
MCUXpresso SDK Documentation
Release 25.09.00

NXP
Sep 19, 2025

Table of contents

1 FRDM-KE02Z40M 3
1.1 Overview . 3
1.2 Getting Started with MCUXpresso SDK Package . 3

1.2.1 Getting Started with MCUXpresso SDK Package 3
1.3 Getting Started with MCUXpresso SDK GitHub . 55

1.3.1 Getting Started with MCUXpresso SDK Repository 55
1.4 Release Notes . 68

1.4.1 MCUXpresso SDK Release Notes . 68
1.5 ChangeLog . 71

1.5.1 MCUXpresso SDK Changelog . 71
1.6 Driver API Reference Manual . 96
1.7 Middleware Documentation . 96

1.7.1 FreeMASTER . 96

2 MKE02Z4 97
2.1 ACMP: Analog Comparator Driver . 97
2.2 ADC: 12-bit Analog to Digital Converter Driver . 100
2.3 Clock Driver . 106
2.4 CRC: Cyclic Redundancy Check Driver . 117
2.5 FGPIO Driver . 120
2.6 FTMRx Flash Driver . 122
2.7 FTM: FlexTimer Driver . 140
2.8 GPIO: General-Purpose Input/Output Driver . 162
2.9 GPIO Driver . 163
2.10 I2C: Inter-Integrated Circuit Driver . 165
2.11 I2C Driver . 165
2.12 Irq . 179
2.13 IRQ: external interrupt (IRQ) module . 182
2.14 KBI: Keyboard interrupt Driver . 182
2.15 Common Driver . 183
2.16 MCM: Miscellaneous Control Module . 195
2.17 PIT: Periodic Interrupt Timer . 200
2.18 PORT Driver . 204
2.19 RTC: Real Time Clock . 211
2.20 SPI: Serial Peripheral Interface Driver . 216
2.21 SPI Driver . 216
2.22 TPM: Timer PWMModule . 229
2.23 UART: Universal Asynchronous Receiver/Transmitter Driver 240
2.24 UART Driver . 240
2.25 WDOG8: 8-bit Watchdog Timer . 255

3 Middleware 259
3.1 Motor Control . 259

3.1.1 FreeMASTER . 259

4 RTOS 297
4.1 FreeRTOS . 297

i

4.1.1 FreeRTOS kernel . 297
4.1.2 FreeRTOS drivers . 297
4.1.3 backoffalgorithm . 297
4.1.4 corehttp . 297
4.1.5 corejson . 297
4.1.6 coremqtt . 298
4.1.7 coremqtt-agent . 298
4.1.8 corepkcs11 . 298
4.1.9 freertos-plus-tcp . 298

ii

MCUXpresso SDK Documentation, Release 25.09.00

This documentation contains information specific to the frdmke02z40m board.

Table of contents 1

MCUXpresso SDK Documentation, Release 25.09.00

2 Table of contents

Chapter 1

FRDM-KE02Z40M

1.1 Overview

The Freedom-KE02Z40M is an ultra-low-cost development platform for Kinetis KE02 MCUs

MCU device and part on board is shown below:

• Device: MKE02Z4

• PartNumber: MKE02Z64VQH4

1.2 Getting Started with MCUXpresso SDK Package

1.2.1 Getting Started with MCUXpresso SDK Package

Overview

The NXP MCUXpresso software and tools offer comprehensive development solutions designed
to optimize, ease, and help accelerate embedded system development of applications based on
general purpose, crossover, and Bluetooth-enabled MCUs from NXP. The MCUXpresso SDK in-
cludes a flexible set of peripheral drivers designed to speed up and simplify development of
embedded applications. Along with the peripheral drivers, theMCUXpresso SDK provides an ex-
tensive and rich set of example applications covering everything from basic peripheral use case
examples to full demo applications. The MCUXpresso SDK contains optional RTOS integrations
such as FreeRTOS andAzure RTOS, and various othermiddleware to support rapid development.

For supported toolchain versions, seeMCUXpresso SDK Release Notes (document MCUXSDKRN).

For more details about MCUXpresso SDK, see MCUXpresso Software Development Kit (SDK).

3

http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.09.00

MCUXpresso SDK board support package folders

MCUXpresso SDK board support package provides example applications for NXP development
and evaluation boards for Arm Cortex-M cores including Freedom, Tower System, and LPCX-
presso boards. Board support packages are found inside the top-level boards folder and each
supported board has its own folder (an MCUXpresso SDK package can support multiple boards).
Within each <board_name> folder, there are various subfolders to classify the type of examples
it contains. These include (but are not limited to):

• cmsis_driver_examples: Simple applications intended to show how to use CMSIS drivers.

• demo_apps: Full-featured applications that highlight key functionality and use cases of the
target MCU. These applications typically use multiple MCU peripherals and may leverage
stacks and middleware.

• driver_examples: Simple applications that show how to use the MCUXpresso SDK’s periph-
eral drivers for a single use case. These applications typically only use a single peripheral
but there are cases wheremultiple peripherals are used (for example, SPI conversion using
DMA).

• emwin_examples: Applications that use the emWin GUI widgets.

• rtos_examples: Basic FreeRTOS OS examples that show the use of various RTOS objects
(semaphores, queues, and so on) and interfaces with the MCUXpresso SDK’s RTOS drivers

• usb_examples: Applications that use the USB host/device/OTG stack.

Example application structure This section describes how the various types of example ap-
plications interact with the other components in the MCUXpresso SDK. To get a comprehensive
understanding of all MCUXpresso SDK components and folder structure, see MCUXpresso SDK
API Reference Manual.

Each <board_name> folder in the boards directory contains a comprehensive set of examples
that are relevant to that specific piece of hardware. Although we use the hello_world exam-
ple (part of the demo_apps folder), the same general rules apply to any type of example in the
<board_name> folder.

In the hello_world application folder you see the following contents:

4 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

All files in the application folder are specific to that example, so it is easy to copy and paste an
existing example to start developing a custom application based on a project provided in the
MCUXpresso SDK.

Locating example application source files When opening an example application in any of
the supported IDEs, various source files are referenced. The MCUXpresso SDK devices folder is
the central component to all example applications. It means that the examples reference the
same source files and, if one of these files is modified, it could potentially impact the behavior of
other examples.

The main areas of the MCUXpresso SDK tree used in all example applications are:

• devices/<device_name>: The device’s CMSIS header file, MCUXpresso SDK feature file, and
a few other files

• devices/<device_name>/cmsis_drivers: All the CMSIS drivers for your specific MCU

• devices/<device_name>/drivers: All of the peripheral drivers for your specific MCU

• devices/<device_name>/<tool_name>: Toolchain-specific startup code, including vector ta-
ble definitions

• devices/<device_name>/utilities: Items such as the debug console that are used by many of
the example applications

• devices/<devices_name>/project: Project template used in CMSIS PACK new project creation

For examples containing middleware/stacks or an RTOS, there are references to the appropriate
source code. Middleware source files are located in the middleware folder and RTOSes are in the
rtos folder. The core files of each of these are shared, so modifying one could have potential
impacts on other projects that depend on that file.

Run a demo using MCUXpresso IDE

Note: Ensure that the MCUXpresso IDE toolchain is included when generating the MCUXpresso
SDK package.

This section describes the steps required to configure MCUXpresso IDE to build, run, and debug
example applications. The hello_world demo application targeted for the hardware platform is

1.2. Getting Started with MCUXpresso SDK Package 5

MCUXpresso SDK Documentation, Release 25.09.00

used as an example, though these steps can be applied to any example application in the MCUX-
presso SDK.

Select the workspace location Every time MCUXpresso IDE launches, it prompts the user to
select a workspace location. MCUXpresso IDE is built on top of Eclipse which uses workspace
to store information about its current configuration, and in some use cases, source files for the
projects are in the workspace. The location of the workspace can be anywhere, but it is recom-
mended that the workspace be located outside the MCUXpresso SDK tree.

Build an example application To build an example application, follow these steps.

1. Drag and drop the SDK zip file into the Installed SDKs view to install an SDK. In thewindow
that appears, click OK and wait until the import has finished.

2. On the Quickstart Panel, click Import SDK example(s)….

3. Expand the demo_apps folder and select hello_world.

4. Click Next.

6 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

5. Ensure Redlib: Use floating-point version of printf is selected if the example prints
floating-point numbers on the terminalfor demo applications such as adc_basic, adc_burst,
adc_dma, and adc_interrupt. Otherwise, it is not necessary to select this option. Then, click
Finish.

Run an example application For more information on debug probe support in the MCUX-
presso IDE, see community.nxp.com.

To download and run the application, perform the following steps:

1. Ensure the host driver for the debugger firmware has been installed. See On-board debug-
ger.

2. Connect the development platform to your PC via a USB cable.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug serial port number (to determine the COM port number, see How to determine COM
port. Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_DEBUG_UART_BAUDRATE variable in board.h file)

2. No parity

1.2. Getting Started with MCUXpresso SDK Package 7

https://community.nxp.com/message/630901

MCUXpresso SDK Documentation, Release 25.09.00

3. 8 data bits

4. 1 stopbit

4. On the Quickstart Panel, click Debug to launch the debug session.

5. Thefirst time youdebug a project, theDebugEmulator Selectiondialog is displayed, show-
ing all supported probes that are attached to your computer. Select the probe through
which you want to debug and click OK. (For any future debug sessions, the stored probe
selection is automatically used, unless the probe cannot be found.)

8 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

6. The application is downloaded to the target and automatically runs to main().

7. Start the application by clicking Resume.

The hello_world application is now running and a banner is displayed on the terminal. If not,
check your terminal settings and connections.

1.2. Getting Started with MCUXpresso SDK Package 9

MCUXpresso SDK Documentation, Release 25.09.00

Build amulticore example application This section describes the steps required to configure
MCUXpresso IDE to build, run, and debug multicore example applications. The following steps
can be applied to any multicore example application in the MCUXpresso SDK. Here, the dual-
core version of hello_world example application targeted for the LPCXpresso54114 hardware
platform is used as an example.

1. Multicore examples are imported into the workspace in a similar way as single core ap-
plications, explained in Build an example application. When the SDK zip package for
LPCXpresso54114 is installed and available in the Installed SDKs view, click Import SDK
example(s)… on the Quickstart Panel. In the window that appears, expand the LPCxx
folder and select LPC54114J256. Then, select lpcxpresso54114 and click Next.

2. Expand the multicore_examples/hello_world folder and select cm4. The cm0plus counterpart
project is automatically imported with the cm4 project, because themulticore examples are
linked together and there is no need to select it explicitly. Click Finish.

10 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

3. Now, two projects should be imported into the workspace. To start building the
multicore application, highlight the lpcxpresso54114_multicore_examples_hello_world_cm4
project (multicore master project) in the Project Explorer. Then choose the appropriate
build target, Debug or Release, by clicking the downward facing arrow next to the ham-
mer icon, as shown in the figure. For this example, select Debug.

The project starts building after the build target is selected. Because of the project reference
settings in multicore projects, triggering the build of the primary core application (cm4) also
causes the referenced auxiliary core application (cm0plus) to build.

Note: When the Release build is requested, it is necessary to change the build configuration of
both the primary and auxiliary core application projects first. To do this, select both projects in
the Project Explorer view and then right click which displays the context-sensitive menu. Select
Build Configurations -> Set Active -> Release. This alternate navigation using the menu item
is Project -> Build Configuration -> Set Active -> Release. After switching to the Release build
configuration, the build of the multicore example can be started by triggering the primary core
application (cm4) build.

1.2. Getting Started with MCUXpresso SDK Package 11

MCUXpresso SDK Documentation, Release 25.09.00

Run a multicore example application The primary core debugger handles flashing of both
the primary and the auxiliary core applications into the SoC flashmemory. To download and run
the multicore application, switch to the primary core application project and perform all steps
as described in Run an example application. These steps are common for both single-core
applications and the primary side of dual-core applications, ensuring both sides of themulticore
application are properly loaded and started. However, there is one additional dialogue that is
specific tomulticore examples which requires selecting the target core. See the following figures
as reference.

12 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

1.2. Getting Started with MCUXpresso SDK Package 13

MCUXpresso SDK Documentation, Release 25.09.00

After clicking the “Resume All Debug sessions” button, the hello_world multicore application
runs and a banner is displayed on the terminal. If this is not the case, check your terminal
settings and connections.

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary
core has been released from the reset and running correctly. It is also possible to de-
bug both sides of the multicore application in parallel. After creating the debug ses-
sion for the primary core, perform same steps also for the auxiliary core application.
Highlight the lpcxpresso54114_multicore_examples_hello_world_cm0plus project (multicore
slave project) in the Project Explorer. On the Quickstart Panel, click “Debug ‘lpcx-
presso54114_multicore_examples_hello_world_cm0plus’ [Debug]” to launch the second debug

14 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

session.

1.2. Getting Started with MCUXpresso SDK Package 15

MCUXpresso SDK Documentation, Release 25.09.00

Now, the two debug sessions should be opened, and the debug controls can be used for both
debug sessions depending on the debug session selection. Keep the primary core debug session
selected by clicking the “Resume” button. The hello_worldmulticore application then starts run-
ning. The primary core application starts the auxiliary core application during runtime, and the
auxiliary core application stops at the beginning of themain() function. The debug session of the
auxiliary core application is highlighted. After clicking the “Resume” button, it is applied to the
auxiliary core debug session. Therefore, the auxiliary core application continues its execution.

16 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

At this point, it is possible to suspend and resume individual cores independently. It is also pos-
sible to make synchronous suspension and resumption of both the cores. This is done either
by selecting both opened debug sessions (multiple selections) and clicking the “Suspend” / “Re-
sume” control button, or just using the “Suspend All Debug sessions” and the “Resume All Debug
sessions” buttons.

1.2. Getting Started with MCUXpresso SDK Package 17

MCUXpresso SDK Documentation, Release 25.09.00

18 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

Build a TrustZone example application This section describes the steps required to configure
MCUXpresso IDE to build, run, and debug TrustZone example applications. The TrustZone ver-
sion of the hello_world example application targeted for theMIMXRT595-EVK hardware platform
is used as an example, though these steps can be applied to any TrustZone example application
in the MCUXpresso SDK.

1. TrustZone examples are imported into the workspace in a similar way as single core ap-
plications. When the SDK zip package for MIMXRT595-EVK is installed and available in
the Installed SDKs view, click Import SDK example(s)… on the Quickstart Panel. In the
window that appears, expand theMIMXRT500 folder and selectMIMXRT595S. Then, select
evkmimxrt595 and click Next.

2. Expand the trustzone_examples/ folder and select hello_world_s. Because TrustZone exam-
ples are linked together, the non-secure project is automatically imported with the secure
project, and there is no need to select it explicitly. Then, click Finish.

1.2. Getting Started with MCUXpresso SDK Package 19

MCUXpresso SDK Documentation, Release 25.09.00

3. Now, two projects should be imported into the workspace. To start building the TrustZone
application, highlight the evkmimxrt595_hello_world_s project (TrustZone master project)
in the Project Explorer. Then, choose the appropriate build target, Debug or Release, by
clicking the downward facing arrownext to the hammer icon, as shown in following figure.
For this example, select the Debug target.

The project starts building after the build target is selected. It is requested to build the
application for the secure project first, because the non-secure project must know the se-
cure project since CMSE library when running the linker. It is not possible to finish the
non-secure project linker when the secure project since CMSE library is not ready.

Note: When the Release build is requested, it is necessary to change the build configu-
ration of both the secure and non-secure application projects first. To do this, select both
projects in the Project Explorer view by clicking to select the first project, then using shift-
click or control-click to select the second project. Right click in the Project Explorer view to
display the context-sensitivemenu and select Build Configurations > Set Active >Release.
This is also possible by using the menu item of Project > Build Configuration >Set Active
>Release. After switching to the Release build configuration. Build the application for the
secure project first.

20 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

Run a TrustZone example application To download and run the application, perform all
steps as described in Run an example application. These steps are common for single core,
and TrustZone applications, ensuring <board_name>_hello_world_s is selected for debugging.

In the Quickstart Panel, click Debug to launch the second debug session.

1.2. Getting Started with MCUXpresso SDK Package 21

MCUXpresso SDK Documentation, Release 25.09.00

Now, the TrustZone sessions should be opened. Click Resume. The hello_world TrustZone appli-
cation then starts running, and the secure application starts the non-secure application during
runtime.

Run a demo application using IAR

This section describes the steps required to build, run, and debug example applications provided
in the MCUXpresso SDK.

Note: IAR Embedded Workbench for Arm version 8.32.3 is used in the following example, and
the IAR toolchain should correspond to the latest supported version, as described in theMCUX-
presso SDK Release Notes.

Build an example application Do the following steps to build the hello_world example appli-
cation.

1. Open the desired demo application workspace. Most example application workspace files
can be located using the following path:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/iar

Other example applications may have additional folders in their path.

2. Select the desired build target from the drop-down menu.

For this example, select hello_world – debug.

22 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

3. To build the demo application, clickMake, highlighted in red in following figure.

4. The build completes without errors.

Run an example application To download and run the application, perform these steps:

1. Ensure the host driver for the debugger firmware has been installed. See On-board debug-
ger.

2. Connect the development platform to your PC via USB cable.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug COM port (to determine the COM port number, see How to determine COM port).
Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_DEBUG_UART_BAUDRATE variable in the board.h file)

2. No parity

3. 8 data bits

1.2. Getting Started with MCUXpresso SDK Package 23

MCUXpresso SDK Documentation, Release 25.09.00

4. 1 stopbit

4. In IAR, click the Download and Debug button to download the application to the target.

5. The application is then downloaded to the target and automatically runs to themain() func-
tion.

6. Run the code by clicking the Go button.

24 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

7. The hello_world application is now running and a banner is displayed on the terminal. If it
does not appear, check your terminal settings and connections.

Build a multicore example application This section describes the steps to build and run a
dual-core application. The demo applications workspace files are located in this folder:

<install_dir>/boards/<board_name>/multicore_examples/<application_name>/<core_type>/iar

Begin with a simple dual-core version of the HelloWorld application. Themulticore HelloWorld
IAR workspaces are located in this folder:

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm0plus/iar/hello_world_cm0plus.
↪→eww

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm4/iar/hello_world_cm4.eww

Build both applications separately by clicking the Make button. Build the application for the
auxiliary core (cm0plus) first, because the primary core application project (cm4) must know
the auxiliary core application binary when running the linker. It is not possible to finish the
primary core linker when the auxiliary core application binary is not ready.

Run a multicore example application The primary core debugger handles flashing both pri-
mary and the auxiliary core applications into the SoC flash memory. To download and run the
multicore application, switch to the primary core application project and perform steps 1 – 4 as
described in Run an example application. These steps are common for both single core and
dual-core applications in IAR.

After clicking the “Download and Debug” button, the auxiliary core project is opened in the sep-
arate EWARM instance. Both the primary and auxiliary images are loaded into the device flash
memory and the primary core application is executed. It stops at the default C language entry
point in the *main()*function.

Run both cores by clicking the “Start all cores” button to start the multicore application.

During the primary core code execution, the auxiliary core is released from the reset. The
hello_world multicore application is now running and a banner is displayed on the terminal.
If this does not appear, check the terminal settings and connections.

1.2. Getting Started with MCUXpresso SDK Package 25

MCUXpresso SDK Documentation, Release 25.09.00

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary core has
been released from the reset and is running correctly. When both cores are running, use the
“Stop all cores”, and “Start all cores” control buttons to stop or run both cores simultaneously.

Build a TrustZone example application This section describes the particular steps that must
be done in order to build and run a TrustZone application. The demo applications workspace
files are located in this folder:

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/[<core_type>]/iar/
↪→<application_name>_ns/iar

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/[<core_type>]/iar/
↪→<application_name>_s/iar

Begin with a simple TrustZone version of the Hello World application. The TrustZone Hello
World IAR workspaces are located in this folder:

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_ns/iar/hello_world_
↪→ns.eww

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_s/iar/hello_world_s.
↪→eww

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_s/iar/hello_world.eww

This project hello_world.eww contains both secure and non-secure projects in one workspace and
it allows the user to easily transition from one project to another. Build both applications sep-
arately by clicking Make. It is requested to build the application for the secure project first,
because the non-secure project must know the secure project, since the CMSE library is running
the linker. It is not possible to finish the non-secure project linker with the secure project since
CMSE library is not ready.

Run a TrustZone example application The secure project is configured to download both
secure and non-secure output files, so debugging can be fully managed from the secure project.
To download and run the TrustZone application, switch to the secure application project and
perform steps 1 – 4 as described in Run an example application. These steps are common for
both single core, and TrustZone applications in IAR. After clicking Download and Debug, both
the secure and non-secure images are loaded into the devicememory, and the secure application
is executed. It stops at the Reset_Handler function.

26 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

Run the code by clicking Go to start the application.

The TrustZone hello_world application is now running and a banner is displayed on the terminal.
If this is not true, check your terminal settings and connections.

Note: If the application is running in RAM (debug/release build target), in Op-
tions**>**Debugger > Download tab, disable Use flash loader(s). This can avoid the _ns
download issue on i.MXRT500.

1.2. Getting Started with MCUXpresso SDK Package 27

MCUXpresso SDK Documentation, Release 25.09.00

Run a demo using Keil MDK/μVision

This section describes the steps required to build, run, and debug example applications provided
in the MCUXpresso SDK.

Install CMSIS device pack After the MDK tools are installed, Cortex Microcontroller Software
Interface Standard (CMSIS) device packs must be installed to fully support the device from a
debug perspective. These packs include things such as memory map information, register defi-
nitions, and flash programming algorithms. Follow these steps to install the appropriate CMSIS
pack.

1. Open the MDK IDE, which is called μVision. In the IDE, select the Pack Installer icon.

2. After the installation finishes, close the Pack Installer window and return to the μVision
IDE.

Build an example application
1. Open the desired example application workspace in:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/mdk

The workspace file is named as <demo_name>.uvmpw. For this specific example, the actual
path is:

28 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

2. To build the demo project, select Rebuild, highlighted in red.

3. The build completes without errors.

Run an example application To download and run the application, perform these steps:

1. Ensure the host driver for the debugger firmware has been installed. See On-board debug-
ger.

2. Connect the development platform to your PC via USB cable using USB connector.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm and connect to the
debug serial port number (to determine the COM port number, see How to determine COM
port. Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_DEBUG_UART_BAUDRATE variable in the board.h file)

2. No parity

3. 8 data bits

4. 1 stopbit

4. In μVision, after the application is built, click the Download button to download the appli-
cation to the target.

1.2. Getting Started with MCUXpresso SDK Package 29

MCUXpresso SDK Documentation, Release 25.09.00

5. After clicking theDownload button, the application downloads to the target and is running.
To debug the application, click the Start/Stop Debug Session button, highlighted in red.

6. Run the code by clicking the Run button to start the application.

The hello_world application is now running and a banner is displayed on the terminal. If
this does not appear, check your terminal settings and connections.

30 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

Build a multicore example application This section describes the steps to build and run a
dual-core application. The demo applications workspace files are located in this folder:

<install_dir>/boards/<board_name>/multicore_examples/<application_name>/<core_type>/mdk

Begin with a simple dual-core version of the HelloWorld application. Themulticore HelloWorld
Keil MSDK/μVision workspaces are located in this folder:

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm0plus/mdk/hello_world_
↪→cm0plus.uvmpw

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm4/mdk/hello_world_cm4.uvmpw

Build both applications separately by clicking the Rebuild button. Build the application for the
auxiliary core (cm0plus) first because the primary core application project (cm4) must know the
auxiliary core application binarywhen running the linker. It is not possible to finish the primary
core linker when the auxiliary core application binary is not ready.

Run a multicore example application The primary core debugger flashes both the primary
and the auxiliary core applications into the SoC flash memory. To download and run the mul-
ticore application, switch to the primary core application project and perform steps 1 – 5 as
described in Run an example application. These steps are common for both single-core and
dual-core applications in μVision.

Both the primary and the auxiliary image is loaded into the device flash memory. After clicking
the “Run” button, the primary core application is executed. During the primary core code execu-
tion, the auxiliary core is released from the reset. The hello_world multicore application is now
running and a banner is displayed on the terminal. If this does not appear, check your terminal
settings and connections.

1.2. Getting Started with MCUXpresso SDK Package 31

MCUXpresso SDK Documentation, Release 25.09.00

An LED controlled by the auxiliary core starts flashing indicating that the auxiliary core has been
released from the reset and is running correctly.

Attach the running application of the auxiliary core by opening the auxiliary core project in
the second μVision instance and clicking the “Start/Stop Debug Session” button. After this, the
second debug session is opened and the auxiliary core application can be debugged.

Armdescribesmulticore debugging using theNXP LPC54114 Cortex-M4/M0+ dual-core processor
and Keil uVision IDE in Application Note 318 at www.keil.com/appnotes/docs/apnt_318.asp. The
associated video can be found here.

Build a TrustZone example application This section describes the particular steps that must
be done in order to build and run a TrustZone application. The demo applications workspace
files are located in this folder:

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/<application_name>_ns/
↪→mdk

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/<application_name>_s/
↪→mdk

Begin with a simple TrustZone version of the Hello World application. The TrustZone Hello
World Keil MSDK/μVision workspaces are located in this folder:

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_ns/mdk/hello_world_
↪→ns.uvmpw

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_s/mdk/hello_world_s.
↪→uvmpw

32 Chapter 1. FRDM-KE02Z40M

http://www.keil.com/appnotes/docs/apnt_318.asp
https://www.youtube.com/watch?v=lMX-2lrv7Zs

MCUXpresso SDK Documentation, Release 25.09.00

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_s/mdk/hello_world.
↪→uvmpw

This project hello_world.uvmpw contains both secure and non-secure projects in one workspace
and it allows the user to easily transition from one project to another.

Build both applications separately by clicking Rebuild. It is requested to build the application
for the secure project first, because the non-secure project must know the secure project since
CMSE library is running the linker. It is not possible to finish the non-secure project linker with
the secure project because CMSE library is not ready.

Run a TrustZone example application The secure project is configured to download both
secure and non-secure output files so debugging can be fully managed from the secure project.

To download and run the TrustZone application, switch to the secure application project and
perform steps as described in Run an example application. These steps are common for single
core, dual-core, and TrustZone applications in μVision. After clicking Download and Debug,
both the secure and non-secure images are loaded into the device flash memory, and the secure
application is executed. It stops at the main() function.

Run the code by clicking Run to start the application.

The hello_world application is now running and a banner is displayed on the terminal. If not,
check your terminal settings and connections.

1.2. Getting Started with MCUXpresso SDK Package 33

MCUXpresso SDK Documentation, Release 25.09.00

Run a demo using Arm GCC

This section describes the steps to configure the command-line Arm GCC tools to build, run, and
debug demo applications and necessary driver libraries provided in the MCUXpresso SDK. The
hello_world demo application is targeted which is used as an example.

Set up toolchain This section contains the steps to install the necessary components required
to build and run anMCUXpresso SDKdemoapplicationwith theArmGCC toolchain, as supported
by the MCUXpresso SDK. There are many ways to use Arm GCC tools, but this example focuses
on a Windows operating system environment.

Install GCC Arm Embedded tool chain Download and run the installer from GNU Arm Em-
bedded Toolchain. This is the actual toolset (in other words, compiler, linker, and so on). The
GCC toolchain should correspond to the latest supported version, as described in MCUXpresso
SDK Release Notes.

Install MinGW (only required on Windows OS) The Minimalist GNU for Windows (MinGW)
development tools provide a set of tools that are not dependent on third-party C-Runtime DLLs
(such as Cygwin). The build environment used by the MCUXpresso SDK does not use the MinGW
build tools, but does leverage the base install of both MinGW and MSYS. MSYS provides a basic
shell with a Unix-like interface and tools.

1. Download the latest MinGWmingw-get-setup installer from MinGW.

2. Run the installer. The recommended installation path is C:\MinGW, however, you may
install to any location.

Note: The installation path cannot contain any spaces.

3. Ensure that themingw32-base andmsys-base are selected under Basic Setup.

4. In the Installation menu, click Apply Changes and follow the remaining instructions to
complete the installation.

5. Add the appropriate item to the Windows operating system path environment variable.
It can be found under Control Panel->System and Security->System->Advanced System
Settings in the Environment Variables… section. The path is:

34 Chapter 1. FRDM-KE02Z40M

http://sourceforge.net/projects/mingw/files/Installer/

MCUXpresso SDK Documentation, Release 25.09.00

<mingw_install_dir>\bin

Assuming the default installation path, C:\MinGW, an example is shown below. If the path
is not set correctly, the toolchain will not work.

Note: If you have C:\MinGW\msys\x.x\bin in your PATH variable (as required by Kinetis
SDK 1.0.0), remove it to ensure that the new GCC build system works correctly.

Add a new system environment variable for ARMGCC_DIR Create a new system environ-
ment variable and name it as ARMGCC_DIR. The value of this variable should point to the Arm
GCC Embedded tool chain installation path. For this example, the path is:

C:\Program Files (x86)\GNU Tools Arm Embedded\8 2018-q4-major

See the installation folder of the GNU Arm GCC Embedded tools for the exact pathname of your
installation.

1.2. Getting Started with MCUXpresso SDK Package 35

MCUXpresso SDK Documentation, Release 25.09.00

Short path should be used for path setting, you could convert the path to short path by running
command for %I in (.) do echo %~sI in above path.

Install CMake

Windows OS
1. Download CMake 3.0.x from www.cmake.org/cmake/resources/software.html.

2. Install CMake, ensuring that the option Add CMake to system PATH is selected when in-
stalling. The user chooses to select whether it is installed into the PATH for all users or just
the current user. In this example, it is installed for all users.

36 Chapter 1. FRDM-KE02Z40M

http://www.cmake.org/cmake/resources/software.html

MCUXpresso SDK Documentation, Release 25.09.00

3. Follow the remaining instructions of the installer.

4. You may need to reboot your system for the PATH changes to take effect.

5. Make sure sh.exe is not in the Environment Variable PATH. This is a limitation of
mingw32-make.

Linux OS It depends on the distributions of Linux Operation System. Here we use Ubuntu as
an example.

Open shell and use following commands to install cmake and its version. Ensure the cmake
version is above 3.0.x.

$ sudo apt-get install cmake
$ cmake --version

Build an example application To build an example application, follow these steps.

1. Open a GCC Arm Embedded tool chain command window. To launch the window, from
the Windows operating system Startmenu, go to Programs >GNU Tools Arm Embedded
<version> and select GCC Command Prompt.

1.2. Getting Started with MCUXpresso SDK Package 37

MCUXpresso SDK Documentation, Release 25.09.00

2. Change the directory to the example application project directory which has a path similar
to the following:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc

For this example, the exact path is:

Note: To change directories, use the cd command.

3. Type build_debug.bat on the command line or double click on build_debug.bat file in
Windows Explorer to build it. The output is as shown in following figure.

Run an example application This section describes steps to run a demo application using J-
Link GDB Server application. To install J-Link host driver and update the on-board debugger
firmware to Jlink firmware, see On-board debugger.

After the J-Link interface is configured and connected, follow these steps to download and run
the demo applications:

1. Connect the development platform to your PC via USB cable between the on-board debug-
ger USB connector and the PC USB connector. If using a standalone J-Link debug pod, con-
nect it to the SWD/JTAG connector of the board.

2. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug serial port number (to determine the COM port number, see How to determine COM
port). Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_DEBUG_UART_BAUDRATE variable in board.h file)

2. No parity

3. 8 data bits

4. 1 stop bit

38 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

3. To launch the application, open the Windows Startmenu and select Programs > SEGGER
> J-Link <version> J-Link GDB Server.
Note: It is assumed that the J-Link software is already installed.

The SEGGER J-Link GDB Server Config settings dialog appears.
4. Make sure to check the following options.

1. Target interface: The debug connection on board uses internal SWD signaling. In
case of a wrong setting J-Link is unable to communicate with device under test.

2. Script file: If required, a J-Link init script file can be used for board initialization.
The file with the “.jlinkscript” file extension is located in the <install_dir>/boards/
<board_name>/ directory.

3. Under the Server settings, check the GDB port for connection with the gdb target re-
mote command. For more information, see step 9.

4. There is a command line version of J-LinkGDB server “JLinkGDBServerCL.exe”. Typical
path is C:\Program Files\SEGGER\JLink\. To start the J-Link GDB server with the same
settings as are selected in the UI, you can use these command line options.

1.2. Getting Started with MCUXpresso SDK Package 39

MCUXpresso SDK Documentation, Release 25.09.00

40 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

5. After it is connected, the screen should look like this figure:

6. If not already running, open a GCCArmEmbedded tool chain commandwindow. To launch
the window, from theWindows operating system Start menu, go to Programs - GNU Tools
Arm Embedded <version> and select GCC Command Prompt.

7. Change to the directory that contains the example application output. The output can be
found in using one of these paths, depending on the build target selected:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/debug

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/release

8. Run the arm-none-eabi-gdb.exe <application_name>.elf command. For this example, it is
arm-none-eabi-gdb.exe hello_world.elf.

1.2. Getting Started with MCUXpresso SDK Package 41

MCUXpresso SDK Documentation, Release 25.09.00

9. Run these commands:

1. target remote localhost:2331

2. monitor reset

3. monitor halt

4. load

5. monitor reset

10. The application is now downloaded and halted. Execute the monitor go command to start
the demo application.

The hello_world application is now running and a banner is displayed on the terminal. If
this does not appear, check your terminal settings and connections.

Build a multicore example application This section describes the steps to build and run a
dual-core application. The demo application build scripts are located in this folder:

<install_dir>/boards/<board_name>/multicore_examples/<application_name>/<core_type>/armgcc

Begin with a simple dual-core version of the HelloWorld application. Themulticore HelloWorld
GCC build scripts are located in this folder:

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm0plus/armgcc/build_debug.bat

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm4/armgcc/build_debug.bat

42 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

Build both applications separately following steps for single core examples as described in Build
an example application.

Run a multicore example application When running a multicore application, the same pre-
requisites for J-Link/J-Link OpenSDA firmware, and the serial console as for the single-core ap-
plication, applies, as described in Run an example application.
The primary core debugger handles flashing of both the primary and the auxiliary core appli-
cations into the SoC flash memory. To download and run the multicore application, switch to
the primary core application project and perform steps 1 to 10, as described in Run an example
application. These steps are common for both single-core and dual-core applications in Arm
GCC.

Both the primary and the auxiliary image is loaded into the SPI flash memory. After execution
of the monitor go command, the primary core application is executed. During the primary core
code execution, the auxiliary core code is reallocated from the flashmemory to the RAM, and the
auxiliary core is released from the reset. The hello_world multicore application is now running

1.2. Getting Started with MCUXpresso SDK Package 43

MCUXpresso SDK Documentation, Release 25.09.00

and a banner is displayed on the terminal. If this is not true, check your terminal settings and
connections.

Build a TrustZone example application This section describes the steps to build and run a
TrustZone application. The demo application build scripts are located in this folder:

44 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/[<core_type>]/
↪→<application_name>_ns/armgcc

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/[<core_type>]/
↪→<application_name>_s/armgcc

Begin with a simple TrustZone version of the Hello World application. The TrustZone Hello
World GCC build scripts are located in this folder:

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_ns/armgcc/build_
↪→debug.bat

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_s/armgcc/build_
↪→debug.bat

Build both applications separately, following steps for single core examples as described inBuild
an example application. It is requested to build the application for the secure project first,
because the non-secure project must know the secure project, since CMSE library is running the
linker. It is not possible to finish the non-secure project linker with the secure project because
the CMSE library is not ready.

1.2. Getting Started with MCUXpresso SDK Package 45

MCUXpresso SDK Documentation, Release 25.09.00

Run a TrustZone example application When running a TrustZone application, the same pre-
requisites for J-Link/J-Link OpenSDA firmware, and the serial console as for the single core ap-
plication, apply, as described in Run an example application.
To download and run the TrustZone application, perform steps 1 to 10, as described in Run an
example application. These steps are common for both single core and TrustZone applications
in Arm GCC.

Then, run these commands:

1. arm-none-eabi-gdb.exe

2. target remote localhost:2331

3. monitor reset

4. monitor halt

5. monitor exec SetFlashDLNoRMWThreshold = 0x20000

6. load <install_dir>/boards/evkmimxrt595/trustzone_examples/hello_world/hello_world_ns/
armgcc/debug/hello_world_ns.elf

7. load <install_dir>/boards/evkmimxrt595/trustzone_examples/hello_world/hello_world_s/
armgcc/debug/hello_world_s.elf

8. monitor reset

The application is now downloaded and halted. Execute the c command to start the demo appli-
cation.

46 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

MCUXpresso Config Tools

MCUXpresso Config Tools can help configure the processor and generate initialization code for
the on chip peripherals. The tools are able to modify any existing example project, or create a
new configuration for the selected board or processor. The generated code is designed to be used
with MCUXpresso SDK version 24.12.00 or later.

Following table describes the tools included in the MCUXpresso Config Tools.

1.2. Getting Started with MCUXpresso SDK Package 47

MCUXpresso SDK Documentation, Release 25.09.00

Config Tool Description Im-
age

Pins tool For configuration of pin routing and pin electrical properties.

Clock tool For system clock configuration

Peripher-
als tools

For configuration of other peripherals

TEE tool Configures access policies for memory area and peripherals helping to
protect and isolate sensitive parts of the application.

Device
Config-
uration
tool

Configures Device Configuration Data (DCD) contained in the program
image that the Boot ROM code interprets to set up various on-chip pe-
ripherals prior to the program launch.

MCUXpresso Config Tools can be accessed in the following products:

• Integrated in the MCUXpresso IDE. Config tools are integrated with both compiler and de-
bugger which makes it the easiest way to begin the development.

• Standalone version available for download from www.nxp.com/mcuxpresso. Recom-
mended for customers using IAR Embedded Workbench, Keil MDK µVision, or Arm GCC.

• Online version available on mcuxpresso.nxp.com. Recommended doing a quick evalua-
tion of the processor or use the tool without installation.

Each version of the product contains a specific Quick Start Guide document MCUXpresso IDE
Config Tools installation folder that can help start your work.

How to determine COM port

This section describes the steps necessary to determine the debug COM port number of your
NXP hardware development platform. All NXP boards shipwith a factory programmed, onboard
debug interface, whether it is based on MCU-Link or the legacy OpenSDA, LPC-Link2, P&E Micro
OSJTAG interface. To determinewhat your specific board shipswith, seeDefault debug interfaces.

1. Linux: The serial port can be determined by running the following command after the USB
Serial is connected to the host:

$ dmesg | grep ”ttyUSB”
[503175.307873] usb 3-12: cp210x converter now attached to ttyUSB0
[503175.309372] usb 3-12: cp210x converter now attached to ttyUSB1

There are two ports, one is for core0 debug console and the other is for core1.

2. Windows: To determine the COM port open Device Manager in the Windows operating
system. Click the Startmenu and type Device Manager in the search bar.

In the Device Manager, expand the Ports (COM & LPT) section to view the available ports.
The COM port names are different for all the NXP boards.

1. CMSIS-DAP/mbed/DAPLink interface:

48 Chapter 1. FRDM-KE02Z40M

http://www.nxp.com/mcuxpresso
http://mcuxpresso.nxp.com

MCUXpresso SDK Documentation, Release 25.09.00

2. P&E Micro:

3. J-Link:

4. P&E Micro OSJTAG:

5. MRB-KW01:

On-board Debugger

This section describes the on-board debuggers used on NXP development boards.

On-boarddebuggerMCU-Link MCU-Link is a powerful and cost effective debug probe that can
beused seamlesslywithMCUXpresso IDE, and is also compatiblewith 3rd party IDEs that support
CMSIS-DAP protocol. MCU-Link also includes a USB to UART bridge feature (VCOM) that can be
used to provide a serial connection between the target MCU and a host computer. MCU-Link
features a high-speed USB interface for high performance debug. MCU-Link is compatible with
Windows, MacOS and Linux. A free utility from NXP provides an easy way to install firmware
updates.

On-boardMCU-Link debugger supports CMSIS-DAP and J-Link firmware. See the table in Default
debug interfaces to determine the default debug interface that comes loaded on your specific
hardware platform.

The corresponding host driver must be installed before debugging.
• For boards with CMSIS-DAP firmware, visit developer.mbed.org/handbook/Windows-
serial-configuration and follow the instructions to install the Windows operating system
serial driver. If running on Linux OS, this step is not required.

• If using J-Link with either a standalone debug pod or MCU-Link, install the J-Link software
(drivers and utilities) from www.segger.com/jlink-software.html.

Updating MCU-Link firmware This firmware in this debug interface may be updated using
the host computer utility called MCU-Link. This typically used when switching between the de-
fault debugger protocol (CMSIS-DAP) to SEGGER J-Link, or for updating this firmware with new
releases of these. This section contains the steps to reprogram the debug probe firmware.

Note: If MCUXpresso IDE is used and the jumper making DFUlink is installed on the board (JP5
on some boards, but consult the board user manual or schematic for specific jumper number),
MCU-Link debug probe boots to DFU mode, and MCUXpresso IDE automatically downloads the

1.2. Getting Started with MCUXpresso SDK Package 49

http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration
https://www.segger.com/downloads/jlink/

MCUXpresso SDK Documentation, Release 25.09.00

CMSIS-DAP firmware to the probe before flash memory programming (after clicking Debug).
Using DFU mode ensures that most up-to-date/compatible firmware is used with MCUXpresso
IDE.

NXP provides the MCU-Link utility, which is the recommended tool for programming the latest
versions of CMSIS-DAP and J-Link firmware onto MCU-Link or NXP boards. The utility can be
downloaded from MCU-Link.

These steps show how to update the debugger firmware on your board for Windows operating
system.

1. Install the MCU-Link utility.

2. Unplug the board’s USB cable.

3. Make the DFU link (install the jumper labeled DFUlink).

4. Connect the probe to the host via USB (use Link USB connector).

5. Open a command shell and call the appropriate script located in the MCU-Link installation
directory (<MCU-Link install dir>).

1. To program CMSIS-DAP debug firmware: <MCU-Link install dir>/scripts/
program_CMSIS

2. To program J-Link debug firmware: <MCU-Link install dir>/scripts/program_JLINK

6. Remove DFU link (remove the jumper installed in Step 3).

7. Repower the board by removing the USB cable and plugging it in again.

On-board debugger LPC-Link LPC-Link 2 is an extensible debug probe that can be used seam-
lessly with MCUXpresso IDE, and is also compatible with 3rd party IDEs that support CMSIS-DAP
protocol. MCU-Link also includes a USB to UART bridge feature (VCOM) that can be used to pro-
vide a serial connection between the target MCU and a host computer. LPC-Link 2 is compati-
ble with Windows, MacOS and Linux. A free utility from NXP provides an easy way to install
firmware updates.

On-board LPC-Link 2 debugger supports CMSIS-DAP and J-Link firmware. See the table inDefault
debug interfaces to determine the default debug interface that comes loaded on your specific
hardware platform.

The corresponding host driver must be installed before debugging.
• For boards with CMSIS-DAP firmware, visit developer.mbed.org/handbook/Windows-
serial-configuration and follow the instructions to install the Windows operating system
serial driver. If running on Linux OS, this step is not required.

• If using J-Link with either a standalone debug pod or MCU-Link, install the J-Link software
(drivers and utilities) from www.segger.com/jlink-software.html.

Updating LPC-Link firmware The LPCXpresso hardware platform comes with a CMSIS-DAP-
compatible debug interface (known as LPC-Link2). This firmware in this debug interface may
be updated using the host computer utility called LPCScrypt. This typically used when switch-
ing between the default debugger protocol (CMSIS-DAP) to SEGGER J-Link, or for updating this
firmware with new releases of these. This section contains the steps to reprogram the debug
probe firmware.

Note: If MCUXpresso IDE is used and the jumper making DFUlink is installed on the board (JP5
on some boards, but consult the board user manual or schematic for specific jumper number),
LPC-Link2 debug probe boots to DFU mode, and MCUXpresso IDE automatically downloads the
CMSIS-DAP firmware to the probe before flash memory programming (after clicking Debug).
Using DFU mode ensures that most up-to-date/compatible firmware is used with MCUXpresso
IDE.

50 Chapter 1. FRDM-KE02Z40M

https://www.nxp.com/design/design-center/software/development-software/mcu-link-debug-probe-architecture:MCU-LINK-ARCHITECTURE
http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration
https://www.segger.com/downloads/jlink/

MCUXpresso SDK Documentation, Release 25.09.00

NXP provides the LPCScrypt utility, which is the recommended tool for programming the latest
versions of CMSIS-DAP and J-Link firmware onto LPC-Link2 or LPCXpresso boards. The utility
can be downloaded from LPCScrypt.

These steps show how to update the debugger firmware on your board for Windows operating
system. For Linux OS, follow the instructions described in LPCScrypt user guide (LPCScrypt,
select LPCScrypt, and then the documentation tab).

1. Install the LPCScript utility.

2. Unplug the board’s USB cable.

3. Make the DFU link (install the jumper labeled DFUlink).

4. Connect the probe to the host via USB (use Link USB connector).

5. Open a command shell and call the appropriate script located in the LPCScrypt installation
directory (<LPCScrypt install dir>).

1. To program CMSIS-DAP debug firmware: <LPCScrypt install dir>/scripts/
program_CMSIS

2. To program J-Link debug firmware: <LPCScrypt install dir>/scripts/program_JLINK

6. Remove DFU link (remove the jumper installed in Step 3).

7. Repower the board by removing the USB cable and plugging it in again.

On-board debugger OpenSDA OpenSDA/OpenSDAv2 is a serial and debug adapter that is built
into several NXP evaluation boards. It provides a bridge between your computer (or other USB
host) and the embedded target processor, which can be used for debugging, flash programming,
and serial communication, all over a simple USB cable.

The difference is the firmware implementation: OpenSDA: Programmed with the proprietary
P&E Micro developed bootloader. P&E Micro is the default debug interface app. OpenSDAv2:
Programmed with the open-sourced CMSIS-DAP/mbed bootloader. CMSIS-DAP is the default de-
bug interface app.

See the table in Default debug interfaces to determine the default debug interface that comes
loaded on your specific hardware platform.

The corresponding host driver must be installed before debugging.
• For boards with CMSIS-DAP firmware, visit developer.mbed.org/handbook/Windows-
serial-configuration and follow the instructions to install the Windows operating system
serial driver. If running on Linux OS, this step is not required.

• For boards with a P&EMicro interface, see PEmicro to download and install the P&EMicro
Hardware Interface Drivers package.

Updating OpenSDA firmware Any NXP hardware platform that comes with an OpenSDA-
compatible debug interface has the ability to update the OpenSDA firmware. This typically
means to switch from the default application (either CMSIS-DAP or P&E Micro) to a SEGGER
J-Link. This section contains the steps to switch the OpenSDA firmware to a J-Link interface.
However, the steps can be applied to restoring the original image also. For reference, OpenSDA
firmware files can be found at the links below:

• J-Link: Download appropriate image from www.segger.com/opensda.html. Choose the ap-
propriate J-Link binary based on the table in Default debug interfaces. Any OpenSDA v1.0
interface should use the standard OpenSDA download (in other words, the one with no
version). For OpenSDA 2.0 or 2.1, select the corresponding binary.

• CMSIS-DAP: CMSIS-DAP OpenSDA firmware is available at www.nxp.com/opensda.

1.2. Getting Started with MCUXpresso SDK Package 51

https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/lpcscrypt:LPCSCRYPT
https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/lpcscrypt:LPCSCRYPT
http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration
http://www.pemicro.com/support/downloads_find.cfm
http://www.segger.com/opensda.html
http://www.nxp.com/opensda

MCUXpresso SDK Documentation, Release 25.09.00

• P&E Micro: Downloading P&E Micro OpenSDA firmware images requires registration with
P&E Micro (www.pemicro.com).

Perform the following steps to update the OpenSDA firmware on your board for Windows and
Linux OS users:

1. Unplug the board’s USB cable.

2. Press the Reset button on the board. While still holding the button, plug the USB cable back
into the board.

3. When the board re-enumerates, it shows up as a disk drive calledMAINTENANCE.

4. Drag and drop the new firmware image onto the MAINTENANCE drive.

Note: If for any reason the firmware update fails, the board can always reenter mainte-
nance mode by holding down Reset button and power cycling.

These steps show how to update the OpenSDA firmware on your board for Mac OS users.

1. Unplug the board’s USB cable.

2. Press the Reset button of the board. While still holding the button, plug the USB cable back
into the board.

3. For boards with OpenSDA v2.0 or v2.1, it shows up as a disk drive called BOOTLOADER in
Finder. Boards with OpenSDA v1.0 may or may not show up depending on the bootloader
version. If you see the drive in Finder, proceed to the next step. If you do not see the drive
in Finder, use a PC with Windows OS 7 or an earlier version to either update the OpenSDA
firmware, or update the OpenSDA bootloader to version 1.11 or later. The bootloader up-
date instructions and image can be obtained from P&E Microcomputer website.

4. For OpenSDA v2.1 and OpenSDA v1.0 (with bootloader 1.11 or later) users, drag the new
firmware image onto the BOOTLOADER drive in Finder.

5. For OpenSDA v2.0 users, type these commands in a Terminal window:

> sudo mount -u -w -o sync /Volumes/BOOTLOADER
> cp -X <path to update file> /Volumes/BOOTLOADER

Note: If for any reason the firmware update fails, the board can always reenter bootloader
mode by holding down the Reset button and power cycling.

On-board debugger Multilink An on-board Multilink debug circuit provides a JTAG interface
and a power supply input through a single micro-USB connector. It is a hardware interface that
allows PC software to debug and program a target processor through its debug port.

The host driver must be installed before debugging.
• See PE micro to download and install the P&E Micro Hardware Interface Drivers package.

On-board debugger OSJTAG An on-board OSJTAG debug circuit provides a JTAG interface and
apower supply input througha singlemicro-USB connector. It is a hardware interface that allows
PC software to debug and program a target processor through its debug port.

The host driver must be installed before debugging.
• See PE micro to download and install the P&E Micro Hardware Interface Drivers package.

52 Chapter 1. FRDM-KE02Z40M

http://www.pemicro.com/opensda/index.cfm
http://www.pemicro.com/support/downloads_find.cfm
http://www.pemicro.com/support/downloads_find.cfm

MCUXpresso SDK Documentation, Release 25.09.00

Default debug interfaces

The MCUXpresso SDK supports various hardware platforms that come loaded with various fac-
tory programmed debug interface configurations. The following table lists the hardware plat-
forms supported by the MCUXpresso SDK, their default debug firmware, and any version infor-
mation that helps differentiate a specific interface configuration.

Hardware platform Default debugger firmware On-board debugger probe
EVK-MCIMX7ULP N/A N/A
EVK-MIMX8MM N/A N/A
EVK-MIMX8MN N/A N/A
EVK-MIMX8MNDDR3L N/A N/A
EVK-MIMX8MP N/A N/A
EVK-MIMX8MQ N/A N/A
EVK-MIMX8ULP N/A N/A
EVK-MIMXRT1010 CMSIS-DAP LPC-Link2
EVK-MIMXRT1015 CMSIS-DAP LPC-Link2
EVK-MIMXRT1020 CMSIS-DAP LPC-Link2
EVK-MIMXRT1064 CMSIS-DAP LPC-Link2
EVK-MIMXRT595 CMSIS-DAP LPC-Link2
EVK-MIMXRT685 CMSIS-DAP LPC-Link2
EVK9-MIMX8ULP N/A N/A
EVKB-IMXRT1050 CMSIS-DAP LPC-Link2
FRDM-K22F CMSIS-DAP OpenSDA v2
FRDM-K32L2A4S CMSIS-DAP OpenSDA v2
FRDM-K32L2B CMSIS-DAP OpenSDA v2
FRDM-K32L3A6 CMSIS-DAP OpenSDA v2
FRDM-KE02Z40M P&E Micro OpenSDA v1
FRDM-KE15Z CMSIS-DAP OpenSDA v2
FRDM-KE16Z CMSIS-DAP OpenSDA v2
FRDM-KE17Z CMSIS-DAP OpenSDA v2
FRDM-KE17Z512 CMSIS-DAP MCU-Link
FRDM-MCXA153 CMSIS-DAP MCU-Link
FRDM-MCXA156 CMSIS-DAP MCU-Link
FRDM-MCXA266 CMSIS-DAP MCU-Link
FRDM-MCXA344 CMSIS-DAP MCU-Link
FRDM-MCXA346 CMSIS-DAP MCU-Link
FRDM-MCXA366 CMSIS-DAP MCU-Link
FRDM-MCXC041 CMSIS-DAP MCU-Link
FRDM-MCXC242 CMSIS-DAP MCU-Link
FRDM-MCXC444 CMSIS-DAP MCU-Link
FRDM-MCXE247 CMSIS-DAP MCU-Link
FRDM-MCXE31B CMSIS-DAP MCU-Link
FRDM-MCXN236 CMSIS-DAP MCU-Link
FRDM-MCXN947 CMSIS-DAP MCU-Link
FRDM-MCXW23 CMSIS-DAP MCU-Link
FRDM-MCXW71 CMSIS-DAP MCU-Link
FRDM-MCXW72 CMSIS-DAP MCU-Link
FRDM-RW612 CMSIS-DAP MCU-Link
IMX943-EVK N/A N/A
IMX95LP4XEVK-15 N/A N/A
IMX95LPD5EVK-19 N/A N/A
IMX95VERDINEVK N/A N/A
KW45B41Z-EVK CMSIS-DAP MCU-Link
KW45B41Z-LOC CMSIS-DAP MCU-Link
KW47-EVK CMSIS-DAP MCU-Link

continues on next page

1.2. Getting Started with MCUXpresso SDK Package 53

MCUXpresso SDK Documentation, Release 25.09.00

Table 1 – continued from previous page
Hardware platform Default debugger firmware On-board debugger probe
KW47-LOC CMSIS-DAP MCU-Link
LPC845BREAKOUT CMSIS-DAP LPC-Link2
LPCXpresso51U68 CMSIS-DAP LPC-Link2
LPCXpresso54628 CMSIS-DAP LPC-Link2
LPCXpresso54S018 CMSIS-DAP LPC-Link2
LPCXpresso54S018M CMSIS-DAP LPC-Link2
LPCXpresso55S06 CMSIS-DAP LPC-Link2
LPCXpresso55S16 CMSIS-DAP LPC-Link2
LPCXpresso55S28 CMSIS-DAP LPC-Link2
LPCXpresso55S36 CMSIS-DAP MCU-Link
LPCXpresso55S69 CMSIS-DAP LPC-Link2
LPCXpresso802 CMSIS-DAP LPC-Link2
LPCXpresso804 CMSIS-DAP LPC-Link2
LPCXpresso824MAX CMSIS-DAP LPC-Link2
LPCXpresso845MAX CMSIS-DAP LPC-Link2
LPCXpresso860MAX CMSIS-DAP LPC-Link2
MC56F80000-EVK P&E Micro Multilink
MC56F81000-EVK P&E Micro Multilink
MC56F83000-EVK P&E Micro OSJTAG
MCIMX93-EVK N/A N/A
MCIMX93-QSB N/A N/A
MCIMX93AUTO-EVK N/A N/A
MCX-N5XX-EVK CMSIS-DAP MCU-Link
MCX-N9XX-EVK CMSIS-DAP MCU-Link
MCX-W71-EVK CMSIS-DAP MCU-Link
MCX-W72-EVK CMSIS-DAP MCU-Link
MIMXRT1024-EVK CMSIS-DAP LPC-Link2
MIMXRT1040-EVK CMSIS-DAP LPC-Link2
MIMXRT1060-EVKB CMSIS-DAP LPC-Link2
MIMXRT1060-EVKC CMSIS-DAP MCU-Link
MIMXRT1160-EVK CMSIS-DAP LPC-Link2
MIMXRT1170-EVKB CMSIS-DAP MCU-Link
MIMXRT1180-EVK CMSIS-DAP MCU-Link
MIMXRT685-AUD-EVK CMSIS-DAP LPC-Link2
MIMXRT700-EVK CMSIS-DAP MCU-Link
RD-RW612-BGA CMSIS-DAP MCU-Link
TWR-KM34Z50MV3 P&E Micro OpenSDA v1
TWR-KM34Z75M P&E Micro OpenSDA v1
TWR-KM35Z75M CMSIS-DAP OpenSDA v2
TWR-MC56F8200 P&E Micro OSJTAG
TWR-MC56F8400 P&E Micro OSJTAG

How to define IRQ handler in CPP files

With MCUXpresso SDK, users could define their own IRQ handler in application level to over-
ride the default IRQ handler. For example, to override the default PIT_IRQHandler define in
startup_DEVICE.s, application code like app.c can be implement like:

// c
void PIT_IRQHandler(void)
{

// Your code
}

54 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

When application file is CPP file, like app.cpp, then extern ”C” should be used to ensure the func-
tion prototype alignment.

// cpp
extern ”C” {

void PIT_IRQHandler(void);
}
void PIT_IRQHandler(void)
{

// Your code
}

1.3 Getting Started with MCUXpresso SDK GitHub

1.3.1 Getting Started with MCUXpresso SDK Repository

Installation

NOTE
If the installation instruction asks/selects whether to have the tool installation path added to
the PATH variable, agree/select the choice. This option ensures that the tool can be used in any
terminal in any path. Verify the installation after each tool installation.

Install Prerequisites with MCUXpresso Installer The MCUXpresso Installer offers a quick
and easy way to install the basic tools needed. The MCUXpresso Installer can be obtained from
https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Dependency-Installation. The MCUX-
presso Installer is an automated installation process, simply select MCUXpresso SDK Developer
from the menu and click install. If you prefer to install the basic tools manually, refer to the next
section.

1.3. Getting Started with MCUXpresso SDK GitHub 55

MCUXpresso SDK Documentation, Release 25.09.00

Alternative: Manual Installation

Basic tools

Git Git is a free and open source distributed version control system. Git is designed to handle
everything from small to large projects with speed and efficiency. To install Git, visit the official
Git website. Download the appropriate version(you may use the latest one) for your operating
system (Windows, macOS, Linux). Then run the installer and follow the installation instructions.

User git --version to check the version if you have a version installed.

Then configure your username and email using the commands:

git config --global user.name ”Your Name”
git config --global user.email ”youremail@example.com”

Python Install python 3.10 or latest. Follow the Python Download guide.

Use python --version to check the version if you have a version installed.

West Please use the west version equal or greater than 1.2.0

Note: you can add option '--default-timeout=1000' if you meet connection issue. Or you may set a different␣
↪→source using option '-i'.
for example, in China you could try: pip install -U west -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install -U west

56 Chapter 1. FRDM-KE02Z40M

https://git-scm.com/
https://wiki.python.org/moin/BeginnersGuide/Download

MCUXpresso SDK Documentation, Release 25.09.00

Build And Configuration System

CMake It is strongly recommended to use CMake version equal or later than 3.30.0. You can get
latest CMake distributions from the official CMake download page.

For Windows, you can directly use the .msi installer like cmake-3.31.4-windows-x86_64.msi to
install.

For Linux, CMake can be installed using the system packagemanager or by getting binaries from
the official CMake download page.

After installation, you can use cmake --version to check the version.

Ninja Please use the ninja version equal or later than 1.12.1.

By default, Windows comes with the Ninja program. If the default Ninja version is too old, you
can directly download the ninja binary and register the ninja executor location path into your
system path variable to work.

For Linux, you can use your system package manager or you can directly download the ninja
binary to work.

After installation, you can use ninja --version to check the version.

Kconfig MCUXpresso SDK uses Kconfig python implementation. We customize it based on our
needs and integrate it into our build and configuration system. The Kconfiglib sources are placed
under mcuxsdk/scripts/kconfig folder.

