- W& MCUXpresso SDK Documentation
Release 25.09.00

NXP

Sep 19, 2025 -

Table of contents

1 EVK-MIMX8MQ 3
11 OVEIVIEW . . o oo e e e e e e e e e e e e e e e e 3
1.2 Getting Started with MCUXpresso SDKPackage 3

1.2.1 Getting Started with Package, 3
1.3 Getting Started with MCUXpresso SDKGitHub 24
1.3.1 Getting Started with MCUXpresso SDK Repository 24
1.4 Release NOteS ot i e e e e e 37
1.41 MCUXpresso SDKReleaseNotes, 37
1.5 Changelog o ittt e e e e e e e e e e e e e e e e e 41
1.5.1 MCUXpresso SDKChangelogo ... 41
1.6 Driver API Reference Manual eenen... 67
1.7 Middleware Documentation 67
171 Multicore e e e 67
1.7.2 FreeMASTER e e 67
1.7.3 FreeRTOS i e 67

2 MIMX8MQ6 69
2.1 CACHE: LMEM CACHE Memory Controller00, 69
2.2 ClocK . . . o 70
2.3 MIPICSI2Z RX: MIPI CSI2Z RXDIIVEr i i i ittt e e e e e e e et e e et e e 101
2.4 ECSPI: Enhanced Configurable Serial Peripheral Interface Driver 108
2.5 ECSPIDIIVET ottt e e e e e e e e e e e e 108
2.6 ECSPISDMA DIIVEL . . v v v it e e e e et e e e e e e et e et e e et e e e 121
2.7 GPC: General Power Controller Drivert 124
2.8 GPIO: General-Purpose Input/Output Driver 126
2.9 GPT:General Purpose Timerttt ittt e 130
2.10 I2C: Inter-Integrated Circuit Driver 138
211 I2CDTIVET . . o ot e e e e e e e e e e e 138
212 TomMUXC_ATIVET o ottt e e e e e e e e e e e e e e e e e e 150
2.13 IRQSTEER: Interrupt Request Steering Driver. 166
2.14 Common DIIVEr o e e e e e e e 171
2.15 LCDIF:LCDInterface o o i v i e e e e e e e e e 183
2.16 MCM: Miscellaneous Control Module 195
2.17 MIPIDSIDIIVEL . . v v v e 199
2.18 MIPI_DSI: MIPIDSI HostController it it 217
2.19 MU: Messaging Unit i ittt it e e e e e e et e e 217
2.20 OCOTP: On Chip One-Time Programmable controller.. 227
2.21 PWM: Pulse Width ModulationDriver 230
2.22 QSPI: Quad Serial Peripheral Interface 236
2.23 Quad Serial Peripheral Interface Driver 236
2.24 RDC: Resource Domain Controller 249
2.25 RDC_SEMAA42: Hardware SemaphoresDriver. 255
2.26 SAIL: Serial Audio Interface e 258
2.27 SAIDIIVEr . . . o it e e e e e e e e 258
2.28 SAISDMA DIiVEL . v v v v v i e 281
2.29 SDMA: Smart Direct Memory Access (SDMA) Controller Driver 284

2.30 SEMA4: Hardware Semaphores Driver.t ii it v i e 302

2.31 SNVS: Secure Non-Volatile Storage 305
2.32 Secure Non-Volatile Storage High-Power 305
2.33 Secure Non-Volatile Storage Low-Power 314
2.34 SPDIF: Sony/Philips Digital Interface 320
2.35 SRC: System Reset Controller Driver ittt 334
2.36 TMU: Thermal Management UnitDriver 337
2.37 UART: Universal Asynchronous Receiver/Transmitter Driver 342
2.38 UART DIIVEL . . . o o ot e 342
2.39 UART FreeRTOS DIIVEr it i it ittt e e e e e e e 358
240 UARTSDMADIIVEL . . v v vt ot it et e e e e e et et e e e e e 358
2.41 USDHC: Ultra Secured Digital Host Controller Driver 360
242 WDOG: Watchdog Timer Driver 387
Middleware 393
3.1 Motor Control e 393
3.1.1 FreeMASTER e 393
RTOS 431
4.1 FreeRTOS . . . o o o e e 431
41.1 FreeRTOSKkernel e 431
4.1.2 FreeRTOSAIIVEIS o ot ittt e e e e e e e e e e e et e e e e et e e 437
4.1.3 backoffalgorithm 437
414 corehttpo e e 440
415 COTEJSOML . v v v it e 442
4.1.6 coremqit. o i e e e e e e e e e e e e e e e e 445
417 coremqtt-agent e 448
4.1.8 corepkesll e e e 452
4.1.9 freertos-plus-tCp L 455

ii

MCUXpresso SDK Documentation, Release 25.09.00

This documentation contains information specific to the evkmimx8mq board.

Table of contents 1

MCUXpresso SDK Documentation, Release 25.09.00

2 Table of contents

Chapter 1

EVK-MIMX8MQ

1.1 Overview

The i.MX 8MQuad family of boards provides a powerful and flexible development system for
NXP’s Cortex-M4 MCUs.

MCU device and part on board is shown below:
* Device: MIMX8MQ6
* PartNumber: MIMX8MQ6DVAJZ

1.2 Getting Started with MCUXpresso SDK Package

1.2.1 Getting Started with Package
Overview

The NXP MCUXpresso software and tools offer comprehensive development solutions designed
to optimize, ease and help accelerate embedded system development of applications based on
general purpose, crossover and Bluetooth-enabled MCUs from NXP. The MCUXpresso SDK in-
cludes a flexible set of peripheral drivers designed to speed up and simplify development of
embedded applications. Along with the peripheral drivers, the MCUXpresso SDK provides an
extensive and rich set of example applications covering everything from basic peripheral use

MCUXpresso SDK Documentation, Release 25.09.00

case examples to demo applications. The MCUXpresso SDK also contains optional RTOS inte-
grations such as FreeRTOS and Azure RTOS, and device stack to support rapid development on
devices.

For supported toolchain versions, see MCUXpresso SDK Release Notes Supporting i. MX 8M Devices
(document MCUXSDKIMX8MRN).

For the latest version of this and other MCUXpresso SDK documents, see the MCUXpresso SDK
homepage MCUXpresso-SDK: Software Development Kit for MCUXpresso.

Application Code

Stacks and Middleware
(Connectivity, Security, Board Support
DMA, Filesystem, etc,)

Peripheral Drivers

CMSIS-CORE and CMSIS-DSP
(Device Header Files: Core Access Functions, Intri s, Peripheral & Interrupt Definitions, DSP Library)

Microcontroller Hardware

MCUXpresso SDK board support folders

MCUXpresso SDK board support provides example applications for NXP development and eval-
uation boards for Arm Cortex-M cores. Board support packages are found inside of the top level
boards folder, and each supported board has its own folder (MCUXpresso SDK package can sup-
port multiple boards). Within each <board name> folder there are various sub-folders to classify
the type of examples they contain. These include (but are not limited to):

* cmsis_driver__examples: Simple applications intended to concisely illustrate how to use CM-
SIS drivers.

* demo_ apps: Full-featured applications intended to highlight key functionality and use cases
of the target MCU. These applications typically use multiple MCU peripherals and may lever-
age stacks and middleware.

* driver__examples: Simple applications intended to concisely illustrate how to use the MCUX-
presso SDK’s peripheral drivers for a single use case.

* rtos_examples: Basic FreeRTOSTM OS examples showcasing the use of various RTOS objects
(semaphores, queues, and so on) and interfacing with the MCUXpresso SDK’s RTOS drivers

* multicore_examples: Simple applications intended to concisely illustrate how to use middle-
ware/multicore stack.

Example application structure This section describes how the various types of example ap-
plications interact with the other components in the MCUXpresso SDK. To get a comprehensive
understanding of all MCUXpresso SDK components and folder structure, see MCUXpresso SDK
API Reference Manual.

4 Chapter 1. EVK-MIMX8MQ

http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.09.00

Each <board name> folder in the boards directory contains a comprehensive set of examples
that are relevant to that specific piece of hardware. Although we use the hello world exam-
ple (part of the demo_ apps folder), the same general rules apply to any type of example in the
<board_name> folder.

In the hello_ world application folder you see the following contents:

armgcc
]v— Toolchain folders: project and linkerfiles
lar
| boardc -
}— Board macro definitions (LEDs, buttons, etc)
| board.h

clock_config.c
3 - . } Application-specific clock configuration
| clock_config.h
| demo_name.bin — Pre-compiled application
. demo_name.c = Application main source file

| demo_name.xml — project definition file for MCUXpresso IDE and PG
| pin_mux.c
}— Application-specific pin mux

| __ readme.txt —— Descriptionand instructions for running

All files in the application folder are specific to that example, so it is easy to copy and paste an
existing example to start developing a custom application based on a project provided in the
MCUXpresso SDK.

Parent topic:MCUXpresso SDK board support folders

| pin_mux.h

Locating example application source files When opening an example application in any of
the supported IDEs, a variety of source files are referenced. The MCUXpresso SDK devices folder
is the central component to all example applications. It means the examples reference the same
source files and, if one of these files is modified, it could potentially impact the behavior of other
examples.

The main areas of the MCUXpresso SDK tree used in all example applications are:

* devices/<device_name>: The device’s CMSIS header file, MCUXpresso SDK feature file and
a few other files

* devices/<device_name> /cmsis_ drivers: All the CMSIS drivers for your specific MCU
* devices/<device name>/drivers: All of the peripheral drivers for your specific MCU

* devices/<device_name>/<tool__name>: Toolchain-specific startup code, including vector ta-
ble definitions

* devices/<device_name> /utilities: Items such as the debug console that are used by many of
the example applications

* devices/<devices_name>/project: Project template used in CMSIS PACK new project creation

For examples containing an RTOS, there are references to the appropriate source code. RTOSes
are in the rtos folder. The core files of each of these are shared, so modifying one could have
potential impacts on other projects that depend on that file.

Parent topic:MCUXpresso SDK board support folders

Toolchain introduction

The MCUXpresso SDK release for i.MX 8M Devices includes the build system to be used with some
toolchains. In this chapter, the toolchain support is presented and detailed.

1.2. Getting Started with MCUXpresso SDK Package 5

MCUXpresso SDK Documentation, Release 25.09.00

Compiler/Debugger The release supports building and debugging with the toolchains listed in
Table 1.

The user can choose the appropriate one for development.

* Arm GCC + SEGGER J-Link GDB Server. This is a command line tool option and it supports
both Windows OS and Linux OS.

* TAR Embedded Workbench for Arm and SEGGER J-Link software. The IAR Embedded Work-
bench is an IDE integrated with editor, compiler, debugger, and other components. The
SEGGER J-Link software provides the driver for the J-Link Plus debugger probe and sup-
ports the device to attach, debug, and download.

Com- Supported host Debug Tool website
piler/Debugger 0oS probe
ArmGCC/J-Link Windows J-Link developer.arm.com/open-source/gnu-
GDB server 0S/Linux OS Plus toolchain/gnu-rm
www.segger.com

| |IAR/J-Link | Windows OS |J-Link Plus | www.iar.com

www.segger.com

|

Download the corresponding tools for the specific host OS from the website.

Note: To support i.MX 8M Dual/8M Quad, the patch for IAR should be installed. The patch named
iar_support_patch_imx8mgq.zip can be used with MCUXpresso SDK. See the readme.txt in the
patch for additional information about patch installation.

Parent topic:Toolchain introduction

Run a demo application using IAR

This section describes the steps required to build, run, and debug example applications pro-
vided in the MCUXpresso SDK. The hello_ world demo application targeted for the MIMX8MQ-EVK
hardware platform is used as an example, although these steps can be applied to any example
application in the MCUXpresso SDK.

Build an example application Do the following steps to build the hello_world example appli-
cation.

1. Open the desired demo application workspace. Most example application workspace files
can be located using the following path:

<install _dir>/boards/<board_name>/<example type>/<application name> /iar

Using the MIMX8MQ-EVK hardware platform as an example, the hello_world workspace is
located in;

<install dir>/boards/evkmimx8mq/demo_apps/hello_world/iar /hello_world.eww
Other example applications may have additional folders in their path.

2. Select the desired build target from the drop-down menu.

For this example, select hello_world — debug.

6 Chapter 1. EVK-MIMX8MQ

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm
http://www.segger.com
https://www.iar.com
http://www.segger.com
https://www.nxp.com/webapp/sps/download/license.jsp?colCode=SDK_MX8MQ_3RDPARTY_Patch&appType=file1&DOWNLOAD_ID=null

MCUXpresso SDK Documentation, Release 25.09.00

Relzaze

=2 @hello_world - Debug v
B board

M doc

B drivers

B source

B startup

B utilities

B Output

3. To build the demo application, click Make, highlighted in red in Figure 2.

Workspace
Debug

Files

E @ hello_world - Debug
M hoard

M doc

M drivers

W source

H startup

i utilities

| B Output

4. The build completes without errors.

Parent topic:Run a demo application using IAR

Run an example application To download and run the application, perform these steps:

1. This board supports the J-Link PLUS debug probe. Before using it, install SEGGER J-Link
software, which can be downloaded from http://www.segger.com/downloads/jlink/.

2. Connect the development platform to your PC via USB cable between the USB-UART MICRO
USB connector and the PC USB connector, then connect 12 V power supply and J-Link Plus
to the device.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug COM port (to determine the COM port number, see How to determine COM port).
Configure the terminal with these settings:

1. 115200 baud rate
2. No parity

3. 8 data bhits

4. 1 stop bit

1.2. Getting Started with MCUXpresso SDK Package 7

http://www.segger.com/downloads/jlink/

MCUXpresso SDK Documentation, Release 25.09.00

PUTTY Configuration

X
Category:
= Session Basic options for your PUTTY session ‘
""" Logging Specify the destinati t to connect t
= Terminal pecify the destination you want to connect to
- Keyboard Serial ling Speed
- Bell COM4 115200
- Features ConnactionTy
& Window onnection type:
- Appearance (JRaw () Telnet ()Rlogin ()SSH | (@) Serial
Behawopr Load, save or delete a stored session
- Translation
.- Selection Saved Sessions
- Colours
= Connection -
- Data Default Settings Load
- Proxy
- Telnet Save
- Rlogin
H SSH Delete
- Serial
Close window on exit:
() Aways () Never (®) Only on clean exit
About Open Cancel

4. In IAR, click Download and Debug to download the application to the target.

>0 5 e -=[e] -

5. The application then downloads to the target and automatically runs to the main() function.

DOER@ = £RG OC

24 Q>S5 B >EOFN RO=EEecOTNAIry -0 a-0in00

Vorkspace v o X |hel|o_world.(xl
Debug ~| \main()

39
Files %o o i) ST
B @ hello_world - Debug v 41 T + Prototypes
8 board T I T P P PP PP PP PP Y
M doc 43
i drivers B[] AR e E bR R RS R R R R R R RS R R R bR R R b bR R E b8 bR R R b8 R R b8 AR
H source 45 Code
W starup B g g T T Rt eI T e P) /
@ ol utilities a7 s
-_Output 43 # fbrief Main function

43 /

B S0 int main(void)

519 {

52 char ch;

53

54 /* Init board hardware. */

| 55 BOARD InitHardware();
ce

6. Run the code by clicking Go to start the application.

Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

" 3=y > a -

7. The hello_world application now runs and a banner appears on the terminal. If this does
not occur, check your terminal settings and connections.

Note: For converting the DDR target elf to bin, run the following commands (take git bash console as
—example).
1. For the elf file built by Arm GCC:

$ <ARMGCC PATH> /bin/arm-none-eabi-objcopy.exe -Obinary --remove-section=.stacktop_and_ pc
—»<hello_world__<mcore type>.elf> <hello_world__<mcore type>.bin>

2. For the elf/out file built by IAR:

$ <ARMGCC PATH> /bin/arm-none-eabi-objcopy.exe --remove-section=.stacktop_and_ pc hello_ world__
—<mcore type>.elf hello_world__<mcore type>_ stripped.elf

$ <IAR PATH>/arm/bin/ielftool.exe --bin hello_world_<mcore type>_ stripped.elf hello_world__<mcore
—type>.bin

Parent topic:Run a demo application using IAR

Run a demo using Arm GCC

This section describes the steps to configure the command line Arm GCC tools to build, run, and
debug demo applications and necessary driver libraries provided in the MCUXpresso SDK. The
hello_ world demo application targeted for i.MX 8M Quad platform is used as an example, though
these steps can be applied to any board, demo or example application in the MCUXpresso SDK.

Linux OS host The following sections provide steps to run a demo compiled with Arm GCC on
Linux host.

Set up toolchain This section contains the steps to install the necessary components required
to build and run a MCUXpresso SDK demo application with the Arm GCC toolchain, as supported
by the MCUXpresso SDK.

Install GCC Arm embedded tool chain Download and run the installer from
launchpad.net/gcc-arm-embedded. This is the actual toolset (in other words, compiler, linker,

1.2. Getting Started with MCUXpresso SDK Package 9

https://launchpad.net/gcc-arm-embedded

MCUXpresso SDK Documentation, Release 25.09.00

and so on). The GCC toolchain should correspond to the latest supported version, as described
in the MCUXpresso SDK Release Notes (document MCUXSDKRN).

Note: See Host setup for Linux OS before compiling the application.

Parent topic:Set up toolchain

Add a new system environment variable for ARMGCC_DIR Create a new system environ-
ment variable and name it ARMGCC_ DIR. The value of this variable should point to the Arm
GCC Embedded tool chain installation path. For this example, the path is:

$ export ARMGCC_ DIR=/work/platforms/tmp/gcc-arm-none-eabi-7-2017-q4-major
$ export PATH= $PATH:/work/platforms/tmp/gcc-arm-none-eabi-7-2017-g4-major/bin

Parent topic:Set up toolchain

Parent topic:Linux OS host

Build an example application To build an example application, follow these steps.

1. Change the directory to the example application project directory, which has a path similar
to the following:

<install_dir>/boards/<board_name>/<example_ type>/<application name>/armgcc

For this example, the exact path is: <install dir>/boards/evkmimx8mq/demo_apps/
hello_world /armgce

2. Run the build_debug.sh script on the command line to perform the build. The output is
shown as below:

$./build_ debug.sh

-- TOOLCHAIN_ DIR: /work/platforms/tmp/gcc-arm-none-eabi-7-2017-q4-major

-- BUILD_TYPE: debug

-- TOOLCHAIN_DIR: /work/platforms/tmp/gcc-arm-none-eabi-7-2017-q4-major

-- BUILD_TYPE: debug

-- The ASM compiler identification is GNU

-- Found assembler: /work/platforms/tmp/gcc-arm-none-eabi-7-2017-g4-major/bin/arm-none-eabi-gcc
-- Configuring done

-- Generating done

-- Build files have been written to:
/work/platforms/tmp/nxp/SDK__2.3.0__EVK-MIMX8MQ/boards/evkmimx8mq/demo__apps/hello__
—world /armgcc

Scanning dependencies of target hello_world.elf

\[6%)] Building C object CMakeFiles/hello__world.elf.dir/work/platforms/tmp/nxp/SDK_2.3.0\ _
—EVK-MIMX8MQ/boards/evkmimx8mq/demo)\ _apps/hello__world/hello_world.c.obj

< -- skipping lines -- >

[100%] Linking C executable debug/hello_ world.elf

[100%)] Built target helloworld.elf

Parent topic:Linux OS host

Run an example application This section describes steps to run a demo application using J-
Link GDB Server application.

After the J-Link interface is configured and connected, follow these steps to download and run
the demo applications:

1. Connect the development platform to your PC via USB cable between the USB-UART con-
nector and the PC USB connector. If using a standalone J-Link debug pod, also connect it to
the SWD/JTAG connector of the board.

10 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

2. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the

debug serial port number (to determine the COM port number, see How to determine COM
port). Configure the terminal with these settings:

1. 115200 baud rate, depending on your board (reference
BOARD_DEBUG UART BAUDRATE variable in the board.h file)
2. No parity
3. 8 data bits
4. 1 stop hit
Category:
= Session Basic options for your PuTTY session
- Logging Specify the destinat tt tt
= Terminal pecify the destination you want to connect to
- Keyboard Serial line Speed
- Bell COM4 115200
- Features ~ oy
& Window onnection type: _ .
- Appearance (JRaw () Telnet ()Rlogin ()SSH | (@) Serial
~Behaviour Load, save or delete a stored session
- Translation
.- Selection Saved Sessions
- Colours
= Connection -
_Data Default Settings Load
Proxy
- Telnet Save
- Rlogin
H SSH Delete
- Serial
Close window on exit:
() Aways () Never (®) Only on clean exit
About Open Cancel

3. Open the J-Link GDB Server application. Assuming the J-Link software is installed, the ap-

plication can be launched from a new terminal for the MIMX8MQ6_M4 device:

$ JLinkGDBServer -if JTAG -device MIMX8MQ6\ M4
SEGGER J-Link GDB Server V6.22a Command Line Version
JLinkARM.dIl V6.22g \(DLL compiled Jan 17 2018 16:40:32\)
Command line: -if JTAG -device MIMX8MQ6\ M4

GDBInit file: none

GDB Server Listening port: 2331
SWO raw output listening port: 2332
Terminal I/O port: 2333

(continues on next page)

1.2. Getting Started with MCUXpresso SDK Package 11

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)

Accept remote connection: yes
< -- Skipping lines -- >

Target connection timeout: 0 ms
—————— J-Link related settings------
J-Link Host interface: USB
J-Link script: none

J-Link settings file: none

Target device: MIMX8MQ6\ M4

Target interface: JTAG

Target interface speed: 1000 kHz

Target endian: little

Connecting to J-Link...

J-Link is connected.

Firmware: J-Link V10 compiled Jan 11 2018 10:41:05
Hardware: V10.10

S/N: 600101610

Feature(s): RDI, FlashBP, FlashDL, JFlash, GDB
Checking target voltage...

Target voltage: 3.39 V

Listening on TCP/IP port 2331

Connecting to target...

J-Link found 1 JTAG device, Total IRLen = 4
JTAG ID: 0x5BA00477 \(Cortex-M4\)

Connected to target

Waiting for GDB connection...

. Change to the directory that contains the example application output. The output can be

found in using one of these paths, depending on the build target selected:

<install _dir>/boards/<board name>/<example type>/<application name>/armgcc/debug
<install_dir>/boards/<board_name>/<example_ type>/<application_name>/armgcc/release
For this example, the path is:

<install\ _dir\>/boards/evkmimx8mq/demo\ apps/hello\ world/armgcc/debug

. Start the GDB client:

$ arm-none-eabi-gdb hello_ world.elf

GNU gdb (GNU Tools for Arm Embedded Processors 7-2017-q4-major) 8.0.50.20171128-git
Copyright (C) 2017 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type ”show copying”
and ”show warranty” for details.

This GDB was configured as ”--host=x86_ 64-linux-gnu --target=arm-none-eabi”.
Type ”show configuration” for configuration details.

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help”.

Type ”apropos word” to search for commands related to "word”...

Reading symbols from hello_ world.elf...

(gdb)

6. Connect to the GDB server and load the binary by running the following commands:

1. target remote localhost:2331
2. monitor reset

3. monitor halt

12

Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

4. load

(gdb) target remote localhost:2331

Remote debugging using localhost:2331

0x1ffe0008 in ___isr\ vector \(\)

(gdb) monitor reset

Resetting target

(gdb) monitor halt

(gdb) load

Loading section .interrupts, size 0x240 Ima 0x1{fe0000
Loading section .text, size 0x3858 lma 0x1{fe(0240
Loading section .ARM, size 0x8 lma 0x1ffe3a98
Loading section .init\ array, size 0x4 lma Ox1ffe3aa0
Loading section .fini_array, size 0x4 lma 0x1ffe3aa4
Loading section .data, size 0x64 lma Ox1ffe3aa8
Start address 0x1ffe02f4, load size 15116

Transfer rate: 81 KB/sec, 2519 bytes/write.

\(gdb\)

The application is now downloaded and halted at the reset vector. Execute the monitor go com-
mand to start the demo application.

(gdb) monitor go

The hello_ world application is now running and a banner is displayed on the terminal. If this is
not true, check your terminal settings and connections.

Parent topic:Linux OS host
Parent topic:Run a demo using Arm GCC

Windows OS host The following sections provide steps to run a demo compiled with Arm GCC
on Windows OS host.

Set up toolchain This section contains the steps to install the necessary components required
to build and run a MCUXpresso SDK demo application with the Arm GCC toolchain on Windows
0S, as supported by the MCUXpresso SDK.

1.2. Getting Started with MCUXpresso SDK Package 13

MCUXpresso SDK Documentation, Release 25.09.00

Install GCC Arm Embedded tool chain Download and run the installer from GNU Arm Em-
bedded Toolchain. This is the actual toolset (in other words, compiler, linker, and so on). The
GCC toolchain should correspond to the latest supported version, as described in MCUXpresso
SDK Release Notes.

Note: See Appendix B for Windows OS before compiling the application.

Parent topic:Set up toolchain

Add a new system environment variable for ARMGCC_DIR Create a new system environ-
ment variable and name it ARMGCC_DIR. The value of this variable should point to the Arm
GCC Embedded tool chain installation path.

Reference the installation folder of the GNU Arm GCC Embedded tools for the exact path name.
Parent topic:Set up toolchain

Parent topic:Windows OS host

Build an example application To build an example application, follow these steps.

1. Change the directory to the example application project directory, which has a path similar
to the following:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/<core_instance>/armgcc
For this example, the exact pathis: <install_dir>/boards/evkmimx8mgq/demo_apps/hello_world/armgcc
Note: To change directories, use the ‘cd’ command.

2. Open a GCC Arm Embedded tool chain command window. To launch the window, from
the Windows operating system Start menu, go to “Programs -> GNU Tools ARM Embedded
<version>” and select “GCC Command Prompt”.

GMNU Tools for ARM Embedded Process
Documentation
%| GCC Command Prompt
| &7 Uninstall GNU Tools for ARM Embet

3. Type “build_debug.bat” on the command line or double click on the “build_debug.bat” file
in Windows Explorer to perform the build. The output is shown in this figure:

[2321

[188:]1 Linking C executabhle debug*hello_world.elf
[188x1 Built target hello_world.elf

C:wnxp~SDKE_2 .3 _A_EUK-MIMEBMQ“boards “evkmninx8mg demo_appsshello_world-armgcc>IF "
"o== """ {pause 7
| Press any key to continue . . .

Parent topic:Windows OS host

Run an example application This section describes steps to run a demo application using J-
Link GDB Server application.

After the J-Link interface is configured and connected, follow these steps to download and run
the demo applications:

14 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

1. Connect the development platform to your PC via USB cable between the USB-UART con-

nector and the PC USB connector. If using a standalone J-Link debug pod, also connect it to
the SWD/JTAG connector of the board.

2. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the

debug serial port number (to determine the COM port number, see Appendix A). Configure
the terminal with these settings:

1. 115200 baud rate

2. No parity
3. 8 data bhits
4. 1 stop bit
Category:
I Session Basic options for your PuTTY session
~ Logging Specify the destina Lt tt
= Terminal pecify the destination you want to connect to
- Keyboard Serial line Speed
.- Bell COoM4 115200
- Features g onTy
= Window onnection type:
. Appearance (ORaw () Telnet ()Rlogin ()SSH | (@) Serial
Behawopr Load, save or delete a stored session
- Translation
. Selection Saved Sessions
- Colours
= Connection -
--Data Default Settings Load
- Proxy
- Telnet Save
- Rlogin
[+ SSH Delete
- Serial
Close window on exit:
(JAways ()Never (@) Only on clean exit
About Open Cancel

. Openthe]J-Link GDB Server application. Assuming the J-Link software is installed, the appli-

cation can be launched by going to the Windows operating system Start menu and selecting
“Programs -> SEGGER -> J-Link <version> J-Link GDB Server”.

. Modify the settings as shown below. The target device selection chosen for this example is

the MIMX8MQ6_M4.

. After it is connected, the screen should resemble this figure:

1.2.

Getting Started with MCUXpresso SDK Package 15

MCUXpresso SDK Documentation, Release 25.09.00

SEGGER J-Link GDE Server V6.22qg - Config £
Connection ta J-Link
f+ LISE [Senal Ma.

" TCFAP

Target device

MIMEMOE_M4 L]

|Little endian

Target interface

|ITAG ~|

Speed Mizc. zettings

(™ Auto zelection [Init regizters
(" Adaptive clocking
f= (1000 | kHz

Command line option

|-seleu:t 1SE -device MIMASMAE_bM4 -if JTAG -zpeed 1000 -noir

k. Cancel

I'](../images/5_2_3_segger j-link gdb_server screen_after_succes.png "SEGGER J-Link GDB server,

—screen after successful connection”)

6. If not already running, open a GCC Arm Embedded tool chain command window. To launch
the window, from the Windows operating system Start menu, go to “Programs -> GNU Tools
ARM Embedded <version>” and select “GCC Command Prompt”.

GMU Teols for ARM Embedded Process:
Documentation
*.| GCC Command Prompt
| 7 Uninstall GNU Tools for ARM Embet

7. Change to the directory that contains the example application output. The output can be
found in using one of these paths, depending on the build target selected:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/debug
<install _dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/release
For this example, the path is:
<install_dir>/boards/evkmimx8mq/demo_apps/hello_world/armgcc/debug

8. Run the command “arm-none-eabi-gdb.exe <application_name>.elf”. For this example, it is
“arm-none-eabi-gdb.exe hello_world.elf”.

16 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

EA arm-none-eabi-gdb hello_world.elf || == @

C:wnxpsEDKE_2.3.8_EUK-MIMEEBMQ “boards “evkmnimxBmg demo_apps “hello_world-armgcc sdehu
grarm—none—eahi—gdbh hello_world.elf 1
GHNU gdb (GMU Tools for Arm Embedded Processors 7-2017-qgd4-major> B.@.580.20171128-
git

Copyright <G> 2817 Free Software Foundation, Inc.

License GPLwv3+: GMU GPL verzion 3 or later <http:- s gnu.orgslicenses gpl.html:
Thiz is free software: you are free to change and redistribute it.

There iz MO WARRANTY, to the extent permitted by law. Type “show copying"

and "show warranty" for details.

This GDB was configured as "——host=i686—wb4—minguw32 ——target=arm—none—eabhi'.
Type "show configuration' for configuration details.

For bug reporting instructions, please see:

Chttp: /7w .gnu.orgs/sof tware/gdb/bugs./>.

Find the GDB manual and other documentation resources online at:

<http: /7w .gnu.orgssof twaresgdb/documentations>.

For help. type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from hello_world.elf...done.

Cgdh2

9. Run these commands:
1. “target remote localhost:2331”
2. “monitor reset”
3. “monitor halt”
4. “load”

10. The application is now downloaded and halted at the reset vector. Execute the “monitor
g0” command to start the demo application.

The hello_world application is now running and a banner is displayed on the terminal. If
this is not true, check your terminal settings and connections.

Parent topic:Windows OS host

Parent topic:Run a demo using Arm GCC

1.2. Getting Started with MCUXpresso SDK Package 17

MCUXpresso SDK Documentation, Release 25.09.00

Running an application by U-Boot

This section describes the steps to write a bootable SDK bin file to TCM or DRAM with the prebuilt
U-Boot image for the i.MX processor. The following steps describe how to use the U-Boot:

1. Connect the DEBUG UART slot on the board to your PC through the USB cable. The Windows
OS installs the USB driver automatically, and the Ubuntu OS finds the serial devices as well.

2. On Windows OS, open the device manager, find USB serial Port in Ports (COM and LPT).
Assume that the ports are COM9 and COM10. One port is for the debug message from the
Cortex-A53 and the other is for the Cortex-M7. The port number is allocated randomly,
so opening both is beneficial for development. On Ubuntu OS, find the TTY device with
name /dev/ttyUSB* to determine your debug port. Similar to Windows OS, opening both is
beneficial for development.

sy Device Manager l = | (=] |_—$-"'vh1
File Action View Help
=@ EHm| &

4 = B49163-12

% Batteries

- /M Computer

-

g Disk drives

- B Display adapters

> ¢y DVD/CD-ROM drives

> E’_«-J Human Interface Devices
-5 Imaging devices

B

"R

-E¥F Jungo
I Keyboards

"R

}3 Mice and other pointing devices
B Monitors

¥ MNetwork adapters

4 1? Ports (COM 8 LPT)

. .73 ECP Printer Port (LPT1)

Y2¥ USB Serial Port (COML0)

RSO

"R

>) Processors

> & Scund, video and game controllers
> 45 Storage controllers

> M| Systern devices

p - § Universal Serial Bus controllers

3. Build the application (for example, hello_ world) to get the bin file (hello_ world.bin).

4. Prepare an SD card with the prebuilt U-Boot image and copy bin file (hello_ world.bin) into
the SD card. Then, insert the SD card to the target board. Make sure to use the default boot
SD slot and check the dipswitch configuration.

5. Open your preferred serial terminals for the serial devices, setting the speed to 115200 bps,
8 data bits, 1 stop bit (115200, 8N1), no parity, then power on the board.

6. Power on the board and hit any key to stop autoboot in the terminals, then enter to U-Boot
command line mode. You can then write the image and run it from TCM or DRAM with the

18 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

following commands:

1. If the hello_ world.bin is made from the debug/release target, which means the binary
file will run at TCM, use the following commands to boot:

e fatload mmc 1:1 0x48000000 hello world.bin
* ¢p.b 0x48000000 0x7e0000 0x20000
* bootaux 0x7e0000

2. If the hello_ world.bin is made from the ddr_debug/ddr_ release target, which means the
binary file runs at DRAM, use the following commands:

e fatload mmec 1:1 0x80000000 hello world.bin
¢ dcache flush

* bootaux 0x80000000 Note: For m4 examples under the ddr target with Core A kernel
boot, change the Linux dtb file specifically in U-Boot before the kernel starts. Use
the following command:

setenv fdtfile fsl-imx8mq-evk-m4.dtb
save

Note: For Linux release version L5.15.71-2.2.0 and later, the run prepare_mcore command
must run before the bootaux command.

7 +0000)

ct ID [0x5110], Addr

I'](../images/u_boot__command_to_run_application on_ dram.png "U-Boot command to run application
—on DRAM”)

1.2. Getting Started with MCUXpresso SDK Package 19

MCUXpresso SDK Documentation, Release 25.09.00

7. Open another terminal application on the PC, such as PuTTY and connect to the debug COM
port (to determine the COM port number, see How to determine COM port). Configure the

terminal with these settings:
* 115200
* No parity
» 8 data bits
* 1 stop bit

8. The hello_world application is now running and a banner is displayed on the terminal. If
this is not true, check your terminal settings and connections.

£P COM10 - PuTTY ESEEE™)

How to determine COM port

This section describes the steps necessary to determine the debug COM port number of your NXP
hardware development platform.
1. To determine the COM port, open the Windows operating system Device Manager. This
can be achieved by going to the Windows operating system Start menu and typing Device
Manager in the search bar, as shown in Figure 1.

20 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

Control Panel (3)

% Device Manager
@ View devices podoaarintors

| Device Manager
a8 Update devict yiey and update your hardware's settings and driver s

Pictures (9)

|| Companies.inc

|| hutinc

|| PTPStilImageTables.inc
| VIDs_PIDs. TXT

|| SCSI_CDB_RovCpyRslts.inc
|| SCSLCDB_SPC.inc

|| hei_command_table.nc
|| RNDIS_OIDuing

|| COCRequests.inc

Files (1)

|=| dialog_settings.xml

p' See more results

| Device Manager ® | | Shut down | #

2. In the Device Manager, expand the Ports (COM & LPT) section to view the available ports.
Depending on the NXP board you’re using, the COM port can be named differently.

1. USB-UART interface

4.7 Ports (COM & LPT)
i L= ? Communications Port (COML)

| ' Silicon Labs CP210x USB to UART Bridge (COM37) |

1.2. Getting Started with MCUXpresso SDK Package 21

MCUXpresso SDK Documentation, Release 25.09.00

How to define IRQ handler in CPP files

With MCUXpresso SDK, users could define their own IRQ handler in application level to

override the default IRQ handler. For example, to override the default PIT IRQHandler define
in startup_ DEVICE.s, application code like app.c can be implement like:

c
void PIT_IRQHandler(void)

// Your code
}

When application file is CPP file, like app.cpp, then extern ”C” should be used to ensure the func-
tion prototype alignment.

Cpp
extern "C” {
void PIT_IRQHandler(void);

}
void PIT TRQHandler(void)

// Your code
}

Host setup

An MCUXpresso SDK build requires that some packages are installed on the Host. Depending on
the used Host operating system, the following tools should be installed.

Linux:

* Cmake

$ sudo apt-get install cmake
$ # Check the version >= 3.0.x
$ cmake —version
Windows:
* MinGW

The Minimalist GNU for Windows OS (MinGW) development tools provide a set of tools that
are not dependent on third party C-Runtime DLLs (such as Cygwin). The build environment
used by the SDK does not utilize the MinGW build tools, but does leverage the base install
of both MinGW and MSYS. MSYS provides a basic shell with a Unix-like interface and tools.

1. Download the latest MInGW mingw-get-setup installer from source-
forge.net/projects/mingw/files/Installer;.

2. Run the installer. The recommended installation path is C:\MinGW, however, you may
install to any location.

Note: The installation path cannot contain any spaces.

3. Ensure that mingw32-base and msys-base are selected under Basic Setup.

22 Chapter 1. EVK-MIMX8MQ

http://sourceforge.net/projects/mingw/files/Installer/
http://sourceforge.net/projects/mingw/files/Installer/

MCUXpresso SDK Documentation, Release 25.09.00

in nstallation Manager
B MinGW Install Manag

Installation Package Settings

Basic Setup
All Packages

Package
D mingw-developer-tool...
mingw32-base
D mingw32-gcc-ada
D mingw32-gce-fortran
D mingw32-gcc-g++
D mingw32-gcc-objc
msys-base

Class Installed Version
bin
bin
bin
bin
bin
bin
bin

Repository Version

2013072300
2013072200
4.8.1-4
4.8.1-4
4.8.1-4
4.8.1-4
2013072300

Description

An MSYS Installation for MinGW Developers (meta)
A Basic MinGW Installation

The GNU Ada Compiler

The GNU FORTRAN Compiler

The GNU C++ Compiler

The GNU Objective-C Compiler

A Basic M5YS Installation (meta)

4. Click **Apply Changes** in the **Installation®* menu and follow the remaining instructions to complete,

—the installation.

|'[](../images/completemingw and msys installation.png "Complete MinGW and MSYS installation”)

5. Add the appropriate item to the Windows operating system path environment variable. It can be found,,
—under **Control Panel**-\ >**System and Security**-\ >**System**-\ >**Advanced System Settings** in
—the **Environment Variables...** section. The path is: *<mingw__install dir>\bin".

Assuming the default installation path, *C:\MinGW", an example is as shown in [Figure 3](host_setup.md

—#ADDINGPATH). If the path is not set correctly, the toolchain does not work.

Note: If you have *C:\MinGW\msys\x.x\bin" in your PATH variable \(as required by KSDK 1.0.0\),
—remove it to ensure that the new GCC build system works correctly.

|'[](../images/add_path_ to_systems environment.png ”Add Path to systems environment”)

* Cmake

1. Download CMake 3.0.x from www.cmake.org/cmake/resources/software.html.

2. Install CMake, ensuring that the option Add CMake to system PATH is selected when
installing. The user chooses to select whether it is installed into the PATH for all users
or just the current user. In this example, it is installed for all users.

1.2. Getting Started with MCUXpresso SDK Package

23

http://www.cmake.org/cmake/resources/software.html

MCUXpresso SDK Documentation, Release 25.09.00

A CMake 3.0.2 Setup == Ed

Install Options
Choose options for installing CMake 3.0.2

By default CMake does not add its directory to the system PATH.

Do not add CMake to the system PATH
@ Add CMake to the system PATH for all users
Add UMake to the system FPATH for current user

[] create CMake Desktop Icon

[{Badr. HN&xt}][Canr:el:

3. Follow the remaining instructions of the installer.
4. You may need to reboot your system for the PATH changes to take effect.

1.3 Getting Started with MCUXpresso SDK GitHub

1.3.1 Getting Started with MCUXpresso SDK Repository
Installation

NOTE

If the installation instruction asks/selects whether to have the tool installation path added to
the PATH variable, agree/select the choice. This option ensures that the tool can be used in any
terminal in any path. Verify the installation after each tool installation.

Install Prerequisites with MCUXpresso Installer The MCUXpresso Installer offers a quick
and easy way to install the basic tools needed. The MCUXpresso Installer can be obtained from
https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Dependency-Installation. The MCUX-
presso Installer is an automated installation process, simply select MCUXpresso SDK Developer
from the menu and click install. If you prefer to install the basic tools manually, refer to the next
section.

24 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

MCUXpresso Installer v24.09

MCUXpresso Installer

Choose one or more categories from the list below:

Software Kits

MCUXpresso SDK Developer

fora Vv M will install:
1. macos-homebrew - Homebrew, package mang

[

Zephyr Developer
Ne - 3

&

Lo W

. Arm GNU Toolchain - Toolchain for Arm Archit
0. libncurses5 - Library managing an application’
. Arm GNU Toolchain add-ons - Additional NXP
. Arm GNU Toolchain Standalone add-ons - Ad
. Python - Programming language support.
Arm GNU Toolchain 10. pip - Package installer for Python.

. . . vest - Manage multiple Git repositories unde
iain and additional B hre hbrre o

Standalone Toolchain Add-ons

Matter Developer
Ne s for a Matte

al

~ g

=]

ARM components

o

Alternative: Manual Installation
Basic tools

Git Git is a free and open source distributed version control system. Git is designed to handle
everything from small to large projects with speed and efficiency. To install Git, visit the official
Git website. Download the appropriate version(you may use the latest one) for your operating
system (Windows, macOS, Linux). Then run the installer and follow the installation instructions.

User git --version to check the version if you have a version installed.
Then configure your username and email using the commands:

git config --global user.name ”Your Name”
git config --global user.email "youremail@example.com”

Python Install python 3.10 or latest. Follow the Python Download guide.

Use python --version to check the version if you have a version installed.

West Please use the west version equal or greater than 1.2.0

Note: you can add option '--default-timeout=1000" if you meet connection issue. Or you may set a different,
—source using option '-i'.

for example, in China you could try: pip install -U west -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install -U west

1.3. Getting Started with MCUXpresso SDK GitHub 25

https://git-scm.com/
https://wiki.python.org/moin/BeginnersGuide/Download

MCUXpresso SDK Documentation, Release 25.09.00

Build And Configuration System

CMake Itis strongly recommended to use CMake version equal or later than 3.30.0. You can get
latest CMake distributions from the official CMake download page.

For Windows, you can directly use the .msi installer like cmake-3.31.4-windows-x86_64.msi to
install.

For Linux, CMake can be installed using the system package manager or by getting binaries from
the official CMake download page.

After installation, you can use cmake --version to check the version.

Ninja Please use the ninja version equal or later than 1.12.1.

By default, Windows comes with the Ninja program. If the default Ninja version is too old, you
can directly download the ninja binary and register the ninja executor location path into your
system path variable to work.

For Linux, you can use your system package manager or you can directly download the ninja
binary to work.

After installation, you can use ninja --version to check the version.

Kconfig MCUXpresso SDK uses Kconfig python implementation. We customize it based on our
needs and integrate it into our build and configuration system. The Kconfiglib sources are placed
under mcuxsdk/scripts/kconfig folder.

Please make sure python environment is setup ready then you can use the Kconfig.

Ruby Our build system supports IDE project generation for iar, mdk, codewarrior and xtensa
to provide OOBE from build to debug. This feature is implemented with ruby. You can follow
the guide ruby environment setup to setup the ruby environment. Since we provide a built-in
portable ruby, it is just a simple one cmd installation.

If you only work with CLI, you can skip this step.

Toolchain MCUXpresso SDK supports all mainstream toolchains for embedded development.
You can install your used or interested toolchains following the guides.

Toolchain Download and Installation Guide Note
Armgcc Arm GNU Toolchain Install Guide ARMGCC is default
toolchain
IAR IAR Installation and Licensing quick ref-
erence guide
MDK MDK Installation
Armclang Installing Arm Compiler for Embedded
Zephyr Zephyr SDK
Codewarrior NXP CodeWarrior
Xtensa Tensilica Tools

NXP S32Compiler RISC- NXP Website
V Zen-V

26 Chapter 1. EVK-MIMX8MQ

https://cmake.org/download/
https://github.com/Kitware/CMake/releases/download/v3.31.4/cmake-3.31.4-windows-x86_64.msi
https://cmake.org/download/
https://github.com/ninja-build/ninja/releases
https://github.com/ninja-build/ninja/wiki/Pre-built-Ninja-packages
https://github.com/ninja-build/ninja/releases
https://github.com/ninja-build/ninja/releases
https://learn.arm.com/install-guides/gcc/arm-gnu/
https://www.iar.com/siteassets/knowledge/support/tech-notes/qr_lms2.pdf
https://www.iar.com/siteassets/knowledge/support/tech-notes/qr_lms2.pdf
https://developer.arm.com/documentation/109350/v6/Installation?lang=en
https://developer.arm.com/documentation/100748/0618/Getting-Started/Installing-Arm-Compiler-for-Embedded
https://docs.zephyrproject.org/latest/develop/toolchains/zephyr_sdk.html
https://www.nxp.com/design/design-center/software/development-software/codewarrior-development-tools:CW_HOME
https://tensilicatools.com/platforms/
https://www.nxp.com/search?keyword=NXP%2520S32Compiler%2520RISC-V&start=0

MCUXpresso SDK Documentation, Release 25.09.00

After you have installed the toolchains, register them in the system environment variables. This
will allow the west build to recognize them:

Toolchain Environ- Example Cmd
ment Line Ar-
Variable gument
Armgcc AR- C:\armgcc for windows/usr for Linux. Typically -
MGCC_DIR arm-none-eabi-* is installed under /usr/bin toolchain
armgcc
IAR IAR DIR C:\iar\ewarm-9.60.3 for =~ Windows/opt/iarsystems/ -
bxarm-9.60.3 for Linux toolchain
iar
MDK MDK DIR C:\Keil_v5 for Windows.MDK IDE is not officially sup- -
ported with Linux. toolchain
mdk
Armclang ARM- C:\ArmCompilerforEmbedded6.22 for ~Windows/opt/ -
CLANG_DIF ArmCompilerforEmbedded6.21 for Linux toolchain
mdk
Zephyr ZEPHYR SL c:\NXP\zephyr-sdk-<version> for windows/opt/ -
zephyr-sdk-<version> for Linux toolchain
zephyr
CodeWar- CW_DIR C:\Freescale\CW MCU v11.2 for windowsCodeWarrioris -
rior not supported with Linux toolchain
code-
warrior
Xtensa XCC_DIR C:\xtensa\XtDevTools\install\tools\RI-2023.11-win32\ =
XtensaTools for windows/opt/xtensa/XtDevTools/ toolchain
install/tools/RI-2023.11-Linux/XtensaTools for Linux Xtensa
NXP RISCVL- C:\riscv-llvin-win32_b298 b298 2024.08.12 for Win- -
S32Compiler LVM_DIR dows/opt/riscv-llvin-Linux-x64_ b298_b298_ 2024.08.12 toolchain
RISC-V for Linux riscvl-
Zen-V lvm

* The <toolchain>_DIR is the root installation folder, not the binary location folder. For IAR,
it is directory containing following installation folders:

arm
common
install-info

* MDK IDE using armclang toolchain only officially supports Windows. In Linux, please di-
rectly use armclang toolchain by setting ARMCLANG_DIR. In Windows, since most Keil
users will install MDK IDE instead of standalone armclang toolchain, the MDK_ DIR has
higher priority than ARMCLANG_ DIR.

* For Xtensa toolchain, please set the XTENSA_CORE environment variable. Here’s an ex-

ample list:

1.3. Getting Started with MCUXpresso SDK GitHub

27

MCUXpresso SDK Documentation, Release 25.09.00

Device Core XTENSA_CORE

RT500 fusion1 nxp_ rt500 RI23 11 newlib
RT600 hifi4 nxp_ rt600__RI23_11_newlib
RT700 hifi1l rt700_hifil RI23 11 nlib
RT700 hifi4 t700__hifi4 RI23 11 nlib

i.MX8ULP fusionl fusion nxp02 dsp_ prod

* In Windows, the short path is used in environment variables. If any toolchain is using
the long path, you can open a command window from the toolchain folder and use below
command to get the short path: for %i in (.) do echo %-~fsi

Tool installation check Once installed, open a terminal or command prompt and type the
associated command to verify the installation.

If you see the version number, you have successfully installed the tool. Else, check whether the
tool’s installation path is added into the PATH variable. You can add the installation path to the
PATH with the commands below:

* Windows: Open command prompt or powershell, run below command to show the user
PATH variable.

reg query HKEY_CURRENT__USER)\Environment /v PATH

The tool installation path should be C:\Users\xxx\AppData\Local\Programs\Git\cmd. If the
path is not seen in the output from above, append the path value to the PATH variable with
the command below:

reg add HKEY_CURRENT__USER)\Environment /v PATH /d "% PATH%;C:\Users\xxx\AppData\

—Local\Programs\Git\cmd”

Then close the command prompt or powershell and verify the tool command again.

e Linux:

1.
2.
3.

Open the $HOME/ .bashrc file using a text editor, such as vim.
Go to the end of the file.

Add the line which appends the tool installation path to the PATH variable and export
PATH at the end of the file. For example, export PATH="/Directory1:$PATH".

. Save and exit.

5. Execute the script with source .bashrc or reboot the system to make the changes live. To

verify the changes, run echo $PATH.

* macOS:

. Open the $SHOME/.bash_profile file using a text editor, such as nano.
. Go to the end of the file.
. Add the line which appends the tool installation path to the PATH variable and export

PATH at the end of the file. For example, export PATH="/Directory1:$PATH".

. Save and exit.

5. Execute the script with source .bash_ profile or reboot the system to make the changes

live. To verify the changes, run echo $PATH.

28

Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

Get MCUXpresso SDK Repo

Establish SDK Workspace To get the MCUXpresso SDK repository, use the west tool to clone
the manifest repository and checkout all the west projects.

Initialize west with the manifest repository
west init -m https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/ mcuxpresso-sdk

Update the west projects
cd mcuxpresso-sdk
west update

Allow the usage of west extensions provided by MCUXpresso SDK
west config commands.allow__extensions true

Install Python Dependency(If do tool installation manually) To create a Python virtual en-
vironment in the west workspace core repo directory mcuxsdk, follow these steps:

1. Navigate to the core directory:

cd mcuxsdk

2. [Optional] Create and activate the virtual environment: If you don’t want to use the python
virtual environment, skip this step. We strongly suggest you use venv to avoid conflicts
with other projects using python.

python -m venv .venv

For Linux/MacOS
source .venv/bin/activate

For Windows

\.venv\Scripts\activate

If you are using powershell and see the issue that the activate script cannot be run.

You may fix the issue by opening the powershell as administrator and run below command:
powershell Set-ExecutionPolicy RemoteSigned

then run above activate command again.

Once activated, your shell will be prefixed with (.venv). The virtual environment can be
deactivated at any time by running deactivate command.

Remember to activate the virtual environment every time you start working in this
directory. If you are using some modern shell like zsh, there are some powerful plugins to
help you auto switch venv among workspaces. For example, zsh-autoswitch-virtualenv.

3. Install the required Python packages:

1

Note: you can add option '--default-timeout=1000" if you meet connection issue. Or you may set a,
—different source using option '-i'.
for example, in China you could try: pip3 install -r mcuxsdk/scripts/requirements.txt -i https://pypi.
<tuna.tsinghua.edu.cn/simple

pip install -r scripts/requirements.txt

Explore Contents

This section helps you build basic understanding of current fundamental project content and
guides you how to build and run the provided example project in whole SDK delivery.

1.3. Getting Started with MCUXpresso SDK GitHub 29

https://github.com/MichaelAquilina/zsh-autoswitch-virtualenv

MCUXpresso SDK Documentation, Release 25.09.00

Folder View The whole MCUXpresso SDK project, after you have done the west init and west
update operations follow the guideline at Getting Started Guide, have below folder structure:

Folder Description

mani- Manifest repo, contains the manifest file to initialize and update the west

fests workspace.

mcuxsdk The MCUXpresso SDK source code, examples, middleware integration and script
files.

All the projects record in the Manifest repo are checked out to the folder mcuxsdk/, the layout of
mcuxsdk folder is shown as below:

Folder Description

arch Arch related files such as ARM CMSIS core files, RISC-V files and the build files related
to the architecture.

cmake The cmake modules, files which organize the build system.

com- Software components.

po-

nents

de- Device support package which categorized by device series. For each device, header

vices file, feature file, startup file and linker files are provided, also device specific drivers
are included.

docs Documentation source and build configuration for this sphinx built online documen-

tation.
drivers Peripheral drivers.
ex- Various demos and examples, support files on different supported boards. For each
am- board support, there are board configuration files.
ples
mid- Middleware components integrated into SDK.
dle-
ware

rtos Rtos components integrated into SDK.

scripts Script files for the west extension command and build system support.

svd Svd files for devices, this is optional because of large size. Customers run west manifest
config group.filter +optional and west update mcux-soc-svd to get this folder.

Examples Project The examples project is part of the whole SDK delivery, and locates in the
folder mcuxsdk/examples of west workspace.

Examples files are placed in folder of <example_category>, these examples include (but are not
limited to)

* demo_apps: Basic demo set to start using SDK, including hello_world and led_blinky.

* driver_examples: Simple applications that show how to use the peripheral drivers for a
single use case. These applications typically only use a single peripheral but there are cases
where multiple peripherals are used (for example, SPI transfer using DMA).

Board porting layers are placed in folder of _boards/<board name> which aims at providing the
board specific parts for examples code mentioned above.

Run a demo using MCUXpresso for VS Code

This section explains how to configure MCUXpresso for VS Code to build, run, and debug example
applications. This guide uses the hello_ world demo application as an example. However, these

30 Chapter 1. EVK-MIMX8MQ

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests

MCUXpresso SDK Documentation, Release 25.09.00

steps can be applied to any example application in the MCUXpresso SDK.

Build an example application This section assumes that the user has already obtained the
SDK as outlined in Get MCUXpresso SDK Repo.

To build an example application:

1. Import the SDK into your workspace. Click Import Repository from the QUICKSTART
PANEL.

File Edit Selection WView Go Run Terminal Help
MCUXPRESSO FOR VS CODE

~ QUICKSTART PANEL @ o [0 £
-+ Import Repository

1% Import Example from FLE-pI:'E“-r‘_'," Import Local/Remote Repository

B+8 Import Pro
13 New Proje

o

~ IMPORTED REPOSITORIES

Note: You can import the SDK in several ways. Refer to MCUXpresso for VS Code Wiki for
details.

Select Local if you’ve already obtained the SDK as seen in Get MCUXpresso SDK Repo. Select
your location and click Import.

= Import Repository X

Import Repository

Location: c\Repos\mouxsdk

Import

2. Click Import Example from Repository from the QUICKSTART PANEL.
MCUXPRESS0 FOR W5 CODE

~ QUICKSTART PAMEL
~+ Import Repository

% import Example from Repository “

£+8 Import Project
13 New Project Wizard

Import Examg

In the dropdown menu, select the MCUXpresso SDK, the Arm GNU Toolchain, your board,
template, and application type. Click Import.

1.3. Getting Started with MCUXpresso SDK GitHub 31

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Working-with-MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.09.00

< Import Example from Repository X

Import Example from Repository

Repository: c\Repos\mouxsdk

Toolchain: (Arm GNU Toolchain 13.2.rel1 (Build arm-13.7)) 13.2.1 20231009 ®

Board:

FRDM-MCXC444

Template: demo_apps/hello_world

The Helloworld demo prints the "Hello World" string to the terminal using the S

input. The purpose of this demo is to show how to use the UART, and to provide a simple project for debugging and
further developm

Please refer to README file for more details.

App type: Freestanding application

Name: frdmmacxc444_hello_world

Location: c\nxp_examples

Note: Path doesn't exist. Folder(s) will be created.

Open readme file after project is imported

import

Note: The MCUXpresso SDK projects can be imported as Repository applications or Free-
standing applications. The difference between the two is the import location. Projects im-
ported as Repository examples will be located inside the MCUXpresso SDK, whereas Free-
standing examples can be imported to a user-defined location. Select between these by
designating your selection in the App type dropdown menu.

3. VS Code will prompt you to confirm if the imported files are trusted. Click Yes.
4. Navigate to the PROJECTS view. Find your project and click the Build Project icon.

~ PROJECTS MY 88 T &
> frdmmcxc444 hello world MCU SDK 25.6.0 |._'-1'| L @

Build Project

The integrated terminal will open at the bottom and will display the build output.

32 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

OUTPUT TERMINAL PORTS E OLE SERIALMONITOR O PERIPHERALS [] CMake: build|

debug_console.c.obj
Building C ob; keFiles/| W di dk d 51 k.c.obj
Building C ob;
Building C ob: / art/fsl_uart.c.obj
Linking C executable hello worl
Xage Used
1 rupts: 512 37.58%
m_flash_config: & .eex
3 3.02%
74

- Terminal will be reused by tasks, press any key to close it.

Run an example application Note: for full details on MCUXpresso for VS Code debug probe
support, see MCUXpresso for VS Code Wiki.

1. Open the Serial Monitor from the VS Code’s integrated terminal. Select the VCom Port for
your device and set the baud rate to 115200.

+ Open an additional monitor
Monitor e Serial V' View e Text “ Port COM40 - MCU-Link VCom Port (COM40) v U Baudrate 115200 v

Line ending CR - [> Start Monitoring = & B &

2. Navigate to the PROJECTS view and click the play button to initiate a debug session.

~ PROJECTS
> frdmmcxcd44 hello_world M

The debug session will begin. The debug controls are initially at the top.

1.3. Getting Started with MCUXpresso SDK GitHub 33

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/DebugK

MCUXpresso SDK Documentation, Release 25.09.00

hello world.c X

main(

ch;

BOARD InitHardware();
PRINTF("hello

while
ch = GETCHAR
PUTCHAR(ch) ;

3. Click Continue on the debug controls to resume execution of the code. Observe the output
on the Serial Monitor.

SERIAL MOMIT
—+ Open an additional menitor
Monitor Mode View Mode ' Port COMA40 - MCU-Link VCom Port (COM40)

¢y

[stop Monitoring = & [@ (1]

---- Opened the serial port COM4@ ----
hello world.

Running a demo using ARMGCC CLI/IAR/MDK

Supported Boards Use the west extension west list_project to understand the board support
scope for a specified example. All supported build command will be listed in output:

west list__project -p examples/demo__apps/hello_world [-t armgcc]

INFO: [1][west build -p always examples/demo_apps/hello world --toolchain armgcc --config release -b,

—evk9mimx8ulp -Dcore_ id=cm33]

INFO: [2|[west build -p always examples/demo_ apps/hello_ world --toolchain armgcc --config release -b,

—evkbimxrt1050]

INFO: | 3][west build -p always examples/demo__apps/hello_ world --toolchain armgcc --config release -b,
(continues on next page)

34 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
—evkbmimxrt1060]
INFO: [4][west build -p always examples/demo__apps/hello_ world --toolchain armgcc --config release -b,
—evkbmimxrt1170 -Dcore_ id=cm4]
INFO: [5][west build -p always examples/demo__apps/hello_ world --toolchain armgcc --config release -b,
—evkbmimxrt1170 -Dcore_id=cm7]
INFO: [6][west build -p always examples/demo_ apps/hello_world --toolchain armgcc --config release -b,
—evkemimxrt1060]
INFO: [7|[west build -p always examples/demo_ apps/hello_ world --toolchain armgcc --config release -b,
—evkmecimx7ulp]

The supported toolchains and build targets for an example are decided by the example-self exam-
ple.yml and board example.yml, please refer Example Toolchains and Targets for more details.

Build the project Use west build -h to see help information for west build command. Compared
to zephyr’s west build, MCUXpresso SDK’s west build command provides following additional
options for mcux examples:

* —toolchain: specify the toolchain for this build, default armgce.

* —-config: value for CMAKE_BUILD_TYPE. If not provided, build system will get all the ex-
ample supported build targets and use the first debug target as the default one. Please refer
Example Toolchains and Targets for more details about example supported build targets.

Here are some typical usages for generating a SDK example:

Generate example with default settings, default used device is the mainset MK22F51212
west build -b frdmk22f examples/demo_apps/hello_ world

Just print cmake commands, do not execute it
west build -b frdmk22f examples/demo_ apps/hello_ world --dry-run

Generate example with other toolchain like iar, default armgcc
west build -b frdmk22f examples/demo_ apps/hello_ world --toolchain iar

Generate example with other config type
west build -b frdmk22f examples/demo_ apps/hello_ world --config release

Generate example with other devices with --device
west build -b frdmk22f examples/demo_ apps/hello_ world --device MK22F12810 --config release

For multicore devices, you shall specify the corresponding core id by passing the command line
argument -Dcore__id. For example

west build -b evkbmimxrt1170 examples/demo__apps/hello_ world --toolchain iar -Dcore_id=cm?7 --config, ,
—flexspi__nor__ debug

For shield, please use the --shield to specify the shield to run, like

west build -b mimxrt700evk --shield a8974 examples/issdk examples/sensors/fx1s8974cf/fx1s8974cf poll -
—Dcore_id=cm33__core0

Syshuild(System build) To support multicore project building, we ported Sysbuild from
Zephyr. It supports combine multiple projects for compilation. You can build all projects by
adding --sysbuild for main application. For example:

west build -b evkbmimxrt1170 --sysbuild ./examples/multicore_examples/hello_world /primary -Dcore__
—id=cm7 --config flexspi nor_ debug --toolchain=armgcc -p always

For more details, please refer to System build.

1.3. Getting Started with MCUXpresso SDK GitHub 35

MCUXpresso SDK Documentation, Release 25.09.00

Config a Project Example in MCUXpresso SDK is configured and tested with pre-defined con-
figuration. You can follow steps blow to change the configuration.

1. Run cmake configuration

west build -b evkbmimxrt1170 examples/demo_ apps/hello_ world -Dcore_id=cm7 --cmake-only -p

Please note the project will be built without --cmake-only parameter.

2. Run guiconfig target

west build -t guiconfig

Then you will get the Kconfig GUI launched, like

) Hello World - O ot

Save Save as.. || 5ave minimal (advanced]... Open... Jump to...

[] Show name [] Showall [] Single-menu mode

(Top)
Board Boot Header s
Project Segrments
Device Boot Header
=l Device MIMXRT1176 Part (Device part MIMXRTT1760YVIMAAL)
@Device part MIMXRT1176DVIMAL
ODevice part MIMERT1176AVIMEA
ODevice part MIMERT11TECVIMEA
B Device specific drivers
K |Use driver clock
EUse driver iormuxe
:|U5e driver mipi csi2rx
:|U5E driver mipi dsi
EUEE driver anatop_ai
E'Use driver memory
:|U5e driver nic301
E'Use driver dedc
EUse driver gpc
EUse driver pgrmc
EUEE driver prmu
EUEE driver src W

Econfig definition., with parent deps. propagated to " depends on’

4t D fedk_next/mouxsdkydevicesh.. /devices/ET/RT1170/NIMET11 76 \drivers/Kconfig: B
Included wia D: fadk_next/mouxsdk/examples/demo_appsfhello_world/Econfiz: 6 —>

D: fedk_next/mouzsdk/Koconfig. mouxpreszo: @ —» D fedk_next/mouxsdk\devices/Econfig: 1
= I f=dk_next/mouxsdkydevicesh.. fdevices/RT/RT1170,/ NIMET11 76,/ Econfig: &

Merm path: (Topd

memi “Device specific driwers”

You can reconfigure the project by selecting/deselecting Kconfig options.

After saving and closing the Kconfig GUI, you can directly run west build to build with the new
configuration.

36 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

Flash Note: Please refer Flash and Debug The Example to enable west flash/debug support.
Flash the hello_world example:

west flash -r linkserver

Debug Start a gdb interface by following command:

west debug -r linkserver

Work with IDE Project The above build functionalities are all with CLI If you want to use
the toolchain IDE to work to enjoy the better user experience especially for debugging or you
are already used to develop with IDEs like IAR, MDK, Xtensa and CodeWarrior in the embedded
world, you can play with our IDE project generation functionality.

This is the cmd to generate the evkbmimxrt1170 hello_world IAR IDE project files.

west build -b evkbmimxrt1170 examples/demo__apps/hello_ world --toolchain iar -Dcore_id=cm?7 --config, |
—flexspi_nor__debug -p always -t guiproject

By default, the IDE project files are generated in mcuxsdk/build/<toolchain> folder, you can open
the project file with the IDE tool to work:

k-next\mcu-sdk-3.0
N-3¢) rc west build frdmk64f . \exampl

Note, please follow the Installation to setup the environment especially make sure that ruby has
been installed.

1.4 Release Notes

1.4.1 MCUXpresso SDK Release Notes
Overview

The MCUXpresso SDK is a comprehensive software enablement package designed to simplify
and accelerate application development with Arm Cortex-M-based devices from NXP, including
its general purpose, crossover and Bluetooth-enabled MCUs. MCUXpresso SW and Tools for DSC

1.4. Release Notes 37

MCUXpresso SDK Documentation, Release 25.09.00

further extends the SDK support to current 32-bit Digital Signal Controllers. The MCUXpresso
SDK includes production-grade software with integrated RTOS (optional), integrated enabling
software technologies (stacks and middleware), reference software, and more.

In addition to working seamlessly with the MCUXpresso IDE, the MCUXpresso SDK also supports
and provides example projects for various toolchains. The Development tools chapter in the
associated Release Notes provides details about toolchain support for your board. Support for
the MCUXpresso Config Tools allows easy cloning of existing SDK examples and demos, allowing
users to leverage the existing software examples provided by the SDK for their own projects.

Underscoring our commitment to high quality, the MCUXpresso SDK is MISRA compliant and
checked with Coverity static analysis tools. For details on MCUXpresso SDK, see MCUXpresso-
SDK: Software Development Kit for MCUXpresso.

MCUXpresso SDK

As part of the MCUXpresso software and tools, MCUXpresso SDK is the evolution of Kinetis SDK,
includes support for LPC, DSC,PN76, and i.MX System-on-Chip (SoC). The same drivers, APIs, and
middleware are still available with support for Kinetis, LPC, DSC, and i.MX silicon. The MCUX-
presso SDK adds support for the MCUXpresso IDE, an Eclipse-based toolchain that works with
all MCUXpresso SDKs. Easily import your SDK into the new toolchain to access to all of the avail-
able components, examples, and demos for your target silicon. In addition to the MCUXpresso
IDE, support for the MCUXpresso Config Tools allows easy cloning of existing SDK examples and
demos, allowing users to leverage the existing software examples provided by the SDK for their
own projects.

In order to maintain compatibility with legacy Freescale code, the filenames and source code in
MCUXpresso SDK containing the legacy Freescale prefix FSL has been left as is. The FSL prefix
has been redefined as the NXP Foundation Software Library.

Development tools

The MCUXpresso SDK was tested with following development tools. Same versions or above are
recommended.

* JTAR Embedded Workbench for Arm, version is 9.60.4
* MCUXpresso for VS Code v25.09
* GCC Arm Embedded Toolchain 14.2.x

Supported development systems

This release supports board and devices listed in following table. The board and devices in bold
were tested in this release.

Devel- MCU devices

opment

boards

EVK- MIMX8MD6CVAHZ, MIMX8MDG6DVAJZ, MIMX8MD7CVAHZ, MIMX8MD7DVA]JZ,

MIMX8M! MIMX8MQS5CVAHZ, MIMX8MQS5DVAJZ, MIMX8MQ6CVAHZ, MIMX8MQG6DVAJZ,
MIMX8MQ7CVAHZ, MIMX8MQ7DVAJZ

38 Chapter 1. EVK-MIMX8MQ

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.09.00

MCUXpresso SDK release package

The MCUXpresso SDK release package content is aligned with the silicon subfamily it supports.
This includes the boards, CMSIS, devices, middleware, and RTOS support.

Device support The device folder contains the whole software enablement available for the
specific System-on-Chip (SoC) subfamily. This folder includes clock-specific implementation,
device register header files, device register feature header files, and the system configuration
source files. Included with the standard SoC support are folders containing peripheral drivers,
toolchain support, and a standard debug console. The device-specific header files provide a di-
rect access to the microcontroller peripheral registers. The device header file provides an overall
SoC memory mapped register definition. The folder also includes the feature header file for each
peripheral on the microcontroller. The toolchain folder contains the startup code and linker files
for each supported toolchain. The startup code efficiently transfers the code execution to the
main() function.

Board support The boards folder provides the board-specific demo applications, driver exam-
ples, and middleware examples.

Demo application and other examples The demo applications demonstrate the usage of the
peripheral drivers to achieve a system level solution. Each demo application contains a readme
file that describes the operation of the demo and required setup steps. The driver examples
demonstrate the capabilities of the peripheral drivers. Each example implements a common
use case to help demonstrate the driver functionality.

RTOS

FreeRTOS Real-time operating system for microcontrollers from Amazon

Middleware

CMSIS DSP Library The MCUXpresso SDK is shipped with the standard CMSIS development
pack, including the prebuilt libraries.

USB Type-C PD Stack See the MCUXpresso SDK USB Type-C PD Stack User’s Guide (document
MCUXSDKUSBPDUG) for more information

USB Host, Device, OTG Stack See the MCUXpresso SDK USB Stack User’s Guide (document
MCUXSDKUSBSUG) for more information.

TinyCBOR Concise Binary Object Representation (CBOR) Library

PKCS#11 The PKCS#11 standard specifies an application programming interface (API), called
“Cryptoki,” for devices that hold cryptographic information and perform cryptographic func-
tions. Cryptoki follows a simple object based approach, addressing the goals of technology in-
dependence (any kind of device) and resource sharing (multiple applications accessing multiple
devices), presenting to applications a common, logical view of the device called a “cryptographic
token”.

1.4. Release Notes 39

MCUXpresso SDK Documentation, Release 25.09.00

Multicore Multicore Software Development Kit

IThttp HTTP parser llhttp

FreeMASTER FreeMASTER communication driver for 32-bit platform:s.

Release contents

Provides an overview of the MCUXpresso SDK release package contents and locations.

Deliverable

Location

Boards

Demo Applications

Driver Examples

elQ examples

Board Project Template for MCUXpresso IDE NPW
Driver, SoC header files, extension header files and
feature header files, utilities

CMSIS drivers

Peripheral drivers

Toolchain linker files and startup code

Utilities such as debug console

Device Project Template for MCUXpresso IDE NPW
CMSIS Arm Cortex-M header files, DSP library source
Components and board device drivers

RTOS

Release Notes, Getting Started Document and other
documents

Tools such as shared cmake files

Middleware

INSTALL_DIR/boards
INSTALL_DIR/boards/<board_name>/demo_apps
INSTALL_DIR/boards/<board_name>/driver_examples
INSTALL_DIR/boards/<board_name>/eiq_examples
INSTALL_DIR/boards/<board_name>/project_template
INSTALL_DIR/devices/<device_name>

INSTALL_DIR/devices/<device_name>/cmsis_drivers
INSTALL_DIR/devices/<device_name>/drivers
INSTALL_DIR/devices/<device_name>/<toolchain_nam
INSTALL_DIR/devices/<device_name>/utilities
INSTALL_DIR/devices/<device_name>/project_templat
INSTALL_DIR/CMSIS

INSTALL_DIR/components

INSTALL_DIR/rtos

INSTALL_DIR/docs

INSTALL_DIR/tools
INSTALL_ DIR/middleware

Known issues

This section lists the known issues, limitations, and/or workarounds.

Cannot add SDK components into FreeRTOS projects

It is not possible to add any SDK components into FreeRTOS project using the MCUXpresso IDE

New Project wizard.

The freertos_lpuart example does not complete successfully

The example hangs after console output ‘FreeRTOS LPUART driver example’.

Examples: freertos_lpuart
Affected toolchains: All

The example does not perform as expected (Ticks do not printed on the console or the application

does not wake up from the sleep mode).

Examples: freertos_tickless

40

Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

Affected toolchains: All

1.5 ChangeLog

1.5.1 MCUXpresso SDK Changelog
Board Support Files

board

[25.06.00]

¢ Initial version
clock_config

[25.06.00]

 Initial version
pin_mux

[25.06.00]

 Initial version

CACHE LMEM

[2.1.0]
* Improvements

— Added new feature macro to support some device do not support PCCCRIENWRBUF]

bit field.
[2.0.6]
* Bug Fixes
— Fixed doxygen issue.
[2.0.5]

¢ Improvements

— Updated the cache enable function, don’t enable again when it is already enabled.

1.5. ChangeLog 1

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.4]
* Bug Fixes
— Updated full name for Imem driver.

— Fixed doxygen issue.

[2.0.3]
* Bug Fixes
— Fixed violation of MISRA C-2012 Rule 10.4 and 14.4.

[2.0.2]
* Improvements

— Moved CLCRregister configuration out of the while loop, it’s unnecessary to repeat this

operation.
[2.0.1]
* Bug Fixes
— Fixed the over-4KB-size maintenance issue in invalidate/clean/clean&invalidate by
range APIs.
[2.0.0]

 Initial version.

COMMON

[2.6.0]
* Bug Fixes
— Fix CERT-C violations.

[2.5.0]
* New Features

— Added new APIs InitCriticalSectionMeasurementContext, DisableGlobalIRQEx and En-
ableGloballRQEx so that user can measure the execution time of the protected sections.

[2.4.3]
* Improvements

— Enable irgs that mount under irgsteer interrupt extender.

[2.4.2]
* Improvements

— Add the macros to convert peripheral address to secure address or non-secure address.

42 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

[2.4.1]
* Improvements

— Improve for the macro redefinition error when integrated with zephyr.

[2.4.0]
* New Features
— Added EnableIRQWithPriority, IRQ_SetPriority, and IRQ_ClearPendingIRQ for ARM.
— Added MSDK_EnableCpuCycleCounter, MSDK_GetCpuCycleCount for ARM.

[2.3.3]
* New Features
— Added NETC into status group.

[2.3.2]
* Improvements

— Make driver aarch64 compatible

[2.3.1]
* Bug Fixes
— Fixed MAKE_VERSION overflow on 16-bit platform:s.
[2.3.0]

* Improvements

— Split the driver to common part and CPU architecture related part.

[2.2.10]
* Bug Fixes

— Fixed the ATOMIC macros build error in cpp files.

[2.2.9]
* Bug Fixes
- Fixed MISRA C-2012 issue, 5.6, 5.8, 8.4, 8.5, 8.6, 10.1, 10.4, 17.7, 21.3.

— Fixed SDK_Malloc issue that not allocate memory with required size.

[2.2.8]
* Improvements
— Included stddef.h header file for MDK tool chain.
* New Features:

— Added atomic modification macros.

1.5. ChangeLog 43

MCUXpresso SDK Documentation, Release 25.09.00

[2.2.7]
* Other Change
— Added MECC status group definition.

[2.2.6]
* Other Change
— Added more status group definition.
* Bug Fixes
— Undef __ VECTOR_TABLE to avoid duplicate definition in cmsis_clang.h

[2.2.5]
* Bug Fixes
— Fixed MISRA C-2012 rule-15.5.

[2.2.4]
* Bug Fixes
- Fixed MISRA C-2012 rule-10.4.

[2.2.3]
* New Features

— Provided better accuracy of SDK_DelayAtLeastUs with DWT, wuse macro
SDK_DELAY_USE_DWT to enable this feature.

— Modified the Cortex-M7 delay count divisor based on latest tests on RT series boards,
this setting lets result be closer to actual delay time.

[2.2.2]
* New Features
— Added include RTE_Components.h for CMSIS pack RTE.

[2.2.1]
* Bug Fixes
— Fixed violation of MISRA C-2012 Rule 3.1, 10.1, 10.3, 10.4, 11.6, 11.9.
[2.2.0]

* New Features

— Moved SDK_DelayAtLeastUs function from clock driver to common driver.

[2.1.4]
* New Features
— Added OTFAD into status group.

44 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.3]
* Bug Fixes
— MISRA C-2012 issue fixed.
* Fixed the rule: rule-10.3.
[2.1.2]

* Improvements
— Add SUPPRESS_FALL_THROUGH_WARNING() macro for the usage of suppressing

fallthrough warning.
[2.1.1]
* Bug Fixes
— Deleted and optimized repeated macro.
[2.1.0]

* New Features
— Added IRQ operation for XCC toolchain.
— Added group IDs for newly supported drivers.

[2.0.2]
* Bug Fixes
— MISRA C-2012 issue fixed.
* Fixed the rule: rule-10.4.
[2.0.1]

* Improvements
— Removed the implementation of LPC8XX Enable/DisableDeepSleepIRQ() function.

- Added new feature macro switch “FSL_FEATURE_HAS_NO_NONCACHEABLE_SECTION”
for specific SoCs which have no noncacheable sections, that helps avoid an unneces-
sary complex in link file and the startup file.

— Updated the align(x) to attribute(aligned(x)) to support MDK v6 armclang compiler.

[2.0.0]

« Initial version.

ECSPI

[2.3.3]
* Bug Fixes

— Fixed the txData from void * to const void * in transmit API

1.5. ChangeLog 45

MCUXpresso SDK Documentation, Release 25.09.00

[2.3.2]
* Improvements
— Changed ECSPI_DUMMYDATA to 0x00.

[2.3.1]
* Bug Fixes
— Fixed ECSPI_GetInstance potential issue that return wrong instance number.
[2.3.0]
* Bug Fixes
— Fixed burst length issue,the burst length range shall range from 1-4096 bits, so the
width shall be uint8_t rather than uint16_t.
[2.2.0]
* Bug Fixes
— Removed the useless channel configuration of waveform, since the waveform can not
be configured when not using the exchange bit(ECSPIx_CONREG[XCH]) for the transfer.
— Fixed violations of MISRA C-2012 rules: 10.1, 11.9, 8.4.
[2.1.1]
* Bug Fixes
— Fixed violations of MISRA C-2012 rules: 10.1, 10.3,10.4, 11.9, 14.4, 15.7, 17.7.
[2.1.0]

* Improvements

— Added timeout mechanism when waiting certain states in transfer driver.

[2.0.2]
* Bug Fixes
— Fixed violations of MISRA C-2012 rules: 10.1, 10.3, 10.4
[2.0.1]
* Bug Fixes
— Memset local variable SDMA transfer configuration structure to make sure unused
members in structure are cleared.
- Fixed sign-compare warning in ECSPI_SendTransfer.
[2.0.0]

« Initial version.

46 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

GPIO
[2.0.6]
* Bug Fixes
- Fixed compile warning: ‘GPIO_GetInstance’ defined but not used when macro
FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL is defined.
[2.0.5]
* Bug Fixes
— Fixed MISRA C-2012 issue: rule-17.7.
[2.0.4]

* Improvements
— Updated the GPIO_PinWrite to use atomic operation if possible.
* Bug Fixes
— Fixed GPIO_PortToggle bug with platforms don’t have register DR_TOGGLE.

[2.0.3]
* Bug Fixes
— MISRA C-2012 issue fixed.
* Fixed rules, containing: rule-10.3, rule-14.4, and rule-15.5.
[2.0.2]
* Bug Fixes
— Fixed the bug of enabling wrong GPIO clock gate in initial API. Since some GPIO in-
stances may not have a clock gate enabled, it checks the clock gate number and makes
sure the clock gate is valid.
[2.0.1]

¢ Improvements
— APl interface changes:

* Refined naming of the API while keeping all original APIs, marking them as depre-
cated. Original APIs will be removed in next release. The main change is to update
the API with prefix of _PinXXX() and _PortXXX(.

[2.0.0]

« Initial version.

1.5. ChangeLog 47

MCUXpresso SDK Documentation, Release 25.09.00

GPT
[2.0.6]
* Bug Fixes
— Fix CERT INT30-C issues.
[2.0.5]

* Improvements

— Support workaround for ERR003777. This workaround helps switching the clock

sources.
[2.0.4]
* Bug Fixes
— Fixed compiler warning when built with FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL
flag enabled.
[2.0.3]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 5.3 by customizing function parameter.
[2.0.2]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 17.7.
[2.0.1]
* Bug Fixes
- Fixed violations of the MISRA C-2012 rules 10.1, 10.3, 10.4, 10.6, 10.8, 17.7.
[2.0.0]

 Initial version.

I2C

[2.0.7]
* Bug Fixes
— Fixed MISRA issues.
% Fixed rules 8.4, 8.5.

48 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.6]
* Bug Fixes
— Fixed the bug that, in 12C_MasterStop after the stop command is issued, the IBB flag
should be cleared rather than set.
— Fixed the bug that to clear kI2C_ArbitrationLostFlag and kI2C_IntPendingFlag, their
bits should be written ‘0’ rather than ‘1°.
[2.0.5]
* Bug Fixes

— Fixed Coverity issue of unchecked return value in I2C_RTOS_Transfer.
— Fixed MISRA issues.
* Fixed rules 10.1, 10.3, 10.4, 11.9, 14.4, 15.7, 16.4, 17.7.
* Improvements
— Updated the 12C_WAIT_TIMEOUT macro to unified name I2C_RETRY_TIMES.

[2.0.4]
* Bug Fixes
— Fixed the issue that 12C Master transfer APIs(blocking/non-blocking) did not support
the situation that master transfer with subaddress and transfer data size being zero,
which means no data followed by the subaddress.
[2.0.3]

* Improvements

— Improved code readability, added new static API I2C_WaitForStatusReady for the sta-
tus flag wait, and changed to call I2C_WaitForStatusReady instead of polling flags with
reading register.

[2.0.2]
* Improvements

— Added I2C_WATI_TIMEOUT macro to allow users to specify the timeout times for wait-
ing flags in functional API and blocking transfer API.

[2.0.1]
* Bug Fixes
— Added a proper handle for transfer config flag kI2C_TransferNoStartFlag to support
transmit with kI2C_TransferNoStartFlag flag. Only supports write only or write+read
with no start flag; does not support read only with no start flag.
[2.0.0]

« Initial version.

1.5. ChangeLog 49

MCUXpresso SDK Documentation, Release 25.09.00

MCM

[2.2.0]
* Improvements

— Support platforms with less features.

[2.1.0]
* Others
— Remove byteID from mcm_lmem_fault_attribute_t for document update.
[2.0.0]

 Initial version.

MU

[2.3.0]
* New Features

— Added MU_BUSY_POLL_COUNT parameter to prevent infinite polling loops in MU op-
erations.

— Added timeout mechanism to all polling loops in MU driver code.
— Added new function MU_ReceiveMsgTimeout() to include timeout mechanism.
* Improvements
— Updated function signatures to return status codes for better error handling:
* Changed MU_ResetBothSides to return status_t instead of void
* Updated MU_SendMsg to return status_t for timeout indication

* Updated MU_ReceiveMsg to use MU_TIMEOUT_VALUE (OXFFFFFFFF) as a special
return value to indicate timeout

— Enhanced documentation across all functions to clarify timeout behavior and return
values.

[2.2.0]
* New Features
— Added API MU_GetRxStatusFlags.

[2.1.3]
* Improvements

— Release peripheral from reset if necessary in init function.

[2.1.2]
* Bug Fixes

— Fixed issue that MU_GetInstance() is defined but never used.

30 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.1]
* Bug Fixes
— Fixed general interrupt comment typo.
[2.1.0]

* Improvements

— Added new enum mu_msg_reg_index_t.

[2.0.7]
* Bug Fixes
— Fixed MU_GetInterruptsPending bug that can not get general interrupt status.
[2.0.6]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 17.7.
[2.0.5]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 14.4, 15.5.
[2.0.4]

* Improvements

— Improved for the platforms which don’t support reset assert interrupt and get the other
core power mode.

[2.0.3]
* Bug fixes
— MISRA C-2012 issue fixed.
* Fixed rules, containing: rule-10.3, rule-14.4, rule-15.5.
[2.0.2]

* Improvements
— Added support for MIMX8MQX.

[2.0.1]
* Improvements
— Added support for MCIMX7Ux_M4.

1.5. ChangeLog 51

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.0]

 Initial version.

PWM
[2.0.1]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 17.7.
[2.0.0]

 Initial version.

QSPI

[2.3.1]
* Improvements

— Fixed Coverity MSG issues.

[2.3.0]
* New Features
— Applied the QSPI IP update with register field changes.
— Added Soc specific driver to integrate Soc configuration.
* Changed
— Updated the QSPI LUT update function to be compatible with different sequence unit.

— Added new feature macro FSL_FEATURE_QSPI_HAS_SOC_SPECIFIC_CONFIG which
represents there’re Soc specific QSPI configurations. Soc specific driver should cover
these configurations. Previous Soc specific code in the common driver should be
masked.

[2.2.5]
* Bug Fixes

— Fixed the txData from void * to const void * in transmit API.

[2.2.4]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 10.3.

[2.2.3]
* Bug Fixes

— Cleared buffer generic configuration when do software reset.

52 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

[2.2.2]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 10.1 and 11.9.

[2.2.1]
* Bug Fixes

— Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.6, 10.8, 11.3, 11.6, 11.8, 11.9,
14.4,16.1,16.4,17.7.

[2.2.0]
* New Features

— Added new API QSPI_ClearCache to clear cache for new IP feature
FSL_FEATURE_QSPI_SOCCR_HAS_CLR_LPCAC.

* Bug Fixes

— Fixed the QSPI_WriteBlocking API programming issue for low watermark, caused by
previous improvement change of using TX watermark signal to fill the TX FIFO. Re-
verted change to previous implementation to use TX FIFO full flag for filling the FIFO.
Improved previous API by accessing TX data register directly.

— Fixed the issue that QSPI_SetIPCommandSize incorrectly triggered a transaction.
— Fixed clock divider accurate issue when using internal QSPI internal divider.

— Fixed build fail issue for some devices’ not supporting API QSPI_SetDqsConfig for DQS
configuration.

[2.1.0]
* New Features
— Added new API QSPI_SetDqsConfig for DQS configuration.
* Improvements

— Updated the QSPI_WriteBlocking API to fill the TX FIFO once there are bytes of TX wa-
termark room in the FIFO. This will improve the performance of filling TX FIFO when
watermark is high.

[2.0.2]
* Improvements
— New Macro function:
* Added QSPI_LUT_SEQQ function for users to set LUT table easily.
* Added LUT command macros for users to easy use.
— Comment update:

% Added the comments for the Ilimitation of QSPI_ReadBlocking and
QSPI_TransferReceiveBlocking.

1.5. ChangeLog 53

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.1]
* Improvements
— New API:
* QSPI_SetReadArea to set the read area.
* Bug Fixes
— Fixed the issue that QSPI_UpdateL.UT function only updated first LUT.
— Fixed issue that some function that hardcode QSPIO as base.
[2.0.0]

 Initial version.

RDC

[2.2.0]
* New Features

— Added APIs to get memory region or peripheral access policy for specific domain.

[2.1.1]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 10.6.
[2.1.0]

¢ Improvements

— Enhanced to support memory region larger than 32-bit address.

[2.0.2]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 10.3,10.4, 11.3, 11.8, 17.7.
[2.0.1]
* Bug Fixes:
— Added __DSB after new configuration is set to ensure the new configuration takes ef-
fect.
[2.0.0]

 Initial version.

534 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

RDC_SEMA42

[2.0.5]
* Bug Fixes
- Fixed CERT INT30-C issues.

[2.0.4]
* Improvements
— Changed to implement RDC_SEMAPHORE_Lock base on RDC_SEMAPHORE_TryLock.

[2.0.3]
* Improvements:

— Supported the RDC_SEMAPHORE_Type structure whose gate registers are defined as

an array.
[2.0.2]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 10.3, 10.4, 10.8, 14.3, 14.4, 18.1.
[2.0.1]

* Improvements:
— Added support for the platforms that don’t have dedicated RDC_SEMAA42 clock gate.

[2.0.0]

 Initial version.

SAI

[2.4.9]
¢ Added Errata ERR051421 workaround.

[2.4.8]
* Bug Fixes
- Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 12.4.
[2.4.7]

* Added conditional support for bit clock swap feature
* Added common IRQ handler entry SAI_DriverIRQHandler.

1.5. ChangeLog 55

MCUXpresso SDK Documentation, Release 25.09.00

[2.4.6]
* Bug Fixes
— Fixed the IAR build warning.
[2.4.5]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 12.4.
[2.4.4]
* Bug Fixes
— Fixed enumeration sai_fifo_combine_t - add RX configuration.
[2.4.3]
* Bug Fixes
— Fixed enumeration sai_fifo_combine_t value configuration issue.
[2.4.2]

* Improvements

— Release peripheral from reset if necessary in init function.

[2.4.1]
* Bug Fixes
— Fixed bitWidth incorrectly assigned issue.
[2.4.0]

* Improvements

— Removed deprecated APIs.

[2.3.8]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 10.4.
[2.3.7]

* Improvements
— Change feature “FSL_FEATURE_SAI_FIFO_COUNT” to “FSL_FEATURE_SAI_HAS_FIFO”.

— Added feature “FSL_FEATURE_SAI_FIFO_COUNTnN(x)” to align SAI fifo count function
with IP in function

56 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

[2.3.6]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 5.6.
[2.3.5]

* Improvements

— Make driver to be aarch64 compatible.

[2.3.4]
* Bug Fixes
— Corrected the fifo combine feature macro used in driver.
[2.3.3]
* Bug Fixes
— Added bit clock polarity configuration when sai act as slave.
— Fixed out of bound access coverity issue.
— Fixed violations of MISRA C-2012 rule 10.3, 10.4.
[2.3.2]
* Bug Fixes
— Corrected the frame sync configuration when sai act as slave.
[2.3.1]
* Bug Fixes
— Corrected the peripheral name in function SAIO_DriverIRQHandler.
— Fixed violations of MISRA C-2012 rule 17.7.
[2.3.0]
* Bug Fixes
— Fixed the build error caused by the SOC has no fifo feature.
[2.2.3]
* Bug Fixes

— Corrected the peripheral name in function SAIO_DriverIRQHandler.

1.5. ChangeLog

57

MCUXpresso SDK Documentation, Release 25.09.00

[2.2.2]

* Bug Fixes
— Fixed the issue of MISRA 2004 rule 9.3.
— Fixed sign-compare warning.
— Fixed the PA082 build warning.
- Fixed sign-compare warning.
— Fixed violations of MISRA C-2012 rule 10.3,17.7,10.4,8.4,10.7,10.8,14.4,17.7,11.6,10.1,10.6,8.4,14.3,16.4,1¢
— Allow to reset Rx or Tx FIFO pointers only when Rx or Tx is disabled.

* Improvements
— Added 24bit raw audio data width support in sai sdma driver.

— Disabled the interrupt/DMA request in the SAI Init to avoid generates unexpected sai
FIFO requests.

[2.2.1]
¢ Improvements
— Added mclk post divider support in function SAI_SetMasterClockDivider.
— Removed useless configuration code in SAI_RxSetSerialDataConfig.
* Bug Fixes

— Fixed the SAI SDMA driver build issue caused by the wrong structure member name
used in the function SAI_TransferRxSetConfigSDMA/SAI_TransferTxSetConfigSDMA.

— Fixed BAD BIT SHIFT OPERATION issue caused by the
FSL_FEATURE_SAI CHANNEL_COUNTN.

— Applied ERR05144: not set FCONT = 1 when TMR > 0, otherwise the TX may not work.

[2.2.0]
* Improvements
— Added new APIs for parameters collection and simplified user interfaces:
* SAI Init
% SAI_SetMasterClockConfig
* SAI TxSetBitClockRate
* SAI_TxSetSerialDataConfig
* SAI_TxSetFrameSyncConfig
* SAI_TxSetFifoConfig
* SAI_TxSetBitclockConfig
% SAI TxSetConfig
* SAI_TxSetTransferConfig
* SAI RxSetBitClockRate
* SAI_RxSetSerialDataConfig
* SAI_RxSetFrameSyncConfig
% SAI_RxSetFifoConfig

38 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

* SAI_RxSetBitclockConfig

* SAI_RXSetConfig

* SAI_RxSetTransferConfig

* SAI_GetClassicI2SConfig

* SAI_GetLeftJustifiedConfig
* SAI_GetRightJustifiedConfig
* SAI_GetTDMConfig

[2.1.9]
* Improvements
— Improved SAI driver comment for clock polarity.
— Added enumeration for SAI for sample inputs on different edges.

— Changed FSL_FEATURE_SAI_CHANNEL_COUNT to FSL_FEATURE_SAI_CHANNEL_COUNTn(base)
for the difference between the different SAI instances.

* Added new APIs:
— SAI TxSetBitClockDirection
— SAI_RxSetBitClockDirection
— SAI RxSetFrameSyncDirection

— SAI TxSetFrameSyncDirection

[2.1.8]
* Improvements
— Added feature macro test for the sync mode2 and mode 3.

— Added feature macro test for masterClockHz in sai_transfer format t.

[2.1.7]
* Improvements
— Added feature macro test for the mclkSource member in sai_config_t.
— Changed “FSL_FEATURE_SAI5_SAI6_SHARE_IRQ” to “FSL_FEATURE_SAI_SAI5_SAI6_SHARE_IRQ”.
— Added #ifndef #endif check for SAI XFER_QUEUE_SIZE to allow redefinition.
* Bug Fixes

— Fixed build error caused by feature macro test for mclkSource.

[2.1.6]
* Improvements
— Added feature macro test for mclkSourceClockHz check.
— Added bit clock source name for general devices.
* Bug Fixes

— Fixed incorrect channel numbers setting while calling RX/TX set format together.

1.5. ChangeLog 59

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.5]
* Bug Fixes
— Corrected SAI3 driver IRQ handler name.
— Added 1254/5/6 IRQ handler.

— Added base in handler structure to support different instances sharing one IRQ num-
ber.

* New Features
— Updated SAI driver for MCR bit MICS.
— Added 192 KHZ/384 KHZ in the sample rate enumeration.
— Added multi FIFO interrupt/SDMA transfer support for TX/RX.
— Added an API to read/write multi FIFO data in a blocking method.
— Added bclk bypass support when bclk is same with mclk.

[2.1.4]
* New Features

— Added an API to enable/disable auto FIFO error recovery in platforms that support this
feature.

— Added an API to set data packing feature in platforms which support this feature.

[2.1.3]
* New Features

— Added feature to make I2S frame sync length configurable according to bitWidth.

[2.1.2]
* Bug Fixes
— Added 24-bit support for SAI eDMA transfer. All data shall be 32 bits for send/receive,
as eDMA cannot directly handle 3-Byte transfer.
[2.1.1]

* Improvements

— Reduced code size while not using transactional API.

[2.1.0]
* Improvements
— API name changes:
* SAI_GetSendRemainingBytes -> SAI_GetSentCount.
* SAI_GetReceiveRemainingBytes -> SAI_GetReceivedCount.
* All names of transactional APIs were added with “Transfer” prefix.
* All transactional APIs use base and handle as input parameter.

* Unified the parameter names.

60 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

* Bug Fixes
— Fixed WLC bug while reading TCSR/RCSR registers.

— Fixed MOE enable flow issue. = Moved MOE enable after MICS settings in
SAI_TxInit/SAI_RxInit.

[2.0.0]

 Initial version.

SEMA4

[2.2.2]
* Improvements

— Updated SEMA4_TryLock function to avoid unsigned integer operations wrap issue.

[2.2.1]
* Bug Fixes
— Fixed violations of the CERT INT31-C, MISRA C-2012 rules 10.3, 10.4.
[2.2.0]

* New Features

— Added SEMA4_BUSY_POLL_COUNT parameter to prevent infinite polling loops in
SEMA4 operations.

— Added timeout mechanism to all polling loops in SEMA4 driver code.
* Improvements

— Updated SEMA4_Lock function to return status_t instead of void for better error han-
dling.

— Enhanced documentation to clarify timeout behavior and return values.

[2.1.0]
* Improvements

— Changed mask parameter type in SEMA4_EnableGateNotifyInterrupt() and
SEMA4_DisableGateNotifyInterrupt() functions to avoid casting from unsigned
long to unsigned short in the code when modifying the 16bits CPINE register.

[2.0.3]
* Improvements
— Changed to implement SEMA4 _Lock base on SEMA4_TryLock.

[2.0.2]
* Improvements:

— Supported the SEMA4_Type structure whose gate registers are defined as an array.

1.5. ChangeLog 61

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.1]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 10.3, 10.4, 15.5, 18.1, 18.4.
[2.0.0]

 Initial version.

SNVS_HP

[2.3.2]

* Make SNVS_HP_RTC_Init()/SNVS_HP_RTC_Deinit more transparent. Use function
SNVS_HP_Init()/SNVS_HP_Deinit() instead of copy of this code in SNVS_HP_RTC_XXX()
function.

[2.3.1]
* Fixed problem in SNVS_HP_RTC_Init(), which is clearing bits that should stay intact.

[2.3.0]

* Re-map Security Violation for RT11xx specific violations.

[2.2.0]
* Fixed doxygen issues.
* Add SNVS HP Set locks.

[2.1.4]
» Fix MISRA issues.

[2.1.3]
» Fixed IAR Pa082 warnings.

[2.1.2]
* Fixed problem with initialization of the periodic interrupt frequency.

* Fixed problem with SNVS entering into fail state when HAB enters closed mode.

[2.1.1]
* Added APIs for HP security violation status flags.

[2.1.0]

* Added APIs for High Assurance Counter (HAC), Zeroizable Master Key (ZMK) and Software
Security Violation.

62 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.0]

 Initial version.

SNVS_LP

[2.4.6]

* Fix a bug in SNVS_LP_EnableRxActiveTamper() where assignments to base->LPATRC2R
were done wrongly to LPATRC1R.

[2.4.5]

* Fix a bug in SNVS_LP_EnableRxActiveTamper() where assignments to base->LPATRC1R
would overwrite previously set bits.

[2.4.4]

* Make SNVS_LP_SRTC_Init()/SNVS_LP_SRTC_Deinit more transparent. Use function
SNVS_LP_Init()/SNVS_LP_Deinit() instead of copy of this code in SNVS_LP_SRTC_XXX()
function.

[2.4.3]
* Fixed problem in SNVS_LP_SRTC_Init(), which is clearing bits that should stay intact.

[2.4.2]

» Updated driver to match with new device header files.

[2.4.1]
» Fixed MISRA issues.

[2.4.0]

* Fix backward compatibility with version 2.2.x.

[2.3.0]

* Add active pin, clock, voltage and temperature tamper features.

[2.2.0]
* Fixed doxygen issues.
* Add Transition SNVS SSM state to Trusted/Non-secure from Check state.

[2.1.2]
» Tix MISRA issues.

1.5. ChangeLog 63

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.1]
* Fix IAR Pa082 warning.

[2.1.0]
* Added APIs for Zeroizable Master Key (ZMK) and Monotonic Counter (MC).

[2.0.0]

 Initial version.

TMU
[2.0.3]
* Bug Fixes
— Fixed the violations of MISRA 2012 rules:
Rule 10.1 10.310.4 17.7.
[2.0.2]
* Bug Fixes
— Fixed missing right pair definition for extern C.
[2.0.1]

* New Features

— Added control macro to enable/disable the CLOCK code in current driver.

[2.0.0]
* Initial version.

* This module was first developed on i.MX 8MQuad.

UART

[2.3.2]
* Improvements

— Make driver aarch64 compatible

64 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

[2.3.1]
* Improvements
— Use separate data for TX and RX in uart_transfer_t.
* Bug Fixes

— Fixed bug that when ring buffer is used, if some data is received in ring buffer first
before calling UART TransferReceiveNonBlocking, the received data count returned
by UART_TransferGetReceiveCount is wrong.

[2.3.0]
* Bug Fixes

— Fixed DMA transfer blocking issue by enabling tx idle interrupt after DMA transmis-
sion finishes.

[2.2.1]
* Bug Fixes
— Fixed MISRA 2012 rule 10.4 violation.

[2.2.0]
* New Features

— Modified uart_config_t, UART_Init and UART_GetDefaultConfig APIs so that the RTS and
CTS used for hardware flow control can be enabled during module initialization.

— Added API UART _SetRxRTSWatermark so that the water mark level of RTS deassertion
can be configured.

[2.1.1]
* Bug Fixes
— Fixed MISRA 8.5 violation.
[2.1.0]

* Improvements

— Added timeout mechanism when waiting for certain states in transfer driver.

[2.0.2]
* Improvements

— Added check for transmission complete in UART_WriteBlocking,
UART _TransferHandleIRQ and UART_SendSDMACallback to ensure all the data
would be sent out to bus.

— Modified UART_ReadBlocking so that if more than one receiver errors occur, all status
flags will be cleared and the most severe error status will be returned.

* Bug Fixes
— Fixed MISRA issues.
* Fixed rules 10.1, 10.3, 10.4, 10.6, 10.7, 10.8, 11.9, 14.4.

1.5. ChangeLog 65

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.1]
* Bug Fixes
— Memset local variable SDMA transfer configuration structure to make sure unused
members in structure are cleared.
[2.0.0]

 Initial version.

WDOG
[2.2.0]
* Bug Fixes
— Fixed the wrong behavior of workMode.enableWait, workMode.enableStop, work-
Mode.enableDebug in configuration structure wdog_config_t. When set the items to
true, WDOG will continues working in those modes.
[2.1.1]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 10.1, 10.3, 10.4, 10.6, 10.7 and 11.9.
— Fixed the issue of the inseparable process interrupted by other interrupt source.
4 WDOG_Init
* WDOG_Refresh
[2.1.0]

* New Features

— Added new API “WDOG_TriggerSystemSoftwareReset()” to allow users to reset the sys-
tem by software.

— Added new API “WDOG_TriggerSoftwareSignal()” to allow users to trigger a WDOG_B
signal by software.

— Removed the parameter “softwareAssertion” and “softwareResetSignal” out of the
wdog_config_t structure.

— Added new parameter “enableTimeOutAssert” to the wdog_config_t structure. With
this parameter enabled, when the WDOG timeout occurs, a WDOG_B signal will be
asserted. This signal can be routed to external pin of the chip. Note that WDOG_B
signal remains asserted until a power-on reset (POR) occurs.

[2.0.1]
* New Features

— Added control macro to enable/disable the CLOCK code in current driver.

66 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.0]

 Initial version.

1.6 Driver API Reference Manual

This section provides a link to the Driver API RM, detailing available drivers and their usage to
help you integrate hardware efficiently.

MIMX8MQ6

1.7 Middleware Documentation

Find links to detailed middleware documentation for key components. While not all onboard
middleware is covered, this serves as a useful reference for configuration and development.

1.7.1 Multicore

multicore

1.7.2 FreeMASTER

freemaster

1.7.3 FreeRTOS

FreeRTOS

1.6. Driver API Reference Manual 67

MCUXpresso SDK Documentation, Release 25.09.00

68 Chapter 1. EVK-MIMX8MQ

Chapter 2

MIMX8MQ6

2.1 CACHE: LMEM CACHE Memory Controller

static inline void ICACHE_ InvalidateByRange(uint32_t address, uint32_t size_byte)
Invalidates instruction cache by range.

Note: Address and size should be aligned to 16-Byte due to the cache operation unit
FSL_FEATURE_L1ICACHE_LINESIZE_BYTE. The startAddr here will be forced to align to the
cache line size if startAddr is not aligned. For the size_byte, application should make sure
the alignment or make sure the right operation order if the size_byte is not aligned.

Parameters
* address — The physical address.
* size_byte — size of the memory to be invalidated.

static inline void DCACHE_ InvalidateByRange(uint32_t address, uint32_t size_byte)
Invalidates data cache by range.

