
MCUXpresso SDK Documentation
Release 25.09.00

NXP
Sep 19, 2025

Table of contents

1 EVK-MIMX8MQ 3
1.1 Overview . 3
1.2 Getting Started with MCUXpresso SDK Package . 3

1.2.1 Getting Started with Package . 3
1.3 Getting Started with MCUXpresso SDK GitHub . 24

1.3.1 Getting Started with MCUXpresso SDK Repository 24
1.4 Release Notes . 37

1.4.1 MCUXpresso SDK Release Notes . 37
1.5 ChangeLog . 41

1.5.1 MCUXpresso SDK Changelog . 41
1.6 Driver API Reference Manual . 67
1.7 Middleware Documentation . 67

1.7.1 Multicore . 67
1.7.2 FreeMASTER . 67
1.7.3 FreeRTOS . 67

2 MIMX8MQ6 69
2.1 CACHE: LMEM CACHE Memory Controller . 69
2.2 Clock . 70
2.3 MIPI CSI2 RX: MIPI CSI2 RX Driver . 101
2.4 ECSPI: Enhanced Configurable Serial Peripheral Interface Driver 108
2.5 ECSPI Driver . 108
2.6 ECSPI SDMA Driver . 121
2.7 GPC: General Power Controller Driver . 124
2.8 GPIO: General-Purpose Input/Output Driver . 126
2.9 GPT: General Purpose Timer . 130
2.10 I2C: Inter-Integrated Circuit Driver . 138
2.11 I2C Driver . 138
2.12 Iomuxc_driver . 150
2.13 IRQSTEER: Interrupt Request Steering Driver . 166
2.14 Common Driver . 171
2.15 LCDIF: LCD interface . 183
2.16 MCM: Miscellaneous Control Module . 195
2.17 MIPI DSI Driver . 199
2.18 MIPI_DSI: MIPI DSI Host Controller . 217
2.19 MU: Messaging Unit . 217
2.20 OCOTP: On Chip One-Time Programmable controller. 227
2.21 PWM: Pulse Width Modulation Driver . 230
2.22 QSPI: Quad Serial Peripheral Interface . 236
2.23 Quad Serial Peripheral Interface Driver . 236
2.24 RDC: Resource Domain Controller . 249
2.25 RDC_SEMA42: Hardware Semaphores Driver . 255
2.26 SAI: Serial Audio Interface . 258
2.27 SAI Driver . 258
2.28 SAI SDMA Driver . 281
2.29 SDMA: Smart Direct Memory Access (SDMA) Controller Driver 284

i

2.30 SEMA4: Hardware Semaphores Driver . 302
2.31 SNVS: Secure Non-Volatile Storage . 305
2.32 Secure Non-Volatile Storage High-Power . 305
2.33 Secure Non-Volatile Storage Low-Power . 314
2.34 SPDIF: Sony/Philips Digital Interface . 320
2.35 SRC: System Reset Controller Driver . 334
2.36 TMU: Thermal Management Unit Driver . 337
2.37 UART: Universal Asynchronous Receiver/Transmitter Driver 342
2.38 UART Driver . 342
2.39 UART FreeRTOS Driver . 358
2.40 UART SDMA Driver . 358
2.41 USDHC: Ultra Secured Digital Host Controller Driver 360
2.42 WDOG: Watchdog Timer Driver . 387

3 Middleware 393
3.1 Motor Control . 393

3.1.1 FreeMASTER . 393

4 RTOS 431
4.1 FreeRTOS . 431

4.1.1 FreeRTOS kernel . 431
4.1.2 FreeRTOS drivers . 437
4.1.3 backoffalgorithm . 437
4.1.4 corehttp . 440
4.1.5 corejson . 442
4.1.6 coremqtt . 445
4.1.7 coremqtt-agent . 448
4.1.8 corepkcs11 . 452
4.1.9 freertos-plus-tcp . 455

ii

MCUXpresso SDK Documentation, Release 25.09.00

This documentation contains information specific to the evkmimx8mq board.

Table of contents 1

MCUXpresso SDK Documentation, Release 25.09.00

2 Table of contents

Chapter 1

EVK-MIMX8MQ

1.1 Overview

The i.MX 8MQuad family of boards provides a powerful and flexible development system for
NXP’s Cortex-M4 MCUs.

MCU device and part on board is shown below:

• Device: MIMX8MQ6

• PartNumber: MIMX8MQ6DVAJZ

1.2 Getting Started with MCUXpresso SDK Package

1.2.1 Getting Started with Package

Overview

The NXP MCUXpresso software and tools offer comprehensive development solutions designed
to optimize, ease and help accelerate embedded system development of applications based on
general purpose, crossover and Bluetooth-enabled MCUs from NXP. The MCUXpresso SDK in-
cludes a flexible set of peripheral drivers designed to speed up and simplify development of
embedded applications. Along with the peripheral drivers, the MCUXpresso SDK provides an
extensive and rich set of example applications covering everything from basic peripheral use

3

MCUXpresso SDK Documentation, Release 25.09.00

case examples to demo applications. The MCUXpresso SDK also contains optional RTOS inte-
grations such as FreeRTOS and Azure RTOS, and device stack to support rapid development on
devices.

For supported toolchain versions, seeMCUXpresso SDKReleaseNotes Supporting i.MX8MDevices
(document MCUXSDKIMX8MRN).

For the latest version of this and other MCUXpresso SDK documents, see the MCUXpresso SDK
homepage MCUXpresso-SDK: Software Development Kit for MCUXpresso.

|

|

MCUXpresso SDK board support folders

MCUXpresso SDK board support provides example applications for NXP development and eval-
uation boards for Arm Cortex-M cores. Board support packages are found inside of the top level
boards folder, and each supported board has its own folder (MCUXpresso SDK package can sup-
portmultiple boards). Within each<board_name> folder there are various sub-folders to classify
the type of examples they contain. These include (but are not limited to):

• cmsis_driver_examples: Simple applications intended to concisely illustrate how to use CM-
SIS drivers.

• demo_apps: Full-featured applications intended to highlight key functionality and use cases
of the targetMCU. These applications typically usemultipleMCUperipherals andmay lever-
age stacks and middleware.

• driver_examples: Simple applications intended to concisely illustrate how to use the MCUX-
presso SDK’s peripheral drivers for a single use case.

• rtos_examples: Basic FreeRTOSTMOS examples showcasing the use of various RTOS objects
(semaphores, queues, and so on) and interfacing with the MCUXpresso SDK’s RTOS drivers

• multicore_examples: Simple applications intended to concisely illustrate how to use middle-
ware/multicore stack.

Example application structure This section describes how the various types of example ap-
plications interact with the other components in the MCUXpresso SDK. To get a comprehensive
understanding of all MCUXpresso SDK components and folder structure, see MCUXpresso SDK
API Reference Manual.

4 Chapter 1. EVK-MIMX8MQ

http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.09.00

Each <board_name> folder in the boards directory contains a comprehensive set of examples
that are relevant to that specific piece of hardware. Although we use the hello_world exam-
ple (part of the demo_apps folder), the same general rules apply to any type of example in the
<board_name> folder.

In the hello_world application folder you see the following contents:

|

|

All files in the application folder are specific to that example, so it is easy to copy and paste an
existing example to start developing a custom application based on a project provided in the
MCUXpresso SDK.

Parent topic:MCUXpresso SDK board support folders

Locating example application source files When opening an example application in any of
the supported IDEs, a variety of source files are referenced. The MCUXpresso SDK devices folder
is the central component to all example applications. It means the examples reference the same
source files and, if one of these files is modified, it could potentially impact the behavior of other
examples.

The main areas of the MCUXpresso SDK tree used in all example applications are:

• devices/<device_name>: The device’s CMSIS header file, MCUXpresso SDK feature file and
a few other files

• devices/<device_name>/cmsis_drivers: All the CMSIS drivers for your specific MCU

• devices/<device_name>/drivers: All of the peripheral drivers for your specific MCU

• devices/<device_name>/<tool_name>: Toolchain-specific startup code, including vector ta-
ble definitions

• devices/<device_name>/utilities: Items such as the debug console that are used by many of
the example applications

• devices/<devices_name>/project: Project template used in CMSIS PACK new project creation

For examples containing an RTOS, there are references to the appropriate source code. RTOSes
are in the rtos folder. The core files of each of these are shared, so modifying one could have
potential impacts on other projects that depend on that file.

Parent topic:MCUXpresso SDK board support folders

Toolchain introduction

TheMCUXpresso SDK release for i.MX 8MDevices includes the build system to be usedwith some
toolchains. In this chapter, the toolchain support is presented and detailed.

1.2. Getting Started with MCUXpresso SDK Package 5

MCUXpresso SDK Documentation, Release 25.09.00

Compiler/Debugger The release supports building and debugging with the toolchains listed in
Table 1.

The user can choose the appropriate one for development.

• Arm GCC + SEGGER J-Link GDB Server. This is a command line tool option and it supports
both Windows OS and Linux OS.

• IAR EmbeddedWorkbench for Armand SEGGER J-Link software. The IAR EmbeddedWork-
bench is an IDE integrated with editor, compiler, debugger, and other components. The
SEGGER J-Link software provides the driver for the J-Link Plus debugger probe and sup-
ports the device to attach, debug, and download.

Com-
piler/Debugger

Supported host
OS

Debug
probe

Tool website

ArmGCC/J-Link
GDB server

Windows
OS/Linux OS

J-Link
Plus

developer.arm.com/open-source/gnu-
toolchain/gnu-rm

www.segger.com

| |IAR/J-Link|Windows OS|J-Link Plus|www.iar.com

www.segger.com

|

Download the corresponding tools for the specific host OS from the website.

Note: To support i.MX 8MDual/8MQuad, the patch for IAR should be installed. The patch named
iar_support_patch_imx8mq.zip can be used with MCUXpresso SDK. See the readme.txt in the
patch for additional information about patch installation.

Parent topic:Toolchain introduction

Run a demo application using IAR

This section describes the steps required to build, run, and debug example applications pro-
vided in theMCUXpresso SDK. The hello_world demo application targeted for theMIMX8MQ-EVK
hardware platform is used as an example, although these steps can be applied to any example
application in the MCUXpresso SDK.

Build an example application Do the following steps to build the hello_world example appli-
cation.

1. Open the desired demo application workspace. Most example application workspace files
can be located using the following path:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/iar

Using the MIMX8MQ-EVK hardware platform as an example, the hello_world workspace is
located in;

<install_dir>/boards/evkmimx8mq/demo_apps/hello_world/iar/hello_world.eww

Other example applications may have additional folders in their path.

2. Select the desired build target from the drop-down menu.

For this example, select hello_world – debug.

6 Chapter 1. EVK-MIMX8MQ

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm
http://www.segger.com
https://www.iar.com
http://www.segger.com
https://www.nxp.com/webapp/sps/download/license.jsp?colCode=SDK_MX8MQ_3RDPARTY_Patch&appType=file1&DOWNLOAD_ID=null

MCUXpresso SDK Documentation, Release 25.09.00

|

|

3. To build the demo application, clickMake, highlighted in red in Figure 2.

|

|

4. The build completes without errors.

Parent topic:Run a demo application using IAR

Run an example application To download and run the application, perform these steps:

1. This board supports the J-Link PLUS debug probe. Before using it, install SEGGER J-Link
software, which can be downloaded from http://www.segger.com/downloads/jlink/.

2. Connect the development platform to your PC via USB cable between the USB-UARTMICRO
USB connector and the PC USB connector, then connect 12 V power supply and J-Link Plus
to the device.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug COM port (to determine the COM port number, see How to determine COM port).
Configure the terminal with these settings:

1. 115200 baud rate

2. No parity

3. 8 data bits

4. 1 stop bit

1.2. Getting Started with MCUXpresso SDK Package 7

http://www.segger.com/downloads/jlink/

MCUXpresso SDK Documentation, Release 25.09.00

|

|

4. In IAR, click Download and Debug to download the application to the target.

|

|

5. The application then downloads to the target and automatically runs to themain() function.

|

|

6. Run the code by clicking Go to start the application.

8 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

|

|

7. The hello_world application now runs and a banner appears on the terminal. If this does
not occur, check your terminal settings and connections.

|

|

Note: For converting the DDR target elf to bin, run the following commands (take git bash console as␣
↪→example).
1. For the elf file built by Arm GCC:
$ <ARMGCC PATH>/bin/arm-none-eabi-objcopy.exe -Obinary --remove-section=.stacktop_and_pc

↪→<hello_world_<mcore type>.elf> <hello_world_<mcore type>.bin>

2. For the elf/out file built by IAR:
$ <ARMGCC PATH>/bin/arm-none-eabi-objcopy.exe --remove-section=.stacktop_and_pc hello_world_

↪→<mcore type>.elf hello_world_<mcore type>_stripped.elf
$ <IAR PATH>/arm/bin/ielftool.exe --bin hello_world_<mcore type>_stripped.elf hello_world_<mcore␣

↪→type>.bin

Parent topic:Run a demo application using IAR

Run a demo using Arm GCC

This section describes the steps to configure the command line Arm GCC tools to build, run, and
debug demo applications and necessary driver libraries provided in the MCUXpresso SDK. The
hello_world demo application targeted for i.MX 8M Quad platform is used as an example, though
these steps can be applied to any board, demo or example application in the MCUXpresso SDK.

Linux OS host The following sections provide steps to run a demo compiled with Arm GCC on
Linux host.

Set up toolchain This section contains the steps to install the necessary components required
to build and run aMCUXpresso SDK demo application with the Arm GCC toolchain, as supported
by the MCUXpresso SDK.

Install GCC Arm embedded tool chain Download and run the installer from
launchpad.net/gcc-arm-embedded. This is the actual toolset (in other words, compiler, linker,

1.2. Getting Started with MCUXpresso SDK Package 9

https://launchpad.net/gcc-arm-embedded

MCUXpresso SDK Documentation, Release 25.09.00

and so on). The GCC toolchain should correspond to the latest supported version, as described
in theMCUXpresso SDK Release Notes (document MCUXSDKRN).

Note: See Host setup for Linux OS before compiling the application.

Parent topic:Set up toolchain

Add a new system environment variable for ARMGCC_DIR Create a new system environ-
ment variable and name it ARMGCC_DIR. The value of this variable should point to the Arm
GCC Embedded tool chain installation path. For this example, the path is:

$ export ARMGCC_DIR=/work/platforms/tmp/gcc-arm-none-eabi-7-2017-q4-major

$ export PATH= $PATH:/work/platforms/tmp/gcc-arm-none-eabi-7-2017-q4-major/bin

Parent topic:Set up toolchain

Parent topic:Linux OS host

Build an example application To build an example application, follow these steps.

1. Change the directory to the example application project directory, which has a path similar
to the following:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc

For this example, the exact path is: <install_dir>/boards/evkmimx8mq/demo_apps/
hello_world/armgcc

2. Run the build_debug.sh script on the command line to perform the build. The output is
shown as below:

$./build_debug.sh
-- TOOLCHAIN_DIR: /work/platforms/tmp/gcc-arm-none-eabi-7-2017-q4-major
-- BUILD_TYPE: debug
-- TOOLCHAIN_DIR: /work/platforms/tmp/gcc-arm-none-eabi-7-2017-q4-major
-- BUILD_TYPE: debug
-- The ASM compiler identification is GNU
-- Found assembler: /work/platforms/tmp/gcc-arm-none-eabi-7-2017-q4-major/bin/arm-none-eabi-gcc
-- Configuring done
-- Generating done
-- Build files have been written to:
/work/platforms/tmp/nxp/SDK_2.3.0_EVK-MIMX8MQ/boards/evkmimx8mq/demo_apps/hello_
↪→world/armgcc
Scanning dependencies of target hello_world.elf
\[6%\] Building C object CMakeFiles/hello_world.elf.dir/work/platforms/tmp/nxp/SDK_2.3.0_
↪→EVK-MIMX8MQ/boards/evkmimx8mq/demo_apps/hello_world/hello_world.c.obj
< -- skipping lines -- >
[100%] Linking C executable debug/hello_world.elf
[100%] Built target hello_world.elf

Parent topic:Linux OS host

Run an example application This section describes steps to run a demo application using J-
Link GDB Server application.

After the J-Link interface is configured and connected, follow these steps to download and run
the demo applications:

1. Connect the development platform to your PC via USB cable between the USB-UART con-
nector and the PC USB connector. If using a standalone J-Link debug pod, also connect it to
the SWD/JTAG connector of the board.

10 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

2. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug serial port number (to determine the COM port number, see How to determine COM
port). Configure the terminal with these settings:

1. 115200 baud rate, depending on your board (reference
BOARD_DEBUG_UART_BAUDRATE variable in the board.h file)

2. No parity

3. 8 data bits

4. 1 stop bit

|

|

3. Open the J-Link GDB Server application. Assuming the J-Link software is installed, the ap-
plication can be launched from a new terminal for the MIMX8MQ6_M4 device:

$ JLinkGDBServer -if JTAG -device MIMX8MQ6_M4
SEGGER J-Link GDB Server V6.22a Command Line Version
JLinkARM.dll V6.22g \(DLL compiled Jan 17 2018 16:40:32\)
Command line: -if JTAG -device MIMX8MQ6_M4
-----GDB Server start settings-----
GDBInit file: none
GDB Server Listening port: 2331
SWO raw output listening port: 2332
Terminal I/O port: 2333

(continues on next page)

1.2. Getting Started with MCUXpresso SDK Package 11

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
Accept remote connection: yes
< -- Skipping lines -- >
Target connection timeout: 0 ms
------J-Link related settings------
J-Link Host interface: USB
J-Link script: none
J-Link settings file: none
------Target related settings------
Target device: MIMX8MQ6_M4
Target interface: JTAG
Target interface speed: 1000 kHz
Target endian: little
Connecting to J-Link...
J-Link is connected.
Firmware: J-Link V10 compiled Jan 11 2018 10:41:05
Hardware: V10.10
S/N: 600101610
Feature(s): RDI, FlashBP, FlashDL, JFlash, GDB
Checking target voltage...
Target voltage: 3.39 V
Listening on TCP/IP port 2331
Connecting to target...
J-Link found 1 JTAG device, Total IRLen = 4
JTAG ID: 0x5BA00477 \(Cortex-M4\)
Connected to target
Waiting for GDB connection...

4. Change to the directory that contains the example application output. The output can be
found in using one of these paths, depending on the build target selected:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/debug

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/release

For this example, the path is:

<install_dir\>/boards/evkmimx8mq/demo_apps/hello_world/armgcc/debug

5. Start the GDB client:

$ arm-none-eabi-gdb hello_world.elf
GNU gdb (GNU Tools for Arm Embedded Processors 7-2017-q4-major) 8.0.50.20171128-git
Copyright (C) 2017 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type ”show copying”
and ”show warranty” for details.
This GDB was configured as ”--host=x86_64-linux-gnu --target=arm-none-eabi”.
Type ”show configuration” for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type ”help”.
Type ”apropos word” to search for commands related to ”word”...
Reading symbols from hello_world.elf...
(gdb)

6. Connect to the GDB server and load the binary by running the following commands:

1. target remote localhost:2331

2. monitor reset

3. monitor halt

12 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

4. load

(gdb) target remote localhost:2331
Remote debugging using localhost:2331
0x1ffe0008 in __isr_vector \(\)
(gdb) monitor reset
Resetting target
(gdb) monitor halt
(gdb) load
Loading section .interrupts, size 0x240 lma 0x1ffe0000
Loading section .text, size 0x3858 lma 0x1ffe0240
Loading section .ARM, size 0x8 lma 0x1ffe3a98
Loading section .init_array, size 0x4 lma 0x1ffe3aa0
Loading section .fini_array, size 0x4 lma 0x1ffe3aa4
Loading section .data, size 0x64 lma 0x1ffe3aa8
Start address 0x1ffe02f4, load size 15116
Transfer rate: 81 KB/sec, 2519 bytes/write.
\(gdb\)

The application is now downloaded and halted at the reset vector. Execute the monitor go com-
mand to start the demo application.

(gdb) monitor go

The hello_world application is now running and a banner is displayed on the terminal. If this is
not true, check your terminal settings and connections.

|

|

Parent topic:Linux OS host
Parent topic:Run a demo using Arm GCC

Windows OS host The following sections provide steps to run a demo compiled with Arm GCC
on Windows OS host.

Set up toolchain This section contains the steps to install the necessary components required
to build and run a MCUXpresso SDK demo application with the Arm GCC toolchain on Windows
OS, as supported by the MCUXpresso SDK.

1.2. Getting Started with MCUXpresso SDK Package 13

MCUXpresso SDK Documentation, Release 25.09.00

Install GCC Arm Embedded tool chain Download and run the installer from GNU Arm Em-
bedded Toolchain. This is the actual toolset (in other words, compiler, linker, and so on). The
GCC toolchain should correspond to the latest supported version, as described in MCUXpresso
SDK Release Notes.

Note: See Appendix B for Windows OS before compiling the application.

Parent topic:Set up toolchain

Add a new system environment variable for ARMGCC_DIR Create a new system environ-
ment variable and name it ARMGCC_DIR. The value of this variable should point to the Arm
GCC Embedded tool chain installation path.

Reference the installation folder of the GNU Arm GCC Embedded tools for the exact path name.

Parent topic:Set up toolchain

Parent topic:Windows OS host

Build an example application To build an example application, follow these steps.

1. Change the directory to the example application project directory, which has a path similar
to the following:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/<core_instance>/armgcc

For this example, the exact path is: <install_dir>/boards/evkmimx8mq/demo_apps/hello_world/armgcc

Note: To change directories, use the ‘cd’ command.

2. Open a GCC Arm Embedded tool chain command window. To launch the window, from
the Windows operating system Start menu, go to “Programs -> GNU Tools ARM Embedded
<version>” and select “GCC Command Prompt”.

|

|

3. Type “build_debug.bat” on the command line or double click on the “build_debug.bat” file
in Windows Explorer to perform the build. The output is shown in this figure:

|

|

Parent topic:Windows OS host

Run an example application This section describes steps to run a demo application using J-
Link GDB Server application.

After the J-Link interface is configured and connected, follow these steps to download and run
the demo applications:

14 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

1. Connect the development platform to your PC via USB cable between the USB-UART con-
nector and the PC USB connector. If using a standalone J-Link debug pod, also connect it to
the SWD/JTAG connector of the board.

2. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug serial port number (to determine the COM port number, see Appendix A). Configure
the terminal with these settings:

1. 115200 baud rate

2. No parity

3. 8 data bits

4. 1 stop bit

|

|

3. Open the J-LinkGDBServer application. Assuming the J-Link software is installed, the appli-
cation can be launched by going to theWindows operating system Start menu and selecting
“Programs -> SEGGER -> J-Link <version> J-Link GDB Server”.

4. Modify the settings as shown below. The target device selection chosen for this example is
the MIMX8MQ6_M4.

5. After it is connected, the screen should resemble this figure:

1.2. Getting Started with MCUXpresso SDK Package 15

MCUXpresso SDK Documentation, Release 25.09.00

|

|

|![](../images/5_2_3_segger_j-link_gdb_server_screen_after_succes.png ”SEGGER J-Link GDB server␣
↪→screen after successful connection”)

|

6. If not already running, open a GCCArmEmbedded tool chain commandwindow. To launch
the window, from theWindows operating system Start menu, go to “Programs -> GNU Tools
ARM Embedded <version>” and select “GCC Command Prompt”.

|

|

7. Change to the directory that contains the example application output. The output can be
found in using one of these paths, depending on the build target selected:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/debug

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/release

For this example, the path is:

<install_dir>/boards/evkmimx8mq/demo_apps/hello_world/armgcc/debug

8. Run the command “arm-none-eabi-gdb.exe <application_name>.elf”. For this example, it is
“arm-none-eabi-gdb.exe hello_world.elf”.

16 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

|

|

9. Run these commands:

1. “target remote localhost:2331”

2. “monitor reset”

3. “monitor halt”

4. “load”

10. The application is now downloaded and halted at the reset vector. Execute the “monitor
go” command to start the demo application.

The hello_world application is now running and a banner is displayed on the terminal. If
this is not true, check your terminal settings and connections.

|

|

Parent topic:Windows OS host

Parent topic:Run a demo using Arm GCC

1.2. Getting Started with MCUXpresso SDK Package 17

MCUXpresso SDK Documentation, Release 25.09.00

Running an application by U-Boot

This section describes the steps towrite a bootable SDK bin file to TCMor DRAMwith the prebuilt
U-Boot image for the i.MX processor. The following steps describe how to use the U-Boot:

1. Connect theDEBUGUART slot on the board to your PC through theUSB cable. TheWindows
OS installs the USB driver automatically, and the Ubuntu OS finds the serial devices as well.

2. On Windows OS, open the device manager, find USB serial Port in Ports (COM and LPT).
Assume that the ports are COM9 and COM10. One port is for the debug message from the
Cortex-A53 and the other is for the Cortex-M7. The port number is allocated randomly,
so opening both is beneficial for development. On Ubuntu OS, find the TTY device with
name /dev/ttyUSB* to determine your debug port. Similar to Windows OS, opening both is
beneficial for development.

|

|

3. Build the application (for example, hello_world) to get the bin file (hello_world.bin).

4. Prepare an SD card with the prebuilt U-Boot image and copy bin file (hello_world.bin) into
the SD card. Then, insert the SD card to the target board. Make sure to use the default boot
SD slot and check the dipswitch configuration.

5. Open your preferred serial terminals for the serial devices, setting the speed to 115200 bps,
8 data bits, 1 stop bit (115200, 8N1), no parity, then power on the board.

6. Power on the board and hit any key to stop autoboot in the terminals, then enter to U-Boot
command line mode. You can then write the image and run it from TCM or DRAMwith the

18 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

following commands:

1. If the hello_world.bin is made from the debug/release target, which means the binary
file will run at TCM, use the following commands to boot:

• fatload mmc 1:1 0x48000000 hello_world.bin

• cp.b 0x48000000 0x7e0000 0x20000

• bootaux 0x7e0000

2. If the hello_world.bin is made from the ddr_debug/ddr_release target, which means the
binary file runs at DRAM, use the following commands:

• fatload mmc 1:1 0x80000000 hello_world.bin

• dcache flush

• bootaux 0x80000000Note: Form4 examples under the ddr target with Core A kernel
boot, change the Linux dtb file specifically in U-Boot before the kernel starts. Use
the following command:

setenv fdtfile fsl-imx8mq-evk-m4.dtb
save

Note: For Linux release version L5.15.71-2.2.0 and later, the run prepare_mcore command
must run before the bootaux command.

|

|

|![](../images/u_boot_command_to_run_application_on_dram.png ”U-Boot command to run application␣
↪→on DRAM”)

|

1.2. Getting Started with MCUXpresso SDK Package 19

MCUXpresso SDK Documentation, Release 25.09.00

7. Open another terminal application on the PC, such as PuTTY and connect to the debug COM
port (to determine the COM port number, see How to determine COM port). Configure the
terminal with these settings:

• 115200

• No parity

• 8 data bits

• 1 stop bit

8. The hello_world application is now running and a banner is displayed on the terminal. If
this is not true, check your terminal settings and connections.

|

|

How to determine COM port

This section describes the steps necessary to determine the debug COMport number of your NXP
hardware development platform.

1. To determine the COM port, open the Windows operating system Device Manager. This
can be achieved by going to the Windows operating system Start menu and typing Device
Manager in the search bar, as shown in Figure 1.

20 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

|

|

2. In theDeviceManager, expand the Ports (COM&LPT) section to view the available ports.
Depending on the NXP board you’re using, the COM port can be named differently.

1. USB-UART interface

|

1.2. Getting Started with MCUXpresso SDK Package 21

MCUXpresso SDK Documentation, Release 25.09.00

|

How to define IRQ handler in CPP files

With MCUXpresso SDK, users could define their own IRQ handler in application level to

override the default IRQ handler. For example, to override the default PIT_IRQHandler define
in startup_DEVICE.s, application code like app.c can be implement like:

c
void PIT_IRQHandler(void)
{

// Your code
}

When application file is CPP file, like app.cpp, then extern ”C” should be used to ensure the func-
tion prototype alignment.

cpp
extern ”C” {

void PIT_IRQHandler(void);
}
void PIT_IRQHandler(void)
{

// Your code
}

Host setup

AnMCUXpresso SDK build requires that some packages are installed on the Host. Depending on
the used Host operating system, the following tools should be installed.

Linux:
• Cmake

$ sudo apt-get install cmake
$ # Check the version >= 3.0.x
$ cmake –-version

Windows:
• MinGW

TheMinimalist GNU forWindows OS (MinGW) development tools provide a set of tools that
are not dependent on third party C-RuntimeDLLs (such as Cygwin). The build environment
used by the SDK does not utilize the MinGW build tools, but does leverage the base install
of both MinGW and MSYS. MSYS provides a basic shell with a Unix-like interface and tools.

1. Download the latest MinGW mingw-get-setup installer from source-
forge.net/projects/mingw/files/Installer/.

2. Run the installer. The recommended installation path is C:\MinGW, however, youmay
install to any location.

Note: The installation path cannot contain any spaces.

3. Ensure thatmingw32-base andmsys-base are selected under Basic Setup.

22 Chapter 1. EVK-MIMX8MQ

http://sourceforge.net/projects/mingw/files/Installer/
http://sourceforge.net/projects/mingw/files/Installer/

MCUXpresso SDK Documentation, Release 25.09.00

|

|

4. Click **Apply Changes** in the **Installation** menu and follow the remaining instructions to complete␣
↪→the installation.

|

|

5. Add the appropriate item to the Windows operating system path environment variable. It can be found␣
↪→under **Control Panel**-\>**System and Security**-\>**System**-\>**Advanced System Settings** in␣
↪→the **Environment Variables...** section. The path is: `<mingw_install_dir>\bin`.

Assuming the default installation path, `C:\MinGW`, an example is as shown in [Figure 3](host_setup.md
↪→#ADDINGPATH). If the path is not set correctly, the toolchain does not work.

Note: If you have `C:\MinGW\msys\x.x\bin` in your PATH variable \(as required by KSDK 1.0.0\),␣
↪→remove it to ensure that the new GCC build system works correctly.

|

|

• Cmake

1. Download CMake 3.0.x from www.cmake.org/cmake/resources/software.html.

2. Install CMake, ensuring that the option Add CMake to system PATH is selected when
installing. The user chooses to select whether it is installed into the PATH for all users
or just the current user. In this example, it is installed for all users.

1.2. Getting Started with MCUXpresso SDK Package 23

http://www.cmake.org/cmake/resources/software.html

MCUXpresso SDK Documentation, Release 25.09.00

|

|

3. Follow the remaining instructions of the installer.
4. You may need to reboot your system for the PATH changes to take effect.

1.3 Getting Started with MCUXpresso SDK GitHub

1.3.1 Getting Started with MCUXpresso SDK Repository

Installation

NOTE
If the installation instruction asks/selects whether to have the tool installation path added to
the PATH variable, agree/select the choice. This option ensures that the tool can be used in any
terminal in any path. Verify the installation after each tool installation.

Install Prerequisites with MCUXpresso Installer The MCUXpresso Installer offers a quick
and easy way to install the basic tools needed. The MCUXpresso Installer can be obtained from
https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Dependency-Installation. The MCUX-
presso Installer is an automated installation process, simply select MCUXpresso SDK Developer
from the menu and click install. If you prefer to install the basic tools manually, refer to the next
section.

24 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

Alternative: Manual Installation

Basic tools

Git Git is a free and open source distributed version control system. Git is designed to handle
everything from small to large projects with speed and efficiency. To install Git, visit the official
Git website. Download the appropriate version(you may use the latest one) for your operating
system (Windows, macOS, Linux). Then run the installer and follow the installation instructions.

User git --version to check the version if you have a version installed.

Then configure your username and email using the commands:

git config --global user.name ”Your Name”
git config --global user.email ”youremail@example.com”

Python Install python 3.10 or latest. Follow the Python Download guide.

Use python --version to check the version if you have a version installed.

West Please use the west version equal or greater than 1.2.0

Note: you can add option '--default-timeout=1000' if you meet connection issue. Or you may set a different␣
↪→source using option '-i'.
for example, in China you could try: pip install -U west -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install -U west

1.3. Getting Started with MCUXpresso SDK GitHub 25

https://git-scm.com/
https://wiki.python.org/moin/BeginnersGuide/Download

MCUXpresso SDK Documentation, Release 25.09.00

Build And Configuration System

CMake It is strongly recommended to use CMake version equal or later than 3.30.0. You can get
latest CMake distributions from the official CMake download page.

For Windows, you can directly use the .msi installer like cmake-3.31.4-windows-x86_64.msi to
install.

For Linux, CMake can be installed using the system packagemanager or by getting binaries from
the official CMake download page.

After installation, you can use cmake --version to check the version.

Ninja Please use the ninja version equal or later than 1.12.1.

By default, Windows comes with the Ninja program. If the default Ninja version is too old, you
can directly download the ninja binary and register the ninja executor location path into your
system path variable to work.

For Linux, you can use your system package manager or you can directly download the ninja
binary to work.

After installation, you can use ninja --version to check the version.

Kconfig MCUXpresso SDK uses Kconfig python implementation. We customize it based on our
needs and integrate it into our build and configuration system. The Kconfiglib sources are placed
under mcuxsdk/scripts/kconfig folder.

Please make sure python environment is setup ready then you can use the Kconfig.

Ruby Our build system supports IDE project generation for iar, mdk, codewarrior and xtensa
to provide OOBE from build to debug. This feature is implemented with ruby. You can follow
the guide ruby environment setup to setup the ruby environment. Since we provide a built-in
portable ruby, it is just a simple one cmd installation.

If you only work with CLI, you can skip this step.

Toolchain MCUXpresso SDK supports all mainstream toolchains for embedded development.
You can install your used or interested toolchains following the guides.

Toolchain Download and Installation Guide Note
Armgcc Arm GNU Toolchain Install Guide ARMGCC is default

toolchain
IAR IAR Installation and Licensing quick ref-

erence guide
MDK MDK Installation

Armclang Installing Arm Compiler for Embedded

Zephyr Zephyr SDK

Codewarrior NXP CodeWarrior

Xtensa Tensilica Tools

NXP S32Compiler RISC-
V Zen-V

NXP Website

26 Chapter 1. EVK-MIMX8MQ

https://cmake.org/download/
https://github.com/Kitware/CMake/releases/download/v3.31.4/cmake-3.31.4-windows-x86_64.msi
https://cmake.org/download/
https://github.com/ninja-build/ninja/releases
https://github.com/ninja-build/ninja/wiki/Pre-built-Ninja-packages
https://github.com/ninja-build/ninja/releases
https://github.com/ninja-build/ninja/releases
https://learn.arm.com/install-guides/gcc/arm-gnu/
https://www.iar.com/siteassets/knowledge/support/tech-notes/qr_lms2.pdf
https://www.iar.com/siteassets/knowledge/support/tech-notes/qr_lms2.pdf
https://developer.arm.com/documentation/109350/v6/Installation?lang=en
https://developer.arm.com/documentation/100748/0618/Getting-Started/Installing-Arm-Compiler-for-Embedded
https://docs.zephyrproject.org/latest/develop/toolchains/zephyr_sdk.html
https://www.nxp.com/design/design-center/software/development-software/codewarrior-development-tools:CW_HOME
https://tensilicatools.com/platforms/
https://www.nxp.com/search?keyword=NXP%2520S32Compiler%2520RISC-V&start=0

MCUXpresso SDK Documentation, Release 25.09.00

After you have installed the toolchains, register them in the system environment variables. This
will allow the west build to recognize them:

Toolchain Environ-
ment
Variable

Example Cmd
Line Ar-
gument

Armgcc AR-
MGCC_DIR

C:\armgcc for windows/usr for Linux. Typically
arm-none-eabi-* is installed under /usr/bin

–
toolchain
armgcc

IAR IAR_DIR C:\iar\ewarm-9.60.3 for Windows/opt/iarsystems/
bxarm-9.60.3 for Linux

–
toolchain
iar

MDK MDK_DIR C:\Keil_v5 for Windows.MDK IDE is not officially sup-
ported with Linux.

