TSA descriptors:

Constant	Description
FMSTR_TSA_UINTn	Unsigned integer type of size <i>n</i> bits (n=8,16,32,64)
FMSTR_TSA_SINTn	Signed integer type of size <i>n</i> bits (n=8,16,32,64)
FMSTR_TSA_FRACn	Fractional number of size <i>n</i> bits (n=16,32,64).
FMSTR_TSA_FRAC_Q(m,n)	Signed fractional number in general Q form (m+n+1 total bits)
FMSTR_TSA_FRAC_UQ(m,n)	Unsigned fractional number in general UQ form (m+n total bits)
FMSTR_TSA_FLOAT	4-byte standard IEEE floating-point type
FMSTR_TSA_DOUBLE	8-byte standard IEEE floating-point type
FMSTR_TSA_POINTER	Generic pointer type defined (platform-specific 16 or 32 bit)
FM- STR_TSA_USERTYPE(<i>name</i>)	Structure or union type declared with FMSTR_TSA_STRUCT record

TSA table list There shall be exactly one TSA Table List in the application. The list contains one entry for each TSA table defined anywhere in the application.

The TSA Table List begins with the FMSTR_TSA_TABLE_LIST_BEGIN macro and continues with the TSA table entries for each table.

```
FMSTR_TSA_TABLE_LIST_BEGIN()
```

```
FMSTR_TSA_TABLE(table_id)
```

```
FMSTR_TSA_TABLE(table_id2)
```

```
FMSTR_TSA_TABLE(table_id3)
```

```
...
```

The list is closed with the FMSTR_TSA_TABLE_LIST_END macro:

```
FMSTR_TSA_TABLE_LIST_END()
```

TSA Active Content entries FreeMASTER v2.0 and higher supports TSA Active Content, enabling the TSA tables to describe the memory-mapped files, virtual directories, and URL hyperlinks. FreeMASTER can access such objects similarly to accessing the files and folders on the local hard drive.

With this set of TSA entries, the FreeMASTER pages can be embedded directly into the target MCU flash and accessed by FreeMASTER directly over the communication line. The HTML-coded pages rendered inside the FreeMASTER window can access the TSA Active Content resources using a special URL referencing the *fmstr:* protocol.

This example provides an overview of the supported TSA Active Content entries:

```
FMSTR_TSA_TABLE_BEGIN(files_and_links)

/* Directory entry applies to all subsequent MEMFILE entries */
FMSTR_TSA_DIRECTORY("/text_files") /* entering a new virtual directory */

/* The readme.txt file will be accessible at the fmstr://text_files/readme.txt URL */
FMSTR_TSA_MEMFILE("readme.txt", readme_txt, sizeof(readme_txt)) /* memory-mapped file */

/* Files can also be specified with a full path so the DIRECTORY entry does not apply */
FMSTR_TSA_MEMFILE("/index.htm", index, sizeof(index)) /* memory-mapped file */
FMSTR_TSA_MEMFILE("/prj/demo.pmp", demo_pmp, sizeof(demo_pmp)) /* memory-mapped file */

/* Hyperlinks can point to a local MEMFILE object or to the Internet */
FMSTR_TSA_HREF("Board's Built-in Welcome Page", "/index.htm")
FMSTR_TSA_HREF("FreeMASTER Home Page", "http://www.nxp.com/freemaster")

/* Project file links simplify opening the projects from any URLs */
FMSTR_TSA_PROJECT("Demonstration Project (embedded)", "/prj/demo.pmp")
FMSTR_TSA_PROJECT("Full Project (online)", "http://mycompany.com/prj/demo.pmp")

FMSTR_TSA_TABLE_END()
```

TS API

FMSTR_SetUpTsaBuff

Prototype

```
FMSTR_BOOL FMSTR_SetUpTsaBuff(FMSTR_ADDR buffAddr, FMSTR_SIZE bufferSize);
```

- Declaration: *freemaster.h*
- Implementation: *freemaster_tsa.c*

Arguments

- *buffAddr* [in] - address of the memory buffer for the dynamic TSA table
- *buffSize* [in] - size of the memory buffer which determines the maximum number of TSA entries to be added in the runtime

Description This function must be used to assign the RAM memory buffer to the TSA subsystem when FMSTR_USE_TSA_DYNAMIC is enabled. The memory buffer is then used to store the TSA entries added dynamically to the runtime TSA table using the FMSTR_TsaAddVar function call. The runtime TSA table is processed by the FreeMASTER PC Host tool along with all static tables as soon as the communication port is open.

The size of the memory buffer determines the number of TSA entries that can be added dynamically. Depending on the MCU platform, one TSA entry takes either 8 or 16 bytes.

FMSTR_TsaAddVar

Prototype

```
FMSTR_BOOL FMSTR_TsaAddVar(FMSTR_TSATBL_STRPTR tsaName, FMSTR_TSATBL_STRPTR ↵
    ↵ tsaType,
    FMSTR_TSATBL_VOIDPTR varAddr, FMSTR_SIZE32 varSize,
    FMSTR_SIZE flags);
```

- Declaration: *freemaster.h*
- Implementation: *freemaster_tsa.c*

Arguments

- *tsaName* [in] - name of the object
- *tsaType* [in] - name of the object type
- *varAddr* [in] - address of the object
- *varSize* [in] - size of the object
- *flags* [in] - access flags; a combination of these values:
 - *FMSTR_TSA_INFO_RO_VAR* — read-only memory-mapped object (typically a variable)
 - *FMSTR_TSA_INFO_RW_VAR* — read/write memory-mapped object
 - *FMSTR_TSA_INFO_NON_VAR* — other entry, describing structure types, structure members, enumerations, and other types

Description This function can be called only when the dynamic TSA table is enabled by the FMSTR_USE_TSA_DYNAMIC configuration option and when the FMSTR_SetUpTsaBuff function call is made to assign the dynamic TSA table memory. This function adds an entry into the dynamic TSA table. It can be used to register a read-only or read/write memory object or describe an item of the user-defined type.

See [TSA table definition](#) for more details about the TSA table entries.

Application Commands API

FMSTR_GetAppCmd

Prototype

```
FMSTR_APPCMD_CODE FMSTR_GetAppCmd(void);
```

- Declaration: *freemaster.h*
- Implementation: *freemaster_appcmd.c*

Description This function can be used to detect if there is an Application Command waiting to be processed by the application. If no command is pending, this function returns the FMSTR_APPCMDRESULT_NOCMD constant. Otherwise, this function returns the code of the Application Command that must be processed. Use the FMSTR_AppCmdAck call to acknowledge the Application Command after it is processed and to return the appropriate result code to the host.

The FMSTR_GetAppCmd function does not report the commands for which a callback handler function exists. If the FMSTR_GetAppCmd function is called when a callback-registered command is pending (and before it is actually processed by the callback function), this function returns FMSTR_APPCMDRESULT_NOCMD.

FMSTR_GetAppCmdData

Prototype

```
FMSTR_APPCMD_PDATA FMSTR_GetAppCmdData(FMSTR_SIZE* dataLen);
```

- Declaration: *freemaster.h*
- Implementation: *freemaster_appcmd.c*

Arguments

- *dataLen* [out] - pointer to the variable that receives the length of the data available in the buffer. It can be NULL when this information is not needed.

Description This function can be used to retrieve the Application Command data when the application determines that an Application Command is pending (see [FMSTR_GetAppCmd](#)).

There is just a single buffer to hold the Application Command data (the buffer length is FMSTR_APPCMD_BUFF_SIZE bytes). If the data are to be used in the application after the command is processed by the FMSTR_AppCmdAck call, copy the data out to a private buffer.

FMSTR_AppCmdAck

Prototype

```
void FMSTR_AppCmdAck(FMSTR_APPCMD_RESULT resultCode);
```

- Declaration: *freemaster.h*
- Implementation: *freemaster_appcmd.c*

Arguments

- *resultCode* [in] - the result code which is to be returned to FreeMASTER

Description This function is used when the Application Command processing finishes in the application. The resultCode passed to this function is returned back to the host and the driver is re-initialized to expect the next Application Command.

After this function is called and before the next Application Command arrives, the return value of the FMSTR_GetAppCmd function is FMSTR_APPCMDRESULT_NOCMD.

FMSTR_AppCmdSetResponseData

Prototype

```
void FMSTR_AppCmdSetResponseData(FMSTR_ADDR resultDataAddr, FMSTR_SIZE resultDataLen);
```

- Declaration: *freemaster.h*
- Implementation: *freemaster_appcmd.c*

Arguments

- *resultDataAddr* [in] - pointer to the data buffer that is to be copied to the Application Command data buffer
- *resultDataLen* [in] - length of the data to be copied. It must not exceed the FMSTR_APPCMD_BUFF_SIZE value.

Description This function can be used before the Application Command processing finishes, when there are data to be returned back to the PC.

The response data buffer is copied into the Application Command data buffer, from where it is accessed when the host requires it. Do not use FMSTR_GetAppCmdData and the data buffer after FMSTR_AppCmdSetResponseData is called.

Note: The current version of FreeMASTER does not support the Application Command response data.

FMSTR_RegisterAppCmdCall

Prototype

```
FMSTR_BOOL FMSTR_RegisterAppCmdCall(FMSTR_APPCMD_CODE appCmdCode, FMSTR_→PAPPCMDFUNC callbackFunc);
```

- Declaration: *freemaster.h*
- Implementation: *freemaster_appcmd.c*

Arguments

- *appCmdCode* [in] - the Application Command code for which the callback is to be registered
- *callbackFunc* [in] - pointer to the callback function that is to be registered. Use NULL to unregister a callback registered previously with this Application Command.

Return value This function returns a non-zero value when the callback function was successfully registered or unregistered. It can return zero when trying to register a callback function for more than FMSTR_MAX_APPCMD_CALLS different Application Commands.

Description This function can be used to register the given function as a callback handler for the Application Command. The Application Command is identified using single-byte code. The callback function is invoked automatically by the FreeMASTER driver when the protocol decoder obtains a request to get the application command result code.