Note: Address and size should be aligned to 16-Byte due to the cache operation unit
FSL_FEATURE_L1DCACHE_LINESIZE_BYTE. The startAddr here will be forced to align to
the cache line size if startAddr is not aligned. For the size_byte, application should make
sure the alignment or make sure the right operation order if the size_byte is not aligned.

Parameters
* address — The physical address.
* size_ byte — size of the memory to be invalidated.

static inline void DCACHE_ CleanByRange(uint32_t address, uint32_t size_byte)
Clean data cache by range.

Note: Address and size should be aligned to 16-Byte due to the cache operation unit
FSL_FEATURE_L1DCACHE_LINESIZE_BYTE. The startAddr here will be forced to align to
the cache line size if startAddr is not aligned. For the size_byte, application should make
sure the alignment or make sure the right operation order if the size_byte is not aligned.

Parameters

69

MCUXpresso SDK Documentation, Release 25.09.00

* address — The physical address.
* size_byte — size of the memory to be cleaned.

static inline void DCACHE _ CleanInvalidateByRange(uint32_t address, uint32_t size_byte)
Cleans and Invalidates data cache by range.

Note: Address and size should be aligned to 16-Byte due to the cache operation unit
FSL_FEATURE_L1DCACHE_LINESIZE_BYTE. The startAddr here will be forced to align to
the cache line size if startAddr is not aligned. For the size_byte, application should make
sure the alignment or make sure the right operation order if the size_byte is not aligned.

Parameters
* address — The physical address.
* size_byte — size of the memory to be Cleaned and Invalidated.

FSL_CACHE_DRIVER_VERSION
cache driver version.

L1CODEBUSCACHE_LINESIZE_BYTE

code bus cache line size is equal to system bus line size, so the unified I/D cache line size
equals too.

The code bus CACHE line size is 16B = 128b.

L1ISYSTEMBUSCACHE_LINESIZE_BYTE
The system bus CACHE line size is 16B = 128h.

2.2 Clock

enum _clock name
Clock name used to get clock frequency.

Values:

enumerator kCLOCK__CoreM4Clk
ARM M4 Core clock

enumerator kCLOCK _AxiClk
Main AXI bus clock.

enumerator kCLOCK AhbClk
AHB bus clock.

enumerator kCLOCK_ IpgClk
IPG bus clock.

enumerator kCLOCK_Osc25MClk
0OSC 25M clock.

enumerator kCLOCK Osc27MClk
0OSC 27M clock.

enumerator kCLOCK_ ArmPIlIClk
Arm PLL clock.

enumerator kCLOCK__ VpuPIIClk
Vpu PLL clock.

70 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_DramPlIClk
Dram PLL clock.

enumerator kCLOCK_ SysPIl1Clk
Sys PLL1 clock.

enumerator kCLOCK_ SysPll1Div2Clk
Sys PLL1 clock divided by 2.
enumerator kCLOCK_ SysPll1Div3Clk
Sys PLL1 clock divided by 3.
enumerator kCLOCK__SysPIl1Div4Clk
Sys PLL1 clock divided by 4.
enumerator kCLOCK_ SysPll1Div5Clk
Sys PLL1 clock divided by 5.
enumerator kCLOCK__SysPll1Div6Clk
Sys PLL1 clock divided by 6.
enumerator kCLOCK__SysPll1Div8Clk
Sys PLL1 clock divided by 8.
enumerator kCLOCK__ SysPll11Div10Clk
Sys PLL1 clock divided by 10.
enumerator kCLOCK__SysPll1Div20Clk
Sys PLL1 clock divided by 20.
enumerator kCLOCK__SysP112Clk
Sys PLL2 clock.
enumerator kCLOCK__SysPl12Div2Clk
Sys PLL2 clock divided by 2.
enumerator kCLOCK__SysPl12Div3Clk
Sys PLL2 clock divided by 3.
enumerator kCLOCK__SysPl12Div4Clk
Sys PLL2 clock divided by 4.
enumerator kCLOCK__SysPl12Div5Clk
Sys PLL2 clock divided by 5.
enumerator kCLOCK__SysPl12Div6Clk
Sys PLL2 clock divided by 6.
enumerator kCLOCK__SysPl12Div8Clk
Sys PLL2 clock divided by 8.
enumerator kCLOCK__SysP112Div10Clk
Sys PLL2 clock divided by 10.
enumerator kCLOCK__SysP112Div20Clk
Sys PLL2 clock divided by 20.
enumerator kCLOCK__SysPlI3Clk
Sys PLL3 clock.

enumerator kCLOCK _AudioPl11Clk
Audio PLL1 clock.

2.2. Clock 71

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_AudioPl12Clk

Audio PLL2 clock.

enumerator kCLOCK_VideoPIll1Clk

Video PLL1 clock.
enumerator kCLOCK_ ExtClk1
External clockl.
enumerator kCLOCK__ExtClk2
External clock2.
enumerator kCLOCK__ExtClk3
External clock3.

enumerator kCLOCK ExtClk4
External clock4.

enumerator kCLOCK NoneName

None Clock Name.

enum _ clock ip_name

CCM CCGR gate control.

Values:

enumerator kCLOCK_ IpInvalid

enumerator kCLOCK_ Debug
DEBUG Clock Gate.

enumerator kCLOCK_ Dram
DRAM Clock Gate.
enumerator kCLOCK__Ecspil
ECSPI1 Clock Gate.
enumerator kCLOCK_ Ecspi2
ECSPI2 Clock Gate.
enumerator kCLOCK_ Ecspi3
ECSPI3 Clock Gate.
enumerator kCLOCK_ Gpiol
GPIO1 Clock Gate.
enumerator kCLOCK_ Gpio2
GPIO2 Clock Gate.
enumerator kCLOCK_ Gpio3
GPIO3 Clock Gate.
enumerator kCLOCK__Gpio4
GPIO4 Clock Gate.
enumerator kCLOCK__Gpiob
GPIOS5 Clock Gate.

enumerator kCLOCK_Gptl
GPT1 Clock Gate.

enumerator kCLOCK__Gpt2
GPT2 Clock Gate.

72

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK__ Gpt3
GPT3 Clock Gate.

enumerator kCLOCK__Gpt4
GPT4 Clock Gate.

enumerator kCLOCK_ Gpth
GPTS5 Clock Gate.

enumerator kCLOCK__Gpt6
GPT6 Clock Gate.

enumerator kCLOCK_I2cl
I12C1 Clock Gate.

enumerator kCLOCK_ 12¢2
12C2 Clock Gate.
enumerator kCLOCK_ 12¢3
12C3 Clock Gate.
enumerator kCLOCK_ 12c4
12C4 Clock Gate.
enumerator kCLOCK_ Tomux
IOMUX Clock Gate.
enumerator kCLOCK_ Ipmux1
IPMUX1 Clock Gate.
enumerator kCLOCK_ Ipmux2
IPMUX2 Clock Gate.
enumerator kCLOCK_ Ipmux3
IPMUX3 Clock Gate.
enumerator kCLOCK_ Ipmux4
IPMUX4 Clock Gate.
enumerator kCLOCK__M4
M4 Clock Gate.
enumerator kCLOCK__Mu
MU Clock Gate.
enumerator kCLOCK_ Ocram
OCRAM Clock Gate.
enumerator kCLOCK__OcramS
OCRAM S Clock Gate.
enumerator kCLOCK__Pwml
PWM1 Clock Gate.
enumerator kCLOCK__ Pwm?2
PWM2 Clock Gate.
enumerator kCLOCK__ Pwm3
PWMS3 Clock Gate.

enumerator kCLOCK_ Pwm4
PWM4 Clock Gate.

2.2. Clock 73

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK__ Qspi
QSPI Clock Gate.

enumerator kCLOCK_Rdc
RDC Clock Gate.

enumerator kCLOCK_ Sail
SAI1 Clock Gate.

enumerator kCLOCK__Sai2
SAI2 Clock Gate.

enumerator kCLOCK _Sai3
SAI3 Clock Gate.

enumerator kCLOCK _Sai4
SAI4 Clock Gate.

enumerator kCLOCK _Saib
SAI5 Clock Gate.

enumerator kCLOCK _Sai6
SAI6 Clock Gate.

enumerator kCLOCK_ Sdmal
SDMAT1 Clock Gate.

enumerator kCLOCK Sdma?2
SDMAZ2 Clock Gate.

enumerator kCLOCK_ Sec_ Debug

SEC_DEBUG Clock Gate.

enumerator kCLOCK Semad42 1

RDC SEMA42 Clock Gate.

enumerator kCLOCK Semad2 2

RDC SEMA42 Clock Gate.

enumerator kCLOCK__Sim__ display

SIM_Display Clock Gate.

enumerator kCLOCK Sim m
SIM_M Clock Gate.

enumerator kCLOCK_Sim main

SIM_MAIN Clock Gate.

enumerator kCLOCK_ Sim_ s
SIM_S Clock Gate.

enumerator kCLOCK__Sim_ wakeup

SIM_WAKEUP Clock Gate.

enumerator kCLOCK_Uartl
UART1 Clock Gate.

enumerator kCLOCK_Uart2
UART?2 Clock Gate.

enumerator kCLOCK_ Uart3
UART3 Clock Gate.

74

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_Uart4
UART4 Clock Gate.

enumerator kCLOCK_ Wdogl
WDOG1 Clock Gate.

enumerator kCLOCK_ Wdog2
WDOG?2 Clock Gate.

enumerator kCLOCK_ Wdog3
WDOGS3 Clock Gate.
enumerator kCLOCK_ TempSensor
TempSensor Clock Gate.
enum _clock root control
ccm root name used to get clock frequency.
Values:
enumerator kCLOCK_ RootM4
ARM Cortex-M4 Clock control name.
enumerator kCLOCK_ RootAxi
AXI Clock control name.
enumerator kCLOCK_RootNoc
NOC Clock control name.
enumerator kCLOCK_ RootAhb
AHB Clock control name.
enumerator kCLOCK_ RootIpg
IPG Clock control name.
enumerator kCLOCK_RootDramAlt
DRAM ALT Clock control name.
enumerator kCLOCK_ RootSail
SAI1 Clock control name.
enumerator kCLOCK_ RootSai2
SAI2 Clock control name.
enumerator kCLOCK_ RootSai3
SAI3 Clock control name.
enumerator kCLOCK_ RootSai4
SAI4 Clock control name.
enumerator kCLOCK_ RootSaib
SAI5 Clock control name.
enumerator kCLOCK_ RootSai6
SAI6 Clock control name.
enumerator kCLOCK_ RootQspi
QSPI Clock control name.

enumerator kCLOCK__Rootl2cl
I12C1 Clock control name.

2.2. Clock 75

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_RootI2¢2
I12C2 Clock control name.

enumerator kCLOCK_RootlI2¢3
I12C3 Clock control name.
enumerator kCLOCK_RootlI2c4
I12C4 Clock control name.
enumerator kCLOCK _RootUart1
UART1 Clock control name.
enumerator kCLOCK _RootUart2
UART?2 Clock control name.
enumerator kCLOCK RootUart3
UART3 Clock control name.
enumerator kCLOCK RootUart4
UART4 Clock control name.
enumerator kCLOCK__RootEcspil
ECSPI1 Clock control name.
enumerator kCLOCK__RootEcspi2
ECSPI2 Clock control name.
enumerator kCLOCK__RootEcspi3
ECSPI3 Clock control name.
enumerator kCLOCK RootPwml
PWM1 Clock control name.
enumerator kCLOCK_RootPwm2
PWM2 Clock control name.
enumerator kCLOCK_RootPwm3
PWM3 Clock control name.
enumerator kCLOCK_RootPwm4
PWM4 Clock control name.
enumerator kCLOCK_ RootGptl
GPT1 Clock control name.
enumerator kCLOCK__RootGpt2
GPT2 Clock control name.
enumerator kCLOCK__RootGpt3
GPT3 Clock control name.
enumerator kCLOCK_ RootGpt4
GPT4 Clock control name.
enumerator kCLOCK_ RootGpth
GPT5 Clock control name.
enumerator kCLOCK__ RootGpt6
GPT6 Clock control name.

enumerator kCLOCK__RootWdog
WDOG Clock control name.

76

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enum _ clock root
ccm clock root used to get clock frequency.
Values:
enumerator kCLOCK_ M4ClkRoot
ARM Cortex-M4 Clock control name.
enumerator kCLOCK__AxiClkRoot
AXI Clock control name.
enumerator kCLOCK_ NocClkRoot
NOC Clock control name.
enumerator kCLOCK__AhbClkRoot
AHB Clock control name.
enumerator kCLOCK_ IpgClkRoot
IPG Clock control name.
enumerator kCLOCK_DramAltClkRoot
DRAM ALT Clock control name.
enumerator kCLOCK__ SailClkRoot
SAI1 Clock control name.
enumerator kCLOCK__ Sai2ClkRoot
SAI2 Clock control name.
enumerator kCLOCK__ Sai3ClkRoot
SAI3 Clock control name.
enumerator kCLOCK _ Sai4ClkRoot
SAI4 Clock control name.
enumerator kCLOCK _ Sai5ClkRoot
SAI5 Clock control name.
enumerator kCLOCK _Sai6ClkRoot
SAI6 Clock control name.
enumerator kCLOCK__QspiClkRoot
QSPI Clock control name.
enumerator kCLOCK_ I2¢1ClkRoot
12C1 Clock control name.
enumerator kCLOCK_ I12¢2ClkRoot
12C2 Clock control name.
enumerator kCLOCK_ I2¢3ClkRoot
12C3 Clock control name.
enumerator kCLOCK_ 12¢4ClkRoot
12C4 Clock control name.
enumerator kCLOCK_ Uart1ClkRoot
UART1 Clock control name.

enumerator kCLOCK__ Uart2ClkRoot
UART?2 Clock control name.

2.2. Clock 77

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_Uart3ClkRoot
UART3 Clock control name.

enumerator kCLOCK_Uart4ClkRoot
UART4 Clock control name.

enumerator kCLOCK_ Ecspil ClkRoot
ECSPI1 Clock control name.

enumerator kCLOCK_ Ecspi2CIkRoot
ECSPI2 Clock control name.
enumerator kCLOCK___Ecspi3CIkRoot
ECSPI3 Clock control name.
enumerator kCLOCK__Pwm1ClkRoot
PWM1 Clock control name.
enumerator kCLOCK__Pwm2ClkRoot
PWM2 Clock control name.
enumerator kCLOCK__Pwm3ClkRoot
PWM3 Clock control name.
enumerator kCLOCK_ Pwm4ClkRoot
PWM4 Clock control name.
enumerator kCLOCK__Gpt1ClkRoot
GPT1 Clock control name.
enumerator kCLOCK__Gpt2ClkRoot
GPT2 Clock control name.
enumerator kCLOCK__Gpt3ClkRoot
GPT3 Clock control name.
enumerator kCLOCK__Gpt4ClkRoot
GPT4 Clock control name.
enumerator kCLOCK__Gpt5ClkRoot
GPTS5 Clock control name.
enumerator kCLOCK__Gpt6ClkRoot
GPT6 Clock control name.
enumerator kCLOCK_ WdogClkRoot
WDOG Clock control name.
enum _clock rootmux m4 clk sel
Root clock select enumeration for ARM Cortex-M4 core.
Values:
enumerator kCLOCK__M4RootmuxQOsc25m
ARM Cortex-M4 Clock from OSC 25M.
enumerator kCLOCK__M4RootmuxSysP112Div5
ARM Cortex-M4 Clock from SYSTEM PLL2 divided by 5.

enumerator kCLOCK__M4RootmuxSysP112Div4
ARM Cortex-M4 Clock from SYSTEM PLL2 divided by 4.

78 Chapter 2

. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK__M4RootmuxSysPIll1Div3
ARM Cortex-M4 Clock from SYSTEM PLL1 divided by 3.

enumerator kCLOCK__M4RootmuxSysPIl1
ARM Cortex-M4 Clock from SYSTEM PLL1.

enumerator kCLOCK _M4RootmuxAudioPll1
ARM Cortex-M4 Clock from AUDIO PLL1.

enumerator kCLOCK_M4RootmuxVideoPll1
ARM Cortex-M4 Clock from VIDEO PLL1.

enumerator kCLOCK__M4RootmuxSysP113
ARM Cortex-M4 Clock from SYSTEM PLL3.

enum _clock rootmux_ axi clk sel
Root clock select enumeration for AXI bus.

Values:

enumerator kCLOCK _AxiRootmuxOsc25m
ARM AXI Clock from OSC 25M.

enumerator kCLOCK__AxiRootmuxSysP112Div3
ARM AXI Clock from SYSTEM PLL2 divided by 3.

enumerator kCLOCK__AxiRootmuxSysP1l1
ARM AXI Clock from SYSTEM PLL1.

enumerator kCLOCK__AxiRootmuxSysP112Div4
ARM AXI Clock from SYSTEM PLL2 divided by 4.

enumerator kCLOCK__AxiRootmuxSysP112
ARM AXI Clock from SYSTEM PLL2.

enumerator kCLOCK AxiRootmuxAudioPll1
ARM AXI Clock from AUDIO PLL1.

enumerator kCLOCK _AxiRootmuxVideoPll1
ARM AXI Clock from VIDEO PLL1.

enumerator kCLOCK__AxiRootmuxSysPI1I1Div8
ARM AXI Clock from SYSTEM PLL1 divided by 8.

enum _ clock rootmux_ ahb_clk sel
Root clock select enumeration for AHB bus.

Values:

enumerator kCLOCK__AhbRootmuxOsc25m
ARM AHB Clock from OSC 25M.

enumerator kCLOCK__AhbRootmuxSysP111Div6
ARM AHB Clock from SYSTEM PLL1 divided by 6.

enumerator kCLOCK__AhbRootmuxSysP111
ARM AHB Clock from SYSTEM PLL1.

enumerator kCLOCK__AhbRootmuxSysPll1Div2
ARM AHB Clock from SYSTEM PLL1 divided by 2.

enumerator kCLOCK__AhbRootmuxSysPIl12Div8
ARM AHB Clock from SYSTEM PLL2 divided by 8.

2.2. Clock 79

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK__AhbRootmuxSysP113
ARM AHB Clock from SYSTEM PLL3.

enumerator kCLOCK __AhbRootmuxAudioPll1
ARM AHB Clock from AUDIO PLL1.

enumerator kCLOCK __AhbRootmuxVideoPll1
ARM AHB Clock from VIDEO PLL1.

enum _ clock rootmux_ qgspi_clk_ sel
Root clock select enumeration for QSPI peripheral.

Values:

enumerator kCLOCK __QspiRootmuxOsc25m
ARM QSPI Clock from OSC 25M.

enumerator kCLOCK_ QspiRootmuxSysP111Div2

ARM QSPI Clock from SYSTEM PLL1 divided by 2.

enumerator kCLOCK_ QspiRootmuxSysP1I1
ARM QSPI Clock from SYSTEM PLL1.

enumerator kCLOCK_ QspiRootmuxSysP112Div2

ARM QSPI Clock from SYSTEM PLL2 divided by 2.

enumerator kCLOCK__ QspiRootmuxAudioP112
ARM QSPI Clock from AUDIO PLL2.

enumerator kCLOCK__ QspiRootmuxSysP111Div3
ARM QSPI Clock from SYSTEM PLL1 divided by 3

enumerator kCLOCK_ QspiRootmuxSysPI13
ARM QSPI Clock from SYSTEM PLL3.

enumerator kCLOCK__ QspiRootmuxSysP111Div8

ARM QSPI Clock from SYSTEM PLL1 divided by 8.

enum _ clock rootmux_ ecspi_clk sel
Root clock select enumeration for ECSPI peripheral.

Values:

enumerator kCLOCK__ EcspiRootmuxOsc25m
ECSPI Clock from OSC 25M.

enumerator kCLOCK__EcspiRootmuxSysP112Div5
ECSPI Clock from SYSTEM PLL2 divided by 5.

enumerator kCLOCK__EcspiRootmuxSysP111Div20
ECSPI Clock from SYSTEM PLL1 divided by 20.

enumerator kCLOCK__EcspiRootmuxSysP1ll11Div5
ECSPI Clock from SYSTEM PLL1 divided by 5.

enumerator kCLOCK__EcspiRootmuxSysP111
ECSPI Clock from SYSTEM PLL1.

enumerator kCLOCK__EcspiRootmuxSysP113
ECSPI Clock from SYSTEM PLL3.

enumerator kCLOCK__EcspiRootmuxSysP112Div4
ECSPI Clock from SYSTEM PLL2 divided by 4.

80

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_ EcspiRootmuxAudioP112
ECSPI Clock from AUDIO PLL2.

enum _clock rootmux_i2c¢_clk_sel
Root clock select enumeration for I2C peripheral.

Values:

enumerator kCLOCK _I2cRootmuxOsc25m
I2C Clock from OSC 25M.

enumerator kCLOCK__ I2cRootmuxSysP111Div5
12C Clock from SYSTEM PLL1 divided by 5.

enumerator kCLOCK__I2cRootmuxSysP112Div20
I2C Clock from SYSTEM PLL2 divided by 20.

enumerator kCLOCK__I2cRootmuxSysPI113
I2C Clock from SYSTEM PLL3.

enumerator kCLOCK __I2cRootmuxAudioPll1
I2C Clock from AUDIO PLL1.

enumerator kCLOCK I2cRootmuxVideoPll1
I2C Clock from VIDEO PLL1.

enumerator kCLOCK __I2cRootmuxAudioPl12
I2C Clock from AUDIO PLL2.

enumerator kCLOCK__I2cRootmuxSysP1l1Div6
I2C Clock from SYSTEM PLL1 divided by 6.

enum _clock rootmux_uart_ clk sel
Root clock select enumeration for UART peripheral.

Values:

enumerator kCLOCK_ UartRootmuxOsc25m
UART Clock from OSC 25M.

enumerator kCLOCK__UartRootmuxSysPI11Div10
UART Clock from SYSTEM PLL1 divided by 10.

enumerator kCLOCK__UartRootmuxSysP112Div5
UART Clock from SYSTEM PLL2 divided by 5.

enumerator kCLOCK__UartRootmuxSysP112Div10
UART Clock from SYSTEM PLL2 divided by 10.

enumerator kCLOCK__UartRootmuxSysPI13
UART Clock from SYSTEM PLL3.

enumerator kCLOCK_UartRootmuxExtClk2
UART Clock from External Clock 2.

enumerator kCLOCK__UartRootmuxExtClk34
UART Clock from External Clock 3, External Clock 4.

enumerator kCLOCK UartRootmuxAudioPl12
UART Clock from Audio PLL2.

enum _ clock_rootmux_ gpt
Root clock select enumeration for GPT peripheral.

Values:

2.2. Clock 81

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK__GptRootmuxOsc25m
GPT Clock from OSC 25M.

enumerator kCLOCK__GptRootmuxSystemP112Div10
GPT Clock from SYSTEM PLL2 divided by 10.

enumerator kCLOCK_ GptRootmuxSysP1l1Div2
GPT Clock from SYSTEM PLL1 divided by 2.

enumerator kCLOCK__ GptRootmuxSysP111Div20
GPT Clock from SYSTEM PLL1 divided by 20.

enumerator kCLOCK__GptRootmuxVideoPll1
GPT Clock from VIDEO PLL1.

enumerator kCLOCK__GptRootmuxSystemP111Div10
GPT Clock from SYSTEM PLL1 divided by 10.

enumerator kCLOCK__GptRootmuxAudioPll1
GPT Clock from AUDIO PLL1.

enumerator kCLOCK__GptRootmuxExtClk123
GPT Clock from External Clock1, External Clock2, External Clock3.

enum _ clock rootmux_wdog_ clk_ sel
Root clock select enumeration for WDOG peripheral.

Values:

enumerator kCLOCK_ WdogRootmuxOsc25m
WDOG Clock from OSC 25M.

enumerator kCLOCK_ WdogRootmuxSysP111Div6
WDOG Clock from SYSTEM PLL1 divided by 6.

enumerator kCLOCK_ WdogRootmuxSysP111Div5
WDOG Clock from SYSTEM PLL1 divided by 5.

enumerator kCLOCK__ WdogRootmuxVpuPll
WDOG Clock from VPU DLL.

enumerator kCLOCK_ WdogRootmuxSystemP112Div8
WDOG Clock from SYSTEM PLL2 divided by 8.

enumerator kCLOCK__ WdogRootmuxSystemP113
WDOG Clock from SYSTEM PLL3.

enumerator kCLOCK__WdogRootmuxSystemP111Div10
WDOG Clock from SYSTEM PLL1 divided by 10.

enumerator kCLOCK__WdogRootmuxSystemP112Div6
WDOG Clock from SYSTEM PLL2 divided by 6.

enum _ clock rootmux_pwm_ clk_ sel
Root clock select enumeration for PWM peripheral.

Values:

enumerator kCLOCK PwmRootmuxOsc25m
PWM Clock from OSC 25M.

enumerator kCLOCK__PwmRootmuxSysP112Div10
PWM Clock from SYSTEM PLL2 divided by 10.

82 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK__PwmRootmuxSysPIll1Divh
PWM Clock from SYSTEM PLL1 divided by 5.

enumerator kCLOCK__PwmRootmuxSysP111Div20
PWM Clock from SYSTEM PLL1 divided by 20.

enumerator kCLOCK__PwmRootmuxSystemP113
PWM Clock from SYSTEM PLL3.

enumerator kCLOCK__PwmRootmuxExtClk12
PWM Clock from External Clock1, External Clock2.

enumerator kCLOCK__PwmRootmuxSystemP111Div10
PWM Clock from SYSTEM PLL1 divided by 10.

enumerator kCLOCK_ PwmRootmuxVideoPll1
PWM Clock from VIDEO PLL1.

enum _clock rootmux_sai clk sel
Root clock select enumeration for SAI peripheral.

Values:

enumerator kCLOCK _SaiRootmuxOsc25m
SAI Clock from OSC 25M.

enumerator kCLOCK __SaiRootmuxAudioPll1
SAI Clock from AUDIO PLL1.

enumerator kCLOCK __SaiRootmuxAudioP112
SAI Clock from AUDIO PLL2.

enumerator kCLOCK __SaiRootmuxVideoPll1
SAI Clock from VIDEO PLL1.

enumerator kCLOCK_SaiRootmuxSysPII1Div6
SAI Clock from SYSTEM PLL1 divided by 6.

enumerator kCLOCK SaiRootmuxOsc27m
SAI Clock from OSC 27M.

enumerator kCLOCK _SaiRootmuxExtClk123
SAI Clock from External Clock1, External Clock2, External Clock3.

enumerator kCLOCK _SaiRootmuxExtClk234
SAI Clock from External Clock2, External Clock3, External Clock4.

enum _clock rootmux_noc_clk sel
Root clock select enumeration for NOC CLK.

Values:

enumerator kCLOCK__NocRootmuxOsc25m
NOC Clock from OSC 25M.

enumerator kCLOCK_ NocRootmuxSysPII1
NOC Clock from SYSTEM PLL1.

enumerator kCLOCK__ NocRootmuxSysPl113
NOC Clock from SYSTEM PLL3.

enumerator kCLOCK__ NocRootmuxSysP112
NOC Clock from SYSTEM PLL2.

2.2. Clock 83

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_ NocRootmuxSysPI1I2Div2
NOC Clock from SYSTEM PLL2 divided by 2.

enumerator kCLOCK_NocRootmuxAudioPl11
NOC Clock from AUDIO PLL1.

enumerator kCLOCK_NocRootmuxVideoPll1
NOC Clock from VIDEO PLL1.

enumerator kCLOCK_NocRootmuxAudioPl112
NOC Clock from AUDIO PLL2.

enum _ clock pll_gate
CCM PLL gate control.

Values:

enumerator kCLOCK __ArmPllGate
ARM PLL Gate.

enumerator kCLOCK__GpuPllGate
GPU PLL Gate.

enumerator kCLOCK__VpuPllGate
VPU PLL Gate.

enumerator kCLOCK_ DramPllGate
DRAM PLL1 Gate.

enumerator kCLOCK_ SysPll1Gate
SYSTEM PLL1 Gate.

enumerator kCLOCK_ SysPll1Div2Gate
SYSTEM PLL1 Div2 Gate.

enumerator kCLOCK__SysPll1Div3Gate
SYSTEM PLL1 Div3 Gate.

enumerator kCLOCK_ SysPll1Div4Gate
SYSTEM PLL1 Div4 Gate.

enumerator kCLOCK_ SysPll1Div5Gate
SYSTEM PLL1 Div5 Gate.

enumerator kCLOCK__SysPll1Div6Gate
SYSTEM PLL1 Div6 Gate.

enumerator kCLOCK__SysPll1Div8Gate
SYSTEM PLL1 Div8 Gate.

enumerator kCLOCK_ SysPll1Div10Gate
SYSTEM PLL1 Div10 Gate.

enumerator kCLOCK__SysPll1Div20Gate
SYSTEM PLL1 Div20 Gate.

enumerator kCLOCK__ SysPlI2Gate
SYSTEM PLL2 Gate.

enumerator kCLOCK__SysPlI2Div2Gate
SYSTEM PLL2 Div2 Gate.

84

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_ SysPlI12Div3Gate
SYSTEM PLL2 Div3 Gate.

enumerator kCLOCK_ SysPlI2Div4Gate
SYSTEM PLL2 Div4 Gate.

enumerator kCLOCK_ SysPlI12Div5Gate
SYSTEM PLL2 Div5 Gate.

enumerator kCLOCK_ SysPlI12Div6Gate
SYSTEM PLL2 Div6 Gate.

enumerator kCLOCK__SysPl12Div8Gate
SYSTEM PLL2 Div8 Gate.

enumerator kCLOCK__SysPlI2Div10Gate
SYSTEM PLL2 Div10 Gate.

enumerator kCLOCK_SysPl12Div20Gate
SYSTEM PLL2 Div20 Gate.

enumerator kCLOCK_SysPll13Gate
SYSTEM PLL3 Gate.

enumerator kCLOCK AudioPll1Gate
AUDIO PLL1 Gate.

enumerator kCLOCK AudioPlI2Gate
AUDIO PLL2 Gate.

enumerator kCLOCK_VideoPll1Gate
VIDEO PLL1 Gate.

enumerator kCLOCK_VideoPlI2Gate
VIDEO PLL2 Gate.

enum _ clock gate_value
CCM gate control value.

Values:

enumerator kCLOCK ClockNotNeeded
Clock always disabled.

enumerator kCLOCK__ ClockNeededRun
Clock enabled when CPU is running.

enumerator kCLOCK__ClockNeededRunWait
Clock enabled when CPU is running or in WAIT mode.

enumerator kCLOCK _ClockNeededAll
Clock always enabled.

enum _ clock_pll_bypass_ ctrl
PLL control names for PLL bypass.

These constants define the PLL control names for PLL bypass.
* 0:15: REG offset to CCM_ANALOG_BASE in bytes.
* 16:20: bypass bit shift.

Values:

2.2. Clock 85

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK__AudioPIll1BypassCtrl
CCM Audio PLL1 bypass Control.

enumerator kCLOCK__AudioPlI2BypassCtrl
CCM Audio PLL2 bypass Control.

enumerator kCLOCK_ VideoPIl1BypassCtrl
CCM Video P11 bypass Control.

enumerator kCLOCK__ GpuPLLPwrBypassCtrl
CCM Gpu PLL bypass Control.

enumerator kCLOCK__ VpuPlIPwrBypassCtrl
CCM Vpu PLL bypass Control.

enumerator kCLOCK__ArmPlIPwrBypassCtrl
CCM Arm PLL bypass Control.

enumerator kCLOCK_SysPll1InternalPll1BypassCtrl
CCM System PLL1 internal pll1 bypass Control.

enumerator kCLOCK__SysPll1InternalPl12BypassCtrl
CCM System PLL1 internal pll2 bypass Control.

enumerator kCLOCK__SysPll2InternalP111BypassCtrl
CCM Analog System PLL1 internal pll1 bypass Control.

enumerator kCLOCK__SysPll2InternalPl12BypassCtrl
CCM Analog VIDEO System PLL1 internal pll1 bypass Control.

enumerator kCLOCK__SysPll3InternalP1l11BypassCtrl
CCM Analog VIDEO PLL bypass Control.

enumerator kCLOCK__SysPll3InternalPl12BypassCtrl
CCM Analog VIDEO PLL bypass Control.

enumerator kCLOCK__VideoPlI2Internal Pl11BypassCtrl
CCM Analog 480M PLL bypass Control.

enumerator kCLOCK_ VideoPlI2Internal P112BypassCtrl
CCM Analog 480M PLL bypass Control.

enumerator kCLOCK__DramPllInternalPll11BypassCtrl
CCM Analog 480M PLL bypass Control.

enumerator kCLOCK__DramPllInternal Pl12BypassCtrl
CCM Analog 480M PLL bypass Control.

enum _ccm_ analog pll_clke
PLL clock names for clock enable/disable settings.

These constants define the PLL clock names for PLL clock enable/disable operations.
* 0:15: REG offset to CCM_ANALOG_BASE in bytes.
* 16:20: Clock enable bit shift.

Values:

enumerator kCLOCK__AudioPll1Clke
Audio pll1 clke

enumerator kCLOCK__AudioP112Clke
Audio pli2 clke

86 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_VideoPll1Clke
Video pll1 clke

enumerator kCLOCK_ GpuPlIClke
Gpu pll clke

enumerator kCLOCK_ VpuPIlIClke
Vpu pll clke

enumerator kCLOCK__ArmPIIClke
Arm pll clke

enumerator kCLOCK_ SystemPl111Clke
System pll1 clke

enumerator kCLOCK_SystemPl11Div2Clke
System pll1 Div2 clke

enumerator kCLOCK_SystemPl111Div3Clke
System pll1 Div3 clke

enumerator kCLOCK_SystemPl111Div4Clke
System pll1 Div4 clke

enumerator kCLOCK_SystemPl111Div5Clke
System pll1 Div5 clke

enumerator kCLOCK_SystemPl111Div6Clke
System pll1 Div6 clke

enumerator kCLOCK_SystemPl111Div8Clke
System pll1 Div8 clke

enumerator kCLOCK__ SystemPl111Div10Clke
System pll1 Div10 clke

enumerator kCLOCK__ SystemP111Div20Clke
System pll1 Div20 clke

enumerator kCLOCK__ SystemP112Clke
System pli2 clke

enumerator kCLOCK_SystemP112Div2Clke
System pll2 Div2 clke

enumerator kCLOCK__SystemPl112Div3Clke
System pll2 Div3 clke

enumerator kCLOCK_SystemPl112Div4Clke
System pll2 Div4 clke

enumerator kCLOCK__SystemP112Div5Clke
System pll2 Div5 clke

enumerator kCLOCK_SystemP112Div6Clke
System pll2 Div6 clke

enumerator kCLOCK_SystemP112Div8Clke
System pll2 Div8 clke

enumerator kCLOCK__ SystemP112Div10Clke
System pll2 Div10 clke

2.2. Clock 87

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_ SystemP112Div20Clke

System pll2 Div20 clke

enumerator kCLOCK_ SystemP113Clke
System pll3 clke

enumerator kCLOCK_VideoPl12Clke
Video pli2 clke

enumerator kCLOCK_DramPlIClke
Dram pll clke

enumerator kCLOCK OSC25MClke
0SC25M clke

enumerator kCLOCK_ OSC27MClke
0SC27M clke

enum _ clock pll_ctrl

ANALOG Power down override control.

Values:
enumerator kCLOCK__AudioPl11Ctrl

enumerator kCLOCK__AudioPl12Ctrl
enumerator kCLOCK_ VideoPll1Ctr]
enumerator kCLOCK_ GpuPlICtrl
enumerator kCLOCK__ VpuPlICtrl
enumerator kCLOCK__ArmPIlICtrl
enumerator kCLOCK_ SystemP111Ctrl
enumerator kCLOCK__ SystemP112Ctr]
enumerator kCLOCK_ SystemP113Ctrl
enumerator kCLOCK__ VideoPl12Ctrl
enumerator kCLOCK_ DramPI11Ctrl

enum _osc_mode
0OSC work mode.
Values:

enumerator kOSC_ OscMode
0OSC oscillator mode

enumerator kOSC__ ExtMode
0OSC external mode

enum _ osc32_src
0SC 32K input select.

Values:

enumerator kOSC32_ Src25MDiv800
source from 25M divide 800

88

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kOSC32 SrcRTC
source from RTC

enum _ccm_ analog_pll_ref clk
PLL reference clock select.

Values:

enumerator kANALOG _PlIRefOsc25M
reference OSC 25M

enumerator kANALOG _PlRefOsc27M
reference OSC 27M

enumerator kKANALOG_ PlIRefOscHdmiPhy27M
reference HDMI PHY 27M

enumerator kKANALOG_ PlIRefCIkPN
reference CLK_P_N
typedef enum _clock_name clock_name_ t
Clock name used to get clock frequency.

typedef enum _clock_ip_name clock_ip name_t
CCM CCGR gate control.

typedef enum _clock_root_control clock_root_ control t
ccm root name used to get clock frequency.

typedef enum _clock_root clock root_ t
ccm clock root used to get clock frequency.

typedef enum _clock_rootmux_m4_clk_sel clock_rootmux_m4_clk_sel t
Root clock select enumeration for ARM Cortex-M4 core.

typedef enum _clock_rootmux_axi_clk_sel clock rootmux_axi clk sel t
Root clock select enumeration for AXI bus.

typedef enum _clock_rootmux_ahb_clk_sel clock_rootmux_ahb_clk sel t
Root clock select enumeration for AHB bus.

typedef enum _clock_rootmux_qspi_clk_sel clock_rootmux_ gspi_clk_sel_t
Root clock select enumeration for QSPI peripheral.

typedef enum _clock_rootmux_ecspi_clk_sel clock__rootmux__ecspi_clk_sel_t
Root clock select enumeration for ECSPI peripheral.

typedef enum _clock_rootmux_i2c_clk_sel clock__rootmux_i2c_clk_sel_t
Root clock select enumeration for I12C peripheral.

typedef enum _clock_rootmux_uart_clk_sel clock rootmux_uart_clk_sel t
Root clock select enumeration for UART peripheral.

typedef enum _clock_rootmux_gpt clock rootmux_ gpt_t
Root clock select enumeration for GPT peripheral.

typedef enum _clock_rootmux_wdog_clk_sel clock_rootmux_wdog_clk_sel t
Root clock select enumeration for WDOG peripheral.

typedef enum _clock_rootmux_pwm_clk_sel clock_rootmux_Pwm_ clk_sel t
Root clock select enumeration for PWM peripheral.

2.2. Clock 89

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _clock_rootmux_sai_clk_sel clock_rootmux_sai_clk_sel_t
Root clock select enumeration for SAI peripheral.

typedef enum _clock_rootmux_noc_clk_sel clock_rootmux_noc_ clk_sel_t
Root clock select enumeration for NOC CLK.

typedef enum _clock_pll_gate clock_ pll_gate_t
CCM PLL gate control.

typedef enum _clock_gate value clock_gate_value_ t
CCM gate control value.

typedef enum _clock_pll_bypass_ctrl clock_pll_bypass_ ctrl t
PLL control names for PLL bypass.

These constants define the PLL control names for PLL bypass.
* 0:15: REG offset to CCM_ANALOG_BASE in bytes.
* 16:20: bypass bit shift.

typedef enum _ccm_analog _pll clke clock_pll_clke_t
PLL clock names for clock enable/disable settings.

These constants define the PLL clock names for PLL clock enable/disable operations.
* 0:15: REG offset to CCM_ANALOG_BASE in bytes.
* 16:20: Clock enable bit shift.

typedef enum _clock_pll ctrl clock_pll_ctrl_t
ANALOG Power down override control.
typedef enum _0sc32_src osc32_src_t
0SC 32K input select.
typedef struct _osc_config osc_ config_t
OSC configuration structure.

typedef struct _ccm_analog frac_pll_config ccm__analog_frac_pll_config_t

Fractional-N PLL configuration. Note: all the dividers in this configuration structure are
the actually divider, software will map it to register value.

typedef struct _ccm_analog_sscg_pll_config ccm__analog_sscg_ pll_config_t

SSCG PLL configuration. Note: all the dividers in this configuration structure are the actu-
ally divider, software will map it to register value.

FSL CLOCK_ DRIVER_VERSION
CLOCK driver version 2.4.1.

SDK_DEVICE_MAXIMUM_ CPU_CLOCK_FREQUENCY
0SC25M CLK FREQ
XTAL 25M clock frequency.

OSC27M__CLK_FREQ

XTAL 27M clock frequency.
HDMI_PHY_27M_FREQ

HDMI PHY 27M clock frequency.

CLKPN_FREQ
clock1PN frequency.

90 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

ECSPI_CLOCKS
Clock ip name array for ECSPI.

GPIO_CLOCKS
Clock ip name array for GPIO.

GPT_CLOCKS

Clock ip name array for GPT.
12C_CLOCKS

Clock ip name array for I2C.
IOMUX__CLOCKS

Clock ip name array for IOMUX.
IPMUX_ CLOCKS

Clock ip name array for IPMUX.
PWM_ CLOCKS

Clock ip name array for PWM.
RDC_CLOCKS

Clock ip name array for RDC.
SAI_CLOCKS

Clock ip name array for SAIL
RDC_SEMA42 CLOCKS

Clock ip name array for RDC SEMA42.
UART_CLOCKS

Clock ip name array for UART.
USDHC_ CLOCKS

Clock ip name array for USDHC.
WDOG__ CLOCKS

Clock ip name array for WDOG.
TMU_ CLOCKS

Clock ip name array for TEMPSENSOR.
SDMA_ CLOCKS

Clock ip name array for SDMA.
MU_ CLOCKS

Clock ip name array for MU.
QSPI_CLOCKS

Clock ip name array for QSPI.
CCM_BIT_FIELD_EXTRACTION(val, mask, shift)

CCM reg macros to extract corresponding registers bit field.
CCM__REG_OFF(root, off)

CCM reg macros to map corresponding registers.
CCM__REG(root)

CCM_REG_SET(root)

CCM_REG_ CLR(root)

2.2. Clock 91

MCUXpresso SDK Documentation, Release 25.09.00

AUDIO_PLL1_ CFGO_OFFSET
CCM Analog registers offset.

AUDIO_PLL2 CFGO_OFFSET
VIDEO_PLL1 CFGO_OFFSET
GPU_PLL CFGO_OFFSET
VPU_PLL CFGO_OFFSET
ARM_PLL_CFGO_OFFSET
SYS_ PLL1 CFGO_OFFSET
SYS_PLL2 CFGO_OFFSET
SYS PLL3 CFGO_OFFSET
VIDEO_PLL2 CFGO_OFFSET
DRAM_PLL_ CFGO_OFFSET
OSC_MISC_CFG_OFFSET

CCM_ANALOG_ TUPLE(reg, shift)
CCM ANALOG tuple macros to map corresponding registers and bit fields.

CCM_ANALOG_TUPLE_SHIFT(tuple)
CCM_ANALOG_TUPLE REG_OFF(base, tuple, off)
CCM_ANALOG_TUPLE_REG(base, tuple)

CCM__TUPLE(ccgr, root)
CCM CCGR and root tuple.

CCM_TUPLE_ CCGR(tuple)
CCM_TUPLE_ROOT(tuple)
CLOCK_ROOT_SOURCE

clock root source
CLOCK_ROOT_CONTROL_TUPLE
kCLOCK__CoreSysClk

For compatible with other platforms without CCM.

CLOCK_GetCoreSysClkFreq
For compatible with other platforms without CCM.

static inline void CLOCK_ SetRootMux(clock_root_control_t rootClk, uint32_t mux)
Set clock root mux. User maybe need to set more than one mux ROOT according to the clock

tree description in the reference manual.

Parameters

* rootClk — Root clock control (see clock_root_control_t enumeration).

* mux — Root mux value (see _ccm_rootmux_XXX enumeration).

92 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t CLOCK_ GetRootMux(clock_root_control_t rootClk)

Get clock root mux. In order to get the clock source of root, user maybe need to get more
than one ROOT’s mux value to obtain the final clock source of root.

Parameters
* rootClk — Root clock control (see clock_root_control_t enumeration).

Returns
Root mux value (see _ccm_rootmux_xXXX enumeration).

static inline void CLOCK_ EnableRoot(clock_root_control t rootCIk)
Enable clock root.

Parameters
* rootClk — Root clock control (see clock_root_control_t enumeration)

static inline void CLOCK _ DisableRoot(clock_root_control_t rootClk)
Disable clock root.

Parameters
* rootClk — Root control (see clock_root_control_t enumeration)

static inline bool CLOCK_ IsRootEnabled(clock_root_control t rootCIk)
Check whether clock root is enabled.

Parameters
* rootClk — Root control (see clock_root_control_t enumeration)

Returns
CCM root enabled or not.

» true: Clock root is enabled.
» false: Clock root is disabled.

void CLOCK__ UpdateRoot(clock_root_control_t ccmRootClk, uint32_t mux, uint32_t pre, uint32_t
post)

Update clock root in one step, for dynamical clock switching Note: The PRE and POST di-
viders in this function are the actually divider, software will map it to register value.

Parameters
* ccmRootClk — Root control (see clock_root_control_t enumeration)
* mux —root mux value (see _ccm_rootmux_XXX enumeration)
* pre — Pre divider value (0-7, divider=n+1)
* post — Post divider value (0-63, divider=n+1)

void CLOCK _SetRootDivider(clock_root_control_t ccmRootClk, uint32_t pre, uint32_t post)

Set root clock divider Note: The PRE and POST dividers in this function are the actually
divider, software will map it to register value.

Parameters
* ccmRootClk — Root control (see clock_root_control_t enumeration)
* pre — Pre divider value (1-8)
* post — Post divider value (1-64)

static inline uint32_t CLOCK_ GetRootPreDivider(clock_root_control_t rootCIK)

Get clock root PRE_PODF. In order to get the clock source of root, user maybe need to get
more than one ROOT’s mux value to obtain the final clock source of root.

2.2. Clock 93

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* rootClk — Root clock name (see clock_root_control t enumeration).

Returns
Root Pre divider value.

static inline uint32_t CLOCK_ GetRootPostDivider(clock_root_control_t rootClk)

Get clock root POST_PODF. In order to get the clock source of root, user maybe need to get
more than one ROOT’s mux value to obtain the final clock source of root.

Parameters
* rootClk — Root clock name (see clock_root_control_t enumeration).

Returns
Root Post divider value.

void CLOCK _InitOSC25M/(const osc_config_t *config)
0SC25M init.

Parameters
* config — 0sc configuration.

void CLOCK _ DeinitOSC25M(void)
0SC25M deinit.

void CLOCK InitOSC27M(const osc_config t *config)
0OSC27M init.

Parameters
* config — 0sc configuration.

void CLOCK_ DeinitOSC27M(void)
0SC27M deinit.

static inline void CLOCK_ SwitchOSC32Src(0sc32_src_t sel)
switch 32KHZ OSC input

Parameters
* sel — OSC32 input clock select

static inline void CLOCK_ ControlGate(uint32_t ccrnGate, clock_gate_value_t control)
Set PLL or CCGR gate control.

Parameters

* ccmGate — Gate control (see clock_pll_gate_t and clock_ip_name_t enumer-
ation)

* control — Gate control value (see clock_gate_value_t)

void CLOCK__EnableClock(clock_ip_name_t ccmGate)

Enable CCGR clock gate and root clock gate for each module User should set specific gate for
each module according to the description of the table of system clocks, gating and override
in CCM chapter of reference manual. Take care of that one module may need to set more
than one clock gate.

Parameters

* cemGate — Gate control for each module (see clock_ip_name_t enumera-
tion).

94 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

void CLOCK_ DisableClock(clock_ip_name_t ccmGate)

Disable CCGR clock gate for the each module User should set specific gate for each module
according to the description of the table of system clocks, gating and override in CCM chap-
ter of reference manual. Take care of that one module may need to set more than one clock
gate.

Parameters

* cemGate — Gate control for each module (see clock_ip_name_t enumera-
tion).

static inline void CLOCK_PowerUpPll(CCM_ANALOG_Type *base, clock_pll_ctrl_t pllControl)
Power up PLL.

Parameters
* base — CCM_ANALOG base pointer.
* pliControl — PLL control name (see clock_pll_ctrl_t enumeration)

static inline void CLOCK_ PowerDownPll(CCM_ANALOG_Type *base, clock_pll ctrl_t pllControl)
Power down PLL.

Parameters
* base — CCM_ANALOG base pointer.
* pliControl — PLL control name (see clock_pll_ctrl_t enumeration)

static inline void CLOCK_ SetPlIBypass(CCM_ANALOG_Type *base, clock_pll bypass_ctrl_t
pllControl, bool bypass)

PLL bypass setting.
Parameters
* base - CCM_ANALOG base pointer.
* pliControl — PLL control name (see ccm_analog_pll_control_t enumeration)
* bypass — Bypass the PLL.
— true: Bypass the PLL.
— false: Do not bypass the PLL.

static inline bool CLOCK _ IsPlIBypassed(CCM_ANALOG_Type *base, clock_pll_bypass_ctrl t
pliControl)

Check if PLL is bypassed.
Parameters
* base - CCM_ANALOG base pointer.
* pllControl — PLL control name (see ccm_analog_pll_control_t enumeration)

Returns
PLL bypass status.

* true: The PLL is bypassed.
« false: The PLL is not bypassed.

static inline bool CLOCK _ IsPllLocked(CCM_ANALOG_Type *base, clock _pll_ctrl t pllControl)
Check if PLL clock is locked.

Parameters
* base - CCM_ANALOG base pointer.

* pllControl — PLL control name (see clock_pll_ctrl_t enumeration)

2.2. Clock 95

MCUXpresso SDK Documentation, Release 25.09.00

Returns
PLL lock status.

* true: The PLL clock is locked.
» false: The PLL clock is not locked.

static inline void CLOCK_ EnableAnalogClock(CCM_ANALOG_Type *base, clock _pll clke_t
pliClock)

Enable PLL clock.
Parameters
* base - CCM_ANALOG base pointer.
* pliClock — PLL clock name (see ccm_analog_pll_clock_t enumeration)

static inline void CLOCK_ DisableAnalogClock(CCM_ANALOG_Type *base, clock_pll clke_t
pliClock)

Disable PLL clock.
Parameters
* base - CCM_ANALOG base pointer.
* pliClock — PLL clock name (see ccm_analog_pll_clock_t enumeration)

static inline void CLOCK_ OverrideAnalogClke(CCM_ANALOG_Type *base, clock_pll clke_t
ovClock, bool override)

Override PLL clock output enable.
Parameters
* base —- CCM_ANALOG base pointer.
* ovClock — PLL clock name (see clock_pll_clke_t enumeration)
e override — Override the PLL.
— true: Override the PLL clke, CCM will handle it.
— false: Do not override the PLL clke.

static inline void CLOCK_ OverridePlIPd(CCM_ANALOG_Type *base, clock_pll_ctrl_t pdClock,
bool override)

Override PLL power down.
Parameters
* base —- CCM_ANALOG base pointer.
* pdClock — PLL clock name (see clock_pll_ctrl_t enumeration)
* override — Override the PLL.
— true: Override the PLL clke, CCM will handle it.
— false: Do not override the PLL clke.

void CLOCK_InitArmPll(const ccm_analog frac_pll_config t *config)
Initializes the ANALOG ARM PLL.

Note: This function can’t detect whether the Arm PLL has been enabled and used by some
IPs.

Parameters

96 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

* config - Pointer to the configuration structure(see
ccm_analog_frac_pll_config t enumeration).

void CLOCK_DeinitArmPll(void)
De-initialize the ARM PLL.

void CLOCK_InitSysPll1(const ccm_analog _sscg_pll config t *config)
Initializes the ANALOG SYS PLL1.

Note: This function can’t detect whether the SYS PLL has been enabled and used by some
IPs.

Parameters

* config - Pointer to the configuration structure(see
ccm_analog_sscg_pll_config_t enumeration).

void CLOCK_ DeinitSysPll1(void)
De-initialize the System PLL1.

void CLOCK_InitSysPl12(const ccm_analog _sscg_pll config t *config)
Initializes the ANALOG SYS PLL2.

Note: This function can’t detect whether the SYS PLL has been enabled and used by some
IPs.

Parameters

* config - Pointer to the configuration structure(see
ccm_analog_sscg pll_config_t enumeration).

void CLOCK_ DeinitSysPl12(void)
De-initialize the System PLL2.

void CLOCK _InitSysPll3(const ccm_analog sscg pll config_t *config)
Initializes the ANALOG SYS PLL3.

Note: This function can’t detect whether the SYS PLL has been enabled and used by some
IPs.

Parameters

* config - Pointer to the configuration structure(see
ccm_analog_sscg_pll_config_t enumeration).

void CLOCK_ DeinitSysPll3(void)
De-initialize the System PLL3.

void CLOCK_ InitDramPll(const ccm_analog sscg_pll config t *config)
Initializes the ANALOG DDR PLL.

Note: This function can’t detect whether the DDR PLL has been enabled and used by some
IPs.

Parameters

2.2. Clock 97

MCUXpresso SDK Documentation, Release 25.09.00

* config - Pointer to the configuration structure(see
ccm_analog_sscg pll_config_t enumeration).

void CLOCK _ DeinitDramPll(void)
De-initialize the Dram PLL.

void CLOCK_InitAudioPll1(const ccm_analog frac_pll config_t *config)
Initializes the ANALOG AUDIO PLL1.

Note: This function can’t detect whether the AUDIO PLL has been enabled and used by
some IPs.

Parameters

* config - Pointer to the configuration structure(see
ccm_analog_frac_pll_config_t enumeration).

void CLOCK_ DeinitAudioPll1(void)
De-initialize the Audio PLL1.

void CLOCK_InitAudioPli2(const ccm_analog frac_pll config_t *config)
Initializes the ANALOG AUDIO PLL2.

Note: This function can’t detect whether the AUDIO PLL has been enabled and used by
some IPs.

Parameters

* config - Pointer to the configuration structure(see
ccm_analog_frac_pll_config t enumeration).

void CLOCK _ DeinitAudioPl12(void)
De-initialize the Audio PLL2.

void CLOCK _InitVideoPll1(const ccm_analog frac_pll config t *config)
Initializes the ANALOG VIDEO PLLI1.

Parameters

* config - Pointer to the configuration structure(see
ccm_analog_frac_pll_config t enumeration).

void CLOCK_ DeinitVideoPll1(void)
De-initialize the Video PLL1.

void CLOCK_InitVideoPll2(const ccm_analog_sscg pll config t *config)
Initializes the ANALOG VIDEO PLL2.

Note: This function can’t detect whether the VIDEO PLL has been enabled and used by
some IPs.

Parameters

* config - Pointer to the configuration structure(see
ccm_analog_sscg pll_config_t enumeration).

void CLOCK_ DeinitVideoPl12(void)
De-initialize the Video PLL2.

98 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

void CLOCK_ InitSSCGPI(CCM_ANALOG_Type *base, const ccm_analog _sscg pll_config t
*config, clock_pll ctrl_t type)

Initializes the ANALOG SSCG PLL.
Parameters
* base — CCM ANALOG base address

* config - Pointer to the configuration structure(see
ccm_analog_sscg_pll_config_t enumeration).

* type —sscg pll type

uint32_t CLOCK__GetSSCGPlIFreq(CCM_ANALOG_Type *base, clock _pll ctrl t type, uint32_t
refClkFreq, bool pll1Bypass)

Get the ANALOG SSCG PLL clock frequency.
Parameters
* base — CCM ANALOG base address.
* type — sscg pll type
* refClkFreq — reference clock frequency
* pll1Bypass — pll1 bypass flag

Returns
Clock frequency
void CLOCK_InitFracPll(CCM_ANALOG_Type *base, const ccm_analog frac_pll_config_t *config,
clock_pll_ctrl_t type)
Initializes the ANALOG Fractional PLL.

Parameters
* base — CCM ANALOG base address.
* config - Pointer to the configuration structure(see

ccm_analog_frac_pll_config t enumeration).
* type — fractional pll type.

uint32_t CLOCK_ GetFracPllFreq(CCM_ANALOG_Type *base, clock_pll ctrl t type, uint32_t
refClkFreq)

Gets the ANALOG Fractional PLL clock frequency.
Parameters
* base - CCM_ANALOG base pointer.
* type — fractional pll type.
» refClkFreq — reference clock frequency

Returns
Clock frequency

uint32_t CLOCK_ GetPllFreq(clock_pll_ctrl t pll)
Gets PLL clock frequency.

Parameters
* pll —fractional pll type.

Returns
Clock frequency

2.2. Clock 99

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t CLOCK_ GetPlIRefClkFreq(clock_pll ctrl t ctrl)
Gets PLL reference clock frequency.

Parameters
* ctrl — fractional pll type.

Returns
Clock frequency

uint32_t CLOCK_ GetFreq(clock_name_t clockName)
Gets the clock frequency for a specific clock name.

This function checks the current clock configurations and then calculates the clock fre-
quency for a specific clock name defined in clock_name_t.

Parameters
¢ clockName — Clock names defined in clock_name_t

Returns
Clock frequency value in hertz

uint32_t CLOCK__ GetClockRootFreq(clock_root_t clockRoot)
Gets the frequency of selected clock root.
Parameters

* clockRoot — The clock root used to get the frequency, please refer to
clock_root_t.

Returns
The frequency of selected clock root.

uint32_t CLOCK__GetCoreM4Freq(void)
Get the CCM Cortex M4 core frequency.

Returns
Clock frequency; If the clock is invalid, returns 0.

uint32_t CLOCK_ GetAxiFreq(void)
Get the CCM Axi bus frequency.

Returns
Clock frequency; If the clock is invalid, returns 0.

uint32_t CLOCK__GetAhbFreq(void)
Get the CCM Ahb bus frequency.

Returns
Clock frequency; If the clock is invalid, returns 0.

uint8_t oscMode
ext or osc mode

uint8_t oscDiv
osc divider
uint8_t refSel
pll reference clock sel
uint8_t refDiv
A 6bit divider to make sure the REF must be within the range 10MHZ~300MHZ
uint32_t fractionDiv
Inlcude fraction divider(divider:1:2424) output clock range is 2000MHZ-4000MHZ

100 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

uint8_t intDiv

uint8_t outDiv

output clock divide, output clock range is 30MHZ to 2000MHZ, must be a even value
uint8_t refSel

pll reference clock sel

uint8_t refDiv1

A 3bit divider to make sure the REF must be within the range 25MHZ~235MHZ ,post_divide
REF must be within the range 25MHZ~54MHZ

uint8_t refDiv?2
A 6bit divider to make sure the post_divide REF must be within the range 54MHZ~75MHZ
uint32_t loopDividerl

A 6bit internal PLL1 feedback clock divider, output clock range must be within the range
1600MHZ-2400MHZ

uint32_t loopDivider2

A 6bit internal PLL2 feedback clock divider, output clock range must be within the range
1200MHZ-2400MHZ

uint8_t outDiv

A 6bit output clock divide, output clock range is 20MHZ to 1200MHZ
struct _osc_ config

#include <fsl_clock.h> OSC configuration structure.

struct _ccm_ analog_ frac_ pll_ config

#include <fsl_clock.h> Fractional-N PLL configuration. Note: all the dividers in this config-
uration structure are the actually divider, software will map it to register value.

struct _ccm_ analog sscg pll_config

#include <fsl_clock.h> SSCG PLL configuration. Note: all the dividers in this configuration
structure are the actually divider, software will map it to register value.

2.3 MIPI CSI2 RX: MIPI CSI2 RX Driver

FSL CSI2RX DRIVER_ VERSION
CSI2RX driver version.

enum _csi2rx_data_ lane

CSI2RX data lanes.

Values:

enumerator kCSI2RX DatalLane0
Data lane 0.

enumerator kCSI2RX_DatalLanel
Data lane 1.

enumerator kCSI2RX DataLane2
Data lane 2.

enumerator kCSI2RX DatalLane3
Data lane 3.

2.3. MIPI CSI2 RX: MIPI CSI2 RX Driver 101

MCUXpresso SDK Documentation, Release 25.09.00

enum _ csi2rx_ payload
CSI2RX payload type.

Values:

enumerator kCSI2RX_ PayloadGroupONull
NULL.

enumerator kCSI2RX_ PayloadGroupOBlank
Blank.

enumerator kCSI2RX_ PayloadGroupOEmbedded
Embedded.

enumerator kCSI2RX_ PayloadGroup0YUV420_ 8Bit
Legacy YUV420 8 hit.

enumerator kCSI2RX_ PayloadGroup0YUV422_ 8Bit
YUV422 8 hit.

enumerator kCSI2RX_ PayloadGroup0YUV422_ 10Bit
YUV422 10 bit.

enumerator kCSI2RX_ PayloadGroupORGB444
RGB444.

enumerator kCSI2RX_ Payload GroupORGB555
RGB555.

enumerator kCSI2RX_ Payload GroupORGB565
RGB565.

enumerator kCSI2RX_ Payload GroupORGB666
RGB666.

enumerator kCSI2RX Payload GroupORGB888
RGB888.

enumerator kCSI2RX_ PayloadGroupORaw6
Raw 6.

enumerator kCSI2RX_ PayloadGroupORaw7
Raw 7.

enumerator kCSI2RX__Payload GroupORaw8
Raw 8.

enumerator kCSI2RX__ Payload GroupORaw10
Raw 10.

enumerator kCSI2RX_ PayloadGroupORaw12
Raw 12.

enumerator kCSI2RX_ PayloadGroupORaw14
Raw 14.

enumerator kCSI2RX_ PayloadGrouplUserDefined1
User defined 8-bit data type 1, 0x30.

enumerator kCSI2RX_ PayloadGrouplUserDefined2
User defined 8-bit data type 2, 0x31.

102

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCSI2RX_PayloadGrouplUserDefined3
User defined 8-bit data type 3, 0x32.

enumerator kCSI2RX__ PayloadGrouplUserDefined4
User defined 8-bit data type 4, 0x33.

enumerator kCSI2RX_ PayloadGrouplUserDefined5
User defined 8-bit data type 5, 0x34.

enumerator kCSI2RX_PayloadGrouplUserDefined6
User defined 8-bit data type 6, 0x35.

enumerator kCSI2RX__PayloadGrouplUserDefined7
User defined 8-bit data type 7, 0x36.

enumerator kCSI2RX _PayloadGrouplUserDefined8
User defined 8-bit data type 8, 0x37.

enum csi2rx_bit error
MIPI CSI2RX bit errors.

Values:

enumerator kCSI2RX BitErrorEccTwoBit
ECC two bit error has occurred.

enumerator kCSI2RX BitErrorEccOneBit
ECC one bit error has occurred.

enum _ csi2rx_ ppi_ error
MIPI CSI2ZRX PPI error types.

Values:

enumerator kCSI2RX_PpiErrorSotHs
CSI2ZRX DPHY PPI error ErrSotHS.

enumerator kCSI2RX_PpiErrorSotSyncHs
CSI2RX DPHY PPI error ErrSotSync_HS.

enumerator kCSI2RX_PpiErrorEsc
CSI2ZRX DPHY PPI error ErrEsc.

enumerator kCSI2RX_ PpiErrorSyncEsc
CSI2ZRX DPHY PPI error ErrSyncEsc.

enumerator kCSI2RX_ PpiErrorControl
CSI2RX DPHY PPI error ErrControl.

enum _ csi2rx__ interrupt
MIPI CSI2RX interrupt.

Values:

enumerator kCSI2RX_ InterruptCrcError
enumerator kCSI2RX_ InterruptEccOneBitError
enumerator kCSI2RX_ InterruptEccTwoBitError
enumerator kCSI2RX_ InterruptUlpsStatusChange

enumerator kCSI2RX_ InterruptErrorSotHs

2.3. MIPI CSI2 RX: MIPI CSI2 RX Driver 103

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCSI2RX_ InterruptErrorSotSyncHs

enumerator kCSI2RX _InterruptErrorEsc

enumerator kCSI2RX_ InterruptErrorSyncEsc

enumerator kCSI2RX_ InterruptErrorControl
enum _ csi2rx_ulps_ status

MIPI CSI2ZRX D-PHY ULPS state.

Values:

enumerator kCSI2RX__ClockLaneUlps
Clock lane is in ULPS state.

enumerator kCSI2RX_DataLaneQUlps
Data lane 0 is in ULPS state.

enumerator kCSI2RX_DataLanelUlps
Data lane 1 is in ULPS state.

enumerator kCSI2RX_DataLane2Ulps
Data lane 2 is in ULPS state.

enumerator kCSI2RX_DataLane3Ulps
Data lane 3 is in ULPS state.

enumerator kCSI2RX ClockLaneMark
Clock lane is in mark state.

enumerator kCSI2RX DataLaneOMark
Data lane 0 is in mark state.

enumerator kCSI2RX DataLanelMark
Data lane 1 is in mark state.

enumerator kCSI2RX DatalLane2Mark
Data lane 2 is in mark state.

enumerator kCSI2RX DatalLane3Mark
Data lane 3 is in mark state.

typedef struct _csi2rx_config csi2rx_ config_t
CSI2RX configuration.

typedef enum _csi2rx_ppi_error csi2rx_ppi_error_t
MIPI CSI2ZRX PPI error types.

void CSI2RX_ Init(MIPI_CSI2RX_Type *base, const csi2rx_config t *config)
Enables and configures the CSI2RX peripheral module.

Parameters
* base — CSI2RX peripheral address.
* config — CSI2RX module configuration structure.

void CSI2RX_ Deinit(MIPI_CSI2RX_Type *base)
Disables the CSI2RX peripheral module.

Parameters

* base — CSI2RX peripheral address.

104 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t CSI2RX_ GetBitError(MIPI_CSI2RX Type *base)
Gets the MIPI CSI2RX bit error status.

This function gets the RX bhit error status, the return value could be compared with
_csi2rx_bit_error. If one bit ECC error detected, the return value could be passed to the
function CSI2RX_GetEccBitErrorPosition to get the position of the ECC error bit.

Example:

uint32_t bitError;
uint32_ t bitErrorPosition;

bitError = CSI2RX_ GetBitError(MIPI__CSI2RX);

if (kCSI2RX_ BitErrorEccTwoBit & bitError)
{

Two bits error;

}
else if (kCSI2RX_ BitErrorEccOneBit & bitError)

{

One bits error;
bitErrorPosition = CSI2RX__GetEccBitErrorPosition(bitError);

}

Parameters
* base — CSI2RX peripheral address.

Returns
The RX bit error status.

static inline uint32_t CSI2RX_ GetEccBitErrorPosition(uint32_t bitError)
Get ECC one bit error bit position.

If CSI2RX_GetBitError detects ECC one bit error, this function could extract the error bit
position from the return value of CSI2RX_GetBitError.

Parameters
* bitError — The bit error returned by CSI2RX_GetBitError.

Returns
The position of error bit.

static inline uint32_t CSI2RX_ GetUlpsStatus(MIPI_CSI2ZRX_Type *base)
Gets the MIPI CSI2RX D-PHY ULPS status.

Example to check whether data lane 0 is in ULPS status.

uint32_t status = CSI2RX_ GetUlpsStatus(MIPI CSI2RX);
if (kCSI2RX_DataLaneOUlps & status)

Data lane 0 is in ULPS status.

}

Parameters
* base — CSI2RX peripheral address.

Returns
The MIPI CSI2RX D-PHY ULPS status, it is OR’ed value or _csi2rx_ulps_status.

2.3. MIPI CSI2 RX: MIPI CSI2 RX Driver 105

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t CSI2RX_ GetPpiErrorDataLanes(MIPI_CSI2RX_Type *base,
csi2rx_ppi_error_t errorType)

Gets the MIPI CSI2RX D-PHY PPI error lanes.

This function checks the PPI error occurred on which data lanes, the returned value is OR’ed
value of csi2rx_ppi_error_t. For example, if the ErrSotHS is detected, to check the ErrSotHS
occurred on which data lanes, use like this:

uint32_t errorDataLanes = CSI2RX__GetPpiErrorDataLanes(MIPI_CSI2RX, kCSI2RX__
—PpiErrorSotHs);

if (kCSI2RX DataLane0 & errorDataLanes)

ErrSotHS occurred on data lane 0.

}

if (kCSI2RX_DatalLanel & errorDataLanes)

ErrSotHS occurred on data lane 1.

}

Parameters
* base — CSI2RX peripheral address.
¢ errorType — What kind of error to check.

Returns
The data lane mask that error errorType occurred.

static inline void CSI2RX_ Enablelnterrupts(MIPI_CSI2RX Type *base, uint32_t mask)
Enable the MIPI CSI2RX interrupts.

This function enables the MIPI CSI2RX interrupts. The interrupts to enable are passed in as
an OR’ed value of _csi2rx_interrupt. For example, to enable one bit and two bit ECC error
interrupts, use like this:

CSI2RX__Enablelnterrupts(MIPI__CSI2RX, kCSI2RX_ InterruptEccOneBitError | kCSI2RX__
< InterruptEccTwoBitError);

Parameters
* base — CSI2RX peripheral address.
» mask — OR’ed value of _csi2rx_interrupt.

static inline void CSI2RX_ Disablelnterrupts(MIPI_CSI2RX_Type *base, uint32_t mask)
Disable the MIPI CSI2RX interrupts.

This function disables the MIPI CSI2RX interrupts. The interrupts to disable are passed in as
an OR’ed value of _csi2rx_interrupt. For example, to disable one bit and two bit ECC error
interrupts, use like this:

CSI2RX_ Disablelnterrupts(MIPI__CSI2RX, kCSI2RX_ InterruptEccOneBitError | kCSI2RX__
< InterruptEccTwoBitError);

Parameters
* base — CSI2ZRX peripheral address.

» mask — OR’ed value of _csi2rx_interrupt.

106 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t CSI2RX_ GetInterruptStatus(MIPI_CSI2RX_Type *base)
Get the MIPI CSI2RX interrupt status.

This function returns the MIPI CSI2RX interrupts status as an OR’ed value of
_csi2rx_interrupt.

Parameters
* base — CSI2RX peripheral address.

Returns
OR’ed value of _csi2rx_interrupt.

CSI2RX_REG__CFG_NUM__LANES(base)
CSI2RX_REG_CFG_DISABLE_DATA_LANES(base)
CSI2RX_REG_BIT_ERR(base)
CSI2RX_REG_IRQ_STATUS(base)
CSI2RX_REG_IRQ_MASK(base)
CSI2RX_REG_ULPS_STATUS(base)
CSI2RX_REG_PPI_ERRSOT_HS(base)
CSI2RX_REG_PPI_ERRSOTSYNC_ HS(base)
CSI2RX_REG_PPI_ERRESC(base)

CSI2RX_ REG_PPI ERRSYNCESC(base)
CSI2RX_REG_PPI_ERRCONTROL(base)
CSI2RX_REG_CFG_DISABLE_PAYLOAD_ O(base)
CSI2RX_REG_CFG_DISABLE_PAYLOAD_ 1(base)
CSI2RX_REG_CFG_IGNORE_VC(base)
CSI2RX_REG_CFG_VID_VC(base)
CSI2RX_REG_CFG_VID_P_FIFO_SEND_LEVEL(base)
CSI2RX_REG_CFG_VID_VSYNC(base)
CSI2RX_REG_CFG_VID_HSYNC_FP(base)
CSI2RX_REG_CFG_VID_HSYNC(base)
CSI2RX_REG_CFG_VID_HSYNC_BP(base)
MIPI_CSI2RX_CSI2RX_CFG_NUM_LANES_csi2rx_cfg num_lanes. MASK
MIPI__CSI2RX__CSI2RX_ TRQ_ MASK_ csi2rx_irq mask MASK

struct _ csi2rx_ config
#include <fsl_mipi_csi2rx.h> CSI2RX configuration.

2.3. MIPI CSI2 RX: MIPI CSI2 RX Driver 107

MCUXpresso SDK Documentation, Release 25.09.00

Public Members
uint8_t laneNum
Number of active lanes used for receiving data.

uint8_t tHsSettle EscClk

Number of rx_clk_esc clock periods for T_HS_SETTLE. The T_HS_SETTLE should be in
the range of 85ns + 6UI to 145ns + 10UL.

2.4 ECSPI: Enhanced Configurable Serial Peripheral Interface
Driver

2.5 ECSPI Driver

void ECSPI MasterGetDefaultConfig(ecspi_master_config_t *config)
Sets the ECSPI configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use in EC-
SPI_MasterInit(). User may use the initialized structure unchanged in ECSPI_MasterInit,
or modify some fields of the structure before calling ECSPI_MasterInit. After calling this
API, the master is ready to transfer. Example:

ecspi__master__config_t config;
ECSPI_MasterGetDefaultConfig(&config);

Parameters
* config — pointer to config structure

void ECSPI_ MasterInit(ECSPI_Type *base, const ecspi_master_config_t *config, uint32_t
srcClock_Hz)

Initializes the ECSPI with configuration.

The configuration structure can be filled by user from scratch, or be set with default values
by ECSPI_MasterGetDefaultConfig(). After calling this API, the slave is ready to transfer.
Example

ecspi_master_config t config = {
.baudRate_ Bps = 400000,

};
ECSPI_MasterInit(ECSPIO0, &config);
Parameters
* base — ECSPI base pointer
* config — pointer to master configuration structure
* srcClock_Hz — Source clock frequency.

void ECSPI_ SlaveGetDefaultConfig(ecspi_slave_config t *config)
Sets the ECSPI configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use in EC-
SPI_Slavelnit(). User may use the initialized structure unchanged in ECSPI_Slavelnit(), or
modify some fields of the structure before calling ECSPI_Slavelnit(). After calling this API,
the master is ready to transfer. Example:

108 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

ecspi_ Slaveconfig_t config;
ECSPI_SlaveGetDefaultConfig(&config);

Parameters
* config — pointer to config structure

void ECSPI_Slavelnit(ECSPI_Type *base, const ecspi_slave_config_t *config)
Initializes the ECSPI with configuration.

The configuration structure can be filled by user from scratch, or be set with default val-
ues by ECSPI_SlaveGetDefaultConfig(). After calling this API, the slave is ready to transfer.
Example

ecspi_ Salveconfig_t config = {
.baudRate_ Bps = 400000,

ECSPI_Slavelnit(ECSPI1, &config);

Parameters
* base — ECSPI base pointer
* config — pointer to master configuration structure

void ECSPI_ Deinit(ECSPI_Type *base)
De-initializes the ECSPI.

Calling this API resets the ECSPI module, gates the ECSPI clock. The ECSPI module can’t
work unless calling the ECSPI_MasterInit/ECSPI_Slavelnit to initialize module.

Parameters
* base — ECSPI base pointer

static inline void ECSPI_ Enable(ECSPI_Type *base, bool enable)
Enables or disables the ECSPI.

Parameters
* base — ECSPI base pointer
* enable — pass true to enable module, false to disable module

static inline uint32_t ECSPI_ GetStatusFlags(ECSPI_Type *base)
Gets the status flag.

Parameters
* base — ECSPI base pointer

Returns
ECSPI Status, use status flag to AND _ecspi_flags could get the related status.

static inline void ECSPI_ ClearStatusFlags(ECSPI_Type *base, uint32_t mask)
Clear the status flag.

Parameters
* base — ECSPI base pointer

» mask — ECSPI Status, use status flag to AND _ecspi_flags could get the related
status.

2.5. ECSPI Driver 109

MCUXpresso SDK Documentation, Release 25.09.00

static inline void ECSPI_ Enablelnterrupts(ECSPI_Type *base, uint32_t mask)
Enables the interrupt for the ECSPI.

Parameters
* base — ECSPI base pointer

» mask — ECSPI interrupt source. The parameter can be any combination of
the following values:

— KECSPI_TxfifoEmptyInterruptEnable

— kECSPI_TxFifoDataRequstInterruptEnable
— KECSPI_TxFifoFulllnterruptEnable

— KECSPI_RxFifoReadyInterruptEnable

- KECSPI_RxFifoDataRequstInterruptEnable
— kECSPI_RxFifoFulllnterruptEnable

— kECSPI_RxFifoOverFlowInterruptEnable
— KECSPI_TransferCompleteInterruptEnable
— KECSPI_AllInterruptEnable

static inline void ECSPI_ DisableInterrupts(ECSPI_Type *base, uint32_t mask)
Disables the interrupt for the ECSPIL

Parameters
* base — ECSPI base pointer

* mask — ECSPI interrupt source. The parameter can be any combination of
the following values:

— KECSPI_TxfifoEmptyInterruptEnable

— KECSPI_TxFifoDataRequstInterruptEnable
— KECSPI_TxFifoFullInterruptEnable

— kECSPI_RxFifoReadyInterruptEnable

— KECSPI_RxFifoDataRequstInterruptEnable
— KECSPI_RxFifoFullInterruptEnable

— KECSPI_RxFifoOverFlowInterruptEnable
— KECSPI_TransferCompleteInterruptEnable
— KECSPI_AllInterruptEnable

static inline void ECSPI_ SoftwareReset(ECSPI_Type *base)
Software reset.

Parameters
* base — ECSPI base pointer

static inline bool ECSPI_IsMaster(ECSPI_Type *base, ecspi_channel_source_t channel)
Mode check.

Parameters
* base — ECSPI base pointer
* channel — ECSPI channel source

Returns
mode of channel

110 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline void ECSPI_EnableDMA (ECSPI_Type *base, uint32_t mask, bool enable)
Enables the DMA source for ECSPI.

Parameters
* base — ECSPI base pointer

* mask — ECSPI DMA source. The parameter can be any of the following val-
ues:

— KECSPI_TxDmaEnable
— KECSPI_RxDmaEnable
— KECSPI_DmaAllEnable
* enable — True means enable DMA, false means disable DMA

static inline uint8_t ECSPI_ GetTxFifoCount(ECSPI_Type *base)
Get the Tx FIFO data count.

Parameters
* base — ECSPI base pointer.

Returns
the number of words in Tx FIFO buffer.

static inline uint8_t ECSPI_ GetRxFifoCount(ECSPI_Type *base)
Get the Rx FIFO data count.

Parameters
* base — ECSPI base pointer.

Returns
the number of words in Rx FIFO buffer.

static inline void ECSPI_ SetChannelSelect(ECSPI_Type *base, ecspi_channel_source_t channel)
Set channel select for transfer.

Parameters
* base — ECSPI base pointer
* channel — Channel source.

void ECSPI_SetChannelConfig(ECSPI_Type *base, ecspi_channel source_t channel, const
ecspi_channel_config t *config)

Set channel select configuration for transfer.

The purpose of this API is to set the channel will be use to transfer. User may use this
API after instance has been initialized or before transfer start. The configuration structure
ecspi_channel_config can be filled by user from scratch. After calling this API, user can select
this channel as transfer channel.

Parameters
* base — ECSPI base pointer
* channel — Channel source.
* config — Configuration struct of channel

void ECSPI_SetBaudRate(ECSPI_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
Sets the baud rate for ECSPI transfer. This is only used in master.

Parameters

* base — ECSPI base pointer

2.5. ECSPI Driver 111

MCUXpresso SDK Documentation, Release 25.09.00

* baudRate_ Bps —baud rate needed in Hz.
* srcClock__Hz — ECSPI source clock frequency in Hz.

status_t ECSPI_ WriteBlocking(ECSPI_Type *base, const uint32_t *buffer, size_t size)
Sends a buffer of data bytes using a blocking method.

Note: This function blocks via polling until all bytes have been sent.

Parameters
* base — ECSPI base pointer
* buffer — The data bytes to send
* size — The number of data bytes to send
Return values
* kStatus_ Success — Successfully start a transfer.
* kStatus_ ECSPI_Timeout — The transfer timed out and was aborted.

static inline void ECSPI_ WriteData(ECSPI_Type *base, uint32_t data)
Writes a data into the ECSPI data register.

Parameters
* base — ECSPI base pointer
* data — Data needs to be write.

static inline uint32_t ECSPI_ReadData(ECSPI_Type *base)
Gets a data from the ECSPI data register.

Parameters
* base — ECSPI base pointer

Returns
Data in the register.

void ECSPI_MasterTransferCreateHandle(ECSPI_Type *base, ecspi_master_handle_t *handle,
ecspi_master_callback_t callback, void *userData)

Initializes the ECSPI master handle.

This function initializes the ECSPI master handle which can be used for other ECSPI mas-
ter transactional APIs. Usually, for a specified ECSPI instance, call this API once to get the
initialized handle.

Parameters
* base — ECSPI peripheral base address.
* handle — ECSPI handle pointer.
* callback — Callback function.
 userData — User data.

status_t ECSPI_MasterTransferBlocking(ECSPI_Type *base, ecspi_transfer_t *xfer)
Transfers a block of data using a polling method.

Parameters
* base — SPI base pointer

* xfer — pointer to spi_xfer_config_t structure

112 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Return values
* kStatus_ Success — Successfully start a transfer.

* kStatus_ InvalidArgument — Input argument is invalid.
* kStatus ECSPI Timeout — The transfer timed out and was aborted.

status_t ECSPI_ MasterTransferNonBlocking(ECSPI_Type *base, ecspi_ master_handle_t *handle,
ecspi_transfer_t *xfer)

Performs a non-blocking ECSPI interrupt transfer.

Note: The API immediately returns after transfer initialization is finished.

Note: IfECSPItransfer data frame size is 16 bits, the transfer size cannot be an odd number.

Parameters
* base — ECSPI peripheral base address.
* handle—pointer to ecspi_master_handle_t structure which stores the trans-

fer state
* xfer — pointer to ecspi_transfer_t structure

Return values
* kStatus_ Success — Successfully start a transfer.
* kStatus_ InvalidArgument — Input argument is invalid.
* kStatus_ ECSPI_Busy — ECSPI is not idle, is running another transfer.

status_t ECSPI_ MasterTransferGetCount (ECSPI_Type *base, ecspi_master_handle_t *handle,
size_t *count)

Gets the bytes of the ECSPI interrupt transferred.
Parameters

* base — ECSPI peripheral base address.
* handle — Pointer to ECSPI transfer handle, this should be a static variable.

* count — Transferred bytes of ECSPI master.
Return values

* kStatus_ ECSPI_Success — Succeed get the transfer count.

* kStatus_ NoTransferInProgress — There is not a non-blocking transaction cur-

rently in progress.
void ECSPI_ MasterTransferAbort(ECSPI_Type *base, ecspi_master_handle_t *handle)

Aborts an ECSPI transfer using interrupt.

Parameters
* base — ECSPI peripheral base address.
* handle — Pointer to ECSPI transfer handle, this should be a static variable.
void ECSPI_ MasterTransferHandleIRQ(ECSPI_Type *base, ecspi_master_handle_t *handle)
Interrupts the handler for the ECSPIL

Parameters
* base — ECSPI peripheral base address.

2.5. ECSPI Driver 113

MCUXpresso SDK Documentation, Release 25.09.00

* handle—pointer to ecspi_master_handle_t structure which stores the trans-
fer state.

void ECSPI_SlaveTransferCreateHandle(ECSPI_Type *base, ecspi_slave_handle_t *handle,
ecspi_slave_callback_t callback, void *userData)

Initializes the ECSPI slave handle.

This function initializes the ECSPI slave handle which can be used for other ECSPI slave
transactional APIs. Usually, for a specified ECSPI instance, call this API once to get the ini-

tialized handle.

Parameters
* base — ECSPI peripheral base address.

* handle — ECSPI handle pointer.
* callback — Callback function.

* userData — User data.

static inline status_t ECSPI_SlaveTransferNonBlocking(ECSPI_Type *base, ecspi_slave_handle_t
*handle, ecspi_transfer_t *xfer)

Performs a non-blocking ECSPI slave interrupt transfer.

Note: The API returns immediately after the transfer initialization is finished.

Parameters
* base — ECSPI peripheral base address.

* handle - pointer to ecspi_master_handle_t structure which stores the trans-
fer state

* xfer — pointer to ecspi_transfer_t structure
Return values
* kStatus_ Success — Successfully start a transfer.
* kStatus_ InvalidArgument — Input argument is invalid.
* kStatus_ ECSPI_Busy — ECSPI is not idle, is running another transfer.

static inline status_t ECSPI_SlaveTransferGetCount(ECSPI_Type *base, ecspi_slave_handle_t
*handle, size_t *count)

Gets the bytes of the ECSPI interrupt transferred.
Parameters
* base — ECSPI peripheral base address.
* handle — Pointer to ECSPI transfer handle, this should be a static variable.
* count — Transferred bytes of ECSPI slave.
Return values
* kStatus_ ECSPI_Success — Succeed get the transfer count.

* kStatus_ NoTransferInProgress— There is not a non-blocking transaction cur-
rently in progress.

static inline void ECSPI_ SlaveTransfer Abort(ECSPI_Type *base, ecspi_slave_handle_t *handle)
Aborts an ECSPI slave transfer using interrupt.

Parameters

114 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

* base — ECSPI peripheral base address.
* handle — Pointer to ECSPI transfer handle, this should be a static variable.

void ECSPI_ SlaveTransferHandleIRQ(ECSPI_Type *base, ecspi_slave_handle_t *handle)

Interrupts a handler for the ECSPI slave.

Parameters

* base — ECSPI peripheral base address.

* handle—pointer to ecspi_slave_handle_t structure which stores the transfer

state

FSL ECSPI DRIVER_VERSION
ECSPI driver version.

Return status for the ECSPI driver.
Values:

enumerator kStatus_ ECSPI_Busy
ECSPI bus is busy

enumerator kStatus . ECSPI_Idle
ECSPI is idle

enumerator kStatus_ ECSPI_Error
ECSPI error

enumerator kStatus ECSPI HardwareOverFlow
ECSPI hardware overflow

enumerator kStatus_ ECSPI_Timeout
ECSPI timeout polling status flags.

enum _ ecspi_ clock_polarity
ECSPI clock polarity configuration.

Values:

enumerator kECSPI_ Polarity ActiveHigh
Active-high ECSPI polarity high (idles low).

enumerator kECSPI_ Polarity ActiveLow
Active-low ECSPI polarity low (idles high).

enum _ ecspi_ clock phase
ECSPI clock phase configuration.

Values:
enumerator kECSPI_ ClockPhaseFirstEdge

First edge on SPSCK occurs at the middle of the first cycle of a data transfer.

enumerator kECSPI_ ClockPhaseSecondEdge

First edge on SPSCK occurs at the start of the first cycle of a data transfer.

ECSPI interrupt sources.
Values:

enumerator kECSPI_ TxfifoEmptyInterruptEnable
Transmit FIFO buffer empty interrupt

2.5. ECSPI Driver

115

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kECSPI_ TxFifoDataRequstInterruptEnable
Transmit FIFO data requst interrupt

enumerator kECSPI_ TxFifoFulllnterruptEnable
Transmit FIFO full interrupt

enumerator kECSPI_RxFifoReadyInterruptEnable
Receiver FIFO ready interrupt

enumerator kECSPI_ RxFifoDataRequstInterruptEnable
Receiver FIFO data requst interrupt

enumerator kECSPI_ RxFifoFulllnterruptEnable
Receiver FIFO full interrupt

enumerator kECSPI_RxFifoOverFlowInterruptEnable
Receiver FIFO buffer overflow interrupt

enumerator kECSPI_ TransferCompletelnterruptEnable
Transfer complete interrupt

enumerator kECSPI__AlllnterruptEnable
All interrupt

ECSPI status flags.
Values:

enumerator kECSPI_ TxfifoEmptyFlag
Transmit FIFO buffer empty flag

enumerator kECSPI_ TxFifoDataRequstFlag
Transmit FIFO data requst flag

enumerator kECSPI_ TxFifoFullFlag
Transmit FIFO full flag

enumerator kECSPI_RxFifoReadyFlag
Receiver FIFO ready flag

enumerator kECSPI_RxFifoDataRequstFlag
Receiver FIFO data requst flag

enumerator kECSPI_RxFifoFullFlag
Receiver FIFO full flag

enumerator kECSPI_RxFifoOverFlowFlag
Receiver FIFO buffer overflow flag

enumerator kECSPI_ TransferCompleteFlag
Transfer complete flag

ECSPI DMA enable.
Values:

enumerator kECSPI_TxDmaEnable
Tx DMA request source

enumerator kECSPI_RxDmaEnable
Rx DMA request source

116

Chapter 2

. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kECSPI_DmaAllEnable
All DMA request source

enum _ ecspi_ data_ ready
ECSPI SPI_RDY signal configuration.

Values:

enumerator kECSPI_DataReadylgnore
SPI_RDY signal is ignored

enumerator kECSPI_DataReadyFallingEdge
SPI_RDY signal will be triggerd by the falling edge

enumerator kECSPI_ DataReadyLowLevel
SPI_RDY signal will be triggerd by a low level

enum _ ecspi_ channel source
ECSPI channel select source.

Values:

enumerator kECSPI__Channel0
Channel 0 is selectd

enumerator kECSPI_Channell
Channel 1 is selectd

enumerator kECSPI_Channel2
Channel 2 is selectd

enumerator kECSPI_Channel3
Channel 3 is selectd

enum _ ecspi_master_slave mode
ECSPI master or slave mode configuration.

Values:

enumerator kECSPI_ Slave
ECSPI peripheral operates in slave mode.

enumerator kECSPI_Master
ECSPI peripheral operates in master mode.

enum _ ecspi_ data_ line_ inactive_state_t
ECSPI data line inactive state configuration.

Values:

enumerator kECSPI_ DataLinelnactiveStateHigh
The data line inactive state stays high.

enumerator kECSPI DatalLinelnactiveStateLow
The data line inactive state stays low.

enum _ ecspi_ clock inactive_state t
ECSPI clock inactive state configuration.

Values:

enumerator kECSPI__ClockInactiveStateLow
The SCLK inactive state stays low.

2.5. ECSPI Driver 117

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kECSPI_ ClockInactiveStateHigh
The SCLK inactive state stays high.

enum _ ecspi_ chip_ select_ active_ state_t
ECSPI active state configuration.

Values:

enumerator kECSPI _ChipSelectActiveStateLow
The SS signal line active stays low.

enumerator kECSPI__ChipSelect ActiveStateHigh
The SS signal line active stays high.

enum _ ecspi_sample period_ clock source
ECSPI sample period clock configuration.

Values:

enumerator kECSPI_ spiClock
The sample period clock source is SCLK.

enumerator kECSPI_ lowFreqClock
The sample seriod clock source is low_frequency reference clock(32.768 kHz).

typedef enum _ecspi_clock_polarity ecspi_ clock_ polarity_t
ECSPI clock polarity configuration.

typedef enum _ecspi_clock_phase ecspi_ clock_phase_ t
ECSPI clock phase configuration.

typedef enum _ecspi_data_ready ecspi_Data_ready_t
ECSPI SPI_RDY signal configuration.

typedef enum _ecspi_channel_source ecspi_ channel source_t
ECSPI channel select source.

typedef enum _ecspi_master_slave_mode ecspi_master_slave_mode_t
ECSPI master or slave mode configuration.

typedef enum _ecspi_data_line_inactive_state_t ecspi_data_line_ inactive_state_t
ECSPI data line inactive state configuration.

typedef enum _ecspi_clock_inactive_state_t ecspi_ clock_inactive_state_t
ECSPI clock inactive state configuration.

typedef enum _ecspi_chip_select_active_state_t ecspi_ chip_ select_ active_state_t
ECSPI active state configuration.

typedef enum _ecspi_sample_period_clock_source ecspi_sample_period_ clock__source_ t
ECSPI sample period clock configuration.

typedef struct _ecspi_channel_config ecspi_ channel_config_t
ECSPI user channel configure structure.

typedef struct _ecspi_master_config ecspi__master__config_t
ECSPI master configure structure.

typedef struct _ecspi_slave_config ecspi_slave_ config_t
ECSPI slave configure structure.

typedef struct _ecspi_transfer ecspi_ transfer_t
ECSPI transfer structure.

118 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _ecspi_master_handle ecspi_master__handle_t
typedef ecspi_master_handle_t ecspi_slave _handle_t
Slave handle is the same with master handle

typedef void (*ecspi_master_ callback_t)(ECSPI_Type *base, ecspi_master_handle_t *handle,
status_t status, void *userData)

ECSPI master callback for finished transmit.

typedef void (*ecspi_slave_ callback_t)(ECSPI_Type *base, ecspi_slave_handle_t *handle, status_t
status, void *userData)

ECSPI slave callback for finished transmit.

uint32_t ECSPI_ GetInstance(ECSPI_Type *base)
Get the instance for ECSPI module.

Parameters
* base — ECSPI base address

ECSPI_DUMMYDATA
ECSPI dummy transfer data, the data is sent while txBuff is NULL.

SPI_RETRY_TIMES
Retry times for waiting flag.

struct _ ecspi_ channel config
#include <fsl_ecspi.h> ECSPI user channel configure structure.

Public Members
ecspi_master_slave_mode_t channelMode
Channel mode

ecspi_clock_inactive_state_t clockInactiveState
Clock line (SCLK) inactive state

ecspi_data_line_inactive_state_t datal.inelnactiveState
Data line (MOSI&MISO) inactive state

ecspi_chip_select_active_state_t chipSlect ActiveState
Chip select(SS) line active state

ecspi_clock _polarity_t polarity
Clock polarity

ecspi_clock_phase_t phase
Clock phase

struct _ecspi__master__config
#include <fsl_ecspi.h> ECSPI master configure structure.

Public Members

ecspi_channel_source_t channel
Channel number

ecspi_channel_config t channelConfig
Channel configuration

2.5. ECSPI Driver 119

MCUXpresso SDK Documentation, Release 25.09.00

ecspi_sample_period_clock_source_t samplePeriodClock
Sample period clock source

uint16_t burstLength
Burst length. The length shall be less than 4096 bits

uint8_t chipSelectDelay
SS delay time

uint16_t samplePeriod
Sample period

uint8_t txFifoThreshold
TX Threshold

uint8_t rxFifoThreshold
RX Threshold

uint32_t baudRate_ Bps
ECSPI baud rate for master mode

bool enableLoopback
Enable the ECSPI loopback test.

struct _ecspi_slave_ config
#include <fsl_ecspi.h> ECSPI slave configure structure.

Public Members
uint16_t burstLength
Burst length. The length shall be less than 4096 bits

uint8_t txFifoThreshold
TX Threshold

uint8_t rxFifoThreshold
RX Threshold

ecspi_channel_config t channelConfig
Channel configuration

struct _ecspi_ transfer
#include <fsl_ecspi.h> ECSPI transfer structure.

Public Members
const uint32_t *txData
Send buffer

uint32_t *rxData
Receive buffer
size_t dataSize
Transfer bytes
ecspi_channel_source_t channel
ECSPI channel select

struct _ ecspi_ master_handle
#include <fsl_ecspi.h> ECSPI master handle structure.

120 Chapter 2

. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

ecspi_channel_source_t channel
Channel number

const uint32_t *volatile txData
Transfer buffer

uint32_t *volatile rxData
Receive buffer

volatile size_t txRemainingBytes
Send data remaining in bytes

volatile size_t rxRemainingBytes
Receive data remaining in bytes

volatile uint32_t state
ECSPI internal state

size_t transferSize
Bytes to be transferred

ecspi_master_callback_t callback
ECSPI callback

void *userData
Callback parameter

2.6 ECSPI SDMA Driver

void ECSPI_ MasterTransferCreateHandleSDMA (ECSPI_Type *base, ecspi_sdma_handle_t *handle,
ecspi_sdma_callback_t callback, void *userData,
sdma_handle_t *txHandle, sdma_handle_t
*rxHandle, uint32_t eventSourceTx, uint32_t
eventSourceRx, uint32_t TxChannel, uint32_t
RxChannel)

Initialize the ECSPI master SDMA handle.

This function initializes the ECSPI master SDMA handle which can be used for other SPI
master transactional APIs. Usually, for a specified ECSPI instance, user need only call this
API once to get the initialized handle.

Parameters
* base — ECSPI peripheral base address.
* handle — ECSPI handle pointer.
* callback — User callback function called at the end of a transfer.
* userData — User data for callback.

* txHandle — SDMA handle pointer for ECSPI Tx, the handle shall be static
allocated by users.

 rxHandle — SDMA handle pointer for ECSPI Rx, the handle shall be static
allocated by users.

* eventSourceTx — event source for ECSPI send, which can be found in SDMA
mapping.

2.6. ECSPI SDMA Driver 121

MCUXpresso SDK Documentation, Release 25.09.00

* eventSourceRx — event source for ECSPI receive, which can be found in
SDMA mapping.

¢ TxChannel — SDMA channel for ECSPI send.
* RxChannel - SDMA channel for ECSPI receive.

void ECSPI_ SlaveTransferCreateHandleSDMA (ECSPI_Type *base, ecspi_sdma_handle_t *handle,
ecspi_sdma_callback_t callback, void *userData,
sdma_handle_t *txHandle, sdma_handle_t
*rxHandle, uint32_t eventSourceTx, uint32_t
eventSourceRx, uint32_t TxChannel, uint32_t
RxChannel)

Initialize the ECSPI Slave SDMA handle.

This function initializes the ECSPI Slave SDMA handle which can be used for other SPI Slave
transactional APIs. Usually, for a specified ECSPI instance, user need only call this API once
to get the initialized handle.

Parameters
* base — ECSPI peripheral base address.
* handle — ECSPI handle pointer.
* callback — User callback function called at the end of a transfer.
* userData — User data for callback.

* txHandle — SDMA handle pointer for ECSPI Tx, the handle shall be static
allocated by users.

* rxHandle — SDMA handle pointer for ECSPI Rx, the handle shall be static
allocated by users.

* eventSourceTx — event source for ECSPI send, which can be found in SDMA
mapping.

* eventSourceRx — event source for ECSPI receive, which can be found in
SDMA mapping.

* TxChannel — SDMA channel for ECSPI send.
* RxChannel — SDMA channel for ECSPI receive.

status_t ECSPI_ MasterTransferSDMA (ECSPI_Type *base, ecspi_sdma_handle_t *handle,
ecspi_transfer_t *xfer)

Perform a non-blocking ECSPI master transfer using SDMA.

Note: This interface returned immediately after transfer initiates.

Parameters
* base — ECSPI peripheral base address.
* handle — ECSPI SDMA handle pointer.
* xfer — Pointer to sdma transfer structure.
Return values
* kStatus_ Success — Successfully start a transfer.
* kStatus_InvalidArgument — Input argument is invalid.

* kStatus_ ECSPI_Busy — EECSPI is not idle, is running another transfer.

122 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

status_t ECSPI_SlaveTransferSDMA (ECSPI_Type *base, ecspi_sdma_handle_t *handle,
ecspi_transfer._t *xfer)

Perform a non-blocking ECSPI slave transfer using SDMA.

Note: This interface returned immediately after transfer initiates.

Parameters
* base — ECSPI peripheral base address.
* handle — ECSPI SDMA handle pointer.
* xfer — Pointer to sdma transfer structure.
Return values
* kStatus_ Success — Successfully start a transfer.
* kStatus_InvalidArgument — Input argument is invalid.
* kStatus_ ECSPI_ Busy — EECSPI is not idle, is running another transfer.

void ECSPI_ MasterTransfer AbortSDMA (ECSPI_Type *base, ecspi_sdma_handle_t *handle)
Abort a ECSPI master transfer using SDMA.

Parameters
* base — ECSPI peripheral base address.
* handle — ECSPI SDMA handle pointer.

void ECSPI_ SlaveTransfer AbortSDMA (ECSPI_Type *base, ecspi_sdma_handle_t *handle)
Abort a ECSPI slave transfer using SDMA.

Parameters
* base — ECSPI peripheral base address.
* handle — ECSPI SDMA handle pointer.
FSL_ECSPI_FREERTOS_DRIVER_ VERSION
ECSPI FreeRTOS driver version.
typedef struct _ecspi_sdma_handle ecspi_sdma_ handle_t
typedef void (*ecspi_sdma_ callback t)(ECSPI_Type *base, ecspi_sdma_handle_t *handle, status_t
status, void *userData)
ECSPI SDMA callback called at the end of transfer.

struct _ecspi_ sdma_ handle

#include <fsl_ecspi_sdma.h> ECSPI SDMA transfer handle, users should not touch the con-
tent of the handle.

Public Members
bool txInProgress

Send transfer finished
bool rxInProgress

Receive transfer finished

sdma_handle_t *txSdmaHandle
DMA handler for ECSPI send

2.6. ECSPI SDMA Driver 123

MCUXpresso SDK Documentation, Release 25.09.00

sdma_handle_t *rxSdmaHandle
DMA handler for ECSPI receive

ecspi_sdma_callback_t callback
Callback for ECSPI SDMA transfer

void *userData
User Data for ECSPI SDMA callback

uint32_t state
Internal state of ECSPI SDMA transfer

uint32_t ChannelTx
Channel for send handle

uint32_t ChannelRx
Channel for receive handler

2.7 GPC: General Power Controller Driver

static inline void GPC_EnableMemoryGate(GPC_Type *base, uint32_t modules, bool enable)
Control power for memory.

Parameters
* base — GPC peripheral base address.

* modules — Mask value for Modules to be operated, see to
_gpc_memory_power_gate.

* enable — Enable the power or not.

void GPC_ EnablePartialSleepWakeupSource(GPC_Type *base, gpc_wakeup_source_t source, bool
enable)

Enable the modules as wakeup sources of PSLEEP (Partial Sleep) mode.

In PSLEEP mode, HP domain is powered down, while LP domain remains powered on so
peripherals in LP domain can wakeup the system from PSLEEP mode via interrupts. In
PSLEEP mode, system clocks are stopped and peripheral clocks of LP domain can be op-
tionally on. LP domain peripherals can generate interrupt either asynchronously or need
its peripheral clock on, depending on what kind of wakeup event is expected. Refer to
the corresponding module description about what kind of interrupts are supported by the
module.

Parameters
* base — GPC peripheral base address.

* source - Wakeup source for responding module, see to
gpc_wakeup_source_t.

* enable — Enable the wakeup source or not.

bool GPC_ GetPartialSleepWakeupFlag(GPC_Type *base, gpc_wakeup_source_t source)
Get if indicated wakeup module just caused the wakeup event to exit PSLEEP mode.

This function returns if the responding wakeup module just caused the MCU to exit PSLEEP
mode. In hardware level, the flags of wakeup source are read only and will be cleared by
cleaning the interrupt status of the corresponding wakeup module.

Parameters

* base — GPC peripheral base address.

124 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

* source - Wakeup source for responding module, see to
gpc_wakeup_source_t.

Return values
* true — - Indicated wakeup flag is asserted.
* false — - Indicated wakeup flag is not asserted.

static inline void GPC__EnablePartialSleepMode(GPC_Type *base, bool enable)
Switch to the Partial Sleep mode.

This function controls if the system will enter Partial SLEEP mode or remain in STOP mode.
Parameters
* base — GPC peripheral base address.
* enable — Enable the gate or not.

static inline void GPC __ConfigPowerUpSequence(GPC_Type *base, uint32_t sw, uint32_t sw2iso)
Configure the power up sequence.

There will be two steps for power up sequence:

* After a power up request, GPC waits for a number of IP BUS clocks equal to the value of
SW before turning on the power of HP domain. SW must not be programmed to zero.

 After GPC turnning on the power of HP domain, it waits for a number of IP BUS clocks
equal to the value of SW2ISO before disable the isolation of HP domain. SW2ISO must
not be programmed to zero.
Parameters
* base — GPC peripheral base address.
» sw— Count of IP BUS clocks before disabling the isolation of HP domain.
* sw2iso — Count of IP BUS clocks before turning on the power of HP domain.

static inline void GPC__ConfigPowerDownSequence(GPC_Type *base, uint32_t iso, uint32_t iso2w)
Configure the power down sequence.

There will be two steps for power down sequence:

* After a power down request, the GPC waits for a number of IP BUS clocks equal to the
value of ISO before it enables the isolation of HP domain. ISO must not be programmed
to zero.

