
MCUXpresso SDK Documentation
Release 25.09.00

NXP
Sep 19, 2025

Table of contents

1 Middleware 3
1.1 Boot . 3

1.1.1 MCUXpresso SDK : mcuxsdk-middleware-mcuboot_opensource 3
1.1.2 MCUboot . 4

1.2 Motor Control . 5
1.2.1 FreeMASTER . 5

1.3 Multimedia . 42
1.3.1 Xtensa Audio Framework (XAF) . 42

1.4 Wireless . 58
1.4.1 NXP Wireless Framework and Stacks . 58

2 RTOS 123
2.1 FreeRTOS . 123

2.1.1 FreeRTOS kernel . 123
2.1.2 FreeRTOS drivers . 129
2.1.3 backoffalgorithm . 129
2.1.4 corehttp . 132
2.1.5 corejson . 134
2.1.6 coremqtt . 137
2.1.7 coremqtt-agent . 140
2.1.8 corepkcs11 . 144
2.1.9 freertos-plus-tcp . 147

i

ii

MCUXpresso SDK Documentation, Release 25.09.00

This documentation contains information specific to the evkmimxrt1040 board.

Table of contents 1

MCUXpresso SDK Documentation, Release 25.09.00

2 Table of contents

Chapter 1

Middleware

1.1 Boot

1.1.1 MCUXpresso SDK : mcuxsdk-middleware-mcuboot_opensource

Overview

This repository is a fork of MCUboot (https://github.com/mcu-tools/mcuboot) for MCUXpresso
SDK delivery and it contains the components officially provided in NXP MCUXpresso SDK. This
repository is part of the MCUXpresso SDK overall delivery which is composed of several sub-
repositories/projects. Navigate to the top/parent repository (mcuxsdk-manifests) for the com-
plete delivery of MCUXpresso SDK.

Documentation

Overall details can be reviewed here: MCUXpresso SDK Online Documentation

Visit MCUboot - Documentation to review details on the contents in this sub-repo.

Setup

Instructions on how to install the MCUXpresso SDK provided from GitHub via west manifest
Getting Started with SDK - Detailed Installation Instructions

Contribution

Contributions are not currently accepted. If the intended contribution is not related to NXP spe-
cific code, consider contributing directly to the upstream MCUboot project. Once this MCUboot
fork is synchronized with the upstream project, such contributions will end up here as well. If
the intended contribution is a bugfix or improvement for NXP porting layer or for code added
or modified by NXP, please open an issue or contact NXP support.

3

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://docs.mcuboot.com/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation

MCUXpresso SDK Documentation, Release 25.09.00

NXP Fork

This fork of MCUboot contains specific modifications and enhancements for NXP MCUXpresso
SDK integration.

See changelog for details.

1.1.2 MCUboot

This is MCUboot version 2.2.0

MCUboot is a secure bootloader for 32-bits microcontrollers. It defines a common infrastructure
for the bootloader and the system flash layout on microcontroller systems, and provides a secure
bootloader that enables easy software upgrade.

MCUboot is not dependent on any specific operating system and hardware and relies on hard-
ware porting layers from the operating system it works with. Currently, MCUboot works with
the following operating systems and SoCs:

• Zephyr

• Apache Mynewt

• Apache NuttX

• RIOT

• Mbed OS

• Espressif

• Cypress/Infineon

RIOT is supported only as a boot target. We will accept any new port contributed by the commu-
nity once it is good enough.

MCUboot How-tos

See the following pages for instructions on using MCUboot with different operating systems and
SoCs:

• Zephyr

• Apache Mynewt

• Apache NuttX

• RIOT

• Mbed OS

• Espressif

• Cypress/Infineon

There are also instructions for the Simulator.

4 Chapter 1. Middleware

https://github.com/mcu-tools/mcuboot/actions?query=workflow:Sim
https://github.com/mcu-tools/mcuboot/actions?query=workflow:Mynewt
https://github.com/mcu-tools/mcuboot/actions?query=workflow:Espressif
https://github.com/mcu-tools/mcuboot/actions?query=workflow:imgtool
https://www.zephyrproject.org/
https://mynewt.apache.org/
https://nuttx.apache.org/
https://www.riot-os.org/
https://os.mbed.com/
https://www.espressif.com/
https://www.cypress.com/

MCUXpresso SDK Documentation, Release 25.09.00

Roadmap

The issues being planned and worked on are tracked using GitHub issues. To give your input,
visit MCUboot GitHub Issues.

Source files

You can find additional documentation on the bootloader in the source files. For more informa-
tion, use the following links:

• boot/bootutil - The core of the bootloader itself.

• boot/boot_serial - Support for serial upgrade within the bootloader itself.

• boot/zephyr - Port of the bootloader to Zephyr.

• boot/mynewt - Bootloader application for Apache Mynewt.

• boot/nuttx - Bootloader application and port of MCUboot interfaces for Apache NuttX.

• boot/mbed - Port of the bootloader to Mbed OS.

• boot/espressif - Bootloader application and MCUboot port for Espressif SoCs.

• boot/cypress - Bootloader application and MCUboot port for Cypress/Infineon SoCs.

• imgtool - A tool to securely sign firmware images for booting by MCUboot.

• sim - A bootloader simulator for testing and regression.

Joining the project

Developers are welcome!

Use the following links to join or see more about the project:

• Our developer mailing list

• Our Discord channel Get your invite

1.2 Motor Control

1.2.1 FreeMASTER

Communication Driver User Guide

Introduction

What is FreeMASTER? FreeMASTER is a PC-based application developed by NXP for NXP cus-
tomers. It is a versatile tool usable as a real-time monitor, visualization tool, and a graphical
control panel of embedded applications based on the NXP processing units.

This document describes the embedded-side software driver which implements an interface be-
tween the application and the host PC. The interface covers the following communication:

• Serial UART communication either over plain RS232 interface or more typically over a
USB-to-Serial either external or built in a debugger probe.

• USB direct connection to target microcontroller

• CAN bus

1.2. Motor Control 5

https://github.com/mcu-tools/mcuboot/issues
https://github.com/mcu-tools/mcuboot/tree/main/boot/bootutil
https://github.com/mcu-tools/mcuboot/tree/main/boot/boot_serial
https://github.com/mcu-tools/mcuboot/tree/main/boot/zephyr
https://github.com/mcu-tools/mcuboot/tree/main/boot/mynewt
https://github.com/mcu-tools/mcuboot/tree/main/boot/nuttx
https://github.com/mcu-tools/mcuboot/tree/main/boot/mbed
https://github.com/mcu-tools/mcuboot/tree/main/boot/espressif
https://github.com/mcu-tools/mcuboot/tree/main/boot/cypress
https://github.com/mcu-tools/mcuboot/tree/main/scripts/imgtool.py
https://github.com/mcu-tools/mcuboot/tree/main/sim
https://groups.io/g/MCUBoot
https://discord.com/channels/1106321706588577904/1106322802308550716
https://discord.com/invite/5PpXhvda5p
https://www.nxp.com/freemaster

MCUXpresso SDK Documentation, Release 25.09.00

• TCP/IP network wired or WiFi

• Segger J-Link RTT
• JTAG debug port communication

• …and all of the above also using a Zephyr generic drivers.

The driver also supports so-called “packet-driven BDM” interface which enables a protocol-based
communication over a debugging port. The BDM stands for Background Debugging Module
and its physical implementation is different on each platform. Some platforms leverage a semi-
standard JTAG interface, other platforms provide a custom implementation called BDM. Regard-
less of the name, this debugging interface enables non-intrusive access to the memory space
while the target CPU is running. For basic memory read and write operations, there is no com-
munication driver required on the target when communicating with the host PC. Use this driver
to get more advanced FreeMASTER protocol features over the BDM interface. The driver must be
configured for the packet-driven BDM mode, in which the host PC uses the debugging interface
to write serial command frames directly to the target memory buffer. The same method is then
used to read response frames from that memory buffer.

Similar to “packet-driven BDM”, the FreeMASTER also supports a communication over
[J-Link RTT]((https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-
transfer/) interface defined by SEGGER Microcontroller GmbH for ARM CortexM-based micro-
controllers. This method also uses JTAG physical interface and enables high-speed real time
communication to run over the same channel as used for application debugging.

Driver version 3 This document describes version 3 of the FreeMASTER Communication
Driver. This version features the implementation of the new Serial Protocol, which significantly
extends the features and security of its predecessor. The new protocol internal number is v4 and
its specification is available in the documentation accompanying the driver code.

Driver V3 is deployed to modern 32-bit MCU platforms first, so the portfolio of supported plat-
forms is smaller than for the previous V2 versions. It is recommended to keep using the V2 driver
for legacy platforms, such as S08, S12, ColdFire, or Power Architecture. Reach out to FreeMAS-
TER community or to the local NXP representative with requests for more information or to port
the V3 driver to legacy MCU devices.

Thanks to a layered approach, the new driver simplifies the porting of the driver to new UART,
CAN or networking communication interfaces significantly. Users are encouraged to port the
driver to more NXP MCU platforms and contribute the code back to NXP for integration into
future releases. Existing code and low-level driver layers may be used as an example when
porting to new targets.

Note: Using the FreeMASTER tool and FreeMASTER Communication Driver is only allowed in
systems based on NXP microcontroller or microprocessor unit. Use with non-NXP MCU platforms
is not permitted by the license terms.

Target platforms The driver implementation uses the following abstraction mechanisms
which simplify driver porting and supporting new communication modules:

• General CPU Platform (see source code in the src/platforms directory). The code in
this layer is only specific to native data type sizes and CPU architectures (for example;
alignment-aware memory copy routines). This driver version brings two generic imple-
mentations of 32-bit platforms supporting both little-endian and big-endian architectures.
There are also implementations customized for the 56F800E family of digital signal con-
trollers and S12Z MCUs. Zephyr is treated as a specific CPU platform as it brings unified
user configuration (Kconfig) and generic hardware device drivers. With Zephyr, the trans-
port layer and low-level communication layers described below are configured automati-
cally using Kconfig and Device Tree technologies.

6 Chapter 1. Middleware

https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster
https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster

MCUXpresso SDK Documentation, Release 25.09.00

• Transport CommunicationLayer - The Serial, CAN, Networking, PD-BDM, and other meth-
ods of transport logic are implemented as a driver layer called FMSTR_TRANSPORT with a
uniform API. A support of the Network transport also extends single-client modes of oper-
ation which are native for Serial, USB and CAN by a concept of multiple client sessions.

• Low-level Communication Driver - Each type of transport further defines a low-level
API used to access the physical communication module. For example, the Serial trans-
port defines a character-oriented API implemented by different serial communication mod-
ules like UART, LPUART, USART, and also USB-CDC. Similarly, the CAN transport defines a
message-oriented API implemented by the FlexCAN or MCAN modules. Moreover, there
are multiple different implementations for the same kind of communication peripherals.
The difference between the implementation is in the way the low-level hardware regis-
ters are accessed. The mcuxsdk folder contains implementations which use MCUXpresso
SDK drivers. These drivers should be used in applications based on the NXP MCUXpresso
SDK. The “ampsdk” drivers target automotive-specific MCUs and their respective SDKs.
The “dreg” implementations use a plain C-language access to hardware register addresses
which makes it a universal and the most portable solution. In this case, users are encour-
aged to add more drivers for other communication modules or other respective SDKs and
contribute the code back to NXP for integration.

The low-level drivers defined for the Networking transport enable datagram-oriented UDP
and stream TCP communication. This implementation is demonstrated using the lwIP soft-
ware stack but shall be portable to other TCP/IP stacks. It may sound surprisingly, but also
the Segger J-Link RTT communication driver is linked to the Networking transport (RTT is
stream oriented communication handled similarly to TCP).

Replacing existing drivers For all supported platforms, the driver described in this document
replaces the V2 implementation and also older driver implementations that were available sep-
arately for individual platforms (PC Master SCI drivers).

Clocks, pins, and peripheral initialization The FreeMASTER communication driver is only
responsible for runtime processing of the communication and must be integrated with an user
application code to function properly. The user application code is responsible for general initial-
ization of clock sources, pin multiplexers, and peripheral registers related to the communication
speed. Such initialization should be done before calling the FMSTR_Init function.

It is recommended to develop the user application using one of the Software Development Kits
(SDKs) available from third parties or directly from NXP, such as MCUXpresso SDK, MCUXpresso
IDE, and related tools. This approach simplifies the general configuration process significantly.

MCUXpresso SDK The MCUXpresso SDK is a software package provided by NXP which contains
the device initialization code, linker files, and software drivers with example applications for the
NXP family of MCUs. The MCUXpresso Config Tools may be used to generate the clock-setup and
pin-multiplexer setup code suitable for the selected processor.

The MCUXpresso SDK also contains this FreeMASTER communication driver as a “middle-
ware” component which may be downloaded along with the example applications from https:
//mcuxpresso.nxp.com/en/welcome.

MCUXpresso SDK on GitHub The FreeMASTER communication driver is also released as one
of the middleware components of the MCUXpresso SDK on the GitHub. This release enables
direct integration of the FreeMASTER source code Git repository into a target applications in-
cluding Zephyr applications.

Related links:

• The official FreeMASTER middleware repository.

1.2. Motor Control 7

https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome
https://github.com/nxp-mcuxpresso/mcux-freemaster

MCUXpresso SDK Documentation, Release 25.09.00

• Online version of this document

FreeMASTER in Zephyr The FreeMASTER middleware repository can be used with MCUX-
presso SDK as well as a Zephyr module. Zephyr-specific samples which include examples of
Kconfig and Device Tree configurations for Serial, USB and Network communications are avail-
able in separate repository. West manifest in this sample repository fetches the full Zephyr pack-
age including the FreeMASTER middleware repository used as a Zephyr module.

Example applications

MCUX SDK Example applications There are several example applications available for each
supported MCU platform.

• fmstr_uart demonstrates a plain serial transmission, typically connecting to a computer’s
physical or virtual COM port. The typical transmission speed is 115200 bps.

• fmstr_can demonstrates CAN bus communication. This requires a suitable CAN interface
connected to the computer and interconnected with the target MCU using a properly ter-
minated CAN bus. The typical transmission speed is 500 kbps. A FreeMASTER-over-CAN
communication plug-in must be used.

• fmstr_usb_cdc uses an on-chip USB controller to implement a CDC communication class.
It is connected directly to a computer’s USB port and creates a virtual COM port device. The
typical transmission speed is above 1 Mbps.

• fmstr_net demonstrates the Network communication over UDP or TCP protocol. Existing
examples use lwIP stack to implement the communication, but in general, it shall be possi-
ble to use any other TCP/IP stack to achieve the same functionality.

• fmstr_wifi is the fmstr_net application modified to use a WiFi network interface instead of
a wired Ethernet connection.

• fmstr_rtt demonstrates the communication over SEGGER J-Link RTT interface. Both fm-
str_net and fmstr_rtt examples require the FreeMASTER TCP/UDP communication plug-in
to be used on the PC host side.

• fmstr_eonce uses the real-time data unit on the JTAG EOnCE module of the 56F800E family
to implement pseudo-serial communication over the JTAG port. The typical transmission
speed is around 10 kbps. This communication requires FreeMASTER JTAG/EOnCE commu-
nication plug-in.

• fmstr_pdbdm uses JTAG or BDM debugging interface to access the target RAM directly
while the CPU is running. Note that such approach can be used with any MCU applica-
tion, even without any special driver code. The computer reads from and writes into the
RAM directly without CPU intervention. The Packet-Driven BDM (PD-BDM) communication
uses the same memory access to exchange command and response frames. With PD-BDM,
the FreeMASTER tool is able to go beyond basic memory read/write operations and ac-
cesses also advanced features like Recorder, TSA, or Pipes. The typical transmission speed
is around 10 kbps. A PD-BDM communication plug-in must be used in FreeMASTER and
configured properly for the selected debugging interface. Note that this communication
cannot be used while a debugging interface is used by a debugger session.

• fmstr_any is a special example application which demonstrates how the NXP MCUXpresso
Config Tools can be used to configure pins, clocks, peripherals, interrupts, and even the
FreeMASTER “middleware” driver features in a graphical and user friendly way. The user
can switch between the Serial, CAN, and other ways of communication and generate the
required initialization code automatically.

8 Chapter 1. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/user_guide/user_guide.html#multi-session-support

MCUXpresso SDK Documentation, Release 25.09.00

Zephyr sample spplications Zephyr sample applications demonstrate Kconfig and Device
Tree configuration which configure the FreeMASTER middleware module for a selected com-
munication option (Serial, CAN, Network or RTT).

Refer to readme.md files in each sample directory for description of configuration options re-
quired to implement FreeMASTER connectivity.

Description

This section shows how to add the FreeMASTER Communication Driver into application and how
to configure the connection to the FreeMASTER visualization tool.

Features The FreeMASTER driver implements the FreeMASTER protocol V4 and provides the
following features which may be accessed using the FreeMASTER visualization tool:

• Read/write access to any memory location on the target.

• Optional password protection of the read, read/write, and read/write/flash access levels.

• Atomic bit manipulation on the target memory (bit-wise write access).

• Optimal size-aligned access to memory which is also suitable to access the peripheral reg-
ister space.

• Oscilloscope access—real-time access to target variables. The sample rate may be limited
by the communication speed.

• Recorder— access to the fast transient recorder running on the board as a part of the
FreeMASTER driver. The sample rate is only limited by the MCU CPU speed. The length
of the data recorded depends on the amount of available memory.

• Multiple instances of Oscilloscopes and Recorders without the limitation of maximum num-
ber of variables.

• Application commands—high-level message delivery from the PC to the application.

• TSA tables—describing the data types, variables, files, or hyperlinks exported by the target
application. The TSA newly supports also non-memory mapped resources like external
EEPROM or SD Card files.

• Pipes—enabling the buffered stream-oriented data exchange for a general-purpose
terminal-like communication, diagnostic data streaming, or other data exchange.

The FreeMASTER driver features:

• Full FreeMASTER protocol V4 implementation with a new V4 style of CRC used.

• Layered approach supporting Serial, CAN, Network, PD-BDM, and other transports.

• Layered low-level Serial transport driver architecture enabling to select UART, LPUART,
USART, and other physical implementations of serial interfaces, including USB-CDC.

• Layered low-level CAN transport driver architecture enabling to select FlexCAN, msCAN,
MCAN, and other physical implementations of the CAN interface.

• Layered low-level Networking transport enabling to select TCP, UDP or J-Link RTT commu-
nication.

• TSA support to write-protect memory regions or individual variables and to deny the access
to the unsafe memory.

• The pipe callback handlers are invoked whenever new data is available for reading from
the pipe.

1.2. Motor Control 9

MCUXpresso SDK Documentation, Release 25.09.00

• Two Serial Single-Wire modes of operation are enabled. The “external” mode has the RX
and TX shorted on-board. The “true” single-wire mode interconnects internally when the
MCU or UART modules support it.

The following sections briefly describe all FreeMASTER features implemented by the driver. See
the PC-based FreeMASTER User Manual for more details on how to use the features to monitor,
tune, or control an embedded application.

BoardDetection The FreeMASTER protocol V4 defines the standard set of configuration values
which the host PC tool reads to identify the target and to access other target resources properly.
The configuration includes the following parameters:

• Version of the driver and the version of the protocol implemented.

• MTU as the Maximum size of the Transmission Unit (for example; communication buffer
size).

• Application name, description, and version strings.

• Application build date and time as a string.

• Target processor byte ordering (little/big endian).

• Protection level that requires password authentication.

• Number of the Recorder and Oscilloscope instances.

• RAM Base Address for optimized memory access commands.

Memory Read This basic feature enables the host PC to read any data memory location by
specifying the address and size of the required memory area. The device response frame must
be shorter than the MTU to fit into the outgoing communication buffer. To read a device memory
of any size, the host uses the information retrieved during the Board Detection and splits the
large-block request to multiple partial requests.

The driver uses size-aligned operations to read the target memory (for example; uses proper
read-word instruction when an address is aligned to 4 bytes).

MemoryWrite Similarly to the Memory Read operation, the Memory Write feature enables to
write to any RAM memory location on the target device. A single write command frame must be
shorter than the MTU to fit into the target communication buffer. Larger requests must be split
into smaller ones.

The driver uses size-aligned operations to write to the target memory (for example; uses proper
write-word instruction when an address is aligned to 4 bytes).

MaskedMemoryWrite To implement the write access to a single bit or a group of bits of target
variables, the Masked Memory Write feature is available in the FreeMASTER protocol and it is
supported by the driver using the Read-Modify-Write approach.

Be careful when writing to bit fields of volatile variables that are also modified in an application
interrupt. The interrupt may be serviced in the middle of a read-modify-write operation and it
may cause data corruption.

Oscilloscope The protocol and driver enables any number of variables to be read at once with
a single request from the host. This feature is called Oscilloscope and the FreeMASTER tool uses
it to display a real-time graph of variable values.

The driver can be configured to support any number of Oscilloscope instances and enable simul-
taneously running graphs to be displayed on the host computer screen.

10 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Recorder The protocol enables the host to select target variables whose values are then period-
ically recorded into a dedicated on-board memory buffer. After such data sampling stops (either
on a host request or by evaluating a threshold-crossing condition), the data buffer is downloaded
to the host and displayed as a graph. The data sampling rate is not limited by the speed of the
communication line, so it enables displaying the variable transitions in a very high resolution.

The driver can be configured to support multiple Recorder instances and enable multiple
recorder graphs to be displayed on the host screen. Having multiple recorders also enables set-
ting the recording point differently for each instance. For example; one instance may be record-
ing data in a general timer interrupt while another instance may record at a specific control
algorithm time in the PWM interrupt.

TSA With the TSA feature, data types and variables can be described directly in the application
source code. Such information is later provided to the FreeMASTER tool which may use it instead
of reading symbol data from the application ELF executable file.

The information is encoded as so-called TSA tables which become direct part of the application
code. The TSA tables contain descriptors of variables that shall be visible to the host tool. The
descriptors can describe the memory areas by specifying the address and size of the memory
block or more conveniently using the C variable names directly. Different set of TSA descriptors
can be used to encode information about the structure types, unions, enumerations, or arrays.

The driver also supports special types of TSA table entries to describe user resources like external
EEPROM and SD Card files, memory-mapped files, virtual directories, web URL hyperlinks, and
constant enumerations.

TSA Safety When the TSA is enabled in the application, the TSA Safety can be enabled and
validate the memory accesses directly by the embedded-side driver. When the TSA Safety is
turned on, any memory request received from the host is validated and accepted only if it belongs
to a TSA-described object. The TSA entries can be declared as Read-Write or Read-Only so that
the driver can actively deny the write access to the Read-Only objects.

Application commands The Application Commands are high-level messages that can be de-
livered from the PC Host to the embedded application for further processing. The embedded
application can either poll the status, or be called back when a new Application Command ar-
rives to be processed. After the embedded application acknowledges that the command is han-
dled, the host receives the Result Code and reads the other return data from memory. Both the
Application Commands and the Result Codes are specific to a given application and it is user’s
responsibility to define them. The FreeMASTER protocol and the FreeMASTER driver only imple-
ment the delivery channel and a set of API calls to enable the Application Command processing
in general.

Pipes The Pipes enable buffered and stream-oriented data exchange between the PC Host and
the target application. Any pipe can be written to and read from at both ends (either on the
PC or the MCU). The data transmission is acknowledged using the special FreeMASTER protocol
commands. It is guaranteed that the data bytes are delivered from the writer to the reader in a
proper order and without losses.

Serial single-wire operation The MCU Serial Communication Driver natively supports normal
dual-wire operation. Because the protocol is half-duplex only, the driver can also operate in two
single-wire modes:

• “External” single-wire operation where the Receiver and Transmitter pins are shorted on
the board. This mode is supported by default in the MCU driver because the Receiver and
Transmitter units are enabled or disabled whenever needed. It is also easy to extend this
operation for the RS485 communication.

1.2. Motor Control 11

MCUXpresso SDK Documentation, Release 25.09.00

• “True” single-wire mode which uses only a single pin and the direction switching is made
by the UART module. This mode of operation must be enabled by defining the FM-
STR_SERIAL_SINGLEWIRE configuration option.

Multi-session support With networking interface it is possible for multiple clients to access
the target MCU simultaneously. Reading and writing of target memory is processed atomically
so there is no risk of data corruption. The state-full resources such as Recorders or Oscilloscopes
are locked to a client session upon first use and access is denied to other clients until lock is
released..

Zephyr-specific

Dedicated communication task FreeMASTER communication may run isolated in a dedicated
task. The task automates the FMSTR_Init and FMSTR_Poll calls together with periodic activities
enabling the FreeMASTER UI to fetch information about tasks and CPU utilization. The task can
be started automatically or manually, and it must be assigned a priority to be able to react on
interrupts and other communication events. Refer to Zephyr FreeMASTER sample applications
which all use this communication task.

Zephyr shell and logging over FreeMASTER pipe FreeMASTER implements a shell backend
which may use FreeMASTER pipe as a I/O terminal and logging output. Refer to Zephyr FreeMAS-
TER sample applications which all use this feature.

Automatic TSA tables TSA tables can be declared as “automatic” in Zephyr which make them
automatically registered in the table list. This may be very useful when there are many TSA
tables or when the tables are defined in different (often unrelated) libraries linked together. In
this case user does not need to build a list of all tables manually.

Driver files The driver source files can be found in a top-level src folder, further divided into
the sub-folders:

• src/platforms platform-specific folder—one folder exists for each supported processor
platform (for example; 32-bit Little Endian platform). Each such folder contains a platform
header file with data types and a code which implements the potentially platform-specific
operations, such as aligned memory access.

• src/common folder—contains the common driver source files shared by the driver for all
supported platforms. All the .c files must be added to the project, compiled, and linked
together with the application.

– freemaster.h - master driver header file, which declares the common data types,
macros, and prototypes of the FreeMASTER driver API functions.

– freemaster_cfg.h.example - this file can serve as an example of the FreeMASTER driver
configuration file. Save this file into a project source code folder and rename it to
freemaster_cfg.h. The FreeMASTER driver code includes this file to get the project-
specific configuration options and to optimize the compilation of the driver.

– freemaster_defcfg.h - defines the default values for each FreeMASTER configuration
option if the option is not set in the freemaster_cfg.h file.

– freemaster_protocol.h - defines the FreeMASTER protocol constants used internally by
the driver.

– freemaster_protocol.c - implements the FreeMASTER protocol decoder and handles the
basic Get Configuration Value, Memory Read, and Memory Write commands.

12 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

– freemaster_rec.c - handles the Recorder-specific commands and implements the
Recorder sampling and triggering routines. When the Recorder is disabled by the
FreeMASTER driver configuration file, this file only compiles to empty API functions.

– freemaster_scope.c - handles the Oscilloscope-specific commands. If the Oscilloscope is
disabled by the FreeMASTER driver configuration file, this file compiles as void.

– freemaster_pipes.c - implements the Pipes functionality when the Pipes feature is en-
abled.

– freemaster_appcmd.c - handles the communication commands used to deliver and exe-
cute the Application Commands within the context of the embedded application. When
the Application Commands are disabled by the FreeMASTER driver configuration file,
this file only compiles to empty API functions.

– freemaster_tsa.c - handles the commands specific to the TSA feature. This feature en-
ables the FreeMASTER host tool to obtain the TSA memory descriptors declared in the
embedded application. If the TSA is disabled by the FreeMASTER driver configuration
file, this file compiles as void.

– freemaster_tsa.h - contains the declaration of the macros used to define the TSA mem-
ory descriptors. This file is indirectly included into the user application code (via
freemaster.h).

– freemaster_sha.c - implements the SHA-1 hash code used in the password authentica-
tion algorithm.

– freemaster_private.h - contains the declarations of functions and data types used in-
ternally in the driver. It also contains the C pre-processor statements to perform the
compile-time verification of the user configuration provided in the freemaster_cfg.h
file.

– freemaster_serial.c - implements the serial protocol logic including the CRC, FIFO queu-
ing, and other communication-related operations. This code calls the functions of the
low-level communication driver indirectly via a character-oriented API exported by
the specific low-level driver.

– freemaster_serial.h - defines the low-level character-oriented Serial API.

– freemaster_can.c - implements the CAN protocol logic including the CAN message
preparation, signalling using the first data byte in the CAN frame, and other
communication-related operations. This code calls the functions of the low-level com-
munication driver indirectly via a message-oriented API exported by the specific low-
level driver.

– freemaster_can.h - defines the low-level message-oriented CAN API.

– freemaster_net.c - implements the Network protocol transport logic including multiple
session management code.

– freemaster_net.h - definitions related to the Network transport.

– freemaster_pdbdm.c - implements the packet-driven BDM communication buffer and
other communication-related operations.

– freemaster_utils.c - aligned memory copy routines, circular buffer management and
other utility functions

– freemaster_utils.h - definitions related to utility code.

• src/drivers/[sdk]/serial - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

– freemaster_serial_XXX.c and .h - implement low-level access to the communication pe-
ripheral registers. Different files exist for the UART, LPUART, USART, and other kinds
of Serial communication modules.

1.2. Motor Control 13

MCUXpresso SDK Documentation, Release 25.09.00

• src/drivers/[sdk]/can - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

– freemaster_XXX.c and .h - implement low-level access to the communication peripheral
registers. Different files exist for the FlexCAN, msCAN, MCAN, and other kinds of CAN
communication modules.

• src/drivers/[sdk]/network - contains low-level code adapting the FreeMASTER Network
transport to an underlying TCP/IP or RTT stack.

– freemaster_net_lwip_tcp.c and _udp.c - default networking implementation of TCP and
UDP transports using lwIP stack.

– freemaster_net_segger_rtt.c - implementation of network transport using Segger J-Link
RTT interface

Driver configuration The driver is configured using a single header file (freemaster_cfg.h).
Create this file and save it together with other project source files before compiling the driver
code. All FreeMASTER driver source files include the freemaster_cfg.h file and use the macros
defined here for the conditional and parameterized compilation. The C compiler must locate the
configuration file when compiling the driver files. Typically, it can be achieved by putting this
file into a folder where the other project-specific included files are stored.

As a starting point to create the configuration file, get the freemaster_cfg.h.example file, rename
it to freemaster_cfg.h, and save it into the project area.

Note: It is NOT recommended to leave the freemaster_cfg.h file in the FreeMASTER driver source
code folder. The configuration file must be placed at a project-specific location, so that it does not
affect the other applications that use the same driver.

Configurable items This section describes the configuration options which can be defined in
freemaster_cfg.h.

Interrupt modes
#define FMSTR_LONG_INTR [0|1]
#define FMSTR_SHORT_INTR [0|1]
#define FMSTR_POLL_DRIVEN [0|1]

Value Type boolean (0 or 1)

Description Exactly one of the three macros must be defined to non-zero. The others must be
defined to zero or left undefined. The non-zero-defined constant selects the interrupt mode of
the driver. See Driver interrupt modes.

• FMSTR_LONG_INTR — long interrupt mode

• FMSTR_SHORT_INTR — short interrupt mode

• FMSTR_POLL_DRIVEN — poll-driven mode

Note: Some options may not be supported by all communication interfaces. For example, the
FMSTR_SHORT_INTR option is not supported by the USB_CDC interface.

Protocol transport
#define FMSTR_TRANSPORT [identifier]

14 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Value Type Driver identifiers are structure instance names defined in FreeMASTER source
code. Specify one of existing instances to make use of the protocol transport.

Description Use one of the pre-defined constants, as implemented by the FreeMASTER code.
The current driver supports the following transports:

• FMSTR_SERIAL - serial communication protocol

• FMSTR_CAN - using CAN communication

• FMSTR_PDBDM - using packet-driven BDM communication

• FMSTR_NET - network communication using TCP or UDP protocol

Serial transport This section describes configuration parameters used when serial transport
is used:

#define FMSTR_TRANSPORT FMSTR_SERIAL

FMSTR_SERIAL_DRV Select what low-level driver interface will be used when implementing
the Serial communication.

#define FMSTR_SERIAL_DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing serial driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/serial implementation):

• FMSTR_SERIAL_MCUX_UART - UART driver

• FMSTR_SERIAL_MCUX_LPUART - LPUART driver

• FMSTR_SERIAL_MCUX_USART - USART driver

• FMSTR_SERIAL_MCUX_MINIUSART - miniUSART driver

• FMSTR_SERIAL_MCUX_QSCI - DSC QSCI driver

• FMSTR_SERIAL_MCUX_USB - USB/CDC class driver (also see code in the /sup-
port/mcuxsdk_usb folder)

• FMSTR_SERIAL_56F800E_EONCE - DSC JTAG EOnCE driver

Other SDKs or BSPs may define custom low-level driver interface structure which may be used
as FMSTR_SERIAL_DRV. For example:

• FMSTR_SERIAL_DREG_UART - demonstrates the low-level interface implemented without
the MCUXpresso SDK and using direct access to peripheral registers.

FMSTR_SERIAL_BASE
#define FMSTR_SERIAL_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

1.2. Motor Control 15

MCUXpresso SDK Documentation, Release 25.09.00

Description Specify the base address of the UART, LPUART, USART, or other serial peripheral
module to be used for the communication. This value is not defined by default. User application
should call FMSTR_SetSerialBaseAddress() to select the peripheral module.

FMSTR_COMM_BUFFER_SIZE
#define FMSTR_COMM_BUFFER_SIZE [number]

Value Type 0 or a value in range 32…255

Description Specify the size of the communication buffer to be allocated by the driver.
Default value, which suits all driver features, is used when this option is defined as 0.

FMSTR_COMM_RQUEUE_SIZE
#define FMSTR_COMM_RQUEUE_SIZE [number]

Value Type Value in range 0…255

Description Specify the size of the FIFO receiver queue used to quickly receive and store char-
acters in the FMSTR_SHORT_INTR interrupt mode.
The default value is 32 B.

FMSTR_SERIAL_SINGLEWIRE
#define FMSTR_SERIAL_SINGLEWIRE [0|1]

Value Type Boolean 0 or 1.

Description Set to non-zero to enable the “True” single-wire mode which uses a single MCU
pin to communicate. The low-level driver enables the pin direction switching when the MCU
peripheral supports it.

CANBus transport This section describes configuration parameters used when CAN transport
is used:

#define FMSTR_TRANSPORT FMSTR_CAN

FMSTR_CAN_DRV Select what low-level driver interface will be used when implementing the
CAN communication.

#define FMSTR_CAN_DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing CAN driver instances.

16 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/can implementation):

• FMSTR_CAN_MCUX_FLEXCAN - FlexCAN driver

• FMSTR_CAN_MCUX_MCAN - MCAN driver

• FMSTR_CAN_MCUX_MSCAN - msCAN driver

• FMSTR_CAN_MCUX_DSCFLEXCAN - DSC FlexCAN driver

• FMSTR_CAN_MCUX_DSCMSCAN - DSC msCAN driver

Other SDKs or BSPs may define the custom low-level driver interface structure which may be
used as FMSTR_CAN_DRV.

FMSTR_CAN_BASE
#define FMSTR_CAN_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the FlexCAN, msCAN, or other CAN peripheral module
to be used for the communication. This value is not defined by default. User application should
call FMSTR_SetCanBaseAddress() to select the peripheral module.

FMSTR_CAN_CMDID
#define FMSTR_CAN_CMDID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for FreeMASTER commands (direction from PC Host
tool to target application). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Default value is 0x7AA.

FMSTR_CAN_RSPID
#define FMSTR_CAN_RSPID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for responding messages (direction from target ap-
plication to PC Host tool). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Note that both CMDID and RSPID values may be the same. Default value
is 0x7AA.

FMSTR_FLEXCAN_TXMB
#define FMSTR_FLEXCAN_TXMB [number]

Value Type Number in range of 0..N where N is number of CAN message-buffers supported by
HW module.

1.2. Motor Control 17

MCUXpresso SDK Documentation, Release 25.09.00

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN message
buffer for CAN frame transmission. Default value is 0.

FMSTR_FLEXCAN_RXMB
#define FMSTR_FLEXCAN_RXMB [number]

Value Type Number in range of 0..N where N is number of CAN message-buffers supported by
HW module.

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN mes-
sage buffer for CAN frame reception. Note that the FreeMASTER driver may also operate with a
common message buffer used by both TX and RX directions. Default value is 1.

Network transport This section describes configuration parameters used when Network
transport is used:

#define FMSTR_TRANSPORT FMSTR_NET

FMSTR_NET_DRV Select network interface implementation.

#define FMSTR_NET_DRV [identifier]

Value Type Identifiers are structure instance names defined in FreeMASTER drivers code.
Specify one of existing NET driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/network implementation):

• FMSTR_NET_LWIP_TCP - TCP communication using lwIP stack

• FMSTR_NET_LWIP_UDP - UDP communication using lwIP stack

• FMSTR_NET_SEGGER_RTT - Communication using SEGGER J-Link RTT interface

Other SDKs or BSPs may define the custom networking interface which may be used as FM-
STR_CAN_DRV.

Add another row below:

FMSTR_NET_PORT
#define FMSTR_NET_PORT [number]

Value Type TCP or UDP port number (short integer)

Description Specifies the server port number used by TCP or UDP protocols.

FMSTR_NET_BLOCKING_TIMEOUT

18 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

#define FMSTR_NET_BLOCKING_TIMEOUT [number]

Value Type Timeout as number of milliseconds

Description This value specifies a timeout in milliseconds for which the network socket op-
erations may block the execution inside FMSTR_Poll. This may be set high (e.g. 250) when a
dedicated RTOS task is used to handle FreeMASTER protocol polling. Set to a lower value when
the polling task is also responsible for other operations. Set to 0 to attempt to use non-blocking
socket operations.

FMSTR_NET_AUTODISCOVERY
#define FMSTR_NET_AUTODISCOVERY [0|1]

Value Type Boolean 0 or 1.

Description This option enables the FreeMASTER driver to use a separate UDP socket to broad-
cast auto-discovery messages to network. This helps the FreeMASTER tool to discover the target
device address, port and protocol options.

Debugging options

FMSTR_DISABLE
#define FMSTR_DISABLE [0|1]

Value Type boolean (0 or 1)

Description Define as non-zero to disable all FreeMASTER features, exclude the driver code
from build, and compile all its API functions empty. This may be useful to remove FreeMASTER
without modifying any application source code. Default value is 0 (false).

FMSTR_DEBUG_TX
#define FMSTR_DEBUG_TX [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to enable the driver to periodically transmit test frames out on
the selected communication interface (SCI or CAN). With the debug transmission enabled, it is
simpler to detect problems in the baudrate or other communication configuration settings.

The test frames are transmitted until the first valid command frame is received from the PC Host
tool. The test frame is a valid error status frame, as defined by the protocol format. On the serial
line, the test frame consists of three printable characters (+©W) which are easy to capture using
the serial terminal tools.

This feature requires the FMSTR_Poll() function to be called periodically. Default value is 0 (false).

1.2. Motor Control 19

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_APPLICATION_STR
#define FMSTR_APPLICATION_STR

Value Type String.

Description Name of the application visible in FreeMASTER host application.

Memory access

FMSTR_USE_READMEM
#define FMSTR_USE_READMEM [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Memory Read command and enable
FreeMASTER to have read access to memory and variables. The access can be further restricted
by using a TSA feature.
Default value is 1 (true).

FMSTR_USE_WRITEMEM
#define FMSTR_USE_WRITEMEM [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Memory Write command.
The default value is 1 (true).

Oscilloscope options

FMSTR_USE_SCOPE
#define FMSTR_USE_SCOPE [number]

Value Type Integer number.

Description Number of Oscilloscope instances to be supported. Set to 0 to disable the Oscillo-
scope feature.
Default value is 0.

FMSTR_MAX_SCOPE_VARS
#define FMSTR_MAX_SCOPE_VARS [number]

20 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Value Type Integer number larger than 2.

Description Number of variables to be supported by each Oscilloscope instance.
Default value is 8.

Recorder options

FMSTR_USE_RECORDER
#define FMSTR_USE_RECORDER [number]

Value Type Integer number.

Description Number of Recorder instances to be supported. Set to 0 to disable the Recorder
feature.
Default value is 0.

FMSTR_REC_BUFF_SIZE
#define FMSTR_REC_BUFF_SIZE [number]

Value Type Integer number larger than 2.

Description Defines the size of the memory buffer used by the Recorder instance #0.
Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_TIMEBASE
#define FMSTR_REC_TIMEBASE [time specification]

Value Type Number (nanoseconds time).

Description Defines the base sampling rate in nanoseconds (sampling speed) Recorder in-
stance #0.

Use one of the following macros:

• FMSTR_REC_BASE_SECONDS(x)

• FMSTR_REC_BASE_MILLISEC(x)

• FMSTR_REC_BASE_MICROSEC(x)

• FMSTR_REC_BASE_NANOSEC(x)

Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_FLOAT_TRIG

1.2. Motor Control 21

MCUXpresso SDK Documentation, Release 25.09.00

#define FMSTR_REC_FLOAT_TRIG [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the floating-point triggering. Be aware that
floating-point triggering may grow the code size by linking the floating-point standard library.

Default value is 0 (false).

Application Commands options

FMSTR_USE_APPCMD
#define FMSTR_USE_APPCMD [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Application Commands feature.
Default value is 0 (false).

FMSTR_APPCMD_BUFF_SIZE
#define FMSTR_APPCMD_BUFF_SIZE [size]

Value Type Numeric buffer size in range 1..255

Description The size of the Application Command data buffer allocated by the driver. The
buffer stores the (optional) parameters of the Application Command which waits to be processed.