–
toolchain
mdk

Armclang ARM-
CLANG_DIR

C:\ArmCompilerforEmbedded6.22 for Windows/opt/
ArmCompilerforEmbedded6.21 for Linux

–
toolchain
mdk

Zephyr ZEPHYR_SDK_INSTALL_DIRc:\NXP\zephyr-sdk-<version> for windows/opt/
zephyr-sdk-<version> for Linux

–
toolchain
zephyr

CodeWar-
rior

CW_DIR C:\Freescale\CW MCU v11.2 for windowsCodeWarrior is
not supported with Linux

–
toolchain
code-
warrior

Xtensa XCC_DIR C:\xtensa\XtDevTools\install\tools\RI-2023.11-win32\
XtensaTools for windows/opt/xtensa/XtDevTools/
install/tools/RI-2023.11-Linux/XtensaTools for Linux

–
toolchain
xtensa

NXP
S32Compiler
RISC-V
Zen-V

RISCVL-
LVM_DIR

C:\riscv-llvm-win32_b298_b298_2024.08.12 for Win-
dows/opt/riscv-llvm-Linux-x64_b298_b298_2024.08.12
for Linux

–
toolchain
riscvl-
lvm

• The <toolchain>_DIR is the root installation folder, not the binary location folder. For IAR,
it is directory containing following installation folders:

• MDK IDE using armclang toolchain only officially supports Windows. In Linux, please di-
rectly use armclang toolchain by setting ARMCLANG_DIR. In Windows, since most Keil
users will install MDK IDE instead of standalone armclang toolchain, the MDK_DIR has
higher priority than ARMCLANG_DIR.

• For Xtensa toolchain, please set the XTENSA_CORE environment variable. Here’s an ex-
ample list:

1.3. Getting Started with MCUXpresso SDK GitHub 27

MCUXpresso SDK Documentation, Release 25.09.00

Device Core XTENSA_CORE
RT500 fusion1 nxp_rt500_RI23_11_newlib
RT600 hifi4 nxp_rt600_RI23_11_newlib
RT700 hifi1 rt700_hifi1_RI23_11_nlib
RT700 hifi4 t700_hifi4_RI23_11_nlib
i.MX8ULP fusion1 fusion_nxp02_dsp_prod

• In Windows, the short path is used in environment variables. If any toolchain is using
the long path, you can open a command window from the toolchain folder and use below
command to get the short path: for %i in (.) do echo %~fsi

Tool installation check Once installed, open a terminal or command prompt and type the
associated command to verify the installation.

If you see the version number, you have successfully installed the tool. Else, check whether the
tool’s installation path is added into the PATH variable. You can add the installation path to the
PATH with the commands below:

• Windows: Open command prompt or powershell, run below command to show the user
PATH variable.

reg query HKEY_CURRENT_USER\Environment /v PATH

The tool installation path should be C:\Users\xxx\AppData\Local\Programs\Git\cmd. If the
path is not seen in the output from above, append the path value to the PATH variable with
the command below:

reg add HKEY_CURRENT_USER\Environment /v PATH /d ”%PATH%;C:\Users\xxx\AppData\
↪→Local\Programs\Git\cmd”

Then close the command prompt or powershell and verify the tool command again.

• Linux:

1. Open the $HOME/.bashrc file using a text editor, such as vim.

2. Go to the end of the file.

3. Add the line which appends the tool installation path to the PATH variable and export
PATH at the end of the file. For example, export PATH=”/Directory1:$PATH”.

4. Save and exit.

5. Execute the script with source .bashrc or reboot the system to make the changes live. To
verify the changes, run echo $PATH.

• macOS:

1. Open the $HOME/.bash_profile file using a text editor, such as nano.

2. Go to the end of the file.

3. Add the line which appends the tool installation path to the PATH variable and export
PATH at the end of the file. For example, export PATH=”/Directory1:$PATH”.

4. Save and exit.

5. Execute the script with source .bash_profile or reboot the system to make the changes
live. To verify the changes, run echo $PATH.

28 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

Get MCUXpresso SDK Repo

Establish SDK Workspace To get the MCUXpresso SDK repository, use the west tool to clone
the manifest repository and checkout all the west projects.

Initialize west with the manifest repository
west init -m https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/ mcuxpresso-sdk

Update the west projects
cd mcuxpresso-sdk
west update

Allow the usage of west extensions provided by MCUXpresso SDK
west config commands.allow_extensions true

Install Python Dependency(If do tool installation manually) To create a Python virtual en-
vironment in the west workspace core repo directory mcuxsdk, follow these steps:

1. Navigate to the core directory:

cd mcuxsdk

2. [Optional] Create and activate the virtual environment: If you don’t want to use the python
virtual environment, skip this step. We strongly suggest you use venv to avoid conflicts
with other projects using python.

python -m venv .venv

For Linux/MacOS
source .venv/bin/activate

For Windows
.\.venv\Scripts\activate
If you are using powershell and see the issue that the activate script cannot be run.
You may fix the issue by opening the powershell as administrator and run below command:
powershell Set-ExecutionPolicy RemoteSigned
then run above activate command again.

Once activated, your shell will be prefixed with (.venv). The virtual environment can be
deactivated at any time by running deactivate command.

Remember to activate the virtual environment every time you start working in this
directory. If you are using some modern shell like zsh, there are some powerful plugins to
help you auto switch venv among workspaces. For example, zsh-autoswitch-virtualenv.

3. Install the required Python packages:

Note: you can add option '--default-timeout=1000' if you meet connection issue. Or you may set a␣
↪→different source using option '-i'.
for example, in China you could try: pip3 install -r mcuxsdk/scripts/requirements.txt -i https://pypi.
↪→tuna.tsinghua.edu.cn/simple
pip install -r scripts/requirements.txt

Explore Contents

This section helps you build basic understanding of current fundamental project content and
guides you how to build and run the provided example project in whole SDK delivery.

1.3. Getting Started with MCUXpresso SDK GitHub 29

https://github.com/MichaelAquilina/zsh-autoswitch-virtualenv

MCUXpresso SDK Documentation, Release 25.09.00

Folder View The whole MCUXpresso SDK project, after you have done the west init and west
update operations follow the guideline at Getting Started Guide, have below folder structure:

Folder Description
mani-
fests

Manifest repo, contains the manifest file to initialize and update the west
workspace.

mcuxsdk The MCUXpresso SDK source code, examples, middleware integration and script
files.

All the projects record in the Manifest repo are checked out to the folder mcuxsdk/, the layout of
mcuxsdk folder is shown as below:

Folder Description
arch Arch related files such as ARM CMSIS core files, RISC-V files and the build files related

to the architecture.
cmake The cmake modules, files which organize the build system.
com-
po-
nents

Software components.

de-
vices

Device support package which categorized by device series. For each device, header
file, feature file, startup file and linker files are provided, also device specific drivers
are included.

docs Documentation source and build configuration for this sphinx built online documen-
tation.

drivers Peripheral drivers.
ex-
am-
ples

Various demos and examples, support files on different supported boards. For each
board support, there are board configuration files.

mid-
dle-
ware

Middleware components integrated into SDK.

rtos Rtos components integrated into SDK.
scripts Script files for the west extension command and build system support.
svd Svd files for devices, this is optional because of large size. Customers runwest manifest

config group.filter +optional and west update mcux-soc-svd to get this folder.

Examples Project The examples project is part of the whole SDK delivery, and locates in the
folder mcuxsdk/examples of west workspace.

Examples files are placed in folder of <example_category>, these examples include (but are not
limited to)

• demo_apps: Basic demo set to start using SDK, including hello_world and led_blinky.

• driver_examples: Simple applications that show how to use the peripheral drivers for a
single use case. These applications typically only use a single peripheral but there are cases
where multiple peripherals are used (for example, SPI transfer using DMA).

Board porting layers are placed in folder of _boards/<board_name>which aims at providing the
board specific parts for examples code mentioned above.

Run a demo using MCUXpresso for VS Code

This section explains how to configureMCUXpresso for VS Code to build, run, and debug example
applications. This guide uses the hello_world demo application as an example. However, these

30 Chapter 1. EVK-MIMX8MQ

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests

MCUXpresso SDK Documentation, Release 25.09.00

steps can be applied to any example application in the MCUXpresso SDK.

Build an example application This section assumes that the user has already obtained the
SDK as outlined in Get MCUXpresso SDK Repo.

To build an example application:

1. Import the SDK into your workspace. Click Import Repository from the QUICKSTART
PANEL.

Note: You can import the SDK in several ways. Refer to MCUXpresso for VS Code Wiki for
details.

Select Local if you’ve already obtained the SDK as seen inGetMCUXpresso SDK Repo. Select
your location and click Import.

2. Click Import Example from Repository from the QUICKSTART PANEL.

In the dropdown menu, select the MCUXpresso SDK, the Arm GNU Toolchain, your board,
template, and application type. Click Import.

1.3. Getting Started with MCUXpresso SDK GitHub 31

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Working-with-MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.09.00

Note: The MCUXpresso SDK projects can be imported as Repository applications or Free-
standing applications. The difference between the two is the import location. Projects im-
ported as Repository examples will be located inside the MCUXpresso SDK, whereas Free-
standing examples can be imported to a user-defined location. Select between these by
designating your selection in the App type dropdown menu.

3. VS Code will prompt you to confirm if the imported files are trusted. Click Yes.
4. Navigate to the PROJECTS view. Find your project and click the Build Project icon.

The integrated terminal will open at the bottom and will display the build output.

32 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

Run an example application Note: for full details on MCUXpresso for VS Code debug probe
support, see MCUXpresso for VS Code Wiki.

1. Open the Serial Monitor from the VS Code’s integrated terminal. Select the VCom Port for
your device and set the baud rate to 115200.

2. Navigate to the PROJECTS view and click the play button to initiate a debug session.

The debug session will begin. The debug controls are initially at the top.

1.3. Getting Started with MCUXpresso SDK GitHub 33

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/DebugK

MCUXpresso SDK Documentation, Release 25.09.00

.

3. Click Continue on the debug controls to resume execution of the code. Observe the output
on the Serial Monitor.

Running a demo using ARMGCC CLI/IAR/MDK

Supported Boards Use the west extension west list_project to understand the board support
scope for a specified example. All supported build command will be listed in output:

west list_project -p examples/demo_apps/hello_world [-t armgcc]

INFO: [1][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evk9mimx8ulp -Dcore_id=cm33]
INFO: [2][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkbimxrt1050]
INFO: [3][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣

(continues on next page)

34 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
↪→evkbmimxrt1060]
INFO: [4][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkbmimxrt1170 -Dcore_id=cm4]
INFO: [5][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkbmimxrt1170 -Dcore_id=cm7]
INFO: [6][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkcmimxrt1060]
INFO: [7][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkmcimx7ulp]
...

The supported toolchains andbuild targets for an example are decidedby the example-self exam-
ple.yml and board example.yml, please refer Example Toolchains and Targets for more details.

Build the project Usewest build -h to see help information for west build command. Compared
to zephyr’s west build, MCUXpresso SDK’s west build command provides following additional
options for mcux examples:

• --toolchain: specify the toolchain for this build, default armgcc.

• --config: value for CMAKE_BUILD_TYPE. If not provided, build system will get all the ex-
ample supported build targets and use the first debug target as the default one. Please refer
Example Toolchains and Targets for more details about example supported build targets.

Here are some typical usages for generating a SDK example:

Generate example with default settings, default used device is the mainset MK22F51212
west build -b frdmk22f examples/demo_apps/hello_world

Just print cmake commands, do not execute it
west build -b frdmk22f examples/demo_apps/hello_world --dry-run

Generate example with other toolchain like iar, default armgcc
west build -b frdmk22f examples/demo_apps/hello_world --toolchain iar

Generate example with other config type
west build -b frdmk22f examples/demo_apps/hello_world --config release

Generate example with other devices with --device
west build -b frdmk22f examples/demo_apps/hello_world --device MK22F12810 --config release

For multicore devices, you shall specify the corresponding core id by passing the command line
argument -Dcore_id. For example

west build -b evkbmimxrt1170 examples/demo_apps/hello_world --toolchain iar -Dcore_id=cm7 --config␣
↪→flexspi_nor_debug

For shield, please use the --shield to specify the shield to run, like

west build -b mimxrt700evk --shield a8974 examples/issdk_examples/sensors/fxls8974cf/fxls8974cf_poll -
↪→Dcore_id=cm33_core0

Sysbuild(System build) To support multicore project building, we ported Sysbuild from
Zephyr. It supports combine multiple projects for compilation. You can build all projects by
adding --sysbuild for main application. For example:

west build -b evkbmimxrt1170 --sysbuild ./examples/multicore_examples/hello_world/primary -Dcore_
↪→id=cm7 --config flexspi_nor_debug --toolchain=armgcc -p always

For more details, please refer to System build.

1.3. Getting Started with MCUXpresso SDK GitHub 35

MCUXpresso SDK Documentation, Release 25.09.00

Config a Project Example in MCUXpresso SDK is configured and tested with pre-defined con-
figuration. You can follow steps blow to change the configuration.

1. Run cmake configuration

west build -b evkbmimxrt1170 examples/demo_apps/hello_world -Dcore_id=cm7 --cmake-only -p

Please note the project will be built without --cmake-only parameter.

2. Run guiconfig target

west build -t guiconfig

Then you will get the Kconfig GUI launched, like

You can reconfigure the project by selecting/deselecting Kconfig options.

After saving and closing the Kconfig GUI, you can directly run west build to build with the new
configuration.

36 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

Flash Note: Please refer Flash and Debug The Example to enable west flash/debug support.

Flash the hello_world example:

west flash -r linkserver

Debug Start a gdb interface by following command:

west debug -r linkserver

Work with IDE Project The above build functionalities are all with CLI. If you want to use
the toolchain IDE to work to enjoy the better user experience especially for debugging or you
are already used to develop with IDEs like IAR, MDK, Xtensa and CodeWarrior in the embedded
world, you can play with our IDE project generation functionality.

This is the cmd to generate the evkbmimxrt1170 hello_world IAR IDE project files.

west build -b evkbmimxrt1170 examples/demo_apps/hello_world --toolchain iar -Dcore_id=cm7 --config␣
↪→flexspi_nor_debug -p always -t guiproject

By default, the IDE project files are generated inmcuxsdk/build/<toolchain> folder, you can open
the project file with the IDE tool to work:

Note, please follow the Installation to setup the environment especially make sure that ruby has
been installed.

1.4 Release Notes

1.4.1 MCUXpresso SDK Release Notes

Overview

The MCUXpresso SDK is a comprehensive software enablement package designed to simplify
and accelerate application development with Arm Cortex-M-based devices from NXP, including
its general purpose, crossover and Bluetooth-enabled MCUs. MCUXpresso SW and Tools for DSC

1.4. Release Notes 37

MCUXpresso SDK Documentation, Release 25.09.00

further extends the SDK support to current 32-bit Digital Signal Controllers. The MCUXpresso
SDK includes production-grade software with integrated RTOS (optional), integrated enabling
software technologies (stacks and middleware), reference software, and more.

In addition to working seamlessly with the MCUXpresso IDE, the MCUXpresso SDK also supports
and provides example projects for various toolchains. The Development tools chapter in the
associated Release Notes provides details about toolchain support for your board. Support for
the MCUXpresso Config Tools allows easy cloning of existing SDK examples and demos, allowing
users to leverage the existing software examples provided by the SDK for their own projects.

Underscoring our commitment to high quality, the MCUXpresso SDK is MISRA compliant and
checked with Coverity static analysis tools. For details on MCUXpresso SDK, see MCUXpresso-
SDK: Software Development Kit for MCUXpresso.

MCUXpresso SDK

As part of the MCUXpresso software and tools, MCUXpresso SDK is the evolution of Kinetis SDK,
includes support for LPC, DSC,PN76, and i.MX System-on-Chip (SoC). The same drivers, APIs, and
middleware are still available with support for Kinetis, LPC, DSC, and i.MX silicon. The MCUX-
presso SDK adds support for the MCUXpresso IDE, an Eclipse-based toolchain that works with
all MCUXpresso SDKs. Easily import your SDK into the new toolchain to access to all of the avail-
able components, examples, and demos for your target silicon. In addition to the MCUXpresso
IDE, support for the MCUXpresso Config Tools allows easy cloning of existing SDK examples and
demos, allowing users to leverage the existing software examples provided by the SDK for their
own projects.

In order to maintain compatibility with legacy Freescale code, the filenames and source code in
MCUXpresso SDK containing the legacy Freescale prefix FSL has been left as is. The FSL prefix
has been redefined as the NXP Foundation Software Library.

Development tools

The MCUXpresso SDK was tested with following development tools. Same versions or above are
recommended.

• IAR Embedded Workbench for Arm, version is 9.60.4

• MCUXpresso for VS Code v25.09

• GCC Arm Embedded Toolchain 14.2.x

Supported development systems

This release supports board and devices listed in following table. The board and devices in bold
were tested in this release.

Devel-
opment
boards

MCU devices

EVK-
MIMX8MQ

MIMX8MD6CVAHZ, MIMX8MD6DVAJZ, MIMX8MD7CVAHZ, MIMX8MD7DVAJZ,
MIMX8MQ5CVAHZ, MIMX8MQ5DVAJZ, MIMX8MQ6CVAHZ, MIMX8MQ6DVAJZ,
MIMX8MQ7CVAHZ, MIMX8MQ7DVAJZ

38 Chapter 1. EVK-MIMX8MQ

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.09.00

MCUXpresso SDK release package

The MCUXpresso SDK release package content is aligned with the silicon subfamily it supports.
This includes the boards, CMSIS, devices, middleware, and RTOS support.

Device support The device folder contains the whole software enablement available for the
specific System-on-Chip (SoC) subfamily. This folder includes clock-specific implementation,
device register header files, device register feature header files, and the system configuration
source files. Included with the standard SoC support are folders containing peripheral drivers,
toolchain support, and a standard debug console. The device-specific header files provide a di-
rect access to themicrocontroller peripheral registers. The device header file provides an overall
SoCmemorymapped register definition. The folder also includes the feature header file for each
peripheral on themicrocontroller. The toolchain folder contains the startup code and linker files
for each supported toolchain. The startup code efficiently transfers the code execution to the
main() function.

Board support The boards folder provides the board-specific demo applications, driver exam-
ples, and middleware examples.

Demo application and other examples The demo applications demonstrate the usage of the
peripheral drivers to achieve a system level solution. Each demo application contains a readme
file that describes the operation of the demo and required setup steps. The driver examples
demonstrate the capabilities of the peripheral drivers. Each example implements a common
use case to help demonstrate the driver functionality.

RTOS

FreeRTOS Real-time operating system for microcontrollers from Amazon

Middleware

CMSIS DSP Library The MCUXpresso SDK is shipped with the standard CMSIS development
pack, including the prebuilt libraries.

USB Type-C PD Stack See the MCUXpresso SDK USB Type-C PD Stack User’s Guide (document
MCUXSDKUSBPDUG) for more information

USB Host, Device, OTG Stack See the MCUXpresso SDK USB Stack User’s Guide (document
MCUXSDKUSBSUG) for more information.

TinyCBOR Concise Binary Object Representation (CBOR) Library

PKCS#11 The PKCS#11 standard specifies an application programming interface (API), called
“Cryptoki,” for devices that hold cryptographic information and perform cryptographic func-
tions. Cryptoki follows a simple object based approach, addressing the goals of technology in-
dependence (any kind of device) and resource sharing (multiple applications accessing multiple
devices), presenting to applications a common, logical view of the device called a “cryptographic
token”.

1.4. Release Notes 39

MCUXpresso SDK Documentation, Release 25.09.00

Multicore Multicore Software Development Kit

llhttp HTTP parser llhttp

FreeMASTER FreeMASTER communication driver for 32-bit platforms.

Release contents

Provides an overview of the MCUXpresso SDK release package contents and locations.

Deliverable Location
Boards INSTALL_DIR/boards
Demo Applications INSTALL_DIR/boards/<board_name>/demo_apps
Driver Examples INSTALL_DIR/boards/<board_name>/driver_examples
eIQ examples INSTALL_DIR/boards/<board_name>/eiq_examples
Board Project Template for MCUXpresso IDE NPW INSTALL_DIR/boards/<board_name>/project_template
Driver, SoC header files, extension header files and
feature header files, utilities

INSTALL_DIR/devices/<device_name>

CMSIS drivers INSTALL_DIR/devices/<device_name>/cmsis_drivers
Peripheral drivers INSTALL_DIR/devices/<device_name>/drivers
Toolchain linker files and startup code INSTALL_DIR/devices/<device_name>/<toolchain_name>
Utilities such as debug console INSTALL_DIR/devices/<device_name>/utilities
Device Project Template for MCUXpresso IDE NPW INSTALL_DIR/devices/<device_name>/project_template
CMSIS Arm Cortex-M header files, DSP library source INSTALL_DIR/CMSIS
Components and board device drivers INSTALL_DIR/components
RTOS INSTALL_DIR/rtos
Release Notes, Getting Started Document and other
documents

INSTALL_DIR/docs

Tools such as shared cmake files INSTALL_DIR/tools
Middleware INSTALL_DIR/middleware

Known issues

This section lists the known issues, limitations, and/or workarounds.

Cannot add SDK components into FreeRTOS projects

It is not possible to add any SDK components into FreeRTOS project using the MCUXpresso IDE
New Project wizard.

The freertos_lpuart example does not complete successfully

The example hangs after console output ‘FreeRTOS LPUART driver example’.

Examples: freertos_lpuart
Affected toolchains: All
The example does not performas expected (Ticks do not printed on the console or the application
does not wake up from the sleep mode).

Examples: freertos_tickless

40 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

Affected toolchains: All

1.5 ChangeLog

1.5.1 MCUXpresso SDK Changelog

Board Support Files

board

[25.06.00]
• Initial version

clock_config

[25.06.00]
• Initial version

pin_mux

[25.06.00]
• Initial version

CACHE LMEM

[2.1.0]
• Improvements

– Added new feature macro to support some device do not support PCCCR[ENWRBUF]
bit field.

[2.0.6]
• Bug Fixes

– Fixed doxygen issue.

[2.0.5]
• Improvements

– Updated the cache enable function, don’t enable again when it is already enabled.

1.5. ChangeLog 41

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.4]
• Bug Fixes

– Updated full name for lmem driver.

– Fixed doxygen issue.

[2.0.3]
• Bug Fixes

– Fixed violation of MISRA C-2012 Rule 10.4 and 14.4.

[2.0.2]
• Improvements

– Moved CLCR register configuration out of thewhile loop, it’s unnecessary to repeat this
operation.

[2.0.1]
• Bug Fixes

– Fixed the over-4KB-size maintenance issue in invalidate/clean/clean&invalidate by
range APIs.

[2.0.0]
• Initial version.

COMMON

[2.6.0]
• Bug Fixes

– Fix CERT-C violations.

[2.5.0]
• New Features

– Added new APIs InitCriticalSectionMeasurementContext, DisableGlobalIRQEx and En-
ableGlobalIRQEx so that user canmeasure the execution time of the protected sections.

[2.4.3]
• Improvements

– Enable irqs that mount under irqsteer interrupt extender.

[2.4.2]
• Improvements

– Add themacros to convert peripheral address to secure address or non-secure address.

42 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

[2.4.1]
• Improvements

– Improve for the macro redefinition error when integrated with zephyr.

[2.4.0]
• New Features

– Added EnableIRQWithPriority, IRQ_SetPriority, and IRQ_ClearPendingIRQ for ARM.

– Added MSDK_EnableCpuCycleCounter, MSDK_GetCpuCycleCount for ARM.

[2.3.3]
• New Features

– Added NETC into status group.

[2.3.2]
• Improvements

– Make driver aarch64 compatible

[2.3.1]
• Bug Fixes

– Fixed MAKE_VERSION overflow on 16-bit platforms.

[2.3.0]
• Improvements

– Split the driver to common part and CPU architecture related part.

[2.2.10]
• Bug Fixes

– Fixed the ATOMIC macros build error in cpp files.

[2.2.9]
• Bug Fixes

– Fixed MISRA C-2012 issue, 5.6, 5.8, 8.4, 8.5, 8.6, 10.1, 10.4, 17.7, 21.3.

– Fixed SDK_Malloc issue that not allocate memory with required size.

[2.2.8]
• Improvements

– Included stddef.h header file for MDK tool chain.

• New Features:

– Added atomic modification macros.

1.5. ChangeLog 43

MCUXpresso SDK Documentation, Release 25.09.00

[2.2.7]
• Other Change

– Added MECC status group definition.

[2.2.6]
• Other Change

– Added more status group definition.

• Bug Fixes

– Undef __VECTOR_TABLE to avoid duplicate definition in cmsis_clang.h

[2.2.5]
• Bug Fixes

– Fixed MISRA C-2012 rule-15.5.

[2.2.4]
• Bug Fixes

– Fixed MISRA C-2012 rule-10.4.

[2.2.3]
• New Features

– Provided better accuracy of SDK_DelayAtLeastUs with DWT, use macro
SDK_DELAY_USE_DWT to enable this feature.

– Modified the Cortex-M7 delay count divisor based on latest tests on RT series boards,
this setting lets result be closer to actual delay time.

[2.2.2]
• New Features

– Added include RTE_Components.h for CMSIS pack RTE.

[2.2.1]
• Bug Fixes

– Fixed violation of MISRA C-2012 Rule 3.1, 10.1, 10.3, 10.4, 11.6, 11.9.

[2.2.0]
• New Features

– Moved SDK_DelayAtLeastUs function from clock driver to common driver.

[2.1.4]
• New Features

– Added OTFAD into status group.

44 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.3]
• Bug Fixes

– MISRA C-2012 issue fixed.

* Fixed the rule: rule-10.3.

[2.1.2]
• Improvements

– Add SUPPRESS_FALL_THROUGH_WARNING() macro for the usage of suppressing
fallthrough warning.

[2.1.1]
• Bug Fixes

– Deleted and optimized repeated macro.

[2.1.0]
• New Features

– Added IRQ operation for XCC toolchain.

– Added group IDs for newly supported drivers.

[2.0.2]
• Bug Fixes

– MISRA C-2012 issue fixed.

* Fixed the rule: rule-10.4.

[2.0.1]
• Improvements

– Removed the implementation of LPC8XX Enable/DisableDeepSleepIRQ() function.

– Addednew featuremacro switch “FSL_FEATURE_HAS_NO_NONCACHEABLE_SECTION”
for specific SoCs which have no noncacheable sections, that helps avoid an unneces-
sary complex in link file and the startup file.

– Updated the align(x) to attribute(aligned(x)) to support MDK v6 armclang compiler.

[2.0.0]
• Initial version.

ECSPI

[2.3.3]
• Bug Fixes

– Fixed the txData from void * to const void * in transmit API

1.5. ChangeLog 45

MCUXpresso SDK Documentation, Release 25.09.00

[2.3.2]
• Improvements

– Changed ECSPI_DUMMYDATA to 0x00.

[2.3.1]
• Bug Fixes

– Fixed ECSPI_GetInstance potential issue that return wrong instance number.

[2.3.0]
• Bug Fixes

– Fixed burst length issue,the burst length range shall range from 1-4096 bits, so the
width shall be uint8_t rather than uint16_t.

[2.2.0]
• Bug Fixes

– Removed the useless channel configuration of waveform, since the waveform can not
be configuredwhennot using the exchange bit(ECSPIx_CONREG[XCH]) for the transfer.

– Fixed violations of MISRA C-2012 rules: 10.1, 11.9, 8.4.

[2.1.1]
• Bug Fixes

– Fixed violations of MISRA C-2012 rules: 10.1, 10.3, 10.4, 11.9, 14.4, 15.7, 17.7.

[2.1.0]
• Improvements

– Added timeout mechanism when waiting certain states in transfer driver.

[2.0.2]
• Bug Fixes

– Fixed violations of MISRA C-2012 rules: 10.1, 10.3, 10.4

[2.0.1]
• Bug Fixes

– Memset local variable SDMA transfer configuration structure to make sure unused
members in structure are cleared.

– Fixed sign-compare warning in ECSPI_SendTransfer.

[2.0.0]
• Initial version.

46 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

GPIO

[2.0.6]
• Bug Fixes

– Fixed compile warning: ‘GPIO_GetInstance’ defined but not used when macro
FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL is defined.

[2.0.5]
• Bug Fixes

– Fixed MISRA C-2012 issue: rule-17.7.

[2.0.4]
• Improvements

– Updated the GPIO_PinWrite to use atomic operation if possible.

• Bug Fixes

– Fixed GPIO_PortToggle bug with platforms don’t have register DR_TOGGLE.

[2.0.3]
• Bug Fixes

– MISRA C-2012 issue fixed.

* Fixed rules, containing: rule-10.3, rule-14.4, and rule-15.5.

[2.0.2]
• Bug Fixes

– Fixed the bug of enabling wrong GPIO clock gate in initial API. Since some GPIO in-
stances may not have a clock gate enabled, it checks the clock gate number and makes
sure the clock gate is valid.

[2.0.1]
• Improvements

– API interface changes:

* Refined naming of the API while keeping all original APIs, marking them as depre-
cated. Original APIs will be removed in next release. Themain change is to update
the API with prefix of _PinXXX() and _PortXXX().

[2.0.0]
• Initial version.

1.5. ChangeLog 47

MCUXpresso SDK Documentation, Release 25.09.00

GPT

[2.0.6]
• Bug Fixes

– Fix CERT INT30-C issues.

[2.0.5]
• Improvements

– Support workaround for ERR003777. This workaround helps switching the clock
sources.

[2.0.4]
• Bug Fixes

– Fixed compilerwarningwhenbuiltwith FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL
flag enabled.

[2.0.3]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 5.3 by customizing function parameter.

[2.0.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 17.7.

[2.0.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.1, 10.3, 10.4, 10.6, 10.8, 17.7.

[2.0.0]
• Initial version.

I2C

[2.0.7]
• Bug Fixes

– Fixed MISRA issues.

* Fixed rules 8.4, 8.5.

48 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.6]
• Bug Fixes

– Fixed the bug that, in I2C_MasterStop after the stop command is issued, the IBB flag
should be cleared rather than set.

– Fixed the bug that to clear kI2C_ArbitrationLostFlag and kI2C_IntPendingFlag, their
bits should be written ‘0’ rather than ‘1’.

[2.0.5]
• Bug Fixes

– Fixed Coverity issue of unchecked return value in I2C_RTOS_Transfer.

– Fixed MISRA issues.

* Fixed rules 10.1, 10.3, 10.4, 11.9, 14.4, 15.7, 16.4, 17.7.

• Improvements

– Updated the I2C_WAIT_TIMEOUT macro to unified name I2C_RETRY_TIMES.

[2.0.4]
• Bug Fixes

– Fixed the issue that I2C Master transfer APIs(blocking/non-blocking) did not support
the situation that master transfer with subaddress and transfer data size being zero,
which means no data followed by the subaddress.

[2.0.3]
• Improvements

– Improved code readability, added new static API I2C_WaitForStatusReady for the sta-
tus flag wait, and changed to call I2C_WaitForStatusReady instead of polling flags with
reading register.

[2.0.2]
• Improvements

– Added I2C_WATI_TIMEOUTmacro to allow users to specify the timeout times for wait-
ing flags in functional API and blocking transfer API.

[2.0.1]
• Bug Fixes

– Added a proper handle for transfer config flag kI2C_TransferNoStartFlag to support
transmit with kI2C_TransferNoStartFlag flag. Only supports write only or write+read
with no start flag; does not support read only with no start flag.

[2.0.0]
• Initial version.

1.5. ChangeLog 49

MCUXpresso SDK Documentation, Release 25.09.00

MCM

[2.2.0]
• Improvements

– Support platforms with less features.

[2.1.0]
• Others

– Remove byteID from mcm_lmem_fault_attribute_t for document update.

[2.0.0]
• Initial version.

MU

[2.3.0]
• New Features

– Added MU_BUSY_POLL_COUNT parameter to prevent infinite polling loops in MU op-
erations.

– Added timeout mechanism to all polling loops in MU driver code.

– Added new function MU_ReceiveMsgTimeout() to include timeout mechanism.

• Improvements

– Updated function signatures to return status codes for better error handling:

* Changed MU_ResetBothSides to return status_t instead of void

* Updated MU_SendMsg to return status_t for timeout indication

* Updated MU_ReceiveMsg to use MU_TIMEOUT_VALUE (0xFFFFFFFF) as a special
return value to indicate timeout

– Enhanced documentation across all functions to clarify timeout behavior and return
values.

[2.2.0]
• New Features

– Added API MU_GetRxStatusFlags.

[2.1.3]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.1.2]
• Bug Fixes

– Fixed issue that MU_GetInstance() is defined but never used.

50 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.1]
• Bug Fixes

– Fixed general interrupt comment typo.

[2.1.0]
• Improvements

– Added new enummu_msg_reg_index_t.

[2.0.7]
• Bug Fixes

– Fixed MU_GetInterruptsPending bug that can not get general interrupt status.

[2.0.6]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 17.7.

[2.0.5]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 14.4, 15.5.

[2.0.4]
• Improvements

– Improved for the platformswhich don’t support reset assert interrupt and get the other
core power mode.

[2.0.3]
• Bug fixes

– MISRA C-2012 issue fixed.

* Fixed rules, containing: rule-10.3, rule-14.4, rule-15.5.

[2.0.2]
• Improvements

– Added support for MIMX8MQx.

[2.0.1]
• Improvements

– Added support for MCIMX7Ux_M4.

1.5. ChangeLog 51

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.0]
• Initial version.

PWM

[2.0.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 17.7.

[2.0.0]
• Initial version.

QSPI

[2.3.1]
• Improvements

– Fixed Coverity MSG issues.

[2.3.0]
• New Features

– Applied the QSPI IP update with register field changes.

– Added Soc specific driver to integrate Soc configuration.

• Changed

– Updated the QSPI LUT update function to be compatible with different sequence unit.

– Added new feature macro FSL_FEATURE_QSPI_HAS_SOC_SPECIFIC_CONFIG which
represents there’re Soc specific QSPI configurations. Soc specific driver should cover
these configurations. Previous Soc specific code in the common driver should be
masked.

[2.2.5]
• Bug Fixes

– Fixed the txData from void * to const void * in transmit API.

[2.2.4]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.3.

[2.2.3]
• Bug Fixes

– Cleared buffer generic configuration when do software reset.