The prototype of the callback function is

```
FMSTR_APPCMD_RESULT HandlerFunction(FMSTR_APPCMD_CODE nAppcmd,  
FMSTR_APPCMD_PDATA pData, FMSTR_SIZE nDataLen);
```

Where:

- *nAppcmd* -Application Command code
- *pData* —points to the Application Command data received (if any)
- *nDataLen* —information about the Application Command data length

The return value of the callback function is used as the Application Command Result Code and returned to FreeMASTER.

Note: The FMSTR_MAX_APPCMD_CALLS configuration macro defines how many different Application Commands may be handled by a callback function. When FMSTR_MAX_APPCMD_CALLS is undefined or defined as zero, the FMSTR_RegisterAppCmdCall function always fails.

Pipes API

FMSTR_PipeOpen

Prototype

```
FMSTR_HPIPE FMSTR_PipeOpen(FMSTR_PIPE_PORT pipePort, FMSTR_PPIPEFUNC pipeCallback,
    ↪
    FMSTR_ADDR pipeRxBuff, FMSTR_PIPE_SIZE pipeRxSize,
    FMSTR_ADDR pipeTxBuff, FMSTR_PIPE_SIZE pipeTxSize,
    FMSTR_U8 type, const FMSTR_CHAR *name);
```

- Declaration: *freemaster.h*
- Implementation: *freemaster_pipes.c*

Arguments

- *pipePort* [in] - port number that identifies the pipe for the client
- *pipeCallback* [in] - pointer to the callback function that is called whenever a pipe data status changes
- *pipeRxBuff* [in] - address of the receive memory buffer
- *pipeRxSize* [in] - size of the receive memory buffer
- *pipeTxBuff* [in] - address of the transmit memory buffer
- *pipeTxSize* [in] - size of the transmit memory buffer
- *type* [in] - a combination of FMSTR_PIPE_MODE_xxx and FMSTR_PIPE_SIZE_xxx constants describing primary pipe data format and usage. This type helps FreeMASTER decide how to access the pipe by default. Optional, use 0 when undetermined.
- *name* [in] - user name of the pipe port. This name is visible to the FreeMASTER user when creating the graphical pipe interface.

Description This function initializes a new pipe and makes it ready to accept or send the data to the PC Host client. The receive memory buffer is used to store the received data before they are read out by the FMSTR_PipeRead call. When this buffer gets full, the PC Host client denies the data transmission into this pipe until there is enough free space again. The transmit memory buffer is used to store the data transmitted by the application to the PC Host client using the FMSTR_PipeWrite call. The transmit buffer can get full when the PC Host is disconnected or when it is slow in receiving and reading out the pipe data.

The function returns the pipe handle which must be stored and used in the subsequent calls to manage the pipe object.

The callback function (if specified) is called whenever new data are received through the pipe and available for reading. This callback is also called when the data waiting in the transmit buffer are successfully pushed to the PC Host and the transmit buffer free space increases. The prototype of the callback function provided by the user application must be as follows. The *PipeHandler* name is only a placeholder and must be defined by the application.

```
void PipeHandler(FMSTR_HPIPE pipeHandle);
```

FMSTR_PipeClose

Prototype

```
void FMSTR_PipeClose(FMSTR_HPIPE pipeHandle);
```

- Declaration: *freemaster.h*
- Implementation: *freemaster_pipes.c*

Arguments

- *pipeHandle* [in] - pipe handle returned from the FMSTR_PipeOpen function call

Description This function de-initializes the pipe object. No data can be received or sent on the pipe after this call.

FMSTR_PipeWrite

Prototype

```
FMSTR_PIPE_SIZE FMSTR_PipeWrite(FMSTR_HPIPE pipeHandle, FMSTR_ADDR pipeData,  
FMSTR_PIPE_SIZE pipeDataLen, FMSTR_PIPE_SIZE writeGranularity);
```

- Declaration: *freemaster.h*
- Implementation: *freemaster_pipes.c*

Arguments

- *pipeHandle* [in] - pipe handle returned from the FMSTR_PipeOpen function call
- *pipeData* [in] - address of the data to be written
- *pipeDataLen* [in] - length of the data to be written
- *writeGranularity* [in] - size of the minimum unit of data which is to be written

Description This function puts the user-specified data into the pipe's transmit memory buffer and schedules it for transmission. This function returns the number of bytes that were successfully written into the buffer. This number may be smaller than the number of the requested bytes if there is not enough free space in the transmit buffer.

The *writeGranularity* argument can be used to split the data into smaller chunks, each of the size given by the *writeGranularity* value. The FMSTR_PipeWrite function writes as many data chunks as possible into the transmit buffer and does not attempt to write an incomplete chunk.

This feature can prove to be useful to avoid the intermediate caching when writing an array of integer values or other multi-byte data items. When making the nGranularity value equal to the nLength value, all data are considered as one chunk which is either written successfully as a whole or not at all. The nGranularity value of 0 or 1 disables the data-chunk approach.

FMSTR_PipeRead

Prototype

```
FMSTR_PIPE_SIZE FMSTR_PipeRead(FMSTR_HPIPE pipeHandle, FMSTR_ADDR pipeData,
                                FMSTR_PIPE_SIZE pipeDataLen, FMSTR_PIPE_SIZE readGranularity);
```

- Declaration: *freemaster.h*
- Implementation: *freemaster_pipes.c*

Arguments

- *pipeHandle* [in] - pipe handle returned from the FMSTR_PipeOpen function call
- *pipeData* [in] - address of the data buffer to be filled with the received data
- *pipeDataLen* [in] - length of the data to be read
- *readGranularity* [in] - size of the minimum unit of data which is to be read

Description This function copies the data received from the pipe from its receive buffer to the user buffer for further processing. The function returns the number of bytes that were successfully copied to the buffer. This number may be smaller than the number of the requested bytes if there is not enough data bytes available in the receive buffer.

The readGranularity argument can be used to copy the data in larger chunks in the same way as described in the FMSTR_PipeWrite function.

API data types This section describes the data types used in the FreeMASTER driver. The information provided here can be useful when modifying or porting the FreeMASTER Communication Driver to new NXP platforms.

Note: The licensing conditions prohibit use of FreeMASTER and the FreeMASTER Communication Driver with non-NXP MPU or MCU products.

Public common types The table below describes the public data types used in the FreeMASTER driver API calls. The data types are declared in the *freemaster.h* header file.

Type name	Description
<i>FM-STR_ADDR</i>	Data type used to hold the memory address. On most platforms, this is normally a C-pointer, but it may also be a pure integer type. For example, this type is defined as long integer on the 56F8xxx platform where the 24-bit addresses must be supported, but the C-pointer may be only 16 bits wide in some compiler configurations.
<i>FM-STR_SIZE</i>	Data type used to hold the memory block size. It is required that this type is unsigned and at least 16 bits wide integer.
<i>FM-STR_BOOL</i>	Data type used as a general boolean type. This type is used only in zero/non-zero conditions in the driver code.
<i>FM-STR_APPCM</i>	Data type used to hold the Application Command code. Generally, this is an unsigned 8-bit value.
<i>FM-STR_APPCM</i>	Data type used to create the Application Command data buffer. Generally, this is an unsigned 8-bit value.
<i>FM-STR_APPCM</i>	Data type used to hold the Application Command result code. Generally, this is an unsigned 8-bit value.

Public TSA types The table describes the TSA-specific public data types. These types are declared in the *freemaster_tsa.h* header file, which is included in the user application indirectly by the *freemaster.h* file.

<i>FM-STR_TSA_TII</i>	Data type used to hold a descriptor index in the TSA table or a table index in the list of TSA tables.
By default, this is defined as <i>FM-STR_SIZE</i> .	

Public Pipes types The table describes the data types used by the FreeMASTER Pipes API:

<i>FM-STR_HPIPE</i>	Pipe handle that identifies the open-pipe object.
Generally, this is a pointer to a void type.	
<i>FM-STR_PIPE_P</i>	Integer type required to hold at least 7 bits of data.
Generally, this is an unsigned 8-bit or 16-bit type.	
<i>FM-STR_PIPE_SI</i>	Integer type required to hold at least 16 bits of data.
This is used to store the data buffer sizes.	
<i>FM-STR_PPIPEF</i>	Pointer to the pipe handler function.
See FM-STR_PipeOpen for more details.	

Internal types The table describes the data types used internally by the FreeMASTER driver. The data types are declared in the platform-specific header file and they are not available in the application code.

<i>FMSTR_U8</i>	The smallest memory entity. On the vast majority of platforms, this is an unsigned 8-bit integer. On the 56F8xx DSP platform, this is defined as an unsigned 16-bit integer.
<i>FM-STR_U16</i>	Unsigned 16-bit integer.
<i>FM-STR_U32</i>	Unsigned 32-bit integer.
<i>FMSTR_S8</i>	Signed 8-bit integer.
<i>FM-STR_S16</i>	Signed 16-bit integer.
<i>FM-STR_S32</i>	Signed 32-bit integer.
<i>FM-STR_FLOAT</i>	4-byte standard IEEE floating-point type.
<i>FM-STR_FLAGS</i>	Data type forming a union with a structure of flag bit-fields.
<i>FM-STR_SIZE8</i>	Data type holding a general size value, at least 8 bits wide.
<i>FM-STR_INDEX</i>	General for-loop index. Must be signed, at least 16 bits wide.
<i>FM-STR_BCHR</i>	A single character in the communication buffer. Typically, this is an 8-bit unsigned integer, except for the DSP platforms where it is a 16-bit integer.
<i>FM-STR_BPTR</i>	A pointer to the communication buffer (an array of <i>FMSTR_BCHR</i>).

Document references

Links

- This document online: <https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html>

- FreeMASTER tool home: www.nxp.com/freemaster
- FreeMASTER community area: community.nxp.com/community/freemaster
- FreeMASTER GitHub code repo: <https://github.com/nxp-mcuxpresso/mcux-freemaster>
- MCUXpresso SDK home: www.nxp.com/mcuxpresso
- MCUXpresso SDK builder: mcuxpresso.nxp.com/en

Documents

- *FreeMASTER Usage Serial Driver Implementation* (document [AN4752](#))
- *Integrating FreeMASTER Time Debugging Tool With CodeWarrior For Microcontrollers v10.X Project* (document [AN4771](#))
- *Flash Driver Library For MC56F847xx And MC56F827xx DSC Family* (document [AN4860](#))

Revision history This Table summarizes the changes done to this document since the initial release.