Please make sure python environment is setup ready then you can use the Kconfig.

Ruby Our build system supports IDE project generation for iar, mdk, codewarrior and xtensa
to provide OOBE from build to debug. This feature is implemented with ruby. You can follow
the guide ruby environment setup to setup the ruby environment. Since we provide a built-in
portable ruby, it is just a simple one cmd installation.

If you only work with CLI, you can skip this step.

Toolchain MCUXpresso SDK supports all mainstream toolchains for embedded development.
You can install your used or interested toolchains following the guides.

Toolchain Download and Installation Guide Note
Armgcc Arm GNU Toolchain Install Guide ARMGCC is default

toolchain
IAR IAR Installation and Licensing quick ref-

erence guide
MDK MDK Installation

Armclang Installing Arm Compiler for Embedded

Zephyr Zephyr SDK

Codewarrior NXP CodeWarrior

Xtensa Tensilica Tools

NXP S32Compiler RISC-
V Zen-V

NXP Website

1.3. Getting Started with MCUXpresso SDK GitHub 57

https://cmake.org/download/
https://github.com/Kitware/CMake/releases/download/v3.31.4/cmake-3.31.4-windows-x86_64.msi
https://cmake.org/download/
https://github.com/ninja-build/ninja/releases
https://github.com/ninja-build/ninja/wiki/Pre-built-Ninja-packages
https://github.com/ninja-build/ninja/releases
https://github.com/ninja-build/ninja/releases
https://learn.arm.com/install-guides/gcc/arm-gnu/
https://www.iar.com/siteassets/knowledge/support/tech-notes/qr_lms2.pdf
https://www.iar.com/siteassets/knowledge/support/tech-notes/qr_lms2.pdf
https://developer.arm.com/documentation/109350/v6/Installation?lang=en
https://developer.arm.com/documentation/100748/0618/Getting-Started/Installing-Arm-Compiler-for-Embedded
https://docs.zephyrproject.org/latest/develop/toolchains/zephyr_sdk.html
https://www.nxp.com/design/design-center/software/development-software/codewarrior-development-tools:CW_HOME
https://tensilicatools.com/platforms/
https://www.nxp.com/search?keyword=NXP%2520S32Compiler%2520RISC-V&start=0

MCUXpresso SDK Documentation, Release 25.09.00

After you have installed the toolchains, register them in the system environment variables. This
will allow the west build to recognize them:

Toolchain Environ-
ment
Variable

Example Cmd
Line Ar-
gument

Armgcc AR-
MGCC_DIR

C:\armgcc for windows/usr for Linux. Typically
arm-none-eabi-* is installed under /usr/bin

–
toolchain
armgcc

IAR IAR_DIR C:\iar\ewarm-9.60.3 for Windows/opt/iarsystems/
bxarm-9.60.3 for Linux

–
toolchain
iar

MDK MDK_DIR C:\Keil_v5 for Windows.MDK IDE is not officially sup-
ported with Linux.

–
toolchain
mdk

Armclang ARM-
CLANG_DIR

C:\ArmCompilerforEmbedded6.22 for Windows/opt/
ArmCompilerforEmbedded6.21 for Linux

–
toolchain
mdk

Zephyr ZEPHYR_SDK_INSTALL_DIRc:\NXP\zephyr-sdk-<version> for windows/opt/
zephyr-sdk-<version> for Linux

–
toolchain
zephyr

CodeWar-
rior

CW_DIR C:\Freescale\CW MCU v11.2 for windowsCodeWarrior is
not supported with Linux

–
toolchain
code-
warrior

Xtensa XCC_DIR C:\xtensa\XtDevTools\install\tools\RI-2023.11-win32\
XtensaTools for windows/opt/xtensa/XtDevTools/
install/tools/RI-2023.11-Linux/XtensaTools for Linux

–
toolchain
xtensa

NXP
S32Compiler
RISC-V
Zen-V

RISCVL-
LVM_DIR

C:\riscv-llvm-win32_b298_b298_2024.08.12 for Win-
dows/opt/riscv-llvm-Linux-x64_b298_b298_2024.08.12
for Linux

–
toolchain
riscvl-
lvm

• The <toolchain>_DIR is the root installation folder, not the binary location folder. For IAR,
it is directory containing following installation folders:

• MDK IDE using armclang toolchain only officially supports Windows. In Linux, please di-
rectly use armclang toolchain by setting ARMCLANG_DIR. In Windows, since most Keil
users will install MDK IDE instead of standalone armclang toolchain, the MDK_DIR has
higher priority than ARMCLANG_DIR.

• For Xtensa toolchain, please set the XTENSA_CORE environment variable. Here’s an ex-
ample list:

58 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

Device Core XTENSA_CORE
RT500 fusion1 nxp_rt500_RI23_11_newlib
RT600 hifi4 nxp_rt600_RI23_11_newlib
RT700 hifi1 rt700_hifi1_RI23_11_nlib
RT700 hifi4 t700_hifi4_RI23_11_nlib
i.MX8ULP fusion1 fusion_nxp02_dsp_prod

• In Windows, the short path is used in environment variables. If any toolchain is using
the long path, you can open a command window from the toolchain folder and use below
command to get the short path: for %i in (.) do echo %~fsi

Tool installation check Once installed, open a terminal or command prompt and type the
associated command to verify the installation.

If you see the version number, you have successfully installed the tool. Else, check whether the
tool’s installation path is added into the PATH variable. You can add the installation path to the
PATH with the commands below:

• Windows: Open command prompt or powershell, run below command to show the user
PATH variable.

reg query HKEY_CURRENT_USER\Environment /v PATH

The tool installation path should be C:\Users\xxx\AppData\Local\Programs\Git\cmd. If the
path is not seen in the output from above, append the path value to the PATH variable with
the command below:

reg add HKEY_CURRENT_USER\Environment /v PATH /d ”%PATH%;C:\Users\xxx\AppData\
↪→Local\Programs\Git\cmd”

Then close the command prompt or powershell and verify the tool command again.

• Linux:

1. Open the $HOME/.bashrc file using a text editor, such as vim.

2. Go to the end of the file.

3. Add the line which appends the tool installation path to the PATH variable and export
PATH at the end of the file. For example, export PATH=”/Directory1:$PATH”.

4. Save and exit.

5. Execute the script with source .bashrc or reboot the system to make the changes live. To
verify the changes, run echo $PATH.

• macOS:

1. Open the $HOME/.bash_profile file using a text editor, such as nano.

2. Go to the end of the file.

3. Add the line which appends the tool installation path to the PATH variable and export
PATH at the end of the file. For example, export PATH=”/Directory1:$PATH”.

4. Save and exit.

5. Execute the script with source .bash_profile or reboot the system to make the changes
live. To verify the changes, run echo $PATH.

1.3. Getting Started with MCUXpresso SDK GitHub 59

MCUXpresso SDK Documentation, Release 25.09.00

Get MCUXpresso SDK Repo

Establish SDK Workspace To get the MCUXpresso SDK repository, use the west tool to clone
the manifest repository and checkout all the west projects.

Initialize west with the manifest repository
west init -m https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/ mcuxpresso-sdk

Update the west projects
cd mcuxpresso-sdk
west update

Allow the usage of west extensions provided by MCUXpresso SDK
west config commands.allow_extensions true

Install Python Dependency(If do tool installation manually) To create a Python virtual en-
vironment in the west workspace core repo directory mcuxsdk, follow these steps:

1. Navigate to the core directory:

cd mcuxsdk

2. [Optional] Create and activate the virtual environment: If you don’t want to use the python
virtual environment, skip this step. We strongly suggest you use venv to avoid conflicts
with other projects using python.

python -m venv .venv

For Linux/MacOS
source .venv/bin/activate

For Windows
.\.venv\Scripts\activate
If you are using powershell and see the issue that the activate script cannot be run.
You may fix the issue by opening the powershell as administrator and run below command:
powershell Set-ExecutionPolicy RemoteSigned
then run above activate command again.

Once activated, your shell will be prefixed with (.venv). The virtual environment can be
deactivated at any time by running deactivate command.

Remember to activate the virtual environment every time you start working in this
directory. If you are using some modern shell like zsh, there are some powerful plugins to
help you auto switch venv among workspaces. For example, zsh-autoswitch-virtualenv.

3. Install the required Python packages:

Note: you can add option '--default-timeout=1000' if you meet connection issue. Or you may set a␣
↪→different source using option '-i'.
for example, in China you could try: pip3 install -r mcuxsdk/scripts/requirements.txt -i https://pypi.
↪→tuna.tsinghua.edu.cn/simple
pip install -r scripts/requirements.txt

Explore Contents

This section helps you build basic understanding of current fundamental project content and
guides you how to build and run the provided example project in whole SDK delivery.

60 Chapter 1. FRDM-KE02Z40M

https://github.com/MichaelAquilina/zsh-autoswitch-virtualenv

MCUXpresso SDK Documentation, Release 25.09.00

Folder View The whole MCUXpresso SDK project, after you have done the west init and west
update operations follow the guideline at Getting Started Guide, have below folder structure:

Folder Description
mani-
fests

Manifest repo, contains the manifest file to initialize and update the west
workspace.

mcuxsdk The MCUXpresso SDK source code, examples, middleware integration and script
files.

All the projects record in the Manifest repo are checked out to the folder mcuxsdk/, the layout of
mcuxsdk folder is shown as below:

Folder Description
arch Arch related files such as ARM CMSIS core files, RISC-V files and the build files related

to the architecture.
cmake The cmake modules, files which organize the build system.
com-
po-
nents

Software components.

de-
vices

Device support package which categorized by device series. For each device, header
file, feature file, startup file and linker files are provided, also device specific drivers
are included.

docs Documentation source and build configuration for this sphinx built online documen-
tation.

drivers Peripheral drivers.
ex-
am-
ples

Various demos and examples, support files on different supported boards. For each
board support, there are board configuration files.

mid-
dle-
ware

Middleware components integrated into SDK.

rtos Rtos components integrated into SDK.
scripts Script files for the west extension command and build system support.
svd Svd files for devices, this is optional because of large size. Customers runwest manifest

config group.filter +optional and west update mcux-soc-svd to get this folder.

Examples Project The examples project is part of the whole SDK delivery, and locates in the
folder mcuxsdk/examples of west workspace.

Examples files are placed in folder of <example_category>, these examples include (but are not
limited to)

• demo_apps: Basic demo set to start using SDK, including hello_world and led_blinky.

• driver_examples: Simple applications that show how to use the peripheral drivers for a
single use case. These applications typically only use a single peripheral but there are cases
where multiple peripherals are used (for example, SPI transfer using DMA).

Board porting layers are placed in folder of _boards/<board_name>which aims at providing the
board specific parts for examples code mentioned above.

Run a demo using MCUXpresso for VS Code

This section explains how to configureMCUXpresso for VS Code to build, run, and debug example
applications. This guide uses the hello_world demo application as an example. However, these

1.3. Getting Started with MCUXpresso SDK GitHub 61

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests

MCUXpresso SDK Documentation, Release 25.09.00

steps can be applied to any example application in the MCUXpresso SDK.

Build an example application This section assumes that the user has already obtained the
SDK as outlined in Get MCUXpresso SDK Repo.

To build an example application:

1. Import the SDK into your workspace. Click Import Repository from the QUICKSTART
PANEL.

Note: You can import the SDK in several ways. Refer to MCUXpresso for VS Code Wiki for
details.

Select Local if you’ve already obtained the SDK as seen inGetMCUXpresso SDK Repo. Select
your location and click Import.

2. Click Import Example from Repository from the QUICKSTART PANEL.

In the dropdown menu, select the MCUXpresso SDK, the Arm GNU Toolchain, your board,
template, and application type. Click Import.

62 Chapter 1. FRDM-KE02Z40M

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Working-with-MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.09.00

Note: The MCUXpresso SDK projects can be imported as Repository applications or Free-
standing applications. The difference between the two is the import location. Projects im-
ported as Repository examples will be located inside the MCUXpresso SDK, whereas Free-
standing examples can be imported to a user-defined location. Select between these by
designating your selection in the App type dropdown menu.

3. VS Code will prompt you to confirm if the imported files are trusted. Click Yes.
4. Navigate to the PROJECTS view. Find your project and click the Build Project icon.

The integrated terminal will open at the bottom and will display the build output.

1.3. Getting Started with MCUXpresso SDK GitHub 63

MCUXpresso SDK Documentation, Release 25.09.00

Run an example application Note: for full details on MCUXpresso for VS Code debug probe
support, see MCUXpresso for VS Code Wiki.

1. Open the Serial Monitor from the VS Code’s integrated terminal. Select the VCom Port for
your device and set the baud rate to 115200.

2. Navigate to the PROJECTS view and click the play button to initiate a debug session.

The debug session will begin. The debug controls are initially at the top.

64 Chapter 1. FRDM-KE02Z40M

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/DebugK

MCUXpresso SDK Documentation, Release 25.09.00

.

3. Click Continue on the debug controls to resume execution of the code. Observe the output
on the Serial Monitor.

Running a demo using ARMGCC CLI/IAR/MDK

Supported Boards Use the west extension west list_project to understand the board support
scope for a specified example. All supported build command will be listed in output:

west list_project -p examples/demo_apps/hello_world [-t armgcc]

INFO: [1][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evk9mimx8ulp -Dcore_id=cm33]
INFO: [2][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkbimxrt1050]
INFO: [3][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣

(continues on next page)

1.3. Getting Started with MCUXpresso SDK GitHub 65

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
↪→evkbmimxrt1060]
INFO: [4][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkbmimxrt1170 -Dcore_id=cm4]
INFO: [5][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkbmimxrt1170 -Dcore_id=cm7]
INFO: [6][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkcmimxrt1060]
INFO: [7][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkmcimx7ulp]
...

The supported toolchains andbuild targets for an example are decidedby the example-self exam-
ple.yml and board example.yml, please refer Example Toolchains and Targets for more details.

Build the project Usewest build -h to see help information for west build command. Compared
to zephyr’s west build, MCUXpresso SDK’s west build command provides following additional
options for mcux examples:

• --toolchain: specify the toolchain for this build, default armgcc.

• --config: value for CMAKE_BUILD_TYPE. If not provided, build system will get all the ex-
ample supported build targets and use the first debug target as the default one. Please refer
Example Toolchains and Targets for more details about example supported build targets.

Here are some typical usages for generating a SDK example:

Generate example with default settings, default used device is the mainset MK22F51212
west build -b frdmk22f examples/demo_apps/hello_world

Just print cmake commands, do not execute it
west build -b frdmk22f examples/demo_apps/hello_world --dry-run

Generate example with other toolchain like iar, default armgcc
west build -b frdmk22f examples/demo_apps/hello_world --toolchain iar

Generate example with other config type
west build -b frdmk22f examples/demo_apps/hello_world --config release

Generate example with other devices with --device
west build -b frdmk22f examples/demo_apps/hello_world --device MK22F12810 --config release

For multicore devices, you shall specify the corresponding core id by passing the command line
argument -Dcore_id. For example

west build -b evkbmimxrt1170 examples/demo_apps/hello_world --toolchain iar -Dcore_id=cm7 --config␣
↪→flexspi_nor_debug

For shield, please use the --shield to specify the shield to run, like

west build -b mimxrt700evk --shield a8974 examples/issdk_examples/sensors/fxls8974cf/fxls8974cf_poll -
↪→Dcore_id=cm33_core0

Sysbuild(System build) To support multicore project building, we ported Sysbuild from
Zephyr. It supports combine multiple projects for compilation. You can build all projects by
adding --sysbuild for main application. For example:

west build -b evkbmimxrt1170 --sysbuild ./examples/multicore_examples/hello_world/primary -Dcore_
↪→id=cm7 --config flexspi_nor_debug --toolchain=armgcc -p always

For more details, please refer to System build.

66 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

Config a Project Example in MCUXpresso SDK is configured and tested with pre-defined con-
figuration. You can follow steps blow to change the configuration.

1. Run cmake configuration

west build -b evkbmimxrt1170 examples/demo_apps/hello_world -Dcore_id=cm7 --cmake-only -p

Please note the project will be built without --cmake-only parameter.

2. Run guiconfig target

west build -t guiconfig

Then you will get the Kconfig GUI launched, like

You can reconfigure the project by selecting/deselecting Kconfig options.

After saving and closing the Kconfig GUI, you can directly run west build to build with the new
configuration.

1.3. Getting Started with MCUXpresso SDK GitHub 67

MCUXpresso SDK Documentation, Release 25.09.00

Flash Note: Please refer Flash and Debug The Example to enable west flash/debug support.

Flash the hello_world example:

west flash -r linkserver

Debug Start a gdb interface by following command:

west debug -r linkserver

Work with IDE Project The above build functionalities are all with CLI. If you want to use
the toolchain IDE to work to enjoy the better user experience especially for debugging or you
are already used to develop with IDEs like IAR, MDK, Xtensa and CodeWarrior in the embedded
world, you can play with our IDE project generation functionality.

This is the cmd to generate the evkbmimxrt1170 hello_world IAR IDE project files.

west build -b evkbmimxrt1170 examples/demo_apps/hello_world --toolchain iar -Dcore_id=cm7 --config␣
↪→flexspi_nor_debug -p always -t guiproject

By default, the IDE project files are generated inmcuxsdk/build/<toolchain> folder, you can open
the project file with the IDE tool to work:

Note, please follow the Installation to setup the environment especially make sure that ruby has
been installed.

1.4 Release Notes

1.4.1 MCUXpresso SDK Release Notes

Overview

The MCUXpresso SDK is a comprehensive software enablement package designed to simplify
and accelerate application development with Arm Cortex-M-based devices from NXP, including
its general purpose, crossover and Bluetooth-enabled MCUs. MCUXpresso SW and Tools for DSC

68 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

further extends the SDK support to current 32-bit Digital Signal Controllers. The MCUXpresso
SDK includes production-grade software with integrated RTOS (optional), integrated enabling
software technologies (stacks and middleware), reference software, and more.

In addition to working seamlessly with the MCUXpresso IDE, the MCUXpresso SDK also supports
and provides example projects for various toolchains. The Development tools chapter in the
associated Release Notes provides details about toolchain support for your board. Support for
the MCUXpresso Config Tools allows easy cloning of existing SDK examples and demos, allowing
users to leverage the existing software examples provided by the SDK for their own projects.

Underscoring our commitment to high quality, the MCUXpresso SDK is MISRA compliant and
checked with Coverity static analysis tools. For details on MCUXpresso SDK, see MCUXpresso-
SDK: Software Development Kit for MCUXpresso.

MCUXpresso SDK

As part of the MCUXpresso software and tools, MCUXpresso SDK is the evolution of Kinetis SDK,
includes support for LPC, DSC,PN76, and i.MX System-on-Chip (SoC). The same drivers, APIs, and
middleware are still available with support for Kinetis, LPC, DSC, and i.MX silicon. The MCUX-
presso SDK adds support for the MCUXpresso IDE, an Eclipse-based toolchain that works with
all MCUXpresso SDKs. Easily import your SDK into the new toolchain to access to all of the avail-
able components, examples, and demos for your target silicon. In addition to the MCUXpresso
IDE, support for the MCUXpresso Config Tools allows easy cloning of existing SDK examples and
demos, allowing users to leverage the existing software examples provided by the SDK for their
own projects.

In order to maintain compatibility with legacy Freescale code, the filenames and source code in
MCUXpresso SDK containing the legacy Freescale prefix FSL has been left as is. The FSL prefix
has been redefined as the NXP Foundation Software Library.

Development tools

The MCUXpresso SDK was tested with following development tools. Same versions or above are
recommended.

• MCUXpresso IDE, Rev. 25.06.xx

• IAR Embedded Workbench for Arm, version is 9.60.4

• Keil MDK, version is 5.42

• MCUXpresso for VS Code v25.09

• GCC Arm Embedded Toolchain 14.2.x

Supported development systems

This release supports board and devices listed in following table. The board and devices in bold
were tested in this release.

De-
velop-
ment
boards

MCU devices

FRDM-
KE02Z40M

MKE02Z16VFM4, MKE02Z16VLC4, MKE02Z16VLD4, MKE02Z32VFM4,
MKE02Z32VLC4, MKE02Z32VLD4, MKE02Z32VLH4, MKE02Z32VQH4,
MKE02Z64VFM4, MKE02Z64VLC4, MKE02Z64VLD4, MKE02Z64VLH4,
MKE02Z64VQH4

1.4. Release Notes 69

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.09.00

MCUXpresso SDK release package

The MCUXpresso SDK release package content is aligned with the silicon subfamily it supports.
This includes the boards, CMSIS, devices, middleware, and RTOS support.

Device support The device folder contains the whole software enablement available for the
specific System-on-Chip (SoC) subfamily. This folder includes clock-specific implementation,
device register header files, device register feature header files, and the system configuration
source files. Included with the standard SoC support are folders containing peripheral drivers,
toolchain support, and a standard debug console. The device-specific header files provide a di-
rect access to themicrocontroller peripheral registers. The device header file provides an overall
SoCmemorymapped register definition. The folder also includes the feature header file for each
peripheral on themicrocontroller. The toolchain folder contains the startup code and linker files
for each supported toolchain. The startup code efficiently transfers the code execution to the
main() function.

Board support The boards folder provides the board-specific demo applications, driver exam-
ples, and middleware examples.

Demo application and other examples The demo applications demonstrate the usage of the
peripheral drivers to achieve a system level solution. Each demo application contains a readme
file that describes the operation of the demo and required setup steps. The driver examples
demonstrate the capabilities of the peripheral drivers. Each example implements a common
use case to help demonstrate the driver functionality.

Middleware

CMSIS DSP Library The MCUXpresso SDK is shipped with the standard CMSIS development
pack, including the prebuilt libraries.

FreeMASTER FreeMASTER communication driver for 32-bit platforms.

Release contents

Provides an overview of the MCUXpresso SDK release package contents and locations.

70 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

Deliverable Location
Boards INSTALL_DIR/boards
Demo Applications INSTALL_DIR/boards/<board_name>/demo_apps
Driver Examples INSTALL_DIR/boards/<board_name>/driver_examples
eIQ examples INSTALL_DIR/boards/<board_name>/eiq_examples
Board Project Template for MCUXpresso IDE NPW INSTALL_DIR/boards/<board_name>/project_template
Driver, SoC header files, extension header files and
feature header files, utilities

INSTALL_DIR/devices/<device_name>

CMSIS drivers INSTALL_DIR/devices/<device_name>/cmsis_drivers
Peripheral drivers INSTALL_DIR/devices/<device_name>/drivers
Toolchain linker files and startup code INSTALL_DIR/devices/<device_name>/<toolchain_name>
Utilities such as debug console INSTALL_DIR/devices/<device_name>/utilities
Device Project Template for MCUXpresso IDE NPW INSTALL_DIR/devices/<device_name>/project_template
CMSIS Arm Cortex-M header files, DSP library source INSTALL_DIR/CMSIS
Components and board device drivers INSTALL_DIR/components
RTOS INSTALL_DIR/rtos
Release Notes, Getting Started Document and other
documents

INSTALL_DIR/docs

Tools such as shared cmake files INSTALL_DIR/tools
Middleware INSTALL_DIR/middleware

Known issues

This section lists the known issues, limitations, and/or workarounds.

Cannot add SDK components into FreeRTOS projects

It is not possible to add any SDK components into FreeRTOS project using the MCUXpresso IDE
New Project wizard.

1.5 ChangeLog

1.5.1 MCUXpresso SDK Changelog

Board Support Files

board

[25.06.00]
• Initial version

clock_config

[25.06.00]
• Initial version

pin_mux

1.5. ChangeLog 71

MCUXpresso SDK Documentation, Release 25.09.00

[25.06.00]
• Initial version

ACMP

[2.0.2]
• Bug Fixes

– Fixed the out-of-bounds error of Coverity caused bymissing an assert sentence to avoid
the return value of ACMP_GetInstance() exceeding the array bounds.

– Fixed the violation of MISRA C-2012 rules:

* Rule 3.1 8.3 10.3 17.7.

[2.0.1]
• Bug Fixes

– Fixed the missing right pair definition for extern C.

[2.0.0]
• Initial version.

ADC

[2.1.0]
• Improvements

– Added the ADC_GetDefaultFIFOConfig() API to get default setting for FIFO configura-
tion.

• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.3.

[2.0.2]
• Bug Fixes

– Fixed the violations of MISRA C-2012 rules:

* Rule 10.1 10.3 10.4 15.5 17.7.

[2.0.1]
• Bug Fixes

– Fixed the missing right pair definition for extern C.

72 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.0]
• Initial version.

CLOCK

[2.2.3]
• Bug Fixes

– Updated maximum value of 32K OSC from 32768 to 39063.

[2.2.2]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 18.1.

[2.2.1]
• Bug Fixes

– Fixed MISRA C-2012 rule 10.1, rule 10.4, rule 10.8 and so on.

[2.2.0]
• New feature:

– Moved SDK_DelayAtLeastUs function from clock driver to common driver.

[2.1.0]
• New feature

– Adding new API CLOCK_DelayAtLeastUs() to implemente a delay fucntion which allow
users set delay in unit of microsecond.

[2.0.2]
• some minor fixes.

[2.0.0]
• initial version.

COMMON

[2.6.0]
• Bug Fixes

– Fix CERT-C violations.

1.5. ChangeLog 73

MCUXpresso SDK Documentation, Release 25.09.00

[2.5.0]
• New Features

– Added new APIs InitCriticalSectionMeasurementContext, DisableGlobalIRQEx and En-
ableGlobalIRQEx so that user canmeasure the execution time of the protected sections.

[2.4.3]
• Improvements

– Enable irqs that mount under irqsteer interrupt extender.

[2.4.2]
• Improvements

– Add themacros to convert peripheral address to secure address or non-secure address.

[2.4.1]
• Improvements

– Improve for the macro redefinition error when integrated with zephyr.

[2.4.0]
• New Features

– Added EnableIRQWithPriority, IRQ_SetPriority, and IRQ_ClearPendingIRQ for ARM.

– Added MSDK_EnableCpuCycleCounter, MSDK_GetCpuCycleCount for ARM.

[2.3.3]
• New Features

– Added NETC into status group.

[2.3.2]
• Improvements

– Make driver aarch64 compatible

[2.3.1]
• Bug Fixes

– Fixed MAKE_VERSION overflow on 16-bit platforms.

[2.3.0]
• Improvements

– Split the driver to common part and CPU architecture related part.

74 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

[2.2.10]
• Bug Fixes

– Fixed the ATOMIC macros build error in cpp files.

[2.2.9]
• Bug Fixes

– Fixed MISRA C-2012 issue, 5.6, 5.8, 8.4, 8.5, 8.6, 10.1, 10.4, 17.7, 21.3.

– Fixed SDK_Malloc issue that not allocate memory with required size.

[2.2.8]
• Improvements

– Included stddef.h header file for MDK tool chain.

• New Features:

– Added atomic modification macros.

[2.2.7]
• Other Change

– Added MECC status group definition.

[2.2.6]
• Other Change

– Added more status group definition.

• Bug Fixes

– Undef __VECTOR_TABLE to avoid duplicate definition in cmsis_clang.h

[2.2.5]
• Bug Fixes

– Fixed MISRA C-2012 rule-15.5.

[2.2.4]
• Bug Fixes

– Fixed MISRA C-2012 rule-10.4.

[2.2.3]
• New Features

– Provided better accuracy of SDK_DelayAtLeastUs with DWT, use macro
SDK_DELAY_USE_DWT to enable this feature.

– Modified the Cortex-M7 delay count divisor based on latest tests on RT series boards,
this setting lets result be closer to actual delay time.

1.5. ChangeLog 75

MCUXpresso SDK Documentation, Release 25.09.00

[2.2.2]
• New Features

– Added include RTE_Components.h for CMSIS pack RTE.

[2.2.1]
• Bug Fixes

– Fixed violation of MISRA C-2012 Rule 3.1, 10.1, 10.3, 10.4, 11.6, 11.9.

[2.2.0]
• New Features

– Moved SDK_DelayAtLeastUs function from clock driver to common driver.

[2.1.4]
• New Features

– Added OTFAD into status group.

[2.1.3]
• Bug Fixes

– MISRA C-2012 issue fixed.

* Fixed the rule: rule-10.3.

[2.1.2]
• Improvements

– Add SUPPRESS_FALL_THROUGH_WARNING() macro for the usage of suppressing
fallthrough warning.

[2.1.1]
• Bug Fixes

– Deleted and optimized repeated macro.

[2.1.0]
• New Features

– Added IRQ operation for XCC toolchain.

– Added group IDs for newly supported drivers.

[2.0.2]
• Bug Fixes

– MISRA C-2012 issue fixed.

* Fixed the rule: rule-10.4.

76 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.1]
• Improvements

– Removed the implementation of LPC8XX Enable/DisableDeepSleepIRQ() function.

– Addednew featuremacro switch “FSL_FEATURE_HAS_NO_NONCACHEABLE_SECTION”
for specific SoCs which have no noncacheable sections, that helps avoid an unneces-
sary complex in link file and the startup file.

– Updated the align(x) to attribute(aligned(x)) to support MDK v6 armclang compiler.

[2.0.0]
• Initial version.

CRC

[2.0.4]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.0.3]
• Bug fix:

– Fix MISRA issues.

[2.0.2]
• Bug fix:

– Fix MISRA issues.

[2.0.1]
• Bug fix:

– DATA and DATALL macro definition moved from header file to source file.

[2.0.0]
• Initial version.

FLASH

[2.1.2]
• Improvements—The improved FLASH_EepromWrite function canwritemore data at once
time.

[2.1.1]
• Bug Fixes — MISRA C-2012 issue fixed: rule 14.4

1.5. ChangeLog 77

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.0]
• New Features

– add feature macro before the declaration of the EEPROM_check_range.

[2.0.0]
• Initial version.

FTM

[2.7.2]
• Improvements

– Add API FTM_ERRATA_010856 for ERR010856 workaround.

[2.7.1]
• Bug Fixes

– Added function macro when accsee FLTCTRL register FSTATE bit to prevent access
nonexistent register.

– Added function macro to prevent access nonexistent FTM channel for API
FTM_ConfigSinglePWM() and FTM_ConfigCombinePWM().

[2.7.0]
• Improvements

– Support period dithering and edge dithering feature with new APIs:

* FTM_SetPeriodDithering()

* FTM_SetEdgeDithering()

– Support get channel n output and input state feature with new APIs:

* FTM_GetChannelOutputState()

* FTM_GetChannelInputState()

– Support configure deadtime for specific combined channel pair with new API:

* FTM_SetPairDeadTime()

– Support filter clock prescale, fault output state.

– Support new APIs to configure PWM and Modified Combine PWM:

* FTM_ConfigSinglePWM()

* FTM_ConfigCombinePWM()

– Support new API to configure channel software output control:

* FTM_SetSoftwareOutputCtrl()

* FTM_GetSoftwareOutputValue()

* FTM_GetSoftwareOutputEnable()

– Support new API to update FTM counter initial value, modulo value and chanle value:

78 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

* FTM_SetInitialModuloValue()

* FTM_SetChannelValue()

[2.6.1]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.6.0]
• Improvements

– Added support to half and full cycle reload feature with new APIs:

* FTM_SetLdok()

* FTM_SetHalfCycPeriod()

* FTM_LoadFreq()

• Bug Fixes

– Set the HWRSTCNT and SWRSTCNT bits to optional at initialization.

[2.5.0]
• Improvements

– Added FTM_CalculateCounterClkDiv to help calculates the counter clock prescaler.

– Modify FTM_UpdatePwmDutycycle API to make it return pwm duty cycles status.

• Bug Fixes

– Fixed TPM_SetupPwm can’t configure 100% center align combined PWM issues.

[2.4.1]
• Bug Fixes

– Added functionmacro to determine if FTM instance has only basic features, to prevent
access to protected register bits.

[2.4.0]
• Improvements

– Added CNTIN register initialization in FTM_SetTimerPeriod API.

– Added a new API to read the captured value of a FTM channel configured in capture
mode:

* FTM_GetInputCaptureValue()

[2.3.0]
• Improvements

– Added support of EdgeAligned/CenterAligned/Asymmetrical combine PWM mode in
FTM_SetupPWM() and FTM_SetupPwmMode() APIs.

– Remove kFTM_ComplementaryPwm from support PWMmode, and add new parame-
ter “enableComplementary” in structure ftm_chnl_pwm_signal_param_t.

1.5. ChangeLog 79

MCUXpresso SDK Documentation, Release 25.09.00

– Rename FTM_SetupFault() API to FTM_SetupFaultInput() to avoid ambiguity.

[2.2.3]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 14.4 and 17.7.

[2.2.2]
• Bug Fixes

– Fixed the issue that when FTM instance has only TPM features cannot be initialized by
FTM_Init() function. By added function macro to assert FTM is TPM only instance.

[2.2.1]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.1, 10.3, 10.4, 10.6, 10.7 and 11.9.

[2.2.0]
• Bug Fixes

– Fixed the issue of comparison between signed and unsigned integer expressions.

• Improvements

– Added support of complementary mode in FTM_SetupPWM() and
FTM_SetupPwmMode() APIs.

– Added new parameter “enableDeadtime” in structure ftm_chnl_pwm_signal_param_t.

[2.1.1]
• Bug Fixes

– Fixed COVERITY integer handing issue where the right operand of a left bit shift state-
ment should not be a negative value. This appears in FTM_SetReloadPoints().

[2.1.0]
• Improvements

– Added a new API FTM_SetupPwmMode() to allow the user to set the chan-
nel match value in units of timer ticks. New configure structure called
ftm_chnl_pwm_config_param_t was added to configure the channel’s PWM parame-
ters. This API is similar with FTM_SetupPwm() API, but the new API will not set the
timer period(MOD value), it will be useful for users to set the PWM parameters with-
out changing the timer period.

• Bug Fixes

– Added feature macro to enable/disable the external trigger source configuration.

80 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.4]
• Improvements

– Added a new API to enable DMA transfer:

* FTM_EnableDmaTransfer()

[2.0.3]
• Bug Fixes

– Updated the FTM driver to enable fault input after configuring polarity.

[2.0.2]
• Improvements

– Added support to Quad Decoder feature with new APIs:

* FTM_GetQuadDecoderFlags()

* FTM_SetQuadDecoderModuloValue()

* FTM_GetQuadDecoderCounterValue()

* FTM_ClearQuadDecoderCounterValue()

[2.0.1]
• Bug Fixes

– Updated the FTM driver to fix write to ELSA and ELSB bits.

– FTM combine mode: set the COMBINE bit before writing to CnV register.

[2.0.0]
• Initial version.

GPIO

[2.1.1]
• Improvements:

– Enhanced FGPIO_PinInit to enable clock internally.

[2.1.0]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 8.6.

– Updated parameter from base into port in port_init() API.

[2.0.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 3.1, 10.1, 10.3, 10.6, 10.7.

1.5. ChangeLog 81

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.0]
• Initial version.

I2C

[2.0.10]
• Bug Fixes

– Fixed coverity issues.

[2.0.9]
• Bug Fixes

– Fixed the MISRA-2012 violations.

* Fixed rule 8.4, 10.1, 10.4, 13.5, 20.8.

[2.0.8]
• Bug Fixes

– Fixed the bug that DFEN bit of I2C Status register 2 could not be set in I2C_MasterInit.

– MISRA C-2012 issue fixed: rule 14.2, 15.7, and 16.4.

– Eliminated IAR Pa082 warnings from I2C_MasterTransferDMA and
I2C_MasterTransferCallbackDMA by assigning volatile variables to local variables and
using local variables instead.

– Fixed MISRA issues.

* Fixed rules 10.1, 10.3, 10.4, 11.9, 14.4, 15.7, 17.7.

• Improvements

– Improved timeout mechanism when waiting certain state in transfer API.

– Updated the I2C_WAIT_TIMEOUT macro to unified name I2C_RETRY_TIMES.

– Moved the master manually acknowledge byte operation into static function
I2C_MasterAckByte.

– Fixed control/status clean flow issue inside I2C_MasterReadBlocking to avoid potential
issue that pending status is cleaned before it’s proceeded.

[2.0.7]
• Bug Fixes

– Fixed the issue for MISRA-2012 check.

* Fixed rule 11.9 ,15.7 ,14.4 ,10.4 ,10.8 ,10.3, 10.1, 10.6, 13.5, 11.3, 13.2, 17.7, 5.7, 8.3,
8.5, 11.1, 16.1.

– Fixed Coverity issue of unchecked return value in I2C_RTOS_Transfer.

– Fixed variable redefine issue by moving i2cBases from fsl_i2c.h to fsl_i2c.c.

• Improvements

82 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

– Added I2C_MASTER_FACK_CONTROL macro to enable FACK control for master trans-
fer receive flow with IP supporting double buffer, then master could hold the SCL by
manually setting TX AK/NAK during data transfer.

[2.0.6]
• Bug Fixes

– Fixed the issue that I2C Master transfer APIs(blocking/non-blocking) did not support
the situation of master transfer with subaddress and transfer data size being zero,
which means no data followed by the subaddress.

[2.0.5]
• Improvements

– Added I2C_WATI_TIMEOUT macro to allow the user to specify the timeout times for
waiting flags in functional API and blocking transfer API.

[2.0.4]
• Bug Fixes

– Added a proper handle for transfer config flag kI2C_TransferNoStartFlag to support
transmit with kI2C_TransferNoStartFlag flag. Support write only or write+read with
no start flag; does not support read only with no start flag.

[2.0.3]
• Bug Fixes

– Removed enableHighDrive member in the master/slave configuration structure be-
cause the operation to HDRS bit is useless, the user need to use DSE bit in port register
to configure the high drive capability.

– Added register reset operation in I2C_MasterInit and I2C_SlaveInit APIs. Fixed issue
where I2C could not switch between master and slave mode.

– Improved slave IRQ handler to handle the corner case that stop flag and addressmatch
flag come synchronously.

[2.0.2]
• Bug Fixes

– Fixed issue in master receive and slave transmit mode with no stop flag. The master
could not succeed to start next transfer because the master could not send out re-start
signal.

– Fixed the out-of-order issue of data transfer due to memory barrier.

– Added hold time configuration for slave. By leaving the SCL divider and MULT reset
values when configured to slave mode, the setup and hold time of the slave is then
reduced outside of spec for lower baudrates. This can cause intermittent arbitration
loss on the master side.

• New Features

– Added address nak event for master.

– Added general call event for slave.

1.5. ChangeLog 83

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.1]
• New Features

– Added double buffer enable configuration for SoCs which have the DFEN bit in S2 reg-
ister.

– Added flexible transmit/receive buffer size support in I2C_SlaveHandleIRQ.

– Added start flag clear, address match, and release bus operation in
I2C_SlaveWrite/ReadBlocking API.

• Bug Fixes

– Changed the kI2C_SlaveRepeatedStartEvent to kI2C_SlaveStartEvent.

[2.0.0]
• Initial version.

IRQ

[2.0.2]
• Bug Fixes

– Fixed violation of MISRA C-2012 Rule 3.1, 8.4, 10.3 and 10.6.

[2.0.1]
• New Features

– Added control macros to enable/disable the CLOCK code in current driver.

[2.0.0]
• Initial version.

KBI

[2.0.3]
• Bug Fixes

– Fixed violation of the MISRA C-2012 rules 10.8.

[2.0.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.3.

[2.0.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.1, 10.3, 10.4, 17.7.

84 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.0]
• Initial version.

MCM

[2.2.0]
• Improvements

– Support platforms with less features.

[2.1.0]
• Others

– Remove byteID from mcm_lmem_fault_attribute_t for document update.

[2.0.0]
• Initial version.

PIT

[2.2.0]
• Bug Fixes

– According to ERR050763, PIT_LDVAL_STAT register is not reliable in dynamic load
mode, so remove the status check in PIT_SetRtiTimerPeriod which added since 2.1.1.

– Removed not used bit PIT_RTI_TCTRL_CHN_MASK.

• Improvements

– Added more guide about get RTI load status in PIT_SetRtiTimerPeriod’s API comment.

– Change PIT_RTI_Deinit to inline API.

– Ensure PIT peripheral clock enabled in PIT_RTI_Init.

• New Features

– Added PIT_ClearRtiSyncStatus API to clear the RTI_LDVAL_STAT register.

[2.1.1]
• Bug Fixes

– Enable PIT when using RTI to ensure RTI can work properly in debug mode.

• Improvements

– Added status check in PIT_SetRtiTimerPeriod to ensure the load value is synchronized
into the RTI clock domain.

– Added note for PIT_RTI_Init to remind users wait RTI sync.

1.5. ChangeLog 85

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.0]
• New Features

– Support RTI (Real Time Interrupt) timer.

[2.0.5]
• Improvements

– Support workaround for ERR007914. This workaround guarantee the write to MCR
register is not ignored.

[2.0.4]
• Bug Fixes

– Fixed PIT_SetTimerPeriod implementation, the load value trigger should be PIT clock
cycles minus 1.

[2.0.3]
• Bug Fixes

– Clear all status bits for all channels to make sure the status of all TCTRL registers is
clean.

[2.0.2]
• Bug Fixes

– Fixed MISRA-2012 issues.

* Rule 10.1.

[2.0.1]
• Bug Fixes

– Cleared timer enable bit for all channels in function PIT_Init() tomake sure all channels
stay in disable status before setting other configurations.

– Fixed MISRA-2012 rules.

* Rule 14.4, rule 10.4.

[2.0.0]
• Initial version.

PORT

[2.0.2]
• Bug Fixes

– Fixed issue for MISRA-2012 check.

* Fixed rule 10.1, rule 10.3, rule 10.4, rule 10.7, rule 14.4.

86 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.1]
• Change pin index enum port_pin_index_t to uint8_t in PORT_SetPinPullUpEnable();

[2.0.0]
• initial version;

RTC

[2.0.6]
• Bug Fixes

– Fix RTC_GetDatetime function validating datetime issue.

[2.0.5]
• Bug Fixes

– Fixed CERT INT30-C, INT31-C violations.

[2.0.4]
• Improvements

– Changed the behavior of calling alarm callback when alarm seconds reach counter
seconds, instead of previous behavior when counter seconds reach alarm seconds and
counter seconds increments.

[2.0.3]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.1, 10.3, 10.4 and 14.4.

[2.0.2]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.3 and 11.9.

[2.0.1]
• Bug Fixes

– Fixed the issue of Pa082 warning.

[2.0.0]
• Initial version.

1.5. ChangeLog 87

MCUXpresso SDK Documentation, Release 25.09.00

SPI

[2.1.4]
• Bug Fixes

– Fixed coverity issues.

[2.1.3]
• Bug Fixes

– Fixed the txData from void * to const void * in transmit API.

[2.1.2]
• Improvements

– Changed SPI_DUMMYDATA to 0x00.

[2.1.1]
• Bug Fixes

– Fixed MISRA 10.3 violation.

[2.1.0]
• Improvements

– Added timeout mechanism when waiting certain states in transfer driver.

• Bug Fixes

– Fixed the bug that, when working as a slave, instance that does not have FIFO may
miss some rx data.

– Fixed master RX data overflow issue by synchronizing transmit and receive process.

– Fixed issue that slave should not share the same non-blocking initialization API and
IRQ handler with master to prevent dead lock issue.

– Fixed issue that callback should be invoked after all data is sent out to bus.

– Added code in SPI_SlaveTransferNonBlocking to empty rx buffer before initializing
transfer.

[2.0.5]
• Bug Fixes

– Eliminated Pa082 warnings from SPI_WriteNonBlocking and SPI_GetStatusFlags.

– Fixed MISRA issues.

* Fixed issues 10.1, 10.3, 10.4, 10.7, 10.8, 11.9, 14.4, 17.7.

88 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.4]
• New Features

– Supported 3-wire mode for SPI driver. Added new API SPI_SetPinMode() to control the
transfer direction of the single wire. For master instance, MOSI is selected as I/O pin.
For slave instance, MISO is selected as I/O pin.

– Added dummy data setup API to allow users to configure the dummy data to be trans-
ferred.

[2.0.3]
• Bug Fixes

– Fixed the potential interrupt race condition at high baudrate when calling API
SPI_MasterTransferNonBlocking.

[2.0.2]
• New Features

– Allowed users to set the transfer size for SPI_TransferNoBlocking non-integer times of
watermark.

– Allowed users to define the dummy data. Users only need to define the macro
SPI_DUMMYDATA in applications.

[2.0.1]
• Bug Fixes

– Fixed SPI_Enable function parameter error.

– Set the s_dummy variable as static variable in fsl_spi_dma.c.

• Improvements

– Optimized the code size while not using transactional API.

– Improved performance in polling method.

– Added #ifndef/#endif to allow users to change the default tx value at compile time.

[2.0.0]
• Initial version.

TPM

[2.4.1]
• Improvements

– Add Coverage Justification for uncovered code.

1.5. ChangeLog 89

MCUXpresso SDK Documentation, Release 25.09.00

[2.4.0]
• New Feature

– Added while loop timeout for MOD CnV CnSC and SC register write sequence.

– Change the return type from void to status_t for following API:

* TPM_DisableChannel

* TPM_EnableChannel

* TPM_SetupOutputCompare

* TPM_SetTimerPeriod

* TPM_StopTimer

[2.3.6]
• Bug Fixes

– Fixed CERT INT30-C INT31-C issue for TPM_SetupDualEdgeCapture.

[2.3.5]
• New Feature

– Added IRQ handler entry for TPM2.

[2.3.4]
• New Feature

– Added common IRQ handler entry TPM_DriverIRQHandler.

[2.3.3]
• Improvements

– Conditionally compile interrupt handling code to solve the problemof using this driver
on CPU cores that do not support interrupts.

[2.3.2]
• Bug Fixes

– Fixed ERR008085 TPMwriting the TPMx_MOD or TPMx_CnV registers more than once
may fail when the timer is disabled.

[2.3.1]
• Bug Fixes

– Fixed compilation error whenmacro FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL is
1.

[2.3.0]
• Improvements

– Create callback feature for TPM match and timer overflow interrupts.

90 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

[2.2.4]
• Improvements

– Add feature macros(FSL_FEATURE_TPM_HAS_GLOBAL_TIME_BASE_EN,
FSL_FEATURE_TPM_HAS_GLOBAL_TIME_BASE_SYNC).

[2.2.3]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.2.2]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.4.

[2.2.1]
• Bug Fixes

– Fixed CCM issue by splitting function from TPM_SetupPwm() function to reduce func-
tion complexity.

– Fixed violations of MISRA C-2012 rule 17.7.

[2.2.0]
• Improvements

– Added TPM_SetChannelPolarity to support select channel input/output polarity.

– Added TPM_EnableChannelExtTrigger to support enable external trigger input to be
used by channel.

– Added TPM_CalculateCounterClkDiv to help calculates the counter clock prescaler.

– Added TPM_GetChannelValue to support get TPM channel value.

– Added new TPM configuration.

* syncGlobalTimeBase

* extTriggerPolarity

* chnlPolarity

– Added new PWM signal configuration.

* secPauseLevel

• Bug Fixes

– Fixed TPM_SetupPwm can’t configure 0% combined PWM issues.

[2.1.1]
• Improvements

– Add feature macro for PWM pause level select feature.

1.5. ChangeLog 91

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.0]
• Improvements

– Added TPM_EnableChannel and TPM_DisableChannel APIs.

– Added new PWM signal configuration.

* pauseLevel - Support select output level when counter first enabled or paused.

* enableComplementary - Support enable/disable generate complementary PWM
signal.

* deadTimeValue - Support deadtime insertion for eachpair of channels in combined
PWMmode.

• Bug Fixes

– Fixed issues about channel MSnB:MSnA and ELSnB:ELSnA bit fields and CnV register
change request acknowledgement. Writes to these bits are ignored when the interval
between successive writes is less than the TPM clock period.

[2.0.8]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.1, 10.4 ,10.7 and 14.4.

[2.0.7]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.4 and 17.7.

[2.0.6]
• Bug Fixes

– Fixed Out-of-bounds issue.

[2.0.5]
• Bug Fixes

– Fixed MISRA-2012 rules.

* Rule 10.6, 10.7

[2.0.4]
• Bug Fixes

– Fixed ERR050050 in functions TPM_SetupPwm/TPM_UpdatePwmDutycycle. When
TPM was configured in EPWM mode as PS = 0, the compare event was missed on the
first reload/overflow after writing 1 to the CnV register.

[2.0.3]
• Bug Fixes

– MISRA-2012 issue fixed.

* Fixed rules: rule-12.1, rule-17.7, rule-16.3, rule-14.4, rule-1.3, rule-10.4, rule-10.3,
rule-10.7, rule-10.1, rule-10.6, and rule-18.1.

92 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.2]
• Bug Fixes

– Fixed issues in functions TPM_SetupPwm/TPM_UpdateChnlEdgeLevelSelect
/TPM_SetupInputCapture/TPM_SetupOutputCompare/TPM_SetupDualEdgeCapture,
wait acknowledgement when the channel is disabled.

[2.0.1]
• Bug Fixes

– Fixed TPM_UpdateChnIEdgeLevelSelect ACK wait issue.

– Fixed the issue that TPM_SetupdualEdgeCapture could not set FILTER register.

– Fixed TPM_UpdateChnEdgeLevelSelect ACK wait issue.

[2.0.0]
• Initial version.

UART

[2.5.1]
• Improvements

– Use separate data for TX and RX in uart_transfer_t.

• Bug Fixes

– Fixed bug that when ring buffer is used, if some data is received in ring buffer first
before calling UART_TransferReceiveNonBlocking, the received data count returned
by UART_TransferGetReceiveCount is wrong.

[2.5.0]
• New Features

– Added APIs UART_GetRxFifoCount/UART_GetTxFifoCount to get rx/tx FIFO data count.

– Added APIs UART_SetRxFifoWatermark/UART_SetTxFifoWatermark to set rx/tx FIFO
water mark.

• Bug Fixes

– Fixedbug of race condition duringUART transfer using transactional APIs, by disabling
and re-enabling the global interrupt before and after critical operations on interrupt
enable registers.

– Fixed DMA/eDMA transfer blocking issue by enabling tx idle interrupt after
DMA/eDMA transmission finishes.

[2.4.0]
• New Features

– Added APIs to configure 9-bit data mode, set slave address and send address.

1.5. ChangeLog 93

MCUXpresso SDK Documentation, Release 25.09.00

[2.3.0]
• Bug Fixes

– Fixed the bug that, when framing/parity/noise/overflow flag or idle line detect flag is
set, receive FIFO should be flushed to avoid FIFO pointer being in unknown state, since
FIFO has no valid data.

• Improvements

– Modified UART_TransferHandleIRQ so that txState will be set to idle onlywhen all data
has been sent out to bus.

– Modified UART_TransferGetSendCount so that this API returns the real byte count that
UART has sent out rather than the software buffer status.

– Added timeout mechanism when waiting for certain states in transfer driver.

[2.2.0]
• New Features

– Added UART hardware FIFO enable/disable API.

• Improvements

– Added check for kUART_TransmissionCompleteFlag in UART_TransferHandleIRQ,
UART_SendEDMACallback andUART_TransferSendDMACallback to ensure all the data
would be sent out to bus.

• Bug Fixes

– Eliminated IAR Pa082 warnings from UART_TransferGetRxRingBufferLength,
UART_GetEnabledInterrupts, UART_GetStatusFlags and UART_TransferHandleIRQ.

– Added code in UART_ReadBlocking so that if more than one receiver errors occur, all
status flags will be cleared and the most severe error status will be returned.

– Fixed MISRA issues.

* Fixed rules 10.1, 10.3, 10.4, 14.4, 11.6, 17.7.

[2.1.6]
• Bug Fixes

– Fixed the issue of register’s being in repeatedly reading status while performing the
IRQ routine.

[2.1.5]
• Improvements

– Added hardware flow control function support.

– Added idle-line-detecting feature in UART_TransferNonBlocking function. If an idle
line is detected, a callbackwill be triggeredwith status kStatus_UART_IdleLineDetected
returned. This feature may be useful when the number of received bytes is less than
the expected receive data size. Before triggering the callback, data in the FIFO is read
out (if it has FIFO), and no interrupt will be disabled except for the case that the receive
data size reaches 0.

– Enabled the RXFIFOwatermark function. With the idle-line-detecting feature enabled,
you can set the watermark value to whatever you want (should not be bigger than the
RX FIFO size). Data is then received and a callback will be triggered when data receive
ends.

94 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.4]
• Improvements

– Changed parameter type in UART_RTOS_Init() struct rtos_uart_config –>
uart_rtos_config_t.

• Bug Fixes

– Disabled UART receive interrupt instead of global interrupt when reading data from
ring buffer. With ring buffer used, receive nonblocking will disable global interrupt to
protect the ring buffer. This has a negative effect on other IPs using interrupt.

[2.1.3]
• New Features

– Added RX framing error and parity error status check when using interrupt transfer.

[2.1.2]
• Bug Fixes

– Fixed baud rate fine adjust bug to make the computed baud rate more accurate.

[2.1.1]
• Bug Fixes

– Removed needless check of event flags and assert in UART_RTOS_Receive.

– Always waited for RX event flag in UART_RTOS_Receive.

[2.1.0]
• Improvements

– Added transactional API.

[2.0.0]
• Initial version.

WDOG8

[2.0.1]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.3, 10.4, 10.6, 10.7 and 11.9.

– Fixed the issue of the inseparable process interrupted by other interrupt source.

* WDOG8_Refresh

[2.0.0]
• Initial version.

1.5. ChangeLog 95

MCUXpresso SDK Documentation, Release 25.09.00

1.6 Driver API Reference Manual

This section provides a link to the Driver API RM, detailing available drivers and their usage to
help you integrate hardware efficiently.

MKE02Z4

1.7 Middleware Documentation

Find links to detailed middleware documentation for key components. While not all onboard
middleware is covered, this serves as a useful reference for configuration and development.

1.7.1 FreeMASTER

freemaster

96 Chapter 1. FRDM-KE02Z40M

Chapter 2

MKE02Z4

2.1 ACMP: Analog Comparator Driver

void ACMP_Init(ACMP_Type *base, const acmp_config_t *config)
Initialize the ACMP.

The default configuration can be got by calling ACMP_GetDefaultConfig().

Parameters
• base – ACMP peripheral base address.

• config – Pointer to ACMP configuration structure.

void ACMP_Deinit(ACMP_Type *base)
De-Initialize the ACMP.

Parameters
• base – ACMP peripheral basic address.

void ACMP_GetDefaultConfig(acmp_config_t *config)
Gets the default configuration for ACMP.

This function initializes the user configuration structure to default value. The default value
are: Example:

config->enablePinOut = false;
config->hysteresisMode = kACMP_HysterisisLevel1;

Parameters
• config – Pointer to ACMP configuration structure.

static inline void ACMP_Enable(ACMP_Type *base, bool enable)
Enable/Disable the ACMP module.

Parameters
• base – ACMP peripheral base address.

• enable – Switcher to enable/disable ACMP module.

void ACMP_EnableInterrupt(ACMP_Type *base, acmp_interrupt_mode_tmode)
Enable the ACMP interrupt and determines the sensitivity modes of the interrupt trigger.

Parameters
• base – ACMP peripheral base address.

97

MCUXpresso SDK Documentation, Release 25.09.00

• mode – Select one interrupt mode to generate interrupt.

static inline void ACMP_DisableInterrupt(ACMP_Type *base)
Disable the ACMP interrupt.

Parameters
• base – ACMP peripheral base address.

void ACMP_SetChannelConfig(ACMP_Type *base, acmp_input_channel_selection_t PositiveInput,
acmp_input_channel_selection_t negativeInout)

Configure the ACMP positive and negative input channel.

Parameters
• base – ACMP peripheral base address.

• PositiveInput – ACMP Positive Input Select. Refer to
“acmp_input_channel_selection_t”.

• negativeInout – ACMP Negative Input Select. Refer to
“acmp_input_channel_selection_t”.

void ACMP_SetDACConfig(ACMP_Type *base, const acmp_dac_config_t *config)

void ACMP_EnableInputPin(ACMP_Type *base, uint32_t mask, bool enable)
Enable/Disable ACMP input pin. The API controls if the corresponding ACMP external pin
can be driven by an analog input.

Parameters
• base – ACMP peripheral base address.

• mask – The mask of the pin associated with channel ADx. Valid range is
AD0:0x1U ~ AD3:0x4U. For example: If enable AD0, AD1 and AD2 pins,
mask should be set to 0x7U(0x1 | 0x2 | 0x4).

• enable – Switcher to enable/disable ACMP module.

static inline uint8_t ACMP_GetStatusFlags(ACMP_Type *base)
Get ACMP status flags.

Parameters
• base – ACMP peripheral base address.

Returns
Flags’ mask if indicated flags are asserted. See “_acmp_status_flags”.

static inline void ACMP_ClearInterruptFlags(ACMP_Type *base)
Clear interrupts status flag.

Parameters
• base – ACMP peripheral base address.

FSL_ACMP_DRIVER_VERSION
ACMP driver version 2.0.2.

enum _acmp_hysterisis_mode
Analog Comparator Hysterisis Selection.

Values:

enumerator kACMP_HysterisisLevel1
ACMP hysterisis is 20mv. >

98 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kACMP_HysterisisLevel2
ACMP hysterisis is 30mv. >

enum _acmp_reference_voltage_source
DAC Voltage Reference source.

Values:

enumerator kACMP_VrefSourceVin1
The DAC selects Bandgap as the reference.

enumerator kACMP_VrefSourceVin2
The DAC selects VDDA as the reference.

enum _acmp_interrupt_mode
The sensitivity modes of the interrupt trigger.

Values:

enumerator kACMP_OutputFallingInterruptMode
ACMP interrupt on output falling edge. >

enumerator kACMP_OutputRisingInterruptMode
ACMP interrupt on output rising edge. >

enumerator kACMP_OutputBothEdgeInterruptMode
ACMP interrupt on output falling or rising edge. >

enum _acmp_input_channel_selection
The ACMP input channel selection.

Values:

enumerator kACMP_ExternalReference0
External reference 0 is selected to as input channel. >

enumerator kACMP_ExternalReference1
External reference 1 is selected to as input channel. >

enumerator kACMP_ExternalReference2
External reference 2 is selected to as input channel. >

enumerator kACMP_InternalDACOutput
Internal DAC putput is selected to as input channel. >

enum _acmp_status_flags
The ACMP status flags.

Values:

enumerator kACMP_InterruptFlag
ACMP interrupt on output valid edge. >

enumerator kACMP_OutputFlag
The current value of the analog comparator output. >

typedef enum _acmp_hysterisis_mode acmp_hysterisis_mode_t
Analog Comparator Hysterisis Selection.

typedef enum _acmp_reference_voltage_source acmp_reference_voltage_source_t
DAC Voltage Reference source.

typedef enum _acmp_interrupt_mode acmp_interrupt_mode_t
The sensitivity modes of the interrupt trigger.

2.1. ACMP: Analog Comparator Driver 99

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _acmp_input_channel_selection acmp_input_channel_selection_t
The ACMP input channel selection.

typedef struct _acmp_config acmp_config_t
Configuration for ACMP.

typedef struct _acmp_dac_config acmp_dac_config_t
Configuration for Internal DAC.

struct _acmp_config
#include <fsl_acmp.h> Configuration for ACMP.

Public Members

bool enablePinOut
The comparator output is available on the associated pin.

acmp_hysterisis_mode_t hysteresisMode
Hysteresis mode.

struct _acmp_dac_config
#include <fsl_acmp.h> Configuration for Internal DAC.

Public Members

uint8_t DACValue
Value for DAC Output Voltage. Available range is 0-63.

acmp_reference_voltage_source_t referenceVoltageSource
Supply voltage reference source.

2.2 ADC: 12-bit Analog to Digital Converter Driver

void ADC_Init(ADC_Type *base, const adc_config_t *config)
Initializes the ADC module.