52 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

[2.2.2]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.1 and 11.9.

[2.2.1]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.6, 10.8, 11.3, 11.6, 11.8, 11.9,
14.4, 16.1, 16.4, 17.7.

[2.2.0]
• New Features

– Added new API QSPI_ClearCache to clear cache for new IP feature
FSL_FEATURE_QSPI_SOCCR_HAS_CLR_LPCAC.

• Bug Fixes

– Fixed the QSPI_WriteBlocking API programming issue for low watermark, caused by
previous improvement change of using TX watermark signal to fill the TX FIFO. Re-
verted change to previous implementation to use TX FIFO full flag for filling the FIFO.
Improved previous API by accessing TX data register directly.

– Fixed the issue that QSPI_SetIPCommandSize incorrectly triggered a transaction.

– Fixed clock divider accurate issue when using internal QSPI internal divider.

– Fixed build fail issue for some devices’ not supporting API QSPI_SetDqsConfig for DQS
configuration.

[2.1.0]
• New Features

– Added new API QSPI_SetDqsConfig for DQS configuration.

• Improvements

– Updated the QSPI_WriteBlocking API to fill the TX FIFO once there are bytes of TX wa-
termark room in the FIFO. This will improve the performance of filling TX FIFO when
watermark is high.

[2.0.2]
• Improvements

– New Macro function:

* Added QSPI_LUT_SEQ() function for users to set LUT table easily.

* Added LUT command macros for users to easy use.

– Comment update:

* Added the comments for the limitation of QSPI_ReadBlocking and
QSPI_TransferReceiveBlocking.

1.5. ChangeLog 53

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.1]
• Improvements

– New API:

* QSPI_SetReadArea to set the read area.

• Bug Fixes

– Fixed the issue that QSPI_UpdateLUT function only updated first LUT.

– Fixed issue that some function that hardcode QSPI0 as base.

[2.0.0]
• Initial version.

RDC

[2.2.0]
• New Features

– Added APIs to get memory region or peripheral access policy for specific domain.

[2.1.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.6.

[2.1.0]
• Improvements

– Enhanced to support memory region larger than 32-bit address.

[2.0.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.3, 10.4, 11.3, 11.8, 17.7.

[2.0.1]
• Bug Fixes:

– Added __DSB after new configuration is set to ensure the new configuration takes ef-
fect.

[2.0.0]
• Initial version.

54 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

RDC_SEMA42

[2.0.5]
• Bug Fixes

– Fixed CERT INT30-C issues.

[2.0.4]
• Improvements

– Changed to implement RDC_SEMAPHORE_Lock base on RDC_SEMAPHORE_TryLock.

[2.0.3]
• Improvements:

– Supported the RDC_SEMAPHORE_Type structure whose gate registers are defined as
an array.

[2.0.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.3, 10.4, 10.8, 14.3, 14.4, 18.1.

[2.0.1]
• Improvements:

– Added support for the platforms that don’t have dedicated RDC_SEMA42 clock gate.

[2.0.0]
• Initial version.

SAI

[2.4.9]
• Added Errata ERR051421 workaround.

[2.4.8]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 12.4.

[2.4.7]
• Added conditional support for bit clock swap feature

• Added common IRQ handler entry SAI_DriverIRQHandler.

1.5. ChangeLog 55

MCUXpresso SDK Documentation, Release 25.09.00

[2.4.6]
• Bug Fixes

– Fixed the IAR build warning.

[2.4.5]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 12.4.

[2.4.4]
• Bug Fixes

– Fixed enumeration sai_fifo_combine_t - add RX configuration.

[2.4.3]
• Bug Fixes

– Fixed enumeration sai_fifo_combine_t value configuration issue.

[2.4.2]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.4.1]
• Bug Fixes

– Fixed bitWidth incorrectly assigned issue.

[2.4.0]
• Improvements

– Removed deprecated APIs.

[2.3.8]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.4.

[2.3.7]
• Improvements

– Change feature “FSL_FEATURE_SAI_FIFO_COUNT” to “FSL_FEATURE_SAI_HAS_FIFO”.

– Added feature “FSL_FEATURE_SAI_FIFO_COUNTn(x)” to align SAI fifo count function
with IP in function

56 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

[2.3.6]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 5.6.

[2.3.5]
• Improvements

– Make driver to be aarch64 compatible.

[2.3.4]
• Bug Fixes

– Corrected the fifo combine feature macro used in driver.

[2.3.3]
• Bug Fixes

– Added bit clock polarity configuration when sai act as slave.

– Fixed out of bound access coverity issue.

– Fixed violations of MISRA C-2012 rule 10.3, 10.4.

[2.3.2]
• Bug Fixes

– Corrected the frame sync configuration when sai act as slave.

[2.3.1]
• Bug Fixes

– Corrected the peripheral name in function SAI0_DriverIRQHandler.

– Fixed violations of MISRA C-2012 rule 17.7.

[2.3.0]
• Bug Fixes

– Fixed the build error caused by the SOC has no fifo feature.

[2.2.3]
• Bug Fixes

– Corrected the peripheral name in function SAI0_DriverIRQHandler.

1.5. ChangeLog 57

MCUXpresso SDK Documentation, Release 25.09.00

[2.2.2]
• Bug Fixes

– Fixed the issue of MISRA 2004 rule 9.3.

– Fixed sign-compare warning.

– Fixed the PA082 build warning.

– Fixed sign-compare warning.

– Fixed violations ofMISRAC-2012 rule 10.3,17.7,10.4,8.4,10.7,10.8,14.4,17.7,11.6,10.1,10.6,8.4,14.3,16.4,18.4.

– Allow to reset Rx or Tx FIFO pointers only when Rx or Tx is disabled.

• Improvements

– Added 24bit raw audio data width support in sai sdma driver.

– Disabled the interrupt/DMA request in the SAI_Init to avoid generates unexpected sai
FIFO requests.

[2.2.1]
• Improvements

– Added mclk post divider support in function SAI_SetMasterClockDivider.

– Removed useless configuration code in SAI_RxSetSerialDataConfig.

• Bug Fixes

– Fixed the SAI SDMA driver build issue caused by the wrong structure member name
used in the function SAI_TransferRxSetConfigSDMA/SAI_TransferTxSetConfigSDMA.

– Fixed BAD BIT SHIFT OPERATION issue caused by the
FSL_FEATURE_SAI_CHANNEL_COUNTn.

– Applied ERR05144: not set FCONT = 1 when TMR > 0, otherwise the TX may not work.

[2.2.0]
• Improvements

– Added new APIs for parameters collection and simplified user interfaces:

* SAI_Init

* SAI_SetMasterClockConfig

* SAI_TxSetBitClockRate

* SAI_TxSetSerialDataConfig

* SAI_TxSetFrameSyncConfig

* SAI_TxSetFifoConfig

* SAI_TxSetBitclockConfig

* SAI_TxSetConfig

* SAI_TxSetTransferConfig

* SAI_RxSetBitClockRate

* SAI_RxSetSerialDataConfig

* SAI_RxSetFrameSyncConfig

* SAI_RxSetFifoConfig

58 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

* SAI_RxSetBitclockConfig

* SAI_RXSetConfig

* SAI_RxSetTransferConfig

* SAI_GetClassicI2SConfig

* SAI_GetLeftJustifiedConfig

* SAI_GetRightJustifiedConfig

* SAI_GetTDMConfig

[2.1.9]
• Improvements

– Improved SAI driver comment for clock polarity.

– Added enumeration for SAI for sample inputs on different edges.

– ChangedFSL_FEATURE_SAI_CHANNEL_COUNT to FSL_FEATURE_SAI_CHANNEL_COUNTn(base)
for the difference between the different SAI instances.

• Added new APIs:

– SAI_TxSetBitClockDirection

– SAI_RxSetBitClockDirection

– SAI_RxSetFrameSyncDirection

– SAI_TxSetFrameSyncDirection

[2.1.8]
• Improvements

– Added feature macro test for the sync mode2 and mode 3.

– Added feature macro test for masterClockHz in sai_transfer_format_t.

[2.1.7]
• Improvements

– Added feature macro test for the mclkSource member in sai_config_t.

– Changed “FSL_FEATURE_SAI5_SAI6_SHARE_IRQ” to “FSL_FEATURE_SAI_SAI5_SAI6_SHARE_IRQ”.

– Added #ifndef #endif check for SAI_XFER_QUEUE_SIZE to allow redefinition.

• Bug Fixes

– Fixed build error caused by feature macro test for mclkSource.

[2.1.6]
• Improvements

– Added feature macro test for mclkSourceClockHz check.

– Added bit clock source name for general devices.

• Bug Fixes

– Fixed incorrect channel numbers setting while calling RX/TX set format together.

1.5. ChangeLog 59

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.5]
• Bug Fixes

– Corrected SAI3 driver IRQ handler name.

– Added I2S4/5/6 IRQ handler.

– Added base in handler structure to support different instances sharing one IRQ num-
ber.

• New Features

– Updated SAI driver for MCR bit MICS.

– Added 192 KHZ/384 KHZ in the sample rate enumeration.

– Added multi FIFO interrupt/SDMA transfer support for TX/RX.

– Added an API to read/write multi FIFO data in a blocking method.

– Added bclk bypass support when bclk is same with mclk.

[2.1.4]
• New Features

– Added an API to enable/disable auto FIFO error recovery in platforms that support this
feature.

– Added an API to set data packing feature in platforms which support this feature.

[2.1.3]
• New Features

– Added feature to make I2S frame sync length configurable according to bitWidth.

[2.1.2]
• Bug Fixes

– Added 24-bit support for SAI eDMA transfer. All data shall be 32 bits for send/receive,
as eDMA cannot directly handle 3-Byte transfer.

[2.1.1]
• Improvements

– Reduced code size while not using transactional API.

[2.1.0]
• Improvements

– API name changes:

* SAI_GetSendRemainingBytes -> SAI_GetSentCount.

* SAI_GetReceiveRemainingBytes -> SAI_GetReceivedCount.

* All names of transactional APIs were added with “Transfer” prefix.

* All transactional APIs use base and handle as input parameter.

* Unified the parameter names.

60 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

• Bug Fixes

– Fixed WLC bug while reading TCSR/RCSR registers.

– Fixed MOE enable flow issue. Moved MOE enable after MICS settings in
SAI_TxInit/SAI_RxInit.

[2.0.0]
• Initial version.

SEMA4

[2.2.2]
• Improvements

– Updated SEMA4_TryLock function to avoid unsigned integer operations wrap issue.

[2.2.1]
• Bug Fixes

– Fixed violations of the CERT INT31-C, MISRA C-2012 rules 10.3, 10.4.

[2.2.0]
• New Features

– Added SEMA4_BUSY_POLL_COUNT parameter to prevent infinite polling loops in
SEMA4 operations.

– Added timeout mechanism to all polling loops in SEMA4 driver code.

• Improvements

– Updated SEMA4_Lock function to return status_t instead of void for better error han-
dling.

– Enhanced documentation to clarify timeout behavior and return values.

[2.1.0]
• Improvements

– Changed mask parameter type in SEMA4_EnableGateNotifyInterrupt() and
SEMA4_DisableGateNotifyInterrupt() functions to avoid casting from unsigned
long to unsigned short in the code when modifying the 16bits CPINE register.

[2.0.3]
• Improvements

– Changed to implement SEMA4_Lock base on SEMA4_TryLock.

[2.0.2]
• Improvements:

– Supported the SEMA4_Type structure whose gate registers are defined as an array.

1.5. ChangeLog 61

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.3, 10.4, 15.5, 18.1, 18.4.

[2.0.0]
• Initial version.

SNVS_HP

[2.3.2]
• Make SNVS_HP_RTC_Init()/SNVS_HP_RTC_Deinit more transparent. Use function
SNVS_HP_Init()/SNVS_HP_Deinit() instead of copy of this code in SNVS_HP_RTC_XXX()
function.

[2.3.1]
• Fixed problem in SNVS_HP_RTC_Init(), which is clearing bits that should stay intact.

[2.3.0]
• Re-map Security Violation for RT11xx specific violations.

[2.2.0]
• Fixed doxygen issues.

• Add SNVS HP Set locks.

[2.1.4]
• Fix MISRA issues.

[2.1.3]
• Fixed IAR Pa082 warnings.

[2.1.2]
• Fixed problem with initialization of the periodic interrupt frequency.

• Fixed problem with SNVS entering into fail state when HAB enters closed mode.

[2.1.1]
• Added APIs for HP security violation status flags.

[2.1.0]
• Added APIs for High Assurance Counter (HAC), Zeroizable Master Key (ZMK) and Software
Security Violation.

62 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.0]
• Initial version.

SNVS_LP

[2.4.6]
• Fix a bug in SNVS_LP_EnableRxActiveTamper() where assignments to base->LPATRC2R
were done wrongly to LPATRC1R.

[2.4.5]
• Fix a bug in SNVS_LP_EnableRxActiveTamper() where assignments to base->LPATRC1R
would overwrite previously set bits.

[2.4.4]
• Make SNVS_LP_SRTC_Init()/SNVS_LP_SRTC_Deinit more transparent. Use function
SNVS_LP_Init()/SNVS_LP_Deinit() instead of copy of this code in SNVS_LP_SRTC_XXX()
function.

[2.4.3]
• Fixed problem in SNVS_LP_SRTC_Init(), which is clearing bits that should stay intact.

[2.4.2]
• Updated driver to match with new device header files.

[2.4.1]
• Fixed MISRA issues.

[2.4.0]
• Fix backward compatibility with version 2.2.x.

[2.3.0]
• Add active pin, clock, voltage and temperature tamper features.

[2.2.0]
• Fixed doxygen issues.

• Add Transition SNVS SSM state to Trusted/Non-secure from Check state.

[2.1.2]
• Fix MISRA issues.

1.5. ChangeLog 63

MCUXpresso SDK Documentation, Release 25.09.00

[2.1.1]
• Fix IAR Pa082 warning.

[2.1.0]
• Added APIs for Zeroizable Master Key (ZMK) and Monotonic Counter (MC).

[2.0.0]
• Initial version.

TMU

[2.0.3]
• Bug Fixes

– Fixed the violations of MISRA 2012 rules:

* Rule 10.1 10.3 10.4 17.7.

[2.0.2]
• Bug Fixes

– Fixed missing right pair definition for extern C.

[2.0.1]
• New Features

– Added control macro to enable/disable the CLOCK code in current driver.

[2.0.0]
• Initial version.

• This module was first developed on i.MX 8MQuad.

UART

[2.3.2]
• Improvements

– Make driver aarch64 compatible

64 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

[2.3.1]
• Improvements

– Use separate data for TX and RX in uart_transfer_t.

• Bug Fixes

– Fixed bug that when ring buffer is used, if some data is received in ring buffer first
before calling UART_TransferReceiveNonBlocking, the received data count returned
by UART_TransferGetReceiveCount is wrong.

[2.3.0]
• Bug Fixes

– Fixed DMA transfer blocking issue by enabling tx idle interrupt after DMA transmis-
sion finishes.

[2.2.1]
• Bug Fixes

– Fixed MISRA 2012 rule 10.4 violation.

[2.2.0]
• New Features

– Modifieduart_config_t, UART_Init andUART_GetDefaultConfigAPIs so that the RTS and
CTS used for hardware flow control can be enabled during module initialization.

– Added API UART_SetRxRTSWatermark so that the water mark level of RTS deassertion
can be configured.

[2.1.1]
• Bug Fixes

– Fixed MISRA 8.5 violation.

[2.1.0]
• Improvements

– Added timeout mechanism when waiting for certain states in transfer driver.

[2.0.2]
• Improvements

– Added check for transmission complete in UART_WriteBlocking,
UART_TransferHandleIRQ and UART_SendSDMACallback to ensure all the data
would be sent out to bus.

– Modified UART_ReadBlocking so that if more than one receiver errors occur, all status
flags will be cleared and the most severe error status will be returned.

• Bug Fixes

– Fixed MISRA issues.

* Fixed rules 10.1, 10.3, 10.4, 10.6, 10.7, 10.8, 11.9, 14.4.

1.5. ChangeLog 65

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.1]
• Bug Fixes

– Memset local variable SDMA transfer configuration structure to make sure unused
members in structure are cleared.

[2.0.0]
• Initial version.

WDOG

[2.2.0]
• Bug Fixes

– Fixed the wrong behavior of workMode.enableWait, workMode.enableStop, work-
Mode.enableDebug in configuration structure wdog_config_t. When set the items to
true, WDOG will continues working in those modes.

[2.1.1]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.1, 10.3, 10.4, 10.6, 10.7 and 11.9.

– Fixed the issue of the inseparable process interrupted by other interrupt source.

* WDOG_Init

* WDOG_Refresh

[2.1.0]
• New Features

– Added new API “WDOG_TriggerSystemSoftwareReset()” to allow users to reset the sys-
tem by software.

– Added new API “WDOG_TriggerSoftwareSignal()” to allow users to trigger a WDOG_B
signal by software.

– Removed the parameter “softwareAssertion” and “softwareResetSignal” out of the
wdog_config_t structure.

– Added new parameter “enableTimeOutAssert” to the wdog_config_t structure. With
this parameter enabled, when the WDOG timeout occurs, a WDOG_B signal will be
asserted. This signal can be routed to external pin of the chip. Note that WDOG_B
signal remains asserted until a power-on reset (POR) occurs.

[2.0.1]
• New Features

– Added control macro to enable/disable the CLOCK code in current driver.

66 Chapter 1. EVK-MIMX8MQ

MCUXpresso SDK Documentation, Release 25.09.00

[2.0.0]
• Initial version.

1.6 Driver API Reference Manual

This section provides a link to the Driver API RM, detailing available drivers and their usage to
help you integrate hardware efficiently.

MIMX8MQ6

1.7 Middleware Documentation

Find links to detailed middleware documentation for key components. While not all onboard
middleware is covered, this serves as a useful reference for configuration and development.

1.7.1 Multicore

multicore

1.7.2 FreeMASTER

freemaster

1.7.3 FreeRTOS

FreeRTOS

1.6. Driver API Reference Manual 67

MCUXpresso SDK Documentation, Release 25.09.00

68 Chapter 1. EVK-MIMX8MQ

Chapter 2

MIMX8MQ6

2.1 CACHE: LMEM CACHE Memory Controller

static inline void ICACHE_InvalidateByRange(uint32_t address, uint32_t size_byte)
Invalidates instruction cache by range.

Note: Address and size should be aligned to 16-Byte due to the cache operation unit
FSL_FEATURE_L1ICACHE_LINESIZE_BYTE. The startAddr here will be forced to align to the
cache line size if startAddr is not aligned. For the size_byte, application should make sure
the alignment or make sure the right operation order if the size_byte is not aligned.

Parameters
• address – The physical address.

• size_byte – size of the memory to be invalidated.

static inline void DCACHE_InvalidateByRange(uint32_t address, uint32_t size_byte)
Invalidates data cache by range.

Note: Address and size should be aligned to 16-Byte due to the cache operation unit
FSL_FEATURE_L1DCACHE_LINESIZE_BYTE. The startAddr here will be forced to align to
the cache line size if startAddr is not aligned. For the size_byte, application should make
sure the alignment or make sure the right operation order if the size_byte is not aligned.

Parameters
• address – The physical address.

• size_byte – size of the memory to be invalidated.

static inline void DCACHE_CleanByRange(uint32_t address, uint32_t size_byte)
Clean data cache by range.

Note: Address and size should be aligned to 16-Byte due to the cache operation unit
FSL_FEATURE_L1DCACHE_LINESIZE_BYTE. The startAddr here will be forced to align to
the cache line size if startAddr is not aligned. For the size_byte, application should make
sure the alignment or make sure the right operation order if the size_byte is not aligned.

Parameters

69

MCUXpresso SDK Documentation, Release 25.09.00

• address – The physical address.

• size_byte – size of the memory to be cleaned.

static inline void DCACHE_CleanInvalidateByRange(uint32_t address, uint32_t size_byte)
Cleans and Invalidates data cache by range.

Note: Address and size should be aligned to 16-Byte due to the cache operation unit
FSL_FEATURE_L1DCACHE_LINESIZE_BYTE. The startAddr here will be forced to align to
the cache line size if startAddr is not aligned. For the size_byte, application should make
sure the alignment or make sure the right operation order if the size_byte is not aligned.

Parameters
• address – The physical address.

• size_byte – size of the memory to be Cleaned and Invalidated.

FSL_CACHE_DRIVER_VERSION
cache driver version.

L1CODEBUSCACHE_LINESIZE_BYTE
code bus cache line size is equal to system bus line size, so the unified I/D cache line size
equals too.

The code bus CACHE line size is 16B = 128b.

L1SYSTEMBUSCACHE_LINESIZE_BYTE
The system bus CACHE line size is 16B = 128b.

2.2 Clock

enum _clock_name
Clock name used to get clock frequency.

Values:

enumerator kCLOCK_CoreM4Clk
ARMM4 Core clock

enumerator kCLOCK_AxiClk
Main AXI bus clock.

enumerator kCLOCK_AhbClk
AHB bus clock.

enumerator kCLOCK_IpgClk
IPG bus clock.

enumerator kCLOCK_Osc25MClk
OSC 25M clock.

enumerator kCLOCK_Osc27MClk
OSC 27M clock.

enumerator kCLOCK_ArmPllClk
Arm PLL clock.

enumerator kCLOCK_VpuPllClk
Vpu PLL clock.

70 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_DramPllClk
Dram PLL clock.

enumerator kCLOCK_SysPll1Clk
Sys PLL1 clock.

enumerator kCLOCK_SysPll1Div2Clk
Sys PLL1 clock divided by 2.

enumerator kCLOCK_SysPll1Div3Clk
Sys PLL1 clock divided by 3.

enumerator kCLOCK_SysPll1Div4Clk
Sys PLL1 clock divided by 4.

enumerator kCLOCK_SysPll1Div5Clk
Sys PLL1 clock divided by 5.

enumerator kCLOCK_SysPll1Div6Clk
Sys PLL1 clock divided by 6.

enumerator kCLOCK_SysPll1Div8Clk
Sys PLL1 clock divided by 8.

enumerator kCLOCK_SysPll1Div10Clk
Sys PLL1 clock divided by 10.

enumerator kCLOCK_SysPll1Div20Clk
Sys PLL1 clock divided by 20.

enumerator kCLOCK_SysPll2Clk
Sys PLL2 clock.

enumerator kCLOCK_SysPll2Div2Clk
Sys PLL2 clock divided by 2.

enumerator kCLOCK_SysPll2Div3Clk
Sys PLL2 clock divided by 3.

enumerator kCLOCK_SysPll2Div4Clk
Sys PLL2 clock divided by 4.

enumerator kCLOCK_SysPll2Div5Clk
Sys PLL2 clock divided by 5.

enumerator kCLOCK_SysPll2Div6Clk
Sys PLL2 clock divided by 6.

enumerator kCLOCK_SysPll2Div8Clk
Sys PLL2 clock divided by 8.

enumerator kCLOCK_SysPll2Div10Clk
Sys PLL2 clock divided by 10.

enumerator kCLOCK_SysPll2Div20Clk
Sys PLL2 clock divided by 20.

enumerator kCLOCK_SysPll3Clk
Sys PLL3 clock.

enumerator kCLOCK_AudioPll1Clk
Audio PLL1 clock.

2.2. Clock 71

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_AudioPll2Clk
Audio PLL2 clock.

enumerator kCLOCK_VideoPll1Clk
Video PLL1 clock.

enumerator kCLOCK_ExtClk1
External clock1.

enumerator kCLOCK_ExtClk2
External clock2.

enumerator kCLOCK_ExtClk3
External clock3.

enumerator kCLOCK_ExtClk4
External clock4.

enumerator kCLOCK_NoneName
None Clock Name.

enum _clock_ip_name
CCM CCGR gate control.

Values:

enumerator kCLOCK_IpInvalid

enumerator kCLOCK_Debug
DEBUG Clock Gate.

enumerator kCLOCK_Dram
DRAM Clock Gate.

enumerator kCLOCK_Ecspi1
ECSPI1 Clock Gate.

enumerator kCLOCK_Ecspi2
ECSPI2 Clock Gate.

enumerator kCLOCK_Ecspi3
ECSPI3 Clock Gate.

enumerator kCLOCK_Gpio1
GPIO1 Clock Gate.

enumerator kCLOCK_Gpio2
GPIO2 Clock Gate.

enumerator kCLOCK_Gpio3
GPIO3 Clock Gate.

enumerator kCLOCK_Gpio4
GPIO4 Clock Gate.

enumerator kCLOCK_Gpio5
GPIO5 Clock Gate.

enumerator kCLOCK_Gpt1
GPT1 Clock Gate.

enumerator kCLOCK_Gpt2
GPT2 Clock Gate.

72 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_Gpt3
GPT3 Clock Gate.

enumerator kCLOCK_Gpt4
GPT4 Clock Gate.

enumerator kCLOCK_Gpt5
GPT5 Clock Gate.

enumerator kCLOCK_Gpt6
GPT6 Clock Gate.

enumerator kCLOCK_I2c1
I2C1 Clock Gate.

enumerator kCLOCK_I2c2
I2C2 Clock Gate.

enumerator kCLOCK_I2c3
I2C3 Clock Gate.

enumerator kCLOCK_I2c4
I2C4 Clock Gate.

enumerator kCLOCK_Iomux
IOMUX Clock Gate.

enumerator kCLOCK_Ipmux1
IPMUX1 Clock Gate.

enumerator kCLOCK_Ipmux2
IPMUX2 Clock Gate.

enumerator kCLOCK_Ipmux3
IPMUX3 Clock Gate.

enumerator kCLOCK_Ipmux4
IPMUX4 Clock Gate.

enumerator kCLOCK_M4
M4 Clock Gate.

enumerator kCLOCK_Mu
MU Clock Gate.

enumerator kCLOCK_Ocram
OCRAM Clock Gate.

enumerator kCLOCK_OcramS
OCRAM S Clock Gate.

enumerator kCLOCK_Pwm1
PWM1 Clock Gate.

enumerator kCLOCK_Pwm2
PWM2 Clock Gate.

enumerator kCLOCK_Pwm3
PWM3 Clock Gate.

enumerator kCLOCK_Pwm4
PWM4 Clock Gate.

2.2. Clock 73

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_Qspi
QSPI Clock Gate.

enumerator kCLOCK_Rdc
RDC Clock Gate.

enumerator kCLOCK_Sai1
SAI1 Clock Gate.

enumerator kCLOCK_Sai2
SAI2 Clock Gate.

enumerator kCLOCK_Sai3
SAI3 Clock Gate.

enumerator kCLOCK_Sai4
SAI4 Clock Gate.

enumerator kCLOCK_Sai5
SAI5 Clock Gate.

enumerator kCLOCK_Sai6
SAI6 Clock Gate.

enumerator kCLOCK_Sdma1
SDMA1 Clock Gate.

enumerator kCLOCK_Sdma2
SDMA2 Clock Gate.

enumerator kCLOCK_Sec_Debug
SEC_DEBUG Clock Gate.

enumerator kCLOCK_Sema42_1
RDC SEMA42 Clock Gate.

enumerator kCLOCK_Sema42_2
RDC SEMA42 Clock Gate.

enumerator kCLOCK_Sim_display
SIM_Display Clock Gate.

enumerator kCLOCK_Sim_m
SIM_M Clock Gate.

enumerator kCLOCK_Sim_main
SIM_MAIN Clock Gate.

enumerator kCLOCK_Sim_s
SIM_S Clock Gate.

enumerator kCLOCK_Sim_wakeup
SIM_WAKEUP Clock Gate.

enumerator kCLOCK_Uart1
UART1 Clock Gate.

enumerator kCLOCK_Uart2
UART2 Clock Gate.

enumerator kCLOCK_Uart3
UART3 Clock Gate.

74 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_Uart4
UART4 Clock Gate.

enumerator kCLOCK_Wdog1
WDOG1 Clock Gate.

enumerator kCLOCK_Wdog2
WDOG2 Clock Gate.

enumerator kCLOCK_Wdog3
WDOG3 Clock Gate.

enumerator kCLOCK_TempSensor
TempSensor Clock Gate.

enum _clock_root_control
ccm root name used to get clock frequency.

Values:

enumerator kCLOCK_RootM4
ARM Cortex-M4 Clock control name.

enumerator kCLOCK_RootAxi
AXI Clock control name.

enumerator kCLOCK_RootNoc
NOC Clock control name.

enumerator kCLOCK_RootAhb
AHB Clock control name.

enumerator kCLOCK_RootIpg
IPG Clock control name.

enumerator kCLOCK_RootDramAlt
DRAM ALT Clock control name.

enumerator kCLOCK_RootSai1
SAI1 Clock control name.

enumerator kCLOCK_RootSai2
SAI2 Clock control name.

enumerator kCLOCK_RootSai3
SAI3 Clock control name.

enumerator kCLOCK_RootSai4
SAI4 Clock control name.

enumerator kCLOCK_RootSai5
SAI5 Clock control name.

enumerator kCLOCK_RootSai6
SAI6 Clock control name.

enumerator kCLOCK_RootQspi
QSPI Clock control name.

enumerator kCLOCK_RootI2c1
I2C1 Clock control name.

2.2. Clock 75

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_RootI2c2
I2C2 Clock control name.

enumerator kCLOCK_RootI2c3
I2C3 Clock control name.

enumerator kCLOCK_RootI2c4
I2C4 Clock control name.

enumerator kCLOCK_RootUart1
UART1 Clock control name.

enumerator kCLOCK_RootUart2
UART2 Clock control name.

enumerator kCLOCK_RootUart3
UART3 Clock control name.

enumerator kCLOCK_RootUart4
UART4 Clock control name.

enumerator kCLOCK_RootEcspi1
ECSPI1 Clock control name.

enumerator kCLOCK_RootEcspi2
ECSPI2 Clock control name.

enumerator kCLOCK_RootEcspi3
ECSPI3 Clock control name.

enumerator kCLOCK_RootPwm1
PWM1 Clock control name.

enumerator kCLOCK_RootPwm2
PWM2 Clock control name.

enumerator kCLOCK_RootPwm3
PWM3 Clock control name.

enumerator kCLOCK_RootPwm4
PWM4 Clock control name.

enumerator kCLOCK_RootGpt1
GPT1 Clock control name.

enumerator kCLOCK_RootGpt2
GPT2 Clock control name.

enumerator kCLOCK_RootGpt3
GPT3 Clock control name.

enumerator kCLOCK_RootGpt4
GPT4 Clock control name.

enumerator kCLOCK_RootGpt5
GPT5 Clock control name.

enumerator kCLOCK_RootGpt6
GPT6 Clock control name.

enumerator kCLOCK_RootWdog
WDOG Clock control name.

76 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enum _clock_root
ccm clock root used to get clock frequency.

Values:

enumerator kCLOCK_M4ClkRoot
ARM Cortex-M4 Clock control name.

enumerator kCLOCK_AxiClkRoot
AXI Clock control name.

enumerator kCLOCK_NocClkRoot
NOC Clock control name.

enumerator kCLOCK_AhbClkRoot
AHB Clock control name.

enumerator kCLOCK_IpgClkRoot
IPG Clock control name.

enumerator kCLOCK_DramAltClkRoot
DRAM ALT Clock control name.

enumerator kCLOCK_Sai1ClkRoot
SAI1 Clock control name.

enumerator kCLOCK_Sai2ClkRoot
SAI2 Clock control name.

enumerator kCLOCK_Sai3ClkRoot
SAI3 Clock control name.

enumerator kCLOCK_Sai4ClkRoot
SAI4 Clock control name.

enumerator kCLOCK_Sai5ClkRoot
SAI5 Clock control name.

enumerator kCLOCK_Sai6ClkRoot
SAI6 Clock control name.

enumerator kCLOCK_QspiClkRoot
QSPI Clock control name.

enumerator kCLOCK_I2c1ClkRoot
I2C1 Clock control name.

enumerator kCLOCK_I2c2ClkRoot
I2C2 Clock control name.

enumerator kCLOCK_I2c3ClkRoot
I2C3 Clock control name.

enumerator kCLOCK_I2c4ClkRoot
I2C4 Clock control name.

enumerator kCLOCK_Uart1ClkRoot
UART1 Clock control name.

enumerator kCLOCK_Uart2ClkRoot
UART2 Clock control name.

2.2. Clock 77

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_Uart3ClkRoot
UART3 Clock control name.

enumerator kCLOCK_Uart4ClkRoot
UART4 Clock control name.

enumerator kCLOCK_Ecspi1ClkRoot
ECSPI1 Clock control name.

enumerator kCLOCK_Ecspi2ClkRoot
ECSPI2 Clock control name.

enumerator kCLOCK_Ecspi3ClkRoot
ECSPI3 Clock control name.

enumerator kCLOCK_Pwm1ClkRoot
PWM1 Clock control name.

enumerator kCLOCK_Pwm2ClkRoot
PWM2 Clock control name.

enumerator kCLOCK_Pwm3ClkRoot
PWM3 Clock control name.

enumerator kCLOCK_Pwm4ClkRoot
PWM4 Clock control name.

enumerator kCLOCK_Gpt1ClkRoot
GPT1 Clock control name.

enumerator kCLOCK_Gpt2ClkRoot
GPT2 Clock control name.

enumerator kCLOCK_Gpt3ClkRoot
GPT3 Clock control name.

enumerator kCLOCK_Gpt4ClkRoot
GPT4 Clock control name.

enumerator kCLOCK_Gpt5ClkRoot
GPT5 Clock control name.

enumerator kCLOCK_Gpt6ClkRoot
GPT6 Clock control name.

enumerator kCLOCK_WdogClkRoot
WDOG Clock control name.

enum _clock_rootmux_m4_clk_sel
Root clock select enumeration for ARM Cortex-M4 core.

Values:

enumerator kCLOCK_M4RootmuxOsc25m
ARM Cortex-M4 Clock from OSC 25M.

enumerator kCLOCK_M4RootmuxSysPll2Div5
ARM Cortex-M4 Clock from SYSTEM PLL2 divided by 5.

enumerator kCLOCK_M4RootmuxSysPll2Div4
ARM Cortex-M4 Clock from SYSTEM PLL2 divided by 4.

78 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_M4RootmuxSysPll1Div3
ARM Cortex-M4 Clock from SYSTEM PLL1 divided by 3.

enumerator kCLOCK_M4RootmuxSysPll1
ARM Cortex-M4 Clock from SYSTEM PLL1.

enumerator kCLOCK_M4RootmuxAudioPll1
ARM Cortex-M4 Clock from AUDIO PLL1.

enumerator kCLOCK_M4RootmuxVideoPll1
ARM Cortex-M4 Clock from VIDEO PLL1.

enumerator kCLOCK_M4RootmuxSysPll3
ARM Cortex-M4 Clock from SYSTEM PLL3.

enum _clock_rootmux_axi_clk_sel
Root clock select enumeration for AXI bus.