FMSTR_MAX_APPCMD_CALLS
#define FMSTR_MAX_APPCMD_CALLS [number]

Value Type Number in range 0..255

Description The number of different Application Commands that can be assigned a callback
handler function using FMSTR_RegisterAppCmdCall(). Default value is 0.

TSA options

FMSTR_USE_TSA
#define FMSTR_USE_TSA [0|1]

Value Type Boolean 0 or 1.

22 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Description Enable the FreeMASTER TSA feature to be used. With this option enabled, the TSA
tables defined in the applications are made available to the FreeMASTER host tool.
Default value is 0 (false).

FMSTR_USE_TSA_SAFETY
#define FMSTR_USE_TSA_SAFETY [0|1]

Value Type Boolean 0 or 1.

Description Enable the memory access validation in the FreeMASTER driver. With this option,
the host tool is not able to access the memory which is not described by at least one TSA descrip-
tor. Also a write access is denied for objects defined as read-only in TSA tables.
Default value is 0 (false).

FMSTR_USE_TSA_INROM
#define FMSTR_USE_TSA_INROM [0|1]

Value Type Boolean 0 or 1.

Description Declare all TSA descriptors as const, which enables the linker to put the data into
the flash memory. The actual result depends on linker settings or the linker commands used in
the project.
Default value is 0 (false).

FMSTR_USE_TSA_DYNAMIC
#define FMSTR_USE_TSA_DYNAMIC [0|1]

Value Type Boolean 0 or 1.

Description Enable runtime-defined TSA entries to be added to the TSA table by the FM-
STR_SetUpTsaBuff() and FMSTR_TsaAddVar() functions.
Default value is 0 (false).

Pipes options

FMSTR_USE_PIPES
#define FMSTR_USE_PIPES [0|1]

Value Type Boolean 0 or 1.

Description Enable the FreeMASTER Pipes feature to be used.
Default value is 0 (false).

1.2. Motor Control 23

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_MAX_PIPES_COUNT
#define FMSTR_MAX_PIPES_COUNT [number]

Value Type Number in range 1..63.

Description The number of simultaneous pipe connections to support.
The default value is 1.

Driver interrupt modes To implement the communication, the FreeMASTER driver handles
the Serial or CAN module’s receive and transmit requests. Use the freemaster_cfg.h configuration
file to select whether the driver processes the communication automatically in the interrupt
service routine handler or if it only polls the status of the module (typically during the application
idle time).

This section describes each of the interrupt mode in more details.

Completely Interrupt-Driven operation Activated using:

#define FMSTR_LONG_INTR 1

In this mode, both the communication and the FreeMASTER protocol decoding is done in the
FMSTR_SerialIsr, FMSTR_CanIsr, or other interrupt service routine. Because the protocol execu-
tion may be a lengthy task (especially with the TSA-Safety enabled) it is recommended to use this
mode only if the interrupt prioritization scheme is possible in the application and the FreeMAS-
TER interrupt is assigned to a lower (the lowest) priority.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_SerialIsr or FM-
STR_CanIsr functions from that handler.

Mixed Interrupt and Polling Modes Activated using:

#define FMSTR_SHORT_INTR 1

In this mode, the communication processing time is split between the interrupt routine and the
main application loop or task. The raw communication is handled by the FMSTR_SerialIsr, FM-
STR_CanIsr, or other interrupt service routine, while the protocol decoding and execution is han-
dled by the FMSTR_Poll routine. Call FMSTR_Poll during the idle time in the application main
loop.

The interrupt processing in this mode is relatively fast and deterministic. Upon a serial-receive
event, the received character is only placed into a FIFO-like queue and it is not further processed.
Upon a CAN receive event, the received frame is stored into a receive buffer. When transmitting,
the characters are fetched from the prepared transmit buffer.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_SerialIsr or FM-
STR_CanIsr functions from that handler.

When the serial interface is used as the serial communication interface, ensure that the FM-
STR_Poll function is called at least once per N character time periods. N is the length of the
FreeMASTER FIFO queue (FMSTR_COMM_RQUEUE_SIZE) and the character time is the time
needed to transmit or receive a single byte over the SCI line.

24 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Completely Poll-driven
#define FMSTR_POLL_DRIVEN 1

In this mode, both the communication and the FreeMASTER protocol decoding are done in the
FMSTR_Poll routine. No interrupts are needed and the FMSTR_SerialIsr, FMSTR_CanIsr, and sim-
ilar handlers compile to an empty code.

When using this mode, ensure that the FMSTR_Poll function is called by the application at least
once per the serial “character time” which is the time needed to transmit or receive a single
character.

In the latter two modes (FMSTR_SHORT_INTR and FMSTR_POLL_DRIVEN), the protocol handling
takes place in the FMSTR_Poll routine. An application interrupt can occur in the middle of the
Read Memory or Write Memory commands’ execution and corrupt the variable being accessed
by the FreeMASTER driver. In these two modes, some issues or glitches may occur when using
FreeMASTER to visualize or monitor volatile variables modified in interrupt servicing code.

The same issue may appear even in the full interrupt mode (FMSTR_LONG_INTR), if volatile vari-
ables are modified in the interrupt code with a priority higher than the priority of the commu-
nication interrupt.

Data types Simple portability was one of the main requirements when writing the FreeMAS-
TER driver. This is why the driver code uses the privately-declared data types and the vast ma-
jority of the platform-dependent code is separated in the platform-dependent source files. The
data types used in the driver API are all defined in the platform-specific header file.

To prevent name conflicts with the symbols used in the application, all data types, macros, and
functions have the FMSTR_ prefix. The only global variables used in the driver are the transport
and low-level API structures exported from the driver-implementation layer to upper layers.
Other than that, all private variables are declared as static and named using the fmstr_ prefix.

Communication interface initialization The FreeMASTER driver does not perform neither
the initialization nor the configuration of the peripheral module that it uses to communicate. It
is the application startup code responsibility to configure the communication module before the
FreeMASTER driver is initialized by the FMSTR_Init call.

When the Serial communication module is used as the FreeMASTER communication interface,
configure the UART receive and transmit pins, the serial communication baud rate, parity (no-
parity), the character length (eight bits), and the number of stop bits (one) before initializing the
FreeMASTER driver. For either the long or the short interrupt modes of the driver (see Driver
interrupt modes), configure the interrupt controller and register an application-specific inter-
rupt handler for all interrupt sources related to the selected serial peripheral module. Call the
FMSTR_SerialIsr function from the application handler.

When a CAN module is used as the FreeMASTER communication interface, configure the CAN re-
ceive and transmit pins and the CAN module bit rate before initializing the FreeMASTER driver.
For either the long or the short interrupt modes of the driver (see Driver interrupt modes), con-
figure the interrupt controller and register an application-specific interrupt handler for all in-
terrupt sources related to the selected CAN peripheral module. Call the FMSTR_CanIsr function
from the application handler.

Note: It is not necessary to enable or unmask the serial nor the CAN interrupts before initializing
the FreeMASTER driver. The driver enables or disables the interrupts and communication lines,
as required during runtime.

FreeMASTER Recorder calls When using the FreeMASTER Recorder in the application (FM-
STR_USE_RECORDER > 0), call the FMSTR_RecorderCreate function early after FMSTR_Init to set

1.2. Motor Control 25

MCUXpresso SDK Documentation, Release 25.09.00

up each recorder instance to be used in the application. Then call the FMSTR_Recorder func-
tion periodically in the code where the data recording should occur. A typical place to call the
Recorder routine is at the timer or PWM interrupts, but it can be anywhere else. The exam-
ple applications provided together with the driver code call the FMSTR_Recorder in the main
application loop.

In applications where FMSTR_Recorder is called periodically with a constant period, specify the
period in the Recorder configuration structure before calling FMSTR_RecorderCreate. This set-
ting enables the PC Host FreeMASTER tool to display the X-axis of the Recorder graph properly
scaled for the time domain.

Driver usage Start using or evaluating FreeMASTER by opening some of the example applica-
tions available in the driver setup package.

Follow these steps to enable the basic FreeMASTER connectivity in the application:

• Make sure that all *.c files of the FreeMASTER driver from the
src/common/platforms/[your_platform] folder are a part of the project. See Driver files
for more details.

• Configure the FreeMASTER driver by creating or editing the freemaster_cfg.h file and by
saving it into the application project directory. See Driver configuration for more details.

• Include the freemaster.h file into any application source file that makes the FreeMASTER
API calls.

• Initialize the Serial or CAN modules. Set the baud rate, parity, and other parameters of
the communication. Do not enable the communication interrupts in the interrupt mask
registers.

• For the FMSTR_LONG_INTR and FMSTR_SHORT_INTR modes, install the application-
specific interrupt routine and call the FMSTR_SerialIsr or FMSTR_CanIsr functions from
this handler.

• Call the FMSTR_Init function early on in the application initialization code.

• Call the FMSTR_RecorderCreate functions for each Recorder instance to enable the
Recorder feature.

• In the main application loop, call the FMSTR_Poll API function periodically when the appli-
cation is idle.

• For the FMSTR_SHORT_INTR and FMSTR_LONG_INTR modes, enable the interrupts globally
so that the interrupts can be handled by the CPU.

Communication troubleshooting The most common problem that causes communication is-
sues is a wrong baud rate setting or a wrong pin multiplexer setting of the target MCU. When
a communication between the PC Host running FreeMASTER and the target MCU cannot be es-
tablished, try enabling the FMSTR_DEBUG_TX option in the freemaster_cfg.h file and call the FM-
STR_Poll function periodically in the main application task loop.

With this feature enabled, the FreeMASTER driver periodically transmits a test frame through
the Serial or CAN lines. Use a logic analyzer or an oscilloscope to monitor the signals at the
communication pins of the CPU device to examine whether the bit rate and signal polarity are
configured properly.

Driver API

This section describes the driver Application Programmers’ Interface (API) needed to initialize
and use the FreeMASTER serial communication driver.

26 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Control API There are three key functions to initialize and use the driver.

FMSTR_Init

Prototype
FMSTR_BOOL FMSTR_Init(void);

• Declaration: freemaster.h

• Implementation: freemaster_protocol.c

Description This function initializes the internal variables of the FreeMASTER driver and en-
ables the communication interface. This function does not change the configuration of the se-
lected communication module. The hardware module must be initialized before the FMSTR_Init
function is called.

A call to this function must occur before calling any other FreeMASTER driver API functions.

FMSTR_Poll

Prototype
void FMSTR_Poll(void);

• Declaration: freemaster.h

• Implementation: freemaster_protocol.c

Description In the poll-driven or short interrupt modes, this function handles the protocol
decoding and execution (see Driver interrupt modes). In the poll-driven mode, this function also
handles the communication interface with the PC. Typically, the FMSTR_Poll function is called
during the “idle” time in the main application task loop.

To prevent the receive data overflow (loss) on a serial interface, make sure that the FMSTR_Poll
function is called at least once per the time calculated as:

N * Tchar

where:

• N is equal to the length of the receive FIFO queue (configured by the FM-
STR_COMM_RQUEUE_SIZE macro). N is 1 for the poll-driven mode.

• Tchar is the character time, which is the time needed to transmit or receive a single byte
over the SCI line.

Note: In the long interrupt mode, this function typically compiles as an empty function and can
still be called. It is worthwhile to call this function regardless of the interrupt mode used in
the application. This approach enables a convenient switching between the different interrupt
modes only by changing the configuration macros in the freemaster_cfg.h file.

FMSTR_SerialIsr / FMSTR_CanIsr

Prototype

1.2. Motor Control 27

MCUXpresso SDK Documentation, Release 25.09.00

void FMSTR_SerialIsr(void);
void FMSTR_CanIsr(void);

• Declaration: freemaster.h

• Implementation: hw-specific low-level driver C file

Description This function contains the interrupt-processing code of the FreeMASTER driver.
In long or short interrupt modes (see Driver interrupt modes), this function must be called from
the application interrupt service routine registered for the communication interrupt vector. On
platforms where the communication module uses multiple interrupt vectors, the application
should register a handler for all vectors and call this function at each interrupt.

Note: In a poll-driven mode, this function is compiled as an empty function and does not have
to be used.

Recorder API

FMSTR_RecorderCreate

Prototype
FMSTR_BOOL FMSTR_RecorderCreate(FMSTR_INDEX recIndex, FMSTR_REC_BUFF* buffCfg);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function registers a recorder instance and enables it to be used by the PC
Host tool. Call this function for all recorder instances from 0 to the maximum number de-
fined by the FMSTR_USE_RECORDER configuration option (minus one). An exception to this
requirement is the recorder of instance 0 which may be automatically configured by FM-
STR_Init when the freemaster_cfg.h configuration file defines the FMSTR_REC_BUFF_SIZE and
FMSTR_REC_TIMEBASE options.

For more information, see Configurable items.

FMSTR_Recorder

Prototype
void FMSTR_Recorder(FMSTR_INDEX recIndex);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function takes a sample of the variables being recorded using the FreeMAS-
TER Recorder instance recIndex. If the selected Recorder is not active when the FMSTR_Recorder
function is being called, the function returns immediately. When the Recorder is active, the val-
ues of the variables being recorded are copied into the recorder buffer and the trigger conditions
are evaluated.

28 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

If a trigger condition is satisfied, the Recorder enters the post-trigger mode, where it counts down
the follow-up samples (number of FMSTR_Recorder function calls) and de-activates the Recorder
when the required post-trigger samples are finished.

The FMSTR_Recorder function is typically called in the timer or PWM interrupt service routines.
This function can also be called in the application main loop (for testing purposes).

FMSTR_RecorderTrigger

Prototype
void FMSTR_RecorderTrigger(FMSTR_INDEX recIndex);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function forces the Recorder trigger condition to happen, which causes the
Recorder to be automatically deactivated after the post-trigger samples are sampled. Use this
function in the application code for programmatic control over the Recorder triggering. This
can be useful when a more complex triggering conditions need to be used.

FastRecorderAPI The Fast Recorder feature is not available in the FreeMASTER driver version
3. This feature was heavily dependent on the target platform and it was only available for the
56F8xxxx DSCs.

TSA Tables When the TSA is enabled in the FreeMASTER driver configuration file (by setting
the FMSTR_USE_TSA macro to a non-zero value), it defines the so-called TSA tables in the appli-
cation. This section describes the macros that must to be used to define the TSA tables.

There can be any number of TSA tables spread across the application source files. There must
be always exactly one TSA Table List defined, which informs the FreeMASTER driver about the
active TSA tables.

When there is at least one TSA table and one TSA Table List defined in the application, the TSA
information automatically appears in the FreeMASTER symbols list. The symbols can then be
used to create FreeMASTER variables for visualization or control.

TSA table definition The TSA table describes the static or global variables together with their
address, size, type, and access-protection information. If the TSA-described variables are of a
structure type, the TSA table may also describe this type and provide an access to the individual
structure members of the variable.

The TSA table definition begins with the FMSTR_TSA_TABLE_BEGIN macro with a table_id iden-
tifying the table. The table_id shall be a valid C-langiage symbol.

FMSTR_TSA_TABLE_BEGIN(table_id)

After this opening macro, the TSA descriptors are placed using these macros:

/* Adding variable descriptors */
FMSTR_TSA_RW_VAR(name, type) /* read/write variable entry */
FMSTR_TSA_RO_VAR(name, type) /* read-only variable entry */

/* Description of complex data types */
FMSTR_TSA_STRUCT(struct_name) /* structure or union type entry */

(continues on next page)

1.2. Motor Control 29

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
FMSTR_TSA_MEMBER(struct_name, member_name, type) /* structure member entry */

/* Memory blocks */
FMSTR_TSA_RW_MEM(name, type, address, size) /* read/write memory block */
FMSTR_TSA_RO_MEM(name, type, address, size) /* read-only memory block */

The table is closed using the FMSTR_TSA_TABLE_END macro:

FMSTR_TSA_TABLE_END()

TSA descriptor parameters The TSA descriptor macros accept these parameters:

• name — variable name. The variable must be defined before the TSA descriptor references
it.

• type — variable or member type. Only one of the pre-defined type constants may be used
(see below).

• struct_name — structure type name. The type must be defined (typedef) before the TSA
descriptor references it.

• member_name — structure member name.

Note: The structure member descriptors (FMSTR_TSA_MEMBER) must immediately follow the
parent structure descriptor (FMSTR_TSA_STRUCT) in the table.

Note: To write-protect the variables in the FreeMASTER driver (FMSTR_TSA_RO_VAR), enable
the TSA-Safety feature in the configuration file.

TSA variable types The table lists type identifiers which can be used in TSA descriptors:

Constant Description
FMSTR_TSA_UINTn Unsigned integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_SINTn Signed integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_FRACn Fractional number of size n bits (n=16,32,64).
FMSTR_TSA_FRAC_Q(m,n) Signed fractional number in general Q form (m+n+1 total bits)
FMSTR_TSA_FRAC_UQ(m,n) Unsigned fractional number in general UQ form (m+n total

bits)
FMSTR_TSA_FLOAT 4-byte standard IEEE floating-point type
FMSTR_TSA_DOUBLE 8-byte standard IEEE floating-point type
FMSTR_TSA_POINTER Generic pointer type defined (platform-specific 16 or 32 bit)
FM-
STR_TSA_USERTYPE(name)

Structure or union type declared with FMSTR_TSA_STRUCT
record

TSA table list There shall be exactly one TSA Table List in the application. The list contains
one entry for each TSA table defined anywhere in the application.

The TSA Table List begins with the FMSTR_TSA_TABLE_LIST_BEGIN macro and continues with
the TSA table entries for each table.

FMSTR_TSA_TABLE_LIST_BEGIN()

FMSTR_TSA_TABLE(table_id)
FMSTR_TSA_TABLE(table_id2)
FMSTR_TSA_TABLE(table_id3)
...

30 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

The list is closed with the FMSTR_TSA_TABLE_LIST_END macro:

FMSTR_TSA_TABLE_LIST_END()

TSA Active Content entries FreeMASTER v2.0 and higher supports TSA Active Content, en-
abling the TSA tables to describe the memory-mapped files, virtual directories, and URL hyper-
links. FreeMASTER can access such objects similarly to accessing the files and folders on the
local hard drive.

With this set of TSA entries, the FreeMASTER pages can be embedded directly into the target
MCU flash and accessed by FreeMASTER directly over the communication line. The HTML-coded
pages rendered inside the FreeMASTER window can access the TSA Active Content resources
using a special URL referencing the fmstr: protocol.

This example provides an overview of the supported TSA Active Content entries:

FMSTR_TSA_TABLE_BEGIN(files_and_links)

/* Directory entry applies to all subsequent MEMFILE entries */
FMSTR_TSA_DIRECTORY(”/text_files”) /* entering a new virtual directory */

/* The readme.txt file will be accessible at the fmstr://text_files/readme.txt URL */
FMSTR_TSA_MEMFILE(”readme.txt”, readme_txt, sizeof(readme_txt)) /* memory-mapped file */

/* Files can also be specified with a full path so the DIRECTORY entry does not apply */
FMSTR_TSA_MEMFILE(”/index.htm”, index, sizeof(index)) /* memory-mapped file */
FMSTR_TSA_MEMFILE(”/prj/demo.pmp”, demo_pmp, sizeof(demo_pmp)) /* memory-mapped file */

/* Hyperlinks can point to a local MEMFILE object or to the Internet */
FMSTR_TSA_HREF(”Board's Built-in Welcome Page”, ”/index.htm”)
FMSTR_TSA_HREF(”FreeMASTER Home Page”, ”http://www.nxp.com/freemaster”)

/* Project file links simplify opening the projects from any URLs */
FMSTR_TSA_PROJECT(”Demonstration Project (embedded)”, ”/prj/demo.pmp”)
FMSTR_TSA_PROJECT(”Full Project (online)”, ”http://mycompany.com/prj/demo.pmp”)

FMSTR_TSA_TABLE_END()

TSA API

FMSTR_SetUpTsaBuff

Prototype
FMSTR_BOOL FMSTR_SetUpTsaBuff(FMSTR_ADDR buffAddr, FMSTR_SIZE buffSize);

• Declaration: freemaster.h

• Implementation: freemaster_tsa.c

Arguments
• buffAddr [in] - address of the memory buffer for the dynamic TSA table

• buffSize [in] - size of the memory buffer which determines the maximum number of TSA
entries to be added in the runtime

1.2. Motor Control 31

MCUXpresso SDK Documentation, Release 25.09.00

Description This function must be used to assign the RAM memory buffer to the TSA subsystem
when FMSTR_USE_TSA_DYNAMIC is enabled. The memory buffer is then used to store the TSA
entries added dynamically to the runtime TSA table using the FMSTR_TsaAddVar function call.
The runtime TSA table is processed by the FreeMASTER PC Host tool along with all static tables
as soon as the communication port is open.

The size of the memory buffer determines the number of TSA entries that can be added dynam-
ically. Depending on the MCU platform, one TSA entry takes either 8 or 16 bytes.

FMSTR_TsaAddVar

Prototype
FMSTR_BOOL FMSTR_TsaAddVar(FMSTR_TSATBL_STRPTR tsaName, FMSTR_TSATBL_STRPTR␣
↪→tsaType,

FMSTR_TSATBL_VOIDPTR varAddr, FMSTR_SIZE32 varSize,
FMSTR_SIZE flags);

• Declaration: freemaster.h

• Implementation: freemaster_tsa.c

Arguments
• tsaName [in] - name of the object

• tsaType [in] - name of the object type

• varAddr [in] - address of the object

• varSize [in] - size of the object

• flags [in] - access flags; a combination of these values:

– FMSTR_TSA_INFO_RO_VAR — read-only memory-mapped object (typically a variable)

– FMSTR_TSA_INFO_RW_VAR — read/write memory-mapped object

– FMSTR_TSA_INFO_NON_VAR — other entry, describing structure types, structure
members, enumerations, and other types

Description This function can be called only when the dynamic TSA table is enabled by the
FMSTR_USE_TSA_DYNAMIC configuration option and when the FMSTR_SetUpTsaBuff function
call is made to assign the dynamic TSA table memory. This function adds an entry into the dy-
namic TSA table. It can be used to register a read-only or read/write memory object or describe
an item of the user-defined type.

See TSA table definition for more details about the TSA table entries.

Application Commands API

FMSTR_GetAppCmd

Prototype
FMSTR_APPCMD_CODE FMSTR_GetAppCmd(void);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

32 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Description This function can be used to detect if there is an Application Command waiting
to be processed by the application. If no command is pending, this function returns the FM-
STR_APPCMDRESULT_NOCMD constant. Otherwise, this function returns the code of the Appli-
cation Command that must be processed. Use the FMSTR_AppCmdAck call to acknowledge the
Application Command after it is processed and to return the appropriate result code to the host.

The FMSTR_GetAppCmd function does not report the commands for which a callback handler
function exists. If the FMSTR_GetAppCmd function is called when a callback-registered com-
mand is pending (and before it is actually processed by the callback function), this function re-
turns FMSTR_APPCMDRESULT_NOCMD.

FMSTR_GetAppCmdData

Prototype
FMSTR_APPCMD_PDATA FMSTR_GetAppCmdData(FMSTR_SIZE* dataLen);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• dataLen [out] - pointer to the variable that receives the length of the data available in the

buffer. It can be NULL when this information is not needed.

Description This function can be used to retrieve the Application Command data when the
application determines that an Application Command is pending (see FMSTR_GetAppCmd).

There is just a single buffer to hold the Application Command data (the buffer length is FM-
STR_APPCMD_BUFF_SIZE bytes). If the data are to be used in the application after the command
is processed by the FMSTR_AppCmdAck call, copy the data out to a private buffer.

FMSTR_AppCmdAck

Prototype
void FMSTR_AppCmdAck(FMSTR_APPCMD_RESULT resultCode);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• resultCode [in] - the result code which is to be returned to FreeMASTER

Description This function is used when the Application Command processing finishes in the
application. The resultCode passed to this function is returned back to the host and the driver is
re-initialized to expect the next Application Command.

After this function is called and before the next Application Command arrives, the return value
of the FMSTR_GetAppCmd function is FMSTR_APPCMDRESULT_NOCMD.

FMSTR_AppCmdSetResponseData

1.2. Motor Control 33

MCUXpresso SDK Documentation, Release 25.09.00

Prototype
void FMSTR_AppCmdSetResponseData(FMSTR_ADDR resultDataAddr, FMSTR_SIZE resultDataLen);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• resultDataAddr [in] - pointer to the data buffer that is to be copied to the Application Com-

mand data buffer

• resultDataLen [in] - length of the data to be copied. It must not exceed the FM-
STR_APPCMD_BUFF_SIZE value.

Description This function can be used before the Application Command processing finishes,
when there are data to be returned back to the PC.

The response data buffer is copied into the Application Command data buffer, from where it is
accessed when the host requires it. Do not use FMSTR_GetAppCmdData and the data buffer after
FMSTR_AppCmdSetResponseData is called.

Note: The current version of FreeMASTER does not support the Application Command response
data.

FMSTR_RegisterAppCmdCall

Prototype
FMSTR_BOOL FMSTR_RegisterAppCmdCall(FMSTR_APPCMD_CODE appCmdCode, FMSTR_
↪→PAPPCMDFUNC callbackFunc);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• appCmdCode [in] - the Application Command code for which the callback is to be registered

• callbackFunc [in] - pointer to the callback function that is to be registered. Use NULL to
unregister a callback registered previously with this Application Command.

Return value This function returns a non-zero value when the callback function was success-
fully registered or unregistered. It can return zero when trying to register a callback function
for more than FMSTR_MAX_APPCMD_CALLS different Application Commands.

Description This function can be used to register the given function as a callback handler for
the Application Command. The Application Command is identified using single-byte code. The
callback function is invoked automatically by the FreeMASTER driver when the protocol decoder
obtains a request to get the application command result code.

The prototype of the callback function is

FMSTR_APPCMD_RESULT HandlerFunction(FMSTR_APPCMD_CODE nAppcmd,
FMSTR_APPCMD_PDATA pData, FMSTR_SIZE nDataLen);

34 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Where:

• nAppcmd -Application Command code

• pData —points to the Application Command data received (if any)

• nDataLen —information about the Application Command data length

The return value of the callback function is used as the Application Command Result Code and
returned to FreeMASTER.

Note: The FMSTR_MAX_APPCMD_CALLS configuration macro defines how many different Appli-
cation Commands may be handled by a callback function. When FMSTR_MAX_APPCMD_CALLS
is undefined or defined as zero, the FMSTR_RegisterAppCmdCall function always fails.

Pipes API

FMSTR_PipeOpen

Prototype
FMSTR_HPIPE FMSTR_PipeOpen(FMSTR_PIPE_PORT pipePort, FMSTR_PPIPEFUNC pipeCallback,
↪→

FMSTR_ADDR pipeRxBuff, FMSTR_PIPE_SIZE pipeRxSize,
FMSTR_ADDR pipeTxBuff, FMSTR_PIPE_SIZE pipeTxSize,
FMSTR_U8 type, const FMSTR_CHAR *name);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipePort [in] - port number that identifies the pipe for the client

• pipeCallback [in] - pointer to the callback function that is called whenever a pipe data status
changes

• pipeRxBuff [in] - address of the receive memory buffer

• pipeRxSize [in] - size of the receive memory buffer

• pipeTxBuff [in] - address of the transmit memory buffer

• pipeTxSize [in] - size of the transmit memory buffer

• type [in] - a combination of FMSTR_PIPE_MODE_xxx and FMSTR_PIPE_SIZE_xxx constants
describing primary pipe data format and usage. This type helps FreeMASTER decide how
to access the pipe by default. Optional, use 0 when undetermined.

• name [in] - user name of the pipe port. This name is visible to the FreeMASTER user when
creating the graphical pipe interface.

Description This function initializes a new pipe and makes it ready to accept or send the data
to the PC Host client. The receive memory buffer is used to store the received data before they are
read out by the FMSTR_PipeRead call. When this buffer gets full, the PC Host client denies the
data transmission into this pipe until there is enough free space again. The transmit memory
buffer is used to store the data transmitted by the application to the PC Host client using the
FMSTR_PipeWrite call. The transmit buffer can get full when the PC Host is disconnected or
when it is slow in receiving and reading out the pipe data.

1.2. Motor Control 35

MCUXpresso SDK Documentation, Release 25.09.00

The function returns the pipe handle which must be stored and used in the subsequent calls to
manage the pipe object.

The callback function (if specified) is called whenever new data are received through the pipe
and available for reading. This callback is also called when the data waiting in the transmit
buffer are successfully pushed to the PC Host and the transmit buffer free space increases. The
prototype of the callback function provided by the user application must be as follows. The
PipeHandler name is only a placeholder and must be defined by the application.

void PipeHandler(FMSTR_HPIPE pipeHandle);

FMSTR_PipeClose

Prototype
void FMSTR_PipeClose(FMSTR_HPIPE pipeHandle);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

Description This function de-initializes the pipe object. No data can be received or sent on the
pipe after this call.

FMSTR_PipeWrite

Prototype
FMSTR_PIPE_SIZE FMSTR_PipeWrite(FMSTR_HPIPE pipeHandle, FMSTR_ADDR pipeData,

FMSTR_PIPE_SIZE pipeDataLen, FMSTR_PIPE_SIZE writeGranularity);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

• pipeData [in] - address of the data to be written

• pipeDataLen [in] - length of the data to be written

• writeGranularity [in] - size of the minimum unit of data which is to be written

Description This function puts the user-specified data into the pipe’s transmit memory buffer
and schedules it for transmission. This function returns the number of bytes that were success-
fully written into the buffer. This number may be smaller than the number of the requested
bytes if there is not enough free space in the transmit buffer.

The writeGranularity argument can be used to split the data into smaller chunks, each of the
size given by the writeGranularity value. The FMSTR_PipeWrite function writes as many data
chunks as possible into the transmit buffer and does not attempt to write an incomplete chunk.

36 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

This feature can prove to be useful to avoid the intermediate caching when writing an array of
integer values or other multi-byte data items. When making the nGranularity value equal to the
nLength value, all data are considered as one chunk which is either written successfully as a
whole or not at all. The nGranularity value of 0 or 1 disables the data-chunk approach.

FMSTR_PipeRead

Prototype
FMSTR_PIPE_SIZE FMSTR_PipeRead(FMSTR_HPIPE pipeHandle, FMSTR_ADDR pipeData,

FMSTR_PIPE_SIZE pipeDataLen, FMSTR_PIPE_SIZE readGranularity);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

• pipeData [in] - address of the data buffer to be filled with the received data

• pipeDataLen [in] - length of the data to be read

• readGranularity [in] - size of the minimum unit of data which is to be read

Description This function copies the data received from the pipe from its receive buffer to the
user buffer for further processing. The function returns the number of bytes that were success-
fully copied to the buffer. This number may be smaller than the number of the requested bytes
if there is not enough data bytes available in the receive buffer.

The readGranularity argument can be used to copy the data in larger chunks in the same way as
described in the FMSTR_PipeWrite function.

API data types This section describes the data types used in the FreeMASTER driver. The infor-
mation provided here can be useful when modifying or porting the FreeMASTER Communication
Driver to new NXP platforms.

Note: The licensing conditions prohibit use of FreeMASTER and the FreeMASTER Communica-
tion Driver with non-NXP MPU or MCU products.

Public common types The table below describes the public data types used in the FreeMASTER
driver API calls. The data types are declared in the freemaster.h header file.

1.2. Motor Control 37

MCUXpresso SDK Documentation, Release 25.09.00

Type name Description
FM-
STR_ADDR

Data type used to hold the memory address. On most platforms, this is normally
a C-pointer, but it may also be a pure integer type.

For exam-
ple, this
type is
defined as
long inte-
ger on the
56F8xxx
platform
where
the 24-bit
addresses
must be
supported,
but the
C-pointer
may be
only 16
bits wide
in some
compiler
configura-
tions.
FM-
STR_SIZE

Data type used to hold the memory block size.

It is re-
quired
that this
type is un-
signed and
at least 16
bits wide
integer.
FM-
STR_BOOL

Data type used as a general boolean type.

This type
is used
only in
zero/non-
zero con-
ditions in
the driver
code.
FM-
STR_APPCMD_CODE

Data type used to hold the Application Command code.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCMD_DATA

Data type used to create the Application Command data buffer.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCMD_RESULT

Data type used to hold the Application Command result code.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_PAPPCMDFUNC

Pointer to the Application Command handler function.

See FM-
STR_RegisterAppCmdCall
for more
details.

38 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Public TSA types The table describes the TSA-specific public data types. These types are de-
clared in the freemaster_tsa.h header file, which is included in the user application indirectly by
the freemaster.h file.

FM-
STR_TSA_TINDEX

Data type used to hold a descriptor index in the TSA table or a table index in the
list of TSA tables.

By default,
this is
defined
as FM-
STR_SIZE.
FM-
STR_TSA_TSIZE

Data type used to hold a memory block size, as used in the TSA descriptors.

By default,
this is
defined
as FM-
STR_SIZE.

Public Pipes types The table describes the data types used by the FreeMASTER Pipes API:

FM-
STR_HPIPE

Pipe handle that identifies the open-pipe object.

Generally,
this is a
pointer
to a void
type.
FM-
STR_PIPE_PORT

Integer type required to hold at least 7 bits of data.

Generally,
this is an
unsigned
8-bit or
16-bit type.
FM-
STR_PIPE_SIZE

Integer type required to hold at least 16 bits of data.

This is
used to
store the
data buffer
sizes.
FM-
STR_PPIPEFUNC

Pointer to the pipe handler function.

See FM-
STR_PipeOpen
for more
details.

Internal types The table describes the data types used internally by the FreeMASTER driver.
The data types are declared in the platform-specific header file and they are not available in the
application code.

1.2. Motor Control 39

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_U8 The smallest memory entity.
On the vast
majority of
platforms,
this is an
unsigned
8-bit inte-
ger.
On the
56F8xx
DSP plat-
form, this
is defined
as an un-
signed
16-bit inte-
ger.
FM-
STR_U16

Unsigned 16-bit integer.

FM-
STR_U32

Unsigned 32-bit integer.

FMSTR_S8 Signed 8-bit integer.
FM-
STR_S16

Signed 16-bit integer.

FM-
STR_S32

Signed 32-bit integer.

FM-
STR_FLOAT

4-byte standard IEEE floating-point type.

FM-
STR_FLAGS

Data type forming a union with a structure of flag bit-fields.

FM-
STR_SIZE8

Data type holding a general size value, at least 8 bits wide.

FM-
STR_INDEX

General for-loop index. Must be signed, at least 16 bits wide.

FM-
STR_BCHR

A single character in the communication buffer.

Typically,
this is
an 8-bit
unsigned
integer,
except for
the DSP
platforms
where it
is a 16-bit
integer.
FM-
STR_BPTR

A pointer to the communication buffer (an array of FMSTR_BCHR).

Document references

Links
• This document online: https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/

freemaster/doc/index.html

40 Chapter 1. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html

MCUXpresso SDK Documentation, Release 25.09.00

• FreeMASTER tool home: www.nxp.com/freemaster

• FreeMASTER community area: community.nxp.com/community/freemaster

• FreeMASTER GitHub code repo: https://github.com/nxp-mcuxpresso/mcux-freemaster

• MCUXpresso SDK home: www.nxp.com/mcuxpresso

• MCUXpresso SDK builder: mcuxpresso.nxp.com/en

Documents
• FreeMASTER Usage Serial Driver Implementation (document AN4752)

• Integrating FreeMASTER Time Debugging ToolWith CodeWarrior ForMicrocontrollers v10.X
Project (document AN4771)

• Flash Driver Library For MC56F847xx And MC56F827xx DSC Family (document AN4860)

Revision history This Table summarizes the changes done to this document since the initial
release.

1.2. Motor Control 41

https://www.nxp.com/freemaster
https://community.nxp.com/community/freemaster
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://www.nxp.com/mcuxpresso
https://mcuxpresso.nxp.com/en
http://www.nxp.com/doc/AN4752
http://www.nxp.com/doc/AN4771
http://www.nxp.com/doc/AN4860

MCUXpresso SDK Documentation, Release 25.09.00

Revi-
sion

Date Description

1.0 03/2006 Limited initial release
2.0 09/2007 Updated for FreeMASTER version. New Freescale doc-

ument template used.
2.1 12/2007 Added description of the new Fast Recorder feature and

its API.
2.2 04/2010 Added support for MPC56xx platform, Added new API

for use CAN interface.
2.3 04/2011 Added support for Kxx Kinetis platform and MQX oper-

ating system.
2.4 06/2011 Serial driver update, adds support for USB CDC inter-

face.
2.5 08/2011 Added Packet Driven BDM interface.
2.7 12/2013 Added FLEXCAN32 interface, byte access and isr call-

back configuration option.
2.8 06/2014 Removed obsolete license text, see the software pack-

age content for up-to-date license.
2.9 03/2015 Update for driver version 1.8.2 and 1.9: FreeMAS-

TER Pipes, TSA Active Content, LIN Transport Layer
support, DEBUG-TX communication troubleshooting,
Kinetis SDK support.

3.0 08/2016 Update for driver version 2.0: Added support for
MPC56xx, MPC57xx, KEAxx and S32Kxx platforms.
New NXP document template as well as new license
agreement used. added MCAN interface. Folders struc-
ture at the installation destination was rearranged.

4.0 04/2019 Update for driver released as part of FreeMASTER v3.0
and MCUXpresso SDK 2.6. Updated to match new V4
serial communication protocol and new configuration
options. This version of the document removes sub-
stantial portion of outdated information related to S08,
S12, ColdFire, Power and other legacy platforms.

4.1 04/2020 Minor update for FreeMASTER driver included in
MCUXpresso SDK 2.8.

4.2 09/2020 Added example applications description and informa-
tion about the MCUXpresso Config Tools. Fixed the
pipe-related API description.

4.3 10/2024 Added description of Network and Segger J-Link RTT in-
terface configuration. Accompanying the MCUXpresso
SDK version 24.12.00.

4.4 04/2025 Added Zephyr-specific information. Accompanying the
MCUXpresso SDK version 25.06.00.

1.3 Multimedia

1.3.1 Xtensa Audio Framework (XAF)

Xtensa Audio Framework (XAF) Examples

Overview The Xtensa Audio Framework (XAF) is designed to accelerate the development of
audio processing applications for the HiFi family of DSP cores. The multicore version of XAF
described in these examples is designed to work with subsystems having single or multiple DSPs,
enabling sophisticated audio processing capabilities in embedded systems.

42 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Each demo showcases a dual-core architecture:

• cm33/ - The ARM application for the Cortex-M33 core, which provides the user interface
and system control

• dsp/ - The DSP application that performs audio processing using the XAF middleware li-
brary

When an application is started, a shell interface is displayed on the terminal that executes from
the ARM core. Users can control the application through shell commands, which are relayed
via RPMsg-Lite IPC to the DSP core where they are processed and responses are returned. This
architecture demonstrates efficient partitioning of workloads - with user interface and control
tasks handled by the ARM core while computationally intensive audio processing is offloaded to
the specialized DSP core.

For more information about XAF and detailed documentation on the API and available com-
ponents, please refer to the Cadence XAF documentation (/middleware/cadence/multicore-
xaf/xa_af_hostless/doc).

Availability Note Important: These XAF examples are not included in the standard MCUX-
presso SDK repository. They are available as part of the MCUXpresso SDK Builder package on
the NXP website. To access these examples, please visit MCUXpresso SDK Builder and create a
customized SDK package that includes the XAF examples for your target platform.

Included Examples

XAF Playback Example The dsp_xaf_playback application demonstrates audio file decoding
and playback capabilities using the DSP core and Xtensa Audio Framework, supporting various
audio codecs while handling operations through a shell interface on the ARM core that commu-
nicates with DSP processing.

XAF Record Example The dsp_xaf_record example captures audio from digital microphones
(DMIC), processes it on the DSP core using voice enhancement algorithms, performs voice recog-
nition (VIT), and outputs the detected wake words and voice commands to the console, enabling
hands-free voice control applications.

XAF USB Example The XAF USB example demonstrates DSP-powered USB audio processing in
two configurations: USB speaker and USB microphone. The application uses shell commands to
switch between modes, with the ARM core handling USB communication while the DSP processes
audio.

XAF Playback Example

Table of Content
• Overview

• Functionality

• Hardware Requirements

• Hardware Modifications

• Preparation

• Example Configuration

• Running the Demo

1.3. Multimedia 43

https://mcuxpresso.nxp.com/

MCUXpresso SDK Documentation, Release 25.09.00

• Known Issues

Overview The dsp_xaf_playback application demonstrates audio processing using the DSP
core, the Xtensa Audio Framework (XAF) middleware library, and selected Xtensa audio codecs.

As shown in the table below, the application is supported on several development boards and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow the use of an audio expansion board. Therefore, please
check the supported features and Hardware modifications or Example configuration sections be-
fore running the demo.

Limitations:
• MP3encoder, G.711, G.722, BSAC,DAB+, DAB/MP2, DRM: Provided only as linked libraries

but are not enabled in the example.

Functionality The application includes the following main components:

1. ARM Core (CM33) - Handles user interface, SD card operations, and communicates with
the DSP core

2. DSP Core - Processes audio data using the Xtensa Audio Framework (XAF)

The typical audio processing pipeline includes:

• File source component (reads from SD card)

• Decoder component (decodes compressed audio)

• Renderer component (outputs to audio hardware)

When the file playback command is issued, the ARM core reads the file from SD card and sends
data to the DSP, which processes it and outputs to the audio hardware.