Parameters
• base – ADC peripheral base address.

• config – Pointer to configuration structure. See “adc_config_t”.

void ADC_Deinit(ADC_Type *base)
De-initialize the ADC module.

Parameters
• base – ADC peripheral base address.

void ADC_GetDefaultConfig(adc_config_t *config)
Gets an available pre-defined settings for the converter’s configuration.

This function initializes the converter configuration structure with available settings. The
default values are as follows.

100 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

config->referenceVoltageSource = kADC_ReferenceVoltageSourceAlt0;
config->enableLowPower = false;
config->enableLongSampleTime = false;
config->clockDivider = kADC_ClockDivider1;
config->ResolutionMode = kADC_Resolution8BitMode;
config->clockSource = kADC_ClockSourceAlt0;

Parameters
• config – Pointer to the configuration structure.

static inline void ADC_EnableHardwareTrigger(ADC_Type *base, bool enable)
Enable the hardware trigger mode.

Parameters
• base – ADC peripheral base address.

• enable – Switcher of the hardware trigger feature. “true” means enabled,
“false” means not enabled.

void ADC_SetHardwareCompare(ADC_Type *base, const adc_hardware_compare_config_t
*config)

Configure the hardware compare mode.

The compare function can be configured to check for an upper or lower limit. After the
input is sampled and converted, the result is added to the complement of the compare value
(ADC_CV).

Parameters
• base – ADC peripheral base address.

• config – Pointer to “adc_hardware_compare_config_t” structure.

void ADC_SetFifoConfig(ADC_Type *base, const adc_fifo_config_t *config)
Configure the Fifo mode.

The ADC module supports FIFO operation to minimize the interrupts to CPU in order to
reduce CPU loading in ADC interrupt service routines. This module contains two FIFOs to
buffer analog input channels and analog results respectively.

Parameters
• base – ADC peripheral base address.

• config – Pointer to “adc_fifo_config_t” structure.

void ADC_GetDefaultFIFOConfig(adc_fifo_config_t *config)
Gets an available pre-defined settings for the FIFO’s configuration.

Parameters
• config – Pointer to the FIFO configuration structure, please refer to
adc_fifo_config_t for details.

void ADC_SetChannelConfig(ADC_Type *base, const adc_channel_config_t *config)
Configures the conversion channel.

This operation triggers the conversion when in software trigger mode. When in hardware
trigger mode, this API configures the channel while the external trigger source helps to
trigger the conversion.

Parameters
• base – ADC peripheral base address.

• config – Pointer to “adc_channel_config_t” structure.

2.2. ADC: 12-bit Analog to Digital Converter Driver 101

MCUXpresso SDK Documentation, Release 25.09.00

bool ADC_GetChannelStatusFlags(ADC_Type *base)
Get the status flags of channel.

Parameters
• base – ADC peripheral base address.

Returns
“True” means conversion has completed and “false” means conversion has
not completed.

uint32_t ADC_GetStatusFlags(ADC_Type *base)
Get the ADC status flags.

Parameters
• base – ADC peripheral base address.

Returns
Flags’ mask if indicated flags are asserted. See “_adc_status_flags”.

static inline void ADC_EnableAnalogInput(ADC_Type *base, uint32_t mask, bool enable)
Disables the I/O port control of the pins used as analog inputs.

When a pin control register bit is set, the following conditions are forced for the associated
MCU pin: -The output buffer is forced to its high impedance state. -The input buffer is
disabled. A read of the I/O port returns a zero for any pin with its input buffer disabled.
-The pullup is disabled.

Parameters
• base – ADC peripheral base address.

• mask – The mask of the pin associated with channel ADx. Valid range is
AD0:0x1U ~AD15:0x8000U. For example: If enable AD0, AD1 andAD2 pins,
mask should be set to 0x7U.

• enable – The “true” means enabled, “false” means not enabled.

static inline uint32_t ADC_GetChannelConversionValue(ADC_Type *base)
Gets the conversion value.

Parameters
• base – ADC peripheral base address.

Returns
Conversion value.

static inline void ADC_SetHardwareTriggerMaskMode(ADC_Type *base,
adc_hardware_trigger_mask_mode_t
mode)

enum _adc_reference_voltage_source
Reference voltage source.

Values:

enumerator kADC_ReferenceVoltageSourceAlt0
Default voltage reference pin pair (VREFH/VREFL). >

enumerator kADC_ReferenceVoltageSourceAlt1
Analog supply pin pair (VDDA/VSSA). >

enum _adc_clock_divider
Clock divider for the converter.

Values:

102 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kADC_ClockDivider1
Divide ration = 1, and clock rate = Input clock. >

enumerator kADC_ClockDivider2
Divide ration = 2, and clock rate = Input clock / 2. >

enumerator kADC_ClockDivider4
Divide ration = 3, and clock rate = Input clock / 4. >

enumerator kADC_ClockDivider8
Divide ration = 4, and clock rate = Input clock / 8. >

enum _adc_resolution_mode
ADC converter resolution mode.

Values:

enumerator kADC_Resolution8BitMode
8-bit conversion (N = 8). >

enumerator kADC_Resolution10BitMode
10-bit conversion (N = 10) >

enumerator kADC_Resolution12BitMode
12-bit conversion (N = 12) >

enum _adc_clock_source
ADC input Clock source.

Values:

enumerator kADC_ClockSourceAlt0
Bus clock. >

enumerator kADC_ClockSourceAlt1
Bus clock divided by 2. >

enumerator kADC_ClockSourceAlt2
Alternate clock (ALTCLK). >

enumerator kADC_ClockSourceAlt3
Asynchronous clock (ADACK). >

enum _adc_compare_mode
Compare function mode.

Values:

enumerator kADC_CompareDisableMode
Compare function disabled. >

enumerator kADC_CompareLessMode
Compare triggers when input is less than compare level. >

enumerator kADC_CompareGreaterOrEqualMode
Compare triggers when input is greater than or equal to compare level. >

enum _adc_status_flags
ADC status flags mask.

Values:

enumerator kADC_ActiveFlag
Indicates that a conversion is in progress. >

2.2. ADC: 12-bit Analog to Digital Converter Driver 103

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kADC_FifoEmptyFlag
Indicates that ADC result FIFO have no valid new data. >

enumerator kADC_FifoFullFlag
Indicates that ADC result FIFO is full. >

enum _adc_hardware_trigger_mask_mode
Hardware tigger mask mode.

Values:

enumerator kADC_HWTriggerMaskDisableMode
Hardware trigger mask disable and hardware trigger can trigger ADC conversion. >

enumerator kADC_HWTriggerMaskAutoMode
Hardware trigger mask automatically when data fifo is not empty. >

enumerator kADC_HWTriggerMaskEnableMode
Hardware trigger mask enable and hardware trigger cannot trigger ADC conversion.
>

typedef enum _adc_reference_voltage_source adc_reference_voltage_source_t
Reference voltage source.

typedef enum _adc_clock_divider adc_clock_divider_t
Clock divider for the converter.

typedef enum _adc_resolution_mode adc_resolution_mode_t
ADC converter resolution mode.

typedef enum _adc_clock_source adc_clock_source_t
ADC input Clock source.

typedef enum _adc_compare_mode adc_compare_mode_t
Compare function mode.

typedef enum _adc_hardware_trigger_mask_mode adc_hardware_trigger_mask_mode_t
Hardware tigger mask mode.

typedef struct _adc_config adc_config_t
ADC converter configuration.

typedef struct _adc_hardware_compare_config adc_hardware_compare_config_t
ADC hardware comparison configuration.

typedef struct _adc_fifo_config adc_fifo_config_t
ADC FIFO configuration.

typedef struct _adc_channel_config adc_channel_config_t
ADC channel conversion configuration.

FSL_ADC_DRIVER_VERSION
ADC driver version.

Version 2.1.0.

struct _adc_config
#include <fsl_adc.h> ADC converter configuration.

104 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

adc_reference_voltage_source_t referenceVoltageSource
Selects the voltage reference source used for conversions. >

bool enableLowPower
Enable low power mode. The power is reduced at the expense of maximum clock
speed. >

bool enableLongSampleTime
Enable long sample time mode. >

adc_clock_divider_t clockDivider
Select the divider of input clock source. >

adc_resolution_mode_t ResolutionMode
Select the sample resolution mode. >

adc_clock_source_t clockSource
Select the input Clock source. >

struct _adc_hardware_compare_config
#include <fsl_adc.h> ADC hardware comparison configuration.

Public Members

uint32_t compareValue
Setting the compare value. The value are compared to the conversion result. >

adc_compare_mode_t compareMode
Setting the compare mode. Refer to “adc_compare_mode_t”. >

struct _adc_fifo_config
#include <fsl_adc.h> ADC FIFO configuration.

Public Members

bool enableHWTriggerMultConv
The field is valid when FIFO is enabled.Enable hardware trigger multiple conversion.
One hardware trigger pulse triggers multiple conversions in fifo mode. >

bool enableFifoScanMode
The field is valid when FIFO is enabled. Enable the FIFO scan mode. If enable, ADC
will repeat using the first FIFO channel as the conversion channel until the result FIFO
is fulfilled. >

bool enableCompareAndMode
The field is valid when FIFO is enabled. If enable, ADCwill AND all of compare triggers
and set COCO after all of compare triggers occur. If disable, ADC will OR all of compare
triggers and set COCO after at least one of compare trigger occurs. >

uint32_t FifoDepth
Setting the depth of FIFO. Depth of fifo is FifoDepth + 1. When FifoDepth = 0U, the FIFO
is DISABLED.When FifoDepth is set to nonzero, the FIFO function is ENABLED and the
depth is indicated by the FifoDepth field. >

struct _adc_channel_config
#include <fsl_adc.h> ADC channel conversion configuration.

2.2. ADC: 12-bit Analog to Digital Converter Driver 105

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

uint32_t channelNumber
Setting the conversion channel number. The available range is 0-31. See channel con-
nection information for each chip in Reference Manual document.

bool enableContinuousConversion
enables continuous conversions. >

bool enableInterruptOnConversionCompleted
Generate an interrupt request once the conversion is completed.

2.3 Clock Driver

enum _clock_name
Clock name used to get clock frequency.

Values:

enumerator kCLOCK_CoreSysClk
Core/system clock

enumerator kCLOCK_PlatClk
Platform clock

enumerator kCLOCK_BusClk
Bus clock

enumerator kCLOCK_FlashClk
Flash clock

enumerator kCLOCK_Osc0ErClk
OSC0 external reference clock (OSC0ERCLK)

enumerator kCLOCK_ICSFixedFreqClk
ICS fixed frequency clock (ICSFFCLK)

enumerator kCLOCK_ICSInternalRefClk
ICS internal reference clock (ICSIRCLK)

enumerator kCLOCK_ICSFllClk
ICSFLLCLK

enumerator kCLOCK_ICSOutClk
ICS Output clock

enumerator kCLOCK_LpoClk
LPO clock

enum _clock_ip_name
Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.

Values:

enumerator kCLOCK_IpInvalid

enumerator kCLOCK_I2c0

enumerator kCLOCK_Uart0

enumerator kCLOCK_Uart1

106 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_Uart2

enumerator kCLOCK_Acmp0

enumerator kCLOCK_Acmp1

enumerator kCLOCK_Spi0

enumerator kCLOCK_Spi1

enumerator kCLOCK_Irq0

enumerator kCLOCK_Kbi0

enumerator kCLOCK_Kbi1

enumerator kCLOCK_Adc0

enumerator kCLOCK_Crc0

enumerator kCLOCK_Ftm0

enumerator kCLOCK_Ftm1

enumerator kCLOCK_Ftm2

enumerator kCLOCK_Pit0

enumerator kCLOCK_Rtc0

enum _osc_work_mode
OSC work mode.

Values:

enumerator kOSC_ModeExt
OSC source from external clock.

enumerator kOSC_ModeOscLowPower
Oscillator low freq low power.

enumerator kOSC_ModeOscHighGain
Oscillator low freq high gain.

enum _osc_enable_mode
OSC enable mode.

Values:

enumerator kOSC_Enable
Enable.

enumerator kOSC_EnableInStop
Enable in stop mode.

enum _ics_fll_src
ICS FLL reference clock source select.

Values:

enumerator kICS_FllSrcExternal
External reference clock is selected

enumerator kICS_FllSrcInternal
The slow internal reference clock is selected

2.3. Clock Driver 107

MCUXpresso SDK Documentation, Release 25.09.00

enum _ics_clkout_src
ICSOUT clock source.

Values:

enumerator kICS_ClkOutSrcFll
Output of the FLL is selected (reset default)

enumerator kICS_ClkOutSrcInternal
Internal reference clock is selected, FLL is bypassed

enumerator kICS_ClkOutSrcExternal
External reference clock is selected, FLL is bypassed

ICS status. .

Values:

enumerator kStatus_ICS_ModeUnreachable
Can’t switch to target mode.

enumerator kStatus_ICS_SourceUsed
Can’t change the clock source because it is in use.

enum _ics_irclk_enable_mode
ICS internal reference clock (ICSIRCLK) enable mode definition.

Values:

enumerator kICS_IrclkDisable
ICSIRCLK disable.

enumerator kICS_IrclkEnable
ICSIRCLK enable.

enumerator kICS_IrclkEnableInStop
ICSIRCLK enable in stop mode.

enum _ics_mode
ICS mode definitions.

Values:

enumerator kICS_ModeFEI
FEI - FLL Engaged Internal

enumerator kICS_ModeFBI
FBI - FLL Bypassed Internal

enumerator kICS_ModeBILP
BILP - Bypassed Low Power Internal

enumerator kICS_ModeFEE
FEE - FLL Engaged External

enumerator kICS_ModeFBE
FBE - FLL Bypassed External

enumerator kICS_ModeBELP
BELP - Bypassed Low Power External

enumerator kICS_ModeError
Unknown mode

108 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _clock_name clock_name_t
Clock name used to get clock frequency.

typedef enum _clock_ip_name clock_ip_name_t
Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.

typedef struct _sim_clock_config sim_clock_config_t
SIM configuration structure for clock setting.

typedef struct _osc_config osc_config_t
OSC Initialization Configuration Structure.

Defines the configuration data structure to initialize the OSC.When porting to a new board,
set the following members according to the board setting:

a. freq: The external frequency.

b. workMode: The OSC module mode.

c. enableMode: The OSC enable mode.

typedef enum _ics_fll_src ics_fll_src_t
ICS FLL reference clock source select.

typedef enum _ics_clkout_src ics_clkout_src_t
ICSOUT clock source.

typedef enum _ics_mode ics_mode_t
ICS mode definitions.

typedef struct _ics_config ics_config_t
ICS configuration structure.

When porting to a new board, set the following members according to the board setting:

a. icsMode: ICS mode

b. irClkEnableMode: ICSIRCLK enable mode

c. rDiv: If the FLL uses the external reference clock, set this value to ensure that the
external reference clock divided by rDiv is in the 31.25 kHz to 39.0625 kHz range.

d. bDiv, this divider determine the ISCOUT clock

volatile uint32_t g_xtal0Freq
External XTAL0 (OSC0) clock frequency.

The XTAL0/EXTAL0 (OSC0) clock frequency in Hz. When the clock is set up, use the function
CLOCK_SetXtal0Freq to set the value in the clock driver. For example, if XTAL0 is 8 MHz:

CLOCK_InitOsc0(...);
CLOCK_SetXtal0Freq(80000000)

This is important for the multicore platforms where only one core needs to set up the OSC0
using the CLOCK_InitOsc0. All other cores need to call the CLOCK_SetXtal0Freq to get a
valid clock frequency.

static inline void CLOCK_EnableClock(clock_ip_name_t name)
Enable the clock for specific IP.

Parameters
• name – Which clock to enable, see clock_ip_name_t.

2.3. Clock Driver 109

MCUXpresso SDK Documentation, Release 25.09.00

static inline void CLOCK_DisableClock(clock_ip_name_t name)
Disable the clock for specific IP.

Parameters
• name – Which clock to disable, see clock_ip_name_t.

static inline void CLOCK_SetBusClkDiv(uint32_t busDiv)
clock divider

Set the SIM_BUSDIV. Carefully configure the SIM_BUSDIV to avoid bus/flash clock frequency
higher than 24MHZ.

Parameters
• busDiv – bus clock output divider value.

uint32_t CLOCK_GetFreq(clock_name_t clockName)
Gets the clock frequency for a specific clock name.

This function checks the current clock configurations and then calculates the clock fre-
quency for a specific clock name defined in clock_name_t. The ICS must be properly con-
figured before using this function.

Parameters
• clockName – Clock names defined in clock_name_t

Returns
Clock frequency value in Hertz

uint32_t CLOCK_GetCoreSysClkFreq(void)
Get the core clock or system clock frequency.

Returns
Clock frequency in Hz.

uint32_t CLOCK_GetBusClkFreq(void)
Get the bus clock frequency.

Returns
Clock frequency in Hz.

uint32_t CLOCK_GetFlashClkFreq(void)
Get the flash clock frequency.

Returns
Clock frequency in Hz.

uint32_t CLOCK_GetOsc0ErClkFreq(void)
Get the OSC0 external reference clock frequency (OSC0ERCLK).

Returns
Clock frequency in Hz.

void CLOCK_SetSimConfig(sim_clock_config_t const *config)
Set the clock configure in SIM module.

This function sets system layer clock settings in SIM module.

Parameters
• config – Pointer to the configure structure.

110 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

static inline void CLOCK_SetSimSafeDivs(void)
Set the system clock dividers in SIM to safe value.

The system level clocks (core clock, bus clock, and flash clock) must be in allowed ranges.
During ICS clock mode switch, the ICS output clock changes then the system level clocks
may be out of range. This function could be used before ICS mode change, to make sure
system level clocks are in allowed range.

FSL_CLOCK_DRIVER_VERSION
CLOCK driver version 2.2.3.

SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY

UART_CLOCKS
Clock ip name array for UART.

ADC_CLOCKS
Clock ip name array for ADC16.

IRQ_CLOCKS
Clock ip name array for IRQ.

KBI_CLOCKS
Clock ip name array for KBI.

SPI_CLOCKS
Clock ip name array for SPI.

I2C_CLOCKS
Clock ip name array for I2C.

FTM_CLOCKS
Clock ip name array for FTM.

ACMP_CLOCKS
Clock ip name array for CMP.

CRC_CLOCKS
Clock ip name array for CRC.

PIT_CLOCKS
Clock ip name array for PIT.

RTC_CLOCKS
Clock ip name array for RTC.

LPO_CLK_FREQ
LPO clock frequency.

CLK_GATE_REG_OFFSET_SHIFT

CLK_GATE_REG_OFFSET_MASK

CLK_GATE_BIT_SHIFT_SHIFT

CLK_GATE_BIT_SHIFT_MASK

CLK_GATE_DEFINE(reg_offset, bit_shift)

CLK_GATE_ABSTRACT_REG_OFFSET(x)

CLK_GATE_ABSTRACT_BITS_SHIFT(x)

2.3. Clock Driver 111

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t CLOCK_GetICSOutClkFreq(void)
Gets the ICS output clock (ICSOUTCLK) frequency.

This function gets the ICS output clock frequency in Hz based on the current ICS register
value.

Returns
The frequency of ICSOUTCLK.

uint32_t CLOCK_GetFllFreq(void)
Gets the ICS FLL clock (ICSFLLCLK) frequency.

This function gets the ICS FLL clock frequency in Hz based on the current ICS register
value. The FLL is enabled in FEI/FBI/FEE/FBE mode and disabled in low power state in
other modes.

Returns
The frequency of ICSFLLCLK.

uint32_t CLOCK_GetInternalRefClkFreq(void)
Gets the ICS internal reference clock (ICSIRCLK) frequency.

This function gets the ICS internal reference clock frequency in Hz based on the current ICS
register value.

Returns
The frequency of ICSIRCLK.

uint32_t CLOCK_GetICSFixedFreqClkFreq(void)
Gets the ICS fixed frequency clock (ICSFFCLK) frequency.

This function gets the ICS fixed frequency clock frequency in Hz based on the current ICS
register value.

Returns
The frequency of ICSFFCLK.

static inline void CLOCK_SetLowPowerEnable(bool enable)
Enables or disables the ICS low power.

Enabling the ICS low power disables the PLL and FLL in bypass modes. In other words, in
FBE and PBE modes, enabling low power sets the ICS to BELP mode. In FBI and PBI modes,
enabling low power sets the ICS to BILP mode. When disabling the ICS low power, the PLL
or FLL are enabled based on ICS settings.

Parameters
• enable – True to enable ICS low power, false to disable ICS low power.

static inline void CLOCK_SetInternalRefClkConfig(uint8_t enableMode)
Configures the Internal Reference clock (ICSIRCLK).

This function sets the ICSIRCLK base on parameters. This function also sets whether the
ICSIRCLK is enabled in stop mode.

Parameters
• enableMode – ICSIRCLK enable mode, OR’ed value of
_ICS_irclk_enable_mode.

Return values
• kStatus_ICS_SourceUsed – Because the internal reference clock is used as a
clock source, the configuration should not be changed. Otherwise, a glitch
occurs.

• kStatus_Success – ICSIRCLK configuration finished successfully.

112 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

static inline void CLOCK_SetFllExtRefDiv(uint8_t rdiv)
Set the FLL external reference clock divider value.

Sets the FLL external reference clock divider value, the register ICS_C1[RDIV]. Resulting
frequency must be in the range 31.25KHZ to 39.0625KHZ.

Parameters
• rdiv – The FLL external reference clock divider value, ICS_C1[RDIV].

static inline void CLOCK_SetOsc0MonitorMode(bool enable)
Sets the OSC0 clock monitor mode.

This function sets the OSC0 clock monitor mode. See ics_monitor_mode_t for details.

Parameters
• enable – True to enable clock monitor, false to disable clock monitor.

void CLOCK_InitOsc0(osc_config_t const *config)
Initializes the OSC0.

This function initializes the OSC0 according to the board configuration.

Parameters
• config – Pointer to the OSC0 configuration structure.

void CLOCK_DeinitOsc0(void)
Deinitializes the OSC0.

This function deinitializes the OSC0.

static inline void CLOCK_SetXtal0Freq(uint32_t freq)
Sets the XTAL0 frequency based on board settings.

Parameters
• freq – The XTAL0/EXTAL0 input clock frequency in Hz.

static inline void CLOCK_SetOsc0Enable(uint8_t enable)
Sets the OSC enable.

Parameters
• enable – osc enable mode.

ics_mode_t CLOCK_GetMode(void)
Gets the current ICS mode.

This function checks the ICS registers and determines the current ICS mode.

Returns
Current ICS mode or error code; See ics_mode_t.

status_t CLOCK_SetFeiMode(uint8_t bDiv)
Sets the ICS to FEI mode.

This function sets the ICS to FEI mode. If setting to FEI mode fails from the current mode,
this function returns an error.

Parameters
• bDiv – bus clock divider

Return values
• kStatus_ICS_ModeUnreachable – Could not switch to the target mode.

• kStatus_Success – Switched to the target mode successfully.

2.3. Clock Driver 113

MCUXpresso SDK Documentation, Release 25.09.00

status_t CLOCK_SetFeeMode(uint8_t bDiv, uint8_t rDiv)
Sets the ICS to FEE mode.

This function sets the ICS to FEE mode. If setting to FEE mode fails from the current mode,
this function returns an error.

Parameters
• bDiv – bus clock divider

• rDiv – FLL reference clock divider setting, RDIV.

Return values
• kStatus_ICS_ModeUnreachable – Could not switch to the target mode.

• kStatus_Success – Switched to the target mode successfully.

status_t CLOCK_SetFbiMode(uint8_t bDiv)
Sets the ICS to FBI mode.

This function sets the ICS to FBI mode. If setting to FBI mode fails from the current mode,
this function returns an error.

Parameters
• bDiv – bus clock divider

Return values
• kStatus_ICS_ModeUnreachable – Could not switch to the target mode.

• kStatus_Success – Switched to the target mode successfully.s

status_t CLOCK_SetFbeMode(uint8_t bDiv, uint8_t rDiv)
Sets the ICS to FBE mode.

This function sets the ICS to FBE mode. If setting to FBE mode fails from the current mode,
this function returns an error.

Parameters
• bDiv – bus clock divider

• rDiv – FLL reference clock divider setting, RDIV.

Return values
• kStatus_ICS_ModeUnreachable – Could not switch to the target mode.

• kStatus_Success – Switched to the target mode successfully.

status_t CLOCK_SetBilpMode(uint8_t bDiv)
Sets the ICS to BILP mode.

This function sets the ICS to BILPmode. If setting to BILPmode fails from the currentmode,
this function returns an error.

Parameters
• bDiv – bus clock divider

Return values
• kStatus_ICS_ModeUnreachable – Could not switch to the target mode.

• kStatus_Success – Switched to the target mode successfully.

114 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

status_t CLOCK_SetBelpMode(uint8_t bDiv)
Sets the ICS to BELP mode.

This function sets the ICS to BELP mode. If setting to BELP mode fails from the current
mode, this function returns an error.

Parameters
• bDiv – bus clock divider

Return values
• kStatus_ICS_ModeUnreachable – Could not switch to the target mode.

• kStatus_Success – Switched to the target mode successfully.

status_t CLOCK_BootToFeiMode(uint8_t bDiv)
Sets the ICS to FEI mode during system boot up.

This function sets the ICS to FEI mode from the reset mode. It can also be used to set up ICS
during system boot up.

Parameters
• bDiv – bus clock divider.

Return values
• kStatus_ICS_ModeUnreachable – Could not switch to the target mode.

• kStatus_Success – Switched to the target mode successfully.

status_t CLOCK_BootToFeeMode(uint8_t bDiv, uint8_t rDiv)
Sets the ICS to FEE mode during system bootup.

This function sets ICS to FEE mode from the reset mode. It can also be used to set up the
ICS during system boot up.

Parameters
• bDiv – bus clock divider.

• rDiv – FLL reference clock divider setting, RDIV.

Return values
• kStatus_ICS_ModeUnreachable – Could not switch to the target mode.

• kStatus_Success – Switched to the target mode successfully.

status_t CLOCK_BootToBilpMode(uint8_t bDiv)
Sets the ICS to BILP mode during system boot up.

This function sets the ICS to BILP mode from the reset mode. It can also be used to set up
the ICS during system boot up.

Parameters
• bDiv – bus clock divider.

Return values
• kStatus_ICS_SourceUsed – Could not change ICSIRCLK setting.

• kStatus_Success – Switched to the target mode successfully.

status_t CLOCK_BootToBelpMode(uint8_t bDiv)
Sets the ICS to BELP mode during system boot up.

This function sets the ICS to BELP mode from the reset mode. It can also be used to set up
the ICS during system boot up.

2.3. Clock Driver 115

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• bDiv – bus clock divider.

Return values
• kStatus_ICS_ModeUnreachable – Could not switch to the target mode.

• kStatus_Success – Switched to the target mode successfully.

status_t CLOCK_SetIcsConfig(ics_config_t const *config)
Sets the ICS to a target mode.

This function sets ICS to a target mode defined by the configuration structure. If switching
to the target mode fails, this function chooses the correct path.

Note: If the external clock is used in the targetmode, ensure that it is enabled. For example,
if the OSC0 is used, set up OSC0 correctly before calling this function.

Parameters
• config – Pointer to the target ICS mode configuration structure.

Returns
Return kStatus_Success if switched successfully; Otherwise, it returns an error
code _ICS_status.

uint32_t busDiv
SIM_BUSDIV.

uint8_t busClkPrescaler
A option prescaler for bus clock

uint32_t freq
External clock frequency.

uint8_t workMode
OSC work mode setting.

uint8_t enableMode
Configuration for OSCERCLK.

ics_mode_t icsMode
ICS mode.

uint8_t irClkEnableMode
ICSIRCLK enable mode.

uint8_t rDiv
Divider for external reference clock, ICS_C1[RDIV].

uint8_t bDiv
Divider for ICS output clock ICS_C2[BDIV].

ICS_CONFIG_CHECK_PARAM
Configures whether to check a parameter in a function.

Some ICS settings must be changed with conditions, for example:

a. ICSIRCLK settings, such as the source, divider, and the trim value should not change
when ICSIRCLK is used as a system clock source.

b. ICS_C7[OSCSEL] should not be changed when the external reference clock is used as a
system clock source. For example, in FBE/BELP/PBE modes.

116 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

c. The users should only switch between the supported clock modes.

ICS functions check the parameter and ICS status before setting, if not allowed to change, the
functions return error. The parameter checking increases code size, if code size is a critical
requirement, change ICS_CONFIG_CHECK_PARAM to 0 to disable parameter checking.

FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL
Configure whether driver controls clock.

When set to 0, peripheral drivers will enable clock in initialize function and disable clock in
de-initialize function. When set to 1, peripheral driverwill not control the clock, application
could control the clock out of the driver.

Note: All drivers share this feature switcher. If it is set to 1, application should handle
clock enable and disable for all drivers.

struct _sim_clock_config
#include <fsl_clock.h> SIM configuration structure for clock setting.

struct _osc_config
#include <fsl_clock.h> OSC Initialization Configuration Structure.

Defines the configuration data structure to initialize the OSC.When porting to a new board,
set the following members according to the board setting:

a. freq: The external frequency.

b. workMode: The OSC module mode.

c. enableMode: The OSC enable mode.

struct _ics_config
#include <fsl_clock.h> ICS configuration structure.

When porting to a new board, set the following members according to the board setting:

a. icsMode: ICS mode

b. irClkEnableMode: ICSIRCLK enable mode

c. rDiv: If the FLL uses the external reference clock, set this value to ensure that the
external reference clock divided by rDiv is in the 31.25 kHz to 39.0625 kHz range.

d. bDiv, this divider determine the ISCOUT clock

2.4 CRC: Cyclic Redundancy Check Driver

FSL_CRC_DRIVER_VERSION
CRC driver version. Version 2.0.4.

Current version: 2.0.4

Change log:

• Version 2.0.4

– Release peripheral from reset if necessary in init function.

• Version 2.0.3

– Fix MISRA issues

• Version 2.0.2

2.4. CRC: Cyclic Redundancy Check Driver 117

MCUXpresso SDK Documentation, Release 25.09.00

– Fix MISRA issues

• Version 2.0.1

– move DATA and DATALL macro definition from header file to source file

enum _crc_bits
CRC bit width.

Values:

enumerator kCrcBits16
Generate 16-bit CRC code

enumerator kCrcBits32
Generate 32-bit CRC code

enum _crc_result
CRC result type.

Values:

enumerator kCrcFinalChecksum
CRC data register read value is the final checksum. Reflect out and final xor protocol
features are applied.

enumerator kCrcIntermediateChecksum
CRC data register read value is intermediate checksum (raw value). Reflect out and
final xor protocol feature are not applied. Intermediate checksum can be used as a
seed for CRC_Init() to continue adding data to this checksum.

typedef enum _crc_bits crc_bits_t
CRC bit width.

typedef enum _crc_result crc_result_t
CRC result type.

typedef struct _crc_config crc_config_t
CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

void CRC_Init(CRC_Type *base, const crc_config_t *config)
Enables and configures the CRC peripheral module.

This function enables the clock gate in the SIM module for the CRC peripheral. It also con-
figures the CRC module and starts a checksum computation by writing the seed.

Parameters
• base – CRC peripheral address.

• config – CRC module configuration structure.

static inline void CRC_Deinit(CRC_Type *base)
Disables the CRC peripheral module.

This function disables the clock gate in the SIM module for the CRC peripheral.

Parameters
• base – CRC peripheral address.

void CRC_GetDefaultConfig(crc_config_t *config)
Loads default values to the CRC protocol configuration structure.

Loads default values to the CRC protocol configuration structure. The default values are as
follows.

118 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

config->polynomial = 0x1021;
config->seed = 0xFFFF;
config->reflectIn = false;
config->reflectOut = false;
config->complementChecksum = false;
config->crcBits = kCrcBits16;
config->crcResult = kCrcFinalChecksum;

Parameters
• config – CRC protocol configuration structure.

void CRC_WriteData(CRC_Type *base, const uint8_t *data, size_t dataSize)
Writes data to the CRC module.

Writes input data buffer bytes to the CRC data register. The configured type of transpose is
applied.

Parameters
• base – CRC peripheral address.

• data – Input data stream, MSByte in data[0].

• dataSize – Size in bytes of the input data buffer.

uint32_t CRC_Get32bitResult(CRC_Type *base)
Reads the 32-bit checksum from the CRC module.

Reads the CRC data register (either an intermediate or the final checksum). The configured
type of transpose and complement is applied.

Parameters
• base – CRC peripheral address.

Returns
An intermediate or the final 32-bit checksum, after configured transpose and
complement operations.

uint16_t CRC_Get16bitResult(CRC_Type *base)
Reads a 16-bit checksum from the CRC module.

Reads the CRC data register (either an intermediate or the final checksum). The configured
type of transpose and complement is applied.

Parameters
• base – CRC peripheral address.

Returns
An intermediate or the final 16-bit checksum, after configured transpose and
complement operations.

CRC_DRIVER_USE_CRC16_CCIT_FALSE_AS_DEFAULT
Default configuration structure filled by CRC_GetDefaultConfig(). Use CRC16-CCIT-FALSE as
defeault.

struct _crc_config
#include <fsl_crc.h> CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

2.4. CRC: Cyclic Redundancy Check Driver 119

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

uint32_t polynomial
CRC Polynomial, MSBit first. Example polynomial: 0x1021 = 1_0000_0010_0001 =
x^12+x^5+1

uint32_t seed
Starting checksum value

bool reflectIn
Reflect bits on input.

bool reflectOut
Reflect bits on output.

bool complementChecksum
True if the result shall be complement of the actual checksum.

crc_bits_t crcBits
Selects 16- or 32- bit CRC protocol.

crc_result_t crcResult
Selects final or intermediate checksum return from CRC_Get16bitResult() or
CRC_Get32bitResult()

2.5 FGPIO Driver

void FGPIO_PortInit(gpio_port_num_t port)
Initializes the FGPIO peripheral.

This function ungates the FGPIO clock.

Parameters
• port – FGPIO PORT number, see “gpio_port_num_t”. For each group FGPIO
(FGPIOA, FGPIOB,etc) control registers, they handles four PORT number
controls. FGPIOA serial registers –— PTA 0 ~ 7, PTB 0 ~7 … PTD 0 ~
7. FGPIOB serial registers –— PTE 0 ~ 7, PTF 0 ~7 … PTH 0 ~ 7. …

void FGPIO_PinInit(gpio_port_num_t port, uint8_t pin, const gpio_pin_config_t *config)
Initializes a FGPIO pin used by the board.

To initialize the FGPIO driver, define a pin configuration, as either input or output, in the
user file. Then, call the FGPIO_PinInit() function.

This is an example to define an input pin or an output pin configuration:

Define a digital input pin configuration,
gpio_pin_config_t config =
{
kGPIO_DigitalInput,
0,

}
Define a digital output pin configuration,
gpio_pin_config_t config =
{
kGPIO_DigitalOutput,
0,

}

Parameters

120 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

• port – FGPIO PORT number, see “gpio_port_num_t”. For each group FGPIO
(FGPIOA, FGPIOB,etc) control registers, they handles four PORT number
controls. FGPIOA serial registers –— PTA 0 ~ 7, PTB 0 ~7 … PTD 0 ~
7. FGPIOB serial registers –— PTE 0 ~ 7, PTF 0 ~7 … PTH 0 ~ 7. …

• pin – FGPIO port pin number

• config – FGPIO pin configuration pointer

void FGPIO_PinWrite(gpio_port_num_t port, uint8_t pin, uint8_t output)
Sets the output level of the multiple FGPIO pins to the logic 1 or 0.

Parameters
• port – FGPIO PORT number, see “gpio_port_num_t”. For each group FGPIO
(FGPIOA, FGPIOB,etc) control registers, they handles four PORT number
controls. FGPIOA serial registers –— PTA 0 ~ 7, PTB 0 ~7 … PTD 0 ~
7. FGPIOB serial registers –— PTE 0 ~ 7, PTF 0 ~7 … PTH 0 ~ 7. …

• pin – FGPIO pin number

• output – FGPIOpin output logic level.

– 0: corresponding pin output low-logic level.

– 1: corresponding pin output high-logic level.

void FGPIO_PortSet(gpio_port_num_t port, uint8_t mask)
Sets the output level of the multiple FGPIO pins to the logic 1.

Parameters
• port – FGPIO PORT number, see “gpio_port_num_t”. For each group FGPIO
(FGPIOA, FGPIOB,etc) control registers, they handles four PORT number
controls. FGPIOA serial registers –— PTA 0 ~ 7, PTB 0 ~7 … PTD 0 ~
7. FGPIOB serial registers –— PTE 0 ~ 7, PTF 0 ~7 … PTH 0 ~ 7. …

• mask – FGPIO pin number macro

void FGPIO_PortClear(gpio_port_num_t port, uint8_t mask)
Sets the output level of the multiple FGPIO pins to the logic 0.

Parameters
• port – FGPIO PORT number, see “gpio_port_num_t”. For each group FGPIO
(FGPIOA, FGPIOB,etc) control registers, they handles four PORT number
controls. FGPIOA serial registers –— PTA 0 ~ 7, PTB 0 ~7 … PTD 0 ~
7. FGPIOB serial registers –— PTE 0 ~ 7, PTF 0 ~7 … PTH 0 ~ 7. …

• mask – FGPIO pin number macro

void FGPIO_PortToggle(gpio_port_num_t port, uint8_t mask)
Reverses the current output logic of the multiple FGPIO pins.

Parameters
• port – FGPIO PORT number, see “gpio_port_num_t”. For each group FGPIO
(FGPIOA, FGPIOB,etc) control registers, they handles four PORT number
controls. FGPIOA serial registers –— PTA 0 ~ 7, PTB 0 ~7 … PTD 0 ~
7. FGPIOB serial registers –— PTE 0 ~ 7, PTF 0 ~7 … PTH 0 ~ 7. …

• mask – FGPIO pin number macro

uint32_t FGPIO_PinRead(gpio_port_num_t port, uint8_t pin)
Reads the current input value of the FGPIO port.

Parameters

2.5. FGPIO Driver 121

MCUXpresso SDK Documentation, Release 25.09.00

• port – FGPIO PORT number, see “gpio_port_num_t”. For each group FGPIO
(FGPIOA, FGPIOB,etc) control registers, they handles four PORT number
controls. FGPIOA serial registers –— PTA 0 ~ 7, PTB 0 ~7 … PTD 0 ~
7. FGPIOB serial registers –— PTE 0 ~ 7, PTF 0 ~7 … PTH 0 ~ 7. …

• pin – FGPIO pin number

Return values
FGPIO – port input value

• 0: corresponding pin input low-logic level.

• 1: corresponding pin input high-logic level.

2.6 FTMRx Flash Driver

enum _flash_driver_version_constants
Flash driver version for ROM.

Values:

enumerator kFLASH_DriverVersionName
Flash driver version name.

enumerator kFLASH_DriverVersionMajor
Major flash driver version.

enumerator kFLASH_DriverVersionMinor
Minor flash driver version.

enumerator kFLASH_DriverVersionBugfix
Bugfix for flash driver version.

MAKE_VERSION(major, minor, bugfix)
Constructs the version number for drivers.

FSL_FLASH_DRIVER_VERSION
Flash driver version for SDK.

Version 2.1.2.

Flash driver status codes.

Values:

enumerator kStatus_FLASH_Success
API is executed successfully

enumerator kStatus_FLASH_InvalidArgument
Invalid argument

enumerator kStatus_FLASH_SizeError
Error size

enumerator kStatus_FLASH_AlignmentError
Parameter is not aligned with the specified baseline

enumerator kStatus_FLASH_AddressError
Address is out of range

122 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus_FLASH_AccessError
Invalid instruction codes and out-of bound addresses

enumerator kStatus_FLASH_ProtectionViolation
The program/erase operation is requested to execute on protected areas

enumerator kStatus_FLASH_CommandFailure
Run-time error during command execution.

enumerator kStatus_FLASH_UnknownProperty
Unknown property.

enumerator kStatus_FLASH_EraseKeyError
API erase key is invalid.

enumerator kStatus_FLASH_RegionExecuteOnly
The current region is execute-only.

enumerator kStatus_FLASH_ExecuteInRamFunctionNotReady
Execute-in-RAM function is not available.

enumerator kStatus_FLASH_PartitionStatusUpdateFailure
Failed to update partition status.

enumerator kStatus_FLASH_SetFlexramAsEepromError
Failed to set FlexRAM as EEPROM.

enumerator kStatus_FLASH_RecoverFlexramAsRamError
Failed to recover FlexRAM as RAM.

enumerator kStatus_FLASH_SetFlexramAsRamError
Failed to set FlexRAM as RAM.

enumerator kStatus_FLASH_RecoverFlexramAsEepromError
Failed to recover FlexRAM as EEPROM.

enumerator kStatus_FLASH_CommandNotSupported
Flash API is not supported.

enumerator kStatus_FLASH_SwapSystemNotInUninitialized
Swap system is not in an uninitialzed state.

enumerator kStatus_FLASH_SwapIndicatorAddressError
The swap indicator address is invalid.

enumerator kStatus_FLASH_ReadOnlyProperty
The flash property is read-only.

enumerator kStatus_FLASH_InvalidPropertyValue
The flash property value is out of range.

enumerator kStatus_FLASH_InvalidSpeculationOption
The option of flash prefetch speculation is invalid.

enumerator kStatus_FLASH_ClockDivider
Flash clock prescaler is wrong

enumerator kStatus_FLASH_EepromDoubleBitFault
A double bit fault was detected in the stored parity.

enumerator kStatus_FLASH_EepromSingleBitFault
A single bit fault was detected in the stored parity.

2.6. FTMRx Flash Driver 123

MCUXpresso SDK Documentation, Release 25.09.00

kStatusGroupGeneric
Flash driver status group.

kStatusGroupFlashDriver

MAKE_STATUS(group, code)
Constructs a status code value from a group and a code number.

enum _flash_driver_api_keys
Enumeration for Flash driver API keys.

Note: The resulting value is built with a byte order such that the string being readable in
expected order when viewed in a hex editor, if the value is treated as a 32-bit little endian
value.

Values:

enumerator kFLASH_ApiEraseKey
Key value used to validate all flash erase APIs.

FOUR_CHAR_CODE(a, b, c, d)
Constructs the four character code for the Flash driver API key.

status_t FLASH_Init(flash_config_t *config)
Initializes the global flash properties structure members.

This function checks and initializes the Flash module for the other Flash APIs.

Parameters
• config – Pointer to the storage for the driver runtime state.

Return values
• kStatus_FLASH_Success – API was executed successfully.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

• kStatus_FLASH_ClockDivider – Flash clock prescaler is wrong.

• kStatus_FLASH_ExecuteInRamFunctionNotReady – Execute-in-RAM func-
tion is not available.

status_t FLASH_SetCallback(flash_config_t *config, flash_callback_t callback)
Sets the desired flash callback function.

Parameters
• config – Pointer to the storage for the driver runtime state.

• callback – A callback function to be stored in the driver.

Return values
• kStatus_FLASH_Success – API was executed successfully.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

status_t FLASH_PrepareExecuteInRamFunctions(flash_config_t *config)
Prepares flash execute-in-RAM functions.

Parameters
• config – Pointer to the storage for the driver runtime state.

Return values
• kStatus_FLASH_Success – API was executed successfully.

124 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

status_t FLASH_EraseAll(flash_config_t *config, uint32_t key)
Erases entire flash.

Parameters
• config – Pointer to the storage for the driver runtime state.

• key – A value used to validate all flash erase APIs.

Return values
• kStatus_FLASH_Success – API was executed successfully.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

• kStatus_FLASH_EraseKeyError – API erase key is invalid.

• kStatus_FLASH_ExecuteInRamFunctionNotReady – Execute-in-RAM func-
tion is not available.

• kStatus_FLASH_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FLASH_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FLASH_CommandFailure – Run-time error during command exe-
cution.

• kStatus_FLASH_EepromSingleBitFault – EEPROM single bit fault error
code.

• kStatus_FLASH_EepromDoubleBitFault – EEPROM double bit fault error
code.

status_t FLASH_Erase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, uint32_t
key)

Erases the flash sectors encompassed by parameters passed into function.

This function erases the appropriate number of flash sectors based on the desired start
address and length.

Parameters
• config – The pointer to the storage for the driver runtime state.

• start – The start address of the desired flashmemory to be erased. The start
address does not need to be sector-aligned but must be word-aligned.

• lengthInBytes – The length, given in bytes (not words or long-words) to be
erased. Must be word-aligned.

• key – The value used to validate all flash erase APIs.

Return values
• kStatus_FLASH_Success – API was executed successfully.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

• kStatus_FLASH_AlignmentError – The parameter is not aligned with the
specified baseline.

• kStatus_FLASH_AddressError – The address is out of range.

• kStatus_FLASH_EraseKeyError – The API erase key is invalid.

• kStatus_FLASH_ExecuteInRamFunctionNotReady – Execute-in-RAM func-
tion is not available.

2.6. FTMRx Flash Driver 125

MCUXpresso SDK Documentation, Release 25.09.00

• kStatus_FLASH_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FLASH_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FLASH_CommandFailure – Run-time error during the command
execution.

status_t FLASH_EraseEEprom(flash_config_t *config, uint32_t start, uint32_t lengthInBytes,
uint32_t key)

Erases the eeprom sectors encompassed by parameters passed into function.

This function erases the appropriate number of eeprom sectors based on the desired start
address and length.

Parameters
• config – The pointer to the storage for the driver runtime state.

• start – The start address of the desired eeprom memory to be erased. The
start address does not need to be sector-aligned butmust be word-aligned.

• lengthInBytes – The length, given in bytes (not words or long-words) to be
erased. Must be word-aligned.

• key – The value used to validate all eeprom erase APIs.

Return values
• kStatus_FLASH_Success – API was executed successfully.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

• kStatus_FLASH_AlignmentError – The parameter is not aligned with the
specified baseline.

• kStatus_FLASH_AddressError – The address is out of range.

• kStatus_FLASH_EraseKeyError – The API erase key is invalid.

• kStatus_FLASH_ExecuteInRamFunctionNotReady – Execute-in-RAM func-
tion is not available.

• kStatus_FLASH_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FLASH_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FLASH_CommandFailure – Run-time error during the command
execution.

status_t FLASH_EraseAllUnsecure(flash_config_t *config, uint32_t key)
Erases the entire flash, including protected sectors.

Parameters
• config – Pointer to the storage for the driver runtime state.

• key – A value used to validate all flash erase APIs.

Return values
• kStatus_FLASH_Success – API was executed successfully.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

• kStatus_FLASH_EraseKeyError – API erase key is invalid.

• kStatus_FLASH_ExecuteInRamFunctionNotReady – Execute-in-RAM func-
tion is not available.

126 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

• kStatus_FLASH_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FLASH_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FLASH_CommandFailure – Run-time error during command exe-
cution.

• kStatus_FLASH_EepromSingleBitFault – EEPROM single bit fault error
code.

• kStatus_FLASH_EepromDoubleBitFault – EEPROM double bit fault error
code.

status_t FLASH_Program(flash_config_t *config, uint32_t start, uint32_t *src, uint32_t
lengthInBytes)

Programs flash with data at locations passed in through parameters.

This function programs the flash memory with the desired data for a given flash area as
determined by the start address and the length.

Parameters
• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be programmed.
Must be word-aligned.

• src – A pointer to the source buffer of data that is to be programmed into
the flash.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
programmed. Must be word-aligned.

Return values
• kStatus_FLASH_Success – API was executed successfully.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

• kStatus_FLASH_AlignmentError – Parameter is not aligned with the speci-
fied baseline.

• kStatus_FLASH_AddressError – Address is out of range.

• kStatus_FLASH_ExecuteInRamFunctionNotReady – Execute-in-RAM func-
tion is not available.

• kStatus_FLASH_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FLASH_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FLASH_CommandFailure – Run-time error during the command
execution.

status_t FLASH_ProgramOnce(flash_config_t *config, uint32_t index, uint32_t *src, uint32_t
lengthInBytes)

Programs Program Once Field through parameters.

This function programs the ProgramOnce Field with the desired data for a given flash area
as determined by the index and length.

Parameters
• config – A pointer to the storage for the driver runtime state.

2.6. FTMRx Flash Driver 127

MCUXpresso SDK Documentation, Release 25.09.00

• index – The index indicating which area of the Program Once Field to be
programmed.

• src – A pointer to the source buffer of data that is to be programmed into
the Program Once Field.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
programmed. Must be word-aligned.

Return values
• kStatus_FLASH_Success – API was executed successfully.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

• kStatus_FLASH_ExecuteInRamFunctionNotReady – Execute-in-RAM func-
tion is not available.

• kStatus_FLASH_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FLASH_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FLASH_CommandFailure – Run-time error during the command
execution.

status_t FLASH_EepromWrite(flash_config_t *config, uint32_t start, uint8_t *src, uint32_t
lengthInBytes)

Programs the EEPROM with data at locations passed in through parameters.

This function programs the emulated EEPROM with the desired data for a given flash area
as determined by the start address and length.

Parameters
• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be programmed.
Must be word-aligned.

• src – A pointer to the source buffer of data that is to be programmed into
the flash.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
programmed. Must be word-aligned.

Return values
• kStatus_FLASH_Success – API was executed successfully.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

• kStatus_FLASH_AddressError – Address is out of range.

• kStatus_FLASH_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FLASH_EepromSingleBitFault – EEPROM single bit fault error
code.

• kStatus_FLASH_EepromDoubleBitFault – EEPROM double bit fault error
code.

status_t FLASH_ReadOnce(flash_config_t *config, uint32_t index, uint32_t *dst, uint32_t
lengthInBytes)

Reads the Program Once Field through parameters.

This function reads the read once feild with given index and length.

128 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• config – A pointer to the storage for the driver runtime state.

• index – The index indicating the area of program once field to be read.

• dst – A pointer to the destination buffer of data that is used to store data to
be read.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
programmed. Must be word-aligned.

Return values
• kStatus_FLASH_Success – API was executed successfully.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

• kStatus_FLASH_ExecuteInRamFunctionNotReady – Execute-in-RAM func-
tion is not available.

• kStatus_FLASH_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FLASH_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FLASH_CommandFailure – Run-time error during the command
execution.

status_t FLASH_GetSecurityState(flash_config_t *config, flash_security_state_t *state)
Returns the security state via the pointer passed into the function.

This function retrieves the current flash security status, including the security enabling
state and the backdoor key enabling state.

Parameters
• config – A pointer to storage for the driver runtime state.

• state – A pointer to the value returned for the current security status code:

Return values
• kStatus_FLASH_Success – API was executed successfully.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

status_t FLASH_SecurityBypass(flash_config_t *config, const uint8_t *backdoorKey)
Allows users to bypass security with a backdoor key.

If the MCU is in secured state, this function unsecures the MCU by comparing the provided
backdoor key with ones in the flash configuration field.

Parameters
• config – A pointer to the storage for the driver runtime state.

• backdoorKey – A pointer to the user buffer containing the backdoor key.

Return values
• kStatus_FLASH_Success – API was executed successfully.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

• kStatus_FLASH_ExecuteInRamFunctionNotReady – Execute-in-RAM func-
tion is not available.

• kStatus_FLASH_AccessError – Invalid instruction codes and out-of bounds
addresses.

2.6. FTMRx Flash Driver 129

MCUXpresso SDK Documentation, Release 25.09.00

• kStatus_FLASH_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FLASH_CommandFailure – Run-time error during the command
execution.

status_t FLASH_VerifyEraseAll(flash_config_t *config, flash_margin_value_tmargin)
Verifies erasure of the entire flash at a specified margin level.

This function checks whether the flash is erased to the specified read margin level.

Parameters
• config – A pointer to the storage for the driver runtime state.

• margin – Read margin choice.

Return values
• kStatus_FLASH_Success – API was executed successfully.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

• kStatus_FLASH_ExecuteInRamFunctionNotReady – Execute-in-RAM func-
tion is not available.

• kStatus_FLASH_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FLASH_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FLASH_CommandFailure – Run-time error during the command
execution.

• kStatus_FLASH_EepromSingleBitFault – EEPROM single bit fault error
code.

• kStatus_FLASH_EepromDoubleBitFault – EEPROM double bit fault error
code.

status_t FLASH_VerifyErase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes,
flash_margin_value_tmargin)

Verifies an erasure of the desired flash area at a specified margin level.

This function checks the appropriate number of flash sectors based on the desired start
address and length to check whether the flash is erased to the specified read margin level.

Parameters
• config – A pointer to the storage for the driver runtime state.

• margin – Read margin choice.

• start – The start address of the desired flash memory to be verified. The
start address does not need to be sector-aligned butmust be word-aligned.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
verified. Must be word-aligned.

Return values
• kStatus_FLASH_Success – API was executed successfully.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

• kStatus_FLASH_AlignmentError – Parameter is not aligned with specified
baseline.

• kStatus_FLASH_AddressError – Address is out of range.

130 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

• kStatus_FLASH_ExecuteInRamFunctionNotReady – Execute-in-RAM func-
tion is not available.

• kStatus_FLASH_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FLASH_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FLASH_CommandFailure – Run-time error during the command
execution.

status_t FLASH_IsProtected(flash_config_t *config, uint32_t start, uint32_t lengthInBytes,
flash_protection_state_t *protection_state)

Returns the protection state of the desired flash area via the pointer passed into the func-
tion.

This function retrieves the current flash protect status for a given flash area as determined
by the start address and length.

Parameters
• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be checked. Must
be word-aligned.

• lengthInBytes – The length, given in bytes (not words or long-words) to be
checked. Must be word-aligned.

• protection_state –Apointer to the value returned for the current protection
status code for the desired flash area.

Return values
• kStatus_FLASH_Success – API was executed successfully.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

• kStatus_FLASH_AlignmentError – Parameter is not aligned with specified
baseline.

• kStatus_FLASH_AddressError – The address is out of range.

status_t FLASH_GetProperty(flash_config_t *config, flash_property_tag_t whichProperty,
uint32_t *value)

Returns the desired flash property.

Parameters
• config – A pointer to the storage for the driver runtime state.

• whichProperty – The desired property from the list of properties in enum
flash_property_tag_t

• value – A pointer to the value returned for the desired flash property.

Return values
• kStatus_FLASH_Success – API was executed successfully.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

• kStatus_FLASH_UnknownProperty – An unknown property tag.

status_t FLASH_SetProperty(flash_config_t *config, flash_property_tag_t whichProperty,
uint32_t value)

Sets the desired flash property.

Parameters

2.6. FTMRx Flash Driver 131

MCUXpresso SDK Documentation, Release 25.09.00

• config – A pointer to the storage for the driver runtime state.

• whichProperty – The desired property from the list of properties in enum
flash_property_tag_t

• value – A to set for the desired flash property.

Return values
• kStatus_FLASH_Success – API was executed successfully.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

• kStatus_FLASH_UnknownProperty – An unknown property tag.

• kStatus_FLASH_InvalidPropertyValue – An invalid property value.

• kStatus_FLASH_ReadOnlyProperty – An read-only property tag.

status_t FLASH_PflashSetProtection(flash_config_t *config, pflash_protection_status_t
*protectStatus)

Sets the PFlash Protection to the intended protection status.

Parameters
• config – A pointer to storage for the driver runtime state.

• protectStatus – The expected protect status to set to the PFlash protection
register.

Return values
• kStatus_FLASH_Success – API was executed successfully.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

• kStatus_FLASH_CommandFailure – Run-time error during command exe-
cution.

status_t FLASH_PflashGetProtection(flash_config_t *config, pflash_protection_status_t
*protectStatus)

Gets the PFlash protection status.

Parameters
• config – A pointer to the storage for the driver runtime state.

• protectStatus – Protect status returned by the PFlash IP.

Return values
• kStatus_FLASH_Success – API was executed successfully.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

status_t FLASH_EepromSetProtection(flash_config_t *config, uint8_t protectStatus)
Sets the EEPROM protection to the intended protection status.

Parameters
• config – A pointer to the storage for the driver runtime state.

• protectStatus – The expected protect status to set to the EEPROM protection
register.

Return values
• kStatus_FLASH_Success – API was executed successfully.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

• kStatus_FLASH_CommandNotSupported – Flash API is not supported.

132 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

• kStatus_FLASH_CommandFailure – Run-time error during command exe-
cution.

status_t FLASH_EepromGetProtection(flash_config_t *config, uint8_t *protectStatus)
Gets the EEPROM protection status.

Parameters
• config – A pointer to the storage for the driver runtime state.

• protectStatus – EEPROM Protect status returned by the EEPROM IP.

Return values
• kStatus_FLASH_Success – API was executed successfully.

• kStatus_FLASH_InvalidArgument – An invalid argument is provided.

• kStatus_FLASH_CommandNotSupported – Flash API is not supported.

status_t FLASH_PflashSetPrefetchSpeculation(flash_prefetch_speculation_status_t
*speculationStatus)

Sets the PFlash prefetch speculation to the intended speculation status.

Parameters
• speculationStatus – The expected protect status to set to the PFlash protec-
tion register. Each bit is

Return values
• kStatus_FLASH_Success – API was executed successfully.

• kStatus_FLASH_InvalidSpeculationOption – An invalid speculation option
argument is provided.

status_t FLASH_PflashGetPrefetchSpeculation(flash_prefetch_speculation_status_t
*speculationStatus)

Gets the PFlash prefetch speculation status.

Parameters
• speculationStatus – Speculation status returned by the PFlash IP.

Return values
kStatus_FLASH_Success – API was executed successfully.

FLASH_SSD_CONFIG_ENABLE_EEPROM_SUPPORT
Indicates whether to support EEPROM in the Flash driver.

Enables the EEPROM support.

FLASH_SSD_IS_EEPROM_ENABLED
Indicates whether the EEPROM is enabled in the Flash driver.

FLASH_SSD_CONFIG_ENABLE_SECONDARY_FLASH_SUPPORT
Indicates whether to support Secondary flash in the Flash driver.

Enables the secondary flash support by default.

FLASH_SSD_IS_SECONDARY_FLASH_ENABLED
Indicates whether the secondary flash is supported in the Flash driver.

FLASH_DRIVER_IS_FLASH_RESIDENT
Flash driver location.

Used for the flash resident application.

2.6. FTMRx Flash Driver 133

MCUXpresso SDK Documentation, Release 25.09.00

FLASH_DRIVER_IS_EXPORTED
Flash Driver Export option.

Used for the MCUXpresso SDK application.

FLASH_ENABLE_STALLING_FLASH_CONTROLLER
Enable flash stalling controller.

enum _flash_user_margin_value
Enumeration for supported flash user margin levels.

Values:

enumerator kFLASH_ReadMarginValueNormal
Use the ‘normal’ read level for 1s.

enumerator kFLASH_UserMarginValue1
Apply the ‘User’ margin to the normal read-1 level.

enumerator kFLASH_UserMarginValue0
Apply the ‘User’ margin to the normal read-0 level.

enum _flash_factory_margin_value
Enumeration for supported factory margin levels.

Values:

enumerator kFLASH_FactoryMarginValue1
Apply the ‘Factory’ margin to the normal read-1 level.

enumerator kFLASH_FactoryMarginValue0
Apply the ‘Factory’ margin to the normal read-0 level.

enum _flash_margin_value
Enumeration for supported flash margin levels.

Values:

enumerator kFLASH_MarginValueNormal
Use the ‘normal’ read level for 1s.

enumerator kFLASH_MarginValueUser
Apply the ‘User’ margin to the normal read-1 level.

enumerator kFLASH_MarginValueFactory
Apply the ‘Factory’ margin to the normal read-1 level.

enumerator kFLASH_MarginValueInvalid
Not real margin level, Used to determine the range of valid margin level.

enum _flash_security_state
Enumeration for the three possible flash security states.