Revision	Date	Description
1.0	03/2006	Limited initial release
2.0	09/2007	Updated for FreeMASTER version. New Freescale document template used.
2.1	12/2007	Added description of the new Fast Recorder feature and its API.
2.2	04/2010	Added support for MPC56xx platform, Added new API for use CAN interface.
2.3	04/2011	Added support for Kxx Kinetis platform and MQX operating system.
2.4	06/2011	Serial driver update, adds support for USB CDC interface.
2.5	08/2011	Added Packet Driven BDM interface.
2.7	12/2013	Added FLEXCAN32 interface, byte access and isr callback configuration option.
2.8	06/2014	Removed obsolete license text, see the software package content for up-to-date license.
2.9	03/2015	Update for driver version 1.8.2 and 1.9: FreeMASTER Pipes, TSA Active Content, LIN Transport Layer support, DEBUG-TX communication troubleshooting, Kinetis SDK support.
3.0	08/2016	Update for driver version 2.0: Added support for MPC56xx, MPC57xx, KEAxx and S32Kxx platforms. New NXP document template as well as new license agreement used. added MCAN interface. Folders structure at the installation destination was rearranged.
4.0	04/2019	Update for driver released as part of FreeMASTER v3.0 and MCUXpresso SDK 2.6. Updated to match new V4 serial communication protocol and new configuration options. This version of the document removes substantial portion of outdated information related to S08, S12, ColdFire, Power and other legacy platforms.
4.1	04/2020	Minor update for FreeMASTER driver included in MCUXpresso SDK 2.8.
4.2	09/2020	Added example applications description and information about the MCUXpresso Config Tools. Fixed the pipe-related API description.
4.3	10/2024	Added description of Network and Segger J-Link RTT interface configuration. Accompanying the MCUXpresso SDK version 24.12.00.
4.4	04/2025	Added Zephyr-specific information. Accompanying the MCUXpresso SDK version 25.06.00.

Chapter 2

RTOS

2.1 FreeRTOS

2.1.1 FreeRTOS kernel

Open source RTOS kernel for small devices.

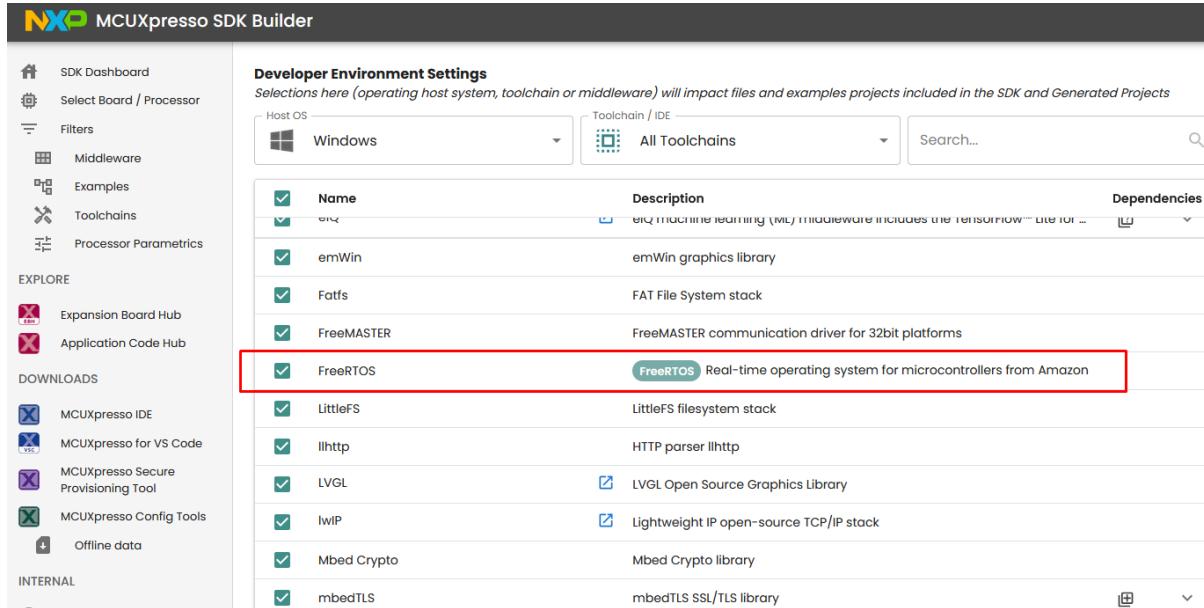
[FreeRTOS kernel for MCUXpresso SDK Readme](#)

[FreeRTOS kernel for MCUXpresso SDK](#)

Overview The purpose of this document is to describes the [FreeRTOS kernel repo](#) integration into the [NXP MCUXpresso Software Development Kit](#): [mcuxsdk](#). MCUXpresso SDK provides a comprehensive development solutions designed to optimize, ease, and help accelerate embedded system development of applications based on MCUs from NXP. This project involves the FreeRTOS kernel repo fork with:

- cmake and Kconfig support to allow the configuration and build in MCUXpresso SDK ecosystem
- FreeRTOS OS additions, such as [FreeRTOS driver wrappers](#), RTOS ready FatFs file system, and the implementation of FreeRTOS tickless mode

The history of changes in FreeRTOS kernel repo for MCUXpresso SDK are summarized in [CHANGELOG_mcuxsdk.md](#) file.

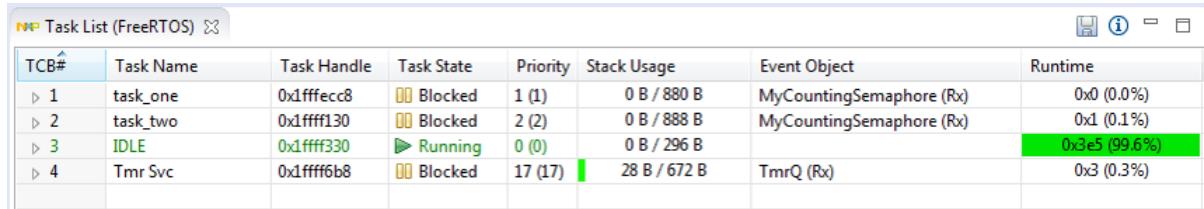

The MCUXpresso SDK framework also contains a set of FreeRTOS examples which show basic FreeRTOS OS features. This makes it easy to start a new FreeRTOS project or begin experimenting with FreeRTOS OS. Selected drivers and middleware are RTOS ready with related FreeRTOS adaptation layer.

FreeRTOS example applications The FreeRTOS examples are written to demonstrate basic FreeRTOS features and the interaction between peripheral drivers and the RTOS.

List of examples The list of `freertos_examples`, their description and availability for individual supported MCUXpresso SDK development boards can be obtained here: https://mcuxpresso.nxp.com/mcuxsdk/latest/html/examples/freertos_examples/index.html

Location of examples The FreeRTOS examples are located in `mcuxsdk-examples` repository, see the `freertos_examples` folder.

Once using MCUXpresso SDK zip packages created via the [MCUXpresso SDK Builder](#) the FreeRTOS kernel library and associated `freertos_examples` are added into final zip package once FreeRTOS components is selected on the Developer Environment Settings page:


The FreeRTOS examples in MCUXpresso SDK zip packages are located in `<MCUXpressoSDK_install_dir>/boards/<board_name>/freertos_examples/` subfolders.

Building a FreeRTOS example application For information how to use the cmake and Kconfig based build and configuration system and how to build `freertos_examples` visit: [MCUXpresso SDK documentation for Build And Configuration](#) [MCUXpresso SDK Getting Start Guide](#)

Tip: To list all FreeRTOS example projects and targets that can be built via the west build command, use this `west list_project` command in `mcuxsdk` workspace:

```
west list_project -p examples/freertos_examples
```

FreeRTOS aware debugger plugin NXP provides FreeRTOS task aware debugger for GDB. The plugin is compatible with Eclipse-based (MCUXpressoIDE) and is available after the installation.

FreeRTOS kernel for MCUXpresso SDK ChangeLog

Changelog FreeRTOS kernel for MCUXpresso SDK All notable changes to this project will be documented in this file.

The format is based on [Keep a Changelog](#), and this project adheres to [Semantic Versioning](#).

[Unreleased]**Added**

- Kconfig added CONFIG_FREERTOS_USE_CUSTOM_CONFIG_FRAGMENT config to optionally include custom FreeRTOSConfig fragment include file FreeRTOSConfig_frag.h. File must be provided by application.
- Added missing Kconfig option for configUSE_PICOLIBC_TLS.
- Add correct header files to build when configUSE_NEWLIB_REENTRANT and configUSE_PICOLIBC_TLS is selected in config.

[11.1.0_rev0]

- update amazon freertos version

[11.0.1_rev0]

- update amazon freertos version

[10.5.1_rev0]

- update amazon freertos version

[10.4.3_rev1]

- Apply CM33 security fix from 10.4.3-LTS-Patch-2. See rtos\freertos\freertos_kernel\History.txt
- Apply CM33 security fix from 10.4.3-LTS-Patch-1. See rtos\freertos\freertos_kernel\History.txt

[10.4.3_rev0]

- update amazon freertos version.

[10.4.3_rev0]

- update amazon freertos version.

[9.0.0_rev3]

- New features:
 - Tickless idle mode support for Cortex-A7. Add fsl_tickless_epit.c and fsl_tickless_generic.h in portable/IAR/ARM_CA9 folder.
 - Enabled float context saving in IAR for Cortex-A7. Added configUSE_TASK_FPU_SUPPORT macros. Modified port.c and portmacro.h in portable/IAR/ARM_CA9 folder.
- Other changes:
 - Transformed ARM_CM core specific tickless low power support into generic form under freertos/Source/portable/low_power_tickless/.

[9.0.0_rev2]

- New features:
 - Enabled MCUXpresso thread aware debugging. Add freertos_tasks_c_additions.h and configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H and configFR-TOS_MEMORY_SCHEME macros.

[9.0.0_rev1]

- New features:
 - Enabled -fno-optimize-sibling-calls optimization in GCC by adding **attribute((used))** for vTaskSwitchContext.
 - Enabled KDS Task Aware Debugger. Apply FreeRTOS patch to enable configRECORD_STACK_HIGH_ADDRESS macro. Modified files are task.c and FreeRTOS.h.