» After HP domain is isolated, GPC waits for a number of IPG BUS clocks equal to the
value of ISO2SW before it turning off the power of HP domain. ISO2SW must not be
programmed to zero.

Parameters
* base — GPC peripheral base address.
* iso — Count of IP BUS clocks before it enables the isolation of HP domain.
* iso2w — Count of IP BUS clocks before it turning off the power of HP domain.

static inline uint32_t GPC_ GetStatusFlags(GPC_Type *base)
Get the status flags of GPC.

Parameters
* base — GPC peripheral base address.

Returns
Mask value of flags, see to _gpc_status_flags.

2.7. GPC: General Power Controller Driver 125

MCUXpresso SDK Documentation, Release 25.09.00

static inline void GPC__ClearStatusFlags(GPC_Type *base, uint32_t flags)
Clear the status flags of GPC.

Parameters
* base — GPC peripheral base address.
* flags — Mask value of flags to be cleared, see to _gpc_status_flags.

FSL GPC_DRIVER_ VERSION
GPC driver version 2.0.0.

enum _ gpc_memory_ power_gate
Enumeration of the memory power gate control.

Once the clock gate is enabled, the responding part would be powered off and contents are
not retained in Partial SLEEP mode.

Values:

enumerator kGPC_MemoryPowerGateLL.2Cache
L2 Cache Power Gate.

enumerator kGPC_MemoryPowerGatel TCM
ITCM Power Gate Enable.

enumerator kGPC_MemoryPowerGateDTCM
DTCM Power Gate Enable.

enum _ gpc_ status_ flags
GPC flags.

Values:

enumerator kGPC_PoweredDownFlag
Power status. HP domain was powered down for the previous power down request.

2.8 GPIO: General-Purpose Input/Output Driver

void GPIO_ PinInit(GPIO_Type *base, uint32_t pin, const gpio_pin_config t *Config)
Initializes the GPIO peripheral according to the specified parameters in the initConfig.

Parameters
* base — GPIO base pointer.
* pin — Specifies the pin number

* Config — pointer to a gpio_pin_config_t structure that contains the configu-
ration information.

void GPIO_ PinWrite(GPIO_Type *base, uint32_t pin, uint8_t output)
Sets the output level of the individual GPIO pin to logic 1 or 0.

Parameters
* base — GPIO base pointer.
* pin — GPIO port pin number.
* output — GPIOpin output logic level.
— 0: corresponding pin output low-logic level.

— 1: corresponding pin output high-logic level.

126 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline void GPIO_ WritePinOutput(GPIO_Type *base, uint32_t pin, uint8_t output)
Sets the output level of the individual GPIO pin to logic 1 or 0.

Deprecated:
Do not use this function. It has been superceded by GPIO_PinWrite.

static inline void GPIO_ PortSet(GPIO_Type *base, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 1.

Parameters
* base — GPIO peripheral base pointer (GPIO1, GPI02, GPI0O3, and so on.)
* mask — GPIO pin number macro

static inline void GPIO_ SetPinsOutput(GPIO_Type *base, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 1.

Deprecated:
Do not use this function. It has been superceded by GPIO_PortSet.

static inline void GPIO_ PortClear(GPIO_Type *base, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 0.

Parameters
* base — GPIO peripheral base pointer (GPIO1, GP102, GPI0O3, and so on.)
* mask — GPIO pin number macro

static inline void GPIO_ ClearPinsOutput(GPIO_Type *base, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 0.

Deprecated:
Do not use this function. It has been superceded by GPIO_PortClear.

static inline void GPIO_ PortToggle(GPIO_Type *base, uint32_t mask)
Reverses the current output logic of the multiple GPIO pins.

Parameters
* base — GPIO peripheral base pointer (GPIO1, GPIO2, GPI0O3, and so on.)
* mask — GPIO pin number macro

static inline uint32_t GPIO_ PinRead(GPIO_Type *base, uint32_t pin)
Reads the current input value of the GPIO port.

Parameters
* base — GPIO base pointer.
* pin — GPIO port pin number.

Return values
GPIO - port input value.

static inline uint32_t GPIO_ ReadPinInput(GPIO_Type *base, uint32_t pin)
Reads the current input value of the GPIO port.

2.8. GPIO: General-Purpose Input/Output Driver 127

MCUXpresso SDK Documentation, Release 25.09.00

Deprecated:
Do not use this function. It has been superceded by GPIO_PinRead.

static inline uint8_t GPIO_ PinReadPadStatus(GPIO_Type *base, uint32_t pin)
Reads the current GPIO pin pad status.

Parameters
* base — GPIO base pointer.
* pin — GPIO port pin number.

Return values
GPIO - pin pad status value.

static inline uint8_t GPIO_ ReadPadStatus(GPIO_Type *base, uint32_t pin)
Reads the current GPIO pin pad status.

Deprecated:
Do not use this function. It has been superceded by GPIO_PinReadPadStatus.

void GPIO_ PinSetInterruptConfig(GPIO_Type *base, uint32_t pin, gpio_interrupt_mode_t
pininterruptMode)

Sets the current pin interrupt mode.
Parameters
* base — GPIO base pointer.
* pin — GPIO port pin number.

* pinInterruptMode — pointer to a gpio_interrupt_mode_t structure that con-
tains the interrupt mode information.

static inline void GPIO_ SetPinInterruptConfig(GPIO_Type *base, uint32_t pin,
gpio_interrupt_mode_t pinInterruptMode)

Sets the current pin interrupt mode.

Deprecated:
Do not use this function. It has been superceded by GPIO_PinSetInterruptConfig.

static inline void GPIO_ PortEnableInterrupts(GPIO_Type *base, uint32_t mask)
Enables the specific pin interrupt.

Parameters
* base — GPIO base pointer.
* mask — GPIO pin number macro.

static inline void GPIO_ EnableInterrupts(GPIO_Type *base, uint32_t mask)
Enables the specific pin interrupt.

Parameters
* base — GPIO base pointer.
* mask — GPIO pin number macro.

static inline void GPIO_ PortDisablelnterrupts(GPIO_Type *base, uint32_t mask)
Disables the specific pin interrupt.

Parameters

* base — GPIO base pointer.

128 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

* mask — GPIO pin number macro.

static inline void GPIO_ DisableInterrupts(GPIO_Type *base, uint32_t mask)
Disables the specific pin interrupt.

Deprecated:
Do not use this function. It has been superceded by GPIO_PortDisableInterrupts.

static inline uint32_t GPIO_ PortGetInterruptFlags(GPIO_Type *base)
Reads individual pin interrupt status.

Parameters
* base — GPIO base pointer.

Return values
current — pin interrupt status flag.

static inline uint32_t GPIO_ GetPinsInterruptFlags(GPIO_Type *base)
Reads individual pin interrupt status.

Parameters
* base — GPIO base pointer.

Return values
current — pin interrupt status flag.

static inline void GPIO_ PortClearInterruptFlags(GPIO_Type *base, uint32_t mask)

Clears pin interrupt flag. Status flags are cleared by writing a 1 to the corresponding bit
position.

Parameters
* base — GPIO base pointer.
* mask — GPIO pin number macro.

static inline void GPIO_ ClearPinsInterruptFlags(GPIO_Type *base, uint32_t mask)

Clears pin interrupt flag. Status flags are cleared by writing a 1 to the corresponding bit
position.

Parameters
* base — GPIO base pointer.
* mask — GPIO pin number macro.

FSL__GPIO_DRIVER_VERSION
GPIO driver version.

enum _ gpio_ pin_ direction
GPIO direction definition.

Values:

enumerator kGPIO_ Digitallnput
Set current pin as digital input.

enumerator kGPIO_ DigitalOutput
Set current pin as digital output.

enum _ gpio_ interrupt_ mode
GPIO interrupt mode definition.

Values:

2.8. GPIO: General-Purpose Input/Output Driver 129

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kGPIO_ Nolntmode
Set current pin general 10 functionality.

enumerator kGPIO_ IntLowLevel
Set current pin interrupt is low-level sensitive.

enumerator kGPIO_ IntHighLevel
Set current pin interrupt is high-level sensitive.

enumerator kGPIO_ IntRisingEdge
Set current pin interrupt is rising-edge sensitive.

enumerator kGPIO_ IntFallingEdge
Set current pin interrupt is falling-edge sensitive.

enumerator kGPIO_ IntRisingOrFallingEdge
Enable the edge select bit to override the ICR register’s configuration.

typedef enum _gpio_pin_direction gpio_ pin_ direction_ t
GPIO direction definition.

typedef enum _gpio_interrupt_mode gpio__interrupt_ mode_ t
GPIO interrupt mode definition.

typedef struct _gpio_pin_config gpio_ pin_ config_t
GPIO Init structure definition.

struct _ gpio_ pin_ config
#include <fsl_gpio.h> GPIO Init structure definition.

Public Members
gpio_pin_direction_t direction
Specifies the pin direction.

uint8_t outputLogic
Set a default output logic, which has no use in input

gpio_interrupt_mode_t interruptMode
Specifies the pin interrupt mode, a value of gpio_interrupt_mode_t.

2.9 GPT: General Purpose Timer

void GPT_Init(GPT_Type *base, const gpt_config_t *initConfig)
Initialize GPT to reset state and initialize running mode.

Parameters
* base — GPT peripheral base address.
* initConfig — GPT mode setting configuration.

void GPT_ Deinit(GPT_Type *base)
Disables the module and gates the GPT clock.

Parameters

* base — GPT peripheral base address.

130 Chapter 2

. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

void GPT__GetDefaultConfig(gpt_config t *config)
Fills in the GPT configuration structure with default settings.

The default values are:

config->clockSource = kGPT__ClockSource_ Periph;
config->divider = 1U;

config->enableRunInStop = true;
config->enableRunInWait = true;
config->enableRunIlnDoze = false;
config->enableRunInDbg = false;
config->enableFreeRun = false;
config->enableMode = true;

Parameters
* config — Pointer to the user configuration structure.

static inline void GPT_ SoftwareReset(GPT_Type *base)
Software reset of GPT module.

Parameters
* base — GPT peripheral base address.

static inline void GPT_SetClockSource(GPT_Type *base, gpt_clock_source_t gptClkSource)
Set clock source of GPT.

Parameters
* base — GPT peripheral base address.
* gptClkSource — Clock source (see gpt_clock_source_t typedef enumeration).

static inline gpt_clock_source_t GPT _GetClockSource(GPT_Type *base)
Get clock source of GPT.

Parameters
* base — GPT peripheral base address.

Returns
clock source (see gpt_clock_source_t typedef enumeration).

static inline void GPT_SetClockDivider(GPT_Type *base, uint32_t divider)
Set pre scaler of GPT.

Parameters
* base — GPT peripheral base address.
¢ divider — Divider of GPT (1-4096).

static inline uint32_t GPT_ GetClockDivider(GPT_Type *base)
Get clock divider in GPT module.

Parameters
* base — GPT peripheral base address.

Returns
clock divider in GPT module (1-4096).

static inline void GPT_SetOscClockDivider(GPT_Type *base, uint32_t divider)
0OSC 24M pre-scaler before selected by clock source.

Parameters

* base — GPT peripheral base address.

2.9. GPT: General Purpose Timer 131

MCUXpresso SDK Documentation, Release 25.09.00

* divider — OSC Divider(1-16).

static inline uint32_t GPT_ GetOscClockDivider(GPT_Type *base)
Get OSC 24M clock divider in GPT module.

Parameters
* base — GPT peripheral base address.

Returns
OSC clock divider in GPT module (1-16).

static inline void GPT_ StartTimer(GPT_Type *base)
Start GPT timer.

Parameters
* base — GPT peripheral base address.

static inline void GPT_StopTimer(GPT_Type *base)
Stop GPT timer.

Parameters
* base — GPT peripheral base address.

static inline uint32_t GPT _GetCurrentTimerCount(GPT_Type *base)
Reads the current GPT counting value.

Parameters
* base — GPT peripheral base address.

Returns
Current GPT counter value.

static inline void GPT_ SetInputOperationMode(GPT_Type *base, gpt_input_capture_channel t
channel, gpt_input_operation_mode_t mode)

Set GPT operation mode of input capture channel.
Parameters
* base — GPT peripheral base address.

¢ channel — GPT capture channel (see gpt_input_capture_channel_t typedef
enumeration).

* mode - GPT input capture operation mode (see
gpt_input_operation_mode_t typedef enumeration).

static inline gpt_input_operation_mode_t GPT__GetInputOperationMode(GPT_Type *base,
gpt_input_capture_channel_t
channel)

Get GPT operation mode of input capture channel.
Parameters
* base — GPT peripheral base address.

* channel — GPT capture channel (see gpt_input_capture_channel t typedef
enumeration).

Returns
GPT input capture operation mode (see gpt_input_operation_mode_t typedef
enumeration).

132 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t GPT_ GetInputCaptureValue(GPT_Type *base, gpt_input_capture_channel t
channel)

Get GPT input capture value of certain channel.
Parameters
* base — GPT peripheral base address.

¢ channel — GPT capture channel (see gpt_input_capture_channel_t typedef
enumeration).

Returns
GPT input capture value.

static inline void GPT_SetOutputOperationMode(GPT_Type *base,
gpt_output_compare_channel_t channel,
gpt_output_operation_mode_t mode)

Set GPT operation mode of output compare channel.
Parameters
* base — GPT peripheral base address.

* channel - GPT output compare channel (see
gpt_output_compare_channel_t typedef enumeration).

* mode — GPT output operation mode (see gpt_output_operation_mode_t
typedef enumeration).

static inline gpt_output_operation_mode_t GPT__GetOutputOperationMode(GPT_Type *base,
gpt_output_compare_channel_t
channel)

Get GPT operation mode of output compare channel.
Parameters
* base — GPT peripheral base address.

* channel - GPT output compare channel (see
gpt_output_compare_channel_t typedef enumeration).

Returns
GPT output operation mode (see gpt_output_operation_mode_t typedef enu-
meration).

static inline void GPT_ SetOutputCompareValue(GPT_Type *base, gpt_output_compare_channel t
channel, uint32_t value)

Set GPT output compare value of output compare channel.
Parameters
* base — GPT peripheral base address.

* channel - GPT output compare channel (see
gpt_output_compare_channel_t typedef enumeration).

* value — GPT output compare value.

static inline uint32_t GPT_GetOutputCompareValue(GPT_Type *base,
gpt_output_compare_channel_t channel)

Get GPT output compare value of output compare channel.
Parameters
* base — GPT peripheral base address.

* channel - GPT output compare channel (see
gpt_output_compare_channel_t typedef enumeration).

2.9. GPT: General Purpose Timer 133

MCUXpresso SDK Documentation, Release 25.09.00

Returns
GPT output compare value.

static inline void GPT_ForceOutput(GPT_Type *base, gpt_output_compare_channel t channel)
Force GPT output action on output compare channel, ignoring comparator.

Parameters
* base — GPT peripheral base address.

* channel - GPT output compare channel (see
gpt_output_compare_channel_t typedef enumeration).

static inline void GPT_ EnableInterrupts(GPT_Type *base, uint32_t mask)
Enables the selected GPT interrupts.

Parameters
* base — GPT peripheral base address.

* mask — The interrupts to enable. This is a logical OR of members of the
enumeration gpt_interrupt_enable_t

static inline void GPT_ DisableInterrupts(GPT_Type *base, uint32_t mask)
Disables the selected GPT interrupts.

Parameters
* base — GPT peripheral base address

» mask — The interrupts to disable. This is a logical OR of members of the
enumeration gpt_interrupt_enable_t

static inline uint32_t GPT_ GetEnabledInterrupts(GPT_Type *base)
Gets the enabled GPT interrupts.

Parameters
* base — GPT peripheral base address

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
gpt_interrupt_enable_t

static inline uint32_t GPT_GetStatusFlags(GPT_Type *base, gpt_status_flag t flags)
Get GPT status flags.

Parameters
* base — GPT peripheral base address.
* flags — GPT status flag mask (see gpt_status_flag_t for bit definition).

Returns
GPT status, each bit represents one status flag.

static inline void GPT__ClearStatusFlags(GPT_Type *base, gpt_status_flag t flags)
Clears the GPT status flags.

Parameters
* base — GPT peripheral base address.
* flags — GPT status flag mask (see gpt_status_flag_t for bit definition).
FSL_GPT_DRIVER_ VERSION

134 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enum _ gpt_ clock_source
List of clock sources.

Note: Actual number of clock sources is SoC dependent

Values:

enumerator kGPT ClockSource Off
GPT Clock Source Off.

enumerator kGPT _ClockSource Periph
GPT Clock Source from Peripheral Clock.

enumerator kGPT__ClockSource HighFreq
GPT Clock Source from High Frequency Reference Clock.

enumerator kGPT _ClockSource Ext
GPT Clock Source from external pin.

enumerator kGPT __ClockSource_LowFreq
GPT Clock Source from Low Frequency Reference Clock.

enumerator kGPT ClockSource Osc
GPT Clock Source from Crystal oscillator.

enum _ gpt_input_ capture_ channel
List of input capture channel number.

Values:

enumerator kGPT InputCapture_ Channell
GPT Input Capture Channell.

enumerator kGPT InputCapture_ Channel2
GPT Input Capture Channel2.

enum _ gpt_ input_ operation_mode
List of input capture operation mode.

Values:

enumerator kGPT_InputOperation_ Disabled
Don’t capture.

enumerator kGPT _InputOperation_RiseEdge
Capture on rising edge of input pin.

enumerator kGPT_InputOperation_FallEdge
Capture on falling edge of input pin.

enumerator kGPT InputOperation BothEdge
Capture on both edges of input pin.

enum _ gpt_output_ compare_channel
List of output compare channel number.

Values:

enumerator kGPT__OutputCompare_Channell
Output Compare Channell.

2.9. GPT: General Purpose Timer 135

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kGPT__OutputCompare_Channel2
Output Compare Channel2.

enumerator kGPT__OutputCompare_Channel3
Output Compare Channel3.

enum _ gpt_ output_ operation_mode
List of output compare operation mode.

Values:

enumerator kGPT OutputOperation_ Disconnected
Don’t change output pin.

enumerator kGPT__OutputOperation_ Toggle
Toggle output pin.

enumerator kGPT__OutputOperation_ Clear
Set output pin low.

enumerator kGPT _OutputOperation_ Set
Set output pin high.

enumerator kGPT _OutputOperation_ Activelow
Generate a active low pulse on output pin.

enum _ gpt_ interrupt_ enable
List of GPT interrupts.

Values:

enumerator kGPT OutputComparellnterruptEnable
Output Compare Channell interrupt enable

enumerator kGPT OutputCompare2InterruptEnable
Output Compare Channel2 interrupt enable

enumerator kGPT _OutputCompare3InterruptEnable
Output Compare Channel3 interrupt enable

enumerator kGPT__InputCapturellnterruptEnable
Input Capture Channell interrupt enable

enumerator kGPT__InputCapture2InterruptEnable
Input Capture Channell interrupt enable

enumerator kGPT__RollOverFlagInterruptEnable
Counter rolled over interrupt enable

enum _ gpt_ status_flag
Status flag.

Values:

enumerator kGPT__OutputComparelFlag
Output compare channel 1 event.

enumerator kGPT__OutputCompare2Flag
Output compare channel 2 event.

enumerator kGPT__OutputCompare3Flag
Output compare channel 3 event.

136 Chapter 2

. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kGPT _InputCapturelFlag
Input Capture channel 1 event.

enumerator kGPT _InputCapture2Flag
Input Capture channel 2 event.

enumerator kGPT _RollOverFlag
Counter reaches maximum value and rolled over to 0 event.

typedef enum _gpt_clock_source gpt__clock_source_t
List of clock sources.

Note: Actual number of clock sources is SoC dependent

typedef enum _gpt_input_capture_channel gpt__input_ capture_ channel_t
List of input capture channel number.

typedef enum _gpt_input_operation_mode gpt_ input_ operation_mode_t
List of input capture operation mode.

typedef enum _gpt_output_compare_channel gpt_ output_ compare_channel_t
List of output compare channel number.

typedef enum _gpt_output_operation_mode gpt_output_ operation_mode_t
List of output compare operation mode.
typedef enum _gpt_interrupt_enable gpt_ interrupt_ enable_t
List of GPT interrupts.
typedef enum _gpt_status_flag gpt_ status_flag_t
Status flag.
typedef struct _gpt_init_config gpt_ config_t
Structure to configure the running mode.

struct _gpt__init_ config
#include <fsl_gpt.h> Structure to configure the running mode.

Public Members
gpt_clock_source_t clockSource
clock source for GPT module.
uint32_t divider
clock divider (prescaler+1) from clock source to counter.

bool enableFreeRun
true: FreeRun mode, false: Restart mode.

bool enableRunInWait
GPT enabled in wait mode.

bool enableRunInStop

GPT enabled in stop mode.
bool enableRunInDoze

GPT enabled in doze mode.

bool enableRunInDbg
GPT enabled in debug mode.

2.9. GPT: General Purpose Timer 137

MCUXpresso SDK Documentation, Release 25.09.00

bool enableMode
true: counter reset to 0 when enabled; false: counter retain its value when enabled.

2.10 I2C: Inter-Integrated Circuit Driver

2.11 12C Driver

void 12C_ MasterInit(I2C_Type *base, const i2c_master_config_t *masterConfig, uint32_t
srcClock_Hz)

Initializes the I2C peripheral. Call this API to ungate the I12C clock and configure the 12C
with master configuration.

Note: This API should be called at the beginning of the application. Otherwise, any op-
eration to the I2C module can cause a hard fault because the clock is not enabled. The
configuration structure can be custom filled or it can be set with default values by using
the I12C_MasterGetDefaultConfig(). After calling this API, the master is ready to transfer.
This is an example.

i2c_master__config_t config = {
.enableMaster = true,

.baudRate_ Bps = 100000

ki

12C_ MasterInit(I12C0, &config, 12000000U);

Parameters
* base — I2C base pointer
* masterConfig — A pointer to the master configuration structure
* srcClock__Hz — I2C peripheral clock frequency in Hz

void I12C_MasterDeinit(I2C_Type *base)

De-initializes the I2C master peripheral. Call this API to gate the I2C clock. The I2C master
module can’t work unless the I12C_MasterlInit is called.

Parameters
* base —I2C base pointer

void 12C_ MasterGetDefaultConfig(i2¢_master_config_t *masterConfig)
Sets the I2C master configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use in the
12C_MasterlInit(). Use the initialized structure unchanged in the I2C_MasterInit() or modify
the structure before calling the I2C_MasterInit(). This is an example.

i2c_ master_ config_t config;

I12C_ MasterGetDefaultConfig(&config);

Parameters

» masterConfig — A pointer to the master configuration structure.

138 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

void 12C__Slavelnit(I2C_Type *base, const i2c_slave_config_t *slaveConfig)

Initializes the I12C peripheral. Call this API to ungate the I2C clock and initialize the I2C with
the slave configuration.

Note: This API should be called at the beginning of the application. Otherwise, any opera-
tion to the I2C module can cause a hard fault because the clock is not enabled. The config-
uration structure can partly be set with default values by 12C_SlaveGetDefaultConfig() or it
can be custom filled by the user. This is an example.

i2c_slave_config t config = {
.enableSlave = true,
slaveAddress = 0x1DU,

};

I12C_ Slavelnit(I2C0, &config);

Parameters
* base — I2C base pointer
* slaveConfig — A pointer to the slave configuration structure

void 12C_ SlaveDeinit(I12C_Type *base)

De-initializes the I12C slave peripheral. Calling this API gates the 12C clock. The I2C slave
module can’t work unless the I12C_Slavelnit is called to enable the clock.

Parameters
* base — I12C base pointer

void 12C__SlaveGetDefaultConfig(i2c_slave_config t *slaveConfig)
Sets the I2C slave configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use in the
12C_Slavelnit(). Modify fields of the structure before calling the I12C_Slavelnit(). This is an
example.

i2c_slave_config t config;
12C_ SlaveGetDefaultConfig(&config);

Parameters
* slaveConfig — A pointer to the slave configuration structure.

static inline void 12C__Enable(I2C_Type *base, bool enable)
Enables or disables the I2C peripheral operation.

Parameters
* base — I2C base pointer
* enable — Pass true to enable and false to disable the module.

static inline uint32_t 12C_ MasterGetStatusFlags(I2C_Type *base)
Gets the I2C status flags.

Parameters
* base — I2C base pointer

Returns
status flag, use status flag to AND _i2c_flags to get the related status.

2.11. I2C Driver 139

MCUXpresso SDK Documentation, Release 25.09.00

static inline void 12C_ MasterClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C status flag state.

The following status register flags can be cleared kI2C_ArbitrationLostFlag and
kI2C_IntPendingFlag.

Parameters
* base — I2C base pointer

* statusMask — The status flag mask, defined in type i2c_status_flag_t. The
parameter can be any combination of the following values:

— kI2C_ArbitrationLostFlag
— kI2C_IntPendingFlag

static inline uint32_t 12C_ SlaveGetStatusFlags(I2C_Type *base)
Gets the I2C status flags.

Parameters
* base — I2C base pointer

Returns
status flag, use status flag to AND _i2c_flags to get the related status.

static inline void 12C__ SlaveClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C status flag state.

The following status register flags can be cleared kI2C_ArbitrationLostFlag and
kI2C_IntPendingFlag

Parameters
* base — I2C base pointer

* statusMask — The status flag mask, defined in type i2c_status_flag_t. The
parameter can be any combination of the following values:

— kI2C_IntPendingFlagFlag

void I12C_ EnableInterrupts(I2C_Type *base, uint32_t mask)
Enables I2C interrupt requests.

Parameters
* base — I12C base pointer

» mask — interrupt source The parameter can be combination of the follow-
ing source if defined:

— kI2C_GlobalInterruptEnable
— kI2C_StopDetectInterruptEnable/kI2C_StartDetectInterruptEnable
— kI2C_SdaTimeoutInterruptEnable

void 12C_ Disablelnterrupts(I2C_Type *base, uint32_t mask)
Disables I2C interrupt requests.

Parameters
* base — I2C base pointer

* mask — interrupt source The parameter can be combination of the follow-
ing source if defined:

— kI2C_GlobalInterruptEnable
— kI2C_StopDetectInterruptEnable/kI2C_StartDetectInterruptEnable

140 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

- kI2C_SdaTimeoutInterruptEnable
void I2C_ MasterSetBaudRate(I2C_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
Sets the I12C master transfer baud rate.
Parameters

* base — I2C base pointer

* baudRate_Bps — the baud rate value in bps

* srcClock__Hz — Source clock
status_t 12C_ MasterStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)

Sends a START on the I2C bus.
This function is used to initiate a new master mode transfer by sending the START signal.
The slave address is sent following the I2C START signal.

Parameters
* base — I2C peripheral base pointer
* address — 7-bit slave device address.
¢ direction — Master transfer directions(transmit/receive).

Return values
* kStatus_ Success — Successfully send the start signal.

* kStatus_ I2C_ Busy — Current bus is busy.
status_t 12C_ MasterStop(I12C_Type *base)
Sends a STOP signal on the 12C bus.

Return values
* kStatus_ Success — Successfully send the stop signal.

* kStatus_ I2C_ Timeout — Send stop signal failed, timeout.
status_t 12C_ MasterRepeatedStart(I2C_Type *base, uint8_t address, i2¢_direction_t direction)
Sends a REPEATED START on the 12C bus.
Parameters
* base — I2C peripheral base pointer
* address — 7-bit slave device address.
¢ direction — Master transfer directions(transmit/receive).

Return values
* kStatus_Success — Successfully send the start signal.

* kStatus_ I2C_ Busy — Current bus is busy but not occupied by current 12C

master.
status_t 12C_ MasterWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize, uint32_t
flags)
Performs a polling send transaction on the I2C bus.
Parameters

* base — The I2C peripheral base pointer.
* txBuff — The pointer to the data to be transferred.
* txSize — The length in bytes of the data to be transferred.

2.11. I2C Driver 141

MCUXpresso SDK Documentation, Release 25.09.00

* flags — Transfer control flag to decide whether need to send a stop, use
kI2C_TransferDefaultFlag to issue a stop and kI2C_TransferNoStop to not
send a stop.

Return values
* kStatus_Success — Successfully complete the data transmission.
* kStatus_ I2C_ ArbitrationLost — Transfer error, arbitration lost.
* kStataus_ I2C_ Nak — Transfer error, receive NAK during transfer.

status_t 12C_ MasterReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize, uint32_t flags)
Performs a polling receive transaction on the 12C bus.

Note: The I2C_MasterReadBlocking function stops the bus before reading the final byte.
Without stopping the bus prior for the final read, the bus issues another read, resulting in
garbage data being read into the data register.

Parameters
* base — I2C peripheral base pointer.
* rxBuff — The pointer to the data to store the received data.
* rxSize — The length in bytes of the data to be received.

* flags — Transfer control flag to decide whether need to send a stop, use
kI2C_TransferDefaultFlag to issue a stop and kI2C_TransferNoStop to not
send a stop.

Return values
* kStatus_ Success — Successfully complete the data transmission.
* kStatus_I2C_ Timeout — Send stop signal failed, timeout.

status_t 12C_SlaveWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize)
Performs a polling send transaction on the I12C bus.

Parameters
* base — The I2C peripheral base pointer.
* txBuff — The pointer to the data to be transferred.
* txSize — The length in bytes of the data to be transferred.
Return values
* kStatus_Success — Successfully complete the data transmission.
* kStatus_I2C_ ArbitrationLost — Transfer error, arbitration lost.
* kStataus_ I2C_ Nak — Transfer error, receive NAK during transfer.

status_t 12C_SlaveReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize)
Performs a polling receive transaction on the 12C bus.

Parameters
* base — I2C peripheral base pointer.
 rxBuff — The pointer to the data to store the received data.

* rxSize — The length in bytes of the data to be received.

142 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

status_t 12C_ MasterTransferBlocking(I2C_Type *base, i2c_master_transfer_t *xfer)
Performs a master polling transfer on the I2C bus.

Note: The API does not return until the transfer succeeds or fails due to arbitration lost or
receiving a NAK.

Parameters
* base — I2C peripheral base address.
« xfer — Pointer to the transfer structure.
Return values
* kStatus_ Success — Successfully complete the data transmission.
» kStatus_I2C_ Busy — Previous transmission still not finished.
* kStatus_I2C_ Timeout — Transfer error, wait signal timeout.
* kStatus I2C ArbitrationLost — Transfer error, arbitration lost.
* kStataus_I2C_ Nak — Transfer error, receive NAK during transfer.

void 12C_ MasterTransferCreateHandle(I2C_Type *base, i2c_master_handle_t *handle,
i2c_master_transfer_callback_t callback, void *userData)

Initializes the I2C handle which is used in transactional functions.
Parameters
* base — I2C base pointer.

* handle — pointer to i2c_master_handle_t structure to store the transfer
state.

* callback — pointer to user callback function.
* userData — user parameter passed to the callback function.

status_t 12C_MasterTransferNonBlocking(I2C_Type *base, i2c_master_handle_t *handle,
i2c_master_transfer_t *xfer)

Performs a master interrupt non-blocking transfer on the 12C bus.

Note: Calling the API returns immediately after transfer initiates. The user needs to call
I12C_MasterGetTransferCount to poll the transfer status to check whether the transfer is
finished. If the return status is not kStatus_I2C_Busy, the transfer is finished.

Parameters
* base — I2C base pointer.

* handle—pointer to i2c_master_handle_t structure which stores the transfer
state.

» xfer — pointer to i2c_master_transfer_t structure.
Return values
* kStatus_ Success — Successfully start the data transmission.
* kStatus_I2C_ Busy — Previous transmission still not finished.

* kStatus_I2C_Timeout — Transfer error, wait signal timeout.

2.11. I2C Driver 143

MCUXpresso SDK Documentation, Release 25.09.00

status_t 12C_ MasterTransferGetCount(I2C_Type *base, i2c_master_handle_t *handle, size_t
*count)

Gets the master transfer status during a interrupt non-blocking transfer.
Parameters
* base — I2C base pointer.

* handle—pointer toi2c_master_handle_t structure which stores the transfer
state.

* count— Number of bytes transferred so far by the non-blocking transaction.
Return values

* kStatus_ InvalidArgument — count is Invalid.

* kStatus_ Success — Successfully return the count.

status_t 12C_ MasterTransferAbort(I2C_Type *base, i2¢c_master_handle_t *handle)
Aborts an interrupt non-blocking transfer early.

Note: This API can be called at any time when an interrupt non-blocking transfer initiates
to abort the transfer early.

Parameters
* base —I2C base pointer.

* handle—pointer toi2c_master_handle_t structure which stores the transfer
state

Return values
* kStatus_I2C_Timeout — Timeout during polling flag.
* kStatus_ Success — Successfully abort the transfer.

void 12C_ MasterTransferHandleIRQ(I2C_Type *base, void *i2cHandle)
Master interrupt handler.

Parameters
* base — I12C base pointer.
* i2cHandle — pointer to i2c_master_handle_t structure.

void 12C_ SlaveTransferCreateHandle(I2C_Type *base, i2¢_slave_handle_t *handle,
i2¢_slave_transfer_callback_t callback, void *userData)

Initializes the I2C handle which is used in transactional functions.
Parameters
* base — I2C base pointer.
* handle — pointer to i2c_slave_handle_t structure to store the transfer state.
* callback — pointer to user callback function.
* userData — user parameter passed to the callback function.

status_t 12C_SlaveTransferNonBlocking(I2C_Type *base, i2¢_slave_handle_t *handle, uint32_t
eventMask)

Starts accepting slave transfers.

Call this API after calling the I12C_Slavelnit() and I2C_SlaveTransferCreateHandle() to start
processing transactions driven by an I2C master. The slave monitors the I2C bus and passes

144 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

events to the callback that was passed into the call to I2C_SlaveTransferCreateHandle(). The
callback is always invoked from the interrupt context.

The set of events received by the callback is customizable. To do so, set the eventMask pa-
rameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events
you wish to receive. The kI2C_SlaveTransmitEvent and KLPI2C_SlaveReceiveEvent events
are always enabled and do not need to be included in the mask. Alternatively, pass 0 to get
a default set of only the transmit and receive events that are always enabled. In addition,
the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all events.

Parameters
* base — The I2C peripheral base address.

* handle — Pointer to i2c_slave_handle_t structure which stores the transfer
state.

* eventMask — Bit mask formed by OR’ing together i2c_slave_transfer_event_t
enumerators to specify which events to send to the callback. Other ac-
cepted values are 0 to get a default set of only the transmit and receive
events, and kI2C_SlaveAllEvents to enable all events.

Return values
* kStatus_ Success — Slave transfers were successfully started.

* kStatus_I2C_ Busy — Slave transfers have already been started on this han-
dle.

void I12C_ SlaveTransfer Abort(I2C_Type *base, i2c_slave_handle_t *handle)
Aborts the slave transfer.

Note: This API can be called at any time to stop slave for handling the bus events.

Parameters
* base — I2C base pointer.

* handle — pointer to i2c_slave_handle_t structure which stores the transfer
state.

status_t 12C_SlaveTransferGetCount(I2C_Type *base, i2¢_slave_handle_t *handle, size_t *count)
Gets the slave transfer remaining bytes during a interrupt non-blocking transfer.

Parameters

* base — I2C base pointer.

* handle — pointer to i2c_slave_handle_t structure.

* count— Number of bytes transferred so far by the non-blocking transaction.
Return values

* kStatus_ InvalidArgument — count is Invalid.

* kStatus_ Success — Successfully return the count.

void 12C_ SlaveTransferHandleIRQ(I2C_Type *base, void *i2cHandle)
Slave interrupt handler.

Parameters
* base — I2C base pointer.

* i2cHandle — pointer to i2c_slave_handle_t structure which stores the trans-
fer state

2.11. I2C Driver 145

MCUXpresso SDK Documentation, Release 25.09.00

FSL 12C_DRIVER_ VERSION
12C driver version.

I2C status return codes.
Values:

enumerator kStatus_ I12C_ Busy
I2C is busy with current transfer.

enumerator kStatus_ 12C_Idle
Bus is Idle.

enumerator kStatus_I12C_ Nak
NAK received during transfer.

enumerator kStatus I2C ArbitrationLost
Arbitration lost during transfer.

enumerator kStatus_12C_ Timeout
Timeout polling status flags.

enumerator kStatus 12C_ Addr_Nak
NAK received during the address probe.

enum _i2c_flags
12C peripheral flags.

The following status register flags can be cleared:
* kI2C_ArbitrationLostFlag
* kI2C_IntPendingFlag

Note: These enumerations are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2C_ ReceiveNakFlag
I2C receive NAK flag.

enumerator kI2C_ IntPendingFlag
I2C interrupt pending flag.

enumerator kI2C_ TransferDirectionFlag
I12C transfer direction flag.

enumerator kI2C__ArbitrationLostFlag
I2C arbitration lost flag.

enumerator kI2C_ BusBusyFlag
I2C bus busy flag.

enumerator kI2C_AddressMatchFlag
I2C address match flag.

enumerator kI2C_ TransferCompleteFlag
I2C transfer complete flag.

enum _ i2c_ interrupt_ enable
12C feature interrupt source.

Values:

146 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kI2C_ GloballnterruptEnable
I2C global interrupt.
enum _i2c¢c_direction
The direction of master and slave transfers.

Values:
enumerator kI2C_ Write
Master transmits to the slave.
enumerator kI2C_ Read
Master receives from the slave.
enum _i2c_master_ transfer flags
12C transfer control flag.
Values:
enumerator kI2C_ TransferDefaultFlag
A transfer starts with a start signal, stops with a stop signal.

enumerator kI2C_ TransferNoStartFlag
A transfer starts without a start signal, only support write only or write+read with no
start flag, do not support read only with no start flag.

enumerator kI2C_ TransferRepeatedStartFlag
A transfer starts with a repeated start signal.

enumerator kI2C_ TransferNoStopFlag
A transfer ends without a stop signal.

enum _i2c slave transfer event
Set of events sent to the callback for nonblocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created by
OR’ing together events is passed to I2C_SlaveTransferNonBlocking() to specify which events
to enable. Then, when the slave callback is invoked, it is passed the current event through
its transfer parameter.

Note: These enumerations are meant to be OR’d together to form a bit mask of events.

Values:
enumerator kI2C _SlaveAddressMatchEvent
Received the slave address after a start or repeated start.
enumerator kI2C_ SlaveTransmitEvent
A callback is requested to provide data to transmit (slave-transmitter role).

enumerator kI2C_ SlaveReceiveEvent
A callback is requested to provide a buffer in which to place received data (slave-
receiver role).

enumerator kI2C SlaveTransmitAckEvent
A callback needs to either transmit an ACK or NACK.

enumerator kI2C_ SlaveCompletionEvent
A stop was detected or finished transfer, completing the transfer.

enumerator kI2C_SlaveAllEvents
A bit mask of all available events.

2.11. I2C Driver 147

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _i2¢_direction i2¢_ direction_t
The direction of master and slave transfers.

typedef struct _i2c_master_config i2c_ master__config_t
I2C master user configuration.

typedef struct _i2c_master_handle i2c_ master__handle_t

12C master handle typedef.
typedef void (*i2c_ master_ transfer_ callback_t)(I2C_Type *base, i2c_master_handle_t *handle,
status_t status, void *userData)

12C master transfer callback typedef.

typedef struct _i2c_master_transfer i2c_ master_transfer t
12C master transfer structure.

typedef enum _i2¢_slave_transfer_event i2c_slave transfer event_t
Set of events sent to the callback for nonblocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created by
OR’ing together events is passed to I2C_SlaveTransferNonBlocking() to specify which events
to enable. Then, when the slave callback is invoked, it is passed the current event through
its transfer parameter.

Note: These enumerations are meant to be OR’d together to form a bit mask of events.

typedef struct _i2c_slave_handle i2¢c_ slave_handle_t
12C slave handle typedef.

typedef struct _i2c_slave_config i2c_slave_config_t
I2C slave user configuration.

typedef struct _i2c_slave_transfer i2c_slave_transfer_t
12C slave transfer structure.

typedef void (*i2¢c_ slave_transfer_ callback_t)(I2C_Type *base, i2c_slave_transfer_t *xfer, void
*userData)

12C slave transfer callback typedef.
12C_RETRY_TIMES
Retry times for waiting flag.

struct i2c_master config
#include <fsl_i2c.h> 12C master user configuration.

Public Members
bool enableMaster
Enables the I2C peripheral at initialization time.

uint32_t baudRate Bps
Baud rate configuration of I12C peripheral.

struct _i2c_master transfer
#include <fsl_i2c.h> 12C master transfer structure.

148 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Public Members
uint32_t flags
A transfer flag which controls the transfer.

uint8_t slaveAddress
7-bit slave address.

i2c_direction_t direction
A transfer direction, read or write.

uint32_t subaddress
A sub address. Transferred MSB first.

uint8_t subaddressSize
A size of the command buffer.

uint8_t *volatile data
A transfer buffer.

volatile size_t dataSize
A transfer size.

struct i2c¢ master handle
#include <fsl_i2c.h> 12C master handle structure.

Public Members
i2¢c_master_transfer._t transfer
I2C master transfer copy.

size_t transferSize
Total bytes to be transferred.

uint8_t state
A transfer state maintained during transfer.

i2¢_master._transfer_callback_t completionCallback
A callback function called when the transfer is finished.

void *userData
A callback parameter passed to the callback function.

struct _i2c_slave_ config
#include <fsl_i2c.h> 12C slave user configuration.

Public Members
bool enableSlave
Enables the I2C peripheral at initialization time.

uint16_t slaveAddress
A slave address configuration.

struct i2c_slave transfer
#include <fsl_i2c.h> 12C slave transfer structure.

2.11. I2C Driver 149

MCUXpresso SDK Documentation, Release 25.09.00

Public Members
i2¢_slave_transfer_event_t event
A reason that the callback is invoked.

uint8_t *volatile data
A transfer buffer.

volatile size_t dataSize
A transfer size.

status_t completionStatus

Success or error code describing how the transfer completed. Only applies for
kiI2C_SlaveCompletionEvent.

size_t transferredCount
A number of bytes actually transferred since the start or since the last repeated start.

struct i2c¢_slave handle
#include <fsl_i2c.h> 12C slave handle structure.

Public Members
volatile uint8_t state
A transfer state maintained during transfer.

i2¢_slave_transfer_t transfer
I12C slave transfer copy.

uint32_t eventMask
A mask of enabled events.

i2c_slave_transfer_callback_t callback
A callback function called at the transfer event.

void *userData
A callback parameter passed to the callback.

2.12 Iomuxc driver

static inline void IOMUXC_ SetPinMux(uint32_t muxRegister, uint32_t muxMode, uint32_t
inputRegister, uint32_t inputDaisy, uint32_t
configRegister; uint32_t inputOnfield)

Sets the IOMUXC pin mux mode.

This is an example to set the 12C4_SDA as the pwm1_OUT:

IOMUXC_ SetPinMux(IOMUXC_12C4_SDA_PWM1_OUT, 0);

Note: The first five parameters can be filled with the pin function ID macros.

Parameters
* muxRegister — The pin mux register_

* muxMode — The pin mux mode_

150 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

* inputRegister — The select input register_

* inputDaisy — The input daisy_

* configRegister — The config register_

* inputOnfield - The pad->module input inversion_

static inline void IOMUXC__SetPinConfig(uint32_t muxRegister, uint32_t muxMode, uint32_t
inputRegister, uint32_t inputDaisy, uint32_t
configRegister, uint32_t configValue)

Sets the IOMUXC pin configuration.

This is an example to set pin configuration for IOMUXC_I2C4_SDA_PWM1_OUT:

IOMUXC_ SetPinConfig(IOMUXC_12C4 SDA_ PWMI1_OUT, IOMUXC_SW_PAD CTL_ PAD
—~ODE__MASK | IOMUXC0_SW_PAD_CTL_PAD_DSE(2U))

Note: The previous five parameters can be filled with the pin function ID macros.

Parameters
* muxRegister — The pin mux register_
* muxMode — The pin mux mode_
» inputRegister — The select input register_
* inputDaisy — The input daisy_
* configRegister — The config register_
* configValue — The pin config value_

FSL IOMUXC_ DRIVER_VERSION
IOMUXC driver version 2.0.1.

IOMUXC_PMIC_STBY_REQ
IOMUXC_PMIC_ON_REQ

IOMUXC_ONOFF

IOMUXC_POR_B

IOMUXC_RTC_RESET B
IOMUXC_GPIO1_1I000_GPIO1_I000
IOMUXC_GPIO1_I000_CCM_ENET_ PHY REF_CLK_ROOT
IOMUXC__GPIO1_1000_XTALOSC_REF CLK_ 32K
IOMUXC_GPIO1 1000 _CCM_EXT CLK1
IOMUXC_GPIO1 1001 GPIO1 1001
IOMUXC_GPIO1 1001 PWM1 OUT
IOMUXC__GPIO1_1001_XTALOSC_REF_CLK 24M

IOMUXC_GPIO1_I001_CCM_EXT_ CLK2

2.12. ITomuxc_driver 151

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_GPIO1_1002_GPIO1_1002
IOMUXC__GPIO1_1002_WDOG1 WDOG_B
IOMUXC_GPIO1_1002_WDOG1_ WDOG_ANY
IOMUXC__GPIO1 1003 GPIO1 1003
IOMUXC_GPIO1 1003 USDHC1 VSELECT
IOMUXC__GPIO1_I003_SDMA1l EXT EVENTO
IOMUXC__GPIO1_1004_GPIO1_1004
IOMUXC_GPIO1_1004 USDHC2_ VSELECT
IOMUXC_GPIO1_1004 SDMA1 EXT EVENT1
IOMUXC_GPIO1 1005 GPIO1 1005
IOMUXC_GPIO1_ 1005 M4 NMI
IOMUXC_GPIO1_1005_ CCM_PMIC READY
IOMUXC_GPIO1_1006_GPIO1_ 1006
IOMUXC_GPIO1_1006_ENET1_ MDC
IOMUXC_GPIO1 1006 _USDHC1 CD_B
IOMUXC_GPIO1 1006 CCM_EXT CLK3
IOMUXC_GPIO1_1007_GPIO1_ 1007
IOMUXC__GPIO1_ 1007 _ENET1 MDIO
IOMUXC_GPIO1_I1007_USDHC1_ WP
IOMUXC_GPIO1 1007 _CCM_EXT CLK4
IOMUXC__GPIO1 1008 GPIO1 1008
IOMUXC_GPIO1 1008 ENET1 1588 EVENTO0 IN
IOMUXC_GPIO1 1008 USDHC2 RESET B
IOMUXC__GPIO1_1I009_GPIO1_I009
IOMUXC_GPIO1_ 1009 ENET1 1588 EVENTO OUT
IOMUXC_GPIO1_1009 SDMA2 EXT EVENTO
IOMUXC_GPIO1_1010_GPIO1 1010
IOMUXC_GPIO1 1010 _USB1 OTG_ID
IOMUXC_GPIO1_I011_GPIO1_I011
IOMUXC_GPIO1_I011_USB2_ OTG_ID
IOMUXC_GPIO1 1011 CCM_PMIC_READY
IOMUXC_GPIO1 1012 GPIO1 1012

IOMUXC_GPIO1 1012 USB1 OTG_PWR

152

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_GPIO1_1I012_SDMA2_ EXT_ EVENTI1
IOMUXC_GPIO1_ 1013 _GPIO1 1013
IOMUXC_GPIO1 1013 USB1 OTG_OC
IOMUXC_GPIO1 1013 PWM2_ OUT
IOMUXC_GPIO1 1014 GPIO1 1014
IOMUXC_GPIO1_1014_USB2_ OTG_PWR
IOMUXC_GPIO1_1014 PWM3_OUT
IOMUXC_GPIO1_1014 CCM_CLKOL1
IOMUXC_GPIO1 1015 GPIO1 1015
IOMUXC_GPIO1 1015 USB2 OTG_OC
IOMUXC_GPIO1 1015 PWM4_ OUT
IOMUXC_GPIO1 1015 CCM__CLKO2
IOMUXC_ENET_MDC_ENET1_MDC
IOMUXC_ENET_ MDC_GPIO1 1016
IOMUXC_ENET_MDIO_ENET1_MDIO
IOMUXC_ENET MDIO_GPIO1 1017
IOMUXC_ENET_TD3_ENET1_RGMII_TD3
IOMUXC_ENET_ TD3 GPIO1 1018
IOMUXC_ENET_TD2 ENET1_ RGMII_TD2
IOMUXC_ENET_TD2 ENET1_ TX_ CLK
IOMUXC_ENET TD2 GPIO1 1019
IOMUXC_ENET_TD1_ENET1_RGMII_TD1
IOMUXC_ENET TD1 GPIO1 1020
IOMUXC_ENET_TDO0_ENET1_ RGMII_TDO0
IOMUXC_ENET TDO0_GPIO1 1021
IOMUXC_ENET_TX_ CTL_ENET1_ RGMII_TX_ CTL
IOMUXC_ENET_TX_CTL_GPIO1_I1022
IOMUXC_ENET_TXC_ENET1_RGMII_TXC
IOMUXC_ENET_TXC_ENET1_TX_ ER
IOMUXC_ENET_TXC_GPIO1_1023
IOMUXC_ENET RX CTL_ ENET1 RGMII RX CTL
IOMUXC_ENET RX CTL_ GPIO1 1024

IOMUXC_ENET_ RXC_ENET1_RGMII_RXC

2.12. ITomuxc_driver 153

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_ENET_RXC_ENET1_RX ER
IOMUXC_ENET RXC_GPIO1 1025
IOMUXC_ENET RDO_ ENET1 RGMII RDO
IOMUXC_ENET RDO0O_GPIO1 1026
IOMUXC_ENET_RD1_ENET1_RGMII_RD1
IOMUXC_ENET_RD1_ GPIO1_ 1027
IOMUXC_ENET_ RD2 ENET1 RGMII RD2
IOMUXC_ENET RD2 GPIO1 1028
IOMUXC_ENET RD3 ENET1 RGMII RD3
IOMUXC_ENET RD3 GPIO1 1029
IOMUXC_SD1 CLK USDHC1 CLK
IOMUXC_SD1 CLK_GPIO2 1000
IOMUXC_SD1_CMD_USDHC1_CMD
IOMUXC_SD1_CMD_ GPIO2 1001
IOMUXC_SD1 DATAO0 USDHC1_DATAO
IOMUXC_SD1_DATA0_GPIO2_I002
IOMUXC_SD1 DATA1 USDHC1 DATA1
IOMUXC_SD1 DATA1l GPIO2 1003
IOMUXC_SD1_DATA2 USDHC1_DATA2
IOMUXC_SD1_DATA2 GPIO2 1004
IOMUXC_SD1_DATA3 USDHC1_DATAS3
IOMUXC_SD1_DATA3_GPIO2_IO05
IOMUXC_SD1 DATA4 USDHC1 DATA4
IOMUXC_SD1_DATA4 GPIO2_ 1006
IOMUXC_SD1_DATA5 USDHC1_DATA5S
IOMUXC_SD1_DATA5 GPIO2 1007
IOMUXC_SD1_DATA6_USDHC1_DATAG
IOMUXC_SD1_DATA6_GPIO2_IO08
IOMUXC_SD1_DATA7 USDHC1_DATA7
IOMUXC_SD1_DATA7_ GPIO2_ 1009
IOMUXC_SD1_RESET B USDHC1 RESET B
IOMUXC_SD1 RESET B GPIO2 I010

IOMUXC_SD1 STROBE USDHC1 STROBE

154 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_SD1_STROBE_GPIO2_ 1011
IOMUXC_SD2 CD_B USDHC2 CD_B
IOMUXC_SD2 CD_B_GPIO2 1012
IOMUXC_SD2 CLK USDHC2 CLK
IOMUXC_SD2 CLK GPIO2 1013
IOMUXC_SD2_ CMD_USDHC2_CMD
IOMUXC_SD2_ CMD_ GPIO2 1014
IOMUXC_SD2_DATAO0 USDHC2_DATAO
IOMUXC_SD2_DATA0_ GPIO2 1015
IOMUXC_SD2_ DATA1 USDHC2 DATA1
IOMUXC_SD2_DATA1_GPIO2_I016
IOMUXC_SD2 DATA2 USDHC2_ DATA2
IOMUXC_SD2_DATA2 GPIO2 1017
IOMUXC_SD2_DATA3 USDHC2_DATA3
IOMUXC_SD2 DATA3 GPIO2 1018
IOMUXC_SD2 RESET B USDHC2 RESET B
IOMUXC_SD2 RESET B GPIO2 1019
IOMUXC_SD2 WP_USDHC2 WP
IOMUXC_SD2_WP_GPIO2 1020
IOMUXC_NAND_ALE_RAWNAND_ALE
IOMUXC_NAND_ALE QSPI A SCLK
IOMUXC_NAND_ALE_GPIO3_1000
IOMUXC_NAND_ CEO_B RAWNAND CEO0_B
IOMUXC_NAND_CEO_B_QSPI_A SS0_B
IOMUXC_NAND_ CEO_B_GPIO3_ 1001
IOMUXC_NAND_ CEl1_B_RAWNAND CEl1 B
IOMUXC_NAND_CE1_B_QSPI A SS1 B
IOMUXC_NAND_CE1_B_GPIO3_1002
IOMUXC_NAND_CE2 B RAWNAND CE2_B
IOMUXC_NAND_CE2_ B _QSPI B_SS0_B
IOMUXC_NAND_ CE2 B GPIO3 1003
IOMUXC_NAND_ CE3_B_RAWNAND CE3 B

IOMUXC_NAND_CE3_B _QSPI_B_SS1 B

2.12. ITomuxc_driver 155

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_NAND_CE3_B_ GPIO3_I004
IOMUXC_NAND_CLE_RAWNAND_CLE
IOMUXC_NAND_CLE_QSPI_B_SCLK
IOMUXC_NAND_CLE_GPIO3_I005

IOMUXC NAND DATA00 RAWNAND DATA00
IOMUXC NAND_ DATA00 QSPI A DATAO
IOMUXC_NAND_DATA00_GPIO3_I006
IOMUXC_NAND_DATAOL RAWNAND_DATAO1
IOMUXC_NAND_ DATAO1 QSPI A DATA1
IOMUXC NAND_DATA01 GPIO3 1007
IOMUXC_NAND_ DATA02 RAWNAND DATA02
IOMUXC NAND DATA02 QSPI A DATA2
IOMUXC_NAND_DATA02 GPIO3_ 1008
IOMUXC_NAND_DATA03_ RAWNAND_ DATA03
IOMUXC NAND_ DATA03_ QSPI A DATA3
IOMUXC_NAND_DATA03_GPIO3 1009
IOMUXC_NAND DATA04 RAWNAND DATA04
IOMUXC_NAND_DATA04 QSPI_B_DATA0
IOMUXC_NAND_DATA04_GPIO3_I010
IOMUXC_NAND_DATA05 RAWNAND DATA05
IOMUXC_NAND_ DATA05 QSPI B DATA1
IOMUXC_NAND_DATA05 GPIO3 IO11
IOMUXC NAND DATA06_ RAWNAND DATA06
IOMUXC_NAND_DATA06_QSPI_B_DATA2
IOMUXC_NAND_DATA06_GPIO3 1012
IOMUXC_NAND_DATA07 RAWNAND_DATA07
IOMUXC_NAND_DATA07 QSPI B DATA3
IOMUXC NAND_ DATA07 GPIO3 IO13
IOMUXC NAND DQS RAWNAND DQS
IOMUXC_NAND_DQS_QSPI_A_DQS
IOMUXC_NAND_DQS_GPIO3 1014
IOMUXC_NAND_RE B RAWNAND_ RE_ B

IOMUXC_NAND_RE_B_QSPI_B_DQS

156

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_NAND_RE_B_GPIO3_ 1015

IOMUXC_NAND READY B RAWNAND READY B

IOMUXC_NAND_ READY B_GPIO3_ 1016

IOMUXC_NAND_WE_B_RAWNAND WE_B

IOMUXC_NAND_WE_B_GPIO3_1017

IOMUXC_NAND_WP_B_RAWNAND_WP_B

IOMUXC_NAND_WP_B_ GPIO3 1018
IOMUXC_SAI5 RXFS SAI5 RX_ SYNC
IOMUXC_SAI5 RXFS SAIl _TX_ DATAO
IOMUXC_SAI5 RXFS GPIO3 1019
IOMUXC_SAI5 RXC SAI5 RX BCLK
IOMUXC_SAI5 RXC SAIl TX DATA1
IOMUXC_SAI5_RXC_GPIO3_1020
IOMUXC_SAI5_ RXDO_ SAI5 RX DATA0
IOMUXC_SAI5 RXDO SAI1 TX DATA2
IOMUXC_SAI5_RXD0_GPIO3_1021
IOMUXC_SAI5 RXD1 SAI5 RX DATA1
IOMUXC_SAI5 RXD1 SAIl1 TX DATA3
IOMUXC_SAI5_ _RXD1 SAIl_TX SYNC
IOMUXC_SAI5 RXD1 SAI5 TX SYNC
IOMUXC_SAI5 RXD1 GPIO3_ 1022
IOMUXC_SAI5_ _RXD2_ SAI5 RX DATA2
IOMUXC_SAI5 RXD2 SAIl1 TX DATA4
IOMUXC_SAI5_RXD2 SAIl _TX SYNC
IOMUXC_SAI5 RXD2 SAI5 TX BCLK
IOMUXC_SAI5 RXD2 GPIO3_ 1023
IOMUXC_SAI5_ RXD3_ SAI5 RX DATA3
IOMUXC_SAI5_ _RXD3_SAIl_TX DATA5
IOMUXC_SAI5_ RXD3_SAIl _TX SYNC
IOMUXC_SAI5_RXD3_SAI5 TX_ DATAO
IOMUXC_SAI5 RXD3 GPIO3 1024
IOMUXC_SAI5_ MCLK_SAI5 MCLK

IOMUXC_SAI5_ MCLK_SAI1l_TX_ BCLK

2.12. ITomuxc_driver

157

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_SAI5_MCLK_SAI4 MCLK
IOMUXC_SAI5 MCLK_ GPIO3 1025
IOMUXC_SAI1 _RXFS SAIl1_RX SYNC
IOMUXC_SAI1 _RXFS SAI5_ RX_ SYNC
IOMUXC_SAI1_RXFS CORESIGHT TRACE_CLK
IOMUXC_SAI1_RXFS_GPIO4_ 1000
IOMUXC_SAI1_RXC_SAIl _RX BCLK
IOMUXC_SAI1 _RXC_ SAI5 RX BCLK
IOMUXC_SAI1 _RXC_ CORESIGHT TRACE_CTL
IOMUXC_SAI1 _RXC_GPIO4 1001
IOMUXC_SAI1_RXDO0_SAI1_RX DATA0
IOMUXC_SAI1_RXDO0_SAI5 RX DATAO0
IOMUXC_SAI1_RXD0_CORESIGHT TRACEO
IOMUXC_SAI1 _RXDO0_ GPIO4 1002
IOMUXC_SAI1 RXDO0O SRC_BOOT_CFGO
IOMUXC_SAI1_RXD1_ SAI1 RX DATA1
IOMUXC_SAI1 RXD1 SAI5 RX DATA1
IOMUXC_SAI1 RXD1 CORESIGHT TRACE1
IOMUXC_SAI1_RXD1 GPIO4 I003
IOMUXC_SAI1 RXD1 SRC_BOOT_CFG1
IOMUXC_SAI1 _RXD2 SAI1 RX DATA?2
IOMUXC_SAI1l_RXD2_ SAI5 RX DATA?2
IOMUXC_SAI1 RXD2 CORESIGHT TRACE2
IOMUXC_SAI1_RXD2 GPIO4 1004
IOMUXC_SAI1 _RXD2 SRC_BOOT_CFG2
IOMUXC_SAI1 _RXD3 SAI1_RX DATA3
IOMUXC_SAI1 _RXD3_ SAI5 RX DATA3
IOMUXC_SAI1_RXD3_CORESIGHT TRACE3
IOMUXC_SAI1_RXD3_GPIO4 1005
IOMUXC_SAI1_RXD3_SRC_BOOT_CFG3
IOMUXC_SAI1 RXD4 SAIl1 RX DATA4
IOMUXC_SAI1 _RXD4 SAI6 TX BCLK

IOMUXC_SAI1_RXD4 SAI6_RX_ BCLK

158

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_SAI1_RXD4 CORESIGHT TRACE4
IOMUXC_SAI1 _RXD4 GPIO4 IO06
IOMUXC_SAI1_RXD4 SRC_BOOT_CFG4
IOMUXC_SAI1 _RXD5_SAI1 _RX DATAS5S
IOMUXC_SAI1_RXD5_SAI6_TX DATAQ
IOMUXC_SAI1_RXD5_SAI6_RX_ DATAO
IOMUXC_SAI1_RXD5_ SAIl _RX_ SYNC
IOMUXC_SAI1 _RXD5 CORESIGHT TRACES5
IOMUXC_SAI1 _RXD5 GPIO4 1007
IOMUXC_SAI1 _RXD5_ SRC_BOOT_CFG5
IOMUXC_SAI1_RXD6_SAI1_RX DATAG6
IOMUXC_SAI1 RXD6_ SAI6 TX SYNC
IOMUXC_SAI1_RXD6_ SAI6_ RX SYNC
IOMUXC_SAI1_RXD6_CORESIGHT TRACE6
IOMUXC_SAI1 RXD6 GPIO4 IO08
IOMUXC_SAI1_RXD6_SRC_BOOT_CFG6
IOMUXC_SAI1 RXD7 SAI1 RX DATA7Y
IOMUXC_SAI1 _RXD7 SAI6 MCLK
IOMUXC_SAI1_RXD7_ SAIl_TX SYNC
IOMUXC_SAI1 RXD7 SAIl TX DATA4
IOMUXC_SAI1 _RXD7_ CORESIGHT TRACE?
IOMUXC_SAI1l_RXD7_GPIO4_IO09
IOMUXC_SAI1 _RXD7 SRC_BOOT_ CFG7
IOMUXC_SAI1_TXFS_SAIl_TX_ SYNC
IOMUXC_SAI1 TXFS SAI5 TX SYNC
IOMUXC_SAI1 TXFS CORESIGHT EVENTO
IOMUXC_SAI1 _TXFS GPIO4 1010
IOMUXC_SAI1_TXC_SAIl _TX BCLK
IOMUXC_SAIl_TXC_ SAI5_TX BCLK
IOMUXC_SAI1_TXC_CORESIGHT EVENTI
IOMUXC_SAI1 TXC_ GPIO4 1011
IOMUXC_SAI1 _TXDO0_SAIl TX DATAO

IOMUXC_SAI1_TXDO0_SAI5_TX DATAO0

2.12. ITomuxc_driver

159

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_SAI1_TXDO0_CORESIGHT TRACES8
IOMUXC_SAI1 TXD0_ GPIO4 1012
IOMUXC_SAI1 TXDO0O_SRC_BOOT_CFGS8
IOMUXC_SAI1_TXD1_SAIl_TX DATA1
IOMUXC_SAI1_TXD1_SAI5_TX_DATA1
IOMUXC_SAI1_TXD1 CORESIGHT TRACE9
IOMUXC_SAI1_TXD1 GPIO4 1013
IOMUXC_SAI1 _TXD1 SRC_BOOT_CFG9
IOMUXC_SAI1_TXD2_ SAIl1_TX DATA2
IOMUXC_SAI1_TXD2 SAI5_TX DATA2
IOMUXC_SAI1_TXD2_ CORESIGHT TRACE10
IOMUXC_SAI1 TXD2 GPIO4 1014
IOMUXC_SAI1_TXD2_ SRC_BOOT_CFGI10
IOMUXC_SAI1 _TXD3_ SAIl1 TX DATA3
IOMUXC_SAI1 TXD3 SAI5 TX DATA3
IOMUXC_SAI1 _TXD3_CORESIGHT TRACE11l
IOMUXC_SAI1 TXD3 GPIO4 I015
IOMUXC_SAI1_TXD3 SRC_BOOT_ CFG11
IOMUXC_SAI1_TXD4 SAI1l_TX DATA4
IOMUXC_SAI1 TXD4 SAI6 RX BCLK
IOMUXC_SAI1 _TXD4 SAI6 TX BCLK
IOMUXC_SAI1_TXD4 CORESIGHT TRACE12
IOMUXC_SAI1 TXD4 GPIO4 1016
IOMUXC_SAI1_TXD4 SRC_BOOT_CFG12
IOMUXC_SAI1 _TXD5 SAI1 TX DATA5
IOMUXC_SAI1_TXD5_ SAI6 RX DATAOQ
IOMUXC_SAI1 _TXD5_ SAI6 TX DATAO
IOMUXC_SAI1_TXD5_ CORESIGHT TRACE13
IOMUXC_SAI1_TXD5_ GPIO4 1017
IOMUXC_SAI1_TXD5_ SRC_BOOT_CFG13
IOMUXC_SAI1 _TXD6_SAI1 TX DATA6
IOMUXC_SAI1 _TXD6_SAI6 RX SYNC

IOMUXC_SAI1l_TXD6_SAI6_TX SYNC

160

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_SAI1_TXD6_CORESIGHT TRACE14
IOMUXC_SAI1 TXD6_ GPIO4 1018
IOMUXC_SAI1 _TXD6_SRC_BOOT_CFG14
IOMUXC_SAI1l _TXD7_ SAI1 TX DATA7Y
IOMUXC_SAI1_TXD7_ SAI6_MCLK
IOMUXC_SAI1_TXD7_ CORESIGHT TRACE15
IOMUXC_SAIl_TXD7_ GPIO4 1019
IOMUXC_SAI1 _TXD7_ SRC_BOOT_CFG15
IOMUXC_SAI1 MCLK_SAIl MCLK
IOMUXC_SAI1 MCLK_SAI5 MCLK
IOMUXC_SAI1 MCLK SAIl TX BCLK
IOMUXC_SAI1 MCLK GPIO4 1020
IOMUXC_SAI2 RXFS SAI2 RX SYNC
IOMUXC_SAI2 RXFS SAI5 TX SYNC
IOMUXC_SAI2 RXFS GPIO4 1021
IOMUXC_SAI2 RXC_SAI2_RX BCLK
IOMUXC_SAI2 RXC SAI5 TX BCLK
IOMUXC_SAI2 RXC GPIO4 1022
IOMUXC_SAI2 RXDO_ SAI2_ RX DATA0
IOMUXC_SAI2 RXDO SAI5 TX DATAOQ
IOMUXC_SAI2 RXD0_ GPIO4 1023
IOMUXC_SAI2 TXFS_ SAI2 TX SYNC
IOMUXC_SAI2 TXFS SAI5 TX DATA1
IOMUXC_SAI2_ TXFS_GPIO4_1024
IOMUXC_SAI2 TXC_ SAI2 TX BCLK
IOMUXC_SAI2 TXC_SAI5 TX DATA2
IOMUXC_SAI2 TXC_GPIO4 1025
IOMUXC_SAI2 TXDO0_SAI2 TX DATAO
IOMUXC_SAI2 TXDO0_SAI5 TX DATA3
IOMUXC_SAI2_TXDO0_GPIO4 1026
IOMUXC_SAI2 MCLK_SAI2 MCLK
IOMUXC_SAI2 MCLK_SAI5 MCLK

IOMUXC_SAI2_ MCLK_GPIO4_1027

2.12. ITomuxc_driver

161

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_SAI3_RXFS_SAI3_RX SYNC
IOMUXC_SAI3 RXFS GPT1 CAPTURE1
IOMUXC_SAI3 RXFS SAI5 RX_ SYNC
IOMUXC_SAI3 RXFS_ GPIO4 1028
IOMUXC_SAI3 RXC SAI3 RX BCLK
IOMUXC_SAI3_ RXC_GPT1_CAPTURE2
IOMUXC_SAI3__RXC_SAI5 RX_ BCLK
IOMUXC_SAI3 RXC_GPIO4 1029
IOMUXC_SAI3 RXD_SAI3 RX DATAOQ
IOMUXC_SAI3 RXD_GPT1_COMPARE1
IOMUXC_SAI3_RXD_SAI5_RX DATAQ
IOMUXC_SAI3__RXD_GPIO4 I030
IOMUXC_SAI3 TXFS SAI3 TX SYNC
IOMUXC_SAI3_ TXFS_ GPT1 CLK
IOMUXC_SAI3 TXFS SAI5 RX DATAl1
IOMUXC_SAI3_TXFS_ GPIO4 1031
IOMUXC_SAI3_ TXC SAI3 TX BCLK
IOMUXC_SAI3_TXC GPT1_COMPARE2
IOMUXC_SAI3_TXC_SAI5 RX DATA?2
IOMUXC_SAI3 TXC_GPIO5 1000
IOMUXC_SAI3 TXD_SAI3 TX DATAO
IOMUXC_SAI3 _TXD_GPT1_COMPARE3
IOMUXC_SAI3 TXD_ SAI5 RX DATA3
IOMUXC_SAI3_TXD_ GPIO5_I001
IOMUXC_SAI3 MCLK_SAI3 MCLK
IOMUXC_SAI3 MCLK_PWM4 OUT
IOMUXC_SAI3 _MCLK_SAI5 MCLK
IOMUXC_SAI3 MCLK_GPIO5_I002
IOMUXC_SPDIF_TX_SPDIF1_OUT
IOMUXC_SPDIF_TX_ PWM3_OUT
IOMUXC_SPDIF TX_ GPIO5 1003
IOMUXC_SPDIF_RX SPDIF1 IN

IOMUXC_SPDIF_RX_PWM2_ OUT

162

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_SPDIF_RX_GPIO5_1004
IOMUXC_SPDIF EXT CLK_ SPDIF1 EXT CLK
IOMUXC_SPDIF EXT CLK PWM1 OUT
IOMUXC_SPDIF EXT CLK_ GPIO5 1005
IOMUXC_ECSPI1_SCLK ECSPI1 SCLK
IOMUXC_ECSPI1_SCLK_ UART3_RX
IOMUXC_ECSPI1_SCLK_ UART3_ TX
IOMUXC_ECSPI1_SCLK_GPIO5 1006
IOMUXC_ECSPI1_MOSI ECSPI1_MOSI
IOMUXC_ECSPI1_MOSI _UART3_ TX
IOMUXC_ECSPI1_MOSI UART3 RX
IOMUXC_ECSPI1_MOSI _GPIO5_ 1007
IOMUXC_ECSPI1_MISO_ECSPI1_MISO
IOMUXC_ECSPI1_MISO_UART3_CTS_B
IOMUXC_ECSPI1_MISO_UART3 RTS B
IOMUXC_ECSPI1_MISO_GPIO5_ 1008
IOMUXC_ECSPI1_SS0_ECSPI1_SS0
IOMUXC_ECSPI1_SS0_UART3_RTS B
IOMUXC_ECSPI1_SS0_UART3_CTS_B
IOMUXC_ECSPI1_SS0_GPIO5 I009
IOMUXC_ECSPI2_ SCLK ECSPI2 SCLK
IOMUXC_ECSPI2_SCLK_UART4 RX
IOMUXC_ECSPI2_SCLK UART4 TX
IOMUXC_ECSPI2_SCLK_ GPIO5_1010
IOMUXC_ECSPI2_ _MOSI_ECSPI2_ _MOSI
IOMUXC_ECSPI2__MOSI _UART4 TX
IOMUXC_ECSPI2__MOSI_UART4 RX
IOMUXC_ECSPI2_MOSI GPIO5 1011
IOMUXC_ECSPI2_MISO_ECSPI2_ MISO
IOMUXC_ECSPI2_MISO_UART4 CTS_B
IOMUXC_ECSPI2__MISO_UART4 RTS B
IOMUXC_ECSPI2_MISO_GPIO5 1012

IOMUXC_ECSPI2_SS0 ECSPI2 SS0

2.12. ITomuxc_driver

163

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_ECSPI2_SS0_UART4 RTS_B
IOMUXC_ECSPI2_SS0_UART4 CTS_B
IOMUXC_ECSPI2_SS0_GPIO5 1013
IOMUXC_1I2C1_SCL_12C1_ SCL
IOMUXC_12C1_SCL_ENET1 MDC
IOMUXC_12C1_SCL_GPIO5_1014
IOMUXC_1I2C1_SDA_I2C1_SDA
IOMUXC_12C1_SDA ENET1 MDIO
IOMUXC_1I2C1_SDA_GPIO5_ 1015
IOMUXC_12C2 SCL_12C2 SCL
IOMUXC_12C2_SCL_ENET1 1588 EVENT1 IN
IOMUXC_12C2_SCL_GPIO5_ 1016
IOMUXC_12C2_SDA 12C2_SDA
IOMUXC_I12C2_SDA_ ENET1 1588 EVENT1 OUT
IOMUXC_12C2_SDA_ GPIO5_ 1017
IOMUXC_12C3_SCL_12C3_SCL
IOMUXC_12C3_SCL_PWM4_ OUT
IOMUXC_12C3_SCL_GPT2 CLK
IOMUXC_12C3_SCL_GPIO5_1018
IOMUXC_12C3_SDA 12C3_SDA
IOMUXC_12C3_SDA_ PWM3_ OUT
IOMUXC_I12C3_SDA_GPT3_CLK
IOMUXC_12C3_SDA_GPIO5_ 1019
IOMUXC_12C4_SCL_12C4_SCL
IOMUXC_12C4 SCL_PWM2 OUT
IOMUXC_12C4 SCL_PCIE1 CLKREQ B
IOMUXC_12C4 SCL_GPIO5_ 1020
IOMUXC_1I2C4_SDA_12C4_SDA
IOMUXC_1I2C4_SDA_PWM1_OUT
IOMUXC_1I2C4_SDA_PCIE2 CLKREQ_B
IOMUXC_12C4 SDA GPIO5 1021
IOMUXC_UART1_RXD UART1 RX
IOMUXC_UART1 RXD UART1 TX

164 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_UART1 RXD_ECSPI3_SCLK
IOMUXC_UART1 RXD GPIO5_ 1022
IOMUXC_UART1 TXD_ UART1 TX
IOMUXC_UART1 TXD_UART1 RX
IOMUXC_UART1_TXD_ECSPI3_MOSI
IOMUXC_UART1 TXD_ GPIO5_ 1023
IOMUXC_UART2 RXD_UART2 RX
IOMUXC_UART2_ RXD UART2 TX
IOMUXC_UART2_RXD ECSPI3 MISO
IOMUXC_UART2_ RXD GPIO5 1024
IOMUXC_UART2_TXD_UART2_TX
IOMUXC_UART2 TXD UART2 RX
IOMUXC_UART2_ TXD_ECSPI3_SS0
IOMUXC_UART2_ TXD_GPIO5 1025
IOMUXC_UART3 RXD UART3 RX
IOMUXC_UART3_RXD_UART3_TX
IOMUXC_UART3 RXD UART1 CTS_ B
IOMUXC_UART3 RXD_ UART1 RTS B
IOMUXC_UART3_RXD_GPIO5_1026
IOMUXC_UART3 TXD_ UART3 TX
IOMUXC_UART3_ TXD_UART3_RX
IOMUXC_UART3_TXD_UART1_RTS_B
IOMUXC_UART3 TXD UART1 CTS B
IOMUXC_UART3_TXD_GPIO5_1027
IOMUXC_UART4 RXD UART4 RX
IOMUXC_UART4 RXD UART4 TX
IOMUXC_UART4 RXD UART2 CTS_B

IOMUXC_UART4 _RXD_UART2 _RTS_B

IOMUXC_UART4_RXD_PCIE1_CLKREQ_B

IOMUXC_UART4 RXD_ GPIO5_1028
IOMUXC_UART4 TXD_ UART4 TX
IOMUXC_UART4 TXD_ UART4 RX

IOMUXC_UART4 TXD_ UART2 _RTS_B

2.12. ITomuxc_driver

165

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_UART4 TXD_UART2 CTS_B
IOMUXC_UART4 TXD_ PCIE2 CLKREQ B
IOMUXC_UART4 TXD_GPIO5 1029
IOMUXC_TEST MODE
IOMUXC_BOOT MODEO
IOMUXC_BOOT_MODE1
IOMUXC_JTAG_MOD
IOMUXC_JTAG_TRST_B
IOMUXC_JTAG_TDI
IOMUXC_JTAG_TMS
IOMUXC_JTAG_TCK
IOMUXC_JTAG_TDO

IOMUXC_RTC

FSL_COMPONENT_ID

2.13 IRQSTEER: Interrupt Request Steering Driver

void IRQSTEER_ Init(IRQSTEER _Type *base)
Initializes the IRQSTEER module.

This function enables the clock gate for the specified IRQSTEER.
Parameters
* base — IRQSTEER peripheral base address.

void IRQSTEER_ Deinit(IRQSTEER_Type *base)
Deinitializes an IRQSTEER instance for operation.

The clock gate for the specified IRQSTEER is disabled.
Parameters
* base — IRQSTEER peripheral base address.

static inline void IRQSTEER,_ EnableInterrupt(IRQSTEER_Type *base, IRQn_Type irq)
Enables an interrupt source.

Parameters
* base — IRQSTEER peripheral base address.
* irq — Interrupt to be routed. The interrupt must be an IRQSTEER source.

static inline void IRQSTEER_ DisableInterrupt(IRQSTEER_Type *base, IRQn_Type irq)
Disables an interrupt source.

Parameters
* base — IRQSTEER peripheral base address.

* irq — Interrupt source number. The interrupt must be an IRQSTEER source.

166 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline bool IRQSTEER_ InterruptIsEnabled(IRQSTEER_Type *base, IRQn_Type irq)
Check if an interrupt source is enabled.

Parameters
* base — IRQSTEER peripheral base address.

* irq — Interrupt to be queried. The interrupt must be an IRQSTEER source.

Returns
true if the interrupt is not masked, false otherwise.

static inline void IRQSTEER, SetInterrupt(IRQSTEER_Type *base, IRQn_Type irq, bool set)
Sets/Forces an interrupt.

Note: This function is not affected by the function IRQSTEER_DisableInterrupt and IRQS-
TEER_Enablelnterrupt.

Parameters
* base — IRQSTEER peripheral base address.
* irq— Interrupt to be set/forced. The interrupt must be an IRQSTEER source.

* set — Switcher of the interrupt set/force function. “true” means to set.
“false” means not (normal operation).

static inline void IRQSTEER_ EnableMasterInterrupt(IRQSTEER_Type *base,
irqsteer_int_master_t intMasterIndex)

Enables a master interrupt. By default, all the master interrupts are enabled.

For example, to enable the interrupt sources of master 1:

IRQSTEER_ EnableMasterInterrupt(IRQSTEER,_ M4_ 0, kIRQSTEER_ InterruptMaster1);

Parameters
* base — IRQSTEER peripheral base address.

* intMasterIndex — Master index of interrupt sources to be routed, options
available in enumeration irgsteer_int_master_t.

static inline void IRQSTEER, DisableMasterInterrupt(IRQSTEER_Type *base,
irgsteer_int_master_t intMasterIndex)
Disables a master interrupt.

For example, to disable the interrupt sources of master 1:

IRQSTEER_ DisableMasterInterrupt(IRQSTEER__M4_ 0, kKIRQSTEER,_ InterruptMasterl);

Parameters
* base — IRQSTEER peripheral base address.

* intMasterIndex — Master index of interrupt sources to be disabled, options
available in enumeration irqsteer_int_master_t.

2.13. IRQSTEER: Interrupt Request Steering Driver 167

MCUXpresso SDK Documentation, Release 25.09.00

static inline bool IRQSTEER_ IsInterruptSet (IRQSTEER_Type *base, IRQn_Type irq)
Checks the status of one specific IRQSTEER interrupt.

For example, to check whether interrupt from output 0 of Display 1 is set:

if (IRQSTEER_ IsInterruptSet(IRQSTEER_DISPLAY1_ INT_OUTO0)

Parameters
* base — IRQSTEER peripheral base address.

* irq — Interrupt source status to be checked. The interrupt must be an IRQS-
TEER source.

Returns
The interrupt status. “true” means interrupt set. “false” means not.
static inline bool IRQSTEER_ IsMasterInterruptSet(IRQSTEER_Type *base)

Checks the status of IRQSTEER master interrupt. The master interrupt status represents at
least one interrupt is asserted or not among ALL interrupts.

Note: The master interrupt status is not affected by the function IRQS-
TEER_DisableMasterInterrupt.

Parameters
* base — IRQSTEER peripheral base address.

Returns
The master interrupt status. “true” means at least one interrupt set. “false”
means not.

static inline uint32_t IRQSTEER,_ GetGroupInterruptStatus(IRQSTEER_Type *base,
irgsteer_int_group_t intGroupIndex)

Gets the status of IRQSTEER group interrupt. The group interrupt status represents all the
interrupt status within the group specified. This API aims for facilitating the status return
of one set of interrupts.

Parameters
* base — IRQSTEER peripheral base address.
* intGrouplndex — Index of the interrupt group status to get.

Returns
The mask of the group interrupt status. Bit[n] set means the source with bit
offset n in group intGroupIndex of IRQSTEER is asserted.

IRQn_Type IRQSTEER,_GetMasterNextInterrupt(IRQSTEER_Type *base, irgsteer_int_master_t
intMasterIndex)

Gets the next interrupt source (currently set) of one specific master.
Parameters
* base — IRQSTEER peripheral base address.

¢ intMasterIndex — Master index of interrupt sources, options available in
enumeration irgsteer_int_master_t.

168 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Returns
The current set next interrupt source number of one specific master. Return
IRQSTEER_INT_Invalid if no interrupt set.

uint32_t IRQSTEER_ GetMasterIrqCount(IRQSTEER_Type *base, irqsteer_int_master._t
intMasterIndex)

Get the number of interrupt for a given master.
Parameters
* base — IRQSTEER peripheral base address.

¢ intMasterIndex — Master index of interrupt sources, options available in
enumeration irqsteer_int_master_t.

Returns
Number of interrupts for a given master.

uint64_t IRQSTEER_ GetMasterInterruptsStatus(IRQSTEER_Type *base, irqsteer_int_master._t
intMasterIndex)

Get the status of the interrupts a master is in charge of.

What this function does is it takes the CHn_STATUS registers associated with the interrupts
a master is in charge of and puts them in 64-bit variable. The order they are put in the
64-bit variable is the following: CHn_STATUS[i] : CHn_STATUSI[i + 1], where CHn_STATUS[i
+ 1] is placed in the least significant half of the 64-bit variable. Assuming a master is in
charge of 64 interrupts, the user may use the result of this function as such: BIT(i) & IRQS-
TEER_GetMasterInterrupts() to check if interrupt i is asserted.

Parameters
* base — IRQSTEER peripheral base address.

¢ intMasterIndex — Master index of interrupt sources, options available in
enumeration irqsteer_int_master_t.

Returns
64-bit variable containing the status of the interrupts a master is in charge of.

FSL_TRQSTEER_DRIVER_VERSION
Driver version.

enum _ irqsteer_int_ group
IRQSTEER interrupt groups.
Values:

enumerator KIRQSTEER._ InterruptGroup0
Interrupt Group 0: interrupt source 31 -0
enumerator kIRQSTEER,_ InterruptGroupl
Interrupt Group 1: interrupt source 63 - 32
enumerator kIRQSTEER,_ InterruptGroup2
Interrupt Group 2: interrupt source 95 - 64
enumerator KIRQSTEER.__ InterruptGroup3
Interrupt Group 3: interrupt source 127 - 96
enumerator kIRQSTEER, InterruptGroup4
Interrupt Group 4: interrupt source 159 - 128

enumerator KIRQSTEER._ InterruptGroupb
Interrupt Group 5: interrupt source 191 - 160

2.13. IRQSTEER: Interrupt Request Steering Driver 169

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kIRQSTEER, InterruptGroup6
Interrupt Group 6: interrupt source 223 - 192

enumerator kIRQSTEER,_ InterruptGroup7
Interrupt Group 7: interrupt source 255 - 224
enumerator kIRQSTEER, InterruptGroup8
Interrupt Group 8: interrupt source 287 - 256
enumerator kIRQSTEER, InterruptGroup9
Interrupt Group 9: interrupt source 319 - 288
enumerator kIRQSTEER,_ InterruptGroupl0
Interrupt Group 10: interrupt source 351 - 320
enumerator kIRQSTEER,_ InterruptGroupl1
Interrupt Group 11: interrupt source 383 - 352
enumerator kIRQSTEER,_ InterruptGroup12
Interrupt Group 12: interrupt source 415 - 384
enumerator kIRQSTEER,_ InterruptGroup13
Interrupt Group 13: interrupt source 447 - 416
enumerator KIRQSTEER,_ InterruptGroupl4
Interrupt Group 14: interrupt source 479 - 448
enumerator KIRQSTEER._ InterruptGroupl5
Interrupt Group 15: interrupt source 511 - 480
enum _ irgsteer__int_ master
IRQSTEER master interrupts mapping.
Values:
enumerator KIRQSTEER __ InterruptMaster(
Interrupt Master 0: interrupt source 63 - 0
enumerator KIRQSTEER_ InterruptMasterl
Interrupt Master 1: interrupt source 127 - 64
enumerator kIRQSTEER, InterruptMaster2
Interrupt Master 2: interrupt source 191 - 128
enumerator KIRQSTEER._ InterruptMaster3
Interrupt Master 3: interrupt source 255 - 192
enumerator kIRQSTEER,_ InterruptMaster4
Interrupt Master 4: interrupt source 319 - 256
enumerator kIRQSTEER, InterruptMasterb
Interrupt Master 5: interrupt source 383 - 320
enumerator kIRQSTEER,_ InterruptMaster6
Interrupt Master 6: interrupt source 447 - 384
enumerator kIRQSTEER,_ InterruptMaster7
Interrupt Master 7: interrupt source 511 - 448
typedef enum _irgsteer_int_group irqsteer_int_group_t
IRQSTEER interrupt groups.

170

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _irgsteer_int_master irqsteer_int_ master_t
IRQSTEER master interrupts mapping.

FSL_IRQSTEER_USE_DRIVER_IRQ_HANDLER
Use the IRQSTEER driver IRQ Handler or not.

When define as 1, IRQSTEER driver implements the IRQSTEER ISR, otherwise user shall
implement it. Currently the IRQSTEER ISR is only available for Cortex-M platforms.

FSL_IRQSTEER_ENABLE_MASTER_INT
IRQSTEER _Init/IRQSTEER_Deinit enables/disables IRQSTEER master interrupt or not.

When define as 1, IRQSTEER_Init will enable the IRQSTEER master interrupt in system level
interrupt controller (such as NVIC, GIC), IRQSTEER_Deinit will disable it. Otherwise IRQS-
TEER_Init/IRQSTEER_Deinit won’t touch.

IRQSTEER_INT_SRC_REG_WIDTH

IRQSTEER interrupt source register width.
IRQSTEER_INT_MASTER__AGGREGATED_INT_ NUM

IRQSTEER aggregated interrupt source number for each master.
TRQSTEER_INT_SRC_REG_INDEX(irq)

IRQSTEER interrupt source mapping register index.
TRQSTEER_INT_SRC_BIT_OFFSET(irq)

IRQSTEER interrupt source mapping bit offset.
IRQSTEER_INT_SRC_NUM(regIndex, bitOffset)

IRQSTEER interrupt source number.

2.14 Common Driver

FSL COMMON_DRIVER_ VERSION
common driver version.

DEBUG_CONSOLE_DEVICE_TYPE_NONE
No debug console.
DEBUG_CONSOLE_DEVICE_TYPE_UART
Debug console based on UART.
DEBUG_CONSOLE_DEVICE_TYPE_LPUART
Debug console based on LPUART.
DEBUG__CONSOLE_DEVICE_TYPE_LPSCI
Debug console based on LPSCI.
DEBUG__CONSOLE_DEVICE_TYPE_USBCDC
Debug console based on USBCDC.
DEBUG__CONSOLE_DEVICE_TYPE_ FLEXCOMM
Debug console based on FLEXCOMM.
DEBUG_CONSOLE_DEVICE_TYPE_IUART
Debug console based on i. MX UART.

DEBUG_CONSOLE_DEVICE_TYPE_ VUSART
Debug console based on LPC_VUSART.

2.14. Common Driver 171

MCUXpresso SDK Documentation, Release 25.09.00

DEBUG CONSOLE DEVICE TYPE MINI USART
Debug console based on LPC_USART.

DEBUG_CONSOLE_DEVICE_TYPE_SWO
Debug console based on SWO.
DEBUG_CONSOLE_DEVICE_TYPE_ QSCI
Debug console based on QSCI.
MIN(a, b)
Computes the minimum of a and b.
MAX(a, b)
Computes the maximum of a and b.
UINT16_MAX
Max value of uint16_t type.
UINT32_ MAX
Max value of uint32_t type.
SDK ATOMIC LOCAL_ ADD(addr, val)
Add value val from the variable at address address.

SDK_ATOMIC_LOCAL_SUB(addr, val)

Subtract value val to the variable at address address.
SDK__ATOMIC_LOCAL_SET(addr, bits)

Set the bits specifiled by bits to the variable at address address.
SDK_ATOMIC _LOCAL_CLEAR(addr, bits)

Clear the bits specifiled by bits to the variable at address address.
SDK_ATOMIC_LOCAL_TOGGLE(addr, bits)

Toggle the bits specifiled by bits to the variable at address address.
SDK__ATOMIC_LOCAL_CLEAR_AND_SET(addr, clearBits, setBits)

For the variable at address address, clear the bits specifiled by clearBits and set the bits
specifiled by setBits.

SDK__ATOMIC_LOCAL_COMPARE_AND_SET(addr, expected, newValue)

For the variable at address address, check whether the value equal to expected. If value
same as expected then update newValue to address and return true, else return false .

SDK__ATOMIC_LOCAL_TEST_AND_SET(addr, newValue)

For the variable at address address, set as newValue value and return old value.
USEC_TO_COUNT(us, clockFreqInHz)

Macro to convert a microsecond period to raw count value
COUNT_TO_USEC(count, clockFreqInHz)

Macro to convert a raw count value to microsecond
MSEC_TO_COUNT(ms, clockFreqInHz)

Macro to convert a millisecond period to raw count value
COUNT_TO_MSEC(count, clockFreqInHz)

Macro to convert a raw count value to millisecond

SDK_ISR_EXIT BARRIER

172 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

SDK_ SIZEALIGN(var, alignbytes)

Macro to define a variable with L1 d-cache line size alignment
Macro to define a variable with L2 cache line size alignment

Macro to change a value to a given size aligned value

AT_NONCACHEABLE_SECTION(var)

Define a variable var, and place it in non-cacheable section.
AT NONCACHEABLE_SECTION__ALIGN(var, alignbytes)

Define a variable var, and place it in non-cacheable section, the start address of the variable

is aligned to alignbytes.
AT _NONCACHEABLE_SECTION_INIT(var)

Define a variable var with initial value, and place it in non-cacheable section.
AT NONCACHEABLE_SECTION_ALIGN_INIT(var, alignbytes)

Define a variable var with initial value, and place it in non-cacheable section, the start

address of the variable is aligned to alignbytes.

enum _ status__groups
Status group numbers.

Values:

enumerator kStatusGroup_ Generic
Group number for generic status codes.

enumerator kStatusGroup_ FLASH
Group number for FLASH status codes.

enumerator kStatusGroup_ LPSPI
Group number for LPSPI status codes.

enumerator kStatusGroup_ FLEXIO__SPI

Group number for FLEXIO SPI status codes.

enumerator kStatusGroup_ DSPI
Group number for DSPI status codes.

enumerator kStatusGroup_ FLEXIO_UART

Group number for FLEXIO UART status codes.

enumerator kStatusGroup_FLEXIO_I2C

Group number for FLEXIO I2C status codes.

enumerator kStatusGroup_ LPI2C
Group number for LPI2C status codes.

enumerator kStatusGroup_ UART
Group number for UART status codes.

enumerator kStatusGroup_ 12C
Group number for UART status codes.

enumerator kStatusGroup_ LPSCI
Group number for LPSCI status codes.

enumerator kStatusGroup_LPUART

Group number for LPUART status codes.

enumerator kStatusGroup_ SPI
Group number for SPI status code.

2.14. Common Driver

173

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_ XRDC
Group number for XRDC status code.

enumerator kStatusGroup_ SEMA42

Group number for SEMA42 status code.
enumerator kStatusGroup_ SDHC

Group number for SDHC status code
enumerator kStatusGroup_ SDMMC

Group number for SDMMC status code
enumerator kStatusGroup_ SAI

Group number for SAI status code
enumerator kStatusGroup_ MCG

Group number for MCG status codes.
enumerator kStatusGroup_SCG

Group number for SCG status codes.
enumerator kStatusGroup_ SDSPI

Group number for SDSPI status codes.
enumerator kStatusGroup_ FLEXIO_ 128

Group number for FLEXIO I2S status codes
enumerator kStatusGroup_ FLEXIO__MCULCD

Group number for FLEXIO LCD status codes
enumerator kStatusGroup_ FLASHIAP

Group number for FLASHIAP status codes
enumerator kStatusGroup_ FLEXCOMM_ 12C

Group number for FLEXCOMM I2C status codes
enumerator kStatusGroup_ I2S

Group number for 12S status codes
enumerator kStatusGroup_I[UART

Group number for IUART status codes
enumerator kStatusGroup_ CSI

Group number for CSI status codes
enumerator kStatusGroup_ MIPI__DSI

Group number for MIPI DSI status codes
enumerator kStatusGroup_ SDRAMC

Group number for SDRAMC status codes.
enumerator kStatusGroup_ POWER

Group number for POWER status codes.
enumerator kStatusGroup_ ENET

Group number for ENET status codes.
enumerator kStatusGroup_ PHY

Group number for PHY status codes.

enumerator kStatusGroup_ TRGMUX
Group number for TRGMUX status codes.

174 Chapter 2

. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_ SMARTCARD
Group number for SMARTCARD status codes.

enumerator kStatusGroup_ LMEM

Group number for LMEM status codes.
enumerator kStatusGroup_ QSPI

Group number for QSPI status codes.
enumerator kStatusGroup_ DMA

Group number for DMA status codes.
enumerator kStatusGroup_ EDMA

Group number for EDMA status codes.
enumerator kStatusGroup_ DMAMGR

Group number for DMAMGR status codes.
enumerator kStatusGroup_ FLEXCAN

Group number for FlexCAN status codes.
enumerator kStatusGroup_ LTC

Group number for LTC status codes.
enumerator kStatusGroup_ FLEXIO _CAMERA

Group number for FLEXIO CAMERA status codes.
enumerator kStatusGroup_ LPC__SPI

Group number for LPC_SPI status codes.
enumerator kStatusGroup_ LPC__USART

Group number for LPC_USART status codes.
enumerator kStatusGroup_ DMIC

Group number for DMIC status codes.
enumerator kStatusGroup_ SDIF

Group number for SDIF status codes.
enumerator kStatusGroup_ SPIFI

Group number for SPIFI status codes.
enumerator kStatusGroup_ OTP

Group number for OTP status codes.
enumerator kStatusGroup_ MCAN

Group number for MCAN status codes.
enumerator kStatusGroup_ CAAM

Group number for CAAM status codes.
enumerator kStatusGroup_ ECSPI

Group number for ECSPI status codes.
enumerator kStatusGroup_ USDHC

Group number for USDHC status codes.
enumerator kStatusGroup_LPC_12C

Group number for LPC_I2C status codes.

enumerator kStatusGroup_ DCP
Group number for DCP status codes.

2.14. Common Driver 175

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_ MSCAN
Group number for MSCAN status codes.

enumerator kStatusGroup_ ESAI

Group number for ESAI status codes.
enumerator kStatusGroup_ FLEXSPI

Group number for FLEXSPI status codes.
enumerator kStatusGroup_ MMDC

Group number for MMDC status codes.
enumerator kStatusGroup_ PDM

Group number for MIC status codes.
enumerator kStatusGroup_ SDMA

Group number for SDMA status codes.
enumerator kStatusGroup_ ICS

Group number for ICS status codes.
enumerator kStatusGroup_ SPDIF

Group number for SPDIF status codes.
enumerator kStatusGroup_ LPC__MINISPI

Group number for LPC_MINISPI status codes.
enumerator kStatusGroup_ HASHCRYPT

Group number for Hashcrypt status codes
enumerator kStatusGroup_ LPC__SPI_SSP

Group number for LPC_SPI_SSP status codes.
enumerator kStatusGroup_ I13C

Group number for I3C status codes
enumerator kStatusGroup_ LPC_12C 1

Group number for LPC_I2C_1 status codes.
enumerator kStatusGroup_ NOTIFIER

Group number for NOTIFIER status codes.
enumerator kStatusGroup_ DebugConsole

Group number for debug console status codes.
enumerator kStatusGroup_ SEMC

Group number for SEMC status codes.
enumerator kStatusGroup__ApplicationRangeStart

Starting number for application groups.
enumerator kStatusGroup_ IAP

Group number for IAP status codes
enumerator kStatusGroup_ SFA

Group number for SFA status codes
enumerator kStatusGroup_ SPC

Group number for SPC status codes.

enumerator kStatusGroup_ PUF
Group number for PUF status codes.

176 Chapter 2

. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_ TOUCH__PANEL
Group number for touch panel status codes

enumerator kStatusGroup_ VBAT

Group number for VBAT status codes
enumerator kStatusGroup_ XSPI

Group number for XSPI status codes
enumerator kStatusGroup_ PNGDEC

Group number for PNGDEC status codes
enumerator kStatusGroup_ JPEGDEC

Group number for JPEGDEC status codes
enumerator kStatusGroup_ AUDMIX

Group number for AUDMIX status codes
enumerator kStatusGroup_HAL_GPIO

Group number for HAL GPIO status codes.
enumerator kStatusGroup_ HAL_ UART

Group number for HAL UART status codes.
enumerator kStatusGroup_ HAL_TIMER

Group number for HAL TIMER status codes.
enumerator kStatusGroup_ HAL_SPI

Group number for HAL SPI status codes.
enumerator kStatusGroup_ HAL_12C

Group number for HAL I2C status codes.
enumerator kStatusGroup_ HAL_FLASH

Group number for HAL FLASH status codes.
enumerator kStatusGroup_ HAL_ PWM

Group number for HAL PWM status codes.
enumerator kStatusGroup_ HAL RNG

Group number for HAL RNG status codes.
enumerator kStatusGroup_ HAL_12S

Group number for HAL I2S status codes.
enumerator kStatusGroup_ HAL ADC_SENSOR

Group number for HAL ADC SENSOR status codes.
enumerator kStatusGroup_ TIMERMANAGER

Group number for TIMER MANAGER status codes.
enumerator kStatusGroup_ SERIALMANAGER

Group number for SERIAL MANAGER status codes.
enumerator kStatusGroup_ LED

Group number for LED status codes.
enumerator kStatusGroup_ BUTTON

Group number for BUTTON status codes.

enumerator kStatusGroup_ EXTERN_EEPROM
Group number for EXTERN EEPROM status codes.

2.14. Common Driver 177

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_ SHELL
Group number for SHELL status codes.

enumerator kStatusGroup_ MEM__MANAGER

Group number for MEM MANAGER status codes.
enumerator kStatusGroup_ LIST

Group number for List status codes.
enumerator kStatusGroup_ OSA

Group number for OSA status codes.
enumerator kStatusGroup_ COMMON_ TASK

Group number for Common task status codes.
enumerator kStatusGroup_ MSG

Group number for messaging status codes.
enumerator kStatusGroup_ SDK__OCOTP

Group number for OCOTP status codes.
enumerator kStatusGroup_SDK_FLEXSPINOR

Group number for FLEXSPINOR status codes.
enumerator kStatusGroup_ CODEC

Group number for codec status codes.
enumerator kStatusGroup_ ASRC

Group number for codec status ASRC.
enumerator kStatusGroup_ OTFAD

Group number for codec status codes.
enumerator kStatusGroup_ SDIOSLV

Group number for SDIOSLV status codes.
enumerator kStatusGroup_ MECC

Group number for MECC status codes.
enumerator kStatusGroup_ ENET QOS

Group number for ENET_QOS status codes.
enumerator kStatusGroup_LOG

Group number for LOG status codes.
enumerator kStatusGroup_ I3CBUS

Group number for I3CBUS status codes.
enumerator kStatusGroup_ QSCI

Group number for QSCI status codes.
enumerator kStatusGroup_ ELEMU

Group number for ELEMU status codes.
enumerator kStatusGroup_ QUEUEDSPI

Group number for QSPI status codes.
enumerator kStatusGroup_ POWER,__MANAGER

Group number for POWER_MANAGER status codes.

enumerator kStatusGroup_ IPED
Group number for IPED status codes.

178 Chapter 2

. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_ ELS PKC
Group number for ELS PKC status codes.

enumerator kStatusGroup_ CSS__PKC

Group number for CSS PKC status codes.
enumerator kStatusGroup_ HOSTIF

Group number for HOSTIF status codes.
enumerator kStatusGroup_ CLIF

Group number for CLIF status codes.
enumerator kStatusGroup_ BMA

Group number for BMA status codes.
enumerator kStatusGroup_ NETC

Group number for NETC status codes.
enumerator kStatusGroup_ ELE

Group number for ELE status codes.
enumerator kStatusGroup_ GLIKEY

Group number for GLIKEY status codes.
enumerator kStatusGroup_ AON_POWER

Group number for AON_POWER status codes.
enumerator kStatusGroup_ AON__COMMON

Group number for AON_COMMON status codes.
enumerator kStatusGroup_ ENDAT3

Group number for ENDAT3 status codes.
enumerator kStatusGroup_ HIPERFACE

Group number for HIPERFACE status codes.
enumerator kStatusGroup_ NPX

Group number for NPX status codes.
enumerator kStatusGroup_ ELA_CSEC

Group number for ELA_CSEC status codes.
enumerator kStatusGroup_ FLEXIO_ T FORMAT

Group number for T-format status codes.

enumerator kStatusGroup_ FLEXIO_ A FORMAT
Group number for A-format status codes.

Generic status return codes.
Values:

enumerator kStatus_Success
Generic status for Success.

enumerator kStatus_Fail
Generic status for Fail.

enumerator kStatus_ ReadOnly
Generic status for read only failure.

2.14. Common Driver 179

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus_ OutOfRange
Generic status for out of range access.

enumerator kStatus_ Invalid Argument
Generic status for invalid argument check.

enumerator kStatus Timeout
Generic status for timeout.

enumerator kStatus_ NoTransferInProgress
Generic status for no transfer in progress.

enumerator kStatus_ Busy
Generic status for module is busy.

enumerator kStatus_ NoData
Generic status for no data is found for the operation.

typedef int32_t status_ t
Type used for all status and error return values.

void *SDK_ Malloc(size_t size, size_t alignbytes)
Allocate memory with given alignment and aligned size.

This is provided to support the dynamically allocated memory used in cache-able region.
Parameters
* size — The length required to malloc.
* alignbytes — The alignment size.

Return values
The - allocated memory.

void SDK_ Free(void *ptr)
Free memory.

Parameters
» ptr — The memory to be release.

void SDK _DelayAtLeastUs(uint32_t delayTime_us, uint32_t coreClock_Hz)

Delay at least for some time. Please note that, this API uses while loop for delay, different
run-time environments make the time not precise, if precise delay count was needed, please
implement a new delay function with hardware timer.

Parameters
* delayTime_ us — Delay time in unit of microsecond.
* coreClock__Hz — Core clock frequency with Hz.

static inline status_t EnableIRQ(IRQn_Type interrupt)
Enable specific interrupt.

Enable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For
example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1
interrupts, because they are routed to the core directly. The interrupts connected to intmux
are the LEVELZ2 interrupts, they are routed to NVIC first then routed to core.

This function only enables the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL._FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters

* interrupt — The IRQ number.