Values:

enumerator kFLASH_SecurityStateNotSecure
Flash is not secure.

enumerator kFLASH_SecurityStateBackdoorEnabled
Flash backdoor is enabled.

enumerator kFLASH_SecurityStateBackdoorDisabled
Flash backdoor is disabled.

134 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

enum _flash_protection_state
Enumeration for the three possible flash protection levels.

Values:

enumerator kFLASH_ProtectionStateUnprotected
Flash region is not protected.

enumerator kFLASH_ProtectionStateProtected
Flash region is protected.

enumerator kFLASH_ProtectionStateMixed
Flash is mixed with protected and unprotected region.

enum _flash_property_tag
Enumeration for various flash properties.

Values:

enumerator kFLASH_PropertyPflashSectorSize
Pflash sector size property.

enumerator kFLASH_PropertyPflashTotalSize
Pflash total size property.

enumerator kFLASH_PropertyPflashBlockSize
Pflash block size property.

enumerator kFLASH_PropertyPflashBlockCount
Pflash block count property.

enumerator kFLASH_PropertyPflashBlockBaseAddr
Pflash block base address property.

enumerator kFLASH_PropertyPflashFacSupport
Pflash fac support property.

enumerator kFLASH_PropertyEepromTotalSize
EEPROM total size property.

enumerator kFLASH_PropertyFlashMemoryIndex
Flash memory index property.

enumerator kFLASH_PropertyFlashCacheControllerIndex
Flash cache controller index property.

enumerator kFLASH_PropertyEepromBlockBaseAddr
EEPROM block base address property.

enumerator kFLASH_PropertyEepromSectorSize
EEPROM sector size property.

enumerator kFLASH_PropertyEepromBlockSize
EEPROM block size property.

enumerator kFLASH_PropertyEepromBlockCount
EEPROM block count property.

enumerator kFLASH_PropertyFlashClockFrequency
Flash peripheral clock property.

Constants for execute-in-RAM flash function. _flash_execute_in_ram_function_constants.

Values:

2.6. FTMRx Flash Driver 135

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kFLASH_ExecuteInRamFunctionMaxSizeInWords
The maximum size of execute-in-RAM function.

enumerator kFLASH_ExecuteInRamFunctionTotalNum
Total number of execute-in-RAM functions.

enum _flash_memory_index
Enumeration for the flash memory index.

Values:

enumerator kFLASH_MemoryIndexPrimaryFlash
Current flash memory is primary flash.

enumerator kFLASH_MemoryIndexSecondaryFlash
Current flash memory is secondary flash.

enum _flash_cache_controller_index
Enumeration for the flash cache controller index.

Values:

enumerator kFLASH_CacheControllerIndexForCore0
Current flash cache controller is for core 0.

enumerator kFLASH_CacheControllerIndexForCore1
Current flash cache controller is for core 1.

enum _flash_prefetch_speculation_option
Enumeration for the two possible options of flash prefetch speculation.

Values:

enumerator kFLASH_prefetchSpeculationOptionEnable

enumerator kFLASH_prefetchSpeculationOptionDisable

enum _flash_cache_clear_process
Flash cache clear process code.

Values:

enumerator kFLASH_CacheClearProcessPre
Pre flash cache clear process.

enumerator kFLASH_CacheClearProcessPost
Post flash cache clear process.

typedef enum _flash_user_margin_value flash_user_margin_value_t
Enumeration for supported flash user margin levels.

typedef enum _flash_factory_margin_value flash_factory_margin_value_t
Enumeration for supported factory margin levels.

typedef enum _flash_margin_value flash_margin_value_t
Enumeration for supported flash margin levels.

typedef enum _flash_security_state flash_security_state_t
Enumeration for the three possible flash security states.

typedef enum _flash_protection_state flash_protection_state_t
Enumeration for the three possible flash protection levels.

typedef enum _flash_property_tag flash_property_tag_t
Enumeration for various flash properties.

136 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _pflash_protection_status pflash_protection_status_t
PFlash protection status - full.

typedef enum _flash_memory_index flash_memory_index_t
Enumeration for the flash memory index.

typedef enum _flash_cache_controller_index flash_cache_controller_index_t
Enumeration for the flash cache controller index.

typedef void (*flash_callback_t)(void)
A callback type used for the Pflash block.

typedef enum _flash_prefetch_speculation_option flash_prefetch_speculation_option_t
Enumeration for the two possible options of flash prefetch speculation.

typedef struct _flash_prefetch_speculation_status flash_prefetch_speculation_status_t
Flash prefetch speculation status.

typedef enum _flash_cache_clear_process flash_cache_clear_process_t
Flash cache clear process code.

typedef struct _flash_protection_config flash_protection_config_t
Active flash protection information for the current operation.

typedef struct _flash_operation_config flash_operation_config_t
Active flash information for the current operation.

typedef struct _flash_execute_in_ram_function_config flash_execute_in_ram_function_config_t
Flash execute-in-RAM function information.

typedef struct _flash_config flash_config_t
Flash driver state information.

An instance of this structure is allocated by the user of the flash driver and passed into each
of the driver APIs.

struct _pflash_protection_status
#include <fsl_flash.h> PFlash protection status - full.

Public Members

uint8_t fprotvalue
FPROT[7:0] .

struct _flash_prefetch_speculation_status
#include <fsl_flash.h> Flash prefetch speculation status.

Public Members

flash_prefetch_speculation_option_t instructionOption
Instruction speculation.

flash_prefetch_speculation_option_t dataOption
Data speculation.

struct _flash_protection_config
#include <fsl_flash.h> Active flash protection information for the current operation.

2.6. FTMRx Flash Driver 137

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

uint32_t lowRegionStart
Start address of flash protection low region.

uint32_t lowRegionEnd
End address of flash protection low region.

uint32_t highRegionStart
Start address of flash protection high region.

uint32_t highRegionEnd
End address of flash protection high region.

struct _flash_operation_config
#include <fsl_flash.h> Active flash information for the current operation.

Public Members

uint32_t convertedAddress
A converted address for the current flash type.

uint32_t activeSectorSize
A sector size of the current flash type.

uint32_t activeBlockSize
A block size of the current flash type.

uint32_t blockWriteUnitSize
The write unit size.

uint32_t sectorCmdAddressAligment
An erase sector command address alignment.

uint32_t sectionCmdAddressAligment
A program/verify section command address alignment.

uint32_t programCmdAddressAligment
A program flash command address alignment.

union function_run_command_t
#include <fsl_flash.h> Flash execute-in-RAM command.

Public Members

uint32_t commadAddr

void (*callFlashCommand)(volatile uint8_t *FTMRx_fstat)

union function_common_bit_operation_t
#include <fsl_flash.h>

Public Members

uint32_t bitOperationAddr

void (*callCommonBitOperationCommand)(volatile uint32_t *base, uint32_t bitMask,
uint32_t bitShift, uint32_t bitValue)

struct _flash_execute_in_ram_function_config
#include <fsl_flash.h> Flash execute-in-RAM function information.

138 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

uint32_t activeFunctionCount
Number of available execute-in-RAM functions.

function_run_command_t runCmdFuncAddr
Execute-in-RAM function: flash_run_command.

struct _flash_config
#include <fsl_flash.h> Flash driver state information.

An instance of this structure is allocated by the user of the flash driver and passed into each
of the driver APIs.

Public Members

uint32_t PFlashBlockBase
A base address of the first PFlash block

uint32_t PFlashTotalSize
The size of the combined PFlash block.

uint8_t PFlashBlockCount
A number of PFlash blocks.

uint8_t FlashMemoryIndex
0 - primary flash; 1 - secondary flash

uint8_t FlashCacheControllerIndex
0 - Controller for core 0; 1 - Controller for core 1

uint8_t Reserved0
Reserved field 0

uint32_t PFlashSectorSize
The size in bytes of a sector of PFlash.

flash_callback_t PFlashCallback
The callback function for the flash API.

uint32_t *flashExecuteInRamFunctionInfo
An information structure of the flash execute-in-RAM function.

uint32_t EEpromTotalSize
For the FlexNVM device, this is the size in bytes of the EEPROM area which was parti-
tioned from FlexRAM For the non-FlexNVM device, this field is unused

uint32_t EEpromBlockBase
This is the base address of the Eeprom For the non-Eeprom device, this field is unused

uint8_t EEpromBlockCount
A number of EEPROM blocks. For the non-Eeprom device, this field is unused

uint8_t EEpromSectorSize
The size in bytes of a sector of EEPROM. For the non-Eepromdevice, this field is unused

uint8_t Reserved1[2]
Reserved field 1

uint32_t PFlashClockFreq
The flash peripheral clock frequency

2.6. FTMRx Flash Driver 139

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t PFlashMarginLevel
The margin level

2.7 FTM: FlexTimer Driver

status_t FTM_Init(FTM_Type *base, const ftm_config_t *config)
Ungates the FTM clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application which is using the FTM
driver. If the FTM instance has only TPM features, please use the TPM driver.

Parameters
• base – FTM peripheral base address

• config – Pointer to the user configuration structure.

Returns
kStatus_Success indicates success; Else indicates failure.

void FTM_Deinit(FTM_Type *base)
Gates the FTM clock.

Parameters
• base – FTM peripheral base address

void FTM_GetDefaultConfig(ftm_config_t *config)
Fills in the FTM configuration structure with the default settings.

The default values are:

config->prescale = kFTM_Prescale_Divide_1;
config->bdmMode = kFTM_BdmMode_0;
config->pwmSyncMode = kFTM_SoftwareTrigger;
config->reloadPoints = 0;
config->faultMode = kFTM_Fault_Disable;
config->faultFilterValue = 0;
config->deadTimePrescale = kFTM_Deadtime_Prescale_1;
config->deadTimeValue = 0;
config->extTriggers = 0;
config->chnlInitState = 0;
config->chnlPolarity = 0;
config->useGlobalTimeBase = false;
config->hwTriggerResetCount = false;
config->swTriggerResetCount = true;

Parameters
• config – Pointer to the user configuration structure.

static inline ftm_clock_prescale_t FTM_CalculateCounterClkDiv(FTM_Type *base, uint32_t
counterPeriod_Hz, uint32_t
srcClock_Hz)

brief Calculates the counter clock prescaler.

This function calculates the values for SC[PS] bit.

140 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

param base FTM peripheral base address param counterPeriod_Hz The desired frequency
in Hz which corresponding to the time when the counter reaches the mod value param
srcClock_Hz FTM counter clock in Hz

return Calculated clock prescaler value, see ftm_clock_prescale_t.

status_t FTM_SetupPwm(FTM_Type *base, const ftm_chnl_pwm_signal_param_t *chnlParams,
uint8_t numOfChnls, ftm_pwm_mode_tmode, uint32_t pwmFreq_Hz,
uint32_t srcClock_Hz)

Configures the PWM signal parameters.

Call this function to configure the PWM signal period, mode, duty cycle, and edge. Use this
function to configure all FTM channels that are used to output a PWM signal.

Parameters
• base – FTM peripheral base address

• chnlParams – Array of PWM channel parameters to configure the chan-
nel(s)

• numOfChnls – Number of channels to configure; This should be the size of
the array passed in

• mode – PWM operation mode, options available in enumeration
ftm_pwm_mode_t

• pwmFreq_Hz – PWM signal frequency in Hz

• srcClock_Hz – FTM counter clock in Hz

Returns
kStatus_Success if the PWM setup was successful kStatus_Error on failure

status_t FTM_UpdatePwmDutycycle(FTM_Type *base, ftm_chnl_t chnlNumber, ftm_pwm_mode_t
currentPwmMode, uint8_t dutyCyclePercent)

Updates the duty cycle of an active PWM signal.

Parameters
• base – FTM peripheral base address

• chnlNumber – The channel/channel pair number. In combined mode, this
represents the channel pair number

• currentPwmMode – The current PWMmode set during PWM setup

• dutyCyclePercent – New PWM pulse width; The value should be between
0 to 100 0=inactive signal(0% duty cycle)… 100=active signal (100% duty
cycle)

Returns
kStatus_Success if the PWM update was successful kStatus_Error on failure

void FTM_UpdateChnlEdgeLevelSelect(FTM_Type *base, ftm_chnl_t chnlNumber, uint8_t level)
Updates the edge level selection for a channel.

Parameters
• base – FTM peripheral base address

• chnlNumber – The channel number

• level – The level to be set to the ELSnB:ELSnA field; Valid values are 00, 01,
10, 11. See the Kinetis SoC reference manual for details about this field.

2.7. FTM: FlexTimer Driver 141

MCUXpresso SDK Documentation, Release 25.09.00

status_t FTM_SetupPwmMode(FTM_Type *base, const ftm_chnl_pwm_config_param_t
*chnlParams, uint8_t numOfChnls, ftm_pwm_mode_tmode)

Configures the PWMmode parameters.

Call this function to configure the PWM signal mode, duty cycle in ticks, and edge. Use this
function to configure all FTM channels that are used to output a PWM signal. Please note
that: This API is similar with FTM_SetupPwm() API, but will not set the timer period, and
this API will set channel match value in timer ticks, not period percent.

Parameters
• base – FTM peripheral base address

• chnlParams – Array of PWM channel parameters to configure the chan-
nel(s)

• numOfChnls – Number of channels to configure; This should be the size of
the array passed in

• mode – PWM operation mode, options available in enumeration
ftm_pwm_mode_t

Returns
kStatus_Success if the PWM setup was successful kStatus_Error on failure

void FTM_ConfigSinglePWM(FTM_Type *base, const ftm_chnl_param_t *chnlParams, ftm_chnl_t
chnlNumber)

Configure FTM edge aligned PWM or center aligned PWM by each channel.

This function configure PWM signal by setting channel n value register. Need to invoke
FTM_SetInitialModuloValue to configure FTM period.

Parameters
• base – FTM peripheral base address

• chnlParams – PWM configuration structure pointer.

• chnlPairNumber – Channel number.

void FTM_ConfigCombinePWM(FTM_Type *base, const ftm_chnl_param_t *chnlParams,
ftm_chnl_t chnlPairNumber)

Configure FTM Combine PWM, Modified Combine PWM or Asymmetrical PWM by each
channel pair.

This function configure PWM signal by setting channel n value register. Need to invoke
FTM_SetInitialModuloValue to configure FTM period.

Parameters
• base – FTM peripheral base address

• chnlParams – PWM configuration structure pointer.

• chnlPairNumber – Channel pair number, options are 0, 1, 2, 3.

void FTM_SetupInputCapture(FTM_Type *base, ftm_chnl_t chnlNumber,
ftm_input_capture_edge_t captureMode, uint32_t filterValue)

Enables capturing an input signal on the channel using the function parameters.

When the edge specified in the captureMode argument occurs on the channel, the FTM
counter is captured into the CnV register. The user has to read the CnV register separately
to get this value. The filter function is disabled if the filterVal argument passed in is 0. The
filter function is available only for channels 0, 1, 2, 3.

Parameters
• base – FTM peripheral base address

142 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

• chnlNumber – The channel number

• captureMode – Specifies which edge to capture

• filterValue – Filter value, specify 0 to disable filter. Available only for chan-
nels 0-3.

void FTM_SetupOutputCompare(FTM_Type *base, ftm_chnl_t chnlNumber,
ftm_output_compare_mode_t compareMode, uint32_t
compareValue)

Configures the FTM to generate timed pulses.

When the FTM counter matches the value of compareVal argument (this is written into
CnV reg), the channel output is changed based on what is specified in the compareMode
argument.

Parameters
• base – FTM peripheral base address

• chnlNumber – The channel number

• compareMode – Action to take on the channel output when the compare
condition is met

• compareValue – Value to be programmed in the CnV register.

void FTM_SetupDualEdgeCapture(FTM_Type *base, ftm_chnl_t chnlPairNumber, const
ftm_dual_edge_capture_param_t *edgeParam, uint32_t
filterValue)

Configures the dual edge capture mode of the FTM.

This function sets up the dual edge capture mode on a channel pair. The capture edge for
the channel pair and the capture mode (one-shot or continuous) is specified in the param-
eter argument. The filter function is disabled if the filterVal argument passed is zero. The
filter function is available only on channels 0 and 2. The user has to read the channel CnV
registers separately to get the capture values.

Parameters
• base – FTM peripheral base address

• chnlPairNumber – The FTM channel pair number; options are 0, 1, 2, 3

• edgeParam – Sets up the dual edge capture function

• filterValue – Filter value, specify 0 to disable filter. Available only for chan-
nel pair 0 and 1.

void FTM_EnableInterrupts(FTM_Type *base, uint32_t mask)
Enables the selected FTM interrupts.

Parameters
• base – FTM peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration ftm_interrupt_enable_t

void FTM_DisableInterrupts(FTM_Type *base, uint32_t mask)
Disables the selected FTM interrupts.

Parameters
• base – FTM peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration ftm_interrupt_enable_t

2.7. FTM: FlexTimer Driver 143

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t FTM_GetEnabledInterrupts(FTM_Type *base)
Gets the enabled FTM interrupts.

Parameters
• base – FTM peripheral base address

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
ftm_interrupt_enable_t

uint32_t FTM_GetInstance(FTM_Type *base)
Gets the instance from the base address.

Parameters
• base – FTM peripheral base address

Returns
The FTM instance

uint32_t FTM_GetStatusFlags(FTM_Type *base)
Gets the FTM status flags.

Parameters
• base – FTM peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
ftm_status_flags_t

void FTM_ClearStatusFlags(FTM_Type *base, uint32_t mask)
Clears the FTM status flags.

Parameters
• base – FTM peripheral base address

• mask – The status flags to clear. This is a logical OR of members of the
enumeration ftm_status_flags_t

static inline void FTM_SetTimerPeriod(FTM_Type *base, uint32_t ticks)
Sets the timer period in units of ticks.

Timers counts from 0 until it equals the count value set here. The count value is written to
the MOD register.

Note:
a. This API allows the user to use the FTM module as a timer. Do not mix usage of this

API with FTM’s PWM setup API’s.

b. Call the utility macros provided in the fsl_common.h to convert usec or msec to ticks.

Parameters
• base – FTM peripheral base address

• ticks – A timer period in units of ticks, which should be equal or greater
than 1.

static inline void FTM_SetInitialModuloValue(FTM_Type *base, uint16_t initialValue, uint16_t
moduloValue)

Set initial value and modulo value for FTM.

Parameters

144 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

• base – FTM peripheral base address

• initialValue – FTM counter initial value.

• moduloValue – FTM counter modulo value.

static inline uint32_t FTM_GetCurrentTimerCount(FTM_Type *base)
Reads the current timer counting value.

This function returns the real-time timer counting value in a range from 0 to a timer period.

Note: Call the utilitymacros provided in the fsl_common.h to convert ticks to usec ormsec.

Parameters
• base – FTM peripheral base address

Returns
The current counter value in ticks

static inline void FTM_SetChannelMatchValue(FTM_Type *base, ftm_chnl_t chnlNumber,
uint16_t value)

Set channel match value for output.

Parameters
• base – FTM peripheral base address

• chnlNumber – Channel to set.

• value – Channel match value for output.

static inline uint32_t FTM_GetInputCaptureValue(FTM_Type *base, ftm_chnl_t chnlNumber)
Reads the captured value.

This function returns the captured value of a FTM channel configured in input capture or
dual edge capture mode.

Note: Call the utilitymacros provided in the fsl_common.h to convert ticks to usec ormsec.

Parameters
• base – FTM peripheral base address

• chnlNumber – Channel to be read

Returns
The captured FTM counter value of the input modes.

static inline void FTM_StartTimer(FTM_Type *base, ftm_clock_source_t clockSource)
Starts the FTM counter.

Parameters
• base – FTM peripheral base address

• clockSource – FTM clock source; After the clock source is set, the counter
starts running.

static inline void FTM_StopTimer(FTM_Type *base)
Stops the FTM counter.

Parameters
• base – FTM peripheral base address

2.7. FTM: FlexTimer Driver 145

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t FTM_GetSoftwareOutputValue(FTM_Type *base)
Get channel software output status.

Parameters
• base – FTM peripheral base address

Returns
Status of channel software output, logical OR value of ftm_channel_index_t.

static inline uint32_t FTM_GetSoftwareOutputEnable(FTM_Type *base)
Get channel software enable status.

Parameters
• base – FTM peripheral base address

Returns
Status of channel software enable, logical OR value of ftm_channel_index_t.

static inline void FTM_SetSoftwareOutputCtrl(FTM_Type *base, uint32_t chnlEnable, uint32_t
chnlValue)

Enables or disables the channel software output control and set channel software output
value.

Parameters
• base – FTM peripheral base address

• chnlEnable – Channels to enable or disable software output control, logical
OR of enumeration ftm_channel_index_t members.

• chnlValue – Channels output value, logical OR of enumeration
ftm_channel_index_t members

static inline void FTM_SetSoftwareCtrlEnable(FTM_Type *base, ftm_chnl_t chnlNumber, bool
value)

Enables or disables the channel software output control.

Parameters
• base – FTM peripheral base address

• chnlNumber – Channel to be enabled or disabled

• value – true: channel output is affected by software output control false:
channel output is unaffected by software output control

static inline void FTM_SetSoftwareCtrlVal(FTM_Type *base, ftm_chnl_t chnlNumber, bool value)
Sets the channel software output control value.

Parameters
• base – FTM peripheral base address.

• chnlNumber – Channel to be configured

• value – true to set 1, false to set 0

static inline void FTM_SetFaultControlEnable(FTM_Type *base, ftm_chnl_t chnlPairNumber,
bool value)

This function enables/disables the fault control in a channel pair.

Parameters
• base – FTM peripheral base address

• chnlPairNumber – The FTM channel pair number; options are 0, 1, 2, 3

146 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

• value – true: Enable fault control for this channel pair; false: No fault con-
trol

static inline void FTM_SetDeadTimeEnable(FTM_Type *base, ftm_chnl_t chnlPairNumber, bool
value)

This function enables/disables the dead time insertion in a channel pair.

Parameters
• base – FTM peripheral base address

• chnlPairNumber – The FTM channel pair number; options are 0, 1, 2, 3

• value – true: Insert dead time in this channel pair; false: No dead time
inserted

static inline void FTM_SetComplementaryEnable(FTM_Type *base, ftm_chnl_t chnlPairNumber,
bool value)

This function enables/disables complementary mode in a channel pair.

Parameters
• base – FTM peripheral base address

• chnlPairNumber – The FTM channel pair number; options are 0, 1, 2, 3

• value – true: enable complementary mode; false: disable complementary
mode

static inline void FTM_SetInvertEnable(FTM_Type *base, ftm_chnl_t chnlPairNumber, bool
value)

This function enables/disables inverting control in a channel pair.

Parameters
• base – FTM peripheral base address

• chnlPairNumber – The FTM channel pair number; options are 0, 1, 2, 3

• value – true: enable inverting; false: disable inverting

void FTM_SetupQuadDecode(FTM_Type *base, const ftm_phase_params_t *phaseAParams,
const ftm_phase_params_t *phaseBParams,
ftm_quad_decode_mode_t quadMode)

Configures the parameters and activates the quadrature decoder mode.

Parameters
• base – FTM peripheral base address

• phaseAParams – Phase A configuration parameters

• phaseBParams – Phase B configuration parameters

• quadMode – Selects encoding mode used in quadrature decoder mode

static inline void FTM_SetQuadDecoderModuloValue(FTM_Type *base, uint32_t startValue,
uint32_t overValue)

Sets the modulo values for Quad Decoder.

The modulo values configure the minimum and maximum values that the Quad decoder
counter can reach. After the counter goes over, the counter value goes to the other side and
decrease/increase again.

Parameters
• base – FTM peripheral base address.

• startValue – The low limit value for Quad Decoder counter.

2.7. FTM: FlexTimer Driver 147

MCUXpresso SDK Documentation, Release 25.09.00

• overValue – The high limit value for Quad Decoder counter.

static inline uint32_t FTM_GetQuadDecoderCounterValue(FTM_Type *base)
Gets the current Quad Decoder counter value.

Parameters
• base – FTM peripheral base address.

Returns
Current quad Decoder counter value.

static inline void FTM_ClearQuadDecoderCounterValue(FTM_Type *base)
Clears the current Quad Decoder counter value.

The counter is set as the initial value.

Parameters
• base – FTM peripheral base address.

FSL_FTM_DRIVER_VERSION
FTM driver version 2.7.1.

enum _ftm_chnl
List of FTM channels.

Note: Actual number of available channels is SoC dependent

Values:

enumerator kFTM_Chnl_0
FTM channel number 0

enumerator kFTM_Chnl_1
FTM channel number 1

enumerator kFTM_Chnl_2
FTM channel number 2

enumerator kFTM_Chnl_3
FTM channel number 3

enumerator kFTM_Chnl_4
FTM channel number 4

enumerator kFTM_Chnl_5
FTM channel number 5

enumerator kFTM_Chnl_6
FTM channel number 6

enumerator kFTM_Chnl_7
FTM channel number 7

enum _ftm_fault_input
List of FTM faults.

Values:

enumerator kFTM_Fault_0
FTM fault 0 input pin

148 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kFTM_Fault_1
FTM fault 1 input pin

enumerator kFTM_Fault_2
FTM fault 2 input pin

enumerator kFTM_Fault_3
FTM fault 3 input pin

enum _ftm_pwm_mode
FTM PWM operation modes.

Values:

enumerator kFTM_EdgeAlignedPwm
Edge-aligned PWM

enumerator kFTM_CenterAlignedPwm
Center-aligned PWM

enumerator kFTM_EdgeAlignedCombinedPwm
Edge-aligned combined PWM

enumerator kFTM_CenterAlignedCombinedPwm
Center-aligned combined PWM

enumerator kFTM_AsymmetricalCombinedPwm
Asymmetrical combined PWM

enum _ftm_pwm_level_select
FTM PWM output pulse mode: high-true, low-true or no output.

Note: kFTM_NoPwmSignal: ELSnB:ELSnA = 0:0 kFTM_LowTrue: ELSnB:ELSnA = 0:1
EPWM: Channel n output is forced low at counter overflow, forced high at channel nmatch.
CPWM: Channel n output is forced low at channel nmatchwhen counting down, and forced
high at channel n match when counting up. Combined PWM: Channel n output is forced
high at beginning of period and at channel n+1 match. It is forced low at the channel n
match. kFTM_HighTrue: ELSnB:ELSnA = 1:0 EPWM: Channel n output is forced high at
counter overflow, forced low at channel n match. CPWM: Channel n output is forced high
at channel nmatchwhen counting down, and forced lowat channel nmatchwhen counting
up. Combined PWM: Channel n output is forced low at beginning of period and at channel
n+1 match. It is forced high at the channel n match.

Values:

enumerator kFTM_NoPwmSignal
No PWM output on pin

enumerator kFTM_LowTrue
Low true pulses

enumerator kFTM_HighTrue
High true pulses

enum _ftm_output_compare_mode
FlexTimer output compare mode.

Values:

enumerator kFTM_NoOutputSignal
No channel output when counter reaches CnV

2.7. FTM: FlexTimer Driver 149

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kFTM_ToggleOnMatch
Toggle output

enumerator kFTM_ClearOnMatch
Clear output

enumerator kFTM_SetOnMatch
Set output

enum _ftm_input_capture_edge
FlexTimer input capture edge.

Values:

enumerator kFTM_RisingEdge
Capture on rising edge only

enumerator kFTM_FallingEdge
Capture on falling edge only

enumerator kFTM_RiseAndFallEdge
Capture on rising or falling edge

enum _ftm_dual_edge_capture_mode
FlexTimer dual edge capture modes.

Values:

enumerator kFTM_OneShot
One-shot capture mode

enumerator kFTM_Continuous
Continuous capture mode

enum _ftm_quad_decode_mode
FlexTimer quadrature decode modes.

Values:

enumerator kFTM_QuadPhaseEncode
Phase A and Phase B encoding mode

enumerator kFTM_QuadCountAndDir
Count and direction encoding mode

enum _ftm_phase_polarity
FlexTimer quadrature phase polarities.

Values:

enumerator kFTM_QuadPhaseNormal
Phase input signal is not inverted

enumerator kFTM_QuadPhaseInvert
Phase input signal is inverted

enum _ftm_deadtime_prescale
FlexTimer pre-scaler factor for the dead time insertion.

Values:

enumerator kFTM_Deadtime_Prescale_1
Divide by 1

150 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kFTM_Deadtime_Prescale_4
Divide by 4

enumerator kFTM_Deadtime_Prescale_16
Divide by 16

enum _ftm_clock_source
FlexTimer clock source selection.

Values:

enumerator kFTM_SystemClock
System clock selected

enumerator kFTM_FixedClock
Fixed frequency clock

enumerator kFTM_ExternalClock
External clock

enum _ftm_clock_prescale
FlexTimer pre-scaler factor selection for the clock source.

Values:

enumerator kFTM_Prescale_Divide_1
Divide by 1

enumerator kFTM_Prescale_Divide_2
Divide by 2

enumerator kFTM_Prescale_Divide_4
Divide by 4

enumerator kFTM_Prescale_Divide_8
Divide by 8

enumerator kFTM_Prescale_Divide_16
Divide by 16

enumerator kFTM_Prescale_Divide_32
Divide by 32

enumerator kFTM_Prescale_Divide_64
Divide by 64

enumerator kFTM_Prescale_Divide_128
Divide by 128

enum _ftm_bdm_mode
Options for the FlexTimer behaviour in BDMMode.

Values:

enumerator kFTM_BdmMode_0
FTM counter stopped, CH(n)F bit can be set, FTM channels in functional mode, writes
to MOD,CNTIN and C(n)V registers bypass the register buffers

enumerator kFTM_BdmMode_1
FTM counter stopped, CH(n)F bit is not set, FTM channels outputs are forced to their
safe value , writes to MOD,CNTIN and C(n)V registers bypass the register buffers

2.7. FTM: FlexTimer Driver 151

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kFTM_BdmMode_2
FTM counter stopped, CH(n)F bit is not set, FTM channels outputs are frozen when
chip enters in BDMmode, writes toMOD,CNTIN and C(n)V registers bypass the register
buffers

enumerator kFTM_BdmMode_3
FTM counter in functional mode, CH(n)F bit can be set, FTM channels in functional
mode, writes to MOD,CNTIN and C(n)V registers is in fully functional mode

enum _ftm_fault_mode
Options for the FTM fault control mode.

Values:

enumerator kFTM_Fault_Disable
Fault control is disabled for all channels

enumerator kFTM_Fault_EvenChnls
Enabled for even channels only(0,2,4,6) with manual fault clearing

enumerator kFTM_Fault_AllChnlsMan
Enabled for all channels with manual fault clearing

enumerator kFTM_Fault_AllChnlsAuto
Enabled for all channels with automatic fault clearing

enum _ftm_external_trigger
FTM external trigger options.

Note: Actual available external trigger sources are SoC-specific

Values:

enumerator kFTM_Chnl0Trigger
Generate trigger when counter equals chnl 0 CnV reg

enumerator kFTM_Chnl1Trigger
Generate trigger when counter equals chnl 1 CnV reg

enumerator kFTM_Chnl2Trigger
Generate trigger when counter equals chnl 2 CnV reg

enumerator kFTM_Chnl3Trigger
Generate trigger when counter equals chnl 3 CnV reg

enumerator kFTM_Chnl4Trigger
Generate trigger when counter equals chnl 4 CnV reg

enumerator kFTM_Chnl5Trigger
Generate trigger when counter equals chnl 5 CnV reg

enumerator kFTM_Chnl6Trigger
Available on certain SoC’s, generate trigger when counter equals chnl 6 CnV reg

enumerator kFTM_Chnl7Trigger
Available on certain SoC’s, generate trigger when counter equals chnl 7 CnV reg

enumerator kFTM_InitTrigger
Generate Trigger when counter is updated with CNTIN

enumerator kFTM_ReloadInitTrigger
Available on certain SoC’s, trigger on reload point

152 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

enum _ftm_pwm_sync_method
FlexTimer PWM sync options to update registers with buffer.

Values:

enumerator kFTM_SoftwareTrigger
Software triggers PWM sync

enumerator kFTM_HardwareTrigger_0
Hardware trigger 0 causes PWM sync

enumerator kFTM_HardwareTrigger_1
Hardware trigger 1 causes PWM sync

enumerator kFTM_HardwareTrigger_2
Hardware trigger 2 causes PWM sync

enum _ftm_reload_point
FTM options available as loading point for register reload.

Note: Actual available reload points are SoC-specific

Values:

enumerator kFTM_Chnl0Match
Channel 0 match included as a reload point

enumerator kFTM_Chnl1Match
Channel 1 match included as a reload point

enumerator kFTM_Chnl2Match
Channel 2 match included as a reload point

enumerator kFTM_Chnl3Match
Channel 3 match included as a reload point

enumerator kFTM_Chnl4Match
Channel 4 match included as a reload point

enumerator kFTM_Chnl5Match
Channel 5 match included as a reload point

enumerator kFTM_Chnl6Match
Channel 6 match included as a reload point

enumerator kFTM_Chnl7Match
Channel 7 match included as a reload point

enumerator kFTM_CntMax
Use in up-down count mode only, reload when counter reaches the maximum value

enumerator kFTM_CntMin
Use in up-down count mode only, reload when counter reaches the minimum value

enumerator kFTM_HalfCycMatch
Available on certain SoC’s, half cycle match reload point

enum _ftm_interrupt_enable
List of FTM interrupts.

Note: Actual available interrupts are SoC-specific

2.7. FTM: FlexTimer Driver 153

MCUXpresso SDK Documentation, Release 25.09.00

Values:

enumerator kFTM_Chnl0InterruptEnable
Channel 0 interrupt

enumerator kFTM_Chnl1InterruptEnable
Channel 1 interrupt

enumerator kFTM_Chnl2InterruptEnable
Channel 2 interrupt

enumerator kFTM_Chnl3InterruptEnable
Channel 3 interrupt

enumerator kFTM_Chnl4InterruptEnable
Channel 4 interrupt

enumerator kFTM_Chnl5InterruptEnable
Channel 5 interrupt

enumerator kFTM_Chnl6InterruptEnable
Channel 6 interrupt

enumerator kFTM_Chnl7InterruptEnable
Channel 7 interrupt

enumerator kFTM_FaultInterruptEnable
Fault interrupt

enumerator kFTM_TimeOverflowInterruptEnable
Time overflow interrupt

enumerator kFTM_ReloadInterruptEnable
Reload interrupt; Available only on certain SoC’s

enum _ftm_status_flags
List of FTM flags.

Note: Actual available flags are SoC-specific

Values:

enumerator kFTM_Chnl0Flag
Channel 0 Flag

enumerator kFTM_Chnl1Flag
Channel 1 Flag

enumerator kFTM_Chnl2Flag
Channel 2 Flag

enumerator kFTM_Chnl3Flag
Channel 3 Flag

enumerator kFTM_Chnl4Flag
Channel 4 Flag

enumerator kFTM_Chnl5Flag
Channel 5 Flag

enumerator kFTM_Chnl6Flag
Channel 6 Flag

154 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kFTM_Chnl7Flag
Channel 7 Flag

enumerator kFTM_FaultFlag
Fault Flag

enumerator kFTM_TimeOverflowFlag
Time overflow Flag

enumerator kFTM_ChnlTriggerFlag
Channel trigger Flag

enumerator kFTM_ReloadFlag
Reload Flag; Available only on certain SoC’s

enum _ftm_channel_index
List of FTM channel index used in logic OR.

Values:

enumerator kFTM_Chnl0_Mask
Channel 0 Mask

enumerator kFTM_Chnl1_Mask
Channel 1 Mask

enumerator kFTM_Chnl2_Mask
Channel 2 Mask

enumerator kFTM_Chnl3_Mask
Channel 3 Mask

enumerator kFTM_Chnl4_Mask
Channel 4 Mask

enumerator kFTM_Chnl5_Mask
Channel 5 Mask

enumerator kFTM_Chnl6_Mask
Channel 6 Mask

enumerator kFTM_Chnl7_Mask
Channel 7 Mask

typedef enum _ftm_chnl ftm_chnl_t
List of FTM channels.

Note: Actual number of available channels is SoC dependent

typedef enum _ftm_fault_input ftm_fault_input_t
List of FTM faults.

typedef enum _ftm_pwm_mode ftm_pwm_mode_t
FTM PWM operation modes.

typedef enum _ftm_pwm_level_select ftm_pwm_level_select_t
FTM PWM output pulse mode: high-true, low-true or no output.

Note: kFTM_NoPwmSignal: ELSnB:ELSnA = 0:0 kFTM_LowTrue: ELSnB:ELSnA = 0:1
EPWM: Channel n output is forced low at counter overflow, forced high at channel nmatch.
CPWM: Channel n output is forced low at channel nmatchwhen counting down, and forced

2.7. FTM: FlexTimer Driver 155

MCUXpresso SDK Documentation, Release 25.09.00

high at channel n match when counting up. Combined PWM: Channel n output is forced
high at beginning of period and at channel n+1 match. It is forced low at the channel n
match. kFTM_HighTrue: ELSnB:ELSnA = 1:0 EPWM: Channel n output is forced high at
counter overflow, forced low at channel n match. CPWM: Channel n output is forced high
at channel nmatchwhen counting down, and forced lowat channel nmatchwhen counting
up. Combined PWM: Channel n output is forced low at beginning of period and at channel
n+1 match. It is forced high at the channel n match.

typedef struct _ftm_chnl_pwm_signal_param ftm_chnl_pwm_signal_param_t
Options to configure a FTM channel’s PWM signal.

typedef struct _ftm_chnl_pwm_config_param ftm_chnl_pwm_config_param_t
Options to configure a FTM channel using precise setting.

typedef struct _ftm_chnl_param ftm_chnl_param_t
General options to configure a FTM channel using precise setting.

typedef enum _ftm_output_compare_mode ftm_output_compare_mode_t
FlexTimer output compare mode.

typedef enum _ftm_input_capture_edge ftm_input_capture_edge_t
FlexTimer input capture edge.

typedef enum _ftm_dual_edge_capture_mode ftm_dual_edge_capture_mode_t
FlexTimer dual edge capture modes.

typedef struct _ftm_dual_edge_capture_param ftm_dual_edge_capture_param_t
FlexTimer dual edge capture parameters.

typedef enum _ftm_quad_decode_mode ftm_quad_decode_mode_t
FlexTimer quadrature decode modes.

typedef enum _ftm_phase_polarity ftm_phase_polarity_t
FlexTimer quadrature phase polarities.

typedef struct _ftm_phase_param ftm_phase_params_t
FlexTimer quadrature decode phase parameters.

typedef struct _ftm_fault_param ftm_fault_param_t
Structure is used to hold the parameters to configure a FTM fault.

typedef enum _ftm_deadtime_prescale ftm_deadtime_prescale_t
FlexTimer pre-scaler factor for the dead time insertion.

typedef enum _ftm_clock_source ftm_clock_source_t
FlexTimer clock source selection.

typedef enum _ftm_clock_prescale ftm_clock_prescale_t
FlexTimer pre-scaler factor selection for the clock source.

typedef enum _ftm_bdm_mode ftm_bdm_mode_t
Options for the FlexTimer behaviour in BDMMode.

typedef enum _ftm_fault_mode ftm_fault_mode_t
Options for the FTM fault control mode.

typedef enum _ftm_external_trigger ftm_external_trigger_t
FTM external trigger options.

Note: Actual available external trigger sources are SoC-specific

156 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _ftm_pwm_sync_method ftm_pwm_sync_method_t
FlexTimer PWM sync options to update registers with buffer.

typedef enum _ftm_reload_point ftm_reload_point_t
FTM options available as loading point for register reload.

Note: Actual available reload points are SoC-specific

typedef enum _ftm_interrupt_enable ftm_interrupt_enable_t
List of FTM interrupts.

Note: Actual available interrupts are SoC-specific

typedef enum _ftm_status_flags ftm_status_flags_t
List of FTM flags.

Note: Actual available flags are SoC-specific

typedef enum _ftm_channel_index ftm_channel_index_t
List of FTM channel index used in logic OR.

typedef struct _ftm_config ftm_config_t
FTM configuration structure.

This structure holds the configuration settings for the FTM peripheral. To initialize this
structure to reasonable defaults, call the FTM_GetDefaultConfig() function and pass a
pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

void FTM_SetupFaultInput(FTM_Type *base, ftm_fault_input_t faultNumber, const
ftm_fault_param_t *faultParams)

Sets up the working of the FTM fault inputs protection.

FTM can have up to 4 fault inputs. This function sets up fault parameters, fault level, and
input filter.

Parameters
• base – FTM peripheral base address

• faultNumber – FTM fault to configure.

• faultParams – Parameters passed in to set up the fault

static inline void FTM_SetGlobalTimeBaseOutputEnable(FTM_Type *base, bool enable)
Enables or disables the FTM global time base signal generation to other FTMs.

Parameters
• base – FTM peripheral base address

• enable – true to enable, false to disable

static inline void FTM_SetOutputMask(FTM_Type *base, ftm_chnl_t chnlNumber, bool mask)
Sets the FTM peripheral timer channel output mask.

Parameters
• base – FTM peripheral base address

• chnlNumber – Channel to be configured

2.7. FTM: FlexTimer Driver 157

MCUXpresso SDK Documentation, Release 25.09.00

• mask – true: masked, channel is forced to its inactive state; false: un-
masked

static inline void FTM_SetPwmOutputEnable(FTM_Type *base, ftm_chnl_t chnlNumber, bool
value)

Allows users to enable an output on an FTM channel.

To enable the PWM channel output call this function with val=true. For input mode, call
this function with val=false.

Parameters
• base – FTM peripheral base address

• chnlNumber – Channel to be configured

• value – true: enable output; false: output is disabled, used in input mode

static inline void FTM_SetSoftwareTrigger(FTM_Type *base, bool enable)
Enables or disables the FTM software trigger for PWM synchronization.

Parameters
• base – FTM peripheral base address

• enable – true: software trigger is selected, false: software trigger is not
selected

static inline void FTM_SetWriteProtection(FTM_Type *base, bool enable)
Enables or disables the FTM write protection.

Parameters
• base – FTM peripheral base address

• enable – true: Write-protection is enabled, false: Write-protection is dis-
abled

static inline void FTM_EnableDmaTransfer(FTM_Type *base, ftm_chnl_t chnlNumber, bool
enable)

Enable DMA transfer or not.

Note: CHnIE bit needs to be set when calling this API. The channel DMA transfer request is
generated and the channel interrupt is not generated if (CHnF = 1) when DMA and CHnIE
bits are set.

Parameters
• base – FTM peripheral base address.

• chnlNumber – Channel to be configured

• enable – true to enable, false to disable

static inline void FTM_SetLdok(FTM_Type *base, bool value)
Enable the LDOK bit.

This function enables loading updated values.

Parameters
• base – FTM peripheral base address

• value – true: loading updated values is enabled; false: loading updated
values is disabled.

158 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

static inline void FTM_SetHalfCycReloadMatchValue(FTM_Type *base, uint32_t ticks)
Sets the half cycle relade period in units of ticks.

This function can be callled to set the half-cycle reload value when half-cycle matching is
enabled as a reload point. Note: Need enable kFTM_HalfCycMatch as reload point, and
when this API call after FTM_StartTimer(), the new HCR value will not be active until next
reload point (need call FTM_SetLdok to set LDOK) or register synchronization.

Parameters
• base – FTM peripheral base address

• ticks – A timer period in units of ticks, which should be equal or greater
than 1.

static inline void FTM_SetLoadFreq(FTM_Type *base, uint32_t loadfreq)
Set load frequency value.

Parameters
• base – FTM peripheral base address.

• loadfreq – PWM reload frequency, range: 0 ~ 31.

struct _ftm_chnl_pwm_signal_param
#include <fsl_ftm.h> Options to configure a FTM channel’s PWM signal.

Public Members

ftm_chnl_t chnlNumber
The channel/channel pair number. In combined mode, this represents the channel
pair number.

ftm_pwm_level_select_t level
PWM output active level select.

uint8_t dutyCyclePercent
PWMpulsewidth, value should be between 0 to 100 0 = inactive signal(0%duty cycle)…
100 = always active signal (100% duty cycle).

uint8_t firstEdgeDelayPercent
Used only in kFTM_AsymmetricalCombinedPwm mode to generate an asymmetrical
PWM. Specifies the delay to the first edge in a PWMperiod. If unsure leave as 0; Should
be specified as a percentage of the PWM period

bool enableComplementary
Used only in combined PWMmode. true: The combined channels output complemen-
tary signals; false: The combined channels output same signals;

bool enableDeadtime
Used only in combined PWM mode with enable complementary. true: The deadtime
insertion in this pair of channels is enabled; false: The deadtime insertion in this pair
of channels is disabled.

struct _ftm_chnl_pwm_config_param
#include <fsl_ftm.h> Options to configure a FTM channel using precise setting.

Public Members

ftm_chnl_t chnlNumber
The channel/channel pair number. In combined mode, this represents the channel
pair number.

2.7. FTM: FlexTimer Driver 159

MCUXpresso SDK Documentation, Release 25.09.00

ftm_pwm_level_select_t level
PWM output active level select.

uint16_t dutyValue
PWM pulse width, the uint of this value is timer ticks.

uint16_t firstEdgeValue
Used only in kFTM_AsymmetricalCombinedPwm mode to generate an asymmetrical
PWM. Specifies the delay to the first edge in a PWM period. If unsure leave as 0, uint
of this value is timer ticks.

bool enableComplementary
Used only in combined PWMmode. true: The combined channels output complemen-
tary signals; false: The combined channels output same signals;

bool enableDeadtime
Used only in combined PWM mode with enable complementary. true: The deadtime
insertion in this pair of channels is enabled; false: The deadtime insertion in this pair
of channels is disabled.

struct _ftm_chnl_param
#include <fsl_ftm.h> General options to configure a FTM channel using precise setting.

Public Members

ftm_pwm_mode_t mode
PWM output mode.

ftm_pwm_level_select_t level
PWM output active level select.

uint16_t initialValue
FTM counter initial value.

uint16_t moduloValue
FTM counter modulo value.

uint16_t chnlValue
FTM channel n match value.

uint16_t combinedChnlValue
FTM combined channel n+1 match value, used only in (modified) combined PWM
mode.

bool enableComplementary
Used only in combined PWMmode. true: The combined channels output complemen-
tary signals; false: The combined channels output same signals;

bool enableDeadtime
Used only in combined PWM mode with enable complementary. true: The deadtime
insertion in this pair of channels is enabled; false: The deadtime insertion in this pair
of channels is disabled.

struct _ftm_dual_edge_capture_param
#include <fsl_ftm.h> FlexTimer dual edge capture parameters.

Public Members

160 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

ftm_dual_edge_capture_mode_t mode
Dual Edge Capture mode

ftm_input_capture_edge_t currChanEdgeMode
Input capture edge select for channel n

ftm_input_capture_edge_t nextChanEdgeMode
Input capture edge select for channel n+1

struct _ftm_phase_param
#include <fsl_ftm.h> FlexTimer quadrature decode phase parameters.

Public Members

bool enablePhaseFilter
True: enable phase filter; false: disable filter

uint32_t phaseFilterVal
Filter value, used only if phase filter is enabled

ftm_phase_polarity_t phasePolarity
Phase polarity

struct _ftm_fault_param
#include <fsl_ftm.h> Structure is used to hold the parameters to configure a FTM fault.

Public Members

bool enableFaultInput
True: Fault input is enabled; false: Fault input is disabled

bool faultLevel
True: Fault polarity is active low; in other words, ‘0’ indicates a fault; False: Fault
polarity is active high

bool useFaultFilter
True: Use the filtered fault signal; False: Use the direct path from fault input

struct _ftm_config
#include <fsl_ftm.h> FTM configuration structure.

This structure holds the configuration settings for the FTM peripheral. To initialize this
structure to reasonable defaults, call the FTM_GetDefaultConfig() function and pass a
pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

Public Members

ftm_clock_prescale_t prescale
FTM clock prescale value

ftm_bdm_mode_t bdmMode
FTM behavior in BDMmode

uint32_t pwmSyncMode
Synchronization methods to use to update buffered registers; Multiple update
modes can be used by providing an OR’ed list of options available in enumeration
ftm_pwm_sync_method_t.

2.7. FTM: FlexTimer Driver 161

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t reloadPoints
FTM reload points; When using this, the PWM synchronization is not required. Mul-
tiple reload points can be used by providing an OR’ed list of options available in enu-
meration ftm_reload_point_t.

ftm_fault_mode_t faultMode
FTM fault control mode

uint8_t faultFilterValue
Fault input filter value

ftm_deadtime_prescale_t deadTimePrescale
The dead time prescalar value

uint32_t deadTimeValue
The dead time value deadTimeValue’s available range is 0-1023 when register has DT-
VALEX, otherwise its available range is 0-63.

uint32_t extTriggers
External triggers to enable. Multiple trigger sources can be enabled by providing an
OR’ed list of options available in enumeration ftm_external_trigger_t.

uint8_t chnlInitState
Defines the initialization value of the channels in OUTINT register

uint8_t chnlPolarity
Defines the output polarity of the channels in POL register

bool useGlobalTimeBase
True: Use of an external global time base is enabled; False: disabled

bool swTriggerResetCount
FTM counter synchronization activated by software trigger, avtive when (syncMethod
& FTM_SYNC_SWSYNC_MASK) != 0U

bool hwTriggerResetCount
FTMcounter synchronization activated byhardware trigger, avtivewhen (syncMethod
& (FTM_SYNC_TRIG0_MASK | FTM_SYNC_TRIG1_MASK | FTM_SYNC_TRIG2_MASK)) !=
0U

2.8 GPIO: General-Purpose Input/Output Driver

FSL_GPIO_DRIVER_VERSION
GPIO driver version.

enum _gpio_port_num
PORT definition.

Values:

enumerator kGPIO_PORTA

enumerator kGPIO_PORTB

enumerator kGPIO_PORTC

enumerator kGPIO_PORTD

enumerator kGPIO_PORTE

162 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kGPIO_PORTF

enumerator kGPIO_PORTG

enumerator kGPIO_PORTH

enum _gpio_pin_direction
GPIO direction definition.

Values:

enumerator kGPIO_DigitalInput
Set current pin as digital input

enumerator kGPIO_DigitalOutput
Set current pin as digital output

typedef enum _gpio_port_num gpio_port_num_t
PORT definition.

typedef enum _gpio_pin_direction gpio_pin_direction_t
GPIO direction definition.

typedef struct _gpio_pin_config gpio_pin_config_t
The GPIO pin configuration structure.

Each pin can only be configured as either an output pin or an input pin at a time. If config-
ured as an input pin, leave the outputConfig unused. Note that in some use cases, the cor-
responding port property should be configured in advance with the PORT_SetPinConfig().

struct _gpio_pin_config
#include <fsl_gpio.h> The GPIO pin configuration structure.

Each pin can only be configured as either an output pin or an input pin at a time. If config-
ured as an input pin, leave the outputConfig unused. Note that in some use cases, the cor-
responding port property should be configured in advance with the PORT_SetPinConfig().

Public Members

gpio_pin_direction_t pinDirection
GPIO direction, input or output

uint8_t outputLogic
Set a default output logic, which has no use in input

2.9 GPIO Driver

void GPIO_PinInit(gpio_port_num_t port, uint8_t pin, const gpio_pin_config_t *config)
Initializes a GPIO pin used by the board.

To initialize the GPIO, define a pin configuration, as either input or output, in the user file.
Then, call the GPIO_PinInit() function.

This is an example to define an input pin or an output pin configuration.

Define a digital input pin configuration,
gpio_pin_config_t config =
{
kGPIO_DigitalInput,
0,

(continues on next page)

2.9. GPIO Driver 163

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
}
Define a digital output pin configuration,
gpio_pin_config_t config =
{
kGPIO_DigitalOutput,
0,

}

Parameters
• port – GPIO PORT number, see “gpio_port_num_t”. For each group GPIO
(GPIOA, GPIOB,etc) control registers, they handles four PORT number con-
trols. GPIOA serial registers –— PTA 0 ~ 7, PTB 0 ~7 … PTD 0 ~ 7.
GPIOB serial registers –— PTE 0 ~ 7, PTF 0 ~7 … PTH 0 ~ 7. …

• pin – GPIO port pin number

• config – GPIO pin configuration pointer

void GPIO_PinWrite(gpio_port_num_t port, uint8_t pin, uint8_t output)
Sets the output level of the multiple GPIO pins to the logic 1 or 0.

Parameters
• port – GPIO PORT number, see “gpio_port_num_t”. For each group GPIO
(GPIOA, GPIOB,etc) control registers, they handles four PORT number con-
trols. GPIOA serial registers –— PTA 0 ~ 7, PTB 0 ~7 … PTD 0 ~ 7.
GPIOB serial registers –— PTE 0 ~ 7, PTF 0 ~7 … PTH 0 ~ 7. …

• pin – GPIO pin number

• output – GPIO pin output logic level.

– 0: corresponding pin output low-logic level.

– 1: corresponding pin output high-logic level.

void GPIO_PortSet(gpio_port_num_t port, uint8_t mask)
Sets the output level of the multiple GPIO pins to the logic 1.

Parameters
• port – GPIO PORT number, see “gpio_port_num_t”. For each group GPIO
(GPIOA, GPIOB,etc) control registers, they handles four PORT number con-
trols. GPIOA serial registers –— PTA 0 ~ 7, PTB 0 ~7 … PTD 0 ~ 7.
GPIOB serial registers –— PTE 0 ~ 7, PTF 0 ~7 … PTH 0 ~ 7. …

• mask – GPIO pin number macro

void GPIO_PortClear(gpio_port_num_t port, uint8_t mask)
Sets the output level of the multiple GPIO pins to the logic 0.

Parameters
• port – GPIO PORT number, see “gpio_port_num_t”. For each group GPIO
(GPIOA, GPIOB,etc) control registers, they handles four PORT number con-
trols. GPIOA serial registers –— PTA 0 ~ 7, PTB 0 ~7 … PTD 0 ~ 7.
GPIOB serial registers –— PTE 0 ~ 7, PTF 0 ~7 … PTH 0 ~ 7. …

• mask – GPIO pin number macro

void GPIO_PortToggle(gpio_port_num_t port, uint8_t mask)
Reverses the current output logic of the multiple GPIO pins.

Parameters

164 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

• port – GPIO PORT number, see “gpio_port_num_t”. For each group GPIO
(GPIOA, GPIOB,etc) control registers, they handles four PORT number con-
trols. GPIOA serial registers –— PTA 0 ~ 7, PTB 0 ~7 … PTD 0 ~ 7.
GPIOB serial registers –— PTE 0 ~ 7, PTF 0 ~7 … PTH 0 ~ 7. …

• mask – GPIO pin number macro

uint32_t GPIO_PinRead(gpio_port_num_t port, uint8_t pin)
Reads the current input value of the GPIO port.

Parameters
• port – GPIO PORT number, see “gpio_port_num_t”. For each group GPIO
(GPIOA, GPIOB,etc) control registers, they handles four PORT number con-
trols. GPIOA serial registers –— PTA 0 ~ 7, PTB 0 ~7 … PTD 0 ~ 7.
GPIOB serial registers –— PTE 0 ~ 7, PTF 0 ~7 … PTH 0 ~ 7. …

• pin – GPIO pin number

Return values
GPIO – port input value

• 0: corresponding pin input low-logic level.

• 1: corresponding pin input high-logic level.

2.10 I2C: Inter-Integrated Circuit Driver

2.11 I2C Driver

void I2C_MasterInit(I2C_Type *base, const i2c_master_config_t *masterConfig, uint32_t
srcClock_Hz)

Initializes the I2C peripheral. Call this API to ungate the I2C clock and configure the I2C
with master configuration.

Note: This API should be called at the beginning of the application. Otherwise, any op-
eration to the I2C module can cause a hard fault because the clock is not enabled. The
configuration structure can be custom filled or it can be set with default values by using
the I2C_MasterGetDefaultConfig(). After calling this API, the master is ready to transfer.
This is an example.

i2c_master_config_t config = {
.enableMaster = true,
.enableStopHold = false,
.highDrive = false,
.baudRate_Bps = 100000,
.glitchFilterWidth = 0
};
I2C_MasterInit(I2C0, &config, 12000000U);

Parameters
• base – I2C base pointer

• masterConfig – A pointer to the master configuration structure

• srcClock_Hz – I2C peripheral clock frequency in Hz

2.10. I2C: Inter-Integrated Circuit Driver 165

MCUXpresso SDK Documentation, Release 25.09.00

void I2C_SlaveInit(I2C_Type *base, const i2c_slave_config_t *slaveConfig, uint32_t srcClock_Hz)
Initializes the I2C peripheral. Call this API to ungate the I2C clock and initialize the I2C with
the slave configuration.

Note: This API should be called at the beginning of the application. Otherwise, any opera-
tion to the I2C module can cause a hard fault because the clock is not enabled. The config-
uration structure can partly be set with default values by I2C_SlaveGetDefaultConfig() or it
can be custom filled by the user. This is an example.

i2c_slave_config_t config = {
.enableSlave = true,
.enableGeneralCall = false,
.addressingMode = kI2C_Address7bit,
.slaveAddress = 0x1DU,
.enableWakeUp = false,
.enablehighDrive = false,
.enableBaudRateCtl = false,
.sclStopHoldTime_ns = 4000
};
I2C_SlaveInit(I2C0, &config, 12000000U);

Parameters
• base – I2C base pointer

• slaveConfig – A pointer to the slave configuration structure

• srcClock_Hz – I2C peripheral clock frequency in Hz

void I2C_MasterDeinit(I2C_Type *base)
De-initializes the I2C master peripheral. Call this API to gate the I2C clock. The I2C master
module can’t work unless the I2C_MasterInit is called.

Parameters
• base – I2C base pointer

void I2C_SlaveDeinit(I2C_Type *base)
De-initializes the I2C slave peripheral. Calling this API gates the I2C clock. The I2C slave
module can’t work unless the I2C_SlaveInit is called to enable the clock.

Parameters
• base – I2C base pointer

uint32_t I2C_GetInstance(I2C_Type *base)
Get instance number for I2C module.

Parameters
• base – I2C peripheral base address.

void I2C_MasterGetDefaultConfig(i2c_master_config_t *masterConfig)
Sets the I2C master configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use
in the I2C_MasterConfigure(). Use the initialized structure unchanged in the
I2C_MasterConfigure() or modify the structure before calling the I2C_MasterConfigure().
This is an example.

i2c_master_config_t config;
I2C_MasterGetDefaultConfig(&config);

166 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• masterConfig – A pointer to the master configuration structure.

void I2C_SlaveGetDefaultConfig(i2c_slave_config_t *slaveConfig)
Sets the I2C slave configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use in the
I2C_SlaveConfigure(). Modify fields of the structure before calling the I2C_SlaveConfigure().
This is an example.

i2c_slave_config_t config;
I2C_SlaveGetDefaultConfig(&config);

Parameters
• slaveConfig – A pointer to the slave configuration structure.

static inline void I2C_Enable(I2C_Type *base, bool enable)
Enables or disables the I2C peripheral operation.

Parameters
• base – I2C base pointer

• enable – Pass true to enable and false to disable the module.

uint32_t I2C_MasterGetStatusFlags(I2C_Type *base)
Gets the I2C status flags.

Parameters
• base – I2C base pointer

Returns
status flag, use status flag to AND _i2c_flags to get the related status.

static inline uint32_t I2C_SlaveGetStatusFlags(I2C_Type *base)
Gets the I2C status flags.

Parameters
• base – I2C base pointer

Returns
status flag, use status flag to AND _i2c_flags to get the related status.

static inline void I2C_MasterClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C status flag state.