[9.0.0_rev0]

- New features:
 - Example freertos_sem_static.
 - Static allocation support RTOS driver wrappers.
- Other changes:
 - Tickless idle rework. Support for different timers is in separated files (fsl_tickless_systick.c, fsl_tickless_lptmr.c).
 - Removed configuration option configSYSTICK_USE_LOW_POWER_TIMER. Low power timer is now selected by linking of appropriate file fsl_tickless_lptmr.c.
 - Removed configOVERRIDE_DEFAULT_TICK_CONFIGURATION in RVDS port. Use of **attribute((weak))** is the preferred solution. Not same as _weak!

[8.2.3]

- New features:
 - Tickless idle mode support.
 - Added template application for Kinetis Expert (KEx) tool (template_application).
- Other changes:
 - Folder structure reduction. Keep only Kinetis related parts.

FreeRTOS kernel Readme

MCUXpresso SDK: FreeRTOS kernel This repository is a fork of FreeRTOS kernel (<https://github.com/FreeRTOS/FreeRTOS-Kernel>)(11.1.0). Modifications have been made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable FreeRTOS kernel repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which is composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-manifests(<https://github.com/nxp-mcuxpresso/mcuxsdk-manifests>) for the complete delivery of MCUXpresso SDK.

For more information about the FreeRTOS kernel repo adoption see [README_mcuxsdk.md](#): FreeRTOS kernel for MCUXpresso SDK Readme document.

Getting started This repository contains FreeRTOS kernel source/header files and kernel ports only. This repository is referenced as a submodule in [FreeRTOS/FreeRTOS](#) repository, which contains pre-configured demo application projects under FreeRTOS/Demo directory.

The easiest way to use FreeRTOS is to start with one of the pre-configured demo application projects. That way you will have the correct FreeRTOS source files included, and the correct include paths configured. Once a demo application is building and executing you can remove the demo application files, and start to add in your own application source files. See the [FreeRTOS Kernel Quick Start Guide](#) for detailed instructions and other useful links.

Additionally, for FreeRTOS kernel feature information refer to the [Developer Documentation](#), and [API Reference](#).

Also for contributing and creating a Pull Request please refer to *the instructions here*.

Getting help If you have any questions or need assistance troubleshooting your FreeRTOS project, we have an active community that can help on the [FreeRTOS Community Support Forum](#).

To consume FreeRTOS-Kernel

Consume with CMake If using CMake, it is recommended to use this repository using FetchContent. Add the following into your project's main or a subdirectory's CMakeLists.txt:

- Define the source and version/tag you want to use:

```
FetchContent_Declare(freertos_kernel
  GIT_REPOSITORY https://github.com/FreeRTOS/FreeRTOS-Kernel.git
  GIT_TAG      main #Note: Best practice to use specific git-hash or tagged version
)
```

In case you prefer to add it as a git submodule, do:

```
git submodule add https://github.com/FreeRTOS/FreeRTOS-Kernel.git <path of the submodule>
git submodule update --init
```

- Add a freertos_config library (typically an INTERFACE library) The following assumes the directory structure:

- include/FreeRTOSConfig.h

```
add_library(freertos_config INTERFACE)

target_include_directories(freertos_config SYSTEM
  INTERFACE
    include
)

target_compile_definitions(freertos_config
  INTERFACE
    projCOVERAGE_TEST=0
)
```

In case you installed FreeRTOS-Kernel as a submodule, you will have to add it as a subdirectory:

```
add_subdirectory(${FREERTOS_PATH})
```

- Configure the FreeRTOS-Kernel and make it available
 - this particular example supports a native and cross-compiled build option.

```
set( FREERTOS_HEAP "4" CACHE STRING "" FORCE)
# Select the native compile PORT
set( FREERTOS_PORT "GCC_POSIX" CACHE STRING "" FORCE)
# Select the cross-compile PORT
if (CMAKE_CROSSCOMPILING)
  set(FREERTOS_PORT "GCC_ARM_CA9" CACHE STRING "" FORCE)
endif()

FetchContent_MakeAvailable(freertos_kernel)
```

- In case of cross compilation, you should also add the following to freertos_config:

```
target_compile_definitions(freertos_config INTERFACE ${definitions})
target_compile_options(freertos_config INTERFACE ${options})
```

Consuming stand-alone - Cloning this repository To clone using HTTPS:

```
git clone https://github.com/FreeRTOS/FreeRTOS-Kernel.git
```

Using SSH:

```
git clone git@github.com:FreeRTOS/FreeRTOS-Kernel.git
```

Repository structure

- The root of this repository contains the three files that are common to every port - list.c, queue.c and tasks.c. The kernel is contained within these three files. croutine.c implements the optional co-routine functionality - which is normally only used on very memory limited systems.
- The ./portable directory contains the files that are specific to a particular microcontroller and/or compiler. See the readme file in the ./portable directory for more information.
- The ./include directory contains the real time kernel header files.
- The ./template_configuration directory contains a sample FreeRTOSConfig.h to help jumpstart a new project. See the *FreeRTOSConfig.h* file for instructions.

Code Formatting FreeRTOS files are formatted using the “uncrustify” tool. The configuration file used by uncrustify can be found in the [FreeRTOS/CI-CD-GitHub-Actions](#)’s uncrustify.cfg file.

Line Endings File checked into the FreeRTOS-Kernel repository use unix-style LF line endings for the best compatibility with git.

For optimal compatibility with Microsoft Windows tools, it is best to enable the git autocrlf feature. You can enable this setting for the current repository using the following command:

```
git config core.autocrlf true
```

Git History Optimizations Some commits in this repository perform large refactors which touch many lines and lead to unwanted behavior when using the git blame command. You can configure git to ignore the list of large refactor commits in this repository with the following command:

```
git config blame.ignoreRevsFile .git-blame-ignore-revs
```

Spelling and Formatting We recommend using [Visual Studio Code](#), commonly referred to as VSCode, when working on the FreeRTOS-Kernel. The FreeRTOS-Kernel also uses [cSpell](#) as part of its spelling check. The config file for which can be found at `cspell.config.yaml`. There is additionally a [cSpell plugin for VSCode](#) that can be used as well. `.cSpellWords.txt` contains words that are not traditionally found in an English dictionary. It is used by the spellchecker to verify the various jargon, variable names, and other odd words used in the FreeRTOS code base are correct. If your pull request fails to pass the spelling and you believe this is a mistake, then add the word to `.cSpellWords.txt`. When adding a word please then sort the list, which can be done by running the bash command: `sort -u .cSpellWords.txt -o .cSpellWords.txt`. Note that only the FreeRTOS-Kernel Source Files, *include*, *portable/MemMang*, and *portable/Common* files are checked for proper spelling, and formatting at this time.

2.1.2 FreeRTOS drivers

This is set of NXP provided FreeRTOS reentrant bus drivers.

2.1.3 backoffalgorithm

Algorithm for calculating exponential backoff with jitter for network retry attempts.

Readme

MCUXpresso SDK: backoffAlgorithm Library This repository is a fork of `backoffAlgorithm` library (<https://github.com/FreeRTOS/backoffalgorithm>)(1.3.0). Modifications have been made to adapt to NXP MCUXpresso SDK. `CMakeLists.txt` and `Kconfig` added to enable `backoffAlgorithm` repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which is composed of several sub-repositories/projects. Navigate to the top/parent repository `mcuxsdk-manifests`(<https://github.com/nxp-mcuxpresso/mcuxsdk-manifests>) for the complete delivery of MCUXpresso SDK.

backoffAlgorithm Library This repository contains the `backoffAlgorithm` library, a utility library to calculate backoff period using an exponential backoff with jitter algorithm for retrying network operations (like failed network connection with server). This library uses the “Full Jitter” strategy for the exponential backoff with jitter algorithm. More information about the algorithm can be seen in the [Exponential Backoff and Jitter](#) AWS blog.

The `backoffAlgorithm` library is distributed under the [MIT Open Source License](#).

Exponential backoff with jitter is typically used when retrying a failed network connection or operation request with the server. An exponential backoff with jitter helps to mitigate failed network operations with servers, that are caused due to network congestion or high request load on the server, by spreading out retry requests across multiple devices attempting network operations. Besides, in an environment with poor connectivity, a client can get disconnected at any time. A backoff strategy helps the client to conserve battery by not repeatedly attempting reconnections when they are unlikely to succeed.

See memory requirements for this library [here](#).

backoffAlgorithm v1.3.0 source code is part of the [FreeRTOS 202210.00 LTS release](#).

backoffAlgorithm v1.0.0 source code is part of the [FreeRTOS 202012.00 LTS release](#).

Reference example The example below shows how to use the backoffAlgorithm library on a POSIX platform to retry a DNS resolution query for amazon.com.

```
#include "backoff_algorithm.h"
#include <stdlib.h>
#include <string.h>
#include <netdb.h>
#include <unistd.h>
#include <time.h>

/* The maximum number of retries for the example code. */
#define RETRY_MAX_ATTEMPTS      ( 5U )

/* The maximum back-off delay (in milliseconds) for between retries in the example. */
#define RETRY_MAX_BACKOFF_DELAY_MS  ( 5000U )

/* The base back-off delay (in milliseconds) for retry configuration in the example. */
#define RETRY_BACKOFF_BASE_MS    ( 500U )

int main()
{
    /* Variables used in this example. */
    BackoffAlgorithmStatus_t retryStatus = BackoffAlgorithmSuccess;
    BackoffAlgorithmContext_t retryParams;
    char serverAddress[] = "amazon.com";
    uint16_t nextRetryBackoff = 0;

    int32_t dnsStatus = -1;
    struct addrinfo hints;
    struct addrinfo ** pListHead = NULL;
    struct timespec tp;

    /* Add hints to retrieve only TCP sockets in getaddrinfo. */
    ( void ) memset( &hints, 0, sizeof( hints ) );

    /* Address family of either IPv4 or IPv6. */
    hints.ai_family = AF_UNSPEC;
    /* TCP Socket. */
    hints.ai_socktype = ( int32_t ) SOCK_STREAM;
    hints.ai_protocol = IPPROTO_TCP;

    /* Initialize reconnect attempts and interval. */
    BackoffAlgorithm_InitializeParams( &retryParams,
                                      RETRY_BACKOFF_BASE_MS,
                                      RETRY_MAX_BACKOFF_DELAY_MS,
                                      RETRY_MAX_ATTEMPTS );

    /* Seed the pseudo random number generator used in this example (with call to
     * rand() function provided by ISO C standard library) for use in backoff period
     * calculation when retrying failed DNS resolution. */

    /* Get current time to seed pseudo random number generator. */
    ( void ) clock_gettime( CLOCK_REALTIME, &tp );
    /* Seed pseudo random number generator with seconds. */
    srand( tp.tv_sec );

    do
    {
        /* Perform a DNS lookup on the given host name. */
        dnsStatus = getaddrinfo( serverAddress, NULL, &hints, pListHead );
    }
}
```