180 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Return values
* kStatus_ Success — Interrupt enabled successfully
* kStatus_ Fail — Failed to enable the interrupt

static inline status_t DisableIRQ(IRQn_Type interrupt)
Disable specific interrupt.

Disable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For
example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1
interrupts, because they are routed to the core directly. The interrupts connected to intmux
are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only disables the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL._FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
* interrupt — The IRQ number.

Return values
* kStatus_ Success — Interrupt disabled successfully
* kStatus_ Fail — Failed to disable the interrupt

static inline status_t EnableIRQWithPriority(IRQn_Type interrupt, uint8_t priNum)
Enable the IRQ, and also set the interrupt priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL._FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters

* interrupt — The IRQ to Enable.

¢ priNum — Priority number set to interrupt controller register.
Return values

* kStatus_ Success — Interrupt priority set successfully

* kStatus_ Fail — Failed to set the interrupt priority.

static inline status_t IRQ_ SetPriority (IRQn_Type interrupt, uint8_t priNum)
Set the IRQ priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL._FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters

* interrupt — The IRQ to set.

¢ priNum — Priority number set to interrupt controller register.
Return values

* kStatus_ Success — Interrupt priority set successfully

2.14. Common Driver 181

MCUXpresso SDK Documentation, Release 25.09.00

* kStatus_ Fail — Failed to set the interrupt priority.

static inline status_t IRQ_ ClearPendingIRQ(IRQn_Type interrupt)
Clear the pending IRQ flag.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT VECTORS.

Parameters
* interrupt — The flag which IRQ to clear.

Return values
* kStatus_ Success — Interrupt priority set successfully
* kStatus_ Fail - Failed to set the interrupt priority.

static inline uint32_t DisableGloballRQ(void)
Disable the global IRQ.

Disable the global interrupt and return the current primask register. User is required to
provided the primask register for the EnableGlobalIRQQ).

Returns
Current primask value.

static inline void EnableGloballIRQ(uint32_t primask)
Enable the global IRQ.

Set the primask register with the provided primask value but not just enable the primask.
The idea is for the convenience of integration of RTOS. some RTOS get its own management
mechanism of primask. User is required to use the EnableGlobalIRQ() and DisableGlob-
allRQ() in pair.

Parameters

* primask — value of primask register to be restored. The primask value is
supposed to be provided by the DisableGlobalIRQ().

static inline bool _ SDK_AtomicLocalCompareAndSet(uint32_t *addr, uint32_t expected, uint32_t
newValue)
static inline uint32_t _ SDK_ AtomicTest AndSet(uint32_t *addr, uint32_t newValue)
FSL__DRIVER_TRANSFER_DOUBLE_WEAK_TRQ
Macro to use the default weak IRQ handler in drivers.

MAKE_ STATUS(group, code)

Construct a status code value from a group and code number.
MAKE_ VERSION(major, minor, bugfix)

Construct the version number for drivers.

The driver version is a 32-bit number, for both 32-bit platforms(such as Cortex M) and 16-bit
platforms(such as DSC).

| Unused || Major Version || Minor Version || Bug Fix
31 25 24 17 16 9 8 0

182 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

ARRAY_SIZE(X)

Computes the number of elements in an array.
UINT64_ H(X)

Macro to get upper 32 bits of a 64-bit value
UINT64_L(X)

Macro to get lower 32 bits of a 64-bit value

SUPPRESS_FALL THROUGH_WARNING()
For switch case code block, if case section ends without “break;” statement, there wil be
fallthrough warning with compiler flag -Wextra or -Wimplicit-fallthrough=n when using
armgcc. To suppress this warning, “SUPPRESS_FALL_THROUGH_WARNING();” need to be
added at the end of each case section which misses “break;”statement.
MSDK_REG_SECURE_ADDR(X)
Convert the register address to the one used in secure mode.

MSDK_REG_NONSECURE__ADDR(X)
Convert the register address to the one used in non-secure mode.

MSDK_INVALID IRQ HANDLER
Invalid IRQ handler address.

2.15 LCDIF: LCD interface

status_t LCDIF _Init(LCDIF_Type *base)
Initialize the LCDIF.

This function initializes the LCDIF to work.
Parameters
* base — LCDIF peripheral base address.

Return values
kStatus_ Success — Initialize successfully.

void LCDIF_ Deinit(LCDIF_Type *base)
De-initialize the LCDIFE.

This function disables the LCDIF peripheral clock.
Parameters
* base — LCDIF peripheral base address.

void LCDIF_ DpiModeGetDefaultConfig(lcdif dpi config t *config)
Get the default configuration for to initialize the LCDIF.

The default configuration value is:

config->panelWidth = 0;

config->panelHeight = 0;

config->hsw = 0;

config->hfp = 0;

config->hbp = 0;

config->vsw = 0;

config->vip = 0;

config->vbp = 0;

config->polarityFlags = kKLCDIF_ VsyncActiveLow | KLCDIF_ HsyncActiveLow | KLCDIF__
—DataEnableActiveHigh |

kLCDIF_ DriveDataOnFallingClkEdge; config->format = kLCDIF_ Output24Bit;

2.15. LCDIF: LCD interface 183

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* config — Pointer to the LCDIF configuration.

status_t LCDIF_ DpiModeSetConfig(LCDIF_Type *base, uint8_t displayIndex, const
ledif dpi_config_t *config)

Initialize the LCDIF to work in DPI mode.
This function configures the LCDIF DPI display.
Parameters
* base — LCDIF peripheral base address.
* displayIndex — Display index.
* config — Pointer to the configuration structure.
Return values
* kStatus_ Success — Initialize successfully.
* kStatus_ Invalid Argument — Initialize failed because of invalid argument.

status_t LCDIF_ DbiModeSetConfig(LCDIF_Type *base, uint8_t displayIndex, const
lcdif dbi_config t *config)

Initialize the LCDIF to work in DBI mode.
This function configures the LCDIF DBI display.
Parameters
* base — LCDIF peripheral base address.
* displayIndex — Display index.
* config — Pointer to the configuration structure.
Return values
» kStatus_ Success — Initialize successfully.
* kStatus_InvalidArgument — Initialize failed because of invalid argument.

void LCDIF__DbiModeGetDefaultConfig(lcdif dbi_config t *config)
Get the default configuration to initialize the LCDIF DBI mode.

The default configuration value is:

config->swizzle = KLCDIF__DbiOutSwizzleRGB;
config->format = kLCDIF_DbiOutD8RGB332;
config->acTimeUnit = 0;

config->type = kLCDIF__DbiTypeA_ ClockedE;

config->reversePolarity = false;
config->writeWRPeriod = 3U;
config->writeWRAssert = 0U;
config->writeCSAssert = 0U;
config->writeWRDeassert = 0U;
config->writeCSDeassert = 0U;
config->typeCTas = 1U;
config->typeCSCLTwrl = 1U;
config->typeCSCLTwrh = 1U;

Parameters

* config — Pointer to the LCDIF DBI configuration.

184 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline void LCDIF_ DbiReset(LCDIF_Type *base, uint8_t displayIndex)
Reset the DBI module.

Parameters
* displayIndex — Display index.
* base — LCDIF peripheral base address.

void LCDIF_DbiSelectArea(LCDIF_Type *base, uint8_t displayIndex, uint16_t startX, uint16_t
startY, uint16_t endX, uint16_t endy, bool isTiled)

Select the update area in DBI mode.
Parameters

* base — LCDIF peripheral base address.
* displayIndex — Display index.
* startX — X coordinate for start pixel.
* startY — Y coordinate for start pixel.
* endX - X coordinate for end pixel.
* endY - Y coordinate for end pixel.
* isTiled — true if the pixel data is tiled.

static inline void LCDIF_ DbiSendCommand(LCDIF_Type *base, uint8_t displayIndex, uint8_t
cmd)

Send command to DBI port.
Parameters
* base — LCDIF peripheral base address.
* displayIndex — Display index.
* cmd - the DBI command to send.

void LCDIF _DbiSendData(LCDIF_Type *base, uint8_t displayIndex, const uint8_t *data, uint32_t
dataLen_Byte)

brief Send data to DBI port.

Can be used to send light weight data to panel. To send pixel data in frame buffer;, use
LCDIF_DbiWriteMem.

param base LCDIF peripheral base address. param displayIndex Display index. param data
pointer to data buffer. param dataLen_Byte data buffer length in byte.

void LCDIF _DbiSendCommandAndData(LCDIF_Type *base, uint8_t displayIndex, uint8_t cmd,
const uint8_t *data, uint32_t datalLen_Byte)

Send command followed by data to DBI port.
Parameters
* base — LCDIF peripheral base address.
* displayIndex — Display index.
* ¢cmd — the DBI command to send.
* data — pointer to data buffer.

* dataLen_ Byte — data buffer length in byte.

2.15. LCDIF: LCD interface 185

MCUXpresso SDK Documentation, Release 25.09.00

static inline void LCDIF_ DbiWriteMem(LCDIF_Type *base, uint8_t displayIndex)
Send pixel data in frame buffer to panel controller memory.

This function starts sending the pixel data in frame buffer to panel controller, user can
monitor interrupt KLCDIF_DisplayOFrameDonelnterrupt to know when then data sending
finished.

Parameters
* base — LCDIF peripheral base address.
* displayIndex — Display index.

void LCDIF _SetFrameBufferConfig(LCDIF_Type *base, uint8_t displaylndex, const
ledif fb_config_t *config)
Configure the LCDIF frame buffer.

@Note: For LCDIF of version DC8000 there can be 3 layers in the pre-processing, compared
with the older version. Apart from the video layer, there are also 2 overlay layers which
shares the same configurations. Use this API to configure the legacy video layer, and use
LCDIF_SetOverlayFrameBufferConfig to configure the overlay layers.

Parameters
* base — LCDIF peripheral base address.
* displayIndex — Display index.
* config — Pointer to the configuration structure.

void LCDIF_FrameBufferGetDefaultConfig(lcdif fb_config t *config)
Get default frame buffer configuration.

@Note: For LCDIF of version DC8000 there can be 3 layers in the pre-processing, compared
with the older version. Apart from the video layer, there are also 2 overlay layers which
shares the same configurations. Use this API to get the default configuration for all the 3
layers.

The default configuration is

config->enable = true;
config->enableGamma = false;
config->format = kLCDIF _PixelFormatRGB565;

Parameters
* config — Pointer to the configuration structure.

static inline void LCDIF_ SetFrameBufferAddr(LCDIF_Type *base, uint8_t displayIndex, uint32_t
address)

Set the frame buffer to LCDIF.

Note: The address must be 128 bytes aligned.

Parameters
* base — LCDIF peripheral base address.
* displayIndex — Display index.

* address — Frame buffer address.

186 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

void LCDIF_SetFrameBufferStride(LCDIF_Type *base, uint8_t displayIndex, uint32_t strideBytes)
Set the frame buffer stride.

Parameters
* base — LCDIF peripheral base address.
¢ displayIndex — Display index.
* strideBytes — The stride in byte.

void LCDIF _SetDitherConfig(LCDIF_Type *base, uint8_t displayIndex, const lcdif dither_config_t
*config)

Set the dither configuration.
Parameters
* base — LCDIF peripheral base address.
* displayIndex — Index to configure.
* config — Pointer to the configuration structure.

void LCDIF__SetGammaData(LCDIF_Type *base, uint8_t displayIndex, uint16_t startIndex, const
uint32_t *gamma, uint16_t gammal.en)

Set the gamma translation values to the LCDIF gamma table.
Parameters
* base — LCDIF peripheral base address.
* displayIndex — Display index.
* startIndex — Start index in the gamma table that the value will be set to.

» gamma — The gamma values to set to the gamma table in LCDIF, could be
defined using LCDIF_MAKE_GAMMA_VALUE.

» gammalLen — The length of the gamma.

static inline void LCDIF_ EnableInterrupts(LCDIF_Type *base, uint32_t mask)
Enables LCDIF interrupt requests.

Parameters
* base — LCDIF peripheral base address.
» mask — The interrupts to enable, pass in as OR’ed value of _lcdif_interrupt.

static inline void LCDIF _DisableInterrupts(LCDIF_Type *base, uint32_t mask)
Disable LCDIF interrupt requests.

Parameters
* base — LCDIF peripheral base address.
» mask — The interrupts to disable, pass in as OR’ed value of _lcdif_interrupt.

static inline uint32_t LCDIF_ GetAndClearInterruptPendingFlags(LCDIF_Type *base)
Get and clear LCDIF interrupt pending status.

Note: The interrupt must be enabled, otherwise the interrupt flags will not assert.

Parameters
* base — LCDIF peripheral base address.

Returns
The interrupt pending status.

2.15. LCDIF: LCD interface 187

MCUXpresso SDK Documentation, Release 25.09.00

void LCDIF__CursorGetDefaultConfig(lcdif cursor._config t *config)
Get the hardware cursor default configuration.

The default configuration values are:

config->enable = true;

config->format = kLCDIF _CursorMasked;
config->hotspotOffsetX = 0;
config->hotspotOffsetY = 0;

Parameters
* config — Pointer to the hardware cursor configuration structure.

void LCDIF__SetCursorConfig(LCDIF_Type *base, const lcdif cursor_config_t *config)
Configure the cursor.

Parameters
* base — LCDIF peripheral base address.
* config — Cursor configuration.

static inline void LCDIF_ SetCursorHotspotPosition(LCDIF_Type *base, uint16_t X, uint16_t y)
Set the cursor hotspot postion.

Parameters
* base — LCDIF peripheral base address.
* x — X coordinate of the hotspot, range 0 ~ 8191.
* y—Y coordinate of the hotspot, range 0 ~ 8191.

static inline void LCDIF_ SetCursorBuffer Address(LCDIF_Type *base, uint32_t address)
Set the cursor memory address.

Parameters
* base — LCDIF peripheral base address.
* address — Memory address.

void LCDIF _SetCursorColor(LCDIF_Type *base, uint32_t background, uint32_t foreground)
Set the cursor color.

Parameters

* base — LCDIF peripheral base address.

* background - Background color, could be defined wuse
LCDIF_MAKE_CURSOR_COLOR
 foreground - Foreground color, could be defined |use

LCDIF_MAKE_CURSOR_COLOR
FSL_LCDIF_DRIVER__VERSION
enum _lcdif polarity_flags
LCDIF signal polarity flags.
Values:

enumerator kLCDIF _VsyncActiveLow
VSYNC active low.

enumerator kLCDIF_ VsyncActiveHigh
VSYNC active high.

188 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kLCDIF__HsyncActiveLow
HSYNC active low.

enumerator kLCDIF__HsyncActiveHigh
HSYNC active high.

enumerator kLCDIF DataEnableActiveLow
Data enable line active low.

enumerator kLCDIF_ DataEnableActiveHigh
Data enable line active high.

enumerator kLCDIF_DriveDataOnFallingClkEdge
Drive data on falling clock edge, capture data on rising clock edge.

enumerator kLCDIF_ DriveDataOnRisingClkEdge
Drive data on falling clock edge, capture data on rising clock edge.

enum _ lcdif output_ format
LCDIF DPI output format.

Values:

enumerator kLCDIF__Output16BitConfigl
16-bit configuration 1. RGB565: XXXXXXXX_RRRRRGGG_GGGBBBBB.

enumerator kLCDIF _Outputl16BitConfig2
16-bit configuration 2. RGB565: XXXRRRRR_XXGGGGGG_XXXBBBBB.

enumerator kLCDIF__ Output16BitConfig3
16-bit configuration 3. RGB565: XXRRRRRX_XXGGGGGG_XXBBBBBX.

enumerator kLCDIF__Output18BitConfigl
18-bit configuration 1. RGB666: XXXXXXRR_RRRRGGGG_GGBBBBBB.

enumerator kLCDIF__ Output18BitConfig2
18-bit configuration 2. RGB666: XXRRRRRR_XXGGGGGG_XXBBBBBB.

enumerator kLCDIF_ Output24Bit
24-Dbit.

enum ledif fb format
LCDIF frame buffer pixel format.

Values:

enumerator kLCDIF PixelFormatXRGB444
XRGB4444, deprecated, use KLCDIF_PixelFormatXRGB4444 instead.

enumerator kLCDIF_ PixelFormatXRGB4444
XRGB4444, 16-bit each pixel, 4-bit each element. R4G4B4 in reference manual.

enumerator kLCDIF__ PixelFormatXRGB1555
XRGB1555, 16-bit each pixel, 5-bit each element. R5G5B5 in reference manual.

enumerator kLCDIF PixelFormatRGB565
RGB565, 16-bit each pixel. R5G6B5 in reference manual.

enumerator kLCDIF _PixelFormatXRGB8888
XRGB8888, 32-bit each pixel, 8-bit each element. R8G8BS in reference manual.

enum _ lcdif interrupt
LCDIF interrupt and status.

Values:

2.15. LCDIF: LCD interface 189

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kLCDIF__DisplayOFrameDonelnterrupt

The last pixel of visible area in frame is shown.

enum lcdif cursor format

LCDIF cursor format.

Values:

enumerator kLCDIF _CursorMasked
Masked format.

enumerator kLCDIF _CursorARGB8888
ARGB8888.

enum _ lcdif dbi_cmd_ flag

LCDIF DBI command flag.
Values:

enumerator kLCDIF DbiCmdAddress
Send address (or command).

enumerator kLCDIF DbiCmdWriteMem
Start write memory.

enumerator kLCDIF DbiCmdData
Send data.

enumerator kLCDIF DbiCmdReadMem
Start read memory.

enum ledif dbi_ out_ format

LCDIF DBI output format.
Values:

enumerator kLCDIF DbiOutDSRGB332
8-bit data bus width, pixel RGB332. For type A or B. 1 pixel sentin 1 cycle.

enumerator kLCDIF_DbiOutD8RGB444
8-bit data bus width, pixel RGB444. For type A or B. 2 pixels sent in 3 cycles.

enumerator kLCDIF DbiOutDS8RGB565
8-bit data bus width, pixel RGB565. For type A or B. 1 pixel sent in 2 cycles.

enumerator kLCDIF_DbiOutD8RGB666
8-bit data bus width, pixel RGB666. For type A or B. 1 pixel sent in 3 cycles, data bus 2
LSB not used.

enumerator kLCDIF DbiOutDS8RGBS888
8-bit data bus width, pixel RGB888. For type A or B. 1 pixel sent in 3 cycles.

enumerator kLCDIF__DbiOutD9IRGB666
9-bit data bus width, pixel RGB666. For type A or B. 1 pixel sent in 2 cycles.

enumerator kLCDIF DbiOutD16RGB332
16-bit data bus width, pixel RGB332. For type A or B. 2 pixels sentin 1 cycle.

enumerator kLCDIF _DbiOutD16RGB444
16-bit data bus width, pixel RGB444. For type A or B. 1 pixel sent in 1 cycle, data bus 4
MSB not used.

enumerator kLCDIF _DbiOutD16RGB565
16-bit data bus width, pixel RGB565. For type A or B. 1 pixel sent in 1 cycle.

190

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kLCDIF_DbiOutD16RGB6660ptionl
16-bit data bus width, pixel RGB666. For type A or B. 2 pixels sent in 3 cycles.

enumerator kLCDIF__DbiOutD16RGB6660ption2
16-bit data bus width, pixel RGB666. For type A or B. 1 pixel sent in 2 cycles.

enumerator kLCDIF_DbiOutD16RGB8880Optionl
16-bit data bus width, pixel RGB888. For type A or B. 2 pixels sent in 3 cycles.

enumerator kLCDIF__DbiOutD16RGB8880ption2
16-bit data bus width, pixel RGB888. For type A or B. 1 pixel sent in 2 cycles.

enum _lcdif dbi_type
LCDIF DBI type.
Values:

enumerator kLCDIF DbiTypeA FixedE
Selects DBI type A fixed E mode, 68000, Motorola mode.

enumerator kLCDIF _DbiTypeA_ ClockedE
Selects DBI Type A Clocked E mode, 68000, Motorola mode.

enumerator kLCDIF__DbiTypeB
Selects DBI type B, 8080, Intel mode.
enum _ledif dbi out swizzle
LCDIF DBI output swizzle.

Values:
enumerator kLCDIF__DbiOutSwizzleRGB
RGB
enumerator kLCDIF__DbiOutSwizzleBGR
BGR
typedef enum _lcdif output_format ledif _output_ format_ t
LCDIF DPI output format.

typedef struct _lcdif dpi config ledif _dpi_config_t
Configuration for LCDIF module to work in DBI mode.

typedef enum _lcdif fb_format lcdif fb_format_t
LCDIF frame buffer pixel format.

typedef struct _lcdif fb_config ledif_fb_ config_t
LCDIF frame buffer configuration.

typedef enum _lcdif cursor_format ledif _cursor_format_t
LCDIF cursor format.

typedef struct _lcdif cursor_config lcdif cursor_config t
LCDIF cursor configuration.

typedef struct _lcdif dither_config ledif dither config t
LCDIF dither configuration.

a. Decide which bit of pixel color to enhance. This is configured by
the lcdif_dither_config_t::redSize, Icdif _dither_config_t::greenSize, and
lcdif _dither_config_t::blueSize. For example, setting redSize=6 means it is the 6th
bit starting from the MSB that we want to enhance, in other words, it is the Red-
Color[2]bit from RedColor[7:0]. greenSize and blueSize function in the same way.

2.15. LCDIF: LCD interface 191

MCUXpresso SDK Documentation, Release 25.09.00

b. Create the look-up table. a. The Look-Up Table includes 16 entries, 4 bits for each.
b. The Look-Up Table provides a value U[3:0] through the index X[1:0] and Y[1:0]. c.
The color value RedColor[3:0] is used to compare with this U[3:0]. d. If RedColor[3:0] >
U[3:0], and RedColor[7:2] isnot 6’b111111, then the final color value is: NewRedColor =
RedColor([7:2] + 1’b1. e. If RedColor[3:0] <= U[3:0], then NewRedColor = RedColor[7:2].

typedef enum _lcdif dbi out_format lcdif _dbi_out_ format_t
LCDIF DBI output format.
typedef enum _lcdif dbi_type lcdif dbi_type t
LCDIF DBI type.
typedef enum _lcdif dbi_out_swizzle ledif dbi_out_swizzle t
LCDIF DBI output swizzle.
typedef struct _lcdif dbi_config lcdif dbi_config_t
LCDIF DBI configuration.
LCDIF_MAKE_CURSOR_COLOR(x g, b)
Construct the cursor color, every element should be in the range of 0 ~ 255.

LCDIF_MAKE_GAMMA_VALUE(L, g, b)

Construct the gamma value set to LCDIF gamma table, every element should be in the range
of 0~255.

LCDIF_ALIGN_ADDR(addr, align)
Calculate the aligned address for LCDIF buffer.

LCDIF _FB ALIGN
The frame buffer should be 128 byte aligned.

LCDIF__ GAMMA_ INDEX MAX
Gamma index max value.

LCDIF _CURSOR_SIZE
The cursor size is 32 x 32.

LCDIF_FRAMEBUFFERCONFIGO_OUTPUT_MASK
LCDIF_ADDR_CPU_2_IP(addr)

struct _lcdif dpi_config
#include <fsl_lcdif-h> Configuration for LCDIF module to work in DBI mode.

Public Members
uint16_t panelWidth

Display panel width, pixels per line.
uint16_t panelHeight

Display panel height, how many lines per panel.
uint8_t hsw

HSYNC pulse width.
uint8_t hip

Horizontal front porch.
uint8_t hbp

Horizontal back porch.

192 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

uint8 t vsw
VSYNC pulse width.

uint8_t vip
Vrtical front porch.

uint8_t vbp
Vertical back porch.

uint32_t polarityFlags
OR’ed value of _lcdif_polarity_flags, used to contol the signal polarity.

ledif output_format_t format
DPI output format.

struct _lcdif fb_ config
#include <fsl_lcdif-h> LCDIF frame buffer configuration.

Public Members

bool enable
Enable the frame buffer output.

bool enableGamma
Enable the gamma correction.

lcdif fb_format_t format
Frame buffer pixel format.

struct _lcdif cursor_ config
#include <fsl_lcdif.h> LCDIF cursor configuration.

Public Members

bool enable
Enable the cursor or not.

lcdif cursor_format_t format
Cursor format.

uint8_t hotspotOffsetX
Offset of the hotspot to top left point, range 0 ~ 31

uint8_t hotspotOffsetY
Offset of the hotspot to top left point, range 0 ~ 31

struct _lcdif dither_config
#include <fsl_lcdif-h> LCDIF dither configuration.

a. Decide which bit of pixel color to enhance. This is configured by
the lcdif_dither_config_t::redSize, lcdif_dither_config_t::greenSize, and
ledif_dither_config_t::blueSize. For example, setting redSize=6 means it is the 6th
bit starting from the MSB that we want to enhance, in other words, it is the Red-
Color[2]bit from RedColor[7:0]. greenSize and blueSize function in the same way.

b. Create the look-up table. a. The Look-Up Table includes 16 entries, 4 bits for each.
b. The Look-Up Table provides a value U[3:0] through the index X[1:0] and Y[1:0]. c.
The color value RedColor[3:0] is used to compare with this U[3:0]. d. If RedColor[3:0] >
U[3:0], and RedColor[7:2] isnot 6’b111111, then the final color value is: NewRedColor =
RedColor[7:2] + 1’b1. e. If RedColor[3:0] <= U[3:0], then NewRedColor = RedColor[7:2].

2.15. LCDIF: LCD interface 193

MCUXpresso SDK Documentation, Release 25.09.00

Public Members
bool enable
Enable or not.

uint8_t redSize

Red color size, valid region 4-8.
uint8_t greenSize

Green color size, valid region 4-8.

uint8_t blueSize
Blue color size, valid region 4-8.

uint32_t low

Low part of the look up table.
uint32_t high

High part of the look up table.

struct _lcdif dbi_ config

#include <fsl_lcdif-h> LCDIF DBI configuration.

Public Members

lcdif dbi_out_swizzle_t swizzle
Swizzle.

lcdif dbi_out_format_t format
Output format.

uint8_t acTimeUnit
Time unit for AC characteristics.

lcdif dbi_type_t type
DBI type.

uint16_t writeWRPeriod
WR signal period, Cycle number = writeWRPeriod * (acTimeUnit + 1), must be no less
than 3. Only for type A and type b.

uint8_t write WR Assert

Cycle number = writeWRAssert * (acTimeUnit + 1), only for type A and type B. With
KLCDIF_DbiTypeA_FixedE: Not used. With kL.CDIF_DbiTypeA_ClockedE: Time to assert
E. With KLCDIF_DbiTypeB: Time to assert WRX.

uint8_t writeCSAssert

Cycle number = writeCSAssert * (acTimeUnit + 1), only for type A and type B. With
KLCDIF_DbiTypeA_FixedE: Time to assert CSX. With KLCDIF_DbiTypeA_ClockedE: Not
used. With kLCDIF_DbiTypeB: Time to assert CSX.

uint16_t writeWRDeassert

Cycle number = writeWRDeassert * (acTimeUnit + 1), only for type A and type B. With
KLCDIF_DbiTypeA_FixedE: Not used. With KLCDIF_DbiTypeA_ClockedE: Time to de-
assert E. With KLCDIF_DbiTypeB: Time to de-assert WRX.

uint16_t writeCSDeassert

Cycle number = writeCSDeassert * (acTimeUnit + 1), only for type A and type B. With
KLCDIF_DbiTypeA_FixedE: Time to de-assert CSX. With KLCDIF_DbiTypeA_ClockedE:
Not used. With KLCDIF_DbiTypeB: Time to de-assert CSX.

194

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

2.16 MCM: Miscellaneous Control Module

FSL MCM_DRIVER VERSION
MCM driver version.

Enum _mcm_interrupt_flag. Interrupt status flag mask. .
Values:

enumerator kMCM _CacheWriteBuffer
Cache Write Buffer Error Enable.

enumerator kMCM_ ParityError
Cache Parity Error Enable.

enumerator kMCM_ FPUlnvalidOperation
FPU Invalid Operation Interrupt Enable.

enumerator kMCM_ FPUDivideByZero
FPU Divide-by-zero Interrupt Enable.

enumerator kMCM__FPUOverflow
FPU Overflow Interrupt Enable.

enumerator kMCM_FPUUnderflow
FPU Underflow Interrupt Enable.

enumerator kMCM __FPUlInexact
FPU Inexact Interrupt Enable.

enumerator kMCM__FPUInputDenormallnterrupt
FPU Input Denormal Interrupt Enable.

typedef union _mcm_buffer_fault_attribute mcm__buffer_ fault_ attribute_t
The union of buffer fault attribute.

typedef union _mcm_Ilmem_fault_attribute mcm_ lmem_ fault_ attribute_t
The union of LMEM fault attribute.

static inline void MCM__EnableCrossbarRoundRobin(MCM_Type *base, bool enable)
Enables/Disables crossbar round robin.

Parameters
* base — MCM peripheral base address.
* enable — Used to enable/disable crossbar round robin.
— true Enable crossbar round robin.
— false disable crossbar round robin.

static inline void MCM__EnableInterruptStatus(MCM_Type *base, uint32_t mask)
Enables the interrupt.

Parameters
* base —- MCM peripheral base address.

» mask — Interrupt status flags mask(_mcm_interrupt_flag).

2.16. MCM: Miscellaneous Control Module 195

MCUXpresso SDK Documentation, Release 25.09.00

static inline void MCM__DisableInterruptStatus(MCM_Type *base, uint32_t mask)
Disables the interrupt.

Parameters
* base — MCM peripheral base address.
* mask — Interrupt status flags mask(_mcm_interrupt_flag).

static inline uint16_t MCM__ GetInterruptStatus(MCM_Type *base)
Gets the Interrupt status .

Parameters
* base — MCM peripheral base address.

static inline void MCM __ ClearCacheWriteBufferErroStatus(MCM_Type *base)
Clears the Interrupt status .

Parameters
* base —- MCM peripheral base address.

static inline uint32_t MCM__GetBufferFaultAddress(MCM_Type *base)
Gets buffer fault address.

Parameters
* base — MCM peripheral base address.

static inline void MCM__ GetBufferFault Attribute(MCM_Type *base, mcm_buffer_fault_attribute_t
*bufferfault)

Gets buffer fault attributes.
Parameters
* base —- MCM peripheral base address.

static inline uint32_t MCM__GetBufferFaultData(MCM_Type *base)
Gets buffer fault data.

Parameters
* base — MCM peripheral base address.

static inline void MCM _ LimitCodeCachePeripheral WriteBuffering(MCM_Type *base, bool enable)
Limit code cache peripheral write buffering.

Parameters
* base — MCM peripheral base address.
* enable—Used to enable/disable limit code cache peripheral write buffering.
— true Enable limit code cache peripheral write buffering.
— false disable limit code cache peripheral write buffering.

static inline void MCM_ BypassFixedCodeCacheMap(MCM_Type *base, bool enable)
Bypass fixed code cache map.

Parameters
* base —- MCM peripheral base address.
* enable — Used to enable/disable bypass fixed code cache map.
— true Enable bypass fixed code cache map.

- false disable bypass fixed code cache map.

196 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline void MCM__EnableCodeBusCache(MCM_Type *base, bool enable)
Enables/Disables code bus cache.

Parameters
* base — MCM peripheral base address.
* enable — Used to disable/enable code bus cache.
— true Enable code bus cache.
— false disable code bus cache.

static inline void MCM__ForceCodeCacheToNoAllocation(MCM_Type *base, bool enable)
Force code cache to no allocation.

Parameters
* base —- MCM peripheral base address.
* enable — Used to force code cache to allocation or no allocation.
— true Force code cache to no allocation.
— false Force code cache to allocation.

static inline void MCM __ EnableCodeCacheWriteBuffer(MCM_Type *base, bool enable)
Enables/Disables code cache write buffer.

Parameters
* base — MCM peripheral base address.
* enable — Used to enable/disable code cache write buffer.
— true Enable code cache write buffer.
— false Disable code cache write buffer.

static inline void MCM__ClearCodeBusCache(MCM_Type *base)
Clear code bus cache.

Parameters
* base —- MCM peripheral base address.

static inline void MCM __ EnablePcParityFaultReport(MCM_Type *base, bool enable)
Enables/Disables PC Parity Fault Report.

Parameters
* base — MCM peripheral base address.
* enable — Used to enable/disable PC Parity Fault Report.
— true Enable PC Parity Fault Report.
— false disable PC Parity Fault Report.

static inline void MCM__EnablePcParity(MCM_Type *base, bool enable)
Enables/Disables PC Parity.

Parameters
* base —- MCM peripheral base address.
* enable — Used to enable/disable PC Parity.
— true Enable PC Parity.
- false disable PC Parity.

2.16. MCM: Miscellaneous Control Module

197

MCUXpresso SDK Documentation, Release 25.09.00

static inline void MCM__LockConfigState(MCM_Type *base)
Lock the configuration state.

Parameters
* base — MCM peripheral base address.

static inline void MCM__EnableCacheParityReporting(MCM_Type *base, bool enable)
Enables/Disables cache parity reporting.

Parameters
* base —- MCM peripheral base address.
* enable — Used to enable/disable cache parity reporting.
— true Enable cache parity reporting.
— false disable cache parity reporting.

static inline uint32_t MCM__GetLmemFaultAddress(MCM_Type *base)
Gets LMEM fault address.

Parameters
* base — MCM peripheral base address.

static inline void MCM__ GetLmemFaultAttribute(MCM_Type *base, mcm_Imem_fault_attribute_t
*ImemFault)

Get LMEM fault attributes.
Parameters
* base —- MCM peripheral base address.

static inline uint64_t MCM__GetLmemFaultData(MCM_Type *base)
Gets LMEM fault data.

Parameters
* base — MCM peripheral base address.
MCM__LMFATR_TYPE_MASK

MCM__LMFATR_MODE_MASK
MCM__LMFATR,_BUFF_MASK
MCM__LMFATR,_CACH_MASK
MCM_ISCR_STAT MASK
FSL__COMPONENT_ID

union mecm_ buffer fault attribute
#include <fsl_mcm.h> The union of buffer fault attribute.

Public Members

uint32_t attribute

Indicates the faulting attributes, when a properly-enabled cache write buffer error
interrupt event is detected.

struct_mcm_buffer_fault_attribute._mcm_buffer_fault_attribut attribute_ memory

struct mecm_buffer fault attribut
#include <fsl_mcm.h>

198 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Public Members
uint32_t busErrorDataAccessType
Indicates the type of cache write buffer access.

uint32_t busErrorPrivilegeLevel
Indicates the privilege level of the cache write buffer access.

uint32_t busErrorSize
Indicates the size of the cache write buffer access.

uint32_t busErrorAccess
Indicates the type of system bus access.

uint32_t busErrorMasterID

Indicates the crossbar switch bus master number of the captured cache write
buffer bus error.

uint32_t busErrorOverrun
Indicates if another cache write buffer bus error is detected.

union mcm Imem fault attribute
#include <fsl_mcm.h> The union of LMEM fault attribute.

Public Members
uint32_t attribute

Indicates the attributes of the LMEM fault detected.
struct_mcm_Ilmem_fault_attribute. mcm_lmem_fault_attribut attribute_ memory

struct mcm_ Ilmem fault attribut
#include <fsl_mcm.h>

Public Members
uint32_t parityFaultProtectionSignal
Indicates the features of parity fault protection signal.

uint32_t parityFaultMasterSize
Indicates the parity fault master size.

uint32_t parityFaultWrite
Indicates the parity fault is caused by read or write.

uint32_t backdoorAccess
Indicates the LMEM access fault is initiated by core access or backdoor access.

uint32_t parityFaultSyndrome
Indicates the parity fault syndrome.

uint32_t overrun
Indicates the number of faultss.

2.17 MIPI DSI Driver

2.17. MIPI DSI Driver 199

MCUXpresso SDK Documentation, Release 25.09.00

void DSI_Init(MIPI_DSI_HOST_Type *base, const dsi_config_t *config)
Initializes an MIPI DSI host with the user configuration.

This function initializes the MIPI DSI host with the configuration, it should be called first
before other MIPI DSI driver functions.

Parameters
* base — MIPI DSI host peripheral base address.
* config — Pointer to a user-defined configuration structure.
void DST_ Deinit(MIPI_DSI_HOST_Type *base)
Deinitializes an MIPI DSI host.
This function should be called after all bother MIPI DSI driver functions.
Parameters
* base — MIPI DSI host peripheral base address.

void DSI__GetDefaultConfig(dsi_config_t *config)
Get the default configuration to initialize the MIPI DSI host.

The default value is:

config->numLanes = 4;
config->enableNonContinuousHsClk = false;
config->enableTxUlps = false;
config->autolnsertEoTp = true;
config->numExtraEoTp = 0;
config->htxTo_ ByteClk = 0;
config->IrxHostTo_ ByteClk = 0;
config->btaTo_ ByteClk = 0;

Parameters
* config — Pointer to a user-defined configuration structure.

void DSI_ SetDpiConfig(MIPI_DSI_HOST_Type *base, const dsi_dpi_config_t *config, uint8_t
numLanes, uint32_t dpiPixelClkFreq_Hz, uint32_t dsiHsBitClkFreq_Hz)

Configure the DPI interface core.
This function sets the DPI interface configuration, it should be used in video mode.
Parameters
* base — MIPI DSI host peripheral base address.
* config — Pointer to the DPI interface configuration.

* numLanes — Lane number, should be same with the setting in
dsi_dpi_config_t.

dpiPixelClkFreq_Hz — The DPI pixel clock frequency in Hz.

dsiHsBitClkFreq Hz — The DSI high speed bit clock frequency in Hz. It is
the same with DPHY PLL output.

uint32_t DSI_ InitDphy(MIPI_DSI_HOST _Type *base, const dsi_dphy_config_t *config, uint32_t
refClkFreq_Hz)

Initializes the D-PHY.

This function configures the D-PHY timing and setups the D-PHY PLL based on user configu-
ration. The configuration structure could be got by the function DSI_GetDphyDefaultConfig.

For some platforms there is not dedicated D-PHY PLL, indicated by the macro
FSL_FEATURE_MIPI_DSI_NO_DPHY_PLL. For these platforms, the refClkFreq Hz is useless.

200 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* base — MIPI DSI host peripheral base address.
* config — Pointer to the D-PHY configuration.
» refClkFreq Hz-The REFCLK frequency in Hz.

Returns
The actual D-PHY PLL output frequency. If could not configure the PLL to the
target frequency, the return value is 0.

void DSI_ DeinitDphy(MIPI_DSI_HOST_Type *base)
Deinitializes the D-PHY.

Power down the D-PHY PLL and shut down D-PHY.
Parameters
* base — MIPI DSI host peripheral base address.

void DSI_ GetDphyDefaultConfig(dsi_dphy_config_t *config, uint32_t txHsBitClk_Hz, uint32_t
txEscClk_Hz)

Get the default D-PHY configuration.

Gets the default D-PHY configuration, the timing parameters are set according to D-PHY
specification. User could use the configuration directly, or change some parameters ac-
cording to the special device.

Parameters
* config — Pointer to the D-PHY configuration.
* txHsBitClk Hz — High speed bit clock in Hz.
* txEscClk_Hz — Esc clock in Hz.

static inline void DSI_ Enablelnterrupts(MIPI_DSI_HOST_Type *base, uint32_t intGroup1,
uint32_t intGroup2)

Enable the interrupts.
The interrupts to enable are passed in as OR’ed mask value of _dsi_interrupt.
Parameters
* base — MIPI DSI host peripheral base address.
* intGroupl — Interrupts to enable in group 1.
* intGroup2 - Interrupts to enable in group 2.

static inline void DSI_ DisableInterrupts(MIPI_DSI_HOST_Type *base, uint32_t intGroup1,
uint32_t intGroup2)

Disable the interrupts.
The interrupts to disable are passed in as OR’ed mask value of _dsi_interrupt.
Parameters
* base — MIPI DSI host peripheral base address.
* intGroupl - Interrupts to disable in group 1.
* intGroup2 — Interrupts to disable in group 2.

static inline void DSI_ GetAndClearInterruptStatus(MIPI_DSI_HOST Type *base, uint32_t
*intGroupl, uint32_t *intGroup2)

Get and clear the interrupt status.

Parameters

2.17. MIPI DSI Driver 201

MCUXpresso SDK Documentation, Release 25.09.00

* base — MIPI DSI host peripheral base address.
* intGroupl — Group 1 interrupt status.
* intGroup2 - Group 2 interrupt status.

static inline void DSI_ SetDbiPixelFifoSendLevel(MIPI_DSI_HOST _Type *base, uint16_t
sendLevel)

Configure the DBI pixel FIFO send level.
This controls the level at which the DBI Host bridge begins sending pixels
Parameters
* base — MIPI DSI host peripheral base address.
* sendLevel — Send level value set to register.

static inline void DSI_ SetDbiPixelPayloadSize(MIPI_DSI_HOST_Type *base, uint16_t payloadSize)
Configure the DBI pixel payload size.

Configures maximum number of pixels that should be sent as one DSI packet. Recom-
mended to be evenly divisible by the line size (in pixels).

Parameters
* base — MIPI DSI host peripheral base address.
* payloadSize — Payload size value set to register.

void DSI__SetApbPacketControl(MIPI_DSI_HOST_Type *base, uint16_t wordCount, uint8_t
virtualChannel, dsi_tx_data_type_t dataType, uint8_t flags)

Configure the APB packet to send.

This function configures the next APB packet transfer. After configuration, the packet trans-
fer could be started with function DSI_SendApbPacket. If the packet is long packet, Use
DSI_WriteApbTxPayload to fill the payload before start transfer.

Parameters
* base — MIPI DSI host peripheral base address.

» wordCount — For long packet, this is the byte count of the payload. For short
packet, this is (datal « 8) | dataO.

¢ virtualChannel — Virtual channel.
» dataType — The packet data type, (DI).
* flags — The transfer control flags, see _dsi_transfer_flags.

void DSI_ WriteApbTxPayload(MIPI_DSI_HOST_Type *base, const uint8_t *payload, uint16_t
payloadSize)

Fill the long APB packet payload.
Write the long packet payload to TX FIFO.
Parameters
* base — MIPI DSI host peripheral base address.
* payload — Pointer to the payload.
* payloadSize — Payload size in byte.

void DST_ WriteApbTxPayloadExt(MIPI_DSI_HOST_Type *base, const uint8_t *payload, uint16_t
payloadSize, bool sendDcsCmd, uint8_t dcsCmd)

Extended function to fill the payload to TX FIFO.
Write the long packet payload to TX FIFO. This function could be used in two ways

202 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

a. Include the DCS command in parameter payload. In this case, the DCS command is the
first byte of payload. The parameter sendDcsCmd is set to false, the desCmd is not used.
This function is the same as DSI_WriteApbTxPayload when used in this way.

b. The DCS command in not in parameter payload, but specified by parameter dcsCmd. In
this case, the parameter sendDcsCmd is set to true, the desCmd is the DCS command to
send. The payload is sent after desCmd.

Parameters
* base — MIPI DSI host peripheral base address.
* payload — Pointer to the payload.
* payloadSize — Payload size in byte.

¢ sendDcsCmd — If set to true, the DCS command is specified by desCmd, oth-
erwise the DCS command is included in the payload.

* desCmd — The DCS command to send, only used when sendDCSCmd is true.

void DSI_ ReadApbRxPayload(MIPI_DSI_HOST_Type *base, uint8_t *payload, uint16_t
payloadSize)

Read the long APB packet payload.

Read the long packet payload from RX FIFO. This function reads directly but does not check
the RX FIFO status. Upper layer should make sure there are available data.

Parameters
* base — MIPI DSI host peripheral base address.
* payload — Pointer to the payload.
* payloadSize — Payload size in byte.

static inline void DSI_Send ApbPacket(MIPI_DSI_HOST_Type *base)
Trigger the controller to send out APB packet.

Send the packet set by DSI_SetApbPacketControl.
Parameters
* base — MIPI DSI host peripheral base address.

static inline uint32_t DST_ GetApbStatus(MIPI_DSI_HOST_Type *base)
Get the APB status.

The return value is OR’ed value of _dsi_apb_status.
Parameters
* base — MIPI DSI host peripheral base address.

Returns
The APB status.

static inline uint32_t DST_ GetRxFErrorStatus(MIPI_DSI_HOST_Type *base)
Get the error status during data transfer.

The return value is OR’ed value of _dsi_rx_error_status.
Parameters
* base — MIPI DSI host peripheral base address.

Returns
The error status.

2.17. MIPI DSI Driver 203

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint8_t DSI_ GetEccRxErrorPosition(uint32_t rxErrorStatus)
Get the one-bit RX ECC error position.

When one-bit ECC RX error detected using DSI_GetRxErrorStatus, this function could be
used to get the error bit position.

uint8_t eccErrorPos;
uint32_t rxErrorStatus = DSI_ GetRxErrorStatus(MIPI__DSI);
if (kDSI_RxErrorEccOneBit & rxErrorStatus)

{

eccErrorPos = DSI_ GetEccRxErrorPosition(rxErrorStatus);

}

Parameters
* rxErrorStatus — The error status returned by DSI_GetRxErrorStatus.

Returns
The 1-bit ECC error position.

static inline uint32_t DST_ GetAndClearHostStatus(MIPI_DSI_HOST_Type *base)
Get and clear the DSI host status.

The host status are returned as mask value of _dsi_host_status.
Parameters
* base — MIPI DSI host peripheral base address.

Returns
The DSI host status.

static inline uint32_t DSI_ GetRxPacketHeader(MIPI_DSI_HOST_Type *base)
Get the RX packet header.

Parameters
* base — MIPI DSI host peripheral base address.

Returns
The RX packet header.

static inline dsi_rx_data_type_t DSI_ GetRxPacketType(uint32_t rxPktHeader)
Extract the RX packet type from the packet header.

Extract the RX packet type from the packet header get by DSI_GetRxPacketHeader.
Parameters
* rxPktHeader — The RX packet header get by DSI_GetRxPacketHeader.

Returns
The RX packet type.

static inline uint16_t DST_ GetRxPacketWordCount(uint32_t rxPktHeader)
Extract the RX packet word count from the packet header.

Extract the RX packet word count from the packet header get by DSI_GetRxPacketHeader.
Parameters
 rxPktHeader — The RX packet header get by DSI_GetRxPacketHeader.

Returns
For long packet, return the payload word count (byte). For short packet, return
the (data0 « 8) | datal.

204 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint8_t DSI_ GetRxPacketVirtualChannel(uint32_t rxPktHeader)
Extract the RX packet virtual channel from the packet header.

Extract the RX packet virtual channel from the packet header get by
DSI_GetRxPacketHeader.

Parameters
» rxPktHeader — The RX packet header get by DSI_GetRxPacketHeader.

Returns
The virtual channel.

status_t DSI_ TransferBlocking(MIPI_DSI_HOST _Type *base, dsi_transfer_t *xfer)
APB data transfer using blocking method.

Perform APB data transfer using blocking method. This function waits until all data send
or received, or timeout happens.

When using this API to read data, the actually read data count could be got from xfer-
>rxDataSize.

Parameters
* base — MIPI DSI host peripheral base address.
* xfer — Pointer to the transfer structure.
Return values
» kStatus Success — Data transfer finished with no error.
* kStatus_ Timeout — Transfer failed because of timeout.

e kStatus DSI RxDataError - RX data error, user could wuse
DSI_GetRxErrorStatus to check the error details.

* kStatus_ DSI_ ErrorReportReceived — Error Report packet received, user
could use DSI_GetAndClearHostStatus to check the error report status.

* kStatus_ DSI_ NotSupported — Transfer format not supported.
* kStatus_ DSI_ Fail — Transfer failed for other reasons.

status_t DSI_ TransferCreateHandle(MIPI_DSI_HOST_Type *base, dsi_handle_t *handle,
dsi_callback_t callback, void *userData)

Create the MIPI DSI handle.
This function initializes the MIPI DST handle which can be used for other transactional APIs.
Parameters
* base — MIPI DSI host peripheral base address.
* handle — Handle pointer.
* callback — Callback function.
 userData — User data.

status_t DSI_ TransferNonBlocking(MIPI_DSI_HOST_Type *base, dsi_handle_t *handle,
dsi_transfer_t *xfer)

APB data transfer using interrupt method.

Perform APB data transfer using interrupt method, when transfer finished, upper layer
could be informed through callback function.

When using this API to read data, the actually read data count could be got from handle-
>xfer->rxDataSize after read finished.

Parameters

2.17. MIPI DSI Driver 205

MCUXpresso SDK Documentation, Release 25.09.00

* base — MIPI DSI host peripheral base address.
* handle — pointer to dsi_handle_t structure which stores the transfer state.
* xfer — Pointer to the transfer structure.
Return values
» kStatus_ Success — Data transfer started successfully.

* kStatus_ DSI_Busy — Failed to start transfer because DSI is busy with per-
vious transfer.

* kStatus_ DSI_NotSupported — Transfer format not supported.

void DSI_ TransferAbort(MIPI_DSI_HOST_Type *base, dsi_handle_t *handle)
Abort current APB data transfer.

Parameters
* base — MIPI DSI host peripheral base address.
* handle — pointer to dsi_handle_t structure which stores the transfer state.

void DSI_ TransferHandleIRQ(MIPI_DSI_HOST_Type *base, dsi_handle_t *handle)
Interrupt handler for the DSI.

Parameters
* base — MIPI DSI host peripheral base address.
* handle — pointer to dsi_handle_t structure which stores the transfer state.
FSL_MIPI_DSI_DRIVER_ VERSION

Error codes for the MIPI DSI driver.
Values:

enumerator kStatus_ DSI_ Busy
DSI is busy.

enumerator kStatus_ DSI RxDataError
Read data error.

enumerator kStatus_ DSI__ErrorReportReceived
Error report package received.

enumerator kStatus_ DSI_ NotSupported
The transfer type not supported.

enum _ dsi_dpi_color_coding
MIPI DPI interface color coding.

Values:

enumerator kDSI_ Dpil6BitConfigl
16-bit configuration 1. RGB565: XXXXXXXX_RRRRRGGG_GGGBBBBB.

enumerator kDSI_ Dpil6BitConfig2
16-bit configuration 2. RGB565: XXXRRRRR_XXGGGGGG_XXXBBBBB.

enumerator kDSI_ Dpil6BitConfig3
16-bit configuration 3. RGB565: XXRRRRRX_XXGGGGGG_XXBBBBBX.

enumerator kDSI_ Dpil8BitConfigl
18-bit configuration 1. RGB666: XXXXXXRR_RRRRGGGG_GGBBBBBB.

206 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kDSI_Dpil8BitConfig2
18-bit configuration 2. RGB666: XXRRRRRR_XXGGGGGG_XXBBBBBB.

enumerator kDSI_ Dpi24Bit
24-bit.
enum _ dsi_dpi_ pixel_packet
MIPI DSI pixel packet type send through DPI interface.
Values:

enumerator kDSI PixelPacket16Bit
16 bit RGB565.

enumerator kDSI PixelPacket18Bit
18 bit RGB666 packed.

enumerator kDSI_ PixelPacket18BitLoosely
18 bit RGB666 loosely packed into three bytes.

enumerator kDSI PixelPacket24Bit
24 bit RGB888, each pixel uses three bytes.

_dsi_dpi_polarity_flag DPI signal polarity.
Values:

enumerator kDSI_ DpiVsyncActiveLow
VSYNC active low.

enumerator kDSI_ DpiHsyncActiveLow
HSYNC active low.

enumerator kDSI_ DpiVsyncActiveHigh
VSYNC active high.

enumerator kDSI_ DpiHsyncActiveHigh
HSYNC active high.

enum _ dsi_dpi_video_mode
DPI video mode.

Values:

enumerator kDSI_ DpiNonBurstWithSyncPulse
Non-Burst mode with Sync Pulses.

enumerator kDSI_ DpiNonBurstWithSyncEvent
Non-Burst mode with Sync Events.

enumerator kDSI_ DpiBurst
Burst mode.

enum _dsi_dpi_bllp_mode
Behavior in BLLP (Blanking or Low-Power Interval).

Values:

enumerator kDSI_DpiBllpLowPower
LP mode used in BLLP periods.

enumerator kDSI_ DpiBllpBlanking
Blanking packets used in BLLP periods.

2.17. MIPI DSI Driver 207

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kDSI_DpiBllpNull
Null packets used in BLLP periods.

_dsi_apb_status Status of APB to packet interface.
Values:

enumerator kDSI__ApbNotldle
State machine not idle

enumerator kDSI__ApbTxDone
Tx packet done

enumerator kDSI__ApbRxControl
DPHY direction 0 - tx had control, 1 - rx has control

enumerator kDSI_ ApbTxOverflow
TX fifo overflow

enumerator kDSI__ApbTxUnderflow
TX fifo underflow

enumerator kDSI__ApbRxOverflow
RX fifo overflow

enumerator kDSI__ApbRxUnderflow
RX fifo underflow

enumerator kDSI__ApbRxHeaderReceived
RX packet header has been received

enumerator kDSI_ApbRxPacketReceived
All RX packet payload data has been received

_dsi_rx_error_status Host receive error status.
Values:

enumerator kDSI_RxErrorEccOneBit
ECC single bit error detected.

enumerator kDSI_RxErrorEccMultiBit
ECC multi bit error detected.

enumerator kDSI_RxErrorCrc
CRC error detected.

enumerator kDSI_RxErrorHtxTo
High Speed forward TX timeout detected.

enumerator kDSI_RxErrorLrxTo
Reverse Low power data receive timeout detected.

enumerator kDSI_RxErrorBtaTo
BTA timeout detected.

enum dsi host status
DSI host controller status (status_out)

Values:

208

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kDSI_HostSoTError
SoT error from peripheral error report.

enumerator kDSI_HostSoTSyncError
SoT Sync error from peripheral error report.

enumerator kDSI__HostEoTSyncError
EoT Sync error from peripheral error report.

enumerator kDSI_HostEscEntryCmdError
Escape Mode Entry Command Error from peripheral error report.

enumerator kDSI_ HostLpTxSyncError
Low-power transmit Sync Error from peripheral error report.

enumerator kDSI_ HostPeriphToError
Peripheral timeout error from peripheral error report.

enumerator kDSI HostFalseControlError
False control error from peripheral error report.

enumerator kDSI HostContentionDetected
Contention detected from peripheral error report.

enumerator kDSI HostEccErrorOneBit
Single bit ECC error (corrected) from peripheral error report.

enumerator kDSI HostEccErrorMultiBit
Multi bit ECC error (not corrected) from peripheral error report.

enumerator kDSI HostChecksumError
Checksum error from peripheral error report.

enumerator kDSI_ HostInvalidDataType
DSI data type not recognized.

enumerator kDSI HostInvalidVeld
DSI VC ID invalid.

enumerator kDSI_HostInvalidTxLength
Invalid transmission length.

enumerator kDSI HostProtocalViolation
DSI protocal violation.

enumerator kDSI_HostResetTriggerReceived
Reset trigger received.

enumerator kDSI_HostTearTriggerReceived
Tear effect trigger receive.

enumerator kDSI_HostAckTriggerReceived
Acknowledge trigger message received.

_dsi_interrupt DSI interrupt.
Values:

enumerator kDSI_ InterruptGrouplApbNotldle
State machine not idle

2.17. MIPI DSI Driver 209

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kDSI_ InterruptGroupl ApbTxDone
Tx packet done

enumerator kDSI_ Interrupt Groupl ApbRxControl
DPHY direction 0 - tx control, 1 - rx control

enumerator kDSI_ InterruptGroupl ApbTxOverflow
TX fifo overflow

enumerator kDSI_ InterruptGroupl ApbTxUnderflow
TX fifo underflow

enumerator kDSI_ InterruptGrouplApbRxOverflow
RX fifo overflow

enumerator kDSI_ InterruptGroupl ApbRxUnderflow
RX fifo underflow

enumerator kDSI_ InterruptGroupl ApbRxHeaderReceived

RX packet header has been received
enumerator kDSI_ InterruptGroupl ApbRxPacketReceived

All RX packet payload data has been received
enumerator kDSI_ InterruptGrouplSoTError

SoT error from peripheral error report.
enumerator kDSI_ InterruptGrouplSoTSyncError

SoT Sync error from peripheral error report.
enumerator kDSI_ InterruptGrouplEoTSyncError

EoT Sync error from peripheral error report.
enumerator kDSI_ InterruptGroupl EscEntryCmdError

Escape Mode Entry Command Error from peripheral error report.
enumerator kDSI_ InterruptGrouplLpTxSyncError

Low-power transmit Sync Error from peripheral error report.
enumerator kDSI_ InterruptGrouplPeriphToError

Peripheral timeout error from peripheral error report.
enumerator kDSI_ Interrupt GrouplFalseControlError

False control error from peripheral error report.
enumerator kDSI_ InterruptGrouplContentionDetected

Contention detected from peripheral error report.
enumerator kDSI_ InterruptGrouplEccErrorOneBit

Single bit ECC error (corrected) from peripheral error report.
enumerator kDSI_ InterruptGrouplEccErrorMultiBit

Multi bit ECC error (not corrected) from peripheral error report.
enumerator kDSI_ InterruptGrouplChecksumError

Checksum error from peripheral error report.
enumerator kDSI_ InterruptGroupllnvalidDataType

DSI data type not recognized.

enumerator kDSI_ InterruptGrouplInvalidVeld
DSI VC ID invalid.

210

Chapter 2

. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kDSI_ InterruptGrouplInvalidTxLength
Invalid transmission length.

enumerator kDSI_ Interrupt GrouplProtocal Violation
DSI protocal violation.

enumerator kDSI_ InterruptGrouplResetTriggerReceived
Reset trigger received.

enumerator kDSI_ InterruptGrouplTearTriggerReceived
Tear effect trigger receive.

enumerator kDSI_ InterruptGroupl AckTriggerReceived
Acknowledge trigger message received.

enumerator kDSI_ InterruptGroup1HtxTo
High speed TX timeout.

enumerator kDSI_ InterruptGrouplLrxTo
Low power RX timeout.

enumerator kDSI_ InterruptGroup1BtaTo
Host BTA timeout.

enumerator kDSI_ Interrupt Group2EccOneBit
Sinle bit ECC error.

enumerator kDSI_ InterruptGroup2EccMultiBit
Multi bit ECC error.

enumerator kDSI_ InterruptGroup2CrcError
CRC error.

enum _dsi_tx_data_ type
DSI TX data type.
Values:

enumerator kDSI_ TxDataVsyncStart
V Sync start.

enumerator kDSI_ TxDataVsyncEnd
V Sync end.

enumerator kDSI_ TxDataHsyncStart
H Sync start.

enumerator kDSI_ TxDataHsyncEnd
H Sync end.

enumerator kDSI_TxDataEoTp
End of transmission packet.

enumerator kDSI TxDataCmOff
Color mode off.

enumerator kDSI TxDataCmOn
Color mode on.

enumerator kDSI_TxDataShutDownPeriph
Shut down peripheral.

2.17. MIPI DSI Driver 211

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kDSI_ TxDataTurnOnPeriph
Turn on peripheral.
enumerator kDSI TxDataGenShortWrNoParam
Generic Short WRITE, no parameters.
enumerator kDSI TxDataGenShort WrOneParam
Generic Short WRITE, one parameter.
enumerator kDSI TxDataGenShort WrTwoParam
Generic Short WRITE, two parameter.
enumerator kDSI TxDataGenShortRdNoParam
Generic Short READ, no parameters.
enumerator kDSI TxDataGenShortRdOneParam
Generic Short READ, one parameter.
enumerator kDSI TxDataGenShortRdTwoParam
Generic Short READ, two parameter.
enumerator kDSI TxDataDcsShort WrNoParam
DCS Short WRITE, no parameters.
enumerator kDSI TxDataDcsShort WrOneParam
DCS Short WRITE, one parameter.
enumerator kDSI TxDataDcsShortRdNoParam
DCS Short READ, no parameters.
enumerator kDSI TxDataSetMaxReturnPktSize
Set the Maximum Return Packet Size.
enumerator kDSI TxDataNull
Null Packet, no data.
enumerator kDSI_ TxDataBlanking
Blanking Packet, no data.
enumerator kDSI_ TxDataGenLongWr
Generic long write.
enumerator kDSI_ TxDataDcsLongWr
DCS Long Write/write_LUT Command Packet.
enumerator kDSI_ TxDatalLooselyPackedPixel20BitY CbCr
Loosely Packed Pixel Stream, 20-bit YCbCr, 4:2:2 Format.
enumerator kDSI TxDataPackedPixel24BitYCbCr
Packed Pixel Stream, 24-bit YCbCr, 4:2:2 Format.
enumerator kDSI TxDataPackedPixel16BitYCbCr
Packed Pixel Stream, 16-bit YCbCr, 4:2:2 Format.
enumerator kDSI TxDataPackedPixel30BitRGB
Packed Pixel Stream, 30-bit RGB, 10-10-10 Format.
enumerator kDSI TxDataPackedPixel36BitRGB
Packed Pixel Stream, 36-bit RGB, 12-12-12 Format.
enumerator kDSI TxDataPackedPixel12BitYCrCb
Packed Pixel Stream, 12-bit YCbCr, 4:2:0 Format.

212

Chapter 2

. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kDSI TxDataPackedPixell16BitRGB
Packed Pixel Stream, 16-bit RGB, 5-6-5 Format.

enumerator kDSI TxDataPackedPixel18BitRGB
Packed Pixel Stream, 18-bit RGB, 6-6-6 Format.

enumerator kDSI_ TxDataLooselyPackedPixel18BitRGB
Loosely Packed Pixel Stream, 18-bit RGB, 6-6-6 Format.

enumerator kDSI TxDataPackedPixel24BitRGB
Packed Pixel Stream, 24-bit RGB, 8-8-8 Format.

enum _dsi_rx_data_type
DSI RX data type.

Values:

enumerator kDSI_RxDataAckAndErrorReport
Acknowledge and Error Report

enumerator kDSI_ RxDataEoTp
End of Transmission packet.

enumerator kDSI_ RxDataGenShortRdResponseOneByte
Generic Short READ Response, 1 byte returned.

enumerator kDSI_ RxDataGenShortRdResponseTwoByte
Generic Short READ Response, 2 byte returned.

enumerator kDSI_ RxDataGenLongRdResponse
Generic Long READ Response.

enumerator kDSI_ RxDataDcsLongRdResponse
DCS Long READ Response.

enumerator kDSI_ RxDataDcsShortRdResponseOneByte
DCS Short READ Response, 1 byte returned.

enumerator kDSI_ RxDataDcsShortRdResponseTwoByte
DCS Short READ Response, 2 byte returned.

_dsi_transfer_flags DSI transfer control flags.
Values:

enumerator kDSI_ TransferUseHighSpeed
Use high speed mode or not.

enumerator kDSI_ TransferPerformBTA
Perform BTA or not.

typedef struct _dsi_config dsi_ config_t
MIPI DSI controller configuration.

typedef enum _dsi_dpi color_coding dsi_dpi_ color_ coding_t
MIPI DPI interface color coding.

typedef enum _dsi_dpi pixel packet dsi_dpi_ pixel packet_t
MIPI DSI pixel packet type send through DPI interface.

typedef enum _dsi_dpi video_mode dsi_dpi_ video_mode_t
DPI video mode.

2.17. MIPI DSI Driver 213

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _dsi_dpi bllp_mode dsi_dpi_bllp_ mode_t
Behavior in BLLP (Blanking or Low-Power Interval).

typedef struct _dsi_dpi config dsi_dpi_ config_t
MIPI DSI controller DPI interface configuration.

typedef struct _dsi_dphy_config dsi_ dphy_ config_t
MIPI DSI D-PHY configuration.

typedef enum _dsi_tx_data_type dsi_tx_data_type_t
DSI TX data type.

typedef enum _dsi rx_data _type dsi_rx_data_type_t
DSI RX data type.

typedef struct _dsi_transfer dsi_ transfer_t
Structure for the data transfer.

typedef struct _dsi_handle dsi_handle_t
MIPI DSI transfer handle.

typedef void (*dsi_ callback t)(MIPI_DSI_HOST _Type *base, dsi_handle_t *handle, status_t
status, void *userData)

MIPI DSI callback for finished transfer.
When transfer finished, one of these status values will be passed to the user:

» kStatus_Success Data transfer finished with no error.

kStatus_Timeout Transfer failed because of timeout.

kStatus_DSI_RxDataError RX data error, user could use DSI_GetRxErrorStatus to check
the error details.

kStatus_DSI_ErrorReportReceived Error Report packet received, user could use
DSI_GetAndClearHostStatus to check the error report status.

kStatus_Fail Transfer failed for other reasons.
FSL DSI TX MAX PAYLOAD BYTE

FSL_DSI_RX_ MAX_ PAYLOAD_ BYTE

struct _ dsi_ config
#include <fsl_mipi_dsi.h> MIPI DSI controller configuration.

Public Members
uint8_t numLanes
Number of lanes.
bool enableNonContinuousHsClk
In enabled, the high speed clock will enter low power mode between transmissions.
bool autolnsertEoTp
Insert an EoTp short package when switching from HS to LP.
uint8_t numExtraEoTp
How many extra EoTp to send after the end of a packet.

uint32_t htxTo_ ByteClk
HS TX timeout count (HTX_TO) in byte clock.

214 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t IrxHostTo_ ByteClk
LP RX host timeout count (LRX-H_TO) in byte clock.

uint32_t btaTo_ ByteClk
Bus turn around timeout count (TA_TO) in byte clock.

struct _dsi_ dpi_ config

#include <fsl_mipi_dsi.h> MIPI DSI controller DPI interface configuration.

Public Members

uint16_t pixelPayloadSize

Maximum number of pixels that should be sent as one DSI packet. Recommended that
the line size (in pixels) is evenly divisible by this parameter.

dsi_dpi_color_coding _t dpiColorCoding

DPI color coding.
dsi_dpi_pixel packet_t pixelPacket

Pixel packet format.
dsi_dpi video_mode_t videoMode

Video mode.
dsi_dpi_bllp_mode_t bllpMode

Behavior in BLLP.
uint8_t polarityFlags

OR’ed value of _dsi_dpi_polarity_flag controls signal polarity.
uint16_t hfp

Horizontal front porch, in dpi pixel clock.
uint16_t hbp

Horizontal back porch, in dpi pixel clock.
uint16_t hsw

Horizontal sync width, in dpi pixel clock.
uint8_t vip

Number of lines in vertical front porch.
uint8_t vbp

Number of lines in vertical back porch.
uint16_t panelHeight

Line number in vertical active area.

uint8_t virtualChannel
Virtual channel.

struct _dsi_ dphy_ config

#include <fsl_mipi_dsi.h> MIPI DSI D-PHY configuration.

Public Members

uint32_t txHsBitClk Hz
The generated HS TX bit clock in Hz.

2.17. MIPI DSI Driver 215

MCUXpresso SDK Documentation, Release 25.09.00

uint8_t tClkPre_ ByteClk
TLPX + TCLK-PREPARE + TCLK-ZERO + TCLK-PRE in byte clock. Set how long the con-
troller will wait after enabling clock lane for HS before enabling data lanes for HS.

uint8_t tClkPost_ ByteClk
TCLK-POST + T_CLK-TRAIL in byte clock. Set how long the controller will wait before
putting clock lane into LP mode after data lanes detected in stop state.

uint8_t tHsExit_ ByteClk
THS-EXIT in byte clock. Set how long the controller will wait after the clock lane has
been put into LP mode before enabling clock lane for HS again.

uint8_t tHsPrepare HalfEscClk
THS-PREPARE in clk_esc/2. Set how long to drive the LP-00 state before HS transmis-
sions, available values are 2, 3, 4, 5.

uint8_t tClkPrepare_HalfEscClk
TCLK-PREPARE in clk_esc/2. Set how long to drive the LP-00 state before HS transmis-
sions, available values are 2, 3.

uint8_t tHsZero_ ByteClk
THS-ZERO in clk_byte. Set how long that controller drives data lane HS-0 state before
transmit the Sync sequence. Available values are 6, 7, ..., 37.

uint8_t tClkZero_ ByteClk
TCLK-ZERO in clk_byte. Set how long that controller drives clock lane HS-0 state before
transmit the Sync sequence. Available values are 3, 4, ..., 66.

uint8_t tHsTrail ByteClk
THS-TRAIL + 4*UI in clk_byte. Set the time of the flipped differential state after last
payload data bit of HS transmission burst. Available values are 0, 1, ..., 15.

uint8_t tClkTrail ByteClk

TCLK-TRAIL + 4*UI in clk_byte. Set the time of the flipped differential state after last
payload data hit of HS transmission burst. Available values are 0, 1, ..., 15.

struct dsi_transfer

#include <fsl_mipi_dsi.h> Structure for the data transfer.

Public Members
uint8_t virtualChannel
Virtual channel.

dsi_tx_data_type_t txDataType
TX data type.
uint8_t flags
Flags to control the transfer, see _dsi_transfer_flags.

const uint8_t *txData
The TX data buffer.

uint8_t *rxData
The RX data buffer.

uint16_t txDataSize
Size of the TX data.

uint16_t rxDataSize
Size of the RX data.

216

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

bool sendDesCmd

If set to true, the DCS command is specified by dcsCmd, otherwise the DCS command
is included in the txData.

uint8_t desCmd
The DCS command to send, only valid when sendDcsCmd is true.

struct dsi handle
#include <fsl_mipi_dsi.h> MIPI DSI transfer handle structure.

Public Members
volatile bool isBusy
MIPI DSI is busy with APB data transfer.

dsi_transfer._t xfer
Transfer information.

dsi_callback_t callback
DSI callback

void *userData
Callback parameter

2.18 MIPI_DSI: MIPI DSI Host Controller

2.19 MU: Messaging Unit

void MU_ Init(MU_Type *base)
Initializes the MU module.

This function enables the MU clock only.
Parameters
* base — MU peripheral base address.

void MU_ Deinit(MU_Type *base)
De-initializes the MU module.

This function disables the MU clock only.
Parameters
* base — MU peripheral base address.

static inline void MU_ SendMsgNonBlocking(MU_Type *base, uint32_t regIndex, uint32_t msg)
Writes a message to the TX register.

This function writes a message to the specific TX register. It does not check whether the TX
register is empty or not. The upper layer should make sure the TX register is empty before
calling this function. This function can be used in ISR for better performance.

while (I(kMU_ TxOEmptyFlag & MU_ GetStatusFlags(base))) { } Wait for TXO register empty.
MU__SendMsgNonBlocking(base, kMU__MsgReg0, MSG__VAL); Write message to the TXO0 register.

Parameters

* base — MU peripheral base address.

2.18. MIPI_DSI: MIPI DSI Host Controller 217

MCUXpresso SDK Documentation, Release 25.09.00

* reglndex — TX register index, see mu_msg_reg_index_t.
* msg — Message to send.

status_t MU__SendMsg(MU_Type *base, uint32_t regIndex, uint32_t msg)
Blocks to send a message.

This function waits until the TX register is empty and sends the message. If
MU_BUSY_POLL_COUNT is defined and non-zero, the function will timeout after the speci-
fied number of polling iterations and returns kStatus_Timeout.

Parameters
* base — MU peripheral base address.
* regIndex — MU message register, see mu_msg_reg_index_t.
* msg — Message to send.
Return values
* kStatus_ Success — Message sent successfully.

* kStatus_ Timeout — Timeout occurred while waiting for TX register to be
empty.
Returns
status_t
static inline uint32_t MU_ ReceiveMsgNonBlocking(MU_Type *base, uint32_t regIndex)
Reads a message from the RX register.
This function reads a message from the specific RX register. It does not check whether the

RX register is full or not. The upper layer should make sure the RX register is full before
calling this function. This function can be used in ISR for better performance.

uint32_t msg;
while (I(kMU_RxOFullFlag & MU _ GetStatusFlags(base)))

{
} Wait for the RX0 register full.

msg = MU_ ReceiveMsgNonBlocking(base, kMU_ MsgReg0); Read message from RX0 register.

Parameters
* base — MU peripheral base address.
* reglndex — RX register index, see mu_msg_reg_index_t.

Returns
The received message.

status_t MU_ ReceiveMsgTimeout(MU_Type *base, uint32_t regIndex, uint32_t *readValue)
Blocks to receive a message with timeout protection.
This function waits until the RX register is full and receives the message. If

MU_BUSY_POLL_COUNT is defined and non-zero, the function will timeout after the speci-
fied number of polling iterations and return kStatus_Timeout.

This function provides the same blocking behavior as MU_ReceiveMsg() but with additional
timeout protection to prevent system hangs if the other core becomes unresponsive or if
hardware issues occur.

Note: Both MU_ReceiveMsg() and MU_ReceiveMsgTimeout() are blocking functions. The
difference is that this function includes timeout protection while MU_ReceiveMsg() waits
indefinitely.

218 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* base — MU peripheral base address.
* reglndex — RX register index, see mu_msg_reg_index_t.
» readValue — Pointer to store the received message.
Return values
* kStatus_ Success — Message received successfully.
* kStatus_ InvalidArgument — Invalid readValue pointer.

* kStatus_ Timeout — Timeout occurred while waiting for RX register to be
full.

Returns
status_t

uint32_t MU_ ReceiveMsg(MU_Type *base, uint32_t regIndex)
Blocks to receive a message (infinite wait, no timeout protection).

This function waits until the RX register is full and receives the message. This function will
wait indefinitely until a message is received.

Note: Both MU_ReceiveMsg() and MU_ReceiveMsgTimeout() are blocking functions. The
difference is that MU_ReceiveMsgTimeout() includes timeout protection while this function
waits indefinitely.

Warning: This function does not include timeout protection and may cause system
hangs if the other core becomes unresponsive. For applications requiring timeout pro-
tection, use MU_ReceiveMsgTimeout() instead.

Parameters
* base — MU peripheral base address.
* reglndex — RX register index, see mu_msg_reg_index_t.

Returns
The received message.

static inline void MU__SetFlagsNonBlocking(MU_Type *base, uint32_t flags)
Sets the 3-bit MU flags reflect on the other MU side.
This function sets the 3-bit MU flags directly. Every time the 3-bit MU flags are changed,
the status flag kMU_ FlagsUpdatingFlag asserts indicating the 3-bit MU flags are updating to
the other side. After the 3-bit MU flags are updated, the status flag kMU_ FlagsUpdatingFlag
is cleared by hardware. During the flags updating period, the flags cannot be changed.

The upper layer should make sure the status flag kMU_ FlagsUpdatingFlag is cleared before
calling this function.

while (kMU _ FlagsUpdatingFlag & MU__GetStatusFlags(base))
{

} Wait for previous MU flags updating.

MU_ SetFlagsNonBlocking(base, 0U); Set the mU flags.

Parameters

* base — MU peripheral base address.

2.19. MU: Messaging Unit 219

MCUXpresso SDK Documentation, Release 25.09.00

* flags — The 3-bit MU flags to set.

status_t MU__ SetFlags(MU_Type *base, uint32_t flags)
Blocks setting the 3-bit MU flags reflect on the other MU side.

This function blocks setting the 3-bit MU flags. Every time the 3-bit MU flags are changed,
the status flag kMU_ FlagsUpdatingFlag asserts indicating the 3-bit MU flags are updating to
the other side. After the 3-bit MU flags are updated, the status flag kMU_ FlagsUpdatingFlag
is cleared by hardware. During the flags updating period, the flags cannot be changed. This
function waits for the MU status flag kMU _ FlagsUpdatingFlag cleared and sets the 3-bit MU
flags.

If MU_BUSY_POLL_COUNT is defined and non-zero, the function will timeout after the spec-
ified number of polling iterations and return kStatus_Timeout.

Parameters
* base — MU peripheral base address.
¢ flags — The 3-bit MU flags to set.
Return values
» kStatus_ Success — Flags were set successfully.
* kStatus_ Timeout — Timeout occurred while waiting for flags to update.

Returns
status_t

static inline uint32_t MU_ GetFlags(MU_Type *base)
Gets the current value of the 3-bit MU flags set by the other side.

This function gets the current 3-bit MU flags on the current side.
Parameters
* base — MU peripheral base address.

Returns
flags Current value of the 3-bit flags.
static inline uint32_t MU _ GetStatusFlags(MU_Type *base)
Gets the MU status flags.

This function returns the bit mask of the MU status flags. See _mu_status_flags.

uint32_t flags;

flags = MU__ GetStatusFlags(base); Get all status flags.
if (kMU_ Tx0EmptyFlag & flags)

{

The TXO register is empty. Message can be sent.
MU_ SendMsgNonBlocking(base, kMU_ MsgReg0, MSG0_ VAL);

if (kMU_ Tx1EmptyFlag & flags)

The TX1 register is empty. Message can be sent.
MU_ SendMsgNonBlocking(base, kMU__MsgRegl, MSG1_ VAL);

}

Parameters
* base — MU peripheral base address.

Returns
Bit mask of the MU status flags, see _mu_status_flags.

220 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t MU_ GetRxStatusFlags(MU_Type *base)
Return the RX status flags.

This function return the RX status flags. Note: RFn bits of SR[27-24](mu status register) are
mapped in reverse numerical order: RF0Q -> SR[27] RF1 -> SR[26] RF2 -> SR[25] RF3 -> SR[24]

status_reg = MU_ GetRxStatusFlags(base);

Parameters
* base — MU peripheral base address.

Returns
MU RX status
static inline uint32_t MU_ GetInterruptsPending(MU_Type *base)
Gets the MU IRQ pending status of enabled interrupts.
This function returns the bit mask of the pending MU IRQs of enabled inter-

rupts. Only these flags are checked. kMU_TxOEmptyFlag kMU_Tx1EmptyFlag
kMU_Tx2EmptyFlag kMU_Tx3EmptyFlag kMU_RxOFullFlag kMU_Rx1FullFlag

kMU_Rx2FullFlag kMU_Rx3FullFlag kMU_GenIntOFlag kMU_GenInt1Flag
kMU_GenInt2Flag kMU_GenInt3Flag
Parameters

* base — MU peripheral base address.

Returns
Bit mask of the MU IRQs pending.

static inline void MU__ClearStatusFlags(MU_Type *base, uint32_t mask)
Clears the specific MU status flags.

This function clears the specific MU status flags. The flags to clear should be passed in as
bit mask. See _mu_status_flags.

Clear general interrupt 0 and general interrupt 1 pending flags.
MU _ ClearStatusFlags(base, kMU _GenIntOFlag | kMU_ GenlInt1Flag);

Parameters
* base — MU peripheral base address.

* mask — Bit mask of the MU status flags. See _mu_status_flags. The following
flags are cleared by hardware, this function could not clear them.

— kMU_TxOEmptyFlag

- kMU_Tx1EmptyFlag

— kKMU_Tx2EmptyFlag

— kMU_Tx3EmptyFlag

— kMU_RxOFullFlag

— kKMU_Rx1FullFlag

- kMU_Rx2FullFlag

— kMU_Rx3FullFlag

- kMU_EventPendingFlag
— kMU_FlagsUpdatingFlag
— kMU_OtherSideInResetFlag

2.19. MU: Messaging Unit 221

MCUXpresso SDK Documentation, Release 25.09.00

static inline void MU__EnableInterrupts(MU_Type *base, uint32_t mask)
Enables the specific MU interrupts.

This function enables the specific MU interrupts. The interrupts to enable should be passed
in as bit mask. See _mu_interrupt_enable.

Enable general interrupt 0 and TXO0 empty interrupt.
MU__Enablelnterrupts(base, kMU__GenIntOInterruptEnable | kMU_ TxOEmptyInterruptEnable);

Parameters
* base — MU peripheral base address.
* mask — Bit mask of the MU interrupts. See _mu_interrupt_enable.

static inline void MU_ DisableInterrupts(MU_Type *base, uint32_t mask)
Disables the specific MU interrupts.

This function disables the specific MU interrupts. The interrupts to disable should be passed
in as bit mask. See _mu_interrupt_enable.

Disable general interrupt 0 and TX0 empty interrupt.
MU_ DisableInterrupts(base, kMU_ GenIntOInterruptEnable | kMU_ TxOEmptyInterruptEnable);

Parameters
* base — MU peripheral base address.
* mask — Bit mask of the MU interrupts. See _mu_interrupt_enable.

status_t MU__TriggerInterrupts(MU_Type *base, uint32_t mask)
Triggers interrupts to the other core.

This function triggers the specific interrupts to the other core. The interrupts to trigger are
passed in as bit mask. See _mu_interrupt_trigger. The MU should not trigger an interrupt to
the other core when the previous interrupt has not been processed by the other core. This
function checks whether the previous interrupts have been processed. If not, it returns an
error.

if (kStatus_ Success |= MU__ TriggerInterrupts(base, kMU_ GenIntOInterruptTrigger | kMU__
—GenlInt2InterruptTrigger))

{

Previous general purpose interrupt 0 or general purpose interrupt 2
has not been processed by the other core.

}

Parameters

* base — MU peripheral base address.

* mask — Bit mask of the interrupts to trigger. See _mu_interrupt_trigger.
Return values

* kStatus_ Success — Interrupts have been triggered successfully.

* kStatus_ Fail — Previous interrupts have not been accepted.

static inline void MU_ ClearNmi(MU_Type *base)
Clear non-maskable interrupt (NMI) sent by the other core.

This function clears non-maskable interrupt (NMI) sent by the other core.
Parameters

* base — MU peripheral base address.

222 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

void MU_ BootCoreB(MU_Type *base, mu_core_boot_mode_t mode)
Boots the core at B side.

This function sets the B side core’s boot configuration and releases the core from reset.

Note: Only MU side A can use this function.

Parameters
* base — MU peripheral base address.
* mode — Core B boot mode.

static inline void MU _ HoldCoreBReset(MU_Type *base)
Holds the core reset of B side.

This function causes the core of B side to be held in reset following any reset event.

Note: Only A side could call this function.

Parameters
* base — MU peripheral base address.

void MU_ BootOtherCore(MU_Type *base, mu_core_boot_mode_t mode)
Boots the other core.

This function boots the other core with a boot configuration.
Parameters
* base — MU peripheral base address.
* mode — The other core boot mode.

static inline void MU__HoldOtherCoreReset(MU_Type *base)
Holds the other core reset.

This function causes the other core to be held in reset following any reset event.
Parameters
* base — MU peripheral base address.

static inline status_t MU_ ResetBothSides(MU_Type *base)
Resets the MU for both A side and B side.

This function resets the MU for both A side and B side. Before reset, it is recommended to
interrupt processor B, because this function may affect the ongoing processor B programs.

If MU_BUSY_POLL_COUNT is defined and non-zero, the function will timeout after the spec-
ified number of polling iterations if waiting for the other side to come out of reset takes too
long.

Note: For some platforms, only MU side A could use this function, check reference manual
for details.

Parameters
* base — MU peripheral base address.

Return values

2.19. MU: Messaging Unit 223

MCUXpresso SDK Documentation, Release 25.09.00

* kStatus_ Success — The MU was reset successfully.

* kStatus_ Timeout — Timeout occurred while waiting for the other side to
come out of reset.

Returns
status_t

status_t MU_HardwareResetOtherCore(MU_Type *base, bool waitReset, bool holdReset,

mu_core_boot_mode_t bootMode)
Hardware reset the other core.

This function resets the other core, the other core could mask the hardware reset by calling
MU_MaskHardwareReset. The hardware reset mask feature is only available for some plat-
forms. This function could be used together with MU_BootOtherCore to control the other
core reset workflow.

If MU_BUSY_POLL_COUNT is defined and non-zero, the function will timeout after the spec-
ified number of polling iterations and return kStatus_Timeout if waiting for the other core
to enter or exit reset takes too long.

Example 1: Reset the other core, and no hold reset

MU_ HardwareResetOtherCore(MU__A, true, false, bootMode);

In this example, the core at MU side B will reset with the specified boot mode.

Example 2: Reset the other core and hold it, then boot the other core later. Here the other
core enters reset, and the reset is hold

MU__HardwareResetOtherCore(MU__A, true, true, modeDontCare);

Current core boot the other core when necessary.

MU_ BootOtherCore(MU__A, bootMode);

Parameters
* base — MU peripheral base address.
* waitReset — Wait the other core enters reset.

— true: Wait until the other core enters reset, if the other core has masked
the hardware reset, then this function will be blocked.

— false: Don’t wait the reset.
* holdReset — Hold the other core reset or not.

- true: Hold the other core in reset, this function returns directly when
the other core enters reset.

— false: Don’t hold the other core in reset, this function waits until the
other core out of reset.

* bootMode —Boot mode of the other core, if holdReset is true, this parameter
is useless.

Return values
* kStatus_ Success — The other core was reset successfully.

* kStatus_ Timeout — Timeout occurred while waiting for the other core to
enter or exit reset.

Returns
status_t

224

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline void MU__SetClockOnOtherCoreEnable(MU_Type *base, bool enable)
Enables or disables the clock on the other core.

This function enables or disables the platform clock on the other core when that core enters
a stop mode. If disabled, the platform clock for the other core is disabled when it enters
stop mode. If enabled, the platform clock keeps running on the other core in stop mode,
until this core also enters stop mode.

Parameters
* base — MU peripheral base address.
* enable — Enable or disable the clock on the other core.

static inline mu_power_mode_t MU_ GetOtherCorePowerMode(MU_Type *base)
Gets the power mode of the other core.

This function gets the power mode of the other core.
Parameters
* base — MU peripheral base address.

Returns
Power mode of the other core.

FSL. MU DRIVER_VERSION
MU driver version.

enum _mu_ status_flags
MU status flags.

Values:

enumerator kMU_ TxOEmptyFlag
TX0 empty.

enumerator kMU_ Tx1EmptyFlag
TX1 empty.

enumerator kMU_ Tx2EmptyFlag
TX2 empty.

enumerator kMU_ Tx3EmptyFlag
TX3 empty.

enumerator kMU_ RxOFullFlag
RXO full.

enumerator kMU_ Rx1FullFlag
RX1 full.

enumerator kMU_ Rx2FullFlag
RX2 full.

enumerator kMU_ Rx3FullFlag
RX3 full.

enumerator kMU _GenIntOFlag
General purpose interrupt 0 pending.

enumerator kMU_ GenInt1Flag
General purpose interrupt 1 pending.

enumerator kMU_ GenInt2Flag
General purpose interrupt 2 pending.

2.19. MU: Messaging Unit 225

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kMU_ GenInt3Flag
General purpose interrupt 3 pending.

enumerator kMU __EventPendingFlag
MU event pending.

enumerator kMU _ FlagsUpdatingFlag
MU flags update is on-going.
enum _ mu_ interrupt_ enable
MU interrupt source to enable.
Values:

enumerator kMU_ TxOEmptyInterruptEnable
TX0 empty.

enumerator kMU_ Tx1EmptyInterruptEnable
TX1 empty.

enumerator kMU_ Tx2EmptyInterruptEnable
TX2 empty.

enumerator kMU_ Tx3EmptyInterruptEnable
TX3 empty.

enumerator kMU _RxOFulllnterruptEnable
RXO full.

enumerator kMU _Rx1FulllnterruptEnable
RX1 full.

enumerator kMU _Rx2FulllnterruptEnable
RX2 full.

enumerator kMU _Rx3FulllnterruptEnable
RX3 full.

enumerator kMU __GenIntOInterruptEnable
General purpose interrupt 0.

enumerator kMU _GenlIntlInterruptEnable
General purpose interrupt 1.

enumerator kMU __GenlInt2InterruptEnable
General purpose interrupt 2.

enumerator kMU __GenlInt3InterruptEnable
General purpose interrupt 3.

enum _ mu_ interrupt_ trigger
MU interrupt that could be triggered to the other core.

Values:

enumerator kMU_ NmilnterruptTrigger
NMI interrupt.

enumerator kMU_ GenIntOInterruptTrigger
General purpose interrupt 0.

enumerator kMU_ GenInt1InterruptTrigger
General purpose interrupt 1.

226

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kMU_ GenlInt2InterruptTrigger
General purpose interrupt 2.

enumerator kMU_ GenInt3InterruptTrigger
General purpose interrupt 3.

enum _mu_ msg_reg index
MU message register.

Values:
enumerator kMU_ MsgReg0
enumerator kMU_ MsgRegl
enumerator kMU_ MsgReg?2
enumerator kMU_ MsgReg3
typedef enum _mu_msg reg_index mu_msg_reg_index_t
MU message register.
MU__CR_NMI_MASK
MU_BUSY_POLL_COUNT
Maximum polling iterations for MU waiting loops.

This parameter defines the maximum number of iterations for any polling loop in the MU
code before timing out and returning an error.

It applies to all waiting loops in MU driver, such as waiting for TX register to be empty or
waiting for RX register to be full.

This is a count of loop iterations, not a time-based value.

If defined as 0, polling loops will continue indefinitely until their exit condition is met,
which could potentially cause the system to hang if a core becomes unresponsive.

MU_GET_CORE_FLAG(flags)
MU_GET_STAT FLAG(flags)
MU GET TX_ FLAG(flags)
MU_GET_RX_FLAG(flags)
MU_GET_GI_FLAG(flags)

2.20 OCOTP: On Chip One-Time Programmable controller.

FSL _OCOTP_DRIVER VERSION
OCOTP driver version.

_ocotp_status Error codes for the OCOTP driver.
Values:

enumerator kStatus. OCOTP__ AccessError
eFuse and shadow register access error.

enumerator kStatus. OCOTP__ CrcFail
CRC check failed.

2.20. OCOTP: On Chip One-Time Programmable controller. 227

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus. OCOTP_ ReloadError
Error happens during reload shadow register.

enumerator kStatus_ OCOTP_ ProgramFail
Fuse programming failed.

enumerator kStatus OCOTP_ Locked
Fuse is locked and cannot be programmed.

void OCOTP_Init(OCOTP_Type *base, uint32_t srcClock_Hz)
Initializes OCOTP controller.

Parameters
* base — OCOTP peripheral base address.

* srcClock__Hz — source clock frequency in unit of Hz. When the macro
FSL_FEATURE_OCOTP_HAS_TIMING_CTRL is defined as 0, this parameter
is not used, application could pass in 0 in this case.

void OCOTP_ Deinit(OCOTP_Type *base)
De-initializes OCOTP controller.

Return values
kStatus_Success — upon successful execution, error status otherwise.

static inline bool OCOTP_ CheckBusyStatus(OCOTP_Type *base)

Checking the BUSY bit in CTRL register. Checking this BUSY bit will help confirm if the
OCOTP controller is ready for access.

Parameters
* base — OCOTP peripheral base address.

Return values
true — for bit set and false for cleared.

static inline bool OCOTP__CheckErrorStatus(OCOTP_Type *base)
Checking the ERROR bit in CTRL register.

Parameters
* base — OCOTP peripheral base address.

Return values
true — for bit set and false for cleared.

static inline void OCOTP__ClearErrorStatus(OCOTP_Type *base)
Clear the error bit if this bit is set.

Parameters
* base — OCOTP peripheral base address.

status_t OCOTP_ ReloadShadowRegister(OCOTP_Type *base)

Reload the shadow register. This function will help reload the shadow register without
reseting the OCOTP module. Please make sure the OCOTP has been initialized before calling
this APL

Parameters

* base — OCOTP peripheral base addess.
Return values

* kStatus_ Success — Reload success.

e kStatus OCOTP_ ReloadError — Reload failed.

228 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t OCOTP_ ReadFuseShadowRegister(OCOTP_Type *base, uint32_t address)
Read the fuse shadow register with the fuse addess.

Deprecated:
Use OCOTP_ReadFuseShadowRegisterExt instead of this function.

Parameters
* base — OCOTP peripheral base address.
* address — the fuse address to be read from.

Returns
The read out data.

status_t OCOTP_ ReadFuseShadowRegisterExt(OCOTP_Type *base, uint32_t address, uint32_t
*data, uint8_t fuseWords)

Read the fuse shadow register from the fuse addess.

This function reads fuse from address, how many words to read is specified by the parameter
fuseWords. This function could read at most OCOTP_READ_FUSE _DATA_COUNT fuse word
one time.

Parameters
* base — OCOTP peripheral base address.
* address — the fuse address to be read from.
* data — Data array to save the readout fuse value.
* fuseWords — How many words to read.
Return values
* kStatus_Success — Read success.
* kStatus_ Fail — Error occurs during read.

status_t OCOTP_ WriteFuseShadowRegister(OCOTP_Type *base, uint32_t address, uint32_t data)

Write the fuse shadow register with the fuse addess and data. Please make sure the wrtie
address is not locked while calling this API.

Parameters
* base — OCOTP peripheral base address.
* address — the fuse address to be written.
* data — the value will be writen to fuse address.

Return values
write — status, kStatus_Success for success and kStatus_Fail for failed.

status_t OCOTP_ WriteFuseShadowRegister WithLock(OCOTP_Type *base, uint32_t address,
uint32_t data, bool lock)

Write the fuse shadow register and lock it.
Please make sure the wrtie address is not locked while calling this API.

Some OCOTP controller supports ECC mode and redundancy mode (see reference manan-
ual for more details). OCOTP controller will auto select ECC or redundancy mode to pro-
gram the fuse word according to fuse map definition. In ECC mode, the 32 fuse bits in one
word can only be written once. In redundancy mode, the word can be written more than
once as long as they are different fuse bits. Set parameter lock as true to force use ECC mode.

Parameters

2.20. OCOTP: On Chip One-Time Programmable controller. 229

MCUXpresso SDK Documentation, Release 25.09.00

* base — OCOTP peripheral base address.

* address — The fuse address to be written.

* data — The value will be writen to fuse address.

* lock — Lock or unlock write fuse shadow register operation.
Return values

* kStatus_ Success — Program and reload success.

* kStatus_ OCOTP_ Locked — The eFuse word is locked and cannot be pro-
grammed.

* kStatus_ OCOTP_ ProgramFail — eFuse word programming failed.

* kStatus. OCOTP_ ReloadError — eFuse word programming success, but er-
ror happens during reload the values.

* kStatus OCOTP_AccessError — Cannot access eFuse word.

static inline uint32_t OCOTP__GetVersion(OCOTP_Type *base)
Get the OCOTP controller version from the register.

Parameters
* base — OCOTP peripheral base address.

Return values
return — the version value.

OCOTP_READ_ FUSE DATA COUNT

2.21 PWM: Pulse Width Modulation Driver

status_t PWM_ Init(PWM_Type *base, const pwm_config_t *config)
Ungates the PWM clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the PWM driver.

Parameters
* base — PWM peripheral base address
* config — Pointer to user’s PWM config structure.

Returns
kStatus_Success means success; else failed.

void PWM_ Deinit(PWM_Type *base)
Gate the PWM submodule clock.

Parameters
* base — PWM peripheral base address

void PWM__GetDefaultConfig(pwm_config_t *config)
Fill in the PWM config struct with the default settings.

The default values are:

230 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

config->enableStopMode = false;
config->enableDozeMode = false;
config->enableWaitMode = false;
config->enableDozeMode = false;
config->clockSource = kPWM__LowFrequencyClock;
config->prescale = 0U;

config->outputConfig = kPWM_ SetAtRollover AndClear Atcomparison;
config->fifoWater = kPWM_ FIFOWaterMark_ 2;
config->sampleRepeat = kPWM__EachSampleOnce;
config->byteSwap = kPWM _ ByteNoSwap;
config->halfWordSwap = kPWM__HalfWordNoSwap;

Parameters
* config — Pointer to user’s PWM config structure.

static inline void PWM_ StartTimer(PWM_Type *base)
Starts the PWM counter when the PWM is enabled.

When the PWM is enabled, it begins a new period, the output pin is set to start a new period
while the prescaler and counter are released and counting begins.

Parameters
* base —- PWM peripheral base address

static inline void PWM__StopTimer(PWM_Type *base)
Stops the PWM counter when the pwm is disabled.

Parameters
* base — PWM peripheral base address

static inline void PWM__Enablelnterrupts(PWM_Type *base, uint32_t mask)
Enables the selected PWM interrupts.

Parameters
* base —- PWM peripheral base address

» mask — The interrupts to enable. This is a logical OR of members of the
enumeration pwm_interrupt_enable_t

static inline void PWM__ DisableInterrupts(PWM_Type *base, uint32_t mask)
Disables the selected PWM interrupts.

Parameters
* base —- PWM peripheral base address

» mask — The interrupts to disable. This is a logical OR of members of the
enumeration pwm_interrupt_enable_t

static inline uint32_t PWM_ GetEnabledInterrupts(PWM_Type *base)
Gets the enabled PWM interrupts.

Parameters
* base —- PWM peripheral base address

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
pwm_interrupt_enable_t

static inline uint32_t PWM__GetStatusFlags(PWM_Type *base)
Gets the PWM status flags.

Parameters

2.21. PWM: Pulse Width Modulation Driver 231

MCUXpresso SDK Documentation, Release 25.09.00

* base —- PWM peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
pwm_status_flags_t

static inline void PWM__ clearStatusFlags(PWM_Type *base, uint32_t mask)
Clears the PWM status flags.

Parameters
* base —- PWM peripheral base address

» mask — The status flags to clear. This is a logical OR of members of the
enumeration pwm_status_flags_t

static inline uint32_t PWM_ GetFIFOAvailable(PWM_Type *base)
Gets the PWM FIFO available.

Parameters
* base —- PWM peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
pwm_fifo_available_t

static inline void PWM __SetSampleValue(PWM_Type *base, uint32_t value)
Sets the PWM sample value.

Parameters
* base - PWM peripheral base address

* value — The sample value. This is the input to the 4x16 FIFO. The value in
this register denotes the value of the sample being currently used.

static inline uint32_t PWM_ GetSampleValue(PWM_Type *base)
Gets the PWM sample value.

Parameters
* base — PWM peripheral base address

Returns
The sample value. It can be read only when the PWM is enable.

FSL PWM_DRIVER_ VERSION
enum _ pwm_ clock_source
PWM clock source select.
Values:

enumerator kPWM_ PeripheralClock
The Peripheral clock is used as the clock

enumerator kPWM_ HighFrequencyClock
High-frequency reference clock is used as the clock

enumerator kPWM_ LowFrequencyClock
Low-frequency reference clock(32KHz) is used as the clock

enum _pwm_ fifo water mark
PWM FIFO water mark select. Sets the data level at which the FIFO empty flag will be set.

Values:

232 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPWM_ FIFOWaterMark 1
FIFO empty flag is set when there are more than or equal to 1 empty slots

enumerator kPWM_ FIFOWaterMark 2
FIFO empty flag is set when there are more than or equal to 2 empty slots
enumerator kPWM_ FIFOWaterMark 3
FIFO empty flag is set when there are more than or equal to 3 empty slots
enumerator kPWM__FIFOWaterMark_ 4
FIFO empty flag is set when there are more than or equal to 4 empty slots
enum _pwm_ byte data_ swap

PWM byte data swap select. It determines the byte ordering of the 16-bit data when it goes
into the FIFO from the sample register.

Values:

enumerator kPWM_ ByteNoSwap
byte ordering remains the same

enumerator kPWM_ ByteSwap
byte ordering is reversed

enum _pwm_ half word data_swap
PWM half-word data swap select.

Values:

enumerator kPWM_ HalfWordNoSwap
Half word swapping does not take place

enumerator kPWM_ HalfWordSwap
Half word from write data bus are swapped

enum _pwm_ output_ configuration
PWM Output Configuration.

Values:

enumerator kPWM__SetAtRolloverAndClear Atcomparison
Output pin is set at rollover and cleared at comparison
enumerator kPWM__ ClearAtRollover AndSet Atcomparison
Output pin is cleared at rollover and set at comparison
enumerator kPWM_ NoConfigure
PWM output is disconnected
enum _pwm_ sample_repeat

PWM FIFO sample repeat It determines the number of times each sample from the FIFO is
to be used.

Values:

enumerator kPWM_ EachSampleOnce
Use each sample once

enumerator kPWM_ EachSampletwice
Use each sample twice

enumerator kPWM_ EachSampleFourTimes
Use each sample four times

2.21. PWM: Pulse Width Modulation Driver 233

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPWM__EachSampleEight Times
Use each sample eight times

enum _ pwm__ interrupt_ enable
List of PWM interrupt options.
Values:
enumerator kPWM_ FIFOEmptyInterruptEnable
This bit controls the generation of the FIFO Empty interrupt.
enumerator kPWM_ RolloverInterruptEnable
This bit controls the generation of the Rollover interrupt.
enumerator kPWM_ ComparelnterruptEnable
This bit controls the generation of the Compare interrupt
enum _pwm_ status_flags
List of PWM status flags.
Values:

enumerator kPWM_ FIFOEmptyFlag

This bit indicates the FIFO data level in comparison to the water level set by FWM field
in the control register.

enumerator kPWM_ RolloverFlag
This bit shows that a roll-over event has occurred.
enumerator kPWM_ CompareFlag
This bit shows that a compare event has occurred.
enumerator kPWM_ FIFOWriteErrorFlag
This bit shows that an attempt has been made to write FIFO when it is full.
enum _pwm_ fifo available
List of PWM FIFO available.
Values:
enumerator kPWM_ NoDatalnFIFOFlag
No data available
enumerator kPWM_ OneWordInFIFOFlag
1 word of data in FIFO
enumerator kPWM_ TwoWordsInFIFOFlag
2 word of data in FIFO
enumerator kPWM_ ThreeWordsInFIFOFlag
3 word of data in FIFO
enumerator kPWM_ FourWordsInFIFOFlag
4 word of data in FIFO
typedef enum _pwm_clock_source pwm_ clock_source_t
PWM clock source select.
typedef enum _pwm_fifo_water_mark pwm_ fifo_ water mark_t
PWM FIFO water mark select. Sets the data level at which the FIFO empty flag will be set.
typedef enum _pwm_byte_data_swap pwm_ byte data_swap_t

PWM byte data swap select. It determines the byte ordering of the 16-bit data when it goes
into the FIFO from the sample register.

234 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _pwm_half word_data_swap pwm__half word_ data_swap_t
PWM half-word data swap select.

typedef enum _pwm_output_configuration pwm_ output_ configuration_t
PWM Output Configuration.

typedef enum _pwm_sample_repeat pwm__sample_ repeat_t

PWM FIFO sample repeat It determines the number of times each sample from the FIFO is
to be used.

typedef enum _pwm_interrupt_enable pwm__interrupt_ enable_ t
List of PWM interrupt options.

typedef enum _pwm_status_flags pwm_ status_flags t
List of PWM status flags.

typedef enum _pwm_fifo_available pwm_ fifo_available_t
List of PWM FIFO available.

typedef struct _pwm_config pwm_ config_t
static inline void PWM__ SoftwareReset(PWM_Type *base)
Sofrware reset.

PWM is reset when this bit is set to 1. It is a self clearing bit. Setting this bit resets all the
registers to their reset values except for the STOPEN, DOZEN, WAITEN, and DBGEN bits in
this control register.

Parameters
* base —- PWM peripheral base address

static inline void PWM __SetPeriodValue(PWM_Type *base, uint32_t value)
Sets the PWM period value.

Parameters
* base — PWM peripheral base address

* value — The period value. The PWM period register (PWM_PWMPR) deter-
mines the period of the PWM output signal. Writing OXFFFF to this register
will achieve the same result as writing OXFFFE. PWMO (Hz) = PCLK(Hz) /
(period +2)

static inline uint32_t PWM__GetPeriodValue(PWM_Type *base)
Gets the PWM period value.

Parameters
* base - PWM peripheral base address

Returns
The period value. The PWM period register (PWM_PWMPR) determines the
period of the PWM output signal.

static inline uint32_t PWM_ GetCounterValue(PWM_Type *base)
Gets the PWM counter value.