Hardware Requirements
• Development board (one of the following):

– EVK-MIMXRT595 board

– EVK-MIMXRT685 board

– MIMXRT685-AUD-EVK board

– MIMXRT700-EVK board

• Micro USB cable

• JTAG/SWD debugger

• Headphones with 3.5 mm stereo jack

• Personal Computer

• SD card with audio files (for file playback feature)

Hardware Modifications Some development boards need some hardware modifications to
run the application.

• EVK-MIMXRT595:

To enable the example audio using WM8904 codec, connect pins as follows:

– JP7-1 <–> JP8-2

44 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Note: The I3C Pin configuration in pin_mux.c is verified for default 1.8V, for 3.3V, need to
manually configure slew rate to slow mode for I3C-SCL/SDA.

• EVK-MIMXRT685:

To enable the example audio using WM8904 codec, connect pins as follows:

– JP7-1 <–> JP8-2

• MIMXRT685-AUD-EVK:

– Set the hardware jumpers (Tower system/base module) to default settings.

– Set hardware jumpers JP2 2<–>3, JP44 1<–>2 and JP45 1<–>2.

• MIMXRT700-EVK:

Set the hardware jumpers to default settings.

Preparation
1. Connect headphones to Audio HP / Line-Out connector (J4).

• EVK-MIMXRT595 - J4

• EVK-MIMXRT685 - J4

• MIMXRT685-AUD-EVK - J4, J50, J51, J52

• MIMXRT700-EVK - J29

2. Connect a micro USB cable between the PC host and the debug USB port on the development
board.

• EVK-MIMXRT595 - J40

• EVK-MIMXRT685 - J5

• MIMXRT685-AUD-EVK - J5

• MIMXRT700-EVK - J54

3. Open a serial terminal with the following settings:

• 115200 baud rate

• 8 data bits

• No parity

• One stop bit

• No flow control

4. Download the program for CM33 core to the target board.

5. Launch the debugger in your IDE to begin running the demo.

6. If building release configuration, start the xt-ocd daemon and download the program for
DSP core to the target board. If building debug configuration, launch the Xtensa IDE or
xt-gdb debugger to begin running the demo.

Notes:

• DSP image can only be debugged using J-Link debugger. See the document ‘Getting Started
with Xplorer’ for your particular board for more information.

1.3. Multimedia 45

MCUXpresso SDK Documentation, Release 25.09.00

Example Configuration The example can be configured by user. Before configuration, please
check the table to see if the feature is supported on the development board.

• MIMXRT700-EVK Decoder Configuration:
RT700 has limited RAM on Cortex-M33 core 1 which limits the available decoders. Only SBC
decoder is enabled by default. In order to enable a different decoder/encoder, it is necessary
to define the appropriate define on project level. Use one of the following define from the
list of the supported decoders on the HiFi1 core:

– XA_AAC_DECODER

– XA_MP3_DECODER

– XA_SBC_DECODER

– XA_VORBIS_DECODER

– XA_OPUS_DECODER

Running the Demo The ARM application will power and clock the DSP, so it must be loaded
prior to loading the DSP application. The DSP application can be built by the following tools:
Xtensa Xplorer or Xtensa C Compiler. Application for Cortex-M33 can be built by the other
toolchains listed in MCUXpresso SDK Release Notes.

The release configurations of the demo will combine both applications into one ARM image.
With this, the ARM core will load and start the DSP application on startup. Pre-compiled DSP
binary images are provided under dsp/binary/ directory. If you make changes to the DSP ap-
plication in release configuration, rebuild ARM application after building the DSP application.
If you plan to use MCUXpresso IDE for cm33 you will have to make sure that the preprocessor
symbol DSP_IMAGE_COPY_TO_RAM, found in IDE project settings, is defined to the value 1 when
building release configuration.

The debug configurations will build two separate applications that need to be loaded indepen-
dently. DSP application can be built by the following tools: Xtensa Xplorer or Xtensa C Compiler.
Required tool versions can be found in MCUXpresso SDK Release Notes for the board. Applica-
tion for cm33 can be built by the other toolchains listed there. If you plan to use MCUXpresso IDE
for cm33 you will have to make sure that the preprocessor symbol DSP_IMAGE_COPY_TO_RAM,
found in IDE project settings, is defined to the value 0 when building debug configuration. The
ARM application will power and clock the DSP, so it must be loaded prior to loading the DSP
application.

In order to debug both the Cortex-M33 and DSP side of the application, please follow the instruc-
tions:

1. It is necessary to run the Cortex-M33 side first and stop the application before the DSP_Start
function

2. Run the xt-ocd daemon with proper settings

3. Download and debug the DSP application

In order to get TRACE debug output from the XAF it is necessary to define XF_TRACE 1 in the
project settings. It is possible to save the TRACE output into RAM using DUMP_TRACE_TO_BUF 1
define on project level. Please see the initialization of the TRACE function in the xaf_main_dsp.c
file. For more details see XAF documentation.

When the demo runs successfully, the terminal will display the following output (example from
MIMXRT700-EVK):

DSP audio framework demo start

(continues on next page)

46 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
[CM33 Main] Configure codec

[DSP_Main] Cadence Xtensa Audio Framework
[DSP_Main] Library Name : Audio Framework (Hostless)
[DSP_Main] Library Version : 3.5
[DSP_Main] API Version : 3.2

[DSP_Main] start
[DSP_Main] established RPMsg link
[CM33_Main] DSP image copied to DSP TCM
[CM33_Main][APP_SDCARD_Task] start
[CM33_Main][APP_DSP_IPC_Task] start
[CM33_Main][APP_Shell_Task] start

Copyright 2024 NXP

Type help to see the command list. Similar description will be displayed on serial console (Ifmulti-
channel playbackmode is enabled, the description is slightly different. Available encoders/decoders
may differ - refer to the table.):

”help”: List all the registered commands

”exit”: Exit program

”version”: Query DSP for component versions

”file”: Perform audio file decode and playback from SD card
USAGE: file [list|stop|<audio_file>]
list List audio files on SD card available for playback
<audio_file> Select file from SD card and start playback

”decoder”: Perform decode on DSP and play to speaker.
USAGE: decoder [aac|mp3|opus|sbc|vorbis_ogg|vorbis_raw]
aac: Decode aac data
mp3: Decode mp3 data
opus: Decode opus data
sbc: Decode sbc data
vorbis_ogg: Decode OGG VORBIS data
vorbis_raw: Decode raw VORBIS data

”encoder”: Encode PCM data on DSP and compare with reference data.
USAGE: encoder [opus|sbc]
opus: Encode pcm data using opus encoder
sbc: Encode pcm data using sbc encoder

”src” Perform sample rate conversion on DSP

”gain”: Perform PCM gain adjustment on DSP

Xtensa IDE log when command is playing a file (mp3/aac/vorbis/…):

File playback start, initial buffer size: 16384
[DSP Codec] Audio Device Ready
[DSP Codec] Decoder component started
[DSP Codec] Setting decode playback format:
Decoder : mp3_dec
Sample rate: 16000
Bit Width : 16
Channels : 2

[DSP Codec] Renderer component started
(continues on next page)

1.3. Multimedia 47

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
[DSP Codec] Connected XA_DECODER -> XA_RENDERER
[DSP_ProcessThread] start
[DSP_BufferThread] start

Xtensa IDE log when decoder command starts playback successfully:

[DSP_Main] Input buffer addr: 0x20020000, buffer size: 94276
[DSP Codec] Audio Device Ready
[DSP Codec] Decoder created
[DSP Codec] Decoder component started
[DSP Codec] Renderer component created
[DSP Codec] Connected XA_DECODER -> XA_RENDERER
[DSP_ProcessThread] start
[DSP_ProcessThread] Execution complete - exiting
[DSP_ProcessThread] exiting
[DSP Codec] Audio device closed

[CM33 CMD] [APP_DSP_IPC_Task] response from DSP, cmd: 0, error: 0
[CM33 CMD] Decode complete

MIMXRT685-AUD-EVK Multi-channel Support: The MIMXRT685-AUD-EVK board supports
multi-channel audio. When selecting audio files for playback, you can specify the number of
channels:

```
file [list|stop|<audio_file> [<nchannel>]]
<nchannel> Select the number of channels (2 or 8 can be selected).
NOTE: Selected audio file must meet the following parameters:

- Sample rate: 96 kHz
- Width: 32 bit

```

Xtensa IDE log when command is playing a PCM file:

```
[DSP_FILE_REN] Audio Device Ready
[DSP_FILE_REN] post-proc/pcm_gain component started
[DSP_FILE_REN] post-proc/client_proxy component started
[DSP_FILE_REN] Connected post-proc/pcm_gain -> post-proc/client_proxy
[DSP_FILE_REN] renderer component started
[DSP_FILE_REN] Connected post-proc/client_proxy -> renderer
[DSP_BufferThread] start
[DSP_ProcessThread] start
[DSP_CleanupThread] start3
```

Known Issues
1. The “file stop” command doesn’t stop the playback for some small files (with low sample

rate).

2. MIMXRT700-EVK: Has limited RAM on Cortex-M33 core 1 which limits the available de-
coders.

XAF Record Example

Table of Content

48 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

• Overview

• Functionality

• Hardware Requirements

• Hardware Modifications

• Preparation

• Example Configuration

• Running the Demo

• Known Issues

Overview The dsp_xaf_record application demonstrates audio processing using the DSP core,
the Xtensa Audio Framework (XAF) middleware library, with a focus on audio recording, pro-
cessing and voice recognition (VIT - Voice Intelligent Technology, Voice seeker).

As shown in the table below, the application is supported on several development boards and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow to use of an audio expansion board. Therefore, please
check the supported features and Hardware modifications or Example configuration sections be-
fore running the demo.

Functionality The application includes the following main components:

1. ARM Core (CM33) - Handles user interface and communicates with the DSP core

2. DSP Core - Processes audio data using the Xtensa Audio Framework (XAF)

The typical audio processing pipeline includes:

• Audio source component - DMIC audio

• VIT and Voice seeker component (perform voice recognition)

• Renderer component (playback on codec)

The application demonstrates recording from digital microphones (DMIC), processing the audio
with voice enhancement algorithms, performing voice recognition, and prints back in console
detected WakeWord and list of commands.

Hardware Requirements
• Development board (one of the following):

– EVK-MIMXRT595 board

– EVK-MIMXRT685 board

– MIMXRT685-AUD-EVK board (optionally with 8CH-DMIC expansion board - rev B re-
quired)

– MIMXRT700-EVK board

• Micro USB cable

• JTAG/SWD debugger

• Headphones with 3.5 mm stereo jack

• Personal Computer

1.3. Multimedia 49

MCUXpresso SDK Documentation, Release 25.09.00

Hardware Modifications Some development boards need some hardware modifications to
run the application.

• EVK-MIMXRT595:

To enable the example audio using WM8904 codec, connect pins as follows:

– JP7-1 <–> JP8-2

Note: The I3C Pin configuration in pin_mux.c is verified for default 1.8V, for 3.3V, need to
manually configure slew rate to slow mode for I3C-SCL/SDA.

• EVK-MIMXRT685:

To enable the example audio using WM8904 codec, connect pins as follows:

– JP7-1 <–> JP8-2

• MIMXRT685-AUD-EVK

1. Set the hardware jumpers (Tower system/base module) to default settings.

2. Set hardware jumpers JP2 2<–>3, JP44 1<–>2 and JP45 1<–>2.

For 8CH-DMIC expansion board (optional):

1. Connect the 8CH-DMIC expansion board to the MIMXRT685-AUD-EVK board to the
DMIC connector (J31). For safety reasons, the expansion board must be connected
when the power supply is disconnected.

2. Set the hardware jumpers on the 8-DMIC expansion board to 2MIC, 3MICA, 3MICC con-
fig (Short: J6, J9, J10).

3. Set the hardware jumpers JP44 2<–>3 and JP45 2<–>3 on the MIMXRT685-AUD-EVK
board for on-board DMIC bypass.

• MIMXRT700-EVK:

Set the hardware jumpers to default settings.

Preparation
1. Connect headphones to Audio HP / Line-Out connector.

• EVK-MIMXRT595 - J4

• EVK-MIMXRT685 - J4

• MIMXRT685-AUD-EVK - J4, J50 for third channel when using 3 microphones

• MIMXRT700-EVK - J29

2. Connect a micro USB cable between the PC host and the debug USB port on the development
board.

• EVK-MIMXRT595 - J40

• EVK-MIMXRT685 - J5

• MIMXRT685-AUD-EVK - J5

• MIMXRT700-EVK - J54

3. Open a serial terminal with the following settings:

• 115200 baud rate

• 8 data bits

• No parity

• One stop bit

50 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

• No flow control

4. Download the program for CM33 core to the target board.

5. Launch the debugger in your IDE to begin running the demo.

6. If building release configuration, start the xt-ocd daemon and download the program for
DSP core to the target board. If building debug configuration, launch the Xtensa IDE or
xt-gdb debugger to begin running the demo.

Notes:

• DSP image can only be debugged using J-Link debugger. See the document ‘Getting Started
with Xplorer’ for your particular board for more information.

Example Configuration The example can be configured by user. Before configuration, please
check the table to see if the feature is supported on the development board.

• MIMXRT685-AUD-EVK 8CH-DMIC expansion board settings:
Select how many microphones should be used

– Set the BOARD_DMIC_NUM preprocessor macro to 1,2, 3 (default) or 4 in the project
for the CM33 core.

– When the 8CH-DMIC expansion board is used, the DMIC_BOARD_CONNECTED macro
must be set to 1 (default) in the project for the DSP core.

– Important: When you set the value to 2, 3 or 4 you have to connect the 8CH-DMIC
expansion board and set the DMIC_BOARD_CONNECTED macro to 1. Don’t forget set
the hardware jumpers JP44 2-3 and JP45 2-3.

Running the Demo The ARM application will power and clock the DSP, so it must be loaded
prior to loading the DSP application. The DSP application can be built by the following tools:
Xtensa Xplorer or Xtensa C Compiler. Application for Cortex-M33 can be built by the other
toolchains listed in MCUXpresso SDK Release Notes.

The release configurations of the demo will combine both applications into one ARM image.
With this, the ARM core will load and start the DSP application on startup. Pre-compiled DSP
binary images are provided under dsp/binary/ directory. If you make changes to the DSP ap-
plication in release configuration, rebuild ARM application after building the DSP application.
If you plan to use MCUXpresso IDE for cm33 you will have to make sure that the preprocessor
symbol DSP_IMAGE_COPY_TO_RAM, found in IDE project settings, is defined to the value 1 when
building release configuration.

The debug configurations will build two separate applications that need to be loaded indepen-
dently. DSP application can be built by the following tools: Xtensa Xplorer or Xtensa C Compiler.
Required tool versions can be found in MCUXpresso SDK Release Notes for the board. Applica-
tion for cm33 can be built by the other toolchains listed there. If you plan to use MCUXpresso IDE
for cm33 you will have to make sure that the preprocessor symbol DSP_IMAGE_COPY_TO_RAM,
found in IDE project settings, is defined to the value 0 when building debug configuration. The
ARM application will power and clock the DSP, so it must be loaded prior to loading the DSP
application.

In order to debug both the Cortex-M33 and DSP side of the application, please follow the instruc-
tions:

1. It is necessary to run the Cortex-M33 side first and stop the application before the DSP_Start
function

2. Run the xt-ocd daemon with proper settings

3. Download and debug the DSP application

1.3. Multimedia 51

MCUXpresso SDK Documentation, Release 25.09.00

In order to get TRACE debug output from the XAF it is necessary to define XF_TRACE 1 in the
project settings. It is possible to save the TRACE output into RAM using DUMP_TRACE_TO_BUF 1
define on project level. Please see the initialization of the TRACE function in the xaf_main_dsp.c
file. For more details see XAF documentation.

Running on CM33 When the demo runs successfully, the CM33 terminal will display the fol-
lowing output (example from MIMXRT700-EVK):

DSP audio framework demo start

[CM33 Main] Configure codec

[DSP_Main] Cadence Xtensa Audio Framework
[DSP_Main] Library Name : Audio Framework (Hostless)
[DSP_Main] Library Version : 3.5
[DSP_Main] API Version : 3.2

[DSP_Main] start
[DSP_Main] established RPMsg link
[CM33 Main] DSP image copied to DSP TCM
[CM33 Main][APP_DSP_IPC_Task] start
[CM33 Main][APP_Shell_Task] start

Copyright 2024 NXP

>>

Type help to see the command list. Similar description will be displayed on serial console (exam-
ple from MIMXRT700-EVK):

”help”: List all the registered commands

”exit”: Exit program

”version”: Query DSP for component versions

”record_dmic”: Record DMIC audio , perform voice recognition (VIT) and playback on codec
USAGE: record_dmic [language]
For voice recognition say supported WakeWord and in 3s frame supported command.
If selected model contains strings, then WakeWord and list of commands will be printed in console.
NOTE: this command does not return to the shell

After running the “record_dmic en” command, similar output will be printed

[CM33 CMD] Setting VIT language to en
[DSP_Main] Number of channels 1, sampling rate 16000, PCM width 32
[CM33 CMD] [APP_DSP_IPC_Task] response from DSP, cmd: 13, error: 0
[DSP Record] Audio Device Ready
[CM33 CMD] DSP DMIC Recording started
[CM33 CMD] To see VIT functionality say wakeword and command
[DSP VIT] VIT Model info
[DSP VIT] VIT Model Release = 0x40a00
[DSP VIT] Language supported : English
[DSP VIT] Number of WakeWords supported : 2
[DSP VIT] Number of Commands supported : 12
[DSP VIT] VIT_Model integrating WakeWord and Voice Commands strings : YES
[DSP VIT] WakeWords supported :
[DSP VIT] 'HEY NXP'
[DSP VIT] 'HEY TV'

(continues on next page)

52 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
[DSP VIT] Voice commands supported :
[DSP VIT] 'MUTE'
[DSP VIT] 'NEXT'
[DSP VIT] 'SKIP'
[DSP VIT] 'PAIR DEVICE'
[DSP VIT] 'PAUSE'
[DSP VIT] 'STOP'
[DSP VIT] 'POWER OFF'
[DSP VIT] 'POWER ON'
[DSP VIT] 'PLAY MUSIC'
[DSP VIT] 'PLAY GAME'
[DSP VIT] 'WATCH CARTOON'
[DSP VIT] 'WATCH MOVIE'
[DSP Record] connected CAPTURER -> GAIN_0
[DSP Record] connected XA_GAIN_0 -> XA_VIT_PRE_PROC_0
[DSP Record] connected XA_VIT_PRE_PROC_0 -> XA_RENDERER_0
[DSP VIT] - WakeWord detected 1 HEY NXP
[DSP VIT] - Voice Command detected 6 STOP

Xtensa IDE log of successful start of command:

Number of channels 2, sampling rate 16000, PCM width 16
Audio Device Ready
connected CAPTURER -> GAIN_0
connected CAPTURER -> XA_VIT_PRE_PROC_0
connected XA_VIT_PRE_PROC_0 -> XA_RENDERER_0

Running on DSP Debug configuration: When the demo runs successfully, the terminal will
display the following:

Cadence Xtensa Audio Framework
Library Name : Audio Framework (Hostless)
Library Version : 3.2
API Version : 3.0

[DSP_Main] start
[DSP_Main] established RPMsg link
Number of channels 2, sampling rate 16000, PCM width 16

Audio Device Ready
VoiceSeekerLight lib initialized!
============= VoiceSeekerLight Configuration =============
version = 0.6.0
num mics = 2
max num mics = 4
mic0 = (35, 0, 0)
mic1 = (-35, 0, 0)
mic2 = (0, -35, 0)
num_spks = 0
max num spks = 2
samplerate = 16000
framesize_in = 32
framesize_out = 480
create_aec = 0
create_doa = 0
buffer_length_sec = 1.5
aec_filter_length_ms = 0

============= VoiceSeekerLight Memory Allocation =============
VoiceSeekerLib allocated 80592 persistent bytes
VoiceSeekerLib allocated 3840 scratch bytes

(continues on next page)

1.3. Multimedia 53

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
==================================== VoiceSeekerLight Memory Usage␣

↪→=========================
=========
Total = 72400 bytes

connected CAPTURER -> GAIN_0
connected XA_GAIN_0 -> XA_VOICE_SEEKER_0
connected XA_VOICE_SEEKER_0 -> XA_VIT_PRE_PROC_0
connected XA_VIT_PRE_PROC_0 -> XA_RENDERER_0

Known Issues There are limited features in release SRAM target because of memory limita-
tions. To enable/disable components, set appropriate preprocessor define in project settings to
0/1 (e.g. XA_VIT_PRE_PROC etc.). Debug and flash targets have full functionality enabled.

XAF USB Example

Table of Content
• Overview

• Functionality

• Hardware Requirements

• Hardware Modifications

• Preparation

• Running the Demo

• Known Issues

Overview The dsp_xaf_usb_demo application demonstrates audio processing using the DSP
core, the Xtensa Audio Framework (XAF) middleware library.

As shown in the table below, the application is supported on several development boards and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow to use of an audio expansion board. Therefore, please
check the supported features and Hardware modifications section before running the demo.

Functionality The application includes the following main components:

1. ARM Core (CM33) - Handles user interface, and communicates with the DSP core

2. DSP Core - Processes audio data using the Xtensa Audio Framework (XAF)

The XAF USB example demonstrates DSP-powered USB audio processing in two configurations:
USB speaker and USB microphone. The application uses shell commands to switch between
modes, with the ARM core handling USB communication while the DSP processes audio.

• USB Speaker Mode (USB2.0 � Line out): Receives audio from a USB host, processes it on the
DSP, and outputs through the headphone jack, making the device function as a USB speaker
for your computer.

• USB Microphone Mode (DMIC � USB2.0): Captures audio from the onboard digital micro-
phones, processes it on the DSP, and streams it to a USB host as a standard audio input
device.

54 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Hardware Requirements
• Development board (one of the following):

– EVK-MIMXRT595 board

– EVK-MIMXRT685 board

– MIMXRT685-AUD-EVK board

– MIMXRT700-EVK board

• 2x Micro USB cable

• JTAG/SWD debugger

• Headphones with 3.5 mm stereo jack

• Personal Computer

Hardware Modifications Some development boards need some hardware modifications to
run the application.

• EVK-MIMXRT595:

To enable the example audio using WM8904 codec, connect pins as follows:

– JP7-1 <–> JP8-2

Note: The I3C Pin configuration in pin_mux.c is verified for default 1.8V, for 3.3V, need to
manually configure slew rate to slow mode for I3C-SCL/SDA.

• EVK-MIMXRT685:

To enable the example audio using WM8904 codec, connect pins as follows:

– JP7-1 <–> JP8-2

• MIMXRT685-AUD-EVK

– Set the hardware jumpers (Tower system/base module) to default settings.

– Set hardware jumpers JP2 2<–>3, JP44 1<–>2 and JP45 1<–>2.

• MIMXRT700-EVK:

Set the hardware jumpers to default settings.

Preparation
1. Connect headphones to Audio HP / Line-Out connector.

• EVK-MIMXRT595 - J4

• EVK-MIMXRT685 - J4

• MIMXRT685-AUD-EVK - J4

• MIMXRT700-EVK - J29

2. Connect the first micro USB cable between the PC host and the debug USB port on the de-
velopment board.

• EVK-MIMXRT595 - J40

• EVK-MIMXRT685 - J5

• MIMXRT685-AUD-EVK - J5

• MIMXRT700-EVK - J54

1.3. Multimedia 55

MCUXpresso SDK Documentation, Release 25.09.00

3. Connect the second micro USB cable between the PC host and the USB port on the develop-
ment board.

• EVK-MIMXRT595 - J38

• EVK-MIMXRT685 - J7

• MIMXRT685-AUD-EVK - J7

• MIMXRT700-EVK - J40

4. Open a serial terminal with the following settings:

• 115200 baud rate

• 8 data bits

• No parity

• One stop bit

• No flow control

5. Download the program for CM33 core to the target board.

6. Launch the debugger in your IDE to begin running the demo.

7. If building release configuration, start the xt-ocd daemon and download the program for
DSP core to the target board. If building debug configuration, launch the Xtensa IDE or
xt-gdb debugger to begin running the demo.

Notes:

• DSP image can only be debugged using J-Link debugger. See the document ‘Getting Started
with Xplorer’ for your particular board for more information.

Running the Demo The ARM application will power and clock the DSP, so it must be loaded
prior to loading the DSP application. The DSP application can be built by the following tools:
Xtensa Xplorer or Xtensa C Compiler. Application for Cortex-M33 can be built by the other
toolchains listed in MCUXpresso SDK Release Notes.

The release configurations of the demo will combine both applications into one ARM image.
With this, the ARM core will load and start the DSP application on startup. Pre-compiled DSP
binary images are provided under dsp/binary/ directory. If you make changes to the DSP ap-
plication in release configuration, rebuild ARM application after building the DSP application.
If you plan to use MCUXpresso IDE for cm33 you will have to make sure that the preprocessor
symbol DSP_IMAGE_COPY_TO_RAM, found in IDE project settings, is defined to the value 1 when
building release configuration.

The debug configurations will build two separate applications that need to be loaded indepen-
dently. DSP application can be built by the following tools: Xtensa Xplorer or Xtensa C Compiler.
Required tool versions can be found in MCUXpresso SDK Release Notes for the board. Applica-
tion for cm33 can be built by the other toolchains listed there. If you plan to use MCUXpresso IDE
for cm33 you will have to make sure that the preprocessor symbol DSP_IMAGE_COPY_TO_RAM,
found in IDE project settings, is defined to the value 0 when building debug configuration. The
ARM application will power and clock the DSP, so it must be loaded prior to loading the DSP
application.

In order to debug both the Cortex-M33 and DSP side of the application, please follow the instruc-
tions:

1. It is necessary to run the Cortex-M33 side first and stop the application before the DSP_Start
function

2. Run the xt-ocd daemon with proper settings

3. Download and debug the DSP application

56 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

In order to get TRACE debug output from the XAF it is necessary to define XF_TRACE 1 in the
project settings. It is possible to save the TRACE output into RAM using DUMP_TRACE_TO_BUF 1
define on project level. Please see the initialization of the TRACE function in the xaf_main_dsp.c
file. For more details see XAF documentation.

Running on CM33 When the demo runs successfully, the CM33 terminal will display the fol-
lowing output (example from MIMXRT700-EVK):

DSP audio framework demo start

[CM33 Main] Configure codec

[DSP_Main] Cadence Xtensa Audio Framework
[DSP_Main] Library Name : Audio Framework (Hostless)
[DSP_Main] Library Version : 3.5
[DSP_Main] API Version : 3.2

[DSP_Main] start
[DSP_Main] established RPMsg link
[CM33 Main] DSP image copied to DSP TCM
[CM33 Main][APP_DSP_IPC_Task] start
[CM33 Main][APP_Shell_Task] start

Copyright 2024 NXP

>>

Type help to see the command list. Similar description will be displayed on serial console (exam-
ple from MIMXRT700-EVK):

”help”: List all the registered commands

”exit”: Exit program

”version”: Query DSP for component versions

”usb_speaker”: Perform usb speaker device and playback on DSP
USAGE: usb_speaker [start|stop]
start Start usb speaker device and playback on DSP
stop Stop usb speaker device and playback on DSP

”usb_mic”: Record DMIC audio and playback on usb microphone audio device
USAGE: usb_mic [start|stop]
start Start record and playback on usb microphone audio device
stop Stop record and playback on usb microphone audio device

When usb_speaker command starts playback successfully, the terminal will display following
output:

[APP_DSP_IPC_Task] response from DSP, cmd: 21, error: 0
DSP USB playback start
>>

Xtensa IDE log when command is playing a file:

USB speaker start, initial buffer size: 960
[DSP_USB_SPEAKER] Audio Device Ready
[DSP_USB_SPEAKER] post-proc/pcm_gain component started
[DSP_USB_SPEAKER] post-proc/client_proxy component started

(continues on next page)

1.3. Multimedia 57

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
[DSP_USB_SPEAKER] Connected post-proc/pcm_gain -> post-proc/client_proxy
[DSP_USB_SPEAKER] renderer component started
[DSP_USB_SPEAKER] Connected post-proc/client_proxy -> renderer
[DSP_ProcessThread] start
[DSP_BufferThread] start
[DSP_CleanupThread] start

The USB device on your host will be enumerated as XAF USB DEMO.

Xtensa IDE will not show any additional log entry.

Running the demo DSP Debug configuration: When the demo runs successfully, the terminal
will display the following:

Cadence Xtensa Audio Framework
Library Name : Audio Framework (Hostless)
Library Version : 2.6p1
API Version : 2.0

[DSP_Main] start
[DSP_Main] established RPMsg link

Known Issues
• When starting the “usb_speaker” after the “usb_mic” command, the sound output may be

distorted. Please power cycle the board.

1.4 Wireless

1.4.1 NXP Wireless Framework and Stacks

Wireless Framework

Wireless Connectivity Framework Connectivity Framework repository provides both con-
nectivity platform enablement with hardware abstraction layer and a set of Services for NXP
connectivity stacks : BLE, Zigbee, OpenThread, Matter.

The connectivity framework repository consists of:

• Common folder to common header files for minimal type definition to be used in the repo

• Platform folder used for platform enablement with Hardware abstraction:

– platform/include: common API header files used by several platforms

– platform/common: common code for several platforms

– specifics platform folders , See below the supported platform list

– platform/../configs folder: configuration files for framework repository and other mid-
dlewares (rpmsg, mbedTls, etc.._)

• Services folder

• Zephyr folder for zephyr modules integrated in mcux SDK

• clang formatting script and script folder to format appropriately the source files of the repo

58 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Supported platforms The following devices/platforms are supported in platform folder for
connectivity applications:

• kw45x, k32w1x, mcxw71x, under wireless_mcu, kw45_k32w1_mcxw71 folders.

• kw47x, mcxw72x families under wireless_mcu, kw47_mcxw72, kw47_mcxw72_nbu fold-
ers.

• rw61x

• RT1060 and RT1170 for Matter

• Other RT devices such as i.MX RT595s

Supported services The supported services are provided for connectivity stacks and their
demo application, and are usually dependent on PLATFORM API implementation:

• DBG: Light Debug Module, currently a stubbed header file

• FSCI: Framework Serial Communication Interface between BLE host stack and upper layer
located on an other core/device

• FunctionLib: wrapper to toolchain memory manipulation functions (memcpy, memcmp,
etc) or use its own implementation for code size reduction

• HWParameters: Store Factory hardware parameters and Application parameters in Flash
or IFR

• LowPower: wrapper of SDK power manager for connectivity applications

• ModuleInfo: Store and handle connectivity component versions

• NVM: NXP proprietary File System used for KW45, KW47 automotive devices and
RT1060/RT1170 platform for Matter

• OtaSupport: Handle OTA binary writes into internal or external flash.

• SecLib and RNG: Crypto and Random Number generator functions. It supports several
ports:

– Software algorithms

– Secure subsystem interface to an HW enclave

– MbedTls 2.x interface

• Sensors: Provides service for Battery and temperature measurements

• SFC: Smart Frequency Calibration to be run from KW47/MCXW71 from NBU core. Matter
related modules:

• OTW: Over The Wire module for External Transceiver firmware update from RT platforms

• FactoryDataProvider to be used for Matter

Supported Zephyr modules integration in mcux SDK Connectivity framework provides in-
tegration and port layers to the following Zephyr Modules located into zephyr/subsys:

• NVS: Zephyr File System used by Matter and Zigbee

• Settings: Over layer module that allows to store keys into NVS File System used by Matter
Port layer and required libraries for these zephyr modules are located in port and lib folder
in zephyr directory

Connectivity framework CHANGELOG

1.4. Wireless 59

MCUXpresso SDK Documentation, Release 25.09.00

7.0.3 RFP mcux SDK 25.09.00

Major Changes
• [wireless_mcu] Replaced ICS RX linked list with message queue to eliminate memory allo-

cation in ISR context and enable user callbacks to run in thread context where memory
allocation is permitted.

• [wireless_mcu] Added HCI RX workqueue processing support to reduce ISR execution time
and system impact. Feature controlled by gPlatformHciUseWorkqueueRxProcessing_d config-
uration option (enabled by default on kw45_k32w1_mcxw71 and kw47_mcxw72 platforms
in freertos applications). When enabled, HCI transport processes received data in system
workqueue thread, allowing user callbacks to run in thread context.

• [wireless_nbu] Introduced PLATFORM_ConfigureSmuDmemMapping() API to configure
SMU and DMEM sharing on NBU for kw47_mcxw72 platform, using linker file symbols for
correct configuration.

• [mcxw23] Implemented HCI interface using PLATFORM API as preliminary requirement
for Zephyr enablement, introducing PLATFORM_SendHciMessageAlt() alternative API.

• [wireless_mcu][wireless_nbu] Added NBU2Host event manager for status indications to
host (Information, Warning, Error) sent over RPMSG.

• [wireless_mcu] Added a call to PLATFORM_IcsRxWorkHandler() within PLAT-
FORM_NbuApiReq() for baremetal applications to prevent potential deadlocks.

Minor Changes
• [wireless_mcu] Fixed variable underflow issue in PLATFORM_RemoteActiveRel().

• [SecLib_RNG] Fixed escaping local HashKeyBuffer address issue and added missing cast in
RNG_GetTrueRandomNumber() function.

• [Common] Fixed heap memory manager return values and added missing include to
fwk_freertos_utils.h.

• [rw61x] Prevented array out of bounds in PLATFORM_RegisterRtcHandle().

• [FSCI] Fixed memory leak in FSCI module.

• [NVM] Enhanced debug facilitation by restricting variable scope, assigning return statuses
to variables, and fixing display format in NV_ShowFlashTable().

• [wireless_mcu] Added new chip revision A2.1 support in PLATFORM_SendChipRevision()
API.

• [kw47_mcxw72] Implemented BLE BD address retrieval from IFR memory with fallback to
OUI + RNG.

• [DBG] Added ThreadX support to fault handlers and reworked fault handler structure with
dedicated RTOS files.

• [DBG][Common] Added NBU debug support on host side to detect faults and system errors,
with debug info extraction capability (limited to MCXW72/KW47).

• [Common] Platform CMake rework and Kconfig renaming, removing unneeded checks and
renaming PRJSEG platform Kconfigs to COMPONENT.

• [mcxw23] Added experimental SecLib PSA support with additional configuration for
MBEDTLS_ECP_C and MBEDTLS_BIGNUM_C.

• [wireless_mcu] Cleaned CMakeLists.txt to avoid wrong inclusions of files and folders from
incorrect platforms.

60 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

• [wireless_mcu][wireless_nbu] Added NBU2Host warning when 32MHz crystal is unready
on low power exit.

• [wireless_mcu][ot] Introduced gPlatformUseOuiFromIfr to use OUI from IFR for the extended
address (disabled by default). When enabled and IFR is not blank, copies first three bytes
to OUI field of extended address, otherwise uses static OUI as fallback.

• [General] Removed useless warning about TSTMR_CLOCK_FREQUENCY_MHZ definition.

• [General] Updated framework license and SBOM for 25.09 RFP release.

• [wireless_mcu] Fixed unused variable warning when gPlatformIcsUseWorkqueueRxProcess-
ing_d and gPlatformHciUseWorkqueueRxProcessing_dare disable

7.0.3 revB mcux SDK 25.09.00

Major Changes
• [wireless_mcu] Adjusted default value of BOARD_RADIO_DOMAIN_WAKE_UP_DELAY

from 0x16 to 0x10 to address stability issues observed with the previous setting. This
change enhances system reliability but will reduce low-power performance.

Minor Changes (bug fixes)
• [Common] Added MDK compatibility for the errno framework header.

• [mcxw23] Implemented missing PLATFORM_OtaClearBootInterface() API.

• [mcxw23] Refactored fwk_platform.c to separate BLE-specific logic into fwk_platform_ble.c.

• [OTA] Corrected definition of gEepromParams_WriteAlignment_c flag for mcxw23

• [OTA] Enabled calling OTA_GetImgState() prior to OTA_Initialize().

• [wireless_mcu] Fixed PLATFORM_IsExternalFlashSectorBlank() to check the entire sector
instead of just one page.

• [mcxw23] Added support for OTA using external flash.

• [mcxw23] Introduced PLATFORM_GetRadioIdleDuration32K() to estimate time until next
radio event.

• [OTA] Removed gUseInternalStorageLink_d linker flag definition when external OTA storage
is used.

• [mcxw23] Extended CopyAndReboot() to support external flash OTA.

• [wireless_mcu] Resolved counter wrap issue in PLATFORM_GetDeltaTimeStamp().

• [kw43_mcxw70] Defined LPTMR frequency constants in fwk_platform_definitions.h.

• [kw47_mcxw72] Updated shared memory allocation for RPMsg adapter.

• [mcxw23] Implement PLATFORM_IsExternalFlashBusy() API.

• [kw45_mcxw71][kw47_mcxw72] Moved RAM bank definitions from the connectivity
framework to device-specific definitions.

7.0.3 revA mcux SDK 25.09.00

1.4. Wireless 61

MCUXpresso SDK Documentation, Release 25.09.00

Major Changes
• [wireless_nbu] Enhanced XTAL32M trimming handling: updates are ap-

plied when requested by the application core and the NBU enters low-
power mode, ensuring no interference from ongoing radio activity. Intro-
duced new APIs to lock (PLATFORM_LockXtal32MTrim()) and unlock XTAL32M
(PLATFORM_UnlockXtal32MTrim()) trimming updates using a counter-based mecha-
nism. Also added a reset API (PLATFORM_ResetContext()) for platform-specific variables
(currently limited to the trimming lock).

• [wireless_mcu] Introduced a new API, PLATFORM_SetLdoCoreNormalDriveVoltage(), to en-
able support for NBU clock frequency at 64 MHz, as required by BLE channel sounding
applications.

• [wireless_mcu][wireless_nbu] Increased delayLpoCycle default from 2 to 3
to address link layer instabilities in low-power NBU use cases. Adjusted
BOARD_RADIO_DOMAIN_WAKE_UP_DELAY from 0x10 to 0x16 to balance
power consumption and stability. � NBU may malfunction if delayLpoCy-
cle (or BOARD_LL_32MHz_WAKEUP_ADVANCE_HSLOT) is set to 2 while
BOARD_RADIO_DOMAIN_WAKE_UP_DELAY is 0x16.

Minor Changes (bug fixes)
• [WorkQ] Increased stack size when RNG use mbedtls port and coverage is enabled.

• [FSCI] Resolved an issue where messages remained unprocessed in the queue by ensuring
OSA_EventSet() is triggered when pending messages are detected.

• [OTA] Fixed a bug in in OTA_PullImageChunk() that prevented retrieval of data previously
received via OTA_PushImageChunk() when still buffered in RAM during posted operations.

• [OTA] Various MISRA and coverity fixes.

• [mcxw23] Fixed an unused variable warning in PLAT-
FORM_RegisterNbuTemperatureRequestEventCb() API.

• [SFC] Remove obsolete flag gNbuJtagCapability.

• [wireless_mcu] Introduced new API PLATFORM_GetRadioIdleDuration32K(). Deprecated
PLATFORM_CheckNextBleConnectivityActivity() API.

• [mcxw23] Aligned platform-specific implementations with the corresponding prototypes
defined in wireless_mcu.

• [DBG] Cleaned up fwk_fault_handler.c.

7.0.2 RFP mcux SDK 25.06.00

Major Changes
• [wireless_mcu][wireless_nbu] Introduced PLATFORM_Get32KTimeStamp() API, available

on platforms that support it.

• [RNG] Switched to using a workqueue for scheduling seed generation tasks.

• [Sensors] Integrated workqueue to trigger temperature readings on periodic timer expira-
tions.

• [wireless_nbu] Removed outdated configuration files from wireless_nbu/configs.

• [SecLib_RNG][PSA] Added a PSA-compliant implementation for SecLib_RNG. � This is an
experimental feature and should be used with caution.

62 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

• [wireless_mcu][wireless_nbu] Implemented PLATFORM_SendNBUXtal32MTrim() API to
transmit XTAL32M trimming values to the NBU.

Minor Changes (bug fixes)
• [MWS] Migrated the Mobile Wireless Standard (MWS) service to the public repository. This

service manages coexistence between connectivity protocols such as BLE, 802.15.4, and
GenFSK.

• [HWParameter][NVM][SecLib_RNG][Sensors] Addressed various MISRA compliance issues
across multiple modules.

• [Sensors] Applied a filtering mechanism to temperature data measured by the application
core before forwarding it to the NBU, improving data reliability.

• [Common] Relocated the GetPowerOfTwoShift() function to a shared module for broader
accessibility across components.

• [RNG] Resolved inconsistencies in RNG behavior when using the fsl_adapter_rng HAL by
aligning it with other API implementations.

• [SecLib] Updated the AES CMAC block counter in AES_128_CMAC() and
AES_128_CMAC_LsbFirstInput() to support data segments larger than 4KB.

• [SecLib] Utilized sss_sscp_key_object_free() with kSSS_keyObjFree_KeysStoreDefragment to
avoid key allocation failures.

• [MCXW23] Removed redundant NVIC_SetPriority() call for the ctimer IRQ in the platform
file, as it’s already handled by the driver.

• [WorkQ] Increased workqueue stack size to accommodate RNG usage with mbedtls.