(continues on next page)

(continued from previous page)

```

/* Retry if DNS resolution query failed. */
if( dnsStatus != 0 )
{
    /* Generate a random number and get back-off value (in milliseconds) for the next retry.
     * Note: It is recommended to use a random number generator that is seeded with
     * device-specific entropy source so that backoff calculation across devices is different
     * and possibility of network collision between devices attempting retries can be avoided.
     *
     * For the simplicity of this code example, the pseudo random number generator, rand()
     * function is used. */
    retryStatus = BackoffAlgorithm_GetNextBackoff( &retryParams, rand(), &nextRetryBackoff );

    /* Wait for the calculated backoff period before the next retry attempt of querying DNS.
     * As usleep() takes nanoseconds as the parameter, we multiply the backoff period by 1000. */
    ( void ) usleep( nextRetryBackoff * 1000U );
}
} while( ( dnsStatus != 0 ) && ( retryStatus != BackoffAlgorithmRetriesExhausted ) );

return dnsStatus;
}

```

Building the library A compiler that supports **C90 or later** such as *gcc* is required to build the library.

Additionally, the library uses a header file introduced in ISO C99, *stdint.h*. For compilers that do not provide this header file, the *source/include* directory contains *stdint.readme*, which can be renamed to *stdint.h* to build the *backoffAlgorithm* library.

For instance, if the example above is copied to a file named *example.c*, *gcc* can be used like so:

```
gcc -I source/include example.c source/backoff_algorithm.c -o example
./example
```

gcc can also produce an output file to be linked:

```
gcc -I source/include -c source/backoff_algorithm.c
```

Building unit tests

Checkout Unity Submodule By default, the submodules in this repository are configured with *update=none* in *.gitmodules*, to avoid increasing clone time and disk space usage of other repositories (like *amazon-freertos* that submodules this repository).

To build unit tests, the submodule dependency of Unity is required. Use the following command to clone the submodule:

```
git submodule update --checkout --init --recursive test/unit-test/Unity
```

Platform Prerequisites

- For running unit tests
 - C89 or later compiler like *gcc*
 - CMake 3.13.0 or later
- For running the coverage target, *gcov* is additionally required.

Steps to build Unit Tests

1. Go to the root directory of this repository. (Make sure that the **Unity** submodule is cloned as described [above](#).)
2. Create build directory: `mkdir build && cd build`
3. Run `cmake` while inside build directory: `cmake -S .. /test`
4. Run this command to build the library and unit tests: `make all`
5. The generated test executables will be present in `build/bin/tests` folder.
6. Run `ctest` to execute all tests and view the test run summary.

Contributing See *CONTRIBUTING.md* for information on contributing.

2.1.4 corehttp

C language HTTP client library designed for embedded platforms.

MCUXpresso SDK: coreHTTP Client Library

This repository is a fork of coreHTTP Client library (<https://github.com/FreeRTOS/corehttp>)(3.0.0). Modifications have been made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable coreHTTP Client repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which is composed of several sub-repositories/projects. Navigate to the top/parent repository `mcuxsdk-manifests`(<https://github.com/nxp-mcuxpresso/mcuxsdk-manifests>) for the complete delivery of MCUXpresso SDK.

coreHTTP Client Library

This repository contains a C language HTTP client library designed for embedded platforms. It has no dependencies on any additional libraries other than the standard C library, `llhttp`, and a customer-implemented transport interface. This library is distributed under the *MIT Open Source License*.

This library has gone through code quality checks including verification that no function has a [GNU Complexity](#) score over 8. This library has also undergone both static code analysis from [Coverity static analysis](#), and validation of memory safety and data structure invariance through the [CBMC automated reasoning tool](#).

See memory requirements for this library [here](#).

coreHTTP v3.0.0 source code is part of the [FreeRTOS 202210.00 LTS release](#).

coreHTTP v2.0.0 source code is part of the [FreeRTOS 202012.00 LTS release](#).

coreHTTP Config File The HTTP client library exposes configuration macros that are required for building the library. A list of all the configurations and their default values are defined in `core_http_config_defaults.h`. To provide custom values for the configuration macros, a custom config file named `core_http_config.h` can be provided by the user application to the library.

By default, a `core_http_config.h` custom config is required to build the library. To disable this requirement and build the library with default configuration values, provide `HTTP_DO_NOT_USE_CUSTOM_CONFIG` as a compile time preprocessor macro.

The HTTP client library can be built by either:

- Defining a `core_http_config.h` file in the application, and adding it to the include directories for the library build. **OR**
- Defining the `HTTP_DO_NOT_USE_CUSTOM_CONFIG` preprocessor macro for the library build.

Building the Library The `httpFilePaths.cmake` file contains the information of all source files and header include paths required to build the HTTP client library.

As mentioned in the *previous section*, either a custom config file (i.e. `core_http_config.h`) OR `HTTP_DO_NOT_USE_CUSTOM_CONFIG` macro needs to be provided to build the HTTP client library.

For a CMake example of building the HTTP library with the `httpFilePaths.cmake` file, refer to the `coverity_analysis` library target in `test/CMakeLists.txt` file.

Building Unit Tests

Platform Prerequisites

- For running unit tests, the following are required:
 - **C90 compiler** like `gcc`
 - **CMake 3.13.0 or later**
 - **Ruby 2.0.0 or later** is required for this repository's `CMock` test framework.
- For running the coverage target, the following are required:
 - `gcov`
 - `lcov`

Steps to build Unit Tests

1. Go to the root directory of this repository.
2. Run the `cmake` command: `cmake -S test -B build -DBUILD_CLONE_SUBMODULES=ON`
3. Run this command to build the library and unit tests: `make -C build all`
4. The generated test executables will be present in `build/bin/tests` folder.
5. Run `cd build && ctest` to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material [here](#).

The `test/cbmc/proofs` directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the instructions [here](#).

Reference examples The AWS IoT Device SDK for Embedded C repository contains demos of using the HTTP client library [here](#) on a POSIX platform. These can be used as reference examples for the library API.

Documentation

Existing Documentation For pre-generated documentation, please see the documentation linked in the locations below:

Location
AWS IoT Device SDK for Embedded C FreeRTOS.org

Note that the latest included version of coreHTTP may differ across repositories.

Generating Documentation The Doxygen references were created using Doxygen version 1.9.2. To generate the Doxygen pages, please run the following command from the root of this repository:

```
doxygen docs/doxygen/config.doxfile
```

Contributing See *CONTRIBUTING.md* for information on contributing.

2.1.5 corejson

JSON parser.

Readme

MCUXpresso SDK: coreJSON Library This repository is a fork of coreJSON library (<https://github.com/FreeRTOS/corejson>)(3.2.0). Modifications have been made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable coreJSON repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which is composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-manifests(<https://github.com/nxp-mcuxpresso/mcuxsdk-manifests>) for the complete delivery of MCUXpresso SDK.

coreJSON Library This repository contains the coreJSON library, a parser that strictly enforces the ECMA-404 JSON standard and is suitable for low memory footprint embedded devices. The coreJSON library is distributed under the *MIT Open Source License*.

This library has gone through code quality checks including verification that no function has a [GNU Complexity](#) score over 8, and checks against deviations from mandatory rules in the [MISRA coding standard](#). Deviations from the MISRA C:2012 guidelines are documented under [MISRA Deviations](#). This library has also undergone both static code analysis from [Coverity static analysis](#), and validation of memory safety through the [CBMC automated reasoning tool](#).

See memory requirements for this library [here](#).

coreJSON v3.2.0 source code is part of the [FreeRTOS 202210.00 LTS release](#).

coreJSON v3.0.0 source code is part of the [FreeRTOS 202012.00 LTS release](#).

Reference example

```

#include <stdio.h>
#include "core_json.h"

int main()
{
    // Variables used in this example.
    JSONStatus_t result;
    char buffer[] = "{\"foo\":\"abc\", \"bar\":{\"foo\":\"xyz\"}}";
    size_t bufferLength = sizeof( buffer ) - 1;
    char queryKey[] = "bar.foo";
    size_t queryKeyLength = sizeof( queryKey ) - 1;
    char * value;
    size_t valueLength;

    // Calling JSON_Validate() is not necessary if the document is guaranteed to be valid.
    result = JSON_Validate( buffer, bufferLength );

    if( result == JSONSuccess )
    {
        result = JSON_Search( buffer, bufferLength, queryKey, queryKeyLength,
                             &value, &valueLength );
    }

    if( result == JSONSuccess )
    {
        // The pointer "value" will point to a location in the "buffer".
        char save = value[ valueLength ];
        // After saving the character, set it to a null byte for printing.
        value[ valueLength ] = '\0';
        // "Found: bar.foo -> xyz" will be printed.
        printf( "Found: %s -> %s\n", queryKey, value );
        // Restore the original character.
        value[ valueLength ] = save;
    }

    return 0;
}

```

A search may descend through nested objects when the queryKey contains matching key strings joined by a separator, .. In the example above, bar has the value {"foo":"xyz"}. Therefore, a search for query key bar.foo would output xyz.

Building coreJSON A compiler that supports **C90 or later** such as *gcc* is required to build the library.

Additionally, the library uses 2 header files introduced in ISO C99, stdbool.h and stdint.h. For compilers that do not provide this header file, the *source/include* directory contains *stdbool.readme* and *stdint.readme*, which can be renamed to stdbool.h and stdint.h respectively.