Parameters
* base —- PWM peripheral base address

Returns
The counter value. The current count value.

struct _pwm__config
#include <fsl_pwm.h>

2.21. PWM: Pulse Width Modulation Driver 235

MCUXpresso SDK Documentation, Release 25.09.00

Public Members
bool enableStopMode
True: PWM continues to run in stop mode; False: PWM is paused in stop mode.

bool enableDozeMode
True: PWM continues to run in doze mode; False: PWM is paused in doze mode.

bool enableWaitMode
True: PWM continues to run in wait mode; False: PWM is paused in wait mode.

bool enableDebugMode
True: PWM continues to run in debug mode; False: PWM is paused in debug mode.

uint16_t prescale

Pre-scaler to divide down the clock The prescaler value is not more than 0xFFF. Divide
by (value + 1)

pwm_clock_source_t clockSource
Clock source for the counter

pwm_output_configuration_t outputConfig
Set the mode of the PWM output on the output pin.

pwm_fifo_water_mark_t fifoWater
Set the data level for FIFO.

pwm_sample_repeat_t sampleRepeat
The number of times each sample from the FIFO is to be used.

pwm_byte_data_swap_t byteSwap

It determines the byte ordering of the 16-bit data when it goes into the FIFO from the
sample register.

pwm_half word_data_swap_t halfWordSwap

It determines which half word data from the 32-bit IP Bus interface is written into the
lower 16 bits of the sample register.

2.22 QSPI: Quad Serial Peripheral Interface

2.23 Quad Serial Peripheral Interface Driver

uint32_t QSPI_ GetInstance(QuadSPI_Type *base)
Get the instance number for QSPI.

Parameters
* base — QSPI base pointer.

void QSPI_Init(QuadSPI_Type *base, gspi_config_t *config, uint32_t srcClock_Hz)
Initializes the QSPI module and internal state.

This function enables the clock for QSPI and also configures the QSPI with the input config-
ure parameters. Users should call this function before any QSPI operations.

Parameters
* base — Pointer to QuadSPI Type.

* config — QSPI configure structure.

236 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

* srcClock__Hz — QSPI source clock frequency in Hz.

void QSPI_GetDefaultQspiConfig(gspi_config t *config)
Gets default settings for QSPL

Parameters
* config — QSPI configuration structure.

void QSPI_ Deinit(QuadSPI_Type *base)
Deinitializes the QSPI module.

Clears the QSPI state and QSPI module registers.
Parameters
* base — Pointer to QuadSPI Type.

void QSPI_SetFlashConfig(QuadSPI_Type *base, gspi_flash_config_t *config)
Configures the serial flash parameter.

This function configures the serial flash relevant parameters, such as the size, command,
and so on. The flash configuration value cannot have a default value. The user needs to
configure it according to the QSPI features.

Parameters
* base — Pointer to QuadSPI Type.
* config — Flash configuration parameters.

void QSPI_SetDqsConfig(QuadSPI_Type *base, gspi_dqs_config t *config)
Configures the serial flash DQS parameter.

This function configures the serial flash DQS relevant parameters, such as the delay chain
tap number, . DQS shift phase, whether need to inverse and the rxc sample clock selection.

Parameters
* base — Pointer to QuadSPI Type.
* config — Dgs configuration parameters.

void QSPI_SoftwareReset(QuadSPI_Type *base)
Software reset for the QSPI logic.

This function sets the software reset flags for both AHB and buffer domain and resets both
AHB buffer and also IP FIFOs.

Parameters
* base — Pointer to QuadSPI Type.

static inline void QSPI__Enable(QuadSPI_Type *base, bool enable)
Enables or disables the QSPI module.

Parameters
* base — Pointer to QuadSPI Type.
* enable — True means enable QSPI, false means disable.

static inline uint32_t QSPI GetStatusFlags(QuadSPI_Type *base)
Gets the state value of QSPI.

Parameters
* base — Pointer to QuadSPI Type.

Returns
status flag, use status flag to AND _qspi_flags could get the related status.

2.23. Quad Serial Peripheral Interface Driver 237

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t QSPI_ GetErrorStatusFlags(QuadSPI_Type *base)
Gets QSPI error status flags.

Parameters
* base — Pointer to QuadSPI Type.

Returns
status flag, use status flag to AND _qspi_error_{flags could get the related status.

static inline void QSPI_ ClearErrorFlag(QuadSPI_Type *base, uint32_t mask)
Clears the QSPI error flags.

Parameters
* base — Pointer to QuadSPI Type.

* mask — Which kind of QSPI flags to be cleared, a combination of
_qgspi_error_flags.

static inline void QSPI_ EnableInterrupts(QuadSPI_Type *base, uint32_t mask)
Enables the QSPI interrupts.

Parameters
* base — Pointer to QuadSPI Type.
» mask — QSPI interrupt source.

static inline void QSPI_ DisableInterrupts(QuadSPI_Type *base, uint32_t mask)
Disables the QSPI interrupts.

Parameters
* base — Pointer to QuadSPI Type.
» mask — QSPI interrupt source.

static inline void QSPI_EnableDMA(QuadSPI_Type *base, uint32_t mask, bool enable)
Enables the QSPI DMA source.

Parameters
* base — Pointer to QuadSPI Type.
* mask — QSPI DMA source.
* enable — True means enable DMA, false means disable.

static inline uint32_t QSPI_ GetTxDataRegisterAddress(QuadSPI_Type *base)
Gets the Tx data register address. It is used for DMA operation.

Parameters
* base — Pointer to QuadSPI Type.

Returns
QSPI Tx data register address.

uint32_t QSPI_ GetRxDataRegister Address(QuadSPI_Type *base)
Gets the Rx data register address used for DMA operation.

This function returns the Rx data register address or Rx buffer address according to the Rx
read area settings.

Parameters
* base — Pointer to QuadSPI Type.

Returns
QSPI Rx data register address.

238 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline void QSPI_SetIPCommandAddress(QuadSPI_Type *base, uint32_t addr)
Sets the IP command address.

Parameters
* base — Pointer to QuadSPI Type.
* addr - IP command address.

static inline void QSPI_SetIPCommandSize(QuadSPI_Type *base, uint32_t size)
Sets the IP command size.

Parameters
* base — Pointer to QuadSPI Type.
* size — IP command size.

void QSPI_ ExecutelPCommand(QuadSPI_Type *base, uint32_t index)
Executes IP commands located in LUT table.

Parameters
* base — Pointer to QuadSPI Type.
* index — IP command located in which LUT table index.

void QSPI_ExecuteAHBCommand(QuadSPI_Type *base, uint32_t index)
Executes AHB commands located in LUT table.

Parameters
* base — Pointer to QuadSPI Type.
* index — AHB command located in which LUT table index.

void QSPI_UpdateLUT(QuadSPI_Type *base, uint32_t index, uint32_t *cmd)
Updates the LUT table.

Parameters
* base — Pointer to QuadSPI Type.

* index — Which LUT index needs to be located. It should be an integer di-
vided by 4.

¢ cmd — Command sequence array.

static inline void QSPI_ ClearFifo(QuadSPI_Type *base, uint32_t mask)
Clears the QSPI FIFO logic.

Parameters
* base — Pointer to QuadSPI Type.
» mask — Which kind of QSPI FIFO to be cleared.

static inline void QSPI_ClearCommandSequence(QuadSPI_Type *base, gspi command_seq_t seq)
@ brief Clears the command sequence for the IP/buffer command.

This function can reset the command sequence.
Parameters
* base — QSPI base address.

* seq — Which command sequence need to reset, IP command, buffer com-
mand or both.

2.23. Quad Serial Peripheral Interface Driver 239

MCUXpresso SDK Documentation, Release 25.09.00

void QSPI_SetReadDataArea(QuadSPI_Type *base, gspi_read_area_t area)
@ brief Set the RX buffer readout area.

This function can set the RX buffer readout, from AHB bus or IP Bus.
Parameters
* base — QSPI base address.
* area — QSPI Rx buffer readout area. AHB bus buffer or IP bus buffer.

void QSPI_WriteBlocking(QuadSPI_Type *base, const uint32_t *buffer, size_t size)
Sends a buffer of data bytes using a blocking method.

Note: This function blocks via polling until all bytes have been sent.

Parameters
* base — QSPI base pointer
* buffer — The data bytes to send
* size — The number of data bytes to send

static inline void QSPI_ WriteData(QuadSPI_Type *base, uint32_t data)
Writes data into FIFO.

Parameters
* base — QSPI base pointer
* data — The data bytes to send

void QSPI_ReadBlocking(QuadSPI_Type *base, uint32_t *buffer, size_t size)
Receives a buffer of data bytes using a blocking method.

Note: This function blocks via polling until all bytes have been sent. Users shall notice that
this receive size shall not bigger than 64 bytes. As this interface is used to read flash status
registers. For flash contents read, please use AHB bus read, this is much more efficiency.

Parameters
* base — QSPI base pointer
* buffer — The data bytes to send
* size — The number of data bytes to receive

uint32_t QSPI_ReadData(QuadSPI_Type *base)
Receives data from data FIFO.

Parameters
* base — QSPI base pointer

Returns
The data in the FIFO.

static inline void QSPI_ TransferSendBlocking(QuadSPI_Type *base, gspi_transfer_t *xfer)
Writes data to the QSPI transmit buffer.

This function writes a continuous data to the QSPI transmit FIFO. This function is a block
function and can return only when finished. This function uses polling methods.

Parameters

240 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

* base — Pointer to QuadSPI Type.
» xfer — QSPI transfer structure.

static inline void QSPI_ TransferReceiveBlocking(QuadSPI_Type *base, gspi_transfer._t *xfer)
Reads data from the QSPI receive buffer in polling way.

This function reads continuous data from the QSPI receive buffer/FIFO. This function is a
blocking function and can return only when finished. This function uses polling methods.
Users shall notice that this receive size shall not bigger than 64 bytes. As this interface is
used to read flash status registers. For flash contents read, please use AHB bus read, this is
much more efficiency.

Parameters
* base — Pointer to QuadSPI Type.
* xfer — QSPI transfer structure.

FSL_QSPI_DRIVER_VERSION
QSPI driver version.

Status structure of QSPI.
Values:

enumerator kStatus_ QSPI_Idle
QSPI is in idle state

enumerator kStatus_ QSPI_ Busy
QSPI is busy

enumerator kStatus_ QSPI_ Error
Error occurred during QSPI transfer

enum _ gspi_read_ area
QSPI read data area, from IP FIFO or AHB buffer.

Values:

enumerator kQSPI_ReadAHB
QSPI read from AHB buffer.

enumerator kQSPI_ReadIP
QSPI read from IP FIFO.

enum _ gspi_ command__seq
QSPI command sequence type.

Values:

enumerator kQSPI_IPSeq
IP command sequence

enumerator kQSPI_ BufferSeq
Buffer command sequence

enumerator kQSPI_AllSeq
enum _ gspi_ fifo
QSPI buffer type.

Values:

2.23. Quad Serial Peripheral Interface Driver 241

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQSPI_ TxFifo
QSPI Tx FIFO

enumerator kQSPI_ RxFifo
QSPI Rx FIFO

enumerator kQSPI__ AllFifo
QSPI all FIFO, including Tx and Rx

enum _ gspi_ endianness

QSPI transfer endianess.
Values:

enumerator kQSPI_ 64BigEndian
64 bits big endian

enumerator kQSPI_ 32LittleEndian
32 bit little endian

enumerator kQSPI__32BigEndian
32 bit big endian

enumerator kQSPI_ 64LittleEndian
64 bit little endian

enum _ gspi_ error_ flags

QSPI error flags.
Values:

enumerator kQSPI_ TxBufferFill
Tx buffer fill flag

enumerator kQSPI TxBufferUnderrun
Tx buffer underrun flag
enumerator kQSPI_ Illegallnstruction
Ilegal instruction error flag
enumerator kQSPI_ RxBufferOverflow
Rx buffer overflow flag
enumerator kQSPI_ RxBufferDrain
Rx buffer drain flag
enumerator kQSPI__ AHBIllegalTransaction
AHB illegal transaction error flag
enumerator kQSPI__ AHBIllegalBurstSize
AHB illegal burst error flag
enumerator kQSPI_ AHBBufferOverflow
AHB buffer overflow flag
enumerator kQSPI_IPCommandTriggerDuring AHBAccess
IP command trigger during AHB access error
enumerator kQSPI_IPCommandTriggerDuringIPAccess
IP command trigger cannot be executed

enumerator kQSPI_IPCommandTransactionFinished
IP command transaction finished flag

242

Chapter 2

. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQSPI_ FlagAll
All error flag
enum _ gspi_ flags
QSPI state bit.
Values:
enumerator kQSPI_ TxBufferFull
Tx buffer full flag
enumerator kQSPI_TxDMA
Tx DMA is requested or running
enumerator kQSPI_TxWatermark
Tx buffer watermark available
enumerator kQSPI__RxDMA
Rx DMA is requesting or running
enumerator kQSPI_ RxBufferFull
Rx buffer full
enumerator kQSPI_RxWatermark
Rx buffer watermark exceeded
enumerator kQSPI_AHB3BufferFull
AHB buffer 3 full
enumerator kQSPI_AHB2BufferFull
AHB buffer 2 full
enumerator kQSPI_AHBI1BufferFull
AHB buffer 1 full
enumerator kQSPI_AHBOBufferFull
AHB buffer 0 full
enumerator kQSPI__ AHB3BufferNotEmpty
AHB buffer 3 not empty
enumerator kQSPI__ AHB2BufferNotEmpty
AHB buffer 2 not empty
enumerator kQSPI__ AHB1BufferNotEmpty
AHB buffer 1 not empty
enumerator kQSPI__ AHBOBufferNotEmpty
AHB buffer 0 not empty
enumerator kQSPI__ AHBTransactionPending
AHB access transaction pending
enumerator kQSPI_AHBAccess
AHB access
enumerator kQSPI_TPAccess
IP access

enumerator kQSPI_Busy
Module busy

2.23. Quad Serial Peripheral Interface Driver

243

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQSPI_StateAll
All flags

enum _ gspi_ interrupt__enable
QSPI interrupt enable.

Values:

enumerator kQSPI_ TxBufferFilllnterruptEnable
Tx buffer fill interrupt enable

enumerator kQSPI_ TxBufferUnderrunInterruptEnable
Tx buffer underrun interrupt enable

enumerator kQSPI_ TIllegallnstructionInterruptEnable
Illegal instruction error interrupt enable

enumerator kQSPI_RxBufferOverflowInterruptEnable
Rx buffer overflow interrupt enable

enumerator kQSPI_RxBufferDrainInterruptEnable
Rx buffer drain interrupt enable

enumerator kQSPI__AHBIllegal TransactionInterruptEnable
AHB illegal transaction error interrupt enable

enumerator kQSPI__ AHBIllegalBurstSizeInterruptEnable
AHB illegal burst error interrupt enable

enumerator kQSPI__ AHBBufferOverflowInterruptEnable
AHB buffer overflow interrupt enable

enumerator kQSPI_IPCommandTriggerDuring A HBAccessInterruptEnable
IP command trigger during AHB access error

enumerator kQSPI_IPCommandTriggerDuringlPAccessInterruptEnable
IP command trigger cannot be executed

enumerator kQSPI_TPCommandTransactionFinishedInterruptEnable
IP command transaction finished interrupt enable

enumerator kQSPI__AlllnterruptEnable
All error interrupt enable

enum _ gspi_dma_ enable
QSPI DMA request flag.

Values:

enumerator kQSPI_ TxBufferFillDMAEnable
Tx buffer fill DMA

enumerator kQSPI_ RxBufferDrainDMAEnable
Rx buffer drain DMA

enumerator kQSPI__AIIDDMAEnable
All DMA source

enum _gspi_dgs_phrase_shift
Phrase shift number for DQS mode.

Values:

244 Chapter 2

. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQSPI_DQSNoPhraseShift
No phase shift

enumerator kQSPI_DQSPhraseShift45Degree
Select 45 degree phase shift
enumerator kQSPI_DQSPhraseShift90Degree
Select 90 degree phase shift
enumerator kQSPI__DQSPhraseShift135Degree
Select 135 degree phase shift
enum _ gspi_dqgs_read_sample_ clock
Qspi read sampling option.
Values:
enumerator kQSPI_ReadSampleClkInternalLoopback
Read sample clock adopts internal loopback mode.
enumerator kQSPI_ReadSampleClkLoopbackFromDqsPad
Dummy Read strobe generated by QSPI Controller and loopback from DQS pad.
enumerator kQSPI_ReadSampleClkExternallnputFromDgsPad
Flash provided Read strobe and input from DQS pad.
typedef enum _gspi_read_area qspi_read_area_t
QSPI read data area, from IP FIFO or AHB buffer.
typedef enum _qgspi_command_seq qspi_ command_ seq_t
QSPI command sequence type.
typedef enum _gspi_fifo qspi_ fifo_t
QSPI buffer type.
typedef enum _gspi_endianness qgspi_ endianness_ t
QSPI transfer endianess.
typedef enum _qgspi_dqs_phrase_shift qspi_dqgs_phrase shift_t
Phrase shift number for DQS mode.
typedef enum _gspi_dqs_read_sample_clock qspi_dgs_read_sample_clock t
Qspi read sampling option.
typedef struct QspiDQSConfig qspi_ dqs_ config_t
DQS configure features.
typedef struct QspiFlashTiming gspi_flash__timing_t
Flash timing configuration.
typedef struct QspiConfig qspi_config_t
QSPI configuration structure.
typedef struct _qgspi_flash_config qspi_flash_ config_t
External flash configuration items.
typedef struct _qspi_transfer qspi_ transfer t
Transfer structure for QSPI.

typedef struct _ip_command_config ip_ command_ config_t
16-bit access reg for IPCR register

2.23. Quad Serial Peripheral Interface Driver 245

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _qspi_delay_chain_config qspi_ delay_ chain_ config_t
Slave delay chain configuration items.

QSPI_LUT_SEQ(cmd0, pad0, op0, cmd1, padi, opl)
Macro functions for LUT table.

FSL_FEATURE_QSPI_LUT_SEQ_UNIT

QSPI_CMD
Macro for QSPI LUT command.

QSPI_ADDR
QSPI_DUMMY
QSPI_MODE
QSPI_MODE2

QSPI MODE4
QSPI_READ
QSPI_WRITE
QSPI_JMP_ON_CS
QSPI_ADDR_DDR
QSPI MODE DDR
QSPI_MODE2 DDR
QSPI_MODE4 DDR
QSPI_READ_ DDR
QSPI_WRITE_DDR
QSPI DATA LEARN
QSPI_CMD_DDR
QSPI_CADDR
QSPI_CADDR_DDR
QSPI_STOP

QSPI_PAD 1
Macro for QSPI PAD.

QSPI PAD 2
QSPI PAD 4
QSPI_PAD 8

struct QspiDQSConfig
#include <fsl_gspi.h> DQS configure features.

246 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Public Members
uint32_t portADelayTapNum

Delay chain tap number selection for QSPI port A DQS
qspi_dqs_phrase_shift_t shift

Phase shift for internal DQS generation

qspi_dqs_read_sample_clock_t rxSampleClock
Read sample clock for Dgs.

bool enableDQSClkInverse
Enable inverse clock for internal DQS generation

struct QspiFlashTiming
#include <fsl_gspi.h> Flash timing configuration.

Public Members
uint32_t dataHoldTime
Serial flash data in hold time

uint32_t CSHoldTime

Serial flash CS hold time in terms of serial flash clock cycles
uint32_t CSSetupTime

Serial flash CS setup time in terms of serial flash clock cycles

struct QspiConfig
#include <fsl_qgspi.h> QSPI configuration structure.

Public Members
uint32_t clockSource
Clock source for QSPI module

uint32_t baudRate
Serial flash clock baud rate

uint8_t txWatermark

QSPI transmit watermark value
uint8_t rxWatermark

QSPI receive watermark value.

uint32_t AHBbufferSize[FSL_FEATURE_QSPI_AHB_BUFFER_COUNT]
AHB buffer size.

uint8_t AHBbufferMaster[FSL_FEATURE_QSPI_AHB_BUFFER_COUNT]
AHB buffer master.

bool enableAHBbuffer3AllMaster
Is AHB buffer3 for all master.

qspi_read_area_t area
Which area Rx data readout

bool enableQspi
Enable QSPI after initialization

struct _ gspi_ flash_ config
#include <fsl_gspi.h> External flash configuration items.

2.23. Quad Serial Peripheral Interface Driver 247

MCUXpresso SDK Documentation, Release 25.09.00

Public Members
uint32_t flashA1Size
Flash A1 size
uint32_t flashA2Size
Flash A2 size
uint32_t lookuptable[FSL_FEATURE_QSPI_LUT_DEPTH]
Flash command in LUT
uint32_t dataHold Time
Data line hold time.
uint32_t CSHoldTime
CS line hold time
uint32_t CSSetupTime
CS line setup time
uint32_t cloumnspace
Column space size
uint32_t dataLearnValue
Data Learn value if enable data learn
qspi_endianness_t endian
Flash data endianess.
bool enableWord Address
If enable word address.

struct _ gspi_ transfer
#include <fsl_gspi.h> Transfer structure for QSPI.

Public Members
uint32_t *data
Pointer to data to transmit

size_t dataSize
Bytes to be transmit

struct _ip_ command_ config
#include <fsl_qspi.h> 16-bit access reg for IPCR register

struct _ gspi_ delay_ chain_ config
#include <fsl_qgspi.h> Slave delay chain configuration items.

Public Members

bool highFreqDelay
Selects delay chain for low/high frequency of operation.

union IPCR_ REG

248 Chapter 2

. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Public Members
IO uint32 t IPCR
IP Configuration Register

struct _ip_command_config BITFIELD

struct BITFIELD

Public Members
IO uintl6_t IDATZ
16-bit access for IDATZ field in IPCR register

IO uint8 t RESERVED 0
8-bit access for RESERVED_0 field in IPCR register

_ IO uint8_t SEQID
8-bit access for SEQID field in IPCR register

2.24 RDC: Resource Domain Controller

enum _ rdc_ interrupts
RDC interrupts.

Values:

enumerator kRDC_ RestoreCompletelnterrupt

Interrupt generated when the RDC has completed restoring state to a recently re-
powered memory regions.

enum _rdc_flags
RDC status.

Values:

enumerator kRDC PowerDownDomainOn
Power down domain is ON.

enum _ rdc_ access_ policy
Access permission policy.

Values:

enumerator kRDC_NoAccess
Could not read or write.

enumerator kRDC_ WriteOnly
Write only.

enumerator kRDC_ ReadOnly
Read only.

enumerator kRDC ReadWrite
Read and write.

typedef struct _rdc_hardware_config rdc_hardware_ config_t
RDC hardware configuration.

2.24. RDC: Resource Domain Controller 249

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _rdc_domain_assignment rdc_ domain_ assignment__t
Master domain assignment.

typedef struct _rdc_periph_access_config rdc_periph__access_ config_t
Peripheral domain access permission configuration.

typedef struct _rdc_mem_access_config rdc_mem__access_ config_t
Memory region domain access control configuration.

Note that when setting the rdc_mem_access_config t::baseAddress and
rdc_mem_access_config_t::endAddress, should be aligned to the region resolution, see
rdc_mem_t definitions.

typedef struct _rdc_mem_status rdc_mem_ status_t
Memory region access violation status.

void RDC_ Init(RDC_Type *base)
Initializes the RDC module.

This function enables the RDC clock.
Parameters
* base — RDC peripheral base address.

void RDC_ Deinit(RDC_Type *base)
De-initializes the RDC module.

This function disables the RDC clock.
Parameters
* base — RDC peripheral base address.

void RDC_ GetHardwareConfig(RDC_Type *base, rdc_hardware_config_t *config)
Gets the RDC hardware configuration.

This function gets the RDC hardware configurations, including number of bus masters,
number of domains, number of memory regions and number of peripherals.

Parameters
* base — RDC peripheral base address.
* config — Pointer to the structure to get the configuration.

static inline void RDC_ Enablelnterrupts(RDC_Type *base, uint32_t mask)
Enable interrupts.

Parameters
* base — RDC peripheral base address.
» mask — Interrupts to enable, it is OR’ed value of enum _rdc_interrupts.

static inline void RDC_ Disablelnterrupts(RDC_Type *base, uint32_t mask)
Disable interrupts.

Parameters
* base — RDC peripheral base address.
* mask — Interrupts to disable, it is OR’ed value of enum _rdc_interrupts.

static inline uint32_t RDC_ GetInterruptStatus(RDC_Type *base)
Get the interrupt pending status.

Parameters

* base — RDC peripheral base address.

250 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Returns
Interrupts pending status, it is OR’ed value of enum _rdc_interrupts.

static inline void RDC__ ClearInterruptStatus(RDC_Type *base, uint32_t mask)
Clear interrupt pending status.

Parameters
* base — RDC peripheral base address.
* mask — Status to clear; it is OR’ed value of enum _rdc_interrupts.

static inline uint32_t RDC_ GetStatus(RDC_Type *base)
Get RDC status.

Parameters
* base — RDC peripheral base address.

Returns
mask RDC status, it is OR’ed value of enum _rdc_flags.

static inline void RDC__ClearStatus(RDC_Type *base, uint32_t mask)
Clear RDC status.

Parameters
* base — RDC peripheral base address.
» mask — RDC status to clear, it is OR’ed value of enum _rdc_{flags.

void RDC__SetMasterDomainAssignment(RDC_Type *base, rdc_master_t master, const
rdc_domain_assignment_t *domainAssignment)

Set master domain assignment.
Parameters
* base — RDC peripheral base address.
» master — Which master to set.
* domainAssignment — Pointer to the assignment.

void RDC__GetDefaultMasterDomainAssignment(rdc_domain_assignment_t *domainAssignment)
Get default master domain assignment.

The default configuration is:

assignment->domainld = 0U;
assignment->lock = 0U;

Parameters
* domainAssignment — Pointer to the assignment.

static inline void RDC_ LockMasterDomainAssignment(RDC_Type *base, rdc_master_t master)
Lock master domain assignment.

Once locked, it could not be unlocked until next reset.
Parameters
* base — RDC peripheral base address.

* master — Which master to lock.

2.24. RDC: Resource Domain Controller 251

MCUXpresso SDK Documentation, Release 25.09.00

void RDC__SetPeriphAccessConfig(RDC_Type *base, const rdc_periph_access_config_t *config)
Set peripheral access policy.

Parameters
* base — RDC peripheral base address.
* config — Pointer to the policy configuration.

void RDC_ GetDefaultPeriphAccessConfig(rdc_periph_access_config_t *config)
Get default peripheral access policy.

The default configuration is:

config->lock = false;

config->enableSema = false;

config->policy = RDC__ACCESS_POLICY (0, kRDC_ ReadWrite) |
RDC_ACCESS_POLICY(1, kRDC_ ReadWrite) |
RDC__ACCESS_POLICY (2, kRDC_ ReadWrite) |
RDC__ACCESS_POLICY (3, kRDC_ ReadWrite);

Parameters
* config — Pointer to the policy configuration.

static inline void RDC_ LockPeriphAccessConfig(RDC_Type *base, rdc_periph_t periph)
Lock peripheral access policy configuration.

Once locked, it could not be unlocked until reset.
Parameters
* base — RDC peripheral base address.
* periph — Which peripheral to lock.

static inline uint8_t RDC_ GetPeriphAccessPolicy(RDC_Type *base, rdc_periph_t periph, uint8_t
domainld)

Get the peripheral access policy for specific domain.
Parameters
* base — RDC peripheral base address.
* periph — Which peripheral to get.
* domainld — Get policy for which domain.

Returns
Access policy, see _rdc_access_policy.

void RDC_ SetMemAccessConfig(RDC_Type *base, const rdc_mem_access_config_t *config)
Set memory region access policy.

Note that when setting the baseAddress and endAddress in config, should be aligned to the
region resolution, see rdc_mem_t definitions.

Parameters
* base — RDC peripheral base address.
* config — Pointer to the policy configuration.

void RDC_ GetDefaultMemAccessConfig(rdc_mem_access_config_t *config)
Get default memory region access policy.

The default configuration is:

252 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

config->lock = false;

config->baseAddress = 0;

config->endAddress = 0;

config->policy = RDC_ ACCESS_POLICY (0, kRDC_ ReadWrite) |
RDC_ACCESS_POLICY(1, kRDC_ReadWrite) |
RDC_ACCESS_POLICY (2, kRDC_ ReadWrite) |
RDC__ACCESS_POLICY (3, kRDC_ ReadWrite);

Parameters
* config — Pointer to the policy configuration.

static inline void RDC_ LockMemAccessConfig(RDC_Type *base, rdc_mem_t mem)
Lock memory access policy configuration.

Once locked, it could not be unlocked until reset. After locked, you can only call
RDC_SetMemAccessValid to enable the configuration, but can not disable it or change other
settings.

Parameters
* base — RDC peripheral base address.
* mem — Which memory region to lock.

static inline void RDC_ SetMemAccessValid(RDC_Type *base, rdc_mem_t mem, bool valid)
Enable or disable memory access policy configuration.

Parameters
* base — RDC peripheral base address.
* mem — Which memory region to operate.
* valid — Pass in true to valid, false to invalid.

void RDC_ GetMemViolationStatus(RDC_Type *base, rdc_mem_t mem, rdc_mem_status_t *status)
Get the memory region violation status.

The first access violation is captured. Subsequent violations are ignored until the status
register is cleared. Contents are cleared upon reading the register. Clearing of contents
occurs only when the status is read by the memory region’s associated domain ID(s).

Parameters
* base — RDC peripheral base address.
* mem — Which memory region to get.
* status — The returned status.

static inline void RDC_ ClearMemViolationFlag(RDC_Type *base, rdc_mem_t mem)
Clear the memory region violation flag.

Parameters
* base — RDC peripheral base address.
* mem — Which memory region to clear.

static inline uint8_t RDC_ GetMemAccessPolicy(RDC_Type *base, rdc_mem_t mem, uint8_t
domainld)

Get the memory region access policy for specific domain.
Parameters
* base — RDC peripheral base address.

* mem — Which memory region to get.

2.24. RDC: Resource Domain Controller 253

MCUXpresso SDK Documentation, Release 25.09.00

* domainld — Get policy for which domain.

Returns
Access policy, see _rdc_access_policy.

static inline uint8_t RDC_ GetCurrentMasterDomainld(RDC_Type *base)
Gets the domain ID of the current bus master.

This function returns the domain ID of the current bus master.
Parameters
* base — RDC peripheral base address.

Returns
Domain ID of current bus master.

FSL_RDC_DRIVER_VERSION
RDC_ACCESS_POLICY (domainID, policy)

struct _rdc_hardware_ config
#include <fsl_rdc.h> RDC hardware configuration.

Public Members
uint32_t domainNumber
Number of domains.

uint32_t masterNumber
Number of bus masters.

uint32_t periphNumber
Number of peripherals.

uint32_t memNumber
Number of memory regions.

struct _rdc_ domain_ assignment
#include <fsl_rdc.h> Master domain assignment.

Public Members
uint32_t domainld
Domain ID.

uint32_t_ pad0_
Reserved.

uint32_t lock
Lock the domain assignment.

struct _rdc_ periph_ access_ config
#include <fsl_rdc.h> Peripheral domain access permission configuration.

Public Members

rdc_periph_t periph
Peripheral name.

254 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

bool lock
Lock the permission until reset.

bool enableSema

Enable semaphore or not, when enabled, master should call RDC_SEMA42_Lock tolock
the semaphore gate accordingly before access the peripheral.

uint16_t policy
Access policy.
struct _rdc__mem_ access_ config
#include <fsl_rdc.h> Memory region domain access control configuration.

Note that when setting the rdc_mem_access_config t::baseAddress and
rdc_mem_access_config_t::endAddress, should be aligned to the region resolution, see
rdc_mem_t definitions.

Public Members
rdc_mem_t mem

Memory region descriptor name.
bool lock

Lock the configuration.
uint64_t baseAddress

Start address of the memory region.
uint64_t endAddress

End address of the memory region.
uint16_t policy

Access policy.

struct rdc_mem status
#include <fsl_rdc.h> Memory region access violation status.

Public Members
bool hasViolation
Violating happens or not.

uint8_t domainID
Violating Domain ID.

uint64 t address
Violating Address.

2.25 RDC_SEMA42: Hardware Semaphores Driver

FSL RDC SEMA42 DRIVER VERSION
RDC_SEMAA42 driver version.

2.25. RDC_SEMA42: Hardware Semaphores Driver 255

MCUXpresso SDK Documentation, Release 25.09.00

void RDC_SEMA42_Init(RDC_SEMAPHORE_Type *base)
Initializes the RDC_SEMA42 module.

This function initializes the RDC_SEMA42 module. It only enables the clock but does not
reset the gates because the module might be used by other processors at the same time. To
reset the gates, call either RDC_SEMA42_ResetGate or RDC_SEMA42_ResetAllGates function.

Parameters
* base —- RDC_SEMAA42 peripheral base address.

void RDC_SEMA42_Deinit(RDC_SEMAPHORE_Type *base)
De-initializes the RDC_SEMA42 module.

This function de-initializes the RDC_SEMA42 module. It only disables the clock.
Parameters
* base —- RDC_SEMAA42 peripheral base address.

status_t RDC_SEMA42_TryLock(RDC_SEMAPHORE_Type *base, uint8_t gateNum, uint8_t
masterIndex, uint8_t domainld)

Tries to lock the RDC_SEMA42 gate.

This function tries to lock the specific RDC_SEMA42 gate. If the gate has been locked by
another processor, this function returns an error code.

Parameters
* base —- RDC_SEMAA42 peripheral base address.
* gateNum — Gate number to lock.
* masterIndex — Current processor master index.
* domainld — Current processor domain ID.
Return values
* kStatus_ Success — Lock the sema42 gate successfully.
* kStatus_ Failed — Sema42 gate has been locked by another processor.

void RDC__SEMA42_Lock(RDC_SEMAPHORE_Type *base, uint8_t gateNum, uint8_t
masterIndex, uint8_t domainld)

Locks the RDC_SEMAA42 gate.

This function locks the specific RDC_SEMA42 gate. If the gate has been locked by other
processors, this function waits until it is unlocked and then lock it.

Parameters
* base — RDC_SEMAA42 peripheral base address.
» gateNum — Gate number to lock.
* masterIndex — Current processor master index.
* domainld — Current processor domain ID.

static inline void RDC_ SEMA42_Unlock(RDC_SEMAPHORE_Type *base, uint8_t gateNum)
Unlocks the RDC_SEMAA42 gate.

This function unlocks the specific RDC_SEMA42 gate. It only writes unlock value to the
RDC_SEMAA42 gate register. However, it does not check whether the RDC_SEMA42 gate is
locked by the current processor or not. As a result, if the RDC_SEMAA42 gate is not locked by
the current processor, this function has no effect.

Parameters
* base —- RDC_SEMAA42 peripheral base address.

256 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

» gateNum — Gate number to unlock.

static inline int32_t RDC_ SEMA42 GetLockMasterIndex(RDC_SEMAPHORE_Type *base, uint8_t
gateNum)

Gets which master has currently locked the gate.
Parameters
* base —- RDC_SEMAA42 peripheral base address.
* gateNum — Gate number.

Returns
Return -1 if the gate is not locked by any master, otherwise return the master
index.

int32_t RDC_SEMA42_ GetLockDomainID(RDC_SEMAPHORE_Type *base, uint8_t gateNum)
Gets which domain has currently locked the gate.

Parameters
* base - RDC_SEMA42 peripheral base address.
e gateNum — Gate number.

Returns
Return -1 if the gate is not locked by any domain, otherwise return the domain
ID.

status_t RDC_SEMA42 ResetGate(RDC_SEMAPHORE_Type *base, uint8_t gateNum)
Resets the RDC_SEMA42 gate to an unlocked status.

This function resets a RDC_SEMAA42 gate to an unlocked status.
Parameters
* base —- RDC_SEMAA42 peripheral base address.
* gateNum — Gate number.
Return values
* kStatus_Success — RDC_SEMAA42 gate is reset successfully.
* kStatus_ Failed — Some other reset process is ongoing.

static inline status_t RDC_SEMA42 ResetAllGates(RDC_SEMAPHORE_Type *base)
Resets all RDC_SEMAA42 gates to an unlocked status.

This function resets all RDC_SEMAA42 gate to an unlocked status.
Parameters
* base —- RDC_SEMAA42 peripheral base address.
Return values
* kStatus_ Success — RDC_SEMA42 is reset successfully.
* kStatus_ RDC_SEMA42_ Reseting — Some other reset process is ongoing.

RDC_SEMA42_ GATE_NUM_RESET_ALL
The number to reset all RDC_SEMA42 gates.

RDC_SEMA42_GATEn(base, n)
RDC_SEMAA42 gate n register address.

RDC_SEMA42 GATE_ COUNT
RDC_SEMA42 gate count.

RDC_SEMAPHORE_ GATE_ GTFSM_MASK

2.25. RDC_SEMA42: Hardware Semaphores Driver 257

MCUXpresso SDK Documentation, Release 25.09.00

2.26 SAI: Serial Audio Interface

2.27 SAI Driver

void SAI Init(I2S_Type *base)
Initializes the SAI peripheral.

This API gates the SAI clock. The SAI module can’t operate unless SAI_Initis called to enable
the clock.

Parameters
* base — SAI base pointer.

void SAI Deinit(I2S_Type *base)
De-initializes the SAI peripheral.

This API gates the SAI clock. The SAI module can’t operate unless SAI_TxInit or SAI_RxInit
is called to enable the clock.

Parameters
* base — SAI base pointer.

void SAI TxReset(I2S_Type *base)
Resets the SAI Tx.

This function enables the software reset and FIFO reset of SAI Tx. After reset, clear the reset
bit.

Parameters
* base — SAI base pointer

void SAI RxReset(I2S_Type *base)
Resets the SAI Rx.

This function enables the software reset and FIFO reset of SAI Rx. After reset, clear the reset
bit.

Parameters
* base — SAI base pointer

void SAI_TxEnable(I2S_Type *base, bool enable)
Enables/disables the SAI Tx.

Parameters
* base — SAI base pointer.
* enable — True means enable SAI Tx, false means disable.

void SAI RxEnable(I2S_Type *base, bool enable)
Enables/disables the SAI Rx.

Parameters
* base — SAI base pointer.
* enable — True means enable SAI Rx, false means disable.

static inline void SAI_TxSetBitClockDirection(I12S_Type *base, sai_master_slave_t masterSlave)
Set Rx bhit clock direction.

Select bit clock direction, master or slave.

Parameters

258 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

* base — SAI base pointer.
* masterSlave — reference sai_master_slave_t.

static inline void SAT RxSetBitClockDirection(I12S_Type *base, sai_master_slave_t masterSlave)
Set Rx bit clock direction.

Select bit clock direction, master or slave.
Parameters
* base — SAI base pointer.
* masterSlave — reference sai_master_slave_t.

static inline void SAI RxSetFrameSyncDirection(I12S_Type *base, sai_master_slave_t
masterSlave)

Set Rx frame sync direction.
Select frame sync direction, master or slave.
Parameters
* base — SAI base pointer.
* masterSlave — reference sai_master_slave_t.

static inline void SAI_TxSetFrameSyncDirection(I2S_Type *base, sai_master_slave_t masterSlave)
Set Tx frame sync direction.

Select frame sync direction, master or slave.
Parameters
* base — SAI base pointer.
* masterSlave — reference sai_master_slave_t.

void SAT_ TxSetBitClockRate(I2S_Type *base, uint32_t sourceClockHz, uint32_t sampleRate,
uint32_t bitWidth, uint32_t channelNumbers)

Transmitter bit clock rate configurations.
Parameters
* base — SAI base pointer.
* sourceClockHz — Bit clock source frequency.
» sampleRate — Audio data sample rate.
* bitWidth — Audio data bitWidth.
* channelNumbers — Audio channel numbers.

void SAT_RxSetBitClockRate(I2S_Type *base, uint32_t sourceClockHz, uint32_t sampleRate,
uint32_t bitWidth, uint32_t channelNumbers)

Receiver bit clock rate configurations.
Parameters
* base — SAI base pointer.
* sourceClockHz — Bit clock source frequency.
* sampleRate — Audio data sample rate.
bitWidth — Audio data bitWidth.

* channelNumbers — Audio channel numbers.

2.27. SAI Driver 259

MCUXpresso SDK Documentation, Release 25.09.00

void SAT_ TxSetBitclockConfig(I12S_Type *base, sai_master_slave_t masterSlave, sai_bit_clock_t
*config)

Transmitter Bit clock configurations.
Parameters
* base — SAI base pointer.
* masterSlave — master or slave.
* config — bit clock other configurations, can be NULL in slave mode.

void SAI_RxSetBitclockConfig(I2S_Type *base, sai_ master_slave_t masterSlave, sai_bit_clock_t
*config)

Receiver Bit clock configurations.
Parameters
* base — SAI base pointer.
* masterSlave — master or slave.
* config — bit clock other configurations, can be NULL in slave mode.

void SAT TxSetFrameSyncConfig(I2S_Type *base, sai_master_slave_t masterSlave,
sai_frame_sync_t *config)

SAI transmitter Frame sync configurations.
Parameters
* base — SAI base pointer.
* masterSlave — master or slave.
* config — frame sync configurations, can be NULL in slave mode.

void SAT_RxSetFrameSyncConfig(12S_Type *base, sai master_slave_t masterSlave,
sai_frame_sync_t *config)

SAl receiver Frame sync configurations.
Parameters
* base — SAI base pointer.
* masterSlave — master or slave.
* config — frame sync configurations, can be NULL in slave mode.

void SAI_TxSetSerialDataConfig(I12S_Type *base, sai_serial data_t *config)
SAI transmitter Serial data configurations.

Parameters
* base — SAI base pointer.
* config — serial data configurations.

void SAT_RxSetSerialDataConfig(I12S_Type *base, sai_serial _data_t *config)
SAl receiver Serial data configurations.

Parameters
* base — SAI base pointer.
* config — serial data configurations.

void SAI_TxSetConfig(I12S_Type *base, sai_transceiver_t *config)
SAI transmitter configurations.

Parameters

260 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

* base — SAI base pointer.
* config — transmitter configurations.

void SAT RxSetConfig(I2S_Type *base, sai_transceiver._t *config)
SAl receiver configurations.

Parameters
* base — SAI base pointer.
* config — receiver configurations.

void SAT_ GetClassicI2SConfig(sai_transceiver_t *config, sai word_width_t bitWidth,
sai_mono_stereo_t mode, uint32_t saiChannelMask)

Get classic I2S mode configurations.
Parameters
* config — transceiver configurations.
* bitWidth — audio data bitWidth.
* mode — audio data channel.
* saiChannelMask — mask value of the channel to be enable.

void SAI_GetLeftJustifiedConfig(sai_transceiver._t *config, sai word_width_t bitWidth,
sai_mono_stereo_t mode, uint32_t saiChannelMask)

Get left justified mode configurations.
Parameters
* config — transceiver configurations.
* bitWidth — audio data bitWidth.
* mode — audio data channel.
¢ saiChannelMask — mask value of the channel to be enable.

void SAT GetRightJustifiedConfig(sai_transceiver._t *config, sai word_width_t bitWidth,
sai_mono_stereo_t mode, uint32_t saiChannelMask)

Get right justified mode configurations.
Parameters
* config — transceiver configurations.
* bitWidth — audio data bitWidth.
* mode — audio data channel.

* saiChannelMask — mask value of the channel to be enable.

void SAI_GetTDMConfig(sai_transceiver_t *config, sai frame_sync_len_t frameSyncWidth,

sai_word_width_t bitWidth, uint32_t dataWordNum, uint32_t
saiChannelMask)

Get TDM mode configurations.
Parameters
* config — transceiver configurations.
* frameSyncWidth —length of frame sync.
* bitWidth — audio data word width.
* dataWordNum — word number in one frame.

* saiChannelMask — mask value of the channel to be enable.

2.27. SAI Driver

261

MCUXpresso SDK Documentation, Release 25.09.00

void SAT_GetDSPConfig(sai_transceiver._t *config, sai_frame_sync_len t frameSyncWidth,
sai_word_width_t bitWidth, sai_mono_stereo_t mode, uint32_t
saiChannelMask)

Get DSP mode configurations.

DSP/PCM MODE B configuration flow for TX. RX is similiar but uses SAI_RxSetConfig instead
of SAI_TxSetConfig:

SAI_GetDSPConfig(config, kSAI FrameSyncLenOneBitClk, bitWidth, kSAI Stereo, channelMask)
SAI_TxSetConfig(base, config)

Note: DSP mode is also called PCM mode which support MODE A and MODE B,
DSP/PCM MODE A configuration flow. RX is similiar but uses SAI_RxSetConfig instead of
SAI_TxSetConfig:

SAI GetDSPConfig(config, kSAI_FrameSyncLenOneBitClk, bitWidth, kSAI Stereo, channelMask)
config->frameSync.frameSyncEarly = true;
SAI_TxSetConfig(base, config)

Parameters
* config — transceiver configurations.
* frameSyncWidth —length of frame sync.
* bitWidth — audio data bitWidth.
* mode — audio data channel.
* saiChannelMask — mask value of the channel to enable.

static inline uint32_t SAI TxGetStatusFlag(I2S_Type *base)
Gets the SAI Tx status flag state.

Parameters
* base — SAI base pointer

Returns
SAI Tx status flag value. Use the Status Mask to get the status value needed.

static inline void SAIT_TxClearStatusFlags(I2S_Type *base, uint32_t mask)
Clears the SAI Tx status flag state.

Parameters
* base — SAI base pointer

* mask — State mask. It can be a combination of the following source if de-
fined:

— kSAI WordStartFlag
— kSAI_SyncErrorFlag
— kSAI_FIFOErrorFlag

static inline uint32_t SAI RxGetStatusFlag(I2S_Type *base)
Gets the SAI Tx status flag state.

Parameters

* base — SAI base pointer

262 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Returns
SAI Rx status flag value. Use the Status Mask to get the status value needed.

static inline void SAI_RxClearStatusFlags(I12S_Type *base, uint32_t mask)
Clears the SAI Rx status flag state.

Parameters
* base — SAI base pointer

* mask — State mask. It can be a combination of the following sources if de-
fined.

— kSAI_WordStartFlag
— kSAI SyncErrorFlag
— KSAI_FIFOErrorFlag

void SAI_ TxSoftwareReset(I2S_Type *base, sai_reset_type_t resetType)
Do software reset or FIFO reset .

FIFO reset means clear all the data in the FIFO, and make the FIFO pointer both to 0. Soft-
ware reset means clear the Tx internal logic, including the bit clock, frame count etc. But
software reset will not clear any configuration registers like TCR1~TCRS5. This function will
also clear all the error flags such as FIFO error, sync error etc.

Parameters
* base — SAI base pointer
* resetType — Reset type, FIFO reset or software reset

void SAI_RxSoftwareReset(I2S_Type *base, sai_reset_type_t resetType)
Do software reset or FIFO reset .

FIFO reset means clear all the data in the FIFO, and make the FIFO pointer both to 0. Soft-
ware reset means clear the Rx internal logic, including the bit clock, frame count etc. But
software reset will not clear any configuration registers like RCR1~RCR5. This function will
also clear all the error flags such as FIFO error, sync error etc.

Parameters
* base — SAI base pointer
* resetType — Reset type, FIFO reset or software reset

void SAI_TxSetChannel FIFOMask(I2S_Type *base, uint8_t mask)
Set the Tx channel FIFO enable mask.

Parameters
* base — SAI base pointer

* mask — Channel enable mask, 0 means all channel FIFO disabled, 1 means
channel 0 enabled, 3 means both channel 0 and channel 1 enabled.

void SAT_RxSetChannel FIFOMask(I2S_Type *base, uint8_t mask)
Set the Rx channel FIFO enable mask.

Parameters
* base — SAI base pointer

* mask — Channel enable mask, 0 means all channel FIFO disabled, 1 means
channel 0 enabled, 3 means both channel 0 and channel 1 enabled.

2.27. SAI Driver 263

MCUXpresso SDK Documentation, Release 25.09.00

void SAI_ TxSetDataOrder(I2S_Type *base, sai_data order_t order)
Set the Tx data order.

Parameters
* base — SAI base pointer
* order — Data order MSB or LSB

void SAI_RxSetDataOrder(I2S_Type *base, sai_data _order._t order)
Set the Rx data order.

Parameters
* base — SAI base pointer
* order — Data order MSB or LSB

void SAI TxSetBitClockPolarity (I2S_Type *base, sai_clock_polarity_t polarity)
Set the Tx data order.

Parameters
* base — SAI base pointer
* polarity —

void SAI_RxSetBitClockPolarity (I2S_Type *base, sai_clock_polarity_t polarity)
Set the Rx data order.

Parameters
* base — SAI base pointer
* polarity —

void SAT_TxSetFrameSyncPolarity(I2S_Type *base, sai_clock_polarity_t polarity)
Set the Tx data order.

Parameters
* base — SAI base pointer
* polarity —

void SAI_RxSetFrameSyncPolarity(I12S_Type *base, sai_clock_polarity_t polarity)
Set the Rx data order.

Parameters
* base — SAI base pointer
* polarity —
static inline void SAT_TxEnablelnterrupts(I2S_Type *base, uint32_t mask)
Enables the SAI Tx interrupt requests.
Parameters
* base — SAI base pointer

» mask —interrupt source The parameter can be a combination of the follow-
ing sources if defined.

— kSAI_WordStartInterruptEnable
— kSAI_SyncErrorInterruptEnable
— kSAI_FIFOWarningInterruptEnable
— kSAI FIFORequestInterruptEnable

264 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

— kSAI FIFOErrorInterruptEnable

static inline void SAI_RxEnablelnterrupts(I2S_Type *base, uint32_t mask)
Enables the SAI Rx interrupt requests.

Parameters
* base — SAI base pointer

» mask —interrupt source The parameter can be a combination of the follow-
ing sources if defined.

— kSAI_WordStartInterruptEnable
— kSAI SyncErrorinterruptEnable
— kSAI_FIFOWarningInterruptEnable
— kSAI_FIFORequestInterruptEnable
— kSAI_FIFOErrorInterruptEnable

static inline void SAI_TxDisableInterrupts(I2S_Type *base, uint32_t mask)
Disables the SAI Tx interrupt requests.

Parameters
* base — SAI base pointer

* mask —interrupt source The parameter can be a combination of the follow-
ing sources if defined.

— kSAI WordStartInterruptEnable
— KkSAI_SyncErrorInterruptEnable
— kSAI_FIFOWarningInterruptEnable
— kSAI FIFORequestInterruptEnable
— kSAI FIFOErrorInterruptEnable

static inline void SAI_RxDisableInterrupts(I2S_Type *base, uint32_t mask)
Disables the SAI Rx interrupt requests.

Parameters
* base — SAI base pointer

» mask —interrupt source The parameter can be a combination of the follow-
ing sources if defined.

— kSAI_WordStartInterruptEnable
— kSAI SyncErrorinterruptEnable
— kSAI_FIFOWarningInterruptEnable
— kSAI_FIFORequestInterruptEnable
— KSAI_FIFOErrorInterruptEnable

static inline void SAT_TxEnableDMA (I12S_Type *base, uint32_t mask, bool enable)
Enables/disables the SAI Tx DMA requests.

Parameters
* base — SAI base pointer

* mask — DMA source The parameter can be combination of the following
sources if defined.

— kSAI_FIFOWarningDMAEnable

2.27. SAI Driver 265

MCUXpresso SDK Documentation, Release 25.09.00

— kSAI FIFORequestDMAEnable
* enable — True means enable DMA, false means disable DMA.

static inline void SAT RxEnableDMA (I12S_Type *base, uint32_t mask, bool enable)
Enables/disables the SAI Rx DMA requests.

Parameters
* base — SAI base pointer

* mask — DMA source The parameter can be a combination of the following
sources if defined.

— kSAI_FIFOWarningDMAEnable
— kSAI FIFORequestDMAEnable
* cnable — True means enable DMA, false means disable DMA.

static inline uintptr_t SAT TxGetDataRegisterAddress(I2S_Type *base, uint32_t channel)
Gets the SAI Tx data register address.

This API is used to provide a transfer address for the SAI DMA transfer configuration.
Parameters
* base — SAI base pointer.
* channel — Which data channel used.

Returns
data register address.

static inline uintptr_t SAT_RxGetDataRegister Address(I2S_Type *base, uint32_t channel)
Gets the SAI Rx data register address.

This API is used to provide a transfer address for the SAI DMA transfer configuration.
Parameters
* base — SAI base pointer.
* channel — Which data channel used.

Returns
data register address.

void SAT_WriteBlocking(I2S_Type *base, uint32_t channel, uint32_t bitWidth, uint8_t *buffer,
uint32_t size)

Sends data using a blocking method.

Note: This function blocks by polling until data is ready to be sent.

Parameters
* base — SAI base pointer.
* channel — Data channel used.
* bitWidth — How many bits in an audio word; usually 8/16/24/32 bits.
* buffer — Pointer to the data to be written.

* size — Bytes to be written.

266 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

void SAT_WriteMultiChannelBlocking(I2S_Type *base, uint32_t channel, uint32_t channelMask,
uint32_t bitWidth, uint8_t *buffer, uint32_t size)

Sends data to multi channel using a blocking method.

Note: This function blocks by polling until data is ready to be sent.

Parameters
* base — SAI base pointer.
* channel — Data channel used.
* channelMask — channel mask.
* bitWidth — How many bits in an audio word; usually 8/16/24/32 bits.
* buffer — Pointer to the data to be written.
* size — Bytes to be written.

static inline void SAT_WriteData(I2S_Type *base, uint32_t channel, uint32_t data)
Writes data into SAI FIFO.

Parameters
* base — SAI base pointer.
* channel — Data channel used.
* data — Data needs to be written.

void SAT_ReadBlocking(I2S_Type *base, uint32_t channel, uint32_t bitWidth, uint8_t *buffer,
uint32_t size)

Receives data using a blocking method.

Note: This function blocks by polling until data is ready to be sent.

Parameters
* base — SAI base pointer.
* channel — Data channel used.
* bitWidth — How many bits in an audio word; usually 8/16/24/32 bits.
* buffer — Pointer to the data to be read.
* size — Bytes to be read.

void SAT_ReadMultiChannelBlocking(I2S_Type *base, uint32_t channel, uint32_t channelMask,
uint32_t bitWidth, uint8_t *buffer, uint32_t size)

Receives multi channel data using a blocking method.

Note: This function blocks by polling until data is ready to be sent.

Parameters
* base — SAI base pointer.
* channel — Data channel used.

* channelMask — channel mask.

2.27. SAI Driver 267

MCUXpresso SDK Documentation, Release 25.09.00

* bitWidth — How many bits in an audio word; usually 8/16/24/32 bits.
* buffer — Pointer to the data to be read.
* size — Bytes to be read.

static inline uint32_t SAT ReadData(I2S_Type *base, uint32_t channel)
Reads data from the SAI FIFO.

Parameters
* base — SAI base pointer.
* channel — Data channel used.

Returns
Data in SAI FIFO.

void SAI_ TransferTxCreateHandle(I2S_Type *base, sai_handle_t *handle, sai_transfer_callback_t
callback, void *userData)

Initializes the SAI Tx handle.

This function initializes the Tx handle for the SAI Tx transactional APIs. Call this function
once to get the handle initialized.

Parameters
* base — SAI base pointer
* handle — SAI handle pointer.
* callback — Pointer to the user callback function.
* userData — User parameter passed to the callback function

void SAI_TransferRxCreateHandle(I2S_Type *base, sai_handle_t *handle, sai_transfer_callback_t
callback, void *userData)

Initializes the SAI Rx handle.

This function initializes the Rx handle for the SAI Rx transactional APIs. Call this function
once to get the handle initialized.

Parameters
* base — SAI base pointer.
* handle — SAI handle pointer.
* callback — Pointer to the user callback function.
* userData — User parameter passed to the callback function.

void SAI_ TransferTxSetConfig(I2S_Type *base, sai_handle_t *handle, sai_transceiver._t *config)
SAI transmitter transfer configurations.

This function initializes the Tx, include bit clock, frame sync, master clock, serial data and
fifo configurations.

Parameters
* base — SAI base pointer.
* handle — SAI handle pointer.
* config — tranmitter configurations.

void SAI_ TransferRxSetConfig(12S_Type *base, sai_handle_t *handle, sai_transceiver._t *config)
SAI receiver transfer configurations.

This function initializes the Rx, include bit clock, frame sync, master clock, serial data and
fifo configurations.

268 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* base — SAI base pointer.
* handle — SAI handle pointer.
* config — receiver configurations.

status_t SAT_TransferSendNonBlocking(I2S_Type *base, sai_handle_t *handle, sai_transfer._t
*xfer)

Performs an interrupt non-blocking send transfer on SAI

Note: This API returns immediately after the transfer initiates. Call the
SAI_TxGetTransferStatusIRQ to poll the transfer status and check whether the trans-
fer is finished. If the return status is not kStatus_SAI_Busy, the transfer is finished.

Parameters
* base — SAI base pointer.

* handle — Pointer to the sai_handle_t structure which stores the transfer
state.

* xfer — Pointer to the sai_transfer_t structure.
Return values
* kStatus_ Success — Successfully started the data receive.
* kStatus_ SAI_TxBusy — Previous receive still not finished.
* kStatus_InvalidArgument — The input parameter is invalid.

status_t SAT_TransferReceiveNonBlocking(I2S_Type *base, sai_handle_t *handle, sai_transfer._t
*xfer)

Performs an interrupt non-blocking receive transfer on SAIL

Note: This API returns immediately after the transfer initiates. Call the
SAI_RxGetTransferStatusIRQ to poll the transfer status and check whether the trans-
fer is finished. If the return status is not kStatus_SAI_Busy, the transfer is finished.

Parameters
* base — SAI base pointer

* handle — Pointer to the sai_handle_t structure which stores the transfer
state.

» xfer — Pointer to the sai_transfer_t structure.
Return values
* kStatus_ Success — Successfully started the data receive.
e kStatus_ SAI RxBusy — Previous receive still not finished.
* kStatus_ InvalidArgument — The input parameter is invalid.

status_t SAT_TransferGetSendCount(I2S_Type *base, sai_handle_t *handle, size_t *count)
Gets a set byte count.

Parameters

* base — SAI base pointer.

2.27. SAI Driver 269

MCUXpresso SDK Documentation, Release 25.09.00

* handle — Pointer to the sai_handle_t structure which stores the transfer
state.

* count — Bytes count sent.
Return values
* kStatus_ Success — Succeed get the transfer count.

* kStatus_ NoTransferInProgress— There is not a non-blocking transaction cur-
rently in progress.

status_t SAT_TransferGetReceiveCount(I2S_Type *base, sai_handle_t *handle, size_t *count)
Gets a received byte count.

Parameters
* base — SAI base pointer.

* handle — Pointer to the sai_handle_t structure which stores the transfer
state.

* count — Bytes count received.
Return values
* kStatus_ Success — Succeed get the transfer count.

* kStatus_ NoTransferInProgress — There is not a non-blocking transaction cur-
rently in progress.

void SAI_ TransferAbortSend(I2S_Type *base, sai_handle_t *handle)
Aborts the current send.

Note: This API can be called any time when an interrupt non-blocking transfer initiates to
abort the transfer early.

Parameters
* base — SAI base pointer.

* handle — Pointer to the sai_handle_t structure which stores the transfer
state.

void SAI_ TransferAbortReceive(I2S_Type *base, sai_handle_t *handle)
Aborts the current IRQ receive.

Note: This API can be called when an interrupt non-blocking transfer initiates to abort the
transfer early.

Parameters
* base — SAI base pointer

* handle — Pointer to the sai_handle_t structure which stores the transfer
state.

void SAI_ TransferTerminateSend (I2S_Type *base, sai_handle_t *handle)
Terminate all SAI send.

This function will clear all transfer slots buffered in the sai queue. If users only want to
abort the current transfer slot, please call SAI_TransferAbortSend.

Parameters

270 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

* base — SAI base pointer.
* handle — SAI eDMA handle pointer.

void SAI TransferTerminateReceive(I12S_Type *base, sai_handle_t *handle)
Terminate all SAI receive.

This function will clear all transfer slots buffered in the sai queue. If users only want to
abort the current transfer slot, please call SAI_TransferAbortReceive.

Parameters
* base — SAI base pointer.
* handle — SAT eDMA handle pointer.

void SAI_ TransferTxHandleIRQ(I2S_Type *base, sai_handle_t *handle)
Tx interrupt handler.

Parameters
* base — SAI base pointer.
* handle — Pointer to the sai_handle_t structure.

void SAI_ TransferRxHandleIRQ(I2S_Type *base, sai_handle_t *handle)
Tx interrupt handler.

Parameters
* base — SAI base pointer.
* handle — Pointer to the sai_handle_t structure.

void SAI_DriverIRQHandler(uint32_t instance)
SAI driver IRQ handler common entry.

This function provides the common IRQ request entry for SAL
Parameters
* instance — SAI instance.

FSL_SAI DRIVER_VERSION
Version 2.4.9

_sai_status_t, SAI return status.
Values:

enumerator kStatus_ SAI_TxBusy
SAI Tx is busy.

enumerator kStatus_ SAI_RxBusy
SAI Rx is busy.

enumerator kStatus_ SAI TxError
SAI Tx FIFO error.

enumerator kStatus_ SAI RxError
SAI Rx FIFO error.

enumerator kStatus_ SAT QueueFull
SAI transfer queue is full.

enumerator kStatus SAI TxIdle
SAI Tx is idle

2.27. SAI Driver 271

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus SAI RxIdle
SAI Rx is idle

_sai_channel_mask,.sai channel mask value, actual channel numbers is depend soc specific
Values:

enumerator kSAI Channel0Mask
channel 0 mask value

enumerator kSAI Channell Mask
channel 1 mask value

enumerator kSAI Channel2Mask
channel 2 mask value

enumerator kSAI Channel3Mask
channel 3 mask value

enumerator kSAI Channel4Mask
channel 4 mask value

enumerator kSAI Channel5Mask
channel 5 mask value

enumerator kSAI Channel6Mask
channel 6 mask value

enumerator kSAI Channel7Mask
channel 7 mask value

enum _sai_ protocol
Define the SAI bus type.

Values:

enumerator kSAI BusLeftJustified
Uses left justified format.

enumerator kSAI_BusRightJustified
Uses right justified format.

enumerator kSAI_BusI2S
Uses I12S format.

enumerator kSAI_BusPCMA
Uses I2S PCM A format.

enumerator kSAI_BusPCMB
Uses I2S PCM B format.

enum sai master slave
Master or slave mode.

Values:

enumerator kSAI Master
Master mode include bclk and frame sync

enumerator kSAI Slave
Slave mode include bclk and frame sync

272 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSAI_Bclk. Master FrameSync_ Slave
bclk in master mode, frame sync in slave mode

enumerator kSAI_Bclk_Slave FrameSync_ Master
bclk in slave mode, frame sync in master mode

enum _sai _mono_ stereo
Mono or stereo audio format.

Values:

enumerator kSAI Stereo
Stereo sound.

enumerator kSAT MonoRight
Only Right channel have sound.

enumerator kSAI MonoLeft
Only left channel have sound.

enum _sai data_order
SAI data order, MSB or LSB.

Values:

enumerator kSAI_DatalL.SB
LSB bit transferred first

enumerator kSAI_DataMSB
MSB bit transferred first

enum _sai_ clock_polarity
SAI clock polarity, active high or low.

Values:

enumerator kSAI_ Polarity ActiveHigh
Drive outputs on rising edge

enumerator kSAI_ Polarity ActiveLow
Drive outputs on falling edge

enumerator kSAI_SampleOnFallingEdge
Sample inputs on falling edge

enumerator kSAI_SampleOnRisingEdge
Sample inputs on rising edge
enum _sai_ sync_mode
Synchronous or asynchronous mode.
Values:

enumerator kSAI_ModeAsync
Asynchronous mode

enumerator kSAI_ModeSync
Synchronous mode (with receiver or transmit)

enum _sai _meclk source
Mater clock source.

Values:

2.27. SAI Driver 273

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSAI_MclkSourceSysclk
Master clock from the system clock

enumerator kSAI MclkSourceSelect1
Master clock from source 1

enumerator kSAI MeclkSourceSelect2
Master clock from source 2

enumerator kSAI MeclkSourceSelect3
Master clock from source 3

enum _sai bclk source
Bit clock source.

Values:

enumerator kSAI BclkSourceBusclk
Bit clock using bus clock

enumerator kSAI_ BclkSourceMclkOptionl
Bit clock MCLK option 1

enumerator kSAI_BclkSourceMclkOption2
Bit clock MCLK option2

enumerator kSAI BclkSourceMclkOption3
Bit clock MCLK option3

enumerator kSAI BclkSourceMclkDiv
Bit clock using master clock divider

enumerator kSAI BclkSourceOtherSai0
Bit clock from other SAI device

enumerator kSAI BclkSourceOtherSail
Bit clock from other SAI device

_sai_interrupt_enable_t, The SAI interrupt enable flag
Values:

enumerator kSAI_ WordStartInterruptEnable
Word start flag, means the first word in a frame detected

enumerator kSAI_ SyncErrorInterruptEnable
Sync error flag, means the sync error is detected

enumerator kSAI_ FIFOWarningInterruptEnable
FIFO warning flag, means the FIFO is empty

enumerator kSAI_ FIFOErrorInterruptEnable
FIFO error flag

_sai_dma_enable_t, The DMA request sources
Values:

enumerator kSAI_ FIFOWarningDMAEnable
FIFO warning caused by the DMA request

274 Chapter 2

. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

_sai_flags, The SAI status flag
Values:

enumerator kSAI_WordStartFlag
Word start flag, means the first word in a frame detected

enumerator kSAI_ SyncErrorFlag
Sync error flag, means the sync error is detected

enumerator kSAI_FIFOErrorFlag
FIFO error flag

enumerator kSAI_ FIFOWarningFlag
FIFO warning flag

enum _ sai_reset_ type
The reset type.

Values:

enumerator kSAI_ Reset TypeSoftware
Software reset, reset the logic state

enumerator kSAI_ ResetTypeFIFO
FIFO reset, reset the FIFO read and write pointer

enumerator kSAI ResetAll
All reset.

enum _sai_sample rate
Audio sample rate.
Values:

enumerator kSAI_SampleRateS8KHz
Sample rate 8000 Hz

enumerator kSAI_SampleRatel1025Hz
Sample rate 11025 Hz

enumerator kSAI_SampleRate12KHz
Sample rate 12000 Hz

enumerator kSAI_SampleRatel6KHz
Sample rate 16000 Hz

enumerator kSAI_SampleRate22050Hz
Sample rate 22050 Hz

enumerator kSAI_SampleRate24KHz
Sample rate 24000 Hz

enumerator kSAI SampleRate32KHz
Sample rate 32000 Hz

enumerator kSAI_SampleRate44100Hz
Sample rate 44100 Hz

enumerator kSAI_SampleRate4d8KHz
Sample rate 48000 Hz

2.27. SAI Driver 275

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSAI_SampleRate96KHz
Sample rate 96000 Hz

enumerator kSAI_SampleRate192KHz
Sample rate 192000 Hz

enumerator kSAI_SampleRate384KHz
Sample rate 384000 Hz

enum _sai_word_width
Audio word width.

Values:

enumerator kSAI WordWidth8bits
Audio data width 8 bits

enumerator kSAI WordWidth16bits
Audio data width 16 bits

enumerator kSAI WordWidth24bits
Audio data width 24 bits

enumerator kSAI WordWidth32bits
Audio data width 32 bits

enum _ sai_transceiver_type
sai transceiver type

Values:

enumerator kSAI Transmitter
sai transmitter

enumerator kSAI Receiver
sai receiver

enum _sai_frame_sync_len
sai frame sync len

Values:

enumerator kSAI_FrameSyncLenOneBitClk
1 hit clock frame sync len for DSP mode

enumerator kSAI_FrameSyncLenPerWord Width
Frame sync length decided by word width
typedef enum _sai_protocol sai_protocol__t
Define the SAI bus type.
typedef enum _sai master_slave sai_master_slave_t
Master or slave mode.
typedef enum _sai mono_stereo sai_mono_ stereo_t
Mono or stereo audio format.
typedef enum _sai_data_order sai_data_order_t
SAI data order, MSB or LSB.

typedef enum _sai_clock_polarity sai_clock_polarity t
SAI clock polarity, active high or low.

276 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _sai_sync_mode sai_sync_mode_t
Synchronous or asynchronous mode.

typedef enum _sai mclk_source sai_mclk_source_t
Mater clock source.

typedef enum _sai_bclk_source sai_bclk__source__t
Bit clock source.

typedef enum _sai _reset_type sai_reset_ type_t
The reset type.
typedef struct _sai_config sai_config_t
SAI user configuration structure.
typedef enum _sai_sample_rate sai_sample_rate_t
Audio sample rate.
typedef enum _sai word_width sai_word_width_t
Audio word width.
typedef enum _sai_transceiver_type sai_ transceiver_type t
sai transceiver type
typedef enum _sai_frame_sync_len sai_ frame_sync_len_t
sai frame sync len
typedef struct _sai_transfer_format sai_ transfer format_t
sai transfer format
typedef struct _sai_bit_clock sai_ bit_ clock_t
sai bit clock configurations
typedef struct _sai_frame_sync sai_ frame_sync_t
sai frame sync configurations
typedef struct _sai_serial_data sai_serial data_t
sai serial data configurations
typedef struct _sai_transceiver sai_ transceiver t
sai transceiver configurations
typedef struct _sai_transfer sai_transfer t
SAI transfer structure.
typedef struct _sai_handle sai_handle_t
typedef void (*sai_ transfer_callback__t)(I2S_Type *base, sai_handle_t *handle, status_t status,
void *userData)
SAI transfer callback prototype.
SAI XFER_QUEUE_SIZE
SAI transfer queue size, user can refine it according to use case.
FSL_SAI HAS FIFO_ EXTEND_ FEATURE
sai fifo feature

struct _sai_ config
#include <fsl_sai.h> SAI user configuration structure.

2.27. SAI Driver 277

MCUXpresso SDK Documentation, Release 25.09.00

Public Members
sai_protocol_t protocol

Audio bus protocol in SAI
sai_sync_mode_t syncMode

SAI sync mode, control Tx/Rx clock sync
sai_bclk_source_t belkSource

Bit Clock source
sai_master_slave_t masterSlave

Master or slave

struct sai transfer format
#include <fsl_sai.h> sai transfer format

Public Members

uint32_t sampleRate Hz
Sample rate of audio data
uint32_t bitWidth
Data length of audio data, usually 8/16/24/32 bits
sai_mono_stereo_t stereo
Mono or stereo
uint8_t channel
Transfer start channel
uint8_t channelMask
enabled channel mask value, reference _sai_channel mask
uint8_t endChannel
end channel number
uint8_t channelNums
Total enabled channel numbers
sai_protocol_t protocol
Which audio protocol used

bool isFrameSyncCompact

True means Frame sync length is configurable according to bitWidth, false means
frame sync length is 64 times of bit clock.

struct sai bit clock
#include <fsl_sai.h> sai bit clock configurations

Public Members

bool belkInputDelay

bit clock actually used by the transmitter is delayed by the pad output delay, this has
effect of decreasing the data input setup time, but increasing the data output valid time

sai_clock_polarity_t bclkPolarity
bit clock polarity

278 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

sai_bclk_source_t belkSource
bit Clock source

struct _sai_ frame_sync
#include <fsl_sai.h> sai frame sync configurations

Public Members
uint8_t frameSyncWidth
frame sync width in number of bit clocks

bool frameSyncEarly

TRUE is frame sync assert one bit before the first bit of frame FALSE is frame sync
assert with the first bit of the frame

sati_clock_polarity_t frameSyncPolarity
frame sync polarity

struct sai serial data
#include <fsl_sai.h> sai serial data configurations

Public Members
sai_data_order_t dataOrder
configure whether the LSB or MSB is transmitted first
uint8_t dataWordOLength
configure the number of bits in the first word in each frame
uint8_t dataWordNLength
configure the number of bits in the each word in each frame, except the first word
uint8_t dataWordLength
used to record the data length for dma transfer
uint8_t dataFirstBitShifted
Configure the bit index for the first bit transmitted for each word in the frame
uint8_t dataWordNum
configure the number of words in each frame
uint32_t dataMasked Word
configure whether the transmit word is masked

struct sai transceiver
#include <fsl_sai.h> sai transceiver configurations

Public Members
sai_serial_data_t serialData
serial data configurations
sai_frame_sync_t frameSync
ws configurations

sai_bit_clock_t bitClock
bit clock configurations

2.27. SAI Driver 279

MCUXpresso SDK Documentation, Release 25.09.00

sai_master_slave_t masterSlave
transceiver is master or slave

sai_sync_mode_t syncMode
transceiver sync mode
uint8_t startChannel
Transfer start channel
uint8_t channelMask
enabled channel mask value, reference _sai_channel mask
uint8_t endChannel
end channel number
uint8_t channelNums
Total enabled channel numbers

struct sai transfer
#include <fsl_sai.h> SAI transfer structure.

Public Members
uint8_t *data
Data start address to transfer.

size_t dataSize
Transfer size.

struct sai handle
#include <fsl_sai.h> SAI handle structure.

Public Members
12S_Type *base
base address
uint32_t state
Transfer status
sai_transfer_callback_t callback
Callback function called at transfer event
void *userData
Callback parameter passed to callback function
uint8_t bitWidth
Bit width for transfer, 8/16/24/32 bits
uint8_t channel
Transfer start channel
uint8_t channelMask
enabled channel mask value, refernece _sai_channel mask
uint8_t endChannel
end channel number

uint8_t channelNums
Total enabled channel numbers

280 Chapter 2

. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

sai_transfer_t saiQueue[(4U)]
Transfer queue storing queued transfer

size_t transferSize[(4U)]
Data bytes need to transfer

volatile uint8_t queueUser
Index for user to queue transfer

volatile uint8_t queueDriver
Index for driver to get the transfer data and size

2.28 SAI SDMA Driver

void SAT_ TransferTxCreateHandleSDMA (I2S_Type *base, sai_sdma_handle_t *handle,
sai_sdma_callback_t callback, void *userData,
sdma_handle_t *dmaHandle, uint32_t eventSource)

Initializes the SAI SDMA handle.

This function initializes the SAI master DMA handle, which can be used for other SAI mas-
ter transactional APIs. Usually, for a specified SAI instance, call this API once to get the
initialized handle.

Parameters
* base — SAI base pointer.
* handle — SAI SDMA handle pointer.
* base — SAI peripheral base address.
* callback — Pointer to user callback function.
* userData — User parameter passed to the callback function.

* dmaHandle — SDMA handle pointer, this handle shall be static allocated by
users.

* eventSource — SAI event source number.

void SAI_ TransferRxCreateHandleSDMA (I12S_Type *base, sai_sdma_handle_t *handle,
sai_sdma_callback _t callback, void *userData,
sdma_handle_t *dmaHandle, uint32_t eventSource)

Initializes the SAI Rx SDMA handle.

This function initializes the SAI slave DMA handle, which can be used for other SAI mas-
ter transactional APIs. Usually, for a specified SAI instance, call this API once to get the
initialized handle.

Parameters
* base — SAI base pointer.
* handle — SAI SDMA handle pointer.
* base — SAI peripheral base address.
* callback — Pointer to user callback function.
» userData — User parameter passed to the callback function.

* dmaHandle — SDMA handle pointer, this handle shall be static allocated by
users.

* eventSource — SAI event source number.

2.28. SAI SDMA Driver 281

MCUXpresso SDK Documentation, Release 25.09.00

status_t SAT_TransferSendSDMA (I2S_Type *base, sai_sdma_handle_t *handle, sai_transfer._t
*xfer)

Performs a non-blocking SAI transfer using DMA.

Note: This interface returns immediately after the transfer initiates. Call
SAI_GetTransferStatus to poll the transfer status and check whether the SAI transfer is fin-
ished.

Parameters

* base — SAI base pointer.
* handle — SAI SDMA handle pointer.
* xfer — Pointer to the DMA transfer structure.
Return values
* kStatus_ Success — Start a SAI SDMA send successfully.
* kStatus_InvalidArgument — The input argument is invalid.
* kStatus_ TxBusy — SAI is busy sending data.

status_t SAT_TransferReceiveSDMA (I2S_Type *base, sai_sdma_handle_t *handle, sai_transfer._t
*xfer)

Performs a non-blocking SAI receive using SDMA.

Note: This interface returns immediately after the transfer initiates. Call the
SAI_GetReceiveRemainingBytes to poll the transfer status and check whether the SAI trans-
fer is finished.

Parameters

* base — SAI base pointer
* handle — SAI SDMA handle pointer.
» xfer — Pointer to DMA transfer structure.
Return values
* kStatus_ Success — Start a SAI SDMA receive successfully.
* kStatus_ InvalidArgument — The input argument is invalid.
* kStatus_ RxBusy — SAI is busy receiving data.
void SAI_TransferAbortSendSDMA (I12S_Type *base, sai_sdma_handle_t *handle)
Aborts a SAI transfer using SDMA.
Parameters
* base — SAI base pointer.
* handle — SAI SDMA handle pointer.
void SAI_TransferAbortReceiveSDMA (12S_Type *base, sai_sdma_handle_t *handle)
Aborts a SAI receive using SDMA.
Parameters
* base — SAI base pointer
* handle — SAI SDMA handle pointer.

282 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

void SAI_ TransferTerminateReceiveSDMA (I12S_Type *base, sai_sdma_handle_t *handle)
Terminate all the SAI sdma receive transfer.

Parameters
* base — SAI base pointer.
* handle — SAI SDMA handle pointer.

void SAI_ TransferTerminateSendSDMA (I2S_Type *base, sai_sdma_handle_t *handle)
Terminate all the SAI sdma send transfer.

Parameters
* base — SAI base pointer.
* handle — SAI SDMA handle pointer.

void SAI_ TransferRxSetConfigSDMA (I12S_Type *base, sai_sdma_handle_t *handle,
sai_transceiver_t *saiConfig)

brief Configures the SAI RX.

param base SAI base pointer. param handle SAI SDMA handle pointer. param saiConig sai
configurations.

void SAT_TransferTxSetConfigSDMA (I2S_Type *base, sai_sdma_handle_t *handle,
sai_transceiver._t *saiConfig)

brief Configures the SAI Tx.

param base SAI base pointer. param handle SAI SDMA handle pointer. param saiConig sai
configurations.

FSL SAI SDMA DRIVER_ VERSION
Version 2.6.0

typedef struct _sai_sdma_handle sai_sdma_ handle t
typedef void (*sai_sdma_ callback_t)(I2S_Type *base, sai_sdma_handle_t *handle, status_t status,
void *userData)

SAI SDMA transfer callback function for finish and error.

struct sai sdma_ handle

#include <fsl_sai_sdma.h> SAI DMA transfer handle, users should not touch the content of
the handle.

Public Members
sdma_handle_t *dmaHandle
DMA handler for SAI send
uint8_t bytesPerFrame
Bytes in a frame
uint8_t channel
start data channel
uint8_t channelNums
total transfer channel numbers, used for multififo
uint8_t channelMask
enabled channel mask value, refernece _sai_channel mask

uint8_t fifoOffset
fifo address offset between multifo

2.28. SAI SDMA Driver 283

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t count
The transfer data count in a DMA request

uint32_t state
Internal state for SAI SDMA transfer

uint32_t eventSource
SAI event source number

sai_sdma_callback _t callback
Callback for users while transfer finish or error occurs

void *userData
User callback parameter

sdma_buffer_descriptor_t bdPool[(4U)]
BD pool for SDMA transfer.

sai_transfer_t saiQueue[(4U)]
Transfer queue storing queued transfer.

size_t transferSize[(4U)]
Data bytes need to transfer

volatile uint8_t queueUser
Index for user to queue transfer.

volatile uint8_t queueDriver
Index for driver to get the transfer data and size

2.29 SDMA: Smart Direct Memory Access (SDMA) Controller
Driver

void SDMA_ Init(SDMAARM_Type *base, const sdma_config_t *config)
Initializes the SDMA peripheral.

This function ungates the SDMA clock and configures the SDMA peripheral according to the
configuration structure.

Note: This function enables the minor loop map feature.

Parameters
* base — SDMA peripheral base address.
* config — A pointer to the configuration structure, see “sdma_config_t”.

void SDMA _Deinit(SDMAARM_Type *base)
Deinitializes the SDMA peripheral.

This function gates the SDMA clock.
Parameters

* base — SDMA peripheral base address.

284 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

void SDMA_ GetDefaultConfig(sdma_config_t *config)
Gets the SDMA default configuration structure.

This function sets the configuration structure to default values. The default configuration
is set to the following values.

config.enableRealTimeDebugPin = false;
config.isSoftwareResetClearLock = true;
config.ratio = kSDMA_ HalfARMClockFreq;

Parameters
* config — A pointer to the SDMA configuration structure.

void SDMA_ResetModule(SDMAARM_Type *base)
Sets all SDMA core register to reset status.

If only reset ARM core, SDMA register cannot return to reset value, shall call this function
to reset all SDMA register to reset value. But the internal status cannot be reset.

Parameters
* base — SDMA peripheral base address.

static inline void SDMA_ EnableChannelErrorInterrupts(SDMAARM_Type *base, uint32_t
channel)

Enables the interrupt source for the SDMA error.
Enable this will trigger an interrupt while SDMA occurs error while executing scripts.
Parameters
* base — SDMA peripheral base address.
* channel - SDMA channel number.

static inline void SDMA_ DisableChannelErrorInterrupts(SDMAARM_Type *base, uint32_t
channel)

Disables the interrupt source for the SDMA error.
Parameters
* base — SDMA peripheral base address.
* channel — SDMA channel number.

void SDMA _ ConfigBufferDescriptor(sdma_buffer_descriptor_t *bd, uint32_t srcAddr, uint32_t
destAddr, sdma_transfer_size_t busWidth, size_t bufferSize,
bool isLast, bool enableInterrupt, bool isWrap,
sdma_transfer_type_t type)

Sets buffer descriptor contents.
This function sets the descriptor contents such as source, dest address and status bits.
Parameters
* bd - Pointer to the buffer descriptor structure.
* srcAddr — Source address for the buffer descriptor.
* destAddr — Destination address for the buffer descriptor.

* busWidth - The transfer width, it only can be a member of
sdma_transfer_size_t.

* bufferSize — Buffer size for this descriptor, this number shall less than
OxFFFF. If need to transfer a big size, shall divide into several buffer de-
scriptors.

2.29. SDMA: Smart Direct Memory Access (SDMA) Controller Driver 285

MCUXpresso SDK Documentation, Release 25.09.00

» isLast — Is the buffer descriptor the last one for the channel to transfer. If
only one descriptor used for the channel, this bit shall set to TRUE.

* enableInterrupt — If trigger an interrupt while this buffer descriptor transfer
finished.

* isWrap — Is the buffer descriptor need to be wrapped. While this bit set to
true, it will automatically wrap to the first buffer descrtiptor to do transfer.

* type — Transfer type, memory to memory, peripheral to memory or mem-
ory to peripheral.

static inline void SDMA__SetChannelPriority(SDMAARM_Type *base, uint32_t channel, uint8_t
priority)

Set SDMA channel priority.

This function sets the channel priority. The default value is 0 for all channels, priority 0
will prevents channel from starting, so the priority must be set before start a channel.

Parameters
* base — SDMA peripheral base address.
* channel - SDMA channel number.
* priority — SDMA channel priority.

static inline void SDMA__ SetSourceChannel(SDMAARM_Type *base, uint32_t source, uint32_t
channelMask)

Set SDMA request source mapping channel.
This function sets which channel will be triggered by the dma request source.
Parameters
* base — SDMA peripheral base address.
* source — SDMA dma request source number.

* channelMask — SDMA channel mask. 1 means channel 0, 2 means channel
1, 4 means channel 3. SDMA supports an event trigger multi-channel. A
channel can also be triggered by several source events.

static inline void SDMA__StartChannelSoftware(SDMAARM_Type *base, uint32_t channel)
Start a SDMA channel by software trigger.

This function start a channel.
Parameters
* base — SDMA peripheral base address.
* channel — SDMA channel number.

static inline void SDMA__StartChannelEvents(SDMAARM_Type *base, uint32_t channel)
Start a SDMA channel by hardware events.

This function start a channel.
Parameters
* base — SDMA peripheral base address.
* channel - SDMA channel number.

static inline void SDMA_ StopChannel(SDMAARM_Type *base, uint32_t channel)
Stop a SDMA channel.

This function stops a channel.

Parameters

286 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

* base — SDMA peripheral base address.
* channel — SDMA channel number.

void SDMA __SetContextSwitchMode(SDMAARM_Type *base, sdma_context_switch_mode_t mode)
Set the SDMA context switch mode.

Parameters
* base — SDMA peripheral base address.
* mode — SDMA context switch mode.

static inline uint32_t SDMA__ GetChannellnterruptStatus(SDMAARM_Type *base)
Gets the SDMA interrupt status of all channels.

Parameters
* base — SDMA peripheral base address.

Returns
The interrupt status for all channels. Check the relevant bits for specific chan-
nel.

static inline void SDMA__ClearChannellnterruptStatus(SDMAARM_Type *base, uint32_t mask)
Clear the SDMA channel interrupt status of specific channels.

Parameters
* base — SDMA peripheral base address.
» mask — The interrupt status need to be cleared.

static inline uint32_t SDMA_ GetChannelStopStatus(SDMAARM_Type *base)
Gets the SDMA stop status of all channels.

Parameters
* base — SDMA peripheral base address.

Returns
The stop status for all channels. Check the relevant bits for specific channel.

static inline void SDMA__ClearChannelStopStatus(SDMAARM_Type *base, uint32_t mask)
Clear the SDMA channel stop status of specific channels.

Parameters
* base — SDMA peripheral base address.
» mask — The stop status need to be cleared.

static inline uint32_t SDMA_ GetChannelPendStatus(SDMAARM_Type *base)
Gets the SDMA channel pending status of all channels.

Parameters
* base — SDMA peripheral base address.

Returns
The pending status for all channels. Check the relevant bits for specific chan-
nel.

static inline void SDMA_ ClearChannelPendStatus(SDMAARM_Type *base, uint32_t mask)
Clear the SDMA channel pending status of specific channels.

Parameters
* base — SDMA peripheral base address.

» mask — The pending status need to be cleared.

2.29. SDMA: Smart Direct Memory Access (SDMA) Controller Driver 287

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t SDMA_ GetErrorStatus(SDMAARM_Type *base)
Gets the SDMA channel error status.

SDMA channel error flag is asserted while an incoming DMA request was detected and it
triggers a channel that is already pending or being serviced. This probably means there is
an overflow of data for that channel.

Parameters
* base — SDMA peripheral base address.

Returns
The error status for all channels. Check the relevant bits for specific channel.

bool SDMA __GetRequestSourceStatus(SDMAARM_Type *base, uint32_t source)
Gets the SDMA request source pending status.

Parameters
* base — SDMA peripheral base address.
* source — DMA request source number.

Returns
True means the request source is pending, otherwise not pending.

void SDMA_ CreateHandle(sdma_handle_t *handle, SDMAARM_Type *base, uint32_t channel,
sdma_context_data_t *context)

Creates the SDMA handle.

This function is called if using the transactional API for SDMA. This function initializes the
internal state of the SDMA handle.

Parameters

* handle — SDMA handle pointer. The SDMA handle stores callback function
and parameters.

* base — SDMA peripheral base address.
¢ channel — SDMA channel number.

* context — Context structure for the channel to download into SDMA. Users
shall make sure the context located in a non-cacheable memory, or it will
cause SDMA run fail. Users shall not touch the context contents, it only be
filled by SDMA driver in SDMA_SubmitTransfer function.

void SDMA _ InstallBDMemory(sdma_handle_t *handle, sdma_buffer_descriptor_t *BDPool,
uint32_t BDCount)

Installs the BDs memory pool into the SDMA handle.
This function is called after the SDMA_CreateHandle to use multi-buffer feature.
Parameters
* handle - SDMA handle pointer.

* BDPool — A memory pool to store BDs. It must be located in non-cacheable
address.

* BDCount — The number of BD slots.

void SDMA _SetCallback(sdma_handle_t *handle, sdma_callback callback, void *userData)
Installs a callback function for the SDMA transfer.

This callback is called in the SDMA IRQ handler. Use the callback to do something after the
current major loop transfer completes.

Parameters

288 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

* handle — SDMA handle pointer.
* callback — SDMA callback function pointer.
* userData — A parameter for the callback function.

void SDMA_ SetMultiFifoConfig(sdma_transfer_config_t *config, uint32_t fifoNums, uint32_t
fifoOffset)

multi fifo configurations.

This api is used to support multi fifo for SDMA, if user want to get multi fifo data, then this
api shoule be called before submit transfer.

Parameters
* config — transfer configurations.

* fifoNums - fifo numbers that multi fifo operation perform, support up to 15
fifo numbers.

* fifoOffset — fifoOffset = fifo address offset / sizeof(uint32_t) - 1.

void SDMA_ EnableSwDone(SDMAARM_Type *base, sdma_transfer_config_t *config, uint8_t sel,
sdma_peripheral_t type)

enable sdma sw done feature.

Deprecated:
Do not use this function. It has been superceded by SDMA_SetDoneConfig.

Parameters
* base — SDMA base.
* config — transfer configurations.
* sel — sw done selector.

* type — peripheral type is used to determine the corresponding peripheral
sw done selector bit.

void SDMA _ SetDoneConfig(SDMAARM_Type *base, sdma_transfer_config_t *config,
sdma_peripheral_t type, sdma_done_src_t doneSrc)

sdma channel done configurations.
Parameters
* base — SDMA base.
* config — transfer configurations.
* type — peripheral type.
* doneSrc — reference sdma_done_src_t.

void SDMA_ LoadScript(SDMAARM_Type *base, uint32_t destAddr, void *srcAddr, size_t
bufferSizeBytes)

load script to sdma program memory.
Parameters
* base — SDMA bhase.
destAddr — dest script address, should be SDMA program memory address.

* srcAddr — source address of target script.

* bufferSizeBytes — bytes size of script.

2.29. SDMA: Smart Direct Memory Access (SDMA) Controller Driver 289

MCUXpresso SDK Documentation, Release 25.09.00

void SDMA_ DumpScript(SDMAARM_Type *base, uint32_t srcAddr, void *destAddr, size_t
bufferSizeBytes)

dump script from sdma program memory.
Parameters
* base — SDMA base.
* srcAddr — should be SDMA program memory address.
* destAddr — address to store scripts.
* bufferSizeBytes — bytes size of script.

static inline const char *SDMA_ GetRamScriptVersion(SDMAARM_Type *base)
Get RAM script version.

Parameters
* base — SDMA base.

Returns
The script version of RAM.

void SDMA_ PrepareTransfer(sdma_transfer_config_t *config, uint32_t srcAddr, uint32_t
destAddr, uint32_t srcWidth, uint32_t destWidth, uint32_t
bytesEachRequest, uint32_t transferSize, uint32_t eventSource,
sdma_peripheral_t peripheral, sdma_transfer_type_t type)

Prepares the SDMA transfer structure.

This function prepares the transfer configuration structure according to the user input.

Note: The data address and the data width must be consistent. For example, if the SRC is
4 bytes, the source address must be 4 bytes aligned, or it results in source address error.

Parameters
* config — The user configuration structure of type sdma_transfer_t.
* srcAddr - SDMA transfer source address.
* destAddr — SDMA transfer destination address.
» srcWidth — SDMA transfer source address width(bytes).
* destWidth — SDMA transfer destination address width(bytes).
* bytesEachRequest — SDMA transfer bytes per channel request.
¢ transferSize — SDMA transfer bytes to be transferred.

* eventSource — Event source number for the transfer, if use software trigger,
just write 0.

* peripheral — Peripheral type, used to decide if need to use some special
scripts.

* type — SDMA transfer type. Used to decide the correct SDMA script address
in SDMA ROM.

void SDMA_ PrepareP2PTransfer(sdma_transfer_config t *config, uint32_t srcAddr, uint32_t
destAddr, uint32_t srcWidth, uint32_t destWidth, uint32_t
bytesEachRequest, uint32_t transferSize, uint32_t eventSource,
uint32_t eventSourcel, sdma_peripheral_t peripheral,
sdma_p2p_config_ t *p2p)

290 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Prepares the SDMA P2P transfer structure.

This function prepares the transfer configuration structure according to the user input.

Note: The data address and the data width must be consistent. For example, if the SRC is
4 bytes, the source address must be 4 bytes aligned, or it results in source address error.

Parameters
* config — The user configuration structure of type sdma_transfer_t.
¢ srcAddr - SDMA transfer source address.
¢ destAddr — SDMA transfer destination address.
*» srcWidth — SDMA transfer source address width(bytes).
* destWidth — SDMA transfer destination address width(bytes).
* bytesEachRequest — SDMA transfer bytes per channel request.
* transferSize — SDMA transfer bytes to be transferred.
* eventSource — Event source number for the transfer.
* eventSourcel — Event sourcel number for the transfer.

* peripheral — Peripheral type, used to decide if need to use some special
scripts.

* p2p - sdma p2p configuration pointer.

void SDMA_ SubmitTransfer(sdma_handle_t *handle, const sdma_transfer_config_t *config)
Submits the SDMA transfer request.

This function submits the SDMA transfer request according to the transfer configuration
structure.

Parameters
* handle — SDMA handle pointer.
* config — Pointer to SDMA transfer configuration structure.

void SDMA _ StartTransfer(sdma_handle_t *handle)
SDMA starts transfer.

This function enables the channel request. Users can call this function after submitting the
transfer request or before submitting the transfer request.

Parameters
* handle - SDMA handle pointer.

void SDMA _ StopTransfer(sdma_handle_t *handle)
SDMA stops transfer.

This function disables the channel request to pause the transfer. Users can call
SDMA_StartTransfer() again to resume the transfer.

Parameters

* handle - SDMA handle pointer.

2.29. SDMA: Smart Direct Memory Access (SDMA) Controller Driver 291

MCUXpresso SDK Documentation, Release 25.09.00

void SDMA_ AbortTransfer(sdma_handle_t *handle)
SDMA aborts transfer.

This function disables the channel request and clear transfer status bits. Users can submit
another transfer after calling this APL

Parameters
* handle - DMA handle pointer.

uint32_t SDMA_ GetTransferredBytes(sdma_handle_t *handle)
Get transferred bytes while not using BD pools.

This function returns the buffer descriptor count value if not using buffer descriptor. While
do a simple transfer, which only uses one descriptor, the SDMA driver inside handle the
buffer descriptor. In uart receive case, it can tell users how many data already received,
also it can tells users how many data transfferd while error occurred. Notice, the count
would not change while transfer is on-going using default SDMA script.

Parameters
* handle - DMA handle pointer.

Returns
Transferred bytes.

void SDMA_ HandleIRQ(sdma_handle_t *handle)
SDMA IRQ handler for complete a buffer descriptor transfer.

This function clears the interrupt flags and also handle the CCB for the channel.
Parameters
* handle — SDMA handle pointer.

FSL SDMA DRIVER VERSION
SDMA driver version.

Version 2.4.2.

enum sdma_transfer size
SDMA transfer configuration.

Values:

enumerator kSDMA_TransferSizel Bytes
Source/Destination data transfer size is 1 byte every time

enumerator kSDMA_ TransferSize2Bytes
Source/Destination data transfer size is 2 bytes every time

enumerator kSDMA_TransferSize3Bytes
Source/Destination data transfer size is 3 bytes every time

enumerator kSDMA_ TransferSize4Bytes
Source/Destination data transfer size is 4 bytes every time

enum sdma bd status
SDMA buffer descriptor status.
Values:

enumerator kSDMA_BDStatusDone
BD ownership, 0 means ARM core owns the BD, while 1 means SDMA owns BD.

enumerator kSDMA_ BDStatusWrap
While this BD is last one, the next BD will be the first one

292 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSDMA_ BDStatusContinuous
Buffer is allowed to transfer/receive to/from multiple buffers

enumerator kSDMA__BDStatusInterrupt

While this BD finished, send an interrupt.
enumerator kSDMA_BDStatusError

Error occurred on buffer descriptor command.
enumerator kSDMA _BDStatusLast

This BD is the last BD in this array. It means the transfer ended after this buffer
enumerator kSDMA _BDStatusExtend

Buffer descriptor extend status for SDMA scripts

enum sdma bd_ command

SDMA buffer descriptor command.
Values:
enumerator k<SDMA BDCommandSETDM

Load SDMA data memory from ARM core memory buffer.
enumerator kSDMA BDCommandGETDM

Copy SDMA data memory to ARM core memory buffer.
enumerator kSDMA BDCommandSETPM

Load SDMA program memory from ARM core memory buffer.
enumerator kSDMA BDCommandGETPM

Copy SDMA program memory to ARM core memory buffer.
enumerator kSODMA_ BDCommandSETCTX

Load context for one channel into SDMA RAM from ARM platform memory buffer.

enumerator kSDMA_BDCommandGETCTX
Copy context for one channel from SDMA RAM to ARM platform memory buffer.

enum sdma_context switch mode
SDMA context switch mode.

Values:

enumerator kSDMA_ContextSwitchModeStatic
SDMA context switch mode static
enumerator kSDMA _ ContextSwitchModeDynamicLowPower
SDMA context switch mode dynamic with low power
enumerator kSDMA__ ContextSwitchModeDynamicWithNoLoop
SDMA context switch mode dynamic with no loop
enumerator kSDMA__ ContextSwitchModeDynamic
SDMA context switch mode dynamic
enum sdma,_ clock ratio
SDMA core clock frequency ratio to the ARM DMA interface.
Values:

enumerator kSDMA__HalfARMClockFreq
SDMA core clock frequency half of ARM platform

2.29. SDMA: Smart Direct Memory Access (SDMA) Controller Driver

293

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSDMA__ARMCIlockFreq
SDMA core clock frequency equals to ARM platform

enum _ sdma_ transfer_type

SDMA transfer type.
Values:

enumerator kSDMA_ MemoryToMemory
Transfer from memory to memory

enumerator kSDMA_ Peripheral ToMemory
Transfer from peripheral to memory

enumerator kSDMA_MemoryToPeripheral
Transfer from memory to peripheral

enumerator kSDMA_ Peripheral ToPeripheral
Transfer from peripheral to peripheral

enum sdma_ peripheral

Peripheral type use SDMA.
Values:

enumerator kSDMA_ Peripheral TypeMemory
Peripheral DDR memory

enumerator kSDMA_ Peripheral TypeUART
UART use SDMA

enumerator kSDMA_ Peripheral TypeUART _SP
UART instance in SPBA use SDMA

enumerator kSDMA _ Peripheral TypeSPDIF
SPDIF use SDMA

enumerator kSDMA_ PeripheralNormal
Normal peripheral use SDMA

enumerator kSDMA_ PeripheralNormal SP
Normal peripheral in SPBA use SDMA

enumerator kSDMA_ PeripheralMultiFifoPDM
multi fifo PDM

enumerator kSDMA_ PeripheralMultiFifoSaiRX
multi fifo sai rx use SDMA

enumerator kSDMA __ PeripheralMultiFifoSaiTX
multi fifo sai tx use SDMA

enumerator kSDMA_ Peripheral ASRCM2P
asrc m2p

enumerator kSDMA _Peripheral ASRCP2M
asrc p2m

enumerator kSDMA_ Peripheral ASRCP2P
asrc p2p

_sdma_transfer_status SDMA transfer status

Values:

294

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus SDMA_ERROR
SDMA context error.

enumerator kStatus_ SDMA_ Busy
Channel is busy and can’t handle the transfer request.

_sdma_multi_fifo_ mask SDMA multi fifo mask
Values:
enumerator kSDMA_MultiFifoWatermarkLevelMask
multi fifo watermark level mask
enumerator kSDMA MultiFifoNumsMask
multi fifo nums mask
enumerator kSDMA_ MultiFifoOffsetMask
multi fifo offset mask
enumerator kSDMA_MultiFifoSwDoneMask
multi fifo sw done mask

enumerator kSDMA_MultiFifoSwDoneSelectorMask
multi fifo sw done selector mask

_sdma_multi_fifo_shift SDMA multi fifo shift
Values:

enumerator kSDMA_MultiFifoWatermarkLevelShift
multi fifo watermark level shift
enumerator kSDMA MultiFifoNumsShift
multi fifo nums shift
enumerator kSDMA MultiFifoOffsetShift
multi fifo offset shift
enumerator kSDMA_MultiFifoSwDoneShift
multi fifo sw done shift

enumerator kSDMA_MultiFifoSwDoneSelectorShift
multi fifo sw done selector shift

_sdma_done_channel SDMA done channel
Values:

enumerator k<SDMA _DoneChannel0
SDMA done channel 0

enumerator k<SDMA DoneChannell
SDMA done channel 1

enumerator kSDMA_DoneChannel2
SDMA done channel 2

enumerator kSDMA_DoneChannel3
SDMA done channel 3

2.29. SDMA: Smart Direct Memory Access (SDMA) Controller Driver 295

MCUXpresso SDK Documentation, Release 25.09.00

enumerator k<SDMA _DoneChannel4
SDMA done channel 4

enumerator k<SDMA_DoneChannel5
SDMA done channel 5

enumerator k<SDMA_DoneChannel6
SDMA done channel 6

enumerator k<SDMA _DoneChannel7
SDMA done channel 7

enum sdma_ done src

SDMA done source.

Values:

enumerator kSDMA_DoneSrcSW
software done

enumerator kSDMA_DoneSrcHwEventOU
HW event 0 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent1U
HW event 1 is used for DONE event

enumerator kSDMA _DoneSrcHwEvent2U
HW event 2 is used for DONE event

enumerator kSDMA_ DoneSrcHwEvent3U
HW event 3 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent4U
HW event 4 is used for DONE event

enumerator kSDMA_ DoneSrcHwEvent5U
HW event 5 is used for DONE event

enumerator kSODMA_ DoneSrCHwEvent6U
HW event 6 is used for DONE event

enumerator kSDMA_ DoneSrcHwEvent7U
HW event 7 is used for DONE event

enumerator kSDMA_ DoneSrcHwEvent8U
HW event 8 is used for DONE event

enumerator kSDMA_ DoneSrcHwEvent9U
HW event 9 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent10U
HW event 10 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent11U
HW event 11 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent12U
HW event 12 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent13U
HW event 13 is used for DONE event

296 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator k<SDMA _DoneSrcHwEvent14U
HW event 14 is used for DONE event

enumerator k<SDMA _DoneSrcHwEvent15U
HW event 15 is used for DONE event

enumerator k<SDMA _DoneSrcHwEvent16U
HW event 16 is used for DONE event

enumerator k<SDMA _DoneSrcHwEvent17U
HW event 17 is used for DONE event

enumerator k<SDMA _DoneSrcHwEvent18U
HW event 18 is used for DONE event

enumerator k<SDMA DoneSrcHwEvent19U
HW event 19 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent20U
HW event 20 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent21U
HW event 21 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent22U
HW event 22 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent23U
HW event 23 is used for DONE event

enumerator k<SDMA _DoneSrcHwEvent24U
HW event 24 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent25U
HW event 25 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent26U
HW event 26 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent27U
HW event 27 is used for DONE event

enumerator kSDMA_ DoneSrcHwEvent28U
HW event 28 is used for DONE event

enumerator kSDMA DoneSrcHwEvent29U
HW event 29 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent30U
HW event 30 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent31U
HW event 31 is used for DONE event

typedef enum _sdma_transfer_size sdma_ transfer_size_t
SDMA transfer configuration.

typedef enum _sdma_bd_status sdma_ bd_ status_t
SDMA buffer descriptor status.

typedef enum _sdma_bd_command sdma_ bd_command_ t
SDMA buffer descriptor command.