Values:

enumerator kCLOCK_AxiRootmuxOsc25m
ARM AXI Clock from OSC 25M.

enumerator kCLOCK_AxiRootmuxSysPll2Div3
ARM AXI Clock from SYSTEM PLL2 divided by 3.

enumerator kCLOCK_AxiRootmuxSysPll1
ARM AXI Clock from SYSTEM PLL1.

enumerator kCLOCK_AxiRootmuxSysPll2Div4
ARM AXI Clock from SYSTEM PLL2 divided by 4.

enumerator kCLOCK_AxiRootmuxSysPll2
ARM AXI Clock from SYSTEM PLL2.

enumerator kCLOCK_AxiRootmuxAudioPll1
ARM AXI Clock from AUDIO PLL1.

enumerator kCLOCK_AxiRootmuxVideoPll1
ARM AXI Clock from VIDEO PLL1.

enumerator kCLOCK_AxiRootmuxSysPll1Div8
ARM AXI Clock from SYSTEM PLL1 divided by 8.

enum _clock_rootmux_ahb_clk_sel
Root clock select enumeration for AHB bus.

Values:

enumerator kCLOCK_AhbRootmuxOsc25m
ARM AHB Clock from OSC 25M.

enumerator kCLOCK_AhbRootmuxSysPll1Div6
ARM AHB Clock from SYSTEM PLL1 divided by 6.

enumerator kCLOCK_AhbRootmuxSysPll1
ARM AHB Clock from SYSTEM PLL1.

enumerator kCLOCK_AhbRootmuxSysPll1Div2
ARM AHB Clock from SYSTEM PLL1 divided by 2.

enumerator kCLOCK_AhbRootmuxSysPll2Div8
ARM AHB Clock from SYSTEM PLL2 divided by 8.

2.2. Clock 79

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_AhbRootmuxSysPll3
ARM AHB Clock from SYSTEM PLL3.

enumerator kCLOCK_AhbRootmuxAudioPll1
ARM AHB Clock from AUDIO PLL1.

enumerator kCLOCK_AhbRootmuxVideoPll1
ARM AHB Clock from VIDEO PLL1.

enum _clock_rootmux_qspi_clk_sel
Root clock select enumeration for QSPI peripheral.

Values:

enumerator kCLOCK_QspiRootmuxOsc25m
ARM QSPI Clock from OSC 25M.

enumerator kCLOCK_QspiRootmuxSysPll1Div2
ARM QSPI Clock from SYSTEM PLL1 divided by 2.

enumerator kCLOCK_QspiRootmuxSysPll1
ARM QSPI Clock from SYSTEM PLL1.

enumerator kCLOCK_QspiRootmuxSysPll2Div2
ARM QSPI Clock from SYSTEM PLL2 divided by 2.

enumerator kCLOCK_QspiRootmuxAudioPll2
ARM QSPI Clock from AUDIO PLL2.

enumerator kCLOCK_QspiRootmuxSysPll1Div3
ARM QSPI Clock from SYSTEM PLL1 divided by 3

enumerator kCLOCK_QspiRootmuxSysPll3
ARM QSPI Clock from SYSTEM PLL3.

enumerator kCLOCK_QspiRootmuxSysPll1Div8
ARM QSPI Clock from SYSTEM PLL1 divided by 8.

enum _clock_rootmux_ecspi_clk_sel
Root clock select enumeration for ECSPI peripheral.

Values:

enumerator kCLOCK_EcspiRootmuxOsc25m
ECSPI Clock from OSC 25M.

enumerator kCLOCK_EcspiRootmuxSysPll2Div5
ECSPI Clock from SYSTEM PLL2 divided by 5.

enumerator kCLOCK_EcspiRootmuxSysPll1Div20
ECSPI Clock from SYSTEM PLL1 divided by 20.

enumerator kCLOCK_EcspiRootmuxSysPll1Div5
ECSPI Clock from SYSTEM PLL1 divided by 5.

enumerator kCLOCK_EcspiRootmuxSysPll1
ECSPI Clock from SYSTEM PLL1.

enumerator kCLOCK_EcspiRootmuxSysPll3
ECSPI Clock from SYSTEM PLL3.

enumerator kCLOCK_EcspiRootmuxSysPll2Div4
ECSPI Clock from SYSTEM PLL2 divided by 4.

80 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_EcspiRootmuxAudioPll2
ECSPI Clock from AUDIO PLL2.

enum _clock_rootmux_i2c_clk_sel
Root clock select enumeration for I2C peripheral.

Values:

enumerator kCLOCK_I2cRootmuxOsc25m
I2C Clock from OSC 25M.

enumerator kCLOCK_I2cRootmuxSysPll1Div5
I2C Clock from SYSTEM PLL1 divided by 5.

enumerator kCLOCK_I2cRootmuxSysPll2Div20
I2C Clock from SYSTEM PLL2 divided by 20.

enumerator kCLOCK_I2cRootmuxSysPll3
I2C Clock from SYSTEM PLL3 .

enumerator kCLOCK_I2cRootmuxAudioPll1
I2C Clock from AUDIO PLL1.

enumerator kCLOCK_I2cRootmuxVideoPll1
I2C Clock from VIDEO PLL1.

enumerator kCLOCK_I2cRootmuxAudioPll2
I2C Clock from AUDIO PLL2.

enumerator kCLOCK_I2cRootmuxSysPll1Div6
I2C Clock from SYSTEM PLL1 divided by 6.

enum _clock_rootmux_uart_clk_sel
Root clock select enumeration for UART peripheral.

Values:

enumerator kCLOCK_UartRootmuxOsc25m
UART Clock from OSC 25M.

enumerator kCLOCK_UartRootmuxSysPll1Div10
UART Clock from SYSTEM PLL1 divided by 10.

enumerator kCLOCK_UartRootmuxSysPll2Div5
UART Clock from SYSTEM PLL2 divided by 5.

enumerator kCLOCK_UartRootmuxSysPll2Div10
UART Clock from SYSTEM PLL2 divided by 10.

enumerator kCLOCK_UartRootmuxSysPll3
UART Clock from SYSTEM PLL3.

enumerator kCLOCK_UartRootmuxExtClk2
UART Clock from External Clock 2.

enumerator kCLOCK_UartRootmuxExtClk34
UART Clock from External Clock 3, External Clock 4.

enumerator kCLOCK_UartRootmuxAudioPll2
UART Clock from Audio PLL2.

enum _clock_rootmux_gpt
Root clock select enumeration for GPT peripheral.

Values:

2.2. Clock 81

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_GptRootmuxOsc25m
GPT Clock from OSC 25M.

enumerator kCLOCK_GptRootmuxSystemPll2Div10
GPT Clock from SYSTEM PLL2 divided by 10.

enumerator kCLOCK_GptRootmuxSysPll1Div2
GPT Clock from SYSTEM PLL1 divided by 2.

enumerator kCLOCK_GptRootmuxSysPll1Div20
GPT Clock from SYSTEM PLL1 divided by 20.

enumerator kCLOCK_GptRootmuxVideoPll1
GPT Clock from VIDEO PLL1.

enumerator kCLOCK_GptRootmuxSystemPll1Div10
GPT Clock from SYSTEM PLL1 divided by 10.

enumerator kCLOCK_GptRootmuxAudioPll1
GPT Clock from AUDIO PLL1.

enumerator kCLOCK_GptRootmuxExtClk123
GPT Clock from External Clock1, External Clock2, External Clock3.

enum _clock_rootmux_wdog_clk_sel
Root clock select enumeration for WDOG peripheral.

Values:

enumerator kCLOCK_WdogRootmuxOsc25m
WDOG Clock from OSC 25M.

enumerator kCLOCK_WdogRootmuxSysPll1Div6
WDOG Clock from SYSTEM PLL1 divided by 6.

enumerator kCLOCK_WdogRootmuxSysPll1Div5
WDOG Clock from SYSTEM PLL1 divided by 5.

enumerator kCLOCK_WdogRootmuxVpuPll
WDOG Clock from VPU DLL.

enumerator kCLOCK_WdogRootmuxSystemPll2Div8
WDOG Clock from SYSTEM PLL2 divided by 8.

enumerator kCLOCK_WdogRootmuxSystemPll3
WDOG Clock from SYSTEM PLL3.

enumerator kCLOCK_WdogRootmuxSystemPll1Div10
WDOG Clock from SYSTEM PLL1 divided by 10.

enumerator kCLOCK_WdogRootmuxSystemPll2Div6
WDOG Clock from SYSTEM PLL2 divided by 6.

enum _clock_rootmux_pwm_clk_sel
Root clock select enumeration for PWM peripheral.

Values:

enumerator kCLOCK_PwmRootmuxOsc25m
PWM Clock from OSC 25M.

enumerator kCLOCK_PwmRootmuxSysPll2Div10
PWM Clock from SYSTEM PLL2 divided by 10.

82 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_PwmRootmuxSysPll1Div5
PWM Clock from SYSTEM PLL1 divided by 5.

enumerator kCLOCK_PwmRootmuxSysPll1Div20
PWM Clock from SYSTEM PLL1 divided by 20.

enumerator kCLOCK_PwmRootmuxSystemPll3
PWM Clock from SYSTEM PLL3.

enumerator kCLOCK_PwmRootmuxExtClk12
PWM Clock from External Clock1, External Clock2.

enumerator kCLOCK_PwmRootmuxSystemPll1Div10
PWM Clock from SYSTEM PLL1 divided by 10.

enumerator kCLOCK_PwmRootmuxVideoPll1
PWM Clock from VIDEO PLL1.

enum _clock_rootmux_sai_clk_sel
Root clock select enumeration for SAI peripheral.

Values:

enumerator kCLOCK_SaiRootmuxOsc25m
SAI Clock from OSC 25M.

enumerator kCLOCK_SaiRootmuxAudioPll1
SAI Clock from AUDIO PLL1.

enumerator kCLOCK_SaiRootmuxAudioPll2
SAI Clock from AUDIO PLL2.

enumerator kCLOCK_SaiRootmuxVideoPll1
SAI Clock from VIDEO PLL1.

enumerator kCLOCK_SaiRootmuxSysPll1Div6
SAI Clock from SYSTEM PLL1 divided by 6.

enumerator kCLOCK_SaiRootmuxOsc27m
SAI Clock from OSC 27M.

enumerator kCLOCK_SaiRootmuxExtClk123
SAI Clock from External Clock1, External Clock2, External Clock3.

enumerator kCLOCK_SaiRootmuxExtClk234
SAI Clock from External Clock2, External Clock3, External Clock4.

enum _clock_rootmux_noc_clk_sel
Root clock select enumeration for NOC CLK.

Values:

enumerator kCLOCK_NocRootmuxOsc25m
NOC Clock from OSC 25M.

enumerator kCLOCK_NocRootmuxSysPll1
NOC Clock from SYSTEM PLL1.

enumerator kCLOCK_NocRootmuxSysPll3
NOC Clock from SYSTEM PLL3.

enumerator kCLOCK_NocRootmuxSysPll2
NOC Clock from SYSTEM PLL2.

2.2. Clock 83

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_NocRootmuxSysPll2Div2
NOC Clock from SYSTEM PLL2 divided by 2.

enumerator kCLOCK_NocRootmuxAudioPll1
NOC Clock from AUDIO PLL1.

enumerator kCLOCK_NocRootmuxVideoPll1
NOC Clock from VIDEO PLL1.

enumerator kCLOCK_NocRootmuxAudioPll2
NOC Clock from AUDIO PLL2.

enum _clock_pll_gate
CCM PLL gate control.

Values:

enumerator kCLOCK_ArmPllGate
ARM PLL Gate.

enumerator kCLOCK_GpuPllGate
GPU PLL Gate.

enumerator kCLOCK_VpuPllGate
VPU PLL Gate.

enumerator kCLOCK_DramPllGate
DRAM PLL1 Gate.

enumerator kCLOCK_SysPll1Gate
SYSTEM PLL1 Gate.

enumerator kCLOCK_SysPll1Div2Gate
SYSTEM PLL1 Div2 Gate.

enumerator kCLOCK_SysPll1Div3Gate
SYSTEM PLL1 Div3 Gate.

enumerator kCLOCK_SysPll1Div4Gate
SYSTEM PLL1 Div4 Gate.

enumerator kCLOCK_SysPll1Div5Gate
SYSTEM PLL1 Div5 Gate.

enumerator kCLOCK_SysPll1Div6Gate
SYSTEM PLL1 Div6 Gate.

enumerator kCLOCK_SysPll1Div8Gate
SYSTEM PLL1 Div8 Gate.

enumerator kCLOCK_SysPll1Div10Gate
SYSTEM PLL1 Div10 Gate.

enumerator kCLOCK_SysPll1Div20Gate
SYSTEM PLL1 Div20 Gate.

enumerator kCLOCK_SysPll2Gate
SYSTEM PLL2 Gate.

enumerator kCLOCK_SysPll2Div2Gate
SYSTEM PLL2 Div2 Gate.

84 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_SysPll2Div3Gate
SYSTEM PLL2 Div3 Gate.

enumerator kCLOCK_SysPll2Div4Gate
SYSTEM PLL2 Div4 Gate.

enumerator kCLOCK_SysPll2Div5Gate
SYSTEM PLL2 Div5 Gate.

enumerator kCLOCK_SysPll2Div6Gate
SYSTEM PLL2 Div6 Gate.

enumerator kCLOCK_SysPll2Div8Gate
SYSTEM PLL2 Div8 Gate.

enumerator kCLOCK_SysPll2Div10Gate
SYSTEM PLL2 Div10 Gate.

enumerator kCLOCK_SysPll2Div20Gate
SYSTEM PLL2 Div20 Gate.

enumerator kCLOCK_SysPll3Gate
SYSTEM PLL3 Gate.

enumerator kCLOCK_AudioPll1Gate
AUDIO PLL1 Gate.

enumerator kCLOCK_AudioPll2Gate
AUDIO PLL2 Gate.

enumerator kCLOCK_VideoPll1Gate
VIDEO PLL1 Gate.

enumerator kCLOCK_VideoPll2Gate
VIDEO PLL2 Gate.

enum _clock_gate_value
CCM gate control value.

Values:

enumerator kCLOCK_ClockNotNeeded
Clock always disabled.

enumerator kCLOCK_ClockNeededRun
Clock enabled when CPU is running.

enumerator kCLOCK_ClockNeededRunWait
Clock enabled when CPU is running or in WAIT mode.

enumerator kCLOCK_ClockNeededAll
Clock always enabled.

enum _clock_pll_bypass_ctrl
PLL control names for PLL bypass.

These constants define the PLL control names for PLL bypass.

• 0:15: REG offset to CCM_ANALOG_BASE in bytes.

• 16:20: bypass bit shift.

Values:

2.2. Clock 85

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_AudioPll1BypassCtrl
CCM Audio PLL1 bypass Control.

enumerator kCLOCK_AudioPll2BypassCtrl
CCM Audio PLL2 bypass Control.

enumerator kCLOCK_VideoPll1BypassCtrl
CCM Video Pll1 bypass Control.

enumerator kCLOCK_GpuPLLPwrBypassCtrl
CCM Gpu PLL bypass Control.

enumerator kCLOCK_VpuPllPwrBypassCtrl
CCM Vpu PLL bypass Control.

enumerator kCLOCK_ArmPllPwrBypassCtrl
CCM Arm PLL bypass Control.

enumerator kCLOCK_SysPll1InternalPll1BypassCtrl
CCM System PLL1 internal pll1 bypass Control.

enumerator kCLOCK_SysPll1InternalPll2BypassCtrl
CCM System PLL1 internal pll2 bypass Control.

enumerator kCLOCK_SysPll2InternalPll1BypassCtrl
CCM Analog System PLL1 internal pll1 bypass Control.

enumerator kCLOCK_SysPll2InternalPll2BypassCtrl
CCM Analog VIDEO System PLL1 internal pll1 bypass Control.

enumerator kCLOCK_SysPll3InternalPll1BypassCtrl
CCM Analog VIDEO PLL bypass Control.

enumerator kCLOCK_SysPll3InternalPll2BypassCtrl
CCM Analog VIDEO PLL bypass Control.

enumerator kCLOCK_VideoPll2InternalPll1BypassCtrl
CCM Analog 480M PLL bypass Control.

enumerator kCLOCK_VideoPll2InternalPll2BypassCtrl
CCM Analog 480M PLL bypass Control.

enumerator kCLOCK_DramPllInternalPll1BypassCtrl
CCM Analog 480M PLL bypass Control.

enumerator kCLOCK_DramPllInternalPll2BypassCtrl
CCM Analog 480M PLL bypass Control.

enum _ccm_analog_pll_clke
PLL clock names for clock enable/disable settings.

These constants define the PLL clock names for PLL clock enable/disable operations.

• 0:15: REG offset to CCM_ANALOG_BASE in bytes.

• 16:20: Clock enable bit shift.

Values:

enumerator kCLOCK_AudioPll1Clke
Audio pll1 clke

enumerator kCLOCK_AudioPll2Clke
Audio pll2 clke

86 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_VideoPll1Clke
Video pll1 clke

enumerator kCLOCK_GpuPllClke
Gpu pll clke

enumerator kCLOCK_VpuPllClke
Vpu pll clke

enumerator kCLOCK_ArmPllClke
Arm pll clke

enumerator kCLOCK_SystemPll1Clke
System pll1 clke

enumerator kCLOCK_SystemPll1Div2Clke
System pll1 Div2 clke

enumerator kCLOCK_SystemPll1Div3Clke
System pll1 Div3 clke

enumerator kCLOCK_SystemPll1Div4Clke
System pll1 Div4 clke

enumerator kCLOCK_SystemPll1Div5Clke
System pll1 Div5 clke

enumerator kCLOCK_SystemPll1Div6Clke
System pll1 Div6 clke

enumerator kCLOCK_SystemPll1Div8Clke
System pll1 Div8 clke

enumerator kCLOCK_SystemPll1Div10Clke
System pll1 Div10 clke

enumerator kCLOCK_SystemPll1Div20Clke
System pll1 Div20 clke

enumerator kCLOCK_SystemPll2Clke
System pll2 clke

enumerator kCLOCK_SystemPll2Div2Clke
System pll2 Div2 clke

enumerator kCLOCK_SystemPll2Div3Clke
System pll2 Div3 clke

enumerator kCLOCK_SystemPll2Div4Clke
System pll2 Div4 clke

enumerator kCLOCK_SystemPll2Div5Clke
System pll2 Div5 clke

enumerator kCLOCK_SystemPll2Div6Clke
System pll2 Div6 clke

enumerator kCLOCK_SystemPll2Div8Clke
System pll2 Div8 clke

enumerator kCLOCK_SystemPll2Div10Clke
System pll2 Div10 clke

2.2. Clock 87

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCLOCK_SystemPll2Div20Clke
System pll2 Div20 clke

enumerator kCLOCK_SystemPll3Clke
System pll3 clke

enumerator kCLOCK_VideoPll2Clke
Video pll2 clke

enumerator kCLOCK_DramPllClke
Dram pll clke

enumerator kCLOCK_OSC25MClke
OSC25M clke

enumerator kCLOCK_OSC27MClke
OSC27M clke

enum _clock_pll_ctrl
ANALOG Power down override control.

Values:

enumerator kCLOCK_AudioPll1Ctrl

enumerator kCLOCK_AudioPll2Ctrl

enumerator kCLOCK_VideoPll1Ctrl

enumerator kCLOCK_GpuPllCtrl

enumerator kCLOCK_VpuPllCtrl

enumerator kCLOCK_ArmPllCtrl

enumerator kCLOCK_SystemPll1Ctrl

enumerator kCLOCK_SystemPll2Ctrl

enumerator kCLOCK_SystemPll3Ctrl

enumerator kCLOCK_VideoPll2Ctrl

enumerator kCLOCK_DramPllCtrl

enum _osc_mode
OSC work mode.

Values:

enumerator kOSC_OscMode
OSC oscillator mode

enumerator kOSC_ExtMode
OSC external mode

enum _osc32_src
OSC 32K input select.

Values:

enumerator kOSC32_Src25MDiv800
source from 25M divide 800

88 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kOSC32_SrcRTC
source from RTC

enum _ccm_analog_pll_ref_clk
PLL reference clock select.

Values:

enumerator kANALOG_PllRefOsc25M
reference OSC 25M

enumerator kANALOG_PllRefOsc27M
reference OSC 27M

enumerator kANALOG_PllRefOscHdmiPhy27M
reference HDMI PHY 27M

enumerator kANALOG_PllRefClkPN
reference CLK_P_N

typedef enum _clock_name clock_name_t
Clock name used to get clock frequency.

typedef enum _clock_ip_name clock_ip_name_t
CCM CCGR gate control.

typedef enum _clock_root_control clock_root_control_t
ccm root name used to get clock frequency.

typedef enum _clock_root clock_root_t
ccm clock root used to get clock frequency.

typedef enum _clock_rootmux_m4_clk_sel clock_rootmux_m4_clk_sel_t
Root clock select enumeration for ARM Cortex-M4 core.

typedef enum _clock_rootmux_axi_clk_sel clock_rootmux_axi_clk_sel_t
Root clock select enumeration for AXI bus.

typedef enum _clock_rootmux_ahb_clk_sel clock_rootmux_ahb_clk_sel_t
Root clock select enumeration for AHB bus.

typedef enum _clock_rootmux_qspi_clk_sel clock_rootmux_qspi_clk_sel_t
Root clock select enumeration for QSPI peripheral.

typedef enum _clock_rootmux_ecspi_clk_sel clock_rootmux_ecspi_clk_sel_t
Root clock select enumeration for ECSPI peripheral.

typedef enum _clock_rootmux_i2c_clk_sel clock_rootmux_i2c_clk_sel_t
Root clock select enumeration for I2C peripheral.

typedef enum _clock_rootmux_uart_clk_sel clock_rootmux_uart_clk_sel_t
Root clock select enumeration for UART peripheral.

typedef enum _clock_rootmux_gpt clock_rootmux_gpt_t
Root clock select enumeration for GPT peripheral.

typedef enum _clock_rootmux_wdog_clk_sel clock_rootmux_wdog_clk_sel_t
Root clock select enumeration for WDOG peripheral.

typedef enum _clock_rootmux_pwm_clk_sel clock_rootmux_Pwm_clk_sel_t
Root clock select enumeration for PWM peripheral.

2.2. Clock 89

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _clock_rootmux_sai_clk_sel clock_rootmux_sai_clk_sel_t
Root clock select enumeration for SAI peripheral.

typedef enum _clock_rootmux_noc_clk_sel clock_rootmux_noc_clk_sel_t
Root clock select enumeration for NOC CLK.

typedef enum _clock_pll_gate clock_pll_gate_t
CCM PLL gate control.

typedef enum _clock_gate_value clock_gate_value_t
CCM gate control value.

typedef enum _clock_pll_bypass_ctrl clock_pll_bypass_ctrl_t
PLL control names for PLL bypass.

These constants define the PLL control names for PLL bypass.

• 0:15: REG offset to CCM_ANALOG_BASE in bytes.

• 16:20: bypass bit shift.

typedef enum _ccm_analog_pll_clke clock_pll_clke_t
PLL clock names for clock enable/disable settings.

These constants define the PLL clock names for PLL clock enable/disable operations.

• 0:15: REG offset to CCM_ANALOG_BASE in bytes.

• 16:20: Clock enable bit shift.

typedef enum _clock_pll_ctrl clock_pll_ctrl_t
ANALOG Power down override control.

typedef enum _osc32_src osc32_src_t
OSC 32K input select.

typedef struct _osc_config osc_config_t
OSC configuration structure.

typedef struct _ccm_analog_frac_pll_config ccm_analog_frac_pll_config_t
Fractional-N PLL configuration. Note: all the dividers in this configuration structure are
the actually divider, software will map it to register value.

typedef struct _ccm_analog_sscg_pll_config ccm_analog_sscg_pll_config_t
SSCG PLL configuration. Note: all the dividers in this configuration structure are the actu-
ally divider, software will map it to register value.

FSL_CLOCK_DRIVER_VERSION
CLOCK driver version 2.4.1.

SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY

OSC25M_CLK_FREQ
XTAL 25M clock frequency.

OSC27M_CLK_FREQ
XTAL 27M clock frequency.

HDMI_PHY_27M_FREQ
HDMI PHY 27M clock frequency.

CLKPN_FREQ
clock1PN frequency.

90 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

ECSPI_CLOCKS
Clock ip name array for ECSPI.

GPIO_CLOCKS
Clock ip name array for GPIO.

GPT_CLOCKS
Clock ip name array for GPT.

I2C_CLOCKS
Clock ip name array for I2C.

IOMUX_CLOCKS
Clock ip name array for IOMUX.

IPMUX_CLOCKS
Clock ip name array for IPMUX.

PWM_CLOCKS
Clock ip name array for PWM.

RDC_CLOCKS
Clock ip name array for RDC.

SAI_CLOCKS
Clock ip name array for SAI.

RDC_SEMA42_CLOCKS
Clock ip name array for RDC SEMA42.

UART_CLOCKS
Clock ip name array for UART.

USDHC_CLOCKS
Clock ip name array for USDHC.

WDOG_CLOCKS
Clock ip name array for WDOG.

TMU_CLOCKS
Clock ip name array for TEMPSENSOR.

SDMA_CLOCKS
Clock ip name array for SDMA.

MU_CLOCKS
Clock ip name array for MU.

QSPI_CLOCKS
Clock ip name array for QSPI.

CCM_BIT_FIELD_EXTRACTION(val, mask, shift)
CCM reg macros to extract corresponding registers bit field.

CCM_REG_OFF(root, off)
CCM reg macros to map corresponding registers.

CCM_REG(root)

CCM_REG_SET(root)

CCM_REG_CLR(root)

2.2. Clock 91

MCUXpresso SDK Documentation, Release 25.09.00

AUDIO_PLL1_CFG0_OFFSET
CCM Analog registers offset.

AUDIO_PLL2_CFG0_OFFSET

VIDEO_PLL1_CFG0_OFFSET

GPU_PLL_CFG0_OFFSET

VPU_PLL_CFG0_OFFSET

ARM_PLL_CFG0_OFFSET

SYS_PLL1_CFG0_OFFSET

SYS_PLL2_CFG0_OFFSET

SYS_PLL3_CFG0_OFFSET

VIDEO_PLL2_CFG0_OFFSET

DRAM_PLL_CFG0_OFFSET

OSC_MISC_CFG_OFFSET

CCM_ANALOG_TUPLE(reg, shift)
CCM ANALOG tuple macros to map corresponding registers and bit fields.

CCM_ANALOG_TUPLE_SHIFT(tuple)

CCM_ANALOG_TUPLE_REG_OFF(base, tuple, off)

CCM_ANALOG_TUPLE_REG(base, tuple)

CCM_TUPLE(ccgr, root)
CCM CCGR and root tuple.

CCM_TUPLE_CCGR(tuple)

CCM_TUPLE_ROOT(tuple)

CLOCK_ROOT_SOURCE
clock root source

CLOCK_ROOT_CONTROL_TUPLE

kCLOCK_CoreSysClk
For compatible with other platforms without CCM.

CLOCK_GetCoreSysClkFreq
For compatible with other platforms without CCM.

static inline void CLOCK_SetRootMux(clock_root_control_t rootClk, uint32_t mux)
Set clock rootmux. Usermaybe need to setmore than onemux ROOT according to the clock
tree description in the reference manual.

Parameters
• rootClk – Root clock control (see clock_root_control_t enumeration).

• mux – Root mux value (see _ccm_rootmux_xxx enumeration).

92 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t CLOCK_GetRootMux(clock_root_control_t rootClk)
Get clock root mux. In order to get the clock source of root, user maybe need to get more
than one ROOT’s mux value to obtain the final clock source of root.

Parameters
• rootClk – Root clock control (see clock_root_control_t enumeration).

Returns
Root mux value (see _ccm_rootmux_xxx enumeration).

static inline void CLOCK_EnableRoot(clock_root_control_t rootClk)
Enable clock root.

Parameters
• rootClk – Root clock control (see clock_root_control_t enumeration)

static inline void CLOCK_DisableRoot(clock_root_control_t rootClk)
Disable clock root.

Parameters
• rootClk – Root control (see clock_root_control_t enumeration)

static inline bool CLOCK_IsRootEnabled(clock_root_control_t rootClk)
Check whether clock root is enabled.

Parameters
• rootClk – Root control (see clock_root_control_t enumeration)

Returns
CCM root enabled or not.

• true: Clock root is enabled.

• false: Clock root is disabled.

void CLOCK_UpdateRoot(clock_root_control_t ccmRootClk, uint32_t mux, uint32_t pre, uint32_t
post)

Update clock root in one step, for dynamical clock switching Note: The PRE and POST di-
viders in this function are the actually divider, software will map it to register value.

Parameters
• ccmRootClk – Root control (see clock_root_control_t enumeration)

• mux – root mux value (see _ccm_rootmux_xxx enumeration)

• pre – Pre divider value (0-7, divider=n+1)

• post – Post divider value (0-63, divider=n+1)

void CLOCK_SetRootDivider(clock_root_control_t ccmRootClk, uint32_t pre, uint32_t post)
Set root clock divider Note: The PRE and POST dividers in this function are the actually
divider, software will map it to register value.

Parameters
• ccmRootClk – Root control (see clock_root_control_t enumeration)

• pre – Pre divider value (1-8)

• post – Post divider value (1-64)

static inline uint32_t CLOCK_GetRootPreDivider(clock_root_control_t rootClk)
Get clock root PRE_PODF. In order to get the clock source of root, user maybe need to get
more than one ROOT’s mux value to obtain the final clock source of root.

2.2. Clock 93

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• rootClk – Root clock name (see clock_root_control_t enumeration).

Returns
Root Pre divider value.

static inline uint32_t CLOCK_GetRootPostDivider(clock_root_control_t rootClk)
Get clock root POST_PODF. In order to get the clock source of root, user maybe need to get
more than one ROOT’s mux value to obtain the final clock source of root.

Parameters
• rootClk – Root clock name (see clock_root_control_t enumeration).

Returns
Root Post divider value.

void CLOCK_InitOSC25M(const osc_config_t *config)
OSC25M init.

Parameters
• config – osc configuration.

void CLOCK_DeinitOSC25M(void)
OSC25M deinit.

void CLOCK_InitOSC27M(const osc_config_t *config)
OSC27M init.

Parameters
• config – osc configuration.

void CLOCK_DeinitOSC27M(void)
OSC27M deinit.

static inline void CLOCK_SwitchOSC32Src(osc32_src_t sel)
switch 32KHZ OSC input

Parameters
• sel – OSC32 input clock select

static inline void CLOCK_ControlGate(uint32_t ccmGate, clock_gate_value_t control)
Set PLL or CCGR gate control.

Parameters
• ccmGate – Gate control (see clock_pll_gate_t and clock_ip_name_t enumer-
ation)

• control – Gate control value (see clock_gate_value_t)

void CLOCK_EnableClock(clock_ip_name_t ccmGate)
Enable CCGR clock gate and root clock gate for eachmodule User should set specific gate for
each module according to the description of the table of system clocks, gating and override
in CCM chapter of reference manual. Take care of that one module may need to set more
than one clock gate.

Parameters
• ccmGate – Gate control for each module (see clock_ip_name_t enumera-
tion).

94 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

void CLOCK_DisableClock(clock_ip_name_t ccmGate)
Disable CCGR clock gate for the each module User should set specific gate for each module
according to the description of the table of system clocks, gating and override in CCM chap-
ter of reference manual. Take care of that onemodule may need to set more than one clock
gate.

Parameters
• ccmGate – Gate control for each module (see clock_ip_name_t enumera-
tion).

static inline void CLOCK_PowerUpPll(CCM_ANALOG_Type *base, clock_pll_ctrl_t pllControl)
Power up PLL.

Parameters
• base – CCM_ANALOG base pointer.

• pllControl – PLL control name (see clock_pll_ctrl_t enumeration)

static inline void CLOCK_PowerDownPll(CCM_ANALOG_Type *base, clock_pll_ctrl_t pllControl)
Power down PLL.

Parameters
• base – CCM_ANALOG base pointer.

• pllControl – PLL control name (see clock_pll_ctrl_t enumeration)

static inline void CLOCK_SetPllBypass(CCM_ANALOG_Type *base, clock_pll_bypass_ctrl_t
pllControl, bool bypass)

PLL bypass setting.

Parameters
• base – CCM_ANALOG base pointer.

• pllControl – PLL control name (see ccm_analog_pll_control_t enumeration)

• bypass – Bypass the PLL.

– true: Bypass the PLL.

– false: Do not bypass the PLL.

static inline bool CLOCK_IsPllBypassed(CCM_ANALOG_Type *base, clock_pll_bypass_ctrl_t
pllControl)

Check if PLL is bypassed.

Parameters
• base – CCM_ANALOG base pointer.

• pllControl – PLL control name (see ccm_analog_pll_control_t enumeration)

Returns
PLL bypass status.

• true: The PLL is bypassed.

• false: The PLL is not bypassed.

static inline bool CLOCK_IsPllLocked(CCM_ANALOG_Type *base, clock_pll_ctrl_t pllControl)
Check if PLL clock is locked.

Parameters
• base – CCM_ANALOG base pointer.

• pllControl – PLL control name (see clock_pll_ctrl_t enumeration)

2.2. Clock 95

MCUXpresso SDK Documentation, Release 25.09.00

Returns
PLL lock status.

• true: The PLL clock is locked.

• false: The PLL clock is not locked.

static inline void CLOCK_EnableAnalogClock(CCM_ANALOG_Type *base, clock_pll_clke_t
pllClock)

Enable PLL clock.

Parameters
• base – CCM_ANALOG base pointer.

• pllClock – PLL clock name (see ccm_analog_pll_clock_t enumeration)

static inline void CLOCK_DisableAnalogClock(CCM_ANALOG_Type *base, clock_pll_clke_t
pllClock)

Disable PLL clock.

Parameters
• base – CCM_ANALOG base pointer.

• pllClock – PLL clock name (see ccm_analog_pll_clock_t enumeration)

static inline void CLOCK_OverrideAnalogClke(CCM_ANALOG_Type *base, clock_pll_clke_t
ovClock, bool override)

Override PLL clock output enable.

Parameters
• base – CCM_ANALOG base pointer.

• ovClock – PLL clock name (see clock_pll_clke_t enumeration)

• override – Override the PLL.

– true: Override the PLL clke, CCM will handle it.

– false: Do not override the PLL clke.

static inline void CLOCK_OverridePllPd(CCM_ANALOG_Type *base, clock_pll_ctrl_t pdClock,
bool override)

Override PLL power down.

Parameters
• base – CCM_ANALOG base pointer.

• pdClock – PLL clock name (see clock_pll_ctrl_t enumeration)

• override – Override the PLL.

– true: Override the PLL clke, CCM will handle it.

– false: Do not override the PLL clke.

void CLOCK_InitArmPll(const ccm_analog_frac_pll_config_t *config)
Initializes the ANALOG ARM PLL.

Note: This function can’t detect whether the Arm PLL has been enabled and used by some
IPs.

Parameters

96 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

• config – Pointer to the configuration structure(see
ccm_analog_frac_pll_config_t enumeration).

void CLOCK_DeinitArmPll(void)
De-initialize the ARM PLL.

void CLOCK_InitSysPll1(const ccm_analog_sscg_pll_config_t *config)
Initializes the ANALOG SYS PLL1.

Note: This function can’t detect whether the SYS PLL has been enabled and used by some
IPs.