For instance, if the example above is copied to a file named example.c, *gcc* can be used like so:

```
gcc -I source/include example.c source/core_json.c -o example
./example
```

gcc can also produce an output file to be linked:

```
gcc -I source/include -c source/core_json.c
```

Documentation

Existing documentation For pre-generated documentation, please see the documentation linked in the locations below:

Location
AWS IoT Device SDK for Embedded C FreeRTOS.org

Note that the latest included version of the coreJSON library may differ across repositories.

Generating documentation The Doxygen references were created using Doxygen version 1.9.2. To generate the Doxygen pages, please run the following command from the root of this repository:

```
doxygen docs/doxygen/config.doxfile
```

Building unit tests

Checkout Unity Submodule By default, the submodules in this repository are configured with update=none in `.gitmodules`, to avoid increasing clone time and disk space usage of other repositories (like `amazon-freertos` that submodules this repository).

To build unit tests, the submodule dependency of Unity is required. Use the following command to clone the submodule:

```
git submodule update --checkout --init --recursive test/unit-test/Unity
```

Platform Prerequisites

- For running unit tests
 - C90 compiler like gcc
 - CMake 3.13.0 or later
 - Ruby 2.0.0 or later is additionally required for the Unity test framework (that we use).
- For running the coverage target, gcov is additionally required.

Steps to build Unit Tests

1. Go to the root directory of this repository. (Make sure that the **Unity** submodule is cloned as described [above](#).)
2. Create build directory: `mkdir build && cd build`
3. Run `cmake` while inside build directory: `cmake -S .. /test`
4. Run this command to build the library and unit tests: `make all`
5. The generated test executables will be present in `build/bin/tests` folder.
6. Run `ctest` to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material [here](#). The test/cbmc/proofs directory contains CBMC proofs. In order to run these proofs you will need to install CBMC and other tools by following the instructions [here](#).

Contributing See *CONTRIBUTING.md* for information on contributing.

2.1.6 coremqtt

MQTT publish/subscribe messaging library.

MCUXpresso SDK: coreMQTT Library

This repository is a fork of coreMQTT library (<https://github.com/FreeRTOS/coremqtt>)(2.1.1). Modifications have been made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable coreMQTT repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which is composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-manifests(<https://github.com/nxp-mcuxpresso/mcuxsdk-manifests>) for the complete delivery of MCUXpresso SDK.

coreMQTT Client Library

This repository contains the coreMQTT library that has been optimized for a low memory footprint. The coreMQTT library is compliant with the [MQTT 3.1.1](#) standard. It has no dependencies on any additional libraries other than the standard C library, a customer-implemented network transport interface, and *optionally* a user-implemented platform time function. This library is distributed under the [MIT Open Source License](#).

This library has gone through code quality checks including verification that no function has a [GNU Complexity](#) score over 8, and checks against deviations from mandatory rules in the [MISRA](#) coding standard. Deviations from the MISRA C:2012 guidelines are documented under *MISRA Deviations*. This library has also undergone both static code analysis from [Coverity](#) static analysis, and validation of memory safety through the [CBMC automated reasoning tool](#).

See memory requirements for this library [here](#).

coreMQTT v2.1.1 source code is part of the FreeRTOS 202210.01 LTS release.

MQTT Config File The MQTT client library exposes build configuration macros that are required for building the library. A list of all the configurations and their default values are defined in *core_mqtt_config_defaults.h*. To provide custom values for the configuration macros, a custom config file named *core_mqtt_config.h* can be provided by the application to the library.

By default, a *core_mqtt_config.h* custom config is required to build the library. To disable this requirement and build the library with default configuration values, provide *MQTT_DO_NOT_USE_CUSTOM_CONFIG* as a compile time preprocessor macro.

Thus, the MQTT library can be built by either:

- Defining a *core_mqtt_config.h* file in the application, and adding it to the include directories list of the library
OR
- Defining the *MQTT_DO_NOT_USE_CUSTOM_CONFIG* preprocessor macro for the library build.

Sending metrics to AWS IoT When establishing a connection with AWS IoT, users can optionally report the Operating System, Hardware Platform and MQTT client version information of their device to AWS. This information can help AWS IoT provide faster issue resolution and technical support. If users want to report this information, they can send a specially formatted string (see below) in the username field of the MQTT CONNECT packet.

Format

The format of the username string with metrics is:

```
<Actual_Username>?SDK=<OS_Name>&Version=<OS_Version>&Platform=<Hardware_Platform>&
MQTTLib=<MQTT_Library_name>@<MQTT_Library_version>
```

Where

- <Actual_Username> is the actual username used for authentication, if username and password are used for authentication. When username and password based authentication is not used, this is an empty value.
- <OS_Name> is the Operating System the application is running on (e.g. FreeRTOS)
- <OS_Version> is the version number of the Operating System (e.g. V10.4.3)
- <Hardware_Platform> is the Hardware Platform the application is running on (e.g. WinSim)
- <MQTT_Library_name> is the MQTT Client library being used (e.g. coreMQTT)
- <MQTT_Library_version> is the version of the MQTT Client library being used (e.g. 1.0.2)

Example

- Actual_Username = “iotuser”, OS_Name = FreeRTOS, OS_Version = V10.4.3, Hardware_Platform_Name = WinSim, MQTT_Library_Name = coremqtt, MQTT_Library_version = 2.1.1. If username is not used, then “iotuser” can be removed.

```
/* Username string:
 * iotuser?SDK=FreeRTOS&Version=v10.4.3&Platform=WinSim&MQTTLib=coremqtt@2.1.1
 */

#define OS_NAME          "FreeRTOS"
#define OS_VERSION       "V10.4.3"
#define HARDWARE_PLATFORM_NAME  "WinSim"
#define MQTT_LIB          "coremqtt@2.1.1"

#define USERNAME_STRING      "iotuser?SDK=" OS_NAME "&Version=" OS_VERSION "&
                           Platform=" HARDWARE_PLATFORM_NAME "&MQTTLib=" MQTT_LIB
#define USERNAME_STRING_LENGTH ( ( uint16_t ) ( sizeof( USERNAME_STRING ) - 1 ) )

MQTTConnectInfo_t connectInfo;
connectInfo.pUserName = USERNAME_STRING;
connectInfo.userNameLength = USERNAME_STRING_LENGTH;
mqttStatus = MQTT_Connect( pMqttContext, &connectInfo, NULL, CONNACK_RECV_TIMEOUT_MS,
                           pSessionPresent );
```

Upgrading to v2.0.0 and above With coreMQTT versions \geq v2.0.0, there are breaking changes. Please refer to the *coreMQTT version \geq v2.0.0 Migration Guide*.

Building the Library The *mqttFilePaths.cmake* file contains the information of all source files and the header include path required to build the MQTT library.

Additionally, the MQTT library requires two header files that are not part of the ISO C90 standard library, stdbool.h and stdint.h. For compilers that do not provide these header files, the

source/include directory contains the files *stdbool.readme* and *stdint.readme*, which can be renamed to *stdbool.h* and *stdint.h*, respectively, to provide the type definitions required by MQTT.

As mentioned in the previous section, either a custom config file (i.e. *core_mqtt_config.h*) OR *MQTT_DO_NOT_USE_CUSTOM_CONFIG* macro needs to be provided to build the MQTT library.

For a CMake example of building the MQTT library with the *mqttFilePaths.cmake* file, refer to the *coverty_analysis* library target in *test/CMakeLists.txt* file.

Building Unit Tests

Checkout CMock Submodule By default, the submodules in this repository are configured with *update=none* in *.gitmodules* to avoid increasing clone time and disk space usage of other repositories (like [amazon-freertos](#) that submodules this repository).

To build unit tests, the submodule dependency of CMock is required. Use the following command to clone the submodule:

```
git submodule update --checkout --init --recursive test/unit-test/CMock
```

Platform Prerequisites

- Docker

or the following:

- For running unit tests
 - **C90 compiler** like `gcc`
 - **CMake 3.13.0 or later**
 - **Ruby 2.0.0 or later** is additionally required for the CMock test framework (that we use).
- For running the coverage target, **gcov** and **lcov** are additionally required.

Steps to build Unit Tests

1. If using docker, launch the container:
 1. `docker build -t coremqtt .`
 2. `docker run -it -v "$PWD":/workspaces/coreMQTT -w /workspaces/coreMQTT coremqtt`
2. Go to the root directory of this repository. (Make sure that the **CMock** submodule is cloned as described [above](#))
3. Run the *cmake* command: `cmake -S test -B build`
4. Run this command to build the library and unit tests: `make -C build all`
5. The generated test executables will be present in `build/bin/tests` folder.
6. Run `cd build && ctest` to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material [here](#). The *test/cbmc/proofs* directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the instructions [here](#).

Reference examples Please refer to the demos of the MQTT client library in the following locations for reference examples on POSIX and FreeRTOS platforms:

Platform	Location	Transport Interface Implementation
POSIX	AWS IoT Device SDK for Embedded C	POSIX sockets for TCP/IP and OpenSSL for TLS stack
FreeRTOS	FreeRTOS/FreeRTOS	FreeRTOS+TCP for TCP/IP and mbedTLS for TLS stack
FreeRTOS	FreeRTOS AWS Reference Integrations	Based on Secure Sockets Abstraction

Documentation

Existing Documentation For pre-generated documentation, please see the documentation linked in the locations below:

Location
AWS IoT Device SDK for Embedded C FreeRTOS.org

Note that the latest included version of coreMQTT may differ across repositories.

Generating Documentation The Doxygen references were created using Doxygen version 1.9.2. To generate the Doxygen pages, please run the following command from the root of this repository:

```
doxygen docs/doxygen/config.doxyfile
```

Contributing See *CONTRIBUTING.md* for information on contributing.

2.1.7 coremqtt-agent

The coreMQTT Agent library is a high level API that adds thread safety to the coreMQTT library.

Readme

MCUXpresso SDK: coreMQTT Agent Library This repository is a fork of coreMQTT Agent library (<https://github.com/FreeRTOS/coremqtt-agent>)(1.2.0). Modifications have been made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable coreMQTT Agent repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which is composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-manifests(<https://github.com/nxp-mcuxpresso/mcuxsdk-manifests>) for the complete delivery of MCUXpresso SDK.

coreMQTT Agent Library The coreMQTT Agent library is a high level API that adds thread safety to the coreMQTT library. The library provides thread safe equivalents to the coreMQTT's APIs, greatly simplifying its use in multi-threaded environments. The coreMQTT Agent library manages the MQTT connection by serializing the access to the coreMQTT library and reducing implementation overhead (e.g., removing the need for the application to repeatedly call to MQTT_ProcessLoop). This allows your multi-threaded applications to share the same MQTT connection, and enables you to design an embedded application without having to worry about coreMQTT thread safety.