The following status register flags can be cleared kI2C_ArbitrationLostFlag and
kI2C_IntPendingFlag.

Parameters
• base – I2C base pointer

• statusMask – The status flag mask, defined in type i2c_status_flag_t. The
parameter can be any combination of the following values:

– kI2C_StartDetectFlag (if available)

– kI2C_StopDetectFlag (if available)

– kI2C_ArbitrationLostFlag

– kI2C_IntPendingFlagFlag

2.11. I2C Driver 167

MCUXpresso SDK Documentation, Release 25.09.00

static inline void I2C_SlaveClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C status flag state.

The following status register flags can be cleared kI2C_ArbitrationLostFlag and
kI2C_IntPendingFlag

Parameters
• base – I2C base pointer

• statusMask – The status flag mask, defined in type i2c_status_flag_t. The
parameter can be any combination of the following values:

– kI2C_StartDetectFlag (if available)

– kI2C_StopDetectFlag (if available)

– kI2C_ArbitrationLostFlag

– kI2C_IntPendingFlagFlag

void I2C_EnableInterrupts(I2C_Type *base, uint32_t mask)
Enables I2C interrupt requests.

Parameters
• base – I2C base pointer

• mask – interrupt source The parameter can be combination of the follow-
ing source if defined:

– kI2C_GlobalInterruptEnable

– kI2C_StopDetectInterruptEnable/kI2C_StartDetectInterruptEnable

– kI2C_SdaTimeoutInterruptEnable

void I2C_DisableInterrupts(I2C_Type *base, uint32_t mask)
Disables I2C interrupt requests.

Parameters
• base – I2C base pointer

• mask – interrupt source The parameter can be combination of the follow-
ing source if defined:

– kI2C_GlobalInterruptEnable

– kI2C_StopDetectInterruptEnable/kI2C_StartDetectInterruptEnable

– kI2C_SdaTimeoutInterruptEnable

static inline void I2C_EnableDMA(I2C_Type *base, bool enable)
Enables/disables the I2C DMA interrupt.

Parameters
• base – I2C base pointer

• enable – true to enable, false to disable

static inline uint32_t I2C_GetDataRegAddr(I2C_Type *base)
Gets the I2C tx/rx data register address. This API is used to provide a transfer address for
I2C DMA transfer configuration.

Parameters
• base – I2C base pointer

Returns
data register address

168 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

void I2C_MasterSetBaudRate(I2C_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
Sets the I2C master transfer baud rate.

Parameters
• base – I2C base pointer

• baudRate_Bps – the baud rate value in bps

• srcClock_Hz – Source clock

status_t I2C_MasterStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)
Sends a START on the I2C bus.

This function is used to initiate a new master mode transfer by sending the START signal.
The slave address is sent following the I2C START signal.

Parameters
• base – I2C peripheral base pointer

• address – 7-bit slave device address.

• direction – Master transfer directions(transmit/receive).

Return values
• kStatus_Success – Successfully send the start signal.

• kStatus_I2C_Busy – Current bus is busy.

status_t I2C_MasterStop(I2C_Type *base)
Sends a STOP signal on the I2C bus.

Return values
• kStatus_Success – Successfully send the stop signal.

• kStatus_I2C_Timeout – Send stop signal failed, timeout.

status_t I2C_MasterRepeatedStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)
Sends a REPEATED START on the I2C bus.

Parameters
• base – I2C peripheral base pointer

• address – 7-bit slave device address.

• direction – Master transfer directions(transmit/receive).

Return values
• kStatus_Success – Successfully send the start signal.

• kStatus_I2C_Busy – Current bus is busy but not occupied by current I2C
master.

status_t I2C_MasterWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize, uint32_t
flags)

Performs a polling send transaction on the I2C bus.

Parameters
• base – The I2C peripheral base pointer.

• txBuff – The pointer to the data to be transferred.

• txSize – The length in bytes of the data to be transferred.

2.11. I2C Driver 169

MCUXpresso SDK Documentation, Release 25.09.00

• flags – Transfer control flag to decide whether need to send a stop, use
kI2C_TransferDefaultFlag to issue a stop and kI2C_TransferNoStop to not
send a stop.

Return values
• kStatus_Success – Successfully complete the data transmission.

• kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.

• kStataus_I2C_Nak – Transfer error, receive NAK during transfer.

status_t I2C_MasterReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize, uint32_t flags)
Performs a polling receive transaction on the I2C bus.

Note: The I2C_MasterReadBlocking function stops the bus before reading the final byte.
Without stopping the bus prior for the final read, the bus issues another read, resulting in
garbage data being read into the data register.

Parameters
• base – I2C peripheral base pointer.

• rxBuff – The pointer to the data to store the received data.

• rxSize – The length in bytes of the data to be received.

• flags – Transfer control flag to decide whether need to send a stop, use
kI2C_TransferDefaultFlag to issue a stop and kI2C_TransferNoStop to not
send a stop.

Return values
• kStatus_Success – Successfully complete the data transmission.

• kStatus_I2C_Timeout – Send stop signal failed, timeout.

status_t I2C_SlaveWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize)
Performs a polling send transaction on the I2C bus.

Parameters
• base – The I2C peripheral base pointer.

• txBuff – The pointer to the data to be transferred.

• txSize – The length in bytes of the data to be transferred.

Return values
• kStatus_Success – Successfully complete the data transmission.

• kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.

• kStataus_I2C_Nak – Transfer error, receive NAK during transfer.

status_t I2C_SlaveReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize)
Performs a polling receive transaction on the I2C bus.

Parameters
• base – I2C peripheral base pointer.

• rxBuff – The pointer to the data to store the received data.

• rxSize – The length in bytes of the data to be received.

Return values
• kStatus_Success – Successfully complete data receive.

170 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

• kStatus_I2C_Timeout – Wait status flag timeout.

status_t I2C_MasterTransferBlocking(I2C_Type *base, i2c_master_transfer_t *xfer)
Performs a master polling transfer on the I2C bus.

Note: The API does not return until the transfer succeeds or fails due to arbitration lost or
receiving a NAK.

Parameters
• base – I2C peripheral base address.

• xfer – Pointer to the transfer structure.

Return values
• kStatus_Success – Successfully complete the data transmission.

• kStatus_I2C_Busy – Previous transmission still not finished.

• kStatus_I2C_Timeout – Transfer error, wait signal timeout.

• kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.

• kStataus_I2C_Nak – Transfer error, receive NAK during transfer.

void I2C_MasterTransferCreateHandle(I2C_Type *base, i2c_master_handle_t *handle,
i2c_master_transfer_callback_t callback, void *userData)

Initializes the I2C handle which is used in transactional functions.

Parameters
• base – I2C base pointer.

• handle – pointer to i2c_master_handle_t structure to store the transfer
state.

• callback – pointer to user callback function.

• userData – user parameter passed to the callback function.

status_t I2C_MasterTransferNonBlocking(I2C_Type *base, i2c_master_handle_t *handle,
i2c_master_transfer_t *xfer)

Performs a master interrupt non-blocking transfer on the I2C bus.

Note: Calling the API returns immediately after transfer initiates. The user needs to call
I2C_MasterGetTransferCount to poll the transfer status to check whether the transfer is
finished. If the return status is not kStatus_I2C_Busy, the transfer is finished.

Parameters
• base – I2C base pointer.

• handle – pointer to i2c_master_handle_t structurewhich stores the transfer
state.

• xfer – pointer to i2c_master_transfer_t structure.

Return values
• kStatus_Success – Successfully start the data transmission.

• kStatus_I2C_Busy – Previous transmission still not finished.

• kStatus_I2C_Timeout – Transfer error, wait signal timeout.

2.11. I2C Driver 171

MCUXpresso SDK Documentation, Release 25.09.00

status_t I2C_MasterTransferGetCount(I2C_Type *base, i2c_master_handle_t *handle, size_t
*count)

Gets the master transfer status during a interrupt non-blocking transfer.

Parameters
• base – I2C base pointer.

• handle – pointer to i2c_master_handle_t structurewhich stores the transfer
state.

• count –Number of bytes transferred so far by the non-blocking transaction.

Return values
• kStatus_InvalidArgument – count is Invalid.

• kStatus_Success – Successfully return the count.

status_t I2C_MasterTransferAbort(I2C_Type *base, i2c_master_handle_t *handle)
Aborts an interrupt non-blocking transfer early.

Note: This API can be called at any time when an interrupt non-blocking transfer initiates
to abort the transfer early.

Parameters
• base – I2C base pointer.

• handle – pointer to i2c_master_handle_t structurewhich stores the transfer
state

Return values
• kStatus_I2C_Timeout – Timeout during polling flag.

• kStatus_Success – Successfully abort the transfer.

void I2C_MasterTransferHandleIRQ(I2C_Type *base, void *i2cHandle)
Master interrupt handler.

Parameters
• base – I2C base pointer.

• i2cHandle – pointer to i2c_master_handle_t structure.

void I2C_SlaveTransferCreateHandle(I2C_Type *base, i2c_slave_handle_t *handle,
i2c_slave_transfer_callback_t callback, void *userData)

Initializes the I2C handle which is used in transactional functions.

Parameters
• base – I2C base pointer.

• handle – pointer to i2c_slave_handle_t structure to store the transfer state.

• callback – pointer to user callback function.

• userData – user parameter passed to the callback function.

status_t I2C_SlaveTransferNonBlocking(I2C_Type *base, i2c_slave_handle_t *handle, uint32_t
eventMask)

Starts accepting slave transfers.

Call this API after calling the I2C_SlaveInit() and I2C_SlaveTransferCreateHandle() to start
processing transactions driven by an I2Cmaster. The slavemonitors the I2C bus and passes

172 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

events to the callback thatwas passed into the call to I2C_SlaveTransferCreateHandle(). The
callback is always invoked from the interrupt context.

The set of events received by the callback is customizable. To do so, set the eventMask pa-
rameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events
you wish to receive. The kI2C_SlaveTransmitEvent and kLPI2C_SlaveReceiveEvent events
are always enabled and do not need to be included in the mask. Alternatively, pass 0 to get
a default set of only the transmit and receive events that are always enabled. In addition,
the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all events.

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to i2c_slave_handle_t structure which stores the transfer
state.

• eventMask – Bitmask formed byOR’ing together i2c_slave_transfer_event_t
enumerators to specify which events to send to the callback. Other ac-
cepted values are 0 to get a default set of only the transmit and receive
events, and kI2C_SlaveAllEvents to enable all events.

Return values
• kStatus_Success – Slave transfers were successfully started.

• kStatus_I2C_Busy – Slave transfers have already been started on this han-
dle.

void I2C_SlaveTransferAbort(I2C_Type *base, i2c_slave_handle_t *handle)
Aborts the slave transfer.

Note: This API can be called at any time to stop slave for handling the bus events.

Parameters
• base – I2C base pointer.

• handle – pointer to i2c_slave_handle_t structure which stores the transfer
state.

status_t I2C_SlaveTransferGetCount(I2C_Type *base, i2c_slave_handle_t *handle, size_t *count)
Gets the slave transfer remaining bytes during a interrupt non-blocking transfer.

Parameters
• base – I2C base pointer.

• handle – pointer to i2c_slave_handle_t structure.

• count –Number of bytes transferred so far by the non-blocking transaction.

Return values
• kStatus_InvalidArgument – count is Invalid.

• kStatus_Success – Successfully return the count.

void I2C_SlaveTransferHandleIRQ(I2C_Type *base, void *i2cHandle)
Slave interrupt handler.

Parameters
• base – I2C base pointer.

• i2cHandle – pointer to i2c_slave_handle_t structure which stores the trans-
fer state

2.11. I2C Driver 173

MCUXpresso SDK Documentation, Release 25.09.00

FSL_I2C_DRIVER_VERSION
I2C driver version.

I2C status return codes.

Values:

enumerator kStatus_I2C_Busy
I2C is busy with current transfer.

enumerator kStatus_I2C_Idle
Bus is Idle.

enumerator kStatus_I2C_Nak
NAK received during transfer.

enumerator kStatus_I2C_ArbitrationLost
Arbitration lost during transfer.

enumerator kStatus_I2C_Timeout
Timeout polling status flags.

enumerator kStatus_I2C_Addr_Nak
NAK received during the address probe.

enum _i2c_flags
I2C peripheral flags.

Note: These enumerations are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2C_ReceiveNakFlag
I2C receive NAK flag.

enumerator kI2C_IntPendingFlag
I2C interrupt pending flag. This flag can be cleared.

enumerator kI2C_TransferDirectionFlag
I2C transfer direction flag.

enumerator kI2C_RangeAddressMatchFlag
I2C range address match flag.

enumerator kI2C_ArbitrationLostFlag
I2C arbitration lost flag. This flag can be cleared.

enumerator kI2C_BusBusyFlag
I2C bus busy flag.

enumerator kI2C_AddressMatchFlag
I2C address match flag.

enumerator kI2C_TransferCompleteFlag
I2C transfer complete flag.

enumerator kI2C_StopDetectFlag
I2C stop detect flag. This flag can be cleared.

enumerator kI2C_StartDetectFlag
I2C start detect flag. This flag can be cleared.

174 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

enum _i2c_interrupt_enable
I2C feature interrupt source.

Values:

enumerator kI2C_GlobalInterruptEnable
I2C global interrupt.

enumerator kI2C_StopDetectInterruptEnable
I2C stop detect interrupt.

enumerator kI2C_StartStopDetectInterruptEnable
I2C start&stop detect interrupt.

enum _i2c_direction
The direction of master and slave transfers.

Values:

enumerator kI2C_Write
Master transmits to the slave.

enumerator kI2C_Read
Master receives from the slave.

enum _i2c_slave_address_mode
Addressing mode.

Values:

enumerator kI2C_Address7bit
7-bit addressing mode.

enumerator kI2C_RangeMatch
Range address match addressing mode.

enum _i2c_master_transfer_flags
I2C transfer control flag.

Values:

enumerator kI2C_TransferDefaultFlag
A transfer starts with a start signal, stops with a stop signal.

enumerator kI2C_TransferNoStartFlag
A transfer starts without a start signal, only support write only or write+read with no
start flag, do not support read only with no start flag.

enumerator kI2C_TransferRepeatedStartFlag
A transfer starts with a repeated start signal.

enumerator kI2C_TransferNoStopFlag
A transfer ends without a stop signal.

enum _i2c_slave_transfer_event
Set of events sent to the callback for nonblocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created by
OR’ing together events is passed to I2C_SlaveTransferNonBlocking() to specifywhich events
to enable. Then, when the slave callback is invoked, it is passed the current event through
its transfer parameter.

Note: These enumerations are meant to be OR’d together to form a bit mask of events.

2.11. I2C Driver 175

MCUXpresso SDK Documentation, Release 25.09.00

Values:

enumerator kI2C_SlaveAddressMatchEvent
Received the slave address after a start or repeated start.

enumerator kI2C_SlaveTransmitEvent
A callback is requested to provide data to transmit (slave-transmitter role).

enumerator kI2C_SlaveReceiveEvent
A callback is requested to provide a buffer in which to place received data (slave-
receiver role).

enumerator kI2C_SlaveTransmitAckEvent
A callback needs to either transmit an ACK or NACK.

enumerator kI2C_SlaveStartEvent
A start/repeated start was detected.

enumerator kI2C_SlaveCompletionEvent
A stop was detected or finished transfer, completing the transfer.

enumerator kI2C_SlaveGenaralcallEvent
Received the general call address after a start or repeated start.

enumerator kI2C_SlaveAllEvents
A bit mask of all available events.

Common sets of flags used by the driver.

Values:

enumerator kClearFlags
All flags which are cleared by the driver upon starting a transfer.

enumerator kIrqFlags

typedef enum _i2c_direction i2c_direction_t
The direction of master and slave transfers.

typedef enum _i2c_slave_address_mode i2c_slave_address_mode_t
Addressing mode.

typedef enum _i2c_slave_transfer_event i2c_slave_transfer_event_t
Set of events sent to the callback for nonblocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created by
OR’ing together events is passed to I2C_SlaveTransferNonBlocking() to specifywhich events
to enable. Then, when the slave callback is invoked, it is passed the current event through
its transfer parameter.

Note: These enumerations are meant to be OR’d together to form a bit mask of events.

typedef struct _i2c_master_config i2c_master_config_t
I2C master user configuration.

typedef struct _i2c_slave_config i2c_slave_config_t
I2C slave user configuration.

typedef struct _i2c_master_handle i2c_master_handle_t
I2C master handle typedef.

176 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

typedef void (*i2c_master_transfer_callback_t)(I2C_Type *base, i2c_master_handle_t *handle,
status_t status, void *userData)

I2C master transfer callback typedef.

typedef struct _i2c_slave_handle i2c_slave_handle_t
I2C slave handle typedef.

typedef struct _i2c_master_transfer i2c_master_transfer_t
I2C master transfer structure.

typedef struct _i2c_slave_transfer i2c_slave_transfer_t
I2C slave transfer structure.

typedef void (*i2c_slave_transfer_callback_t)(I2C_Type *base, i2c_slave_transfer_t *xfer, void
*userData)

I2C slave transfer callback typedef.

I2C_RETRY_TIMES
Retry times for waiting flag.

I2C_MASTER_FACK_CONTROL
Mater Fast ack control, control if master needs to manually write ack, this is used to low
the speed of transfer for SoCs with feature FSL_FEATURE_I2C_HAS_DOUBLE_BUFFERING.

I2C_HAS_STOP_DETECT

struct _i2c_master_config
#include <fsl_i2c.h> I2C master user configuration.

Public Members

bool enableMaster
Enables the I2C peripheral at initialization time.

bool enableStopHold
Controls the stop hold enable.

bool enableDoubleBuffering
Controls double buffer enable; notice that enabling the double buffer disables the clock
stretch.

uint32_t baudRate_Bps
Baud rate configuration of I2C peripheral.

uint8_t glitchFilterWidth
Controls the width of the glitch.

struct _i2c_slave_config
#include <fsl_i2c.h> I2C slave user configuration.

Public Members

bool enableSlave
Enables the I2C peripheral at initialization time.

bool enableGeneralCall
Enables the general call addressing mode.

bool enableWakeUp
Enables/disables waking up MCU from low-power mode.

2.11. I2C Driver 177

MCUXpresso SDK Documentation, Release 25.09.00

bool enableDoubleBuffering
Controls a double buffer enable; notice that enabling the double buffer disables the
clock stretch.

bool enableBaudRateCtl
Enables/disables independent slave baud rate on SCL in very fast I2C modes.

uint16_t slaveAddress
A slave address configuration.

uint16_t upperAddress
A maximum boundary slave address used in a range matching mode.

i2c_slave_address_mode_t addressingMode
An addressing mode configuration of i2c_slave_address_mode_config_t.

uint32_t sclStopHoldTime_ns
the delay from the rising edge of SCL (I2C clock) to the rising edge of SDA (I2C data)
while SCL is high (stop condition), SDA hold time and SCL start hold time are also con-
figured according to the SCL stop hold time.

struct _i2c_master_transfer
#include <fsl_i2c.h> I2C master transfer structure.

Public Members

uint32_t flags
A transfer flag which controls the transfer.

uint8_t slaveAddress
7-bit slave address.

i2c_direction_t direction
A transfer direction, read or write.

uint32_t subaddress
A sub address. Transferred MSB first.

uint8_t subaddressSize
A size of the command buffer.

uint8_t *volatile data
A transfer buffer.

volatile size_t dataSize
A transfer size.

struct _i2c_master_handle
#include <fsl_i2c.h> I2C master handle structure.

Public Members

i2c_master_transfer_t transfer
I2C master transfer copy.

size_t transferSize
Total bytes to be transferred.

uint8_t state
A transfer state maintained during transfer.

178 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

i2c_master_transfer_callback_t completionCallback
A callback function called when the transfer is finished.

void *userData
A callback parameter passed to the callback function.

struct _i2c_slave_transfer
#include <fsl_i2c.h> I2C slave transfer structure.

Public Members

i2c_slave_transfer_event_t event
A reason that the callback is invoked.

uint8_t *volatile data
A transfer buffer.

volatile size_t dataSize
A transfer size.

status_t completionStatus
Success or error code describing how the transfer completed. Only applies for
kI2C_SlaveCompletionEvent.

size_t transferredCount
A number of bytes actually transferred since the start or since the last repeated start.

struct _i2c_slave_handle
#include <fsl_i2c.h> I2C slave handle structure.

Public Members

volatile bool isBusy
Indicates whether a transfer is busy.

i2c_slave_transfer_t transfer
I2C slave transfer copy.

uint32_t eventMask
A mask of enabled events.

i2c_slave_transfer_callback_t callback
A callback function called at the transfer event.

void *userData
A callback parameter passed to the callback.

2.12 Irq

uint32_t IRQ_GetInstance(IRQ_Type *base)
Get irq instance.

Parameters
• base – IRQ peripheral base pointer

Return values
Irq – instance number.

2.12. Irq 179

MCUXpresso SDK Documentation, Release 25.09.00

void IRQ_Init(IRQ_Type *base, const irq_config_t *config)
Initializes the IRQ pin used by the board.

To initialize the IRQ pin, define a irq configuration, specify whhether enable pull-up, the
edge and detect mode. Then, call the IRQ_Init() function.

This is an example to initialize irq configuration.

irq_config_t config =
{
true,
kIRQ_FallingEdgeorLowlevel,
kIRQ_DetectOnEdgesOnly

}

Parameters
• base – IRQ peripheral base pointer

• config – IRQ configuration pointer

void IRQ_Deinit(IRQ_Type *base)
Deinitialize IRQ peripheral.

This function disables the IRQ clock.

Parameters
• base – IRQ peripheral base pointer.

Return values
None. –

static inline void IRQ_Enable(IRQ_Type *base, bool enable)
Enable/disable IRQ pin.

Parameters
• base – IRQ peripheral base pointer.

• enable – true to enable IRQ pin, else disable IRQ pin.

Return values
None. –

static inline void IRQ_EnableInterrupt(IRQ_Type *base, bool enable)
Enable/disable IRQ pin interrupt.

Parameters
• base – IRQ peripheral base pointer.

• enable – true to enable IRQF assert interrupt request, else disable.

Return values
None. –

static inline void IRQ_ClearIRQFlag(IRQ_Type *base)
Clear IRQF flag.

This function clears the IRQF flag.

Parameters
• base – IRQ peripheral base pointer.

Return values
None. –

180 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t IRQ_GetIRQFlag(IRQ_Type *base)
Get IRQF flag.

This function returns the IRQF flag.

Parameters
• base – IRQ peripheral base pointer.

Return values
status – = 0 IRQF flag deasserted. = 1 IRQF flag asserted.

FSL_IRQ_DRIVER_VERSION
Version 2.0.2.

enum _irq_edge
Interrupt Request (IRQ) Edge Select.

Values:

enumerator kIRQ_FallingEdgeorLowlevel
IRQ is falling-edge or falling-edge/low-level sensitive

enumerator kIRQ_RisingEdgeorHighlevel
IRQ is rising-edge or rising-edge/high-level sensitive

enum _irq_mode
Interrupt Request (IRQ) Detection Mode.

Values:

enumerator kIRQ_DetectOnEdgesOnly
IRQ event is detected only on falling/rising edges

enumerator kIRQ_DetectOnEdgesAndEdges
IRQ event is detected on falling/rising edges and low/high levels

typedef enum _irq_edge irq_edge_t
Interrupt Request (IRQ) Edge Select.

typedef enum _irq_mode irq_mode_t
Interrupt Request (IRQ) Detection Mode.

typedef struct _irq_config irq_config_t
The IRQ pin configuration structure.

struct _irq_config
#include <fsl_irq.h> The IRQ pin configuration structure.

Public Members

bool enablePullDevice
Enable/disable the internal pullup device when the IRQ pin is enabled

irq_edge_t edgeSelect
Select the polarity of edges or levels on the IRQ pin that cause IRQF to be set

irq_mode_t detectMode
select either edge-only detection or edge-and-level detection

2.12. Irq 181

MCUXpresso SDK Documentation, Release 25.09.00

2.13 IRQ: external interrupt (IRQ) module

2.14 KBI: Keyboard interrupt Driver

void KBI_Init(KBI_Type *base, kbi_config_t *configure)
KBI initialize. This function ungates the KBI clock and initializes KBI. This function must
be called before calling any other KBI driver functions.

Parameters
• base – KBI peripheral base address.

• configure – The KBI configuration structure pointer.

void KBI_Deinit(KBI_Type *base)
Deinitializes the KBI module and gates the clock. This function gates the KBI clock. As a
result, the KBI module doesn’t work after calling this function.

Parameters
• base – KBI peripheral base address.

static inline void KBI_EnableInterrupts(KBI_Type *base)
Enables the interrupt.

Parameters
• base – KBI peripheral base address.

static inline void KBI_DisableInterrupts(KBI_Type *base)
Disables the interrupt.

Parameters
• base – KBI peripheral base address.

static inline bool KBI_IsInterruptRequestDetected(KBI_Type *base)
Gets the KBI interrupt event status.

Parameters
• base – KBI peripheral base address.

Returns
The status of the KBI interrupt request is detected.

static inline void KBI_ClearInterruptFlag(KBI_Type *base)
Clears KBI status flag.

Parameters
• base – KBI peripheral base address.

static inline uint32_t KBI_GetSourcePinStatus(KBI_Type *base)
Gets the KBI Source pin status.

Parameters
• base – KBI peripheral base address.

Returns
The status indicates the active pin defined as keyboard interrupt which is
pushed.

FSL_KBI_DRIVER_VERSION
KBI driver version.

182 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

enum _kbi_detect_mode
KBI detection mode.

Values:

enumerator kKBI_EdgesDetect
The keyboard detects edges only.

enumerator kKBI_EdgesLevelDetect
The keyboard detects both edges and levels.

typedef uint32_t kbi_reg_t

typedef enum _kbi_detect_mode kbi_detect_mode_t
KBI detection mode.

typedef struct _kbi_config kbi_config_t
KBI configuration.

struct _kbi_config
#include <fsl_kbi.h> KBI configuration.

Public Members

uint32_t pinsEnabled
The eight kbi pins, set 1 to enable the corresponding KBI interrupt pins.

uint32_t pinsEdge
The edge selection for each kbi pin: 1 — rinsing edge, 0 — falling edge.

kbi_detect_mode_t mode
The kbi detection mode.

2.15 Common Driver

FSL_COMMON_DRIVER_VERSION
common driver version.

DEBUG_CONSOLE_DEVICE_TYPE_NONE
No debug console.

DEBUG_CONSOLE_DEVICE_TYPE_UART
Debug console based on UART.

DEBUG_CONSOLE_DEVICE_TYPE_LPUART
Debug console based on LPUART.

DEBUG_CONSOLE_DEVICE_TYPE_LPSCI
Debug console based on LPSCI.

DEBUG_CONSOLE_DEVICE_TYPE_USBCDC
Debug console based on USBCDC.

DEBUG_CONSOLE_DEVICE_TYPE_FLEXCOMM
Debug console based on FLEXCOMM.

DEBUG_CONSOLE_DEVICE_TYPE_IUART
Debug console based on i.MX UART.

2.15. Common Driver 183

MCUXpresso SDK Documentation, Release 25.09.00

DEBUG_CONSOLE_DEVICE_TYPE_VUSART
Debug console based on LPC_VUSART.

DEBUG_CONSOLE_DEVICE_TYPE_MINI_USART
Debug console based on LPC_USART.

DEBUG_CONSOLE_DEVICE_TYPE_SWO
Debug console based on SWO.

DEBUG_CONSOLE_DEVICE_TYPE_QSCI
Debug console based on QSCI.

MIN(a, b)
Computes the minimum of a and b.

MAX(a, b)
Computes the maximum of a and b.

UINT16_MAX
Max value of uint16_t type.

UINT32_MAX
Max value of uint32_t type.

SDK_ATOMIC_LOCAL_ADD(addr, val)
Add value val from the variable at address address.

SDK_ATOMIC_LOCAL_SUB(addr, val)
Subtract value val to the variable at address address.

SDK_ATOMIC_LOCAL_SET(addr, bits)
Set the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_CLEAR(addr, bits)
Clear the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_TOGGLE(addr, bits)
Toggle the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_CLEAR_AND_SET(addr, clearBits, setBits)
For the variable at address address, clear the bits specifiled by clearBits and set the bits
specifiled by setBits.

SDK_ATOMIC_LOCAL_COMPARE_AND_SET(addr, expected, newValue)
For the variable at address address, check whether the value equal to expected. If value
same as expected then update newValue to address and return true , else return false .

SDK_ATOMIC_LOCAL_TEST_AND_SET(addr, newValue)
For the variable at address address, set as newValue value and return old value.

USEC_TO_COUNT(us, clockFreqInHz)
Macro to convert a microsecond period to raw count value

COUNT_TO_USEC(count, clockFreqInHz)
Macro to convert a raw count value to microsecond

MSEC_TO_COUNT(ms, clockFreqInHz)
Macro to convert a millisecond period to raw count value

COUNT_TO_MSEC(count, clockFreqInHz)
Macro to convert a raw count value to millisecond

SDK_ISR_EXIT_BARRIER

184 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

SDK_SIZEALIGN(var, alignbytes)
Macro to define a variable with L1 d-cache line size alignment

Macro to define a variable with L2 cache line size alignment

Macro to change a value to a given size aligned value

AT_NONCACHEABLE_SECTION(var)
Define a variable var, and place it in non-cacheable section.

AT_NONCACHEABLE_SECTION_ALIGN(var, alignbytes)
Define a variable var, and place it in non-cacheable section, the start address of the variable
is aligned to alignbytes.

AT_NONCACHEABLE_SECTION_INIT(var)
Define a variable var with initial value, and place it in non-cacheable section.

AT_NONCACHEABLE_SECTION_ALIGN_INIT(var, alignbytes)
Define a variable var with initial value, and place it in non-cacheable section, the start
address of the variable is aligned to alignbytes.

enum _status_groups
Status group numbers.

Values:

enumerator kStatusGroup_Generic
Group number for generic status codes.

enumerator kStatusGroup_FLASH
Group number for FLASH status codes.

enumerator kStatusGroup_LPSPI
Group number for LPSPI status codes.

enumerator kStatusGroup_FLEXIO_SPI
Group number for FLEXIO SPI status codes.

enumerator kStatusGroup_DSPI
Group number for DSPI status codes.

enumerator kStatusGroup_FLEXIO_UART
Group number for FLEXIO UART status codes.

enumerator kStatusGroup_FLEXIO_I2C
Group number for FLEXIO I2C status codes.

enumerator kStatusGroup_LPI2C
Group number for LPI2C status codes.

enumerator kStatusGroup_UART
Group number for UART status codes.

enumerator kStatusGroup_I2C
Group number for UART status codes.

enumerator kStatusGroup_LPSCI
Group number for LPSCI status codes.

enumerator kStatusGroup_LPUART
Group number for LPUART status codes.

enumerator kStatusGroup_SPI
Group number for SPI status code.

2.15. Common Driver 185

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_XRDC
Group number for XRDC status code.

enumerator kStatusGroup_SEMA42
Group number for SEMA42 status code.

enumerator kStatusGroup_SDHC
Group number for SDHC status code

enumerator kStatusGroup_SDMMC
Group number for SDMMC status code

enumerator kStatusGroup_SAI
Group number for SAI status code

enumerator kStatusGroup_MCG
Group number for MCG status codes.

enumerator kStatusGroup_SCG
Group number for SCG status codes.

enumerator kStatusGroup_SDSPI
Group number for SDSPI status codes.

enumerator kStatusGroup_FLEXIO_I2S
Group number for FLEXIO I2S status codes

enumerator kStatusGroup_FLEXIO_MCULCD
Group number for FLEXIO LCD status codes

enumerator kStatusGroup_FLASHIAP
Group number for FLASHIAP status codes

enumerator kStatusGroup_FLEXCOMM_I2C
Group number for FLEXCOMM I2C status codes

enumerator kStatusGroup_I2S
Group number for I2S status codes

enumerator kStatusGroup_IUART
Group number for IUART status codes

enumerator kStatusGroup_CSI
Group number for CSI status codes

enumerator kStatusGroup_MIPI_DSI
Group number for MIPI DSI status codes

enumerator kStatusGroup_SDRAMC
Group number for SDRAMC status codes.

enumerator kStatusGroup_POWER
Group number for POWER status codes.

enumerator kStatusGroup_ENET
Group number for ENET status codes.

enumerator kStatusGroup_PHY
Group number for PHY status codes.

enumerator kStatusGroup_TRGMUX
Group number for TRGMUX status codes.

186 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_SMARTCARD
Group number for SMARTCARD status codes.

enumerator kStatusGroup_LMEM
Group number for LMEM status codes.

enumerator kStatusGroup_QSPI
Group number for QSPI status codes.

enumerator kStatusGroup_DMA
Group number for DMA status codes.

enumerator kStatusGroup_EDMA
Group number for EDMA status codes.

enumerator kStatusGroup_DMAMGR
Group number for DMAMGR status codes.

enumerator kStatusGroup_FLEXCAN
Group number for FlexCAN status codes.

enumerator kStatusGroup_LTC
Group number for LTC status codes.

enumerator kStatusGroup_FLEXIO_CAMERA
Group number for FLEXIO CAMERA status codes.

enumerator kStatusGroup_LPC_SPI
Group number for LPC_SPI status codes.

enumerator kStatusGroup_LPC_USART
Group number for LPC_USART status codes.

enumerator kStatusGroup_DMIC
Group number for DMIC status codes.

enumerator kStatusGroup_SDIF
Group number for SDIF status codes.

enumerator kStatusGroup_SPIFI
Group number for SPIFI status codes.

enumerator kStatusGroup_OTP
Group number for OTP status codes.

enumerator kStatusGroup_MCAN
Group number for MCAN status codes.

enumerator kStatusGroup_CAAM
Group number for CAAM status codes.

enumerator kStatusGroup_ECSPI
Group number for ECSPI status codes.

enumerator kStatusGroup_USDHC
Group number for USDHC status codes.

enumerator kStatusGroup_LPC_I2C
Group number for LPC_I2C status codes.

enumerator kStatusGroup_DCP
Group number for DCP status codes.

2.15. Common Driver 187

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_MSCAN
Group number for MSCAN status codes.

enumerator kStatusGroup_ESAI
Group number for ESAI status codes.

enumerator kStatusGroup_FLEXSPI
Group number for FLEXSPI status codes.

enumerator kStatusGroup_MMDC
Group number for MMDC status codes.

enumerator kStatusGroup_PDM
Group number for MIC status codes.

enumerator kStatusGroup_SDMA
Group number for SDMA status codes.

enumerator kStatusGroup_ICS
Group number for ICS status codes.

enumerator kStatusGroup_SPDIF
Group number for SPDIF status codes.

enumerator kStatusGroup_LPC_MINISPI
Group number for LPC_MINISPI status codes.

enumerator kStatusGroup_HASHCRYPT
Group number for Hashcrypt status codes

enumerator kStatusGroup_LPC_SPI_SSP
Group number for LPC_SPI_SSP status codes.

enumerator kStatusGroup_I3C
Group number for I3C status codes

enumerator kStatusGroup_LPC_I2C_1
Group number for LPC_I2C_1 status codes.

enumerator kStatusGroup_NOTIFIER
Group number for NOTIFIER status codes.

enumerator kStatusGroup_DebugConsole
Group number for debug console status codes.

enumerator kStatusGroup_SEMC
Group number for SEMC status codes.

enumerator kStatusGroup_ApplicationRangeStart
Starting number for application groups.

enumerator kStatusGroup_IAP
Group number for IAP status codes

enumerator kStatusGroup_SFA
Group number for SFA status codes

enumerator kStatusGroup_SPC
Group number for SPC status codes.

enumerator kStatusGroup_PUF
Group number for PUF status codes.

188 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_TOUCH_PANEL
Group number for touch panel status codes

enumerator kStatusGroup_VBAT
Group number for VBAT status codes

enumerator kStatusGroup_XSPI
Group number for XSPI status codes

enumerator kStatusGroup_PNGDEC
Group number for PNGDEC status codes

enumerator kStatusGroup_JPEGDEC
Group number for JPEGDEC status codes

enumerator kStatusGroup_AUDMIX
Group number for AUDMIX status codes

enumerator kStatusGroup_HAL_GPIO
Group number for HAL GPIO status codes.

enumerator kStatusGroup_HAL_UART
Group number for HAL UART status codes.

enumerator kStatusGroup_HAL_TIMER
Group number for HAL TIMER status codes.

enumerator kStatusGroup_HAL_SPI
Group number for HAL SPI status codes.

enumerator kStatusGroup_HAL_I2C
Group number for HAL I2C status codes.

enumerator kStatusGroup_HAL_FLASH
Group number for HAL FLASH status codes.

enumerator kStatusGroup_HAL_PWM
Group number for HAL PWM status codes.

enumerator kStatusGroup_HAL_RNG
Group number for HAL RNG status codes.

enumerator kStatusGroup_HAL_I2S
Group number for HAL I2S status codes.

enumerator kStatusGroup_HAL_ADC_SENSOR
Group number for HAL ADC SENSOR status codes.

enumerator kStatusGroup_TIMERMANAGER
Group number for TiMER MANAGER status codes.

enumerator kStatusGroup_SERIALMANAGER
Group number for SERIAL MANAGER status codes.

enumerator kStatusGroup_LED
Group number for LED status codes.

enumerator kStatusGroup_BUTTON
Group number for BUTTON status codes.

enumerator kStatusGroup_EXTERN_EEPROM
Group number for EXTERN EEPROM status codes.

2.15. Common Driver 189

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_SHELL
Group number for SHELL status codes.

enumerator kStatusGroup_MEM_MANAGER
Group number for MEMMANAGER status codes.

enumerator kStatusGroup_LIST
Group number for List status codes.

enumerator kStatusGroup_OSA
Group number for OSA status codes.

enumerator kStatusGroup_COMMON_TASK
Group number for Common task status codes.

enumerator kStatusGroup_MSG
Group number for messaging status codes.

enumerator kStatusGroup_SDK_OCOTP
Group number for OCOTP status codes.

enumerator kStatusGroup_SDK_FLEXSPINOR
Group number for FLEXSPINOR status codes.

enumerator kStatusGroup_CODEC
Group number for codec status codes.

enumerator kStatusGroup_ASRC
Group number for codec status ASRC.

enumerator kStatusGroup_OTFAD
Group number for codec status codes.

enumerator kStatusGroup_SDIOSLV
Group number for SDIOSLV status codes.

enumerator kStatusGroup_MECC
Group number for MECC status codes.

enumerator kStatusGroup_ENET_QOS
Group number for ENET_QOS status codes.

enumerator kStatusGroup_LOG
Group number for LOG status codes.

enumerator kStatusGroup_I3CBUS
Group number for I3CBUS status codes.

enumerator kStatusGroup_QSCI
Group number for QSCI status codes.

enumerator kStatusGroup_ELEMU
Group number for ELEMU status codes.

enumerator kStatusGroup_QUEUEDSPI
Group number for QSPI status codes.

enumerator kStatusGroup_POWER_MANAGER
Group number for POWER_MANAGER status codes.

enumerator kStatusGroup_IPED
Group number for IPED status codes.

190 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_ELS_PKC
Group number for ELS PKC status codes.

enumerator kStatusGroup_CSS_PKC
Group number for CSS PKC status codes.

enumerator kStatusGroup_HOSTIF
Group number for HOSTIF status codes.

enumerator kStatusGroup_CLIF
Group number for CLIF status codes.

enumerator kStatusGroup_BMA
Group number for BMA status codes.

enumerator kStatusGroup_NETC
Group number for NETC status codes.

enumerator kStatusGroup_ELE
Group number for ELE status codes.

enumerator kStatusGroup_GLIKEY
Group number for GLIKEY status codes.

enumerator kStatusGroup_AON_POWER
Group number for AON_POWER status codes.

enumerator kStatusGroup_AON_COMMON
Group number for AON_COMMON status codes.

enumerator kStatusGroup_ENDAT3
Group number for ENDAT3 status codes.

enumerator kStatusGroup_HIPERFACE
Group number for HIPERFACE status codes.

enumerator kStatusGroup_NPX
Group number for NPX status codes.

enumerator kStatusGroup_ELA_CSEC
Group number for ELA_CSEC status codes.

enumerator kStatusGroup_FLEXIO_T_FORMAT
Group number for T-format status codes.

enumerator kStatusGroup_FLEXIO_A_FORMAT
Group number for A-format status codes.

Generic status return codes.

Values:

enumerator kStatus_Success
Generic status for Success.

enumerator kStatus_Fail
Generic status for Fail.

enumerator kStatus_ReadOnly
Generic status for read only failure.

2.15. Common Driver 191

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus_OutOfRange
Generic status for out of range access.

enumerator kStatus_InvalidArgument
Generic status for invalid argument check.

enumerator kStatus_Timeout
Generic status for timeout.

enumerator kStatus_NoTransferInProgress
Generic status for no transfer in progress.

enumerator kStatus_Busy
Generic status for module is busy.

enumerator kStatus_NoData
Generic status for no data is found for the operation.

typedef int32_t status_t
Type used for all status and error return values.

void *SDK_Malloc(size_t size, size_t alignbytes)
Allocate memory with given alignment and aligned size.

This is provided to support the dynamically allocated memory used in cache-able region.

Parameters
• size – The length required to malloc.

• alignbytes – The alignment size.

Return values
The – allocated memory.

void SDK_Free(void *ptr)
Free memory.

Parameters
• ptr – The memory to be release.

void SDK_DelayAtLeastUs(uint32_t delayTime_us, uint32_t coreClock_Hz)
Delay at least for some time. Please note that, this API uses while loop for delay, different
run-time environmentsmake the timenot precise, if precise delay countwas needed, please
implement a new delay function with hardware timer.

Parameters
• delayTime_us – Delay time in unit of microsecond.

• coreClock_Hz – Core clock frequency with Hz.

static inline status_t EnableIRQ(IRQn_Type interrupt)
Enable specific interrupt.

Enable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For
example, there areNVIC and intmux. Here the interrupts connected toNVIC are the LEVEL1
interrupts, because they are routed to the core directly. The interrupts connected to intmux
are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only enables the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ number.

192 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

Return values
• kStatus_Success – Interrupt enabled successfully

• kStatus_Fail – Failed to enable the interrupt

static inline status_t DisableIRQ(IRQn_Type interrupt)
Disable specific interrupt.

Disable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For
example, there areNVIC and intmux. Here the interrupts connected toNVIC are the LEVEL1
interrupts, because they are routed to the core directly. The interrupts connected to intmux
are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only disables the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ number.

Return values
• kStatus_Success – Interrupt disabled successfully

• kStatus_Fail – Failed to disable the interrupt

static inline status_t EnableIRQWithPriority(IRQn_Type interrupt, uint8_t priNum)
Enable the IRQ, and also set the interrupt priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ to Enable.

• priNum – Priority number set to interrupt controller register.

Return values
• kStatus_Success – Interrupt priority set successfully

• kStatus_Fail – Failed to set the interrupt priority.

static inline status_t IRQ_SetPriority(IRQn_Type interrupt, uint8_t priNum)
Set the IRQ priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ to set.

• priNum – Priority number set to interrupt controller register.

Return values
• kStatus_Success – Interrupt priority set successfully

2.15. Common Driver 193

MCUXpresso SDK Documentation, Release 25.09.00

• kStatus_Fail – Failed to set the interrupt priority.

static inline status_t IRQ_ClearPendingIRQ(IRQn_Type interrupt)
Clear the pending IRQ flag.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The flag which IRQ to clear.

Return values
• kStatus_Success – Interrupt priority set successfully

• kStatus_Fail – Failed to set the interrupt priority.

static inline uint32_t DisableGlobalIRQ(void)
Disable the global IRQ.

Disable the global interrupt and return the current primask register. User is required to
provided the primask register for the EnableGlobalIRQ().

Returns
Current primask value.

static inline void EnableGlobalIRQ(uint32_t primask)
Enable the global IRQ.

Set the primask register with the provided primask value but not just enable the primask.
The idea is for the convenience of integration of RTOS. some RTOS get its ownmanagement
mechanism of primask. User is required to use the EnableGlobalIRQ() and DisableGlob-
alIRQ() in pair.

Parameters
• primask – value of primask register to be restored. The primask value is
supposed to be provided by the DisableGlobalIRQ().

static inline bool _SDK_AtomicLocalCompareAndSet(uint32_t *addr, uint32_t expected, uint32_t
newValue)

static inline uint32_t _SDK_AtomicTestAndSet(uint32_t *addr, uint32_t newValue)

FSL_DRIVER_TRANSFER_DOUBLE_WEAK_IRQ
Macro to use the default weak IRQ handler in drivers.

MAKE_STATUS(group, code)
Construct a status code value from a group and code number.

MAKE_VERSION(major, minor, bugfix)
Construct the version number for drivers.

The driver version is a 32-bit number, for both 32-bit platforms(such as CortexM) and 16-bit
platforms(such as DSC).

| Unused || Major Version || Minor Version || Bug Fix |
31 25 24 17 16 9 8 0

194 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

ARRAY_SIZE(x)
Computes the number of elements in an array.

UINT64_H(X)
Macro to get upper 32 bits of a 64-bit value

UINT64_L(X)
Macro to get lower 32 bits of a 64-bit value

SUPPRESS_FALL_THROUGH_WARNING()
For switch case code block, if case section ends without “break;” statement, there wil be
fallthrough warning with compiler flag -Wextra or -Wimplicit-fallthrough=n when using
armgcc. To suppress this warning, “SUPPRESS_FALL_THROUGH_WARNING();” need to be
added at the end of each case section which misses “break;”statement.

MSDK_REG_SECURE_ADDR(x)
Convert the register address to the one used in secure mode.

MSDK_REG_NONSECURE_ADDR(x)
Convert the register address to the one used in non-secure mode.

MSDK_INVALID_IRQ_HANDLER
Invalid IRQ handler address.

2.16 MCM: Miscellaneous Control Module

FSL_MCM_DRIVER_VERSION
MCM driver version.

Enum _mcm_interrupt_flag. Interrupt status flag mask. .

Values:

enumerator kMCM_CacheWriteBuffer
Cache Write Buffer Error Enable.

enumerator kMCM_ParityError
Cache Parity Error Enable.

enumerator kMCM_FPUInvalidOperation
FPU Invalid Operation Interrupt Enable.

enumerator kMCM_FPUDivideByZero
FPU Divide-by-zero Interrupt Enable.

enumerator kMCM_FPUOverflow
FPU Overflow Interrupt Enable.

enumerator kMCM_FPUUnderflow
FPU Underflow Interrupt Enable.

enumerator kMCM_FPUInexact
FPU Inexact Interrupt Enable.

enumerator kMCM_FPUInputDenormalInterrupt
FPU Input Denormal Interrupt Enable.

typedef union _mcm_buffer_fault_attribute mcm_buffer_fault_attribute_t
The union of buffer fault attribute.

2.16. MCM: Miscellaneous Control Module 195

MCUXpresso SDK Documentation, Release 25.09.00

typedef union _mcm_lmem_fault_attribute mcm_lmem_fault_attribute_t
The union of LMEM fault attribute.

static inline voidMCM_EnableCrossbarRoundRobin(MCM_Type *base, bool enable)
Enables/Disables crossbar round robin.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable crossbar round robin.

– true Enable crossbar round robin.

– false disable crossbar round robin.

static inline voidMCM_EnableInterruptStatus(MCM_Type *base, uint32_t mask)
Enables the interrupt.

Parameters
• base – MCM peripheral base address.

• mask – Interrupt status flags mask(_mcm_interrupt_flag).

static inline voidMCM_DisableInterruptStatus(MCM_Type *base, uint32_t mask)
Disables the interrupt.

Parameters
• base – MCM peripheral base address.

• mask – Interrupt status flags mask(_mcm_interrupt_flag).

static inline uint16_tMCM_GetInterruptStatus(MCM_Type *base)
Gets the Interrupt status .

Parameters
• base – MCM peripheral base address.

static inline voidMCM_ClearCacheWriteBufferErroStatus(MCM_Type *base)
Clears the Interrupt status .

Parameters
• base – MCM peripheral base address.

static inline uint32_tMCM_GetBufferFaultAddress(MCM_Type *base)
Gets buffer fault address.

Parameters
• base – MCM peripheral base address.

static inline voidMCM_GetBufferFaultAttribute(MCM_Type *base,mcm_buffer_fault_attribute_t
*bufferfault)

Gets buffer fault attributes.

Parameters
• base – MCM peripheral base address.

static inline uint32_tMCM_GetBufferFaultData(MCM_Type *base)
Gets buffer fault data.

Parameters
• base – MCM peripheral base address.

196 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

static inline voidMCM_LimitCodeCachePeripheralWriteBuffering(MCM_Type *base, bool enable)
Limit code cache peripheral write buffering.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable limit code cache peripheralwrite buffering.

– true Enable limit code cache peripheral write buffering.

– false disable limit code cache peripheral write buffering.

static inline voidMCM_BypassFixedCodeCacheMap(MCM_Type *base, bool enable)
Bypass fixed code cache map.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable bypass fixed code cache map.

– true Enable bypass fixed code cache map.

– false disable bypass fixed code cache map.

static inline voidMCM_EnableCodeBusCache(MCM_Type *base, bool enable)
Enables/Disables code bus cache.

Parameters
• base – MCM peripheral base address.

• enable – Used to disable/enable code bus cache.

– true Enable code bus cache.
– false disable code bus cache.

static inline voidMCM_ForceCodeCacheToNoAllocation(MCM_Type *base, bool enable)
Force code cache to no allocation.

Parameters
• base – MCM peripheral base address.

• enable – Used to force code cache to allocation or no allocation.

– true Force code cache to no allocation.
– false Force code cache to allocation.

static inline voidMCM_EnableCodeCacheWriteBuffer(MCM_Type *base, bool enable)
Enables/Disables code cache write buffer.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable code cache write buffer.

– true Enable code cache write buffer.

– false Disable code cache write buffer.

static inline voidMCM_ClearCodeBusCache(MCM_Type *base)
Clear code bus cache.

Parameters
• base – MCM peripheral base address.

2.16. MCM: Miscellaneous Control Module 197

MCUXpresso SDK Documentation, Release 25.09.00

static inline voidMCM_EnablePcParityFaultReport(MCM_Type *base, bool enable)
Enables/Disables PC Parity Fault Report.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable PC Parity Fault Report.

– true Enable PC Parity Fault Report.

– false disable PC Parity Fault Report.

static inline voidMCM_EnablePcParity(MCM_Type *base, bool enable)
Enables/Disables PC Parity.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable PC Parity.

– true Enable PC Parity.

– false disable PC Parity.

static inline voidMCM_LockConfigState(MCM_Type *base)
Lock the configuration state.

Parameters
• base – MCM peripheral base address.

static inline voidMCM_EnableCacheParityReporting(MCM_Type *base, bool enable)
Enables/Disables cache parity reporting.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable cache parity reporting.

– true Enable cache parity reporting.
– false disable cache parity reporting.

static inline uint32_tMCM_GetLmemFaultAddress(MCM_Type *base)
Gets LMEM fault address.

Parameters
• base – MCM peripheral base address.

static inline voidMCM_GetLmemFaultAttribute(MCM_Type *base,mcm_lmem_fault_attribute_t
*lmemFault)

Get LMEM fault attributes.

Parameters
• base – MCM peripheral base address.

static inline uint64_tMCM_GetLmemFaultData(MCM_Type *base)
Gets LMEM fault data.

Parameters
• base – MCM peripheral base address.

MCM_LMFATR_TYPE_MASK

MCM_LMFATR_MODE_MASK

198 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

MCM_LMFATR_BUFF_MASK

MCM_LMFATR_CACH_MASK

MCM_ISCR_STAT_MASK

FSL_COMPONENT_ID

union _mcm_buffer_fault_attribute
#include <fsl_mcm.h> The union of buffer fault attribute.

Public Members

uint32_t attribute
Indicates the faulting attributes, when a properly-enabled cache write buffer error
interrupt event is detected.

struct _mcm_buffer_fault_attribute._mcm_buffer_fault_attribut attribute_memory

struct _mcm_buffer_fault_attribut
#include <fsl_mcm.h>

Public Members

uint32_t busErrorDataAccessType
Indicates the type of cache write buffer access.

uint32_t busErrorPrivilegeLevel
Indicates the privilege level of the cache write buffer access.

uint32_t busErrorSize
Indicates the size of the cache write buffer access.

uint32_t busErrorAccess
Indicates the type of system bus access.

uint32_t busErrorMasterID
Indicates the crossbar switch bus master number of the captured cache write
buffer bus error.

uint32_t busErrorOverrun
Indicates if another cache write buffer bus error is detected.

union _mcm_lmem_fault_attribute
#include <fsl_mcm.h> The union of LMEM fault attribute.

Public Members

uint32_t attribute
Indicates the attributes of the LMEM fault detected.

struct _mcm_lmem_fault_attribute._mcm_lmem_fault_attribut attribute_memory

struct _mcm_lmem_fault_attribut
#include <fsl_mcm.h>

2.16. MCM: Miscellaneous Control Module 199

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

uint32_t parityFaultProtectionSignal
Indicates the features of parity fault protection signal.

uint32_t parityFaultMasterSize
Indicates the parity fault master size.

uint32_t parityFaultWrite
Indicates the parity fault is caused by read or write.

uint32_t backdoorAccess
Indicates the LMEM access fault is initiated by core access or backdoor access.

uint32_t parityFaultSyndrome
Indicates the parity fault syndrome.

uint32_t overrun
Indicates the number of faultss.

2.17 PIT: Periodic Interrupt Timer

void PIT_Init(PIT_Type *base, const pit_config_t *config)
Ungates the PIT clock, enables the PIT module, and configures the peripheral for basic op-
erations.

Note: This API should be called at the beginning of the application using the PIT driver.

Parameters
• base – PIT peripheral base address

• config – Pointer to the user’s PIT config structure

void PIT_Deinit(PIT_Type *base)
Gates the PIT clock and disables the PIT module.

Parameters
• base – PIT peripheral base address

static inline void PIT_GetDefaultConfig(pit_config_t *config)
Fills in the PIT configuration structure with the default settings.

The default values are as follows.

config->enableRunInDebug = false;

Parameters
• config – Pointer to the configuration structure.

static inline void PIT_SetTimerChainMode(PIT_Type *base, pit_chnl_t channel, bool enable)
Enables or disables chaining a timer with the previous timer.

When a timer has a chainmode enabled, it only counts after the previous timer has expired.
If the timer n-1 has counted down to 0, counter n decrements the value by one. Each timer
is 32-bits, which allows the developers to chain timers together and form a longer timer
(64-bits and larger). The first timer (timer 0) can’t be chained to any other timer.

200 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• base – PIT peripheral base address

• channel – Timer channel number which is chained with the previous timer

• enable – Enable or disable chain. true: Current timer is chained with the
previous timer. false: Timer doesn’t chain with other timers.

static inline void PIT_EnableInterrupts(PIT_Type *base, pit_chnl_t channel, uint32_t mask)
Enables the selected PIT interrupts.

Parameters
• base – PIT peripheral base address

• channel – Timer channel number

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration pit_interrupt_enable_t

static inline void PIT_DisableInterrupts(PIT_Type *base, pit_chnl_t channel, uint32_t mask)
Disables the selected PIT interrupts.

Parameters
• base – PIT peripheral base address

• channel – Timer channel number

• mask – The interrupts to disable. This is a logical OR of members of the
enumeration pit_interrupt_enable_t

static inline uint32_t PIT_GetEnabledInterrupts(PIT_Type *base, pit_chnl_t channel)
Gets the enabled PIT interrupts.

Parameters
• base – PIT peripheral base address

• channel – Timer channel number

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
pit_interrupt_enable_t

static inline uint32_t PIT_GetStatusFlags(PIT_Type *base, pit_chnl_t channel)
Gets the PIT status flags.

Parameters
• base – PIT peripheral base address

• channel – Timer channel number

Returns
The status flags. This is the logical OR of members of the enumeration
pit_status_flags_t

static inline void PIT_ClearStatusFlags(PIT_Type *base, pit_chnl_t channel, uint32_t mask)
Clears the PIT status flags.

Parameters
• base – PIT peripheral base address

• channel – Timer channel number

• mask – The status flags to clear. This is a logical OR of members of the
enumeration pit_status_flags_t

2.17. PIT: Periodic Interrupt Timer 201

MCUXpresso SDK Documentation, Release 25.09.00

static inline void PIT_SetTimerPeriod(PIT_Type *base, pit_chnl_t channel, uint32_t count)
Sets the timer period in units of count.

Timers begin counting from the value set by this function until it reaches 0, then it generates
an interrupt and load this register value again. Writing a new value to this register does
not restart the timer. Instead, the value is loaded after the timer expires.

Note: Users can call the utility macros provided in fsl_common.h to convert to ticks.

Parameters
• base – PIT peripheral base address

• channel – Timer channel number

• count – Timer period in units of ticks

static inline uint32_t PIT_GetCurrentTimerCount(PIT_Type *base, pit_chnl_t channel)
Reads the current timer counting value.

This function returns the real-time timer counting value, in a range from0 to a timer period.

Note: Users can call the utility macros provided in fsl_common.h to convert ticks to usec
or msec.

Parameters
• base – PIT peripheral base address

• channel – Timer channel number

Returns
Current timer counting value in ticks

static inline void PIT_StartTimer(PIT_Type *base, pit_chnl_t channel)
Starts the timer counting.

After calling this function, timers load period value, count down to 0 and then load the
respective start value again. Each time a timer reaches 0, it generates a trigger pulse and
sets the timeout interrupt flag.

Parameters
• base – PIT peripheral base address

• channel – Timer channel number.

static inline void PIT_StopTimer(PIT_Type *base, pit_chnl_t channel)
Stops the timer counting.

This function stops every timer counting. Timers reload their periods respectively after the
next time they call the PIT_DRV_StartTimer.

Parameters
• base – PIT peripheral base address

• channel – Timer channel number.

FSL_PIT_DRIVER_VERSION
PIT Driver Version 2.2.0.

202 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

enum _pit_chnl
List of PIT channels.

Note: Actual number of available channels is SoC dependent

Values:

enumerator kPIT_Chnl_0
PIT channel number 0

enumerator kPIT_Chnl_1
PIT channel number 1

enumerator kPIT_Chnl_2
PIT channel number 2

enumerator kPIT_Chnl_3
PIT channel number 3

enum _pit_interrupt_enable
List of PIT interrupts.

Values:

enumerator kPIT_TimerInterruptEnable
Timer interrupt enable

enum _pit_status_flags
List of PIT status flags.

Values:

enumerator kPIT_TimerFlag
Timer flag

typedef enum _pit_chnl pit_chnl_t
List of PIT channels.

Note: Actual number of available channels is SoC dependent

typedef enum _pit_interrupt_enable pit_interrupt_enable_t
List of PIT interrupts.

typedef enum _pit_status_flags pit_status_flags_t
List of PIT status flags.

typedef struct _pit_config pit_config_t
PIT configuration structure.

This structure holds the configuration settings for the PIT peripheral. To initialize this struc-
ture to reasonable defaults, call the PIT_GetDefaultConfig() function and pass a pointer to
your config structure instance.

The configuration structure can be made constant so it resides in flash.

uint64_t PIT_GetLifetimeTimerCount(PIT_Type *base)
Reads the current lifetime counter value.

The lifetime timer is a 64-bit timer which chains timer 0 and timer 1 together. Timer 0 and
1 are chained by calling the PIT_SetTimerChainMode before using this timer. The period of
lifetime timer is equal to the “period of timer 0 * period of timer 1”. For the 64-bit value,
the higher 32-bit has the value of timer 1, and the lower 32-bit has the value of timer 0.