Parameters
• config – Pointer to the configuration structure(see
ccm_analog_sscg_pll_config_t enumeration).

void CLOCK_DeinitSysPll1(void)
De-initialize the System PLL1.

void CLOCK_InitSysPll2(const ccm_analog_sscg_pll_config_t *config)
Initializes the ANALOG SYS PLL2.

Note: This function can’t detect whether the SYS PLL has been enabled and used by some
IPs.

Parameters
• config – Pointer to the configuration structure(see
ccm_analog_sscg_pll_config_t enumeration).

void CLOCK_DeinitSysPll2(void)
De-initialize the System PLL2.

void CLOCK_InitSysPll3(const ccm_analog_sscg_pll_config_t *config)
Initializes the ANALOG SYS PLL3.

Note: This function can’t detect whether the SYS PLL has been enabled and used by some
IPs.

Parameters
• config – Pointer to the configuration structure(see
ccm_analog_sscg_pll_config_t enumeration).

void CLOCK_DeinitSysPll3(void)
De-initialize the System PLL3.

void CLOCK_InitDramPll(const ccm_analog_sscg_pll_config_t *config)
Initializes the ANALOG DDR PLL.

Note: This function can’t detect whether the DDR PLL has been enabled and used by some
IPs.

Parameters

2.2. Clock 97

MCUXpresso SDK Documentation, Release 25.09.00

• config – Pointer to the configuration structure(see
ccm_analog_sscg_pll_config_t enumeration).

void CLOCK_DeinitDramPll(void)
De-initialize the Dram PLL.

void CLOCK_InitAudioPll1(const ccm_analog_frac_pll_config_t *config)
Initializes the ANALOG AUDIO PLL1.

Note: This function can’t detect whether the AUDIO PLL has been enabled and used by
some IPs.

Parameters
• config – Pointer to the configuration structure(see
ccm_analog_frac_pll_config_t enumeration).

void CLOCK_DeinitAudioPll1(void)
De-initialize the Audio PLL1.

void CLOCK_InitAudioPll2(const ccm_analog_frac_pll_config_t *config)
Initializes the ANALOG AUDIO PLL2.

Note: This function can’t detect whether the AUDIO PLL has been enabled and used by
some IPs.

Parameters
• config – Pointer to the configuration structure(see
ccm_analog_frac_pll_config_t enumeration).

void CLOCK_DeinitAudioPll2(void)
De-initialize the Audio PLL2.

void CLOCK_InitVideoPll1(const ccm_analog_frac_pll_config_t *config)
Initializes the ANALOG VIDEO PLL1.

Parameters
• config – Pointer to the configuration structure(see
ccm_analog_frac_pll_config_t enumeration).

void CLOCK_DeinitVideoPll1(void)
De-initialize the Video PLL1.

void CLOCK_InitVideoPll2(const ccm_analog_sscg_pll_config_t *config)
Initializes the ANALOG VIDEO PLL2.

Note: This function can’t detect whether the VIDEO PLL has been enabled and used by
some IPs.

Parameters
• config – Pointer to the configuration structure(see
ccm_analog_sscg_pll_config_t enumeration).

void CLOCK_DeinitVideoPll2(void)
De-initialize the Video PLL2.

98 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

void CLOCK_InitSSCGPll(CCM_ANALOG_Type *base, const ccm_analog_sscg_pll_config_t
*config, clock_pll_ctrl_t type)

Initializes the ANALOG SSCG PLL.

Parameters
• base – CCM ANALOG base address

• config – Pointer to the configuration structure(see
ccm_analog_sscg_pll_config_t enumeration).

• type – sscg pll type

uint32_t CLOCK_GetSSCGPllFreq(CCM_ANALOG_Type *base, clock_pll_ctrl_t type, uint32_t
refClkFreq, bool pll1Bypass)

Get the ANALOG SSCG PLL clock frequency.

Parameters
• base – CCM ANALOG base address.

• type – sscg pll type

• refClkFreq – reference clock frequency

• pll1Bypass – pll1 bypass flag

Returns
Clock frequency

void CLOCK_InitFracPll(CCM_ANALOG_Type *base, const ccm_analog_frac_pll_config_t *config,
clock_pll_ctrl_t type)

Initializes the ANALOG Fractional PLL.

Parameters
• base – CCM ANALOG base address.

• config – Pointer to the configuration structure(see
ccm_analog_frac_pll_config_t enumeration).

• type – fractional pll type.

uint32_t CLOCK_GetFracPllFreq(CCM_ANALOG_Type *base, clock_pll_ctrl_t type, uint32_t
refClkFreq)

Gets the ANALOG Fractional PLL clock frequency.

Parameters
• base – CCM_ANALOG base pointer.

• type – fractional pll type.

• refClkFreq – reference clock frequency

Returns
Clock frequency

uint32_t CLOCK_GetPllFreq(clock_pll_ctrl_t pll)
Gets PLL clock frequency.

Parameters
• pll – fractional pll type.

Returns
Clock frequency

2.2. Clock 99

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t CLOCK_GetPllRefClkFreq(clock_pll_ctrl_t ctrl)
Gets PLL reference clock frequency.

Parameters
• ctrl – fractional pll type.

Returns
Clock frequency

uint32_t CLOCK_GetFreq(clock_name_t clockName)
Gets the clock frequency for a specific clock name.

This function checks the current clock configurations and then calculates the clock fre-
quency for a specific clock name defined in clock_name_t.

Parameters
• clockName – Clock names defined in clock_name_t

Returns
Clock frequency value in hertz

uint32_t CLOCK_GetClockRootFreq(clock_root_t clockRoot)
Gets the frequency of selected clock root.

Parameters
• clockRoot – The clock root used to get the frequency, please refer to
clock_root_t.

Returns
The frequency of selected clock root.

uint32_t CLOCK_GetCoreM4Freq(void)
Get the CCM Cortex M4 core frequency.

Returns
Clock frequency; If the clock is invalid, returns 0.

uint32_t CLOCK_GetAxiFreq(void)
Get the CCM Axi bus frequency.

Returns
Clock frequency; If the clock is invalid, returns 0.

uint32_t CLOCK_GetAhbFreq(void)
Get the CCM Ahb bus frequency.

Returns
Clock frequency; If the clock is invalid, returns 0.

uint8_t oscMode
ext or osc mode

uint8_t oscDiv
osc divider

uint8_t refSel
pll reference clock sel

uint8_t refDiv
A 6bit divider to make sure the REF must be within the range 10MHZ~300MHZ

uint32_t fractionDiv
Inlcude fraction divider(divider:1:2^24) output clock range is 2000MHZ-4000MHZ

100 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

uint8_t intDiv

uint8_t outDiv
output clock divide, output clock range is 30MHZ to 2000MHZ, must be a even value

uint8_t refSel
pll reference clock sel

uint8_t refDiv1
A 3bit divider to make sure the REFmust be within the range 25MHZ~235MHZ ,post_divide
REF must be within the range 25MHZ~54MHZ

uint8_t refDiv2
A 6bit divider to make sure the post_divide REF must be within the range 54MHZ~75MHZ

uint32_t loopDivider1
A 6bit internal PLL1 feedback clock divider, output clock range must be within the range
1600MHZ-2400MHZ

uint32_t loopDivider2
A 6bit internal PLL2 feedback clock divider, output clock range must be within the range
1200MHZ-2400MHZ

uint8_t outDiv
A 6bit output clock divide, output clock range is 20MHZ to 1200MHZ

struct _osc_config
#include <fsl_clock.h> OSC configuration structure.

struct _ccm_analog_frac_pll_config
#include <fsl_clock.h> Fractional-N PLL configuration. Note: all the dividers in this config-
uration structure are the actually divider, software will map it to register value.

struct _ccm_analog_sscg_pll_config
#include <fsl_clock.h> SSCG PLL configuration. Note: all the dividers in this configuration
structure are the actually divider, software will map it to register value.

2.3 MIPI CSI2 RX: MIPI CSI2 RX Driver

FSL_CSI2RX_DRIVER_VERSION
CSI2RX driver version.

enum _csi2rx_data_lane
CSI2RX data lanes.

Values:

enumerator kCSI2RX_DataLane0
Data lane 0.

enumerator kCSI2RX_DataLane1
Data lane 1.

enumerator kCSI2RX_DataLane2
Data lane 2.

enumerator kCSI2RX_DataLane3
Data lane 3.

2.3. MIPI CSI2 RX: MIPI CSI2 RX Driver 101

MCUXpresso SDK Documentation, Release 25.09.00

enum _csi2rx_payload
CSI2RX payload type.

Values:

enumerator kCSI2RX_PayloadGroup0Null
NULL.

enumerator kCSI2RX_PayloadGroup0Blank
Blank.

enumerator kCSI2RX_PayloadGroup0Embedded
Embedded.

enumerator kCSI2RX_PayloadGroup0YUV420_8Bit
Legacy YUV420 8 bit.

enumerator kCSI2RX_PayloadGroup0YUV422_8Bit
YUV422 8 bit.

enumerator kCSI2RX_PayloadGroup0YUV422_10Bit
YUV422 10 bit.

enumerator kCSI2RX_PayloadGroup0RGB444
RGB444.

enumerator kCSI2RX_PayloadGroup0RGB555
RGB555.

enumerator kCSI2RX_PayloadGroup0RGB565
RGB565.

enumerator kCSI2RX_PayloadGroup0RGB666
RGB666.

enumerator kCSI2RX_PayloadGroup0RGB888
RGB888.

enumerator kCSI2RX_PayloadGroup0Raw6
Raw 6.

enumerator kCSI2RX_PayloadGroup0Raw7
Raw 7.

enumerator kCSI2RX_PayloadGroup0Raw8
Raw 8.

enumerator kCSI2RX_PayloadGroup0Raw10
Raw 10.

enumerator kCSI2RX_PayloadGroup0Raw12
Raw 12.

enumerator kCSI2RX_PayloadGroup0Raw14
Raw 14.

enumerator kCSI2RX_PayloadGroup1UserDefined1
User defined 8-bit data type 1, 0x30.

enumerator kCSI2RX_PayloadGroup1UserDefined2
User defined 8-bit data type 2, 0x31.

102 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCSI2RX_PayloadGroup1UserDefined3
User defined 8-bit data type 3, 0x32.

enumerator kCSI2RX_PayloadGroup1UserDefined4
User defined 8-bit data type 4, 0x33.

enumerator kCSI2RX_PayloadGroup1UserDefined5
User defined 8-bit data type 5, 0x34.

enumerator kCSI2RX_PayloadGroup1UserDefined6
User defined 8-bit data type 6, 0x35.

enumerator kCSI2RX_PayloadGroup1UserDefined7
User defined 8-bit data type 7, 0x36.

enumerator kCSI2RX_PayloadGroup1UserDefined8
User defined 8-bit data type 8, 0x37.

enum _csi2rx_bit_error
MIPI CSI2RX bit errors.

Values:

enumerator kCSI2RX_BitErrorEccTwoBit
ECC two bit error has occurred.

enumerator kCSI2RX_BitErrorEccOneBit
ECC one bit error has occurred.

enum _csi2rx_ppi_error
MIPI CSI2RX PPI error types.

Values:

enumerator kCSI2RX_PpiErrorSotHs
CSI2RX DPHY PPI error ErrSotHS.

enumerator kCSI2RX_PpiErrorSotSyncHs
CSI2RX DPHY PPI error ErrSotSync_HS.

enumerator kCSI2RX_PpiErrorEsc
CSI2RX DPHY PPI error ErrEsc.

enumerator kCSI2RX_PpiErrorSyncEsc
CSI2RX DPHY PPI error ErrSyncEsc.

enumerator kCSI2RX_PpiErrorControl
CSI2RX DPHY PPI error ErrControl.

enum _csi2rx_interrupt
MIPI CSI2RX interrupt.

Values:

enumerator kCSI2RX_InterruptCrcError

enumerator kCSI2RX_InterruptEccOneBitError

enumerator kCSI2RX_InterruptEccTwoBitError

enumerator kCSI2RX_InterruptUlpsStatusChange

enumerator kCSI2RX_InterruptErrorSotHs

2.3. MIPI CSI2 RX: MIPI CSI2 RX Driver 103

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCSI2RX_InterruptErrorSotSyncHs

enumerator kCSI2RX_InterruptErrorEsc

enumerator kCSI2RX_InterruptErrorSyncEsc

enumerator kCSI2RX_InterruptErrorControl

enum _csi2rx_ulps_status
MIPI CSI2RX D-PHY ULPS state.

Values:

enumerator kCSI2RX_ClockLaneUlps
Clock lane is in ULPS state.

enumerator kCSI2RX_DataLane0Ulps
Data lane 0 is in ULPS state.

enumerator kCSI2RX_DataLane1Ulps
Data lane 1 is in ULPS state.

enumerator kCSI2RX_DataLane2Ulps
Data lane 2 is in ULPS state.

enumerator kCSI2RX_DataLane3Ulps
Data lane 3 is in ULPS state.

enumerator kCSI2RX_ClockLaneMark
Clock lane is in mark state.

enumerator kCSI2RX_DataLane0Mark
Data lane 0 is in mark state.

enumerator kCSI2RX_DataLane1Mark
Data lane 1 is in mark state.

enumerator kCSI2RX_DataLane2Mark
Data lane 2 is in mark state.

enumerator kCSI2RX_DataLane3Mark
Data lane 3 is in mark state.

typedef struct _csi2rx_config csi2rx_config_t
CSI2RX configuration.

typedef enum _csi2rx_ppi_error csi2rx_ppi_error_t
MIPI CSI2RX PPI error types.

void CSI2RX_Init(MIPI_CSI2RX_Type *base, const csi2rx_config_t *config)
Enables and configures the CSI2RX peripheral module.

Parameters
• base – CSI2RX peripheral address.

• config – CSI2RX module configuration structure.

void CSI2RX_Deinit(MIPI_CSI2RX_Type *base)
Disables the CSI2RX peripheral module.

Parameters
• base – CSI2RX peripheral address.

104 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t CSI2RX_GetBitError(MIPI_CSI2RX_Type *base)
Gets the MIPI CSI2RX bit error status.

This function gets the RX bit error status, the return value could be compared with
_csi2rx_bit_error. If one bit ECC error detected, the return value could be passed to the
function CSI2RX_GetEccBitErrorPosition to get the position of the ECC error bit.

Example:

uint32_t bitError;
uint32_t bitErrorPosition;

bitError = CSI2RX_GetBitError(MIPI_CSI2RX);

if (kCSI2RX_BitErrorEccTwoBit & bitError)
{

Two bits error;
}
else if (kCSI2RX_BitErrorEccOneBit & bitError)
{

One bits error;
bitErrorPosition = CSI2RX_GetEccBitErrorPosition(bitError);

}

Parameters
• base – CSI2RX peripheral address.

Returns
The RX bit error status.

static inline uint32_t CSI2RX_GetEccBitErrorPosition(uint32_t bitError)
Get ECC one bit error bit position.

If CSI2RX_GetBitError detects ECC one bit error, this function could extract the error bit
position from the return value of CSI2RX_GetBitError.

Parameters
• bitError – The bit error returned by CSI2RX_GetBitError.

Returns
The position of error bit.

static inline uint32_t CSI2RX_GetUlpsStatus(MIPI_CSI2RX_Type *base)
Gets the MIPI CSI2RX D-PHY ULPS status.

Example to check whether data lane 0 is in ULPS status.

uint32_t status = CSI2RX_GetUlpsStatus(MIPI_CSI2RX);

if (kCSI2RX_DataLane0Ulps & status)
{

Data lane 0 is in ULPS status.
}

Parameters
• base – CSI2RX peripheral address.

Returns
The MIPI CSI2RX D-PHY ULPS status, it is OR’ed value or _csi2rx_ulps_status.

2.3. MIPI CSI2 RX: MIPI CSI2 RX Driver 105

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t CSI2RX_GetPpiErrorDataLanes(MIPI_CSI2RX_Type *base,
csi2rx_ppi_error_t errorType)

Gets the MIPI CSI2RX D-PHY PPI error lanes.

This function checks the PPI error occurred onwhich data lanes, the returned value is OR’ed
value of csi2rx_ppi_error_t. For example, if the ErrSotHS is detected, to check the ErrSotHS
occurred on which data lanes, use like this:

uint32_t errorDataLanes = CSI2RX_GetPpiErrorDataLanes(MIPI_CSI2RX, kCSI2RX_
↪→PpiErrorSotHs);

if (kCSI2RX_DataLane0 & errorDataLanes)
{

ErrSotHS occurred on data lane 0.
}

if (kCSI2RX_DataLane1 & errorDataLanes)
{

ErrSotHS occurred on data lane 1.
}

Parameters
• base – CSI2RX peripheral address.

• errorType – What kind of error to check.

Returns
The data lane mask that error errorType occurred.

static inline void CSI2RX_EnableInterrupts(MIPI_CSI2RX_Type *base, uint32_t mask)
Enable the MIPI CSI2RX interrupts.

This function enables the MIPI CSI2RX interrupts. The interrupts to enable are passed in as
an OR’ed value of _csi2rx_interrupt. For example, to enable one bit and two bit ECC error
interrupts, use like this:

CSI2RX_EnableInterrupts(MIPI_CSI2RX, kCSI2RX_InterruptEccOneBitError | kCSI2RX_
↪→InterruptEccTwoBitError);

Parameters
• base – CSI2RX peripheral address.

• mask – OR’ed value of _csi2rx_interrupt.

static inline void CSI2RX_DisableInterrupts(MIPI_CSI2RX_Type *base, uint32_t mask)
Disable the MIPI CSI2RX interrupts.

This function disables theMIPI CSI2RX interrupts. The interrupts to disable are passed in as
an OR’ed value of _csi2rx_interrupt. For example, to disable one bit and two bit ECC error
interrupts, use like this:

CSI2RX_DisableInterrupts(MIPI_CSI2RX, kCSI2RX_InterruptEccOneBitError | kCSI2RX_
↪→InterruptEccTwoBitError);

Parameters
• base – CSI2RX peripheral address.

• mask – OR’ed value of _csi2rx_interrupt.

106 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t CSI2RX_GetInterruptStatus(MIPI_CSI2RX_Type *base)
Get the MIPI CSI2RX interrupt status.

This function returns the MIPI CSI2RX interrupts status as an OR’ed value of
_csi2rx_interrupt.

Parameters
• base – CSI2RX peripheral address.

Returns
OR’ed value of _csi2rx_interrupt.

CSI2RX_REG_CFG_NUM_LANES(base)

CSI2RX_REG_CFG_DISABLE_DATA_LANES(base)

CSI2RX_REG_BIT_ERR(base)

CSI2RX_REG_IRQ_STATUS(base)

CSI2RX_REG_IRQ_MASK(base)

CSI2RX_REG_ULPS_STATUS(base)

CSI2RX_REG_PPI_ERRSOT_HS(base)

CSI2RX_REG_PPI_ERRSOTSYNC_HS(base)

CSI2RX_REG_PPI_ERRESC(base)

CSI2RX_REG_PPI_ERRSYNCESC(base)

CSI2RX_REG_PPI_ERRCONTROL(base)

CSI2RX_REG_CFG_DISABLE_PAYLOAD_0(base)

CSI2RX_REG_CFG_DISABLE_PAYLOAD_1(base)

CSI2RX_REG_CFG_IGNORE_VC(base)

CSI2RX_REG_CFG_VID_VC(base)

CSI2RX_REG_CFG_VID_P_FIFO_SEND_LEVEL(base)

CSI2RX_REG_CFG_VID_VSYNC(base)

CSI2RX_REG_CFG_VID_HSYNC_FP(base)

CSI2RX_REG_CFG_VID_HSYNC(base)

CSI2RX_REG_CFG_VID_HSYNC_BP(base)

MIPI_CSI2RX_CSI2RX_CFG_NUM_LANES_csi2rx_cfg_num_lanes_MASK

MIPI_CSI2RX_CSI2RX_IRQ_MASK_csi2rx_irq_mask_MASK

struct _csi2rx_config
#include <fsl_mipi_csi2rx.h> CSI2RX configuration.

2.3. MIPI CSI2 RX: MIPI CSI2 RX Driver 107

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

uint8_t laneNum
Number of active lanes used for receiving data.

uint8_t tHsSettle_EscClk
Number of rx_clk_esc clock periods for T_HS_SETTLE. The T_HS_SETTLE should be in
the range of 85ns + 6UI to 145ns + 10UI.

2.4 ECSPI: Enhanced Configurable Serial Peripheral Interface
Driver

2.5 ECSPI Driver

void ECSPI_MasterGetDefaultConfig(ecspi_master_config_t *config)
Sets the ECSPI configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use in EC-
SPI_MasterInit(). User may use the initialized structure unchanged in ECSPI_MasterInit,
or modify some fields of the structure before calling ECSPI_MasterInit. After calling this
API, the master is ready to transfer. Example:

ecspi_master_config_t config;
ECSPI_MasterGetDefaultConfig(&config);

Parameters
• config – pointer to config structure

void ECSPI_MasterInit(ECSPI_Type *base, const ecspi_master_config_t *config, uint32_t
srcClock_Hz)

Initializes the ECSPI with configuration.

The configuration structure can be filled by user from scratch, or be set with default values
by ECSPI_MasterGetDefaultConfig(). After calling this API, the slave is ready to transfer.
Example

ecspi_master_config_t config = {
.baudRate_Bps = 400000,
...
};
ECSPI_MasterInit(ECSPI0, &config);

Parameters
• base – ECSPI base pointer

• config – pointer to master configuration structure

• srcClock_Hz – Source clock frequency.

void ECSPI_SlaveGetDefaultConfig(ecspi_slave_config_t *config)
Sets the ECSPI configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use in EC-
SPI_SlaveInit(). User may use the initialized structure unchanged in ECSPI_SlaveInit(), or
modify some fields of the structure before calling ECSPI_SlaveInit(). After calling this API,
the master is ready to transfer. Example:

108 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

ecspi_Slaveconfig_t config;
ECSPI_SlaveGetDefaultConfig(&config);

Parameters
• config – pointer to config structure

void ECSPI_SlaveInit(ECSPI_Type *base, const ecspi_slave_config_t *config)
Initializes the ECSPI with configuration.

The configuration structure can be filled by user from scratch, or be set with default val-
ues by ECSPI_SlaveGetDefaultConfig(). After calling this API, the slave is ready to transfer.
Example

ecspi_Salveconfig_t config = {
.baudRate_Bps = 400000,
...
};
ECSPI_SlaveInit(ECSPI1, &config);

Parameters
• base – ECSPI base pointer

• config – pointer to master configuration structure

void ECSPI_Deinit(ECSPI_Type *base)
De-initializes the ECSPI.

Calling this API resets the ECSPI module, gates the ECSPI clock. The ECSPI module can’t
work unless calling the ECSPI_MasterInit/ECSPI_SlaveInit to initialize module.

Parameters
• base – ECSPI base pointer

static inline void ECSPI_Enable(ECSPI_Type *base, bool enable)
Enables or disables the ECSPI.

Parameters
• base – ECSPI base pointer

• enable – pass true to enable module, false to disable module

static inline uint32_t ECSPI_GetStatusFlags(ECSPI_Type *base)
Gets the status flag.

Parameters
• base – ECSPI base pointer

Returns
ECSPI Status, use status flag to AND _ecspi_flags could get the related status.

static inline void ECSPI_ClearStatusFlags(ECSPI_Type *base, uint32_t mask)
Clear the status flag.

Parameters
• base – ECSPI base pointer

• mask – ECSPI Status, use status flag toAND _ecspi_flags could get the related
status.

2.5. ECSPI Driver 109

MCUXpresso SDK Documentation, Release 25.09.00

static inline void ECSPI_EnableInterrupts(ECSPI_Type *base, uint32_t mask)
Enables the interrupt for the ECSPI.

Parameters
• base – ECSPI base pointer

• mask – ECSPI interrupt source. The parameter can be any combination of
the following values:

– kECSPI_TxfifoEmptyInterruptEnable

– kECSPI_TxFifoDataRequstInterruptEnable

– kECSPI_TxFifoFullInterruptEnable

– kECSPI_RxFifoReadyInterruptEnable

– kECSPI_RxFifoDataRequstInterruptEnable

– kECSPI_RxFifoFullInterruptEnable

– kECSPI_RxFifoOverFlowInterruptEnable

– kECSPI_TransferCompleteInterruptEnable

– kECSPI_AllInterruptEnable

static inline void ECSPI_DisableInterrupts(ECSPI_Type *base, uint32_t mask)
Disables the interrupt for the ECSPI.

Parameters
• base – ECSPI base pointer

• mask – ECSPI interrupt source. The parameter can be any combination of
the following values:

– kECSPI_TxfifoEmptyInterruptEnable

– kECSPI_TxFifoDataRequstInterruptEnable

– kECSPI_TxFifoFullInterruptEnable

– kECSPI_RxFifoReadyInterruptEnable

– kECSPI_RxFifoDataRequstInterruptEnable

– kECSPI_RxFifoFullInterruptEnable

– kECSPI_RxFifoOverFlowInterruptEnable

– kECSPI_TransferCompleteInterruptEnable

– kECSPI_AllInterruptEnable

static inline void ECSPI_SoftwareReset(ECSPI_Type *base)
Software reset.

Parameters
• base – ECSPI base pointer

static inline bool ECSPI_IsMaster(ECSPI_Type *base, ecspi_channel_source_t channel)
Mode check.

Parameters
• base – ECSPI base pointer

• channel – ECSPI channel source

Returns
mode of channel

110 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline void ECSPI_EnableDMA(ECSPI_Type *base, uint32_t mask, bool enable)
Enables the DMA source for ECSPI.

Parameters
• base – ECSPI base pointer

• mask – ECSPI DMA source. The parameter can be any of the following val-
ues:

– kECSPI_TxDmaEnable

– kECSPI_RxDmaEnable

– kECSPI_DmaAllEnable

• enable – True means enable DMA, false means disable DMA

static inline uint8_t ECSPI_GetTxFifoCount(ECSPI_Type *base)
Get the Tx FIFO data count.

Parameters
• base – ECSPI base pointer.

Returns
the number of words in Tx FIFO buffer.

static inline uint8_t ECSPI_GetRxFifoCount(ECSPI_Type *base)
Get the Rx FIFO data count.

Parameters
• base – ECSPI base pointer.

Returns
the number of words in Rx FIFO buffer.

static inline void ECSPI_SetChannelSelect(ECSPI_Type *base, ecspi_channel_source_t channel)
Set channel select for transfer.

Parameters
• base – ECSPI base pointer

• channel – Channel source.

void ECSPI_SetChannelConfig(ECSPI_Type *base, ecspi_channel_source_t channel, const
ecspi_channel_config_t *config)

Set channel select configuration for transfer.

The purpose of this API is to set the channel will be use to transfer. User may use this
API after instance has been initialized or before transfer start. The configuration structure
ecspi_channel_config can befilled by user from scratch. After calling this API, user can select
this channel as transfer channel.

Parameters
• base – ECSPI base pointer

• channel – Channel source.

• config – Configuration struct of channel

void ECSPI_SetBaudRate(ECSPI_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
Sets the baud rate for ECSPI transfer. This is only used in master.

Parameters
• base – ECSPI base pointer

2.5. ECSPI Driver 111

MCUXpresso SDK Documentation, Release 25.09.00

• baudRate_Bps – baud rate needed in Hz.

• srcClock_Hz – ECSPI source clock frequency in Hz.

status_t ECSPI_WriteBlocking(ECSPI_Type *base, const uint32_t *buffer, size_t size)
Sends a buffer of data bytes using a blocking method.

Note: This function blocks via polling until all bytes have been sent.

Parameters
• base – ECSPI base pointer

• buffer – The data bytes to send

• size – The number of data bytes to send

Return values
• kStatus_Success – Successfully start a transfer.

• kStatus_ECSPI_Timeout – The transfer timed out and was aborted.

static inline void ECSPI_WriteData(ECSPI_Type *base, uint32_t data)
Writes a data into the ECSPI data register.

Parameters
• base – ECSPI base pointer

• data – Data needs to be write.

static inline uint32_t ECSPI_ReadData(ECSPI_Type *base)
Gets a data from the ECSPI data register.

Parameters
• base – ECSPI base pointer

Returns
Data in the register.

void ECSPI_MasterTransferCreateHandle(ECSPI_Type *base, ecspi_master_handle_t *handle,
ecspi_master_callback_t callback, void *userData)

Initializes the ECSPI master handle.

This function initializes the ECSPI master handle which can be used for other ECSPI mas-
ter transactional APIs. Usually, for a specified ECSPI instance, call this API once to get the
initialized handle.

Parameters
• base – ECSPI peripheral base address.

• handle – ECSPI handle pointer.

• callback – Callback function.

• userData – User data.

status_t ECSPI_MasterTransferBlocking(ECSPI_Type *base, ecspi_transfer_t *xfer)
Transfers a block of data using a polling method.

Parameters
• base – SPI base pointer

• xfer – pointer to spi_xfer_config_t structure

112 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Return values
• kStatus_Success – Successfully start a transfer.

• kStatus_InvalidArgument – Input argument is invalid.

• kStatus_ECSPI_Timeout – The transfer timed out and was aborted.

status_t ECSPI_MasterTransferNonBlocking(ECSPI_Type *base, ecspi_master_handle_t *handle,
ecspi_transfer_t *xfer)

Performs a non-blocking ECSPI interrupt transfer.

Note: The API immediately returns after transfer initialization is finished.

Note: If ECSPI transfer data frame size is 16 bits, the transfer size cannot be an oddnumber.

Parameters
• base – ECSPI peripheral base address.

• handle – pointer to ecspi_master_handle_t structurewhich stores the trans-
fer state

• xfer – pointer to ecspi_transfer_t structure

Return values
• kStatus_Success – Successfully start a transfer.

• kStatus_InvalidArgument – Input argument is invalid.

• kStatus_ECSPI_Busy – ECSPI is not idle, is running another transfer.

status_t ECSPI_MasterTransferGetCount(ECSPI_Type *base, ecspi_master_handle_t *handle,
size_t *count)

Gets the bytes of the ECSPI interrupt transferred.

Parameters
• base – ECSPI peripheral base address.

• handle – Pointer to ECSPI transfer handle, this should be a static variable.

• count – Transferred bytes of ECSPI master.

Return values
• kStatus_ECSPI_Success – Succeed get the transfer count.

• kStatus_NoTransferInProgress – There is not a non-blocking transaction cur-
rently in progress.

void ECSPI_MasterTransferAbort(ECSPI_Type *base, ecspi_master_handle_t *handle)
Aborts an ECSPI transfer using interrupt.

Parameters
• base – ECSPI peripheral base address.

• handle – Pointer to ECSPI transfer handle, this should be a static variable.

void ECSPI_MasterTransferHandleIRQ(ECSPI_Type *base, ecspi_master_handle_t *handle)
Interrupts the handler for the ECSPI.

Parameters
• base – ECSPI peripheral base address.

2.5. ECSPI Driver 113

MCUXpresso SDK Documentation, Release 25.09.00

• handle – pointer to ecspi_master_handle_t structurewhich stores the trans-
fer state.

void ECSPI_SlaveTransferCreateHandle(ECSPI_Type *base, ecspi_slave_handle_t *handle,
ecspi_slave_callback_t callback, void *userData)

Initializes the ECSPI slave handle.

This function initializes the ECSPI slave handle which can be used for other ECSPI slave
transactional APIs. Usually, for a specified ECSPI instance, call this API once to get the ini-
tialized handle.

Parameters
• base – ECSPI peripheral base address.

• handle – ECSPI handle pointer.

• callback – Callback function.

• userData – User data.

static inline status_t ECSPI_SlaveTransferNonBlocking(ECSPI_Type *base, ecspi_slave_handle_t
*handle, ecspi_transfer_t *xfer)

Performs a non-blocking ECSPI slave interrupt transfer.

Note: The API returns immediately after the transfer initialization is finished.

Parameters
• base – ECSPI peripheral base address.

• handle – pointer to ecspi_master_handle_t structurewhich stores the trans-
fer state

• xfer – pointer to ecspi_transfer_t structure

Return values
• kStatus_Success – Successfully start a transfer.

• kStatus_InvalidArgument – Input argument is invalid.

• kStatus_ECSPI_Busy – ECSPI is not idle, is running another transfer.

static inline status_t ECSPI_SlaveTransferGetCount(ECSPI_Type *base, ecspi_slave_handle_t
*handle, size_t *count)

Gets the bytes of the ECSPI interrupt transferred.

Parameters
• base – ECSPI peripheral base address.

• handle – Pointer to ECSPI transfer handle, this should be a static variable.

• count – Transferred bytes of ECSPI slave.

Return values
• kStatus_ECSPI_Success – Succeed get the transfer count.

• kStatus_NoTransferInProgress – There is not a non-blocking transaction cur-
rently in progress.

static inline void ECSPI_SlaveTransferAbort(ECSPI_Type *base, ecspi_slave_handle_t *handle)
Aborts an ECSPI slave transfer using interrupt.

Parameters

114 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

• base – ECSPI peripheral base address.

• handle – Pointer to ECSPI transfer handle, this should be a static variable.

void ECSPI_SlaveTransferHandleIRQ(ECSPI_Type *base, ecspi_slave_handle_t *handle)
Interrupts a handler for the ECSPI slave.

Parameters
• base – ECSPI peripheral base address.

• handle – pointer to ecspi_slave_handle_t structurewhich stores the transfer
state

FSL_ECSPI_DRIVER_VERSION
ECSPI driver version.

Return status for the ECSPI driver.

Values:

enumerator kStatus_ECSPI_Busy
ECSPI bus is busy

enumerator kStatus_ECSPI_Idle
ECSPI is idle

enumerator kStatus_ECSPI_Error
ECSPI error

enumerator kStatus_ECSPI_HardwareOverFlow
ECSPI hardware overflow

enumerator kStatus_ECSPI_Timeout
ECSPI timeout polling status flags.

enum _ecspi_clock_polarity
ECSPI clock polarity configuration.

Values:

enumerator kECSPI_PolarityActiveHigh
Active-high ECSPI polarity high (idles low).

enumerator kECSPI_PolarityActiveLow
Active-low ECSPI polarity low (idles high).

enum _ecspi_clock_phase
ECSPI clock phase configuration.

Values:

enumerator kECSPI_ClockPhaseFirstEdge
First edge on SPSCK occurs at the middle of the first cycle of a data transfer.

enumerator kECSPI_ClockPhaseSecondEdge
First edge on SPSCK occurs at the start of the first cycle of a data transfer.

ECSPI interrupt sources.

Values:

enumerator kECSPI_TxfifoEmptyInterruptEnable
Transmit FIFO buffer empty interrupt

2.5. ECSPI Driver 115

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kECSPI_TxFifoDataRequstInterruptEnable
Transmit FIFO data requst interrupt

enumerator kECSPI_TxFifoFullInterruptEnable
Transmit FIFO full interrupt

enumerator kECSPI_RxFifoReadyInterruptEnable
Receiver FIFO ready interrupt

enumerator kECSPI_RxFifoDataRequstInterruptEnable
Receiver FIFO data requst interrupt

enumerator kECSPI_RxFifoFullInterruptEnable
Receiver FIFO full interrupt

enumerator kECSPI_RxFifoOverFlowInterruptEnable
Receiver FIFO buffer overflow interrupt

enumerator kECSPI_TransferCompleteInterruptEnable
Transfer complete interrupt

enumerator kECSPI_AllInterruptEnable
All interrupt

ECSPI status flags.