This library has gone through code quality checks including verification that no function has a [GNU Complexity](#) score over 8, and checks against deviations from mandatory rules in the [MISRA coding standard](#). Deviations from the MISRA C:2012 guidelines are documented under *MISRA Deviations*. This library has also undergone both static code analysis from [Coverity](#) static analysis, and validation of memory safety through the [CBMC](#) automated reasoning tool.

See memory requirements for this library [here](#).

Cloning this repository This repo uses [Git Submodules](#) to bring in dependent components.

To clone using HTTPS:

```
git clone https://github.com/FreeRTOS/coreMQTT-Agent.git --recurse-submodules
```

Using SSH:

```
git clone git@github.com:FreeRTOS/coreMQTT-Agent.git --recurse-submodules
```

If you have downloaded the repo without using the --recurse-submodules argument, you need to run:

```
git submodule update --init --recursive
```

coreMQTT Agent Library Configurations The MQTT Agent library uses the same core_mqtt_config.h configuration file as coreMQTT, with the addition of configuration constants listed at the top of *core_mqtt_agent.h* and *core_mqtt_agent_command_functions.h*. Documentation for these configurations can be found [here](#).

To provide values for these configuration values, they must be either:

- Defined in core_mqtt_config.h used by coreMQTT **OR**
- Passed as compile time preprocessor macros

Porting the coreMQTT Agent Library In order to use the MQTT Agent library on a platform, you need to supply thread safe functions for the agent's *messaging interface*.

Messaging Interface Each of the following functions must be thread safe.

Function Pointer	Description
MQTTAgentMessageSend_t	A function that sends commands (as MQTTAgentCommand_t * pointers) to be received by MQTTAgent_CommandLoop. This can be implemented by pushing to a thread safe queue.
MQTTAgentMessageRecv_t	A function used by MQTTAgent_CommandLoop to receive MQTTAgentCommand_t * pointers that were sent by API functions. This can be implemented by receiving from a thread safe queue.
MQTTAgentCommandGet_t	A function that returns a pointer to an allocated MQTTAgentCommand_t structure, which is used to hold information and arguments for a command to be executed in MQTTAgent_CommandLoop(). If using dynamic memory, this can be implemented using malloc().
MQTTAgentCommandRelease_t	A function called to indicate that a command structure that had been allocated with the MQTTAgentCommandGet_t function pointer will no longer be used by the agent, so it may be freed or marked as not in use. If using dynamic memory, this can be implemented with free().

Reference implementations for the interface functions can be found in the [reference examples](#) below.

Additional Considerations

Static Memory If only static allocation is used, then the MQTTAgentCommandGet_t and MQTTAgentCommandRelease_t could instead be implemented with a pool of MQTTAgentCommand_t structures, with a queue or semaphore used to control access and provide thread safety. The below [reference examples](#) use static memory with a command pool.

Subscription Management The MQTT Agent does not track subscriptions for MQTT topics. The receipt of any incoming PUBLISH packet will result in the invocation of a single MQTTAgentIncomingPublishCallback_t callback, which is passed to MQTTAgent_Init() for initialization. If it is desired for different handlers to be invoked for different incoming topics, then the publish callback will have to manage subscriptions and fan out messages. A platform independent subscription manager example is implemented in the [reference examples](#) below.

Building the Library You can build the MQTT Agent source files that are in the *source* directory, and add *source/include* to your compiler's include path. Additionally, the MQTT Agent library requires the coreMQTT library, whose files follow the same *source/* and *source/include* pattern as the agent library; its build instructions can be found [here](#).

If using CMake, the *mqttAgentFilePaths.cmake* file contains the above information of the source files and the header include path from this repository. The same information is found for coreMQTT from *mqttFilePaths.cmake* in the *coreMQTT submodule*.

For a CMake example of building the MQTT Agent library with the *mqttAgentFilePaths.cmake* file, refer to the *coverity_analysis* library target in *test/CMakeLists.txt* file.

Building Unit Tests

Checkout CMock Submodule To build unit tests, the submodule dependency of CMock is required. Use the following command to clone the submodule:

```
git submodule update --checkout --init --recursive test/unit-test/CMock
```

Unit Test Platform Prerequisites

- For running unit tests
 - **C90 compiler** like gcc
 - **CMake 3.13.0 or later**
 - **Ruby 2.0.0 or later** is additionally required for the CMock test framework (that we use).
- For running the coverage target, **gcov** and **lcov** are additionally required.

Steps to build Unit Tests

1. Go to the root directory of this repository. (Make sure that the **CMock** submodule is cloned as described [above](#))
2. Run the *cmake* command: `cmake -S test -B build`
3. Run this command to build the library and unit tests: `make -C build all`
4. The generated test executables will be present in `build/bin/tests` folder.
5. Run `cd build && ctest` to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material [here](#).

The `test/cbmc/proofs` directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the instructions [here](#).

Reference examples Please refer to the demos of the MQTT Agent library in the following locations for reference examples on FreeRTOS platforms:

Location
coreMQTT Agent Demos
FreeRTOS/FreeRTOS

Documentation The MQTT Agent API documentation can be found [here](#).

Generating documentation The Doxygen references were created using Doxygen version 1.9.2. To generate the Doxygen pages yourself, please run the following command from the root of this repository:

```
doxygen docs/doxygen/config.doxfile
```

Getting help You can use your Github login to get support from both the FreeRTOS community and directly from the primary FreeRTOS developers on our [active support forum](#). You can find a list of [frequently asked questions](#) [here](#).

Contributing See *CONTRIBUTING.md* for information on contributing.

License This library is licensed under the MIT License. See the *LICENSE* file.

2.1.8 corepkcs11

PKCS #11 key management library.

Readme

MCUXpresso SDK: corePKCS11 Library This repository is a fork of PKCS #11 key management library (<https://github.com/FreeRTOS/corePKCS11/tree/v3.5.0>)(v3.5.0). Modifications have been made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable corepkcs11 repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which is composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-manifests(<https://github.com/nxp-mcuxpresso/mcuxsdk-manifests>) for the complete delivery of MCUXpresso SDK.

corePKCS11 Library PKCS #11 is a standardized and widely used API for manipulating common cryptographic objects. It is important because the functions it specifies allow application software to use, create, modify, and delete cryptographic objects, without ever exposing those objects to the application's memory. For example, FreeRTOS AWS reference integrations use a small subset of the PKCS #11 API to, among other things, access the secret (private) key necessary to create a network connection that is authenticated and secured by the [Transport Layer Security \(TLS\)](#) protocol – without the application ever 'seeing' the key.

The Cryptoki or PKCS #11 standard defines a platform-independent API to manage and use cryptographic tokens. The name, "PKCS #11", is used interchangeably to refer to the API itself and the standard which defines it.

This repository contains a software based mock implementation of the PKCS #11 interface (API) that uses the cryptographic functionality provided by Mbed TLS. Using a software mock enables rapid development and flexibility, but it is expected that the mock be replaced by an implementation specific to your chosen secure key storage in production devices.

Only a subset of the PKCS #11 standard is implemented, with a focus on operations involving asymmetric keys, random number generation, and hashing.

The targeted use cases include certificate and key management for TLS authentication and code-sign signature verification, on small embedded devices.

corePKCS11 is implemented on PKCS #11 v2.4.0, the full PKCS #11 standard can be found on the [oasis website](#).

This library has gone through code quality checks including verification that no function has a [GNU Complexity](#) score over 8, and checks against deviations from mandatory rules in the [MISRA coding standard](#). Deviations from the MISRA C:2012 guidelines are documented under [MISRA Deviations](#). This library has also undergone both static code analysis from [Coverity static analysis](#) and validation of memory safety through the [CBMC automated reasoning](#) tool.

See memory requirements for this library [here](#).

corePKCS11 v3.5.0 source code is part of the FreeRTOS 202210.00 LTS release.

corePKCS11 v3.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

Purpose Generally vendors for secure cryptoprocessors such as Trusted Platform Module (TPM), Hardware Security Module (HSM), Secure Element, or any other type of secure hardware enclave, distribute a PKCS #11 implementation with the hardware. The purpose of the corePKCS11 software only mock library is therefore to provide a non hardware specific PKCS #11 implementation that allows for rapid prototyping and development before switching to a cryptoprocessor specific PKCS #11 implementation in production devices.

Since the PKCS #11 interface is defined as part of the PKCS #11 [specification](#) replacing this library with another implementation should require little porting effort, as the interface will not change. The system tests distributed in this repository can be leveraged to verify the behavior of a different implementation is similar to corePKCS11.

corePKCS11 Configuration The corePKCS11 library exposes preprocessor macros which must be defined prior to building the library. A list of all the configurations and their default values are defined in the doxygen documentation for this library.

Build Prerequisites

Library Usage For building the library the following are required:

- **A C99 compiler**
- **mbedtls** library from [mbedtls](#) version 2.x or 3.x.
- **pkcs11 API header(s)** available from [OASIS](#) or [OpenSC](#)

Optionally, variables from the pkcsFilePaths.cmake file may be referenced if your project uses cmake.

Integration and Unit Tests In order to run the integration and unit test suites the following are dependencies are necessary:

- **C Compiler**
- **CMake 3.13.0 or later**
- **Ruby 2.0.0 or later** required by CMock.
- **Python 3** required for configuring mbedtls.
- **git** required for fetching dependencies.
- **GNU Make or Ninja**

The *mbedtls*, *CMock*, and *Unity* libraries are downloaded and built automatically using the cmake FetchContent feature.

Coverage Measurement and Instrumentation The following software is required to run the coverage target:

- Linux, MacOS, or another POSIX-like environment.
- A recent version of **GCC** or **Clang** with support for gcov-like coverage instrumentation.
- **gcov** binary corresponding to your chosen compiler
- **lcov** from the [Linux Test Project](#)
- **perl** needed to run the lcov utility.

Coverage builds are validated on recent versions of Ubuntu Linux.