2.29. SDMA: Smart Direct Memory Access (SDMA) Controller Driver 297

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _sdma_context_switch_mode sdma_ context_switch_mode_t
SDMA context switch mode.

typedef enum _sdma_clock_ratio sdma_ clock_ratio_t
SDMA core clock frequency ratio to the ARM DMA interface.

typedef enum _sdma_transfer_type sdma,__transfer_type_t
SDMA transfer type.

typedef enum sdma_peripheral sdma_ peripheral_t
Peripheral type use SDMA.

typedef enum _sdma_done_src sdma_ done_ src_ t
SDMA done source.

typedef struct _sdma_config sdma_ config_t
SDMA global configuration structure.

typedef struct _sdma_multi_fifo_config sdma_multi_fifo config_t
SDMA multi fifo configurations.

typedef struct _sdma_sw_done_config sdma_sw_ done_ config_t
SDMA sw done configurations.

typedef struct _sdma_p2p_config sdma_ p2p_ config_t
SDMA peripheral to peripheral R7 config.

typedef struct _sdma_transfer_config sdma_ transfer_config_t
SDMA transfer configuration.

This structure configures the source/destination transfer attribute.

typedef struct _sdma_buffer_descriptor sdma_ buffer descriptor_t
SDMA buffer descriptor structure.

This structure is a buffer descriptor, this structure describes the buffer start address and
other options

typedef struct _sdma_channel_control sdma_ channel control_t
SDMA channel control descriptor structure.

typedef struct _sdma_context_data sdma_ context_ data_t

SDMA context structure for each channel. This structure can be load into SDMA core, with
this structure, SDMA scripts can start work.

typedef void (*sdma_ callback)(struct _sdma_handle *handle, void *userData, bool transferDone,
uint32_t bdIndex)

Define callback function for SDMA.

typedef struct _sdma_handle sdma_ handle_t
SDMA transfer handle structure.

SDMA_DRIVER_LOAD_RAM_SCRIPT

struct _sdma_ config
#include <fsl_sdma.h> SDMA global configuration structure.

Public Members

bool enableReal TimeDebugPin
If enable real-time debug pin, default is closed to reduce power consumption.

298 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

bool isSoftwareResetClearLock
If software reset clears the LOCK bit which prevent writing SDMA scripts into SDMA.

sdma_clock_ratio_t ratio
SDMA core clock ratio to ARM platform DMA interface

struct _sdma_ multi_fifo_ config
#include <fsl_sdma.h> SDMA multi fifo configurations.

Public Members
uint8_t fifoNums
fifo numbers

uint8_t fifoOffset
offset between multi fifo data register address

struct _sdma_ sw_ done_ config
#include <fsl_sdma.h> SDMA sw done configurations.

Public Members
bool enableSwDone
true is enable sw done, false is disable

uint8_t swDoneSel
sw done channel number per peripheral type

struct _sdma_ p2p_ config
#include <fsl_sdma.h> SDMA peripheral to peripheral R7 config.

Public Members
uint8_t sourceWatermark
lower watermark value

uint8_t destWatermark
higher water makr value

bool continuousTransfer

0: the amount of samples to be transferred is equal to the cont field of mode word 1: the
amount of samples to be transferred is unknown and script will keep on transferring
as long as both events are detected and script must be stopped by application.

struct _sdma_ transfer config
#include <fsl_sdma.h> SDMA transfer configuration.

This structure configures the source/destination transfer attribute.

Public Members
uint32_t srcAddr
Source address of the transfer

uint32_t destAddr
Destination address of the transfer

2.29. SDMA: Smart Direct Memory Access (SDMA) Controller Driver 299

MCUXpresso SDK Documentation, Release 25.09.00

sdma_transfer_size_t srcTransferSize
Source data transfer size.

sdma_transfer_size_t destTransferSize
Destination data transfer size.
uint32_t bytesPerRequest
Bytes to transfer in a minor loop
uint32_t transferSzie
Bytes to transfer for this descriptor
uint32_t scriptAddr
SDMA script address located in SDMA ROM.
uint32_t eventSource
Event source number for the channel. 0 means no event, use software trigger
uint32_t eventSourcel
event source 1
bool isEventIgnore
True means software trigger, false means hardware trigger
bool isSoftTriggerIgnore
If ignore the HE bit, 1 means use hardware events trigger, 0 means software trigger
sdma_transfer_type_t type
Transfer type, transfer type used to decide the SDMA script.
sdma_multi_fifo_config_t multiFifo
multi fifo configurations

sdma_sw_done_config_t swDone
sw done selector

uint32_t watermarkLevel
watermark level

uint32_t eventMask0
event mask 0

uint32_t eventMask1
event mask 1

struct _sdma_ buffer descriptor

#include <fsl_sdma.h> SDMA buffer descriptor structure.

This structure is a buffer descriptor, this structure describes the buffer start address and
other options

Public Members
uint32_t count
Bytes of the buffer length for this buffer descriptor.
uint32_t status
E,R,I,C,W,D status bits stored here
uint32_t command
command mostlky used for channel 0

300

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t bufferAddr
Buffer start address for this descriptor.

uint32_t extendBufferAddr
External buffer start address, this is an optional for a transfer.

struct sdma_channel control
#include <fsl_sdma.h> SDMA channel control descriptor structure.

Public Members

uint32_t current BDAddr
Address of current buffer descriptor processed

uint32_t baseBDAddr

The start address of the buffer descriptor array
uint32_t channelDesc

Optional for transfer
uint32_t status

Channel status

struct sdma_ context data

#include <fsl_sdma.h> SDMA context structure for each channel. This structure can be load
into SDMA core, with this structure, SDMA scripts can start work.

Public Members
uint32_t GeneralReg[8]
8 general regsiters used for SDMA RISC core

struct sdma_handle
#include <fsl_sdma.h> SDMA transfer handle structure.

Public Members

sdma_callback callback
Callback function for major count exhausted.

void *userData

Callback function parameter.
SDMAARM_Type *base

SDMA peripheral base address.
sdma_buffer_descriptor_t *BDPool

Pointer to memory stored BD arrays.
uint32_t bdCount

How many buffer descriptor
uint32_t bdIndex

How many buffer descriptor

uint32_t eventSource
Event source count for the channel

2.29. SDMA: Smart Direct Memory Access (SDMA) Controller Driver 301

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t eventSourcel
Event source 1 count for the channel

sdma_context_data_t *context
Channel context to exectute in SDMA

uint8_t channel
SDMA channel number.

uint8_t priority
SDMA channel priority

uint8_t flags
The status of the current channel.

2.30 SEMA4: Hardware Semaphores Driver

FSL_SEMA4 DRIVER_VERSION
SEMA4 driver version.

void SEMA4_Init(SEMA4_Type *base)
Initializes the SEMA4 module.

This function initializes the SEMA4 module. It only enables the clock but does not reset the
gates because the module might be used by other processors at the same time. To reset the
gates, call either SEMA4_ResetGate or SEMA4_ResetAllGates function.

Parameters
* base — SEMA4 peripheral base address.

void SEMA4_Deinit(SEMA4_Type *base)
De-initializes the SEMA4 module.

This function de-initializes the SEMA4 module. It only disables the clock.
Parameters
* base — SEMA4 peripheral base address.

status_t SEMA4 TryLock(SEMA4_Type *base, uint8_t gateNum, uint8_t procNum)
Tries to lock the SEMA4 gate.

This function tries to lock the specific SEMA4 gate. If the gate has been locked by another
processor, this function returns an error code.

Parameters
* base — SEMA4 peripheral base address.
* gateNum — Gate number to lock.
* procNum — Current processor number.
Return values
* kStatus_ Success — Lock the sema4 gate successfully.

* kStatus_ Fail - Sema4 gate has been locked by another processor.

302 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

status_t SEMA4_Lock(SEMA4_Type *base, uint8_t gateNum, uint8_t procNum)
Locks the SEMA4 gate.

This function locks the specific SEMAA4 gate. If the gate has been locked by other processors,
this function waits until it is unlocked and then lock it.

If SEMA4 BUSY POLL_COUNT is defined and non-zero, the function will timeout after the
specified number of polling iterations and return kStatus_Timeout.

Parameters
* base — SEMA4 peripheral base address.
* gateNum — Gate number to lock.
* procNum — Current processor number.
Return values
* kStatus_ Success — The gate was successfully locked.

* kStatus_ Timeout — Timeout occurred while waiting for the gate to be un-
locked.

Returns
status_t

static inline void SEMA4_Unlock(SEMA4_Type *base, uint8_t gateNum)
Unlocks the SEMAA4 gate.

This function unlocks the specific SEMA4 gate. It only writes unlock value to the SEMA4
gate register. However, it does not check whether the SEMAA4 gate is locked by the current
processor or not. As a result, if the SEMA4 gate is not locked by the current processor, this
function has no effect.

Parameters
* base — SEMA4 peripheral base address.
* gateNum — Gate number to unlock.

static inline int32_t SEMA4_ GetLockProc(SEMA4_Type *base, uint8_t gateNum)
Gets the status of the SEMA4 gate.

This function checks the lock status of a specific SEMA4 gate.
Parameters
* base —- SEMA4 peripheral base address.
* gateNum — Gate number.

Returns
Return -1 if the gate is unlocked, otherwise return the processor number
which has locked the gate.

status_t SEMA4_ ResetGate(SEMA4_Type *base, uint8_t gateNum)
Resets the SEMAA4 gate to an unlocked status.

This function resets a SEMA4 gate to an unlocked status.
Parameters
* base — SEMA4 peripheral base address.
* gateNum — Gate number.
Return values
* kStatus_ Success — SEMA4 gate is reset successfully.

* kStatus_ Fail - Some other reset process is ongoing.

2.30. SEMA4: Hardware Semaphores Driver 303

MCUXpresso SDK Documentation, Release 25.09.00

static inline status_t SEMA4_ResetAllGates(SEMA4_Type *base)
Resets all SEMA4 gates to an unlocked status.

This function resets all SEMA4 gate to an unlocked status.

Parameters
* base — SEMA4 peripheral base address.

Return values
* kStatus_ Success — SEMA4 is reset successfully.
* kStatus_ Fail - Some other reset process is ongoing.

static inline void SEMA4_EnableGateNotifyInterrupt(SEMA4_Type *base, uint8_t procNum,
uint16_t mask)

Enable the gate notification interrupt.

Gate notification provides such feature, when core tried to lock the gate and failed, it could
get notification when the gate is idle.

Parameters
* base — SEMAA4 peripheral base address.
» procNum - Current processor number.

* mask — OR’ed value of the gate index, for example: (1«0) | (1«1) means gate
0 and gate 1.

static inline void SEMA4_DisableGateNotifyInterrupt(SEMA4_Type *base, uint8_t procNum,
uint16_t mask)

Disable the gate notification interrupt.

Gate notification provides such feature, when core tried to lock the gate and failed, it could
get notification when the gate is idle.

Parameters
* base — SEMA4 peripheral base address.
* procNum — Current processor number.

» mask — OR’ed value of the gate index, for example: (1«0) | (1«1) means gate
0 and gate 1.

static inline uint32_t SEMA4_ GetGateNotifyStatus(SEMA4_Type *base, uint8_t procNum)
Get the gate notification flags.

Gate notification provides such feature, when core tried to lock the gate and failed, it could
get notification when the gate is idle. The status flags are cleared automatically when the
gate is locked by current core or locked again before the other core.

Parameters
* base — SEMA4 peripheral base address.
* procNum — Current processor number.

Returns
OR’ed value of the gate index, for example: (1«0) | (1«1) means gate 0 and gate

1 flags are pending.
status_t SEMA4_ResetGateNotify(SEMA4_Type *base, uint8_t gateNum)
Resets the SEMA4 gate IRQ notification.

This function resets a SEMA4 gate IRQ notification.

Parameters

304 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

* base — SEMA4 peripheral base address.
* gateNum — Gate number.
Return values
» kStatus_ Success — Reset successfully.
* kStatus_ Fail — Some other reset process is ongoing.

static inline status_t SEMA4 ResetAllGateNotify(SEMA4_Type *base)
Resets all SEMA4 gates IRQ notification.

This function resets all SEMA4 gate IRQ notifications.
Parameters
* base —- SEMA4 peripheral base address.
Return values
» kStatus_ Success — Reset successfully.
* kStatus_Fail - Some other reset process is ongoing.

SEMA4 GATE_NUM_RESET_ALL
The number to reset all SEMA4 gates.

SEMA4 GATEn(base, n)
SEMA4 gate n register address.

SEMA4_BUSY_POLL_COUNT
Maximum polling iterations for SEMA4 waiting loops.

This parameter defines the maximum number of iterations for any polling loop in the
SEMAA4 driver code before timing out and returning an error.

It applies to all waiting loops in SEMA4 driver, such as waiting for a gate to be unlocked,
waiting for a reset to complete, or waiting for a resource to become available.

This is a count of loop iterations, not a time-based value.

If defined as 0, polling loops will continue indefinitely until their exit condition is met,
which could potentially cause the system to hang if hardware doesn’t respond or if a re-
source is never released.

2.31 SNVS: Secure Non-Volatile Storage

2.32 Secure Non-Volatile Storage High-Power

void SNVS__HP_ Init(SNVS_Type *base)
Initialize the SNVS.

Note: This API should be called at the beginning of the application using the SNVS driver.

Parameters

* base — SNVS peripheral base address

2.31. SNVS: Secure Non-Volatile Storage 305

MCUXpresso SDK Documentation, Release 25.09.00

void SNVS_HP_ Deinit(SNVS_Type *base)
Deinitialize the SNVS.

Parameters
* base — SNVS peripheral base address

void SNVS_HP_RTC_ Init(SNVS_Type *base, const snvs_hp_rtc_config_t *config)
Ungates the SNVS clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the SNVS driver.

Parameters
* base — SNVS peripheral base address
* config — Pointer to the user’s SNVS configuration structure.

void SNVS__HP_ RTC_ Deinit(SNVS_Type *base)
Stops the RTC and SRTC timers.

Parameters
* base — SNVS peripheral base address

void SNVS__HP_ RTC_ GetDefaultConfig(snvs_hp_rtc_config t *config)
Fills in the SNVS config struct with the default settings.

The default values are as follows.

config->rtccalenable = false;
config->rtccalvalue = 0U;
config->PIFreq = 0U;

Parameters
* config — Pointer to the user’s SNVS configuration structure.

status_t SNVS__HP RTC_ SetDatetime(SNVS_Type *base, const snvs_hp_rtc_datetime_t
*datetime)

Sets the SNVS RTC date and time according to the given time structure.
Parameters
* base — SNVS peripheral base address

* datetime — Pointer to the structure where the date and time details are
stored.

Returns
kStatus_Success: Success in setting the time and starting the SNVS RTC kSta-
tus_InvalidArgument: Error because the datetime format is incorrect

void SNVS__HP_ RTC_ GetDatetime(SNVS_Type *base, snvs_hp_rtc_datetime_t *datetime)
Gets the SNVS RTC time and stores it in the given time structure.

Parameters
* base — SNVS peripheral base address

* datetime — Pointer to the structure where the date and time details are
stored.

306 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

status_t SNVS_HP_RTC_SetAlarm(SNVS_Type *base, const snvs_hp_rtc_datetime_t
*alarmTime)

Sets the SNVS RTC alarm time.

The function sets the RTC alarm. It also checks whether the specified alarm time is greater
than the present time. If not, the function does not set the alarm and returns an error.

Parameters
* base — SNVS peripheral base address
* alarmTime — Pointer to the structure where the alarm time is stored.

Returns
kStatus_Success: success in setting the SNVS RTC alarm kSta-
tus_InvalidArgument: Error because the alarm datetime format is incorrect
kStatus_Fail: Error because the alarm time has already passed

void SNVS__HP_ RTC_ GetAlarm(SNVS_Type *base, snvs_hp_rtc_datetime_t *datetime)
Returns the SNVS RTC alarm time.

Parameters
* base — SNVS peripheral base address

* datetime — Pointer to the structure where the alarm date and time details
are stored.

static inline void SNVS_HP_ RTC_ EnableInterrupts(SNVS_Type *base, uint32_t mask)
Enables the selected SNVS interrupts.

Parameters
* base — SNVS peripheral base address

» mask — The interrupts to enable. This is a logical OR of members of the
enumeration :: _snvs_hp_interrupts_t

static inline void SNVS_HP_ RTC_ DisableInterrupts(SNVS_Type *base, uint32_t mask)
Disables the selected SNVS interrupts.

Parameters
* base — SNVS peripheral base address

» mask — The interrupts to disable. This is a logical OR of members of the
enumeration :: _snvs_hp_interrupts_t

uint32_t SNVS__HP_ RTC_GetEnabledInterrupts(SNVS_Type *base)
Gets the enabled SNVS interrupts.

Parameters
* base — SNVS peripheral base address

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
2 _snvs_hp_interrupts_t
uint32_t SNVS__HP_ RTC_ GetStatusFlags(SNVS_Type *base)
Gets the SNVS status flags.
Parameters
* base — SNVS peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration ::
_snvs_hp_status_flags_t

2.32. Secure Non-Volatile Storage High-Power 307

MCUXpresso SDK Documentation, Release 25.09.00

static inline void SNVS_HP_RTC_ ClearStatusFlags(SNVS_Type *base, uint32_t mask)
Clears the SNVS status flags.

Parameters
* base — SNVS peripheral base address

* mask — The status flags to clear. This is a logical OR of members of the
enumeration :: _snvs_hp_status_flags_t

static inline void SNVS_HP_RTC_ StartTimer(SNVS_Type *base)
Starts the SNVS RTC time counter.

Parameters
* base — SNVS peripheral base address

static inline void SNVS_HP_RTC_ StopTimer(SNVS_Type *base)
Stops the SNVS RTC time counter.

Parameters
* base — SNVS peripheral base address

static inline void SNVS_HP_ EnableHighAssuranceCounter(SNVS_Type *base, bool enable)
Enable or disable the High Assurance Counter (HAC)

Parameters
* base — SNVS peripheral base address
* enable — Pass true to enable, false to disable.

static inline void SNVS_HP_ StartHighAssuranceCounter(SNVS_Type *base, bool start)
Start or stop the High Assurance Counter (HAC)

Parameters
* base — SNVS peripheral base address
* start — Pass true to start, false to stop.

static inline void SNVS_HP_ SetHighAssuranceCounterInitialValue(SNVS_Type *base, uint32_t
value)

Set the High Assurance Counter (HAC) initialize value.
Parameters
* base — SNVS peripheral base address
¢ value — The initial value to set.

static inline void SNVS_HP_ LoadHighAssuranceCounter(SNVS_Type *base)
Load the High Assurance Counter (HAC)

This function loads the HAC initialize value to counter register.
Parameters
* base — SNVS peripheral base address

static inline uint32_t SNVS_HP_ GetHighAssuranceCounter(SNVS_Type *base)
Get the current High Assurance Counter (HAC) value.

Parameters
* base — SNVS peripheral base address

Returns
HAC currnet value.

308 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline void SNVS_HP_ ClearHighAssuranceCounter(SNVS_Type *base)
Clear the High Assurance Counter (HAC)

This function can be called in a functional or soft fail state. When the HAC is enabled:

« If the HAC is cleared in the soft fail state, the SSM transitions to the hard fail state
immediately;

» Ifthe HAC s cleared in functional state, the SSM will transition to hard fail immediately
after transitioning to soft fail.
Parameters
* base — SNVS peripheral base address

static inline void SNVS_HP LockHighAssuranceCounter(SNVS_Type *base)
Lock the High Assurance Counter (HAC)

Once locked, the HAC initialize value could not be changed, the HAC enable status could
not be changed. This could only be unlocked by system reset.

Parameters
* base — SNVS peripheral base address

FSL SNVS HP DRIVER VERSION
Version 2.3.2

enum _snvs_hp_ interrupts
List of SNVS interrupts.
Values:

enumerator kSNVS_RTC__AlarmInterrupt
RTC time alarm

enumerator kSNVS_RTC_ PeriodicInterrupt
RTC periodic interrupt
enum _snvs_hp_status_flags
List of SNVS flags.
Values:
enumerator kSNVS_ RTC_ AlarmInterruptFlag
RTC time alarm flag
enumerator kSNVS_ RTC_ PeriodicInterruptFlag
RTC periodic interrupt flag
enumerator kSNVS_ZMK_ ZeroFlag
The ZMK is zero
enumerator kSNVS_ OTPMK_ ZeroFlag
The OTPMK is zero
enum _snvs_hp_ sv_ status_ flags
List of SNVS security violation flags.
Values:
enumerator kSNVS_LP_ ViolationFlag
Low Power section Security Violation

enumerator kSNVS_ ZMK_ EccFailFlag
Zeroizable Master Key Error Correcting Code Check Failure

2.32. Secure Non-Volatile Storage High-Power 309

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSNVS_LP_ SoftwareViolationFlag
LP Software Security Violation

enumerator kSNVS_ FatalSoftwareViolationFlag
Software Fatal Security Violation
enumerator kSNVS_ SoftwareViolationFlag
Software Security Violation
enumerator kSNVS_ ViolationOFlag
Security Violation 0
enumerator kSNVS_ Violation1Flag
Security Violation 1
enumerator kSNVS_ Violation2Flag
Security Violation 2
enumerator kSNVS_ Violation4Flag
Security Violation 4
enumerator kSNVS_ Violation5Flag
Security Violation 5
enum _snvs__hp_ ssm_ state
List of SNVS Security State Machine State.
Values:
enumerator kSNVS_ SSMInit
Init
enumerator kSNVS_ SSMHardFail
Hard Fail
enumerator kSNVS_ SSMSoftFail
Soft Fail
enumerator kSNVS_ SSMInitInter
Init Intermediate (transition state between Init and Check)
enumerator kSNVS_ SSMCheck
Check
enumerator kSNVS_ SSMNonSecure
Non-Secure
enumerator kSNVS SSMTrusted
Trusted
enumerator kSNVS SSMSecure
Secure
typedef enum _snvs_hp_interrupts snvs_hp_ interrupts_ t
List of SNVS interrupts.
typedef enum _snvs_hp_status_flags snvs_hp_status_flags_t
List of SNVS flags.
typedef enum _snvs_hp_sv_status_flags snvs_hp_sv_status_flags_t
List of SNVS security violation flags.

310

Chapter 2

. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _snvs_hp_rtc_datetime snvs_hp_rtc_ datetime_t
Structure is used to hold the date and time.

typedef struct _snvs_hp_rtc_config snvs_hp_ rtc_ config_t
SNVS config structure.

This structure holds the configuration settings for the SNVS peripheral. To initialize this
structure to reasonable defaults, call the SNVS_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

typedef enum _snvs_hp_ssm_state snvs_hp_ssm_ state_t
List of SNVS Security State Machine State.

static inline void SNVS_HP_ EnableMasterKeySelection(SNVS_Type *base, bool enable)
Enable or disable master key selection.

Parameters
* base — SNVS peripheral base address
* enable — Pass true to enable, false to disable.

static inline void SNVS_HP_ ProgramZeroizableMasterKey(SNVS_Type *base)
Trigger to program Zeroizable Master Key.

Parameters
* base — SNVS peripheral base address

static inline void SNVS_HP_ChangeSSMState(SNVS_Type *base)
Trigger SSM State Transition.

Trigger state transition of the system security monitor (SSM). It results only the following
transitions of the SSM:

* Check State -> Non-Secure (when Non-Secure Boot and not in Fab Configuration)

Check State —> Trusted (when Secure Boot or in Fab Configuration)
* Trusted State —> Secure
* Secure State —> Trusted

Soft Fail —> Non-Secure

Parameters
* base — SNVS peripheral base address

static inline void SNVS_HP_ SetSoftwareFatalSecurity Violation(SNVS_Type *base)
Trigger Software Fatal Security Violation.

The result SSM state transition is:
* Check State -> Soft Fail
* Non-Secure State -> Soft Fail
» Trusted State -> Soft Fail

» Secure State -> Soft Fail

Parameters

* base — SNVS peripheral base address

2.32. Secure Non-Volatile Storage High-Power 311

MCUXpresso SDK Documentation, Release 25.09.00

static inline void SNVS_HP_ SetSoftwareSecurity Violation(SNVS_Type *base)
Trigger Software Security Violation.

The result SSM state transition is:
* Check -> Non-Secure
e Trusted -> Soft Fail

* Secure -> Soft Fail

Parameters
* base — SNVS peripheral base address

static inline snvs_hp_ssm_state_t SNVS__HP_ GetSSMState(SNVS_Type *base)
Get current SSM State.

Parameters
* base — SNVS peripheral base address

Returns
Current SSM state

static inline void SNVS_HP_ResetLP(SNVS_Type *base)
Reset the SNVS LP section.

Reset the LP section except SRTC and Time alarm.
Parameters
* base — SNVS peripheral base address

static inline uint32_t SNVS_HP_ GetStatusFlags(SNVS_Type *base)
Get the SNVS HP status flags.

The flags are returned as the OR’ed value f the enumeration :: _snvs_hp_status_flags_t.
Parameters
* base — SNVS peripheral base address

Returns
The OR’ed value of status flags.

static inline void SNVS_HP_ ClearStatusFlags(SNVS_Type *base, uint32_t mask)
Clear the SNVS HP status flags.

The flags to clear are passed in as the ORed value of the enumeration
_snvs_hp_status_flags_t. Only these flags could be cleared using this APIL

* kSNVS_RTC_PeriodicInterruptFlag
* kSNVS_RTC_AlarmInterruptFlag

Parameters
* base — SNVS peripheral base address
* mask — OR’ed value of the flags to clear.

static inline uint32_t SNVS__HP_ GetSecurity ViolationStatusFlags(SNVS_Type *base)
Get the SNVS HP security violation status flags.

The flags are returned as the OR’ed value of the enumeration :: _snvs_hp_sv_status_flags_t.
Parameters

* base — SNVS peripheral base address

312 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Returns
The OR’ed value of security violation status flags.

static inline void SNVS_HP_ ClearSecurity ViolationStatusFlags(SNVS_Type *base, uint32_t mask)
Clear the SNVS HP security violation status flags.

The flags to clear are passed in as the ORed value of the enumeration
_snvs_hp_sv_status_flags_t. Only these flags could be cleared using this API

kSNVS_ZMK_EccFailFlag
kSNVS_ViolationOFlag
kSNVS_Violation1Flag
kSNVS_Violation2Flag
kSNVS_Violation3Flag
kSNVS_Violation4Flag
kSNVS_Violation5Flag

Parameters
* base — SNVS peripheral base address
» mask — OR’ed value of the flags to clear.
SNVS_HPSVSR_ SV0_MASK

SNVS_HPSVSR_SV1_MASK
SNVS_HPSVSR SV2 MASK
SNVS_HPSVSR_SV4_MASK
SNVS_HPSVSR_ SV5 MASK
SNVS_MAKE HP_SV_FLAG(X)

Macro to make security violation flag.

Macro help to make security violation flag kSNVS_ViolationOFlag to kSNVS_Violation5Flag,
For example, SNVS_MAKE_HP_SV_FLAG(0) is kSNVS_ViolationOFlag.

struct _snvs hp rtc_datetime
#include <fsl_snvs_hp.h> Structure is used to hold the date and time.

Public Members
uint16_t year
Range from 1970 to 2099.

uint8_t month

Range from 1 to 12.
uint8_t day

Range from 1 to 31 (depending on month).
uint8_t hour

Range from 0 to 23.

uint8_t minute
Range from 0 to 59.

2.32. Secure Non-Volatile Storage High-Power 313

MCUXpresso SDK Documentation, Release 25.09.00

uint8_t second
Range from 0 to 59.

struct _snvs_hp_rtc_ config
#include <fsl_snvs_hp.h> SNVS config structure.

This structure holds the configuration settings for the SNVS peripheral. To initialize this
structure to reasonable defaults, call the SNVS_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

Public Members
bool rtcCalEnable
true: RTC calibration mechanism is enabled; false:No calibration is used

uint32_t rtcCalValue

Defines signed calibration value for nonsecure RTC; This is a 5-bit 2’s complement
value, range from -16 to +15

uint32_t periodicInterruptFreq
Defines frequency of the periodic interrupt; Range from 0 to 15

2.33 Secure Non-Volatile Storage Low-Power

void SNVS_LP_ Init(SNVS_Type *base)
Ungates the SNVS clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the SNVS driver.

Parameters
* base — SNVS peripheral base address

void SNVS_LP_ Deinit(SNVS_Type *base)
Deinit the SNVS LP section.

Parameters
* base — SNVS peripheral base address

status_t SNVS_LP_SRTC_ SetDatetime(SNVS_Type *base, const snvs_Ilp_srtc_datetime_t
*datetime)

Sets the SNVS SRTC date and time according to the given time structure.
Parameters
* base — SNVS peripheral base address

* datetime — Pointer to the structure where the date and time details are
stored.

Returns
kStatus_Success: Success in setting the time and starting the SNVS SRTC kSta-
tus_InvalidArgument: Error because the datetime format is incorrect

314 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

void SNVS_LP_SRTC_ GetDatetime(SNVS_Type *base, snvs_Ip_srtc_datetime_t *datetime)
Gets the SNVS SRTC time and stores it in the given time structure.

Parameters
* base — SNVS peripheral base address

* datetime — Pointer to the structure where the date and time details are
stored.

status_t SNVS_LP_ SRTC_ SetAlarm(SNVS_Type *base, const snvs_Ip_srtc_datetime_t
*alarmTime)

Sets the SNVS SRTC alarm time.

The function sets the SRTC alarm. It also checks whether the specified alarm time is greater
than the present time. If not, the function does not set the alarm and returns an error. Please
note, that SRTC alarm has limited resolution because only 32 most significant bits of SRTC
counter are compared to SRTC Alarm register. If the alarm time is beyond SRTC resolution,
the function does not set the alarm and returns an error.

Parameters
* base — SNVS peripheral base address
* alarmTime — Pointer to the structure where the alarm time is stored.

Returns
kStatus_Success: success in setting the SNVS SRTC alarm kSta-
tus_InvalidArgument: Error because the alarm datetime format is incorrect
kStatus_Fail: Error because the alarm time has already passed or is beyond
resolution

void SNVS_LP_SRTC_ GetAlarm(SNVS_Type *base, snvs_Ip_srtc_datetime_t *datetime)
Returns the SNVS SRTC alarm time.

Parameters
* base — SNVS peripheral base address

* datetime — Pointer to the structure where the alarm date and time details
are stored.

static inline void SNVS_LP_ SRTC_ Enablelnterrupts(SNVS_Type *base, uint32_t mask)
Enables the selected SNVS interrupts.

Parameters
* base — SNVS peripheral base address

* mask — The interrupts to enable. This is a logical OR of members of the
enumeration :: _snvs_lp_srtc_interrupts

static inline void SNVS_LP_ SRTC_ DisableInterrupts(SNVS_Type *base, uint32_t mask)
Disables the selected SNVS interrupts.

Parameters
* base — SNVS peripheral base address

* mask — The interrupts to enable. This is a logical OR of members of the
enumeration :: _snvs_lp_srtc_interrupts

uint32_t SNVS_LP_ SRTC_ GetEnabledInterrupts(SNVS_Type *base)
Gets the enabled SNVS interrupts.

Parameters

* base — SNVS peripheral base address

2.33. Secure Non-Volatile Storage Low-Power 315

MCUXpresso SDK Documentation, Release 25.09.00

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
1 _snvs_lp_srtc_interrupts

uint32_t SNVS_LP_SRTC_ GetStatusFlags(SNVS_Type *base)
Gets the SNVS status flags.

Parameters
* base — SNVS peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration ::
_snvs_lp_srtc_status_flags

static inline void SNVS_LP_ SRTC_ ClearStatusFlags(SNVS_Type *base, uint32_t mask)
Clears the SNVS status flags.

Parameters
* base — SNVS peripheral base address

» mask — The status flags to clear. This is a logical OR of members of the
enumeration :: _snvs_lp_srtc_status_flags

static inline void SNVS_LP_SRTC_ StartTimer(SNVS_Type *base)
Starts the SNVS SRTC time counter.

Parameters
* base — SNVS peripheral base address

static inline void SNVS_LP_SRTC_ StopTimer(SNVS_Type *base)
Stops the SNVS SRTC time counter.

Parameters
* base — SNVS peripheral base address

void SNVS_LP_ PassiveTamperPin_ GetDefaultConfig(snvs_Ilp_passive_tamper._t *config)
Fills in the SNVS tamper pin config struct with the default settings.

The default values are as follows. code config->polarity = 0U; config->filterenable = 0U; if
available on SoC config->filter = QU; if available on SoC endcode

Parameters
* config — Pointer to the user’s SNVS configuration structure.

static inline void SNVS_LP_ EnableMonotonicCounter(SNVS_Type *base, bool enable)
Enable or disable the Monotonic Counter.

Parameters
* base — SNVS peripheral base address
* enable — Pass true to enable, false to disable.

uint64_t SNVS_LP_ GetMonotonicCounter(SNVS_Type *base)
Get the current Monotonic Counter.

Parameters
* base — SNVS peripheral base address

Returns
Current Monotonic Counter value.

316 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline void SNVS_LP_ IncreaseMonotonicCounter(SNVS_Type *base)
Increase the Monotonic Counter.

Increase the Monotonic Counter by 1.
Parameters
* base — SNVS peripheral base address

void SNVS_LP_ WriteZeroizableMasterKey(SNVS_Type *base, uint32_t ZMKey[8U])
Write Zeroizable Master Key (ZMK) to the SNVS registers.

Parameters
* base — SNVS peripheral base address
* ZMKey — The ZMK write to the SNVS register.

static inline void SNVS_ LP_ SetZeroizableMasterKeyValid(SNVS_Type *base, bool valid)
Set Zeroizable Master Key valid.

This API could only be called when using software programming mode. After writing ZMK
using SNVS_LP_WriteZeroizableMasterKey, call this API to make the ZMK valid.

Parameters
* base — SNVS peripheral base address
» valid — Pass true to set valid, false to set invalid.

static inline bool SNVS_ LP_ GetZeroizableMasterKeyValid(SNVS_Type *base)
Get Zeroizable Master Key valid status.

In hardware programming mode, call this API to check whether the ZMK is valid.
Parameters
* base — SNVS peripheral base address

Returns
true if valid, false if invalid.

static inline void SNVS_ LP_ SetZeroizableMasterKeyProgramMode(SNVS_Type *base,
snvs_lp_zmk_program_mode_t
mode)

Set Zeroizable Master Key programming mode.
Parameters
* base — SNVS peripheral base address
* mode - ZMK programming mode.

static inline void SNVS_ LP_ EnableZeroizableMasterKeyECC(SNVS_Type *base, bool enable)
Enable or disable Zeroizable Master Key ECC.

Parameters
* base — SNVS peripheral base address
* enable — Pass true to enable, false to disable.

static inline void SNVS_ LP_ SetMasterKeyMode(SNVS_Type *base, snvs_Ilp_master_key_mode_t
mode)

Set SNVS Master Key mode.

Note: When kSNVS_ZMK or kSNVS_CMK used, the SNVS_HP must be configured to enable
the master key selection.

2.33. Secure Non-Volatile Storage Low-Power 317

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
* base — SNVS peripheral base address
* mode — Master Key mode.

FSL SNVS LP DRIVER VERSION
Version 2.4.6

enum _snvs_lp_ srtc_ interrupts
List of SNVS_LP interrupts.

Values:

enumerator kSNVS__SRTC_ AlarmInterrupt
SRTC time alarm.

enum _snvs_lp_srtc_status_flags
List of SNVS_LP flags.

Values:

enumerator kSNVS_ SRTC_ AlarmInterruptFlag
SRTC time alarm flag

enum _snvs_Ip external tamper status
List of SNVS_LP external tampers status.

Values:
enumerator kSNVS_ TamperNotDetected
enumerator kSNVS_ TamperDetected
enum _snvs_ Ip_ external_tamper_ polarity
SNVS_LP external tamper polarity.
Values:
enumerator kSNVS_ ExternalTamperActiveLow
enumerator kSNVS_ External TamperActiveHigh
enum _snvs_lp_ zmk_ program_ mode
SNVS_LP Zeroizable Master Key programming mode.
Values:

enumerator kSNVS_ ZMKSoftwareProgram
Software programming mode.

enumerator kSNVS_ ZMKHardwareProgram
Hardware programming mode.

enum _snvs_Ip_ master_ key mode

SNVS_LP Master Key mode.

Values:

enumerator kSNVS_OTPMK
One Time Programmable Master Key.

enumerator kSNVS_ ZMK
Zeroizable Master Key.

318 Chapter 2

. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSNVS_ CMK
Combined Master Key, it is XOR of OPTMK and ZMK.

typedef enum _snvs_Ip_srtc_interrupts snvs_lp_ srtc_interrupts_t
List of SNVS_LP interrupts.

typedef enum _snvs_Ip_srtc_status_flags snvs_lp_srtc_status_flags_t
List of SNVS_LP flags.

typedef enum _snvs_Ip_external_tamper_status snvs_lp_ external tamper_status_t
List of SNVS_LP external tampers status.

typedef enum _snvs_Ip_external_tamper_polarity snvs_lp_external tamper polarity t
SNVS_LP external tamper polarity.

typedef struct _snvs_lp_srtc_datetime snvs_lp_srtc_ datetime_t
Structure is used to hold the date and time.

typedef struct _snvs_Ip_srtc_config snvs_lp_srtc_config t
SNVS_LP config structure.

This structure holds the configuration settings for the SNVS_LP peripheral. To initialize this
structure to reasonable defaults, call the SNVS_LP_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

typedef enum _snvs_Ip_zmk_program_mode snvs_lp_ zmk_ program_mode__t
SNVS_LP Zeroizable Master Key programming mode.

typedef enum _snvs_Ip_master_key_mode snvs_Ip_master_key_ mode_t
SNVS_LP Master Key mode.

void SNVS_LP_SRTC_Init(SNVS_Type *base, const snvs_Ilp_srtc_config_t *config)
Ungates the SNVS clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the SNVS driver.

Parameters
* base — SNVS peripheral base address
* config — Pointer to the user’s SNVS configuration structure.

void SNVS_LP_SRTC_ Deinit(SNVS_Type *base)
Stops the SRTC timer.

Parameters
* base — SNVS peripheral base address

void SNVS_LP_SRTC_ GetDefaultConfig(snvs_lp_srtc_config_t *config)
Fills in the SNVS_LP config struct with the default settings.

The default values are as follows.
config->srtccalenable = false;

config->srtccalvalue = 0U;

Parameters

* config — Pointer to the user’s SNVS configuration structure.

2.33. Secure Non-Volatile Storage Low-Power 319

MCUXpresso SDK Documentation, Release 25.09.00

SNVS_ZMK_REG_COUNT
Define of SNVS_LP Zeroizable Master Key registers.

SNVS_LP_MAX TAMPER
Define of SNVS_LP Max possible tamper.

struct snvs_ Ip_ passive_ tamper_t
#include <fsl_snvs_Ip.h> Structure is used to configure SNVS LP passive tamper pins.

struct _snvs_Ip_srtc_ datetime
#include <fsl_snvs_Ip.h> Structure is used to hold the date and time.

Public Members
uint16_t year
Range from 1970 to 2099.

uint8_t month

Range from 1 to 12.
uint8_t day

Range from 1 to 31 (depending on month).
uint8_t hour

Range from 0 to 23.

uint8_t minute
Range from 0 to 59.

uint8_t second
Range from 0 to 59.

struct _snvs_Ip_ srtc_ config
#include <fsl_snvs_Ip.h> SNVS_LP config structure.

This structure holds the configuration settings for the SNVS_LP peripheral. To initialize this
structure to reasonable defaults, call the SNVS_LP_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

Public Members

bool srtcCalEnable
true: SRTC calibration mechanism is enabled; false: No calibration is used

uint32_t srtcCalValue

Defines signed calibration value for SRTC; This is a 5-bit 2’s complement value, range
from -16 to +15

2.34 SPDIF: Sony/Philips Digital Interface

void SPDIF_ Init(SPDIF_Type *base, const spdif config t *config)
Initializes the SPDIF peripheral.
Ungates the SPDIF clock, resets the module, and configures SPDIF with a configuration

structure. The configuration structure can be custom filled or set with default values by
SPDIF_GetDefaultConfig().

320 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Note: This APIshould be called at the beginning of the application to use the SPDIF driver.
Otherwise, accessing the SPDIF module can cause a hard fault because the clock is not en-
abled.

Parameters
* base — SPDIF base pointer
* config — SPDIF configuration structure.

void SPDIF__GetDefaultConfig(spdif_config_t *config)
Sets the SPDIF configuration structure to default values.

This API initializes the configuration structure for use in SPDIF_Init. The initialized struc-
ture can remain unchanged in SPDIF_Init, or it can be modified before calling SPDIF_Init.
This is an example.

spdif_config_t config;
SPDIF__GetDefaultConfig(&config);

Parameters
* config — pointer to master configuration structure

void SPDIF_ Deinit(SPDIF_Type *base)
De-initializes the SPDIF peripheral.

This API gates the SPDIF clock. The SPDIF module can’t operate unless SPDIF_Init is called
to enable the clock.

Parameters
* base — SPDIF base pointer

uint32_t SPDIF _Getlnstance(SPDIF_Type *base)
Get the instance number for SPDIFE.

Parameters
* base — SPDIF base pointer.

static inline void SPDIF_ TxFIFOReset(SPDIF_Type *base)
Resets the SPDIF Tx.

This function makes Tx FIFO in reset mode.
Parameters
* base — SPDIF base pointer

static inline void SPDIF_ RxFIFOReset(SPDIF_Type *base)
Resets the SPDIF Rx.

This function enables the software reset and FIFO reset of SPDIF Rx. After reset, clear the
reset bit.

Parameters
* base — SPDIF base pointer

void SPDIF_ TxEnable(SPDIF_Type *base, bool enable)
Enables/disables the SPDIF Tx.

Parameters

* base — SPDIF base pointer

2.34. SPDIF: Sony/Philips Digital Interface 321

MCUXpresso SDK Documentation, Release 25.09.00

* enable — True means enable SPDIF TX, false means disable.

static inline void SPDIF_ RxEnable(SPDIF_Type *base, bool enable)
Enables/disables the SPDIF Rx.

Parameters
* base — SPDIF base pointer
* enable — True means enable SPDIF Rx, false means disable.

static inline uint32_t SPDIF_ GetStatusFlag(SPDIF_Type *base)
Gets the SPDIF status flag state.

Parameters
* base — SPDIF base pointer

Returns
SPDIF status flag value. Use the _spdif interrupt_enable_t to get the status
value needed.

static inline void SPDIF_ ClearStatusFlags(SPDIF_Type *base, uint32_t mask)
Clears the SPDIF status flag state.

Parameters
* base — SPDIF base pointer

» mask —State mask. It can be a combination of the _spdif_interrupt_enable_t
member. Notice these members cannot be included, as these flags cannot
be cleared by writing 1 to these bits:

— kSPDIF_UChannelReceiveRegisterFull
— kSPDIF_QChannelReceiveRegisterFull
— KSPDIF_TXFIFOEmpty

— kSPDIF_RXFIFOFull

static inline void SPDIF_ Enablelnterrupts(SPDIF_Type *base, uint32_t mask)
Enables the SPDIF Tx interrupt requests.

Parameters
* base — SPDIF base pointer

* mask —interrupt source The parameter can be a combination of the follow-
ing sources if defined.

— kSPDIF_WordStartInterruptEnable
— kSPDIF_SyncErrorInterruptEnable
— kSPDIF_FIFOWarningInterruptEnable
— kSPDIF_FIFORequestInterruptEnable
— kSPDIF_FIFOErrorinterruptEnable

static inline void SPDIF_ DisableInterrupts(SPDIF_Type *base, uint32_t mask)
Disables the SPDIF Tx interrupt requests.

Parameters
* base — SPDIF base pointer

» mask —interrupt source The parameter can be a combination of the follow-
ing sources if defined.

— kSPDIF_WordStartInterruptEnable

322 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

— kSPDIF_SyncErrorInterruptEnable
— kSPDIF_FIFOWarningInterruptEnable
— kSPDIF_FIFORequestInterruptEnable
— kSPDIF_FIFOErrorinterruptEnable

static inline void SPDIF EnableDMA (SPDIF_Type *base, uint32_t mask, bool enable)
Enables/disables the SPDIF DMA requests.

Parameters
* base — SPDIF base pointer

» mask — SPDIF DMA enable mask, The parameter can be a combination of
the following sources if defined

— KSPDIF_RxDMAEnable
— kSPDIF_TxDMAEnable
* enable — True means enable DMA, false means disable DMA.

static inline uint32_t SPDIF_ TxGetLeftDataRegister Address(SPDIF_Type *base)
Gets the SPDIF Tx left data register address.

This API is used to provide a transfer address for the SPDIF DMA transfer configuration.
Parameters
* base — SPDIF base pointer.

Returns
data register address.

static inline uint32_t SPDIF _TxGetRightDataRegister Address(SPDIF_Type *base)
Gets the SPDIF Tx right data register address.

This API is used to provide a transfer address for the SPDIF DMA transfer configuration.
Parameters
* base — SPDIF base pointer.

Returns
data register address.

static inline uint32_t SPDIF_ RxGetLeftDataRegister Address(SPDIF_Type *base)
Gets the SPDIF Rx left data register address.

This API is used to provide a transfer address for the SPDIF DMA transfer configuration.
Parameters
* base — SPDIF base pointer.

Returns
data register address.

static inline uint32_t SPDIF_ RxGetRightDataRegister Address(SPDIF_Type *base)
Gets the SPDIF Rx right data register address.

This API is used to provide a transfer address for the SPDIF DMA transfer configuration.
Parameters
* base — SPDIF base pointer.

Returns
data register address.

2.34. SPDIF: Sony/Philips Digital Interface 323

MCUXpresso SDK Documentation, Release 25.09.00

void SPDIF_ TxSetSampleRate(SPDIF_Type *base, uint32_t sampleRate_Hz, uint32_t
sourceClockFreq_Hz)

Configures the SPDIF Tx sample rate.
The audio format can be changed at run-time. This function configures the sample rate.
Parameters
* base — SPDIF base pointer.
» sampleRate Hz — SPDIF sample rate frequency in Hz.
* sourceClockFreq Hz — SPDIF tx clock source frequency in Hz.

uint32_t SPDIF__GetRxSampleRate(SPDIF_Type *base, uint32_t clockSourceFreq _Hz)
Configures the SPDIF Rx audio format.

The audio format can be changed at run-time. This function configures the sample rate and
audio data format to be transferred.

Parameters
* base — SPDIF base pointer.
* clockSourceFreq Hz — SPDIF system clock frequency in hz.

void SPDIF_ WriteBlocking(SPDIF_Type *base, uint8_t *buffer, uint32_t size)
Sends data using a blocking method.

Note: This function blocks by polling until data is ready to be sent.

Parameters
* base — SPDIF base pointer.
* buffer — Pointer to the data to be written.
* size — Bytes to be written.

static inline void SPDIF_ WriteLeftData(SPDIF_Type *base, uint32_t data)
Writes data into SPDIF FIFO.

Parameters
* base — SPDIF base pointer.
* data — Data needs to be written.

static inline void SPDIF_ WriteRightData(SPDIF_Type *base, uint32_t data)
Writes data into SPDIF FIFO.

Parameters
* base — SPDIF base pointer.
* data — Data needs to be written.

static inline void SPDIF_ WriteChannelStatusHigh(SPDIF_Type *base, uint32_t data)
Writes data into SPDIF FIFO.

Parameters
* base — SPDIF base pointer.

* data — Data needs to be written.

324 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline void SPDIF_ WriteChannelStatusLow(SPDIF_Type *base, uint32_t data)
Writes data into SPDIF FIFO.

Parameters
* base — SPDIF base pointer.
* data — Data needs to be written.

void SPDIF_ ReadBlocking(SPDIF_Type *base, uint8_t *buffer, uint32_t size)
Receives data using a blocking method.

Note: This function blocks by polling until data is ready to be sent.

Parameters
* base — SPDIF base pointer.
* buffer — Pointer to the data to be read.
* size — Bytes to be read.

static inline uint32_t SPDIF_ ReadLeftData(SPDIF_Type *base)
Reads data from the SPDIF FIFO.

Parameters
* base — SPDIF base pointer.

Returns
Data in SPDIF FIFO.

static inline uint32_t SPDIF_ ReadRightData(SPDIF_Type *base)
Reads data from the SPDIF FIFO.

Parameters
* base — SPDIF base pointer.

Returns
Data in SPDIF FIFO.

static inline uint32_t SPDIF ReadChannelStatusHigh(SPDIF_Type *base)
Reads data from the SPDIF FIFO.

Parameters
* base — SPDIF base pointer.

Returns
Data in SPDIF FIFO.

static inline uint32_t SPDIF _ReadChannelStatusLow(SPDIF_Type *base)
Reads data from the SPDIF FIFO.

Parameters
* base — SPDIF base pointer.

Returns
Data in SPDIF FIFO.

static inline uint32_t SPDIF _ReadQChannel(SPDIF_Type *base)
Reads data from the SPDIF FIFO.

Parameters

* base — SPDIF base pointer.

2.34. SPDIF: Sony/Philips Digital Interface 325

MCUXpresso SDK Documentation, Release 25.09.00

Returns
Data in SPDIF FIFO.

static inline uint32_t SPDIF_ReadUChannel(SPDIF_Type *base)
Reads data from the SPDIF FIFO.

Parameters
* base — SPDIF base pointer.

Returns
Data in SPDIF FIFO.

void SPDIF_ TransferTxCreateHandle(SPDIF_Type *base, spdif _handle_t *handle,
spdif transfer_callback_t callback, void *userData)

Initializes the SPDIF Tx handle.

This function initializes the Tx handle for the SPDIF Tx transactional APIs. Call this function
once to get the handle initialized.

Parameters
* base — SPDIF base pointer
* handle — SPDIF handle pointer.
* callback — Pointer to the user callback function.
* userData — User parameter passed to the callback function

void SPDIF _TransferRxCreateHandle(SPDIF_Type *base, spdif handle_t *handle,
spdif transfer_callback_t callback, void *userData)

Initializes the SPDIF Rx handle.

This function initializes the Rx handle for the SPDIF Rx transactional APIs. Call this function
once to get the handle initialized.

Parameters
* base — SPDIF base pointer.
* handle — SPDIF handle pointer.
* callback — Pointer to the user callback function.
* userData — User parameter passed to the callback function.

status_t SPDIF_ TransferSendNonBlocking(SPDIF_Type *base, spdif _handle_t *handle,
spdif transfer_t *xfer)

Performs an interrupt non-blocking send transfer on SPDIF.

Note: This API returns immediately after the transfer initiates. Call the
SPDIF_TxGetTransferStatusIRQ to poll the transfer status and check whether the transfer
is finished. If the return status is not kStatus_SPDIF_Busy, the transfer is finished.

Parameters
* base — SPDIF base pointer.

* handle — Pointer to the spdif_handle_t structure which stores the transfer
state.

* xfer — Pointer to the spdif_transfer_t structure.
Return values

* kStatus_ Success — Successfully started the data receive.

326 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

» kStatus_ SPDIF_ TxBusy — Previous receive still not finished.
* kStatus_ InvalidArgument — The input parameter is invalid.

status_t SPDIF_ TransferReceiveNonBlocking(SPDIF_Type *base, spdif handle_t *handle,
spdif transfer_t *xfer)

Performs an interrupt non-blocking receive transfer on SPDIF.

Note: This API returns immediately after the transfer initiates. Call the
SPDIF_RxGetTransferStatusIRQ to poll the transfer status and check whether the transfer
is finished. If the return status is not kStatus_SPDIF_Busy, the transfer is finished.

Parameters
* base — SPDIF base pointer

* handle — Pointer to the spdif_handle_t structure which stores the transfer
state.

* xfer — Pointer to the spdif_transfer_t structure.
Return values
* kStatus_ Success — Successfully started the data receive.
e kStatus_ SPDIF_RxBusy — Previous receive still not finished.
* kStatus_InvalidArgument — The input parameter is invalid.

status_t SPDIF_TransferGetSendCount(SPDIF_Type *base, spdif handle_t *handle, size_t *count)
Gets a set byte count.

Parameters
* base — SPDIF base pointer.

* handle — Pointer to the spdif_handle_t structure which stores the transfer
state.

* count — Bytes count sent.
Return values
* kStatus_ Success — Succeed get the transfer count.

* kStatus_ NoTransferInProgress — There is not a non-blocking transaction cur-
rently in progress.

status_t SPDIF_ TransferGetReceiveCount(SPDIF_Type *base, spdif handle_t *handle, size_t
*count)

Gets a received byte count.
Parameters
* base — SPDIF base pointer.

* handle — Pointer to the spdif_handle_t structure which stores the transfer
state.

* count — Bytes count received.
Return values
* kStatus_ Success — Succeed get the transfer count.

* kStatus_ NoTransferInProgress — There is not a non-blocking transaction cur-
rently in progress.

2.34. SPDIF: Sony/Philips Digital Interface 327

MCUXpresso SDK Documentation, Release 25.09.00

void SPDIF_ TransferAbortSend (SPDIF_Type *base, spdif handle_t *handle)
Aborts the current send.

Note: This API can be called any time when an interrupt non-blocking transfer initiates to
abort the transfer early.

Parameters
* base — SPDIF base pointer.

* handle — Pointer to the spdif_handle_t structure which stores the transfer
state.

void SPDIF_ TransferAbortReceive(SPDIF_Type *base, spdif handle_t *handle)
Aborts the current IRQ receive.

Note: This API can be called when an interrupt non-blocking transfer initiates to abort the
transfer early.

Parameters
* base — SPDIF base pointer

* handle — Pointer to the spdif_handle_t structure which stores the transfer
state.

void SPDIF_ TransferTxHandleIRQ(SPDIF_Type *base, spdif handle_t *handle)
Tx interrupt handler.

Parameters
* base — SPDIF base pointer.
* handle — Pointer to the spdif_handle_t structure.

void SPDIF _TransferRxHandleIRQ(SPDIF_Type *base, spdif handle_t *handle)
Tx interrupt handler.

Parameters
* base — SPDIF base pointer.
* handle — Pointer to the spdif_handle_t structure.

FSL_SPDIF DRIVER_ VERSION
Version 2.0.7

SPDIF return status.

Values:

enumerator kStatus_ SPDIF_RxDPLLLocked
SPDIF Rx PLL locked.

enumerator kStatus_ SPDIF_ TxFIFOError
SPDIF Tx FIFO error.

enumerator kStatus_ SPDIF_TxFIFOResync
SPDIF Tx left and right FIFO resync.

328 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus_ SPDIF_RxCnew
SPDIF Rx status channel value updated.

enumerator kStatus_ SPDIF_ValidatyNoGood
SPDIF validaty flag not good.

enumerator kStatus_ SPDIF__RxIllegalSymbol
SPDIF Rx receive illegal symbol.

enumerator kStatus_ SPDIF_RxParityBitError
SPDIF Rx parity bit error.

enumerator kStatus SPDIF UChannelOverrun
SPDIF receive U channel overrun.

enumerator kStatus_ SPDIF__QChannelOverrun
SPDIF receive Q channel overrun.

enumerator kStatus_ SPDIF__UQChannelSync
SPDIF U/Q channel sync found.

enumerator kStatus_ SPDIF_UQChannelFrameError
SPDIF U/Q channel frame error.

enumerator kStatus_ SPDIF RxFIFOError
SPDIF Rx FIFO error.

enumerator kStatus_ SPDIF_RxFIFOResync
SPDIF Rx left and right FIFO resync.

enumerator kStatus_ SPDIF LockLoss
SPDIF Rx PLL clock lock loss.

enumerator kStatus_ SPDIF TxIdle
SPDIF Tx is idle

enumerator kStatus_ SPDIF RxIdle
SPDIF Rx is idle

enumerator kStatus_ SPDIF QueueFull
SPDIF queue full

enum _ spdif rxfull select
SPDIF Rx FIFO full falg select, it decides when assert the rx full flag.

Values:

enumerator kSPDIF__RxFulllSample
Rx full at least 1 sample in left and right FIFO

enumerator kSPDIF__RxFull4Samples
Rx full at least 4 sample in left and right FIFO

enumerator kSPDIF__RxFull8Samples
Rx full at least 8 sample in left and right FIFO

enumerator kSPDIF__RxFulll6Samples
Rx full at least 16 sample in left and right FIFO

enum _ spdif txempty select
SPDIF tx FIFO EMPTY falg select, it decides when assert the tx empty flag.

Values:

2.34. SPDIF: Sony/Philips Digital Interface 329

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSPDIF__TxEmptyOSample
Tx empty at most 0 sample in left and right FIFO

enumerator kSPDIF__TxEmpty4Samples
Tx empty at most 4 sample in left and right FIFO
enumerator kSPDIF_TxEmpty8Samples
Tx empty at most 8 sample in left and right FIFO
enumerator kSPDIF_TxEmptyl12Samples
Tx empty at most 12 sample in left and right FIFO
enum _spdif uchannel source
SPDIF U channel source.
Values:
enumerator kSPDIF NoUChannel
No embedded U channel
enumerator kSPDIF UChannelFromRx
U channel from receiver, it is CD mode
enumerator kSPDIF UChannelFromTx
U channel from on chip tx
enum _ spdif gain_ select
SPDIF clock gain.
Values:
enumerator kSPDIF GAIN_ 24
Gain select is 24
enumerator kSPDIF_GAIN 16
Gain select is 16
enumerator kSPDIF_GAIN_ 12
Gain select is 12
enumerator kSPDIF_ GAIN_8
Gain select is 8
enumerator kSPDIF__GAIN_ 6
Gain selectis 6
enumerator kSPDIF_GAIN_ 4
Gain selectis 4
enumerator kSPDIF__GAIN_3
Gain select is 3
enum _ spdif tx_source
SPDIF tx data source.
Values:
enumerator kSPDIF__txFromReceiver
Tx data directly through SPDIF receiver

enumerator kSPDIF _txNormal
Normal operation, data from processor

330

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enum _ spdif validity_ config

SPDIF tx data source.

Values:

enumerator kSPDIF_ validityFlagAlwaysSet
Outgoing validity flags always set

enumerator kSPDIF_ validityFlagAlwaysClear
Outgoing validity flags always clear

The SPDIF interrupt enable flag.
Values:
enumerator kSPDIF RxDPLLLocked
SPDIF DPLL locked
enumerator kSPDIF _TxFIFOError
Tx FIFO underrun or overrun
enumerator kSPDIF _TxFIFOResync
Tx FIFO left and right channel resync
enumerator kSPDIF RxControlChannelChange
SPDIF Rx control channel value changed
enumerator kSPDIF_ ValidityFlagNoGood
SPDIF validity flag no good
enumerator kSPDIF RxIllegalSymbol
SPDIF receiver found illegal symbol
enumerator kSPDIF _RxParityBitError
SPDIF receiver found parity bit error
enumerator kSPDIF UChannelReceiveRegisterFull
SPDIF U channel revceive register full
enumerator kSPDIF__ UChannelReceiveRegisterOverrun
SPDIF U channel receive register overrun
enumerator kSPDIF__ QChannelReceiveRegisterFull
SPDIF Q channel receive reigster full
enumerator kSPDIF__QChannelReceiveRegisterOverrun
SPDIF Q channel receive register overrun
enumerator kSPDIF__ UQChannelSync
SPDIF U/Q channel sync found
enumerator kSPDIF__UQChannelFrameError
SPDIF U/Q channel frame error
enumerator kSPDIF _RxFIFOError
SPDIF Rx FIFO underrun/overrun
enumerator kSPDIF_ RxFIFOResync
SPDIF Rx left and right FIFO resync

enumerator kSPDIF LockLoss
SPDIF receiver loss of lock

2.34. SPDIF: Sony/Philips Digital Interface

331

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSPDIF__TxFIFOEmpty
SPDIF Tx FIFO empty

enumerator kSPDIF RxFIFOFull
SPDIF Rx FIFO full

enumerator kSPDIF__ Alllnterrupt
all interrupt

The DMA request sources.
Values:

enumerator kSPDIF RxDMAEnable
Rx FIFO full

enumerator kSPDIF TxDMAZEnable
Tx FIFO empty

typedef enum _spdif rxfull_select spdif rxfull_select_t

SPDIF Rx FIFO full falg select, it decides when assert the rx full flag.
typedef enum _spdif txempty_select spdif txempty select_t

SPDIF tx FIFO EMPTY falg select, it decides when assert the tx empty flag.

typedef enum _spdif uchannel_source spdif uchannel source_t
SPDIF U channel source.

typedef enum _spdif gain_select spdif gain_ select_t
SPDIF clock gain.
typedef enum _spdif tx_source spdif tx_source_t
SPDIF tx data source.
typedef enum _spdif validity_config spdif validity config t
SPDIF tx data source.
typedef struct _spdif config spdif config t
SPDIF user configuration structure.

typedef struct _spdif _transfer spdif transfer t
SPDIF transfer structure.

typedef struct _spdif handle spdif__handle__t

typedef void (*spdif transfer_ callback t)(SPDIF_Type *base, spdif handle_t *handle, status_t
status, void *userData)
SPDIF transfer callback prototype.
SPDIF_XFER__QUEUE_SIZE
SPDIF transfer queue size, user can refine it according to use case.
struct _spdif config
#include <fsl_spdif.h> SPDIF user configuration structure.

Public Members

bool isTxAutoSync
If auto sync mechanism open

332 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

bool isRxAutoSync
If auto sync mechanism open

uint8_t DPLLClkSource
SPDIF DPLL clock source, range from 0~15, meaning is chip-specific

uint8_t txClkSource
SPDIF tx clock source, range from 0~7, meaning is chip-specific

spdif rxfull_select_t rxFullSelect
SPDIF rx buffer full select

spdif_txempty_select_t txFullSelect
SPDIF tx buffer empty select

spdif uchannel_source_t uChannelSrc
U channel source

spdif tx_source_t txSource
SPDIF tx data source

spdif validity_config_t validityConfig
Validity flag config
spdif gain_select_t gain
Rx receive clock measure gain parameter.

struct _spdif transfer
#include <fsl_spdif-h> SPDIF transfer structure.

Public Members
uint8_t *data

Data start address to transfer.
uint8_t *qdata

Data buffer for Q channel

uint8_t *udata

Data buffer for C channel
size_t dataSize

Transfer size.

struct _spdif handle
#include <fsl_spdif.h> SPDIF handle structure.

Public Members
uint32_t state
Transfer status
spdif transfer_callback_t callback
Callback function called at transfer event
void *userData
Callback parameter passed to callback function

spdif transfer_t spdifQueue[(4U)]
Transfer queue storing queued transfer

2.34. SPDIF: Sony/Philips Digital Interface 333

MCUXpresso SDK Documentation, Release 25.09.00

size_t transferSize[(4U)]
Data bytes need to transfer

volatile uint8_t queueUser
Index for user to queue transfer

volatile uint8_t queueDriver
Index for driver to get the transfer data and size

uint8_t watermark
Watermark value

2.35 SRC: System Reset Controller Driver

FSL_SRC_DRIVER VERSION

SRC driver version 2.0.1.

enum _ src_reset_ status_ flags

SRC reset status flags.
Values:

enumerator kSRC_ WarmBootIndicationFlag
WARM boot indication shows that WARM boot was initiated by software.

enumerator kSRC_ TemperatureSensorResetFlag
Indicates whether the reset was the result of software reset from on-chip Temperature
Sensor. Temperature Sensor Interrupt needs to be served before this bit can be cleaned.
enumerator kSRC_ JTAGSoftwareResetFlag
Indicates whether the reset was the result of setting SJC_GPCCR bit 31.

enumerator kSRC_JTAGGeneratedResetFlag
Indicates a reset has been caused by JTAG selection of certain IR codes: EXTEST or
HIGHZ.

enumerator kSRC_WatchdogResetFlag

Indicates a reset has been caused by the watchdog timer timing out. This reset source
can be blocked by disabling the watchdog.

enum _src_warm_ reset_ bypass_ count

Selection of WARM reset bypass count.

This type defines the 32KHz clock cycles to count before bypassing the MMDC acknowledge
for WARM reset. If the MMDC acknowledge is not asserted before this counter is elapsed, a
COLD reset will be initiated.

Values:

enumerator kSRC_ WarmReset Wait Always

System will wait until MMDC acknowledge is asserted.
enumerator kSRC WarmResetWaitClk16

Wait 16 32KHz clock cycles before switching the reset.
enumerator kSRC WarmReset WaitClk32

Wait 32 32KHz clock cycles before switching the reset.

enumerator kSRC _WarmResetWaitClk64
Wait 64 32KHz clock cycles before switching the reset.

334

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _src_warm_reset_bypass_count src_ warm_ reset_ bypass_ count__t
Selection of WARM reset bypass count.

This type defines the 32KHz clock cycles to count before bypassing the MMDC acknowledge
for WARM reset. If the MMDC acknowledge is not asserted before this counter is elapsed, a
COLD reset will be initiated.

static inline void SRC__EnableWDOGReset(SRC_Type *base, bool enable)
Enable the WDOG Reset in SRC.

WDOG Reset is enabled in SRC by default. If the WDOG event to SRC is masked, it would
not create a reset to the chip. During the time the WDOG event is masked, when the WDOG
event flag is asserted, it would remain asserted regardless of servicing the WDOG module.
The only way to clear that bit is the hardware reset.

Parameters
* base — SRC peripheral base address.
* enable — Enable the reset or not.

static inline void SRC__SetWarmResetBypassCount(SRC_Type *base,
src_warm_reset_bypass_count_t option)

Set the delay count of waiting MMDC’s acknowledge.

This function would define the 32KHz clock cycles to count before bypassing the MMDC
acknowledge for WARM reset. If the MMDC acknowledge is not asserted before this counter
is elapsed, a COLD reset will be initiated.

Parameters
* base — SRC peripheral base address.
* option—The option of setting mode, see to src_warm_reset_bypass_count_t.

static inline void SRC_ EnableWarmReset(SRC_Type *base, bool enable)
Enable the WARM reset.

Only when the WARM reset is enabled, the WARM reset requests would be served by WARM
reset. Otherwise, all the WARM reset sources would generate COLD reset.

Parameters
* base — SRC peripheral base address.
* enable — Enable the WARM reset or not.

static inline uint32_t SRC_ GetBootModeWord1(SRC_Type *base)
Get the boot mode register 1 value.

The Boot Mode register contains bits that reflect the status of BOOT_CFGx pins of the chip.
See to chip-specific document for detail information about value.

Parameters
* base — SRC peripheral base address.

Returns
status of BOOT_CFGx pins of the chip.

static inline uint32_t SRC_ GetBootModeWord2(SRC_Type *base)
Get the boot mode register 2 value.

The Boot Mode register contains bits that reflect the status of BOOT_MODEX Pins and fuse
values that controls boot of the chip. See to chip-specific document for detail information
about value.

Parameters

2.35. SRC: System Reset Controller Driver 335

MCUXpresso SDK Documentation, Release 25.09.00

* base — SRC peripheral base address.

Returns
status of BOOT_MODEX Pins and fuse values that controls boot of the chip.

static inline void SRC_ SetWarmBootIndication(SRC_Type *base, bool enable)
Set the warm boot indication flag.

WARM boot indication shows that WARM boot was initiated by software. This indicates
to the software that it saved the needed information in the memory before initiating the
WARM reset. In this case, software will set this bit to ‘1’, before initiating the WARM re-
set. The warm_boot bit should be used as indication only after a warm_reset sequence.
Software should clear this bit after warm_reset to indicate that the next warm_reset is not
performed with warm_boot.

Parameters
* base — SRC peripheral base address.
* enable — Assert the flag or not.

static inline uint32_t SRC_ GetResetStatusFlags(SRC_Type *base)
Get the status flags of SRC.

Parameters
* base — SRC peripheral base address.

Returns
Mask value of status flags, see to _src_reset_status_{flags.

void SRC_ ClearResetStatusFlags(SRC_Type *base, uint32_t flags)
Clear the status flags of SRC.

Parameters
* base — SRC peripheral base address.
* flags — value of status flags to be cleared, see to _src_reset_status_flags.

static inline void SRC__SetGeneralPurposeRegister(SRC_Type *base, uint32_t index, uint32_t
value)

Set value to general purpose registers.

General purpose registers (GPRx) would hold the value during reset process. Wakeup func-
tion could be kept in these register. For example, the GPR1 holds the entry function for
waking-up from Partial SLEEP mode while the GPR2 holds the argument. Other GPRX reg-
ister would store the arbitray values.

Parameters
* base — SRC peripheral base address.

¢ index — The index of GPRx register array. Note index 0 reponses the GPR1
register.

* value — Setting value for GPRx register.

static inline uint32_t SRC_ GetGeneralPurposeRegister(SRC_Type *base, uint32_t index)
Get the value from general purpose registers.

Parameters
* base — SRC peripheral base address.

* index — The index of GPRxX register array. Note index 0 reponses the GPR1
register.

336 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Returns
The setting value for GPRx register.

2.36 TMU: Thermal Management Unit Driver

enum tmu_ monitor site
Values:

enumerator kTMU_ MonitorSite0
enumerator kTMU__MonitorSitel
enumerator kTMU_ MonitorSite2
enumerator kTMU_ MonitorSite3
enumerator kTMU_ MonitorSite4
enumerator kTMU_ MonitorSite5
enumerator kTMU__MonitorSite6
enumerator kTMU _MonitorSite7
enumerator kTMU_ MonitorSite8
enumerator kTMU_ MonitorSite9
enumerator kTMU__ MonitorSite10
enumerator kTMU_ MonitorSitell
enumerator kTMU__ MonitorSitel2
enumerator kTMU_MonitorSitel3
enumerator kTMU_MonitorSitel4
enumerator kTMU__ MonitorSitel5

enum _ tmu__interrupt_ enable
TMU interrupt enable.
Values:

enumerator kTMU_ ImmediateTemperaturelnterruptEnable
Immediate temperature threshold exceeded interrupt enable.

enumerator kTMU__AverageTemperaturelnterruptEnable
Average temperature threshold exceeded interrupt enable.

enumerator kTMU__AverageTemperatureCriticallnterruptEnable
Average temperature critical threshold exceeded interrupt enable. >

enum _ tmu_ interrupt_ status_ flags
TMU interrupt status flags.

Values:

enumerator kTMU_ ImmediateTemperatureStatusFlags
Immediate temperature threshold exceeded(ITTE).

2.36. TMU: Thermal Management Unit Driver 337

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kTMU__AverageTemperatureStatusFlags
Average temperature threshold exceeded(ATTE).

enumerator kTMU__AverageTemperatureCriticalStatusFlags
Average temperature critical threshold exceeded.(ATCTE)

enum _ tmu_ status_flags
TMU status flags.

Values:

enumerator kTMU_ IntervalExceededStatusFlags

Monitoring interval exceeded. The time required to perform measurement of all mon-
itored sites has exceeded the monitoring interval as defined by TMTMIR.

enumerator kTMU__OutOfLowRangeStatusFlags

Out-of-range low temperature measurement detected. A temperature sensor detected
a temperature reading below the lowest measurable temperature of 0 °C.

enumerator kTMU_ OutOfHighRangeStatusFlags

Out-of-range high temperature measurement detected. A temperature sensor detected
a temperature reading above the highest measurable temperature of 125 °C.

enum _tmu_ average low_pass_filter
Average low pass filter setting.

Values:

enumerator kTMU__AverageLowPassFilterl 0
Average low pass filter = 1.

enumerator kTMU__AverageL.owPassFilter0_5
Average low pass filter = 0.5.

enumerator kTMU__AverageLowPassFilter0_ 25
Average low pass filter = 0.25.

enumerator kTMU__AverageLowPassFilter0_ 125
Average low pass filter = 0.125.

typedef struct _tmu_thresold_config tmu_ thresold_ config_t
configuration for TMU thresold.

typedef struct _tmu_interrupt_status tmu_ interrupt_ status_t
TMU interrupt status.

typedef enum _tmu_average_low_pass_filter tmu_ average low_ pass_ filter_t
Average low pass filter setting.

typedef struct _tmu_config tmu_ config t
Configuration for TMU module.

void TMU_ Init(TMU_Type *base, const tmu_config_t *config)
Enable the access to TMU registers and Initialize TMU module.

Parameters
* base — TMU peripheral base address.

* config — Pointer to configuration structure. Refer to “tmu_config_t” struc-
ture.

338 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

void TMU_ Deinit(TMU_Type *base)
De-initialize TMU module and Disable the access to DCDC registers.

Parameters
* base — TMU peripheral base address.

void TMU_ GetDefaultConfig(tmu_config_t *config)
Gets the default configuration for TMU.

This function initializes the user configuration structure to default value. The default value
are:

Example:

config->monitorInterval = 0U;
config->monitorSiteSelection = 0U;
config->averageLPF = kTMU__AverageLowPassFilterl_0;

Parameters
* config — Pointer to TMU configuration structure.

static inline void TMU__Enable(TMU_Type *base, bool enable)
Enable/Disable the TMU module.

Parameters
* base — TMU peripheral base address.
* enable — Switcher to enable/disable TMU.

static inline void TMU_ EnableInterrupts(TMU_Type *base, uint32_t mask)
Enable the TMU interrupts.

Parameters
* base — TMU peripheral base address.

* mask — The interrupt mask. Refer to “_tmu_interrupt_enable” enumera-
tion.

static inline void TMU_ DisableInterrupts(TMU_Type *base, uint32_t mask)
Disable the TMU interrupts.

Parameters
* base — TMU peripheral base address.

* mask — The interrupt mask. Refer to “_tmu_interrupt_enable” enumera-
tion.

void TMU_ GetInterruptStatusFlags(TMU_Type *base, tmu_interrupt_status_t *status)
Get interrupt status flags.

Parameters
* base — TMU peripheral base address.

* status — The pointer to interrupt status structure. Record the current inter-
rupt status. Please refer to “tmu_interrupt_status_t” structure.

void TMU_ ClearInterruptStatusFlags(TMU_Type *base, uint32_t mask)
Clear interrupt status flags and corresponding interrupt critical site capture register.

Parameters

* base — TMU peripheral base address.

2.36. TMU: Thermal Management Unit Driver 339

MCUXpresso SDK Documentation, Release 25.09.00

* mask — The mask of interrupt status flags. Refer to
“_tmu_interrupt_status_flags” enumeration.

static inline uint32_t TMU_ GetStatusFlags(TMU_Type *base)
Get TMU status flags.

Parameters
* base — TMU peripheral base address.

Returns
The mask of status flags. Refer to “_tmu_status_flags” enumeration.

status_t TMU_ GetHighest Temperature(TMU_Type *base, uint32_t *temperature)

Get the highest temperature reached for any enabled monitored site within the tempera-
ture sensor range.

Parameters
* base — TMU peripheral base address.

* temperature — Highest temperature recorded in degrees Celsius by any en-
abled monitored site.

Return values
* kStatus_ Success — Temperature reading is valid.

* kStatus_Fail — Temperature reading is not valid due to no measured tem-
perature within the sensor range of 0-125 °C for an enabled monitored
site.

Returns
Execution status.

status_t TMU__ GetLowest Temperature(TMU_Type *base, uint32_t *temperature)

Get the lowest temperature reached for any enabled monitored site within the temperature
sensor range.

Parameters
* base — TMU peripheral base address.

* temperature — Lowest temperature recorded in degrees Celsius by any en-
abled monitored site.

Return values
* kStatus_ Success — Temperature reading is valid.

* kStatus_Fail — Temperature reading is not valid due to no measured tem-
perature within the sensor range of 0-125 °C for an enabled monitored
site.

Returns
Execution status.

status_t TMU_ GetImmediateTemperature(TMU_Type *base, uint32_t siteIndex, uint32_t
*temperature)

Get the last immediate temperature at site n. The site must be part of the list of enabled
monitored sites as defined by monitorSiteSelection in “tmu_config_t” structure.

Parameters
* base — TMU peripheral base address.
* siteIndex — The index of the site user want to read. 0U: site0 ~ 15U: site15.

* temperature — Last immediate temperature reading at siten .

340 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Return values
* kStatus_ Success — Temperature reading is valid.

* kStatus_ Fail — Temperature reading is not valid because temperature out
of sensor range or first measurement still pending.

Returns
Execution status.

status_t TMU_ GetAverageTemperature(TMU_Type *base, uint32_t siteIndex, uint32_t
*temperature)

Get the last average temperature at site n. The site must be part of the list of enabled mon-
itored sites as defined by monitorSiteSelection in “tmu_config_t” structure.

Parameters
* base — TMU peripheral base address.
* siteIndex — The index of the site user want to read. 0U: site0 ~ 15U: site15.
* temperature — Last average temperature reading at siten ..
Return values
* kStatus_ Success — Temperature reading is valid.

* kStatus_ Fail — Temperature reading is not valid because temperature out
of sensor range or first measurement still pending.

Returns
Execution status.

void TMU_ SetHighTemperatureThresold(TMU_Type *base, const tmu_thresold_config t *config)
Configure the high temperature thresold value and enable/disable relevant thresold.
Parameters
* base — TMU peripheral base address.

* config - Pointer to configuration structure. Refer to
“tmu_thresold_config_t” structure.

FSL _TMU_ DRIVER_VERSION
TMU driver version.
Version 2.0.3.

struct _tmu_ thresold config
#include <fsl_tmu.h> configuration for TMU thresold.

Public Members

bool immediateThresoldEnable
Enable high temperature immediate threshold.

bool AverageThresoldEnable
Enable high temperature average threshold.
bool AverageCriticalThresoldEnable
Enable high temperature average critical threshold.

uint8_t immediateThresoldValue

Range:0U-125U. Valid when corresponding thresold is enabled. High temperature im-
mediate threshold value. Determines the current upper temperature threshold, for
anyenabled monitored site.

2.36. TMU: Thermal Management Unit Driver 311

MCUXpresso SDK Documentation, Release 25.09.00

uint8_t averageThresoldValue
Range:0U-125U. Valid when corresponding thresold is enabled. High temperature av-
erage threshold value. Determines the average upper temperature threshold, for any
enabled monitored site.

uint8_t averageCritical Thresold Value
Range:0U-125U. Valid when corresponding thresold is enabled. High temperature av-
erage critical threshold value. Determines the average upper critical temperature
threshold, for any enabled monitored site.

struct _ tmu__interrupt_ status
#include <fsl_tmu.h> TMU interrupt status.

Public Members

uint32_t interruptDetectMask
The mask of interrupt status flags. Refer to “_tmu_interrupt_status_flags” enumera-
tion.

uint16_t immediateInterruptsSiteMask
The mask of the temperature sensor site associated with a detected ITTE event. Please
refer to “_tmu_monitor_site” enumeration.

uint16_t AveragelnterruptsSiteMask
The mask of the temperature sensor site associated with a detected ATTE event. Please
refer to “_tmu_monitor_site” enumeration.

uint16_t AverageCriticallnterruptsSiteMask
The mask of the temperature sensor site associated with a detected ATCTE event.
Please refer to “_tmu_monitor_site” enumeration.

struct _tmu_ config
#include <fsl_tmu.h> Configuration for TMU module.

Public Members

uint8_t monitorInterval
Temperature monitoring interval in seconds. Please refer to specific table in RM.

uint16_t monitorSiteSelection

By setting the select bit for a temperature sensor site, it is enabled and included in all
monitoring functions. If no site is selected, site 0 is monitored by default. Refer to
“_tmu_monitor_site” enumeration. Please look up relevant table in reference manual.

tmu_average_low_pass_filter_t averageLPF

The average temperature is calculated as: ALPF x Current_Temp + (1 - ALPF) x Aver-
age_Temp. For proper operation, this field should only change when monitoring is
disabled.

2.37 UART: Universal Asynchronous Receiver/Transmitter
Driver

2.38 UART Driver

342 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline void UART_SoftwareReset(UART_Type *base)
Resets the UART using software.

This function resets the transmit and receive state machines, all FIFOs and register USR1,
USR2, UBIR, UBMR, UBRC, URXD, UTXD and UTS[6-3]

Parameters
* base — UART peripheral base address.

status_t UART_Init(UART_Type *base, const uart_config_t *config, uint32_t srcClock_Hz)
Initializes an UART instance with the user configuration structure and the peripheral clock.
This function configures the UART module with user-defined settings. Call the

UART_GetDefaultConfig() function to configure the configuration structure and get the de-
fault configuration. The example below shows how to use this API to configure the UART.

uart__config t uartConfig;
uartConfig.baudRate_ Bps = 115200U;
uartConfig.parityMode = kUART _ ParityDisabled;
uartConfig.dataBitsCount = KUART _EightDataBits;
uartConfig.stopBitCount = kUART__OneStopBit;
uartConfig.txFifoWatermark = 2;

uartConfig. rxFifoWatermark = 1;
uartConfig.enableAutoBaudrate = false;
uartConfig.enableTx = true;

uartConfig.enableRx = true;

UART _Init(UART1, &uartConfig, 24000000U);

Parameters
* base — UART peripheral base address.
* config — Pointer to a user-defined configuration structure.
* srcClock__Hz — UART clock source frequency in HZ.

Return values
kStatus Success — UART initialize succeed

void UART_ Deinit(UART_Type *base)
Deinitializes a UART instance.

This function waits for transmit to complete, disables TX and RX, and disables the UART
clock.

Parameters
* base — UART peripheral base address.

void UART _ GetDefaultConfig(uart_config_t *config)
Gets the default configuration structure.

1

This function initializes the UART configuration structure to a default value. The
default values are: uartConfig->baudRate_Bps = 115200U; uartConfig->parityMode =
KkUART_ParityDisabled; uartConfig->dataBitsCount = kUART_EightDataBits; uartConfig-
>stopBitCount = KUART_OneStopBit; uartConfig->txFifoWatermark = 2; uartConfig-
>rxFifoWatermark = 1; uartConfig->enableAutoBaudrate = flase; uartConfig->enableTx =
false; uartConfig->enableRx = false;

Parameters

* config — Pointer to a configuration structure.

2.38. UART Driver 343

MCUXpresso SDK Documentation, Release 25.09.00

status_t UART_SetBaudRate(UART_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
Sets the UART instance baud rate.

This function configures the UART module baud rate. This function is used to update the
UART module baud rate after the UART module is initialized by the UART _Init.

UART_ SetBaudRate(UART1, 115200U, 20000000U);

Parameters

* base — UART peripheral base address.

* baudRate Bps— UART baudrate to be set.

* srcClock__Hz — UART clock source frequency in Hz.
Return values

* kStatus. UART BaudrateNotSupport — Baudrate is not support in the cur-
rent clock source.

* kStatus Success — Set baudrate succeeded.

static inline void UART _Enable(UART_Type *base)
This function is used to Enable the UART Module.

Parameters
* base — UART base pointer.

static inline void UART_ SetIdleCondition(UART_Type *base, uart_idle_condition_t condition)
This function is used to configure the IDLE line condition.

Parameters
* base — UART base pointer.

* condition — IDLE line detect condition of the enumerators in
uart_idle_condition_t.

static inline void UART _Disable(UART_Type *base)
This function is used to Disable the UART Module.

Parameters
* base — UART base pointer.

bool UART_GetStatusFlag(UART_Type *base, uint32_t flag)

This function is used to get the current status of specific UART status flag(including interrupt
flag). The available status flag can be select from uart_status_flag_t enumeration.

Parameters
* base — UART base pointer.
* flag — Status flag to check.

Return values
current — state of corresponding status flag.

void UART_ ClearStatusFlag(UART_Type *base, uint32_t flag)

This function is used to clear the current status of specific UART status flag. The available
status flag can be select from uart_status_flag_t enumeration.

Parameters
* base — UART base pointer.

* flag — Status flag to clear.

344 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

void UART_ Enablelnterrupts(UART_Type *base, uint32_t mask)
Enables UART interrupts according to the provided mask.

This function enables the UART interrupts according to the provided mask. The mask is a
logical OR of enumeration members. See _uart_interrupt_enable. For example, to enable
TX empty interrupt and RX data ready interrupt, do the following.

UART_ Enablelnterrupts(UART1,kUART_ TxEmptyEnable | kUART_RxDataReadyEnable);

Parameters
* base — UART peripheral base address.
* mask — The interrupts to enable. Logical OR of _uart_interrupt_enable.

void UART_ Disablelnterrupts(UART_Type *base, uint32_t mask)
Disables the UART interrupts according to the provided mask.

This function disables the UART interrupts according to the provided mask. The mask is a
logical OR of enumeration members. See _uart_interrupt_enable. For example, to disable
TX empty interrupt and RX data ready interrupt do the following.

UART__Enablelnterrupts(UART1,kUART_ TxEmptyEnable | kKUART RxDataReadyEnable);

Parameters
* base — UART peripheral base address.
* mask — The interrupts to disable. Logical OR of _uart_interrupt_enable.

uint32_t UART_ GetEnabledInterrupts(UART_Type *base)
Gets enabled UART interrupts.

This function gets the enabled UART interrupts. The enabled interrupts are returned as the
logical OR value of the enumerators _uart_interrupt_enable. To check a specific interrupt
enable status, compare the return value with enumerators in _uart_interrupt_enable. For
example, to check whether the TX empty interrupt is enabled:

uint32_t enabledInterrupts = UART GetEnabledInterrupts(UART1);

if (kUART__TxEmptyEnable & enabledInterrupts)

Parameters
* base — UART peripheral base address.

Returns
UART interrupt flags which are logical OR of the enumerators in
_uart_interrupt_enable.

static inline void UART__EnableTx(UART_Type *base, bool enable)
Enables or disables the UART transmitter.

This function enables or disables the UART transmitter.
Parameters
* base — UART peripheral base address.

* enable — True to enable, false to disable.

2.38. UART Driver 345

MCUXpresso SDK Documentation, Release 25.09.00

static inline void UART_EnableRx(UART_Type *base, bool enable)
Enables or disables the UART receiver.

This function enables or disables the UART receiver.
Parameters
* base — UART peripheral base address.
* enable — True to enable, false to disable.

static inline void UART_WriteByte(UART_Type *base, uint8_t data)
Writes to the transmitter register.

This function is used to write data to transmitter register. The upper layer must ensure that
the TX register is empty or that the TX FIFO has room before calling this function.

Parameters
* base — UART peripheral base address.
* data — Data write to the TX register.

static inline uint8_t UART_ ReadByte(UART_Type *base)
Reads the receiver register.

This function is used to read data from receiver register. The upper layer must ensure that
the receiver register is full or that the RX FIFO has data before calling this function.

Parameters
* base — UART peripheral base address.

Returns
Data read from data register.

status_t UART _WriteBlocking(UART_Type *base, const uint8_t *data, size_t length)
Writes to the TX register using a blocking method.

This function polls the TX register, waits for the TX register to be empty or for the TX FIFO
to have room and writes data to the TX buffer.

Parameters
* base — UART peripheral base address.
* data — Start address of the data to write.
* length — Size of the data to write.
Return values
* kStatus_ UART_ Timeout — Transmission timed out and was aborted.
* kStatus_ Success — Successfully wrote all data.

status_t UART ReadBlocking(UART_Type *base, uint8_t *data, size_t length)
Read RX data register using a blocking method.

This function polls the RX register, waits for the RX register to be full or for RX FIFO to have
data, and reads data from the TX register.

Parameters
* base — UART peripheral base address.
* data — Start address of the buffer to store the received data.
¢ length — Size of the buffer.

Return values

346 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

* kStatus UART RxHardwareOverrun —Receiver overrun occurred while re-
ceiving data.

* kStatus_ UART_NoiseError — A noise error occurred while receiving data.

* kStatus_ UART_ FramingError — A framing error occurred while receiving
data.

* kStatus. UART ParityError — A parity error occurred while receiving data.
* kStatus UART Timeout — Transmission timed out and was aborted.
* kStatus_ Success — Successfully received all data.

void UART_ TransferCreateHandle(UART_Type *base, uart_handle_t *handle,
uart_transfer_callback _t callback, void *userData)

Initializes the UART handle.

This function initializes the UART handle which can be used for other UART transactional
APIs. Usually, for a specified UART instance, call this API once to get the initialized handle.

Parameters
* base — UART peripheral base address.
* handle — UART handle pointer.
* callback — The callback function.
* userData — The parameter of the callback function.

void UART_ TransferStartRingBuffer(UART_Type *base, uart_handle_t *handle, uint8_t
*ringBuffer, size_t ringBufferSize)

Sets up the RX ring buffer.
This function sets up the RX ring buffer to a specific UART handle.

When the RX ring buffer is used, data received are stored into the ring buffer even when the
user doesn’t call the UART TransferReceiveNonBlocking() APL If data is already received
in the ring buffer, the user can get the received data from the ring buffer directly.

Note: When using the RX ring buffer, one byte is reserved for internal use. In other words,
if ringBufferSize is 32, only 31 bytes are used for saving data.

Parameters
* base — UART peripheral base address.
* handle — UART handle pointer.

* ringBuffer — Start address of the ring buffer for background receiving. Pass
NULL to disable the ring buffer.

¢ ringBufferSize — Size of the ring buffer.

void UART_ TransferStopRingBuffer(UART_Type *base, uart_handle_t *handle)
Aborts the background transfer and uninstalls the ring buffer.

This function aborts the background transfer and uninstalls the ring buffer.
Parameters
* base — UART peripheral base address.
* handle - UART handle pointer.

2.38. UART Driver 347

MCUXpresso SDK Documentation, Release 25.09.00

size_t UART_ TransferGetRxRingBufferLength(uart_handle_t *handle)
Get the length of received data in RX ring buffer.

Parameters
* handle — UART handle pointer.

Returns
Length of received data in RX ring buffer.

status_t UART_TransferSendNonBlocking(UART_Type *base, uart_handle_t *handle,
uart_transfer_t *xfer)
Transmits a buffer of data using the interrupt method.
This function sends data using an interrupt method. This is a non-blocking function, which
returns directly without waiting for all data to be written to the TX register. When all data is

written to the TX register in the ISR, the UART driver calls the callback function and passes
the kStatus_UART_TxIdle as status parameter.

Note: The kStatus_UART_TxIdle is passed to the upper layer when all data is written to the
TX register. However, it does not ensure that all data is sent out. Before disabling the TX,
check the kUART_TransmissionCompleteFlag to ensure that the TX is finished.

Parameters

* base — UART peripheral base address.

* handle — UART handle pointer.

» xfer — UART transfer structure. See uart_transfer t.
Return values

* kStatus_ Success — Successfully start the data transmission.

e kStatus. UART_TxBusy — Previous transmission still not finished; data not
all written to TX register yet.

* kStatus_ InvalidArgument — Invalid argument.

void UART_ TransferAbortSend(UART_Type *base, uart_handle_t *handle)
Aborts the interrupt-driven data transmit.

This function aborts the interrupt-driven data sending. The user can get the remainBytes
to find out how many bytes are not sent out.

Parameters
* base — UART peripheral base address.
* handle — UART handle pointer.

status_t UART _TransferGetSendCount(UART_Type *base, uart_handle_t *handle, uint32_t
*count)

Gets the number of bytes written to the UART TX register.

This function gets the number of bytes written to the UART TX register by using the interrupt
method.

Parameters
* base — UART peripheral base address.
* handle — UART handle pointer.

* count — Send bytes count.

348 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Return values
* kStatus_ NoTransferInProgress — No send in progress.
* kStatus_ Invalid Argument — The parameter is invalid.
* kStatus_ Success — Get successfully through the parameter count;

status_t UART_TransferReceiveNonBlocking(UART_Type *base, uart_handle_t *handle,
uart_transfer._t *xfer, size_t *receivedBytes)

Receives a buffer of data using an interrupt method.

This function receives data using an interrupt method. This is a non-blocking function,
which returns without waiting for all data to be received. If the RX ring buffer is used and
not empty, the data in the ring buffer is copied and the parameter receivedBytes shows how
many bytes are copied from the ring buffer. After copying, if the data in the ring buffer is
not enough to read, the receive request is saved by the UART driver. When the new data
arrives, the receive request is serviced first. When all data is received, the UART driver
notifies the upper layer through a callback function and passes the status parameter kSta-
tus_UART_RxIdle. For example, the upper layer needs 10 bytes but there are only 5 bytes in
the ring buffer. The 5 bytes are copied to the xfer->data and this function returns with the
parameter receivedBytes set to 5. For the left 5 bytes, newly arrived data is saved from the
xfer->data[5]. When 5 bytes are received, the UART driver notifies the upper layer. If the
RX ring buffer is not enabled, this function enables the RX and RX interrupt to receive data
to the xfer->data. When all data is received, the upper layer is notified.

Parameters
* base — UART peripheral base address.
* handle — UART handle pointer.
» xfer — UART transfer structure, see uart_transfer t.
* receivedBytes — Bytes received from the ring buffer directly.
Return values
* kStatus_ Success — Successfully queue the transfer into transmit queue.
* kStatus_ UART_ RxBusy — Previous receive request is not finished.
* kStatus_ InvalidArgument — Invalid argument.

void UART_ TransferAbortReceive(UART_Type *base, uart_handle_t *handle)
Aborts the interrupt-driven data receiving.

This function aborts the interrupt-driven data receiving. The user can get the remainBytes
to know how many bytes are not received yet.

Parameters
* base — UART peripheral base address.
* handle — UART handle pointer.

status_t UART _TransferGetReceiveCount(UART_Type *base, uart_handle_t *handle, uint32_t
*count)

Gets the number of bytes that have been received.
This function gets the number of bytes that have been received.
Parameters
* base — UART peripheral base address.
* handle — UART handle pointer.

* count — Receive bytes count.

2.38. UART Driver 349

MCUXpresso SDK Documentation, Release 25.09.00

Return values
* kStatus_ NoTransferInProgress — No receive in progress.
* kStatus_ InvalidArgument — Parameter is invalid.
* kStatus_ Success — Get successfully through the parameter count;
void UART_ TransferHandleIRQ(UART_Type *base, void *irqHandle)
UART IRQ handle function.
This function handles the UART transmit and receive IRQ request.
Parameters
* base — UART peripheral base address.
* irqHandle — UART handle pointer.

static inline void UART EnableTxDMA (UART_Type *base, bool enable)
Enables or disables the UART transmitter DMA request.

This function enables or disables the transmit request when the transmitter has one or
more slots available in the TXFIFO. The fill level in the TXFIFO that generates the DMA re-
quest is controlled by the TXTL bits.

Parameters
* base — UART peripheral base address.
* enable — True to enable, false to disable.

static inline void UART_EnableRxDMA (UART_Type *base, bool enable)
Enables or disables the UART receiver DMA request.

This function enables or disables the receive request when the receiver has data in the
RxFIFO. The fill level in the RXFIFO at which a DMA request is generated is controlled by
the RXTL bits .

Parameters
* base — UART peripheral base address.
* enable — True to enable, false to disable.

static inline void UART_SetTxFifoWatermark(UART_Type *base, uint8_t watermark)

This function is used to set the watermark of UART Tx FIFO. A maskable interrupt is gener-
ated whenever the data level in the TXFIFO falls below the Tx FIFO watermark.

Parameters
* base — UART base pointer.
» watermark — The Tx FIFO watermark.

static inline void UART_SetRxRTSWatermark(UART_Type *base, uint8_t watermark)
This function is used to set the watermark of UART RTS deassertion.

The RTS signal deasserts whenever the data count in RXFIFO reaches the Rx RTS watermark.
Parameters
* base — UART base pointer.
» watermark — The Rx RTS watermark.

static inline void UART_SetRxFifoWatermark(UART_Type *base, uint8_t watermark)

This function is used to set the watermark of UART Rx FIFO. A maskable interrupt is gener-
ated whenever the data level in the RXFIFO reaches the Rx FIFO watermark.

Parameters

350 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

* base — UART base pointer.
e watermark — The Rx FIFO watermark.

static inline void UART_EnableAutoBaudRate(UART_Type *base, bool enable)
This function is used to set the enable condition of Automatic Baud Rate Detection feature.

Parameters
* base — UART base pointer.
* enable — Enable/Disable Automatic Baud Rate Detection feature.
- true: Enable Automatic Baud Rate Detection feature.
— false: Disable Automatic Baud Rate Detection feature.

static inline bool UART_ IsAutoBaudRateComplete(UART_Type *base)
This function is used to read if the automatic baud rate detection has finished.

Parameters
* base — UART base pointer.

Returns
- true: Automatic baud rate detection has finished.

 false: Automatic baud rate detection has not finished.

FSL UART DRIVER VERSION
UART driver version.

Error codes for the UART driver.
Values:

enumerator kStatus_. UART TxBusy
Transmitter is busy.

enumerator kStatus. UART RxBusy
Receiver is busy.

enumerator kStatus. UART TxIdle
UART transmitter is idle.

enumerator kStatus. UART RxIdle
UART receiver is idle.

enumerator kStatus. UART TxWatermarkTooLarge
TX FIFO watermark too large

enumerator kStatus. UART RxWatermarkTooLarge
RX FIFO watermark too large

enumerator kStatus_ UART _FlagCannotClearManually
UART flag can’t be manually cleared.

enumerator kStatus. UART Error
Error happens on UART.

enumerator kStatus. UART RxRingBufferOverrun
UART RX software ring buffer overrun.

enumerator kStatus. UART RxHardwareOverrun
UART RX receiver overrun.

2.38. UART Driver 351

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus. UART NoiseError
UART noise error.

enumerator kStatus_ UART _FramingError
UART framing error.

enumerator kStatus_ UART _ParityError
UART parity error.

enumerator kStatus_ UART _BaudrateNotSupport
Baudrate is not support in current clock source

enumerator kStatus. UART BreakDetect
Receiver detect BREAK signal

enumerator kStatus UART Timeout
UART times out.

enum uart_data_ bits
UART data bits count.

Values:

enumerator kUART SevenDataBits
Seven data bit

enumerator kUART _EightDataBits
Eight data bit

enum _ uart_ parity__mode
UART parity mode.

Values:

enumerator kUART _ParityDisabled
Parity disabled

enumerator ktUART _ParityEven
Even error check is selected

enumerator kUART_ ParityOdd
0dd error check is selected

enum _ uart_ stop_ bit_ count
UART stop bit count.

Values:

enumerator ktUART__OneStopBit
One stop bit

enumerator kUART_TwoStopBit
Two stop bits

enum _uart_idle condition
UART idle condition detect.

Values:

enumerator kUART IdleFor4Frames
Idle for more than 4 frames

enumerator kUART IdleFor8Frames
Idle for more than 8 frames

352

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUART IdleForl6Frames
Idle for more than 16 frames

enumerator kUART IdleFor32Frames
Idle for more than 32 frames

enum _ uart_ interrupt__enable
This structure contains the settings for all of the UART interrupt configurations.

Values:
enumerator kUART AutoBaudEnable

enumerator kUART _TxReadyEnable
enumerator kUART _IdleEnable
enumerator kUART RxReadyEnable
enumerator kUART _TxEmptyEnable
enumerator kUART RtsDeltaEnable
enumerator kUART _EscapeEnable
enumerator kUART_ RtsEnable
enumerator kUART _AgingTimerEnable
enumerator kUART DtrEnable
enumerator kUART _ParityErrorEnable
enumerator kUART FrameErrorEnable
enumerator kUART _DcdEnable
enumerator kUART RiEnable
enumerator kUART _RxDsEnable
enumerator kUART tAirWakeEnable
enumerator kUART AwakeEnable
enumerator kUART DtrDeltaEnable
enumerator kUART__AutoBaudCntEnable
enumerator kUART IrEnable
enumerator kUART WakeEnable
enumerator kUART_TxCompleteEnable
enumerator kUART BreakDetectEnable
enumerator kUART RxOverrunEnable
enumerator kUART _RxDataReadyEnable
enumerator kUART RxDmaldleEnable

enumerator kUART _AlllnterruptsEnable

2.38. UART Driver 353

MCUXpresso SDK Documentation, Release 25.09.00

UART status flags.

This provides constants for the UART status flags for use in the UART functions.

Values:
enumerator kUART RxCharReadyFlag
Rx Character Ready Flag.
enumerator kUART RxFErrorFlag
Rx Error Detect Flag.
enumerator kUART RxOverrunErrorFlag
Rx Overrun Flag.
enumerator kUART_RxFrameErrorFlag
Rx Frame Error Flag.
enumerator kUART _RxBreakDetectFlag
Rx Break Detect Flag.
enumerator kUART _RxParityErrorFlag
Rx Parity Error Flag.
enumerator kUART _ParityErrorFlag
Parity Error Interrupt Flag.
enumerator kUART _RtsStatusFlag
RTS_B Pin Status Flag.
enumerator kUART TxReadyFlag
Transmitter Ready Interrupt/DMA Flag.
enumerator kUART _RtsDeltaFlag
RTS Delta Flag.
enumerator kUART _EscapeFlag
Escape Sequence Interrupt Flag.
enumerator kUART _FrameErrorFlag
Frame Error Interrupt Flag.
enumerator kUART RxReadyFlag
Receiver Ready Interrupt/DMA Flag.
enumerator kUART_ AgingTimerFlag
Aging Timer Interrupt Flag.
enumerator kUART_DtrDeltaFlag
DTR Delta Flag.
enumerator ktUART_RxDsFlag
Receiver IDLE Interrupt Flag.
enumerator kUART _tAirWakeFlag
Asynchronous IR WAKE Interrupt Flag.
enumerator kUART AwakeFlag
Asynchronous WAKE Interrupt Flag.

enumerator kUART _Rs485SlaveAddrMatchFlag

RS-485 Slave Address Detected Interrupt Flag.

354

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUART__AutoBaudFlag
Automatic Baud Rate Detect Complete Flag.

enumerator kUART _TxEmptyFlag
Transmit Buffer FIFO Empty.
enumerator ktUART_DtrFlag
DTR edge triggered interrupt flag.
enumerator kUART_IdleFlag
Idle Condition Flag.
enumerator kUART _AutoBaudCntStopFlag
Auto-baud Counter Stopped Flag.
enumerator kUART_ RiDeltaFlag
Ring Indicator Delta Flag.
enumerator kUART_RiFlag
Ring Indicator Input Flag.
enumerator kUART _IrFlag
Serial Infrared Interrupt Flag.
enumerator kUART WakeFlag
Wake Flag.
enumerator kUART_DcdDeltaFlag
Data Carrier Detect Delta Flag.
enumerator kUART _DcdFlag
Data Carrier Detect Input Flag.
enumerator kUART _RtsFlag
RTS Edge Triggered Interrupt Flag.
enumerator kUART_TxCompleteFlag
Transmitter Complete Flag.
enumerator kUART _BreakDetectFlag
BREAK Condition Detected Flag.
enumerator kUART RxOverrunFlag
Overrun Error Flag.
enumerator ktUART _RxDataReadyFlag
Receive Data Ready Flag.
typedef enum _uart_data_bits uart_data_ bits_t
UART data bits count.
typedef enum _uart_parity_mode uart_ parity mode_t
UART parity mode.
typedef enum _uart_stop_bit_count uart_stop_ bit_count_t
UART stop bit count.
typedef enum _uart_idle_condition uart_idle_condition_ t
UART idle condition detect.

typedef struct _uart_config uart_ config_t
UART configuration structure.

2.38. UART Driver 355

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _uart_transfer uart_transfer_t
UART transfer structure.

typedef struct _uart_handle uart_handle t
Forward declaration of the handle typedef.

typedef void (Fuart_ transfer_callback t)(UART_Type *base, uart_handle_t *handle, status_t
status, void *userData)

UART transfer callback function.
typedef void (fuart_isr_ t)(UART_Type *base, void *handle)
const IRQn_Type s_ uartIRQ[]
uart_isr_ts uartlsr
void *s_uartHandle[]

Pointers to uart handles for each instance.

uint32_t UART _GetlInstance(UART_Type *base)
Get the UART instance from peripheral base address.

Parameters
* base — UART peripheral base address.

Returns
UART instance.

UART_ RETRY_TIMES
Retry times for waiting flag.

struct _uart_ config
#include <fsl_uart.h> UART configuration structure.