Values:

enumerator kECSPI_TxfifoEmptyFlag
Transmit FIFO buffer empty flag

enumerator kECSPI_TxFifoDataRequstFlag
Transmit FIFO data requst flag

enumerator kECSPI_TxFifoFullFlag
Transmit FIFO full flag

enumerator kECSPI_RxFifoReadyFlag
Receiver FIFO ready flag

enumerator kECSPI_RxFifoDataRequstFlag
Receiver FIFO data requst flag

enumerator kECSPI_RxFifoFullFlag
Receiver FIFO full flag

enumerator kECSPI_RxFifoOverFlowFlag
Receiver FIFO buffer overflow flag

enumerator kECSPI_TransferCompleteFlag
Transfer complete flag

ECSPI DMA enable.

Values:

enumerator kECSPI_TxDmaEnable
Tx DMA request source

enumerator kECSPI_RxDmaEnable
Rx DMA request source

116 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kECSPI_DmaAllEnable
All DMA request source

enum _ecspi_data_ready
ECSPI SPI_RDY signal configuration.

Values:

enumerator kECSPI_DataReadyIgnore
SPI_RDY signal is ignored

enumerator kECSPI_DataReadyFallingEdge
SPI_RDY signal will be triggerd by the falling edge

enumerator kECSPI_DataReadyLowLevel
SPI_RDY signal will be triggerd by a low level

enum _ecspi_channel_source
ECSPI channel select source.

Values:

enumerator kECSPI_Channel0
Channel 0 is selectd

enumerator kECSPI_Channel1
Channel 1 is selectd

enumerator kECSPI_Channel2
Channel 2 is selectd

enumerator kECSPI_Channel3
Channel 3 is selectd

enum _ecspi_master_slave_mode
ECSPI master or slave mode configuration.

Values:

enumerator kECSPI_Slave
ECSPI peripheral operates in slave mode.

enumerator kECSPI_Master
ECSPI peripheral operates in master mode.

enum _ecspi_data_line_inactive_state_t
ECSPI data line inactive state configuration.

Values:

enumerator kECSPI_DataLineInactiveStateHigh
The data line inactive state stays high.

enumerator kECSPI_DataLineInactiveStateLow
The data line inactive state stays low.

enum _ecspi_clock_inactive_state_t
ECSPI clock inactive state configuration.

Values:

enumerator kECSPI_ClockInactiveStateLow
The SCLK inactive state stays low.

2.5. ECSPI Driver 117

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kECSPI_ClockInactiveStateHigh
The SCLK inactive state stays high.

enum _ecspi_chip_select_active_state_t
ECSPI active state configuration.

Values:

enumerator kECSPI_ChipSelectActiveStateLow
The SS signal line active stays low.

enumerator kECSPI_ChipSelectActiveStateHigh
The SS signal line active stays high.

enum _ecspi_sample_period_clock_source
ECSPI sample period clock configuration.

Values:

enumerator kECSPI_spiClock
The sample period clock source is SCLK.

enumerator kECSPI_lowFreqClock
The sample seriod clock source is low_frequency reference clock(32.768 kHz).

typedef enum _ecspi_clock_polarity ecspi_clock_polarity_t
ECSPI clock polarity configuration.

typedef enum _ecspi_clock_phase ecspi_clock_phase_t
ECSPI clock phase configuration.

typedef enum _ecspi_data_ready ecspi_Data_ready_t
ECSPI SPI_RDY signal configuration.

typedef enum _ecspi_channel_source ecspi_channel_source_t
ECSPI channel select source.

typedef enum _ecspi_master_slave_mode ecspi_master_slave_mode_t
ECSPI master or slave mode configuration.

typedef enum _ecspi_data_line_inactive_state_t ecspi_data_line_inactive_state_t
ECSPI data line inactive state configuration.

typedef enum _ecspi_clock_inactive_state_t ecspi_clock_inactive_state_t
ECSPI clock inactive state configuration.

typedef enum _ecspi_chip_select_active_state_t ecspi_chip_select_active_state_t
ECSPI active state configuration.

typedef enum _ecspi_sample_period_clock_source ecspi_sample_period_clock_source_t
ECSPI sample period clock configuration.

typedef struct _ecspi_channel_config ecspi_channel_config_t
ECSPI user channel configure structure.

typedef struct _ecspi_master_config ecspi_master_config_t
ECSPI master configure structure.

typedef struct _ecspi_slave_config ecspi_slave_config_t
ECSPI slave configure structure.

typedef struct _ecspi_transfer ecspi_transfer_t
ECSPI transfer structure.

118 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _ecspi_master_handle ecspi_master_handle_t

typedef ecspi_master_handle_t ecspi_slave_handle_t
Slave handle is the same with master handle

typedef void (*ecspi_master_callback_t)(ECSPI_Type *base, ecspi_master_handle_t *handle,
status_t status, void *userData)

ECSPI master callback for finished transmit.

typedef void (*ecspi_slave_callback_t)(ECSPI_Type *base, ecspi_slave_handle_t *handle, status_t
status, void *userData)

ECSPI slave callback for finished transmit.

uint32_t ECSPI_GetInstance(ECSPI_Type *base)
Get the instance for ECSPI module.

Parameters
• base – ECSPI base address

ECSPI_DUMMYDATA
ECSPI dummy transfer data, the data is sent while txBuff is NULL.

SPI_RETRY_TIMES
Retry times for waiting flag.

struct _ecspi_channel_config
#include <fsl_ecspi.h> ECSPI user channel configure structure.

Public Members

ecspi_master_slave_mode_t channelMode
Channel mode

ecspi_clock_inactive_state_t clockInactiveState
Clock line (SCLK) inactive state

ecspi_data_line_inactive_state_t dataLineInactiveState
Data line (MOSI&MISO) inactive state

ecspi_chip_select_active_state_t chipSlectActiveState
Chip select(SS) line active state

ecspi_clock_polarity_t polarity
Clock polarity

ecspi_clock_phase_t phase
Clock phase

struct _ecspi_master_config
#include <fsl_ecspi.h> ECSPI master configure structure.

Public Members

ecspi_channel_source_t channel
Channel number

ecspi_channel_config_t channelConfig
Channel configuration

2.5. ECSPI Driver 119

MCUXpresso SDK Documentation, Release 25.09.00

ecspi_sample_period_clock_source_t samplePeriodClock
Sample period clock source

uint16_t burstLength
Burst length. The length shall be less than 4096 bits

uint8_t chipSelectDelay
SS delay time

uint16_t samplePeriod
Sample period

uint8_t txFifoThreshold
TX Threshold

uint8_t rxFifoThreshold
RX Threshold

uint32_t baudRate_Bps
ECSPI baud rate for master mode

bool enableLoopback
Enable the ECSPI loopback test.

struct _ecspi_slave_config
#include <fsl_ecspi.h> ECSPI slave configure structure.

Public Members

uint16_t burstLength
Burst length. The length shall be less than 4096 bits

uint8_t txFifoThreshold
TX Threshold

uint8_t rxFifoThreshold
RX Threshold

ecspi_channel_config_t channelConfig
Channel configuration

struct _ecspi_transfer
#include <fsl_ecspi.h> ECSPI transfer structure.

Public Members

const uint32_t *txData
Send buffer

uint32_t *rxData
Receive buffer

size_t dataSize
Transfer bytes

ecspi_channel_source_t channel
ECSPI channel select

struct _ecspi_master_handle
#include <fsl_ecspi.h> ECSPI master handle structure.

120 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

ecspi_channel_source_t channel
Channel number

const uint32_t *volatile txData
Transfer buffer

uint32_t *volatile rxData
Receive buffer

volatile size_t txRemainingBytes
Send data remaining in bytes

volatile size_t rxRemainingBytes
Receive data remaining in bytes

volatile uint32_t state
ECSPI internal state

size_t transferSize
Bytes to be transferred

ecspi_master_callback_t callback
ECSPI callback

void *userData
Callback parameter

2.6 ECSPI SDMA Driver

void ECSPI_MasterTransferCreateHandleSDMA(ECSPI_Type *base, ecspi_sdma_handle_t *handle,
ecspi_sdma_callback_t callback, void *userData,
sdma_handle_t *txHandle, sdma_handle_t
*rxHandle, uint32_t eventSourceTx, uint32_t
eventSourceRx, uint32_t TxChannel, uint32_t
RxChannel)

Initialize the ECSPI master SDMA handle.

This function initializes the ECSPI master SDMA handle which can be used for other SPI
master transactional APIs. Usually, for a specified ECSPI instance, user need only call this
API once to get the initialized handle.

Parameters
• base – ECSPI peripheral base address.

• handle – ECSPI handle pointer.

• callback – User callback function called at the end of a transfer.

• userData – User data for callback.

• txHandle – SDMA handle pointer for ECSPI Tx, the handle shall be static
allocated by users.

• rxHandle – SDMA handle pointer for ECSPI Rx, the handle shall be static
allocated by users.

• eventSourceTx – event source for ECSPI send, which can be found in SDMA
mapping.

2.6. ECSPI SDMA Driver 121

MCUXpresso SDK Documentation, Release 25.09.00

• eventSourceRx – event source for ECSPI receive, which can be found in
SDMA mapping.

• TxChannel – SDMA channel for ECSPI send.

• RxChannel – SDMA channel for ECSPI receive.

void ECSPI_SlaveTransferCreateHandleSDMA(ECSPI_Type *base, ecspi_sdma_handle_t *handle,
ecspi_sdma_callback_t callback, void *userData,
sdma_handle_t *txHandle, sdma_handle_t
*rxHandle, uint32_t eventSourceTx, uint32_t
eventSourceRx, uint32_t TxChannel, uint32_t
RxChannel)

Initialize the ECSPI Slave SDMA handle.

This function initializes the ECSPI Slave SDMAhandlewhich can be used for other SPI Slave
transactional APIs. Usually, for a specified ECSPI instance, user need only call this API once
to get the initialized handle.

Parameters
• base – ECSPI peripheral base address.

• handle – ECSPI handle pointer.

• callback – User callback function called at the end of a transfer.

• userData – User data for callback.

• txHandle – SDMA handle pointer for ECSPI Tx, the handle shall be static
allocated by users.

• rxHandle – SDMA handle pointer for ECSPI Rx, the handle shall be static
allocated by users.

• eventSourceTx – event source for ECSPI send, which can be found in SDMA
mapping.

• eventSourceRx – event source for ECSPI receive, which can be found in
SDMA mapping.

• TxChannel – SDMA channel for ECSPI send.

• RxChannel – SDMA channel for ECSPI receive.

status_t ECSPI_MasterTransferSDMA(ECSPI_Type *base, ecspi_sdma_handle_t *handle,
ecspi_transfer_t *xfer)

Perform a non-blocking ECSPI master transfer using SDMA.

Note: This interface returned immediately after transfer initiates.

Parameters
• base – ECSPI peripheral base address.

• handle – ECSPI SDMA handle pointer.

• xfer – Pointer to sdma transfer structure.

Return values
• kStatus_Success – Successfully start a transfer.

• kStatus_InvalidArgument – Input argument is invalid.

• kStatus_ECSPI_Busy – EECSPI is not idle, is running another transfer.

122 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

status_t ECSPI_SlaveTransferSDMA(ECSPI_Type *base, ecspi_sdma_handle_t *handle,
ecspi_transfer_t *xfer)

Perform a non-blocking ECSPI slave transfer using SDMA.

Note: This interface returned immediately after transfer initiates.

Parameters
• base – ECSPI peripheral base address.

• handle – ECSPI SDMA handle pointer.

• xfer – Pointer to sdma transfer structure.

Return values
• kStatus_Success – Successfully start a transfer.

• kStatus_InvalidArgument – Input argument is invalid.

• kStatus_ECSPI_Busy – EECSPI is not idle, is running another transfer.

void ECSPI_MasterTransferAbortSDMA(ECSPI_Type *base, ecspi_sdma_handle_t *handle)
Abort a ECSPI master transfer using SDMA.

Parameters
• base – ECSPI peripheral base address.

• handle – ECSPI SDMA handle pointer.

void ECSPI_SlaveTransferAbortSDMA(ECSPI_Type *base, ecspi_sdma_handle_t *handle)
Abort a ECSPI slave transfer using SDMA.

Parameters
• base – ECSPI peripheral base address.

• handle – ECSPI SDMA handle pointer.

FSL_ECSPI_FREERTOS_DRIVER_VERSION
ECSPI FreeRTOS driver version.

typedef struct _ecspi_sdma_handle ecspi_sdma_handle_t

typedef void (*ecspi_sdma_callback_t)(ECSPI_Type *base, ecspi_sdma_handle_t *handle, status_t
status, void *userData)

ECSPI SDMA callback called at the end of transfer.

struct _ecspi_sdma_handle
#include <fsl_ecspi_sdma.h> ECSPI SDMA transfer handle, users should not touch the con-
tent of the handle.

Public Members

bool txInProgress
Send transfer finished

bool rxInProgress
Receive transfer finished

sdma_handle_t *txSdmaHandle
DMA handler for ECSPI send

2.6. ECSPI SDMA Driver 123

MCUXpresso SDK Documentation, Release 25.09.00

sdma_handle_t *rxSdmaHandle
DMA handler for ECSPI receive

ecspi_sdma_callback_t callback
Callback for ECSPI SDMA transfer

void *userData
User Data for ECSPI SDMA callback

uint32_t state
Internal state of ECSPI SDMA transfer

uint32_t ChannelTx
Channel for send handle

uint32_t ChannelRx
Channel for receive handler

2.7 GPC: General Power Controller Driver

static inline void GPC_EnableMemoryGate(GPC_Type *base, uint32_t modules, bool enable)
Control power for memory.

Parameters
• base – GPC peripheral base address.

• modules – Mask value for Modules to be operated, see to
_gpc_memory_power_gate.

• enable – Enable the power or not.

void GPC_EnablePartialSleepWakeupSource(GPC_Type *base, gpc_wakeup_source_t source, bool
enable)

Enable the modules as wakeup sources of PSLEEP (Partial Sleep) mode.

In PSLEEP mode, HP domain is powered down, while LP domain remains powered on so
peripherals in LP domain can wakeup the system from PSLEEP mode via interrupts. In
PSLEEP mode, system clocks are stopped and peripheral clocks of LP domain can be op-
tionally on. LP domain peripherals can generate interrupt either asynchronously or need
its peripheral clock on, depending on what kind of wakeup event is expected. Refer to
the corresponding module description about what kind of interrupts are supported by the
module.

Parameters
• base – GPC peripheral base address.

• source – Wakeup source for responding module, see to
gpc_wakeup_source_t.

• enable – Enable the wakeup source or not.

bool GPC_GetPartialSleepWakeupFlag(GPC_Type *base, gpc_wakeup_source_t source)
Get if indicated wakeup module just caused the wakeup event to exit PSLEEP mode.

This function returns if the responding wakeupmodule just caused theMCU to exit PSLEEP
mode. In hardware level, the flags of wakeup source are read only and will be cleared by
cleaning the interrupt status of the corresponding wakeup module.

Parameters
• base – GPC peripheral base address.

124 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

• source – Wakeup source for responding module, see to
gpc_wakeup_source_t.

Return values
• true – - Indicated wakeup flag is asserted.

• false – - Indicated wakeup flag is not asserted.

static inline void GPC_EnablePartialSleepMode(GPC_Type *base, bool enable)
Switch to the Partial Sleep mode.

This function controls if the systemwill enter Partial SLEEPmode or remain in STOPmode.

Parameters
• base – GPC peripheral base address.

• enable – Enable the gate or not.

static inline void GPC_ConfigPowerUpSequence(GPC_Type *base, uint32_t sw, uint32_t sw2iso)
Configure the power up sequence.

There will be two steps for power up sequence:

• After a power up request, GPCwaits for a number of IP BUS clocks equal to the value of
SW before turning on the power of HP domain. SW must not be programmed to zero.

• After GPC turnning on the power of HP domain, it waits for a number of IP BUS clocks
equal to the value of SW2ISO before disable the isolation of HP domain. SW2ISO must
not be programmed to zero.

Parameters
• base – GPC peripheral base address.

• sw – Count of IP BUS clocks before disabling the isolation of HP domain.

• sw2iso – Count of IP BUS clocks before turning on the power of HP domain.

static inline void GPC_ConfigPowerDownSequence(GPC_Type *base, uint32_t iso, uint32_t iso2w)
Configure the power down sequence.

There will be two steps for power down sequence:

• After a power down request, the GPC waits for a number of IP BUS clocks equal to the
value of ISO before it enables the isolation of HP domain. ISOmust not be programmed
to zero.

• After HP domain is isolated, GPC waits for a number of IPG BUS clocks equal to the
value of ISO2SW before it turning off the power of HP domain. ISO2SW must not be
programmed to zero.

Parameters
• base – GPC peripheral base address.

• iso – Count of IP BUS clocks before it enables the isolation of HP domain.

• iso2w – Count of IP BUS clocks before it turning off the power of HP domain.

static inline uint32_t GPC_GetStatusFlags(GPC_Type *base)
Get the status flags of GPC.

Parameters
• base – GPC peripheral base address.

Returns
Mask value of flags, see to _gpc_status_flags.

2.7. GPC: General Power Controller Driver 125

MCUXpresso SDK Documentation, Release 25.09.00

static inline void GPC_ClearStatusFlags(GPC_Type *base, uint32_t flags)
Clear the status flags of GPC.

Parameters
• base – GPC peripheral base address.

• flags – Mask value of flags to be cleared, see to _gpc_status_flags.

FSL_GPC_DRIVER_VERSION
GPC driver version 2.0.0.

enum _gpc_memory_power_gate
Enumeration of the memory power gate control.

Once the clock gate is enabled, the responding part would be powered off and contents are
not retained in Partial SLEEP mode.

Values:

enumerator kGPC_MemoryPowerGateL2Cache
L2 Cache Power Gate.

enumerator kGPC_MemoryPowerGateITCM
ITCM Power Gate Enable.

enumerator kGPC_MemoryPowerGateDTCM
DTCM Power Gate Enable.

enum _gpc_status_flags
GPC flags.

Values:

enumerator kGPC_PoweredDownFlag
Power status. HP domain was powered down for the previous power down request.

2.8 GPIO: General-Purpose Input/Output Driver

void GPIO_PinInit(GPIO_Type *base, uint32_t pin, const gpio_pin_config_t *Config)
Initializes the GPIO peripheral according to the specified parameters in the initConfig.

Parameters
• base – GPIO base pointer.

• pin – Specifies the pin number

• Config – pointer to a gpio_pin_config_t structure that contains the configu-
ration information.

void GPIO_PinWrite(GPIO_Type *base, uint32_t pin, uint8_t output)
Sets the output level of the individual GPIO pin to logic 1 or 0.

Parameters
• base – GPIO base pointer.

• pin – GPIO port pin number.

• output – GPIOpin output logic level.

– 0: corresponding pin output low-logic level.

– 1: corresponding pin output high-logic level.

126 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline void GPIO_WritePinOutput(GPIO_Type *base, uint32_t pin, uint8_t output)
Sets the output level of the individual GPIO pin to logic 1 or 0.

Deprecated:
Do not use this function. It has been superceded by GPIO_PinWrite.

static inline void GPIO_PortSet(GPIO_Type *base, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 1.

Parameters
• base – GPIO peripheral base pointer (GPIO1, GPIO2, GPIO3, and so on.)

• mask – GPIO pin number macro

static inline void GPIO_SetPinsOutput(GPIO_Type *base, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 1.

Deprecated:
Do not use this function. It has been superceded by GPIO_PortSet.

static inline void GPIO_PortClear(GPIO_Type *base, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 0.

Parameters
• base – GPIO peripheral base pointer (GPIO1, GPIO2, GPIO3, and so on.)

• mask – GPIO pin number macro

static inline void GPIO_ClearPinsOutput(GPIO_Type *base, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 0.

Deprecated:
Do not use this function. It has been superceded by GPIO_PortClear.

static inline void GPIO_PortToggle(GPIO_Type *base, uint32_t mask)
Reverses the current output logic of the multiple GPIO pins.

Parameters
• base – GPIO peripheral base pointer (GPIO1, GPIO2, GPIO3, and so on.)

• mask – GPIO pin number macro

static inline uint32_t GPIO_PinRead(GPIO_Type *base, uint32_t pin)
Reads the current input value of the GPIO port.

Parameters
• base – GPIO base pointer.

• pin – GPIO port pin number.

Return values
GPIO – port input value.

static inline uint32_t GPIO_ReadPinInput(GPIO_Type *base, uint32_t pin)
Reads the current input value of the GPIO port.

2.8. GPIO: General-Purpose Input/Output Driver 127

MCUXpresso SDK Documentation, Release 25.09.00

Deprecated:
Do not use this function. It has been superceded by GPIO_PinRead.

static inline uint8_t GPIO_PinReadPadStatus(GPIO_Type *base, uint32_t pin)
Reads the current GPIO pin pad status.

Parameters
• base – GPIO base pointer.

• pin – GPIO port pin number.

Return values
GPIO – pin pad status value.

static inline uint8_t GPIO_ReadPadStatus(GPIO_Type *base, uint32_t pin)
Reads the current GPIO pin pad status.

Deprecated:
Do not use this function. It has been superceded by GPIO_PinReadPadStatus.

void GPIO_PinSetInterruptConfig(GPIO_Type *base, uint32_t pin, gpio_interrupt_mode_t
pinInterruptMode)

Sets the current pin interrupt mode.

Parameters
• base – GPIO base pointer.

• pin – GPIO port pin number.

• pinInterruptMode – pointer to a gpio_interrupt_mode_t structure that con-
tains the interrupt mode information.

static inline void GPIO_SetPinInterruptConfig(GPIO_Type *base, uint32_t pin,
gpio_interrupt_mode_t pinInterruptMode)

Sets the current pin interrupt mode.

Deprecated:
Do not use this function. It has been superceded by GPIO_PinSetInterruptConfig.

static inline void GPIO_PortEnableInterrupts(GPIO_Type *base, uint32_t mask)
Enables the specific pin interrupt.

Parameters
• base – GPIO base pointer.

• mask – GPIO pin number macro.

static inline void GPIO_EnableInterrupts(GPIO_Type *base, uint32_t mask)
Enables the specific pin interrupt.

Parameters
• base – GPIO base pointer.

• mask – GPIO pin number macro.

static inline void GPIO_PortDisableInterrupts(GPIO_Type *base, uint32_t mask)
Disables the specific pin interrupt.

Parameters
• base – GPIO base pointer.

128 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

• mask – GPIO pin number macro.

static inline void GPIO_DisableInterrupts(GPIO_Type *base, uint32_t mask)
Disables the specific pin interrupt.

Deprecated:
Do not use this function. It has been superceded by GPIO_PortDisableInterrupts.

static inline uint32_t GPIO_PortGetInterruptFlags(GPIO_Type *base)
Reads individual pin interrupt status.

Parameters
• base – GPIO base pointer.

Return values
current – pin interrupt status flag.

static inline uint32_t GPIO_GetPinsInterruptFlags(GPIO_Type *base)
Reads individual pin interrupt status.

Parameters
• base – GPIO base pointer.

Return values
current – pin interrupt status flag.

static inline void GPIO_PortClearInterruptFlags(GPIO_Type *base, uint32_t mask)
Clears pin interrupt flag. Status flags are cleared by writing a 1 to the corresponding bit
position.

Parameters
• base – GPIO base pointer.

• mask – GPIO pin number macro.

static inline void GPIO_ClearPinsInterruptFlags(GPIO_Type *base, uint32_t mask)
Clears pin interrupt flag. Status flags are cleared by writing a 1 to the corresponding bit
position.

Parameters
• base – GPIO base pointer.

• mask – GPIO pin number macro.

FSL_GPIO_DRIVER_VERSION
GPIO driver version.

enum _gpio_pin_direction
GPIO direction definition.

Values:

enumerator kGPIO_DigitalInput
Set current pin as digital input.

enumerator kGPIO_DigitalOutput
Set current pin as digital output.

enum _gpio_interrupt_mode
GPIO interrupt mode definition.

Values:

2.8. GPIO: General-Purpose Input/Output Driver 129

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kGPIO_NoIntmode
Set current pin general IO functionality.

enumerator kGPIO_IntLowLevel
Set current pin interrupt is low-level sensitive.

enumerator kGPIO_IntHighLevel
Set current pin interrupt is high-level sensitive.

enumerator kGPIO_IntRisingEdge
Set current pin interrupt is rising-edge sensitive.

enumerator kGPIO_IntFallingEdge
Set current pin interrupt is falling-edge sensitive.

enumerator kGPIO_IntRisingOrFallingEdge
Enable the edge select bit to override the ICR register’s configuration.

typedef enum _gpio_pin_direction gpio_pin_direction_t
GPIO direction definition.

typedef enum _gpio_interrupt_mode gpio_interrupt_mode_t
GPIO interrupt mode definition.

typedef struct _gpio_pin_config gpio_pin_config_t
GPIO Init structure definition.

struct _gpio_pin_config
#include <fsl_gpio.h> GPIO Init structure definition.

Public Members

gpio_pin_direction_t direction
Specifies the pin direction.

uint8_t outputLogic
Set a default output logic, which has no use in input

gpio_interrupt_mode_t interruptMode
Specifies the pin interrupt mode, a value of gpio_interrupt_mode_t.

2.9 GPT: General Purpose Timer

void GPT_Init(GPT_Type *base, const gpt_config_t *initConfig)
Initialize GPT to reset state and initialize running mode.

Parameters
• base – GPT peripheral base address.

• initConfig – GPT mode setting configuration.

void GPT_Deinit(GPT_Type *base)
Disables the module and gates the GPT clock.

Parameters
• base – GPT peripheral base address.

130 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

void GPT_GetDefaultConfig(gpt_config_t *config)
Fills in the GPT configuration structure with default settings.

The default values are:

config->clockSource = kGPT_ClockSource_Periph;
config->divider = 1U;
config->enableRunInStop = true;
config->enableRunInWait = true;
config->enableRunInDoze = false;
config->enableRunInDbg = false;
config->enableFreeRun = false;
config->enableMode = true;

Parameters
• config – Pointer to the user configuration structure.

static inline void GPT_SoftwareReset(GPT_Type *base)
Software reset of GPT module.

Parameters
• base – GPT peripheral base address.

static inline void GPT_SetClockSource(GPT_Type *base, gpt_clock_source_t gptClkSource)
Set clock source of GPT.

Parameters
• base – GPT peripheral base address.

• gptClkSource – Clock source (see gpt_clock_source_t typedef enumeration).

static inline gpt_clock_source_t GPT_GetClockSource(GPT_Type *base)
Get clock source of GPT.

Parameters
• base – GPT peripheral base address.

Returns
clock source (see gpt_clock_source_t typedef enumeration).

static inline void GPT_SetClockDivider(GPT_Type *base, uint32_t divider)
Set pre scaler of GPT.

Parameters
• base – GPT peripheral base address.

• divider – Divider of GPT (1-4096).

static inline uint32_t GPT_GetClockDivider(GPT_Type *base)
Get clock divider in GPT module.

Parameters
• base – GPT peripheral base address.

Returns
clock divider in GPT module (1-4096).

static inline void GPT_SetOscClockDivider(GPT_Type *base, uint32_t divider)
OSC 24M pre-scaler before selected by clock source.

Parameters
• base – GPT peripheral base address.

2.9. GPT: General Purpose Timer 131

MCUXpresso SDK Documentation, Release 25.09.00

• divider – OSC Divider(1-16).

static inline uint32_t GPT_GetOscClockDivider(GPT_Type *base)
Get OSC 24M clock divider in GPT module.

Parameters
• base – GPT peripheral base address.

Returns
OSC clock divider in GPT module (1-16).

static inline void GPT_StartTimer(GPT_Type *base)
Start GPT timer.

Parameters
• base – GPT peripheral base address.

static inline void GPT_StopTimer(GPT_Type *base)
Stop GPT timer.

Parameters
• base – GPT peripheral base address.

static inline uint32_t GPT_GetCurrentTimerCount(GPT_Type *base)
Reads the current GPT counting value.

Parameters
• base – GPT peripheral base address.

Returns
Current GPT counter value.

static inline void GPT_SetInputOperationMode(GPT_Type *base, gpt_input_capture_channel_t
channel, gpt_input_operation_mode_tmode)

Set GPT operation mode of input capture channel.

Parameters
• base – GPT peripheral base address.

• channel – GPT capture channel (see gpt_input_capture_channel_t typedef
enumeration).

• mode – GPT input capture operation mode (see
gpt_input_operation_mode_t typedef enumeration).

static inline gpt_input_operation_mode_t GPT_GetInputOperationMode(GPT_Type *base,
gpt_input_capture_channel_t
channel)

Get GPT operation mode of input capture channel.

Parameters
• base – GPT peripheral base address.

• channel – GPT capture channel (see gpt_input_capture_channel_t typedef
enumeration).

Returns
GPT input capture operation mode (see gpt_input_operation_mode_t typedef
enumeration).

132 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t GPT_GetInputCaptureValue(GPT_Type *base, gpt_input_capture_channel_t
channel)

Get GPT input capture value of certain channel.

Parameters
• base – GPT peripheral base address.

• channel – GPT capture channel (see gpt_input_capture_channel_t typedef
enumeration).

Returns
GPT input capture value.

static inline void GPT_SetOutputOperationMode(GPT_Type *base,
gpt_output_compare_channel_t channel,
gpt_output_operation_mode_tmode)

Set GPT operation mode of output compare channel.

Parameters
• base – GPT peripheral base address.

• channel – GPT output compare channel (see
gpt_output_compare_channel_t typedef enumeration).

• mode – GPT output operation mode (see gpt_output_operation_mode_t
typedef enumeration).

static inline gpt_output_operation_mode_t GPT_GetOutputOperationMode(GPT_Type *base,
gpt_output_compare_channel_t
channel)

Get GPT operation mode of output compare channel.

Parameters
• base – GPT peripheral base address.

• channel – GPT output compare channel (see
gpt_output_compare_channel_t typedef enumeration).

Returns
GPT output operation mode (see gpt_output_operation_mode_t typedef enu-
meration).

static inline void GPT_SetOutputCompareValue(GPT_Type *base, gpt_output_compare_channel_t
channel, uint32_t value)

Set GPT output compare value of output compare channel.

Parameters
• base – GPT peripheral base address.

• channel – GPT output compare channel (see
gpt_output_compare_channel_t typedef enumeration).

• value – GPT output compare value.

static inline uint32_t GPT_GetOutputCompareValue(GPT_Type *base,
gpt_output_compare_channel_t channel)

Get GPT output compare value of output compare channel.

Parameters
• base – GPT peripheral base address.

• channel – GPT output compare channel (see
gpt_output_compare_channel_t typedef enumeration).

2.9. GPT: General Purpose Timer 133

MCUXpresso SDK Documentation, Release 25.09.00

Returns
GPT output compare value.

static inline void GPT_ForceOutput(GPT_Type *base, gpt_output_compare_channel_t channel)
Force GPT output action on output compare channel, ignoring comparator.

Parameters
• base – GPT peripheral base address.

• channel – GPT output compare channel (see
gpt_output_compare_channel_t typedef enumeration).

static inline void GPT_EnableInterrupts(GPT_Type *base, uint32_t mask)
Enables the selected GPT interrupts.

Parameters
• base – GPT peripheral base address.

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration gpt_interrupt_enable_t

static inline void GPT_DisableInterrupts(GPT_Type *base, uint32_t mask)
Disables the selected GPT interrupts.

Parameters
• base – GPT peripheral base address

• mask – The interrupts to disable. This is a logical OR of members of the
enumeration gpt_interrupt_enable_t

static inline uint32_t GPT_GetEnabledInterrupts(GPT_Type *base)
Gets the enabled GPT interrupts.

Parameters
• base – GPT peripheral base address

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
gpt_interrupt_enable_t

static inline uint32_t GPT_GetStatusFlags(GPT_Type *base, gpt_status_flag_t flags)
Get GPT status flags.

Parameters
• base – GPT peripheral base address.

• flags – GPT status flag mask (see gpt_status_flag_t for bit definition).

Returns
GPT status, each bit represents one status flag.

static inline void GPT_ClearStatusFlags(GPT_Type *base, gpt_status_flag_t flags)
Clears the GPT status flags.

Parameters
• base – GPT peripheral base address.

• flags – GPT status flag mask (see gpt_status_flag_t for bit definition).

FSL_GPT_DRIVER_VERSION

134 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enum _gpt_clock_source
List of clock sources.

Note: Actual number of clock sources is SoC dependent

Values:

enumerator kGPT_ClockSource_Off
GPT Clock Source Off.

enumerator kGPT_ClockSource_Periph
GPT Clock Source from Peripheral Clock.

enumerator kGPT_ClockSource_HighFreq
GPT Clock Source from High Frequency Reference Clock.

enumerator kGPT_ClockSource_Ext
GPT Clock Source from external pin.

enumerator kGPT_ClockSource_LowFreq
GPT Clock Source from Low Frequency Reference Clock.

enumerator kGPT_ClockSource_Osc
GPT Clock Source from Crystal oscillator.

enum _gpt_input_capture_channel
List of input capture channel number.

Values:

enumerator kGPT_InputCapture_Channel1
GPT Input Capture Channel1.

enumerator kGPT_InputCapture_Channel2
GPT Input Capture Channel2.

enum _gpt_input_operation_mode
List of input capture operation mode.

Values:

enumerator kGPT_InputOperation_Disabled
Don’t capture.

enumerator kGPT_InputOperation_RiseEdge
Capture on rising edge of input pin.

enumerator kGPT_InputOperation_FallEdge
Capture on falling edge of input pin.

enumerator kGPT_InputOperation_BothEdge
Capture on both edges of input pin.

enum _gpt_output_compare_channel
List of output compare channel number.

Values:

enumerator kGPT_OutputCompare_Channel1
Output Compare Channel1.

2.9. GPT: General Purpose Timer 135

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kGPT_OutputCompare_Channel2
Output Compare Channel2.

enumerator kGPT_OutputCompare_Channel3
Output Compare Channel3.

enum _gpt_output_operation_mode
List of output compare operation mode.

Values:

enumerator kGPT_OutputOperation_Disconnected
Don’t change output pin.

enumerator kGPT_OutputOperation_Toggle
Toggle output pin.

enumerator kGPT_OutputOperation_Clear
Set output pin low.

enumerator kGPT_OutputOperation_Set
Set output pin high.

enumerator kGPT_OutputOperation_Activelow
Generate a active low pulse on output pin.

enum _gpt_interrupt_enable
List of GPT interrupts.

Values:

enumerator kGPT_OutputCompare1InterruptEnable
Output Compare Channel1 interrupt enable

enumerator kGPT_OutputCompare2InterruptEnable
Output Compare Channel2 interrupt enable

enumerator kGPT_OutputCompare3InterruptEnable
Output Compare Channel3 interrupt enable

enumerator kGPT_InputCapture1InterruptEnable
Input Capture Channel1 interrupt enable

enumerator kGPT_InputCapture2InterruptEnable
Input Capture Channel1 interrupt enable

enumerator kGPT_RollOverFlagInterruptEnable
Counter rolled over interrupt enable

enum _gpt_status_flag
Status flag.