Running the Integration and Unit Tests

1. Navigate to the root directory of this repository in your shell.
2. Run **cmake** to construct a build tree: `cmake -S test -B build`
 - You may specify your preferred build tool by appending `-G'Unix Makefiles'` or `-GNinja` to the command above.
 - You may append `-DUNIT_TESTS=0` or `-DSYSTEM_TESTS=0` to disable Unit Tests or Integration Tests respectively.
3. Build the test binaries: `cmake --build ./build --target all`
4. Run `ctest --test-dir ./build` or `cmake --build ./build --target test` to run the tests without capturing coverage.
5. Run `cmake --build ./build --target coverage` to run the tests and capture coverage data.

CBMC To learn more about CBMC and proofs specifically, review the training material [here](#).

The `test/cbmc/proofs` directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the instructions [here](#).

Reference examples The FreeRTOS-Labs repository contains demos using the PKCS #11 library [here](#) using FreeRTOS on the Windows simulator platform. These can be used as reference examples for the library API.

Porting Guide Documentation for porting corePKCS11 to a new platform can be found on the [AWS docs](#) web page.

corePKCS11 is not meant to be ported to projects that have a TPM, HSM, or other hardware for offloading crypto-processing. This library is specifically meant to be used for development and prototyping.

Related Example Implementations These projects implement the PKCS #11 interface on real hardware and have similar behavior to corePKCS11. It is preferred to use these, over corePKCS11, as they allow for offloading Cryptography to separate hardware.

- ARM's [Platform Security Architecture](#).
- Microchip's [cryptoauthlib](#).
- Infineon's [Optiga Trust X](#).

Documentation

Existing Documentation For pre-generated documentation, please see the documentation linked in the locations below:

Location
AWS IoT Device SDK for Embedded C FreeRTOS.org

Note that the latest included version of corePKCS11 may differ across repositories.

Generating Documentation The Doxygen references were created using Doxygen version 1.9.2. To generate the Doxygen pages, please run the following command from the root of this repository:

```
doxygen docs/doxygen/config.doxystyle
```

Security See *CONTRIBUTING* for more information.

License This library is licensed under the MIT-0 License. See the LICENSE file.

2.1.9 freertos-plus-tcp

Open source RTOS FreeRTOS Plus TCP.

Readme

MCUXpresso SDK: FreeRTOS-Plus-TCP Library This repository is a fork of FreeRTOS-Plus-TCP library (<https://github.com/FreeRTOS/freertos-plus-tcp>)(4.3.3). Modifications have been made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable FreeRTOS-Plus-TCP repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which is composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-manifests(<https://github.com/nxp-mcuxpresso/mcuxsdk-manifests>) for the complete delivery of MCUXpresso SDK.

FreeRTOS-Plus-TCP Library FreeRTOS-Plus-TCP is a lightweight TCP/IP stack for FreeRTOS. It provides a familiar Berkeley sockets interface, making it as simple to use and learn as possible. FreeRTOS-Plus-TCP's features and RAM footprint are fully scalable, making FreeRTOS-Plus-TCP equally applicable to smaller lower throughput microcontrollers as well as larger higher throughput microprocessors.

This library has undergone static code analysis and checks for compliance with the [MISRA coding standard](#). Any deviations from the MISRA C:2012 guidelines are documented under [MISRA Deviations](#). The library is validated for memory safety and data structure invariance through the [CBMC automated reasoning tool](#) for the functions that parse data originating from the network. The library is also protocol tested using Maxwell protocol tester for both IPv4 and IPv6.

FreeRTOS-Plus-TCP Library V4.2.2 source code is part of the FreeRTOS 202406.01 LTS release.

Getting started The easiest way to use version 4.0.0 and later of FreeRTOS-Plus-TCP is to refer the Getting started Guide (found [here](#)) Another way is to start with the pre-configured IPv4 Windows Simulator demo (found in [this directory](#)) or IPv6 Multi-endpoint Windows Simulator demo (found in [this directory](#)). That way you will have the correct FreeRTOS source files included, and the correct include paths configured. Once a demo application is building and executing you can remove the demo application files, and start to add in your own application source files. See the [FreeRTOS Kernel Quick Start Guide](#) for detailed instructions and other useful links.

Additionally, for FreeRTOS-Plus-TCP source code organization refer to the [Documentation](#), and [API Reference](#).

Getting help If you have any questions or need assistance troubleshooting your FreeRTOS project, we have an active community that can help on the [FreeRTOS Community Support Forum](#). Please also refer to [FAQ](#) for frequently asked questions.

Also see the [Submitting a bugs/feature request](#) section of [CONTRIBUTING.md](#) for more details.

Note: All the remaining sections are generic and applies to all the versions from V3.0.0 onwards.

Upgrading to V4.3.0 and above For users of STM32 network interfaces:

Starting from version V4.3.0, the STM32 network interfaces have been consolidated into a single unified implementation located at `source/portable/NetworkInterface/STM32/NetworkInterface.c`, supporting STM32 F4, F7, and H7 series microcontrollers, with newly added support for STM32 H5. The new interface has been tested with the STM32 HAL Ethernet (ETH) drivers, available at `source/portable/NetworkInterface/STM32/Drivers`. For compatibility, the legacy interfaces (STM32Fxx and STM32Hxx) have been retained and relocated to `source/portable/NetworkInterface/STM32/Legacy`.

Upgrading to V3.0.0 and V3.1.0 In version 3.0.0 or 3.1.0, the folder structure of FreeRTOS-Plus-TCP has changed and the files have been broken down into smaller logically separated modules. This change makes the code more modular and conducive to unit-tests. FreeRTOS-Plus-TCP V3.0.0 improves the robustness, security, and modularity of the library. Version 3.0.0 adds comprehensive unit test coverage for all lines and branches of code and has undergone protocol testing, and penetration testing by AWS Security to reduce the exposure to security vulnerabilities. Additionally, the source files have been moved to a source directory. This change requires modification of any existing project(s) to include the modified source files and directories.

FreeRTOS-Plus-TCP V3.1.0 source code(.c .h) is part of the [FreeRTOS 202210.00 LTS](#) release.

Generating pre V3.0.0 folder structure for backward compatibility: If you wish to continue using a version earlier than V3.0.0 i.e. continue to use your existing source code organization, a script is provided to generate the folder structure similar to [this](#).

Note: After running the script, while the .c files will have same names as the pre V3.0.0 source, the files in the include directory will have different names and the number of files will differ as well. This should, however, not pose any problems to most projects as projects generally include all files in a given directory.

Running the script to generate pre V3.0.0 folder structure: For running the script, you will need Python version > 3.7. You can download/install it from [here](#).

Once python is downloaded and installed, you can verify the version from your terminal/command window by typing `python --version`.

To run the script, you should switch to the FreeRTOS-Plus-TCP directory Then run `python <Path/to/the/script>/GenerateOriginalFiles.py`.

To consume FreeRTOS+TCP

Consume with CMake If using CMake, it is recommended to use this repository using FetchContent. Add the following into your project's main or a subdirectory's CMakeLists.txt:

- Define the source and version/tag you want to use:

```
FetchContent_Declare( freertos_plus_tcp
  GIT_REPOSITORY https://github.com/FreeRTOS/FreeRTOS-Plus-TCP.git
  GIT_TAG      main #Note: Best practice to use specific git-hash or tagged version
```

(continues on next page)

(continued from previous page)

```
GIT_SUBMODULES "" # Don't grab any submodules since not latest
)
```

- Configure the FreeRTOS-Kernel and make it available
 - this particular example supports a native and cross-compiled build option.

```
# Select the native compile PORT
set( FREERTOS_PLUS_TCP_NETWORK_IF "POSIX" CACHE STRING "" FORCE)
# Or: select a cross-compile PORT
if (CMAKE_CROSSCOMPILING)
  # Eg. STM32Hxx version of port
  set(FREERTOS_PLUS_TCP_NETWORK_IF "STM32HXX" CACHE STRING "" FORCE)
endif()
```

```
FetchContent_MakeAvailable(freertos_plus_tcp)
```

Consuming stand-alone This repository uses [Git Submodules](#) to bring in dependent components.

Note: If you download the ZIP file provided by GitHub UI, you will not get the contents of the submodules. (The ZIP file is also not a valid Git repository)

To clone using HTTPS:

```
git clone https://github.com/FreeRTOS/FreeRTOS-Plus-TCP.git ./FreeRTOS-Plus-TCP
cd ./FreeRTOS-Plus-TCP
git submodule update --checkout --init --recursive tools/CMock test/FreeRTOS-Kernel
```

Using SSH:

```
git clone git@github.com:FreeRTOS/FreeRTOS-Plus-TCP.git ./FreeRTOS-Plus-TCP
cd ./FreeRTOS-Plus-TCP
git submodule update --checkout --init --recursive tools/CMock test/FreeRTOS-Kernel
```

Porting The porting guide is available on [this page](#).

Repository structure This repository contains the FreeRTOS-Plus-TCP repository and a number of supplementary libraries for testing/PR Checks. Below is the breakdown of what each directory contains:

- tools
 - This directory contains the tools and related files (CMock/uncrustify) required to run tests/checks on the TCP source code.
- tests
 - This directory contains all the tests (unit tests and CBMC) and the dependencies ([FreeRTOS-Kernel](#)/[Litani-port](#)) the tests require.
- source/portable
 - This directory contains the portable files required to compile the FreeRTOS-Plus-TCP source code for different hardware/compilers.
- source/include
 - The include directory has all the ‘core’ header files of FreeRTOS-Plus-TCP source.
- source

- This directory contains all the [.c] source files.

Note At this time it is recommended to use BufferAllocation_2.c in which case it is essential to use the heap_4.c memory allocation scheme. See [memory management](#).

Kernel sources The FreeRTOS Kernel Source is in [FreeRTOS/FreeRTOS-Kernel repository](#), and it is consumed by testing/PR checks as a submodule in this repository.

The version of the FreeRTOS Kernel Source in use could be accessed at ./test/FreeRTOS-Kernel directory.

CBMC The test/cbmc/proofs directory contains CBMC proofs.

To learn more about CBMC and proofs specifically, review the training material [here](#).

In order to run these proofs you will need to install CBMC and other tools by following the instructions [here](#).