Public Members
uint32_t baudRate_Bps
UART baud rate.
uart_parity_mode_t parityMode
Parity error check mode of this module.

uart_data_bits_t dataBitsCount
Data bits count, eight (default), seven

uart_stop_bit_count_t stopBitCount
Number of stop bits in one frame.

uint8_t txFifoWatermark
TX FIFO watermark

uint8_t rxFifoWatermark
RX FIFO watermark

uint8_t rxRTSWatermark
RX RTS watermark, RX FIFO data count being larger than this triggers RTS deassertion

bool enableAutoBaudRate
Enable automatic baud rate detection

bool enableTx
Enable TX

356 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

bool enableRx
Enable RX

bool enableRxRTS
RX RTS enable

bool enableTxCTS
TX CTS enable

struct uart_transfer
#include <fsl_uart.h> UART transfer structure.

Public Members
size_t dataSize
The byte count to be transfer.

struct uart handle
#include <fsl_uart.h> UART handle structure.

Public Members
const uint8_t *volatile txData

Address of remaining data to send.
volatile size_t txDataSize

Size of the remaining data to send.
size t txDataSizeAll

Size of the data to send out.
uint8_t *volatile rxData

Address of remaining data to receive.
volatile size_t rxDataSize

Size of the remaining data to receive.
size_t rxDataSizeAll

Size of the data to receive.
uint8_t *rxRingBuffer

Start address of the receiver ring buffer.
size_t rxRingBufferSize

Size of the ring buffer.
volatile uint16_t rxRingBufferHead

Index for the driver to store received data into ring buffer.

volatile uint16_t rxRingBufferTail
Index for the user to get data from the ring buffer.

uart_transfer_callback _t callback
Callback function.

void *userData
UART callback function parameter.

volatile uint8_t txState
TX transfer state.

2.38. UART Driver 357

MCUXpresso SDK Documentation, Release 25.09.00

volatile uint8_t rxState
RX transfer state

union unnamed9

Public Members
uint8_t *data
The buffer of data to be transfer.

uint8_t *rxData
The buffer to receive data.

const uint8_t *txData
The buffer of data to be sent.

2.39 UART FreeRTOS Driver

2.40 UART SDMA Driver

void UART_ TransferCreateHandleSSDMA (UART_Type *base, uart_sdma_handle_t *handle,
uart_sdma_transfer_callback_t callback, void
*userData, sdma_handle_t *txSdmaHandle,
sdma_handle_t *rxSdmaHandle, uint32_t
eventSourceTx, uint32_t eventSourceRx)

Initializes the UART handle which is used in transactional functions.
Parameters
* base — UART peripheral base address.
* handle — Pointer to the uart_sdma_handle_t structure.
* callback — UART callback, NULL means no callback.
» userData — User callback function data.
* rxSdmaHandle — User-requested DMA handle for RX DMA transfer.
* txSdmaHandle — User-requested DMA handle for TX DMA transfer.
¢ eventSourceTx — Eventsource for TX DMA transfer.
* eventSourceRx — Eventsource for RX DMA transfer.

status_t UART__SendSDMA (UART _Type *base, uart_sdma_handle_t *handle, uart_transfer._t
*xfer)

Sends data using sDMA.

This function sends data using sDMA. This is a non-blocking function, which returns right
away. When all data is sent, the send callback function is called.

Parameters

* base — UART peripheral base address.

* handle — UART handle pointer.

o xfer —- UART sDMA transfer structure. See uart_transfer_t.
Return values

* kStatus Success — if succeeded; otherwise failed.

358 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

* kStatus_ UART_ TxBusy — Previous transfer ongoing.
* kStatus_ InvalidArgument — Invalid argument.

status_t UART _ReceiveSDMA (UART_Type *base, uart_sdma_handle_t *handle, uart_transfer._t
*xfer)

Receives data using SDMA.

This function receives data using SDMA. This is a non-blocking function, which returns right
away. When all data is received, the receive callback function is called.

Parameters

* base — UART peripheral base address.

* handle — Pointer to the uart_sdma_handle_t structure.

» xfer — UART sDMA transfer structure. See uart_transfer_t.
Return values

* kStatus_ Success — if succeeded; otherwise failed.

* kStatus_ UART_ RxBusy — Previous transfer ongoing.

* kStatus_ InvalidArgument — Invalid argument.

void UART_ TransferAbortSendSDMA (UART_Type *base, uart_sdma_handle_t *handle)
Aborts the sent data using sSDMA.

This function aborts sent data using sDMA.
Parameters
* base — UART peripheral base address.
* handle — Pointer to the uart_sdma_handle_t structure.

void UART_ TransferAbortReceiveSDMA (UART_Type *base, uart_sdma_handle_t *handle)
Aborts the receive data using SDMA.

This function aborts receive data using sDMA.
Parameters
* base — UART peripheral base address.
* handle — Pointer to the uart_sdma_handle_t structure.

void UART_ TransferSdmaHandleIRQ(UART_Type *base, void *uartSdmaHandle)
UART IRQ handle function.

This function handles the UART transmit complete IRQ request and invoke user callback.
Parameters
* base — UART peripheral base address.
¢ uartSdmaHandle — UART handle pointer.
FSL_UART_ SDMA_DRIVER_ VERSION
UART SDMA driver version.
typedef struct _uart_sdma_handle uart_sdma_handle_t
typedef void (fuart_sdma_ transfer callback t)(UART_Type *base, uart_sdma_handle_t *handle,
status_t status, void *userData)
UART transfer callback function.

struct uart sdma_handle
#include <fsl_uart_sdma.h> UART sDMA handle.

2.40. UART SDMA Driver 359

MCUXpresso SDK Documentation, Release 25.09.00

Public Members
uart_sdma_transfer_callback_t callback
Callback function.

void *userData
UART callback function parameter.

size_t rxDataSizeAll
Size of the data to receive.

size_t txDataSizeAll
Size of the data to send out.

sdma_handle_t *txSdmaHandle
The sDMA TX channel used.

sdma_handle_t *rxSdmaHandle
The sDMA RX channel used.

volatile uint8_t txState
TX transfer state.

volatile uint8_t rxState
RX transfer state

2.41 USDHC: Ultra Secured Digital Host Controller Driver

void USDHC_ Init(USDHC_Type *base, const usdhc_config_t *config)
USDHC module initialization function.

Configures the USDHC according to the user configuration.

Example:

usdhc__config_t config;

config.cardDetectDat3 = false;

config.endianMode = kUSDHC _EndianModeLittle;
config.dmaMode = kUSDHC__DmaModeAdma?2;
config.read WatermarkLevel = 128U;
config.writeWatermarkLevel = 128U;

USDHC_ Init(USDHC, &config);

Parameters
* base — USDHC peripheral base address.
* config — USDHC configuration information.

Return values
kStatus_ Success — Operate successfully.

void USDHC_ Deinit(USDHC_Type *base)
Deinitializes the USDHC.

Parameters

* base — USDHC peripheral base address.

360 Chapter 2

. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

bool USDHC_ Reset(USDHC_Type *base, uint32_t mask, uint32_t timeout)
Resets the USDHC.

Parameters
* base — USDHC peripheral base address.
» mask — The reset type mask(_usdhc_reset).
* timeout — Timeout for reset.
Return values
* true — Reset successfully.
* false — Reset failed.

status_t USDHC__SetAdmaTableConfig(USDHC_Type *base, usdhc_adma_config_t *dmaConfig,
usdhc_data_t *dataConfig, uint32_t flags)

Sets the DMA descriptor table configuration. A high level DMA descriptor configuration
function.

Parameters
* base — USDHC peripheral base address.
* dmaConfig - ADMA configuration
* dataConfig — Data descriptor

 flags — ADAM descriptor flag, used to indicate to create multiple or single
descriptor, please refer to enum _usdhc_adma_flag.

Return values

* kStatus_ OutOfRange — ADMA descriptor table length isn’t enough to de-
scribe data.

* kStatus_ Success — Operate successfully.

status_t USDHC_SetInternalDmaConfig(USDHC_Type *base, usdhc_adma_config_t *dmaConfig,
const uint32_t *dataAddr, bool enAutoCmd23)

Internal DMA configuration. This function is used to config the USDHC DMA related regis-
ters.

Parameters
* base — USDHC peripheral base address.
* dmaConfig - ADMA configuration.

* dataAddr — Transfer data address, a simple DMA parameter, if ADMA is
used, leave it to NULL.

* enAutoCmd23 - Flag to indicate Auto CMD23 is enable or not, a simple DMA
parameter, if ADMA is used, leave it to false.

Return values

* kStatus_ OutOfRange — ADMA descriptor table length isn’t enough to de-
scribe data.

* kStatus_ Success — Operate successfully.

status_t USDHC__ Set ADMA2Descriptor(uint32_t *admaTable, uint32_t admaTableWords, const
uint32_t *dataBufferAddr, uint32_t dataBytes, uint32_t
flags)

Sets the ADMAZ2 descriptor table configuration.

Parameters

2.41. USDHC: Ultra Secured Digital Host Controller Driver 361

MCUXpresso SDK Documentation, Release 25.09.00

* admaTable - ADMA table address.

» admaTableWords — ADMA table length.
¢ dataBufferAddr — Data buffer address.
* dataBytes — Data Data length.

 flags — ADAM descriptor flag, used to indicate to create multiple or single
descriptor, please refer to enum _usdhc_adma_flag.

Return values

* kStatus_ OutOfRange — ADMA descriptor table length isn’t enough to de-
scribe data.

* kStatus_ Success — Operate successfully.

status_t USDHC_ Set ADMA 1Descriptor(uint32_t *admaTable, uint32_t admaTableWords, const
uint32_t *dataBufferAddr, uint32_t dataBytes, uint32_t
flags)

Sets the ADMA1 descriptor table configuration.
Parameters
* admaTable - ADMA table address.
* admaTableWords — ADMA table length.
* dataBufferAddr — Data buffer address.
* dataBytes — Data length.

 flags — ADAM descriptor flag, used to indicate to create multiple or single
descriptor, please refer to enum _usdhc_adma_flag.

Return values

* kStatus_ OutOfRange — ADMA descriptor table length isn’t enough to de-
scribe data.

* kStatus_ Success — Operate successfully.

static inline void USDHC_ EnableInternalDMA (USDHC_Type *base, bool enable)
Enables internal DMA.

Parameters
* base — USDHC peripheral base address.
* enable — enable or disable flag

static inline void USDHC_ EnableInterruptStatus(USDHC_Type *base, uint32_t mask)
Enables the interrupt status.

Parameters
* base — USDHC peripheral base address.
* mask — Interrupt status flags mask(_usdhc_interrupt_status_flag).

static inline void USDHC_ DisableInterruptStatus(USDHC_Type *base, uint32_t mask)
Disables the interrupt status.

Parameters
* base — USDHC peripheral base address.

* mask — The interrupt status flags mask(_usdhc_interrupt_status_flag).

362 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline void USDHC_ EnablelnterruptSignal(USDHC_Type *base, uint32_t mask)
Enables the interrupt signal corresponding to the interrupt status flag.

Parameters
* base — USDHC peripheral base address.
» mask — The interrupt status flags mask(_usdhc_interrupt_status_flag).

static inline void USDHC_ DisableInterruptSignal(USDHC_Type *base, uint32_t mask)
Disables the interrupt signal corresponding to the interrupt status flag.

Parameters
* base — USDHC peripheral base address.
» mask — The interrupt status flags mask(_usdhc_interrupt_status_flag).

static inline uint32_t USDHC__GetEnabledInterruptStatusFlags(USDHC_Type *base)
Gets the enabled interrupt status.

Parameters
* base — USDHC peripheral base address.

Returns
Current interrupt status flags mask(_usdhc_interrupt_status_flag).

static inline uint32_t USDHC__ GetInterruptStatusFlags(USDHC_Type *base)
Gets the current interrupt status.

Parameters
* base — USDHC peripheral base address.

Returns
Current interrupt status flags mask(_usdhc_interrupt_status_flag).

static inline void USDHC__ ClearInterruptStatusFlags(USDHC_Type *base, uint32_t mask)
Clears a specified interrupt status. write 1 clears.

Parameters
* base — USDHC peripheral base address.
* mask — The interrupt status flags mask(_usdhc_interrupt_status_flag).

static inline uint32_t USDHC__GetAutoCommand12ErrorStatusFlags(USDHC_Type *base)
Gets the status of auto command 12 error.

Parameters
* base — USDHC peripheral base address.

Returns
Auto command 12 error status flags mask(_usdhc_auto_command12_error_status_flag).

static inline uint32_t USDHC__GetAdmaErrorStatusFlags(USDHC_Type *base)
Gets the status of the ADMA error.

Parameters
* base — USDHC peripheral base address.

Returns
ADMA error status flags mask(_usdhc_adma_error_status_flag).

2.41. USDHC: Ultra Secured Digital Host Controller Driver 363

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t USDHC_ GetPresentStatusFlags(USDHC_Type *base)
Gets a present status.

This function gets the present USDHC’s status except for an interrupt status and an error
status.

Parameters
* base — USDHC peripheral base address.

Returns
Present USDHC’s status flags mask(_usdhc_present_status_flag).

void USDHC__GetCapability(USDHC_Type *base, usdhc_capability_t *capability)
Gets the capability information.

Parameters
* base — USDHC peripheral base address.
* capability — Structure to save capability information.

static inline void USDHC_ ForceClockOn(USDHC_Type *base, bool enable)
Forces the card clock on.

Parameters
* base — USDHC peripheral base address.
* enable — enable/disable flag

uint32_t USDHC _SetSdClock(USDHC_Type *base, uint32_t srcClock_Hz, uint32_t busClock_Hz)
Sets the SD bus clock frequency.

Parameters
* base — USDHC peripheral base address.
* srcClock_Hz — USDHC source clock frequency united in Hz.
* busClock Hz — SD bus clock frequency united in Hz.

Returns
The nearest frequency of busClock_Hz configured for SD bus.

bool USDHC_ SetCardActive(USDHC_Type *base, uint32_t timeout)
Sends 80 clocks to the card to set it to the active state.

This function must be called each time the card is inserted to ensure that the card can
receive the command correctly.

Parameters
* base — USDHC peripheral base address.
* timeout — Timeout to initialize card.
Return values
* true — Set card active successfully.
* false — Set card active failed.

static inline void USDHC__AssertHardwareReset(USDHC_Type *base, bool high)
Triggers a hardware reset.

Parameters
* base — USDHC peripheral base address.
* high—1 or 0 level

364 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline void USDHC_ SetDataBusWidth(USDHC_Type *base, usdhc_data_bus_width_t width)
Sets the data transfer width.

Parameters
* base — USDHC peripheral base address.
* width — Data transfer width.

static inline void USDHC_ WriteData(USDHC_Type *base, uint32_t data)
Fills the data port.

This function is used to implement the data transfer by Data Port instead of DMA.
Parameters
* base — USDHC peripheral base address.
* data — The data about to be sent.

static inline uint32_t USDHC_ ReadData(USDHC_Type *base)
Retrieves the data from the data port.

This function is used to implement the data transfer by Data Port instead of DMA.
Parameters
* base — USDHC peripheral base address.

Returns
The data has been read.

void USDHC_ SendCommand(USDHC_Type *base, usdhc_command_t *command)
Sends command function.

Parameters
* base — USDHC peripheral base address.
* command — configuration

static inline void USDHC_ EnableWakeupEvent(USDHC_Type *base, uint32_t mask, bool enable)
Enables or disables a wakeup event in low-power mode.

Parameters
* base — USDHC peripheral base address.
* mask — Wakeup events mask(_usdhc_wakeup_event).
* enable — True to enable, false to disable.

static inline void USDHC_ CardDetectByData3(USDHC_Type *base, bool enable)
Detects card insert status.

Parameters
* base — USDHC peripheral base address.
* enable — enable/disable flag

static inline bool USDHC_ DetectCardInsert(USDHC_Type *base)
Detects card insert status.

Parameters

* base — USDHC peripheral base address.

2.41. USDHC: Ultra Secured Digital Host Controller Driver 365

MCUXpresso SDK Documentation, Release 25.09.00

static inline void USDHC_ EnableSdioControl(USDHC_Type *base, uint32_t mask, bool enable)
Enables or disables the SDIO card control.

Parameters
* base — USDHC peripheral base address.
* mask — SDIO card control flags mask(_usdhc_sdio_control_flag).
* enable — True to enable, false to disable.

static inline void USDHC__ SetContinueRequest(USDHC_Type *base)
Restarts a transaction which has stopped at the block GAP for the SDIO card.

Parameters
* base — USDHC peripheral base address.

static inline void USDHC_ RequestStopAtBlockGap(USDHC_Type *base, bool enable)
Request stop at block gap function.

Parameters
* base — USDHC peripheral base address.
* enable — True to stop at block gap, false to normal transfer.

void USDHC__SetMmcBootConfig(USDHC_Type *base, const usdhc_boot_config_t *config)
Configures the MMC boot feature.

Example:

usdhc__boot__config_t config;
config.ackTimeoutCount = 4;

config.bootMode = kUSDHC__ BootModeNormal;
config.blockCount = 5;

config.enableBootAck = true;

config.enableBoot = true;
config.enableAutoStopAtBlockGap = true;
USDHC_ SetMmcBootConfig(USDHC, &config);

Parameters
* base — USDHC peripheral base address.
* config — The MMC boot configuration information.

static inline void USDHC_ EnableMmcBoot(USDHC_Type *base, bool enable)
Enables or disables the mmc boot mode.

Parameters
* base — USDHC peripheral base address.
* enable — True to enable, false to disable.

static inline void USDHC_ SetForceEvent(USDHC_Type *base, uint32_t mask)
Forces generating events according to the given mask.

Parameters
* base — USDHC peripheral base address.
» mask — The force events bit posistion (_usdhc_force_event).

static inline void UDSHC _ SelectVoltage(USDHC_Type *base, bool en18v)
Selects the USDHC output voltage.

Parameters

366 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

* base — USDHC peripheral base address.
* enl8v — True means 1.8V, false means 3.0V.

void USDHC_EnableDDRMode(USDHC_Type *base, bool enable, uint32_t nibblePos)
The enable/disable DDR mode.

Parameters
* base — USDHC peripheral base address.
* enable — enable/disable flag
* nibblePos — nibble position

void USDHC__SetDataConfig(USDHC_Type *base, usdhc_transfer_direction_t dataDirection,
uint32_t blockCount, uint32_t blockSize)

USDHC data configuration.
Parameters
* base — USDHC peripheral base address.
* dataDirection — Data direction, tx or rx.
* blockCount — Data block count.
* blockSize — Data block size.

void USDHC_ TransferCreateHandle(USDHC_Type *base, usdhc_handle_t *handle, const
usdhc_transfer_callback_t *callback, void *userData)

Creates the USDHC handle.
Parameters
* base — USDHC peripheral base address.
* handle — USDHC handle pointer.
¢ callback — Structure pointer to contain all callback functions.
» userData — Callback function parameter.

status_t USDHC_ TransferNonBlocking(USDHC_Type *base, usdhc_handle_t *handle,
usdhc_adma_config_t *dmacConfig, usdhc_transfer_t
*transfer)

Transfers the command/data using an interrupt and an asynchronous method.

This function sends a command and data and returns immediately. It doesn’t wait for the
transfer to complete or to encounter an error. The application must not call this API in
multiple threads at the same time. Because of that this API doesn’t support the re-entry
mechanism.

Note: Call API USDHC_TransferCreateHandle when calling this API.

Parameters
* base — USDHC peripheral base address.
* handle — USDHC handle.
* dmaConfig — ADMA configuration.
* transfer — Transfer content.
Return values

* kStatus_ InvalidArgument — Argument is invalid.

2.41. USDHC: Ultra Secured Digital Host Controller Driver 367

MCUXpresso SDK Documentation, Release 25.09.00

* kStatus_ USDHC_ BusyTransferring — Busy transferring.

* kStatus_ USDHC_ PrepareAdmaDescriptorFailed — Prepare ADMA descriptor
failed.

* kStatus_ Success — Operate successfully.

status_t USDHC__TransferBlocking(USDHC_Type *base, usdhc_adma_config_t *dmaConfig,
usdhc_transfer_t *transfer)

Transfers the command/data using a blocking method.

This function waits until the command response/data is received or the USDHC encounters
an error by polling the status flag.

The application must not call this API in multiple threads at the same time. Because this
API doesn’t support the re-entry mechanism.

Note: There is no need to call API USDHC_TransferCreateHandle when calling this API.

Parameters
* base — USDHC peripheral base address.
* dmaConfig — adma configuration
* transfer — Transfer content.
Return values
* kStatus_ InvalidArgument — Argument is invalid.

* kStatus_ USDHC_ PrepareAdmaDescriptorFailed — Prepare ADMA descriptor
failed.

e kStatus USDHC_SendCommandFailed — Send command failed.
* kStatus USDHC TransferDataFailed — Transfer data failed.
* kStatus_ Success — Operate successfully.

void USDHC_ TransferHandleIRQ(USDHC_Type *base, usdhc_handle_t *handle)
IRQ handler for the USDHC.

This function deals with the IRQs on the given host controller.
Parameters
* base — USDHC peripheral base address.
* handle - USDHC handle.

FSL USDHC DRIVER_ VERSION
Driver version 2.8.5.

Enum _usdhc_status. USDHC status.

Values:

enumerator kStatus_ USDHC__BusyTransferring
Transfer is on-going.

enumerator kStatus. USDHC _PrepareAdmaDescriptorFailed
Set DMA descriptor failed.

368 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus. USDHC SendCommandFailed
Send command failed.

enumerator kStatus. USDHC TransferDataFailed
Transfer data failed.

enumerator kStatus_ USDHC_DMADataAddrNotAlign
Data address not aligned.

enumerator kStatus_ USDHC__ReTuningRequest
Re-tuning request.

enumerator kStatus_ USDHC_ TuningError
Tuning error.

enumerator kStatus_ USDHC__NotSupport
Not support.

enumerator kStatus_ USDHC _TransferDataComplete
Transfer data complete.

enumerator kStatus. USDHC SendCommandSuccess
Transfer command complete.

enumerator kStatus_ USDHC __TransferDMAComplete
Transfer DMA complete.

Enum _usdhc_capability_flag. Host controller capabilities flag mask. .
Values:
enumerator kUSDHC_ SupportAdmaFlag
Support ADMA.
enumerator kUSDHC__SupportHighSpeedFlag
Support high-speed.
enumerator kUSDHC_ SupportDmaFlag
Support DMA.
enumerator kUSDHC_ SupportSuspendResumeFlag
Support suspend/resume.
enumerator kUSDHC_ SupportV330Flag
Support voltage 3.3V.
enumerator kUSDHC_ SupportV300Flag
Support voltage 3.0V.
enumerator kUSDHC_ SupportV180Flag
Support voltage 1.8V.
enumerator kUSDHC_ Support4BitFlag
Flag in HTCAPBLT_MBL’s position, supporting 4-bit mode.
enumerator kUSDHC_ Support8BitFlag
Flag in HTCAPBLT_MBL’s position, supporting 8-bit mode.

enumerator kUSDHC_ Support DDR50Flag
SD version 3.0 new feature, supporting DDR50 mode.

2.41. USDHC: Ultra Secured Digital Host Controller Driver 369

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUSDHC_ SupportSDR104Flag
Support SDR104 mode.

enumerator kUSDHC_ SupportSDR50FIag
Support SDR50 mode.

Enum _usdhc_wakeup_event. Wakeup event mask. .

Values:
enumerator kUSDHC WakeupEventOnCardInt
Wakeup on card interrupt.

enumerator kUSDHC WakeupEventOnCardInsert
Wakeup on card insertion.

enumerator kUSDHC__WakeupEventOnCardRemove

Wakeup on card removal.

enumerator kUSDHC__WakeupEventsAll
All wakeup events

Enum _usdhc_reset. Reset type mask. .
Values:

enumerator kUSDHC _ResetAll
Reset all except card detection.
enumerator kUSDHC ResetCommand
Reset command line.
enumerator kUSDHC_ResetData
Reset data line.
enumerator kUSDHC_ ResetTuning
Reset tuning circuit.

enumerator kUSDHC ResetsAll
All reset types

Enum _usdhc_transfer_flag. Transfer flag mask.
Values:

enumerator ktUSDHC__EnableDmaFlag
Enable DMA.

enumerator kUSDHC_ CommandTypeSuspendFlag
Suspend command.

enumerator kUSDHC__CommandTypeResumeFlag
Resume command.

enumerator kUSDHC__ CommandTypeAbortFlag
Abort command.

enumerator ktUSDHC__EnableBlockCountFlag
Enable block count.

370

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUSDHC__EnableAutoCommand12Flag
Enable auto CMD12.

enumerator kUSDHC_ DataReadFlag
Enable data read.

enumerator ktUSDHC_ MultipleBlockFlag
Multiple block data read/write.

enumerator kUSDHC__EnableAutoCommand23Flag
Enable auto CMD23.

enumerator kUSDHC_ ResponseLength136Flag
136-bit response length.

enumerator kUSDHC_ ResponseLength48Flag
48-bit response length.

enumerator kUSDHC_ ResponseLength48BusyFlag
48-bit response length with busy status.

enumerator kUSDHC_ EnableCrcCheckFlag
Enable CRC check.

enumerator kUSDHC__EnableIndexCheckFlag
Enable index check.

enumerator ktUSDHC_ DataPresentFlag
Data present flag.

Enum _usdhc_present_status_flag. Present status flag mask. .

Values:

enumerator kUSDHC__ CommandInhibitFlag
Command inhibit.

enumerator kUSDHC_ DatalnhibitFlag
Data inhibit.

enumerator kUSDHC_Datal.ineActiveFlag
Data line active.

enumerator kUSDHC__SdClockStableFlag
SD bus clock stable.

enumerator kUSDHC_ WriteTransfer ActiveFlag
Write transfer active.

enumerator kUSDHC__ReadTransfer ActiveFlag
Read transfer active.

enumerator kUSDHC_ BufferWriteEnableFlag
Buffer write enable.

enumerator kUSDHC_ BufferReadEnableFlag
Buffer read enable.

enumerator kUSDHC_ ReTuningRequestFlag
Re-tuning request flag, only used for SDR104 mode.

2.41. USDHC: Ultra Secured Digital Host Controller Driver 371

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUSDHC_ DelaySettingFinishedFlag
Delay setting finished flag.

enumerator kUSDHC_ CardInsertedFlag
Card inserted.

enumerator kUSDHC__CommandLineLevelFlag
Command line signal level.

enumerator ktUSDHC_ DataOLineLevelFlag
Data0 line signal level.

enumerator kUSDHC_ DatalLineLevelFlag
Datal line signal level.

enumerator ktUSDHC_ Data2LineLevelFlag
Data2 line signal level.

enumerator kUSDHC_ Data3LineLevelFlag
Data3 line signal level.

enumerator kUSDHC_ Data4LineLevelFlag
Data4 line signal level.

enumerator kUSDHC_ Data5LineLevelFlag
Data5 line signal level.

enumerator kUSDHC_ Data6LineLevelFlag
Data6 line signal level.

enumerator kUSDHC_ Data7LineLevelFlag
Data7 line signal level.

Enum _usdhc_interrupt_status_flag. Interrupt status flag mask. .
Values:

enumerator kUSDHC__ CommandCompleteFlag
Command complete.

enumerator kUSDHC_ DataCompleteFlag
Data complete.

enumerator kUSDHC_ BlockGapEventFlag
Block gap event.

enumerator kUSDHC_ DmaCompleteFlag
DMA interrupt.

enumerator kUSDHC_ BufferWriteReadyFlag
Buffer write ready.

enumerator kUSDHC_ BufferReadReadyFlag
Buffer read ready:.

enumerator kUSDHC_ CardInsertionFlag
Card inserted.

enumerator kUSDHC_ CardRemovalFlag
Card removed.

372

Chapter 2

. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUSDHC__ CardInterruptFlag
Card interrupt.

enumerator kUSDHC_ ReTuningEventFlag
Re-Tuning event, only for SD3.0 SDR104 mode.

enumerator kUSDHC_ TuningPassFlag
SDR104 mode tuning pass flag.

enumerator ktUSDHC_ TuningErrorFlag
SDR104 tuning error flag.

enumerator kUSDHC__CommandTimeoutFlag
Command timeout error.

enumerator kUSDHC_ CommandCrcErrorFlag
Command CRC error.

enumerator ktUSDHC__CommandEndBitErrorFlag
Command end bit error.

enumerator ktUSDHC__CommandIndexErrorFlag
Command index error.

enumerator ktUSDHC_ DataTimeoutFlag
Data timeout error.

enumerator kUSDHC_ DataCrcErrorFlag
Data CRC error.

enumerator kUSDHC_ DataEndBitErrorFlag
Data end bit error.

enumerator kUSDHC__AutoCommand12ErrorFlag
Auto CMD12 error.

enumerator kUSDHC_ DmaFErrorFlag
DMA error.

enumerator kUSDHC_ CommandErrorFlag
Command error

enumerator kUSDHC_ DataErrorFlag
Data error

enumerator kUSDHC_ ErrorFlag
All error

enumerator kUSDHC_ DataFlag
Data interrupts

enumerator kUSDHC_ DataDMAFlag
Data interrupts

enumerator kUSDHC__CommandFlag
Command interrupts

enumerator kUSDHC_ CardDetectFlag
Card detection interrupts

enumerator kUSDHC_ SDR104TuningFlag
SDR104 tuning flag.

2.41. USDHC: Ultra Secured Digital Host Controller Driver 373

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUSDHC__AlllnterruptFlags
All flags mask

Enum _usdhc_auto_command12_error_status_flag. Auto CMD12 error status flag mask. .
Values:

enumerator kUSDHC__AutoCommand12NotExecutedFlag
Not executed error.

enumerator kUSDHC__AutoCommand12TimeoutFlag
Timeout error.

enumerator kUSDHC__AutoCommand12EndBitErrorFlag
End bit error.

enumerator kUSDHC_ AutoCommand12CrcErrorFlag
CRC error.

enumerator kUSDHC_ AutoCommand12IndexErrorFlag
Index error.

enumerator kUSDHC__ AutoCommand12NotIssuedFlag
Not issued error.

Enum _usdhc_standard_tuning. Standard tuning flag.
Values:

enumerator kUSDHC_ ExecuteTuning
Used to start tuning procedure.

enumerator kUSDHC_ TuningSampleClockSel
When std_tuning_en bit is set, this bit is used to select sampleing clock.

Enum _usdhc_adma_error_status_flag. ADMA error status flag mask. .
Values:

enumerator kUSDHC__AdmaLenghMismatchFlag
Length mismatch error.

enumerator ktUSDHC__AdmaDescriptorErrorFlag
Descriptor error.

Enum _usdhc_adma_error_state. ADMA error state.
This state is the detail state when ADMA error has occurred.
Values:

enumerator kUSDHC__AdmaErrorStateStopDma

Stop DMA, previous location set in the ADMA system address is errored address.
enumerator kUSDHC__ AdmaErrorStateFetchDescriptor

Fetch descriptor, current location set in the ADMA system address is errored address.

enumerator kUSDHC__ AdmaErrorStateChangeAddress
Change address, no DMA error has occurred.

374

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUSDHC AdmaErrorStateTransferData
Transfer data, previous location set in the ADMA system address is errored address.

enumerator ktUSDHC__AdmaErrorStateInvalidLength
Invalid length in ADMA descriptor.

enumerator ktUSDHC__AdmaErrorStateInvalidDescriptor
Invalid descriptor fetched by ADMA.

enumerator kUSDHC AdmaFErrorState
ADMA error state

Enum _usdhc_force_event. Force event bit position. .
Values:

enumerator kUSDHC ForceEventAutoCommand12NotExecuted
Auto CMD12 not executed error.

enumerator kUSDHC ForceEventAutoCommand12Timeout
Auto CMD12 timeout error.

enumerator kUSDHC_ForceEventAutoCommand12CrcError
Auto CMD12 CRC error.

enumerator kUSDHC ForceEventEndBitError
Auto CMD12 end bit error.

enumerator kUSDHC_ForceEventAutoCommandl2IndexError
Auto CMD12 index error.

enumerator kUSDHC ForceEventAutoCommand12NotIssued
Auto CMD12 not issued error.

enumerator kUSDHC ForceEventCommandTimeout
Command timeout error.

enumerator kUSDHC ForceEventCommandCrcError
Command CRC error.

enumerator kUSDHC ForceEventCommandEndBitError
Command end bit error.

enumerator kUSDHC ForceEventCommandIndexError
Command index error.

enumerator kUSDHC_ForceEventDataTimeout
Data timeout error.

enumerator kUSDHC_ForceEventDataCrcError
Data CRC error.

enumerator kUSDHC_ForceEventDataEndBitError
Data end bit error.

enumerator kUSDHC _ForceEventAutoCommand12Error
Auto CMD12 error.

enumerator kUSDHC _ForceEventCardInt
Card interrupt.

2.41. USDHC: Ultra Secured Digital Host Controller Driver 375

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUSDHC ForceEventDmaError
Dma error.

enumerator kUSDHC_ ForceEventTuningError
Tuning error.

enumerator kUSDHC ForceEventsAll
All force event flags mask.

enum _usdhc transfer direction
Data transfer direction.

Values:

enumerator kUSDHC TransferDirectionReceive
USDHC transfer direction receive.
enumerator kUSDHC_ TransferDirectionSend
USDHC transfer direction send.
enum _usdhc_data_bus_width
Data transfer width.
Values:
enumerator kUSDHC_DataBusWidth1Bit
1-bit mode
enumerator kUSDHC_DataBusWidth4Bit
4-bit mode
enumerator kUSDHC DataBusWidth8Bit
8-bit mode
enum usdhc endian mode
Endian mode.
Values:
enumerator ktUSDHC__EndianModeBig
Big endian mode.
enumerator kUSDHC__EndianModeHalfWordBig
Half word big endian mode.
enumerator kUSDHC EndianModeLittle
Little endian mode.
enum usdhc dma_ mode
DMA mode.
Values:
enumerator kUSDHC__DmaModeSimple
External DMA.
enumerator kUSDHC _DmaModeAdmal
ADMAL1 is selected.
enumerator kUSDHC _DmaModeAdma2
ADMAZ2 is selected.

enumerator kUSDHC External DMA
External DMA mode selected.

376 Chapter 2

. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Enum _usdhc_sdio_control_flag. SDIO control flag mask. .
Values:

enumerator kUSDHC_ StopAtBlockGapFlag
Stop at block gap.

enumerator kUSDHC__ReadWaitControlFlag
Read wait control.

enumerator kUSDHC_ InterruptAtBlockGapFlag
Interrupt at block gap.

enumerator kUSDHC ReadDoneNo8CLK
Read done without 8 clk for block gap.

enumerator kUSDHC__ExactBlockNumberReadFlag
Exact block number read.

enum _usdhc_boot__mode
MMC card boot mode.

Values:

enumerator kUSDHC_BootModeNormal
Normal boot

enumerator kUSDHC BootModeAlternative
Alternative boot

enum _ usdhc_ card_command_ type
The command type.

Values:

enumerator kCARD_ CommandTypeNormal
Normal command

enumerator kCARD_ CommandTypeSuspend
Suspend command

enumerator kCARD_ CommandTypeResume
Resume command

enumerator kCARD__CommandTypeAbort
Abort command

enumerator kCARD_ CommandTypeEmpty
Empty command

enum _ usdhc_ card_ response_ type
The command response type.

Defines the command response type from card to host controller.
Values:

enumerator kCARD_ ResponseTypeNone
Response type: none

enumerator kCARD_ ResponseTypeR1
Response type: R1

2.41. USDHC: Ultra Secured Digital Host Controller Driver 377

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCARD_ ResponseTypeR1b
Response type: R1b

enumerator kCARD_ ResponseTypeR2
Response type: R2

enumerator kCARD_ ResponseTypeR3
Response type: R3

enumerator kCARD_ ResponseTypeR4
Response type: R4

enumerator kCARD_ ResponseTypeR5
Response type: R5

enumerator kCARD_ ResponseTypeR5b
Response type: R5b

enumerator kCARD_ ResponseTypeR6
Response type: R6

enumerator kCARD_ResponseTypeR7
Response type: R7

Enum _usdhc_admal_descriptor_flag. The mask for the control/status field in ADMA1 de-
scriptor.

Values:

enumerator kUSDHC__AdmalDescriptorValidFlag
Valid flag.

enumerator kUSDHC__AdmalDescriptorEndFlag
End flag.

enumerator kUSDHC_ AdmalDescriptorInterrupFlag
Interrupt flag.

enumerator kUSDHC__AdmalDescriptorActivitylFlag
Activity 1 flag.

enumerator kUSDHC__ AdmalDescriptorActivity2Flag
Activity 2 flag.

enumerator kUSDHC__AdmalDescriptorTypeNop
No operation.

enumerator kUSDHC__AdmalDescriptorTypeTransfer
Transfer data.

enumerator kUSDHC__ AdmalDescriptorTypeLink
Link descriptor.

enumerator kUSDHC__AdmalDescriptorTypeSetLength
Set data length.

Enum _usdhc_adma2_descriptor_flag. ADMA1 descriptor control and status mask.
Values:

enumerator kUSDHC_ Adma2DescriptorValidFlag
Valid flag.

378

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUSDHC__Adma2DescriptorEndFlag
End flag.

enumerator kUSDHC__Adma2DescriptorInterruptFlag
Interrupt flag.

enumerator ktUSDHC__Adma2DescriptorActivity1Flag
Activity 1 mask.

enumerator ktUSDHC__Adma2DescriptorActivity2Flag
Activity 2 mask.

enumerator kUSDHC__ Adma2DescriptorTypeNop
No operation.

enumerator kUSDHC__Adma2DescriptorTypeReserved
Reserved.

enumerator kUSDHC__ Adma2DescriptorTypeTransfer
Transfer type.

enumerator kUSDHC__ Adma2DescriptorTypeLink
Link type.

Enum _usdhc_adma_flag. ADMA descriptor configuration flag. .
Values:

enumerator kUSDHC__AdmaDescriptorSingleFlag

Try to finish the transfer in a single ADMA descriptor. If transfer size is bigger than
one ADMA descriptor’s ability, new another descriptor for data transfer.

enumerator kUSDHC_ AdmaDescriptorMultipleFlag

Create multiple ADMA descriptors within the ADMA table, this is used for mmc bhoot
mode specifically, which need to modify the ADMA descriptor on the fly, so the flag
should be used combining with stop at block gap feature.

enum _usdhc_ burst_len
DMA transfer burst len config.

Values:

enumerator kUSDHC EnBurstLenForINCR
Enable burst len for INCR.

enumerator kUSDHC EnBurstLenForINCR4816
Enable burst len for INCR4/INCRS8/INCR16.

enumerator kUSDHC EnBurstLenForINCR4816WRAP
Enable burst len for INCR4/8/16 WRAP.

Enum _usdhc_transfer_data_type. Tansfer data type definition.
Values:

enumerator kUSDHC_TransferDataNormal
Transfer normal read/write data.

enumerator kUSDHC__TransferDataTuning
Transfer tuning data.

2.41. USDHC: Ultra Secured Digital Host Controller Driver 379

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUSDHC TransferDataBoot
Transfer boot data.

enumerator kUSDHC TransferDataBootcontinous
Transfer boot data continuously.

typedef enum _usdhc_transfer_direction usdhc_ transfer_ direction_t
Data transfer direction.

typedef enum _usdhc_data_bus_width usdhc_ data_bus_ width_t
Data transfer width.

typedef enum _usdhc_endian_mode usdhc_endian_mode_t
Endian mode.

typedef enum _usdhc_dma_mode usdhc_dma_mode_t
DMA mode.

typedef enum _usdhc_boot_mode usdhc_boot_ mode_ t
MMC card boot mode.

typedef enum _usdhc_card command_type usdhc_card command_ type_t
The command type.

typedef enum _usdhc_card_response_type usdhc_card_ response_ type_ t
The command response type.

Defines the command response type from card to host controller.

typedef enum _usdhc_burst_len usdhc_ burst_len_
DMA transfer burst len config.

typedef uint32_t usdhc_admal_descriptor_t
Defines the ADMA1 descriptor structure.

typedef struct _usdhc_admaZ2_descriptor usdhc_adma2 descriptor t
Defines the ADMA2 descriptor structure.

typedef struct _usdhc_capability usdhc capability t
USDHC capability information.

Defines a structure to save the capability information of USDHC.

typedef struct _usdhc_boot_config usdhc_boot_ config_t
Data structure to configure the MMC boot feature.

typedef struct _usdhc_config usdhc_ config_t
Data structure to initialize the USDHC.

typedef struct _usdhc_command usdhc_ command_ t
Card command descriptor.

Defines card command-related attribute.

typedef struct _usdhc_adma_config usdhc_adma,_ config_t
ADMA configuration.

typedef struct _usdhc_scatter_gather_data_list usdhc_scatter gather data list_t
Card scatter gather data list.

Allow application register uncontinuous data buffer for data transfer.

380 Chapter 2

. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _usdhc_scatter_gather_data usdhc_scatter__gather_data_t
Card scatter gather data descriptor.
Defines a structure to contain data-related attribute. The ‘enablelgnoreError’ is used when
upper card driver wants to ignore the error event to read/write all the data and not to stop
read/write immediately when an error event happens. For example, bus testing procedure
for MMC card.

typedef struct _usdhc_scatter_gather_transfer usdhc_ scatter_ gather transfer t
usdhc scatter gather transfer.

typedef struct _usdhc_data usdhc_data_t
Card data descriptor.

Defines a structure to contain data-related attribute. The ‘enablelgnoreError’ is used when
upper card driver wants to ignore the error event to read/write all the data and not to stop
read/write immediately when an error event happens. For example, bus testing procedure
for MMC card.

typedef struct _usdhc_transfer usdhc_transfer_t
Transfer state.
typedef struct _usdhc_handle usdhc_handle t
USDHC handle typedef.
typedef struct _usdhc_transfer_callback usdhc_ transfer callback_ t
USDHC callback functions.
typedef status_t (*usdhc_ transfer function_ t)(USDHC_Type *base, usdhc_transfer_t *content)
USDHC transfer function.
typedef struct _usdhc_host usdhc_ host_t
USDHC host descriptor.
USDHC_MAX_BLOCK_COUNT
Maximum block count can be set one time.
FSL_USDHC_ENABLE_SCATTER_ GATHER_ TRANSFER
USDHC scatter gather feature control macro.
USDHC_ADMA1 ADDRESS ALIGN
The alignment size for ADDRESS filed in ADMA1’s descriptor.
USDHC_ADMA1_LENGTH__ALIGN
The alignment size for LENGTH field in ADMA1’s descriptor.
USDHC_ADMA2_ADDRESS_ALIGN
The alignment size for ADDRESS field in ADMAZ2’s descriptor.
USDHC_ADMA2_ LENGTH_ALIGN
The alignment size for LENGTH filed in ADMA2’s descriptor.

USDHC_ADMA1_DESCRIPTOR_ADDRESS_SHIFT
The bit shift for ADDRESS filed in ADMA1’s descriptor.

Address/page field Reserved Attribute

3112 116 05 04 03 02 01 00
address or data length 000000 Act2 Actl 0 Int End Valid

2.41. USDHC: Ultra Secured Digital Host Controller Driver 381

MCUXpresso SDK Documentation, Release 25.09.00

Act2 Actl Comment 31-28 27-12

0 0 No op Don’t care

0 1 Set data length 0000 Data Length
1 0 Transfer data Data address

1 1 Link descriptor Descriptor address

USDHC_ADMA1 DESCRIPTOR__ADDRESS MASK
The bit mask for ADDRESS field in ADMA1’s descriptor.

USDHC _ADMA1 DESCRIPTOR_LENGTH_SHIFT
The bit shift for LENGTH filed in ADMA1’s descriptor.

USDHC_ADMA1 DESCRIPTOR_LENGTH_ MASK
The mask for LENGTH field in ADMA1’s descriptor.

USDHC_ADMA1 DESCRIPTOR_MAX LENGTH_ PER_ENTRY

The maximum value of LENGTH filed in ADMA1’s descriptor. Since the max transfer size
ADMA1 support is 65535 which is indivisible by 4096, so to make sure a large data load
transfer (>64KB) continuously (require the data address be always align with 4096), soft-
ware will set the maximum data length for ADMA1 to (64 - 4)KB.

USDHC_ADMA2_DESCRIPTOR,_LENGTH_ SHIFT
The bit shift for LENGTH field in ADMA2’s descriptor.

Address field Length Reserved Attribute

63 32 3116 1506 05 04 03 02 01 00
32-bit address 16-bitlength 0000000000 Act2 Actl 0 Int End Valid

Act2 Actl Comment Operation
0 0 No op Don’t care
0 1 Reserved Read this line and go to next one
1 0 Transfer data Transfer data with address and length set in this descriptor
line
1 1 Link descrip- Link to another descriptor
tor

USDHC_ADMA2_DESCRIPTOR_LENGTH_MASK
The bit mask for LENGTH field in ADMAZ2’s descriptor.

USDHC_ADMA2_DESCRIPTOR_MAX_LENGTH_PER_ENTRY
The maximum value of LENGTH field in ADMA2’s descriptor.

struct _usdhc_adma2_ descriptor
#include <fsl_usdhc.h> Defines the ADMAZ2 descriptor structure.

Public Members

uint32_t attribute
The control and status field.

382 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t address
The address field.

struct _usdhc_ capability
#include <fsl_usdhc.h> USDHC capability information.

Defines a structure to save the capability information of USDHC.

Public Members
uint32_t sd Version
Support SD card/sdio version.

uint32_t mmcVersion
Support EMMC card version.

uint32_t maxBlockLength
Maximum block length united as byte.

uint32_t maxBlockCount
Maximum block count can be set one time.

uint32_t flags
Capability flags to indicate the support information(_usdhc_capability_flag).

struct _usdhc_boot_ config
#include <fsl_usdhc.h> Data structure to configure the MMC boot feature.

Public Members
uint32_t ackTimeoutCount
Timeout value for the boot ACK. The available range is 0 ~ 15.

usdhc_boot_mode_t bootMode
Boot mode selection.
uint32_t blockCount
Stop at block gap value of automatic mode. Available range is 0 ~ 65535.
size_t blockSize
Block size.
bool enableBootAck
Enable or disable boot ACK.
bool enableAutoStopAtBlockGap
Enable or disable auto stop at block gap function in boot period.

struct _ usdhc_ config
#include <fsl_usdhc.h> Data structure to initialize the USDHC.

Public Members

uint32_t dataTimeout
Data timeout value.

usdhc_endian_mode_t endianMode
Endian mode.

2.41. USDHC: Ultra Secured Digital Host Controller Driver 383

MCUXpresso SDK Documentation, Release 25.09.00

uint8_t readWatermarkLevel

Watermark level for DMA read operation. Available range is 1 ~ 128.

uint8_t writeWatermarkLevel

Watermark level for DMA write operation. Available range is 1 ~ 128.

uint8_t readBurstLen
Read burst len.

uint8_t writeBurstLen
Write burst len.

struct usdhc command
#include <fsl_usdhc.h> Card command descriptor.

Defines card command-related attribute.

Public Members

uint32_t index
Command index.

uint32_t argument
Command argument.

usdhc_card_command_type_t type
Command type.

usdhc_card_response_type_t responseType
Command response type.

uint32_t response[4U]
Response for this command.

uint32_t responseErrorFlags
Response error flag, which need to check the command reponse.

uint32_t flags
Cmd flags.

struct _usdhc_adma,_ config
#include <fsl_usdhc.h> ADMA configuration.

Public Members

usdhc_dma_mode_t dmaMode
DMA mode.

usdhc_burst_len_t burstLen
Burst len config.

uint32_t *admaTable

ADMA table address, can’t be null if transfer way is ADMA1/ADMAZ2.

uint32_t admaTableWords

ADMA table length united as words, can’t be 0 if transfer way is ADMA1/ADMA2.

struct _usdhc_ scatter gather data_ list
#include <fsl_usdhc.h> Card scatter gather data list.

Allow application register uncontinuous data buffer for data transfer.

384 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

struct _usdhc_ scatter_ gather_data

#include <fsl_usdhc.h> Card scatter gather data descriptor.

Defines a structure to contain data-related attribute. The ‘enablelgnoreError’ is used when
upper card driver wants to ignore the error event to read/write all the data and not to stop
read/write immediately when an error event happens. For example, bus testing procedure

for MMC card.

Public Members

bool enableAutoCommand12
Enable auto CMD12.

bool enableAutoCommand?23
Enable auto CMD23.

bool enableIgnoreError

Enable to ignore error event to read/write all the data.

usdhc_transfer_direction_t dataDirection
data direction

uint8_t dataType

this is used to distinguish the normal/tuning/boot data.

size_t blockSize
Block size.

usdhc_scatter_gather_data_list_t sgData
scatter gather data

struct _usdhc_ scatter gather transfer

#include <fsl_usdhc.h> usdhc scatter gather transfer.

Public Members

usdhc_scatter_gather_data_t *data
Data to transfer.

usdhc_command_t *command
Command to send.

struct usdhc_data

#include <fsl_usdhc.h> Card data descriptor.

Defines a structure to contain data-related attribute. The ‘enablelgnoreError’ is used when
upper card driver wants to ignore the error event to read/write all the data and not to stop
read/write immediately when an error event happens. For example, bus testing procedure

for MMC card.

Public Members

bool enableAutoCommand12
Enable auto CMD12.

bool enableAutoCommand?23
Enable auto CMD23.

2.41. USDHC: Ultra Secured Digital Host Controller Driver

385

MCUXpresso SDK Documentation, Release 25.09.00

bool enableIgnoreError
Enable to ignore error event to read/write all the data.

uint8_t dataType
this is used to distinguish the normal/tuning/boot data.

size_t blockSize
Block size.

uint32_t blockCount
Block count.

uint32_t *rxData
Buffer to save data read.

const uint32_t *txData
Data buffer to write.

struct usdhc_ transfer
#include <fsl_usdhc.h> Transfer state.

Public Members
usdhc_data_t *data
Data to transfer.

usdhc_command_t *command
Command to send.

struct usdhc_transfer callback
#include <fsl_usdhc.h> USDHC callback functions.

Public Members
void (*CardInserted)(USDHC_Type *base, void *userData)
Card inserted occurs when DAT3/CD pin is for card detect
void (*CardRemoved)(USDHC_Type *base, void *userData)
Card removed occurs
void (*SdioInterrupt)(USDHC_Type *base, void *userData)
SDIO card interrupt occurs
void (*BlockGap)(USDHC_Type *base, void *userData)
stopped at block gap event

void (*TransferComplete)(USDHC_Type *base, usdhc_handle_t *handle, status_t status, void
*userData)

Transfer complete callback.

void (*ReTuning)(USDHC_Type *base, void *userData)
Handle the re-tuning.

struct usdhc_ handle
#include <fsl_usdhc.h> USDHC handle.

Defines the structure to save the USDHC state information and callback function.

Note: All the fields except interruptFlags and transferredWords must be allocated by the
user.

386 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

usdhc_data_t *volatile data
Transfer parameter. Data to transfer.

usdhc_command_t *volatile command
Transfer parameter. Command to send.

volatile uint32_t transferred Words
Transfer status. Words transferred by DATAPORT way.

usdhc_transfer_callback_t callback
Callback function.

void *userData
Parameter for transfer complete callback.

struct usdhc host
#include <fsl_usdhc.h> USDHC host descriptor.

Public Members

USDHC_Type *base
USDHC peripheral base address.

uint32_t sourceClock_Hz
USDHC source clock frequency united in Hz.

usdhc_config_t config
USDHC configuration.

usdhc_capability_t capability
USDHC capability information.

usdhc_transfer_function_t transfer
USDHC transfer function.

2.42 WDOG: Watchdog Timer Driver

void WDOG __GetDefaultConfig(wdog_config t *config)
Initializes the WDOG configuration structure.

This function initializes the WDOG configuration structure to default values. The default
values are as follows.

wdogConfig->enableWdog = true;
wdogConfig- >workMode.enableWait = true;
wdogConfig- >workMode.enableStop = true;
wdogConfig->workMode.enableDebug = true;
wdogConfig- >enablelnterrupt = false;
wdogConfig- >enablePowerdown = false;
wdogConfig- >resetExtension = flase;
wdogConfig->timeoutValue = 0xFFU;
wdogConfig- >interrupt TimeValue = 0x04u;

See also:

wdog_config_t

2.42. WDOG: Watchdog Timer Driver 387

MCUXpresso SDK Documentation, Release 25.09.00

Parameters

* config — Pointer to the WDOG configuration structure.

void WDOG__Init(WDOG_Type *base, const wdog_config_t *config)

Initializes the WDOG.

This function initializes the WDOG. When called, the WDOG runs according to the configu-
ration.

This is an example.

wdog_ config_ t config;

WDOG __ GetDefaultConfig(&config);
config.timeoutValue = 0xffU;
config->interruptTimeValue = 0x04u;
WDOG _ Init(wdog base,&config);

Parameters
* base — WDOG peripheral base address
* config — The configuration of WDOG

void WDOG_ Deinit(WDOG_Type *base)

Shuts down the WDOG.

This function shuts down the WDOG. Watchdog Enable bit is a write one once only bit. It
is not possible to clear this bit by a software write, once the bit is set. This bittWDE) can be
set/reset only in debug mode(exception).

static inline void WDOG __Enable(WDOG_Type *base)

Enables the WDOG module.

This function writes a value into the WDOG_WCR register to enable the WDOG. This is a
write one once only bit. It is not possible to clear this bit by a software write, once the bit
is set. only debug mode exception.

Parameters

* base — WDOG peripheral base address

static inline void WDOG__Disable(WDOG_Type *base)

Disables the WDOG module.

This function writes a value into the WDOG_WCR register to disable the WDOG. This is a
write one once only bit. It is not possible to clear this bit by a software write,once the bit is
set. only debug mode exception

Parameters

* base — WDOG peripheral base address

static inline void WDOG _ TriggerSystemSoftwareReset(WDOG_Type *base)

Trigger the system software reset.

This function will write to the WCR[SRS] bit to trigger a software system reset. This bit will
automatically resets to “1” after it has been asserted to “0”. Note: Calling this API will reset
the system right now, please using it with more attention.

Parameters

* base — WDOG peripheral base address

388

Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline void WDOG__ TriggerSoftwareSignal(WDOG_Type *base)
Trigger an output assertion.

This function will write to the WCR[WDA] bit to trigger WDOG_B signal assertion. The
WDOG_B signal can be routed to external pin of the chip, the output pin will turn to as-
sertion along with WDOG_B signal. Note: The WDOG_B signal will remain assert until a
power on reset occurred, so, please take more attention while calling it.

Parameters
* base — WDOG peripheral base address

static inline void WDOG__Enablelnterrupts(WDOG_Type *base, uint16_t mask)
Enables the WDOG interrupt.

This bit is a write once only bit. Once the software does a write access to this bit, it will get
locked and cannot be reprogrammed until the next system reset assertion

Parameters
* base — WDOG peripheral base address

» mask — The interrupts to enable The parameter can be combination of the
following source if defined.

— kWDOG_InterruptEnable

uint16_t WDOG__GetStatusFlags(WDOG_Type *base)
Gets the WDOG all reset status flags.

This function gets all reset status flags.

uint1l6_t status;
status = WDOG__GetStatusFlags (wdog_ base);
See also:
_wdog_status_flags
* true: a related status flag has been set.

« false: a related status flag is not set.

Parameters
* base — WDOG peripheral base address

Returns
State of the status flag: asserted (true) or not-asserted (false).

void WDOG _ ClearInterruptStatus(WDOG_Type *base, uint16_t mask)
Clears the WDOG flag.

This function clears the WDOG status flag.

This is an example for clearing the interrupt flag.

WDOG__ClearStatusFlags(wdog base, KWDOG__InterruptFlag);

Parameters
* base — WDOG peripheral base address

» mask — The status flags to clear. The parameter could be any combination
of the following values. KWDOG_TimeoutFlag

2.42. WDOG: Watchdog Timer Driver 389

MCUXpresso SDK Documentation, Release 25.09.00

static inline void WDOG__SetTimeoutValue(WDOG_Type *base, uint16_t timeoutCount)
Sets the WDOG timeout value.

This function sets the timeout value. This function writes a value into WCR registers. The
time-out value can be written at any point of time but it is loaded to the counter at the time
when WDOG is enabled or after the service routine has been performed.

Parameters
* base — WDOG peripheral base address
* timeoutCount — WDOG timeout value; count of WDOG clock tick.

static inline void WDOG _ SetInterrput TimeoutValue(WDOG_Type *base, uint16_t timeoutCount)
Sets the WDOG interrupt count timeout value.

This function sets the interrupt count timeout value. This function writes a value into WIC
registers which are wirte-once. This field is write once only. Once the software does a write
access to this field, it will get locked and cannot be reprogrammed until the next system
reset assertion.

Parameters
* base — WDOG peripheral base address
* timeoutCount — WDOG timeout value; count of WDOG clock tick.

static inline void WDOG__DisablePowerDownEnable(WDOG_Type *base)
Disable the WDOG power down enable bit.

This function disable the WDOG power down enable(PDE). This function writes a value into
WDMCR registers which are wirte-once. This field is write once only. Once software sets this
bit it cannot be reset until the next system reset.

Parameters
* base — WDOG peripheral base address

void WDOG_ Refresh(WDOG_Type *base)
Refreshes the WDOG timer.

This function feeds the WDOG. This function should be called before the WDOG timer is in
timeout. Otherwise, a reset is asserted.

Parameters
* base — WDOG peripheral base address

FSL. WDOG DRIVER VERSION
Defines WDOG driver version.

WDOG_REFRESH_KEY

enum _ wdog_ interrupt_ enable
WDOG interrupt configuration structure, default settings all disabled.
This structure contains the settings for all of the WDOG interrupt configurations.
Values:

enumerator kWDOG__InterruptEnable
WDOG timeout generates an interrupt before reset

enum _wdog_status_ flags
WDOG status flags.

This structure contains the WDOG status flags for use in the WDOG functions.

Values:

390 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kWDOG_ RunningFlag
Running flag, set when WDOG is enabled

enumerator kWDOG_ PowerOnResetFlag
Power On flag, set when reset is the result of a powerOnReset

enumerator kWDOG_ TimeoutResetFlag
Timeout flag, set when reset is the result of a timeout

enumerator kWDOG_ SoftwareResetFlag
Software flag, set when reset is the result of a software

enumerator kWDOG_ InterruptFlag
interrupt flag,whether interrupt has occurred or not

typedef struct _wdog_work_mode wdog_ work_mode_ t
Defines WDOG work mode.

typedef struct _wdog_config wdog_ config_t
Describes WDOG configuration structure.

struct _ wdog_ work_mode
#include <fsl_wdog.h> Defines WDOG work mode.

Public Members
bool enableWait
If set to true, WDOG continues in wait mode

bool enableStop
If set to true, WDOG continues in stop mode

bool enableDebug
If set to true, WDOG continues in debug mode

struct _wdog_ config
#include <fsl_wdog.h> Describes WDOG configuration structure.

Public Members
bool enableWdog
Enables or disables WDOG

wdog work_mode_t workMode
Configures WDOG work mode in debug stop and wait mode

bool enableInterrupt
Enables or disables WDOG interrupt

uint16_t timeoutValue
Timeout value

uint16_t interruptTimeValue
Interrupt count timeout value

bool softwareResetExtension
software reset extension

bool enablePowerDown
power down enable bit

2.42. WDOG: Watchdog Timer Driver

391

MCUXpresso SDK Documentation, Release 25.09.00

bool enableTimeOutAssert
Enable WDOG_B timeout assertion.

392 Chapter 2. MIMX8MQ6

Chapter 3

Middleware

3.1 Motor Control

3.1.1 FreeMASTER

Communication Driver User Guide

Introduction

What is FreeMASTER? FreeMASTER is a PC-based application developed by NXP for NXP cus-
tomers. It is a versatile tool usable as a real-time monitor, visualization tool, and a graphical
control panel of embedded applications based on the NXP processing units.

This document describes the embedded-side software driver which implements an interface be-
tween the application and the host PC. The interface covers the following communication:

 Serial UART communication either over plain RS232 interface or more typically over a
USB-to-Serial either external or built in a debugger probe.

» USB direct connection to target microcontroller
* CAN bus

TCP/IP network wired or WiFi

» Segger J-Link RTT

JTAG debug port communication

* ...and all of the above also using a Zephyr generic drivers.

The driver also supports so-called “packet-driven BDM” interface which enables a protocol-based
communication over a debugging port. The BDM stands for Background Debugging Module
and its physical implementation is different on each platform. Some platforms leverage a semi-
standard JTAG interface, other platforms provide a custom implementation called BDM. Regard-
less of the name, this debugging interface enables non-intrusive access to the memory space
while the target CPU is running. For basic memory read and write operations, there is no com-
munication driver required on the target when communicating with the host PC. Use this driver
to get more advanced FreeMASTER protocol features over the BDM interface. The driver must be
configured for the packet-driven BDM mode, in which the host PC uses the debugging interface
to write serial command frames directly to the target memory buffer. The same method is then
used to read response frames from that memory buffer.

393

https://www.nxp.com/freemaster

MCUXpresso SDK Documentation, Release 25.09.00

Similar to “packet-driven BDM”, the FreeMASTER also supports a communication over
[J-Link RTT]((https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-
transfer/) interface defined by SEGGER Microcontroller GmbH for ARM CortexM-based micro-
controllers. This method also uses JTAG physical interface and enables high-speed real time
communication to run over the same channel as used for application debugging.

Driver version 3 This document describes version 3 of the FreeMASTER Communication
Driver. This version features the implementation of the new Serial Protocol, which significantly
extends the features and security of its predecessor. The new protocol internal number is v4 and
its specification is available in the documentation accompanying the driver code.

Driver V3 is deployed to modern 32-bit MCU platforms first, so the portfolio of supported plat-
forms is smaller than for the previous V2 versions. It is recommended to keep using the V2 driver
for legacy platforms, such as S08, S12, ColdFire, or Power Architecture. Reach out to FreeMAS-
TER community or to the local NXP representative with requests for more information or to port
the V3 driver to legacy MCU devices.

Thanks to a layered approach, the new driver simplifies the porting of the driver to new UART,
CAN or networking communication interfaces significantly. Users are encouraged to port the
driver to more NXP MCU platforms and contribute the code back to NXP for integration into
future releases. Existing code and low-level driver layers may be used as an example when
porting to new targets.

Note: Using the FreeMASTER tool and FreeMASTER Communication Driver is only allowed in
systems based on NXP microcontroller or microprocessor unit. Use with non-NXP MCU platforms
is not permitted by the license terms.

Target platforms The driver implementation uses the following abstraction mechanisms
which simplify driver porting and supporting new communication modules:

* General CPU Platform (see source code in the src/platforms directory). The code in
this layer is only specific to native data type sizes and CPU architectures (for example;
alignment-aware memory copy routines). This driver version brings two generic imple-
mentations of 32-bit platforms supporting both little-endian and big-endian architectures.
There are also implementations customized for the 56F800E family of digital signal con-
trollers and S12Z MCUs. Zephyr is treated as a specific CPU platform as it brings unified
user configuration (Kconfig) and generic hardware device drivers. With Zephyr, the trans-
port layer and low-level communication layers described below are configured automati-
cally using Kconfig and Device Tree technologies.

» Transport Communication Layer - The Serial, CAN, Networking, PD-BDM, and other meth-
ods of transport logic are implemented as a driver layer called FMSTR_TRANSPORT with a
uniform API. A support of the Network transport also extends single-client modes of oper-
ation which are native for Serial, USB and CAN by a concept of multiple client sessions.

* Low-level Communication Driver - Each type of transport further defines a low-level
API used to access the physical communication module. For example, the Serial trans-
port defines a character-oriented API implemented by different serial communication mod-
ules like UART, LPUART, USART, and also USB-CDC. Similarly, the CAN transport defines a
message-oriented API implemented by the FlexCAN or MCAN modules. Moreover, there
are multiple different implementations for the same kind of communication peripherals.
The difference between the implementation is in the way the low-level hardware regis-
ters are accessed. The mcuxsdk folder contains implementations which use MCUXpresso
SDK drivers. These drivers should be used in applications based on the NXP MCUXpresso
SDK. The “ampsdk” drivers target automotive-specific MCUs and their respective SDKs.
The “dreg” implementations use a plain C-language access to hardware register addresses
which makes it a universal and the most portable solution. In this case, users are encour-
aged to add more drivers for other communication modules or other respective SDKs and
contribute the code back to NXP for integration.

394 Chapter 3. Middleware

https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster
https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster

MCUXpresso SDK Documentation, Release 25.09.00

The low-level drivers defined for the Networking transport enable datagram-oriented UDP
and stream TCP communication. This implementation is demonstrated using the IwIP soft-
ware stack but shall be portable to other TCP/IP stacks. It may sound surprisingly, but also
the Segger J-Link RTT communication driver is linked to the Networking transport (RTT is
stream oriented communication handled similarly to TCP).

Replacing existing drivers For all supported platforms, the driver described in this document
replaces the V2 implementation and also older driver implementations that were available sep-
arately for individual platforms (PC Master SCI drivers).

Clocks, pins, and peripheral initialization The FreeMASTER communication driver is only
responsible for runtime processing of the communication and must be integrated with an user
application code to function properly. The user application code is responsible for general initial-
ization of clock sources, pin multiplexers, and peripheral registers related to the communication
speed. Such initialization should be done before calling the FMSTR_ Init function.

It is recommended to develop the user application using one of the Software Development Kits
(SDKs) available from third parties or directly from NXP, such as MCUXpresso SDK, MCUXpresso
IDE, and related tools. This approach simplifies the general configuration process significantly.

MCUXpresso SDK The MCUXpresso SDK is a software package provided by NXP which contains
the device initialization code, linker files, and software drivers with example applications for the
NXP family of MCUs. The MCUXpresso Config Tools may be used to generate the clock-setup and
pin-multiplexer setup code suitable for the selected processor.

The MCUXpresso SDK also contains this FreeMASTER communication driver as a “middle-
ware” component which may be downloaded along with the example applications from https:
//mcuxpresso.nxp.com/en/welcome.

MCUXpresso SDK on GitHub The FreeMASTER communication driver is also released as one
of the middleware components of the MCUXpresso SDK on the GitHub. This release enables
direct integration of the FreeMASTER source code Git repository into a target applications in-
cluding Zephyr applications.

Related links:
* The official FreeMASTER middleware repository.

* Online version of this document

FreeMASTER in Zephyr The FreeMASTER middleware repository can be used with MCUX-
presso SDK as well as a Zephyr module. Zephyr-specific samples which include examples of
Kconfig and Device Tree configurations for Serial, USB and Network communications are avail-
able in separate repository. West manifest in this sample repository fetches the full Zephyr pack-
age including the FreeMASTER middleware repository used as a Zephyr module.

Example applications

MCUX SDK Example applications There are several example applications available for each
supported MCU platform.

» fmstr_uart demonstrates a plain serial transmission, typically connecting to a computer’s
physical or virtual COM port. The typical transmission speed is 115200 bps.

3.1. Motor Control 395

https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/user_guide/user_guide.html#multi-session-support

MCUXpresso SDK Documentation, Release 25.09.00

* fmstr_can demonstrates CAN bus communication. This requires a suitable CAN interface
connected to the computer and interconnected with the target MCU using a properly ter-
minated CAN bus. The typical transmission speed is 500 kbps. A FreeMASTER-over-CAN
communication plug-in must be used.

* fmstr_usb_cdc uses an on-chip USB controller to implement a CDC communication class.
It is connected directly to a computer’s USB port and creates a virtual COM port device. The
typical transmission speed is above 1 Mbps.

* fmstr_net demonstrates the Network communication over UDP or TCP protocol. Existing
examples use IwIP stack to implement the communication, but in general, it shall be possi-
ble to use any other TCP/IP stack to achieve the same functionality.

» fmstr_wifi is the fmstr_net application modified to use a WiFi network interface instead of
a wired Ethernet connection.

* fmstr_rtt demonstrates the communication over SEGGER J-Link RTT interface. Both fm-
str_net and fmstr_rtt examples require the FreeMASTER TCP/UDP communication plug-in
to be used on the PC host side.

» fmstr_eonce uses the real-time data unit on the JTAG EOnCE module of the 56F800E family
to implement pseudo-serial communication over the JTAG port. The typical transmission
speed is around 10 kbps. This communication requires FreeMASTER JTAG/EOnCE commu-
nication plug-in.

* fmstr_pdbdm uses JTAG or BDM debugging interface to access the target RAM directly
while the CPU is running. Note that such approach can be used with any MCU applica-
tion, even without any special driver code. The computer reads from and writes into the
RAM directly without CPU intervention. The Packet-Driven BDM (PD-BDM) communication
uses the same memory access to exchange command and response frames. With PD-BDM,
the FreeMASTER tool is able to go beyond basic memory read/write operations and ac-
cesses also advanced features like Recorder, TSA, or Pipes. The typical transmission speed
is around 10 kbps. A PD-BDM communication plug-in must be used in FreeMASTER and
configured properly for the selected debugging interface. Note that this communication
cannot be used while a debugging interface is used by a debugger session.

» fmstr_any is a special example application which demonstrates how the NXP MCUXpresso
Config Tools can be used to configure pins, clocks, peripherals, interrupts, and even the
FreeMASTER “middleware” driver features in a graphical and user friendly way. The user
can switch between the Serial, CAN, and other ways of communication and generate the
required initialization code automatically.

Zephyr sample spplications Zephyr sample applications demonstrate Kconfig and Device
Tree configuration which configure the FreeMASTER middleware module for a selected com-
munication option (Serial, CAN, Network or RTT).

Refer to readme.md files in each sample directory for description of configuration options re-
quired to implement FreeMASTER connectivity.

Description

This section shows how to add the FreeMASTER Communication Driver into application and how
to configure the connection to the FreeMASTER visualization tool.

Features The FreeMASTER driver implements the FreeMASTER protocol V4 and provides the
following features which may be accessed using the FreeMASTER visualization tool:

* Read/write access to any memory location on the target.

* Optional password protection of the read, read/write, and read/write/flash access levels.

396 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Atomic bit manipulation on the target memory (bit-wise write access).

Optimal size-aligned access to memory which is also suitable to access the peripheral reg-
ister space.

Oscilloscope access—real-time access to target variables. The sample rate may be limited
by the communication speed.

Recorder— access to the fast transient recorder running on the board as a part of the
FreeMASTER driver. The sample rate is only limited by the MCU CPU speed. The length
of the data recorded depends on the amount of available memory.

Multiple instances of Oscilloscopes and Recorders without the limitation of maximum num-
ber of variables.

Application commands—high-level message delivery from the PC to the application.

TSA tables—describing the data types, variables, files, or hyperlinks exported by the target
application. The TSA newly supports also non-memory mapped resources like external
EEPROM or SD Card files.

Pipes—enabling the buffered stream-oriented data exchange for a general-purpose
terminal-like communication, diagnostic data streaming, or other data exchange.

The FreeMASTER driver features:

Full FreeMASTER protocol V4 implementation with a new V4 style of CRC used.
Layered approach supporting Serial, CAN, Network, PD-BDM, and other transports.

Layered low-level Serial transport driver architecture enabling to select UART, LPUART,
USART, and other physical implementations of serial interfaces, including USB-CDC.

Layered low-level CAN transport driver architecture enabling to select FlexCAN, msCAN,
MCAN, and other physical implementations of the CAN interface.

Layered low-level Networking transport enabling to select TCP, UDP or J-Link RTT commu-
nication.

TSA support to write-protect memory regions or individual variables and to deny the access
to the unsafe memory.

The pipe callback handlers are invoked whenever new data is available for reading from
the pipe.

Two Serial Single-Wire modes of operation are enabled. The “external” mode has the RX
and TX shorted on-board. The “true” single-wire mode interconnects internally when the
MCU or UART modules support it.

The following sections briefly describe all FreeMASTER features implemented by the driver. See
the PC-based FreeMASTER User Manual for more details on how to use the features to monitor,
tune, or control an embedded application.

Board Detection The FreeMASTER protocol V4 defines the standard set of configuration values
which the host PC tool reads to identify the target and to access other target resources properly.
The configuration includes the following parameters:

Version of the driver and the version of the protocol implemented.

MTU as the Maximum size of the Transmission Unit (for example; communication buffer
size).

Application name, description, and version strings.
Application build date and time as a string.
Target processor byte ordering (little/big endian).

Protection level that requires password authentication.

3.1. Motor Control 397

MCUXpresso SDK Documentation, Release 25.09.00

* Number of the Recorder and Oscilloscope instances.

* RAM Base Address for optimized memory access commands.

Memory Read This basic feature enables the host PC to read any data memory location by
specifying the address and size of the required memory area. The device response frame must
be shorter than the MTU to fit into the outgoing communication buffer. To read a device memory
of any size, the host uses the information retrieved during the Board Detection and splits the
large-block request to multiple partial requests.

The driver uses size-aligned operations to read the target memory (for example; uses proper
read-word instruction when an address is aligned to 4 bytes).

Memory Write Similarly to the Memory Read operation, the Memory Write feature enables to
write to any RAM memory location on the target device. A single write command frame must be
shorter than the MTU to fit into the target communication buffer. Larger requests must be split
into smaller ones.

The driver uses size-aligned operations to write to the target memory (for example; uses proper
write-word instruction when an address is aligned to 4 bytes).

Masked Memory Write Toimplement the write access to a single bit or a group of bits of target
variables, the Masked Memory Write feature is available in the FreeMASTER protocol and it is
supported by the driver using the Read-Modify-Write approach.

Be careful when writing to bit fields of volatile variables that are also modified in an application
interrupt. The interrupt may be serviced in the middle of a read-modify-write operation and it
may cause data corruption.

Oscilloscope The protocol and driver enables any number of variables to be read at once with
a single request from the host. This feature is called Oscilloscope and the FreeMASTER tool uses
it to display a real-time graph of variable values.

The driver can be configured to support any number of Oscilloscope instances and enable simul-
taneously running graphs to be displayed on the host computer screen.

Recorder The protocol enables the hostto select target variables whose values are then period-
ically recorded into a dedicated on-board memory buffer. After such data sampling stops (either
on a host request or by evaluating a threshold-crossing condition), the data buffer is downloaded
to the host and displayed as a graph. The data sampling rate is not limited by the speed of the
communication line, so it enables displaying the variable transitions in a very high resolution.

The driver can be configured to support multiple Recorder instances and enable multiple
recorder graphs to be displayed on the host screen. Having multiple recorders also enables set-
ting the recording point differently for each instance. For example; one instance may be record-
ing data in a general timer interrupt while another instance may record at a specific control
algorithm time in the PWM interrupt.

TSA With the TSA feature, data types and variables can be described directly in the application
source code. Such information is later provided to the FreeMASTER tool which may use it instead
of reading symbol data from the application ELF executable file.

The information is encoded as so-called TSA tables which become direct part of the application
code. The TSA tables contain descriptors of variables that shall be visible to the host tool. The
descriptors can describe the memory areas by specifying the address and size of the memory

398 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

block or more conveniently using the C variable names directly. Different set of TSA descriptors
can be used to encode information about the structure types, unions, enumerations, or arrays.

The driver also supports special types of TSA table entries to describe user resources like external
EEPROM and SD Card files, memory-mapped files, virtual directories, web URL hyperlinks, and
constant enumerations.

TSA Safety When the TSA is enabled in the application, the TSA Safety can be enabled and
validate the memory accesses directly by the embedded-side driver. When the TSA Safety is
turned on, any memory request received from the host is validated and accepted only if it belongs
to a TSA-described object. The TSA entries can be declared as Read-Write or Read-Only so that
the driver can actively deny the write access to the Read-Only objects.

Application commands The Application Commands are high-level messages that can be de-
livered from the PC Host to the embedded application for further processing. The embedded
application can either poll the status, or be called back when a new Application Command ar-
rives to be processed. After the embedded application acknowledges that the command is han-
dled, the host receives the Result Code and reads the other return data from memory. Both the
Application Commands and the Result Codes are specific to a given application and it is user’s
responsibility to define them. The FreeMASTER protocol and the FreeMASTER driver only imple-
ment the delivery channel and a set of API calls to enable the Application Command processing
in general.

Pipes The Pipes enable buffered and stream-oriented data exchange between the PC Host and
the target application. Any pipe can be written to and read from at both ends (either on the
PC or the MCU). The data transmission is acknowledged using the special FreeMASTER protocol
commands. It is guaranteed that the data bytes are delivered from the writer to the reader in a
proper order and without losses.

Serial single-wire operation The MCU Serial Communication Driver natively supports normal
dual-wire operation. Because the protocol is half-duplex only, the driver can also operate in two
single-wire modes:

» “External” single-wire operation where the Receiver and Transmitter pins are shorted on
the board. This mode is supported by default in the MCU driver because the Receiver and
Transmitter units are enabled or disabled whenever needed. It is also easy to extend this
operation for the RS485 communication.

* “True” single-wire mode which uses only a single pin and the direction switching is made
by the UART module. This mode of operation must be enabled by defining the FM-
STR_SERIAL_SINGLEWIRE configuration option.

Multi-session support With networking interface it is possible for multiple clients to access
the target MCU simultaneously. Reading and writing of target memory is processed atomically
so there is no risk of data corruption. The state-full resources such as Recorders or Oscilloscopes
are locked to a client session upon first use and access is denied to other clients until lock is
released..

Zephyr-specific

3.1. Motor Control 399

MCUXpresso SDK Documentation, Release 25.09.00

Dedicated communication task FreeMASTER communication may run isolated in a dedicated
task. The task automates the FMSTR_Init and FMSTR_Poll calls together with periodic activities
enabling the FreeMASTER UI to fetch information about tasks and CPU utilization. The task can
be started automatically or manually, and it must be assigned a priority to be able to react on
interrupts and other communication events. Refer to Zephyr FreeMASTER sample applications
which all use this communication task.

Zephyr shell and logging over FreeMASTER pipe FreeMASTER implements a shell backend
which may use FreeMASTER pipe as a I/O terminal and logging output. Refer to Zephyr FreeMAS-
TER sample applications which all use this feature.

Automatic TSA tables TSA tables can be declared as “automatic” in Zephyr which make them
automatically registered in the table list. This may be very useful when there are many TSA
tables or when the tables are defined in different (often unrelated) libraries linked together. In
this case user does not need to build a list of all tables manually.

Driver files The driver source files can be found in a top-level src folder, further divided into
the sub-folders:

* src/platforms platform-specific folder—one folder exists for each supported processor
platform (for example; 32-bit Little Endian platform). Each such folder contains a platform
header file with data types and a code which implements the potentially platform-specific
operations, such as aligned memory access.

» src/common folder—contains the common driver source files shared by the driver for all
supported platforms. All the .c files must be added to the project, compiled, and linked
together with the application.

— freemasterh - master driver header file, which declares the common data types,
macros, and prototypes of the FreeMASTER driver API functions.

— freemaster_cfg.h.example - this file can serve as an example of the FreeMASTER driver
configuration file. Save this file into a project source code folder and rename it to
freemaster_cfg.h. The FreeMASTER driver code includes this file to get the project-
specific configuration options and to optimize the compilation of the driver.

— freemaster_defcfg.h - defines the default values for each FreeMASTER configuration
option if the option is not set in the freemaster_cfg.h file.

— freemaster_protocol.h - defines the FreeMASTER protocol constants used internally by
the driver.

— freemaster_protocol.c - implements the FreeMASTER protocol decoder and handles the
basic Get Configuration Value, Memory Read, and Memory Write commands.

— freemaster_rec.c - handles the Recorder-specific commands and implements the
Recorder sampling and triggering routines. When the Recorder is disabled by the
FreeMASTER driver configuration file, this file only compiles to empty API functions.

— freemaster_scope.c - handles the Oscilloscope-specific commands. If the Oscilloscope is
disabled by the FreeMASTER driver configuration file, this file compiles as void.

— freemaster_pipes.c - implements the Pipes functionality when the Pipes feature is en-
abled.

— freemaster_appcmd.c - handles the communication commands used to deliver and exe-
cute the Application Commands within the context of the embedded application. When
the Application Commands are disabled by the FreeMASTER driver configuration file,
this file only compiles to empty API functions.

400 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

— freemaster_tsa.c - handles the commands specific to the TSA feature. This feature en-
ables the FreeMASTER host tool to obtain the TSA memory descriptors declared in the
embedded application. If the TSA is disabled by the FreeMASTER driver configuration
file, this file compiles as void.

— freemaster_tsa.h - contains the declaration of the macros used to define the TSA mem-
ory descriptors. This file is indirectly included into the user application code (via
freemaster.h).

— freemaster_sha.c - implements the SHA-1 hash code used in the password authentica-
tion algorithm.

— freemaster_private.h - contains the declarations of functions and data types used in-
ternally in the driver. It also contains the C pre-processor statements to perform the
compile-time verification of the user configuration provided in the freemaster_cfg.h
file.

— freemaster_serial.c - implements the serial protocol logic including the CRC, FIFO queu-
ing, and other communication-related operations. This code calls the functions of the
low-level communication driver indirectly via a character-oriented API exported by
the specific low-level driver.

— freemaster_serial.h - defines the low-level character-oriented Serial APIL

— freemaster_can.c - implements the CAN protocol logic including the CAN message
preparation, signalling using the first data byte in the CAN frame, and other
communication-related operations. This code calls the functions of the low-level com-
munication driver indirectly via a message-oriented API exported by the specific low-
level driver.

— freemaster_can.h - defines the low-level message-oriented CAN APIL.

— freemaster_net.c - implements the Network protocol transport logic including multiple
session management code.

— freemaster_net.h - definitions related to the Network transport.

— freemaster_pdbdm.c - implements the packet-driven BDM communication buffer and
other communication-related operations.

— freemaster_utils.c - aligned memory copy routines, circular buffer management and
other utility functions

— freemaster_utils.h - definitions related to utility code.

* src/drivers/[sdk]/serial - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

— freemaster_serial XXX.c and .h - implement low-level access to the communication pe-
ripheral registers. Different files exist for the UART, LPUART, USART, and other kinds
of Serial communication modules.

* src/drivers/[sdk]/can - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

— freemaster_XXX.c and .h - implement low-level access to the communication peripheral
registers. Different files exist for the FlexCAN, msCAN, MCAN, and other kinds of CAN
communication modules.

* src/drivers/[sdk]/network - contains low-level code adapting the FreeMASTER Network
transport to an underlying TCP/IP or RTT stack.

— freemaster_net_lwip_tcp.c and _udp.c - default networking implementation of TCP and
UDP transports using IwIP stack.

— freemaster_net_segger._rtt.c - implementation of network transport using Segger J-Link
RTT interface

3.1. Motor Control 401

MCUXpresso SDK Documentation, Release 25.09.00

Driver configuration The driver is configured using a single header file (freemaster._cfg.h).
Create this file and save it together with other project source files before compiling the driver
code. All FreeMASTER driver source files include the freemaster_cfg.h file and use the macros
defined here for the conditional and parameterized compilation. The C compiler must locate the
configuration file when compiling the driver files. Typically, it can be achieved by putting this
file into a folder where the other project-specific included files are stored.

As a starting point to create the configuration file, get the freemaster_cfg.h.example file, rename
it to freemaster_cfg.h, and save it into the project area.

Note: It is NOT recommended to leave the freemaster_cfg.h file in the FreeMASTER driver source
code folder. The configuration file must be placed at a project-specific location, so that it does not
affect the other applications that use the same driver.

Configurable items This section describes the configuration options which can be defined in
freemaster_cfg.h.

Interrupt modes

#define FMSTR. LONG_INTR [0[1]
#define FMSTR,_SHORT _INTR. [0|1]
#define FMSTR._ POLL_DRIVEN [0|1]

Value Type boolean (0 or 1)

Description Exactly one of the three macros must be defined to non-zero. The others must be
defined to zero or left undefined. The non-zero-defined constant selects the interrupt mode of
the driver. See Driver interrupt modes.

* FMSTR_LONG_INTR — long interrupt mode
* FMSTR_SHORT INTR — short interrupt mode
* FMSTR_POLL_DRIVEN — poll-driven mode

Note: Some options may not be supported by all communication interfaces. For example, the
FMSTR_SHORT_INTR option is not supported by the USB_CDC interface.

Protocol transport
#define FMSTR_ TRANSPORT [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER source
code. Specify one of existing instances to make use of the protocol transport.

Description Use one of the pre-defined constants, as implemented by the FreeMASTER code.
The current driver supports the following transports:

* FMSTR_SERIAL - serial communication protocol

* FMSTR_CAN - using CAN communication

* FMSTR_PDBDM - using packet-driven BDM communication

* FMSTR_NET - network communication using TCP or UDP protocol

402 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Serial transport This section describes configuration parameters used when serial transport
is used:

#define FMSTR_TRANSPORT FMSTR__SERIAL

FMSTR_SERIAL_DRV Select what low-level driver interface will be used when implementing
the Serial communication.

#define FMSTR, SERIAL_ DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing serial driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/serial implementation):

* FMSTR_SERIAL_MCUX_UART - UART driver
FMSTR_SERIAL_MCUX_LPUART - LPUART driver
FMSTR_SERIAL_MCUX_USART - USART driver
FMSTR_SERIAL_MCUX_MINIUSART - miniUSART driver
FMSTR_SERIAL_MCUX_QSCI - DSC QSCI driver

FMSTR_SERIAL_MCUX USB - USB/CDC class driver (also see code in the /sup-
port/mcuxsdk_usb folder)

* FMSTR_SERIAL_56F800E_EONCE - DSC JTAG EOnCE driver

Other SDKs or BSPs may define custom low-level driver interface structure which may be used
as FMSTR_SERIAL_DRV. For example:

* FMSTR_SERIAL_DREG_UART - demonstrates the low-level interface implemented without
the MCUXpresso SDK and using direct access to peripheral registers.

FMSTR_SERIAL_BASE
#define FMSTR_SERIAL BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the UART, LPUART, USART, or other serial peripheral
module to be used for the communication. This value is not defined by default. User application
should call FMSTR,_SetSerialBaseAddress() to select the peripheral module.

FMSTR_COMM_BUFFER _SIZE
#define FMSTR__ COMM_BUFFER_ SIZE [number]

Value Type O or a value in range 32...255

Description Specify the size of the communication buffer to be allocated by the driver.
Default value, which suits all driver features, is used when this option is defined as 0.

3.1. Motor Control 403

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_COMM_RQUEUE_SIZE
#define FMSTR,_ COMM__ RQUEUE_ SIZE [number]

Value Type Value in range 0...255

Description Specify the size of the FIFO receiver queue used to quickly receive and store char-
acters in the FMSTR_SHORT_INTR interrupt mode.
The default value is 32 B.

FMSTR_SERIAL_SINGLEWIRE
#define FMSTR,_ SERIAL_SINGLEWIRE [0]1]

Value Type BooleanOor 1.

Description Set to non-zero to enable the “True” single-wire mode which uses a single MCU
pin to communicate. The low-level driver enables the pin direction switching when the MCU
peripheral supports it.

CAN Bus transport This section describes configuration parameters used when CAN transport
is used:

#define FMSTR_ TRANSPORT FMSTR,__CAN

FMSTR_CAN_DRV Select what low-level driver interface will be used when implementing the
CAN communication.

#define FMSTR_CAN_ DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing CAN driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/can implementation):

* FMSTR_CAN_MCUX_FLEXCAN - FlexCAN driver
FMSTR_CAN_MCUX_MCAN - MCAN driver
FMSTR_CAN_MCUX_MSCAN - msCAN driver
FMSTR_CAN_MCUX DSCFLEXCAN - DSC FlexCAN driver
FMSTR_CAN_MCUX_DSCMSCAN - DSC msCAN driver

Other SDKs or BSPs may define the custom low-level driver interface structure which may be
used as FMSTR_CAN_DRV.

FMSTR_CAN_BASE

404 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

#define FMSTR_CAN_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the FlexCAN, msCAN, or other CAN peripheral module
to be used for the communication. This value is not defined by default. User application should
call FMSTR,_SetCanBaseAddress() to select the peripheral module.

FMSTR_CAN_CMDID
#define FMSTR_CAN_CMDID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for FreeMASTER commands (direction from PC Host
tool to target application). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Default value is 0x7AA.

FMSTR_CAN_RSPID
#define FMSTR,_ CAN__RSPID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for responding messages (direction from target ap-
plication to PC Host tool). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bhit. Note that both CMDID and RSPID values may be the same. Default value
is 0X7AA.

FMSTR_FLEXCAN_TXMB
#define FMSTR_FLEXCAN TXMB [number]

Value Type Number in range of 0..N where N is number of CAN message-buffers supported by
HW module.

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN message
buffer for CAN frame transmission. Default value is 0.

FMSTR_FLEXCAN_RXMB
#define FMSTR_FLEXCAN RXMB [number]

Value Type Number in range of 0..N where N is number of CAN message-buffers supported by
HW module.

3.1. Motor Control 405

MCUXpresso SDK Documentation, Release 25.09.00

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN mes-
sage buffer for CAN frame reception. Note that the FreeMASTER driver may also operate with a
common message buffer used by both TX and RX directions. Default value is 1.

Network transport This section describes configuration parameters used when Network
transport is used:

#define FMSTR_TRANSPORT FMSTR_NET

FMSTR_NET_DRV Select network interface implementation.

#define FMSTR,_ NET_DRV [identifier]

Value Type Identifiers are structure instance names defined in FreeMASTER drivers code.
Specify one of existing NET driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/network implementation):

« FMSTR_NET_LWIP_TCP - TCP communication using IwIP stack
* FMSTR_NET_LWIP_UDP - UDP communication using IwIP stack
* FMSTR_NET _SEGGER_RTT - Communication using SEGGER J-Link RTT interface

Other SDKs or BSPs may define the custom networking interface which may be used as FM-
STR_CAN_DRV.

Add another row below:

FMSTR_NET_PORT
#define FMSTR_NET PORT [number]

Value Type TCP or UDP port number (short integer)

Description Specifies the server port number used by TCP or UDP protocols.

FMSTR_NET BLOCKING_TIMEOUT
#define FMSTR,_ NET_BLOCKING__TIMEOUT [number]

Value Type Timeout as number of milliseconds

Description This value specifies a timeout in milliseconds for which the network socket op-
erations may block the execution inside FMSTR Poll. This may be set high (e.g. 250) when a
dedicated RTOS task is used to handle FreeMASTER protocol polling. Set to a lower value when
the polling task is also responsible for other operations. Set to 0 to attempt to use non-blocking
socket operations.

406 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_NET AUTODISCOVERY
#define FMSTR_NET AUTODISCOVERY [0]1]

Value Type BooleanOor 1.

Description This option enables the FreeMASTER driver to use a separate UDP socket to broad-
cast auto-discovery messages to network. This helps the FreeMASTER tool to discover the target
device address, port and protocol options.

Debugging options

FMSTR_DISABLE
#define FMSTR._DISABLE [0[1]

Value Type boolean (0 or 1)

Description Define as non-zero to disable all FreeMASTER features, exclude the driver code
from build, and compile all its API functions empty. This may be useful to remove FreeMASTER
without modifying any application source code. Default value is 0 (false).

FMSTR_DEBUG_TX
#define FMSTR. DEBUG_ TX [0[1]

Value Type Boolean O or 1.

Description Define as non-zero to enable the driver to periodically transmit test frames out on
the selected communication interface (SCI or CAN). With the debug transmission enabled, it is
simpler to detect problems in the baudrate or other communication configuration settings.

The test frames are transmitted until the first valid command frame is received from the PC Host
tool. The test frame is a valid error status frame, as defined by the protocol format. On the serial
line, the test frame consists of three printable characters (+©W) which are easy to capture using
the serial terminal tools.

This feature requires the FMSTR_Poll() function to be called periodically. Default value is 0 (false).

FMSTR_APPLICATION_STR
#define FMSTR _APPLICATION STR

Value Type String.

Description Name of the application visible in FreeMASTER host application.

Memory access

3.1. Motor Control 407

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_USE_READMEM
#define FMSTR_USE READMEM [0|1]

Value Type BooleanOor 1.

Description Define as non-zero to implement the Memory Read command and enable
FreeMASTER to have read access to memory and variables. The access can be further restricted
by using a TSA feature.

Default value is 1 (true).

FMSTR_USE_WRITEMEM
#define FMSTR.__USE_ WRITEMEM [0|1]

Value Type Boolean O or 1.

Description Define as non-zero to implement the Memory Write command.
The default value is 1 (true).

Oscilloscope options

FMSTR_USE_SCOPE
#define FMSTR _USE_SCOPE [number]

Value Type Integer number.

Description Number of Oscilloscope instances to be supported. Set to 0 to disable the Oscillo-
scope feature.
Default value is 0.

FMSTR_MAX_SCOPE_VARS
#define FMSTR, MAX_ SCOPE_ VARS [number]

Value Type Integer number larger than 2.

Description Number of variables to be supported by each Oscilloscope instance.
Default value is 8.

Recorder options

FMSTR_USE_RECORDER
#define FMSTR_USE RECORDER [number]

408 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Value Type Integer number.

Description Number of Recorder instances to be supported. Set to 0 to disable the Recorder
feature.
Default value is 0.

FMSTR_REC_BUFF _SIZE
#define FMSTR,_ REC_BUFF_SIZE [number]

Value Type Integer number larger than 2.

Description Defines the size of the memory buffer used by the Recorder instance #0.
Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_TIMEBASE
#define FMSTR_REC TIMEBASE [time specification]

Value Type Number (nanoseconds time).

Description Defines the base sampling rate in nanoseconds (sampling speed) Recorder in-
stance #0.

Use one of the following macros:
* FMSTR_REC_BASE_SECONDS(x)
* FMSTR_REC_BASE_MILLISEC(x)
* FMSTR_REC_BASE MICROSEC(x)
« FMSTR_REC_BASE NANOSEC(x)

Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_FLOAT_TRIG
#define FMSTR_ REC_FLOAT _TRIG [0[1]

Value Type Boolean O or 1.

Description Define as non-zero to implement the floating-point triggering. Be aware that
floating-point triggering may grow the code size by linking the floating-point standard library.

Default value is 0 (false).

Application Commands options

3.1. Motor Control 409

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_USE_APPCMD
#define FMSTR_ USE_APPCMD [0|1]

Value Type BooleanOor 1.

Description Define as non-zero to implement the Application Commands feature.
Default value is 0 (false).

FMSTR_APPCMD_BUFF_SIZE
#define FMSTR_APPCMD_BUFF _SIZE [size]

Value Type Numeric buffer size in range 1..255

Description The size of the Application Command data buffer allocated by the driver. The
buffer stores the (optional) parameters of the Application Command which waits to be processed.

FMSTR_MAX APPCMD CALLS
#define FMSTR, MAX_ APPCMD_ CALLS [number]

Value Type Number in range 0..255

Description The number of different Application Commands that can be assigned a callback
handler function using FMSTR_ RegisterAppCmdCall(). Default value is 0.

TSA options

FMSTR_USE_TSA
#define FMSTR._ USE_ TSA [0]1]

Value Type BooleanOor 1.

Description Enable the FreeMASTER TSA feature to be used. With this option enabled, the TSA
tables defined in the applications are made available to the FreeMASTER host tool.
Default value is 0 (false).

FMSTR_USE_TSA_SAFETY
#define FMSTR__USE_TSA_SAFETY [0[1]

Value Type Boolean O or 1.

410 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Description Enable the memory access validation in the FreeMASTER driver. With this option,
the host tool is not able to access the memory which is not described by at least one TSA descrip-
tor. Also a write access is denied for objects defined as read-only in TSA tables.

Default value is 0 (false).

FMSTR_USE_TSA_INROM
#define FMSTR_ USE_TSA_INROM [0[1]

Value Type BooleanOor 1.

Description Declare all TSA descriptors as const, which enables the linker to put the data into
the flash memory. The actual result depends on linker settings or the linker commands used in
the project.

Default value is 0 (false).

FMSTR_USE_TSA_DYNAMIC
#define FMSTR._USE_TSA_DYNAMIC [0]1]

Value Type Boolean O or 1.

Description Enable runtime-defined TSA entries to be added to the TSA table by the FM-
STR_ SetUpTsaBuff() and FMSTR_ TsaAddVar() functions.
Default value is 0 (false).

Pipes options

FMSTR_USE_PIPES
#define FMSTR_USE_PIPES [0|1]

Value Type Boolean O or 1.

Description Enable the FreeMASTER Pipes feature to be used.
Default value is 0 (false).

FMSTR_MAX_PIPES_COUNT
#define FMSTR, MAX_PIPES COUNT [number]

Value Type Number in range 1..63.

Description The number of simultaneous pipe connections to support.
The default value is 1.

3.1. Motor Control 411

MCUXpresso SDK Documentation, Release 25.09.00

Driver interrupt modes To implement the communication, the FreeMASTER driver handles
the Serial or CAN module’s receive and transmit requests. Use the freemaster_cfg.h configuration
file to select whether the driver processes the communication automatically in the interrupt
service routine handler or if it only polls the status of the module (typically during the application
idle time).

This section describes each of the interrupt mode in more details.

Completely Interrupt-Driven operation Activated using:

#define FMSTR__LONG_INTR 1

In this mode, both the communication and the FreeMASTER protocol decoding is done in the
FMSTR_Seriallsr, FMSTR_Canlsr, or other interrupt service routine. Because the protocol execu-
tion may be a lengthy task (especially with the TSA-Safety enabled) it is recommended to use this
mode only if the interrupt prioritization scheme is possible in the application and the FreeMAS-
TER interrupt is assigned to a lower (the lowest) priority.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_Seriallsr or FM-
STR_CanlIsr functions from that handler.

Mixed Interrupt and Polling Modes Activated using:

#define FMSTR_SHORT_ INTR 1

In this mode, the communication processing time is split between the interrupt routine and the
main application loop or task. The raw communication is handled by the FMSTR_Seriallsr;, FM-
STR_Canlsr, or other interrupt service routine, while the protocol decoding and execution is han-
dled by the FMSTR Poll routine. Call FMSTR _Poll during the idle time in the application main
loop.

The interrupt processing in this mode is relatively fast and deterministic. Upon a serial-receive
event, the received character is only placed into a FIFO-like queue and it is not further processed.
Upon a CAN receive event, the received frame is stored into a receive buffer. When transmitting,
the characters are fetched from the prepared transmit buffer.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR Seriallsr or FM-
STR_Canlsr functions from that handler.

When the serial interface is used as the serial communication interface, ensure that the FM-
STR_Poll function is called at least once per N character time periods. N is the length of the
FreeMASTER FIFO queue (FMSTR_COMM_RQUEUE_SIZE) and the character time is the time
needed to transmit or receive a single byte over the SCI line.

Completely Poll-driven
#define FMSTR,_ POLL_DRIVEN 1

In this mode, both the communication and the FreeMASTER protocol decoding are done in the
FMSTR_Pollroutine. No interrupts are needed and the FMSTR_Seriallsr, FMSTR_Canlsr, and sim-
ilar handlers compile to an empty code.

When using this mode, ensure that the FMSTR_Poll function is called by the application at least
once per the serial “character time” which is the time needed to transmit or receive a single
character.

In the latter two modes (FMSTR_SHORT _INTR and FMSTR_POLI_DRIVEN), the protocol handling
takes place in the FMSTR_Poll routine. An application interrupt can occur in the middle of the

412 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Read Memory or Write Memory commands’ execution and corrupt the variable being accessed
by the FreeMASTER driver. In these two modes, some issues or glitches may occur when using
FreeMASTER to visualize or monitor volatile variables modified in interrupt servicing code.

The same issue may appear even in the full interrupt mode (FMSTR_LONG_INTR), if volatile vari-
ables are modified in the interrupt code with a priority higher than the priority of the commu-
nication interrupt.

Data types Simple portability was one of the main requirements when writing the FreeMAS-
TER driver. This is why the driver code uses the privately-declared data types and the vast ma-
jority of the platform-dependent code is separated in the platform-dependent source files. The
data types used in the driver API are all defined in the platform-specific header file.

To prevent name conflicts with the symbols used in the application, all data types, macros, and
functions have the FMSTR_ prefix. The only global variables used in the driver are the transport
and low-level API structures exported from the driver-implementation layer to upper layers.
Other than that, all private variables are declared as static and named using the fmstr_ prefix.

Communication interface initialization The FreeMASTER driver does not perform neither
the initialization nor the configuration of the peripheral module that it uses to communicate. It
is the application startup code responsibility to configure the communication module before the
FreeMASTER driver is initialized by the FMSTR_Init call.

When the Serial communication module is used as the FreeMASTER communication interface,
configure the UART receive and transmit pins, the serial communication baud rate, parity (no-
parity), the character length (eight bits), and the number of stop bits (one) before initializing the
FreeMASTER driver. For either the long or the short interrupt modes of the driver (see Driver
interrupt modes), configure the interrupt controller and register an application-specific inter-
rupt handler for all interrupt sources related to the selected serial peripheral module. Call the
FMSTR _Seriallsr function from the application handler.

When a CAN module is used as the FreeMASTER communication interface, configure the CAN re-
ceive and transmit pins and the CAN module hit rate before initializing the FreeMASTER driver.
For either the long or the short interrupt modes of the driver (see Driver interrupt modes), con-
figure the interrupt controller and register an application-specific interrupt handler for all in-
terrupt sources related to the selected CAN peripheral module. Call the FMSTR_Canlsr function
from the application handler.

Note: Itis not necessary to enable or unmask the serial nor the CAN interrupts before initializing
the FreeMASTER driver. The driver enables or disables the interrupts and communication lines,
as required during runtime.

FreeMASTER Recorder calls When using the FreeMASTER Recorder in the application (FM-
STR_USE_RECORDER > 0), call the FMSTR_RecorderCreate function early after FMSTR_Init to set
up each recorder instance to be used in the application. Then call the FMSTR_Recorder func-
tion periodically in the code where the data recording should occur. A typical place to call the
Recorder routine is at the timer or PWM interrupts, but it can be anywhere else. The exam-
ple applications provided together with the driver code call the FMSTR_Recorder in the main
application loop.

In applications where FMSTR_Recorder is called periodically with a constant period, specify the
period in the Recorder configuration structure before calling FMSTR_RecorderCreate. This set-
ting enables the PC Host FreeMASTER tool to display the X-axis of the Recorder graph properly
scaled for the time domain.

Driver usage Start using or evaluating FreeMASTER by opening some of the example applica-
tions available in the driver setup package.

3.1. Motor Control 413

MCUXpresso SDK Documentation, Release 25.09.00

Follow these steps to enable the basic FreeMASTER connectivity in the application:

» Make sure that all *c files of the FreeMASTER driver from the
src/commony/platforms/[your_platform] folder are a part of the project. See Driver files
for more details.

* Configure the FreeMASTER driver by creating or editing the freemaster_cfg.h file and by
saving it into the application project directory. See Driver configuration for more details.

* Include the freemasterh file into any application source file that makes the FreeMASTER
API calls.

* Initialize the Serial or CAN modules. Set the baud rate, parity, and other parameters of
the communication. Do not enable the communication interrupts in the interrupt mask
registers.

* For the FMSTR_LONG_INTR and FMSTR _SHORT_INTR modes, install the application-
specific interrupt routine and call the FMSTR_Seriallsr or FMSTR_Canlsr functions from
this handler.

* Call the FMSTR_Init function early on in the application initialization code.

e Call the FMSTR_RecorderCreate functions for each Recorder instance to enable the
Recorder feature.

* In the main application loop, call the FMSTR_Poll API function periodically when the appli-
cation is idle.

* For the FMSTR_SHORT_INTR and FMSTR_LONG_INTR modes, enable the interrupts globally
so that the interrupts can be handled by the CPU.