2.17. PIT: Periodic Interrupt Timer 203

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• base – PIT peripheral base address

Returns
Current lifetime timer value

struct _pit_config
#include <fsl_pit.h> PIT configuration structure.

This structure holds the configuration settings for the PIT peripheral. To initialize this struc-
ture to reasonable defaults, call the PIT_GetDefaultConfig() function and pass a pointer to
your config structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members

bool enableRunInDebug
true: Timers run in debug mode; false: Timers stop in debug mode

2.18 PORT Driver

enum _port_module_t
Module or peripheral for port pin selection.

Values:

enumerator kPORT_NMI
NMI port pin select.

enumerator kPORT_RESET
RESET pin select.

enumerator kPORT_SWDE
Single wire debug port pin.

enumerator kPORT_RTC
RTCO port pin select.

enumerator kPORT_I2C0
I2C0 Port pin select.

enumerator kPORT_SPI0
SPI0 port pin select.

enumerator kPORT_UART0
UART0 port pin select.

enumerator kPORT_FTM0CH0
FTM0_CH0 port pin select.

enumerator kPORT_FTM0CH1
FTM0_CH1 port pin select.

enumerator kPORT_FTM1CH0
FTM1_CH0 port pin select.

enumerator kPORT_FTM1CH1
FTM1_CH1 port pin select.

204 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPORT_FTM2CH0
FTM2_CH0 port pin select.

enumerator kPORT_FTM2CH1
FTM2_CH1 port pin select.

enumerator kPORT_FTM2CH2
FTM2_CH2 port pin select.

enumerator kPORT_FTM2CH3
FTM2_CH3 port pin select.

enum _port_type_t
Port type.

Values:

enumerator kPORT_PTA
PORT PTA.

enumerator kPORT_PTB
PORT PTB.

enumerator kPORT_PTC
PORT PTC.

enumerator kPORT_PTD
PORT PTD.

enumerator kPORT_PTE
PORT PTE.

enumerator kPORT_PTF
PORT PTF.

enumerator kPORT_PTG
PORT PTG.

enumerator kPORT_PTH
PORT PTH.

enum _port_pin_index_t
Pin number, Notice this index enum has been deprecated and it will be removed in the next
release.

Values:

enumerator kPORT_PinIdx0
PORT PIN index 0.

enumerator kPORT_PinIdx1
PORT PIN index 1.

enumerator kPORT_PinIdx2
PORT PIN index 2.

enumerator kPORT_PinIdx3
PORT PIN index 3.

enumerator kPORT_PinIdx4
PORT PIN index 4.

enumerator kPORT_PinIdx5
PORT PIN index 5.

2.18. PORT Driver 205

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPORT_PinIdx6
PORT PIN index 6.

enumerator kPORT_PinIdx7
PORT PIN index 7.

enum _port_pin_select_t
Pin selection.

Values:

enumerator kPORT_NMI_OTHERS
PTB4/FTM2_CH4 etc function as PTB4/FTM2_CH4 etc

enumerator kPORT_NMI_NMIE
PTB4/FTM2_CH4 etc function as NMI.

enumerator kPORT_RST_OTHERS
PTA5/IRQ etc function as PTA5/IRQ etc.

enumerator kPORT_RST_RSTPE
PTA5/IRQ etc function as REST.

enumerator kPORT_SWDE_OTHERS
PTA4/ACMP0 etc function as PTA4/ACMP0 etc.

enumerator kPORT_SWDE_SWDE
PTA4/ACMP0 etc function as SWD.

enumerator kPORT_RTCO_PTC4
RTCO is mapped to PTC4.

enumerator kPORT_RTCO_PTC5
RTCO is mapped to PTC5.

enumerator kPORT_I2C0_SCLPTA3_SDAPTA2
I2C0_SCL and I2C0_SDA are mapped on PTA3 and PTA2, respectively.

enumerator kPORT_I2C0_SCLPTB7_SDAPTB6
I2C0_SCL and I2C0_SDA are mapped on PTB7 and PTB6, respectively.

enumerator kPORT_SPI0_SCKPTB2_MOSIPTB3_MISOPTB4_PCSPTB5
SPI0_SCK/MOSI/MISO/PCS0 are mapped on PTB2/PTB3/PTB4/PTB5.

enumerator kPORT_SPI0_SCKPTE0_MOSIPTE1_MISOPTE2_PCSPTE3
SPI0_SCK/MOSI/MISO/PCS0 are mapped on PTE0/PTE1/PTE2/PTE3.

enumerator kPORT_UART0_RXPTB0_TXPTB1
UART0_RX and UART0_TX are mapped on PTB0 and PTB1.

enumerator kPORT_UART0_RXPTA2_TXPTA3
UART0_RX and UART0_TX are mapped on PTA2 and PTA3.

enumerator kPORT_FTM0_CH0_PTA0
FTM0_CH0 channels are mapped on PTA0.

enumerator kPORT_FTM0_CH0_PTB2
FTM0_CH0 channels are mapped on PTB2.

enumerator kPORT_FTM0_CH1_PTA1
FTM0_CH1 channels are mapped on PTA1.

206 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPORT_FTM0_CH1_PTB3
FTM0_CH1 channels are mapped on PTB3.

enumerator kPORT_FTM1_CH0_PTC4
FTM1_CH0 channels are mapped on PTC4.

enumerator kPORT_FTM1_CH0_PTH2
FTM1_CH0 channels are mapped on PTH2.

enumerator kPORT_FTM1_CH1_PTC5
FTM1_CH1 channels are mapped on PTC5.

enumerator kPORT_FTM1_CH1_PTE7
FTM1_CH1 channels are mapped on PTE7.

enumerator kPORT_FTM2_CH0_PTC0
FTM2_CH0 channels are mapped on PTC0.

enumerator kPORT_FTM2_CH0_PTH0
FTM2_CH0 channels are mapped on PTH0.

enumerator kPORT_FTM2_CH1_PTC1
FTM2_CH1 channels are mapped on PTC1.

enumerator kPORT_FTM2_CH1_PTH1
FTM2_CH1 channels are mapped on PTH1.

enumerator kPORT_FTM2_CH2_PTC2
FTM2_CH2 channels are mapped on PTC2.

enumerator kPORT_FTM2_CH2_PTD0
FTM2_CH2 channels are mapped on PTD0.

enumerator kPORT_FTM2_CH3_PTC3
FTM2_CH3 channels are mapped on PTC3.

enumerator kPORT_FTM2_CH3_PTD1
FTM2_CH3 channels are mapped on PTD1.

enum _port_filter_pin_t
The PORT pins for input glitch filter configure.

Values:

enumerator kPORT_FilterPTA
Filter for input from PTA.

enumerator kPORT_FilterPTB
Filter for input from PTB.

enumerator kPORT_FilterPTC
Filter for input from PTC.

enumerator kPORT_FilterPTD
Filter for input from PTD.

enumerator kPORT_FilterPTE
Filter for input from PTE.

enumerator kPORT_FilterPTF
Filter for input from PTF.

2.18. PORT Driver 207

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPORT_FilterPTG
Filter for input from PTG.

enumerator kPORT_FilterPTH
Filter for input from PTH.

enumerator kPORT_FilterRST
Filter for input from RESET/IRQ.

enumerator kPORT_FilterKBI0
Filter for input from KBI0.

enumerator kPORT_FilterKBI1
Filter for input from KBI1.

enumerator kPORT_FilterNMI
Filter for input from NMI.

enum _port_filter_select_t
The Filter selection for input pins.

Values:

enumerator kPORT_BUSCLK_OR_NOFILTER
Filter section BUSCLK for PTA~PTH, No filter for REST/KBI0/KBI1/NMI.

enumerator kPORT_FILTERDIV1
Filter Division Set 1.

enumerator kPORT_FILTERDIV2
Filter Division Set 2.

enumerator kPORT_FILTERDIV3
Filter Division Set 3.

enum _port_highdrive_pin_t
Port pin for high driver enable/disable control.

Values:

enumerator kPORT_HighDrive_PTB4
PTB4.

enumerator kPORT_HighDrive_PTB5
PTB5.

enumerator kPORT_HighDrive_PTD0
PTD0.

enumerator kPORT_HighDrive_PTD1
PTD1.

enumerator kPORT_HighDrive_PTE0
PTE0.

enumerator kPORT_HighDrive_PTE1
PTE1.

enumerator kPORT_HighDrive_PTH0
PTH0.

enumerator kPORT_HighDrive_PTH1
PTH1.

208 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _port_module_t port_module_t
Module or peripheral for port pin selection.

typedef enum _port_type_t port_type_t
Port type.

typedef enum _port_pin_index_t port_pin_index_t
Pin number, Notice this index enum has been deprecated and it will be removed in the next
release.

typedef enum _port_pin_select_t port_pin_select_t
Pin selection.

typedef enum _port_filter_pin_t port_filter_pin_t
The PORT pins for input glitch filter configure.

typedef enum _port_filter_select_t port_filter_select_t
The Filter selection for input pins.

typedef enum _port_highdrive_pin_t port_highdrive_pin_t
Port pin for high driver enable/disable control.

FSL_PORT_DRIVER_VERSION
Version 2.0.2.

FSL_PORT_FILTER_SELECT_BITMASK
The IOFLT Filter selection bit mask .

void PORT_SetPinSelect(port_module_tmodule, port_pin_select_t pin)
Selects pin for modules.

This API is used to select the port pin for the module with multiple port pin selection. For
example the FTM Channel 0 can be mapped to ether PTA0 or PTB2. Select FTM channel 0
map to PTA0 port pin as:

PORT_SetPinSelect(kPORT_FTM0CH0, kPORT_FTM0_CH0_PTA0);

If you want to select a specified ALT for a given port pin, please add two more steps after
calling PORT_SetPinSelect:

a. Enablemodule or the port control in themodule for the ALT youwant to select. For I2C
ALT feature:all port enable is controlled by the module enable, so set IICEN in I2CX_C1
to enable the port pins for I2C feature. For KBI ALT feature:each port pin is controlled
independently by each bit in KBIx_PE. set related bit in this register to enable the KBI
feature in the port pin.

b. Make sure there is no module enabled with higher priority than the ALT module fea-
ture you want to select.

Note: This API doesn’t support to select specified ALT for a given port pin. The ALT feature
is automatically selected by hardware according to the ALT priority: Low —–> high: Alt1,
Alt2, … when peripheral modules has been enabled.

Parameters
• module – Modules for pin selection. For NMI/RST module are write-once
attribute after reset.

• pin – Port pin selection for modules.

2.18. PORT Driver 209

MCUXpresso SDK Documentation, Release 25.09.00

static inline void PORT_SetFilterSelect(PORT_Type *base, port_filter_pin_t port,
port_filter_select_t filter)

Selects the glitch filter for input pins.

Parameters
• base – PORT peripheral base pointer.

• port – PORT pin, see “port_filter_pin_t”.

• filter – Filter select, see “port_filter_select_t”.

static inline void PORT_SetFilterDIV1WidthThreshold(PORT_Type *base, uint8_t threshold)
Sets the width threshold for glitch filter division set 1. ‘.

Parameters
• base – PORT peripheral base pointer.

• threshold – PORT glitch filter width threshold, take refer to reference man-
ual for detail information. 0 - LPOCLK 1 - LPOCLK/2 2 - LPOCLK/4 3 -
LPOCLK/8 4 - LPOCLK/16 5 - LPOCLK/32 6 - LPOCLK/64 7 - LPOCLK/128

static inline void PORT_SetFilterDIV2WidthThreshold(PORT_Type *base, uint8_t threshold)
Sets the width threshold for glitch filter division set 2. ‘.

Parameters
• base – PORT peripheral base pointer.

• threshold – PORT glitch filter width threshold, take refer to reference man-
ual for detail information. 0 - BUSCLK/32 1 - BUSCLK/64 2 - BUSCLK/128
3 - BUSCLK/256 4 - BUSCLK/512 5 - BUSCLK/1024 6 - BUSCLK/2048 7 - BUS-
CLK/4096

static inline void PORT_SetFilterDIV3WidthThreshold(PORT_Type *base, uint8_t threshold)
Sets the width threshold for glitch filter division set 3. ‘.

Parameters
• base – PORT peripheral base pointer.

• threshold – PORT glitch filter width threshold, take refer to reference man-
ual for detail information. 0 - BUSCLK/2 1 - BUSCLK/4 2 - BUSCLK/8 3 -
BUSCLK/16

void PORT_SetPinPullUpEnable(PORT_Type *base, port_type_t port, uint8_t num, bool enable)
Enables or disables the port pull up.

Parameters
• base – PORT peripheral base pointer.

• port – PORT type, such as PTA/PTB/PTC etc, see “port_type_t”.

• num – PORT Pin number, such as 0, 1, 2…. There are seven pins not exists
in this device: PTG: PTG4, PTG5, PTG6, PTG7. PTH: PTH3, PTH4, PTH5. so,
when set PTG, and PTH, please don’t set the pins mentioned above. Please
take refer to the reference manual.

• enable – Enable or disable the pull up feature switch.

static inline void PORT_SetHighDriveEnable(PORT_Type *base, port_highdrive_pin_t pin, bool
enable)

Set High drive for port pins.

Parameters
• base – PORT peripheral base pointer.

210 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

• pin – PORT pin support high drive.

• enable – Enable or disable the high driver feature switch.

2.19 RTC: Real Time Clock

void RTC_Init(RTC_Type *base, const rtc_config_t *config)
Ungates the RTC clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the RTC driver.

Parameters
• base – RTC peripheral base address

• config – Pointer to the user’s RTC configuration structure.

void RTC_Deinit(RTC_Type *base)
Stops the timer and gate the RTC clock.

Parameters
• base – RTC peripheral base address

void RTC_GetDefaultConfig(rtc_config_t *config)
Fills in the RTC config struct with the default settings.

The default values are as follows.

config->clockSource = kRTC_BusClock;
config->prescaler = kRTC_ClockDivide_16_2048;
config->time_us = 1000000U;

Parameters
• config – Pointer to the user’s RTC configuration structure.

status_t RTC_SetDatetime(rtc_datetime_t *datetime)
Sets the RTC date and time according to the given time structure.

Parameters
• datetime – Pointer to the structure where the date and time details are
stored.

Returns
kStatus_Success: Success in setting the time and starting the RTC kSta-
tus_InvalidArgument: Error because the datetime format is incorrect

void RTC_GetDatetime(rtc_datetime_t *datetime)
Gets the RTC time and stores it in the given time structure.

Parameters
• datetime – Pointer to the structure where the date and time details are
stored.

void RTC_SetAlarm(uint32_t second)
Sets the RTC alarm time.

Parameters

2.19. RTC: Real Time Clock 211

MCUXpresso SDK Documentation, Release 25.09.00

• second – Second value. User input the number of second. After seconds
user input, alarm occurs.

void RTC_GetAlarm(rtc_datetime_t *datetime)
Returns the RTC alarm time.

Parameters
• datetime – Pointer to the structure where the alarm date and time details
are stored.

void RTC_SetAlarmCallback(rtc_alarm_callback_t callback)
Set the RTC alarm callback.

Parameters
• callback – The callback function.

static inline void RTC_SelectSourceClock(RTC_Type *base, rtc_clock_source_t clock,
rtc_clock_prescaler_t divide)

Select Real-Time Clock Source and Clock Prescaler.

Parameters
• base – RTC peripheral base address

• clock – Select RTC clock source

• divide – Select RTC clock prescaler value

uint32_t RTC_GetDivideValue(RTC_Type *base)
Get the RTC Divide value.

Note: This API should be called after selecting clock source and clock prescaler.

Parameters
• base – RTC peripheral base address

Returns
The Divider value. The Divider value depends on clock source and clock
prescaler

static inline void RTC_EnableInterrupts(RTC_Type *base, uint32_t mask)
Enables the selected RTC interrupts.

Parameters
• base – RTC peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration rtc_interrupt_enable_t

static inline void RTC_DisableInterrupts(RTC_Type *base, uint32_t mask)
Disables the selected RTC interrupts.

Parameters
• base – PIT peripheral base address

• mask – The interrupts to disable. This is a logical OR of members of the
enumeration rtc_interrupt_enable_t

212 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t RTC_GetEnabledInterrupts(RTC_Type *base)
Gets the enabled RTC interrupts.

Parameters
• base – RTC peripheral base address

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
rtc_interrupt_enable_t

static inline uint32_t RTC_GetInterruptFlags(RTC_Type *base)
Gets the RTC interrupt flags.

Parameters
• base – RTC peripheral base address

Returns
The interrupt flags. This is the logical OR of members of the enumeration
rtc_interrupt_flags_t

static inline void RTC_ClearInterruptFlags(RTC_Type *base, uint32_t mask)
Clears the RTC interrupt flags.

Parameters
• base – RTC peripheral base address

• mask – The interrupt flags to clear. This is a logical OR of members of the
enumeration rtc_interrupt_flags_t

static inline void RTC_EnableOutput(RTC_Type *base, uint32_t mask)
Enable the RTC output. If RTC output is enabled, the RTCO pinout will be toggled when RTC
counter overflows.

Parameters
• base – RTC peripheral base address

• mask – The Output to enable. This is a logical OR of members of the enu-
meration rtc_output_enable_t

static inline void RTC_DisableOutput(RTC_Type *base, uint32_t mask)
Disable the RTC output.

Parameters
• base – RTC peripheral base address

• mask – The Output to disable. This is a logical OR of members of the enu-
meration rtc_output_enable_t

static inline void RTC_SetModuloValue(RTC_Type *base, uint32_t value)
Set the RTC module value.

Parameters
• base – RTC peripheral base address

• value – The Module Value. The RTC Modulo register allows the compare
value to be set to any value from 0x0000 to 0xFFFF

static inline uint16_t RTC_GetCountValue(RTC_Type *base)
Get the RTC Count value.

Parameters
• base – RTC peripheral base address

2.19. RTC: Real Time Clock 213

MCUXpresso SDK Documentation, Release 25.09.00

Returns
The Count Value. The Count Value is allowed from 0x0000 to 0xFFFF

FSL_RTC_DRIVER_VERSION
Version 2.0.6

enum _rtc_clock_source
List of RTC clock source.

Values:

enumerator kRTC_ExternalClock
External clock source

enumerator kRTC_LPOCLK
Real-time clock source is 1 kHz (LPOCLK)

enumerator kRTC_ICSIRCLK
Internal reference clock (ICSIRCLK)

enumerator kRTC_BusClock
Bus clock

enum _rtc_clock_prescaler
List of RTC clock prescaler.

Values:

enumerator kRTC_ClockDivide_off
Off

enumerator kRTC_ClockDivide_1_128
If RTCLKS = x0, it is 1; if RTCLKS = x1, it is 128

enumerator kRTC_ClockDivide_2_256
If RTCLKS = x0, it is 2; if RTCLKS = x1, it is 256

enumerator kRTC_ClockDivide_4_512
If RTCLKS = x0, it is 4; if RTCLKS = x1, it is 512

enumerator kRTC_ClockDivide_8_1024
If RTCLKS = x0, it is 8; if RTCLKS = x1, it is 1024

enumerator kRTC_ClockDivide_16_2048
If RTCLKS = x0, it is 16; if RTCLKS = x1, it is 2048

enumerator kRTC_ClockDivide_32_100
If RTCLKS = x0, it is 32; if RTCLKS = x1, it is 100

enumerator kRTC_ClockDivide_64_1000
If RTCLKS = x0, it is 64; if RTCLKS = x1, it is 1000

enum _rtc_interrupt_enable
List of RTC interrupts.

Values:

enumerator kRTC_InterruptEnable
Interrupt enable

enum _RTC_interrupt_flags
List of RTC Interrupt flags.

Values:

214 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kRTC_InterruptFlag
Interrupt flag

enum _RTC_output_enable
List of RTC Output.

Values:

enumerator kRTC_OutputEnable
Output enable

typedef struct _rtc_datetime rtc_datetime_t
Structure is used to hold the date and time.

typedef enum _rtc_clock_source rtc_clock_source_t
List of RTC clock source.

typedef enum _rtc_clock_prescaler rtc_clock_prescaler_t
List of RTC clock prescaler.

typedef enum _rtc_interrupt_enable rtc_interrupt_enable_t
List of RTC interrupts.

typedef enum _RTC_interrupt_flags rtc_interrupt_flags_t
List of RTC Interrupt flags.

typedef enum _RTC_output_enable rtc_output_enable_t
List of RTC Output.

typedef struct _rtc_config rtc_config_t
RTC config structure.

This structure holds the configuration settings for the RTC peripheral. To initialize this
structure to reasonable defaults, call the RTC_GetDefaultConfig() function and pass a
pointer to your config structure instance.

typedef void (*rtc_alarm_callback_t)(void)
RTC alarm callback function.

struct _rtc_datetime
#include <fsl_rtc.h> Structure is used to hold the date and time.

Public Members

uint16_t year
Range from 1970 to 2099.

uint8_t month
Range from 1 to 12.

uint8_t day
Range from 1 to 31 (depending on month).

uint8_t hour
Range from 0 to 23.

uint8_t minute
Range from 0 to 59.

uint8_t second
Range from 0 to 59.

2.19. RTC: Real Time Clock 215

MCUXpresso SDK Documentation, Release 25.09.00

struct _rtc_config
#include <fsl_rtc.h> RTC config structure.

This structure holds the configuration settings for the RTC peripheral. To initialize this
structure to reasonable defaults, call the RTC_GetDefaultConfig() function and pass a
pointer to your config structure instance.

2.20 SPI: Serial Peripheral Interface Driver

2.21 SPI Driver

void SPI_MasterGetDefaultConfig(spi_master_config_t *config)
Sets the SPI master configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use in
SPI_MasterInit(). User may use the initialized structure unchanged in SPI_MasterInit(), or
modify some fields of the structure before calling SPI_MasterInit(). After calling this API,
the master is ready to transfer. Example:

spi_master_config_t config;
SPI_MasterGetDefaultConfig(&config);

Parameters
• config – pointer to master config structure

void SPI_MasterInit(SPI_Type *base, const spi_master_config_t *config, uint32_t srcClock_Hz)
Initializes the SPI with master configuration.

The configuration structure can be filled by user from scratch, or be set with default val-
ues by SPI_MasterGetDefaultConfig(). After calling this API, the slave is ready to transfer.
Example

spi_master_config_t config = {
.baudRate_Bps = 400000,
...
};
SPI_MasterInit(SPI0, &config);

Parameters
• base – SPI base pointer

• config – pointer to master configuration structure

• srcClock_Hz – Source clock frequency.

void SPI_SlaveGetDefaultConfig(spi_slave_config_t *config)
Sets the SPI slave configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use in
SPI_SlaveInit(). Modify some fields of the structure before calling SPI_SlaveInit(). Exam-
ple:

spi_slave_config_t config;
SPI_SlaveGetDefaultConfig(&config);

Parameters
• config – pointer to slave configuration structure

216 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

void SPI_SlaveInit(SPI_Type *base, const spi_slave_config_t *config)
Initializes the SPI with slave configuration.

The configuration structure can be filled by user from scratch or be set with default val-
ues by SPI_SlaveGetDefaultConfig(). After calling this API, the slave is ready to transfer.
Example

spi_slave_config_t config = {
.polarity = kSPIClockPolarity_ActiveHigh;
.phase = kSPIClockPhase_FirstEdge;
.direction = kSPIMsbFirst;
...
};
SPI_MasterInit(SPI0, &config);

Parameters
• base – SPI base pointer

• config – pointer to master configuration structure

void SPI_Deinit(SPI_Type *base)
De-initializes the SPI.

Calling this API resets the SPImodule, gates the SPI clock. The SPImodule can’t work unless
calling the SPI_MasterInit/SPI_SlaveInit to initialize module.

Parameters
• base – SPI base pointer

static inline void SPI_Enable(SPI_Type *base, bool enable)
Enables or disables the SPI.

Parameters
• base – SPI base pointer

• enable – pass true to enable module, false to disable module

uint32_t SPI_GetStatusFlags(SPI_Type *base)
Gets the status flag.

Parameters
• base – SPI base pointer

Returns
SPI Status, use status flag to AND _spi_flags could get the related status.

static inline void SPI_ClearInterrupt(SPI_Type *base, uint8_t mask)
Clear the interrupt if enable INCTLR.

Parameters
• base – SPI base pointer

• mask – Interrupt need to be cleared The parameter could be any combina-
tion of the following values:

– kSPI_RxFullAndModfInterruptEnable

– kSPI_TxEmptyInterruptEnable

– kSPI_MatchInterruptEnable

– kSPI_RxFifoNearFullInterruptEnable

– kSPI_TxFifoNearEmptyInterruptEnable

2.21. SPI Driver 217

MCUXpresso SDK Documentation, Release 25.09.00

void SPI_EnableInterrupts(SPI_Type *base, uint32_t mask)
Enables the interrupt for the SPI.

Parameters
• base – SPI base pointer

• mask – SPI interrupt source. The parameter can be any combination of the
following values:

– kSPI_RxFullAndModfInterruptEnable

– kSPI_TxEmptyInterruptEnable

– kSPI_MatchInterruptEnable

– kSPI_RxFifoNearFullInterruptEnable

– kSPI_TxFifoNearEmptyInterruptEnable

void SPI_DisableInterrupts(SPI_Type *base, uint32_t mask)
Disables the interrupt for the SPI.

Parameters
• base – SPI base pointer

• mask – SPI interrupt source. The parameter can be any combination of the
following values:

– kSPI_RxFullAndModfInterruptEnable

– kSPI_TxEmptyInterruptEnable

– kSPI_MatchInterruptEnable

– kSPI_RxFifoNearFullInterruptEnable

– kSPI_TxFifoNearEmptyInterruptEnable

static inline void SPI_EnableDMA(SPI_Type *base, uint8_t mask, bool enable)
Enables the DMA source for SPI.

Parameters
• base – SPI base pointer

• mask – SPI DMA source.

• enable – True means enable DMA, false means disable DMA

static inline uint32_t SPI_GetDataRegisterAddress(SPI_Type *base)
Gets the SPI tx/rx data register address.

This API is used to provide a transfer address for the SPI DMA transfer configuration.

Parameters
• base – SPI base pointer

Returns
data register address

uint32_t SPI_GetInstance(SPI_Type *base)
Get the instance for SPI module.

Parameters
• base – SPI base address

218 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

static inline void SPI_SetPinMode(SPI_Type *base, spi_pin_mode_t pinMode)
Sets the pin mode for transfer.

Parameters
• base – SPI base pointer

• pinMode – pin mode for transfer AND _spi_pin_mode could get the related
configuration.

void SPI_MasterSetBaudRate(SPI_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
Sets the baud rate for SPI transfer. This is only used in master.

Parameters
• base – SPI base pointer

• baudRate_Bps – baud rate needed in Hz.

• srcClock_Hz – SPI source clock frequency in Hz.

static inline void SPI_SetMatchData(SPI_Type *base, uint32_t matchData)
Sets the match data for SPI.

Thematchdata is a hardware comparison value. When the value received in the SPI receive
data buffer equals the hardware comparison value, the SPI Match Flag in the S register
(S[SPMF]) sets. This can also generate an interrupt if the enable bit sets.

Parameters
• base – SPI base pointer

• matchData – Match data.

void SPI_EnableFIFO(SPI_Type *base, bool enable)
Enables or disables the FIFO if there is a FIFO.

Parameters
• base – SPI base pointer

• enable – True means enable FIFO, false means disable FIFO.

status_t SPI_WriteBlocking(SPI_Type *base, uint8_t *buffer, size_t size)
Sends a buffer of data bytes using a blocking method.

Note: This function blocks via polling until all bytes have been sent.

Parameters
• base – SPI base pointer

• buffer – The data bytes to send

• size – The number of data bytes to send

Returns
kStatus_SPI_Timeout The transfer timed out and was aborted.

void SPI_WriteData(SPI_Type *base, uint16_t data)
Writes a data into the SPI data register.

Parameters
• base – SPI base pointer

• data – needs to be write.

2.21. SPI Driver 219

MCUXpresso SDK Documentation, Release 25.09.00

uint16_t SPI_ReadData(SPI_Type *base)
Gets a data from the SPI data register.

Parameters
• base – SPI base pointer

Returns
Data in the register.

void SPI_SetDummyData(SPI_Type *base, uint8_t dummyData)
Set up the dummy data.

Parameters
• base – SPI peripheral address.

• dummyData – Data to be transferred when tx buffer is NULL.

void SPI_MasterTransferCreateHandle(SPI_Type *base, spi_master_handle_t *handle,
spi_master_callback_t callback, void *userData)

Initializes the SPI master handle.

This function initializes the SPImaster handlewhich can be used for other SPImaster trans-
actional APIs. Usually, for a specified SPI instance, call this API once to get the initialized
handle.

Parameters
• base – SPI peripheral base address.

• handle – SPI handle pointer.

• callback – Callback function.

• userData – User data.

status_t SPI_MasterTransferBlocking(SPI_Type *base, spi_transfer_t *xfer)
Transfers a block of data using a polling method.

Parameters
• base – SPI base pointer

• xfer – pointer to spi_xfer_config_t structure

Return values
• kStatus_Success – Successfully start a transfer.

• kStatus_InvalidArgument – Input argument is invalid.

status_t SPI_MasterTransferNonBlocking(SPI_Type *base, spi_master_handle_t *handle,
spi_transfer_t *xfer)

Performs a non-blocking SPI interrupt transfer.

Note: The API immediately returns after transfer initialization is finished. Call
SPI_GetStatusIRQ() to get the transfer status.

Note: If SPI transfer data frame size is 16 bits, the transfer size cannot be an odd number.

Parameters
• base – SPI peripheral base address.

220 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

• handle – pointer to spi_master_handle_t structurewhich stores the transfer
state

• xfer – pointer to spi_xfer_config_t structure

Return values
• kStatus_Success – Successfully start a transfer.

• kStatus_InvalidArgument – Input argument is invalid.

• kStatus_SPI_Busy – SPI is not idle, is running another transfer.

status_t SPI_MasterTransferGetCount(SPI_Type *base, spi_master_handle_t *handle, size_t
*count)

Gets the bytes of the SPI interrupt transferred.

Parameters
• base – SPI peripheral base address.

• handle – Pointer to SPI transfer handle, this should be a static variable.

• count – Transferred bytes of SPI master.

Return values
• kStatus_SPI_Success – Succeed get the transfer count.

• kStatus_NoTransferInProgress – There is not a non-blocking transaction cur-
rently in progress.

void SPI_MasterTransferAbort(SPI_Type *base, spi_master_handle_t *handle)
Aborts an SPI transfer using interrupt.

Parameters
• base – SPI peripheral base address.

• handle – Pointer to SPI transfer handle, this should be a static variable.

void SPI_MasterTransferHandleIRQ(SPI_Type *base, spi_master_handle_t *handle)
Interrupts the handler for the SPI.

Parameters
• base – SPI peripheral base address.

• handle – pointer to spi_master_handle_t structurewhich stores the transfer
state.

void SPI_SlaveTransferCreateHandle(SPI_Type *base, spi_slave_handle_t *handle,
spi_slave_callback_t callback, void *userData)

Initializes the SPI slave handle.

This function initializes the SPI slave handle which can be used for other SPI slave trans-
actional APIs. Usually, for a specified SPI instance, call this API once to get the initialized
handle.

Parameters
• base – SPI peripheral base address.

• handle – SPI handle pointer.

• callback – Callback function.

• userData – User data.

2.21. SPI Driver 221

MCUXpresso SDK Documentation, Release 25.09.00

status_t SPI_SlaveTransferNonBlocking(SPI_Type *base, spi_slave_handle_t *handle,
spi_transfer_t *xfer)

Performs a non-blocking SPI slave interrupt transfer.

Note: The API returns immediately after the transfer initialization is finished. Call
SPI_GetStatusIRQ() to get the transfer status.

Note: If SPI transfer data frame size is 16 bits, the transfer size cannot be an odd number.

Parameters
• base – SPI peripheral base address.

• handle – pointer to spi_slave_handle_t structure which stores the transfer
state

• xfer – pointer to spi_xfer_config_t structure

Return values
• kStatus_Success – Successfully start a transfer.

• kStatus_InvalidArgument – Input argument is invalid.

• kStatus_SPI_Busy – SPI is not idle, is running another transfer.

static inline status_t SPI_SlaveTransferGetCount(SPI_Type *base, spi_slave_handle_t *handle,
size_t *count)

Gets the bytes of the SPI interrupt transferred.

Parameters
• base – SPI peripheral base address.

• handle – Pointer to SPI transfer handle, this should be a static variable.

• count – Transferred bytes of SPI slave.

Return values
• kStatus_SPI_Success – Succeed get the transfer count.

• kStatus_NoTransferInProgress – There is not a non-blocking transaction cur-
rently in progress.

static inline void SPI_SlaveTransferAbort(SPI_Type *base, spi_slave_handle_t *handle)
Aborts an SPI slave transfer using interrupt.

Parameters
• base – SPI peripheral base address.

• handle – Pointer to SPI transfer handle, this should be a static variable.

void SPI_SlaveTransferHandleIRQ(SPI_Type *base, spi_slave_handle_t *handle)
Interrupts a handler for the SPI slave.

Parameters
• base – SPI peripheral base address.

• handle – pointer to spi_slave_handle_t structure which stores the transfer
state

222 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

FSL_SPI_DRIVER_VERSION
SPI driver version.

Return status for the SPI driver.

Values:

enumerator kStatus_SPI_Busy
SPI bus is busy

enumerator kStatus_SPI_Idle
SPI is idle

enumerator kStatus_SPI_Error
SPI error

enumerator kStatus_SPI_Timeout
SPI timeout polling status flags.

enum _spi_clock_polarity
SPI clock polarity configuration.

Values:

enumerator kSPI_ClockPolarityActiveHigh
Active-high SPI clock (idles low).

enumerator kSPI_ClockPolarityActiveLow
Active-low SPI clock (idles high).

enum _spi_clock_phase
SPI clock phase configuration.

Values:

enumerator kSPI_ClockPhaseFirstEdge
First edge on SPSCK occurs at the middle of the first cycle of a data transfer.

enumerator kSPI_ClockPhaseSecondEdge
First edge on SPSCK occurs at the start of the first cycle of a data transfer.

enum _spi_shift_direction
SPI data shifter direction options.

Values:

enumerator kSPI_MsbFirst
Data transfers start with most significant bit.

enumerator kSPI_LsbFirst
Data transfers start with least significant bit.

enum _spi_ss_output_mode
SPI slave select output mode options.

Values:

enumerator kSPI_SlaveSelectAsGpio
Slave select pin configured as GPIO.

enumerator kSPI_SlaveSelectFaultInput
Slave select pin configured for fault detection.

2.21. SPI Driver 223

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSPI_SlaveSelectAutomaticOutput
Slave select pin configured for automatic SPI output.

enum _spi_pin_mode
SPI pin mode options.

Values:

enumerator kSPI_PinModeNormal
Pins operate in normal, single-direction mode.

enumerator kSPI_PinModeInput
Bidirectional mode. Master: MOSI pin is input; Slave: MISO pin is input.

enumerator kSPI_PinModeOutput
Bidirectional mode. Master: MOSI pin is output; Slave: MISO pin is output.

enum _spi_data_bitcount_mode
SPI data length mode options.

Values:

enumerator kSPI_8BitMode
8-bit data transmission mode

enumerator kSPI_16BitMode
16-bit data transmission mode

enum _spi_interrupt_enable
SPI interrupt sources.

Values:

enumerator kSPI_RxFullAndModfInterruptEnable
Receive buffer full (SPRF) and mode fault (MODF) interrupt

enumerator kSPI_TxEmptyInterruptEnable
Transmit buffer empty interrupt

enumerator kSPI_MatchInterruptEnable
Match interrupt

enumerator kSPI_RxFifoNearFullInterruptEnable
Receive FIFO nearly full interrupt

enumerator kSPI_TxFifoNearEmptyInterruptEnable
Transmit FIFO nearly empty interrupt

enum _spi_flags
SPI status flags.

Values:

enumerator kSPI_RxBufferFullFlag
Read buffer full flag

enumerator kSPI_MatchFlag
Match flag

enumerator kSPI_TxBufferEmptyFlag
Transmit buffer empty flag

enumerator kSPI_ModeFaultFlag
Mode fault flag

224 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSPI_RxFifoNearFullFlag
Rx FIFO near full

enumerator kSPI_TxFifoNearEmptyFlag
Tx FIFO near empty

enumerator kSPI_TxFifoFullFlag
Tx FIFO full

enumerator kSPI_RxFifoEmptyFlag
Rx FIFO empty

enumerator kSPI_TxFifoError
Tx FIFO error

enumerator kSPI_RxFifoError
Rx FIFO error

enumerator kSPI_TxOverflow
Tx FIFO Overflow

enumerator kSPI_RxOverflow
Rx FIFO Overflow

enum _spi_w1c_interrupt
SPI FIFO write-1-to-clear interrupt flags.

Values:

enumerator kSPI_RxFifoFullClearInterrupt
Receive FIFO full interrupt

enumerator kSPI_TxFifoEmptyClearInterrupt
Transmit FIFO empty interrupt

enumerator kSPI_RxNearFullClearInterrupt
Receive FIFO nearly full interrupt

enumerator kSPI_TxNearEmptyClearInterrupt
Transmit FIFO nearly empty interrupt

enum _spi_txfifo_watermark
SPI TX FIFO watermark settings.

Values:

enumerator kSPI_TxFifoOneFourthEmpty
SPI tx watermark at 1/4 FIFO size

enumerator kSPI_TxFifoOneHalfEmpty
SPI tx watermark at 1/2 FIFO size

enum _spi_rxfifo_watermark
SPI RX FIFO watermark settings.

Values:

enumerator kSPI_RxFifoThreeFourthsFull
SPI rx watermark at 3/4 FIFO size

enumerator kSPI_RxFifoOneHalfFull
SPI rx watermark at 1/2 FIFO size

2.21. SPI Driver 225

MCUXpresso SDK Documentation, Release 25.09.00

enum _spi_dma_enable_t
SPI DMA source.

Values:

enumerator kSPI_TxDmaEnable
Tx DMA request source

enumerator kSPI_RxDmaEnable
Rx DMA request source

enumerator kSPI_DmaAllEnable
All DMA request source

typedef enum _spi_clock_polarity spi_clock_polarity_t
SPI clock polarity configuration.

typedef enum _spi_clock_phase spi_clock_phase_t
SPI clock phase configuration.

typedef enum _spi_shift_direction spi_shift_direction_t
SPI data shifter direction options.

typedef enum _spi_ss_output_mode spi_ss_output_mode_t
SPI slave select output mode options.

typedef enum _spi_pin_mode spi_pin_mode_t
SPI pin mode options.

typedef enum _spi_data_bitcount_mode spi_data_bitcount_mode_t
SPI data length mode options.

typedef enum _spi_w1c_interrupt spi_w1c_interrupt_t
SPI FIFO write-1-to-clear interrupt flags.

typedef enum _spi_txfifo_watermark spi_txfifo_watermark_t
SPI TX FIFO watermark settings.

typedef enum _spi_rxfifo_watermark spi_rxfifo_watermark_t
SPI RX FIFO watermark settings.

typedef struct _spi_master_config spi_master_config_t
SPI master user configure structure.

typedef struct _spi_slave_config spi_slave_config_t
SPI slave user configure structure.

typedef struct _spi_transfer spi_transfer_t
SPI transfer structure.

typedef struct _spi_master_handle spi_master_handle_t

typedef spi_master_handle_t spi_slave_handle_t
Slave handle is the same with master handle

typedef void (*spi_master_callback_t)(SPI_Type *base, spi_master_handle_t *handle, status_t
status, void *userData)

SPI master callback for finished transmit.

typedef void (*spi_slave_callback_t)(SPI_Type *base, spi_slave_handle_t *handle, status_t status,
void *userData)

SPI master callback for finished transmit.

226 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

volatile uint8_t g_spiDummyData[]
Global variable for dummy data value setting.

SPI_DUMMYDATA
SPI dummy transfer data, the data is sent while txBuff is NULL.

SPI_RETRY_TIMES
Retry times for waiting flag.

struct _spi_master_config
#include <fsl_spi.h> SPI master user configure structure.

Public Members

bool enableMaster
Enable SPI at initialization time

bool enableStopInWaitMode
SPI stop in wait mode

spi_clock_polarity_t polarity
Clock polarity

spi_clock_phase_t phase
Clock phase

spi_shift_direction_t direction
MSB or LSB

spi_data_bitcount_mode_t dataMode
8bit or 16bit mode

spi_txfifo_watermark_t txWatermark
Tx watermark settings

spi_rxfifo_watermark_t rxWatermark
Rx watermark settings

spi_ss_output_mode_t outputMode
SS pin setting

spi_pin_mode_t pinMode
SPI pin mode select

uint32_t baudRate_Bps
Baud Rate for SPI in Hz

struct _spi_slave_config
#include <fsl_spi.h> SPI slave user configure structure.

Public Members

bool enableSlave
Enable SPI at initialization time

bool enableStopInWaitMode
SPI stop in wait mode

spi_clock_polarity_t polarity
Clock polarity

2.21. SPI Driver 227

MCUXpresso SDK Documentation, Release 25.09.00

spi_clock_phase_t phase
Clock phase

spi_shift_direction_t direction
MSB or LSB

spi_data_bitcount_mode_t dataMode
8bit or 16bit mode

spi_txfifo_watermark_t txWatermark
Tx watermark settings

spi_rxfifo_watermark_t rxWatermark
Rx watermark settings

spi_pin_mode_t pinMode
SPI pin mode select

struct _spi_transfer
#include <fsl_spi.h> SPI transfer structure.

Public Members

const uint8_t *txData
Send buffer

uint8_t *rxData
Receive buffer

size_t dataSize
Transfer bytes

uint32_t flags
SPI control flag, useless to SPI.

struct _spi_master_handle
#include <fsl_spi.h> SPI transfer handle structure.

Public Members

const uint8_t *volatile txData
Transfer buffer

uint8_t *volatile rxData
Receive buffer

volatile size_t txRemainingBytes
Send data remaining in bytes

volatile size_t rxRemainingBytes
Receive data remaining in bytes

volatile uint32_t state
SPI internal state

size_t transferSize
Bytes to be transferred

uint8_t bytePerFrame
SPI mode, 2bytes or 1byte in a frame

228 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

uint8_t watermark
Watermark value for SPI transfer

spi_master_callback_t callback
SPI callback

void *userData
Callback parameter

2.22 TPM: Timer PWMModule

uint32_t TPM_GetInstance(TPM_Type *base)
Gets the instance from the base address.

Parameters
• base – TPM peripheral base address

Returns
The TPM instance

void TPM_Init(TPM_Type *base, const tpm_config_t *config)
Ungates the TPM clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the TPM driver.

Parameters
• base – TPM peripheral base address

• config – Pointer to user’s TPM config structure.

void TPM_Deinit(TPM_Type *base)
Stops the counter and gates the TPM clock.

Parameters
• base – TPM peripheral base address

void TPM_GetDefaultConfig(tpm_config_t *config)
Fill in the TPM config struct with the default settings.

The default values are:

config->prescale = kTPM_Prescale_Divide_1;
config->useGlobalTimeBase = false;
config->syncGlobalTimeBase = false;
config->dozeEnable = false;
config->dbgMode = false;
config->enableReloadOnTrigger = false;
config->enableStopOnOverflow = false;
config->enableStartOnTrigger = false;

#if FSL_FEATURE_TPM_HAS_PAUSE_COUNTER_ON_TRIGGER
config->enablePauseOnTrigger = false;

#endif
config->triggerSelect = kTPM_Trigger_Select_0;

#if FSL_FEATURE_TPM_HAS_EXTERNAL_TRIGGER_SELECTION
config->triggerSource = kTPM_TriggerSource_External;
config->extTriggerPolarity = kTPM_ExtTrigger_Active_High;

#endif
(continues on next page)

2.22. TPM: Timer PWMModule 229

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
#if defined(FSL_FEATURE_TPM_HAS_POL) && FSL_FEATURE_TPM_HAS_POL

config->chnlPolarity = 0U;
#endif

Parameters
• config – Pointer to user’s TPM config structure.

tpm_clock_prescale_t TPM_CalculateCounterClkDiv(TPM_Type *base, uint32_t
counterPeriod_Hz, uint32_t srcClock_Hz)

Calculates the counter clock prescaler.

This function calculates the values for SC[PS].

return Calculated clock prescaler value.

Parameters
• base – TPM peripheral base address

• counterPeriod_Hz – The desired frequency in Hz which corresponding to
the time when the counter reaches the mod value

• srcClock_Hz – TPM counter clock in Hz

status_t TPM_SetupPwm(TPM_Type *base, const tpm_chnl_pwm_signal_param_t *chnlParams,
uint8_t numOfChnls, tpm_pwm_mode_tmode, uint32_t pwmFreq_Hz,
uint32_t srcClock_Hz)

Configures the PWM signal parameters.

User calls this function to configure the PWM signals period, mode, dutycycle and edge. Use
this function to configure all the TPM channels that will be used to output a PWM signal

Parameters
• base – TPM peripheral base address

• chnlParams – Array of PWM channel parameters to configure the chan-
nel(s)

• numOfChnls – Number of channels to configure, this should be the size of
the array passed in

• mode – PWM operation mode, options available in enumeration
tpm_pwm_mode_t

• pwmFreq_Hz – PWM signal frequency in Hz

• srcClock_Hz – TPM counter clock in Hz

Returns
kStatus_Success PWM setup successful kStatus_Error PWM setup failed kSta-
tus_Timeout PWM setup timeout when write register CnV or MOD

status_t TPM_UpdatePwmDutycycle(TPM_Type *base, tpm_chnl_t chnlNumber,
tpm_pwm_mode_t currentPwmMode, uint8_t
dutyCyclePercent)

Update the duty cycle of an active PWM signal.

Parameters
• base – TPM peripheral base address

• chnlNumber – The channel number. In combinedmode, this represents the
channel pair number

230 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

• currentPwmMode – The current PWMmode set during PWM setup

• dutyCyclePercent – New PWM pulse width, value should be between 0 to
100 0=inactive signal(0% duty cycle)… 100=active signal (100% duty cycle)

Returns
kStatus_Success if the PWM setup was successful, kStatus_Error on failure

void TPM_UpdateChnlEdgeLevelSelect(TPM_Type *base, tpm_chnl_t chnlNumber, uint8_t level)
Update the edge level selection for a channel.

Note: When the TPM has PWM pause level select feature
(FSL_FEATURE_TPM_HAS_PAUSE_LEVEL_SELECT = 1), the PWM output cannot be turned
off by selecting the output level. In this case, must use TPM_DisableChannel API to close
the PWM output.

Parameters
• base – TPM peripheral base address

• chnlNumber – The channel number

• level – The level to be set to the ELSnB:ELSnA field; valid values are 00, 01,
10, 11. See the appropriate SoC reference manual for details about this
field.

static inline uint8_t TPM_GetChannelContorlBits(TPM_Type *base, tpm_chnl_t chnlNumber)
Get the channel control bits value (mode, edge and level bit fileds).

This function disable the channel by clear all mode and level control bits.

Parameters
• base – TPM peripheral base address

• chnlNumber – The channel number

Returns
The contorl bits value. This is the logical OR of members of the enumeration
tpm_chnl_control_bit_mask_t.

static inline status_t TPM_DisableChannel(TPM_Type *base, tpm_chnl_t chnlNumber)
Dsiable the channel.

This function disable the channel by clear all mode and level control bits.

Parameters
• base – TPM peripheral base address

• chnlNumber – The channel number

Returns
kStatus_Success PWM setup successful kStatus_Timeout PWM setup timeout
when write register CnSC

static inline status_t TPM_EnableChannel(TPM_Type *base, tpm_chnl_t chnlNumber, uint8_t
control)

Enable the channel according to mode and level configs.

This function enable the channel output according to input mode/level config parameters.

Parameters
• base – TPM peripheral base address

• chnlNumber – The channel number

2.22. TPM: Timer PWMModule 231

MCUXpresso SDK Documentation, Release 25.09.00

• control – The contorl bits value. This is the logical OR of members of the
enumeration tpm_chnl_control_bit_mask_t.

Returns
kStatus_Success PWM setup successful kStatus_Timeout PWM setup timeout
when write register CnSC

void TPM_SetupInputCapture(TPM_Type *base, tpm_chnl_t chnlNumber,
tpm_input_capture_edge_t captureMode)

Enables capturing an input signal on the channel using the function parameters.

When the edge specified in the captureMode argument occurs on the channel, the TPM
counter is captured into the CnV register. The user has to read the CnV register separately
to get this value.

Parameters
• base – TPM peripheral base address

• chnlNumber – The channel number

• captureMode – Specifies which edge to capture

status_t TPM_SetupOutputCompare(TPM_Type *base, tpm_chnl_t chnlNumber,
tpm_output_compare_mode_t compareMode, uint32_t
compareValue)

Configures the TPM to generate timed pulses.

When the TPM counter matches the value of compareVal argument (this is written into
CnV reg), the channel output is changed based on what is specified in the compareMode
argument.

Parameters
• base – TPM peripheral base address

• chnlNumber – The channel number

• compareMode – Action to take on the channel output when the compare
condition is met

• compareValue – Value to be programmed in the CnV register.

Returns
kStatus_Success PWM setup successful kStatus_Timeout PWM setup timeout
when write register CnV

void TPM_EnableInterrupts(TPM_Type *base, uint32_t mask)
Enables the selected TPM interrupts.

Parameters
• base – TPM peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration tpm_interrupt_enable_t

void TPM_DisableInterrupts(TPM_Type *base, uint32_t mask)
Disables the selected TPM interrupts.

Parameters
• base – TPM peripheral base address

• mask – The interrupts to disable. This is a logical OR of members of the
enumeration tpm_interrupt_enable_t

232 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t TPM_GetEnabledInterrupts(TPM_Type *base)
Gets the enabled TPM interrupts.

Parameters
• base – TPM peripheral base address

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
tpm_interrupt_enable_t

void TPM_RegisterCallBack(TPM_Type *base, tpm_callback_t callback)
Register callback.

If channel or overflow interrupt is enabled by the user, then a callback can be registered
which will be invoked when the interrupt is triggered.

Parameters
• base – TPM peripheral base address

• callback – Callback function

static inline uint32_t TPM_GetChannelValue(TPM_Type *base, tpm_chnl_t chnlNumber)
Gets the TPM channel value.

Note: The TPM channel value contain the captured TPM counter value for the inputmodes
or the match value for the output modes.

Parameters
• base – TPM peripheral base address

• chnlNumber – The channel number

Returns
The channle CnV regisyer value.

static inline uint32_t TPM_GetStatusFlags(TPM_Type *base)
Gets the TPM status flags.

Parameters
• base – TPM peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
tpm_status_flags_t

static inline void TPM_ClearStatusFlags(TPM_Type *base, uint32_t mask)
Clears the TPM status flags.

Parameters
• base – TPM peripheral base address

• mask – The status flags to clear. This is a logical OR of members of the
enumeration tpm_status_flags_t

static inline status_t TPM_SetTimerPeriod(TPM_Type *base, uint32_t ticks)
Sets the timer period in units of ticks.

Timers counts from 0 until it equals the count value set here. The count value is written to
the MOD register.

Note:

2.22. TPM: Timer PWMModule 233

MCUXpresso SDK Documentation, Release 25.09.00

a. This API allows the user to use the TPM module as a timer. Do not mix usage of this
API with TPM’s PWM setup API’s.

b. Call the utility macros provided in the fsl_common.h to convert usec or msec to ticks.

Parameters
• base – TPM peripheral base address

• ticks – A timer period in units of ticks, which should be equal or greater
than 1.

Returns
kStatus_Success PWM setup successful kStatus_Timeout PWM setup timeout
when write register CnSC

static inline uint32_t TPM_GetCurrentTimerCount(TPM_Type *base)
Reads the current timer counting value.

This function returns the real-time timer counting value in a range from 0 to a timer period.

Note: Call the utilitymacros provided in the fsl_common.h to convert ticks to usec ormsec.

Parameters
• base – TPM peripheral base address

Returns
The current counter value in ticks

static inline void TPM_StartTimer(TPM_Type *base, tpm_clock_source_t clockSource)
Starts the TPM counter.

Parameters
• base – TPM peripheral base address

• clockSource – TPM clock source; once clock source is set the counter will
start running

static inline status_t TPM_StopTimer(TPM_Type *base)
Stops the TPM counter.

Parameters
• base – TPM peripheral base address

Returns
kStatus_Success PWM setup successful kStatus_Timeout PWM setup timeout
when write register CnSC

FSL_TPM_DRIVER_VERSION
TPM driver version 2.4.0.

enum _tpm_chnl
List of TPM channels.

Note: Actual number of available channels is SoC dependent

Values:

234 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kTPM_Chnl_0
TPM channel number 0

enumerator kTPM_Chnl_1
TPM channel number 1

enumerator kTPM_Chnl_2
TPM channel number 2

enumerator kTPM_Chnl_3
TPM channel number 3

enumerator kTPM_Chnl_4
TPM channel number 4

enumerator kTPM_Chnl_5
TPM channel number 5

enumerator kTPM_Chnl_6
TPM channel number 6

enumerator kTPM_Chnl_7
TPM channel number 7

enum _tpm_pwm_mode
TPM PWM operation modes.

Values:

enumerator kTPM_EdgeAlignedPwm
Edge aligned PWM

enumerator kTPM_CenterAlignedPwm
Center aligned PWM

enum _tpm_pwm_level_select
TPM PWM output pulse mode: high-true, low-true or no output.

Note: When the TPM has PWM pause level select feature, the PWM output cannot be
turned off by selecting the output level. In this case, the channel must be closed to close the
PWM output.

Values:

enumerator kTPM_NoPwmSignal
No PWM output on pin

enumerator kTPM_LowTrue
Low true pulses

enumerator kTPM_HighTrue
High true pulses

enum _tpm_chnl_control_bit_mask
List of TPM channel modes and level control bit mask.

Values:

enumerator kTPM_ChnlELSnAMask
Channel ELSA bit mask.

2.22. TPM: Timer PWMModule 235

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kTPM_ChnlELSnBMask
Channel ELSB bit mask.

enumerator kTPM_ChnlMSAMask
Channel MSA bit mask.

enumerator kTPM_ChnlMSBMask
Channel MSB bit mask.

enum _tpm_output_compare_mode
TPM output compare modes.

Values:

enumerator kTPM_NoOutputSignal
No channel output when counter reaches CnV

enumerator kTPM_ToggleOnMatch
Toggle output

enumerator kTPM_ClearOnMatch
Clear output

enumerator kTPM_SetOnMatch
Set output

enumerator kTPM_HighPulseOutput
Pulse output high

enumerator kTPM_LowPulseOutput
Pulse output low

enum _tpm_input_capture_edge
TPM input capture edge.

Values:

enumerator kTPM_RisingEdge
Capture on rising edge only

enumerator kTPM_FallingEdge
Capture on falling edge only

enumerator kTPM_RiseAndFallEdge
Capture on rising or falling edge

enum _tpm_clock_source
TPM clock source selection.

Values:

enumerator kTPM_SystemClock
System clock

enumerator kTPM_FixedClock
Fixed frequency clock

enumerator kTPM_ExternalClock
External TPM_EXTCLK pin clock

enum _tpm_clock_prescale
TPM prescale value selection for the clock source.

Values:

236 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kTPM_Prescale_Divide_1
Divide by 1

enumerator kTPM_Prescale_Divide_2
Divide by 2

enumerator kTPM_Prescale_Divide_4
Divide by 4

enumerator kTPM_Prescale_Divide_8
Divide by 8

enumerator kTPM_Prescale_Divide_16
Divide by 16

enumerator kTPM_Prescale_Divide_32
Divide by 32

enumerator kTPM_Prescale_Divide_64
Divide by 64

enumerator kTPM_Prescale_Divide_128
Divide by 128

enum _tpm_interrupt_enable
List of TPM interrupts.

Values:

enumerator kTPM_Chnl0InterruptEnable
Channel 0 interrupt.

enumerator kTPM_Chnl1InterruptEnable
Channel 1 interrupt.

enumerator kTPM_Chnl2InterruptEnable
Channel 2 interrupt.

enumerator kTPM_Chnl3InterruptEnable
Channel 3 interrupt.

enumerator kTPM_Chnl4InterruptEnable
Channel 4 interrupt.

enumerator kTPM_Chnl5InterruptEnable
Channel 5 interrupt.

enumerator kTPM_Chnl6InterruptEnable
Channel 6 interrupt.

enumerator kTPM_Chnl7InterruptEnable
Channel 7 interrupt.

enumerator kTPM_TimeOverflowInterruptEnable
Time overflow interrupt.

enum _tpm_status_flags
List of TPM flags.

Values:

enumerator kTPM_Chnl0Flag
Channel 0 flag

2.22. TPM: Timer PWMModule 237

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kTPM_Chnl1Flag
Channel 1 flag

enumerator kTPM_Chnl2Flag
Channel 2 flag

enumerator kTPM_Chnl3Flag
Channel 3 flag

enumerator kTPM_Chnl4Flag
Channel 4 flag

enumerator kTPM_Chnl5Flag
Channel 5 flag

enumerator kTPM_Chnl6Flag
Channel 6 flag

enumerator kTPM_Chnl7Flag
Channel 7 flag

enumerator kTPM_TimeOverflowFlag
Time overflow flag

typedef enum _tpm_chnl tpm_chnl_t
List of TPM channels.

Note: Actual number of available channels is SoC dependent

typedef enum _tpm_pwm_mode tpm_pwm_mode_t
TPM PWM operation modes.

typedef enum _tpm_pwm_level_select tpm_pwm_level_select_t
TPM PWM output pulse mode: high-true, low-true or no output.

Note: When the TPM has PWM pause level select feature, the PWM output cannot be
turned off by selecting the output level. In this case, the channel must be closed to close the
PWM output.

typedef enum _tpm_chnl_control_bit_mask tpm_chnl_control_bit_mask_t
List of TPM channel modes and level control bit mask.

typedef struct _tpm_chnl_pwm_signal_param tpm_chnl_pwm_signal_param_t
Options to configure a TPM channel’s PWM signal.

typedef enum _tpm_output_compare_mode tpm_output_compare_mode_t
TPM output compare modes.

typedef enum _tpm_input_capture_edge tpm_input_capture_edge_t
TPM input capture edge.

typedef enum _tpm_clock_source tpm_clock_source_t
TPM clock source selection.

typedef enum _tpm_clock_prescale tpm_clock_prescale_t
TPM prescale value selection for the clock source.

238 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _tpm_config tpm_config_t
TPM config structure.

This structure holds the configuration settings for the TPM peripheral. To initialize this
structure to reasonable defaults, call the TPM_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

typedef enum _tpm_interrupt_enable tpm_interrupt_enable_t
List of TPM interrupts.

typedef enum _tpm_status_flags tpm_status_flags_t
List of TPM flags.

typedef void (*tpm_callback_t)(TPM_Type *base)
TPM callback function pointer.

Param base
TPM peripheral base address.

void TPM_DriverIRQHandler(uint32_t instance)
TPM driver IRQ handler common entry.

This function provides the common IRQ request entry for TPM.

Parameters
• instance – TPM instance.

TPM_TIMEOUT
Max loops to wait for writing register.

WhenwritingMODCnV CnSC and SC register, driverwill wait until register is updated. This
parameter defines how many loops to check completion before return timeout. If defined
as 0, driver will wait forever until completion.

TPM_MAX_COUNTER_VALUE(x)
Help macro to get the max counter value.

struct _tpm_chnl_pwm_signal_param
#include <fsl_tpm.h> Options to configure a TPM channel’s PWM signal.