• [wireless_mcu][ot] Suppressed chip revision transmission when operating with nbu_15_4.

• [platform][mflash] Ensured proper address alignment for external flash reads in PLAT-
FORM_ReadExternalFlash() when required by platform constraints.

• [RNG] Corrected reseed flag behavior inRNG_GetPseudoRandomData() after reaching gRng-
MaxRequests_d threshold.

• [platform][mflash] Fixed uninitialized variable issue in PLATFORM_ReadExternalFlash().

• [platform][wireless_nbu] Fixed an issue on KW47 where PLATFORM_InitFro192M incor-
rectly reads IFR1 from a hardcoded flash address (0x48000), leading to unstable FRO192M
trimming. The function is now conditionally compiled for KW45 only.

7.0.2 revB mcux SDK 25.06.00

Major Changes
• [RNG][wireless_mcu][wireless_nbu] Rework RNG seeding on NBU request

• [wireless_mcu] [LowPower] Add gPlatformEnableFro6MCalLowpower_d macro to enable
FRO6M frequency verification on exit of Low Power

– addPLATFORM_StartFro6MCalibration() andPLATFORM_EndFro6MCalibration()new
function for FRO6M calibration (6MHz or 2Mhz) on wake-up from low power mode.

– Enabled by default in fwk_config.h

• [wireless_nbu][LowPower] Clear pending interrupt status of the systick before going in low-
power - Reduce NBU active time

• [wireless_nbu] Fix impossibility to go to WFI in combo mode (15.4/BLE)

• [wireless_mcu] Implement XTAL32M temperature compensation mechanism. 2 new APIs:

1.4. Wireless 63

MCUXpresso SDK Documentation, Release 25.09.00

– PLATFORM_RegisterXtal32MTempCompLut(): register the temperature compensation
table for XTAL32M.

– PLATFORM_CalibrateXtal32M(): apply XTAL32M temperature compensation depend-
ing on current temperature.

• [Sensors][wireless_mcu] Add support for periodic temperature measurement. new API:

– SENSORS_TriggerTemperatureMeasurementUnsafe(): to be called from Interrupt masked
critical section, from ISR or when scheduler is stopped

• [SFC] Change default maximal ppm target of the SFC algorithm from 200 to 360ppm. Impact
the SFC algorith of kw45 and mcxw71 platforms, 360ppm was already the default setting
for kw47 and mcxw72 platforms

Minor Changes (bug fixes)
• [DBG] Fix FWK_DBG_PERF_DWT_CYCLE_CNT_STOP macro

• [wireless_nbu] Add gPlatformIsNbu_d compile Macro set to 1

• [wireless_nbu][ics] gFwkSrvHostChipRevision_c can be processed in the system workqueue

• [kw45_mcxw71][kw47_mcxw72]

– Remove LTC dependency from platform in kconfig

– gPlatformShutdownEccRamInLowPower moved from fwk_platform_definition.h to
fwk_confg.h as this is a configuration flag.

• [wireless_mcu][sensors] Rework and remove unnecessary ADC APIs

• [wireless_nbu] Add PLATFORM_GetMCUUid() function from Chip UID

• [SecLib] Change AES_MMO_BlockUpdate() function from private to public for zigbee.

7.0.2 revA mcux SDK 25.06.00 Supported platforms:
• Same as 25.03.00 release

Major Changes
• [KW45/MCXW71] HW parameters placement now located in IFR section. Flash storage is

not longer used:

– Compilation: Macro gHwParamsProdDataPlacement_c changed from gHwParamsProd-
DataMainFlash2IfrMode_c to gHwParamsProdDataIfrMode_c

• [KW47] NBU: Add new fwk_platform_dcdc.[ch] files to allow DCDC stepping by using SPC
high power mode. This requires new API in board_dcdc.c files. Please refer to new compi-
lation MACROs gBoardDcdcRampTrim_c and gBoardDcdcEnableHighPowerModeOnNbu_d in
board_platform.h files located in kw47evk, kw47loc, frdmmcxw72 board folders.

• [KW45/MCXW71/KW47/MCXW72] Trigger an interrupt each time App core calls PLAT-
FORM_RemoteActiveReq() to access NBU power domain in order to restart NBU core for
domain low power process

Minor Changes (bug fixes)

64 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Services
• [SecLib_RNG]

– Rename mSecLibMutexId mutex to mSecLibSssMutexId in SecLib_sss.c

– Remove MEM_TRACKING flag from RNG.c

– Implement port to fsl_adapter_rng.h API using gRngUseRngAdapter_c compil Macro
from RNG.c

– Add support for BLE debug Keys in SecLi and SecLin_sss.c with gSecLibUseBleDe-
bugKeys_d - for Debug only

• [FSCI] Add queue mechanism to prevent corruption of FSCI global variableAllow the ap-
plication to override the trig sample number parameter when gFsciOverRpmsg_c is set to
1

• [DBG][btsnoop] Add a mechanism to dump raw HCI data via UART using SBT-
SNOOP_MODE_RAW

• [OTA]

– OtaInternalFlash.c: Take into account chunks smaller than a flash phrase worth

– fwk_platform_ot.c: dependencies and include files to gpio, port, pin_mux removed

Platform specific
• [kw45_mcxw71][kw47_mcxw72]

– fwk_platform_reset.h : add compil Macro gUseResetByLvdForce_c and gUseResetBy-
DeepPowerDown_c to avoid compile the code if not supported on some platforms

– New compile Flag gPlatformHasNbu_d

– Rework FRO32K notification service for MISRA fix

7.0.1 RFP mcux SDK 25.03.00 Supported platforms:
• KW45x, KW47x, MCXW71, MCXW72, K32W1x

• RW61x

• RT595, RT1060, RT1170

• MCXW23

Minor Changes (bug fixes)
• [General] Various MISRA/Coverity fixes in framework: NVM, RNG, LowPower, SecLib and

platform files

Services
• [SecLib_RNG] fix return status from RNG_GetTrueRandomNumber() function: return cor-

rectly gRngSuccess_d when RNG_entropy_func() function is successful

• [SFC] Allow the application to override the trig sample number parameter

• [Settings] Re-define the framework settings API name to avoid double definition when gSet-
tingsRedefineApiName_c flag is defined

1.4. Wireless 65

MCUXpresso SDK Documentation, Release 25.09.00

Platform specific
• [wireless_mcu] fwk_platform_sensors update :

– Enable temperature measurement over ADC ISR

– Enable temperature handling requested by NBU

• [wireless_mcu] fwk_platform_lcl coex config update for KW45

• [kw47_mcxw72] Change the default ppm_target of SFC algorithm from 200 to 360ppm

7.0.1 revB mcux SDK 25.03.00 Supported platforms:
• KW45x, KW47x, MCXW71, MCXW72, K32W1x

• RW61x

• RT595, RT1060, RT1170

• MCXW23

Minor Changes (bug fixes)

General
• [General] Various MISRA/Coverity fixes in framework: NVM, RNG, LowPower, FunctionLib

and platform files

Services
• [SecLib_RNG] AES-CBC evolution:

– added AES_CBC_Decrypt() API for sw, SSS and mbedtls variants.

– Made AES-CBC SW implementation reentrant avoiding use of static storage of AES
block.

– fixed SSS version to update Initialization Vector within SecLib, simplifying caller’s im-
plementation.

– modified AES_128_CBC_Encrypt_And_Pad() so as to avoid the constraint mandating
that 16 byte headroom be available at end of input buffer.

• [SecLib_RNG] RNG modifications:

– RNG_GetPseudoRandomData() could return 0 in some error cases where caller ex-
pected a negative status.

* Explicited RNG error codes

* Added argument checks for all APIs and return gRngBadArguments_d (-2) when
wrong

* added checks of RNG initalization and return gRngNotInitialized_d (-3) when not
done

* fixed correcteness of RNG_GetPrngFunc() and RNG_GetPrngContext() relative to
API description.

* Added RNG_DeInit() function mostly for test and coverage purposes.

* Improved RNG description in README.md

* Unified the APIs behaviour between mbedtls and non mbedtls variants.

66 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

– RNG/mbedtls : PreventRNG_Init() from corrupting RNG entropy context if called more
than once.

– RNG/mbedtls: fixed RNG_GetTrueRandomNumber() to return a proper
mbedtls_entropy_func() result.

– Use defragmetation option when freeing key object in SecLib_sss to avoid leak in S200
memory

– Add new API ECP256_IsKeyValid() to check whether a public key is valid

• [OtaSupport] Update return status to OTA_Flash_Success when success at the end of Inter-
nalFlash_WriteData() and InternalFlash_FlushWriteBuffer() APIs

• [WorQ] Implementing a simple workqueue service to the framework

• [SFC] Keep using immediate measurement for some measurement before switching to con-
figuration trig to confirm the calibration made

• [DBG] Adding modules to framework DBG :

– sbtsnoop

– SWO

• [Common] Fix HAL_CTZ and HAL_RBIT IAR versions

• [LowPower] Fix wrong tick error calculation in case of infinite timeout

• [Settings] Add new macro gSettingsRedefineApiName_c to avoid multiple definition of set-
tings API when using connectivity framework repo

Platform specific
• [KW47/MCXW72] Change xtal cload default value from 4 to 8 in order to increase the pre-

cision of the link layer timebase in NBU

• [wireless_mcu] [wireless_nbu] Use new WorkQ service to process framework intercore
messages

• [rw61x] Fix HCI message sending failure in some corner case by releasing controller wakes
up after that the host has send its HCI message

• [MCXW23] Adding the initial support of MCXW23 into the framework

7.0.0 mcux SDK 24.12.00 Supported platforms:
• KW45x, KW47x, MCXW71, MCXW72, K32W1x

• RW61x

• RT595, RT1060, RT1170

Minor Changes (bug fixes)

Platform specific
• [RW61X]

– Add MCUX_COMPONENT_middleware.wireless.framework.platform.rng to the plat-
form to fix a warning at generation

– Retrieve IEEE 64 bits address from OTP memory

• [KW45x, MCXW71x, KW47x, MCXW72x]

1.4. Wireless 67

MCUXpresso SDK Documentation, Release 25.09.00

– Ignore the secure bit from RAM addresses when comparing used ram bank in bank
retention mechanism

– Add gPlatformNbuDebugGpioDAccessEnabled_d Compile Macro (enabled by default).
Can be used to disable the NBU debug capability using IOs in case Trustzone is enabled
(“PLATFORM_InitNbu()‘ code executed from unsecure world).

– Fix in NBU firmware when sending ICS messages gFwkSrvNbuApiRequest_c (from con-
troller_api.h API functions)

Services
• [OTA]

– Add choice name to OtaSupport flash selection in Kconfig

• [NVM]

– Add gNvmErasePartitionWhenFlashing_c feature support to gcc toolchain

• [SecLib_RNG]

– Misra fixes

7.0.0 revB mcux SDK 24.12.00 Supported platforms: KW45x, KW47x, MCXW71, MCXW72,
K32W1x, RW61x, RT595, RT1060, RT1170

Major Changes (User Applications may be impacted)
• mcux github support with cmake/Kconfig from sdk3 user shall now use CmakeLists.txt and

Kconfig files from root folder. Compilation should be done using west build command. In
order to see the Framework Kconfig, use command >west build -t guiconfig

• Board files and linker scripts moved to examples repository

Bugfixes
• [platform lowpower]

– Entering Deep down power mode will no longer call PLATFORM_EnterPowerDown().
This API is now called only when going to Power down mode

Platform specific
• [KW47/MCXW72]: Early access release only

– Deep sleep power mode not fully tested. User can experiment deep sleep and deep
down modes using low power reference design applications

– XTAL32K-less support using FRO32K not tested

• [KW45/MCXW71/K32W148]

– Deep sleep mode is supported. Power down mode is supported in low power reference
design applications as experimental only

– XTAL32K-less support using FRO32K is experimental - FRO32K notifications callback is
debug only and should not be used for mass production firmware builds

68 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Minor Changes (no impact on application)
• Overall folder restructuring for SDK3

– [Platform]:

* Rename platform_family from connected_mcu/nbu to wireless_mcu/nbu

* platform family have now a dedicated fwk_config.h, rpmsg_config.h and Se-
cLib_mbedtls_config.h

– [Services]

* Move all framework services in a common directory “services/”

7.0.0 revA: KW45/KW47/MCXW71/MCXW72/K32W148

Experimental Features only
• Power down on application power domain: Some tests have shown some failure. Power

consumption higher than Deep Sleep. => This feature is not fully supported in this release

• XTAL32K less board with FRO32K support: Some additional stress tests are under progress.

• FRO32K notifications callback is for debug only and shall not be used for production. User
shall not execute long processing (such as PRINTF) as it is executed in ISR context.

Main Changes
• Cmake/Kconfig support for SDK3.0

• [Sensors] API renaming:

– SENSORS_InitAdc() renamed to SENSORS_Init()

– SENSORS_DeinitAdc() remamed to SENSORS_Deinit()

• [HWparams]

– Repair PROD_DATA sector in case of ECC error (implies loss of previous contents of
sector)

• [NVM] Linker script modification for armgcc whenever gNvTableKeptInRam_d option is
used:

– placement of NVM_TABLE_RW in data initialized section, providing start and end ad-
dress symbols. For details see NVM_Interface.h comments.

• [OtaSupport]

– OTA_Initialize(): now transitions the image state from RunCandidate to Permanent if
not done by the application. OTA module shall always be initialized on a Permanent
image, this change ensures it is the case.

– OTA_MakeHeadRoomForNextBlock(): now erases the OTA partition up to the image to-
tal size (rounded to the sector) if known.

Minor changes
• [Platform]

– Updated macro values: -kw47: BOARD_32MHZ_XTAL_CDAC_VALUE
from 12U to 16U, BOARD_32MHZ_XTAL_ISEL_VALUE from 7U
to 11U, BOARD_32KHZ_XTAL_CLOAD_DEFAULT from 8U to 4U,
BOARD_32KHZ_XTAL_COARSE_ADJ_DEFAULT from 1U to 3U

1.4. Wireless 69

MCUXpresso SDK Documentation, Release 25.09.00

* MCX W72 (low-power reference design applications
only): BOARD_32MHZ_XTAL_CDAC_VALUE from 12U to
10U, BOARD_32MHZ_XTAL_ISEL_VALUE from 7U to 11U,
BOARD_32KHZ_XTAL_CLOAD_DEFAULT from 8U to 4U,
BOARD_32KHZ_XTAL_COARSE_ADJ_DEFAULT from 1U to 3U

– New PLATFORM_RegisterNbuTemperatureRequestEventCb() API: register a function
callback when NBU request new temperature measurement. API provides the interval
request for the temperature measurement

– Update PLATFORM_IsNbuStarted() API to return true only if the NBU firmware has
been started.

• [platform lowpower]

– Move RAM layout values in fwk_platform_definition.h and update RAM retention API
for KW47/MCXW72

Bugfixes
• [OtaSupport]

– OTA_MakeHeadRoomForNextBlock(): fixed a case where the function could try to erase
outside the OTA partition range.

6.2.4: KW45/K32W1x/MCXW71/RX61x SDK 2.16.100 This release does not contain the changes
from 6.2.3 release.

This release contains changes from 6.2.2 release.

Main Change
• armgcc support for Cmake sdk2 support and VS code integration

Minor changes
• [NBU]

– Optimize some critical sections on nbu firmware

• [Platform]

– Optimize PLATFORM_RemoteActiveReq() execution time.

6.2.3: KW47 EAR1.0 Initial Connectivity Framework enablement for KW47 EAR1.0 support.

New features
• OpenNBU feature : nbu_ble project is available for modification and building

Supported features
• Deep sleep mode

Unsuported features
• Power down mode

• FRO32K support (XTAL32K less boards)

70 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Main changes
• [NBU]

– LPTMR2 available and TimerManager initialization with Compile Macro: gPlatfor-
mUseLptmr_d

– NBU can now have access to GPIOD

– SW RNG and SW SecLib ported to NBU (Software implementation only)

• [RNG]

– Obsoleted API removed : FWK_RNG_DEPRECATED_API

– RNG can be built without SecLib for NBU, using gRngUseSecLib_d in fwk_config.h

– Some API updates:

* RNG_IsReseedneeded() renamed to RNG_IsReseedNeeded,

* RNG_TriggerReseed() renamed to RNG_NotifyReseedNeeded(),

* RNG_SetSeed() and RNG_SetExternalSeed() return status code.

– Optimized Linear Congruential modulus computation to reduce cycle count.

Minor changes
• [NVM]

– Optimize NvIsRecordErased() procedure for faster garbage collection

– MISRA fix : Remove externs and weaks from NVM module - Make RNG and timer man-
ager dependencies conditional

• [Platform]

– Allow the debugger to wakeup the KW47/MCXW72 target

6.2.2: KW45/K32W1 MR6 SDK 2.16.000 Experimental Features only:

• Power down on application power domain : Some tests have shown some failure. Power
consumption higher than Deep Sleep. => This feature is not fully supported in this release

• XTAL32K less board with FRO32K support : Some additional stress tests are under progress.

• FRO32K notifications callback is for debug only and shall not be used for production. User
shall not execute long processing (such as PRINTF) as it is executed in ISR context.

Changes
• [Board] Support for freedom board FRDM-MCX W7X

• [HWparams]

– Support for location of HWParameters and Application Factory Data IFR in IFR1

– Default is still to use HWparams in Flash to keep backward compatibility

• [RNG]: API updates:

– New APIS RNG_IsReseedneeded(), RNG_SetSeed() to provide See to PRNG on NBU/App
core - See BluetoothLEHost_ProcessIdleTask() in app_conn.c

– New APIs RNG_SetExternalSeed() : User can provide external seed. Typically used on
NBU firmrware for App core to set a seed to RNG. RNG_TriggerReseed() : Not required
on App core. Used on NBU only.

1.4. Wireless 71

MCUXpresso SDK Documentation, Release 25.09.00

• [NVS] Wear statistics counters added - Fix nvs_file_stat() function

• [NVM] fix Nv_Shutdown() API

• [SecLib] New feature AES MMO supported for Zigbee

6.2.2: RW61x RFP4 SDK 2.16.000
• [Platform] Support Zigbee stack

• [OTA] Add support for RW61x OTA with remap feature.

– Required modifications to prevent direct access to flash logical addresses when remap
is active.

– Image trailers expected at different offset with remap enabled (see gPlatformMcuBoo-
tUseRemap_d in fwk_config.h)

– fixed image state assessment procedure when in RunCandidate.

• [NVS] Wear statistics counters added

• [SecLib] New feature AES MMO supported for Zigbee

• [Misra] various fixes

6.2.1: KW45/K32W1 MR5 SDK 2.15.000 Experimental Features only:

• Power down on application power domain : Some tests have shown some failure. This
feature is not fully supported in this release

• XTAL32K less board with FRO32K support : Some additional stress tests are under progress.
Timing variation of the timebase are being analyzed

Major changes
• [RNG]: API updates

– New compile flag to keep deprecated API: FWK_RNG_DEPRECATED_API

– change return error code to int type for RNG_Init(), RNG_ReInit()

– New APIs RNG_GetTrueRandomNumber(), RNG_GetPseudoRandomData()

• [Platform]

– fwk_platform_sensors

* Change default temperature value from -1 to 999999 when unknown

– fwk_platform_genfsk

* rename from platform_genfsk.c/h to fwk_platform_genfsk.c/h

– platform family

* Rename the framework platform folder from kw45_k32w1 to connected_mcu to
support other platform from the same family

– fwk_platform_intflash

* Moved from fwk_platform files to the new fwk_platform_intflash files the internal
flash dependant API

• [NBU]

– BOARD_LL_32MHz_WAKEUP_ADVANCE_HSLOT changed from 2 to 3 by default

– BOARD_RADIO_DOMAIN_WAKE_UP_DELAY changed from 0x10 to 0x0F

72 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

• [gcc linker]

– Exclude k32w1_nbu_ble_15_4_dyn.bin from .data section

Minor Changes
• [Platform]

– PLATFORM_GetTimeStamp(0 has an important fix for reading the Timestamp in
TSTMR0

– New API PLATFORM_TerminateCrypto(), PLATFORM_ResetCrypto() called from SecLib
for lowpower exit

– Fix when enable fro debug callback on nbu

• [DBG]

– SWO

* Add new files fwk_debug_swo.c/h to use SWO for debug purpose

* Two new flags has been added:

· BOARD_DBG_SWO_CORE_FUNNEL to chose on which core you want to use
SWO

· BOARD_DBG_SWO_PIN_ENABLE to enable SWO on a pin

• [NVS]

– Add support of NVS and Settings in framework

• [NBU]

– Fix power down issues and reduce critical section on NBU side:

* new API PLATFORM_RemoteActiveReqWithoutDelay() called from NBU functions
where waiting delay is not required

* Increase delay needed in power down for OEM part to request the SOC to be active

* Remove unnecessary code to PLATFORM_RemoteActiveReqWithoutDelay() from
PLATFORM_HciRpmsgRxCallback()

* Improve nbu memory allocation failure debug messages

• [SDK]

– Multicore: remove critical section in HAL_RpmsgSendTimeout() (only required in
FPGA HDI mode)

– Flash drivers: update for ECC detection

• [Platform]

– fwk_platform_sensors

* Fix temperature reporting to NBU

– fwk_platform_extflash

* Align .c and .h prototype of PLATFORM_ExternalFlashAreaIsBlank() function

• [NVM]

– Keep Mutex in NvModuleDeInit(). In Bare metal OS, Mutex can not be destroyed

– New API NvRegisterEccFaultNotificationCb() to register Notification callback when Ecc
error happens in FileSystem

• [MISRA] fixes

1.4. Wireless 73

MCUXpresso SDK Documentation, Release 25.09.00

– SecLib_sss.c: ECDH_P256_ComputeDhKey()

– fwk_platform_extflash.c: PLATFORM_IsExternalFlashPageBlank()

– fwk_fs_abstraction.c: Various fixes

• [HWparams]

– Fix on if condition when gHwParamsProdDataPlacementLegacy2IfrMode_c mode is
selected

• [OTA]

– Enable gOtaCheckEccFaults_d by default to avoid bus in case of ECC error during OTA

– Fix OTA partition overflow during OTA stop and resume transfer

• [BOARD]

– Place code button or led specific under correct defines in board_comp.c/h

– Bring back MACROs BOARD_INITRFSWITCHCONTROLPINS in pin_mux header file of
the loc board

• [SecLib]

– Add some undefinition in SecLib_mbedtls_config as new dependency has been added
in mbedtls repo:

* MBEDTLS_SSL_CBC_RECORD_SPLITTING, MBEDTLS_SSL_PROTO_TLS1,
MBEDTLS_SSL_PROTO_TLS1_1

• [FRO32K]

– FRO32K notification callback PLATFORM_FroDebugCallback_t() has new parameter to
report he fro_trim value

– maxCalibrationIntervalMs value can be provided to NBU using PLAT-
FORM_FwkSrvSetRfSfcConfig()

• [Sensors]

– fix: PLATFORM_GetTemperatureValue() shall have NBU started to send temperature to
NBU

6.2.1: RW61x RFP3
• [NVS]

– Add support of NVS and Settings in framework

• [MISRA] fixes

– board_lp.c BOARD_UninitDebugConsole() and BOARD_ReinitDebugConsole()

– fwk_platform_ble.c: Various fixes

• [OTA]

– Fix OTA partition overflow during OTA stop and resume transfer

6.2.0: RT1060/RT1170 SDK2.15 Major

74 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

6.1.8: KW45/K32W1 MR4
• [BOARD PLATFORM]

– Move gBoardUseFro32k_d to board_platform.h file

– Offer the possibility to change the source clock accuracy to gain in power consumption

• [BOARD LP]

– Move PLATFORM_SetRamBanksRetained() at end of BOARD_EnterLowPowerCb() in
case a memory allocation is done previously in this function

– fix low power, increase BOARD_RADIO_DOMAIN_WAKE_UP_DELAY from 0 to 0x10 -
Skip this delay when App requesting NBU wakeup

• [PLATFORM]

– fwk_platform_ble.c/h: New timestamp API that returns the difference between the cur-
rent value of the LL clock and the argument of the function

– fwk_platform.c/h:

* New PLATFORM_EnableEccFaultsAPI_d compile flag: Enable APIs for interception
of ECC Fault in bus fault handler

* New gInterceptEccBusFaults_d compile flag: Provide FaultRecovery() demo code
for bus fault handler to Intercept bus fault from Flash Ecc error

• [LOC]

– Incorrect behavior for set_dtest_page (DqTEST11 overridden)

– Fix SW1 button wake able on Localization board

– Fix yellow led not properly initialized

– Format localization pin_mux.c/h files

• [Inter Core]

– Affect values to enumeration giving the inter core service message ids

– Shared memory settings shared between both cores

– Add callback to register when NBU has unrecoverable Radio issue

• [NVM]

– Add NV_STORAGE_MAX_SECTORS, NV_STORAGE_SIZE as linker symbol for alignment
with other toolchain

– ECC detection and recovery. New gNvSalvageFromEccFault_d and gNvVerifyRead-
BackAfterProgram_d compile flags. Please refer to ECC Fault detection section in
README.md file located in NVM folder

• [OTA]

– Prevent bus fault in case of ECC error when reading back OTA_CFR update status (dis-
able by default)

• [SecLib]

– Shared mutex for RNG and SecLib as they share same hardware resource

• [Key storage]

– Fix to ignore the garbage at the end of buffers

– Detect when buffers are too small in KS_AddKey() functions

• [FileCache]

– Fix deadlock in Filecache FC_Process()

1.4. Wireless 75

MCUXpresso SDK Documentation, Release 25.09.00

• [SDK]

– Applications: remove definition of stack location and use default from linker script,
fix warmboot stack in freertos at 0x20004000

– Memory Manager Light:

* fix Null pointer harfault when MEM_STATISTICS_INTERNAL enable

* Fix MemReinitBank() on wakeup from lowpower when Ecc banks are turned off

6.1.7: KW45/K32W1 MR3
• [OTA]

– New API OTA_SetNewImageFlagWithOffset()

– Fix StorageBitmapSize calculation

– OTA clean up: Removed OTA_ValidateImage()

• [Low Power]

– New linker Symbol m_lowpower_flag_start in linker file.

* Flag is used to indicate NBU that Application domain goes to power down mode.
Keep this flag to 0 if only Deep sleep is supported

* This flag will be set to 1 if Application domain goes to power down mode

– Re-introduce PWR_AllowDeviceToSleep()/PWR_DisallowDeviceToSleep(),
PWR_IsDeviceAllowedToSleep() API

– Implement tick compensation mechanism for idle hook in a dedicated freertos utils
file fwk_freertos_utils.[ch], new functions: FWK_PreIdleHookTickCompensation() and
FWK_PostIdleHookTickCompensation

– Rework timestamping on K4W1

* PLATFORM_GetMaxTimeStamp() based on TSTMR

* Rename PLATFORM_GetTimestamp() to PLATFORM_GetTimeStamp()

* Update PLATFORM_Delay(): Rework to use TSTMR instead of LPTMR for plat-
form_delay

* Update PLATFORM_WaitTimeout(): Fixed a bug in PLATFORM_WaitTimeout() re-
lated to timer wrap

* Add PLATFORM_IsTimeoutExpired() API

– Fix race condition in PWR_EnterLowPower(), masking interrupts in case not done at
upper layer

– Low power timer split in new files fwk_platform_lowpower_timer.[ch]

– New PWR_systicks_bm.c file for bare metal usage: implement SysTick suspend/resume
functionality, New weak PWR_SysTicksLowPowerInit()

• [FRO32K]

– Improve FRO32K calibration in NBU

– create PLATFORM_InitFro32K() to initialize FRO32K instead of XTAL32K (to be called
from hardware_init())

– update FRO32K README.md file in SFC module

– Debug:

– Add Notification callback feature for SFC module FRO32K

76 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

– Linker script update to support m_sfc_log_start in SMU2

• [SecLib]

– Remove gSecLibSssUseEncryptedKeys_d compile option, split Secure/Unsecure APIs

– RNG update to use same mutex than SecLib

– Fix AES_128_CBC_Encrypt_And_Pad length

– Implement RNG_ReInit() for lowpower

– Fix issue in ECDH_P256_GenerateKeys() when waking up from power down

– Call CRYPTO_ELEMU_reset() from SecLib_reInit() for power down support

• [BOARD]

– Create new board_platform.h file for all Board characteristics settings (32Mhz XTAL,
32KHZ XTAL, etc..)

– TM_EnterLowpower() TM_EnterLowpower() to be called from LP callbacks

– Support Localization boards, Only BUTTON0 supported

* New compile flag BOARD_LOCALIZATION_REVISION_SUPPORT

* New pin_mux.[ch] files

– Offer the possibility to override CDAC and ISEL 32MHz settings before the initialization
of the crystal in board_platform.h

* new BOARD_32MHZ_XTAL_CDAC_VALUE, BOARD_32MHZ_XTAL_ISEL_VALUE

* BOARD_32MHZ_XTAL_TRIM_DEFAULT obsoleted

• [NVM file system]

– Look ahead in pending save queue - Avoid consuming space to save outdated record

– Fix NVM gNvDualImageSupport feature in NvIsRecordCopied

• [Inter Core]

– Change PLATFORM_NbuApiReq() API return parameters granularity from uint32 to
uint8

– MAX_VARIANT_SZ change from 20 to 25

– Set lp wakeup delay to 0 to reduce time of execution on host side, NBU waits XTAL to
be ready before starting execution

– Update inter core config rpmsg_config.h

– Add timeout to while loops that relies on hardware in RemoteActiveReq(), Application
can register Callbacks when timeout

– Return non-0 status when calling PLATFORM_FwkSrvSendPacket when NBU non
started

– Let PLATFORM_GetNbuInfo return -10 if response not received on timeout - Doxygen
platform_ics APIs

• [HW params]

– New compile Macro for HW params placement in IFR - Save 8K in FLash: gHwParam-
sProdDataPlacement_c . 3 modes:

– Legacy placement, move from legacy to IFR, IFR only placement

– New compile Macro for Application data to be stored with HW params (in shared flash
sector): gHwParamsAppFactoryDataExtension_d, New APIs:

* Nv_WriteAppFactoryData(), Nv_GetAppFactoryData()

1.4. Wireless 77

MCUXpresso SDK Documentation, Release 25.09.00

– See HWParameter.h

• [Platform]

– Implement PLATFORM_GetIeee802_15_4Addr() API in fwk_platform_ot.c - New gPlat-
formUseUniqueDeviceIdFor15_4Addr_d compile Macro

– Wakeup NBU domain when reading RADIO_CTRL UID_LSB register in PLAT-
FORM_GenerateNewBDAddr()

• [Reset]

– New reset Implementations using Deep power down mode or LVD:

* new files fwk_platform_reset.[ch]

* new APIs: PLATFORM_ForceDeepPowerDownReset(), PLAT-
FORM_ForceLvdReset() + reset on ext pins

* new compile flags: gAppForceDeepPowerDownResetOnResetPinDet_d and gApp-
ForceLvdResetOnResetPinDet_d to reset on external pins

• [FSCI]

– fix when gFsciRxAck_c enabled

– integrate new reset APIs

6.1.4: RW610/RW612 RFP1
• [Low Power]

– Added support of low power for OpenThread stack.

– Added PWR_AllowDeviceToSleep/PWR_DisallowDeviceToSleep/PWR_IsDeviceAllowedToSleep
APIs.

• [platform]

– Added PLATFORM_GetMaxTimeStamp API.

– Fixed high impact Coverity.

• [FreeRTOS]

– Created a new utilities module for FreeRTOS: fwk_freertos_utils.c/h.

– Implemented a tick compensation mechanism to be used in FreeRTOS idle hook, likely
around flash operations. This mechanism aims to estimate the number of ticks missed
by FreeRTOS in case the interrupts are masked for a long time.

6.1.4: KW45/K32W1 MR2
• [Low power]

– Powerdown mode tested and enabled on Low Power Reference Design applications

– XTAL32K removal functionality using FRO32K, supported from NBU firmwares - limi-
tation: Application domain supports Deep Sleep only (not power down)

– NBU low power improvement: low power entry sequence improvement and system
clock reduction to 16Mhz during WFI

– Wake up time from cold boot, reset, power switch greatly improved. Device starts on
FRO32K, switch to XTAL32K when ready if gBoardUseFro32k_d not set

– Bug fixes:

* Move PWR LowPower callback to PLATFORM layers

78 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

* Fix wrong compensation of SysTicks

* Reinit system clocks when exiting power down mode:
BOARD_ExitPowerDownCb(), restore 96MHz clock is set before going to low
power

* Call Timermanager lowpower entry exit callbacks from PLAT-
FORM_EnterLowPower()

* Update PLATFORM_ShutdownRadio() function to force NBU for Deep power down
mode

– K32W1:

* Support lowpower mode for 15.4 stacks

• [NVM]

– New Compilation MACRO gNvDualImageSupport to support multiple firmware image
with different register dataset

– Change default configuration gNvStorageIncluded_d to 1, gNvFragmenta-
tion_Enabled_d to 1, gUnmirroredFeatureSet_d to TRUE

– Some MISRA issues for this new configuration.

– Remove deprecated functionality gNvUseFlexNVM_d

• [SecLib]

– New NXP Ultrafast ecp256 security library:

* New optimized API for ecdh DhKey/ecp256 key pair computation:
Ecdh_ComputeDhKeyUltraFast(), ECP256_GenerateKeyPairUltraFast().

* New macro gSecLibUseDspExtension_d.

* Improved software version of Seclib with Ultrafast library for
ECP256_LePointValid()

– Bug fixes:

* Share same mutex between Seclib and RNG to prevent concurrent access to S200

* Optimized S200 re-initialization, restore ecdh key pair after power down

* Fixed race condition when power down low power entry is aborted

* Endianness function updates and clean up

• [OTA]

– OTASupport improvements:

* New API OTA_GetImgState(), OTA_UpdateImgState()

* OTASupport and fwk_platform_extflash API updates for external flash:
OTA_SelectExternalStoragePartition(), PLATFORM_IsExternalFlashSectorBlank(),
PLATFORM_IsExternalFlashPageBlank(), PLATFORM_OtaGetOtaPartitionConfig()

* Updated OtaExternalFlash.c, 2 new APIs in fwk_platform_extflash.c

* Removed unused FLASH_op_type and FLASH_TransactionOpNode_t definitions
from public API

* Removed unused InternalFlash_EraseBlock() from OtaInternalFlash.c

• [NBU firmware]

– Mechanism to set frequency constraint to controller from the host PLAT-
FORM_SetNbuConstraintFrequency()

– NbuInfo has one more digit in versionBuildNo field

1.4. Wireless 79

MCUXpresso SDK Documentation, Release 25.09.00

• [Board]

– Support Extflash low power mode, add BOARD_UninitExternalFlash(), PLAT-
FORM_UninitExternalFlash(), PLATFORM_ReinitExternalFlash()

– Support XTAL32K removal functionatity, use FRO32K instead by setting gBoardUse-
Fro32k_d to 1 in board.h file

– Support localization boards KW45B41Z-LOC Rev C

– Low power improvement: New BOARD_InitPins() and
BOARD_InitPinButtonBootConfig() called from hardware_init.c

– Removed KW45_A0_SUPPORT support (dcdc)

– Bug fixes:

* Fixed glitches on the serial manager RX when exiting from power down

* Fixed ADC not deinitialized in clock gated modes in BOARD_EnterLowPowerCb()

* Fixed UART output flush when going to low power: BOARD_UninitAppConsole()

• [platform]

– PLATFORM_InitBle(), PLATFORM_SendHci() can now block with timeout if NBU does
not answer. Application can register callback function to be notified when it occurs:
PLATFORM_RegisterBleErrorCallback()

– Added API to set and get 32Khz XTAL capacitance values: PLAT-
FORM_GetOscCap32KValue() and PLATFORM_SetOscCap32KValue()

– Added new Service FWK call gFwkSrvNbuMemFullIndication_c to get NBU mem full
indication, register with PLATFORM_RegisterNbuMemErrorCallback()

– Added support negative value in platform intercore service

• [linker script]

– Realigned gcc linker script with IAR linker script.

– Added possibility to redefine cstack_start position

– Added Possibility to change gNvmSectors in gcc linker script

– Added dedicated reserved Section in shared memory for LL debugging

• [FreeRTOSConfig.h]

– Removed unused MACRO configFRTOS_MEMORY_SCHEME and configTO-
TAL_HEAP_SIZE

• [HW Param]

– Added xtalCap32K field to store XTAL32K triming value

• [fwk_hal_macros.h]

– Added MACRO for KB, MB and set, clear bits in bit fields

• [Debug]

– Added MACROs for performance measurement using DWT: DBG_PERF_MEAS

6.1.3 KW45 MR1 QP1
• [Initialization] Delay the switch to XTAL32K source clock until the BLE host stack is initial-

ized

• [lowpower] NBU wakeup from lowpower: configuration can now be programmed with
BOARD_NBU_WAKEUP_DELAY_LPO_CYCLE, BOARD_RADIO_DOMAIN_WAKE_UP_DELAY
in board.h file

80 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

• [NBU firmware] Major fix for NBU system clock accuracy

• [clock_config]

– Update SRAM margin and flash config when switching system frequency

– Trim FIRC in HSRUN case

• [XTAL 32K trim] XTAL 32K configuration can be tuned in board.h file with
BOARD_32MHZ_XTAL_TRIM_DEFAULT, BOARD_32KHZ_XTAL_CLOAD_DEFAULT,
BOARD_32KHZ_XTAL_COARSE_ADJ_DEFAULT

• [MAC address] Add OUI field in PLATFORM_GenerateNewBDAddr() when using Unique De-
vice Id

6.1.2: RW610/RW612 PRC1
• [Low Power]

– Updates after SDK Power Manager files renaming.

– Moved PWR LowPower callback to PLATFORM layers.

– Bug fixes:

* Fixed wrong compensation of SysTicks during tickless idle.

* Reinit RTC bus clock after exit from PM3 (power down).

• [OTA]

– Initial support for OTA using the external flash.

• [platform]

– Implemented platform specific time stamp APIs over OSTIMER.

– Implemented platform specific APIs for OTA and external flash support.

– Removed PLATFORM_GetLowpowerMode API.

– Added support of CPU2 wake up over Spinel for OpenThread stack.

– Bug fixes:

* Fixed issues related to handling CPU2 power state.

• [board]

– Updated flash_config to support 64MB range.

• [linker script]

– Fixed wrong assert.

6.1.1: KW45/K32W1 MR1
• [platform] Use new FLib_MemSet32Aligned() to write in ECC RAM bank to force ECC calcu-

lation in the MEM_ReinitRamBank() function

• [FunctionLib] Implement new API to set a word aligned

• [platform] Set coarse amplifier gain of the oscilattor 32k to 3

• [platform] Switch back to RNG for MAC Adress generation

• [SecLib] Get rid of the lowpower constraint of deep sleep in ECDH API

• [DCDC] Set DCDC output voltage to 1.35V in case LDO core is set to 1.1V to ensure a drop of
250mV between them

• [NVM] NvIdle() is now returning the number of operations that has been executed

1.4. Wireless 81

MCUXpresso SDK Documentation, Release 25.09.00

• [documentation] Add markdown of each framework module by default on all package

• [LowPower] Add a delay advised by hardware team on exit of lowpower for SPC

• [SecLib] Rework of SecLib_mbedTLS ECDH functions

• [OTA] Make OTA_IsTransactionPending() public API

• [FunctionLib] Change prototype of FLib_MemCpyWord(), pDst is now a void* to permit
more flexibility

• [NVM] Add an API to know if there is a pending operation in the queue

• [FSCI] Fix wrong error case handling in FSCI_Monitor()

6.1.0: KW45/K32W1 RFP
• [LowPower] Do not call PLATFORM_StopWakeUpTimer() in PWR_EnterLowPower() if

PLATFORM_StartWakeUpTimer() was not previously called

• [boards] Add the possibility to wakeup on UART 0 even if it is not the default UART

• [boards] Add support for Hardware flow control for UART0, Enable with gBoard-
UseUart0HwFlowControl, Pin mux update with two additional API for RTS, CTS pins

• [Sensors] Improve ADC wakeup time from deep sleep state: use save and restore API for
ADC context before/after deep sleep state.

• [linker script] update SMU2 shared memory region layout with NBU: increase
sqram_btblebuf_size to support 24 connections. Shared memory region moved to the
end

• [SecLib] SecLib_DeriveBluetoothSKD() API update to support if EdgeLock key shall be re-
generated

6.0.11: KW45/K32W1 PRC3.1

FSCI: Framework Serial Communication Interface

Overview The Framework Serial Communication Interface (FSCI) is both a software module
and a protocol that allows monitoring and extensive testing of the protocol layers. It also allows
separation of the protocol stack between two protocol layers in a two processing entities setup,
the host processor (typically running the upper layers of a protocol stack) and the Black Box
application (typically containing the lower layers of the stack, serving as a modem). The Test Tool
software is an example of a host processor, which can interact with FSCI Black Boxes at various
layers. In this setup, the user can run numerous commands to test the Black Box application
services and interfaces.

The FSCI enables common service features for each device enables monitoring of specific inter-
faces and API calls. Additionally, the FSCI injects or calls specific events and commands into the
interfaces between layers.