Communication troubleshooting The most common problem that causes communication is-
sues is a wrong baud rate setting or a wrong pin multiplexer setting of the target MCU. When
a communication between the PC Host running FreeMASTER and the target MCU cannot be es-
tablished, try enabling the FMSTR_DEBUG_TX option in the freemaster_cfg.h file and call the FM-
STR_Poll function periodically in the main application task loop.

With this feature enabled, the FreeMASTER driver periodically transmits a test frame through
the Serial or CAN lines. Use a logic analyzer or an oscilloscope to monitor the signals at the
communication pins of the CPU device to examine whether the hit rate and signal polarity are
configured properly.

Driver API

This section describes the driver Application Programmers’ Interface (API) needed to initialize
and use the FreeMASTER serial communication driver.

Control API There are three key functions to initialize and use the driver.

FMSTR Init
Prototype
FMSTR, BOOL FMSTR, Init(void);

* Declaration: freemasterh

* Implementation: freemaster_protocol.c

414 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Description This function initializes the internal variables of the FreeMASTER driver and en-
ables the communication interface. This function does not change the configuration of the se-
lected communication module. The hardware module must be initialized before the FMSTR_Init
function is called.

A call to this function must occur before calling any other FreeMASTER driver API functions.

FMSTR_Poll

Prototype
void FMSTR,_ Poll(void);

 Declaration: freemaster.h

» Implementation: freemaster_protocol.c

Description In the poll-driven or short interrupt modes, this function handles the protocol
decoding and execution (see Driver interrupt modes). In the poll-driven mode, this function also
handles the communication interface with the PC. Typically, the FMSTR_Poll function is called
during the “idle” time in the main application task loop.

To prevent the receive data overflow (loss) on a serial interface, make sure that the FMSTR_Poll
function is called at least once per the time calculated as:

N * Tchar
where:

* N is equal to the length of the receive FIFO queue (configured by the FM-
STR_COMM_RQUEUE_SIZE macro). N is 1 for the poll-driven mode.

* Tchar is the character time, which is the time needed to transmit or receive a single byte
over the SCI line.

Note: In the long interrupt mode, this function typically compiles as an empty function and can
still be called. It is worthwhile to call this function regardless of the interrupt mode used in
the application. This approach enables a convenient switching between the different interrupt
modes only by changing the configuration macros in the freemaster_cfg.h file.

FMSTR_Seriallsr /| FMSTR_Canlsr

Prototype

void FMSTR,_ Seriallsr(void);
void FMSTR,__ Canlsr(void);

* Declaration: freemaster.h

* Implementation: hw-specific low-level driver C file

Description This function contains the interrupt-processing code of the FreeMASTER driver.
In long or short interrupt modes (see Driver interrupt modes), this function must be called from
the application interrupt service routine registered for the communication interrupt vector. On
platforms where the communication module uses multiple interrupt vectors, the application
should register a handler for all vectors and call this function at each interrupt.

Note: In a poll-driven mode, this function is compiled as an empty function and does not have
to be used.

3.1. Motor Control 415

MCUXpresso SDK Documentation, Release 25.09.00

Recorder API

FMSTR_RecorderCreate

Prototype
FMSTR,_BOOL FMSTR_ RecorderCreate(FMSTR_INDEX recIndex, FMSTR_REC_BUFF* buffCfg);

* Declaration: freemaster.h

* Implementation: freemaster._rec.c

Description This function registers a recorder instance and enables it to be used by the PC
Host tool. Call this function for all recorder instances from 0 to the maximum number de-
fined by the FMSTR_USE_RECORDER configuration option (minus one). An exception to this
requirement is the recorder of instance 0 which may be automatically configured by FM-
STR_Init when the freemaster_cfg.h configuration file defines the FMSTR_REC BUFF _SIZE and
FMSTR_REC_TIMEBASE options.

For more information, see Configurable items.

FMSTR_Recorder

Prototype
void FMSTR,_ Recorder(FMSTR_INDEX recIndex);

* Declaration: freemasterh

 Implementation: freemaster_rec.c

Description This function takes a sample of the variables being recorded using the FreeMAS-
TER Recorder instance recIndex. If the selected Recorder is not active when the FMSTR_Recorder
function is being called, the function returns immediately. When the Recorder is active, the val-
ues of the variables being recorded are copied into the recorder buffer and the trigger conditions
are evaluated.

If a trigger condition is satisfied, the Recorder enters the post-trigger mode, where it counts down
the follow-up samples (number of FMSTR_Recorder function calls) and de-activates the Recorder
when the required post-trigger samples are finished.

The FMSTR_Recorder function is typically called in the timer or PWM interrupt service routines.
This function can also be called in the application main loop (for testing purposes).

FMSTR_RecorderTrigger
Prototype
void FMSTR,_RecorderTrigger(FMSTR,_INDEX recIndex);

* Declaration: freemaster.h

* Implementation: freemaster._rec.c

416 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Description This function forces the Recorder trigger condition to happen, which causes the
Recorder to be automatically deactivated after the post-trigger samples are sampled. Use this
function in the application code for programmatic control over the Recorder triggering. This
can be useful when a more complex triggering conditions need to be used.

Fast Recorder API The Fast Recorder feature is not available in the FreeMASTER driver version
3. This feature was heavily dependent on the target platform and it was only available for the
56F8xxxx DSCs.

TSA Tables When the TSA is enabled in the FreeMASTER driver configuration file (by setting
the FMSTR_USE_TSA macro to a non-zero value), it defines the so-called TSA tables in the appli-
cation. This section describes the macros that must to be used to define the TSA tables.

There can be any number of TSA tables spread across the application source files. There must
be always exactly one TSA Table List defined, which informs the FreeMASTER driver about the
active TSA tables.

When there is at least one TSA table and one TSA Table List defined in the application, the TSA
information automatically appears in the FreeMASTER symbols list. The symbols can then be
used to create FreeMASTER variables for visualization or control.

TSA table definition The TSA table describes the static or global variables together with their
address, size, type, and access-protection information. If the TSA-described variables are of a
structure type, the TSA table may also describe this type and provide an access to the individual
structure members of the variable.

The TSA table definition begins with the FMSTR_TSA_TABLE_BEGIN macro with a table_id iden-
tifying the table. The table_id shall be a valid C-langiage symbol.

FMSTR_TSA TABLE BEGIN(table id)

After this opening macro, the TSA descriptors are placed using these macros:

/* Adding variable descriptors */
FMSTR_TSA RW_ VAR(name, type) /* read/write variable entry */
FMSTR,_TSA_RO_ VAR(name, type) /* read-only variable entry */

/* Description of complex data types */
FMSTR_TSA STRUCT(struct_name) /* structure or union type entry */
FMSTR_TSA_ MEMBER(struct_name, member_name, type) /* structure member entry */

/* Memory blocks */
FMSTR_TSA_RW_ MEM(name, type, address, size) /* read/write memory block */
FMSTR,_ TSA_RO_ MEM (name, type, address, size) /* read-only memory block */

The table is closed using the FMSTR_TSA_TABLE_END macro:

FMSTR._TSA_TABLE_ END()

TSA descriptor parameters The TSA descriptor macros accept these parameters:

* name — variable name. The variable must be defined before the TSA descriptor references
it.

* type — variable or member type. Only one of the pre-defined type constants may be used
(see below).

e struct_name — structure type name. The type must be defined (typedef) before the TSA
descriptor references it.

3.1. Motor Control 417

MCUXpresso SDK Documentation, Release 25.09.00

*» member_name — structure member name.

Note: The structure member descriptors (FMSTR_TSA_MEMBER) must immediately follow the
parent structure descriptor (FMSTR_TSA_STRUCT) in the table.

Note: To write-protect the variables in the FreeMASTER driver (FMSTR_TSA_RO_VAR), enable
the TSA-Safety feature in the configuration file.

TSA variable types The table lists type identifiers which can be used in TSA descriptors:

Constant Description

FMSTR_TSA_UINTn Unsigned integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_SINTn Signed integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_FRACn Fractional number of size n bits (n=16,32,64).

FMSTR_TSA_FRAC_Q(m,n) Signed fractional number in general Q form (m+n+1 total bits)
FMSTR_TSA_FRAC UQ(m,n) Unsigned fractional number in general UQ form (m+n total

bits)
FMSTR_TSA_FLOAT 4-byte standard IEEE floating-point type
FMSTR_TSA_DOUBLE 8-byte standard IEEE floating-point type
FMSTR_TSA_POINTER Generic pointer type defined (platform-specific 16 or 32 bit)
FM- Structure or union type declared with FMSTR_TSA_STRUCT

STR_TSA_USERTYPE(name) record

TSA table list There shall be exactly one TSA Table List in the application. The list contains
one entry for each TSA table defined anywhere in the application.

The TSA Table List begins with the FMSTR_TSA_TABLE_LIST_BEGIN macro and continues with
the TSA table entries for each table.

FMSTR_TSA_ TABLE_LIST BEGIN()

FMSTR_TSA_TABLE(table_id)
FMSTR._ TSA_TABLE(table_id2)
FMSTR_TSA_TABLE(table_id3)

The list is closed with the FMSTR_TSA_TABLE_LIST END macro:

FMSTR,_ TSA_TABLE_LIST END()

TSA Active Content entries FreeMASTER v2.0 and higher supports TSA Active Content, en-
abling the TSA tables to describe the memory-mapped files, virtual directories, and URL hyper-
links. FreeMASTER can access such objects similarly to accessing the files and folders on the
local hard drive.

With this set of TSA entries, the FreeMASTER pages can be embedded directly into the target
MCU flash and accessed by FreeMASTER directly over the communication line. The HTML-coded
pages rendered inside the FreeMASTER window can access the TSA Active Content resources
using a special URL referencing the fmstr: protocol.

This example provides an overview of the supported TSA Active Content entries:

FMSTR,_ TSA_TABLE_BEGIN(files_and_ links)

/* Directory entry applies to all subsequent MEMFILE entries */
FMSTR, TSA_DIRECTORY(”/text_files”) /* entering a new virtual directory */

(continues on next page)

418 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)

/* The readme.txt file will be accessible at the fmstr://text_files/readme.txt URL */
FMSTR_TSA_MEMFILE("readme.txt”, readme__txt, sizeof(readme_ txt)) /* memory-mapped file */

/* Files can also be specified with a full path so the DIRECTORY entry does not apply */
FMSTR_TSA_ MEMFILE(”/index.htm”, index, sizeof(index)) /* memory-mapped file */
FMSTR,_ TSA_MEMFILE(”/prj/demo.pmp”, demo_ pmp, sizeof(demo_ pmp)) /* memory-mapped file */

/* Hyperlinks can point to a local MEMFILE object or to the Internet */
FMSTR,_ TSA_HREF(”Board's Built-in Welcome Page”, ”/index.htm”)
FMSTR,_ TSA_HREF("FreeMASTER Home Page”, "http://www.nxp.com/freemaster”)

/* Project file links simplify opening the projects from any URLs */
FMSTR_TSA_PROJECT(”Demonstration Project (embedded)”, ?/prj/demo.pmp”)
FMSTR_TSA_PROJECT(”Full Project (online)”, "http://mycompany.com/prj/demo.pmp”)

FMSTR._ TSA_TABLE_ END()

TSA API

FMSTR_SetUpTsaBuff

Prototype
FMSTR,_ BOOL FMSTR,_ SetUpTsaBuff(FMSTR__ADDR buffAddr, FMSTR_ SIZE buffSize);

* Declaration: freemasterh

 Implementation: freemaster_tsa.c

Arguments
* buffAddr [in] - address of the memory buffer for the dynamic TSA table

* buffSize [in] - size of the memory buffer which determines the maximum number of TSA
entries to be added in the runtime

Description This function must be used to assign the RAM memory buffer to the TSA subsystem
when FMSTR_USE_TSA_DYNAMIC is enabled. The memory buffer is then used to store the TSA
entries added dynamically to the runtime TSA table using the FMSTR_TsaAddVar function call.
The runtime TSA table is processed by the FreeMASTER PC Host tool along with all static tables
as soon as the communication port is open.

The size of the memory buffer determines the number of TSA entries that can be added dynam-
ically. Depending on the MCU platform, one TSA entry takes either 8 or 16 bytes.

FMSTR_TsaAddVar

Prototype

FMSTR_BOOL FMSTR,_ TsaAddVar(FMSTR_TSATBL_STRPTR tsaName, FMSTR_TSATBL_STRPTR,,
—tsaType,

FMSTR_ TSATBL_VOIDPTR varAddr, FMSTR_ SIZE32 varSize,

FMSTR_ SIZE flags);

* Declaration: freemaster.h

3.1. Motor Control 419

MCUXpresso SDK Documentation, Release 25.09.00

* Implementation: freemaster_tsa.c

Arguments

* tsaName [in] - name of the object

* tsaType [in] - name of the object type

* varAddr [in] - address of the object

* varSize [in] - size of the object

* flags [in] - access flags; a combination of these values:
— FMSTR_TSA_INFO_RO_VAR — read-only memory-mapped object (typically a variable)
— FMSTR_TSA INFO_RW_VAR — read/write memory-mapped object

— FMSTR_TSA INFO_NON_VAR — other entry, describing structure types, structure
members, enumerations, and other types

Description This function can be called only when the dynamic TSA table is enabled by the
FMSTR_USE_TSA_DYNAMIC configuration option and when the FMSTR_SetUpTsaBuff function
call is made to assign the dynamic TSA table memory. This function adds an entry into the dy-
namic TSA table. It can be used to register a read-only or read/write memory object or describe
an item of the user-defined type.

See TSA table definition for more details about the TSA table entries.

Application Commands API

FMSTR_GetAppCmd

Prototype
FMSTR,_ APPCMD__ CODE FMSTR_ GetAppCmd(void);

* Declaration: freemasterh

* Implementation: freemaster_appcmd.c

Description This function can be used to detect if there is an Application Command waiting
to be processed by the application. If no command is pending, this function returns the FM-
STR_APPCMDRESULT NOCMD constant. Otherwise, this function returns the code of the Appli-
cation Command that must be processed. Use the FMSTR_AppCmdAck call to acknowledge the
Application Command after it is processed and to return the appropriate result code to the host.

The FMSTR_GetAppCmd function does not report the commands for which a callback handler
function exists. If the FMSTR_GetAppCmd function is called when a callback-registered com-
mand is pending (and before it is actually processed by the callback function), this function re-
turns FMSTR_APPCMDRESULT_NOCMD.

FMSTR_GetAppCmdData

420 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Prototype
FMSTR,_ APPCMD_ PDATA FMSTR,_ GetAppCmdData(FMSTR_ SIZE* datalen);

* Declaration: freemasterh

* Implementation: freemaster_appcmd.c

Arguments

* dataLen [out] - pointer to the variable that receives the length of the data available in the
buffer. It can be NULL when this information is not needed.

Description This function can be used to retrieve the Application Command data when the
application determines that an Application Command is pending (see FMSTR_GetAppCmd).

There is just a single buffer to hold the Application Command data (the buffer length is FM-
STR_APPCMD_BUFF_SIZE bytes). If the data are to be used in the application after the command
is processed by the FMSTR_AppCmdAck call, copy the data out to a private buffer.

FMSTR_AppCmdAck

Prototype
void FMSTR,_ AppCmdAck(FMSTR_APPCMD_ RESULT resultCode);

* Declaration: freemasterh

* Implementation: freemaster_appcmd.c

Arguments

» resultCode [in] - the result code which is to be returned to FreeMASTER

Description This function is used when the Application Command processing finishes in the
application. The resultCode passed to this function is returned back to the host and the driver is
re-initialized to expect the next Application Command.

After this function is called and before the next Application Command arrives, the return value
of the FMSTR_GetAppCmd function is FMSTR_APPCMDRESULT NOCMD.

FMSTR_AppCmdSetResponseData
Prototype
void FMSTR__ AppCmdSetResponseData(FMSTR,_ADDR resultDataAddr, FMSTR,_SIZE resultDataLen);

* Declaration: freemaster.h

* Implementation: freemaster_appcmd.c

3.1. Motor Control 421

MCUXpresso SDK Documentation, Release 25.09.00

Arguments

* resultDataAddr [in] - pointer to the data buffer that is to be copied to the Application Com-
mand data buffer

 resultDataLen [in] - length of the data to be copied. It must not exceed the FM-
STR_APPCMD_BUFF_SIZE value.

Description This function can be used before the Application Command processing finishes,
when there are data to be returned back to the PC.

The response data buffer is copied into the Application Command data buffer, from where it is
accessed when the host requires it. Do not use FMSTR_GetAppCmdData and the data buffer after
FMSTR_AppCmdSetResponseData is called.

Note: The current version of FreeMASTER does not support the Application Command response
data.

FMSTR_RegisterAppCmdCall

Prototype
FMSTR,_ BOOL FMSTR,_ RegisterAppCmdCall(FMSTR,_ APPCMD__ CODE appCmdCode, FMSTR,__
—PAPPCMDFUNC callbackFunc);

* Declaration: freemasterh

* Implementation: freemaster_appcmd.c

Arguments
* appCmdCode [in] - the Application Command code for which the callback is to be registered

* callbackFunc [in] - pointer to the callback function that is to be registered. Use NULL to
unregister a callback registered previously with this Application Command.

Return value This function returns a non-zero value when the callback function was success-
fully registered or unregistered. It can return zero when trying to register a callback function
for more than FMSTR_MAX_APPCMD_CALLS different Application Commands.

Description This function can be used to register the given function as a callback handler for
the Application Command. The Application Command is identified using single-byte code. The
callback function is invoked automatically by the FreeMASTER driver when the protocol decoder
obtains a request to get the application command result code.

The prototype of the callback function is

FMSTR__APPCMD_ RESULT HandlerFunction(FMSTR__ APPCMD_ CODE nAppcmd,
FMSTR_APPCMD_ PDATA pData, FMSTR,_ SIZE nDatalLen);
Where:
* nAppcmd -Application Command code
» pData —points to the Application Command data received (if any)

* nDatalL.en —information about the Application Command data length

422 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

The return value of the callback function is used as the Application Command Result Code and
returned to FreeMASTER.

Note: The FMSTR_MAX APPCMD_CALLS configuration macro defines how many different Appli-
cation Commands may be handled by a callback function. When FMSTR_MAX_APPCMD_CALLS
is undefined or defined as zero, the FMSTR_RegisterAppCmdCall function always fails.

Pipes API

FMSTR_PipeOpen

Prototype
FMSTR_HPIPE FMSTR_PipeOpen(FMSTR_PIPE PORT pipePort, FMSTR_PPIPEFUNC pipeCallback,

FMSTR_ ADDR pipeRxBuff, FMSTR,_ PIPE_SIZE pipeRxSize,
FMSTR_ ADDR pipeTxBuff, FMSTR_ PIPE_ SIZE pipeTxSize,
FMSTR_ U8 type, const FMSTR,__ CHAR *name);

* Declaration: freemasterh

* Implementation: freemaster_pipes.c

Arguments
* pipePort [in] - port number that identifies the pipe for the client

* pipeCallback [in] - pointer to the callback function that is called whenever a pipe data status
changes

* pipeRxBuff [in] - address of the receive memory buffer
* pipeRxSize [in] - size of the receive memory buffer

* pipeTxBuff [in] - address of the transmit memory buffer
* pipeTxSize [in] - size of the transmit memory buffer

* type [in] - a combination of FMSTR_PIPE_MODE_xxx and FMSTR_PIPE_SIZE_xxx constants
describing primary pipe data format and usage. This type helps FreeMASTER decide how
to access the pipe by default. Optional, use 0 when undetermined.

* name [in] - user name of the pipe port. This name is visible to the FreeMASTER user when
creating the graphical pipe interface.

Description This function initializes a new pipe and makes it ready to accept or send the data
to the PC Host client. The receive memory buffer is used to store the received data before they are
read out by the FMSTR_PipeRead call. When this buffer gets full, the PC Host client denies the
data transmission into this pipe until there is enough free space again. The transmit memory
buffer is used to store the data transmitted by the application to the PC Host client using the
FMSTR_PipeWrite call. The transmit buffer can get full when the PC Host is disconnected or
when it is slow in receiving and reading out the pipe data.

The function returns the pipe handle which must be stored and used in the subsequent calls to
manage the pipe object.

The callback function (if specified) is called whenever new data are received through the pipe
and available for reading. This callback is also called when the data waiting in the transmit
buffer are successfully pushed to the PC Host and the transmit buffer free space increases. The
prototype of the callback function provided by the user application must be as follows. The
PipeHandler name is only a placeholder and must be defined by the application.

3.1. Motor Control 423

MCUXpresso SDK Documentation, Release 25.09.00

void PipeHandler(FMSTR,_ HPIPE pipeHandle);

FMSTR_PipeClose

Prototype
void FMSTR,_PipeClose(FMSTR,_ HPIPE pipeHandle);

* Declaration: freemasterh

* Implementation: freemaster_pipes.c

Arguments

* pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

Description This function de-initializes the pipe object. No data can be received or sent on the
pipe after this call.

FMSTR_PipeWrite

Prototype
FMSTR_PIPE_SIZE FMSTR_ PipeWrite(FMSTR, HPIPE pipeHandle, FMSTR,_ ADDR pipeData,
FMSTR_ PIPE_ SIZE pipeDataLen, FMSTR_ PIPE_ SIZE writeGranularity);
* Declaration: freemasterh

* Implementation: freemaster._pipes.c

Arguments
* pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call
* pipeData [in] - address of the data to be written
* pipeDataLen [in] - length of the data to be written

» writeGranularity [in] - size of the minimum unit of data which is to be written

Description This function puts the user-specified data into the pipe’s transmit memory buffer
and schedules it for transmission. This function returns the number of bytes that were success-
fully written into the buffer. This number may be smaller than the number of the requested
bytes if there is not enough free space in the transmit buffer.

The writeGranularity argument can be used to split the data into smaller chunks, each of the
size given by the writeGranularity value. The FMSTR_PipeWrite function writes as many data
chunks as possible into the transmit buffer and does not attempt to write an incomplete chunk.
This feature can prove to be useful to avoid the intermediate caching when writing an array of
integer values or other multi-byte data items. When making the nGranularity value equal to the
nLength value, all data are considered as one chunk which is either written successfully as a
whole or not at all. The nGranularity value of 0 or 1 disables the data-chunk approach.

FMSTR_PipeRead

424 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Prototype
FMSTR, PIPE_SIZE FMSTR_ PipeRead(FMSTR_ HPIPE pipeHandle, FMSTR,__ ADDR pipeData,
FMSTR,_ PIPE_ SIZE pipeDataLen, FMSTR_ PIPE_SIZE readGranularity);
* Declaration: freemaster.h

* Implementation: freemaster_pipes.c

Arguments
* pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call
* pipeData [in] - address of the data buffer to be filled with the received data
* pipeDataLen [in] - length of the data to be read

» readGranularity [in] - size of the minimum unit of data which is to be read

Description This function copies the data received from the pipe from its receive buffer to the
user buffer for further processing. The function returns the number of bytes that were success-
fully copied to the buffer. This number may be smaller than the number of the requested bytes
if there is not enough data bytes available in the receive buffer.

The readGranularity argument can be used to copy the data in larger chunks in the same way as
described in the FMSTR_PipeWrite function.

API data types This section describes the data types used in the FreeMASTER driver. The infor-
mation provided here can be useful when modifying or porting the FreeMASTER Communication
Driver to new NXP platform:s.

Note: The licensing conditions prohibit use of FreeMASTER and the FreeMASTER Communica-
tion Driver with non-NXP MPU or MCU products.

Public common types The table below describes the public data types used in the FreeMASTER
driver API calls. The data types are declared in the freemaster.h header file.

3.1. Motor Control 425

MCUXpresso SDK Documentation, Release 25.09.00

Type name

Description

FM-
STR_ADDR
For exam-
ple, this
type is
defined as
long inte-
ger on the
56F8xxx
platform
where
the 24-bit
addresses
must be
supported,
but the
C-pointer
may be
only 16
bits wide
in some
compiler
configura-
tions.
FM-

STR SIZE
It is re-
quired
that this
type is un-
signed and
at least 16
bits wide
integer.
FM-
STR_BOOL
This type
is used
only in
zero/non-
Zero con-
ditions in
the driver
code.
FM-

STR_APPCM.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCM.
Generally,
this is an
unsigned
8-bit value.
FM-

o

Data type used to hold the memory address. On most platforms, this is normally
a C-pointer, but it may also be a pure integer type.

Data type used to hold the memory block size.

Data type used as a general boolean type.

Data type used to hold the Application Command code.

Data type used to create the Application Command data buffer.

Data type used to hold the Application Command result code.

TR-_APPCM:
nerally,
this is an
unsigned
8-bit value.

Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Public TSA types The table describes the TSA-specific public data types. These types are de-
clared in the freemaster_tsa.h header file, which is included in the user application indirectly by
the freemaster:h file.

FM- Data type used to hold a descriptor index in the TSA table or a table index in the
STR_TSA_TII list of TSA tables.

By default,

this is

defined

as FM-

STR_SIZE.

EM- Data type used to hold a memory block size, as used in the TSA descriptors.
STR TSA_TS.

By default,

this is

defined

as FM-

STR_SIZE.

Public Pipes types The table describes the data types used by the FreeMASTER Pipes API:

EFM- Pipe handle that identifies the open-pipe object.
STR_HPIPE

Generally,

this is a

pointer

to a void

type.

FM- Integer type required to hold at least 7 bits of data.
STR_PIPE_P(

Generally,

this is an

unsigned

8-bit or

16-hit type.

FM- Integer type required to hold at least 16 bits of data.
STR_PIPE_SI

This is

used to

store the

data buffer

sizes.

FM- Pointer to the pipe handler function.
STR_PPIPEFi

See FM-

STR_PipeOpen

for more

details.

Internal types The table describes the data types used internally by the FreeMASTER driver.
The data types are declared in the platform-specific header file and they are not available in the
application code.

3.1. Motor Control 427

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_US8
On the vast
majority of
platforms,
this is an
unsigned
8-bit inte-
ger.

On the
56F8xx
DSP plat-
form, this
is defined
as an un-
signed
16-bit inte-
ger.

FM-

STR U16
FM-

STR U32
FMSTR_S8
FM-

STR S16
FM-
STR_S32
FM-
STR_FLOAT
FM-
STR_FLAGS
FM-
STR_SIZES8
FM-
STR_INDEX
FM-
STR_BCHR
Typically,
this is
an 8-bit
unsigned
integer,
except for
the DSP
platforms
where it
is a 16-bit
integer.
FM-

STR BPTR

The smallest memory entity.

Unsigned 16-bit integer.
Unsigned 32-bit integer.

Signed 8-bit integer.
Signed 16-bit integer.

Signed 32-bit integer.

4-byte standard IEEE floating-point type.

Data type forming a union with a structure of flag bit-fields.
Data type holding a general size value, at least 8 bits wide.
General for-loop index. Must be signed, at least 16 bits wide.

A single character in the communication buffer.

A pointer to the communication buffer (an array of FMSTR_BCHR).

Document references

Links

* This document online: https:/mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/
freemaster/doc/index.html

428

Chapter 3. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html

MCUXpresso SDK Documentation, Release 25.09.00

FreeMASTER tool home: www.nxp.com/freemaster

* FreeMASTER community area: community.nxp.com/community/freemaster

FreeMASTER GitHub code repo: https://github.com/nxp-mcuxpresso/mcux-freemaster
* MCUXpresso SDK home: www.nxp.com/mcuxpresso

* MCUXpresso SDK builder: mcuxpresso.nxp.com/en

Documents
» FreeMASTER Usage Serial Driver Implementation (document AN4752)

o Integrating FreeMASTER Time Debugging Tool With CodeWarrior For Microcontrollers v10.X
Project (document AN4771)

* Flash Driver Library For MC56F847xx And MC56F827xx DSC Family (document AN4860)

Revision history This Table summarizes the changes done to this document since the initial
release.

3.1. Motor Control 429

https://www.nxp.com/freemaster
https://community.nxp.com/community/freemaster
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://www.nxp.com/mcuxpresso
https://mcuxpresso.nxp.com/en
http://www.nxp.com/doc/AN4752
http://www.nxp.com/doc/AN4771
http://www.nxp.com/doc/AN4860

MCUXpresso SDK Documentation, Release 25.09.00

Revi- Date Description

sion

1.0 03/2006 Limited initial release

2.0 09/2007 Updated for FreeMASTER version. New Freescale doc-
ument template used.

2.1 12/2007 Added description of the new Fast Recorder feature and
its APL

2.2 04/2010 Added support for MPC56xx platform, Added new API
for use CAN interface.

2.3 04/2011 Added support for Kxx Kinetis platform and MQX oper-
ating system.

24 06/2011 Serial driver update, adds support for USB CDC inter-
face.

2.5 08/2011 Added Packet Driven BDM interface.

2.7 12/2013 Added FLEXCAN32 interface, byte access and isr call-
back configuration option.

2.8 06/2014 Removed obsolete license text, see the software pack-
age content for up-to-date license.

2.9 03/2015 Update for driver version 1.8.2 and 1.9: FreeMAS-
TER Pipes, TSA Active Content, LIN Transport Layer
support, DEBUG-TX communication troubleshooting,
Kinetis SDK support.

3.0 08/2016 Update for driver version 2.0: Added support for
MPC56xx, MPC57xx, KEAxx and S32Kxx platforms.
New NXP document template as well as new license
agreement used. added MCAN interface. Folders struc-
ture at the installation destination was rearranged.

4.0 04/2019 Update for driver released as part of FreeMASTER v3.0
and MCUXpresso SDK 2.6. Updated to match new V4
serial communication protocol and new configuration
options. This version of the document removes sub-
stantial portion of outdated information related to S08,
S12, ColdFire, Power and other legacy platforms.

41 04/2020 Minor update for FreeMASTER driver included in
MCUXpresso SDK 2.8.

4.2 09/2020 Added example applications description and informa-
tion about the MCUXpresso Config Tools. Fixed the
pipe-related API description.

4.3 10/2024 Added description of Network and Segger J-Link RTT in-
terface configuration. Accompanying the MCUXpresso
SDK version 24.12.00.

44 04/2025 Added Zephyr-specific information. Accompanying the
MCUZXpresso SDK version 25.06.00.

430 Chapter 3. Middleware

Chapter 4

RTOS

4.1 FreeRTOS

4.1.1 FreeRTOS kernel

Open source RTOS kernel for small devices.

FreeRTOS kernel for MCUXpresso SDK Readme

FreeRTOS kernel for MCUXpresso SDK

Overview The purpose of this document is to describes the FreeRTOS kernel repo integration
into the NXP MCUXpresso Software Development Kit: mcuxsdk. MCUXpresso SDK provides a
comprehensive development solutions designed to optimize, ease, and help accelerate embed-
ded system development of applications based on MCUs from NXP. This project involves the
FreeRTOS kernel repo fork with:

» cmake and Kconfig support to allow the configuration and build in MCUXpresso SDK ecosys-
tem

* FreeRTOS OS additions, such as FreeRTOS driver wrappers, RTOS ready FatFs file system,
and the implementation of FreeRTOS tickless mode

The history of changes in FreeRTOS kernel repo for MCUXpresso SDK are summarized in
CHANGELOG mcuxsdk.md file.

The MCUXpresso SDK framework also contains a set of FreeRTOS examples which show basic
FreeRTOS OS features. This makes it easy to start a new FreeRTOS project or begin experiment-
ing with FreeRTOS OS. Selected drivers and middleware are RTOS ready with related FreeRTOS
adaptation layer.

FreeRTOS example applications The FreeRTOS examples are written to demonstrate basic
FreeRTOS features and the interaction between peripheral drivers and the RTOS.

List of examples Thelist of freertos_examples, their description and availability for individual
supported MCUXpresso SDK development boards can be obtained here: https://mcuxpresso.nxp.
com/mcuxsdk/latest/html/examples/freertos_examples/index.html

431

https://github.com/FreeRTOS/FreeRTOS
https://github.com/nxp-mcuxpresso/mcuxsdk-manifests
https://github.com/nxp-mcuxpresso/mcux-freertos-drivers
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/examples/freertos_examples/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/examples/freertos_examples/index.html

MCUXpresso SDK Documentation, Release 25.09.00

Location of examples The FreeRTOS examples are located in mcuxsdk-examples repository,
see the freertos_examples folder.

Once using MCUXpresso SDK zip packages created via the MCUXpresso SDK Builder the FreeRTOS
kernel library and associated freertos_examples are added into final zip package once FreeRTOS
components is selected on the Developer Environment Settings page:

[\ MCUXpresso SDK Builder

#i sDkDashboard Developer Environment Settings
@ Select Board / Processor Selections here (operating host system, toolchain or mtddfewure) will impact files and examples projects included in the SDK and Generated FProjects

Host OS Toolchain [IDE

= Filters

== Windows - 0J: Al Toolchains - Search...
B Middieware
Examples
& Name Description Dependencies
3 Toochains o e g 1 S O 61 T o
:_.—: Processor Parametrics
emWwin emWin graphics library
EXPLORE
Fatfs FAT File System stack
E Expansion Board Hub
— FreeMASTER FreeMASTER communication driver for 32bit platforms
. Application Code Hub
DOWNLOADS FreeRTOS m Real-time operating system for microcontrollers from Amazon
. MCUXpresso IDE LittleFs LittleFs filesystem stack
- MCUXpresso for VS Code lihttp HTTP parser lihttp
MCUXpresso Secure
. Provisioning Tool LVGL (£ LvGLOpen Source Graphics Library
. Lo o @il Tl Iwip [Lightweight IP open-source TCP/IP stack
Offline data
Mbed Crypto Mbed Crypto library
INTERNAL
mbedTLS mbedTLS SSL/TLS library v

The FreeRTOS examples in MCUXpresso SDK zip packages are located in <MCUXpres-
soSDK install_dir>/boards/<board_name>/freertos_examples/ subfolders.

Building a FreeRTOS example application For information how to use the cmake and Kconfig
based build and configuration system and how to build freertos_examples visit: MCUXpresso
SDK documentation for Build And Configuration MCUXpresso SDK Getting Start Guide

Tip: To list all FreeRTOS example projects and targets that can be built via the west build com-
mand, use this west list_project command in mcuxsdk workspace:

west list_ project -p examples/freertos_examples

FreeRTOS aware debugger plugin NXP provides FreeRTOS task aware debugger for GDB. The
plugin is compatible with Eclipse-based (MCUXpressoIDE) and is available after the installation.

s Task List (FreeRTOS) 52 B ® =8
TCBJ;‘ Task Mame Task Handle Task State Pricrity Stack Usage Event Object Runtime
> 1 task_one ol fffeccd [0 Blocked 1(1) 0B/8308B MyCountingSemaphaore (Fx) 00 (0.0%)
b 2 task_two (L FF130 00 Blocked 2(2) O0B/888B MyCountingSemaphore (Rx) O (01%)
> 3 IDLE L £330 B> Running 0/(0] 0B/296 B 0365 (996%)
> 4 Tror Sve Dl ffffobE [0 Blocked 17(17) I 28B/6I2E Tmir() (Rx) 0x3 (0.3%)

FreeRTOS kernel for MCUXpresso SDK ChangeLog

Changelog FreeRTOS kernel for MCUXpresso SDK All notable changes to this project will be
documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

432 Chapter 4. RTOS

https://github.com/nxp-mcuxpresso/mcuxsdk-examples
https://mcuxpresso.nxp.com
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/develop/build_system/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/develop/build_system/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/repo.html#gsd-index
https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html

MCUXpresso SDK Documentation, Release 25.09.00

[Unreleased]

Added

» Kconfig added CONFIG_FREERTOS_USE_CUSTOM_CONFIG_FRAGMENT config to op-
tionally include custom FreeRTOSConfig fragment
include file FreeRTOSConfig_frag.h. File must be provided by application.

» Added missing Kconfig option for configUSE_PICOLIBC_TLS.

* Add correct header files to build when configUSE_NEWLIB_REENTRANT and confi-
gUSE_PICOLIBC_TLS is selected in config.

[11.1.0_revO0]

* update amazon freertos version

[11.0.1_revO0]

* update amazon freertos version

[10.5.1_revO0]

 update amazon freertos version

[10.4.3_rev1]
* Apply CM33 security fix from 10.4.3-LTS-Patch-2. See rtos\freertos\freertos_kernel\History.txt
* Apply CM33 security fix from 10.4.3-LTS-Patch-1. See rtos\freertos\freertos_kernel\History.txt

[10.4.3_rev0]

* update amazon freertos version.

[10.4.3_rev0]

 update amazon freertos version.

[9.0.0_rev3]
* New features:
— Tickless idle mode support for Cortex-A7. Add fsl_tickless_epit.c and
fsl_tickless_generic.h in portable/TAR/ARM_CAS9 folder.
— Enabled float context saving in IAR for Cortex-A7. Added confi-
gUSE_TASK_FPU_SUPPORT macros. Modified port.c and portmacro.h in

portable/IAR/ARM_CA9 folder.
» Other changes:

— Transformed ARM_CM core specific tickless low power support into generic form un-
der freertos/Source/portable/low_power_tickless/.

4.1. FreeRTOS 433

MCUXpresso SDK Documentation, Release 25.09.00

[9.0.0 rev2]
» New features:

— Enabled MCUXpresso thread aware debugging. Add freertos_tasks_c_additions.h
and configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H and configFR-
TOS_MEMORY_SCHEME macros.

[9.0.0_rev1]
* New features:
— Enabled -flto optimization in GCC by adding attribute((used)) for vTaskSwitchContext.

— Enabled KDS Task Aware Debugger. Apply FreeRTOS patch to enable confi-
gRECORD_STACK_HIGH_ADDRESS macro. Modified files are task.c and FreeRTOS.h.

[9.0.0_rev0]
* New features:
— Example freertos_sem_static.
— Static allocation support RTOS driver wrappers.
* Other changes:

— Tickless idle rework. Support for different timers is in separated files
(fs1_tickless_systick.c, fsl_tickless_lptmr.c).

— Removed configuration option configSYSTICK_USE_LOW_POWER_TIMER. Low power
timer is now selected by linking of apropriate file fsl_tickless_lptmr.c.

— Removed configOVERRIDE_DEFAULT_TICK_CONFIGURATION in RVDS port. Use of at-
tribute((weak)) is the preferred solution. Not same as _weak!

[8.2.3]
* New features:
— Tickless idle mode support.
— Added template application for Kinetis Expert (KEx) tool (template_application).
* Other changes:

— Folder structure reduction. Keep only Kinetis related parts.

FreeRTOS kernel Readme

MCUXpresso SDK: FreeRTOS kernel This repository is a fork of FreeRTOS kernel
(https://github.com/FreeRTOS/FreeRTOS-Kernel)(11.1.0). Modifications have been made to adapt
to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable FreeRTOS kernel repo
sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which is
composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

For more information about the FreeRTOS kernel repo adoption see README_mcuxsdk.md:
FreeRTOS kernel for MCUXpresso SDK Readme document.

(") CMock Unit Tests | passing

434 Chapter 4. RTOS

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/rtos/freertos/freertos-kernel/README_mcuxsdk.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/rtos/freertos/freertos-kernel/README_mcuxsdk.html
https://github.com/FreeRTOS/FreeRTOS-Kernel/actions/workflows/unit-tests.yml?query=branch%3Amain+event%3Apush+workflow%3A%22CMock+Unit+Tests%22++

MCUXpresso SDK Documentation, Release 25.09.00

Getting started This repository contains FreeRTOS kernel source/header files and kernel ports
only. This repository is referenced as a submodule in FreeRTOS/FreeRTOS repository, which
contains pre-configured demo application projects under FreeRTOS/Demo directory.

The easiest way to use FreeRTOS is to start with one of the pre-configured demo application
projects. That way you will have the correct FreeRTOS source files included, and the correct
include paths configured. Once a demo application is building and executing you can remove
the demo application files, and start to add in your own application source files. See the FreeRTOS
Kernel Quick Start Guide for detailed instructions and other useful links.

Additionally, for FreeRTOS kernel feature information refer to the Developer Documentation,
and API Reference.

Also for contributing and creating a Pull Request please refer to the instructions here.

Getting help If you have any questions or need assistance troubleshooting your FreeRTOS
project, we have an active community that can help on the FreeRTOS Community Support Forum.

To consume FreeRTOS-Kernel

Consume with CMake If using CMake, it is recommended to use this repository using Fetch-
Content. Add the following into your project’s main or a subdirectory’s CMakeLists.txt:

* Define the source and version/tag you want to use:

FetchContent Declare(freertos kernel

GIT_REPOSITORY https://github.com/FreeRTOS/FreeRTOS-Kernel.git

GIT_TAG main #Note: Best practice to use specific git-hash or tagged version
)
In case you prefer to add it as a git submodule, do:
git submodule add https://github.com/FreeRTOS/FreeRTOS-Kernel.git <path of the submodule>
git submodule update --init

* Add a freertos_config library (typically an INTERFACE library) The following assumes the
directory structure:

— include/FreeRTOSConfig.h

add_ library(freertos_ config INTERFACE)

target_ include_ directories(freertos_ config SYSTEM
INTERFACE

include
)

target__compile_ definitions(freertos_config
INTERFACE
projCOVERAGE__TEST=0
)

In case you installed FreeRTOS-Kernel as a submodule, you will have to add it as a subdirectory:

add_ subdirectory(${FREERTOS PATH})

* Configure the FreeRTOS-Kernel and make it available

— this particular example supports a native and cross-compiled build option.

4.1. FreeRTOS 435

https://github.com/FreeRTOS/FreeRTOS
https://www.FreeRTOS.org/FreeRTOS-quick-start-guide.html
https://www.FreeRTOS.org/FreeRTOS-quick-start-guide.html
https://www.FreeRTOS.org/features.html
https://www.FreeRTOS.org/a00106.html
https://forums.freertos.org

MCUXpresso SDK Documentation, Release 25.09.00

set(FREERTOS_HEAP ”4” CACHE STRING ”” FORCE)
Select the native compile PORT
set(FREERTOS_PORT "GCC_ POSIX” CACHE STRING ”” FORCE)
Select the cross-compile PORT
if (CMAKE__CROSSCOMPILING)
set(FREERTOS_PORT "GCC_ARM_CA9” CACHE STRING ”” FORCE)
endif()

FetchContent_ MakeAvailable(freertos_ kernel)

* In case of cross compilation, you should also add the following to freertos_ config:

target compile definitions(freertos config INTERFACE ${definitions})
target__compile_options(freertos_ config INTERFACE ${options})

Consuming stand-alone - Cloning this repository To clone using HTTPS:

git clone https://github.com/FreeRTOS /FreeRTOS-Kernel.git

Using SSH:

git clone git@github.com:FreeRTOS/FreeRTOS-Kernel.git

Repository structure

* The root of this repository contains the three files that are common to every port - list.c,
queue.c and tasks.c. The kernel is contained within these three files. croutine.c implements
the optional co-routine functionality - which is normally only used on very memory limited
systems.

» The ./portable directory contains the files that are specific to a particular microcontroller
and/or compiler. See the readme file in the ./portable directory for more information.

* The ./include directory contains the real time kernel header files.

* The ./template configuration directory contains a sample FreeRTOSConfig.h to help jumpstart
a new project. See the FreeRTOSConfig.h file for instructions.

Code Formatting FreeRTOS files are formatted using the “uncrustify” tool. The configuration
file used by uncrustify can be found in the FreeRTOS/CI-CD-GitHub-Actions’s uncrustify.cfg file.

Line Endings File checked into the FreeRTOS-Kernel repository use unix-style LF line endings
for the best compatibility with git.

For optimal compatibility with Microsoft Windows tools, it is best to enable the git autocrlf fea-
ture. You can enable this setting for the current repository using the following command:

git config core.autocrlf true

Git History Optimizations Some commits in this repository perform large refactors which
touch many lines and lead to unwanted behavior when using the git blame command. You can
configure git to ignore the list of large refactor commits in this repository with the following
command:

git config blame.ignoreRevsFile .git-blame-ignore-revs

436 Chapter 4. RTOS

https://github.com/uncrustify/uncrustify
https://github.com/FreeRTOS/CI-CD-Github-Actions
https://github.com/FreeRTOS/CI-CD-Github-Actions/tree/main/formatting

MCUXpresso SDK Documentation, Release 25.09.00

Spelling and Formatting We recommend using Visual Studio Code, commonly referred to as
VSCode, when working on the FreeRTOS-Kernel. The FreeRTOS-Kernel also uses cSpell as part
of its spelling check. The config file for which can be found at cspell.config.yaml There is addi-
tionally a cSpell plugin for VSCode that can be used as well. .cSpellWords.txt contains words
that are not traditionally found in an English dictionary. It is used by the spellchecker to ver-
ify the various jargon, variable names, and other odd words used in the FreeRTOS code base
are correct. If your pull request fails to pass the spelling and you believe this is a mistake, then
add the word to .cSpellWords.txt. When adding a word please then sort the list, which can be
done by running the bash command: sort -u .cSpellWords.txt -o .cSpellWords.txt Note that only
the FreeRTOS-Kernel Source Files, include, portable/MemMang, and portable/Common files are
checked for proper spelling, and formatting at this time.

4.1.2 FreeRTOS drivers

This is set of NXP provided FreeRTOS reentrant bus drivers.

4.1.3 backoffalgorithm

Algorithm for calculating exponential backoff with jitter for network retry attempts.

Readme

MCUXpresso SDK: backoffAlgorithm Library This repository is a fork of backoffAlgorithm
library (https://github.com/FreeRTOS/backoffalgorithm)(1.3.0). Modifications have been made to
adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable backoffAlgorithm
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

backoffAlgorithm Library This repository contains the backoffAlgorithm library, a utility li-
brary to calculate backoff period using an exponential backoff with jitter algorithm for retry-
ing network operations (like failed network connection with server). This library uses the “Full
Jitter” strategy for the exponential backoff with jitter algorithm. More information about the
algorithm can be seen in the Exponential Backoff and Jitter AWS blog.

The backoffAlgorithm library is distributed under the MIT Open Source License.

Exponential backoff with jitter is typically used when retrying a failed network connection or
operation request with the server. An exponential backoff with jitter helps to mitigate failed
network operations with servers, that are caused due to network congestion or high request
load on the server, by spreading out retry requests across multiple devices attempting network
operations. Besides, in an environment with poor connectivity, a client can get disconnected at
any time. A backoff strategy helps the client to conserve battery by not repeatedly attempting
reconnections when they are unlikely to succeed.

See memory requirements for this library here.
backoffAlgorithm v1.3.0 source code is part of the FreeRTOS 202210.00 LTS release.
backoffAlgorithm v1.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

4.1. FreeRTOS 437

https://code.visualstudio.com
https://cspell.org/
https://marketplace.visualstudio.com/items?itemName=streetsidesoftware.code-spell-checker
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
https://github.com/FreeRTOS/backoffAlgorithm/tree/v1.3.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/backoffAlgorithm/tree/v1.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00

Reference example The example below shows how to use the backoffAlgorithm library on a
POSIX platform to retry a DNS resolution query for amazon.com.

#include "backoff algorithm.h”
#include <stdlib.h>

#include <string.h>

#include <netdb.h>

#include <unistd.h>

#include <time.h>

/* The maximum number of retries for the example code. */
#define RETRY_ MAX_ ATTEMPTS (5U)

/* The maximum back-off delay (in milliseconds) for between retries in the example. */
#define RETRY MAX_BACKOFF_DELAY MS (5000U)

/* The base back-off delay (in milliseconds) for retry configuration in the example. */
#define RETRY BACKOFF_BASE_MS (500U)

int main()
{
/* Variables used in this example. */
BackoffAlgorithmStatus_ t retryStatus = BackoffAlgorithmSuccess;
BackoffAlgorithmContext_ t retryParams;
char serverAddress|] = "amazon.com”;
uint16_ t nextRetryBackoff = 0;

int32_t dnsStatus = -1;

struct addrinfo hints;

struct addrinfo ** pListHead = NULL;
struct timespec tp;

/* Add hints to retrieve only TCP sockets in getaddrinfo. */
(void) memset(&hints, 0, sizeof(hints));

/* Address family of either IPv4 or IPv6. */
hints.ai_family = AF__ UNSPEC;

/* TCP Socket. */

hints.ai_socktype = (int32_t) SOCK_STREAM;
hints.ai_ protocol = IPPROTO__ TCP;

/* Initialize reconnect attempts and interval. */

BackoffAlgorithm_ InitializeParams(&retryParams,
RETRY_ BACKOFF_BASE MS,
RETRY MAX BACKOFF DELAY MS,
RETRY_MAX_ ATTEMPTS);

/* Seed the pseudo random number generator used in this example (with call to
* rand() function provided by ISO C standard library) for use in backoff period
* calculation when retrying failed DNS resolution. */

/* Get current time to seed pseudo random number generator. */
(void) clock gettime(CLOCK _REALTIME, &tp);

/* Seed pseudo random number generator with seconds. */
srand(tp.tv__sec);

do

/* Perform a DNS lookup on the given host name. */

dnsStatus = getaddrinfo(serverAddress, NULL, &hints, pListHead);

(continues on next page)

438 Chapter 4. RTOS

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)

/* Retry if DNS resolution query failed. */
if(dnsStatus !=0)

{

/* Generate a random number and get back-off value (in milliseconds) for the next retry.
* Note: It is recommended to use a random number generator that is seeded with

* device-specific entropy source so that backoff calculation across devices is different

* and possibility of network collision between devices attempting retries can be avoided.
*

* For the simplicity of this code example, the pseudo random number generator, rand|()
* function is used. */
retryStatus = BackoffAlgorithm__GetNextBackoff(&retryParams, rand(), &nextRetryBackoff);

/* Wait for the calculated backoff period before the next retry attempt of querying DNS.
* As usleep() takes nanoseconds as the parameter, we multiply the backoff period by 1000. */
(void) usleep(nextRetryBackoff * 1000U);

}

} while((dnsStatus != 0) && (retryStatus |= BackoffAlgorithmRetriesExhausted));

return dnsStatus;

Building the library A compiler that supports C90 or later such as gcc is required to build the
library.

Additionally, the library uses a header file introduced in ISO C99, stdint.h. For compilers that do
not provide this header file, the source/include directory contains stdint.readme, which can be
renamed to stdint.h to build the backoffAlgorithm library.

For instance, if the example above is copied to a file named example.c, gcc can be used like so:

gee -1 source/include example.c source/backoff algorithm.c -o example
./example

gcc can also produce an output file to be linked:

gce -1 source/include -c¢ source/backoff _algorithm.c

Building unit tests

Checkout Unity Submodule By default, the submodules in this repository are configured with
update=none in .gitmodules, to avoid increasing clone time and disk space usage of other reposi-
tories (like amazon-freertos that submodules this repository).

To build unit tests, the submodule dependency of Unity is required. Use the following command
to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/Unity

Platform Prerequisites
* For running unit tests
— C89 or later compiler like gcc
— CMake 3.13.0 or later

* For running the coverage target, gcov is additionally required.

4.1. FreeRTOS 439

https://github.com/aws/amazon-freertos

MCUXpresso SDK Documentation, Release 25.09.00

Steps to build Unit Tests

1. Go to the root directory of this repository. (Make sure that the Unity submodule is cloned
as described above.)

Create build directory: mkdir build && cd build
Run cmake while inside build directory: cmake -S ../test
Run this command to build the library and unit tests: make all

The generated test executables will be present in build/bin/tests folder.

S S

Run ctest to execute all tests and view the test run summary.

Contributing See CONTRIBUTING.md for information on contributing.

4.1.4 corehttp

Clanguage HTTP client library designed for embedded platforms.

MCUXpresso SDK: coreHTTP Client Library

This repository is a fork of coreHTTP Client library (https://github.com/FreeRTOS/corehttp)(3.0.0).
Modifications have been made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig
added to enable coreHTTP Client repo sources build in MCUXpresso SDK. It is part of the MCUX-
presso SDK overall delivery which is composed of several sub-repositories/projects. Navigate
to the top/parent repository mcuxsdk-manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-
manifests) for the complete delivery of MCUXpresso SDK.

coreHTTP Client Library

This repository contains a C language HTTP client library designed for embedded platforms. It
has no dependencies on any additional libraries other than the standard C library, llhttp, and
a customer-implemented transport interface. This library is distributed under the MIT Open
Source License.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8. This library has also undergone both static code analysis from
Coverity static analysis, and validation of memory safety and data structure invariance through
the CBMC automated reasoning tool.

See memory requirements for this library here.
coreHTTP v3.0.0 source code is part of the FreeRTOS 202210.00 LTS release.
coreHTTP v2.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

coreHTTP Config File The HTTP client library exposes configuration macros that are required
for building the library. A list of all the configurations and their default values are defined in
core_http_config_defaults.h. To provide custom values for the configuration macros, a custom
config file named core_ http_ config.h can be provided by the user application to the library.

By default, a core_http_config.h custom config is required to build the library. To dis-
able this requirement and build the library with default configuration values, provide
HTTP_DO_NOT_USE_CUSTOM_CONFIG as a compile time preprocessor macro.

The HTTP client library can be built by either:

440 Chapter 4. RTOS

https://github.com/nodejs/llhttp
https://www.gnu.org/software/complexity/manual/complexity.html
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/coreHTTP/tree/v3.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/coreHTTP/tree/v2.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00

* Defining a core_http_ config.h file in the application, and adding it to the include directories
for the library build. OR

* Defining the HTTP_ DO_NOT_USE CUSTOM_CONFIG preprocessor macro for the li-
brary build.

Building the Library The httpFilePaths.cmake file contains the information of all source files
and header include paths required to build the HTTP client library.

As mentioned in the previous section, either a custom config file (i.e. core http_config.h) OR
HTTP_DO_NOT_USE_CUSTOM__CONFIG macro needs to be provided to build the HTTP client
library.

For a CMake example of building the HTTP library with the httpFilePaths.cmake file, refer to the
coverity__analysis library target in test/CMakeLists.txt file.

Building Unit Tests

Platform Prerequisites
* For running unit tests, the following are required:
— C90 compiler like gcc
- CMake 3.13.0 or later
— Ruby 2.0.0 or later is required for this repository’s CMock test framework.
 For running the coverage target, the following are required:
- gcov

- lcov

Steps to build Unit Tests
1. Go to the root directory of this repository.
2. Run the cmake command: cmake -S test -B build -DBUILD CLONE_SUBMODULES=0ON
3. Run this command to build the library and unit tests: make -C build all
4. The generated test executables will be present in build/bin/tests folder.
5

. Run cd build && ctest to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material here.
The test/cbme/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Reference examples The AWS IoT Device SDK for Embedded C repository contains demos of
using the HTTP client library here on a POSIX platform. These can be used as reference examples
for the library API.

Documentation

4.1. FreeRTOS 441

https://github.com/ThrowTheSwitch/CMock
https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/http

MCUXpresso SDK Documentation, Release 25.09.00

Existing Documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location

AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of coreHTTP may differ across repositories.

Generating Documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Contributing See CONTRIBUTING.md for information on contributing.

4.1.5 corejson

JSON parser.

Readme

MCUXpresso SDK: coreJSON Library This repository is a fork of coreJSON library
(https://github.com/FreeRTOS/corejson)(3.2.0). Modifications have been made to adapt to NXP
MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable core]JSON repo sources build
in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which is com-
posed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

coreJSON Library This repository contains the coreJSON library, a parser that strictly enforces
the ECMA-404 JSON standard and is suitable for low memory footprint embedded devices. The
core]JSON library is distributed under the MIT Open Source License.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations from mandatory rules in the MISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis from Coverity static analy-
sis, and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.
coreJSON v3.2.0 source code is part of the FreeRTOS 202210.00 LTS release.
coreJSON v3.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

Reference example

442 Chapter 4. RTOS

https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/coreHTTP/docs/doxygen/output/html/index.html
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/coreJSON/tree/v3.2.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/coreJSON/tree/v3.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00

#include <stdio.h>
#include "core_ json.h

int main()

{

// Variables used in this example.

JSONStatus_ t result;

char buffer]] = 7{\”foo\”:\”abc\”,\”bar\”:{\ "foo\":\"xyz\"}}";
size t bufferLength = sizeof(buffer) - 1;

char queryKey|[] = "bar.foo”;

size_t queryKeyLength = sizeof(queryKey) - 1;

char * value;

size_t valueLength;

// Calling JSON_ Validate() is not necessary if the document is guaranteed to be valid.

result = JSON_ Validate(buffer, bufferLength);

if(result == JSONSuccess)
{

result = JSON__Search(buffer, bufferLength, queryKey, queryKeyLength,
&value, &valueLength);
}

if(result == JSONSuccess)
{

// The pointer ”value” will point to a location in the "buffer”.
char save = value[valueLength |;

// After saving the character, set it to a null byte for printing.
value[valueLength | = '"\0';

// "Found: bar.foo -> xyz” will be printed.

printf("Found: %s -> %s\n”, queryKey, value);

// Restore the original character.

value[valueLength | = save;

}

return 0;

}

A search may descend through nested objects when the queryKey contains matching key strings
joined by a separator; .. In the example above, bar has the value {"foo”:”’xyz”}. Therefore, a search
for query key bar.foo would output xyz.

Building coreJ]SON A compiler that supports C90 or later such as gcc is required to build the
library.

Additionally, the library uses 2 header files introduced in ISO C99, stdbool.h and stdint.h. For com-
pilers that do not provide this header file, the source/include directory contains stdbool.readme
and stdint.readme, which can be renamed to stdbool.h and stdint.h respectively.

For instance, if the example above is copied to a file named example.c, gcc can be used like so:

gee -1 source/include example.c source/core_ json.c -o example
./example

gcc can also produce an output file to be linked:

gce -1 source/include -c source/core_json.c

Documentation

4.1. FreeRTOS 443

MCUXpresso SDK Documentation, Release 25.09.00

Existing documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location

AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of the coreJSON library may differ across repositories.

Generating documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Building unit tests

Checkout Unity Submodule By default, the submodules in this repository are configured with
update=none in .gitmodules, to avoid increasing clone time and disk space usage of other reposi-
tories (like amazon-freertos that submodules this repository).

To build unit tests, the submodule dependency of Unity is required. Use the following command
to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/Unity

Platform Prerequisites
* For running unit tests
— C90 compiler like gcc
— CMake 3.13.0 or later
— Ruby 2.0.0 or later is additionally required for the Unity test framework (that we use).

* For running the coverage target, gcov is additionally required.

Steps to build Unit Tests

1. Go to the root directory of this repository. (Make sure that the Unity submodule is cloned
as described above.)

Create build directory: mkdir build && cd build
Run cmake while inside build directory: cmake -S ../test
Run this command to build the library and unit tests: make all

The generated test executables will be present in build/bin/tests folder.

SEERL S

Run ctest to execute all tests and view the test run summary.

444 Chapter 4. RTOS

https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/coreJSON/docs/doxygen/output/html/index.html
https://github.com/aws/amazon-freertos

MCUXpresso SDK Documentation, Release 25.09.00

CBMC To learn more about CBMC and proofs specifically, review the training material here.
The test/cbme/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Contributing See CONTRIBUTING.md for information on contributing.

4.1.6 coremgqtt

MQTT publish/subscribe messaging library.

MCUXpresso SDK: coreMQTT Library

This repository is a fork of coreMQTT library (https://github.com/FreeRTOS/coremqtt)(2.1.1).
Modifications have been made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kcon-
fig added to enable coreMQTT repo sources build in MCUXpresso SDK. It is part of the MCUX-
presso SDK overall delivery which is composed of several sub-repositories/projects. Navigate
to the top/parent repository mcuxsdk-manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-
manifests) for the complete delivery of MCUXpresso SDK.

coreMQTT Client Library

This repository contains the coreMQTT library that has been optimized for a low memory foot-
print. The coreMQTT library is compliant with the MQTT 3.1.1 standard. It has no dependencies
on any additional libraries other than the standard C library, a customer-implemented network
transport interface, and optionally a user-implemented platform time function. This library is
distributed under the MIT Open Source License.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations from mandatory rules in the MISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis from Coverity static analy-
sis, and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.
coreMQTT v2.1.1 source code is part of the FreeRTOS 202210.01 LTS release.

MQTT Config File The MQTT client library exposes build configuration macros that are re-
quired for building the library. A list of all the configurations and their default values are de-
fined in core_mgqtt_config_defaults.h. To provide custom values for the configuration macros, a
custom config file named core_mqtt_ config.h can be provided by the application to the library.

By default, a core_mqtt_config.h custom config is required to build the library. To dis-
able this requirement and build the library with default configuration values, provide
MQTT_DO_NOT_USE_CUSTOM_CONFIG as a compile time preprocessor macro.

Thus, the MQTT library can be built by either:

* Defining a core_ mqtt_ config.h file in the application, and adding it to the include directories
list of the library
OR

* Defining the MQTT_DO_NOT_USE_CUSTOM_ CONFIG preprocessor macro for the li-
brary build.

4.1. FreeRTOS 445

https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/coreMQTT/tree/v2.1.1/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.01-LTS

MCUXpresso SDK Documentation, Release 25.09.00

Sending metrics to AWS IoT When establishing a connection with AWS IoT, users can option-
ally report the Operating System, Hardware Platform and MQTT client version information of
their device to AWS. This information can help AWS IoT provide faster issue resolution and tech-
nical support. If users want to report this information, they can send a specially formatted string
(see below) in the username field of the MQTT CONNECT packet.

Format

The format of the username string with metrics is:

<Actual Username>?SDK=<0OS Name>& Version=<OS _Version>&Platform=<Hardware Platform>&
—MQTTLib=<MQTT_ Library_name>@Q<MQTT__Library_ version>
Where

» <Actual_Username> is the actual username used for authentication, if username and pass-
word are used for authentication. When username and password based authentication is
not used, this is an empty value.

* <OS_Name> is the Operating System the application is running on (e.g. FreeRTOS)
» <0OS_Version> is the version number of the Operating System (e.g. V10.4.3)
» <Hardware_Platform> is the Hardware Platform the application is running on (e.g. Win-
Sim)
* <MQTT_Library_name> is the MQTT Client library being used (e.g. coreMQTT)
* <MQTT_Library_version> is the version of the MQTT Client library being used (e.g. 1.0.2)
Example

* Actual Username = “iotuser”, OS_Name = FreeRTOS, OS_Version = V10.4.3, Hard-
ware_Platform_Name = WinSim, MQTT_Library_Name = coremqtt, MQTT_Library_version
= 2.1.1. If username is not used, then “iotuser” can be removed.

/* Username string:
* jotuser?’SDK=FreeRTOS& Version=v10.4.3&Platform=WinSim&MQTTLib=coremqtt@2.1.1
*/

#define OS_NAME "FreeRTOS”

#define OS_ VERSION ”V10.4.3”

#define HARDWARE PLATFORM_NAME ”WinSim”

#define MQTT__LIB ?coremqtt@2.1.1”

#define USERNAME_STRING “iotuser’SDK=" OS__NAME "&Version=" OS_ VERSION 7”&

—Platform=" HARDWARE_PLATFORM_NAME ”&MQTTLib=" MQTT_LIB
#define USERNAME_STRING_LENGTH ((uint16_t) (sizeof(USERNAME_STRING)- 1))

MQTTConnectInfo_t connectInfo;

connectInfo.pUserName = USERNAME__ STRING;

connectInfo.userNameLength = USERNAME_STRING_LENGTH;

mqttStatus = MQTT__Connect(pMqgttContext, &connectInfo, NULL, CONNACK_RECV_TIMEOUT_MS,,,
—»pSessionPresent);

Upgrading to v2.0.0 and above With coreMQTT versions >=v2.0.0, there are breaking changes.
Please refer to the coreMQTT version >=v2.0.0 Migration Guide.

Building the Library The mgqttFilePaths.cmake file contains the information of all source files
and the header include path required to build the MQTT library.

Additionally, the MQTT library requires two header files that are not part of the ISO C90 stan-
dard library, stdbool.h and stdint.h. For compilers that do not provide these header files, the

446 Chapter 4. RTOS

MCUXpresso SDK Documentation, Release 25.09.00

source/include directory contains the files stdbool.readme and stdint.readme, which can be re-
named to stdbool.h and stdint.h, respectively, to provide the type definitions required by MQTT.

As mentioned in the previous section, either a custom config file (i.e. core_mqtt_config.h) OR
MQTT_DO_NOT_USE_CUSTOM__CONFIG macro needs to be provided to build the MQTT li-
brary.

For a CMake example of building the MQTT library with the mqttFilePaths.cmake file, refer to the
coverity analysis library target in test/CMakeLists.txt file.

Building Unit Tests

Checkout CMock Submodule By default, the submodules in this repository are configured
with update=none in .gitmodules to avoid increasing clone time and disk space usage of other
repositories (like amazon-freertos that submodules this repository).

To build unit tests, the submodule dependency of CMock is required. Use the following command
to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/CMock

Platform Prerequisites
* Docker
or the following:
* For running unit tests
— C90 compiler like gcc
— CMake 3.13.0 or later

— Ruby 2.0.0 or later is additionally required for the CMock test framework (that we
use).

« For running the coverage target, gcov and lcov are additionally required.

Steps to build Unit Tests
1. If using docker, launch the container:
1. docker build -t coremqtt .
2. docker run -it -v "$PWD?”: /workspaces/coreMQTT -w /workspaces/coreMQTT coremqtt

2. Go to the root directory of this repository. (Make sure that the CMock submodule is cloned
as described above)

Run the cmake command: cmake -S test -B build
Run this command to build the library and unit tests: make -C build all

The generated test executables will be present in build/bin/tests folder.

o Uk w

Run cd build && ctest to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material here.
The test/cbme/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

4.1. FreeRTOS 447

https://github.com/aws/amazon-freertos
https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html

MCUXpresso SDK Documentation, Release 25.09.00

Reference examples Please refer to the demos of the MQTT client library in the following
locations for reference examples on POSIX and FreeRTOS platforms:

Plat- Location Transport Interface Implementation

form

POSIX AWS IoT Device SDK for Embed- POSIX sockets for TCP/IP and OpenSSL for TLS
ded C stack

FreeR- FreeRTOS/FreeRTOS FreeRTOS+TCP for TCP/IP and mbedTLS for

TOS TLS stack

FreeR- FreeRTOS AWS Reference Inte- Based on Secure Sockets Abstraction
TOS grations

Documentation

Existing Documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location

AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of coreMQTT may differ across repositories.

Generating Documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Contributing See CONTRIBUTING.md for information on contributing.

4.1.7 coremgtt-agent

The coreMQTT Agent library is a high level API that adds thread safety to the coreMQTT library.

Readme

MCUXpresso SDK: coreMQTT Agent Library This repository is a fork of coreMQTT Agent
library (https://github.com/FreeRTOS/coremqtt-agent)(1.2.0). Modifications have been made to
adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable coreMQTT Agent
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

448 Chapter 4. RTOS

https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/mqtt
https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/mqtt
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo
https://github.com/aws/amazon-freertos/tree/main/demos/coreMQTT
https://github.com/aws/amazon-freertos/tree/main/demos/coreMQTT
https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/coreMQTT/docs/doxygen/output/html/index.html

MCUXpresso SDK Documentation, Release 25.09.00

coreMQTT Agent Library The coreMQTT Agent library is a high level API that adds thread
safety to the coreMQTT library. The library provides thread safe equivalents to the coreMQTT’s
APIs, greatly simplifying its use in multi-threaded environments. The coreMQTT Agent library
manages the MQTT connection by serializing the access to the coreMQTT library and reduc-
ing implementation overhead (e.g., removing the need for the application to repeatedly call to
MQTT__ProcessLoop). This allows your multi-threaded applications to share the same MQTT con-
nection, and enables you to design an embedded application without having to worry about
coreMQTT thread safety.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations from mandatory rules in the MISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis from Coverity static analy-
sis, and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.

Cloning this repository This repo uses Git Submodules to bring in dependent components.
To clone using HTTPS:

git clone https://github.com/FreeRTOS /coreMQTT-Agent.git --recurse-submodules

Using SSH:
git clone git@github.com:FreeRTOS/coreMQTT-Agent.git --recurse-submodules

If you have downloaded the repo without using the --recurse-submodules argument, you need to
run:

git submodule update --init --recursive

coreMQTT Agent Library Configurations The MQTT Agent library uses the same
core_mgqtt_config.h configuration file as coreMQTT, with the addition of configuration con-
stants listed at the top of core_mgqtt agent.h and core_mgqtt_agent_command_functions.h.
Documentation for these configurations can be found here.

To provide values for these configuration values, they must be either:
¢ Defined in core_mqtt_ config.h used by coreMQTT OR

* Passed as compile time preprocessor macros

Porting the coreMQTT Agent Library In order to use the MQTT Agent library on a platform,
you need to supply thread safe functions for the agent’s messaging interface.

Messaging Interface Each of the following functions must be thread safe.

4.1. FreeRTOS 449

https://github.com/FreeRTOS/coreMQTT
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://freertos.org/Documentation/api-ref/coreMQTT-Agent/docs/doxygen/output/html/core_mqtt_agent_config.html

MCUXpresso SDK Documentation, Release 25.09.00

Function Description
Pointer

MQTTA- A function that sends commands (as MQTTAgentCommand_t * pointers) to be re-
gentMes- ceived by MQTTAgent CommandLoop. This can be implemented by pushing to a
sage- thread safe queue.

Send_t

MQTTA- A function used by MQTTAgent_ CommandLoop to receive MQTTAgentCommand_ t
gentMes- * pointers that were sent by API functions. This can be implemented by receiving
sageRecv_1 from a thread safe queue.

MQTTA- Afunction that returns a pointer to an allocated MQTTAgentCommand__t structure,
gentCom- which is used to hold information and arguments for a command to be executed in

mand- MQTTAgent_ CommandLoop(). If using dynamic memory, this can be implemented
Get_t using malloc().
MQT- A function called to indicate that a command structure that had been allocated

TAgent- with the MQTTAgentCommandGet_t function pointer will no longer be used by
Comman- the agent, so it may be freed or marked as not in use. If using dynamic memory,
dRelease_t this can be implemented with free().

Reference implementations for the interface functions can be found in the reference examples
below.

Additional Considerations

Static Memory If only static allocation is used, then the MQTTAgentCommandGet_ t and MQT-
TAgentCommandRelease_ t could instead be implemented with a pool of MQTTAgentCommand_ t
structures, with a queue or semaphore used to control access and provide thread safety. The
below reference examples use static memory with a command pool.

Subscription Management The MQTT Agent does not track subscriptions for MQTT topics.
The receipt of any incoming PUBLISH packet will result in the invocation of a single MQTTA-
gentIncomingPublishCallback_t callback, which is passed to MQTTAgent_ Init() for initialization.
If it is desired for different handlers to be invoked for different incoming topics, then the pub-
lish callback will have to manage subscriptions and fan out messages. A platform independent
subscription manager example is implemented in the reference examples below.

Building the Library You can build the MQTT Agent source files that are in the source directory,
and add source/include to your compiler’s include path. Additionally, the MQTT Agent library
requires the coreMQTT library, whose files follow the same source/ and source/include pattern as
the agent library; its build instructions can be found here.

If using CMake, the mqttAgentFilePaths.cmake file contains the above information of the source
files and the header include path from this repository. The same information is found for
coreMQTT from mqttFilePaths.cmake in the coreMQTT submodule.

For a CMake example of building the MQTT Agent library with the mqttAgentFilePaths.cmake file,
refer to the coverity analysis library target in test/CMakeLists.txt file.

Building Unit Tests

450 Chapter 4. RTOS

https://github.com/FreeRTOS/coreMQTT#building-the-library

MCUXpresso SDK Documentation, Release 25.09.00

Checkout CMock Submodule To build unit tests, the submodule dependency of CMock is re-
quired. Use the following command to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/CMock

Unit Test Platform Prerequisites
* For running unit tests
— C90 compiler like gcc
— CMake 3.13.0 or later

— Ruby 2.0.0 or later is additionally required for the CMock test framework (that we
use).

» For running the coverage target, gcov and lcov are additionally required.

Steps to build Unit Tests

1. Go to the root directory of this repository. (Make sure that the CMock submodule is cloned
as described above)

Run the cmake command: cmake -S test -B build
Run this command to build the library and unit tests: make -C build all

The generated test executables will be present in build /bin/tests folder.

gk W

Run cd build && ctest to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material here.
The test/cbme/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Reference examples Please refer to the demos of the MQTT Agent library in the following
locations for reference examples on FreeRTOS platforms:

Location

coreMQTT Agent Demos
FreeRTOS/FreeRTOS

Documentation The MQTT Agent API documentation can be found here.

Generating documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages yourself, please run the following command from the root
of this repository:

doxygen docs/doxygen/config.doxyfile

Getting help You can use your Github login to get support from both the FreeRTOS community
and directly from the primary FreeRTOS developers on our active support forum. You can find
a list of frequently asked questions here.

4.1. FreeRTOS 451

https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://github.com/FreeRTOS/coreMQTT-Agent-Demos
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/coreMQTT_Windows_Simulator/MQTT_Multitask
https://freertos.org/Documentation/api-ref/coreMQTT-Agent/docs/doxygen/output/html/index.html
https://forums.freertos.org
https://www.freertos.org/FAQ.html

MCUXpresso SDK Documentation, Release 25.09.00

Contributing See CONTRIBUTING.md for information on contributing.

License This library is licensed under the MIT License. See the LICENSE file.

4.1.8 corepkesil

PKCS #11 key management library.

Readme

MCUXpresso SDK: corePKCS11 Library This repository is a fork of PKCS #11 key management
library (https://github.com/FreeRTOS/corePKCS11/tree/v3.5.0)(v3.5.0). Modifications have been
made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable corepkes11
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

corePKCS11 Library PKCS #11 is a standardized and widely used API for manipulating com-
mon cryptographic objects. It is important because the functions it specifies allow application
software to use, create, modify, and delete cryptographic objects, without ever exposing those
objects to the application’s memory. For example, FreeRTOS AWS reference integrations use a
small subset of the PKCS #11 API to, among other things, access the secret (private) key neces-
sary to create a network connection that is authenticated and secured by the Transport Layer
Security (TLS) protocol — without the application ever ‘seeing’ the key.

The Cryptoki or PKCS #11 standard defines a platform-independent API to manage and use cryp-
tographic tokens. The name, “PKCS #11”, is used interchangeably to refer to the API itself and
the standard which defines it.

This repository contains a software based mock implementation of the PKCS #11 interface (API)
that uses the cryptographic functionality provided by Mbed TLS. Using a software mock enables
rapid development and flexibility, but it is expected that the mock be replaced by an implemen-
tation specific to your chosen secure key storage in production devices.

Only a subset of the PKCS #11 standard is implemented, with a focus on operations involving
asymmetric keys, random number generation, and hashing.

The targeted use cases include certificate and key management for TLS authentication and code-
sign signature verification, on small embedded devices.

corePKCS11 is implemented on PKCS #11 v2.4.0, the full PKCS #11 standard can be found on the
oasis website.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations from mandatory rules in the MISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. Thislibrary has also undergone both static code analysis from Coverity static analysis
and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.
corePKCS11 v3.5.0 source code is part of the FreeRTOS 202210.00 LTS release.
corePKCS11 v3.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

452 Chapter 4. RTOS

https://en.wikipedia.org/wiki/PKCS_11
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/corePKCS11/tree/v3.5.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/corePKCS11/tree/v3.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00

Purpose Generally vendors for secure cryptoprocessors such as Trusted Platform Module
(TPM), Hardware Security Module (HSM), Secure Element, or any other type of secure hard-
ware enclave, distribute a PKCS #11 implementation with the hardware. The purpose of the
corePKCS11 software only mock library is therefore to provide a non hardware specific PKCS
#11 implementation that allows for rapid prototyping and development before switching to a
cryptoprocessor specific PKCS #11 implementation in production devices.

Since the PKCS #11 interface is defined as part of the PKCS #11 specification replacing this li-
brary with another implementation should require little porting effort, as the interface will not
change. The system tests distributed in this repository can be leveraged to verify the behavior
of a different implementation is similar to corePKCS11.

corePKCS11 Configuration The corePKCS11 library exposes preprocessor macros which must
be defined prior to building the library. A list of all the configurations and their default values
are defined in the doxygen documentation for this library.

Build Prerequisites

Library Usage For building the library the following are required:
* A C99 compiler
* mbedcrypto library from mbedtls version 2.x or 3.x.
* pkes11 API header(s) available from OASIS or OpenSC

Optionally, variables from the pkcsFilePaths.cmake file may be referenced if your project uses
cmake.

Integration and Unit Tests In order to run the integration and unit test suites the following
are dependencies are necessary:

* C Compiler
CMake 3.13.0 or later
* Ruby 2.0.0 or later required by CMock.

* Python 3 required for configuring mbedtls.
* git required for fetching dependencies.
* GNU Make or Ninja

The mbedtls, CMock, and Unity libraries are downloaded and built automatically using the cmake
FetchContent feature.

Coverage Measurement and Instrumentation The following software is required to run the
coverage target:

e Linux, MacOS, or another POSIX-like environment.

» A recent version of GCC or Clang with support for gcov-like coverage instrumentation.
* gcov binary corresponding to your chosen compiler

* Icov from the Linux Test Project

» perl needed to run the Icov utility.

Coverage builds are validated on recent versions of Ubuntu Linux.

4.1. FreeRTOS 453

https://en.wikipedia.org/wiki/Trusted_Platform_Module
https://en.wikipedia.org/wiki/Hardware_security_module
https://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://github.com/ARMmbed/mbedtls
https://github.com/oasis-tcs/pkcs11
https://github.com/OpenSC/libp11/blob/master/src/pkcs11.h
https://github.com/linux-test-project/lcov

MCUXpresso SDK Documentation, Release 25.09.00

Running the Integration and Unit Tests
1. Navigate to the root directory of this repository in your shell.
2. Run cmake to construct a build tree: cmake -S test -B build

* You may specify your preferred build tool by appending -G'Unix Makefiles' or -GNinja
to the command above.

* You may append -DUNIT__TESTS=0 or -DSYSTEM_ TESTS=0 to disable Unit Tests or
Integration Tests respectively.

3. Build the test binaries: cmake --build ./build --target all

4. Run ctest --test-dir ./build or cmake --build . /build --target test to run the tests without captur-
ing coverage.

5. Run cmake --build ./build —-target coverage to run the tests and capture coverage data.

CBMC To learn more about CBMC and proofs specifically, review the training material here.
The test/cbme/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Reference examples The FreeRTOS-Labs repository contains demos using the PKCS #11 li-
brary here using FreeRTOS on the Windows simulator platform. These can be used as reference
examples for the library APIL

Porting Guide Documentation for porting corePKCS11 to a new platform can be found on the
AWS docs web page.

corePKCS11 is not meant to be ported to projects that have a TPM, HSM, or other hardware for
offloading crypto-processing. This library is specifically meant to be used for development and

prototyping.

Related Example Implementations These projects implement the PKCS #11 interface on real
hardware and have similar behavior to corePKCS11. It is preferred to use these, over coreP-
KCS11, as they allow for offloading Cryptography to separate hardware.

* ARM’s Platform Security Architecture.
* Microchip’s cryptoauthlib.
* Infineon’s Optiga Trust X.

Documentation

Existing Documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location

AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of corePKCS11 may differ across repositories.

454 Chapter 4. RTOS

https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://github.com/FreeRTOS/FreeRTOS-Labs/tree/master/FreeRTOS-Plus/Demo/FreeRTOS_Plus_PKCS11_Windows_Simulator/examples
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-pkcs.html
https://github.com/Linaro/freertos-pkcs11-psa
https://github.com/MicrochipTech/cryptoauthlib
https://github.com/aws/amazon-freertos/blob/main/vendors/infineon/secure_elements/pkcs11/iot_pkcs11_trustx.c
https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/corePKCS11/docs/doxygen/output/html/index.html

MCUXpresso SDK Documentation, Release 25.09.00

Generating Documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Security See CONTRIBUTING for more information.

License This library is licensed under the MIT-0 License. See the LICENSE file.

4.1.9 freertos-plus-tcp

Open source RTOS FreeRTOS Plus TCP.

Readme

MCUXpresso SDK: FreeRTOS-Plus-TCP Library This repository is a fork of FreeRTOS-Plus-TCP
library (https://github.com/FreeRTOS/freertos-plus-tcp)(4.3.3). Modifications have been made to
adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable FreeRTOS-Plus-TCP
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

FreeRTOS-Plus-TCP Library FreeRTOS-Plus-TCP is a lightweight TCP/IP stack for FreeRTOS. It
provides a familiar Berkeley sockets interface, making it as simple to use and learn as possi-
ble. FreeRTOS-Plus-TCP’s features and RAM footprint are fully scalable, making FreeRTOS-Plus-
TCP equally applicable to smaller lower throughput microcontrollers as well as larger higher
throughput microprocessors.

This library has undergone static code analysis and checks for compliance with the MISRA cod-
ing standard. Any deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. The library is validated for memory safety and data structure invariance through
the CBMC automated reasoning tool for the functions that parse data originating from the net-
work. The library is also protocol tested using Maxwell protocol tester for both IPv4 and IPv6.

FreeRTOS-Plus-TCP Library V4.2.2 source code is part of the FreeRTOS 202406.01 LTS re-
lease.

Getting started The easiest way to use version 4.0.0 and later of FreeRTOS-Plus-TCP is to refer
the Getting started Guide (found here) Another way is to start with the pre-configured IPv4 Win-
dows Simulator demo (found in this directory) or IPv6 Multi-endpoint Windows Simulator demo
(found in this directory). That way you will have the correct FreeRTOS source files included, and
the correct include paths configured. Once a demo application is building and executing you can
remove the demo application files, and start to add in your own application source files. See the
FreeRTOS Kernel Quick Start Guide for detailed instructions and other useful links.

Additionally, for FreeRTOS-Plus-TCP source code organization refer to the Documentation, and
API Reference.

4.1. FreeRTOS 455

https://www.misra.org.uk/
https://www.misra.org.uk/
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/MISRA.md
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/MISRA.md
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/tree/V4.2.2/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202406.01-LTS
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/GettingStarted.md
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/FreeRTOS_Plus_TCP_Minimal_Windows_Simulator
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/FreeRTOS_Plus_TCP_IPv6_Demo/IPv6_Multi_WinSim_demo
https://www.freertos.org/Documentation/01-FreeRTOS-quick-start/01-Beginners-guide/02-Quick-start-guide
http://www.FreeRTOS.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/TCP_Networking_Tutorial.html
https://freertos.org/Documentation/03-Libraries/02-FreeRTOS-plus/02-FreeRTOS-plus-TCP/09-API-reference/01-FreeRTOS-plus-TCP-APIs

MCUXpresso SDK Documentation, Release 25.09.00

Getting help If you have any questions or need assistance troubleshooting your FreeRTOS
project, we have an active community that can help on the FreeRTOS Community Support Forum.
Please also refer to FAQ for frequently asked questions.

Also see the Submitting a bugs/feature request section of CONTRIBUTING.md for more details.

Note: All the remaining sections are generic and applies to all the versions from V3.0.0 onwards.

Upgrading to V4.3.0 and above For users of STM32 network interfaces:

Starting from version V4.3.0, the STM32 network interfaces have been consolidated into a sin-
gle unified implementation located at source /portable/NetworkInterface/STM32/NetworkInterface.c,
supporting STM32 F4, F7, and H7 series microcontrollers, with newly added support for STM32
H5. The new interface has been tested with the STM32 HAL Ethernet (ETH) drivers, avail-
able at source/portable/NetworkInterface/STM32/Drivers. For compatibility, the legacy interfaces
(STM32Fxx and STM32Hxx) have been retained and relocated to source/portable/NetworkInterface/
STM32/Legacy.

Upgrading to V3.0.0 and V3.1.0 In version 3.0.0 or 3.1.0, the folder structure of FreeRTOS-Plus-
TCP has changed and the files have been broken down into smaller logically separated mod-
ules. This change makes the code more modular and conducive to unit-tests. FreeRTOS-Plus-TCP
V3.0.0 improves the robustness, security, and modularity of the library. Version 3.0.0 adds com-
prehensive unit test coverage for all lines and branches of code and has undergone protocol
testing, and penetration testing by AWS Security to reduce the exposure to security vulnerabili-
ties. Additionally, the source files have been moved to a source directory. This change requires
modification of any existing project(s) to include the modified source files and directories.

FreeRTOS-Plus-TCP V3.1.0 source code(.c .h) is part of the FreeRTOS 202210.00 LTS release.

Generating pre V3.0.0 folder structure for backward compatibility: If you wish to continue
using a version earlier than V3.0.0 i.e. continue to use your existing source code organization, a
script is provided to generate the folder structure similar to this.

Note: After running the script, while the .c files will have same names as the pre V3.0.0 source,
the files in the include directory will have different names and the number of files will differ as
well. This should, however, not pose any problems to most projects as projects generally include
all files in a given directory.

Running the script to generate pre V3.0.0 folder structure: For running the script, you will need
Python version > 3.7. You can download/install it from here.

Once python is downloaded and installed, you can verify the version from your termi-
nal/command window by typing python --version.

To run the script, you should switch to the FreeRTOS-Plus-TCP directory Then run python <Path/
to/the/script>/GenerateOriginalFiles.py.

To consume FreeRTOS+TCP

Consume with CMake If using CMake, it is recommended to use this repository using Fetch-
Content. Add the following into your project’s main or a subdirectory’s CMakeLists.txt:

 Define the source and version/tag you want to use:

FetchContent_ Declare(freertos_ plus_ tcp
GIT_REPOSITORY https://github.com/FreeRTOS /FreeRTOS-Plus-TCP.git
GIT_TAG main #Note: Best practice to use specific git-hash or tagged version
(continues on next page)

456 Chapter 4. RTOS

https://forums.freertos.org
https://www.freertos.org/Why-FreeRTOS/FAQs
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/.github/CONTRIBUTING.md#submitting-a-bugsfeature-request
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/tree/V3.1.0
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/tree/f118c8415b4373e3d6e6dbd2d5a116f7eaf27b63
https://www.python.org/downloads/

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
GIT_SUBMODULES ”” # Don't grab any submodules since not latest
)

* Configure the FreeRTOS-Kernel and make it available

— this particular example supports a native and cross-compiled build option.

Select the native compile PORT
set(FREERTOS_PLUS_TCP_NETWORK_IF "POSIX” CACHE STRING ”” FORCE)
Or: select a cross-compile PORT
if (CMAKE__CROSSCOMPILING)
Eg. STM32Hxx version of port
set(FREERTOS_PLUS_TCP_NETWORK_IF "STM32HXX” CACHE STRING ”” FORCE)
endif()

FetchContent_ MakeAvailable(freertos_plus_ tep)

Consuming stand-alone This repository uses Git Submodules to bring in dependent compo-
nents.

Note: If you download the ZIP file provided by GitHub U, you will not get the contents of the
submodules. (The ZIP file is also not a valid Git repository)

To clone using HTTPS:

git clone https://github.com/FreeRTOS /FreeRTOS-Plus-TCP git ./FreeRTOS-Plus-TCP
cd ./FreeRTOS-Plus-TCP

git submodule update --checkout --init --recursive tools/CMock test/FreeRTOS-Kernel
Using SSH:

git clone git@github.com:FreeRTOS/FreeRTOS-Plus-TCP.git ./FreeRTOS-Plus-TCP
cd ./FreeRTOS-Plus-TCP
git submodule update --checkout --init --recursive tools/CMock test/FreeRTOS-Kernel

Porting The porting guide is available on this page.

Repository structure This repository contains the FreeRTOS-Plus-TCP repository and a num-
ber of supplementary libraries for testing/PR Checks. Below is the breakdown of what each di-
rectory contains:

* tools

— This directory contains the tools and related files (CMock/uncrustify) required to run
tests/checks on the TCP source code.

* tests

— This directory contains all the tests (unit tests and CBMC) and the dependencies
(FreeRTOS-Kernel/Litani-port) the tests require.

* source/portable

— This directory contains the portable files required to compile the FreeRTOS-Plus-TCP
source code for different hardware/compilers.

* source/include
— The include directory has all the ‘core’ header files of FreeRTOS-Plus-TCP source.

* source

4.1. FreeRTOS 457

https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://www.freertos.org/Documentation/03-Libraries/02-FreeRTOS-plus/02-FreeRTOS-plus-TCP/10-Porting/01-FreeRTOS_TCP_Porting
https://github.com/FreeRTOS/FreeRTOS-Kernel
https://github.com/awslabs/aws-build-accumulator

MCUXpresso SDK Documentation, Release 25.09.00

— This directory contains all the [.c] source files.

Note At this time it is recommended to use BufferAllocation_2.c in which case it is essential to
use the heap_4.c memory allocation scheme. See memory management.

Kernel sources The FreeRTOS Kernel Source is in FreeRTOS/FreeRTOS-Kernel repository, and
it is consumed by testing/PR checks as a submodule in this repository.

The version of the FreeRTOS Kernel Source in use could be accessed at ./test/FreeRTOS-Kernel
directory.

CBMC The test/cbme/proofs directory contains CBMC proofs.
To learn more about CBMC and proofs specifically, review the training material here.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

458 Chapter 4. RTOS

http://www.FreeRTOS.org/a00111.html
https://github.com/FreeRTOS/FreeRTOS-Kernel
https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html

	EVK-MIMX8MQ
	Overview
	Getting Started with MCUXpresso SDK Package
	Getting Started with Package
	Overview
	MCUXpresso SDK board support folders
	Example application structure
	Locating example application source files

	Toolchain introduction
	Compiler/Debugger

	Run a demo application using IAR
	Build an example application
	Run an example application

	Run a demo using Arm GCC
	Linux OS host
	Set up toolchain
	Install GCC Arm embedded tool chain
	Add a new system environment variable for ARMGCC_DIR
	Build an example application
	Run an example application

	Windows OS host
	Set up toolchain
	Install GCC Arm Embedded tool chain
	Add a new system environment variable for ARMGCC_DIR
	Build an example application
	Run an example application

	Running an application by U-Boot
	How to determine COM port
	How to define IRQ handler in CPP files
	Host setup

	Getting Started with MCUXpresso SDK GitHub
	Getting Started with MCUXpresso SDK Repository
	Installation
	Install Prerequisites with MCUXpresso Installer
	Alternative: Manual Installation
	Basic tools
	Git
	Python
	West
	Build And Configuration System
	CMake
	Ninja
	Kconfig
	Ruby
	Toolchain
	Tool installation check

	Get MCUXpresso SDK Repo
	Establish SDK Workspace
	Install Python Dependency(If do tool installation manually)

	Explore Contents
	Folder View
	Examples Project

	Run a demo using MCUXpresso for VS Code
	Build an example application
	Run an example application

	Running a demo using ARMGCC CLI/IAR/MDK
	Supported Boards
	Build the project
	Sysbuild(System build)

	Config a Project
	Flash
	Debug
	Work with IDE Project

	Release Notes
	MCUXpresso SDK Release Notes
	Overview
	MCUXpresso SDK
	Development tools
	Supported development systems
	MCUXpresso SDK release package
	Device support
	Board support
	Demo application and other examples

	RTOS
	FreeRTOS

	Middleware
	CMSIS DSP Library
	USB Type-C PD Stack
	USB Host, Device, OTG Stack
	TinyCBOR
	PKCS#11
	Multicore
	llhttp
	FreeMASTER

	Release contents
	Known issues
	Cannot add SDK components into FreeRTOS projects
	The freertos_lpuart example does not complete successfully

	ChangeLog
	MCUXpresso SDK Changelog
	Board Support Files
	board
	[25.06.00]

	clock_config
	[25.06.00]

	pin_mux
	[25.06.00]

	CACHE LMEM
	[2.1.0]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	COMMON
	[2.6.0]
	[2.5.0]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.10]
	[2.2.9]
	[2.2.8]
	[2.2.7]
	[2.2.6]
	[2.2.5]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	ECSPI
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	GPIO
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	GPT
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	I2C
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	MCM
	[2.2.0]
	[2.1.0]
	[2.0.0]

	MU
	[2.3.0]
	[2.2.0]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	PWM
	[2.0.1]
	[2.0.0]

	QSPI
	[2.3.1]
	[2.3.0]
	[2.2.5]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	RDC
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	RDC_SEMA42
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	SAI
	[2.4.9]
	[2.4.8]
	[2.4.7]
	[2.4.6]
	[2.4.5]
	[2.4.4]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.8]
	[2.3.7]
	[2.3.6]
	[2.3.5]
	[2.3.4]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.9]
	[2.1.8]
	[2.1.7]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	SEMA4
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	SNVS_HP
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	SNVS_LP
	[2.4.6]
	[2.4.5]
	[2.4.4]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.0]
	[2.2.0]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	TMU
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	UART
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.1]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	WDOG
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	Driver API Reference Manual
	Middleware Documentation
	Multicore
	FreeMASTER
	FreeRTOS

	MIMX8MQ6
	CACHE: LMEM CACHE Memory Controller
	Clock
	MIPI CSI2 RX: MIPI CSI2 RX Driver
	ECSPI: Enhanced Configurable Serial Peripheral Interface Driver
	ECSPI Driver
	ECSPI SDMA Driver
	GPC: General Power Controller Driver
	GPIO: General-Purpose Input/Output Driver
	GPT: General Purpose Timer
	I2C: Inter-Integrated Circuit Driver
	I2C Driver
	Iomuxc_driver
	IRQSTEER: Interrupt Request Steering Driver
	Common Driver
	LCDIF: LCD interface
	MCM: Miscellaneous Control Module
	MIPI DSI Driver
	MIPI_DSI: MIPI DSI Host Controller
	MU: Messaging Unit
	OCOTP: On Chip One-Time Programmable controller.
	PWM: Pulse Width Modulation Driver
	QSPI: Quad Serial Peripheral Interface
	Quad Serial Peripheral Interface Driver
	RDC: Resource Domain Controller
	RDC_SEMA42: Hardware Semaphores Driver
	SAI: Serial Audio Interface
	SAI Driver
	SAI SDMA Driver
	SDMA: Smart Direct Memory Access (SDMA) Controller Driver
	SEMA4: Hardware Semaphores Driver
	SNVS: Secure Non-Volatile Storage
	Secure Non-Volatile Storage High-Power
	Secure Non-Volatile Storage Low-Power
	SPDIF: Sony/Philips Digital Interface
	SRC: System Reset Controller Driver
	TMU: Thermal Management Unit Driver
	UART: Universal Asynchronous Receiver/Transmitter Driver
	UART Driver
	UART FreeRTOS Driver
	UART SDMA Driver
	USDHC: Ultra Secured Digital Host Controller Driver
	WDOG: Watchdog Timer Driver

	Middleware
	Motor Control
	FreeMASTER
	Introduction
	What is FreeMASTER?
	Driver version 3
	Target platforms
	Replacing existing drivers
	Clocks, pins, and peripheral initialization
	MCUXpresso SDK
	MCUXpresso SDK on GitHub
	FreeMASTER in Zephyr

	Example applications
	MCUX SDK Example applications
	Zephyr sample spplications

	Description
	Features
	Board Detection
	Memory Read
	Memory Write
	Masked Memory Write
	Oscilloscope
	Recorder
	TSA
	TSA Safety
	Application commands
	Pipes
	Serial single-wire operation
	Multi-session support
	Zephyr-specific
	Dedicated communication task
	Zephyr shell and logging over FreeMASTER pipe
	Automatic TSA tables

	Driver files
	Driver configuration
	Configurable items
	Interrupt modes
	Value Type
	Description
	Protocol transport
	Value Type
	Description
	Serial transport
	FMSTR_SERIAL_DRV
	Value Type
	Description
	FMSTR_SERIAL_BASE
	Value Type
	Description
	FMSTR_COMM_BUFFER_SIZE
	Value Type
	Description
	FMSTR_COMM_RQUEUE_SIZE
	Value Type
	Description
	FMSTR_SERIAL_SINGLEWIRE
	Value Type
	Description
	CAN Bus transport
	FMSTR_CAN_DRV
	Value Type
	Description
	FMSTR_CAN_BASE
	Value Type
	Description
	FMSTR_CAN_CMDID
	Value Type
	Description
	FMSTR_CAN_RSPID
	Value Type
	Description
	FMSTR_FLEXCAN_TXMB
	Value Type
	Description
	FMSTR_FLEXCAN_RXMB
	Value Type
	Description
	Network transport
	FMSTR_NET_DRV
	Value Type
	Description
	FMSTR_NET_PORT
	Value Type
	Description
	FMSTR_NET_BLOCKING_TIMEOUT
	Value Type
	Description
	FMSTR_NET_AUTODISCOVERY
	Value Type
	Description
	Debugging options
	FMSTR_DISABLE
	Value Type
	Description
	FMSTR_DEBUG_TX
	Value Type
	Description
	FMSTR_APPLICATION_STR
	Value Type
	Description
	Memory access
	FMSTR_USE_READMEM
	Value Type
	Description
	FMSTR_USE_WRITEMEM
	Value Type
	Description
	Oscilloscope options
	FMSTR_USE_SCOPE
	Value Type
	Description
	FMSTR_MAX_SCOPE_VARS
	Value Type
	Description
	Recorder options
	FMSTR_USE_RECORDER
	Value Type
	Description
	FMSTR_REC_BUFF_SIZE
	Value Type
	Description
	FMSTR_REC_TIMEBASE
	Value Type
	Description
	FMSTR_REC_FLOAT_TRIG
	Value Type
	Description
	Application Commands options
	FMSTR_USE_APPCMD
	Value Type
	Description
	FMSTR_APPCMD_BUFF_SIZE
	Value Type
	Description
	FMSTR_MAX_APPCMD_CALLS
	Value Type
	Description
	TSA options
	FMSTR_USE_TSA
	Value Type
	Description
	FMSTR_USE_TSA_SAFETY
	Value Type
	Description
	FMSTR_USE_TSA_INROM
	Value Type
	Description
	FMSTR_USE_TSA_DYNAMIC
	Value Type
	Description
	Pipes options
	FMSTR_USE_PIPES
	Value Type
	Description
	FMSTR_MAX_PIPES_COUNT
	Value Type
	Description

	Driver interrupt modes
	Completely Interrupt-Driven operation
	Mixed Interrupt and Polling Modes
	Completely Poll-driven

	Data types
	Communication interface initialization
	FreeMASTER Recorder calls
	Driver usage
	Communication troubleshooting

	Driver API
	Control API
	FMSTR_Init
	Prototype
	Description
	FMSTR_Poll
	Prototype
	Description
	FMSTR_SerialIsr / FMSTR_CanIsr
	Prototype
	Description

	Recorder API
	FMSTR_RecorderCreate
	Prototype
	Description
	FMSTR_Recorder
	Prototype
	Description
	FMSTR_RecorderTrigger
	Prototype
	Description

	Fast Recorder API
	TSA Tables
	TSA table definition
	TSA descriptor parameters
	TSA variable types
	TSA table list
	TSA Active Content entries

	TSA API
	FMSTR_SetUpTsaBuff
	Prototype
	Arguments
	Description
	FMSTR_TsaAddVar
	Prototype
	Arguments
	Description

	Application Commands API
	FMSTR_GetAppCmd
	Prototype
	Description
	FMSTR_GetAppCmdData
	Prototype
	Arguments
	Description
	FMSTR_AppCmdAck
	Prototype
	Arguments
	Description
	FMSTR_AppCmdSetResponseData
	Prototype
	Arguments
	Description
	FMSTR_RegisterAppCmdCall
	Prototype
	Arguments
	Return value
	Description

	Pipes API
	FMSTR_PipeOpen
	Prototype
	Arguments
	Description
	FMSTR_PipeClose
	Prototype
	Arguments
	Description
	FMSTR_PipeWrite
	Prototype
	Arguments
	Description
	FMSTR_PipeRead
	Prototype
	Arguments
	Description

	API data types
	Public common types
	Public TSA types
	Public Pipes types
	Internal types

	Document references
	Links
	Documents
	Revision history

	RTOS
	FreeRTOS
	FreeRTOS kernel
	FreeRTOS kernel for MCUXpresso SDK Readme
	FreeRTOS kernel for MCUXpresso SDK
	Overview
	FreeRTOS example applications
	List of examples
	Location of examples
	Building a FreeRTOS example application
	FreeRTOS aware debugger plugin

	FreeRTOS kernel for MCUXpresso SDK ChangeLog
	Changelog FreeRTOS kernel for MCUXpresso SDK
	[Unreleased]
	Added
	[11.1.0_rev0]
	[11.0.1_rev0]
	[10.5.1_rev0]
	[10.4.3_rev1]
	[10.4.3_rev0]
	[10.4.3_rev0]
	[9.0.0_rev3]
	[9.0.0_rev2]
	[9.0.0_rev1]
	[9.0.0_rev0]
	[8.2.3]

	FreeRTOS kernel Readme
	MCUXpresso SDK: FreeRTOS kernel
	Getting started
	Getting help
	To consume FreeRTOS-Kernel
	Consume with CMake
	Consuming stand-alone - Cloning this repository
	Repository structure
	Code Formatting
	Line Endings
	Git History Optimizations
	Spelling and Formatting

	FreeRTOS drivers
	backoffalgorithm
	Readme
	MCUXpresso SDK: backoffAlgorithm Library
	backoffAlgorithm Library
	Reference example
	Building the library
	Building unit tests
	Checkout Unity Submodule
	Platform Prerequisites
	Steps to build Unit Tests
	Contributing

	corehttp
	MCUXpresso SDK: coreHTTP Client Library
	coreHTTP Client Library
	coreHTTP Config File
	Building the Library
	Building Unit Tests
	Platform Prerequisites
	Steps to build Unit Tests

	CBMC
	Reference examples
	Documentation
	Existing Documentation
	Generating Documentation

	Contributing

	corejson
	Readme
	MCUXpresso SDK: coreJSON Library
	coreJSON Library
	Reference example
	Building coreJSON
	Documentation
	Existing documentation
	Generating documentation
	Building unit tests
	Checkout Unity Submodule
	Platform Prerequisites
	Steps to build Unit Tests
	CBMC
	Contributing

	coremqtt
	MCUXpresso SDK: coreMQTT Library
	coreMQTT Client Library
	MQTT Config File
	Sending metrics to AWS IoT
	Upgrading to v2.0.0 and above
	Building the Library
	Building Unit Tests
	Checkout CMock Submodule
	Platform Prerequisites
	Steps to build Unit Tests

	CBMC
	Reference examples
	Documentation
	Existing Documentation
	Generating Documentation

	Contributing

	coremqtt-agent
	Readme
	MCUXpresso SDK: coreMQTT Agent Library
	coreMQTT Agent Library
	Cloning this repository
	coreMQTT Agent Library Configurations
	Porting the coreMQTT Agent Library
	Messaging Interface
	Additional Considerations
	Static Memory
	Subscription Management
	Building the Library
	Building Unit Tests
	Checkout CMock Submodule
	Unit Test Platform Prerequisites
	Steps to build Unit Tests
	CBMC
	Reference examples
	Documentation
	Generating documentation
	Getting help
	Contributing
	License

	corepkcs11
	Readme
	MCUXpresso SDK: corePKCS11 Library
	corePKCS11 Library
	Purpose
	corePKCS11 Configuration
	Build Prerequisites
	Library Usage
	Integration and Unit Tests
	Coverage Measurement and Instrumentation
	Running the Integration and Unit Tests
	CBMC
	Reference examples
	Porting Guide
	Related Example Implementations
	Documentation
	Existing Documentation
	Generating Documentation
	Security
	License

	freertos-plus-tcp
	Readme
	MCUXpresso SDK: FreeRTOS-Plus-TCP Library
	FreeRTOS-Plus-TCP Library
	Getting started
	Getting help
	Upgrading to V4.3.0 and above
	Upgrading to V3.0.0 and V3.1.0
	Generating pre V3.0.0 folder structure for backward compatibility:
	To consume FreeRTOS+TCP
	Consume with CMake
	Consuming stand-alone
	Porting
	Repository structure
	Note
	Kernel sources
	CBMC