Values:

enumerator kGPT_OutputCompare1Flag
Output compare channel 1 event.

enumerator kGPT_OutputCompare2Flag
Output compare channel 2 event.

enumerator kGPT_OutputCompare3Flag
Output compare channel 3 event.

136 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kGPT_InputCapture1Flag
Input Capture channel 1 event.

enumerator kGPT_InputCapture2Flag
Input Capture channel 2 event.

enumerator kGPT_RollOverFlag
Counter reaches maximum value and rolled over to 0 event.

typedef enum _gpt_clock_source gpt_clock_source_t
List of clock sources.

Note: Actual number of clock sources is SoC dependent

typedef enum _gpt_input_capture_channel gpt_input_capture_channel_t
List of input capture channel number.

typedef enum _gpt_input_operation_mode gpt_input_operation_mode_t
List of input capture operation mode.

typedef enum _gpt_output_compare_channel gpt_output_compare_channel_t
List of output compare channel number.

typedef enum _gpt_output_operation_mode gpt_output_operation_mode_t
List of output compare operation mode.

typedef enum _gpt_interrupt_enable gpt_interrupt_enable_t
List of GPT interrupts.

typedef enum _gpt_status_flag gpt_status_flag_t
Status flag.

typedef struct _gpt_init_config gpt_config_t
Structure to configure the running mode.

struct _gpt_init_config
#include <fsl_gpt.h> Structure to configure the running mode.

Public Members

gpt_clock_source_t clockSource
clock source for GPT module.

uint32_t divider
clock divider (prescaler+1) from clock source to counter.

bool enableFreeRun
true: FreeRun mode, false: Restart mode.

bool enableRunInWait
GPT enabled in wait mode.

bool enableRunInStop
GPT enabled in stop mode.

bool enableRunInDoze
GPT enabled in doze mode.

bool enableRunInDbg
GPT enabled in debug mode.

2.9. GPT: General Purpose Timer 137

MCUXpresso SDK Documentation, Release 25.09.00

bool enableMode
true: counter reset to 0 when enabled; false: counter retain its value when enabled.

2.10 I2C: Inter-Integrated Circuit Driver

2.11 I2C Driver

void I2C_MasterInit(I2C_Type *base, const i2c_master_config_t *masterConfig, uint32_t
srcClock_Hz)

Initializes the I2C peripheral. Call this API to ungate the I2C clock and configure the I2C
with master configuration.

Note: This API should be called at the beginning of the application. Otherwise, any op-
eration to the I2C module can cause a hard fault because the clock is not enabled. The
configuration structure can be custom filled or it can be set with default values by using
the I2C_MasterGetDefaultConfig(). After calling this API, the master is ready to transfer.
This is an example.

i2c_master_config_t config = {
.enableMaster = true,
.baudRate_Bps = 100000
};
I2C_MasterInit(I2C0, &config, 12000000U);

Parameters
• base – I2C base pointer

• masterConfig – A pointer to the master configuration structure

• srcClock_Hz – I2C peripheral clock frequency in Hz

void I2C_MasterDeinit(I2C_Type *base)
De-initializes the I2C master peripheral. Call this API to gate the I2C clock. The I2C master
module can’t work unless the I2C_MasterInit is called.

Parameters
• base – I2C base pointer

void I2C_MasterGetDefaultConfig(i2c_master_config_t *masterConfig)
Sets the I2C master configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use in the
I2C_MasterInit(). Use the initialized structure unchanged in the I2C_MasterInit() or modify
the structure before calling the I2C_MasterInit(). This is an example.

i2c_master_config_t config;
I2C_MasterGetDefaultConfig(&config);

Parameters
• masterConfig – A pointer to the master configuration structure.

138 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

void I2C_SlaveInit(I2C_Type *base, const i2c_slave_config_t *slaveConfig)
Initializes the I2C peripheral. Call this API to ungate the I2C clock and initialize the I2C with
the slave configuration.

Note: This API should be called at the beginning of the application. Otherwise, any opera-
tion to the I2C module can cause a hard fault because the clock is not enabled. The config-
uration structure can partly be set with default values by I2C_SlaveGetDefaultConfig() or it
can be custom filled by the user. This is an example.

i2c_slave_config_t config = {
.enableSlave = true,
.slaveAddress = 0x1DU,
};
I2C_SlaveInit(I2C0, &config);

Parameters
• base – I2C base pointer

• slaveConfig – A pointer to the slave configuration structure

void I2C_SlaveDeinit(I2C_Type *base)
De-initializes the I2C slave peripheral. Calling this API gates the I2C clock. The I2C slave
module can’t work unless the I2C_SlaveInit is called to enable the clock.

Parameters
• base – I2C base pointer

void I2C_SlaveGetDefaultConfig(i2c_slave_config_t *slaveConfig)
Sets the I2C slave configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use in the
I2C_SlaveInit(). Modify fields of the structure before calling the I2C_SlaveInit(). This is an
example.

i2c_slave_config_t config;
I2C_SlaveGetDefaultConfig(&config);

Parameters
• slaveConfig – A pointer to the slave configuration structure.

static inline void I2C_Enable(I2C_Type *base, bool enable)
Enables or disables the I2C peripheral operation.

Parameters
• base – I2C base pointer

• enable – Pass true to enable and false to disable the module.

static inline uint32_t I2C_MasterGetStatusFlags(I2C_Type *base)
Gets the I2C status flags.

Parameters
• base – I2C base pointer

Returns
status flag, use status flag to AND _i2c_flags to get the related status.

2.11. I2C Driver 139

MCUXpresso SDK Documentation, Release 25.09.00

static inline void I2C_MasterClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C status flag state.

The following status register flags can be cleared kI2C_ArbitrationLostFlag and
kI2C_IntPendingFlag.

Parameters
• base – I2C base pointer

• statusMask – The status flag mask, defined in type i2c_status_flag_t. The
parameter can be any combination of the following values:

– kI2C_ArbitrationLostFlag

– kI2C_IntPendingFlag

static inline uint32_t I2C_SlaveGetStatusFlags(I2C_Type *base)
Gets the I2C status flags.

Parameters
• base – I2C base pointer

Returns
status flag, use status flag to AND _i2c_flags to get the related status.

static inline void I2C_SlaveClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C status flag state.

The following status register flags can be cleared kI2C_ArbitrationLostFlag and
kI2C_IntPendingFlag

Parameters
• base – I2C base pointer

• statusMask – The status flag mask, defined in type i2c_status_flag_t. The
parameter can be any combination of the following values:

– kI2C_IntPendingFlagFlag

void I2C_EnableInterrupts(I2C_Type *base, uint32_t mask)
Enables I2C interrupt requests.

Parameters
• base – I2C base pointer

• mask – interrupt source The parameter can be combination of the follow-
ing source if defined:

– kI2C_GlobalInterruptEnable

– kI2C_StopDetectInterruptEnable/kI2C_StartDetectInterruptEnable

– kI2C_SdaTimeoutInterruptEnable

void I2C_DisableInterrupts(I2C_Type *base, uint32_t mask)
Disables I2C interrupt requests.

Parameters
• base – I2C base pointer

• mask – interrupt source The parameter can be combination of the follow-
ing source if defined:

– kI2C_GlobalInterruptEnable

– kI2C_StopDetectInterruptEnable/kI2C_StartDetectInterruptEnable

140 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

– kI2C_SdaTimeoutInterruptEnable

void I2C_MasterSetBaudRate(I2C_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
Sets the I2C master transfer baud rate.

Parameters
• base – I2C base pointer

• baudRate_Bps – the baud rate value in bps

• srcClock_Hz – Source clock

status_t I2C_MasterStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)
Sends a START on the I2C bus.

This function is used to initiate a new master mode transfer by sending the START signal.
The slave address is sent following the I2C START signal.

Parameters
• base – I2C peripheral base pointer

• address – 7-bit slave device address.

• direction – Master transfer directions(transmit/receive).

Return values
• kStatus_Success – Successfully send the start signal.

• kStatus_I2C_Busy – Current bus is busy.

status_t I2C_MasterStop(I2C_Type *base)
Sends a STOP signal on the I2C bus.

Return values
• kStatus_Success – Successfully send the stop signal.

• kStatus_I2C_Timeout – Send stop signal failed, timeout.

status_t I2C_MasterRepeatedStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)
Sends a REPEATED START on the I2C bus.

Parameters
• base – I2C peripheral base pointer

• address – 7-bit slave device address.

• direction – Master transfer directions(transmit/receive).

Return values
• kStatus_Success – Successfully send the start signal.

• kStatus_I2C_Busy – Current bus is busy but not occupied by current I2C
master.

status_t I2C_MasterWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize, uint32_t
flags)

Performs a polling send transaction on the I2C bus.

Parameters
• base – The I2C peripheral base pointer.

• txBuff – The pointer to the data to be transferred.

• txSize – The length in bytes of the data to be transferred.

2.11. I2C Driver 141

MCUXpresso SDK Documentation, Release 25.09.00

• flags – Transfer control flag to decide whether need to send a stop, use
kI2C_TransferDefaultFlag to issue a stop and kI2C_TransferNoStop to not
send a stop.

Return values
• kStatus_Success – Successfully complete the data transmission.

• kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.

• kStataus_I2C_Nak – Transfer error, receive NAK during transfer.

status_t I2C_MasterReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize, uint32_t flags)
Performs a polling receive transaction on the I2C bus.

Note: The I2C_MasterReadBlocking function stops the bus before reading the final byte.
Without stopping the bus prior for the final read, the bus issues another read, resulting in
garbage data being read into the data register.

Parameters
• base – I2C peripheral base pointer.

• rxBuff – The pointer to the data to store the received data.

• rxSize – The length in bytes of the data to be received.

• flags – Transfer control flag to decide whether need to send a stop, use
kI2C_TransferDefaultFlag to issue a stop and kI2C_TransferNoStop to not
send a stop.

Return values
• kStatus_Success – Successfully complete the data transmission.

• kStatus_I2C_Timeout – Send stop signal failed, timeout.

status_t I2C_SlaveWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize)
Performs a polling send transaction on the I2C bus.

Parameters
• base – The I2C peripheral base pointer.

• txBuff – The pointer to the data to be transferred.

• txSize – The length in bytes of the data to be transferred.

Return values
• kStatus_Success – Successfully complete the data transmission.

• kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.

• kStataus_I2C_Nak – Transfer error, receive NAK during transfer.

status_t I2C_SlaveReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize)
Performs a polling receive transaction on the I2C bus.

Parameters
• base – I2C peripheral base pointer.

• rxBuff – The pointer to the data to store the received data.

• rxSize – The length in bytes of the data to be received.

142 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

status_t I2C_MasterTransferBlocking(I2C_Type *base, i2c_master_transfer_t *xfer)
Performs a master polling transfer on the I2C bus.

Note: The API does not return until the transfer succeeds or fails due to arbitration lost or
receiving a NAK.

Parameters
• base – I2C peripheral base address.

• xfer – Pointer to the transfer structure.

Return values
• kStatus_Success – Successfully complete the data transmission.

• kStatus_I2C_Busy – Previous transmission still not finished.

• kStatus_I2C_Timeout – Transfer error, wait signal timeout.

• kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.

• kStataus_I2C_Nak – Transfer error, receive NAK during transfer.

void I2C_MasterTransferCreateHandle(I2C_Type *base, i2c_master_handle_t *handle,
i2c_master_transfer_callback_t callback, void *userData)

Initializes the I2C handle which is used in transactional functions.

Parameters
• base – I2C base pointer.

• handle – pointer to i2c_master_handle_t structure to store the transfer
state.

• callback – pointer to user callback function.

• userData – user parameter passed to the callback function.

status_t I2C_MasterTransferNonBlocking(I2C_Type *base, i2c_master_handle_t *handle,
i2c_master_transfer_t *xfer)

Performs a master interrupt non-blocking transfer on the I2C bus.

Note: Calling the API returns immediately after transfer initiates. The user needs to call
I2C_MasterGetTransferCount to poll the transfer status to check whether the transfer is
finished. If the return status is not kStatus_I2C_Busy, the transfer is finished.

Parameters
• base – I2C base pointer.

• handle – pointer to i2c_master_handle_t structurewhich stores the transfer
state.

• xfer – pointer to i2c_master_transfer_t structure.

Return values
• kStatus_Success – Successfully start the data transmission.

• kStatus_I2C_Busy – Previous transmission still not finished.

• kStatus_I2C_Timeout – Transfer error, wait signal timeout.

2.11. I2C Driver 143

MCUXpresso SDK Documentation, Release 25.09.00

status_t I2C_MasterTransferGetCount(I2C_Type *base, i2c_master_handle_t *handle, size_t
*count)

Gets the master transfer status during a interrupt non-blocking transfer.

Parameters
• base – I2C base pointer.

• handle – pointer to i2c_master_handle_t structurewhich stores the transfer
state.

• count –Number of bytes transferred so far by the non-blocking transaction.

Return values
• kStatus_InvalidArgument – count is Invalid.

• kStatus_Success – Successfully return the count.

status_t I2C_MasterTransferAbort(I2C_Type *base, i2c_master_handle_t *handle)
Aborts an interrupt non-blocking transfer early.

Note: This API can be called at any time when an interrupt non-blocking transfer initiates
to abort the transfer early.

Parameters
• base – I2C base pointer.

• handle – pointer to i2c_master_handle_t structurewhich stores the transfer
state

Return values
• kStatus_I2C_Timeout – Timeout during polling flag.

• kStatus_Success – Successfully abort the transfer.

void I2C_MasterTransferHandleIRQ(I2C_Type *base, void *i2cHandle)
Master interrupt handler.

Parameters
• base – I2C base pointer.

• i2cHandle – pointer to i2c_master_handle_t structure.

void I2C_SlaveTransferCreateHandle(I2C_Type *base, i2c_slave_handle_t *handle,
i2c_slave_transfer_callback_t callback, void *userData)

Initializes the I2C handle which is used in transactional functions.

Parameters
• base – I2C base pointer.

• handle – pointer to i2c_slave_handle_t structure to store the transfer state.

• callback – pointer to user callback function.

• userData – user parameter passed to the callback function.

status_t I2C_SlaveTransferNonBlocking(I2C_Type *base, i2c_slave_handle_t *handle, uint32_t
eventMask)

Starts accepting slave transfers.

Call this API after calling the I2C_SlaveInit() and I2C_SlaveTransferCreateHandle() to start
processing transactions driven by an I2Cmaster. The slavemonitors the I2C bus and passes

144 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

events to the callback thatwas passed into the call to I2C_SlaveTransferCreateHandle(). The
callback is always invoked from the interrupt context.

The set of events received by the callback is customizable. To do so, set the eventMask pa-
rameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events
you wish to receive. The kI2C_SlaveTransmitEvent and kLPI2C_SlaveReceiveEvent events
are always enabled and do not need to be included in the mask. Alternatively, pass 0 to get
a default set of only the transmit and receive events that are always enabled. In addition,
the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all events.

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to i2c_slave_handle_t structure which stores the transfer
state.

• eventMask – Bitmask formed byOR’ing together i2c_slave_transfer_event_t
enumerators to specify which events to send to the callback. Other ac-
cepted values are 0 to get a default set of only the transmit and receive
events, and kI2C_SlaveAllEvents to enable all events.

Return values
• kStatus_Success – Slave transfers were successfully started.

• kStatus_I2C_Busy – Slave transfers have already been started on this han-
dle.

void I2C_SlaveTransferAbort(I2C_Type *base, i2c_slave_handle_t *handle)
Aborts the slave transfer.

Note: This API can be called at any time to stop slave for handling the bus events.

Parameters
• base – I2C base pointer.

• handle – pointer to i2c_slave_handle_t structure which stores the transfer
state.

status_t I2C_SlaveTransferGetCount(I2C_Type *base, i2c_slave_handle_t *handle, size_t *count)
Gets the slave transfer remaining bytes during a interrupt non-blocking transfer.

Parameters
• base – I2C base pointer.

• handle – pointer to i2c_slave_handle_t structure.

• count –Number of bytes transferred so far by the non-blocking transaction.

Return values
• kStatus_InvalidArgument – count is Invalid.

• kStatus_Success – Successfully return the count.

void I2C_SlaveTransferHandleIRQ(I2C_Type *base, void *i2cHandle)
Slave interrupt handler.

Parameters
• base – I2C base pointer.

• i2cHandle – pointer to i2c_slave_handle_t structure which stores the trans-
fer state

2.11. I2C Driver 145

MCUXpresso SDK Documentation, Release 25.09.00

FSL_I2C_DRIVER_VERSION
I2C driver version.

I2C status return codes.

Values:

enumerator kStatus_I2C_Busy
I2C is busy with current transfer.

enumerator kStatus_I2C_Idle
Bus is Idle.

enumerator kStatus_I2C_Nak
NAK received during transfer.

enumerator kStatus_I2C_ArbitrationLost
Arbitration lost during transfer.

enumerator kStatus_I2C_Timeout
Timeout polling status flags.

enumerator kStatus_I2C_Addr_Nak
NAK received during the address probe.

enum _i2c_flags
I2C peripheral flags.

The following status register flags can be cleared:

• kI2C_ArbitrationLostFlag

• kI2C_IntPendingFlag

Note: These enumerations are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2C_ReceiveNakFlag
I2C receive NAK flag.

enumerator kI2C_IntPendingFlag
I2C interrupt pending flag.

enumerator kI2C_TransferDirectionFlag
I2C transfer direction flag.

enumerator kI2C_ArbitrationLostFlag
I2C arbitration lost flag.

enumerator kI2C_BusBusyFlag
I2C bus busy flag.

enumerator kI2C_AddressMatchFlag
I2C address match flag.

enumerator kI2C_TransferCompleteFlag
I2C transfer complete flag.

enum _i2c_interrupt_enable
I2C feature interrupt source.

Values:

146 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kI2C_GlobalInterruptEnable
I2C global interrupt.

enum _i2c_direction
The direction of master and slave transfers.

Values:

enumerator kI2C_Write
Master transmits to the slave.

enumerator kI2C_Read
Master receives from the slave.

enum _i2c_master_transfer_flags
I2C transfer control flag.

Values:

enumerator kI2C_TransferDefaultFlag
A transfer starts with a start signal, stops with a stop signal.

enumerator kI2C_TransferNoStartFlag
A transfer starts without a start signal, only support write only or write+read with no
start flag, do not support read only with no start flag.

enumerator kI2C_TransferRepeatedStartFlag
A transfer starts with a repeated start signal.

enumerator kI2C_TransferNoStopFlag
A transfer ends without a stop signal.

enum _i2c_slave_transfer_event
Set of events sent to the callback for nonblocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created by
OR’ing together events is passed to I2C_SlaveTransferNonBlocking() to specifywhich events
to enable. Then, when the slave callback is invoked, it is passed the current event through
its transfer parameter.

Note: These enumerations are meant to be OR’d together to form a bit mask of events.

Values:

enumerator kI2C_SlaveAddressMatchEvent
Received the slave address after a start or repeated start.

enumerator kI2C_SlaveTransmitEvent
A callback is requested to provide data to transmit (slave-transmitter role).

enumerator kI2C_SlaveReceiveEvent
A callback is requested to provide a buffer in which to place received data (slave-
receiver role).

enumerator kI2C_SlaveTransmitAckEvent
A callback needs to either transmit an ACK or NACK.

enumerator kI2C_SlaveCompletionEvent
A stop was detected or finished transfer, completing the transfer.

enumerator kI2C_SlaveAllEvents
A bit mask of all available events.

2.11. I2C Driver 147

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _i2c_direction i2c_direction_t
The direction of master and slave transfers.

typedef struct _i2c_master_config i2c_master_config_t
I2C master user configuration.

typedef struct _i2c_master_handle i2c_master_handle_t
I2C master handle typedef.

typedef void (*i2c_master_transfer_callback_t)(I2C_Type *base, i2c_master_handle_t *handle,
status_t status, void *userData)

I2C master transfer callback typedef.

typedef struct _i2c_master_transfer i2c_master_transfer_t
I2C master transfer structure.

typedef enum _i2c_slave_transfer_event i2c_slave_transfer_event_t
Set of events sent to the callback for nonblocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created by
OR’ing together events is passed to I2C_SlaveTransferNonBlocking() to specifywhich events
to enable. Then, when the slave callback is invoked, it is passed the current event through
its transfer parameter.

Note: These enumerations are meant to be OR’d together to form a bit mask of events.

typedef struct _i2c_slave_handle i2c_slave_handle_t
I2C slave handle typedef.

typedef struct _i2c_slave_config i2c_slave_config_t
I2C slave user configuration.

typedef struct _i2c_slave_transfer i2c_slave_transfer_t
I2C slave transfer structure.

typedef void (*i2c_slave_transfer_callback_t)(I2C_Type *base, i2c_slave_transfer_t *xfer, void
*userData)

I2C slave transfer callback typedef.

I2C_RETRY_TIMES
Retry times for waiting flag.

struct _i2c_master_config
#include <fsl_i2c.h> I2C master user configuration.

Public Members

bool enableMaster
Enables the I2C peripheral at initialization time.

uint32_t baudRate_Bps
Baud rate configuration of I2C peripheral.

struct _i2c_master_transfer
#include <fsl_i2c.h> I2C master transfer structure.

148 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

uint32_t flags
A transfer flag which controls the transfer.

uint8_t slaveAddress
7-bit slave address.

i2c_direction_t direction
A transfer direction, read or write.

uint32_t subaddress
A sub address. Transferred MSB first.

uint8_t subaddressSize
A size of the command buffer.

uint8_t *volatile data
A transfer buffer.

volatile size_t dataSize
A transfer size.

struct _i2c_master_handle
#include <fsl_i2c.h> I2C master handle structure.

Public Members

i2c_master_transfer_t transfer
I2C master transfer copy.

size_t transferSize
Total bytes to be transferred.

uint8_t state
A transfer state maintained during transfer.

i2c_master_transfer_callback_t completionCallback
A callback function called when the transfer is finished.

void *userData
A callback parameter passed to the callback function.

struct _i2c_slave_config
#include <fsl_i2c.h> I2C slave user configuration.

Public Members

bool enableSlave
Enables the I2C peripheral at initialization time.

uint16_t slaveAddress
A slave address configuration.

struct _i2c_slave_transfer
#include <fsl_i2c.h> I2C slave transfer structure.

2.11. I2C Driver 149

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

i2c_slave_transfer_event_t event
A reason that the callback is invoked.

uint8_t *volatile data
A transfer buffer.

volatile size_t dataSize
A transfer size.

status_t completionStatus
Success or error code describing how the transfer completed. Only applies for
kI2C_SlaveCompletionEvent.

size_t transferredCount
A number of bytes actually transferred since the start or since the last repeated start.

struct _i2c_slave_handle
#include <fsl_i2c.h> I2C slave handle structure.

Public Members

volatile uint8_t state
A transfer state maintained during transfer.

i2c_slave_transfer_t transfer
I2C slave transfer copy.

uint32_t eventMask
A mask of enabled events.

i2c_slave_transfer_callback_t callback
A callback function called at the transfer event.

void *userData
A callback parameter passed to the callback.

2.12 Iomuxc_driver

static inline void IOMUXC_SetPinMux(uint32_t muxRegister, uint32_t muxMode, uint32_t
inputRegister, uint32_t inputDaisy, uint32_t
configRegister, uint32_t inputOnfield)

Sets the IOMUXC pin mux mode.

This is an example to set the I2C4_SDA as the pwm1_OUT:

IOMUXC_SetPinMux(IOMUXC_I2C4_SDA_PWM1_OUT, 0);

Note: The first five parameters can be filled with the pin function ID macros.

Parameters
• muxRegister – The pin mux register_

• muxMode – The pin mux mode_

150 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

• inputRegister – The select input register_

• inputDaisy – The input daisy_

• configRegister – The config register_

• inputOnfield – The pad->module input inversion_

static inline void IOMUXC_SetPinConfig(uint32_t muxRegister, uint32_t muxMode, uint32_t
inputRegister, uint32_t inputDaisy, uint32_t
configRegister, uint32_t configValue)

Sets the IOMUXC pin configuration.

This is an example to set pin configuration for IOMUXC_I2C4_SDA_PWM1_OUT:

IOMUXC_SetPinConfig(IOMUXC_I2C4_SDA_PWM1_OUT, IOMUXC_SW_PAD_CTL_PAD_
↪→ODE_MASK | IOMUXC0_SW_PAD_CTL_PAD_DSE(2U))

Note: The previous five parameters can be filled with the pin function ID macros.

Parameters
• muxRegister – The pin mux register_

• muxMode – The pin mux mode_

• inputRegister – The select input register_

• inputDaisy – The input daisy_

• configRegister – The config register_

• configValue – The pin config value_

FSL_IOMUXC_DRIVER_VERSION
IOMUXC driver version 2.0.1.

IOMUXC_PMIC_STBY_REQ

IOMUXC_PMIC_ON_REQ

IOMUXC_ONOFF

IOMUXC_POR_B

IOMUXC_RTC_RESET_B

IOMUXC_GPIO1_IO00_GPIO1_IO00

IOMUXC_GPIO1_IO00_CCM_ENET_PHY_REF_CLK_ROOT

IOMUXC_GPIO1_IO00_XTALOSC_REF_CLK_32K

IOMUXC_GPIO1_IO00_CCM_EXT_CLK1

IOMUXC_GPIO1_IO01_GPIO1_IO01

IOMUXC_GPIO1_IO01_PWM1_OUT

IOMUXC_GPIO1_IO01_XTALOSC_REF_CLK_24M

IOMUXC_GPIO1_IO01_CCM_EXT_CLK2

2.12. Iomuxc_driver 151

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_GPIO1_IO02_GPIO1_IO02

IOMUXC_GPIO1_IO02_WDOG1_WDOG_B

IOMUXC_GPIO1_IO02_WDOG1_WDOG_ANY

IOMUXC_GPIO1_IO03_GPIO1_IO03

IOMUXC_GPIO1_IO03_USDHC1_VSELECT

IOMUXC_GPIO1_IO03_SDMA1_EXT_EVENT0

IOMUXC_GPIO1_IO04_GPIO1_IO04

IOMUXC_GPIO1_IO04_USDHC2_VSELECT

IOMUXC_GPIO1_IO04_SDMA1_EXT_EVENT1

IOMUXC_GPIO1_IO05_GPIO1_IO05

IOMUXC_GPIO1_IO05_M4_NMI

IOMUXC_GPIO1_IO05_CCM_PMIC_READY

IOMUXC_GPIO1_IO06_GPIO1_IO06

IOMUXC_GPIO1_IO06_ENET1_MDC

IOMUXC_GPIO1_IO06_USDHC1_CD_B

IOMUXC_GPIO1_IO06_CCM_EXT_CLK3

IOMUXC_GPIO1_IO07_GPIO1_IO07

IOMUXC_GPIO1_IO07_ENET1_MDIO

IOMUXC_GPIO1_IO07_USDHC1_WP

IOMUXC_GPIO1_IO07_CCM_EXT_CLK4

IOMUXC_GPIO1_IO08_GPIO1_IO08

IOMUXC_GPIO1_IO08_ENET1_1588_EVENT0_IN

IOMUXC_GPIO1_IO08_USDHC2_RESET_B

IOMUXC_GPIO1_IO09_GPIO1_IO09

IOMUXC_GPIO1_IO09_ENET1_1588_EVENT0_OUT

IOMUXC_GPIO1_IO09_SDMA2_EXT_EVENT0

IOMUXC_GPIO1_IO10_GPIO1_IO10

IOMUXC_GPIO1_IO10_USB1_OTG_ID

IOMUXC_GPIO1_IO11_GPIO1_IO11

IOMUXC_GPIO1_IO11_USB2_OTG_ID

IOMUXC_GPIO1_IO11_CCM_PMIC_READY

IOMUXC_GPIO1_IO12_GPIO1_IO12

IOMUXC_GPIO1_IO12_USB1_OTG_PWR

152 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_GPIO1_IO12_SDMA2_EXT_EVENT1