An entity which needs to be interfaced to the FSCI module can use the API to register opcodes
to specific interfaces. After doing so, any packet coming from that interface with the same op-
code triggers a callback execution. Two or more entities cannot register the same opcode on the
same interface, but they can do so on different interfaces. For example, two MAC instances can
register the same opcodes, one over UARTA, and the other over UARTB. This way, Test Tool can
communicate with each MAC layer over two UART interfaces.

The FSCI module executes either in the context of the Serial Manager task or owns its dedicated
task if the compilation Macro gFsciUseDedicatedTask_c is set to 1.

82 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

FSCI packet structure The FSCI module sends and receives messages as shown in the figure
below. This structure is not specific to a serial interface and is designed to offer the best com-
munication reliability. The Black Box device expects messages in little-endian format. It also
responds with messages in little-endian format.

Below is an illustration of the FSCI packet structure when a virtual interface is used instead :

NOTE : When virtual interfaces are used, the first checksum is decremented with the
ID of the interface. The second checksum is used for error detection.

constant definition The following Macro configurs the FSCI module

#define gFsciIncluded_c 0 /* Enable/Disable FSCI module */
#define gFsciUseDedicatedTask_c 1 /* Enable Fsci task to avoid recursivity in Fsci module (Misra␣
↪→compliant) */
#define gFsciMaxOpGroups_c 8
#define gFsciMaxInterfaces_c 1
#define gFsciMaxVirtualInterfaces_c 0
#define gFsciMaxPayloadLen_c 245 /* bytes */
#define gFsciTimestampSize_c 0 /* bytes */
#define gFsciLenHas2Bytes_c 0 /* boolean */
#define gFsciUseEscapeSeq_c 0 /* boolean */
#define gFsciUseFmtLog_c 0 /* boolean */

(continues on next page)

1.4. Wireless 83

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
#define gFsciUseFileDataLog_c 0 /* boolean */
#define gFsciLoggingInterface_c 1 /* [0..gFsciMaxInterfaces_c) */
#define gFsciHostMacSupport_c 0 /* Host support at MAC layer */

The following provides the OpGroups values reserved by MAC, application, and FSCI.

FSCI Host FSCI Host is a functionality that allows separation at a certain stack layer between
two entities, usually two boards running separate layers of a stack.

Support is provided for functionality at the MAC layer, for example, MAC/PHY layers of a stack
are running as a Black Box on a board, and MAC higher layers are running on another. The
higher layers send and receive serial commands to and from the MAC Black Box using the FSCI
set of operation codes and groups.

The protocol of communication between the two is the same. The current level of support is
provided for:

• FSCI_MsgResetCPUReqFunc – sends a CPU reset request to black box

• FSCI_MsgWriteExtendedAdrReqFunc – configures MAC extended address to the Black Box

• FSCI_MsgReadExtendedAdrReqFunc – N/A

The approach on the Host interfacing a Black Box using synchronous primitives is by default
the polling of the FSCI_receivePacket function, until the response is received from the Black Box.
The calling task polls whenever the task is being scheduled. This is required because a stack
synchronous primitive requires that the response of that request is available in the context of
the caller right after the SAP call has been executed.

The other option, available for RTOS environments, is using an event mechanism. The calling
task blocks waiting for the event that is sent from the Serial Manager task when the response
is available from the Black Box. This option is disabled by default. The disadvantage of this
option is that the primitive cannot be received from another Black Box through a serial interface
because the blocked task is the Serial Manager task, which reaches a deadlock as cannot be
released again.

FSCI ACK ACK transmission is enabled through the gFsciTxAck_c macro definition. Each FSCI
valid packet received triggers an FSCI ACK packet transmission on the same FSCI interface that
the packet was received on. The serial write call is performed synchronously to send the ACK
packet before any other FSCI packet. Only then the registered handler is called to process the
received packet. The ACK is represented by the gFSCI_CnfOpcodeGroup_c and mFsciMsgAck_c
Opcode. An additional byte is left empty in the payload so that it can be used optionally as a
packet identifier to correlate packets and ACKs. ACK reception is the other component that is en-
abled through gFsciRxAck_c. The behavior is such that every FSCI packet sent through a serial
interface triggers an FSCI ACK packet reception on the same interface after the packet is sent. If
an ACK packet is received, the transmission is considered successful. Otherwise, the packet is re-
sent a number of times. The ACK wait period is configurable through mFsciRxAckTimeoutMs_c
and the number of transmission retries through mFsciTxRetryCnt_c. The ACK mechanism de-
scribed above can also be coupled with a FSCI packet reception timeout enabled through gFs-
ciRxTimeout_c and configurable through mFsciRxRestartTimeoutMs_c. Whenever there are no
more bytes to be read from a serial interface, a timeout is configured at the predefined value if no
other bytes are received. If new bytes are received, the timer is stopped and eventually canceled
at successful reception. However, if, for any reason, the timeout is triggered, the FSCI module
considers that the current packet is invalid, drops it, and searches for a new start marker.

FSCI usage example Detailed data types and APIs are described in ConnFWK API documenta-
tion.

84 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Initialization
/* Configure the number of interfaces and virtual interfaces used */
#define gFsciMaxInterfaces_c 4
#define gFsciMaxVirtualInterfaces_c 2
….
/* Define the interfaces used */
static const gFsciSerialConfig_t myFsciSerials[] = {

/* Baudrate, interface type, channel No, virtual interface */ {gUARTBaudRate115200_c, gSerialMgrUart_
↪→c, 1, 0}, {gUARTBaudRate115200_c, gSerialMgrUart_c, 1, 1}, {0 , gSerialMgrIICSlave_c, 1, 0}, {0 ,␣
↪→gSerialMgrUSB_c, 0, 0},
};
….
/* Call init function to open all interfaces */
FSCI_Init((void*)mFsciSerials);

Registering operation groups
myOpGroup = 0x12; // Operation Group used
myParam = NULL; // pointer to a parameter to be passed to the handler function (myHandlerFunc)
myInterface = 1; // index of entry from myFsciSerials
…
FSCI_RegisterOpGroup(myOpGroup, gFsciMonitorMode_c, myHandlerFunc, myParam, myInterface);

Implementing handler function
void fsciMcpsReqHandler(void *pData, void* param, uint32_t interfaceId)
{

clientPacket_t *pClientPacket = ((clientPacket_t*)pData);
fsciLen_t myNewLen;
switch(pClientPacket->structured.header.opCode)
{

case 0x01:
{

/* Reuse packet received over the serial interface The OpCode remains the same. The length of the␣
↪→response must be <= that the length of the received packet */

pClientPacket->structured.header.opGroup = myResponseOpGroup;/* Process packet */
…
pClientPacket->structured.header. len = myNewLen;
FSCI_transmitFormatedPacket(pClientPacket, interfaceId);
return;

}
case 0x02:
{

/* Alocate a new message for the response. The received packet is Freed */
clientPacket_t *pResponsePkt = MEM_BufferAlloc(sizeof(clientPacketHdr_t) + myPayloadSize_d␣

↪→+ sizeof(uint8_t) // CRC);
if(pResponsePkt)
{

/* Process received data and fill the response packet */ …
pResponsePkt->structured.header. len = myPayloadSize_d;
FSCI_transmitFormatedPacket(pClientPacket, interfaceId);

}
break;

}
default:

MEM_BufferFree(pData);
FSCI_Error(gFsciUnknownOpcode_c, interfaceId);
return;

}
/* Free message received over the serial interface */

(continues on next page)

1.4. Wireless 85

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
MEM_BufferFree(pData);

}

Helper Functions Library

Overview This framework provides a collection of features commonly used in embedded soft-
ware centered on memory manipulation.

HWParameter: Hardware parameter

Production Data Storage Hardware parameters provide production data storage

Overview Different platforms/boards need board/network node-specific settings to function
according to the design. (Examples of such settings are IEEE® addresses and radio calibra-
tion values specific to the node.) For this purpose, the last flash sector is reserved and contains
hardware-specific parameters for production data storage. These parameters pertain to the net-
work node as a distinct entity. For example, a silicon mounted on a PCB in a specific configura-
tion, rather than to just the silicon itself. This sector is reserved by the linker file, through the
PROD_DATA section and it should be read/written only through the API described below.

Note : This sector is not erased/written at code download time and it is not updated
via over-the-air firmware update procedures to preserve the respective node-specific
data, regardless of the firmware running on it.

Constant Definitions Name :

extern uint32_t PROD_DATA_BASE_ADDR[];

Description :

This symbol is defined in the linker script. It specifies the start address of the PROD_DATA section.

Name :

static const uint8_t mProdDataIdentifier[10] = {”PROD_DATA:”};

Description :

The value of this constant is copied as identification word (header) at the beginning of the
PROD_DATA area and verified by the dedicated read function.

Note: the length of mProdDataIdentifier imposes the definition of PROD_DATA_ID_STRING_SZ
as 10. The legacy HW parameters structure provides headroom for future usage. There are
currently 63 bytes available.

Data type definitions Name :

typedef PACKED_STRUCT HwParameters_tag
{

uint8_t identificationWord[PROD_DATA_ID_STRING_SZ]; /* internal usage only: valid data present */
/*@{*/
uint8_t bluetooth_address[BLE_MAC_ADDR_SZ]; /*!< Bluetooth address */
uint8_t ieee_802_15_4_address[IEEE_802_15_4_SZ]; /*!< IEEE 802.15.4 MAC address - K32W1 only␣

(continues on next page)

86 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
↪→*/

uint8_t xtalTrim; /*!< XTAL 32MHz Trim value */
uint8_t xtalCap32K; /*!< XTAL 32kHz capacitance value */
/* For forward compatibility additional fields may be added here

Existing data in flash will not be compatible after modifying the hardwareParameters_t typedef.
In this case the size of the padding has to be adjusted.

*/
uint8_t reserved[1];
/* first byte of padding : actual size if 63 for legacy HwParameters but
complement to 128 bytes in the new structure */

}
hardwareParameters_t;

Description:

Defines the structure of the hardware-dependent information.

Note : Some members of this structure may be ignored on a specific board/silicon con-
figuration. Also, new members may be added for implementation-specific purposes
and the backward compatibility must be maintained.

The CRC calculation starts from the reserved field of the hardwareParameters_t and ends before
the hardwareParamsCrc field. Additional members to this structure may be added using the
following method :

Add new fields before the reserved field. This method does not cause a CRC fail, but you must
keep in mind to subtract the total size of the new fields from the size of the reserved field. For
example, if a field of uint8_t size is added using this method, the size of the reserved field shall
be changed to 63.

Co-locating application factory data in HW Parameters flash sector. The sector containing
the Hardware parameter structure may be located in the internal flash, usually at its last sector.
The actual Hardware parameter structure has a size of 128 bytes - including padding reserved
for future use. Since there is plenty of room available in a flash sector (4kB or 8kB), co-locating
Application Factory Data in the same structure prevents from reserving another flash sector for
these data. The application designer may adopt this solution by defining gHwParamsAppFacto-
ryDataExtension_d as 1. A total of 2kB is alloted to this purpose.

If this option was chosen, whenever any of the Hardware parameter fields is modified, its CRC16
will change so the sector will need erasing. The gHwParamsAppFactoryDataPreserveOnHw-
ParamUpdate_d compilation option deals with restoring the contents of the App Factory Data.
Nonetheless this requires a temporary allocation a 2kB buffer to preserve the previous content
and restore then on completion of the Hw Parameter update.

Special reserved area at start of IFR1 in range [0x02002000..0x02002600[On development
boards a 1536 byte area is reserved and the actual Hardware parameter area begins at offset
0x600. Preserving this area on a HW parameter update also requires a temporary 1.5kB dynamic
allocation (in addition to the App Factory 2kB allocation), to be able to restore on completion of
update operation.

HW Parameters Production Data placement options The placement of production data
(PROD_DATA) can be selected based on the definition of gHwParamsProdDataPlacement_c (see
fwk_config.h). The productions data seldom need update for final products, once calibration
data, MAC addresses or others have been programmed. Two cases exist, plus a transition mode :

1) gHwParamsProdDataMainFlashMode_c (0) :

• PROD_DATA are located at top of Main Flash. Hardware parameters section is placed
in the last sector of internal flash [0xfe000..0x100000[.

1.4. Wireless 87

MCUXpresso SDK Documentation, Release 25.09.00

• The linker script must reserve this area explicitly so as to prevent placement of NVM
or text sections at that location by setting gUseProdInfoMainFlash_d.

2) gHwParamsProdDataMainFlash2IfrMode_c(1) : - PROD_DATA are located in IFR1, but Main-
Flash version still exists during interim period. - If the contents of the PROD_DATA section
in MainFlash is valid (not blank and correct CRC) but the IFR PROD_DATA is still blank, copy
the contents of MainFlash PROD_DATA to IFR location. - When done PROD_DATA in IFR are
used. Once the transition is done, an application using (2: gHwParamsProdDataPlacemen-
tIfrMode_c) may be programmed.

3) gHwParamsProdDataIfrMode_c (2) :

• PROD_DATA section dwells in the IFR1 sector [0x02002000..0x02004000[

• in development phase the area comprised between [0x02002000..0x02002600[must be
reserved for internal purposes.

• This allows to free up the top sector of Main Flash by linking with gUseProdInfoMain-
Flash_d unset.

LowPower

Low Power reference user guide This Readme file describes the connectivity software archi-
tecture and provides the general low power enablement user guide.

1- Connectivity Low Power SW architecture The connectivity low power software architec-
ture is composed of various components. These are described from the lower layer to the appli-
cation layer:

1. The SDK power manager in component/power_manager. This component provides the ba-
sic low power framework. It is not specific to the connectivity but generic across devices.
it covers:

• gather the low power constraints for upper layer and take the decision on the best
suitable low power state the device is allowed to go to fullfill the constraints.

• call the low power entry and exit function callbacks

• call the appropriate SW routines to switch the device into the suitable low power state

2. Connectivity Low power module in the connectivity framework. This module is composed
of:

• The low power service called PWR inside framework/LowPower (this folder), This
module is generic to all connectivity devices.

• The platform lowpower: fwk_platform_lowpower.[ch] located in frame-
work\platform\<platform_name>. These files are a collection of low power routines
functions for the PWR module and upper layer. These are specific to the device.

Both PWR and platform lowpower files are detailed in section below.

3. Low power Application modules, it consists of 3 parts:

• Application initialization file app_services_init.c where the application initializes the
low power framework, see next section ‘Demo example for typical usage of low power
framework’

• Application Idle task from application to call the main low power entry function
PWR_EnterLowPower() to switch the device into lowpower. This function is applica-
tion specific, one example is given in the section 1.3.3

88 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

• Low power board files : board_lp.[ch] located in board/lowpower. These files imple-
ment the low power entry and exit functions related to the application and board.
Customers shall modify these files for their own needs. Example code is given for the
connectivity applications.

User guide is provided in section 1.3 below.

Note : Linker script may also be impacted for power down mode support in order to
provide an RAM area for ROM warm boot (depends on the platform) and application
warmboot stack

The Low power central and master reference design applications provide an example of Low
power implementation for BLE. Customer can also refer to the associated document ‘low power
connectivity reference design user guide’.

1.1 - SDK power manager This module provides the main low power functionalities such as:

• Decide the best low-power mode dependent on the constraints set by upper layers by using
PWR_SetLowPowerModeConstraints() API function.

• Handle the sequences to enter and exit low-power mode.

• Enable and configure wake up sources, call the application callbacks on low power en-
try/exit sequences.

The SDK power manager provides the capability for application and all components to receive
low power constraints to the power. The Application does not set the low-power mode the device
shall go into. When going to low power, the SDK power manager selects the best low-power mode
that fits all the constraints.

As an example, if the low power constraint set from Application is Power Down mode, and no
other constraint is set, the SDK power manager selects Power down mode, the next time the
device enters low power. However, if a new constraint is set by another component, such as
the SecLib module that operates Hardware encryption, the SecLib module would select WFI as
additional low power constraint. Also, the SDK power manager selects this last low-power mode
until the constraint is released by the SecLib module. It then reselects Power Down mode for
further low power entry modes.

1.2 - PWR Low power module The PWR module in the connectivity framework provides ad-
ditional services for the connectivity stacks and applications on top of the SDK power manager.

It also provides a simple API for Connectivity Stack and Connectivity applications.

However, more advanced features such as configuring the wake-up sources are only accessible
from the SDK Power Manager API.

In addition to the SDK Power Manager, the PWR module uses the software resources from lower
level drivers but is independent of the platform used.

1.2.1 - Functional description Initialization of the PWR module should be done through
PWR_Init() function. This is mainly to initialize the SDK power manager and the platform for
low power. It also registers PWR low power entry/exit callback PWR_LowpowerCb() to the SDK
power manager. This function will be called back when entering and exiting low power to per-
form mandatory save/restore operations for connectivity stacks. The application can perform
extra optional save/restore operations in the board_lp file where it can register to the SDK Power
Manager its own callback. This is usually used to handle optional peripherals such as serial in-
terfaces, GPIOs, and so on.The main entry function is PWR_EnterLowPower(). It should be called
from Idle task when no SW activity is required. The maximum duration for lowpower is given as
argument timeoutUs in useconds. This function will check the next Hardware event in the con-
nectivity stack, typically the next Radio activity. A wakeup timer is programmed if the timeoutUs

1.4. Wireless 89

MCUXpresso SDK Documentation, Release 25.09.00

value is shorter than the next radio event timing. Passing a timeout of 0us will be interpreted as
no timeout on the application side.

On device wakeup from low power state, the function will return the time duration the device
has been in low power state.

Two APi are provided to set and release low power state constraints :
PWR_SetLowPowerModeConstraint() and PWR_ReleaseLowPowerModeConstraint(). These
are helper functions. User can use directly the SDK power manager if needed.

The PWR module also provides some API to be set as callbacks into other components to prevent
from going to low power state. It can be used in following examples :

1. If a DMA is running, the module in charge of the DMA would need to set a constraint to
avoid the system from going to a low power state when the RAM and system bus are no
longer available.

2. If transfer is going on a peripheral, the drivers shall set a constraint to forbid low power
mode.

3. If encryption is on going through an Hardware accelerator, the HW accelerator and the
required ressources (clocks, etc), shall be kept active also by setting a constraints.

1.2.2 - Tickless mode support This module also provides some routines functions
PWR_SysticksPreProcess() and PWR_SysticksPostProcess() from PWR_systicks.c in order to sup-
port the tickless mode when using FreeRTOS. The tickless mode is the capability to suspend
the periodic system ticks from FreeRTOS and keep timebase tracking using another low power
counter. In this implementation, the Timer Manager and time_stamp component are used for
this purpose.

Idle task shall call these functions PWR_SysticksPreProcess() and PWR_SysticksPostProcess() be-
fore and after the call to the main low power entry function PWR_EnterLowPower().

Refer to framework/LowPower/PWR_systicks.c file or section 2.1 below for more information.

1.3 - Low power platform submodule Low power platform module file
fwk_platform_lowpower.c provides the necessary helper functions to support low power
device initialization, device entry, and exit routines. These are platform and device specific.
Typically, the PWR module uses the low power platform submodule for all low power specific
routines.

The low power platform submodule is documented in the Connectivity Framework Reference
Manual document and in the Connectivity Framework API document.

1.4 - Low power board files Low power board files board_lp.[ch] are both application and
board specific. Users should update this file to add new functions to include new used periph-
erals that require low power support. In the current SDK package, only Serial Manager over
UART and button (IO toggle wake up source) are supported and demonstrated in the Bluetooth
LE demo application.

Other peripherals that require specific action on low power entry and restore on low power exit
should be added to low power board files. For more details, refer to section Low power board
file update

2 - Lowpower Application user guide This section provides a user guide to enable Low power
on a connectivity application, It gives example of typical implementation for the initialization,
Idle task function and low power entry/exit functions.

90 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

2.1 - Application Project updates It is recommended to reuse the low-power periph-
eral/central reference design application projects as a start. This ensures that everything is in
place for the low-power optimization feature. Then, application files may be added to one of the
two projects.

However, users can start directly from the application project and implement low power in it,
by performing the steps described in the following sections.

2.1.1 - SDK Power Manager Most of the Low power functionality is implemented in the SDK
Power Manager. The files to add into the project SDK power_manager module are listed in the
figure below:

You need to use the files located in the folder that match your device.

2.1.2 - PWR connectivity framework module PWR.c PWR_Interface.h shall be added to your
application projects :

Optionally, in order to support Systick less mode, PWR_systicks.c or PWR_systicks_bm.c could
also be added.

The include path to add is: middleware/wireless/framework/LowPower

1.4. Wireless 91

MCUXpresso SDK Documentation, Release 25.09.00

2.1.3 -Low power platform submodule Low power platform files can be found in the ‘Plat-
form’ module in the connectivity framework:

2.1.4 - Low power board files These files are located in the same folder that the other board
files board.[ch]. Hence, it is not required to add any new include path at compiler command line.

92 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

2.1.5 - Application RTOS Idle hook and tickeless hook functions See section 2.4.3 Idle task
implementation example

2.2 - Low power and wake up sources Initialization Low power initialization and
configuration are performed in APP_ServiceInitLowpower()function. This is called from
APP_InitServices() function called from the main() function so all is already set up when calling
the main application entry point, typically BluetoothLEHost_AppInit() function in the Bluetooth
LE demo applications.

The default Low Power mode configured in APP_InitServices() is Deep Sleep mode. In Bluetooth

1.4. Wireless 93

MCUXpresso SDK Documentation, Release 25.09.00

LE, (or any other stack technology), Deep Sleep mode fits for all use cases. For instance, for
Bluetooth LE states: Advertising, Connected, Scanning states. This mode already performs a
very good level of power saving and likely, this is not required to optimize more if the device is
powered from external supply.

APP_ServiceInitLowpower() function performs the following initialization and configuration:

• Initialize the Connectivity framework Low power module PWR_Init(), this function initial-
ized the SDK power manager.

• Configure the wakeup sources such as serial manager wake up source for UART, or button
for IO wake up configuration. These are typical wakeup sources used in the connectivity
application. Developer may want to add additional wake up sources here specific for the
application.

Note : The low power timer wakeup source and wakeup from Radio domain
are directly enabled from the Connectivity framework Low power module PWR
as it is mandatory for the connectivity stack. If your application supports other
peripherals (such as i2c, spi, and others) that require wake sources from low
power, developer should add additional wake up sources setting in this func-
tion APP_ServiceInitLowpower(). The complete list of wakeup sources are avail-
able from the SDK power manager component, see file fsl_pm_board.h in compo-
nent/boards/<device_name>/.

• Initialize and register the Low power board file used to register and implement low
power entry and exit callback function used for peripheral. This is done by calling the
BOARD_LowPowerInit() function.

• Register low power Enter and exit critical function to driver component to enable / disable
low power when the Hardware is active. Example is given for serial manager that needs to
disable low power when the TX ring buffer contains data so the device does not enter low
power until the buffer is empty.

Finally, APP_ServiceInitLowpower() function configures the Deep Sleep mode as the default low
power constraint for the application. It is recommended to keep this level of low power con-
straint during all the connectivity stack initialization.

Example of low power framework initialization can be found in app_services_init.c file. Below
is some code example for initializing the low power framework and wake up sources:

static void APP_ServiceInitLowpower(void)
{

PWR_ReturnStatus_t status = PWR_Success;

/* It is required to initialize PWR module so the application
* can call PWR API during its init (wake up sources...) */
PWR_Init();

/* Initialize board_lp module, likely to register the enter/exit
* low power callback to Power Manager */
BOARD_LowPowerInit();

/* Set Deep Sleep constraint by default (works for All application)
* Application will be allowed to release the Deep Sleep constraint
* and set a deepest lowpower mode constraint such as Power down if it needs
* more optimization */
status = PWR_SetLowPowerModeConstraint(PWR_DeepSleep);
assert(status == PWR_Success);

#if (defined(gAppButtonCnt_c) && (gAppButtonCnt_c > 0))

/* Init and enable button0 as wake up source
* BOARD_WAKEUP_SOURCE_BUTTON0 can be customized based on board configuration

(continues on next page)

94 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
* On EVK we use the SW2 mapped to GPIOD */
PM_InitWakeupSource(&button0WakeUpSource, BOARD_WAKEUP_SOURCE_BUTTON0, NULL,␣

↪→true);
#endif

#if (gAppButtonCnt_c > 1)
/* Init and enable button1 as wake up source
* BOARD_WAKEUP_SOURCE_BUTTON1 can be customized based on board configuration
* On EVK we use the SW3 mapped to PTC6 */
PM_InitWakeupSource(&button1WakeUpSource, BOARD_WAKEUP_SOURCE_BUTTON1, NULL,␣

↪→true);
#endif

#if (defined(gAppUseSerialManager_c) && (gAppUseSerialManager_c > 0))

#if defined(gAppLpuart0WakeUpSourceEnable_d) && (gAppLpuart0WakeUpSourceEnable_d > 0)
/* To be able to wake up from LPUART0, we need to keep the FRO6M running
* also, we need to keep the WAKE domain is SLEEP.
* We can't put the WAKE domain in DEEP SLEEP because the LPUART0 is not mapped
* to the WUU as wake up source */
(void)PM_SetConstraints(PM_LP_STATE_NO_CONSTRAINT, APP_LPUART0_WAKEUP_

↪→CONSTRAINTS);
#endif

/* Register PWR functions into SerialManager module in order to disable device lowpower
during SerialManager processing. Typically, allow only WFI instruction when
uart data are processed by serail manager */

SerialManager_SetLowpowerCriticalCb(&gSerMgr_LowpowerCriticalCBs);
#endif

#if defined(gAppUseSensors_d) && (gAppUseSensors_d > 0)
Sensors_SetLowpowerCriticalCb(&app_LowpowerSensorsCriticalCBs);

#endif

(void)status;
}

2.3 - low power entry/exit sequences : board files updates Board Files that handles low-
power are board_lp.[ch] files.

Low power board files implement the low-power callbacks of the peripherals to be notified
when entering or exiting Low Power mode. This module also registers these low-power call-
backs to the SDK Power Manager component to get the notifications when the device is about
to enter low-power or exit Low Power mode. The Low-power callbacks are registered from
BOARD_LowPowerInit() function. This function is called from app_services_init.c file after PWR
module initialization.

The low power callback functions can be categorized in two groups:

• Entry Low power call back functions: These are usually used to prepare the peripherals
to enter low-power. For example, they can be used for flushing FIFOs, switching off some
clocks, and reconfiguring pin mux to avoid leakage on pins. In case of Power Down mode,
these functions could be used to save the Hardware peripheral context.

• Exit Low power call back functions: These are typically used to restore the peripherals
to functionality. Therefore, they perform the reverse of what is done by the entry call-
back functions: restoring the pin mux, re-enabling the clock, in case of Power Down mode,
restoring the Hardware peripheral context, and so on.

Note that distinction can be done between clock gating mode (Deep Sleep mode), and
power gated mode (Power down mode) when entering and exiting Low Power mode. The

1.4. Wireless 95

MCUXpresso SDK Documentation, Release 25.09.00

BOARD_EnterLowPowerCb() and BOARD_ExitLowPowerCb() functions provide the code to call
the various peripheral entry and exit functions to go and exit Deep Sleep mode: serial manager,
button, debug console, and others.

However, the processing to save and restore the Hardware peripheral is implemented in differ-
ent functions BOARD_EnterPowerDownCb() and BOARD_ExitPowerDownCb(). These two func-
tions should be called when exiting power gated modes of the power domain. These two should
implement specific code for such case (likely the complete reinitialization of each peripheral). In
order to know the Low Power mode that the wake up domain, or main domain has been entered,
the low-power platform API PLATFORM_GetLowpowerMode() can be called.

Note : BOARD_ExitPowerDownCb() is called before BOARD_ExitLowPowerCb() as it is
generally required to restore the Hardware peripheral contexts before reconfiguring
the pin mux to avoid any signal glitches on the pads

Also, It is important to know whether the location of the Hardware peripheral is in the main
domain or wake up domain. The two power domains can go into different power modes with
the limitation that the wakeup domain cannot go to a deepest Low Power mode than the main
domain. Depending on the constraint set on SDK power manager, the wake up domain could
remain in active while the main domain can go to deep sleep or power down modes. In this
case, the peripherals in the wake up domain does not required to be restored, as explained in
the section Power Down. Likely, only pin mux reconfiguration is required in this case.

example Low power entry and exit functions shall be registered to the SDK power manager so
these functions will be called when the device will enter and exit low power mode. This is done
by BOARD_LowPowerInit() typically called from application source code in app_services_init.c
file

static pm_notify_element_t boardLpNotifyGroup = {
.notifyCallback = BOARD_LowpowerCb,
.data = NULL,

};

void BOARD_LowPowerInit(void)
{

status_t status;

status = PM_RegisterNotify(kPM_NotifyGroup2, &boardLpNotifyGroup);
assert(status == kStatus_Success);
(void)status;

}

BOARD_LowpowerCb() callback function will handle both the entry and exit sequences. An ar-
gument is passed to the function to indicate the lowpower state the device enter/exit. Typical
implementation is given below. Customer shall make sure to differentiate low power entry and
exit, and the various low power states.

Typically, nothing is expected to be done if low power state is WFI or Sleep mode. These modes
are some light low power states and the system can be woken up by interrupt trigger.

In Deep sleep mode, the clock tree and source clocks are off, the system needs to be woken up
from an event from the WUU module.

In Power down mode, some peripherals are likely to be powered off, context save and restore
may need to be done in these functions.

static status_t BOARD_LowpowerCb(pm_event_type_t eventType, uint8_t powerState, void *data)
{

status_t ret = kStatus_Success;
if (powerState < PLATFORM_DEEP_SLEEP_STATE)
{

/* Nothing to do when entering WFI or Sleep low power state
NVIC fully functionnal to trigger upcoming interrupts */

(continues on next page)

96 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
}
else
{

if (eventType == kPM_EventEnteringSleep)
{

BOARD_EnterLowPowerCb();

if (powerState >= PLATFORM_POWER_DOWN_STATE)
{

/* Power gated low power modes often require extra specific
* entry/exit low power procedures, those should be implemented
* in the following BOARD API */
BOARD_EnterPowerDownCb();

}
}
else
{

/* Check if Main power domain domain really went to Power down,
* powerState variable is just an indication, Lowpower mode could have been skipped by an␣

↪→immediate wakeup
*/
PLATFORM_PowerDomainState_t main_pd_state = PLATFORM_NO_LOWPOWER;
PLATFORM_status_t status;

status = PLATFORM_GetLowpowerMode(PLATFORM_MainDomain, &main_pd_state);
assert(status == PLATFORM_Successful);
(void)status;

if (main_pd_state == PLATFORM_POWER_DOWN_MODE)
{

/* Process wake up from power down mode on Main domain
* Note that Wake up domain has not been in power down mode */
BOARD_ExitPowerDownCb();

}

BOARD_ExitLowPowerCb();
}

}
return ret;

}

2.4 - Lowpower constraint updates andoptimization Except for the board file update as seen
in previous section, the application does not need any other changes for low-power support in
Deep Sleep mode. It shall work as if no low-power is supported. However, If more aggressive
power saving is required, this constraint can be changed in your application in order to further
reduce the power consumption in Low Power mode.

2.4.1 - Changing the Default Application low power constraint after firmware initializa-
tion The Low power reference design applications (central or peripheral) provides demon-
stration on how to change the Application low power constraint. In the Application main
entry point BluetoothLEHost_AppInit(), Deep Sleep mode is configured by default from
APP_ServiceInitLowpower() function.

Note : It is recommended to keep Deep Sleep mode as default during all the stack ini-
tialization phase until BluetoothLEHost_Initialized() and BleApp_StartInit() functions
are called. In case of Bonded device with privacy, it is recommended to wait for gCon-
trollerPrivacyStateChanged_c event to be called.

1.4. Wireless 97

MCUXpresso SDK Documentation, Release 25.09.00

BleApp_LowpowerInit() function provides an example of code on how to release the default Deep
sleep low-power constraint and set a new constraint such as Power down mode for the applica-
tion. This deeper low-power mode is used when no Bluetooth LE activity is on going, and if
no other higher Low-power constraint is set by another components or layer. For instance, if
some serial transmission is on going by the serial manager, or if the SecLib module has on going
activity on the HW crypto accelerator, the low-power mode could less deep.

static void BleApp_LowpowerInit(void)
{
#if defined(gAppLowpowerEnabled_d) && (gAppLowpowerEnabled_d>0)

PWR_ReturnStatus_t status;

/*
* Optionally, Allow now Deepest lowpower mode constraint given by gAPP_

↪→LowPowerConstraintInNoBleActivity_c
* rather than DeepSleep mode.
* Deep Sleep mode constraint has been set in APP_InitServices(), this is fine
* to keep this constraint for typical lowpower application but we want the
* lowpower reference design application to be more agressive in term of power saving.

* To apply a lower lowpower mode than Deep Sleep mode, we need to
* - 1) First, release the Deep sleep mode constraint previously set by default in app_services_init()
* - 2) Apply new lowpower constraint when No BLE activity
* In the various BLE states (advertising, scanning, connected mode), a new Lowpower
* mode constraint will be applied depending of Application Compilation macro set in app_preinclude.

↪→h :
* gAppPowerDownInAdvertising, gAppPowerDownInConnected, gAppPowerDownInScanning
*/

/* 1) Release the Deep sleep mode constraint previously set by default in app_services_init() */
status = PWR_ReleaseLowPowerModeConstraint(PWR_DeepSleep);
assert(status == PWR_Success);
(void)status;

/* 2) Apply new Lowpower mode constraint gAppLowPowerConstraintInNoBleActivity_c *
* The BleAppStart() call above has already set up the new lowpower constraint
* when Advertising request has been sent to controller */
BleApp_SetLowPowerModeConstraint(gAppLowPowerConstraintInNoBleActivity_c);

#endif
}

2.4.2 - Changing the Application lowest low power constraint during application execution
In the various application use cases, (in the various Bluetooth LE activity states, advertising, con-
nected, scanning), some lower low-power constraint can be set, as Power down for advertising,
Deep Sleep for connected, or Scanning. Customer can change the level of Low Power mode in
the various use case mainly depending of the time duration the device is supposed to remain
in low-power. The longer the time that the device remains in low power, the higher the ben-
efit for a deeper Low Power mode such as Power down mode. However, please note that the
wake up from power down mode takes significantly more time than deep sleep as ROM code is
re executed and the hardware logic needs to be restored. Sections Deep Sleep and Power Down
provide some guidance on when to use Deep Sleep mode or Power Down modes respectively.

In the low power reference design applications, four application compilations macros are de-
fined to adjust the low-power mode into advertising, scanning, connected, or no Bluetooth LE
activity. Other use cases can be added as desired. For instance, If application needs to run a
DMA transfer, or if application needs to wakeup regularly to process data from external device,
it may be useful to set WFI constraint (in case of DMA transfer), or Deep Sleep constraint (in case
of regular wake up to process external data), rather than power down or a even lower low-power
mode.

The 4 application compilation macros can be found in app_preinclude.h file of the project. See

98 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

app_preinclude.h for low power reference design peripheral application :

/*! Lowpower Constraint setting for various BLE states (Advertising, Scanning, connected mode)
The value shall map with the type defintion PWR_LowpowerMode_t in PWR_Interface.h
0 : no LowPower, WFI only
1 : Reserved
2 : Deep Sleep
3 : Power Down
4 : Deep Power Down

Note that if a Ble State is configured to Power Down mode, please make sure
gLowpowerPowerDownEnable_d variable is set to 1 in Linker Script

The PowerDown mode will allow lowest power consumption but the wakeup time is longer
and the first 16K in SRAM is reserved to ROM code (this section will be corrupted on
each power down wakeup so only temporary data could be stored there.)

Power down feature not supported. */

#define gAppLowPowerConstraintInAdvertising_c 3
/* Scanning not supported on peripheral */
//#define gAppLowPowerConstraintInScanning_c 2
#define gAppLowPowerConstraintInConnected_c 2
#define gAppLowPowerConstraintInNoBleActivity_c 4

In lowpower_central.c lowpower_preripheral.c files, the application sets and re-
leases the low power constraint from BleApp_SetLowPowerModeConstraint() and
BleApp_ReleaseLowPowerModeConstraint() functions. These functions are called with the
macro value passed as argument.

Important Note : Setting the application low power constraint shall be done on new
Bluetooth LE state request so the new constraint is applied immediately, while the
application low-power mode constraint shall be released when the Bluetooth LE state
is exited. For example, setting the new low power constraint for Advertising shall be
done when the application requests advertising to start. Releasing the low power con-
straint shall be done in the advertising stop callback (advertising has been stopped).

After releasing the low power constraint, the previous low power constraint, (likely the one that
has been set during firmware initialization in APP_ServiceInitLowpower() function, or the up-
dated low power constraint in BleApp_StartInit() function) applies again.

2.4.3 - Idle task implementation example

2.4.3.1 Tickless mode support and Low power entry function Idle task configuration from
FreeRTOS shall be enabled by configUSE_TICKLESS_IDLE in FreeRTOSConfig.h. This will have the
effect to have vPortSuppressTicksAndSleep() called from Idle task created by FreeRTOS. Here is
a typical implementation of this function:

void vPortSuppressTicksAndSleep(TickType_t xExpectedIdleTime)
{

bool abortIdle = false;
uint64_t actualIdleTimeUs, expectedIdleTimeUs;

/* The OSA_InterruptDisable() API will prevent us to wakeup so we use
* OSA_DisableIRQGlobal() */
OSA_DisableIRQGlobal();

/* Disable and prepare systicks for low power */
abortIdle = PWR_SysticksPreProcess((uint32_t)xExpectedIdleTime, &expectedIdleTimeUs);

if (abortIdle == false)
{

(continues on next page)

1.4. Wireless 99

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
/* Enter low power with a maximal timeout */
actualIdleTimeUs = PWR_EnterLowPower(expectedIdleTimeUs);

/* Re enable systicks and compensate systick timebase */
PWR_SysticksPostProcess(expectedIdleTimeUs, actualIdleTimeUs);

}

/* Exit from critical section */
OSA_EnableIRQGlobal();

}

2.4.3.2 Connectivity background tasks and Idle hook function example Some process needs
to be run in background before going into low power. This is the case for writing in NVM,
or firmware update OTA to be writen in Flash. If so, configUSE_IDLE_HOOK shall be enabled
in FreeRTOSCOnfig.h so vApplicationIdleHook() will be called prior to vPortSuppressTicksAnd-
Sleep(). Typical implementation of vApplicationIdleHook() function can be found here :

void vApplicationIdleHook(void)
{

/* call some background tasks required by connectivity */
#if ((gAppUseNvm_d) || \

(defined gAppOtaASyncFlashTransactions_c && (gAppOtaASyncFlashTransactions_c > 0)))

if (PLATFORM_CheckNextBleConnectivityActivity() == true)
{

BluetoothLEHost_ProcessIdleTask();
}

#endif
}

PLATFORM_CheckNextBleConnectivityActivity() function implemented in low power platform
file fwk_platform_lowpower.c typically checks the next connectivity event and returns true if
there’s enough time to perform time consuming tasks such as flash erase/write operations (can
be defined by the compile macro depending on the platform).

2. Low power features

2.1 - FreeRTOS systicks Low power module in framework supports the systick generation
for FreeRTOS. Systicks in FreeRTOS are most of the time not required in the Bluetooth LE de-
mos applications because the framework already supports timers by the timer manager com-
ponent, so the application can use the timers from this module. The systicks in FreeRTOS are
useful for all internal timer service provided by FreeRTOS (through OSA) like OSA_TimeDelay(),
OSA_TimeGetMsec(), OSA_EventWait(). When systicks are enabled, an interrupt (systick inter-
rupt) is triggered and executed on a periodic basis. In order to save power, periodic systick
interrupts are undesirable and thus disabled when going to low-power mode. This feature is
called low power FreeRTOS tickless mode. When entering the low power state, the system ticks
shall be disabled and switch to a low power timer. On wake-up, the module retrieves the time
passed in low power and compensate the ticks count accordingly. This feature does not apply
on bare metal scheduler.

On FreeRTOS, the vPortSuppressTicksAndSleep() function implemented in the app_low_power.c
file will be called when going to idle. FreeRTOS will give to this function the xExpecte-
dIdleTime, time in tick periods before a task is due to be moved into the Ready state.
This function will manage the systicks (disable/enable) through PWR_SysticksPreProcess() and
PWR_SysticksPostProcess() calls. Then, when calling PWR_EnterLowPower(), a time out dura-
tion in micro seconds will be given and the function will set a timer before entering low power.

100 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

In addition, this function will return the low power period duration, used to compensate the
ticks count.

In our example low power reference design peripheral application, an OSA_EventWait() has
been added to demonstrate the tickless mode feature. You can adjust the timeout with the gApp-
TaskWaitTimeout_ms_c flag in the app_preinclude.h file, its value in our demo is 8000ms. So 8
seconds after stopping any activity we will wake up from low power. If the flag is not defined in
the application its value will be osaWaitForever_c and there will be no OS wake up.

2.2 - Selective RAM bank retention To optimize the consumption in low power, the linker
script specific function PLATFORM_GetDefaultRamBanksRetained() is implemented. This func-
tion obtains the RAM banks that need to be retained when the device goes in low power, in
order to set them with PLATFORM_SetRamBanksRetained() function. The RAM banks that are
not needed are set in power off state, when the device goes in low power mode.

The function PLATFORM_GetDefaultRamBanksRetained() is linker script specific. Hence, it can-
not be adapted for a different application. If these functions are called from board_lp.c, it is
possible to give to PLATFORM_SetRamBanksRetained() a different bank_mask adapted to your
specific application.