Public Members

tpm_chnl_t chnlNumber
TPM channel to configure. In combinedmode (available in some SoC’s), this represents
the channel pair number

tpm_pwm_level_select_t level
PWM output active level select

uint8_t dutyCyclePercent
PWMpulse width, value should be between 0 to 100 0=inactive signal(0% duty cycle)…
100=always active signal (100% duty cycle)

struct _tpm_config
#include <fsl_tpm.h> TPM config structure.

This structure holds the configuration settings for the TPM peripheral. To initialize this
structure to reasonable defaults, call the TPM_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

2.22. TPM: Timer PWMModule 239

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

tpm_clock_prescale_t prescale
Select TPM clock prescale value

2.23 UART: Universal Asynchronous Receiver/Transmitter
Driver

2.24 UART Driver

status_t UART_Init(UART_Type *base, const uart_config_t *config, uint32_t srcClock_Hz)
Initializes a UART instance with a user configuration structure and peripheral clock.

This function configures the UART module with the user-defined settings. The user can
configure the configuration structure and also get the default configuration by using the
UART_GetDefaultConfig() function. The example below shows how to use this API to con-
figure UART.

uart_config_t uartConfig;
uartConfig.baudRate_Bps = 115200U;
uartConfig.parityMode = kUART_ParityDisabled;
uartConfig.stopBitCount = kUART_OneStopBit;
uartConfig.txFifoWatermark = 0;
uartConfig.rxFifoWatermark = 1;
UART_Init(UART1, &uartConfig, 20000000U);

Parameters
• base – UART peripheral base address.

• config – Pointer to the user-defined configuration structure.

• srcClock_Hz – UART clock source frequency in HZ.

Return values
• kStatus_UART_BaudrateNotSupport – Baudrate is not support in current
clock source.

• kStatus_Success – Status UART initialize succeed

void UART_Deinit(UART_Type *base)
Deinitializes a UART instance.

This function waits for TX complete, disables TX and RX, and disables the UART clock.

Parameters
• base – UART peripheral base address.

void UART_GetDefaultConfig(uart_config_t *config)
Gets the default configuration structure.

This function initializes the UART configuration structure to a default value. The default
values are as follows. uartConfig->baudRate_Bps = 115200U; uartConfig->bitCountPerChar
= kUART_8BitsPerChar; uartConfig->parityMode = kUART_ParityDisabled; uartConfig-
>stopBitCount = kUART_OneStopBit; uartConfig->txFifoWatermark = 0; uartConfig-
>rxFifoWatermark = 1; uartConfig->idleType = kUART_IdleTypeStartBit; uartConfig-
>enableTx = false; uartConfig->enableRx = false;

Parameters

240 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

• config – Pointer to configuration structure.

status_t UART_SetBaudRate(UART_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
Sets the UART instance baud rate.

This function configures the UART module baud rate. This function is used to update the
UART module baud rate after the UART module is initialized by the UART_Init.

UART_SetBaudRate(UART1, 115200U, 20000000U);

Parameters
• base – UART peripheral base address.

• baudRate_Bps – UART baudrate to be set.

• srcClock_Hz – UART clock source frequency in Hz.

Return values
• kStatus_UART_BaudrateNotSupport – Baudrate is not support in the cur-
rent clock source.

• kStatus_Success – Set baudrate succeeded.

void UART_Enable9bitMode(UART_Type *base, bool enable)
Enable 9-bit data mode for UART.

This function set the 9-bit mode for UART module. The 9th bit is not used for parity thus
can be modified by user.

Parameters
• base – UART peripheral base address.

• enable – true to enable, flase to disable.

static inline void UART_SetMatchAddress(UART_Type *base, uint8_t address1, uint8_t address2)
Set the UART slave address.

This function configures the address for UART module that works as slave in 9-bit data
mode. One or two address fields can be configured. When the address field’s match enable
bit is set, the frame it receices with MSB being 1 is considered as an address frame, oth-
erwise it is considered as data frame. Once the address frame matches one of slave’s own
addresses, this slave is addressed. This address frame and its following data frames are
stored in the receive buffer, otherwise the frames will be discarded. To un-address a slave,
just send an address frame with unmatched address.

Note: Any UART instance joined in the multi-slave system can work as slave. The position
of the address mark is the same as the parity bit when parity is enabled for 8 bit and 9 bit
data formats.

Parameters
• base – UART peripheral base address.

• address1 – UART slave address 1.

• address2 – UART slave address 2.

static inline void UART_EnableMatchAddress(UART_Type *base, bool match1, bool match2)
Enable the UART match address feature.

Parameters
• base – UART peripheral base address.

2.24. UART Driver 241

MCUXpresso SDK Documentation, Release 25.09.00

• match1 – true to enable match address1, false to disable.

• match2 – true to enable match address2, false to disable.

static inline void UART_Set9thTransmitBit(UART_Type *base)
Set UART 9th transmit bit.

Parameters
• base – UART peripheral base address.

static inline void UART_Clear9thTransmitBit(UART_Type *base)
Clear UART 9th transmit bit.

Parameters
• base – UART peripheral base address.

uint32_t UART_GetStatusFlags(UART_Type *base)
Gets UART status flags.

This function gets all UART status flags. The flags are returned as the logical OR value of
the enumerators _uart_flags. To check a specific status, compare the return value with enu-
merators in _uart_flags. For example, to check whether the TX is empty, do the following.

if (kUART_TxDataRegEmptyFlag & UART_GetStatusFlags(UART1))
{

...
}

Parameters
• base – UART peripheral base address.

Returns
UART status flags which are ORed by the enumerators in the _uart_flags.

status_t UART_ClearStatusFlags(UART_Type *base, uint32_t mask)
Clears status flags with the provided mask.

This function clears UART status flags with a provided mask. An automatically
cleared flag can’t be cleared by this function. These flags can only be cleared or
set by hardware. kUART_TxDataRegEmptyFlag, kUART_TransmissionCompleteFlag,
kUART_RxDataRegFullFlag, kUART_RxActiveFlag, kUART_NoiseErrorInRxDataRegFlag,
kUART_ParityErrorInRxDataRegFlag, kUART_TxFifoEmptyFlag,kUART_RxFifoEmptyFlag

Note: that this API should be called when the Tx/Rx is idle. Otherwise it has no effect.

Parameters
• base – UART peripheral base address.

• mask – The status flags to be cleared; it is logical OR value of _uart_flags.

Return values
• kStatus_UART_FlagCannotClearManually – The flag can’t be cleared by this
function but it is cleared automatically by hardware.

• kStatus_Success – Status in the mask is cleared.

242 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

void UART_EnableInterrupts(UART_Type *base, uint32_t mask)
Enables UART interrupts according to the provided mask.

This function enables the UART interrupts according to the provided mask. The mask is a
logical OR of enumeration members. See _uart_interrupt_enable. For example, to enable
TX empty interrupt and RX full interrupt, do the following.

UART_EnableInterrupts(UART1,kUART_TxDataRegEmptyInterruptEnable | kUART_
↪→RxDataRegFullInterruptEnable);

Parameters
• base – UART peripheral base address.

• mask – The interrupts to enable. Logical OR of _uart_interrupt_enable.

void UART_DisableInterrupts(UART_Type *base, uint32_t mask)
Disables the UART interrupts according to the provided mask.

This function disables the UART interrupts according to the provided mask. The mask is a
logical OR of enumeration members. See _uart_interrupt_enable. For example, to disable
TX empty interrupt and RX full interrupt do the following.

UART_DisableInterrupts(UART1,kUART_TxDataRegEmptyInterruptEnable | kUART_
↪→RxDataRegFullInterruptEnable);

Parameters
• base – UART peripheral base address.

• mask – The interrupts to disable. Logical OR of _uart_interrupt_enable.

uint32_t UART_GetEnabledInterrupts(UART_Type *base)
Gets the enabled UART interrupts.

This function gets the enabled UART interrupts. The enabled interrupts are returned as the
logical OR value of the enumerators _uart_interrupt_enable. To check a specific interrupts
enable status, compare the return value with enumerators in _uart_interrupt_enable. For
example, to check whether TX empty interrupt is enabled, do the following.

uint32_t enabledInterrupts = UART_GetEnabledInterrupts(UART1);

if (kUART_TxDataRegEmptyInterruptEnable & enabledInterrupts)
{

...
}

Parameters
• base – UART peripheral base address.

Returns
UART interrupt flags which are logical OR of the enumerators in
_uart_interrupt_enable.

static inline uint32_t UART_GetDataRegisterAddress(UART_Type *base)
Gets the UART data register address.

This function returns the UART data register address, which is mainly used by DMA/eDMA.

Parameters
• base – UART peripheral base address.

2.24. UART Driver 243

MCUXpresso SDK Documentation, Release 25.09.00

Returns
UART data register addresses which are used both by the transmitter and the
receiver.

static inline void UART_EnableTxDMA(UART_Type *base, bool enable)
Enables or disables the UART transmitter DMA request.

This function enables or disables the transmit data register empty flag, S1[TDRE], to gener-
ate the DMA requests.

Parameters
• base – UART peripheral base address.

• enable – True to enable, false to disable.

static inline void UART_EnableRxDMA(UART_Type *base, bool enable)
Enables or disables the UART receiver DMA.

This function enables or disables the receiver data register full flag, S1[RDRF], to generate
DMA requests.

Parameters
• base – UART peripheral base address.

• enable – True to enable, false to disable.

static inline void UART_EnableTx(UART_Type *base, bool enable)
Enables or disables the UART transmitter.

This function enables or disables the UART transmitter.

Parameters
• base – UART peripheral base address.

• enable – True to enable, false to disable.

static inline void UART_EnableRx(UART_Type *base, bool enable)
Enables or disables the UART receiver.

This function enables or disables the UART receiver.

Parameters
• base – UART peripheral base address.

• enable – True to enable, false to disable.

static inline void UART_WriteByte(UART_Type *base, uint8_t data)
Writes to the TX register.

This function writes data to the TX register directly. The upper layer must ensure that the
TX register is empty or TX FIFO has empty room before calling this function.

Parameters
• base – UART peripheral base address.

• data – The byte to write.

static inline uint8_t UART_ReadByte(UART_Type *base)
Reads the RX register directly.

This function reads data from the RX register directly. The upper layer must ensure that
the RX register is full or that the TX FIFO has data before calling this function.

Parameters
• base – UART peripheral base address.

244 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

Returns
The byte read from UART data register.

static inline uint8_t UART_GetRxFifoCount(UART_Type *base)
Gets the rx FIFO data count.

Parameters
• base – UART peripheral base address.

Returns
rx FIFO data count.

static inline uint8_t UART_GetTxFifoCount(UART_Type *base)
Gets the tx FIFO data count.

Parameters
• base – UART peripheral base address.

Returns
tx FIFO data count.

void UART_SendAddress(UART_Type *base, uint8_t address)
Transmit an address frame in 9-bit data mode.

Parameters
• base – UART peripheral base address.

• address – UART slave address.

status_t UART_WriteBlocking(UART_Type *base, const uint8_t *data, size_t length)
Writes to the TX register using a blocking method.

This function polls the TX register, waits for the TX register to be empty or for the TX FIFO
to have room and writes data to the TX buffer.

Parameters
• base – UART peripheral base address.

• data – Start address of the data to write.

• length – Size of the data to write.

Return values
• kStatus_UART_Timeout – Transmission timed out and was aborted.

• kStatus_Success – Successfully wrote all data.

status_t UART_ReadBlocking(UART_Type *base, uint8_t *data, size_t length)
Read RX data register using a blocking method.

This function polls the RX register, waits for the RX register to be full or for RX FIFO to have
data, and reads data from the TX register.

Parameters
• base – UART peripheral base address.

• data – Start address of the buffer to store the received data.

• length – Size of the buffer.

Return values
• kStatus_UART_RxHardwareOverrun – Receiver overrun occurredwhile re-
ceiving data.

• kStatus_UART_NoiseError – A noise error occurred while receiving data.

2.24. UART Driver 245

MCUXpresso SDK Documentation, Release 25.09.00

• kStatus_UART_FramingError – A framing error occurred while receiving
data.

• kStatus_UART_ParityError – A parity error occurred while receiving data.

• kStatus_UART_Timeout – Transmission timed out and was aborted.

• kStatus_Success – Successfully received all data.

void UART_TransferCreateHandle(UART_Type *base, uart_handle_t *handle,
uart_transfer_callback_t callback, void *userData)

Initializes the UART handle.

This function initializes the UART handle which can be used for other UART transactional
APIs. Usually, for a specified UART instance, call this API once to get the initialized handle.

Parameters
• base – UART peripheral base address.

• handle – UART handle pointer.

• callback – The callback function.

• userData – The parameter of the callback function.

void UART_TransferStartRingBuffer(UART_Type *base, uart_handle_t *handle, uint8_t
*ringBuffer, size_t ringBufferSize)

Sets up the RX ring buffer.

This function sets up the RX ring buffer to a specific UART handle.

When the RX ring buffer is used, data received are stored into the ring buffer evenwhen the
user doesn’t call the UART_TransferReceiveNonBlocking() API. If data is already received
in the ring buffer, the user can get the received data from the ring buffer directly.

Note: When using the RX ring buffer, one byte is reserved for internal use. In other words,
if ringBufferSize is 32, only 31 bytes are used for saving data.

Parameters
• base – UART peripheral base address.

• handle – UART handle pointer.

• ringBuffer – Start address of the ring buffer for background receiving. Pass
NULL to disable the ring buffer.

• ringBufferSize – Size of the ring buffer.

void UART_TransferStopRingBuffer(UART_Type *base, uart_handle_t *handle)
Aborts the background transfer and uninstalls the ring buffer.

This function aborts the background transfer and uninstalls the ring buffer.

Parameters
• base – UART peripheral base address.

• handle – UART handle pointer.

size_t UART_TransferGetRxRingBufferLength(uart_handle_t *handle)
Get the length of received data in RX ring buffer.

Parameters
• handle – UART handle pointer.

246 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

Returns
Length of received data in RX ring buffer.

status_t UART_TransferSendNonBlocking(UART_Type *base, uart_handle_t *handle,
uart_transfer_t *xfer)

Transmits a buffer of data using the interrupt method.

This function sends data using an interrupt method. This is a non-blocking function, which
returns directlywithoutwaiting for all data to bewritten to the TX register. When all data is
written to the TX register in the ISR, the UART driver calls the callback function and passes
the kStatus_UART_TxIdle as status parameter.

Note: The kStatus_UART_TxIdle is passed to the upper layer when all data is written to the
TX register. However, it does not ensure that all data is sent out. Before disabling the TX,
check the kUART_TransmissionCompleteFlag to ensure that the TX is finished.

Parameters
• base – UART peripheral base address.

• handle – UART handle pointer.

• xfer – UART transfer structure. See uart_transfer_t.

Return values
• kStatus_Success – Successfully start the data transmission.

• kStatus_UART_TxBusy – Previous transmission still not finished; data not
all written to TX register yet.

• kStatus_InvalidArgument – Invalid argument.

void UART_TransferAbortSend(UART_Type *base, uart_handle_t *handle)
Aborts the interrupt-driven data transmit.

This function aborts the interrupt-driven data sending. The user can get the remainBytes
to find out how many bytes are not sent out.

Parameters
• base – UART peripheral base address.

• handle – UART handle pointer.

status_t UART_TransferGetSendCount(UART_Type *base, uart_handle_t *handle, uint32_t
*count)

Gets the number of bytes sent out to bus.

This function gets the number of bytes sent out to bus by using the interrupt method.

Parameters
• base – UART peripheral base address.

• handle – UART handle pointer.

• count – Send bytes count.

Return values
• kStatus_NoTransferInProgress – No send in progress.

• kStatus_InvalidArgument – The parameter is invalid.

• kStatus_Success – Get successfully through the parameter count;

2.24. UART Driver 247

MCUXpresso SDK Documentation, Release 25.09.00

status_t UART_TransferReceiveNonBlocking(UART_Type *base, uart_handle_t *handle,
uart_transfer_t *xfer, size_t *receivedBytes)

Receives a buffer of data using an interrupt method.

This function receives data using an interrupt method. This is a non-blocking function,
which returns without waiting for all data to be received. If the RX ring buffer is used and
not empty, the data in the ring buffer is copied and the parameter receivedBytes shows how
many bytes are copied from the ring buffer. After copying, if the data in the ring buffer is
not enough to read, the receive request is saved by the UART driver. When the new data
arrives, the receive request is serviced first. When all data is received, the UART driver
notifies the upper layer through a callback function and passes the status parameter kSta-
tus_UART_RxIdle. For example, the upper layer needs 10 bytes but there are only 5 bytes in
the ring buffer. The 5 bytes are copied to the xfer->data and this function returns with the
parameter receivedBytes set to 5. For the left 5 bytes, newly arrived data is saved from the
xfer->data[5]. When 5 bytes are received, the UART driver notifies the upper layer. If the
RX ring buffer is not enabled, this function enables the RX and RX interrupt to receive data
to the xfer->data. When all data is received, the upper layer is notified.

Parameters
• base – UART peripheral base address.

• handle – UART handle pointer.

• xfer – UART transfer structure, see uart_transfer_t.

• receivedBytes – Bytes received from the ring buffer directly.

Return values
• kStatus_Success – Successfully queue the transfer into transmit queue.

• kStatus_UART_RxBusy – Previous receive request is not finished.

• kStatus_InvalidArgument – Invalid argument.

void UART_TransferAbortReceive(UART_Type *base, uart_handle_t *handle)
Aborts the interrupt-driven data receiving.

This function aborts the interrupt-driven data receiving. The user can get the remainBytes
to know how many bytes are not received yet.

Parameters
• base – UART peripheral base address.

• handle – UART handle pointer.

status_t UART_TransferGetReceiveCount(UART_Type *base, uart_handle_t *handle, uint32_t
*count)

Gets the number of bytes that have been received.

This function gets the number of bytes that have been received.

Parameters
• base – UART peripheral base address.

• handle – UART handle pointer.

• count – Receive bytes count.

Return values
• kStatus_NoTransferInProgress – No receive in progress.

• kStatus_InvalidArgument – Parameter is invalid.

• kStatus_Success – Get successfully through the parameter count;

248 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

status_t UART_EnableTxFIFO(UART_Type *base, bool enable)
Enables or disables the UART Tx FIFO.

This function enables or disables the UART Tx FIFO.

param base UART peripheral base address. param enable true to enable, false to disable.
retval kStatus_Success Successfully turn on or turn off Tx FIFO. retval kStatus_Fail Fail to
turn on or turn off Tx FIFO.

status_t UART_EnableRxFIFO(UART_Type *base, bool enable)
Enables or disables the UART Rx FIFO.

This function enables or disables the UART Rx FIFO.

param base UART peripheral base address. param enable true to enable, false to disable.
retval kStatus_Success Successfully turn on or turn off Rx FIFO. retval kStatus_Fail Fail to
turn on or turn off Rx FIFO.

static inline void UART_SetRxFifoWatermark(UART_Type *base, uint8_t water)
Sets the rx FIFO watermark.

Parameters
• base – UART peripheral base address.

• water – Rx FIFO watermark.

static inline void UART_SetTxFifoWatermark(UART_Type *base, uint8_t water)
Sets the tx FIFO watermark.

Parameters
• base – UART peripheral base address.

• water – Tx FIFO watermark.

void UART_TransferHandleIRQ(UART_Type *base, void *irqHandle)
UART IRQ handle function.

This function handles the UART transmit and receive IRQ request.

Parameters
• base – UART peripheral base address.

• irqHandle – UART handle pointer.

void UART_TransferHandleErrorIRQ(UART_Type *base, void *irqHandle)
UART Error IRQ handle function.

This function handles the UART error IRQ request.

Parameters
• base – UART peripheral base address.

• irqHandle – UART handle pointer.

FSL_UART_DRIVER_VERSION
UART driver version.

Error codes for the UART driver.

Values:

enumerator kStatus_UART_TxBusy
Transmitter is busy.

2.24. UART Driver 249

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus_UART_RxBusy
Receiver is busy.

enumerator kStatus_UART_TxIdle
UART transmitter is idle.

enumerator kStatus_UART_RxIdle
UART receiver is idle.

enumerator kStatus_UART_TxWatermarkTooLarge
TX FIFO watermark too large

enumerator kStatus_UART_RxWatermarkTooLarge
RX FIFO watermark too large

enumerator kStatus_UART_FlagCannotClearManually
UART flag can’t be manually cleared.

enumerator kStatus_UART_Error
Error happens on UART.

enumerator kStatus_UART_RxRingBufferOverrun
UART RX software ring buffer overrun.

enumerator kStatus_UART_RxHardwareOverrun
UART RX receiver overrun.

enumerator kStatus_UART_NoiseError
UART noise error.

enumerator kStatus_UART_FramingError
UART framing error.

enumerator kStatus_UART_ParityError
UART parity error.

enumerator kStatus_UART_BaudrateNotSupport
Baudrate is not support in current clock source

enumerator kStatus_UART_IdleLineDetected
UART IDLE line detected.

enumerator kStatus_UART_Timeout
UART times out.

enum _uart_parity_mode
UART parity mode.

Values:

enumerator kUART_ParityDisabled
Parity disabled

enumerator kUART_ParityEven
Parity enabled, type even, bit setting: PE|PT = 10

enumerator kUART_ParityOdd
Parity enabled, type odd, bit setting: PE|PT = 11

enum _uart_stop_bit_count
UART stop bit count.

Values:

250 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUART_OneStopBit
One stop bit

enumerator kUART_TwoStopBit
Two stop bits

enum _uart_idle_type_select
UART idle type select.

Values:

enumerator kUART_IdleTypeStartBit
Start counting after a valid start bit.

enumerator kUART_IdleTypeStopBit
Start counting after a stop bit.

enum _uart_interrupt_enable
UART interrupt configuration structure, default settings all disabled.

This structure contains the settings for all of the UART interrupt configurations.

Values:

enumerator kUART_LinBreakInterruptEnable
LIN break detect interrupt.

enumerator kUART_RxActiveEdgeInterruptEnable
RX active edge interrupt.

enumerator kUART_TxDataRegEmptyInterruptEnable
Transmit data register empty interrupt.

enumerator kUART_TransmissionCompleteInterruptEnable
Transmission complete interrupt.

enumerator kUART_RxDataRegFullInterruptEnable
Receiver data register full interrupt.

enumerator kUART_IdleLineInterruptEnable
Idle line interrupt.

enumerator kUART_RxOverrunInterruptEnable
Receiver overrun interrupt.

enumerator kUART_NoiseErrorInterruptEnable
Noise error flag interrupt.

enumerator kUART_FramingErrorInterruptEnable
Framing error flag interrupt.

enumerator kUART_ParityErrorInterruptEnable
Parity error flag interrupt.

enumerator kUART_RxFifoOverflowInterruptEnable
RX FIFO overflow interrupt.

enumerator kUART_TxFifoOverflowInterruptEnable
TX FIFO overflow interrupt.

enumerator kUART_RxFifoUnderflowInterruptEnable
RX FIFO underflow interrupt.

enumerator kUART_AllInterruptsEnable

2.24. UART Driver 251

MCUXpresso SDK Documentation, Release 25.09.00

UART status flags.

This provides constants for the UART status flags for use in the UART functions.

Values:

enumerator kUART_TxDataRegEmptyFlag
TX data register empty flag.

enumerator kUART_TransmissionCompleteFlag
Transmission complete flag.

enumerator kUART_RxDataRegFullFlag
RX data register full flag.

enumerator kUART_IdleLineFlag
Idle line detect flag.

enumerator kUART_RxOverrunFlag
RX overrun flag.

enumerator kUART_NoiseErrorFlag
RX takes 3 samples of each received bit. If any of these samples differ, noise flag sets

enumerator kUART_FramingErrorFlag
Frame error flag, sets if logic 0 was detected where stop bit expected

enumerator kUART_ParityErrorFlag
If parity enabled, sets upon parity error detection

enumerator kUART_LinBreakFlag
LIN break detect interrupt flag, sets when LIN break char detected and LIN circuit
enabled

enumerator kUART_RxActiveEdgeFlag
RX pin active edge interrupt flag,sets when active edge detected

enumerator kUART_RxActiveFlag
Receiver Active Flag (RAF), sets at beginning of valid start bit

enumerator kUART_NoiseErrorInRxDataRegFlag
Noisy bit, sets if noise detected.

enumerator kUART_ParityErrorInRxDataRegFlag
Parity bit, sets if parity error detected.

enumerator kUART_TxFifoEmptyFlag
TXEMPT bit, sets if TX buffer is empty

enumerator kUART_RxFifoEmptyFlag
RXEMPT bit, sets if RX buffer is empty

enumerator kUART_TxFifoOverflowFlag
TXOF bit, sets if TX buffer overflow occurred

enumerator kUART_RxFifoOverflowFlag
RXOF bit, sets if receive buffer overflow

enumerator kUART_RxFifoUnderflowFlag
RXUF bit, sets if receive buffer underflow

typedef enum _uart_parity_mode uart_parity_mode_t
UART parity mode.

252 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _uart_stop_bit_count uart_stop_bit_count_t
UART stop bit count.

typedef enum _uart_idle_type_select uart_idle_type_select_t
UART idle type select.

typedef struct _uart_config uart_config_t
UART configuration structure.

typedef struct _uart_transfer uart_transfer_t
UART transfer structure.

typedef struct _uart_handle uart_handle_t

typedef void (*uart_transfer_callback_t)(UART_Type *base, uart_handle_t *handle, status_t
status, void *userData)

UART transfer callback function.

typedef void (*uart_isr_t)(UART_Type *base, void *handle)

void *s_uartHandle[]
Pointers to uart handles for each instance.

const IRQn_Type s_uartIRQ[]

uart_isr_t s_uartIsr
Pointer to uart IRQ handler for each instance.

uint32_t UART_GetInstance(UART_Type *base)
Get the UART instance from peripheral base address.

Parameters
• base – UART peripheral base address.

Returns
UART instance.

UART_RETRY_TIMES
Retry times for waiting flag.

struct _uart_config
#include <fsl_uart.h> UART configuration structure.

Public Members

uint32_t baudRate_Bps
UART baud rate

uart_parity_mode_t parityMode
Parity mode, disabled (default), even, odd

uart_stop_bit_count_t stopBitCount
Number of stop bits, 1 stop bit (default) or 2 stop bits

uint8_t txFifoWatermark
TX FIFO watermark

uint8_t rxFifoWatermark
RX FIFO watermark

bool enableRxRTS
RX RTS enable

2.24. UART Driver 253

MCUXpresso SDK Documentation, Release 25.09.00

bool enableTxCTS
TX CTS enable

uart_idle_type_select_t idleType
IDLE type select.

bool enableTx
Enable TX

bool enableRx
Enable RX

struct _uart_transfer
#include <fsl_uart.h> UART transfer structure.

Public Members

size_t dataSize
The byte count to be transfer.

struct _uart_handle
#include <fsl_uart.h> UART handle structure.

Public Members

const uint8_t *volatile txData
Address of remaining data to send.

volatile size_t txDataSize
Size of the remaining data to send.

size_t txDataSizeAll
Size of the data to send out.

uint8_t *volatile rxData
Address of remaining data to receive.

volatile size_t rxDataSize
Size of the remaining data to receive.

size_t rxDataSizeAll
Size of the data to receive.

uint8_t *rxRingBuffer
Start address of the receiver ring buffer.

size_t rxRingBufferSize
Size of the ring buffer.

volatile uint16_t rxRingBufferHead
Index for the driver to store received data into ring buffer.

volatile uint16_t rxRingBufferTail
Index for the user to get data from the ring buffer.

uart_transfer_callback_t callback
Callback function.

void *userData
UART callback function parameter.

254 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

volatile uint8_t txState
TX transfer state.

volatile uint8_t rxState
RX transfer state

union __unnamed11__

Public Members

uint8_t *data
The buffer of data to be transfer.

uint8_t *rxData
The buffer to receive data.

const uint8_t *txData
The buffer of data to be sent.

2.25 WDOG8: 8-bit Watchdog Timer

voidWDOG8_GetDefaultConfig(wdog8_config_t *config)
Initializes the WDOG8 configuration structure.

This function initializes the WDOG8 configuration structure to default values. The default
values are:

wdog8Config->enableWdog8 = true;
wdog8Config->clockSource = kWDOG8_ClockSource1;
wdog8Config->prescaler = kWDOG8_ClockPrescalerDivide1;
wdog8Config->workMode.enableWait = true;
wdog8Config->workMode.enableStop = false;
wdog8Config->workMode.enableDebug = false;
wdog8Config->testMode = kWDOG8_TestModeDisabled;
wdog8Config->enableUpdate = true;
wdog8Config->enableInterrupt = false;
wdog8Config->enableWindowMode = false;
wdog8Config->windowValue = 0U;
wdog8Config->timeoutValue = 0xFFFFU;

See also:
wdog8_config_t

Parameters
• config – Pointer to the WDOG8 configuration structure.

voidWDOG8_Init(WDOG_Type *base, const wdog8_config_t *config)
Initializes the WDOG8 module.

This function initializes the WDOG8. To reconfigure the WDOG8 without forcing a reset
first, enableUpdate must be set to true in the configuration.

Example:

2.25. WDOG8: 8-bit Watchdog Timer 255

MCUXpresso SDK Documentation, Release 25.09.00

wdog8_config_t config;
WDOG8_GetDefaultConfig(&config);
config.timeoutValue = 0x7ffU;
config.enableUpdate = true;
WDOG8_Init(wdog_base,&config);

Parameters
• base – WDOG8 peripheral base address.

• config – The configuration of the WDOG8.

voidWDOG8_Deinit(WDOG_Type *base)
De-initializes the WDOG8 module.

This function shuts down the WDOG8. Ensure that the WDOG_CS1.UPDATE is 1, which
means that the register update is enabled.

Parameters
• base – WDOG8 peripheral base address.

static inline voidWDOG8_Enable(WDOG_Type *base)
Enables the WDOG8 module.

This function writes a value into the WDOG_CS1 register to enable the WDOG8. The
WDOG_CS1 register is a write-once register. Ensure that the WCT window is still open and
this register has not been written in this WCT while the function is called.

Parameters
• base – WDOG8 peripheral base address.

static inline voidWDOG8_Disable(WDOG_Type *base)
Disables the WDOG8 module.

This function writes a value into the WDOG_CS1 register to disable the WDOG8. The
WDOG_CS1 register is a write-once register. Ensure that the WCT window is still open and
this register has not been written in this WCT while the function is called.

Parameters
• base – WDOG8 peripheral base address

static inline voidWDOG8_EnableInterrupts(WDOG_Type *base, uint8_t mask)
Enables the WDOG8 interrupt.

This function writes a value into the WDOG_CS1 register to enable the WDOG8 interrupt.
The WDOG_CS1 register is a write-once register. Ensure that the WCT window is still open
and this register has not been written in this WCT while the function is called.

Parameters
• base – WDOG8 peripheral base address.

• mask – The interrupts to enable. The parameter can be a combination of
the following source if defined:

– kWDOG8_InterruptEnable

static inline voidWDOG8_DisableInterrupts(WDOG_Type *base, uint8_t mask)
Disables the WDOG8 interrupt.

This function writes a value into the WDOG_CS register to disable the WDOG8 interrupt.
The WDOG_CS register is a write-once register. Ensure that the WCT window is still open
and this register has not been written in this WCT while the function is called.

Parameters

256 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.09.00

• base – WDOG8 peripheral base address.

• mask – The interrupts to disabled. The parameter can be a combination of
the following source if defined:

– kWDOG8_InterruptEnable

static inline uint8_tWDOG8_GetStatusFlags(WDOG_Type *base)
Gets the WDOG8 all status flags.

This function gets all status flags.

Example to get the running flag:

uint32_t status;
status = WDOG8_GetStatusFlags(wdog_base) & kWDOG8_RunningFlag;

See also:
_wdog8_status_flags_t

• true: related status flag has been set.

• false: related status flag is not set.

Parameters
• base – WDOG8 peripheral base address

Returns
State of the status flag: asserted (true) or not-asserted (false).

voidWDOG8_ClearStatusFlags(WDOG_Type *base, uint8_t mask)
Clears the WDOG8 flag.

This function clears the WDOG8 status flag.

Example to clear an interrupt flag:

WDOG8_ClearStatusFlags(wdog_base,kWDOG8_InterruptFlag);

Parameters
• base – WDOG8 peripheral base address.

• mask – The status flags to clear. The parameter can be any combination of
the following values:

– kWDOG8_InterruptFlag

static inline voidWDOG8_SetTimeoutValue(WDOG_Type *base, uint16_t timeoutCount)
Sets the WDOG8 timeout value.

This function writes a timeout value into the WDOG_TOVALH/L register. The
WDOG_TOVALH/L register is a write-once register. Ensure that the WCT window is still
open and this register has not been written in this WCT while the function is called.

Parameters
• base – WDOG8 peripheral base address

• timeoutCount – WDOG8 timeout value, count of WDOG8 clock ticks.

static inline voidWDOG8_SetWindowValue(WDOG_Type *base, uint16_t windowValue)
Sets the WDOG8 window value.

This function writes a window value into theWDOG_WINH/L register. TheWDOG_WINH/L
register is a write-once register. Ensure that the WCT window is still open and this register
has not been written in this WCT while the function is called.

2.25. WDOG8: 8-bit Watchdog Timer 257

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• base – WDOG8 peripheral base address.

• windowValue – WDOG8 window value.

static inline voidWDOG8_Unlock(WDOG_Type *base)
Unlocks the WDOG8 register written.

This function unlocks the WDOG8 register written.

Before starting the unlock sequence and following the configuration, disable the global in-
terrupts. Otherwise, an interrupt could effectively invalidate the unlock sequence and the
WCT may expire. After the configuration finishes, re-enable the global interrupts.

Parameters
• base – WDOG8 peripheral base address

static inline voidWDOG8_Refresh(WDOG_Type *base)
Refreshes the WDOG8 timer.

This function feeds the WDOG8. This function should be called before the Watchdog timer
is in timeout. Otherwise, a reset is asserted.

Parameters
• base – WDOG8 peripheral base address

static inline uint16_tWDOG8_GetCounterValue(WDOG_Type *base)
Gets the WDOG8 counter value.

This function gets the WDOG8 counter value.

Parameters
• base – WDOG8 peripheral base address.

Returns
Current WDOG8 counter value.

258 Chapter 2. MKE02Z4

Chapter 3

Middleware

3.1 Motor Control

3.1.1 FreeMASTER

Communication Driver User Guide

Introduction

What is FreeMASTER? FreeMASTER is a PC-based application developed by NXP for NXP cus-
tomers. It is a versatile tool usable as a real-time monitor, visualization tool, and a graphical
control panel of embedded applications based on the NXP processing units.

This document describes the embedded-side software driver which implements an interface be-
tween the application and the host PC. The interface covers the following communication:

• Serial UART communication either over plain RS232 interface or more typically over a
USB-to-Serial either external or built in a debugger probe.

• USB direct connection to target microcontroller

• CAN bus
• TCP/IP network wired or WiFi

• Segger J-Link RTT
• JTAG debug port communication

• …and all of the above also using a Zephyr generic drivers.
The driver also supports so-called “packet-drivenBDM” interfacewhich enables a protocol-based
communication over a debugging port. The BDM stands for Background Debugging Module
and its physical implementation is different on each platform. Some platforms leverage a semi-
standard JTAG interface, other platforms provide a custom implementation called BDM. Regard-
less of the name, this debugging interface enables non-intrusive access to the memory space
while the target CPU is running. For basic memory read and write operations, there is no com-
munication driver required on the target when communicating with the host PC. Use this driver
to getmore advanced FreeMASTER protocol features over the BDM interface. The drivermust be
configured for the packet-driven BDM mode, in which the host PC uses the debugging interface
to write serial command frames directly to the target memory buffer. The same method is then
used to read response frames from that memory buffer.

259

https://www.nxp.com/freemaster

MCUXpresso SDK Documentation, Release 25.09.00

Similar to “packet-driven BDM”, the FreeMASTER also supports a communication over
[J-Link RTT]((https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-
transfer/) interface defined by SEGGER Microcontroller GmbH for ARM CortexM-based micro-
controllers. This method also uses JTAG physical interface and enables high-speed real time
communication to run over the same channel as used for application debugging.

Driver version 3 This document describes version 3 of the FreeMASTER Communication
Driver. This version features the implementation of the new Serial Protocol, which significantly
extends the features and security of its predecessor. The new protocol internal number is v4 and
its specification is available in the documentation accompanying the driver code.

Driver V3 is deployed to modern 32-bit MCU platforms first, so the portfolio of supported plat-
forms is smaller than for the previous V2 versions. It is recommended to keep using the V2 driver
for legacy platforms, such as S08, S12, ColdFire, or Power Architecture. Reach out to FreeMAS-
TER community or to the local NXP representative with requests for more information or to port
the V3 driver to legacy MCU devices.

Thanks to a layered approach, the new driver simplifies the porting of the driver to new UART,
CAN or networking communication interfaces significantly. Users are encouraged to port the
driver to more NXP MCU platforms and contribute the code back to NXP for integration into
future releases. Existing code and low-level driver layers may be used as an example when
porting to new targets.

Note: Using the FreeMASTER tool and FreeMASTER Communication Driver is only allowed in
systemsbased onNXPmicrocontroller ormicroprocessor unit. Usewith non-NXPMCUplatforms
is not permitted by the license terms.

Target platforms The driver implementation uses the following abstraction mechanisms
which simplify driver porting and supporting new communication modules:

• General CPU Platform (see source code in the src/platforms directory). The code in
this layer is only specific to native data type sizes and CPU architectures (for example;
alignment-aware memory copy routines). This driver version brings two generic imple-
mentations of 32-bit platforms supporting both little-endian and big-endian architectures.
There are also implementations customized for the 56F800E family of digital signal con-
trollers and S12Z MCUs. Zephyr is treated as a specific CPU platform as it brings unified
user configuration (Kconfig) and generic hardware device drivers. With Zephyr, the trans-
port layer and low-level communication layers described below are configured automati-
cally using Kconfig and Device Tree technologies.

• Transport CommunicationLayer - The Serial, CAN,Networking, PD-BDM, and othermeth-
ods of transport logic are implemented as a driver layer called FMSTR_TRANSPORT with a
uniform API. A support of the Network transport also extends single-client modes of oper-
ation which are native for Serial, USB and CAN by a concept of multiple client sessions.

• Low-level Communication Driver - Each type of transport further defines a low-level
API used to access the physical communication module. For example, the Serial trans-
port defines a character-orientedAPI implemented by different serial communicationmod-
ules like UART, LPUART, USART, and also USB-CDC. Similarly, the CAN transport defines a
message-oriented API implemented by the FlexCAN or MCAN modules. Moreover, there
are multiple different implementations for the same kind of communication peripherals.
The difference between the implementation is in the way the low-level hardware regis-
ters are accessed. The mcuxsdk folder contains implementations which use MCUXpresso
SDK drivers. These drivers should be used in applications based on the NXP MCUXpresso
SDK. The “ampsdk” drivers target automotive-specific MCUs and their respective SDKs.
The “dreg” implementations use a plain C-language access to hardware register addresses
which makes it a universal and the most portable solution. In this case, users are encour-
aged to add more drivers for other communication modules or other respective SDKs and
contribute the code back to NXP for integration.

260 Chapter 3. Middleware

https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster
https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster

MCUXpresso SDK Documentation, Release 25.09.00

The low-level drivers defined for the Networking transport enable datagram-oriented UDP
and stream TCP communication. This implementation is demonstrated using the lwIP soft-
ware stack but shall be portable to other TCP/IP stacks. It may sound surprisingly, but also
the Segger J-Link RTT communication driver is linked to the Networking transport (RTT is
stream oriented communication handled similarly to TCP).

Replacing existing drivers For all supported platforms, the driver described in this document
replaces the V2 implementation and also older driver implementations that were available sep-
arately for individual platforms (PC Master SCI drivers).

Clocks, pins, and peripheral initialization The FreeMASTER communication driver is only
responsible for runtime processing of the communication and must be integrated with an user
application code to function properly. The user application code is responsible for general initial-
ization of clock sources, pinmultiplexers, and peripheral registers related to the communication
speed. Such initialization should be done before calling the FMSTR_Init function.

It is recommended to develop the user application using one of the Software Development Kits
(SDKs) available from third parties or directly from NXP, such as MCUXpresso SDK, MCUXpresso
IDE, and related tools. This approach simplifies the general configuration process significantly.

MCUXpresso SDK TheMCUXpresso SDK is a software package providedbyNXPwhich contains
the device initialization code, linker files, and software driverswith example applications for the
NXP family of MCUs. The MCUXpresso Config Tools may be used to generate the clock-setup and
pin-multiplexer setup code suitable for the selected processor.

The MCUXpresso SDK also contains this FreeMASTER communication driver as a “middle-
ware” component which may be downloaded along with the example applications from https:
//mcuxpresso.nxp.com/en/welcome.

MCUXpresso SDK on GitHub The FreeMASTER communication driver is also released as one
of the middleware components of the MCUXpresso SDK on the GitHub. This release enables
direct integration of the FreeMASTER source code Git repository into a target applications in-
cluding Zephyr applications.

Related links:

• The official FreeMASTER middleware repository.

• Online version of this document

FreeMASTER in Zephyr The FreeMASTER middleware repository can be used with MCUX-
presso SDK as well as a Zephyr module. Zephyr-specific samples which include examples of
Kconfig and Device Tree configurations for Serial, USB and Network communications are avail-
able in separate repository. West manifest in this sample repository fetches the full Zephyr pack-
age including the FreeMASTER middleware repository used as a Zephyr module.

Example applications

MCUX SDK Example applications There are several example applications available for each
supported MCU platform.

• fmstr_uart demonstrates a plain serial transmission, typically connecting to a computer’s
physical or virtual COM port. The typical transmission speed is 115200 bps.

3.1. Motor Control 261

https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/user_guide/user_guide.html#multi-session-support

MCUXpresso SDK Documentation, Release 25.09.00

• fmstr_can demonstrates CAN bus communication. This requires a suitable CAN interface
connected to the computer and interconnected with the target MCU using a properly ter-
minated CAN bus. The typical transmission speed is 500 kbps. A FreeMASTER-over-CAN
communication plug-in must be used.

• fmstr_usb_cdc uses an on-chip USB controller to implement a CDC communication class.
It is connected directly to a computer’s USB port and creates a virtual COM port device. The
typical transmission speed is above 1 Mbps.

• fmstr_net demonstrates the Network communication over UDP or TCP protocol. Existing
examples use lwIP stack to implement the communication, but in general, it shall be possi-
ble to use any other TCP/IP stack to achieve the same functionality.

• fmstr_wifi is the fmstr_net application modified to use aWiFi network interface instead of
a wired Ethernet connection.

• fmstr_rtt demonstrates the communication over SEGGER J-Link RTT interface. Both fm-
str_net and fmstr_rtt examples require the FreeMASTER TCP/UDP communication plug-in
to be used on the PC host side.

• fmstr_eonce uses the real-time data unit on the JTAG EOnCEmodule of the 56F800E family
to implement pseudo-serial communication over the JTAG port. The typical transmission
speed is around 10 kbps. This communication requires FreeMASTER JTAG/EOnCE commu-
nication plug-in.

• fmstr_pdbdm uses JTAG or BDM debugging interface to access the target RAM directly
while the CPU is running. Note that such approach can be used with any MCU applica-
tion, even without any special driver code. The computer reads from and writes into the
RAMdirectly without CPU intervention. The Packet-Driven BDM (PD-BDM) communication
uses the same memory access to exchange command and response frames. With PD-BDM,
the FreeMASTER tool is able to go beyond basic memory read/write operations and ac-
cesses also advanced features like Recorder, TSA, or Pipes. The typical transmission speed
is around 10 kbps. A PD-BDM communication plug-in must be used in FreeMASTER and
configured properly for the selected debugging interface. Note that this communication
cannot be used while a debugging interface is used by a debugger session.

• fmstr_any is a special example application which demonstrates how the NXPMCUXpresso
Config Tools can be used to configure pins, clocks, peripherals, interrupts, and even the
FreeMASTER “middleware” driver features in a graphical and user friendly way. The user
can switch between the Serial, CAN, and other ways of communication and generate the
required initialization code automatically.

Zephyr sample spplications Zephyr sample applications demonstrate Kconfig and Device
Tree configuration which configure the FreeMASTER middleware module for a selected com-
munication option (Serial, CAN, Network or RTT).

Refer to readme.md files in each sample directory for description of configuration options re-
quired to implement FreeMASTER connectivity.

Description

This section shows how to add the FreeMASTER Communication Driver into application and how
to configure the connection to the FreeMASTER visualization tool.

Features The FreeMASTER driver implements the FreeMASTER protocol V4 and provides the
following features which may be accessed using the FreeMASTER visualization tool:

• Read/write access to any memory location on the target.

• Optional password protection of the read, read/write, and read/write/flash access levels.

262 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

• Atomic bit manipulation on the target memory (bit-wise write access).

• Optimal size-aligned access to memory which is also suitable to access the peripheral reg-
ister space.

• Oscilloscope access—real-time access to target variables. The sample rate may be limited
by the communication speed.

• Recorder— access to the fast transient recorder running on the board as a part of the
FreeMASTER driver. The sample rate is only limited by the MCU CPU speed. The length
of the data recorded depends on the amount of available memory.

• Multiple instances of Oscilloscopes andRecorderswithout the limitation ofmaximumnum-
ber of variables.

• Application commands—high-level message delivery from the PC to the application.

• TSA tables—describing the data types, variables, files, or hyperlinks exported by the target
application. The TSA newly supports also non-memory mapped resources like external
EEPROM or SD Card files.

• Pipes—enabling the buffered stream-oriented data exchange for a general-purpose
terminal-like communication, diagnostic data streaming, or other data exchange.

The FreeMASTER driver features:

• Full FreeMASTER protocol V4 implementation with a new V4 style of CRC used.

• Layered approach supporting Serial, CAN, Network, PD-BDM, and other transports.

• Layered low-level Serial transport driver architecture enabling to select UART, LPUART,
USART, and other physical implementations of serial interfaces, including USB-CDC.

• Layered low-level CAN transport driver architecture enabling to select FlexCAN, msCAN,
MCAN, and other physical implementations of the CAN interface.

• Layered low-level Networking transport enabling to select TCP, UDP or J-Link RTT commu-
nication.

• TSA support towrite-protectmemory regions or individual variables and to deny the access
to the unsafe memory.

• The pipe callback handlers are invoked whenever new data is available for reading from
the pipe.

• Two Serial Single-Wire modes of operation are enabled. The “external” mode has the RX
and TX shorted on-board. The “true” single-wire mode interconnects internally when the
MCU or UART modules support it.

The following sections briefly describe all FreeMASTER features implemented by the driver. See
the PC-based FreeMASTER User Manual for more details on how to use the features to monitor,
tune, or control an embedded application.

BoardDetection The FreeMASTER protocol V4 defines the standard set of configuration values
which the host PC tool reads to identify the target and to access other target resources properly.
The configuration includes the following parameters:

• Version of the driver and the version of the protocol implemented.

• MTU as the Maximum size of the Transmission Unit (for example; communication buffer
size).

• Application name, description, and version strings.

• Application build date and time as a string.

• Target processor byte ordering (little/big endian).

• Protection level that requires password authentication.

3.1. Motor Control 263

MCUXpresso SDK Documentation, Release 25.09.00

• Number of the Recorder and Oscilloscope instances.

• RAM Base Address for optimized memory access commands.

Memory Read This basic feature enables the host PC to read any data memory location by
specifying the address and size of the required memory area. The device response frame must
be shorter than theMTU to fit into the outgoing communication buffer. To read a devicememory
of any size, the host uses the information retrieved during the Board Detection and splits the
large-block request to multiple partial requests.

The driver uses size-aligned operations to read the target memory (for example; uses proper
read-word instruction when an address is aligned to 4 bytes).

MemoryWrite Similarly to the Memory Read operation, the MemoryWrite feature enables to
write to any RAMmemory location on the target device. A single write command framemust be
shorter than the MTU to fit into the target communication buffer. Larger requests must be split
into smaller ones.

The driver uses size-aligned operations to write to the target memory (for example; uses proper
write-word instruction when an address is aligned to 4 bytes).

MaskedMemoryWrite To implement thewrite access to a single bit or a group of bits of target
variables, the Masked Memory Write feature is available in the FreeMASTER protocol and it is
supported by the driver using the Read-Modify-Write approach.

Be careful when writing to bit fields of volatile variables that are also modified in an application
interrupt. The interrupt may be serviced in the middle of a read-modify-write operation and it
may cause data corruption.

Oscilloscope The protocol and driver enables any number of variables to be read at once with
a single request from the host. This feature is called Oscilloscope and the FreeMASTER tool uses
it to display a real-time graph of variable values.

The driver can be configured to support any number of Oscilloscope instances and enable simul-
taneously running graphs to be displayed on the host computer screen.

Recorder The protocol enables the host to select target variableswhose values are then period-
ically recorded into a dedicated on-board memory buffer. After such data sampling stops (either
on a host request or by evaluating a threshold-crossing condition), the data buffer is downloaded
to the host and displayed as a graph. The data sampling rate is not limited by the speed of the
communication line, so it enables displaying the variable transitions in a very high resolution.

The driver can be configured to support multiple Recorder instances and enable multiple
recorder graphs to be displayed on the host screen. Having multiple recorders also enables set-
ting the recording point differently for each instance. For example; one instance may be record-
ing data in a general timer interrupt while another instance may record at a specific control
algorithm time in the PWM interrupt.

TSA With the TSA feature, data types and variables can be described directly in the application
source code. Such information is later provided to the FreeMASTER toolwhichmay use it instead
of reading symbol data from the application ELF executable file.

The information is encoded as so-called TSA tables which become direct part of the application
code. The TSA tables contain descriptors of variables that shall be visible to the host tool. The
descriptors can describe the memory areas by specifying the address and size of the memory

264 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

block or more conveniently using the C variable names directly. Different set of TSA descriptors
can be used to encode information about the structure types, unions, enumerations, or arrays.

The driver also supports special types of TSA table entries to describe user resources like external
EEPROM and SD Card files, memory-mapped files, virtual directories, web URL hyperlinks, and
constant enumerations.

TSA Safety When the TSA is enabled in the application, the TSA Safety can be enabled and
validate the memory accesses directly by the embedded-side driver. When the TSA Safety is
turned on, anymemory request received from thehost is validated and accepted only if it belongs
to a TSA-described object. The TSA entries can be declared as Read-Write or Read-Only so that
the driver can actively deny the write access to the Read-Only objects.

Application commands The Application Commands are high-level messages that can be de-
livered from the PC Host to the embedded application for further processing. The embedded
application can either poll the status, or be called back when a new Application Command ar-
rives to be processed. After the embedded application acknowledges that the command is han-
dled, the host receives the Result Code and reads the other return data from memory. Both the
Application Commands and the Result Codes are specific to a given application and it is user’s
responsibility to define them. The FreeMASTER protocol and the FreeMASTER driver only imple-
ment the delivery channel and a set of API calls to enable the Application Command processing
in general.

Pipes The Pipes enable buffered and stream-oriented data exchange between the PC Host and
the target application. Any pipe can be written to and read from at both ends (either on the
PC or the MCU). The data transmission is acknowledged using the special FreeMASTER protocol
commands. It is guaranteed that the data bytes are delivered from the writer to the reader in a
proper order and without losses.

Serial single-wire operation TheMCUSerial CommunicationDriver natively supports normal
dual-wire operation. Because the protocol is half-duplex only, the driver can also operate in two
single-wire modes:

• “External” single-wire operation where the Receiver and Transmitter pins are shorted on
the board. This mode is supported by default in the MCU driver because the Receiver and
Transmitter units are enabled or disabled whenever needed. It is also easy to extend this
operation for the RS485 communication.

• “True” single-wire mode which uses only a single pin and the direction switching is made
by the UART module. This mode of operation must be enabled by defining the FM-
STR_SERIAL_SINGLEWIRE configuration option.

Multi-session support With networking interface it is possible for multiple clients to access
the target MCU simultaneously. Reading and writing of target memory is processed atomically
so there is no risk of data corruption. The state-full resources such as Recorders or Oscilloscopes
are locked to a client session upon first use and access is denied to other clients until lock is
released..

Zephyr-specific

3.1. Motor Control 265

MCUXpresso SDK Documentation, Release 25.09.00

Dedicated communication task FreeMASTER communicationmay run isolated in a dedicated
task. The task automates the FMSTR_Init and FMSTR_Poll calls together with periodic activities
enabling the FreeMASTER UI to fetch information about tasks and CPU utilization. The task can
be started automatically or manually, and it must be assigned a priority to be able to react on
interrupts and other communication events. Refer to Zephyr FreeMASTER sample applications
which all use this communication task.

Zephyr shell and logging over FreeMASTER pipe FreeMASTER implements a shell backend
whichmay use FreeMASTER pipe as a I/O terminal and logging output. Refer to Zephyr FreeMAS-
TER sample applications which all use this feature.

Automatic TSA tables TSA tables can be declared as “automatic” in Zephyr which make them
automatically registered in the table list. This may be very useful when there are many TSA
tables or when the tables are defined in different (often unrelated) libraries linked together. In
this case user does not need to build a list of all tables manually.

Driver files The driver source files can be found in a top-level src folder, further divided into
the sub-folders:

• src/platforms platform-specific folder—one folder exists for each supported processor
platform (for example; 32-bit Little Endian platform). Each such folder contains a platform
header file with data types and a code which implements the potentially platform-specific
operations, such as aligned memory access.

• src/common folder—contains the common driver source files shared by the driver for all
supported platforms. All the .c files must be added to the project, compiled, and linked
together with the application.

– freemaster.h - master driver header file, which declares the common data types,
macros, and prototypes of the FreeMASTER driver API functions.

– freemaster_cfg.h.example - this file can serve as an example of the FreeMASTER driver
configuration file. Save this file into a project source code folder and rename it to
freemaster_cfg.h. The FreeMASTER driver code includes this file to get the project-
specific configuration options and to optimize the compilation of the driver.

– freemaster_defcfg.h - defines the default values for each FreeMASTER configuration
option if the option is not set in the freemaster_cfg.h file.

– freemaster_protocol.h - defines the FreeMASTER protocol constants used internally by
the driver.

– freemaster_protocol.c - implements the FreeMASTER protocol decoder and handles the
basic Get Configuration Value, Memory Read, and Memory Write commands.

– freemaster_rec.c - handles the Recorder-specific commands and implements the
Recorder sampling and triggering routines. When the Recorder is disabled by the
FreeMASTER driver configuration file, this file only compiles to empty API functions.

– freemaster_scope.c - handles the Oscilloscope-specific commands. If the Oscilloscope is
disabled by the FreeMASTER driver configuration file, this file compiles as void.

– freemaster_pipes.c - implements the Pipes functionality when the Pipes feature is en-
abled.

– freemaster_appcmd.c - handles the communication commands used to deliver and exe-
cute theApplicationCommandswithin the context of the embedded application. When
the Application Commands are disabled by the FreeMASTER driver configuration file,
this file only compiles to empty API functions.

266 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

– freemaster_tsa.c - handles the commands specific to the TSA feature. This feature en-
ables the FreeMASTER host tool to obtain the TSA memory descriptors declared in the
embedded application. If the TSA is disabled by the FreeMASTER driver configuration
file, this file compiles as void.

– freemaster_tsa.h - contains the declaration of the macros used to define the TSA mem-
ory descriptors. This file is indirectly included into the user application code (via
freemaster.h).

– freemaster_sha.c - implements the SHA-1 hash code used in the password authentica-
tion algorithm.

– freemaster_private.h - contains the declarations of functions and data types used in-
ternally in the driver. It also contains the C pre-processor statements to perform the
compile-time verification of the user configuration provided in the freemaster_cfg.h
file.

– freemaster_serial.c - implements the serial protocol logic including the CRC, FIFO queu-
ing, and other communication-related operations. This code calls the functions of the
low-level communication driver indirectly via a character-oriented API exported by
the specific low-level driver.

– freemaster_serial.h - defines the low-level character-oriented Serial API.

– freemaster_can.c - implements the CAN protocol logic including the CAN message
preparation, signalling using the first data byte in the CAN frame, and other
communication-related operations. This code calls the functions of the low-level com-
munication driver indirectly via a message-oriented API exported by the specific low-
level driver.

– freemaster_can.h - defines the low-level message-oriented CAN API.

– freemaster_net.c - implements the Network protocol transport logic including multiple
session management code.

– freemaster_net.h - definitions related to the Network transport.

– freemaster_pdbdm.c - implements the packet-driven BDM communication buffer and
other communication-related operations.

– freemaster_utils.c - aligned memory copy routines, circular buffer management and
other utility functions

– freemaster_utils.h - definitions related to utility code.

• src/drivers/[sdk]/serial - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

– freemaster_serial_XXX.c and .h - implement low-level access to the communication pe-
ripheral registers. Different files exist for the UART, LPUART, USART, and other kinds
of Serial communication modules.

• src/drivers/[sdk]/can - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

– freemaster_XXX.c and .h - implement low-level access to the communication peripheral
registers. Different files exist for the FlexCAN, msCAN, MCAN, and other kinds of CAN
communication modules.

• src/drivers/[sdk]/network - contains low-level code adapting the FreeMASTER Network
transport to an underlying TCP/IP or RTT stack.

– freemaster_net_lwip_tcp.c and _udp.c - default networking implementation of TCP and
UDP transports using lwIP stack.

– freemaster_net_segger_rtt.c - implementation of network transport using Segger J-Link
RTT interface

3.1. Motor Control 267

MCUXpresso SDK Documentation, Release 25.09.00

Driver configuration The driver is configured using a single header file (freemaster_cfg.h).
Create this file and save it together with other project source files before compiling the driver
code. All FreeMASTER driver source files include the freemaster_cfg.h file and use the macros
defined here for the conditional and parameterized compilation. The C compiler must locate the
configuration file when compiling the driver files. Typically, it can be achieved by putting this
file into a folder where the other project-specific included files are stored.

As a starting point to create the configuration file, get the freemaster_cfg.h.example file, rename
it to freemaster_cfg.h, and save it into the project area.

Note: It is NOT recommended to leave the freemaster_cfg.h file in the FreeMASTER driver source
code folder. The configuration filemust be placed at a project-specific location, so that it does not
affect the other applications that use the same driver.

Configurable items This section describes the configuration options which can be defined in
freemaster_cfg.h.

Interrupt modes
#define FMSTR_LONG_INTR [0|1]
#define FMSTR_SHORT_INTR [0|1]
#define FMSTR_POLL_DRIVEN [0|1]

Value Type boolean (0 or 1)

Description Exactly one of the three macros must be defined to non-zero. The others must be
defined to zero or left undefined. The non-zero-defined constant selects the interrupt mode of
the driver. See Driver interrupt modes.

• FMSTR_LONG_INTR— long interrupt mode

• FMSTR_SHORT_INTR— short interrupt mode

• FMSTR_POLL_DRIVEN— poll-driven mode

Note: Some options may not be supported by all communication interfaces. For example, the
FMSTR_SHORT_INTR option is not supported by the USB_CDC interface.

Protocol transport
#define FMSTR_TRANSPORT [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER source
code. Specify one of existing instances to make use of the protocol transport.

Description Use one of the pre-defined constants, as implemented by the FreeMASTER code.
The current driver supports the following transports:

• FMSTR_SERIAL - serial communication protocol

• FMSTR_CAN - using CAN communication

• FMSTR_PDBDM - using packet-driven BDM communication

• FMSTR_NET - network communication using TCP or UDP protocol

268 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Serial transport This section describes configuration parameters used when serial transport
is used:

#define FMSTR_TRANSPORT FMSTR_SERIAL

FMSTR_SERIAL_DRV Select what low-level driver interface will be used when implementing
the Serial communication.