In deep power down, this feature does not have any impact because in this power mode, all RAM
banks are already powered off.

3 - Low power modes overview PWR module API provides the capability to set low power
mode constraints from various components or from the application. These constraints are pro-
vided to the SDK power manager. Upper layer (all Application code, connectivity stacks, etc.)
can call directly the SDK Power Manger if it requires more advanced tuning. The PWR API can
be found in PWR_Interface.h.

Note : ‘Upper layer’ signifies all layers, applications, components, or modules that are
above the connectivity framework in the Software architecture.

Note : Each power domain has its own Low Power mode capability. The Low Power
modes described below are for the main domain and it is supposed that the wake
up domain goes to the same Low Power mode. This is not always true as the wake
up domain that contains some wake up peripheral can go a lower Low Power mode
state than the main domain so the peripherals in the wake up domain can remain
operational when the main domain is in Low Power mode (deep sleep or power down
modes). In this case, the context of the Hardware peripheral located in the wake up
domain does not need to be saved and restored as for the peripherals located in the
main domain

3.1 Wait for Interrupt (WFI) Definition
In the Wait for Interrupt (WFI) state, the CPU core is powered on, but is in an idle mode with the
clock turned OFF.

Wake up time and typical use case
The wakeup time from this Low Power mode is insignificant because the Fast clock from FRO is
still running.

This Low Power mode is mainly used when there is an hardware activity while the Software runs
the Idle task. This allows the code execution to be temporarily suspende, thus reducing a bit the
power consumption of the device by switching off the processor clock. When an interrupt fires,
the processor clock is instantaneously restored to process the Interrupt Service Routine (ISR).

Usage

1.4. Wireless 101

MCUXpresso SDK Documentation, Release 25.09.00

In order to prevent the software from programming the device to go to a lower Low Power mode
(such as Deep Sleep, Power Down mode or Deep Power Down mode), the component responsi-
ble for the hardware drivers shall call PWR_SetLowPowerModeConstraint(PWR_WFI) function.
When the Hardware activity is completed, the component shall release the constraint by calling
PWR_ReleaseLowPowerModeConstraint(PWR_WFI).

Alternatively, the component can call PWR_LowPowerEnterCritical() and then
PWR_LowPowerExitCritical() functions.

For fine tuning of the Low Power mode allowing more power saving, the component can call
directly the SDK power manager API with PM_SetConstraints() function using the appropriate
Low Power mode and low power constraint. However, this is reserved for more advanced user
that knows the device very well. It is not recommended to do so.

The PWR module has no external dependencies, so the low-power entry and exit callback func-
tions must be defined by the user for each peripheral that has specific low power constraints It is
consequently convenient to register to the component the low power callbacks structure that is
used for entering and exit low power critical sections. In Bluetooth LE, you can take the example
in the app_conn.c file as shown here :

#if defined(gAppLowpowerEnabled_d) && (gAppLowpowerEnabled_d>0)
static const Seclib_LowpowerCriticalCBs_t app_LowpowerCriticalCBs =
{

.SeclibEnterLowpowerCriticalFunc = &PWR_LowPowerEnterCritical,

.SeclibExitLowpowerCriticalFunc = &PWR_LowPowerExitCritical,
};
#endif

void BluetoothLEHost_Init(..)
{
...

/* Cryptographic hardware initialization */
SecLib_Init();

#if defined(gAppLowpowerEnabled_d) && (gAppLowpowerEnabled_d>0)
/* Register PWR functions into SecLib module in order to disable device lowpower

during Seclib processing. Typically, allow only WFI instruction when
commands (key generation, encryption) are processed by Seclib */

SecLib_SetLowpowerCriticalCb(&app_LowpowerCriticalCBs);
#endif
...

}

Limitations
No limitation when using the WFI mode.

3.2 Sleep mode Sleep mode is similar to WFI low power mode but with some additional clock
gating. The Sleep mode is device specific, please consult the Hardware reference manuel of the
device for more information.

3.2 Deep Sleep mode Definition
In Deep Sleep mode, the fast clock is turned off, and the CPU along with the main power domain
are placed into a retention state, with the voltage being scaled down to support state retention
only. Because no high frequency clock is running, the voltage applied on the power domain
can be reduced to reduce leakage on the hardware logic. This reduces the overall power con-
sumption in the Deep Sleep mode. When waking up from Deep sleep mode, the core voltage is
increased back to nominal voltage and the fast clock (FRO) is turned back on, the peripheral in
this domain can be reused as normal.

102 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

To same more additional power, Some unused RAM banks can be powered off. this prevents from
having current leakage and consequently, allow to reduce even more the power consumption
in Deep SLeep mode. This is achieved by calling PLATFORM_SetRamBanksRetained() from low
power entry function from board_lp.c file.

Usage
All firmware is able to implement Deep Sleep mode transparently to the application thanks to
the PWR module, low power platform submodule and low power board file. This is described in
the section Low-power implementation.

When entering this mode, it is recommended to turn the output pins into input mode, or high
impedance to reduce leakage on the pads. This is typically done in pin_mux.c file, called from
board.c file and executed from the low power callback in board_lp.c file. As an example, the
TX line of the UART peripheral can be turned to disabled so it prevents the current from being
drawn by the pad in Low Power mode.

Wake up time and typical use case
The wake up time is very fast, it takes mostly the time for the Fast FRO to start up again (couple
of hundreds of microseconds) so this mode is a very good balance between power consumption
in low-power mode and wake up latency and shall be used extensively in most of the use cases
of the application.

Limitations
In Deep Sleep mode, the clock is disabled to the CPU and the main peripheral domain, so periph-
eral activity (for example, an on-going DMA transfer) is not possible in Deep Sleep mode.

3.3 Power Down mode Definition
In Power Down mode, both the clock, and power are shut off to the CPU and the main peripheral
domain. SRAM is retained, but register values are lost. The SDK power manager handles the
restore of the processor registers and dependencies such as interrupt controller and similar ones
transparently from the application.

Usage
The application, with the help of the low power board files, saves and restores the peripherals
that were located in the power domain during the entry and exit of the power down mode. This
is done from low power board_lp files in the entry/exit low power callbacks. Example is given for
the serial manager and debug console in board_lp.c file in function BOARD_ExitPowerDownCb().

If the device contains a dedicated wake up power domain where some wake up peripherals are
located, if this wake up domain is not turned into power down mode but only Deep sleep mode
or active mode, this peripheral does not need for a save and restore on low power entry/exit.
For instance, on KW45, This is basically achieved when enabling the wakeup source of the pe-
ripheral PWR_EnableWakeUpSource() from APP_ServiceInitLowpower() function. Alternatively,
this can be directly achieved by setting the constraint to the SDK power manager by calling
PM_SetConstraints(), (use APP_LPUART0_WAKEUP_CONSTRAINTS for wakeup from UART con-
straint).

On exit from low power, The low power state of power domain can be retrieved by Platform API
PLATFORM_GetLowpowerMode(). This API shall be called from low power exit callback function
only.

As for Deep Sleep mode, software shall configure the output pins into input or high impedance
during the Low Power mode to avoid leakage on the pads.

Wake up time and typical use case
The wake up time is significantly longer than wake up time from Deep Sleep (from several hun-
dreds of micro-seconds to a couple of milliseconds depending on the platform). On some plat-
form, it can takes longer, for instance, if ROM code is implemented and perform authentication
checks for security and hardware logic in power domain needs to be restored (case for KW45).

1.4. Wireless 103

MCUXpresso SDK Documentation, Release 25.09.00

However, After ROM code execution, the SDK power manager resumes the Idle task execution
from where it left before entering low-power mode. Hence, the wakeup time from this mode is
still significantly lower that the initialization time from a power on reset or any other reset.

Depending on the wakeup time of the platform and the low power time duration, This mode is
recommended when no Software activity is expected to happen for the next several seconds. In
Bluetooth LE, this mode is preferred in advertising or without Bluetooth LE activity. However, in
scanning or connected mode, Regular wakes up happens regularly for instance to retrieve HCI
message responses from the Link layer, the Deep Sleep mode is rather recommended.

Limitations
In addition to the Deep Sleep limitation (no Hardware processing on going when going to Power
down mode) and the significant increase of the wake time, the Power Down mode requires the
ROM code to execute and this last uses significant amount of memory in SRAM.

Typically, The first SRAM bank (16 KBytes) is used by the ROM code during execution so the Appli-
cation firmware can use this section of SRAM for storing bss, rw data, or stacks. Only temporary
data could be stored here and this location is overwritten on every Power Down exit sequence.

In order to avoid placing firmware data section (bss, rw, etc.) in the first SRAM bank, the linker
script variable gLowpowerPowerDownEnable_d should be set to 1. Setting the linker script vari-
able to avoid placing firmware data section in the first SRAM bank, The effect of setting this flag
is to prevent the firmware from using the first 16 KB in SRAM.

Note : This setting is ONLY required if the application implements Power Down mode.
If Application uses other low-power mode, this is not required.

3.4 Deep Power-down mode Definition
In Deep Power Down mode, the SRAM is not retained. This power mode is the lowest disponible,
it is exited through reset sequence.

Usage
In addition to the Power Down limitation, the Deep Power Down mode shut down all memory
in SRAM. Because it is exited through reset sequence the wake time is also longer.

Wake up time and typical use case
As this low-power mode is exited through the reset sequence, the wake up time is longer than any
other mode. In Bluetooth LE, this mode is possible in no Bluetooth LE activity, and is preferred
if we know that there will be no Bluetooth LE activity before a several amount of time.

Limitations
All memory in SRAM will be shut down in deep power down, the main limitation in going in this
low-power mode is that the context will not be saved.

ModuleInfo

Overview The ModuleInfo is a small Connectivity Framework module that provides a mecha-
nism that allows stack components to register information about themselves.

The information comprises :

• Component or module name (for example: Bootloader, IEEE 802.15.4 MAC, and Bluetooth
LE Host) and associated version string

• Component or module ID

• Version number

• Build number

104 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

The information can be retrieved using shell commands or FSCI commands.

Detailed data types and APIs used in ConnFWK_APIs_documentation.pdf.

NVM: Non-volatile memory module

Overview In a standard Harvard-architecture-based MCU, the flash memory is used to store
the program code and program constant data. Modern processors have a built-in flash memory
controller that can be used under user program execution to store non-volatile data. The flash
memories have individually erasable segments (sectors) and each segment has a limited num-
ber of erase cycles. If the same segments are used to store various kinds of data all the time,
those segments quickly become unreliable. Therefore, a wear-leveling mechanism is necessary
to prolong the service life of the memory. The NVM module in the connectivity framework pro-
vides a file system with a wear-leveling mechanism, described in the subsequent sections. The
NvIdle() function handles the program and erase memory operations. Before resetting the MCU,
NvShutdown() must be called to ensure that all save operations have been processed.

NVMboundaries and linker script requirement Most of the MCUs have only a standard flash
memory that the non-volatile (NV) storage system uses. The amount of memory that the NV
system uses for permanent storage and its boundaries are defined in the linker configuration
file though the following linker symbols :

• NV_STORAGE_START_ADDRESS

• NV_STORAGE_END_ADDRESS

• NV_STORAGE_MAX_SECTORS

• NV_STORAGE_SECTOR_SIZE

The reserved memory consists of two virtual pages. The virtual pages are equally sized and each
page is using one or more physical flash sectors. Therefore, the smallest configuration is using
two physical sectors, one sector per virtual page.

NVM Table The Flash Management and Non-Volatile Storage Module holds a pointer to a RAM
table. The upper layers of this table register information about data that the storage system
should save and restore. An example of NVM table entry list is given below.

NVMTable entry As show above, A NVM table entry contains a generic pointer to a contiguous
RAM data structure, the number of elements the structure contains, the size of a single element,
a table entry ID, and an entry type.

A RAM table entry has the following structure:

• pData (4 bytes) is a pointer to the RAM memory location where the dataset elements are
stored.

1.4. Wireless 105

MCUXpresso SDK Documentation, Release 25.09.00

• elemCnt (2 bytes) represents how many elements the dataset has.

• elemSz (2 bytes) is the size of a single element.

• entryID is a 16-bit unique ID of the dataset.

• dataEntryType is a 16-bit value representing the type of entry (mir-
rored/unmirrored/unmirrored auto restore).

For mirrored datasets, pData must point directly to the RAM data. For unmirrored datasets, it
must be a double pointer to a vector of pointers. Each pointer in this table points to a RAM/FLASH
area. Mirrored datasets require the data to be permanently kept in RAM, while unmirrored
datasets have dataset entries either in flash or in RAM. If the unmirrored entries must be re-
stored at the initialization, NotMirroredInRamAutoRestore should be used. The entryID gUn-
mirroredFeatureSet_d should be set to 1 for enabling unmirrored entries in the application. The
last entry in the RAM table must have the entryID set to gNvEndOfTableId_c.

The figure below provides an example of table entry :

When the data pointed to by the table entry pointer (pData) has changed (entirely or just a sin-
gle element), the upper layers call the appropriate API function that requests the storage sys-
tem to save the modified data. All the save operations (except for the synchronous save and
atomic save) and the page erase and page copy operations are performed on system idle task.
The application must create a task that calls NvIdle in an infinite loop. It should be created with
OSA_PRIORITY_IDLE. However, the application may choose another priority. The save opera-
tions are done in one virtual page, which is the active page. After a save operation is performed
on an unmirrored dataset, pData points to a flash location and the RAM pointer is freed. As a
result, the effective data should always be allocated using the memory management module.

Active page The active page contains information about the records and the records. The stor-
age system can save individual elements of a table entry or the entire table entry. Unmirrored
datasets can only have individual saves. On mirrored datasets, the save/restore functions must
receive the pointer to RAM data. For example, if the application must save the third element in
the above vector, it should send 0x1FFF8000 + 2 * elemSz. For unmirrored datasets, the appli-
cation must send the pointer that points to the area where the data is located. For example, if
the application must save the third element in the above vector, it should send 0x1FFF8000 + 2
* sizeof(void*).

The page validity is guaranteed by the page counter. The page counter is a 32-bit value and
is written at the beginning and at the end of the active page. The values need to be equal to
consider the page a valid one. The value of the page counter is incremented after each page
copy operation. A page erase operation is performed when the system is formatted. It is also
performed when the page is full and a new record cannot be written into that page. Before
being erased, the full page is first copied (only the most recent saves) and erased afterward.

The validity of the Meta Information Tag (MIT), and, therefore, of a record, is guaranteed by
the MIT start and stop validation bytes. These two bytes must be equal to consider the record

106 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

referred by the MIT valid. Furthermore, the value of these bytes indicates the type of the record,
whether it is a single element or an entire table entry. The nonvolatile storage system allows
dynamic changes of the table within the RAM memory, as follows:

• Remove table entry

• Register table entry

A new table entry can be successfully registered if there is at least one entry previously removed
or if the NV table contains uninitialized table entries, declared explicitly to register new table
entries at run time. A new table entry can also replace an existing one if the register table entry
is called with an overwrite set to true. This functionality is disabled by default and must be
enabled by the application by setting gNvUseExtendedFeatureSet_d to 1.

The layout of an active page is shown below:

As shown above, the table stored in the RAM memory is copied into the flash active page, just
after the table version. The “table start” and “table end” are marked by the table markers. The
data pointers from RAM are not copied. A flash copy of a RAM table entry has the following

structure:

Where:

• entryID is the ID of the table entry

• entryType represents the type of the entry (mirrored/unmirrored/unmirrored auto restore)

• elemCnt is the elements count of that entry

• elemSz is the size of a single element

This copy of the RAM table in flash is used to determine whether the RAM table has changed.
The table marker has a value of 0x4254 (“TB” if read as ASCII codes) and marks the beginning

1.4. Wireless 107

MCUXpresso SDK Documentation, Release 25.09.00

and end of the NV table copy.

After the end of the RAM table copy, the Meta Information Tags (MITs) follow. Each MIT
is used to store information related to one record. An MIT has the following structure:

Where:

• VSB is the validation start byte.

• entryID is the ID of the NV table entry.

• elemIdx is the element index.

• recordOffset is the offset of the record related to the start address of the virtual page.

• VEB is the validation end byte.

A valid MIT has a VSB equal to a VEB. If the MIT refers to a single-element record type,
VSB=VEB=0xAA. If the MIT refers to a full table entry record type (all elements from a table en-
try), VSB=VEB=0x55. Because the records are written to the flash page, the available page space
decreases. As a result, the page becomes full and a new record does not have enough free space
to be copied into that page.

In the example given below, the virtual page 1 is considered to be full if a new save request is
pending and the page free space is not sufficient to copy the new record and the additional MIT.
In this case, the latest saved datasets (table entries) are copied to virtual page 2.

In this example, there are five datasets (one color for each dataset) with both ‘full’ and ‘single’
record types.

• R1 is a ‘full’ record type (contains all the NV table entry elements), whereas R3, R4, R6 and
R11 are ‘single’ record types.

• R2 – full record type; R15 – single record type

• R5, R13 – full record type; R10, R12 – single record type

108 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

• R8 – full record type

• R7, R9, R14, R16 – full record type

As shown above, the R3, R4, R6, and R11 are ‘single’ record types, while R1 is a ‘full’ record type
of the same dataset. When copied to virtual page 2, a defragmentation process takes place. As a
result, the record copied to virtual page 2 has as much elements as R1, but individual elements
are taken from R3, R4, R6, and R11. After the copy process completes, the virtual page 2 has five
‘full’ record types, one for each dataset. |This is illustrated below:

Finally, the virtual page 2 is validated by writing the PC value and a request to erase virtual page
1 is performed. The page is erased on an idle task, sector by sector where only one sector is
erased at a time when idle task is executed.

If there is any difference between the RAM and flash tables, the application must call RecoverN-
vEntry for each entry that is different from its RAM copy to recover the entry data (ID, Type,
ElemSz, ElemCnt) from flash before calling NvInit. The application must allocate the pData and
change the RAM entry. It can choose to ignore the flash entry if the entry is not desired. If any
entry from RAM differs from its flash equivalent at initialization, a page copy is triggered that
ignores the entries that are different. In other words, data stored in those entries is lost.

The application can check if the RAM table was updated. In other words, if the MCU program was
changed and the RAM table was updated, using the function GetFlashTableVersion and compare
the result with the constant gNvFlashTableVersion_c. If the versions are different, NvInit detects
the update and automatically upgrades the flash table. The upgrade process triggers a page copy
that moves the flash data from the active page to the other one. It keeps the entries that were
not modified intact and it moves the entries that had their elements count changed as follows:

• If the RAM element count is smaller than the flash element count, the upgrade only copies
as many elements as are in RAM.

• If the RAM element count is larger than the flash element count, the upgrade copies all data
from flash and fills the remaining space with data from RAM. If the entry size is changed,
the entry is not copied. Any entryIds that are present in flash and not present in RAM are
also not copied. This functionality is not supported if gNvUseExtendedFeatureSet_d is not
set to 1.

1.4. Wireless 109

MCUXpresso SDK Documentation, Release 25.09.00

ECC Fault detection The KW45/K32W1 internal flash is organized in 16 byte phrases and 8kB
sectors (minimal erase unit). Its flash controller is synthesized so that it generates ECC infor-
mation and an ECC generator / checker. During the programming of internal flash, errors may
accidentally happen and cause ECC errors as a flash phrase is being written. These may happen
due to multiple reasons:

• programmatic errors such as overwriting an already programmed phrase (transitioning
bits from 0b to 1b). These are evitable by performing a blank check verification over phrase
to be programmed, at the expense of processing power.

• occurrence of power drop or glitches during a programming operation.

• excessive wear of flash sector. The flash controller is capable of correcting one single ECC
error but raises a bud fault whenever reading a phrase containing more than one ECC fault.
Once an ECC error has ‘infected’ a flash phrase, the fault will remain and raise again at each
read operation over the same phrase including blank check and prefetch. It can only be rid
of by erasing the whole flash sector that contained the faulty phrase. In order to recover
from situations where an ECC fault has occurred a gNvSalvageFromEccFault_d option has
been added, which forces gNvVerifyReadBackAfterProgram_d to be defined to TRUE. If de-
fined, the gNvVerifyReadBackAfterProgram_d option of the NVM module, causes the pro-
gram to read back the programmed area after every flash programming operation. The
verification is performed in safe mode if gNvSalvageFromEccFault_d is also defined. This
is so as to detect ECC faults as early as possible as they appear, indeed when verifying a
programming operation, one cannot be certain of the absence of ECC fault and avoid the
bus fault. The safe API is thence used to perform the read back operation is performed us-
ing this safe API, so that we can tread in the flash and detect potential errors. The defects
are detected on the fly whereas in the absence of safe read back, the error would cause a
fault, potentially much later. During normal operation, assuming that no chip reset was
provoked, this will consist in a single ECC fault either in the last record data or its meta in-
formation. Detecting such a fault calls for an immediate page copy to the other virtual page,
so that the currently active page gets erased and the error gets cleared. Should the ECC fault
occurs in the middle of a page copy operation, the switch of active page is postponed so that
the fault page can be erased again and the copy can be restarted.

If the system underwent a power drop during a flash programming operation, sufficient to pro-
voke a reset, at the ensuing reboot, ECC fault(s) may be present in the NVM area at the location
that was being written. The detection is performed by an NVM sweeping mechanism, using the
safe read API. That marks the faulty virtual page so that all subsequent reads within this virtual
page are done with the safe API. If this case arises, a copy of the valid contents of the faulty page
is attempted to the other virtual page. At NVM initialization, faults should be detected, either at
the top of the meta data or at the bottom of the record area within the previous active page. This
should guarantee that only the latest record write operation may be impaired. When the page
copy has taken place, the faulty page is erased and the execution may resume. During NvCopy-
Page, when ‘garbage collecting’ occurs or whenever the current virtual active page needs to be
transferred to the other virtual page, ECC errors are intercepted so that the operation can be
attempted again in case of error. In case of NVM contents clobbering by programming errors,
the salvage operation does its best to rescue as many records as possible but data will inevitably
be lost.

An additional option -namely gInterceptEccBusFaults_d - was introduced in order to catch and
correct ECC faults at Bus Fault handler level. Indeed, should an ECC bus fault fire, in spite of the
precautions taken with NVM’s gNvSalvageFromEccFault_d, we verify if the fault belongs to the
NV storage. If so, a drastic policy can be adopted consisting in an erasure of the faulty sector. The
corresponding Bus Fault handling is not part of the NVM, but dwells in the framework platform
specific sources. Alternative handling could be implemented by the customer.

Save policy: Execution of program and erase operations on a flash an MCU core fetches code
from cause perturbations of the core activity or requires to place critical code in RAM so that real-
time ISR can still be served. The penalty of a sector erase is much higher than a simple program
operation. The NVM is designed so as to limit the erase operations at ‘garbage collecting’ time,

110 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

so that flash wear is limited and no time is wasted. Several write policies are implemented to
cope with the application constraints, one synchronous mode API and several posted write APIs.
Among the posted write policies, the gNvmSaveOnIdleTimerPolicy_d compilation option selects
a mode where flash write operations occur at time interval within the Idle task. Another option
exists to ‘randomize’ the time interval with some jitter.

1) NvSyncSave performs a write synchronously with the disadvantage of stalling processor
activity until comp

2) NvSaveOnCount posts a pending write operation and postpones the actual flash operation
until number of record updates has reached a maximum. The actual write happens during
Idle Task execution.see NvSetCountsBetweenSaves related API.

3) NvSaveOnInterval: posts a pending write operation and postpones the actual flash oper-
ation until the predefined number of ticks has elapsed. Optional mode - Active if (gN-
vmSaveOnIdleTimerPolicy_d & gNvmUseSaveOnTimerOn_c). see NvSetMinimumTicksBe-
tweenSaves related API. Note that gNvmUseSaveIntervalJitter_c policy is a sub-option of
gNvmSaveOnIdleTimerPolicy_d used to randomize slightly the time at which the write op-
eration will happen.

Constant macro definition
• gNvStorageIncluded_d : If set to TRUE, it enables the whole functionality of the nonvolatile

storage system. By default, it is set to FALSE (no code or data is generated for this module).

• gNvUseFlexNVM_d : If set to TRUE, it enables the FlexNVM functionality of the nonvolatile
storage system. By default, it is set to FALSE. If FlexNVM is used, the standard nonvolatile
storage system is disabled.

• gNvFragmentation_Enabled_d : Macro used to enable/disable the fragmented saves/restores
(a particular element from a table entry can be saved or restored). It is set to FALSE by
default.

• gNvUseExtendedFeatureSet_d : Macro used to enable/disable the extended feature set of the
module:

– Remove existing NV table entries

– Register new NV table entries

– Table upgrade

It is set to FALSE by default.

• gUnmirroredFeatureSet_d : Macro used to enable unmirrored datasets. It is set to 0 by de-
fault.

• gNvTableEntriesCountMax_c : This constant defines the maximum count of the table entries
(datasets) that the application is going to use. It is set to 32 by default.

• gNvRecordsCopiedBufferSize_c : This constant defines the size of the buffer used by the page
copy function, when the copy operation performs defragmentation. The chosen value must
be bigger than the maximum number of elements stored in any of the table entries. It is set
by default to 64.

• gNvCacheBufferSize_c : This constant defines the size of the cache buffer used by the page
copy function, when the copy operation does not perform defragmentation. The chosen
value must be a multiple of 8. It is set by default to 64.

• gNvMinimumTicksBetweenSaves_c : This constant defines the minimum timer ticks be-
tween dataset saves (in seconds). It is set to 4 by default.

• gNvCountsBetweenSaves_c : This constant defines the number of calls to ‘NvSaveOnCount’
between dataset saves. It is set to 256 by default.

1.4. Wireless 111

MCUXpresso SDK Documentation, Release 25.09.00

• gNvInvalidDataEntry_c : Macro used to mark a table entry as invalid in the NV table. The
default value is 0xFFFFU.

• gNvFormatRetryCount_c : Macro used to define the maximum retries count value for the
format operation. It is set to 3 by default.

• gNvPendingSavesQueueSize_c : Macro used to define the size of the pending saves queue. It
is set to 32 by default.

• gFifoOverwriteEnabled_c : Macro used to enable overwriting older entries in the pending
saves queue (if it is full). If it is FALSE and the queue is full, the module tries to process the
oldest save in the queue to free a position. It is set to FALSE by default.

• gNvMinimumFreeBytesCountStart_c : Macro used to define the minimum free space at ini-
tialization. If the free space is smaller than this value, a page copy is triggered. It is set by
default to 128.

• gNvEndOfTableId_c : Macro used to define the ID of the end-of-table entry. It is set to 0xFF-
FEU by default. No valid entry should use this ID.

• gNvTableMarker_c : Macro used to define the table marker value. The table marker is used
to indicate the start and the end of the flash copy of the NV table. It is set to 0x4254U by
default.

• gNvFlashTableVersion_c : Macro used to define the flash table version. It is used to deter-
mine if the NVM table was updated. It is set to 1 by default. The application should modify
this every time the NVM table is updated and the data from NVM is still required.

• gNvTableKeptInRam_d : Set gNvTableKeptInRam_d to FALSE, if the NVM table is stored in
FLASH memory (default). If the NVM table is stored in RAM memory, set the macro to TRUE.

• gNvVerifyReadBackAfterProgram_d : set by default force verification of NVM programming
operations. Is forced implicitly when gNvSalvageFromEccFault_d is defined.

• gNvSalvageFromEccFault_d : use safe flash API to read from flash, and provide corrective
action when ECC fault is met.

OtaSupport: Over-the-Air Programming Support

Overview This module includes APIs for the over-the-air image upgrade process. A Server
device receives an image over the serial interface from a PC or other device thorough FSCI com-
mands. If the Server has an image storage, the image is saved locally. If not, the image is re-
quested chunk by chunk: With image storage

• OTA_RegisterToFsci()

• OTA_InitExternalMemory()

• OTA_WriteExternalMemory()

• …

• OTA_WriteExternalMemory()

Without image storage:

• OTA_RegisterToFsci()

• OTA_QueryImageReq()

• OTA_ImageChunkReq()

• …

• OTA_ImageChunkReq()

112 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

A Client device processes the received image by computing the CRC and filter unused data and
stores the received image into a non-volatile storage. After the entire image has been transferred
and verified, the Client device informs the Bootloader application that a new image is available,
and that the MCU must be reset to start the upgrade process. See the following command se-
quence:

• OTA_StartImage()

• OTA_PushImageChunk() and OTA_CrcCompute ()

• …

• OTA_PushImageChunk() and OTA_CrcCompute ()

• OTA_CommitImage()

• OTA_SetNewImageFlag()

• ResetMCU()

SecLib_RNG: Security library and random number generator

Random number generator

Overview The RNG module is part of the framework used for random number generation. It
uses hardware RNG peripherals as entropy sources (TRNG, Secure Subsystem, …) to provide a
true random number generator interface. A Pseudo-Random number generator (PRNG) imple-
mentation is available. The PRNG may depend of SecLib services (thus requiring a common
mutex) to perform HMAC-SHA256, SHA256, AES-CTR, or alternateively a Lehmer Linear Con-
gruential generator. A prerequisite for the PRNG to function with desired randomness is to be
seeded using a proper source of entropy. If no hardware acceleration is present, the RNG may
fallback to lesser quality ad-hoc source e.g if present SIM_UID registers, the UIDL is used as the
initial seed for the random number generator.

Initialization The RNG module requires an initialization via a call to RNG_Init. The RNG ini-
tialization involves a call to RNG_SetSeed.

In the case of a dual core system consisting of a Host core and an NBU core, the Secure Subsystem
is owned by the Host core. The Host core then has a direct access to its TRNG embedded in its
secure subssystem. On the NBU code side, a request is emitted via RPMSG to the Host to provide
a seed. On receipt of this request, the Host sets a ‘reseed needed’ flag (from the ISR context)
If the core running the RNG service owns the TRNG entropy hardware (if any), it can get the
seed directly form this hardware synchronously. In the case of an NBU that does not control the
devices entropy source, that is owned by the Host, it request a seed from the Host processor via
RPMSG exchange. On receipt of this request the Host sets a flag notifying of this request from the
RPMSG ISR context. From the Idle thread, this flag is polled via the RNG_IsReseedNeeded API. If
set the seed is regenerated and forwarded to the NBU via RPMSG.

RNG_ReInit API is to be used at wake up time in the context of LowPower. RNG_DeInit is used
for unit tests and coverage purposes but has no useful role in a real application.

Seed handling RNG_SetSeed: RNG_SetExternalSeed may be used to inject application entropy
to RNG context seed using a supplied array of bytes. RNG_IsReseedNeeded used from task in
Host core to check whether seed must be sent to NBU core.

RNG_GetTrueRandomNumber is the API used to generate a Random 32 bit number from a HW
source of entropy. It is essential if only to seed the pseudo random number generator.

RNG_GetPseudoRandomData is used to generate arrays of random bytes.

1.4. Wireless 113

MCUXpresso SDK Documentation, Release 25.09.00

Security Library

Overview The framework provides support for cryptography in the security module. It sup-
ports both software and hardware encryption. Depending on the device, the hardware encryp-
tion uses either the S200, MMCAU, LTC, or CAU3 module instruction set or dedicated AES and
SHA hardware blocks.

Software implementation is provided in a library format.

Support for security algorithms

SW Seclib : Se-
cLib.c

EdgeLock
SecLib_sss.c

Se-
clib_ecdh.c

Mbedtls
Se-
cLib_mbedtls.c

nccl
(part
of Se-
cLib.c)

Usage
example

AES_128 SecLib_aes.c x x

AES_128_ECB x x

AES_128_CBC x x x

AES_128_CTR en-
cryption

x x

AES_128_OFB En-
cryption

x

AES_128_CMAC x x x BLE con-
nection,
ieee 15.4

AES_128_EAX x

AES_128_CCM x x x BLE,
ieee 15.4

SHA1 SecLib_sha.c x x

SHA256 x x x

HMAC_SHA256 x x x PRNG,
Digest
for Mat-
ter

ECDH_P256 shared
secret generation

x (by 15 in-
cremental
steps) -> Se-
cLib_ecdh.c

x with
MACRO
SecLibECD-
HUseSSS

x x x BLE
pairing,

EC_P256 key pair
generation

x x x x x

EC_P256 public key
generation from pri-
vate key

x x x Matter
(ECDSA)

ECDSA_P256 hash
and msg signature
generation / verifica-
tion

only if
owner of
the key pair

x x Matter

SPAKE2+ P256 arith-
metics

x x Matter

114 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

BLE advanced secure mode

New elements in existing structures: computeDhKeyParam_t::keepInternalBlob - boolean
telling if the shared blob is kept in this structure(in .outpoint) after ECDH_P256_ComputeDhKey()
or ECDH_P256_ComputeDhKeySeg() call.

New arguments in existing functions: ECDH_P256_ComputeDhKey keepBlobDhKey
- boolean telling ECDH_P256_ComputeDhKey() or ECDH_P256_ComputeDhKeySeg() to
keep the shared object after computation for later use (it is required by the Se-
cLib_GenerateBluetoothF5KeysSecure).

Newmacros: gSecLibSssUseEncryptedKeys_d - Enable or disable S200 blobs SecLib support. 0 -
the Bluetooth Keys are available in plaintext, 1 - the Bluetooth Keys are not available in plaintext,
but in secured blobs. Default is disabled.

New functions:

LE Secure connections pairing:

void ECDH_P256_FreeDhKeyDataSecure This is a function used to free the shared object
stored in computeDhKeyParam_t. When user calls ECDH_P256_ComputeDhKeySeg() with keep-
BlobDhKey set to 1, it should also call ECDH_P256_FreeDhKeyDataSecure .

SecLib_GenerateBluetoothF5Keys This function is extracted from the Bluetooth LE Host Stack
implementation. This corresponds to the legacy implementation without key blobs.

SecLib_GenerateBluetoothF5KeysSecure Similar to SecLib_GenerateBluetoothF5Keys this
function is modified to work with key blobs, the reason is to not use SSS inside the Bluetooth LE
Host Stack.

SecLib_DeriveBluetoothSKD This is a helper function used by the Bluetooth LE Host Stack in
the pairing procedure, when receiving the vendor HCI command specifying that the ESK needs
to be provided to LL.

ELKE_BLE_SM_F5_DeriveKeys This is a private function, helper for Se-
cLib_GenerateBluetoothF5KeysSecure. It was provided by the STEC team.

Privacy:

SecLib_ObfuscateKeySecure This is a function used by the Bluetooth LE Host Stack to obfus-
cate the IRK before setting it to Bluetooth LE Controller or before saving it to NVM

SecLib_DeobfuscateKeySecure This is a function used by the Bluetooth LE Host Stack to ex-
tract the plaintext IRK key from the saved NVM blob.

1.4. Wireless 115

MCUXpresso SDK Documentation, Release 25.09.00

SecLib_VerifyBluetoothAh This function is extracted from the legacy Bluetooth LE Host Stack
implementation using plaintext keys.

SecLib_VerifyBluetoothAhSecure Similar to SecLib_VerifyBluetoothAh with modification
to work with S200 key blob.

SecLib_GenerateSymmetricKey This is a function used by the application to generate the local
IRK and local CSRK.

SecLib_GenerateBluetoothEIRKBlobSecure This is a function used by the application to gen-
erate the EIRK needed by Bluetooth LE Controller from the IRK blob.

A2B feature

ECDH_P256_ComputeA2BKey This function is used to compute the EdgeLock to EdgeLock key.
pInPeerPublicKey points to the peer public key, pOutE2EKey is the pointer to where the E2E key
object will be stored, this will be freed by the application when it is no longer required by calling
ECDH_P256_FreeE2EKeyData().

ECDH_P256_FreeE2EKeyData This function is used to free the key object given as a parameter.
It is used by the application to free the E2E key when is no longer needed.

SecLib_ExportA2BBlobSecure This function is used to import an ELKE blob or plain text sym-
metric key in s200 and export an E2E key blob. The input type is identified by the keyType pa-
rameter.

SecLib_ImportA2BBlobSecure This function is used to import an E2E key blob in s200 and
export an ELKE blob or plain text symmetric key. The output type is identified by the keyType
parameter.

LE Secure connections Pairing flow and SecLib usage:
1. Each device needs to generate locally the public+private keypair. This is done using

ECDH_P256_GenerateKeys.

2. Devices exchange their public keys.

3. Upon receiving the peer device’s public key, local device is computing DH key using
ECDH_P256_ComputeDhKey.

4. Each device sends DHKeyCheck packet

5. Upon receiving DhKeyCheck each device computes LTK blob using Se-
cLib_GenerateBluetoothF5Keys

6. After computing the each device sends HCI_LeStartEnc (on initiator),
HCI_Le_Provide_Long_Term_Key (on responder)

7. Bluetooth LE Controller sends back SKD report custom event

8. Bluetooth LE Host Stack computes ESKD based on LTK blob using Se-
cLib_DeriveBluetoothSKD and sends it to Bluetooth LE Controller

9. Bluetooth LE Controller encrypts the link

116 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

IRK flow and SecLib usage:
1. At startup, when gInitializationComplete_c event is received:

• the local IRK is generated using SecLib_GenerateSymmetricKey
• the local EIRK is generated using SecLib_GenerateBluetoothEIRKBlobSecure
• local CSRK is generated using SecLib_GenerateSymmetricKey

2. During legacy pairing when receiving bonding keys, IRK is obfuscated using Se-
cLib_ObfuscateKeySecure and stored

3. When app wants to set the OOB keys using Gap_SaveKeys the IRK is obfuscated using Se-
cLib_ObfuscateKeySecure

4. When application calls API Gap_VerifyPrivateResolvableAddress IRK is obfuscated using
SecLib_ObfuscateKeySecure and verified using SecLib_VerifyBluetoothAhSecure

5. When a new connection is received in Host with RPA address not resolved by the
Bluetooth LE Controller, the Host tries to resolve it by obfuscating it using Se-
cLib_ObfuscateKeySecure and verifying it using SecLib_VerifyBluetoothAhSecure

6. When adding a peer in Bluetooth LE Controller resolving list, the peer’s
IRK is obfuscated using SecLib_ObfuscateKeySecure before setting it using
HCI_Le_Add_Device_To_Resolving_List.

7. When an IRK plaintext is requested by the application using Gap_LoadKeys it is obtained
using SecLib_DeobfuscateKeySecure

8. When legacy pairing completes and LTK needs to be send in the pairing complete event
(gConnEvtPairingComplete_c) the SecLib_DeobfuscateKey is used to extract the plaintext.

A2B flow and SecLib usage:
1. At startup, when gInitializationComplete_c event is received, the application will call

ECDH_P256_GenerateKeys to generate the public/private key pair required for the E2E
key derivation and send the public key to the peer device.

2. When the public key is received from the peer device, the application will call
ECDH_P256_ComputeA2BKeySecure to generate the EdgeLock to EdgeLock key.

3. The application will obtain an E2E IRK blob by calling SecLib_ExportA2BBlobSecure with
key type gSecElkeBlob_c. The obtained blob is sent to the peer anchor. The peer anchor
will call SecLib_ImportA2BBlobwith keyType gSecElkeBlob_c and save the resulting ELKE
blob in NVM, for Digital Key both anchors must have the same IRK.

4. After pairing, in order to send the LTK and IRK contained in the bonding data securely,
the application will call SecLib_ExportA2BBlobSecure with keyType gSecLtkElkeBlob_c
for the LTK, and SecLib_ExportA2BBlobSecure with keyType gSecPlainText_c for the IRK.
The E2E blobs obtained are sent along with the rest of the bonding data to the peer anchor
device.

5. After the bonding data is trasfered the E2E key is no longer needed and
ECDH_P256_FreeE2EKeyData is called with the key object obtained at step 2 when
ECDH_P256_ComputeA2BKeySecure was called.

Sensors

Overview The Sensors module provides an API to communicate with the ADC. Two values can
be obtained by this module :

• Temperature value

1.4. Wireless 117

MCUXpresso SDK Documentation, Release 25.09.00

• Battery level

The temperature is given in tenths of degrees Celsius and the battery in percentage.

This module is multi-caller, the ADC is protected by a mutex on the resource and by pre-
vententing lowpower (only WFI) during its processing. Platform specific code can be find in
fwk_platform_sensors.c/h.

Constant macro definitions Name :

#define VALUE_NOT_AVAILABLE_8 0xFFu
#define VALUE_NOT_AVAILABLE_32 0xFFFFFFFFu

Description :

Defines the error value that can be compared to the value obtain on the ADC.

SFC : Smart Frequency Calibration

Overview The Smart Frequency Calibration module provides operations and calibration for
the FRO32K source clock. This module is split between main core and Radio core:

• fwk_rf_sfc.[ch]: RF_SFC module on Radio core that provides Main FRO32K measure-
ment/calibration and state machine in synchornization with Radio domain activities. See
details below.

• fwk_sfc.h: SFC module on host core that provides type definition for usage
with fwk_platform_ics.[ch] with PLATFORM_FwkSrvSetRfSfcConfig() API and
fwk_platform_ble.c for received callback from the NBU core

Host SFC Module

Algorithm parametrization This module provides ability to configure the RF_SFC module by
sending message to Radio core through fwk_platform_ics.c PLATFORM_FwkSrvSetRfSfcConfig():

• Filter size

• Maximum ppm threshold

• Maximum calibration interval

• Number of sample in filter to swicth from convergence to monitor mode

Ppm target The ppm target is the deviation from the target clock accepted by the algorithm.
When the deviation is larger than the ppm target. The algorithm will update the trimming value
and reset the filter. The ppm target cannot be more aggressive RF_SFC_MAXIMAL_PPM_TARGET
in order to avoid having to update trimming value at each measurement.

Filter size Filter size must be included between RF_SFC_MINIMAL_FILTER_SIZE and
RF_SFC_MAXIMAL_FILTER_SIZE. See Filtering and Frequency estimation section for more details
on the parameter.

118 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Maximum calibration interval In monitor mode, new measurement are triggered by low-
power entry/exit. If the NBU core has a lot of radio activity it could never enter lowpower. The
maximum calibration interval is here to ensure a measurement is done regularly. When exe-
cuting idle the SFC module checks when the last measurement has been done, if it has been too
long, it reset the filter and forces a new measurement

Trig sample number The trig sample number is the number of samples needed by the algo-
rithm in its filter to switch from convergence to monitor mode. Having more than one sample
in convergence mode allows to confirm the trimming value that we have set.

SFCdebug information On the other way, the RF_SFC from Radio core sends back notifications
to SFC module on main core using RX callback PLATFORM_RegisterFroNotificationCallback()
from fwk_platform_ics.h and such information:

• last measured frequency

• average ppm from 32768Khz frequency

• last ppm measured from 32768Khz frequency

• FRO trimming value

RF_SFCmodule The RF_SFC module provides the functionality to calibrate the FRO32K source
clock during Initialization and radio activity.

The RF_SFC is mostly used on XTAL32K less solution when no 32Khz crystal is soldered on the
board. It allows to calibrate the FRO32K source clock to the desired frequency to keep Radio
time base within the allowed tolerance given by the connectivity standards. However, even on
a XTAL32K solution, the RF_SFC is also used during Initialization until the XTAL32K is up and
running in the system. The system firstly runs on the FRO32K clock source then switch to the
XTAL32K clock source when it is ready with enough accuracy. This allows to save significant
boot time as the FRO32K start up (including calibration) is much faster compared to XTAL32K .

This module will handle:

• FRO32K clock frequency measurement against 32Mhz crystal. It schedules appropriately
the start of the measurement and gets the result when completed,

• Filter and estimate the 32Khz frequency value and error by averaging from the last mea-
surements,

• FRO32K calibration in order to update the trimming value to reduce the frequency error
on the clock.

The targeted frequency offset shall be within 200ppm. The RF_SFC will handle two modes of
operation:

• Convergence mode: when frequency estimation is above 200pm,

• Monitor mode: when frequency estimation is below 200pm.

The RF_SFC module works in active and all low power modes on NBU domain, or on host appli-
cation domain except power down mode. Power down mode on host application domain is not
supported with the FRO32K configuration as clock source.

Feature enablement Enabling the FRO32K is done by calling the PLATFORM_InitFro32K()
function during application initialization in hardware_init.c file, in BOARD_InitHardware() func-
tion. If FRO32K is not enabled, Oscillator XTAL32K shall be called instead by calling PLAT-
FORM_InitOsc32K() function. The call to PLATFORM_InitFro32K() from BOARD_InitHardware()
can be done by setting the Compilation flag gBoardUseFro32k_d to 1 in hardware_init.c or any
header files included from this file.

1.4. Wireless 119

MCUXpresso SDK Documentation, Release 25.09.00

#define gBoardUseFro32k_d 1

Detailed description

Frequency measurements When NBU low power is enabled, the frequency measurements
are triggered on Low power wake-up by HW signal. The SFC process called from Idle task will
check regularly the completion of the frequency measurement. When the measurement is done,
it goes to filtering and frequency estimation process. The frequency measurement duration de-
pends on monitor mode or convergence mode: In convergence mode, the frequency measure-
ment duration is 0.5ms while it is 2ms in monitor mode. In monitor mode, the duration value
remains less than the minimal radio activity duration so it does not impact the low power con-
sumption in monitoring mode.

Filtering andFrequency estimation The FRO32KHz frequency measurement values are noisy
because of thermal noise on the FRO32K itself. Also, the frequency measurement can introduce
some error. In monitoring mode, it is required to filter the measurements by applying an expo-
nential filter. new_estimation = (new_measurement + ((1 « n) -1) * last_estimation) » n

Default value for n is 7 (meaning 128 samples in the averaging window).

Frequency calibration When the frequency estimation gets higher than the targeted 200ppm
target, the RF_SFC updates the trimming value for one positive or negative increment. For this
purpose, it requires to:

• wake up the host application domain and keep the domain active,

• update the trim register of the FRO32K , this register is used to trim the capacitance value
of the FRO32K,

• re-allow the host application domain to enter low power.

A slight power impact is expected during a calibration update due to host domain wake-up.

Operationalmodes When the low power mode is enabled on NBU power domain, RF SFC han-
dles two modes of operation: convergence and monitor modes. However, when low power is
disabled on NBU power domain, only convergence mode is supported.

Convergencemode Convergence mode is used when the estimated FRO32K frequency is above
200ppm or when the filter has been reset. Typically this occurs :

• During Power ON reset or other reset when NBU is switched OFF

• When temperature varies and FRO32K frequency deviates outside 200ppm threshold target

• When no calibration has been done during some time as we discard old values that could
influence the algorithm

The convergence mode process typically starts with a FRO32K trim register update, performs a
frequency measurement and the FRO32K trim register is updated until the measured frequency
gets below 200ppm. These operations are repeated in a loop until the estimated frequency value
gets below 200ppm. When below 200ppm during multiple measurements, the RC SFC switches
to Monitoring mode. The convergence mode is only a transition mode to monitoring mode. In
convergence mode, the NBU power domain does not go to low power. The convergence mode
time duration depends on the initial frequency error of the FR032K. Default frequency measure-
ment duration is 0.5ms so 20 measurements (given as example only) will require less than 10 ms
to converge.

120 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Monitoring mode Monitoring mode is used when the estimated FRO32K frequency is below
200ppm. In this mode, the measurement is triggered on NBU domain wake up from low power
mode using an internal hardware signal. The exponential filter is applied to compute the fre-
quency estimation. If the frequency estimation value is still within 200ppm, the NBU power
domain is allowed to go to low power. If the estimated value gets above the 200ppm threshold,
the RF SFC switch back to convergence mode. The trim register is updated by one increment
(positive or negative) and because the frequency has been adjusted and changed, the estimated
filtered frequency is reset to discard all previous measurements. Going back to convergence
mode typically happens during a temperature gradient. If the temperature is constant, it is not
expected to have the estimated value to go beyond 200ppm so no calibration should be required.

Initialization and configuration During initialization, the RF SFC module will block the Radio
Software until monitoring mode is reached. This is to prevent the radio from running with an
inaccurate time base due to an important 32k clock frequency error.

Initialization and configuration is done by the NBU core. The configuration parameters can set
up:

• The 200ppm target threshold. This value shall be 200ppm or higher.

• The filtering number n (see section above), It shall be between 0 and 8. Default is 7 which
is similar to an averaging filter of 128 samples. A higher value will be more robust against
noise. A lower value will track temperature variation more faster.

In order to prevent the host application domain from going into power down mode (power
down mode not supported with FRO32K as clock source), the fwkSrvLowPowerConstraintCall-
backs functions structure is registered to the Framework service on host application core from
fwk_platform_lowpower.c file, PLATFORM_LowPowerInit() function. The NBU code applies a
low power Deep Sleep constraint to the application core. This constraint is released when the
NBU firmware has no activity to do and re-applied when a new activity starts.

Lowpower impact

Power impact during active mode: In monitoring mode (this should be 99.9% of the time if
temperature does not vary), the FRO32KHz frequency measurements are performed during a
Radio activity so it does not increase the active current as the sources clocks are already active.
Also, it does not increase the active time as the measurement takes less time than an advertising
event or connection event so no impact on power consumption.

The main power impact will be in convergence mode. In this case, measurements/calibrations
are done in loop until the monitoring mode is reached (frequency error less than 200ppm). This
could happen:

• During power ON reset,

• When temperature varies: The frequency will deviate from 32768Hz and FRO32K trimming
register correction will need to be updated for that,

• When no measurement has been done during some time as we cannot predict if the FRO
has drifted, so we discard older values and start convergence mode.

When FRO32K frequency needs to be adjusted, the NBU core will wake-up the main power do-
main and will update the FRO32K trimming register.

Power impact during low power mode: The power consumption in low power mode will
increase slightly due to running FRO32K compared to XTAL32K. The power consumption of
FRO32K typically consumes 350nA while it is only 100nA with XTAL32K. Refer to the product
datasheet for the exact numbers.

1.4. Wireless 121

MCUXpresso SDK Documentation, Release 25.09.00

122 Chapter 1. Middleware

Chapter 2

RTOS

2.1 FreeRTOS

2.1.1 FreeRTOS kernel

Open source RTOS kernel for small devices.

FreeRTOS kernel for MCUXpresso SDK Readme

FreeRTOS kernel for MCUXpresso SDK

Overview The purpose of this document is to describes the FreeRTOS kernel repo integration
into the NXP MCUXpresso Software Development Kit: mcuxsdk. MCUXpresso SDK provides a
comprehensive development solutions designed to optimize, ease, and help accelerate embed-
ded system development of applications based on MCUs from NXP. This project involves the
FreeRTOS kernel repo fork with:

• cmake and Kconfig support to allow the configuration and build in MCUXpresso SDK ecosys-
tem

• FreeRTOS OS additions, such as FreeRTOS driver wrappers, RTOS ready FatFs file system,
and the implementation of FreeRTOS tickless mode

The history of changes in FreeRTOS kernel repo for MCUXpresso SDK are summarized in
CHANGELOG_mcuxsdk.md file.

The MCUXpresso SDK framework also contains a set of FreeRTOS examples which show basic
FreeRTOS OS features. This makes it easy to start a new FreeRTOS project or begin experiment-
ing with FreeRTOS OS. Selected drivers and middleware are RTOS ready with related FreeRTOS
adaptation layer.

FreeRTOS example applications The FreeRTOS examples are written to demonstrate basic
FreeRTOS features and the interaction between peripheral drivers and the RTOS.

List of examples The list of freertos_examples, their description and availability for individual
supported MCUXpresso SDK development boards can be obtained here: https://mcuxpresso.nxp.
com/mcuxsdk/latest/html/examples/freertos_examples/index.html

123

https://github.com/FreeRTOS/FreeRTOS
https://github.com/nxp-mcuxpresso/mcuxsdk-manifests
https://github.com/nxp-mcuxpresso/mcux-freertos-drivers
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/examples/freertos_examples/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/examples/freertos_examples/index.html

MCUXpresso SDK Documentation, Release 25.09.00

Location of examples The FreeRTOS examples are located in mcuxsdk-examples repository,
see the freertos_examples folder.

Once using MCUXpresso SDK zip packages created via the MCUXpresso SDK Builder the FreeRTOS
kernel library and associated freertos_examples are added into final zip package once FreeRTOS
components is selected on the Developer Environment Settings page:

The FreeRTOS examples in MCUXpresso SDK zip packages are located in <MCUXpres-
soSDK_install_dir>/boards/<board_name>/freertos_examples/ subfolders.

Building a FreeRTOS example application For information how to use the cmake and Kconfig
based build and configuration system and how to build freertos_examples visit: MCUXpresso
SDK documentation for Build And Configuration MCUXpresso SDK Getting Start Guide

Tip: To list all FreeRTOS example projects and targets that can be built via the west build com-
mand, use this west list_project command in mcuxsdk workspace:

west list_project -p examples/freertos_examples

FreeRTOS aware debugger plugin NXP provides FreeRTOS task aware debugger for GDB. The
plugin is compatible with Eclipse-based (MCUXpressoIDE) and is available after the installation.

FreeRTOS kernel for MCUXpresso SDK ChangeLog

Changelog FreeRTOS kernel for MCUXpresso SDK All notable changes to this project will be
documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

124 Chapter 2. RTOS

https://github.com/nxp-mcuxpresso/mcuxsdk-examples
https://mcuxpresso.nxp.com
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/develop/build_system/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/develop/build_system/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/repo.html#gsd-index
https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html

MCUXpresso SDK Documentation, Release 25.09.00

[Unreleased]

Added
• Kconfig added CONFIG_FREERTOS_USE_CUSTOM_CONFIG_FRAGMENT config to op-

tionally include custom FreeRTOSConfig fragment
include file FreeRTOSConfig_frag.h. File must be provided by application.

• Added missing Kconfig option for configUSE_PICOLIBC_TLS.

• Add correct header files to build when configUSE_NEWLIB_REENTRANT and confi-
gUSE_PICOLIBC_TLS is selected in config.

[11.1.0_rev0]
• update amazon freertos version

[11.0.1_rev0]
• update amazon freertos version

[10.5.1_rev0]
• update amazon freertos version

[10.4.3_rev1]
• Apply CM33 security fix from 10.4.3-LTS-Patch-2. See rtos\freertos\freertos_kernel\History.txt

• Apply CM33 security fix from 10.4.3-LTS-Patch-1. See rtos\freertos\freertos_kernel\History.txt

[10.4.3_rev0]
• update amazon freertos version.

[10.4.3_rev0]
• update amazon freertos version.

[9.0.0_rev3]
• New features:

– Tickless idle mode support for Cortex-A7. Add fsl_tickless_epit.c and
fsl_tickless_generic.h in portable/IAR/ARM_CA9 folder.

– Enabled float context saving in IAR for Cortex-A7. Added confi-
gUSE_TASK_FPU_SUPPORT macros. Modified port.c and portmacro.h in
portable/IAR/ARM_CA9 folder.

• Other changes:

– Transformed ARM_CM core specific tickless low power support into generic form un-
der freertos/Source/portable/low_power_tickless/.

2.1. FreeRTOS 125

MCUXpresso SDK Documentation, Release 25.09.00

[9.0.0_rev2]
• New features:

– Enabled MCUXpresso thread aware debugging. Add freertos_tasks_c_additions.h
and configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H and configFR-
TOS_MEMORY_SCHEME macros.

[9.0.0_rev1]
• New features:

– Enabled -flto optimization in GCC by adding attribute((used)) for vTaskSwitchContext.

– Enabled KDS Task Aware Debugger. Apply FreeRTOS patch to enable confi-
gRECORD_STACK_HIGH_ADDRESS macro. Modified files are task.c and FreeRTOS.h.

[9.0.0_rev0]
• New features:

– Example freertos_sem_static.

– Static allocation support RTOS driver wrappers.

• Other changes:

– Tickless idle rework. Support for different timers is in separated files
(fsl_tickless_systick.c, fsl_tickless_lptmr.c).

– Removed configuration option configSYSTICK_USE_LOW_POWER_TIMER. Low power
timer is now selected by linking of apropriate file fsl_tickless_lptmr.c.

– Removed configOVERRIDE_DEFAULT_TICK_CONFIGURATION in RVDS port. Use of at-
tribute((weak)) is the preferred solution. Not same as _weak!

[8.2.3]
• New features:

– Tickless idle mode support.

– Added template application for Kinetis Expert (KEx) tool (template_application).

• Other changes:

– Folder structure reduction. Keep only Kinetis related parts.

FreeRTOS kernel Readme

MCUXpresso SDK: FreeRTOS kernel This repository is a fork of FreeRTOS kernel
(https://github.com/FreeRTOS/FreeRTOS-Kernel)(11.1.0). Modifications have been made to adapt
to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable FreeRTOS kernel repo
sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which is
composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

For more information about the FreeRTOS kernel repo adoption see README_mcuxsdk.md:
FreeRTOS kernel for MCUXpresso SDK Readme document.

126 Chapter 2. RTOS

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/rtos/freertos/freertos-kernel/README_mcuxsdk.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/rtos/freertos/freertos-kernel/README_mcuxsdk.html
https://github.com/FreeRTOS/FreeRTOS-Kernel/actions/workflows/unit-tests.yml?query=branch%3Amain+event%3Apush+workflow%3A%22CMock+Unit+Tests%22++

MCUXpresso SDK Documentation, Release 25.09.00

Getting started This repository contains FreeRTOS kernel source/header files and kernel ports
only. This repository is referenced as a submodule in FreeRTOS/FreeRTOS repository, which
contains pre-configured demo application projects under FreeRTOS/Demo directory.

The easiest way to use FreeRTOS is to start with one of the pre-configured demo application
projects. That way you will have the correct FreeRTOS source files included, and the correct
include paths configured. Once a demo application is building and executing you can remove
the demo application files, and start to add in your own application source files. See the FreeRTOS
Kernel Quick Start Guide for detailed instructions and other useful links.

Additionally, for FreeRTOS kernel feature information refer to the Developer Documentation,
and API Reference.

Also for contributing and creating a Pull Request please refer to the instructions here.

Getting help If you have any questions or need assistance troubleshooting your FreeRTOS
project, we have an active community that can help on the FreeRTOS Community Support Forum.

To consume FreeRTOS-Kernel

Consume with CMake If using CMake, it is recommended to use this repository using Fetch-
Content. Add the following into your project’s main or a subdirectory’s CMakeLists.txt:

• Define the source and version/tag you want to use:

FetchContent_Declare(freertos_kernel
GIT_REPOSITORY https://github.com/FreeRTOS/FreeRTOS-Kernel.git
GIT_TAG main #Note: Best practice to use specific git-hash or tagged version

)

In case you prefer to add it as a git submodule, do:

git submodule add https://github.com/FreeRTOS/FreeRTOS-Kernel.git <path of the submodule>
git submodule update --init

• Add a freertos_config library (typically an INTERFACE library) The following assumes the
directory structure:

– include/FreeRTOSConfig.h

add_library(freertos_config INTERFACE)

target_include_directories(freertos_config SYSTEM
INTERFACE

include
)

target_compile_definitions(freertos_config
INTERFACE
projCOVERAGE_TEST=0

)

In case you installed FreeRTOS-Kernel as a submodule, you will have to add it as a subdirectory:

add_subdirectory(${FREERTOS_PATH})

• Configure the FreeRTOS-Kernel and make it available

– this particular example supports a native and cross-compiled build option.

2.1. FreeRTOS 127

https://github.com/FreeRTOS/FreeRTOS
https://www.FreeRTOS.org/FreeRTOS-quick-start-guide.html
https://www.FreeRTOS.org/FreeRTOS-quick-start-guide.html
https://www.FreeRTOS.org/features.html
https://www.FreeRTOS.org/a00106.html
https://forums.freertos.org

MCUXpresso SDK Documentation, Release 25.09.00

set(FREERTOS_HEAP ”4” CACHE STRING ”” FORCE)
Select the native compile PORT
set(FREERTOS_PORT ”GCC_POSIX” CACHE STRING ”” FORCE)
Select the cross-compile PORT
if (CMAKE_CROSSCOMPILING)
set(FREERTOS_PORT ”GCC_ARM_CA9” CACHE STRING ”” FORCE)

endif()

FetchContent_MakeAvailable(freertos_kernel)

• In case of cross compilation, you should also add the following to freertos_config:

target_compile_definitions(freertos_config INTERFACE ${definitions})
target_compile_options(freertos_config INTERFACE ${options})

Consuming stand-alone - Cloning this repository To clone using HTTPS:

git clone https://github.com/FreeRTOS/FreeRTOS-Kernel.git

Using SSH:

git clone git@github.com:FreeRTOS/FreeRTOS-Kernel.git

Repository structure
• The root of this repository contains the three files that are common to every port - list.c,

queue.c and tasks.c. The kernel is contained within these three files. croutine.c implements
the optional co-routine functionality - which is normally only used on very memory limited
systems.

• The ./portable directory contains the files that are specific to a particular microcontroller
and/or compiler. See the readme file in the ./portable directory for more information.

• The ./include directory contains the real time kernel header files.

• The ./template_configurationdirectory contains a sampleFreeRTOSConfig.h to help jumpstart
a new project. See the FreeRTOSConfig.h file for instructions.

Code Formatting FreeRTOS files are formatted using the “uncrustify” tool. The configuration
file used by uncrustify can be found in the FreeRTOS/CI-CD-GitHub-Actions’s uncrustify.cfg file.

Line Endings File checked into the FreeRTOS-Kernel repository use unix-style LF line endings
for the best compatibility with git.

For optimal compatibility with Microsoft Windows tools, it is best to enable the git autocrlf fea-
ture. You can enable this setting for the current repository using the following command:

git config core.autocrlf true

Git History Optimizations Some commits in this repository perform large refactors which
touch many lines and lead to unwanted behavior when using the git blame command. You can
configure git to ignore the list of large refactor commits in this repository with the following
command:

git config blame.ignoreRevsFile .git-blame-ignore-revs

128 Chapter 2. RTOS

https://github.com/uncrustify/uncrustify
https://github.com/FreeRTOS/CI-CD-Github-Actions
https://github.com/FreeRTOS/CI-CD-Github-Actions/tree/main/formatting

MCUXpresso SDK Documentation, Release 25.09.00

Spelling and Formatting We recommend using Visual Studio Code, commonly referred to as
VSCode, when working on the FreeRTOS-Kernel. The FreeRTOS-Kernel also uses cSpell as part
of its spelling check. The config file for which can be found at cspell.config.yaml There is addi-
tionally a cSpell plugin for VSCode that can be used as well. .cSpellWords.txt contains words
that are not traditionally found in an English dictionary. It is used by the spellchecker to ver-
ify the various jargon, variable names, and other odd words used in the FreeRTOS code base
are correct. If your pull request fails to pass the spelling and you believe this is a mistake, then
add the word to .cSpellWords.txt. When adding a word please then sort the list, which can be
done by running the bash command: sort -u .cSpellWords.txt -o .cSpellWords.txt Note that only
the FreeRTOS-Kernel Source Files, include, portable/MemMang, and portable/Common files are
checked for proper spelling, and formatting at this time.

2.1.2 FreeRTOS drivers

This is set of NXP provided FreeRTOS reentrant bus drivers.

2.1.3 backoffalgorithm

Algorithm for calculating exponential backoff with jitter for network retry attempts.

Readme

MCUXpresso SDK: backoffAlgorithm Library This repository is a fork of backoffAlgorithm
library (https://github.com/FreeRTOS/backoffalgorithm)(1.3.0). Modifications have been made to
adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable backoffAlgorithm
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

backoffAlgorithm Library This repository contains the backoffAlgorithm library, a utility li-
brary to calculate backoff period using an exponential backoff with jitter algorithm for retry-
ing network operations (like failed network connection with server). This library uses the “Full
Jitter” strategy for the exponential backoff with jitter algorithm. More information about the
algorithm can be seen in the Exponential Backoff and Jitter AWS blog.

The backoffAlgorithm library is distributed under the MIT Open Source License.

Exponential backoff with jitter is typically used when retrying a failed network connection or
operation request with the server. An exponential backoff with jitter helps to mitigate failed
network operations with servers, that are caused due to network congestion or high request
load on the server, by spreading out retry requests across multiple devices attempting network
operations. Besides, in an environment with poor connectivity, a client can get disconnected at
any time. A backoff strategy helps the client to conserve battery by not repeatedly attempting
reconnections when they are unlikely to succeed.

See memory requirements for this library here.

backoffAlgorithm v1.3.0 source code is part of the FreeRTOS 202210.00 LTS release.
backoffAlgorithm v1.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

2.1. FreeRTOS 129

https://code.visualstudio.com
https://cspell.org/
https://marketplace.visualstudio.com/items?itemName=streetsidesoftware.code-spell-checker
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
https://github.com/FreeRTOS/backoffAlgorithm/tree/v1.3.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/backoffAlgorithm/tree/v1.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00

Reference example The example below shows how to use the backoffAlgorithm library on a
POSIX platform to retry a DNS resolution query for amazon.com.

#include ”backoff_algorithm.h”
#include <stdlib.h>
#include <string.h>
#include <netdb.h>
#include <unistd.h>
#include <time.h>

/* The maximum number of retries for the example code. */
#define RETRY_MAX_ATTEMPTS (5U)

/* The maximum back-off delay (in milliseconds) for between retries in the example. */
#define RETRY_MAX_BACKOFF_DELAY_MS (5000U)

/* The base back-off delay (in milliseconds) for retry configuration in the example. */
#define RETRY_BACKOFF_BASE_MS (500U)

int main()
{

/* Variables used in this example. */
BackoffAlgorithmStatus_t retryStatus = BackoffAlgorithmSuccess;
BackoffAlgorithmContext_t retryParams;
char serverAddress[] = ”amazon.com”;
uint16_t nextRetryBackoff = 0;

int32_t dnsStatus = -1;
struct addrinfo hints;
struct addrinfo ** pListHead = NULL;
struct timespec tp;

/* Add hints to retrieve only TCP sockets in getaddrinfo. */
(void) memset(&hints, 0, sizeof(hints));

/* Address family of either IPv4 or IPv6. */
hints.ai_family = AF_UNSPEC;
/* TCP Socket. */
hints.ai_socktype = (int32_t) SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;

/* Initialize reconnect attempts and interval. */
BackoffAlgorithm_InitializeParams(&retryParams,

RETRY_BACKOFF_BASE_MS,
RETRY_MAX_BACKOFF_DELAY_MS,
RETRY_MAX_ATTEMPTS);

/* Seed the pseudo random number generator used in this example (with call to
* rand() function provided by ISO C standard library) for use in backoff period
* calculation when retrying failed DNS resolution. */

/* Get current time to seed pseudo random number generator. */
(void) clock_gettime(CLOCK_REALTIME, &tp);
/* Seed pseudo random number generator with seconds. */
srand(tp.tv_sec);

do
{

/* Perform a DNS lookup on the given host name. */
dnsStatus = getaddrinfo(serverAddress, NULL, &hints, pListHead);

(continues on next page)

130 Chapter 2. RTOS

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
/* Retry if DNS resolution query failed. */
if(dnsStatus != 0)
{

/* Generate a random number and get back-off value (in milliseconds) for the next retry.
* Note: It is recommended to use a random number generator that is seeded with
* device-specific entropy source so that backoff calculation across devices is different
* and possibility of network collision between devices attempting retries can be avoided.
*
* For the simplicity of this code example, the pseudo random number generator, rand()
* function is used. */
retryStatus = BackoffAlgorithm_GetNextBackoff(&retryParams, rand(), &nextRetryBackoff);

/* Wait for the calculated backoff period before the next retry attempt of querying DNS.
* As usleep() takes nanoseconds as the parameter, we multiply the backoff period by 1000. */
(void) usleep(nextRetryBackoff * 1000U);

}
} while((dnsStatus != 0) && (retryStatus != BackoffAlgorithmRetriesExhausted));

return dnsStatus;
}

Building the library A compiler that supports C90 or later such as gcc is required to build the
library.

Additionally, the library uses a header file introduced in ISO C99, stdint.h. For compilers that do
not provide this header file, the source/include directory contains stdint.readme, which can be
renamed to stdint.h to build the backoffAlgorithm library.

For instance, if the example above is copied to a file named example.c, gcc can be used like so:

gcc -I source/include example.c source/backoff_algorithm.c -o example
./example

gcc can also produce an output file to be linked:

gcc -I source/include -c source/backoff_algorithm.c

Building unit tests

Checkout Unity Submodule By default, the submodules in this repository are configured with
update=none in .gitmodules, to avoid increasing clone time and disk space usage of other reposi-
tories (like amazon-freertos that submodules this repository).

To build unit tests, the submodule dependency of Unity is required. Use the following command
to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/Unity

Platform Prerequisites
• For running unit tests

– C89 or later compiler like gcc

– CMake 3.13.0 or later

• For running the coverage target, gcov is additionally required.

2.1. FreeRTOS 131

https://github.com/aws/amazon-freertos

MCUXpresso SDK Documentation, Release 25.09.00

Steps to build Unit Tests
1. Go to the root directory of this repository. (Make sure that the Unity submodule is cloned

as described above.)

2. Create build directory: mkdir build && cd build

3. Run cmake while inside build directory: cmake -S ../test

4. Run this command to build the library and unit tests: make all

5. The generated test executables will be present in build/bin/tests folder.

6. Run ctest to execute all tests and view the test run summary.

Contributing See CONTRIBUTING.md for information on contributing.

2.1.4 corehttp

C language HTTP client library designed for embedded platforms.

MCUXpresso SDK: coreHTTP Client Library

This repository is a fork of coreHTTP Client library (https://github.com/FreeRTOS/corehttp)(3.0.0).
Modifications have been made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig
added to enable coreHTTP Client repo sources build in MCUXpresso SDK. It is part of the MCUX-
presso SDK overall delivery which is composed of several sub-repositories/projects. Navigate
to the top/parent repository mcuxsdk-manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-
manifests) for the complete delivery of MCUXpresso SDK.

coreHTTP Client Library

This repository contains a C language HTTP client library designed for embedded platforms. It
has no dependencies on any additional libraries other than the standard C library, llhttp, and
a customer-implemented transport interface. This library is distributed under the MIT Open
Source License.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8. This library has also undergone both static code analysis from
Coverity static analysis, and validation of memory safety and data structure invariance through
the CBMC automated reasoning tool.

See memory requirements for this library here.

coreHTTP v3.0.0 source code is part of the FreeRTOS 202210.00 LTS release.
coreHTTP v2.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

coreHTTP Config File The HTTP client library exposes configuration macros that are required
for building the library. A list of all the configurations and their default values are defined in
core_http_config_defaults.h. To provide custom values for the configuration macros, a custom
config file named core_http_config.h can be provided by the user application to the library.

By default, a core_http_config.h custom config is required to build the library. To dis-
able this requirement and build the library with default configuration values, provide
HTTP_DO_NOT_USE_CUSTOM_CONFIG as a compile time preprocessor macro.

The HTTP client library can be built by either:

132 Chapter 2. RTOS

https://github.com/nodejs/llhttp
https://www.gnu.org/software/complexity/manual/complexity.html
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/coreHTTP/tree/v3.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/coreHTTP/tree/v2.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00

• Defining a core_http_config.h file in the application, and adding it to the include directories
for the library build. OR

• Defining the HTTP_DO_NOT_USE_CUSTOM_CONFIG preprocessor macro for the li-
brary build.

Building the Library The httpFilePaths.cmake file contains the information of all source files
and header include paths required to build the HTTP client library.

As mentioned in the previous section, either a custom config file (i.e. core_http_config.h) OR
HTTP_DO_NOT_USE_CUSTOM_CONFIG macro needs to be provided to build the HTTP client
library.

For a CMake example of building the HTTP library with the httpFilePaths.cmake file, refer to the
coverity_analysis library target in test/CMakeLists.txt file.

Building Unit Tests

Platform Prerequisites
• For running unit tests, the following are required:

– C90 compiler like gcc

– CMake 3.13.0 or later
– Ruby 2.0.0 or later is required for this repository’s CMock test framework.

• For running the coverage target, the following are required:

– gcov
– lcov

Steps to build Unit Tests
1. Go to the root directory of this repository.

2. Run the cmake command: cmake -S test -B build -DBUILD_CLONE_SUBMODULES=ON

3. Run this command to build the library and unit tests: make -C build all

4. The generated test executables will be present in build/bin/tests folder.

5. Run cd build && ctest to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Reference examples The AWS IoT Device SDK for Embedded C repository contains demos of
using the HTTP client library here on a POSIX platform. These can be used as reference examples
for the library API.

Documentation

2.1. FreeRTOS 133

https://github.com/ThrowTheSwitch/CMock
https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/http

MCUXpresso SDK Documentation, Release 25.09.00

Existing Documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location
AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of coreHTTP may differ across repositories.

Generating Documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Contributing See CONTRIBUTING.md for information on contributing.

2.1.5 corejson

JSON parser.

Readme

MCUXpresso SDK: coreJSON Library This repository is a fork of coreJSON library
(https://github.com/FreeRTOS/corejson)(3.2.0). Modifications have been made to adapt to NXP
MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable coreJSON repo sources build
in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which is com-
posed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

coreJSONLibrary This repository contains the coreJSON library, a parser that strictly enforces
the ECMA-404 JSON standard and is suitable for low memory footprint embedded devices. The
coreJSON library is distributed under the MIT Open Source License.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations from mandatory rules in the MISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis from Coverity static analy-
sis, and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.

coreJSON v3.2.0 source code is part of the FreeRTOS 202210.00 LTS release.
coreJSON v3.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

Reference example

134 Chapter 2. RTOS

https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/coreHTTP/docs/doxygen/output/html/index.html
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/coreJSON/tree/v3.2.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/coreJSON/tree/v3.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00

#include <stdio.h>
#include ”core_json.h”

int main()
{

// Variables used in this example.
JSONStatus_t result;
char buffer[] = ”{\”foo\”:\”abc\”,\”bar\”:{\”foo\”:\”xyz\”}}”;
size_t bufferLength = sizeof(buffer) - 1;
char queryKey[] = ”bar.foo”;
size_t queryKeyLength = sizeof(queryKey) - 1;
char * value;
size_t valueLength;

// Calling JSON_Validate() is not necessary if the document is guaranteed to be valid.
result = JSON_Validate(buffer, bufferLength);

if(result == JSONSuccess)
{

result = JSON_Search(buffer, bufferLength, queryKey, queryKeyLength,
&value, &valueLength);

}

if(result == JSONSuccess)
{

// The pointer ”value” will point to a location in the ”buffer”.
char save = value[valueLength];
// After saving the character, set it to a null byte for printing.
value[valueLength] = '\0';
// ”Found: bar.foo -> xyz” will be printed.
printf(”Found: %s -> %s\n”, queryKey, value);
// Restore the original character.
value[valueLength] = save;

}

return 0;
}

A search may descend through nested objects when the queryKey contains matching key strings
joined by a separator, .. In the example above, bar has the value {”foo”:”xyz”}. Therefore, a search
for query key bar.foo would output xyz.

Building coreJSON A compiler that supports C90 or later such as gcc is required to build the
library.

Additionally, the library uses 2 header files introduced in ISO C99, stdbool.h and stdint.h. For com-
pilers that do not provide this header file, the source/include directory contains stdbool.readme
and stdint.readme, which can be renamed to stdbool.h and stdint.h respectively.

For instance, if the example above is copied to a file named example.c, gcc can be used like so:

gcc -I source/include example.c source/core_json.c -o example
./example

gcc can also produce an output file to be linked:

gcc -I source/include -c source/core_json.c

Documentation

2.1. FreeRTOS 135

MCUXpresso SDK Documentation, Release 25.09.00

Existing documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location
AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of the coreJSON library may differ across repositories.

Generating documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Building unit tests

Checkout Unity Submodule By default, the submodules in this repository are configured with
update=none in .gitmodules, to avoid increasing clone time and disk space usage of other reposi-
tories (like amazon-freertos that submodules this repository).

To build unit tests, the submodule dependency of Unity is required. Use the following command
to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/Unity

Platform Prerequisites
• For running unit tests

– C90 compiler like gcc

– CMake 3.13.0 or later

– Ruby 2.0.0 or later is additionally required for the Unity test framework (that we use).

• For running the coverage target, gcov is additionally required.

Steps to build Unit Tests
1. Go to the root directory of this repository. (Make sure that the Unity submodule is cloned

as described above.)

2. Create build directory: mkdir build && cd build

3. Run cmake while inside build directory: cmake -S ../test

4. Run this command to build the library and unit tests: make all

5. The generated test executables will be present in build/bin/tests folder.

6. Run ctest to execute all tests and view the test run summary.

136 Chapter 2. RTOS

https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/coreJSON/docs/doxygen/output/html/index.html
https://github.com/aws/amazon-freertos

MCUXpresso SDK Documentation, Release 25.09.00

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Contributing See CONTRIBUTING.md for information on contributing.

2.1.6 coremqtt

MQTT publish/subscribe messaging library.

MCUXpresso SDK: coreMQTT Library

This repository is a fork of coreMQTT library (https://github.com/FreeRTOS/coremqtt)(2.1.1).
Modifications have been made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kcon-
fig added to enable coreMQTT repo sources build in MCUXpresso SDK. It is part of the MCUX-
presso SDK overall delivery which is composed of several sub-repositories/projects. Navigate
to the top/parent repository mcuxsdk-manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-
manifests) for the complete delivery of MCUXpresso SDK.

coreMQTT Client Library

This repository contains the coreMQTT library that has been optimized for a low memory foot-
print. The coreMQTT library is compliant with the MQTT 3.1.1 standard. It has no dependencies
on any additional libraries other than the standard C library, a customer-implemented network
transport interface, and optionally a user-implemented platform time function. This library is
distributed under the MIT Open Source License.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations from mandatory rules in the MISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis from Coverity static analy-
sis, and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.

coreMQTT v2.1.1 source code is part of the FreeRTOS 202210.01 LTS release.

MQTT Config File The MQTT client library exposes build configuration macros that are re-
quired for building the library. A list of all the configurations and their default values are de-
fined in core_mqtt_config_defaults.h. To provide custom values for the configuration macros, a
custom config file named core_mqtt_config.h can be provided by the application to the library.

By default, a core_mqtt_config.h custom config is required to build the library. To dis-
able this requirement and build the library with default configuration values, provide
MQTT_DO_NOT_USE_CUSTOM_CONFIG as a compile time preprocessor macro.

Thus, the MQTT library can be built by either:

• Defining a core_mqtt_config.h file in the application, and adding it to the include directories
list of the library
OR

• Defining the MQTT_DO_NOT_USE_CUSTOM_CONFIG preprocessor macro for the li-
brary build.

2.1. FreeRTOS 137

https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/coreMQTT/tree/v2.1.1/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.01-LTS

MCUXpresso SDK Documentation, Release 25.09.00

Sending metrics to AWS IoT When establishing a connection with AWS IoT, users can option-
ally report the Operating System, Hardware Platform and MQTT client version information of
their device to AWS. This information can help AWS IoT provide faster issue resolution and tech-
nical support. If users want to report this information, they can send a specially formatted string
(see below) in the username field of the MQTT CONNECT packet.

Format

The format of the username string with metrics is:

<Actual_Username>?SDK=<OS_Name>&Version=<OS_Version>&Platform=<Hardware_Platform>&
↪→MQTTLib=<MQTT_Library_name>@<MQTT_Library_version>

Where

• <Actual_Username> is the actual username used for authentication, if username and pass-
word are used for authentication. When username and password based authentication is
not used, this is an empty value.

• <OS_Name> is the Operating System the application is running on (e.g. FreeRTOS)

• <OS_Version> is the version number of the Operating System (e.g. V10.4.3)

• <Hardware_Platform> is the Hardware Platform the application is running on (e.g. Win-
Sim)

• <MQTT_Library_name> is the MQTT Client library being used (e.g. coreMQTT)

• <MQTT_Library_version> is the version of the MQTT Client library being used (e.g. 1.0.2)

Example

• Actual_Username = “iotuser”, OS_Name = FreeRTOS, OS_Version = V10.4.3, Hard-
ware_Platform_Name = WinSim, MQTT_Library_Name = coremqtt, MQTT_Library_version
= 2.1.1. If username is not used, then “iotuser” can be removed.

/* Username string:
* iotuser?SDK=FreeRTOS&Version=v10.4.3&Platform=WinSim&MQTTLib=coremqtt@2.1.1
*/

#define OS_NAME ”FreeRTOS”
#define OS_VERSION ”V10.4.3”
#define HARDWARE_PLATFORM_NAME ”WinSim”
#define MQTT_LIB ”coremqtt@2.1.1”

#define USERNAME_STRING ”iotuser?SDK=” OS_NAME ”&Version=” OS_VERSION ”&
↪→Platform=” HARDWARE_PLATFORM_NAME ”&MQTTLib=” MQTT_LIB
#define USERNAME_STRING_LENGTH ((uint16_t) (sizeof(USERNAME_STRING) - 1))

MQTTConnectInfo_t connectInfo;
connectInfo.pUserName = USERNAME_STRING;
connectInfo.userNameLength = USERNAME_STRING_LENGTH;
mqttStatus = MQTT_Connect(pMqttContext, &connectInfo, NULL, CONNACK_RECV_TIMEOUT_MS,␣
↪→pSessionPresent);

Upgrading to v2.0.0 and above With coreMQTT versions >=v2.0.0, there are breaking changes.
Please refer to the coreMQTT version >=v2.0.0 Migration Guide.

Building the Library The mqttFilePaths.cmake file contains the information of all source files
and the header include path required to build the MQTT library.

Additionally, the MQTT library requires two header files that are not part of the ISO C90 stan-
dard library, stdbool.h and stdint.h. For compilers that do not provide these header files, the

138 Chapter 2. RTOS

MCUXpresso SDK Documentation, Release 25.09.00

source/include directory contains the files stdbool.readme and stdint.readme, which can be re-
named to stdbool.h and stdint.h, respectively, to provide the type definitions required by MQTT.

As mentioned in the previous section, either a custom config file (i.e. core_mqtt_config.h) OR
MQTT_DO_NOT_USE_CUSTOM_CONFIG macro needs to be provided to build the MQTT li-
brary.

For a CMake example of building the MQTT library with the mqttFilePaths.cmake file, refer to the
coverity_analysis library target in test/CMakeLists.txt file.

Building Unit Tests

Checkout CMock Submodule By default, the submodules in this repository are configured
with update=none in .gitmodules to avoid increasing clone time and disk space usage of other
repositories (like amazon-freertos that submodules this repository).

To build unit tests, the submodule dependency of CMock is required. Use the following command
to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/CMock

Platform Prerequisites
• Docker

or the following:

• For running unit tests

– C90 compiler like gcc

– CMake 3.13.0 or later
– Ruby 2.0.0 or later is additionally required for the CMock test framework (that we

use).