#define FMSTR_SERIAL_DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing serial driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/serial implementation):

• FMSTR_SERIAL_MCUX_UART - UART driver

• FMSTR_SERIAL_MCUX_LPUART - LPUART driver

• FMSTR_SERIAL_MCUX_USART - USART driver

• FMSTR_SERIAL_MCUX_MINIUSART - miniUSART driver

• FMSTR_SERIAL_MCUX_QSCI - DSC QSCI driver

• FMSTR_SERIAL_MCUX_USB - USB/CDC class driver (also see code in the /sup-
port/mcuxsdk_usb folder)

• FMSTR_SERIAL_56F800E_EONCE - DSC JTAG EOnCE driver

Other SDKs or BSPs may define custom low-level driver interface structure which may be used
as FMSTR_SERIAL_DRV. For example:

• FMSTR_SERIAL_DREG_UART - demonstrates the low-level interface implementedwithout
the MCUXpresso SDK and using direct access to peripheral registers.

FMSTR_SERIAL_BASE
#define FMSTR_SERIAL_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the UART, LPUART, USART, or other serial peripheral
module to be used for the communication. This value is not defined by default. User application
should call FMSTR_SetSerialBaseAddress() to select the peripheral module.

FMSTR_COMM_BUFFER_SIZE
#define FMSTR_COMM_BUFFER_SIZE [number]

Value Type 0 or a value in range 32…255

Description Specify the size of the communication buffer to be allocated by the driver.
Default value, which suits all driver features, is used when this option is defined as 0.

3.1. Motor Control 269

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_COMM_RQUEUE_SIZE
#define FMSTR_COMM_RQUEUE_SIZE [number]

Value Type Value in range 0…255

Description Specify the size of the FIFO receiver queue used to quickly receive and store char-
acters in the FMSTR_SHORT_INTR interrupt mode.
The default value is 32 B.

FMSTR_SERIAL_SINGLEWIRE
#define FMSTR_SERIAL_SINGLEWIRE [0|1]

Value Type Boolean 0 or 1.

Description Set to non-zero to enable the “True” single-wire mode which uses a single MCU
pin to communicate. The low-level driver enables the pin direction switching when the MCU
peripheral supports it.

CANBus transport This section describes configuration parameters usedwhen CAN transport
is used:

#define FMSTR_TRANSPORT FMSTR_CAN

FMSTR_CAN_DRV Select what low-level driver interface will be used when implementing the
CAN communication.

#define FMSTR_CAN_DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing CAN driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/can implementation):

• FMSTR_CAN_MCUX_FLEXCAN - FlexCAN driver

• FMSTR_CAN_MCUX_MCAN - MCAN driver

• FMSTR_CAN_MCUX_MSCAN - msCAN driver

• FMSTR_CAN_MCUX_DSCFLEXCAN - DSC FlexCAN driver

• FMSTR_CAN_MCUX_DSCMSCAN - DSC msCAN driver

Other SDKs or BSPs may define the custom low-level driver interface structure which may be
used as FMSTR_CAN_DRV.

FMSTR_CAN_BASE

270 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

#define FMSTR_CAN_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the FlexCAN, msCAN, or other CAN peripheral module
to be used for the communication. This value is not defined by default. User application should
call FMSTR_SetCanBaseAddress() to select the peripheral module.

FMSTR_CAN_CMDID
#define FMSTR_CAN_CMDID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CANmessage identifier used for FreeMASTER commands (direction from PC Host
tool to target application). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Default value is 0x7AA.

FMSTR_CAN_RSPID
#define FMSTR_CAN_RSPID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for responding messages (direction from target ap-
plication to PC Host tool). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Note that both CMDID and RSPID values may be the same. Default value
is 0x7AA.

FMSTR_FLEXCAN_TXMB
#define FMSTR_FLEXCAN_TXMB [number]

Value Type Number in range of 0..N where N is number of CANmessage-buffers supported by
HWmodule.

Description Only usedwhen the FlexCAN low-level driver is used. Define the FlexCANmessage
buffer for CAN frame transmission. Default value is 0.

FMSTR_FLEXCAN_RXMB
#define FMSTR_FLEXCAN_RXMB [number]

Value Type Number in range of 0..N where N is number of CANmessage-buffers supported by
HWmodule.

3.1. Motor Control 271

MCUXpresso SDK Documentation, Release 25.09.00

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN mes-
sage buffer for CAN frame reception. Note that the FreeMASTER driver may also operate with a
common message buffer used by both TX and RX directions. Default value is 1.

Network transport This section describes configuration parameters used when Network
transport is used:

#define FMSTR_TRANSPORT FMSTR_NET

FMSTR_NET_DRV Select network interface implementation.

#define FMSTR_NET_DRV [identifier]

Value Type Identifiers are structure instance names defined in FreeMASTER drivers code.
Specify one of existing NET driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/network implementation):

• FMSTR_NET_LWIP_TCP - TCP communication using lwIP stack

• FMSTR_NET_LWIP_UDP - UDP communication using lwIP stack

• FMSTR_NET_SEGGER_RTT - Communication using SEGGER J-Link RTT interface

Other SDKs or BSPs may define the custom networking interface which may be used as FM-
STR_CAN_DRV.

Add another row below:

FMSTR_NET_PORT
#define FMSTR_NET_PORT [number]

Value Type TCP or UDP port number (short integer)

Description Specifies the server port number used by TCP or UDP protocols.

FMSTR_NET_BLOCKING_TIMEOUT
#define FMSTR_NET_BLOCKING_TIMEOUT [number]

Value Type Timeout as number of milliseconds

Description This value specifies a timeout in milliseconds for which the network socket op-
erations may block the execution inside FMSTR_Poll. This may be set high (e.g. 250) when a
dedicated RTOS task is used to handle FreeMASTER protocol polling. Set to a lower value when
the polling task is also responsible for other operations. Set to 0 to attempt to use non-blocking
socket operations.

272 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_NET_AUTODISCOVERY
#define FMSTR_NET_AUTODISCOVERY [0|1]

Value Type Boolean 0 or 1.

Description This option enables the FreeMASTER driver to use a separate UDP socket to broad-
cast auto-discovery messages to network. This helps the FreeMASTER tool to discover the target
device address, port and protocol options.

Debugging options

FMSTR_DISABLE
#define FMSTR_DISABLE [0|1]

Value Type boolean (0 or 1)

Description Define as non-zero to disable all FreeMASTER features, exclude the driver code
from build, and compile all its API functions empty. This may be useful to remove FreeMASTER
without modifying any application source code. Default value is 0 (false).

FMSTR_DEBUG_TX
#define FMSTR_DEBUG_TX [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to enable the driver to periodically transmit test frames out on
the selected communication interface (SCI or CAN). With the debug transmission enabled, it is
simpler to detect problems in the baudrate or other communication configuration settings.

The test frames are transmitted until the first valid command frame is received from the PC Host
tool. The test frame is a valid error status frame, as defined by the protocol format. On the serial
line, the test frame consists of three printable characters (+©W) which are easy to capture using
the serial terminal tools.

This feature requires the FMSTR_Poll() function to be called periodically. Default value is 0 (false).

FMSTR_APPLICATION_STR
#define FMSTR_APPLICATION_STR

Value Type String.

Description Name of the application visible in FreeMASTER host application.

Memory access

3.1. Motor Control 273

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_USE_READMEM
#define FMSTR_USE_READMEM [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Memory Read command and enable
FreeMASTER to have read access to memory and variables. The access can be further restricted
by using a TSA feature.
Default value is 1 (true).

FMSTR_USE_WRITEMEM
#define FMSTR_USE_WRITEMEM [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Memory Write command.
The default value is 1 (true).

Oscilloscope options

FMSTR_USE_SCOPE
#define FMSTR_USE_SCOPE [number]

Value Type Integer number.

Description Number of Oscilloscope instances to be supported. Set to 0 to disable the Oscillo-
scope feature.
Default value is 0.

FMSTR_MAX_SCOPE_VARS
#define FMSTR_MAX_SCOPE_VARS [number]

Value Type Integer number larger than 2.

Description Number of variables to be supported by each Oscilloscope instance.
Default value is 8.

Recorder options

FMSTR_USE_RECORDER
#define FMSTR_USE_RECORDER [number]

274 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Value Type Integer number.

Description Number of Recorder instances to be supported. Set to 0 to disable the Recorder
feature.
Default value is 0.

FMSTR_REC_BUFF_SIZE
#define FMSTR_REC_BUFF_SIZE [number]

Value Type Integer number larger than 2.

Description Defines the size of the memory buffer used by the Recorder instance #0.
Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_TIMEBASE
#define FMSTR_REC_TIMEBASE [time specification]

Value Type Number (nanoseconds time).

Description Defines the base sampling rate in nanoseconds (sampling speed) Recorder in-
stance #0.

Use one of the following macros:

• FMSTR_REC_BASE_SECONDS(x)

• FMSTR_REC_BASE_MILLISEC(x)

• FMSTR_REC_BASE_MICROSEC(x)

• FMSTR_REC_BASE_NANOSEC(x)

Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_FLOAT_TRIG
#define FMSTR_REC_FLOAT_TRIG [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the floating-point triggering. Be aware that
floating-point triggering may grow the code size by linking the floating-point standard library.

Default value is 0 (false).

Application Commands options

3.1. Motor Control 275

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_USE_APPCMD
#define FMSTR_USE_APPCMD [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Application Commands feature.
Default value is 0 (false).

FMSTR_APPCMD_BUFF_SIZE
#define FMSTR_APPCMD_BUFF_SIZE [size]

Value Type Numeric buffer size in range 1..255

Description The size of the Application Command data buffer allocated by the driver. The
buffer stores the (optional) parameters of the Application Commandwhichwaits to be processed.

FMSTR_MAX_APPCMD_CALLS
#define FMSTR_MAX_APPCMD_CALLS [number]

Value Type Number in range 0..255

Description The number of different Application Commands that can be assigned a callback
handler function using FMSTR_RegisterAppCmdCall(). Default value is 0.

TSA options

FMSTR_USE_TSA
#define FMSTR_USE_TSA [0|1]

Value Type Boolean 0 or 1.

Description Enable the FreeMASTER TSA feature to be used. With this option enabled, the TSA
tables defined in the applications are made available to the FreeMASTER host tool.
Default value is 0 (false).

FMSTR_USE_TSA_SAFETY
#define FMSTR_USE_TSA_SAFETY [0|1]

Value Type Boolean 0 or 1.

276 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Description Enable thememory access validation in the FreeMASTER driver. With this option,
the host tool is not able to access the memory which is not described by at least one TSA descrip-
tor. Also a write access is denied for objects defined as read-only in TSA tables.
Default value is 0 (false).

FMSTR_USE_TSA_INROM
#define FMSTR_USE_TSA_INROM [0|1]

Value Type Boolean 0 or 1.

Description Declare all TSA descriptors as const, which enables the linker to put the data into
the flash memory. The actual result depends on linker settings or the linker commands used in
the project.
Default value is 0 (false).

FMSTR_USE_TSA_DYNAMIC
#define FMSTR_USE_TSA_DYNAMIC [0|1]

Value Type Boolean 0 or 1.

Description Enable runtime-defined TSA entries to be added to the TSA table by the FM-
STR_SetUpTsaBuff() and FMSTR_TsaAddVar() functions.
Default value is 0 (false).

Pipes options

FMSTR_USE_PIPES
#define FMSTR_USE_PIPES [0|1]

Value Type Boolean 0 or 1.

Description Enable the FreeMASTER Pipes feature to be used.
Default value is 0 (false).

FMSTR_MAX_PIPES_COUNT
#define FMSTR_MAX_PIPES_COUNT [number]

Value Type Number in range 1..63.

Description The number of simultaneous pipe connections to support.
The default value is 1.

3.1. Motor Control 277

MCUXpresso SDK Documentation, Release 25.09.00

Driver interrupt modes To implement the communication, the FreeMASTER driver handles
the Serial or CANmodule’s receive and transmit requests. Use the freemaster_cfg.h configuration
file to select whether the driver processes the communication automatically in the interrupt
service routine handler or if it only polls the status of themodule (typically during the application
idle time).

This section describes each of the interrupt mode in more details.

Completely Interrupt-Driven operation Activated using:

#define FMSTR_LONG_INTR 1

In this mode, both the communication and the FreeMASTER protocol decoding is done in the
FMSTR_SerialIsr, FMSTR_CanIsr, or other interrupt service routine. Because the protocol execu-
tionmay be a lengthy task (especially with the TSA-Safety enabled) it is recommended to use this
mode only if the interrupt prioritization scheme is possible in the application and the FreeMAS-
TER interrupt is assigned to a lower (the lowest) priority.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_SerialIsr or FM-
STR_CanIsr functions from that handler.

Mixed Interrupt and Polling Modes Activated using:

#define FMSTR_SHORT_INTR 1

In this mode, the communication processing time is split between the interrupt routine and the
main application loop or task. The raw communication is handled by the FMSTR_SerialIsr, FM-
STR_CanIsr, or other interrupt service routine, while the protocol decoding and execution is han-
dled by the FMSTR_Poll routine. Call FMSTR_Poll during the idle time in the application main
loop.

The interrupt processing in this mode is relatively fast and deterministic. Upon a serial-receive
event, the received character is only placed into a FIFO-like queue and it is not further processed.
Upon a CAN receive event, the received frame is stored into a receive buffer. When transmitting,
the characters are fetched from the prepared transmit buffer.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_SerialIsr or FM-
STR_CanIsr functions from that handler.

When the serial interface is used as the serial communication interface, ensure that the FM-
STR_Poll function is called at least once per N character time periods. N is the length of the
FreeMASTER FIFO queue (FMSTR_COMM_RQUEUE_SIZE) and the character time is the time
needed to transmit or receive a single byte over the SCI line.

Completely Poll-driven
#define FMSTR_POLL_DRIVEN 1

In this mode, both the communication and the FreeMASTER protocol decoding are done in the
FMSTR_Poll routine. No interrupts are needed and the FMSTR_SerialIsr, FMSTR_CanIsr, and sim-
ilar handlers compile to an empty code.

When using this mode, ensure that the FMSTR_Poll function is called by the application at least
once per the serial “character time” which is the time needed to transmit or receive a single
character.

In the latter twomodes (FMSTR_SHORT_INTR and FMSTR_POLL_DRIVEN), the protocol handling
takes place in the FMSTR_Poll routine. An application interrupt can occur in the middle of the

278 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Read Memory or Write Memory commands’ execution and corrupt the variable being accessed
by the FreeMASTER driver. In these two modes, some issues or glitches may occur when using
FreeMASTER to visualize or monitor volatile variables modified in interrupt servicing code.

The same issuemay appear even in the full interruptmode (FMSTR_LONG_INTR), if volatile vari-
ables are modified in the interrupt code with a priority higher than the priority of the commu-
nication interrupt.

Data types Simple portability was one of the main requirements when writing the FreeMAS-
TER driver. This is why the driver code uses the privately-declared data types and the vast ma-
jority of the platform-dependent code is separated in the platform-dependent source files. The
data types used in the driver API are all defined in the platform-specific header file.

To prevent name conflicts with the symbols used in the application, all data types, macros, and
functions have the FMSTR_ prefix. The only global variables used in the driver are the transport
and low-level API structures exported from the driver-implementation layer to upper layers.
Other than that, all private variables are declared as static and named using the fmstr_ prefix.

Communication interface initialization The FreeMASTER driver does not perform neither
the initialization nor the configuration of the peripheral module that it uses to communicate. It
is the application startup code responsibility to configure the communicationmodule before the
FreeMASTER driver is initialized by the FMSTR_Init call.

When the Serial communication module is used as the FreeMASTER communication interface,
configure the UART receive and transmit pins, the serial communication baud rate, parity (no-
parity), the character length (eight bits), and the number of stop bits (one) before initializing the
FreeMASTER driver. For either the long or the short interrupt modes of the driver (see Driver
interrupt modes), configure the interrupt controller and register an application-specific inter-
rupt handler for all interrupt sources related to the selected serial peripheral module. Call the
FMSTR_SerialIsr function from the application handler.

When a CANmodule is used as the FreeMASTER communication interface, configure the CAN re-
ceive and transmit pins and the CAN module bit rate before initializing the FreeMASTER driver.
For either the long or the short interrupt modes of the driver (see Driver interrupt modes), con-
figure the interrupt controller and register an application-specific interrupt handler for all in-
terrupt sources related to the selected CAN peripheral module. Call the FMSTR_CanIsr function
from the application handler.

Note: It is not necessary to enable or unmask the serial nor the CAN interrupts before initializing
the FreeMASTER driver. The driver enables or disables the interrupts and communication lines,
as required during runtime.

FreeMASTER Recorder calls When using the FreeMASTER Recorder in the application (FM-
STR_USE_RECORDER > 0), call the FMSTR_RecorderCreate function early after FMSTR_Init to set
up each recorder instance to be used in the application. Then call the FMSTR_Recorder func-
tion periodically in the code where the data recording should occur. A typical place to call the
Recorder routine is at the timer or PWM interrupts, but it can be anywhere else. The exam-
ple applications provided together with the driver code call the FMSTR_Recorder in the main
application loop.

In applications where FMSTR_Recorder is called periodically with a constant period, specify the
period in the Recorder configuration structure before calling FMSTR_RecorderCreate. This set-
ting enables the PC Host FreeMASTER tool to display the X-axis of the Recorder graph properly
scaled for the time domain.

Driver usage Start using or evaluating FreeMASTER by opening some of the example applica-
tions available in the driver setup package.

3.1. Motor Control 279

MCUXpresso SDK Documentation, Release 25.09.00

Follow these steps to enable the basic FreeMASTER connectivity in the application:

• Make sure that all *.c files of the FreeMASTER driver from the
src/common/platforms/[your_platform] folder are a part of the project. See Driver files
for more details.

• Configure the FreeMASTER driver by creating or editing the freemaster_cfg.h file and by
saving it into the application project directory. See Driver configuration for more details.

• Include the freemaster.h file into any application source file that makes the FreeMASTER
API calls.

• Initialize the Serial or CAN modules. Set the baud rate, parity, and other parameters of
the communication. Do not enable the communication interrupts in the interrupt mask
registers.

• For the FMSTR_LONG_INTR and FMSTR_SHORT_INTR modes, install the application-
specific interrupt routine and call the FMSTR_SerialIsr or FMSTR_CanIsr functions from
this handler.

• Call the FMSTR_Init function early on in the application initialization code.

• Call the FMSTR_RecorderCreate functions for each Recorder instance to enable the
Recorder feature.

• In the main application loop, call the FMSTR_Poll API function periodically when the appli-
cation is idle.

• For the FMSTR_SHORT_INTR and FMSTR_LONG_INTRmodes, enable the interrupts globally
so that the interrupts can be handled by the CPU.

Communication troubleshooting The most common problem that causes communication is-
sues is a wrong baud rate setting or a wrong pin multiplexer setting of the target MCU. When
a communication between the PC Host running FreeMASTER and the target MCU cannot be es-
tablished, try enabling the FMSTR_DEBUG_TX option in the freemaster_cfg.h file and call the FM-
STR_Poll function periodically in the main application task loop.

With this feature enabled, the FreeMASTER driver periodically transmits a test frame through
the Serial or CAN lines. Use a logic analyzer or an oscilloscope to monitor the signals at the
communication pins of the CPU device to examine whether the bit rate and signal polarity are
configured properly.

Driver API

This section describes the driver Application Programmers’ Interface (API) needed to initialize
and use the FreeMASTER serial communication driver.

Control API There are three key functions to initialize and use the driver.

FMSTR_Init

Prototype
FMSTR_BOOL FMSTR_Init(void);

• Declaration: freemaster.h

• Implementation: freemaster_protocol.c

280 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Description This function initializes the internal variables of the FreeMASTER driver and en-
ables the communication interface. This function does not change the configuration of the se-
lected communicationmodule. The hardware module must be initialized before the FMSTR_Init
function is called.

A call to this function must occur before calling any other FreeMASTER driver API functions.

FMSTR_Poll

Prototype
void FMSTR_Poll(void);

• Declaration: freemaster.h

• Implementation: freemaster_protocol.c

Description In the poll-driven or short interrupt modes, this function handles the protocol
decoding and execution (see Driver interrupt modes). In the poll-driven mode, this function also
handles the communication interface with the PC. Typically, the FMSTR_Poll function is called
during the “idle” time in the main application task loop.

To prevent the receive data overflow (loss) on a serial interface, make sure that the FMSTR_Poll
function is called at least once per the time calculated as:

N * Tchar

where:

• N is equal to the length of the receive FIFO queue (configured by the FM-
STR_COMM_RQUEUE_SIZE macro). N is 1 for the poll-driven mode.

• Tchar is the character time, which is the time needed to transmit or receive a single byte
over the SCI line.

Note: In the long interrupt mode, this function typically compiles as an empty function and can
still be called. It is worthwhile to call this function regardless of the interrupt mode used in
the application. This approach enables a convenient switching between the different interrupt
modes only by changing the configuration macros in the freemaster_cfg.h file.

FMSTR_SerialIsr / FMSTR_CanIsr

Prototype
void FMSTR_SerialIsr(void);
void FMSTR_CanIsr(void);

• Declaration: freemaster.h

• Implementation: hw-specific low-level driver C file

Description This function contains the interrupt-processing code of the FreeMASTER driver.
In long or short interrupt modes (see Driver interrupt modes), this function must be called from
the application interrupt service routine registered for the communication interrupt vector. On
platforms where the communication module uses multiple interrupt vectors, the application
should register a handler for all vectors and call this function at each interrupt.

Note: In a poll-driven mode, this function is compiled as an empty function and does not have
to be used.

3.1. Motor Control 281

MCUXpresso SDK Documentation, Release 25.09.00

Recorder API

FMSTR_RecorderCreate

Prototype
FMSTR_BOOL FMSTR_RecorderCreate(FMSTR_INDEX recIndex, FMSTR_REC_BUFF* buffCfg);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function registers a recorder instance and enables it to be used by the PC
Host tool. Call this function for all recorder instances from 0 to the maximum number de-
fined by the FMSTR_USE_RECORDER configuration option (minus one). An exception to this
requirement is the recorder of instance 0 which may be automatically configured by FM-
STR_Init when the freemaster_cfg.h configuration file defines the FMSTR_REC_BUFF_SIZE and
FMSTR_REC_TIMEBASE options.

For more information, see Configurable items.

FMSTR_Recorder

Prototype
void FMSTR_Recorder(FMSTR_INDEX recIndex);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function takes a sample of the variables being recorded using the FreeMAS-
TER Recorder instance recIndex. If the selected Recorder is not active when the FMSTR_Recorder
function is being called, the function returns immediately. When the Recorder is active, the val-
ues of the variables being recorded are copied into the recorder buffer and the trigger conditions
are evaluated.

If a trigger condition is satisfied, the Recorder enters the post-triggermode, where it counts down
the follow-up samples (number of FMSTR_Recorder function calls) and de-activates the Recorder
when the required post-trigger samples are finished.

The FMSTR_Recorder function is typically called in the timer or PWM interrupt service routines.
This function can also be called in the application main loop (for testing purposes).

FMSTR_RecorderTrigger

Prototype
void FMSTR_RecorderTrigger(FMSTR_INDEX recIndex);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

282 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Description This function forces the Recorder trigger condition to happen, which causes the
Recorder to be automatically deactivated after the post-trigger samples are sampled. Use this
function in the application code for programmatic control over the Recorder triggering. This
can be useful when a more complex triggering conditions need to be used.

FastRecorderAPI The Fast Recorder feature is not available in the FreeMASTERdriver version
3. This feature was heavily dependent on the target platform and it was only available for the
56F8xxxx DSCs.

TSA Tables When the TSA is enabled in the FreeMASTER driver configuration file (by setting
the FMSTR_USE_TSA macro to a non-zero value), it defines the so-called TSA tables in the appli-
cation. This section describes the macros that must to be used to define the TSA tables.

There can be any number of TSA tables spread across the application source files. There must
be always exactly one TSA Table List defined, which informs the FreeMASTER driver about the
active TSA tables.

When there is at least one TSA table and one TSA Table List defined in the application, the TSA
information automatically appears in the FreeMASTER symbols list. The symbols can then be
used to create FreeMASTER variables for visualization or control.

TSA table definition The TSA table describes the static or global variables together with their
address, size, type, and access-protection information. If the TSA-described variables are of a
structure type, the TSA table may also describe this type and provide an access to the individual
structure members of the variable.

The TSA table definition begins with the FMSTR_TSA_TABLE_BEGIN macro with a table_id iden-
tifying the table. The table_id shall be a valid C-langiage symbol.

FMSTR_TSA_TABLE_BEGIN(table_id)

After this opening macro, the TSA descriptors are placed using these macros:

/* Adding variable descriptors */
FMSTR_TSA_RW_VAR(name, type) /* read/write variable entry */
FMSTR_TSA_RO_VAR(name, type) /* read-only variable entry */

/* Description of complex data types */
FMSTR_TSA_STRUCT(struct_name) /* structure or union type entry */
FMSTR_TSA_MEMBER(struct_name, member_name, type) /* structure member entry */

/* Memory blocks */
FMSTR_TSA_RW_MEM(name, type, address, size) /* read/write memory block */
FMSTR_TSA_RO_MEM(name, type, address, size) /* read-only memory block */

The table is closed using the FMSTR_TSA_TABLE_END macro:

FMSTR_TSA_TABLE_END()

TSA descriptor parameters The TSA descriptor macros accept these parameters:

• name—variable name. The variable must be defined before the TSA descriptor references
it.

• type — variable or member type. Only one of the pre-defined type constants may be used
(see below).

• struct_name — structure type name. The type must be defined (typedef) before the TSA
descriptor references it.

3.1. Motor Control 283

MCUXpresso SDK Documentation, Release 25.09.00

• member_name— structure member name.

Note: The structure member descriptors (FMSTR_TSA_MEMBER) must immediately follow the
parent structure descriptor (FMSTR_TSA_STRUCT) in the table.

Note: To write-protect the variables in the FreeMASTER driver (FMSTR_TSA_RO_VAR), enable
the TSA-Safety feature in the configuration file.

TSA variable types The table lists type identifiers which can be used in TSA descriptors:

Constant Description
FMSTR_TSA_UINTn Unsigned integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_SINTn Signed integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_FRACn Fractional number of size n bits (n=16,32,64).
FMSTR_TSA_FRAC_Q(m,n) Signed fractional number in general Q form (m+n+1 total bits)
FMSTR_TSA_FRAC_UQ(m,n) Unsigned fractional number in general UQ form (m+n total

bits)
FMSTR_TSA_FLOAT 4-byte standard IEEE floating-point type
FMSTR_TSA_DOUBLE 8-byte standard IEEE floating-point type
FMSTR_TSA_POINTER Generic pointer type defined (platform-specific 16 or 32 bit)
FM-
STR_TSA_USERTYPE(name)

Structure or union type declared with FMSTR_TSA_STRUCT
record

TSA table list There shall be exactly one TSA Table List in the application. The list contains
one entry for each TSA table defined anywhere in the application.

The TSA Table List begins with the FMSTR_TSA_TABLE_LIST_BEGIN macro and continues with
the TSA table entries for each table.

FMSTR_TSA_TABLE_LIST_BEGIN()

FMSTR_TSA_TABLE(table_id)
FMSTR_TSA_TABLE(table_id2)
FMSTR_TSA_TABLE(table_id3)
...

The list is closed with the FMSTR_TSA_TABLE_LIST_END macro:

FMSTR_TSA_TABLE_LIST_END()

TSA Active Content entries FreeMASTER v2.0 and higher supports TSA Active Content, en-
abling the TSA tables to describe the memory-mapped files, virtual directories, and URL hyper-
links. FreeMASTER can access such objects similarly to accessing the files and folders on the
local hard drive.

With this set of TSA entries, the FreeMASTER pages can be embedded directly into the target
MCU flash and accessed by FreeMASTER directly over the communication line. The HTML-coded
pages rendered inside the FreeMASTER window can access the TSA Active Content resources
using a special URL referencing the fmstr: protocol.

This example provides an overview of the supported TSA Active Content entries:

FMSTR_TSA_TABLE_BEGIN(files_and_links)

/* Directory entry applies to all subsequent MEMFILE entries */
FMSTR_TSA_DIRECTORY(”/text_files”) /* entering a new virtual directory */

(continues on next page)

284 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
/* The readme.txt file will be accessible at the fmstr://text_files/readme.txt URL */
FMSTR_TSA_MEMFILE(”readme.txt”, readme_txt, sizeof(readme_txt)) /* memory-mapped file */

/* Files can also be specified with a full path so the DIRECTORY entry does not apply */
FMSTR_TSA_MEMFILE(”/index.htm”, index, sizeof(index)) /* memory-mapped file */
FMSTR_TSA_MEMFILE(”/prj/demo.pmp”, demo_pmp, sizeof(demo_pmp)) /* memory-mapped file */

/* Hyperlinks can point to a local MEMFILE object or to the Internet */
FMSTR_TSA_HREF(”Board's Built-in Welcome Page”, ”/index.htm”)
FMSTR_TSA_HREF(”FreeMASTER Home Page”, ”http://www.nxp.com/freemaster”)

/* Project file links simplify opening the projects from any URLs */
FMSTR_TSA_PROJECT(”Demonstration Project (embedded)”, ”/prj/demo.pmp”)
FMSTR_TSA_PROJECT(”Full Project (online)”, ”http://mycompany.com/prj/demo.pmp”)

FMSTR_TSA_TABLE_END()

TSA API

FMSTR_SetUpTsaBuff

Prototype
FMSTR_BOOL FMSTR_SetUpTsaBuff(FMSTR_ADDR buffAddr, FMSTR_SIZE buffSize);

• Declaration: freemaster.h

• Implementation: freemaster_tsa.c

Arguments
• buffAddr [in] - address of the memory buffer for the dynamic TSA table

• buffSize [in] - size of the memory buffer which determines the maximum number of TSA
entries to be added in the runtime

Description This functionmust be used to assign the RAMmemory buffer to the TSA subsystem
when FMSTR_USE_TSA_DYNAMIC is enabled. The memory buffer is then used to store the TSA
entries added dynamically to the runtime TSA table using the FMSTR_TsaAddVar function call.
The runtime TSA table is processed by the FreeMASTER PC Host tool along with all static tables
as soon as the communication port is open.

The size of the memory buffer determines the number of TSA entries that can be added dynam-
ically. Depending on the MCU platform, one TSA entry takes either 8 or 16 bytes.

FMSTR_TsaAddVar

Prototype
FMSTR_BOOL FMSTR_TsaAddVar(FMSTR_TSATBL_STRPTR tsaName, FMSTR_TSATBL_STRPTR␣
↪→tsaType,

FMSTR_TSATBL_VOIDPTR varAddr, FMSTR_SIZE32 varSize,
FMSTR_SIZE flags);

• Declaration: freemaster.h

3.1. Motor Control 285

MCUXpresso SDK Documentation, Release 25.09.00

• Implementation: freemaster_tsa.c

Arguments
• tsaName [in] - name of the object

• tsaType [in] - name of the object type

• varAddr [in] - address of the object

• varSize [in] - size of the object

• flags [in] - access flags; a combination of these values:

– FMSTR_TSA_INFO_RO_VAR— read-only memory-mapped object (typically a variable)

– FMSTR_TSA_INFO_RW_VAR— read/write memory-mapped object

– FMSTR_TSA_INFO_NON_VAR — other entry, describing structure types, structure
members, enumerations, and other types

Description This function can be called only when the dynamic TSA table is enabled by the
FMSTR_USE_TSA_DYNAMIC configuration option and when the FMSTR_SetUpTsaBuff function
call is made to assign the dynamic TSA table memory. This function adds an entry into the dy-
namic TSA table. It can be used to register a read-only or read/write memory object or describe
an item of the user-defined type.

See TSA table definition for more details about the TSA table entries.

Application Commands API

FMSTR_GetAppCmd

Prototype
FMSTR_APPCMD_CODE FMSTR_GetAppCmd(void);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Description This function can be used to detect if there is an Application Command waiting
to be processed by the application. If no command is pending, this function returns the FM-
STR_APPCMDRESULT_NOCMD constant. Otherwise, this function returns the code of the Appli-
cation Command that must be processed. Use the FMSTR_AppCmdAck call to acknowledge the
Application Command after it is processed and to return the appropriate result code to the host.

The FMSTR_GetAppCmd function does not report the commands for which a callback handler
function exists. If the FMSTR_GetAppCmd function is called when a callback-registered com-
mand is pending (and before it is actually processed by the callback function), this function re-
turns FMSTR_APPCMDRESULT_NOCMD.

FMSTR_GetAppCmdData

286 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Prototype
FMSTR_APPCMD_PDATA FMSTR_GetAppCmdData(FMSTR_SIZE* dataLen);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• dataLen [out] - pointer to the variable that receives the length of the data available in the
buffer. It can be NULL when this information is not needed.

Description This function can be used to retrieve the Application Command data when the
application determines that an Application Command is pending (see FMSTR_GetAppCmd).

There is just a single buffer to hold the Application Command data (the buffer length is FM-
STR_APPCMD_BUFF_SIZE bytes). If the data are to be used in the application after the command
is processed by the FMSTR_AppCmdAck call, copy the data out to a private buffer.

FMSTR_AppCmdAck

Prototype
void FMSTR_AppCmdAck(FMSTR_APPCMD_RESULT resultCode);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• resultCode [in] - the result code which is to be returned to FreeMASTER

Description This function is used when the Application Command processing finishes in the
application. The resultCode passed to this function is returned back to the host and the driver is
re-initialized to expect the next Application Command.

After this function is called and before the next Application Command arrives, the return value
of the FMSTR_GetAppCmd function is FMSTR_APPCMDRESULT_NOCMD.

FMSTR_AppCmdSetResponseData

Prototype
void FMSTR_AppCmdSetResponseData(FMSTR_ADDR resultDataAddr, FMSTR_SIZE resultDataLen);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

3.1. Motor Control 287

MCUXpresso SDK Documentation, Release 25.09.00

Arguments
• resultDataAddr [in] - pointer to the data buffer that is to be copied to the Application Com-
mand data buffer

• resultDataLen [in] - length of the data to be copied. It must not exceed the FM-
STR_APPCMD_BUFF_SIZE value.

Description This function can be used before the Application Command processing finishes,
when there are data to be returned back to the PC.

The response data buffer is copied into the Application Command data buffer, from where it is
accessed when the host requires it. Do not use FMSTR_GetAppCmdData and the data buffer after
FMSTR_AppCmdSetResponseData is called.

Note: The current version of FreeMASTER does not support the Application Command response
data.

FMSTR_RegisterAppCmdCall

Prototype
FMSTR_BOOL FMSTR_RegisterAppCmdCall(FMSTR_APPCMD_CODE appCmdCode, FMSTR_
↪→PAPPCMDFUNC callbackFunc);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• appCmdCode [in] - the Application Command code for which the callback is to be registered

• callbackFunc [in] - pointer to the callback function that is to be registered. Use NULL to
unregister a callback registered previously with this Application Command.

Return value This function returns a non-zero value when the callback function was success-
fully registered or unregistered. It can return zero when trying to register a callback function
for more than FMSTR_MAX_APPCMD_CALLS different Application Commands.

Description This function can be used to register the given function as a callback handler for
the Application Command. The Application Command is identified using single-byte code. The
callback function is invoked automatically by the FreeMASTER driverwhen the protocol decoder
obtains a request to get the application command result code.

The prototype of the callback function is

FMSTR_APPCMD_RESULT HandlerFunction(FMSTR_APPCMD_CODE nAppcmd,
FMSTR_APPCMD_PDATA pData, FMSTR_SIZE nDataLen);

Where:

• nAppcmd -Application Command code

• pData—points to the Application Command data received (if any)

• nDataLen—information about the Application Command data length

288 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

The return value of the callback function is used as the Application Command Result Code and
returned to FreeMASTER.

Note: The FMSTR_MAX_APPCMD_CALLS configurationmacro defines howmanydifferent Appli-
cation Commands may be handled by a callback function. When FMSTR_MAX_APPCMD_CALLS
is undefined or defined as zero, the FMSTR_RegisterAppCmdCall function always fails.

Pipes API

FMSTR_PipeOpen

Prototype
FMSTR_HPIPE FMSTR_PipeOpen(FMSTR_PIPE_PORT pipePort, FMSTR_PPIPEFUNC pipeCallback,
↪→

FMSTR_ADDR pipeRxBuff, FMSTR_PIPE_SIZE pipeRxSize,
FMSTR_ADDR pipeTxBuff, FMSTR_PIPE_SIZE pipeTxSize,
FMSTR_U8 type, const FMSTR_CHAR *name);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipePort [in] - port number that identifies the pipe for the client

• pipeCallback [in] - pointer to the callback function that is calledwhenever a pipe data status
changes

• pipeRxBuff [in] - address of the receive memory buffer

• pipeRxSize [in] - size of the receive memory buffer

• pipeTxBuff [in] - address of the transmit memory buffer

• pipeTxSize [in] - size of the transmit memory buffer

• type [in] - a combination of FMSTR_PIPE_MODE_xxx and FMSTR_PIPE_SIZE_xxx constants
describing primary pipe data format and usage. This type helps FreeMASTER decide how
to access the pipe by default. Optional, use 0 when undetermined.

• name [in] - user name of the pipe port. This name is visible to the FreeMASTER user when
creating the graphical pipe interface.

Description This function initializes a new pipe and makes it ready to accept or send the data
to the PCHost client. The receivememory buffer is used to store the received data before they are
read out by the FMSTR_PipeRead call. When this buffer gets full, the PC Host client denies the
data transmission into this pipe until there is enough free space again. The transmit memory
buffer is used to store the data transmitted by the application to the PC Host client using the
FMSTR_PipeWrite call. The transmit buffer can get full when the PC Host is disconnected or
when it is slow in receiving and reading out the pipe data.

The function returns the pipe handle which must be stored and used in the subsequent calls to
manage the pipe object.

The callback function (if specified) is called whenever new data are received through the pipe
and available for reading. This callback is also called when the data waiting in the transmit
buffer are successfully pushed to the PC Host and the transmit buffer free space increases. The
prototype of the callback function provided by the user application must be as follows. The
PipeHandler name is only a placeholder and must be defined by the application.

3.1. Motor Control 289

MCUXpresso SDK Documentation, Release 25.09.00

void PipeHandler(FMSTR_HPIPE pipeHandle);

FMSTR_PipeClose

Prototype
void FMSTR_PipeClose(FMSTR_HPIPE pipeHandle);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

Description This function de-initializes the pipe object. No data can be received or sent on the
pipe after this call.

FMSTR_PipeWrite

Prototype
FMSTR_PIPE_SIZE FMSTR_PipeWrite(FMSTR_HPIPE pipeHandle, FMSTR_ADDR pipeData,

FMSTR_PIPE_SIZE pipeDataLen, FMSTR_PIPE_SIZE writeGranularity);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

• pipeData [in] - address of the data to be written

• pipeDataLen [in] - length of the data to be written

• writeGranularity [in] - size of the minimum unit of data which is to be written

Description This function puts the user-specified data into the pipe’s transmit memory buffer
and schedules it for transmission. This function returns the number of bytes that were success-
fully written into the buffer. This number may be smaller than the number of the requested
bytes if there is not enough free space in the transmit buffer.

The writeGranularity argument can be used to split the data into smaller chunks, each of the
size given by the writeGranularity value. The FMSTR_PipeWrite function writes as many data
chunks as possible into the transmit buffer and does not attempt to write an incomplete chunk.
This feature can prove to be useful to avoid the intermediate caching when writing an array of
integer values or other multi-byte data items. When making the nGranularity value equal to the
nLength value, all data are considered as one chunk which is either written successfully as a
whole or not at all. The nGranularity value of 0 or 1 disables the data-chunk approach.

FMSTR_PipeRead

290 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Prototype
FMSTR_PIPE_SIZE FMSTR_PipeRead(FMSTR_HPIPE pipeHandle, FMSTR_ADDR pipeData,

FMSTR_PIPE_SIZE pipeDataLen, FMSTR_PIPE_SIZE readGranularity);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

• pipeData [in] - address of the data buffer to be filled with the received data

• pipeDataLen [in] - length of the data to be read

• readGranularity [in] - size of the minimum unit of data which is to be read

Description This function copies the data received from the pipe from its receive buffer to the
user buffer for further processing. The function returns the number of bytes that were success-
fully copied to the buffer. This number may be smaller than the number of the requested bytes
if there is not enough data bytes available in the receive buffer.

The readGranularity argument can be used to copy the data in larger chunks in the same way as
described in the FMSTR_PipeWrite function.

API data types This section describes the data types used in the FreeMASTER driver. The infor-
mationprovidedhere canbeusefulwhenmodifying or porting the FreeMASTERCommunication
Driver to new NXP platforms.

Note: The licensing conditions prohibit use of FreeMASTER and the FreeMASTER Communica-
tion Driver with non-NXP MPU or MCU products.

Public common types The table belowdescribes the public data types used in the FreeMASTER
driver API calls. The data types are declared in the freemaster.h header file.

3.1. Motor Control 291

MCUXpresso SDK Documentation, Release 25.09.00

Type name Description
FM-
STR_ADDR

Data type used to hold the memory address. Onmost platforms, this is normally
a C-pointer, but it may also be a pure integer type.

For exam-
ple, this
type is
defined as
long inte-
ger on the
56F8xxx
platform
where
the 24-bit
addresses
must be
supported,
but the
C-pointer
may be
only 16
bits wide
in some
compiler
configura-
tions.
FM-
STR_SIZE

Data type used to hold the memory block size.

It is re-
quired
that this
type is un-
signed and
at least 16
bits wide
integer.
FM-
STR_BOOL

Data type used as a general boolean type.

This type
is used
only in
zero/non-
zero con-
ditions in
the driver
code.
FM-
STR_APPCMD_CODE

Data type used to hold the Application Command code.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCMD_DATA

Data type used to create the Application Command data buffer.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCMD_RESULT

Data type used to hold the Application Command result code.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_PAPPCMDFUNC

Pointer to the Application Command handler function.

See FM-
STR_RegisterAppCmdCall
for more
details.

292 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Public TSA types The table describes the TSA-specific public data types. These types are de-
clared in the freemaster_tsa.h header file, which is included in the user application indirectly by
the freemaster.h file.

FM-
STR_TSA_TINDEX

Data type used to hold a descriptor index in the TSA table or a table index in the
list of TSA tables.

By default,
this is
defined
as FM-
STR_SIZE.
FM-
STR_TSA_TSIZE

Data type used to hold a memory block size, as used in the TSA descriptors.

By default,
this is
defined
as FM-
STR_SIZE.

Public Pipes types The table describes the data types used by the FreeMASTER Pipes API:

FM-
STR_HPIPE

Pipe handle that identifies the open-pipe object.

Generally,
this is a
pointer
to a void
type.
FM-
STR_PIPE_PORT

Integer type required to hold at least 7 bits of data.

Generally,
this is an
unsigned
8-bit or
16-bit type.
FM-
STR_PIPE_SIZE

Integer type required to hold at least 16 bits of data.

This is
used to
store the
data buffer
sizes.
FM-
STR_PPIPEFUNC

Pointer to the pipe handler function.

See FM-
STR_PipeOpen
for more
details.

Internal types The table describes the data types used internally by the FreeMASTER driver.
The data types are declared in the platform-specific header file and they are not available in the
application code.

3.1. Motor Control 293

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_U8 The smallest memory entity.
On the vast
majority of
platforms,
this is an
unsigned
8-bit inte-
ger.
On the
56F8xx
DSP plat-
form, this
is defined
as an un-
signed
16-bit inte-
ger.
FM-
STR_U16

Unsigned 16-bit integer.

FM-
STR_U32

Unsigned 32-bit integer.

FMSTR_S8 Signed 8-bit integer.
FM-
STR_S16

Signed 16-bit integer.

FM-
STR_S32

Signed 32-bit integer.

FM-
STR_FLOAT

4-byte standard IEEE floating-point type.

FM-
STR_FLAGS

Data type forming a union with a structure of flag bit-fields.

FM-
STR_SIZE8

Data type holding a general size value, at least 8 bits wide.

FM-
STR_INDEX

General for-loop index. Must be signed, at least 16 bits wide.

FM-
STR_BCHR

A single character in the communication buffer.

Typically,
this is
an 8-bit
unsigned
integer,
except for
the DSP
platforms
where it
is a 16-bit
integer.
FM-
STR_BPTR

A pointer to the communication buffer (an array of FMSTR_BCHR).

Document references

Links
• This document online: https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/
freemaster/doc/index.html

294 Chapter 3. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html

MCUXpresso SDK Documentation, Release 25.09.00

• FreeMASTER tool home: www.nxp.com/freemaster

• FreeMASTER community area: community.nxp.com/community/freemaster

• FreeMASTER GitHub code repo: https://github.com/nxp-mcuxpresso/mcux-freemaster

• MCUXpresso SDK home: www.nxp.com/mcuxpresso

• MCUXpresso SDK builder: mcuxpresso.nxp.com/en

Documents
• FreeMASTER Usage Serial Driver Implementation (document AN4752)

• Integrating FreeMASTER Time Debugging ToolWith CodeWarrior ForMicrocontrollers v10.X
Project (document AN4771)

• Flash Driver Library For MC56F847xx And MC56F827xx DSC Family (document AN4860)

Revision history This Table summarizes the changes done to this document since the initial
release.

3.1. Motor Control 295

https://www.nxp.com/freemaster
https://community.nxp.com/community/freemaster
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://www.nxp.com/mcuxpresso
https://mcuxpresso.nxp.com/en
http://www.nxp.com/doc/AN4752
http://www.nxp.com/doc/AN4771
http://www.nxp.com/doc/AN4860

MCUXpresso SDK Documentation, Release 25.09.00

Revi-
sion

Date Description

1.0 03/2006 Limited initial release
2.0 09/2007 Updated for FreeMASTER version. New Freescale doc-

ument template used.
2.1 12/2007 Added description of the newFast Recorder feature and

its API.
2.2 04/2010 Added support for MPC56xx platform, Added new API

for use CAN interface.
2.3 04/2011 Added support for Kxx Kinetis platform andMQX oper-

ating system.
2.4 06/2011 Serial driver update, adds support for USB CDC inter-

face.
2.5 08/2011 Added Packet Driven BDM interface.
2.7 12/2013 Added FLEXCAN32 interface, byte access and isr call-

back configuration option.
2.8 06/2014 Removed obsolete license text, see the software pack-

age content for up-to-date license.
2.9 03/2015 Update for driver version 1.8.2 and 1.9: FreeMAS-

TER Pipes, TSA Active Content, LIN Transport Layer
support, DEBUG-TX communication troubleshooting,
Kinetis SDK support.

3.0 08/2016 Update for driver version 2.0: Added support for
MPC56xx, MPC57xx, KEAxx and S32Kxx platforms.
New NXP document template as well as new license
agreement used. added MCAN interface. Folders struc-
ture at the installation destination was rearranged.

4.0 04/2019 Update for driver released as part of FreeMASTER v3.0
and MCUXpresso SDK 2.6. Updated to match new V4
serial communication protocol and new configuration
options. This version of the document removes sub-
stantial portion of outdated information related to S08,
S12, ColdFire, Power and other legacy platforms.

4.1 04/2020 Minor update for FreeMASTER driver included in
MCUXpresso SDK 2.8.

4.2 09/2020 Added example applications description and informa-
tion about the MCUXpresso Config Tools. Fixed the
pipe-related API description.

4.3 10/2024 Added description ofNetwork and Segger J-Link RTT in-
terface configuration. Accompanying the MCUXpresso
SDK version 24.12.00.

4.4 04/2025 Added Zephyr-specific information. Accompanying the
MCUXpresso SDK version 25.06.00.

296 Chapter 3. Middleware

Chapter 4

RTOS

4.1 FreeRTOS

4.1.1 FreeRTOS kernel

Open source RTOS kernel for small devices.

FreeRTOS kernel for MCUXpresso SDK Readme

FreeRTOS kernel for MCUXpresso SDK ChangeLog

FreeRTOS kernel Readme

4.1.2 FreeRTOS drivers

This is set of NXP provided FreeRTOS reentrant bus drivers.

4.1.3 backoffalgorithm

Algorithm for calculating exponential backoff with jitter for network retry attempts.

Readme

4.1.4 corehttp

C language HTTP client library designed for embedded platforms.

4.1.5 corejson

JSON parser.

297

MCUXpresso SDK Documentation, Release 25.09.00

Readme

4.1.6 coremqtt

MQTT publish/subscribe messaging library.

4.1.7 coremqtt-agent

The coreMQTT Agent library is a high level API that adds thread safety to the coreMQTT library.

Readme

4.1.8 corepkcs11

PKCS #11 key management library.

Readme

4.1.9 freertos-plus-tcp

Open source RTOS FreeRTOS Plus TCP.

Readme

298 Chapter 4. RTOS

	FRDM-KE02Z40M
	Overview
	Getting Started with MCUXpresso SDK Package
	Getting Started with MCUXpresso SDK Package
	Overview
	MCUXpresso SDK board support package folders
	Example application structure
	Locating example application source files

	Run a demo using MCUXpresso IDE
	Select the workspace location
	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application
	Build a TrustZone example application
	Run a TrustZone example application

	Run a demo application using IAR
	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application
	Build a TrustZone example application
	Run a TrustZone example application

	Run a demo using Keil MDK/μVision
	Install CMSIS device pack
	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application
	Build a TrustZone example application
	Run a TrustZone example application

	Run a demo using Arm GCC
	Set up toolchain
	Install GCC Arm Embedded tool chain
	Install MinGW (only required on Windows OS)
	Add a new system environment variable for ARMGCC_DIR
	Install CMake
	Windows OS
	Linux OS

	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application
	Build a TrustZone example application
	Run a TrustZone example application

	MCUXpresso Config Tools
	How to determine COM port
	On-board Debugger
	On-board debugger MCU-Link
	Updating MCU-Link firmware

	On-board debugger LPC-Link
	Updating LPC-Link firmware

	On-board debugger OpenSDA
	Updating OpenSDA firmware

	On-board debugger Multilink
	On-board debugger OSJTAG

	Default debug interfaces
	How to define IRQ handler in CPP files

	Getting Started with MCUXpresso SDK GitHub
	Getting Started with MCUXpresso SDK Repository
	Installation
	Install Prerequisites with MCUXpresso Installer
	Alternative: Manual Installation
	Basic tools
	Git
	Python
	West
	Build And Configuration System
	CMake
	Ninja
	Kconfig
	Ruby
	Toolchain
	Tool installation check

	Get MCUXpresso SDK Repo
	Establish SDK Workspace
	Install Python Dependency(If do tool installation manually)

	Explore Contents
	Folder View
	Examples Project

	Run a demo using MCUXpresso for VS Code
	Build an example application
	Run an example application

	Running a demo using ARMGCC CLI/IAR/MDK
	Supported Boards
	Build the project
	Sysbuild(System build)

	Config a Project
	Flash
	Debug
	Work with IDE Project

	Release Notes
	MCUXpresso SDK Release Notes
	Overview
	MCUXpresso SDK
	Development tools
	Supported development systems
	MCUXpresso SDK release package
	Device support
	Board support
	Demo application and other examples

	Middleware
	CMSIS DSP Library
	FreeMASTER

	Release contents
	Known issues
	Cannot add SDK components into FreeRTOS projects

	ChangeLog
	MCUXpresso SDK Changelog
	Board Support Files
	board
	[25.06.00]

	clock_config
	[25.06.00]

	pin_mux
	[25.06.00]

	ACMP
	[2.0.2]
	[2.0.1]
	[2.0.0]

	ADC
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	CLOCK
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.2]
	[2.0.0]

	COMMON
	[2.6.0]
	[2.5.0]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.10]
	[2.2.9]
	[2.2.8]
	[2.2.7]
	[2.2.6]
	[2.2.5]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	CRC
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	FLASH
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	FTM
	[2.7.2]
	[2.7.1]
	[2.7.0]
	[2.6.1]
	[2.6.0]
	[2.5.0]
	[2.4.1]
	[2.4.0]
	[2.3.0]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	GPIO
	[2.1.1]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	I2C
	[2.0.10]
	[2.0.9]
	[2.0.8]
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	IRQ
	[2.0.2]
	[2.0.1]
	[2.0.0]

	KBI
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	MCM
	[2.2.0]
	[2.1.0]
	[2.0.0]

	PIT
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	PORT
	[2.0.2]
	[2.0.1]
	[2.0.0]

	RTC
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	SPI
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	TPM
	[2.4.1]
	[2.4.0]
	[2.3.6]
	[2.3.5]
	[2.3.4]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.8]
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	UART
	[2.5.1]
	[2.5.0]
	[2.4.0]
	[2.3.0]
	[2.2.0]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	WDOG8
	[2.0.1]
	[2.0.0]

	Driver API Reference Manual
	Middleware Documentation
	FreeMASTER

	MKE02Z4
	ACMP: Analog Comparator Driver
	ADC: 12-bit Analog to Digital Converter Driver
	Clock Driver
	CRC: Cyclic Redundancy Check Driver
	FGPIO Driver
	FTMRx Flash Driver
	FTM: FlexTimer Driver
	GPIO: General-Purpose Input/Output Driver
	GPIO Driver
	I2C: Inter-Integrated Circuit Driver
	I2C Driver
	Irq
	IRQ: external interrupt (IRQ) module
	KBI: Keyboard interrupt Driver
	Common Driver
	MCM: Miscellaneous Control Module
	PIT: Periodic Interrupt Timer
	PORT Driver
	RTC: Real Time Clock
	SPI: Serial Peripheral Interface Driver
	SPI Driver
	TPM: Timer PWM Module
	UART: Universal Asynchronous Receiver/Transmitter Driver
	UART Driver
	WDOG8: 8-bit Watchdog Timer

	Middleware
	Motor Control
	FreeMASTER
	Introduction
	What is FreeMASTER?
	Driver version 3
	Target platforms
	Replacing existing drivers
	Clocks, pins, and peripheral initialization
	MCUXpresso SDK
	MCUXpresso SDK on GitHub
	FreeMASTER in Zephyr

	Example applications
	MCUX SDK Example applications
	Zephyr sample spplications

	Description
	Features
	Board Detection
	Memory Read
	Memory Write
	Masked Memory Write
	Oscilloscope
	Recorder
	TSA
	TSA Safety
	Application commands
	Pipes
	Serial single-wire operation
	Multi-session support
	Zephyr-specific
	Dedicated communication task
	Zephyr shell and logging over FreeMASTER pipe
	Automatic TSA tables

	Driver files
	Driver configuration
	Configurable items
	Interrupt modes
	Value Type
	Description
	Protocol transport
	Value Type
	Description
	Serial transport
	FMSTR_SERIAL_DRV
	Value Type
	Description
	FMSTR_SERIAL_BASE
	Value Type
	Description
	FMSTR_COMM_BUFFER_SIZE
	Value Type
	Description
	FMSTR_COMM_RQUEUE_SIZE
	Value Type
	Description
	FMSTR_SERIAL_SINGLEWIRE
	Value Type
	Description
	CAN Bus transport
	FMSTR_CAN_DRV
	Value Type
	Description
	FMSTR_CAN_BASE
	Value Type
	Description
	FMSTR_CAN_CMDID
	Value Type
	Description
	FMSTR_CAN_RSPID
	Value Type
	Description
	FMSTR_FLEXCAN_TXMB
	Value Type
	Description
	FMSTR_FLEXCAN_RXMB
	Value Type
	Description
	Network transport
	FMSTR_NET_DRV
	Value Type
	Description
	FMSTR_NET_PORT
	Value Type
	Description
	FMSTR_NET_BLOCKING_TIMEOUT
	Value Type
	Description
	FMSTR_NET_AUTODISCOVERY
	Value Type
	Description
	Debugging options
	FMSTR_DISABLE
	Value Type
	Description
	FMSTR_DEBUG_TX
	Value Type
	Description
	FMSTR_APPLICATION_STR
	Value Type
	Description
	Memory access
	FMSTR_USE_READMEM
	Value Type
	Description
	FMSTR_USE_WRITEMEM
	Value Type
	Description
	Oscilloscope options
	FMSTR_USE_SCOPE
	Value Type
	Description
	FMSTR_MAX_SCOPE_VARS
	Value Type
	Description
	Recorder options
	FMSTR_USE_RECORDER
	Value Type
	Description
	FMSTR_REC_BUFF_SIZE
	Value Type
	Description
	FMSTR_REC_TIMEBASE
	Value Type
	Description
	FMSTR_REC_FLOAT_TRIG
	Value Type
	Description
	Application Commands options
	FMSTR_USE_APPCMD
	Value Type
	Description
	FMSTR_APPCMD_BUFF_SIZE
	Value Type
	Description
	FMSTR_MAX_APPCMD_CALLS
	Value Type
	Description
	TSA options
	FMSTR_USE_TSA
	Value Type
	Description
	FMSTR_USE_TSA_SAFETY
	Value Type
	Description
	FMSTR_USE_TSA_INROM
	Value Type
	Description
	FMSTR_USE_TSA_DYNAMIC
	Value Type
	Description
	Pipes options
	FMSTR_USE_PIPES
	Value Type
	Description
	FMSTR_MAX_PIPES_COUNT
	Value Type
	Description

	Driver interrupt modes
	Completely Interrupt-Driven operation
	Mixed Interrupt and Polling Modes
	Completely Poll-driven

	Data types
	Communication interface initialization
	FreeMASTER Recorder calls
	Driver usage
	Communication troubleshooting

	Driver API
	Control API
	FMSTR_Init
	Prototype
	Description
	FMSTR_Poll
	Prototype
	Description
	FMSTR_SerialIsr / FMSTR_CanIsr
	Prototype
	Description

	Recorder API
	FMSTR_RecorderCreate
	Prototype
	Description
	FMSTR_Recorder
	Prototype
	Description
	FMSTR_RecorderTrigger
	Prototype
	Description

	Fast Recorder API
	TSA Tables
	TSA table definition
	TSA descriptor parameters
	TSA variable types
	TSA table list
	TSA Active Content entries

	TSA API
	FMSTR_SetUpTsaBuff
	Prototype
	Arguments
	Description
	FMSTR_TsaAddVar
	Prototype
	Arguments
	Description

	Application Commands API
	FMSTR_GetAppCmd
	Prototype
	Description
	FMSTR_GetAppCmdData
	Prototype
	Arguments
	Description
	FMSTR_AppCmdAck
	Prototype
	Arguments
	Description
	FMSTR_AppCmdSetResponseData
	Prototype
	Arguments
	Description
	FMSTR_RegisterAppCmdCall
	Prototype
	Arguments
	Return value
	Description

	Pipes API
	FMSTR_PipeOpen
	Prototype
	Arguments
	Description
	FMSTR_PipeClose
	Prototype
	Arguments
	Description
	FMSTR_PipeWrite
	Prototype
	Arguments
	Description
	FMSTR_PipeRead
	Prototype
	Arguments
	Description

	API data types
	Public common types
	Public TSA types
	Public Pipes types
	Internal types

	Document references
	Links
	Documents
	Revision history

	RTOS
	FreeRTOS
	FreeRTOS kernel
	FreeRTOS kernel for MCUXpresso SDK Readme
	FreeRTOS kernel for MCUXpresso SDK ChangeLog
	FreeRTOS kernel Readme

	FreeRTOS drivers
	backoffalgorithm
	Readme

	corehttp
	corejson
	Readme

	coremqtt
	coremqtt-agent
	Readme

	corepkcs11
	Readme

	freertos-plus-tcp
	Readme