• For running the coverage target, gcov and lcov are additionally required.

Steps to build Unit Tests
1. If using docker, launch the container:

1. docker build -t coremqtt .

2. docker run -it -v ”$PWD”:/workspaces/coreMQTT -w /workspaces/coreMQTT coremqtt

2. Go to the root directory of this repository. (Make sure that the CMock submodule is cloned
as described above)

3. Run the cmake command: cmake -S test -B build

4. Run this command to build the library and unit tests: make -C build all

5. The generated test executables will be present in build/bin/tests folder.

6. Run cd build && ctest to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

2.1. FreeRTOS 139

https://github.com/aws/amazon-freertos
https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html

MCUXpresso SDK Documentation, Release 25.09.00

Reference examples Please refer to the demos of the MQTT client library in the following
locations for reference examples on POSIX and FreeRTOS platforms:

Plat-
form

Location Transport Interface Implementation

POSIX AWS IoT Device SDK for Embed-
ded C

POSIX sockets for TCP/IP and OpenSSL for TLS
stack

FreeR-
TOS

FreeRTOS/FreeRTOS FreeRTOS+TCP for TCP/IP and mbedTLS for
TLS stack

FreeR-
TOS

FreeRTOS AWS Reference Inte-
grations

Based on Secure Sockets Abstraction

Documentation

Existing Documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location
AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of coreMQTT may differ across repositories.

Generating Documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Contributing See CONTRIBUTING.md for information on contributing.

2.1.7 coremqtt-agent

The coreMQTT Agent library is a high level API that adds thread safety to the coreMQTT library.

Readme

MCUXpresso SDK: coreMQTT Agent Library This repository is a fork of coreMQTT Agent
library (https://github.com/FreeRTOS/coremqtt-agent)(1.2.0). Modifications have been made to
adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable coreMQTT Agent
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

140 Chapter 2. RTOS

https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/mqtt
https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/mqtt
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo
https://github.com/aws/amazon-freertos/tree/main/demos/coreMQTT
https://github.com/aws/amazon-freertos/tree/main/demos/coreMQTT
https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/coreMQTT/docs/doxygen/output/html/index.html

MCUXpresso SDK Documentation, Release 25.09.00

coreMQTT Agent Library The coreMQTT Agent library is a high level API that adds thread
safety to the coreMQTT library. The library provides thread safe equivalents to the coreMQTT’s
APIs, greatly simplifying its use in multi-threaded environments. The coreMQTT Agent library
manages the MQTT connection by serializing the access to the coreMQTT library and reduc-
ing implementation overhead (e.g., removing the need for the application to repeatedly call to
MQTT_ProcessLoop). This allows your multi-threaded applications to share the same MQTT con-
nection, and enables you to design an embedded application without having to worry about
coreMQTT thread safety.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations from mandatory rules in the MISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis from Coverity static analy-
sis, and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.

Cloning this repository This repo uses Git Submodules to bring in dependent components.

To clone using HTTPS:

git clone https://github.com/FreeRTOS/coreMQTT-Agent.git --recurse-submodules

Using SSH:

git clone git@github.com:FreeRTOS/coreMQTT-Agent.git --recurse-submodules

If you have downloaded the repo without using the --recurse-submodules argument, you need to
run:

git submodule update --init --recursive

coreMQTT Agent Library Configurations The MQTT Agent library uses the same
core_mqtt_config.h configuration file as coreMQTT, with the addition of configuration con-
stants listed at the top of core_mqtt_agent.h and core_mqtt_agent_command_functions.h.
Documentation for these configurations can be found here.

To provide values for these configuration values, they must be either:

• Defined in core_mqtt_config.h used by coreMQTT OR
• Passed as compile time preprocessor macros

Porting the coreMQTT Agent Library In order to use the MQTT Agent library on a platform,
you need to supply thread safe functions for the agent’s messaging interface.

Messaging Interface Each of the following functions must be thread safe.

2.1. FreeRTOS 141

https://github.com/FreeRTOS/coreMQTT
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://freertos.org/Documentation/api-ref/coreMQTT-Agent/docs/doxygen/output/html/core_mqtt_agent_config.html

MCUXpresso SDK Documentation, Release 25.09.00

Function
Pointer

Description

MQTTA-
gentMes-
sage-
Send_t

A function that sends commands (as MQTTAgentCommand_t * pointers) to be re-
ceived by MQTTAgent_CommandLoop. This can be implemented by pushing to a
thread safe queue.

MQTTA-
gentMes-
sageRecv_t

A function used by MQTTAgent_CommandLoop to receive MQTTAgentCommand_t
* pointers that were sent by API functions. This can be implemented by receiving
from a thread safe queue.

MQTTA-
gentCom-
mand-
Get_t

A function that returns a pointer to an allocated MQTTAgentCommand_t structure,
which is used to hold information and arguments for a command to be executed in
MQTTAgent_CommandLoop(). If using dynamic memory, this can be implemented
using malloc().

MQT-
TAgent-
Comman-
dRelease_t

A function called to indicate that a command structure that had been allocated
with the MQTTAgentCommandGet_t function pointer will no longer be used by
the agent, so it may be freed or marked as not in use. If using dynamic memory,
this can be implemented with free().

Reference implementations for the interface functions can be found in the reference examples
below.

Additional Considerations

Static Memory If only static allocation is used, then the MQTTAgentCommandGet_t and MQT-
TAgentCommandRelease_t could instead be implemented with a pool of MQTTAgentCommand_t
structures, with a queue or semaphore used to control access and provide thread safety. The
below reference examples use static memory with a command pool.

Subscription Management The MQTT Agent does not track subscriptions for MQTT topics.
The receipt of any incoming PUBLISH packet will result in the invocation of a single MQTTA-
gentIncomingPublishCallback_t callback, which is passed to MQTTAgent_Init() for initialization.
If it is desired for different handlers to be invoked for different incoming topics, then the pub-
lish callback will have to manage subscriptions and fan out messages. A platform independent
subscription manager example is implemented in the reference examples below.

Building theLibrary You can build the MQTT Agent source files that are in the sourcedirectory,
and add source/include to your compiler’s include path. Additionally, the MQTT Agent library
requires the coreMQTT library, whose files follow the same source/ and source/include pattern as
the agent library; its build instructions can be found here.

If using CMake, the mqttAgentFilePaths.cmake file contains the above information of the source
files and the header include path from this repository. The same information is found for
coreMQTT from mqttFilePaths.cmake in the coreMQTT submodule.

For a CMake example of building the MQTT Agent library with the mqttAgentFilePaths.cmake file,
refer to the coverity_analysis library target in test/CMakeLists.txt file.

Building Unit Tests

142 Chapter 2. RTOS

https://github.com/FreeRTOS/coreMQTT#building-the-library

MCUXpresso SDK Documentation, Release 25.09.00

Checkout CMock Submodule To build unit tests, the submodule dependency of CMock is re-
quired. Use the following command to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/CMock

Unit Test Platform Prerequisites
• For running unit tests

– C90 compiler like gcc

– CMake 3.13.0 or later
– Ruby 2.0.0 or later is additionally required for the CMock test framework (that we

use).

• For running the coverage target, gcov and lcov are additionally required.

Steps to build Unit Tests
1. Go to the root directory of this repository. (Make sure that the CMock submodule is cloned

as described above)

2. Run the cmake command: cmake -S test -B build

3. Run this command to build the library and unit tests: make -C build all

4. The generated test executables will be present in build/bin/tests folder.

5. Run cd build && ctest to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Reference examples Please refer to the demos of the MQTT Agent library in the following
locations for reference examples on FreeRTOS platforms:

Location
coreMQTT Agent Demos
FreeRTOS/FreeRTOS

Documentation The MQTT Agent API documentation can be found here.

Generating documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages yourself, please run the following command from the root
of this repository:

doxygen docs/doxygen/config.doxyfile

Getting help You can use your Github login to get support from both the FreeRTOS community
and directly from the primary FreeRTOS developers on our active support forum. You can find
a list of frequently asked questions here.

2.1. FreeRTOS 143

https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://github.com/FreeRTOS/coreMQTT-Agent-Demos
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/coreMQTT_Windows_Simulator/MQTT_Multitask
https://freertos.org/Documentation/api-ref/coreMQTT-Agent/docs/doxygen/output/html/index.html
https://forums.freertos.org
https://www.freertos.org/FAQ.html

MCUXpresso SDK Documentation, Release 25.09.00

Contributing See CONTRIBUTING.md for information on contributing.

License This library is licensed under the MIT License. See the LICENSE file.

2.1.8 corepkcs11

PKCS #11 key management library.

Readme

MCUXpresso SDK: corePKCS11 Library This repository is a fork of PKCS #11 key management
library (https://github.com/FreeRTOS/corePKCS11/tree/v3.5.0)(v3.5.0). Modifications have been
made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable corepkcs11
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

corePKCS11 Library PKCS #11 is a standardized and widely used API for manipulating com-
mon cryptographic objects. It is important because the functions it specifies allow application
software to use, create, modify, and delete cryptographic objects, without ever exposing those
objects to the application’s memory. For example, FreeRTOS AWS reference integrations use a
small subset of the PKCS #11 API to, among other things, access the secret (private) key neces-
sary to create a network connection that is authenticated and secured by the Transport Layer
Security (TLS) protocol – without the application ever ‘seeing’ the key.

The Cryptoki or PKCS #11 standard defines a platform-independent API to manage and use cryp-
tographic tokens. The name, “PKCS #11”, is used interchangeably to refer to the API itself and
the standard which defines it.

This repository contains a software based mock implementation of the PKCS #11 interface (API)
that uses the cryptographic functionality provided by Mbed TLS. Using a software mock enables
rapid development and flexibility, but it is expected that the mock be replaced by an implemen-
tation specific to your chosen secure key storage in production devices.

Only a subset of the PKCS #11 standard is implemented, with a focus on operations involving
asymmetric keys, random number generation, and hashing.

The targeted use cases include certificate and key management for TLS authentication and code-
sign signature verification, on small embedded devices.

corePKCS11 is implemented on PKCS #11 v2.4.0, the full PKCS #11 standard can be found on the
oasis website.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations from mandatory rules in the MISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis from Coverity static analysis
and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.

corePKCS11 v3.5.0 source code is part of the FreeRTOS 202210.00 LTS release.
corePKCS11 v3.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

144 Chapter 2. RTOS

https://en.wikipedia.org/wiki/PKCS_11
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/corePKCS11/tree/v3.5.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/corePKCS11/tree/v3.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00

Purpose Generally vendors for secure cryptoprocessors such as Trusted Platform Module
(TPM), Hardware Security Module (HSM), Secure Element, or any other type of secure hard-
ware enclave, distribute a PKCS #11 implementation with the hardware. The purpose of the
corePKCS11 software only mock library is therefore to provide a non hardware specific PKCS
#11 implementation that allows for rapid prototyping and development before switching to a
cryptoprocessor specific PKCS #11 implementation in production devices.

Since the PKCS #11 interface is defined as part of the PKCS #11 specification replacing this li-
brary with another implementation should require little porting effort, as the interface will not
change. The system tests distributed in this repository can be leveraged to verify the behavior
of a different implementation is similar to corePKCS11.

corePKCS11 Configuration The corePKCS11 library exposes preprocessor macros which must
be defined prior to building the library. A list of all the configurations and their default values
are defined in the doxygen documentation for this library.

Build Prerequisites

Library Usage For building the library the following are required:

• A C99 compiler
• mbedcrypto library from mbedtls version 2.x or 3.x.

• pkcs11 API header(s) available from OASIS or OpenSC

Optionally, variables from the pkcsFilePaths.cmake file may be referenced if your project uses
cmake.

Integration and Unit Tests In order to run the integration and unit test suites the following
are dependencies are necessary:

• C Compiler
• CMake 3.13.0 or later
• Ruby 2.0.0 or later required by CMock.

• Python 3 required for configuring mbedtls.

• git required for fetching dependencies.

• GNU Make or Ninja
Thembedtls, CMock, andUnity libraries are downloaded and built automatically using the cmake
FetchContent feature.

Coverage Measurement and Instrumentation The following software is required to run the
coverage target:

• Linux, MacOS, or another POSIX-like environment.

• A recent version of GCC or Clang with support for gcov-like coverage instrumentation.

• gcov binary corresponding to your chosen compiler

• lcov from the Linux Test Project

• perl needed to run the lcov utility.

Coverage builds are validated on recent versions of Ubuntu Linux.

2.1. FreeRTOS 145

https://en.wikipedia.org/wiki/Trusted_Platform_Module
https://en.wikipedia.org/wiki/Hardware_security_module
https://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://github.com/ARMmbed/mbedtls
https://github.com/oasis-tcs/pkcs11
https://github.com/OpenSC/libp11/blob/master/src/pkcs11.h
https://github.com/linux-test-project/lcov

MCUXpresso SDK Documentation, Release 25.09.00

Running the Integration and Unit Tests
1. Navigate to the root directory of this repository in your shell.

2. Run cmake to construct a build tree: cmake -S test -B build

• You may specify your preferred build tool by appending -G'Unix Makefiles' or -GNinja
to the command above.

• You may append -DUNIT_TESTS=0 or -DSYSTEM_TESTS=0 to disable Unit Tests or
Integration Tests respectively.

3. Build the test binaries: cmake --build ./build --target all

4. Run ctest --test-dir ./build or cmake --build ./build --target test to run the tests without captur-
ing coverage.

5. Run cmake --build ./build --target coverage to run the tests and capture coverage data.

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Reference examples The FreeRTOS-Labs repository contains demos using the PKCS #11 li-
brary here using FreeRTOS on the Windows simulator platform. These can be used as reference
examples for the library API.

Porting Guide Documentation for porting corePKCS11 to a new platform can be found on the
AWS docs web page.

corePKCS11 is not meant to be ported to projects that have a TPM, HSM, or other hardware for
offloading crypto-processing. This library is specifically meant to be used for development and
prototyping.

Related Example Implementations These projects implement the PKCS #11 interface on real
hardware and have similar behavior to corePKCS11. It is preferred to use these, over coreP-
KCS11, as they allow for offloading Cryptography to separate hardware.

• ARM’s Platform Security Architecture.

• Microchip’s cryptoauthlib.

• Infineon’s Optiga Trust X.

Documentation

Existing Documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location
AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of corePKCS11 may differ across repositories.

146 Chapter 2. RTOS

https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://github.com/FreeRTOS/FreeRTOS-Labs/tree/master/FreeRTOS-Plus/Demo/FreeRTOS_Plus_PKCS11_Windows_Simulator/examples
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-pkcs.html
https://github.com/Linaro/freertos-pkcs11-psa
https://github.com/MicrochipTech/cryptoauthlib
https://github.com/aws/amazon-freertos/blob/main/vendors/infineon/secure_elements/pkcs11/iot_pkcs11_trustx.c
https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/corePKCS11/docs/doxygen/output/html/index.html

MCUXpresso SDK Documentation, Release 25.09.00

Generating Documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Security See CONTRIBUTING for more information.

License This library is licensed under the MIT-0 License. See the LICENSE file.

2.1.9 freertos-plus-tcp

Open source RTOS FreeRTOS Plus TCP.

Readme

MCUXpresso SDK: FreeRTOS-Plus-TCPLibrary This repository is a fork of FreeRTOS-Plus-TCP
library (https://github.com/FreeRTOS/freertos-plus-tcp)(4.3.3). Modifications have been made to
adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable FreeRTOS-Plus-TCP
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

FreeRTOS-Plus-TCP Library FreeRTOS-Plus-TCP is a lightweight TCP/IP stack for FreeRTOS. It
provides a familiar Berkeley sockets interface, making it as simple to use and learn as possi-
ble. FreeRTOS-Plus-TCP’s features and RAM footprint are fully scalable, making FreeRTOS-Plus-
TCP equally applicable to smaller lower throughput microcontrollers as well as larger higher
throughput microprocessors.

This library has undergone static code analysis and checks for compliance with the MISRA cod-
ing standard. Any deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. The library is validated for memory safety and data structure invariance through
the CBMC automated reasoning tool for the functions that parse data originating from the net-
work. The library is also protocol tested using Maxwell protocol tester for both IPv4 and IPv6.

FreeRTOS-Plus-TCP Library V4.2.2 source code is part of the FreeRTOS 202406.01 LTS re-
lease.

Getting started The easiest way to use version 4.0.0 and later of FreeRTOS-Plus-TCP is to refer
the Getting started Guide (found here) Another way is to start with the pre-configured IPv4 Win-
dows Simulator demo (found in this directory) or IPv6 Multi-endpoint Windows Simulator demo
(found in this directory). That way you will have the correct FreeRTOS source files included, and
the correct include paths configured. Once a demo application is building and executing you can
remove the demo application files, and start to add in your own application source files. See the
FreeRTOS Kernel Quick Start Guide for detailed instructions and other useful links.

Additionally, for FreeRTOS-Plus-TCP source code organization refer to the Documentation, and
API Reference.

2.1. FreeRTOS 147

https://www.misra.org.uk/
https://www.misra.org.uk/
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/MISRA.md
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/MISRA.md
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/tree/V4.2.2/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202406.01-LTS
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/GettingStarted.md
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/FreeRTOS_Plus_TCP_Minimal_Windows_Simulator
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/FreeRTOS_Plus_TCP_IPv6_Demo/IPv6_Multi_WinSim_demo
https://www.freertos.org/Documentation/01-FreeRTOS-quick-start/01-Beginners-guide/02-Quick-start-guide
http://www.FreeRTOS.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/TCP_Networking_Tutorial.html
https://freertos.org/Documentation/03-Libraries/02-FreeRTOS-plus/02-FreeRTOS-plus-TCP/09-API-reference/01-FreeRTOS-plus-TCP-APIs

MCUXpresso SDK Documentation, Release 25.09.00

Getting help If you have any questions or need assistance troubleshooting your FreeRTOS
project, we have an active community that can help on the FreeRTOS Community Support Forum.
Please also refer to FAQ for frequently asked questions.

Also see the Submitting a bugs/feature request section of CONTRIBUTING.md for more details.

Note: All the remaining sections are generic and applies to all the versions from V3.0.0 onwards.

Upgrading to V4.3.0 and above For users of STM32 network interfaces:

Starting from version V4.3.0, the STM32 network interfaces have been consolidated into a sin-
gle unified implementation located at source/portable/NetworkInterface/STM32/NetworkInterface.c,
supporting STM32 F4, F7, and H7 series microcontrollers, with newly added support for STM32
H5. The new interface has been tested with the STM32 HAL Ethernet (ETH) drivers, avail-
able at source/portable/NetworkInterface/STM32/Drivers. For compatibility, the legacy interfaces
(STM32Fxx and STM32Hxx) have been retained and relocated to source/portable/NetworkInterface/
STM32/Legacy.

Upgrading to V3.0.0 and V3.1.0 In version 3.0.0 or 3.1.0, the folder structure of FreeRTOS-Plus-
TCP has changed and the files have been broken down into smaller logically separated mod-
ules. This change makes the code more modular and conducive to unit-tests. FreeRTOS-Plus-TCP
V3.0.0 improves the robustness, security, and modularity of the library. Version 3.0.0 adds com-
prehensive unit test coverage for all lines and branches of code and has undergone protocol
testing, and penetration testing by AWS Security to reduce the exposure to security vulnerabili-
ties. Additionally, the source files have been moved to a source directory. This change requires
modification of any existing project(s) to include the modified source files and directories.

FreeRTOS-Plus-TCP V3.1.0 source code(.c .h) is part of the FreeRTOS 202210.00 LTS release.

Generating pre V3.0.0 folder structure for backward compatibility: If you wish to continue
using a version earlier than V3.0.0 i.e. continue to use your existing source code organization, a
script is provided to generate the folder structure similar to this.

Note: After running the script, while the .c files will have same names as the pre V3.0.0 source,
the files in the include directory will have different names and the number of files will differ as
well. This should, however, not pose any problems to most projects as projects generally include
all files in a given directory.

Running the script to generate pre V3.0.0 folder structure: For running the script, you will need
Python version > 3.7. You can download/install it from here.

Once python is downloaded and installed, you can verify the version from your termi-
nal/command window by typing python --version.

To run the script, you should switch to the FreeRTOS-Plus-TCP directory Then run python <Path/
to/the/script>/GenerateOriginalFiles.py.

To consume FreeRTOS+TCP

Consume with CMake If using CMake, it is recommended to use this repository using Fetch-
Content. Add the following into your project’s main or a subdirectory’s CMakeLists.txt:

• Define the source and version/tag you want to use:

FetchContent_Declare(freertos_plus_tcp
GIT_REPOSITORY https://github.com/FreeRTOS/FreeRTOS-Plus-TCP.git
GIT_TAG main #Note: Best practice to use specific git-hash or tagged version

(continues on next page)

148 Chapter 2. RTOS

https://forums.freertos.org
https://www.freertos.org/Why-FreeRTOS/FAQs
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/.github/CONTRIBUTING.md#submitting-a-bugsfeature-request
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/tree/V3.1.0
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/tree/f118c8415b4373e3d6e6dbd2d5a116f7eaf27b63
https://www.python.org/downloads/

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
GIT_SUBMODULES ”” # Don't grab any submodules since not latest

)

• Configure the FreeRTOS-Kernel and make it available

– this particular example supports a native and cross-compiled build option.

Select the native compile PORT
set(FREERTOS_PLUS_TCP_NETWORK_IF ”POSIX” CACHE STRING ”” FORCE)
Or: select a cross-compile PORT
if (CMAKE_CROSSCOMPILING)
Eg. STM32Hxx version of port
set(FREERTOS_PLUS_TCP_NETWORK_IF ”STM32HXX” CACHE STRING ”” FORCE)

endif()

FetchContent_MakeAvailable(freertos_plus_tcp)

Consuming stand-alone This repository uses Git Submodules to bring in dependent compo-
nents.

Note: If you download the ZIP file provided by GitHub UI, you will not get the contents of the
submodules. (The ZIP file is also not a valid Git repository)

To clone using HTTPS:

git clone https://github.com/FreeRTOS/FreeRTOS-Plus-TCP.git ./FreeRTOS-Plus-TCP
cd ./FreeRTOS-Plus-TCP
git submodule update --checkout --init --recursive tools/CMock test/FreeRTOS-Kernel

Using SSH:

git clone git@github.com:FreeRTOS/FreeRTOS-Plus-TCP.git ./FreeRTOS-Plus-TCP
cd ./FreeRTOS-Plus-TCP
git submodule update --checkout --init --recursive tools/CMock test/FreeRTOS-Kernel

Porting The porting guide is available on this page.

Repository structure This repository contains the FreeRTOS-Plus-TCP repository and a num-
ber of supplementary libraries for testing/PR Checks. Below is the breakdown of what each di-
rectory contains:

• tools

– This directory contains the tools and related files (CMock/uncrustify) required to run
tests/checks on the TCP source code.

• tests

– This directory contains all the tests (unit tests and CBMC) and the dependencies
(FreeRTOS-Kernel/Litani-port) the tests require.

• source/portable

– This directory contains the portable files required to compile the FreeRTOS-Plus-TCP
source code for different hardware/compilers.

• source/include

– The include directory has all the ‘core’ header files of FreeRTOS-Plus-TCP source.

• source

2.1. FreeRTOS 149

https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://www.freertos.org/Documentation/03-Libraries/02-FreeRTOS-plus/02-FreeRTOS-plus-TCP/10-Porting/01-FreeRTOS_TCP_Porting
https://github.com/FreeRTOS/FreeRTOS-Kernel
https://github.com/awslabs/aws-build-accumulator

MCUXpresso SDK Documentation, Release 25.09.00

– This directory contains all the [.c] source files.

Note At this time it is recommended to use BufferAllocation_2.c in which case it is essential to
use the heap_4.c memory allocation scheme. See memory management.

Kernel sources The FreeRTOS Kernel Source is in FreeRTOS/FreeRTOS-Kernel repository, and
it is consumed by testing/PR checks as a submodule in this repository.

The version of the FreeRTOS Kernel Source in use could be accessed at ./test/FreeRTOS-Kernel
directory.

CBMC The test/cbmc/proofs directory contains CBMC proofs.

To learn more about CBMC and proofs specifically, review the training material here.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

150 Chapter 2. RTOS

http://www.FreeRTOS.org/a00111.html
https://github.com/FreeRTOS/FreeRTOS-Kernel
https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html

	Middleware
	Boot
	MCUXpresso SDK : mcuxsdk-middleware-mcuboot_opensource
	Overview
	Documentation
	Setup
	Contribution
	NXP Fork

	MCUboot
	MCUboot How-tos
	Roadmap
	Source files
	Joining the project

	Motor Control
	FreeMASTER
	Introduction
	What is FreeMASTER?
	Driver version 3
	Target platforms
	Replacing existing drivers
	Clocks, pins, and peripheral initialization
	MCUXpresso SDK
	MCUXpresso SDK on GitHub
	FreeMASTER in Zephyr

	Example applications
	MCUX SDK Example applications
	Zephyr sample spplications

	Description
	Features
	Board Detection
	Memory Read
	Memory Write
	Masked Memory Write
	Oscilloscope
	Recorder
	TSA
	TSA Safety
	Application commands
	Pipes
	Serial single-wire operation
	Multi-session support
	Zephyr-specific
	Dedicated communication task
	Zephyr shell and logging over FreeMASTER pipe
	Automatic TSA tables

	Driver files
	Driver configuration
	Configurable items
	Interrupt modes
	Value Type
	Description
	Protocol transport
	Value Type
	Description
	Serial transport
	FMSTR_SERIAL_DRV
	Value Type
	Description
	FMSTR_SERIAL_BASE
	Value Type
	Description
	FMSTR_COMM_BUFFER_SIZE
	Value Type
	Description
	FMSTR_COMM_RQUEUE_SIZE
	Value Type
	Description
	FMSTR_SERIAL_SINGLEWIRE
	Value Type
	Description
	CAN Bus transport
	FMSTR_CAN_DRV
	Value Type
	Description
	FMSTR_CAN_BASE
	Value Type
	Description
	FMSTR_CAN_CMDID
	Value Type
	Description
	FMSTR_CAN_RSPID
	Value Type
	Description
	FMSTR_FLEXCAN_TXMB
	Value Type
	Description
	FMSTR_FLEXCAN_RXMB
	Value Type
	Description
	Network transport
	FMSTR_NET_DRV
	Value Type
	Description
	FMSTR_NET_PORT
	Value Type
	Description
	FMSTR_NET_BLOCKING_TIMEOUT
	Value Type
	Description
	FMSTR_NET_AUTODISCOVERY
	Value Type
	Description
	Debugging options
	FMSTR_DISABLE
	Value Type
	Description
	FMSTR_DEBUG_TX
	Value Type
	Description
	FMSTR_APPLICATION_STR
	Value Type
	Description
	Memory access
	FMSTR_USE_READMEM
	Value Type
	Description
	FMSTR_USE_WRITEMEM
	Value Type
	Description
	Oscilloscope options
	FMSTR_USE_SCOPE
	Value Type
	Description
	FMSTR_MAX_SCOPE_VARS
	Value Type
	Description
	Recorder options
	FMSTR_USE_RECORDER
	Value Type
	Description
	FMSTR_REC_BUFF_SIZE
	Value Type
	Description
	FMSTR_REC_TIMEBASE
	Value Type
	Description
	FMSTR_REC_FLOAT_TRIG
	Value Type
	Description
	Application Commands options
	FMSTR_USE_APPCMD
	Value Type
	Description
	FMSTR_APPCMD_BUFF_SIZE
	Value Type
	Description
	FMSTR_MAX_APPCMD_CALLS
	Value Type
	Description
	TSA options
	FMSTR_USE_TSA
	Value Type
	Description
	FMSTR_USE_TSA_SAFETY
	Value Type
	Description
	FMSTR_USE_TSA_INROM
	Value Type
	Description
	FMSTR_USE_TSA_DYNAMIC
	Value Type
	Description
	Pipes options
	FMSTR_USE_PIPES
	Value Type
	Description
	FMSTR_MAX_PIPES_COUNT
	Value Type
	Description

	Driver interrupt modes
	Completely Interrupt-Driven operation
	Mixed Interrupt and Polling Modes
	Completely Poll-driven

	Data types
	Communication interface initialization
	FreeMASTER Recorder calls
	Driver usage
	Communication troubleshooting

	Driver API
	Control API
	FMSTR_Init
	Prototype
	Description
	FMSTR_Poll
	Prototype
	Description
	FMSTR_SerialIsr / FMSTR_CanIsr
	Prototype
	Description

	Recorder API
	FMSTR_RecorderCreate
	Prototype
	Description
	FMSTR_Recorder
	Prototype
	Description
	FMSTR_RecorderTrigger
	Prototype
	Description

	Fast Recorder API
	TSA Tables
	TSA table definition
	TSA descriptor parameters
	TSA variable types
	TSA table list
	TSA Active Content entries

	TSA API
	FMSTR_SetUpTsaBuff
	Prototype
	Arguments
	Description
	FMSTR_TsaAddVar
	Prototype
	Arguments
	Description

	Application Commands API
	FMSTR_GetAppCmd
	Prototype
	Description
	FMSTR_GetAppCmdData
	Prototype
	Arguments
	Description
	FMSTR_AppCmdAck
	Prototype
	Arguments
	Description
	FMSTR_AppCmdSetResponseData
	Prototype
	Arguments
	Description
	FMSTR_RegisterAppCmdCall
	Prototype
	Arguments
	Return value
	Description

	Pipes API
	FMSTR_PipeOpen
	Prototype
	Arguments
	Description
	FMSTR_PipeClose
	Prototype
	Arguments
	Description
	FMSTR_PipeWrite
	Prototype
	Arguments
	Description
	FMSTR_PipeRead
	Prototype
	Arguments
	Description

	API data types
	Public common types
	Public TSA types
	Public Pipes types
	Internal types

	Document references
	Links
	Documents
	Revision history

	Multimedia
	Xtensa Audio Framework (XAF)
	Xtensa Audio Framework (XAF) Examples
	Overview
	Availability Note
	Included Examples
	XAF Playback Example
	XAF Record Example
	XAF USB Example

	XAF Playback Example
	Table of Content
	Overview
	Functionality
	Hardware Requirements
	Hardware Modifications
	Preparation
	Example Configuration
	Running the Demo
	MIMXRT685-AUD-EVK Multi-channel Support:

	Known Issues

	XAF Record Example
	Table of Content
	Overview
	Functionality
	Hardware Requirements
	Hardware Modifications
	Preparation
	Example Configuration
	Running the Demo
	Running on CM33
	Running on DSP

	Known Issues

	XAF USB Example
	Table of Content
	Overview
	Functionality
	Hardware Requirements
	Hardware Modifications
	Preparation
	Running the Demo
	Running on CM33
	Running the demo DSP

	Known Issues

	Wireless
	NXP Wireless Framework and Stacks
	Wireless Framework
	Wireless Connectivity Framework
	Supported platforms
	Supported services
	Supported Zephyr modules integration in mcux SDK

	Connectivity framework CHANGELOG
	7.0.3 RFP mcux SDK 25.09.00
	Major Changes
	Minor Changes
	7.0.3 revB mcux SDK 25.09.00
	Major Changes
	Minor Changes (bug fixes)
	7.0.3 revA mcux SDK 25.09.00
	Major Changes
	Minor Changes (bug fixes)
	7.0.2 RFP mcux SDK 25.06.00
	Major Changes
	Minor Changes (bug fixes)
	7.0.2 revB mcux SDK 25.06.00
	Major Changes
	Minor Changes (bug fixes)
	7.0.2 revA mcux SDK 25.06.00
	Major Changes
	Minor Changes (bug fixes)
	Services
	Platform specific
	7.0.1 RFP mcux SDK 25.03.00
	Minor Changes (bug fixes)
	Services
	Platform specific
	7.0.1 revB mcux SDK 25.03.00
	Minor Changes (bug fixes)
	General
	Services
	Platform specific
	7.0.0 mcux SDK 24.12.00
	Minor Changes (bug fixes)
	Platform specific
	Services
	7.0.0 revB mcux SDK 24.12.00
	Major Changes (User Applications may be impacted)
	Bugfixes
	Platform specific
	Minor Changes (no impact on application)
	7.0.0 revA: KW45/KW47/MCX W71/MCX W72/K32W148
	Experimental Features only
	Main Changes
	Minor changes
	Bugfixes
	6.2.4: KW45/K32W1x/MCXW71/RX61x SDK 2.16.100
	Main Change
	Minor changes
	6.2.3: KW47 EAR1.0
	New features
	Supported features
	Unsuported features
	Main changes
	Minor changes
	6.2.2: KW45/K32W1 MR6 SDK 2.16.000
	Changes
	6.2.2: RW61x RFP4 SDK 2.16.000
	6.2.1: KW45/K32W1 MR5 SDK 2.15.000
	Major changes
	Minor Changes
	6.2.1: RW61x RFP3
	6.2.0: RT1060/RT1170 SDK2.15 Major
	6.1.8: KW45/K32W1 MR4
	6.1.7: KW45/K32W1 MR3
	6.1.4: RW610/RW612 RFP1
	6.1.4: KW45/K32W1 MR2
	6.1.3 KW45 MR1 QP1
	6.1.2: RW610/RW612 PRC1
	6.1.1: KW45/K32W1 MR1
	6.1.0: KW45/K32W1 RFP
	6.0.11: KW45/K32W1 PRC3.1

	FSCI: Framework Serial Communication Interface
	Overview
	FSCI packet structure
	constant definition
	FSCI Host
	FSCI ACK
	FSCI usage example
	Initialization
	Registering operation groups
	Implementing handler function

	Helper Functions Library
	Overview

	HWParameter: Hardware parameter
	Production Data Storage
	Overview
	Constant Definitions
	Data type definitions
	Co-locating application factory data in HW Parameters flash sector.
	Special reserved area at start of IFR1 in range [0x02002000..0x02002600[
	HW Parameters Production Data placement options

	LowPower
	Low Power reference user guide
	1- Connectivity Low Power SW architecture
	1.1 - SDK power manager
	1.2 - PWR Low power module
	1.2.1 - Functional description
	1.2.2 - Tickless mode support
	1.3 - Low power platform submodule
	1.4 - Low power board files
	2 - Low power Application user guide
	2.1 - Application Project updates
	2.1.1 - SDK Power Manager
	2.1.2 - PWR connectivity framework module
	2.1.3 -Low power platform submodule
	2.1.4 - Low power board files
	2.1.5 - Application RTOS Idle hook and tickeless hook functions
	2.2 - Low power and wake up sources Initialization
	2.3 - low power entry/exit sequences : board files updates
	2.4 - Low power constraint updates and optimization
	2.4.1 - Changing the Default Application low power constraint after firmware initialization
	2.4.2 - Changing the Application lowest low power constraint during application execution
	2.4.3 - Idle task implementation example
	2.4.3.1 Tickless mode support and Low power entry function
	2.4.3.2 Connectivity background tasks and Idle hook function example
	2. Low power features
	2.1 - FreeRTOS systicks
	2.2 - Selective RAM bank retention
	3 - Low power modes overview
	3.1 Wait for Interrupt (WFI)
	3.2 Sleep mode
	3.2 Deep Sleep mode
	3.3 Power Down mode
	3.4 Deep Power-down mode

	ModuleInfo
	Overview

	NVM: Non-volatile memory module
	Overview
	NVM boundaries and linker script requirement
	NVM Table
	NVM Table entry
	Active page
	ECC Fault detection
	Save policy:
	Constant macro definition

	OtaSupport: Over-the-Air Programming Support
	Overview

	SecLib_RNG: Security library and random number generator
	Random number generator
	Overview
	Initialization
	Seed handling
	Security Library
	Overview
	Support for security algorithms
	BLE advanced secure mode
	New elements in existing structures:
	New arguments in existing functions:
	New macros:
	New functions:
	LE Secure connections pairing:
	void ECDH_P256_FreeDhKeyDataSecure
	SecLib_GenerateBluetoothF5Keys
	SecLib_GenerateBluetoothF5KeysSecure
	SecLib_DeriveBluetoothSKD
	ELKE_BLE_SM_F5_DeriveKeys
	Privacy:
	SecLib_ObfuscateKeySecure
	SecLib_DeobfuscateKeySecure
	SecLib_VerifyBluetoothAh
	SecLib_VerifyBluetoothAhSecure
	SecLib_GenerateSymmetricKey
	SecLib_GenerateBluetoothEIRKBlobSecure
	A2B feature
	ECDH_P256_ComputeA2BKey
	ECDH_P256_FreeE2EKeyData
	SecLib_ExportA2BBlobSecure
	SecLib_ImportA2BBlobSecure
	LE Secure connections Pairing flow and SecLib usage:
	IRK flow and SecLib usage:
	A2B flow and SecLib usage:

	Sensors
	Overview
	Constant macro definitions

	SFC : Smart Frequency Calibration
	Overview
	Host SFC Module
	Algorithm parametrization
	Ppm target
	Filter size
	Maximum calibration interval
	Trig sample number
	SFC debug information
	RF_SFC module
	Feature enablement
	Detailed description
	Frequency measurements
	Filtering and Frequency estimation
	Frequency calibration
	Operational modes
	Convergence mode
	Monitoring mode
	Initialization and configuration
	Lowpower impact
	Power impact during active mode:
	Power impact during low power mode:

	RTOS
	FreeRTOS
	FreeRTOS kernel
	FreeRTOS kernel for MCUXpresso SDK Readme
	FreeRTOS kernel for MCUXpresso SDK
	Overview
	FreeRTOS example applications
	List of examples
	Location of examples
	Building a FreeRTOS example application
	FreeRTOS aware debugger plugin

	FreeRTOS kernel for MCUXpresso SDK ChangeLog
	Changelog FreeRTOS kernel for MCUXpresso SDK
	[Unreleased]
	Added
	[11.1.0_rev0]
	[11.0.1_rev0]
	[10.5.1_rev0]
	[10.4.3_rev1]
	[10.4.3_rev0]
	[10.4.3_rev0]
	[9.0.0_rev3]
	[9.0.0_rev2]
	[9.0.0_rev1]
	[9.0.0_rev0]
	[8.2.3]

	FreeRTOS kernel Readme
	MCUXpresso SDK: FreeRTOS kernel
	Getting started
	Getting help
	To consume FreeRTOS-Kernel
	Consume with CMake
	Consuming stand-alone - Cloning this repository
	Repository structure
	Code Formatting
	Line Endings
	Git History Optimizations
	Spelling and Formatting

	FreeRTOS drivers
	backoffalgorithm
	Readme
	MCUXpresso SDK: backoffAlgorithm Library
	backoffAlgorithm Library
	Reference example
	Building the library
	Building unit tests
	Checkout Unity Submodule
	Platform Prerequisites
	Steps to build Unit Tests
	Contributing

	corehttp
	MCUXpresso SDK: coreHTTP Client Library
	coreHTTP Client Library
	coreHTTP Config File
	Building the Library
	Building Unit Tests
	Platform Prerequisites
	Steps to build Unit Tests

	CBMC
	Reference examples
	Documentation
	Existing Documentation
	Generating Documentation

	Contributing

	corejson
	Readme
	MCUXpresso SDK: coreJSON Library
	coreJSON Library
	Reference example
	Building coreJSON
	Documentation
	Existing documentation
	Generating documentation
	Building unit tests
	Checkout Unity Submodule
	Platform Prerequisites
	Steps to build Unit Tests
	CBMC
	Contributing

	coremqtt
	MCUXpresso SDK: coreMQTT Library
	coreMQTT Client Library
	MQTT Config File
	Sending metrics to AWS IoT
	Upgrading to v2.0.0 and above
	Building the Library
	Building Unit Tests
	Checkout CMock Submodule
	Platform Prerequisites
	Steps to build Unit Tests

	CBMC
	Reference examples
	Documentation
	Existing Documentation
	Generating Documentation

	Contributing

	coremqtt-agent
	Readme
	MCUXpresso SDK: coreMQTT Agent Library
	coreMQTT Agent Library
	Cloning this repository
	coreMQTT Agent Library Configurations
	Porting the coreMQTT Agent Library
	Messaging Interface
	Additional Considerations
	Static Memory
	Subscription Management
	Building the Library
	Building Unit Tests
	Checkout CMock Submodule
	Unit Test Platform Prerequisites
	Steps to build Unit Tests
	CBMC
	Reference examples
	Documentation
	Generating documentation
	Getting help
	Contributing
	License

	corepkcs11
	Readme
	MCUXpresso SDK: corePKCS11 Library
	corePKCS11 Library
	Purpose
	corePKCS11 Configuration
	Build Prerequisites
	Library Usage
	Integration and Unit Tests
	Coverage Measurement and Instrumentation
	Running the Integration and Unit Tests
	CBMC
	Reference examples
	Porting Guide
	Related Example Implementations
	Documentation
	Existing Documentation
	Generating Documentation
	Security
	License

	freertos-plus-tcp
	Readme
	MCUXpresso SDK: FreeRTOS-Plus-TCP Library
	FreeRTOS-Plus-TCP Library
	Getting started
	Getting help
	Upgrading to V4.3.0 and above
	Upgrading to V3.0.0 and V3.1.0
	Generating pre V3.0.0 folder structure for backward compatibility:
	To consume FreeRTOS+TCP
	Consume with CMake
	Consuming stand-alone
	Porting
	Repository structure
	Note
	Kernel sources
	CBMC