IOMUXC_GPIO1_IO13_GPIO1_IO13

IOMUXC_GPIO1_IO13_USB1_OTG_OC

IOMUXC_GPIO1_IO13_PWM2_OUT

IOMUXC_GPIO1_IO14_GPIO1_IO14

IOMUXC_GPIO1_IO14_USB2_OTG_PWR

IOMUXC_GPIO1_IO14_PWM3_OUT

IOMUXC_GPIO1_IO14_CCM_CLKO1

IOMUXC_GPIO1_IO15_GPIO1_IO15

IOMUXC_GPIO1_IO15_USB2_OTG_OC

IOMUXC_GPIO1_IO15_PWM4_OUT

IOMUXC_GPIO1_IO15_CCM_CLKO2

IOMUXC_ENET_MDC_ENET1_MDC

IOMUXC_ENET_MDC_GPIO1_IO16

IOMUXC_ENET_MDIO_ENET1_MDIO

IOMUXC_ENET_MDIO_GPIO1_IO17

IOMUXC_ENET_TD3_ENET1_RGMII_TD3

IOMUXC_ENET_TD3_GPIO1_IO18

IOMUXC_ENET_TD2_ENET1_RGMII_TD2

IOMUXC_ENET_TD2_ENET1_TX_CLK

IOMUXC_ENET_TD2_GPIO1_IO19

IOMUXC_ENET_TD1_ENET1_RGMII_TD1

IOMUXC_ENET_TD1_GPIO1_IO20

IOMUXC_ENET_TD0_ENET1_RGMII_TD0

IOMUXC_ENET_TD0_GPIO1_IO21

IOMUXC_ENET_TX_CTL_ENET1_RGMII_TX_CTL

IOMUXC_ENET_TX_CTL_GPIO1_IO22

IOMUXC_ENET_TXC_ENET1_RGMII_TXC

IOMUXC_ENET_TXC_ENET1_TX_ER

IOMUXC_ENET_TXC_GPIO1_IO23

IOMUXC_ENET_RX_CTL_ENET1_RGMII_RX_CTL

IOMUXC_ENET_RX_CTL_GPIO1_IO24

IOMUXC_ENET_RXC_ENET1_RGMII_RXC

2.12. Iomuxc_driver 153

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_ENET_RXC_ENET1_RX_ER

IOMUXC_ENET_RXC_GPIO1_IO25

IOMUXC_ENET_RD0_ENET1_RGMII_RD0

IOMUXC_ENET_RD0_GPIO1_IO26

IOMUXC_ENET_RD1_ENET1_RGMII_RD1

IOMUXC_ENET_RD1_GPIO1_IO27

IOMUXC_ENET_RD2_ENET1_RGMII_RD2

IOMUXC_ENET_RD2_GPIO1_IO28

IOMUXC_ENET_RD3_ENET1_RGMII_RD3

IOMUXC_ENET_RD3_GPIO1_IO29

IOMUXC_SD1_CLK_USDHC1_CLK

IOMUXC_SD1_CLK_GPIO2_IO00

IOMUXC_SD1_CMD_USDHC1_CMD

IOMUXC_SD1_CMD_GPIO2_IO01

IOMUXC_SD1_DATA0_USDHC1_DATA0

IOMUXC_SD1_DATA0_GPIO2_IO02

IOMUXC_SD1_DATA1_USDHC1_DATA1

IOMUXC_SD1_DATA1_GPIO2_IO03

IOMUXC_SD1_DATA2_USDHC1_DATA2

IOMUXC_SD1_DATA2_GPIO2_IO04

IOMUXC_SD1_DATA3_USDHC1_DATA3

IOMUXC_SD1_DATA3_GPIO2_IO05

IOMUXC_SD1_DATA4_USDHC1_DATA4

IOMUXC_SD1_DATA4_GPIO2_IO06

IOMUXC_SD1_DATA5_USDHC1_DATA5

IOMUXC_SD1_DATA5_GPIO2_IO07

IOMUXC_SD1_DATA6_USDHC1_DATA6

IOMUXC_SD1_DATA6_GPIO2_IO08

IOMUXC_SD1_DATA7_USDHC1_DATA7

IOMUXC_SD1_DATA7_GPIO2_IO09

IOMUXC_SD1_RESET_B_USDHC1_RESET_B

IOMUXC_SD1_RESET_B_GPIO2_IO10

IOMUXC_SD1_STROBE_USDHC1_STROBE

154 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_SD1_STROBE_GPIO2_IO11

IOMUXC_SD2_CD_B_USDHC2_CD_B

IOMUXC_SD2_CD_B_GPIO2_IO12

IOMUXC_SD2_CLK_USDHC2_CLK

IOMUXC_SD2_CLK_GPIO2_IO13

IOMUXC_SD2_CMD_USDHC2_CMD

IOMUXC_SD2_CMD_GPIO2_IO14

IOMUXC_SD2_DATA0_USDHC2_DATA0

IOMUXC_SD2_DATA0_GPIO2_IO15

IOMUXC_SD2_DATA1_USDHC2_DATA1

IOMUXC_SD2_DATA1_GPIO2_IO16

IOMUXC_SD2_DATA2_USDHC2_DATA2

IOMUXC_SD2_DATA2_GPIO2_IO17

IOMUXC_SD2_DATA3_USDHC2_DATA3

IOMUXC_SD2_DATA3_GPIO2_IO18

IOMUXC_SD2_RESET_B_USDHC2_RESET_B

IOMUXC_SD2_RESET_B_GPIO2_IO19

IOMUXC_SD2_WP_USDHC2_WP

IOMUXC_SD2_WP_GPIO2_IO20

IOMUXC_NAND_ALE_RAWNAND_ALE

IOMUXC_NAND_ALE_QSPI_A_SCLK

IOMUXC_NAND_ALE_GPIO3_IO00

IOMUXC_NAND_CE0_B_RAWNAND_CE0_B

IOMUXC_NAND_CE0_B_QSPI_A_SS0_B

IOMUXC_NAND_CE0_B_GPIO3_IO01

IOMUXC_NAND_CE1_B_RAWNAND_CE1_B

IOMUXC_NAND_CE1_B_QSPI_A_SS1_B

IOMUXC_NAND_CE1_B_GPIO3_IO02

IOMUXC_NAND_CE2_B_RAWNAND_CE2_B

IOMUXC_NAND_CE2_B_QSPI_B_SS0_B

IOMUXC_NAND_CE2_B_GPIO3_IO03

IOMUXC_NAND_CE3_B_RAWNAND_CE3_B

IOMUXC_NAND_CE3_B_QSPI_B_SS1_B

2.12. Iomuxc_driver 155

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_NAND_CE3_B_GPIO3_IO04

IOMUXC_NAND_CLE_RAWNAND_CLE

IOMUXC_NAND_CLE_QSPI_B_SCLK

IOMUXC_NAND_CLE_GPIO3_IO05

IOMUXC_NAND_DATA00_RAWNAND_DATA00

IOMUXC_NAND_DATA00_QSPI_A_DATA0

IOMUXC_NAND_DATA00_GPIO3_IO06

IOMUXC_NAND_DATA01_RAWNAND_DATA01

IOMUXC_NAND_DATA01_QSPI_A_DATA1

IOMUXC_NAND_DATA01_GPIO3_IO07

IOMUXC_NAND_DATA02_RAWNAND_DATA02

IOMUXC_NAND_DATA02_QSPI_A_DATA2

IOMUXC_NAND_DATA02_GPIO3_IO08

IOMUXC_NAND_DATA03_RAWNAND_DATA03

IOMUXC_NAND_DATA03_QSPI_A_DATA3

IOMUXC_NAND_DATA03_GPIO3_IO09

IOMUXC_NAND_DATA04_RAWNAND_DATA04

IOMUXC_NAND_DATA04_QSPI_B_DATA0

IOMUXC_NAND_DATA04_GPIO3_IO10

IOMUXC_NAND_DATA05_RAWNAND_DATA05

IOMUXC_NAND_DATA05_QSPI_B_DATA1

IOMUXC_NAND_DATA05_GPIO3_IO11

IOMUXC_NAND_DATA06_RAWNAND_DATA06

IOMUXC_NAND_DATA06_QSPI_B_DATA2

IOMUXC_NAND_DATA06_GPIO3_IO12

IOMUXC_NAND_DATA07_RAWNAND_DATA07

IOMUXC_NAND_DATA07_QSPI_B_DATA3

IOMUXC_NAND_DATA07_GPIO3_IO13

IOMUXC_NAND_DQS_RAWNAND_DQS

IOMUXC_NAND_DQS_QSPI_A_DQS

IOMUXC_NAND_DQS_GPIO3_IO14

IOMUXC_NAND_RE_B_RAWNAND_RE_B

IOMUXC_NAND_RE_B_QSPI_B_DQS

156 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_NAND_RE_B_GPIO3_IO15

IOMUXC_NAND_READY_B_RAWNAND_READY_B

IOMUXC_NAND_READY_B_GPIO3_IO16

IOMUXC_NAND_WE_B_RAWNAND_WE_B

IOMUXC_NAND_WE_B_GPIO3_IO17

IOMUXC_NAND_WP_B_RAWNAND_WP_B

IOMUXC_NAND_WP_B_GPIO3_IO18

IOMUXC_SAI5_RXFS_SAI5_RX_SYNC

IOMUXC_SAI5_RXFS_SAI1_TX_DATA0

IOMUXC_SAI5_RXFS_GPIO3_IO19

IOMUXC_SAI5_RXC_SAI5_RX_BCLK

IOMUXC_SAI5_RXC_SAI1_TX_DATA1

IOMUXC_SAI5_RXC_GPIO3_IO20

IOMUXC_SAI5_RXD0_SAI5_RX_DATA0

IOMUXC_SAI5_RXD0_SAI1_TX_DATA2

IOMUXC_SAI5_RXD0_GPIO3_IO21

IOMUXC_SAI5_RXD1_SAI5_RX_DATA1

IOMUXC_SAI5_RXD1_SAI1_TX_DATA3

IOMUXC_SAI5_RXD1_SAI1_TX_SYNC

IOMUXC_SAI5_RXD1_SAI5_TX_SYNC

IOMUXC_SAI5_RXD1_GPIO3_IO22

IOMUXC_SAI5_RXD2_SAI5_RX_DATA2

IOMUXC_SAI5_RXD2_SAI1_TX_DATA4

IOMUXC_SAI5_RXD2_SAI1_TX_SYNC

IOMUXC_SAI5_RXD2_SAI5_TX_BCLK

IOMUXC_SAI5_RXD2_GPIO3_IO23

IOMUXC_SAI5_RXD3_SAI5_RX_DATA3

IOMUXC_SAI5_RXD3_SAI1_TX_DATA5

IOMUXC_SAI5_RXD3_SAI1_TX_SYNC

IOMUXC_SAI5_RXD3_SAI5_TX_DATA0

IOMUXC_SAI5_RXD3_GPIO3_IO24

IOMUXC_SAI5_MCLK_SAI5_MCLK

IOMUXC_SAI5_MCLK_SAI1_TX_BCLK

2.12. Iomuxc_driver 157

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_SAI5_MCLK_SAI4_MCLK

IOMUXC_SAI5_MCLK_GPIO3_IO25

IOMUXC_SAI1_RXFS_SAI1_RX_SYNC

IOMUXC_SAI1_RXFS_SAI5_RX_SYNC

IOMUXC_SAI1_RXFS_CORESIGHT_TRACE_CLK

IOMUXC_SAI1_RXFS_GPIO4_IO00

IOMUXC_SAI1_RXC_SAI1_RX_BCLK

IOMUXC_SAI1_RXC_SAI5_RX_BCLK

IOMUXC_SAI1_RXC_CORESIGHT_TRACE_CTL

IOMUXC_SAI1_RXC_GPIO4_IO01

IOMUXC_SAI1_RXD0_SAI1_RX_DATA0

IOMUXC_SAI1_RXD0_SAI5_RX_DATA0

IOMUXC_SAI1_RXD0_CORESIGHT_TRACE0

IOMUXC_SAI1_RXD0_GPIO4_IO02

IOMUXC_SAI1_RXD0_SRC_BOOT_CFG0

IOMUXC_SAI1_RXD1_SAI1_RX_DATA1

IOMUXC_SAI1_RXD1_SAI5_RX_DATA1

IOMUXC_SAI1_RXD1_CORESIGHT_TRACE1

IOMUXC_SAI1_RXD1_GPIO4_IO03

IOMUXC_SAI1_RXD1_SRC_BOOT_CFG1

IOMUXC_SAI1_RXD2_SAI1_RX_DATA2

IOMUXC_SAI1_RXD2_SAI5_RX_DATA2

IOMUXC_SAI1_RXD2_CORESIGHT_TRACE2

IOMUXC_SAI1_RXD2_GPIO4_IO04

IOMUXC_SAI1_RXD2_SRC_BOOT_CFG2

IOMUXC_SAI1_RXD3_SAI1_RX_DATA3

IOMUXC_SAI1_RXD3_SAI5_RX_DATA3

IOMUXC_SAI1_RXD3_CORESIGHT_TRACE3

IOMUXC_SAI1_RXD3_GPIO4_IO05

IOMUXC_SAI1_RXD3_SRC_BOOT_CFG3

IOMUXC_SAI1_RXD4_SAI1_RX_DATA4

IOMUXC_SAI1_RXD4_SAI6_TX_BCLK

IOMUXC_SAI1_RXD4_SAI6_RX_BCLK

158 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_SAI1_RXD4_CORESIGHT_TRACE4

IOMUXC_SAI1_RXD4_GPIO4_IO06

IOMUXC_SAI1_RXD4_SRC_BOOT_CFG4

IOMUXC_SAI1_RXD5_SAI1_RX_DATA5

IOMUXC_SAI1_RXD5_SAI6_TX_DATA0

IOMUXC_SAI1_RXD5_SAI6_RX_DATA0

IOMUXC_SAI1_RXD5_SAI1_RX_SYNC

IOMUXC_SAI1_RXD5_CORESIGHT_TRACE5

IOMUXC_SAI1_RXD5_GPIO4_IO07

IOMUXC_SAI1_RXD5_SRC_BOOT_CFG5

IOMUXC_SAI1_RXD6_SAI1_RX_DATA6

IOMUXC_SAI1_RXD6_SAI6_TX_SYNC

IOMUXC_SAI1_RXD6_SAI6_RX_SYNC

IOMUXC_SAI1_RXD6_CORESIGHT_TRACE6

IOMUXC_SAI1_RXD6_GPIO4_IO08

IOMUXC_SAI1_RXD6_SRC_BOOT_CFG6

IOMUXC_SAI1_RXD7_SAI1_RX_DATA7

IOMUXC_SAI1_RXD7_SAI6_MCLK

IOMUXC_SAI1_RXD7_SAI1_TX_SYNC

IOMUXC_SAI1_RXD7_SAI1_TX_DATA4

IOMUXC_SAI1_RXD7_CORESIGHT_TRACE7

IOMUXC_SAI1_RXD7_GPIO4_IO09

IOMUXC_SAI1_RXD7_SRC_BOOT_CFG7

IOMUXC_SAI1_TXFS_SAI1_TX_SYNC

IOMUXC_SAI1_TXFS_SAI5_TX_SYNC

IOMUXC_SAI1_TXFS_CORESIGHT_EVENTO

IOMUXC_SAI1_TXFS_GPIO4_IO10

IOMUXC_SAI1_TXC_SAI1_TX_BCLK

IOMUXC_SAI1_TXC_SAI5_TX_BCLK

IOMUXC_SAI1_TXC_CORESIGHT_EVENTI

IOMUXC_SAI1_TXC_GPIO4_IO11

IOMUXC_SAI1_TXD0_SAI1_TX_DATA0

IOMUXC_SAI1_TXD0_SAI5_TX_DATA0

2.12. Iomuxc_driver 159

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_SAI1_TXD0_CORESIGHT_TRACE8

IOMUXC_SAI1_TXD0_GPIO4_IO12

IOMUXC_SAI1_TXD0_SRC_BOOT_CFG8

IOMUXC_SAI1_TXD1_SAI1_TX_DATA1

IOMUXC_SAI1_TXD1_SAI5_TX_DATA1

IOMUXC_SAI1_TXD1_CORESIGHT_TRACE9

IOMUXC_SAI1_TXD1_GPIO4_IO13

IOMUXC_SAI1_TXD1_SRC_BOOT_CFG9

IOMUXC_SAI1_TXD2_SAI1_TX_DATA2

IOMUXC_SAI1_TXD2_SAI5_TX_DATA2

IOMUXC_SAI1_TXD2_CORESIGHT_TRACE10

IOMUXC_SAI1_TXD2_GPIO4_IO14

IOMUXC_SAI1_TXD2_SRC_BOOT_CFG10

IOMUXC_SAI1_TXD3_SAI1_TX_DATA3

IOMUXC_SAI1_TXD3_SAI5_TX_DATA3

IOMUXC_SAI1_TXD3_CORESIGHT_TRACE11

IOMUXC_SAI1_TXD3_GPIO4_IO15

IOMUXC_SAI1_TXD3_SRC_BOOT_CFG11

IOMUXC_SAI1_TXD4_SAI1_TX_DATA4

IOMUXC_SAI1_TXD4_SAI6_RX_BCLK

IOMUXC_SAI1_TXD4_SAI6_TX_BCLK

IOMUXC_SAI1_TXD4_CORESIGHT_TRACE12

IOMUXC_SAI1_TXD4_GPIO4_IO16

IOMUXC_SAI1_TXD4_SRC_BOOT_CFG12

IOMUXC_SAI1_TXD5_SAI1_TX_DATA5

IOMUXC_SAI1_TXD5_SAI6_RX_DATA0

IOMUXC_SAI1_TXD5_SAI6_TX_DATA0

IOMUXC_SAI1_TXD5_CORESIGHT_TRACE13

IOMUXC_SAI1_TXD5_GPIO4_IO17

IOMUXC_SAI1_TXD5_SRC_BOOT_CFG13

IOMUXC_SAI1_TXD6_SAI1_TX_DATA6

IOMUXC_SAI1_TXD6_SAI6_RX_SYNC

IOMUXC_SAI1_TXD6_SAI6_TX_SYNC

160 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_SAI1_TXD6_CORESIGHT_TRACE14

IOMUXC_SAI1_TXD6_GPIO4_IO18

IOMUXC_SAI1_TXD6_SRC_BOOT_CFG14

IOMUXC_SAI1_TXD7_SAI1_TX_DATA7

IOMUXC_SAI1_TXD7_SAI6_MCLK

IOMUXC_SAI1_TXD7_CORESIGHT_TRACE15

IOMUXC_SAI1_TXD7_GPIO4_IO19

IOMUXC_SAI1_TXD7_SRC_BOOT_CFG15

IOMUXC_SAI1_MCLK_SAI1_MCLK

IOMUXC_SAI1_MCLK_SAI5_MCLK

IOMUXC_SAI1_MCLK_SAI1_TX_BCLK

IOMUXC_SAI1_MCLK_GPIO4_IO20

IOMUXC_SAI2_RXFS_SAI2_RX_SYNC

IOMUXC_SAI2_RXFS_SAI5_TX_SYNC

IOMUXC_SAI2_RXFS_GPIO4_IO21

IOMUXC_SAI2_RXC_SAI2_RX_BCLK

IOMUXC_SAI2_RXC_SAI5_TX_BCLK

IOMUXC_SAI2_RXC_GPIO4_IO22

IOMUXC_SAI2_RXD0_SAI2_RX_DATA0

IOMUXC_SAI2_RXD0_SAI5_TX_DATA0

IOMUXC_SAI2_RXD0_GPIO4_IO23

IOMUXC_SAI2_TXFS_SAI2_TX_SYNC

IOMUXC_SAI2_TXFS_SAI5_TX_DATA1

IOMUXC_SAI2_TXFS_GPIO4_IO24

IOMUXC_SAI2_TXC_SAI2_TX_BCLK

IOMUXC_SAI2_TXC_SAI5_TX_DATA2

IOMUXC_SAI2_TXC_GPIO4_IO25

IOMUXC_SAI2_TXD0_SAI2_TX_DATA0

IOMUXC_SAI2_TXD0_SAI5_TX_DATA3

IOMUXC_SAI2_TXD0_GPIO4_IO26

IOMUXC_SAI2_MCLK_SAI2_MCLK

IOMUXC_SAI2_MCLK_SAI5_MCLK

IOMUXC_SAI2_MCLK_GPIO4_IO27

2.12. Iomuxc_driver 161

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_SAI3_RXFS_SAI3_RX_SYNC

IOMUXC_SAI3_RXFS_GPT1_CAPTURE1

IOMUXC_SAI3_RXFS_SAI5_RX_SYNC

IOMUXC_SAI3_RXFS_GPIO4_IO28

IOMUXC_SAI3_RXC_SAI3_RX_BCLK

IOMUXC_SAI3_RXC_GPT1_CAPTURE2

IOMUXC_SAI3_RXC_SAI5_RX_BCLK

IOMUXC_SAI3_RXC_GPIO4_IO29

IOMUXC_SAI3_RXD_SAI3_RX_DATA0

IOMUXC_SAI3_RXD_GPT1_COMPARE1

IOMUXC_SAI3_RXD_SAI5_RX_DATA0

IOMUXC_SAI3_RXD_GPIO4_IO30

IOMUXC_SAI3_TXFS_SAI3_TX_SYNC

IOMUXC_SAI3_TXFS_GPT1_CLK

IOMUXC_SAI3_TXFS_SAI5_RX_DATA1

IOMUXC_SAI3_TXFS_GPIO4_IO31

IOMUXC_SAI3_TXC_SAI3_TX_BCLK

IOMUXC_SAI3_TXC_GPT1_COMPARE2

IOMUXC_SAI3_TXC_SAI5_RX_DATA2

IOMUXC_SAI3_TXC_GPIO5_IO00

IOMUXC_SAI3_TXD_SAI3_TX_DATA0

IOMUXC_SAI3_TXD_GPT1_COMPARE3

IOMUXC_SAI3_TXD_SAI5_RX_DATA3

IOMUXC_SAI3_TXD_GPIO5_IO01

IOMUXC_SAI3_MCLK_SAI3_MCLK

IOMUXC_SAI3_MCLK_PWM4_OUT

IOMUXC_SAI3_MCLK_SAI5_MCLK

IOMUXC_SAI3_MCLK_GPIO5_IO02

IOMUXC_SPDIF_TX_SPDIF1_OUT

IOMUXC_SPDIF_TX_PWM3_OUT

IOMUXC_SPDIF_TX_GPIO5_IO03

IOMUXC_SPDIF_RX_SPDIF1_IN

IOMUXC_SPDIF_RX_PWM2_OUT

162 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_SPDIF_RX_GPIO5_IO04

IOMUXC_SPDIF_EXT_CLK_SPDIF1_EXT_CLK

IOMUXC_SPDIF_EXT_CLK_PWM1_OUT

IOMUXC_SPDIF_EXT_CLK_GPIO5_IO05

IOMUXC_ECSPI1_SCLK_ECSPI1_SCLK

IOMUXC_ECSPI1_SCLK_UART3_RX

IOMUXC_ECSPI1_SCLK_UART3_TX

IOMUXC_ECSPI1_SCLK_GPIO5_IO06

IOMUXC_ECSPI1_MOSI_ECSPI1_MOSI

IOMUXC_ECSPI1_MOSI_UART3_TX

IOMUXC_ECSPI1_MOSI_UART3_RX

IOMUXC_ECSPI1_MOSI_GPIO5_IO07

IOMUXC_ECSPI1_MISO_ECSPI1_MISO

IOMUXC_ECSPI1_MISO_UART3_CTS_B

IOMUXC_ECSPI1_MISO_UART3_RTS_B

IOMUXC_ECSPI1_MISO_GPIO5_IO08

IOMUXC_ECSPI1_SS0_ECSPI1_SS0

IOMUXC_ECSPI1_SS0_UART3_RTS_B

IOMUXC_ECSPI1_SS0_UART3_CTS_B

IOMUXC_ECSPI1_SS0_GPIO5_IO09

IOMUXC_ECSPI2_SCLK_ECSPI2_SCLK

IOMUXC_ECSPI2_SCLK_UART4_RX

IOMUXC_ECSPI2_SCLK_UART4_TX

IOMUXC_ECSPI2_SCLK_GPIO5_IO10

IOMUXC_ECSPI2_MOSI_ECSPI2_MOSI

IOMUXC_ECSPI2_MOSI_UART4_TX

IOMUXC_ECSPI2_MOSI_UART4_RX

IOMUXC_ECSPI2_MOSI_GPIO5_IO11

IOMUXC_ECSPI2_MISO_ECSPI2_MISO

IOMUXC_ECSPI2_MISO_UART4_CTS_B

IOMUXC_ECSPI2_MISO_UART4_RTS_B

IOMUXC_ECSPI2_MISO_GPIO5_IO12

IOMUXC_ECSPI2_SS0_ECSPI2_SS0

2.12. Iomuxc_driver 163

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_ECSPI2_SS0_UART4_RTS_B

IOMUXC_ECSPI2_SS0_UART4_CTS_B

IOMUXC_ECSPI2_SS0_GPIO5_IO13

IOMUXC_I2C1_SCL_I2C1_SCL

IOMUXC_I2C1_SCL_ENET1_MDC

IOMUXC_I2C1_SCL_GPIO5_IO14

IOMUXC_I2C1_SDA_I2C1_SDA

IOMUXC_I2C1_SDA_ENET1_MDIO

IOMUXC_I2C1_SDA_GPIO5_IO15

IOMUXC_I2C2_SCL_I2C2_SCL

IOMUXC_I2C2_SCL_ENET1_1588_EVENT1_IN

IOMUXC_I2C2_SCL_GPIO5_IO16

IOMUXC_I2C2_SDA_I2C2_SDA

IOMUXC_I2C2_SDA_ENET1_1588_EVENT1_OUT

IOMUXC_I2C2_SDA_GPIO5_IO17

IOMUXC_I2C3_SCL_I2C3_SCL

IOMUXC_I2C3_SCL_PWM4_OUT

IOMUXC_I2C3_SCL_GPT2_CLK

IOMUXC_I2C3_SCL_GPIO5_IO18

IOMUXC_I2C3_SDA_I2C3_SDA

IOMUXC_I2C3_SDA_PWM3_OUT

IOMUXC_I2C3_SDA_GPT3_CLK

IOMUXC_I2C3_SDA_GPIO5_IO19

IOMUXC_I2C4_SCL_I2C4_SCL

IOMUXC_I2C4_SCL_PWM2_OUT

IOMUXC_I2C4_SCL_PCIE1_CLKREQ_B

IOMUXC_I2C4_SCL_GPIO5_IO20

IOMUXC_I2C4_SDA_I2C4_SDA

IOMUXC_I2C4_SDA_PWM1_OUT

IOMUXC_I2C4_SDA_PCIE2_CLKREQ_B

IOMUXC_I2C4_SDA_GPIO5_IO21

IOMUXC_UART1_RXD_UART1_RX

IOMUXC_UART1_RXD_UART1_TX

164 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_UART1_RXD_ECSPI3_SCLK

IOMUXC_UART1_RXD_GPIO5_IO22

IOMUXC_UART1_TXD_UART1_TX

IOMUXC_UART1_TXD_UART1_RX

IOMUXC_UART1_TXD_ECSPI3_MOSI

IOMUXC_UART1_TXD_GPIO5_IO23

IOMUXC_UART2_RXD_UART2_RX

IOMUXC_UART2_RXD_UART2_TX

IOMUXC_UART2_RXD_ECSPI3_MISO

IOMUXC_UART2_RXD_GPIO5_IO24

IOMUXC_UART2_TXD_UART2_TX

IOMUXC_UART2_TXD_UART2_RX

IOMUXC_UART2_TXD_ECSPI3_SS0

IOMUXC_UART2_TXD_GPIO5_IO25

IOMUXC_UART3_RXD_UART3_RX

IOMUXC_UART3_RXD_UART3_TX

IOMUXC_UART3_RXD_UART1_CTS_B

IOMUXC_UART3_RXD_UART1_RTS_B

IOMUXC_UART3_RXD_GPIO5_IO26

IOMUXC_UART3_TXD_UART3_TX

IOMUXC_UART3_TXD_UART3_RX

IOMUXC_UART3_TXD_UART1_RTS_B

IOMUXC_UART3_TXD_UART1_CTS_B

IOMUXC_UART3_TXD_GPIO5_IO27

IOMUXC_UART4_RXD_UART4_RX

IOMUXC_UART4_RXD_UART4_TX

IOMUXC_UART4_RXD_UART2_CTS_B

IOMUXC_UART4_RXD_UART2_RTS_B

IOMUXC_UART4_RXD_PCIE1_CLKREQ_B

IOMUXC_UART4_RXD_GPIO5_IO28

IOMUXC_UART4_TXD_UART4_TX

IOMUXC_UART4_TXD_UART4_RX

IOMUXC_UART4_TXD_UART2_RTS_B

2.12. Iomuxc_driver 165

MCUXpresso SDK Documentation, Release 25.09.00

IOMUXC_UART4_TXD_UART2_CTS_B

IOMUXC_UART4_TXD_PCIE2_CLKREQ_B

IOMUXC_UART4_TXD_GPIO5_IO29

IOMUXC_TEST_MODE

IOMUXC_BOOT_MODE0

IOMUXC_BOOT_MODE1

IOMUXC_JTAG_MOD

IOMUXC_JTAG_TRST_B

IOMUXC_JTAG_TDI

IOMUXC_JTAG_TMS

IOMUXC_JTAG_TCK

IOMUXC_JTAG_TDO

IOMUXC_RTC

FSL_COMPONENT_ID

2.13 IRQSTEER: Interrupt Request Steering Driver

void IRQSTEER_Init(IRQSTEER_Type *base)
Initializes the IRQSTEER module.

This function enables the clock gate for the specified IRQSTEER.

Parameters
• base – IRQSTEER peripheral base address.

void IRQSTEER_Deinit(IRQSTEER_Type *base)
Deinitializes an IRQSTEER instance for operation.

The clock gate for the specified IRQSTEER is disabled.

Parameters
• base – IRQSTEER peripheral base address.

static inline void IRQSTEER_EnableInterrupt(IRQSTEER_Type *base, IRQn_Type irq)
Enables an interrupt source.

Parameters
• base – IRQSTEER peripheral base address.

• irq – Interrupt to be routed. The interrupt must be an IRQSTEER source.

static inline void IRQSTEER_DisableInterrupt(IRQSTEER_Type *base, IRQn_Type irq)
Disables an interrupt source.

Parameters
• base – IRQSTEER peripheral base address.

• irq – Interrupt source number. The interruptmust be an IRQSTEER source.

166 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline bool IRQSTEER_InterruptIsEnabled(IRQSTEER_Type *base, IRQn_Type irq)
Check if an interrupt source is enabled.

Parameters
• base – IRQSTEER peripheral base address.

• irq – Interrupt to be queried. The interrupt must be an IRQSTEER source.

Returns
true if the interrupt is not masked, false otherwise.

static inline void IRQSTEER_SetInterrupt(IRQSTEER_Type *base, IRQn_Type irq, bool set)
Sets/Forces an interrupt.

Note: This function is not affected by the function IRQSTEER_DisableInterrupt and IRQS-
TEER_EnableInterrupt.

Parameters
• base – IRQSTEER peripheral base address.

• irq – Interrupt to be set/forced. The interruptmust be an IRQSTEER source.

• set – Switcher of the interrupt set/force function. “true” means to set.
“false” means not (normal operation).

static inline void IRQSTEER_EnableMasterInterrupt(IRQSTEER_Type *base,
irqsteer_int_master_t intMasterIndex)

Enables a master interrupt. By default, all the master interrupts are enabled.

For example, to enable the interrupt sources of master 1:

IRQSTEER_EnableMasterInterrupt(IRQSTEER_M4_0, kIRQSTEER_InterruptMaster1);

Parameters
• base – IRQSTEER peripheral base address.

• intMasterIndex – Master index of interrupt sources to be routed, options
available in enumeration irqsteer_int_master_t.

static inline void IRQSTEER_DisableMasterInterrupt(IRQSTEER_Type *base,
irqsteer_int_master_t intMasterIndex)

Disables a master interrupt.

For example, to disable the interrupt sources of master 1:

IRQSTEER_DisableMasterInterrupt(IRQSTEER_M4_0, kIRQSTEER_InterruptMaster1);

Parameters
• base – IRQSTEER peripheral base address.

• intMasterIndex – Master index of interrupt sources to be disabled, options
available in enumeration irqsteer_int_master_t.

2.13. IRQSTEER: Interrupt Request Steering Driver 167

MCUXpresso SDK Documentation, Release 25.09.00

static inline bool IRQSTEER_IsInterruptSet(IRQSTEER_Type *base, IRQn_Type irq)
Checks the status of one specific IRQSTEER interrupt.

For example, to check whether interrupt from output 0 of Display 1 is set:

if (IRQSTEER_IsInterruptSet(IRQSTEER_DISPLAY1_INT_OUT0)
{

...
}

Parameters
• base – IRQSTEER peripheral base address.

• irq – Interrupt source status to be checked. The interrupt must be an IRQS-
TEER source.

Returns
The interrupt status. “true” means interrupt set. “false” means not.

static inline bool IRQSTEER_IsMasterInterruptSet(IRQSTEER_Type *base)
Checks the status of IRQSTEER master interrupt. The master interrupt status represents at
least one interrupt is asserted or not among ALL interrupts.

Note: The master interrupt status is not affected by the function IRQS-
TEER_DisableMasterInterrupt.

Parameters
• base – IRQSTEER peripheral base address.

Returns
The master interrupt status. “true” means at least one interrupt set. “false”
means not.

static inline uint32_t IRQSTEER_GetGroupInterruptStatus(IRQSTEER_Type *base,
irqsteer_int_group_t intGroupIndex)

Gets the status of IRQSTEER group interrupt. The group interrupt status represents all the
interrupt status within the group specified. This API aims for facilitating the status return
of one set of interrupts.

Parameters
• base – IRQSTEER peripheral base address.

• intGroupIndex – Index of the interrupt group status to get.

Returns
The mask of the group interrupt status. Bit[n] set means the source with bit
offset n in group intGroupIndex of IRQSTEER is asserted.

IRQn_Type IRQSTEER_GetMasterNextInterrupt(IRQSTEER_Type *base, irqsteer_int_master_t
intMasterIndex)

Gets the next interrupt source (currently set) of one specific master.

Parameters
• base – IRQSTEER peripheral base address.

• intMasterIndex – Master index of interrupt sources, options available in
enumeration irqsteer_int_master_t.

168 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Returns
The current set next interrupt source number of one specific master. Return
IRQSTEER_INT_Invalid if no interrupt set.

uint32_t IRQSTEER_GetMasterIrqCount(IRQSTEER_Type *base, irqsteer_int_master_t
intMasterIndex)

Get the number of interrupt for a given master.

Parameters
• base – IRQSTEER peripheral base address.

• intMasterIndex – Master index of interrupt sources, options available in
enumeration irqsteer_int_master_t.

Returns
Number of interrupts for a given master.

uint64_t IRQSTEER_GetMasterInterruptsStatus(IRQSTEER_Type *base, irqsteer_int_master_t
intMasterIndex)

Get the status of the interrupts a master is in charge of.

What this function does is it takes the CHn_STATUS registers associated with the interrupts
a master is in charge of and puts them in 64-bit variable. The order they are put in the
64-bit variable is the following: CHn_STATUS[i] : CHn_STATUS[i + 1], where CHn_STATUS[i
+ 1] is placed in the least significant half of the 64-bit variable. Assuming a master is in
charge of 64 interrupts, the user may use the result of this function as such: BIT(i) & IRQS-
TEER_GetMasterInterrupts() to check if interrupt i is asserted.

Parameters
• base – IRQSTEER peripheral base address.

• intMasterIndex – Master index of interrupt sources, options available in
enumeration irqsteer_int_master_t.

Returns
64-bit variable containing the status of the interrupts a master is in charge of.

FSL_IRQSTEER_DRIVER_VERSION
Driver version.

enum _irqsteer_int_group
IRQSTEER interrupt groups.

Values:

enumerator kIRQSTEER_InterruptGroup0
Interrupt Group 0: interrupt source 31 - 0

enumerator kIRQSTEER_InterruptGroup1
Interrupt Group 1: interrupt source 63 - 32

enumerator kIRQSTEER_InterruptGroup2
Interrupt Group 2: interrupt source 95 - 64

enumerator kIRQSTEER_InterruptGroup3
Interrupt Group 3: interrupt source 127 - 96

enumerator kIRQSTEER_InterruptGroup4
Interrupt Group 4: interrupt source 159 - 128

enumerator kIRQSTEER_InterruptGroup5
Interrupt Group 5: interrupt source 191 - 160

2.13. IRQSTEER: Interrupt Request Steering Driver 169

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kIRQSTEER_InterruptGroup6
Interrupt Group 6: interrupt source 223 - 192

enumerator kIRQSTEER_InterruptGroup7
Interrupt Group 7: interrupt source 255 - 224

enumerator kIRQSTEER_InterruptGroup8
Interrupt Group 8: interrupt source 287 - 256

enumerator kIRQSTEER_InterruptGroup9
Interrupt Group 9: interrupt source 319 - 288

enumerator kIRQSTEER_InterruptGroup10
Interrupt Group 10: interrupt source 351 - 320

enumerator kIRQSTEER_InterruptGroup11
Interrupt Group 11: interrupt source 383 - 352

enumerator kIRQSTEER_InterruptGroup12
Interrupt Group 12: interrupt source 415 - 384

enumerator kIRQSTEER_InterruptGroup13
Interrupt Group 13: interrupt source 447 - 416

enumerator kIRQSTEER_InterruptGroup14
Interrupt Group 14: interrupt source 479 - 448

enumerator kIRQSTEER_InterruptGroup15
Interrupt Group 15: interrupt source 511 - 480

enum _irqsteer_int_master
IRQSTEER master interrupts mapping.

Values:

enumerator kIRQSTEER_InterruptMaster0
Interrupt Master 0: interrupt source 63 - 0

enumerator kIRQSTEER_InterruptMaster1
Interrupt Master 1: interrupt source 127 - 64

enumerator kIRQSTEER_InterruptMaster2
Interrupt Master 2: interrupt source 191 - 128

enumerator kIRQSTEER_InterruptMaster3
Interrupt Master 3: interrupt source 255 - 192

enumerator kIRQSTEER_InterruptMaster4
Interrupt Master 4: interrupt source 319 - 256

enumerator kIRQSTEER_InterruptMaster5
Interrupt Master 5: interrupt source 383 - 320

enumerator kIRQSTEER_InterruptMaster6
Interrupt Master 6: interrupt source 447 - 384

enumerator kIRQSTEER_InterruptMaster7
Interrupt Master 7: interrupt source 511 - 448

typedef enum _irqsteer_int_group irqsteer_int_group_t
IRQSTEER interrupt groups.

170 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _irqsteer_int_master irqsteer_int_master_t
IRQSTEER master interrupts mapping.

FSL_IRQSTEER_USE_DRIVER_IRQ_HANDLER
Use the IRQSTEER driver IRQ Handler or not.

When define as 1, IRQSTEER driver implements the IRQSTEER ISR, otherwise user shall
implement it. Currently the IRQSTEER ISR is only available for Cortex-M platforms.

FSL_IRQSTEER_ENABLE_MASTER_INT
IRQSTEER_Init/IRQSTEER_Deinit enables/disables IRQSTEER master interrupt or not.

When define as 1, IRQSTEER_Init will enable the IRQSTEERmaster interrupt in system level
interrupt controller (such as NVIC, GIC), IRQSTEER_Deinit will disable it. Otherwise IRQS-
TEER_Init/IRQSTEER_Deinit won’t touch.

IRQSTEER_INT_SRC_REG_WIDTH
IRQSTEER interrupt source register width.

IRQSTEER_INT_MASTER_AGGREGATED_INT_NUM
IRQSTEER aggregated interrupt source number for each master.

IRQSTEER_INT_SRC_REG_INDEX(irq)
IRQSTEER interrupt source mapping register index.

IRQSTEER_INT_SRC_BIT_OFFSET(irq)
IRQSTEER interrupt source mapping bit offset.

IRQSTEER_INT_SRC_NUM(regIndex, bitOffset)
IRQSTEER interrupt source number.

2.14 Common Driver

FSL_COMMON_DRIVER_VERSION
common driver version.

DEBUG_CONSOLE_DEVICE_TYPE_NONE
No debug console.

DEBUG_CONSOLE_DEVICE_TYPE_UART
Debug console based on UART.

DEBUG_CONSOLE_DEVICE_TYPE_LPUART
Debug console based on LPUART.

DEBUG_CONSOLE_DEVICE_TYPE_LPSCI
Debug console based on LPSCI.

DEBUG_CONSOLE_DEVICE_TYPE_USBCDC
Debug console based on USBCDC.

DEBUG_CONSOLE_DEVICE_TYPE_FLEXCOMM
Debug console based on FLEXCOMM.

DEBUG_CONSOLE_DEVICE_TYPE_IUART
Debug console based on i.MX UART.

DEBUG_CONSOLE_DEVICE_TYPE_VUSART
Debug console based on LPC_VUSART.

2.14. Common Driver 171

MCUXpresso SDK Documentation, Release 25.09.00

DEBUG_CONSOLE_DEVICE_TYPE_MINI_USART
Debug console based on LPC_USART.

DEBUG_CONSOLE_DEVICE_TYPE_SWO
Debug console based on SWO.

DEBUG_CONSOLE_DEVICE_TYPE_QSCI
Debug console based on QSCI.

MIN(a, b)
Computes the minimum of a and b.

MAX(a, b)
Computes the maximum of a and b.

UINT16_MAX
Max value of uint16_t type.

UINT32_MAX
Max value of uint32_t type.

SDK_ATOMIC_LOCAL_ADD(addr, val)
Add value val from the variable at address address.

SDK_ATOMIC_LOCAL_SUB(addr, val)
Subtract value val to the variable at address address.

SDK_ATOMIC_LOCAL_SET(addr, bits)
Set the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_CLEAR(addr, bits)
Clear the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_TOGGLE(addr, bits)
Toggle the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_CLEAR_AND_SET(addr, clearBits, setBits)
For the variable at address address, clear the bits specifiled by clearBits and set the bits
specifiled by setBits.

SDK_ATOMIC_LOCAL_COMPARE_AND_SET(addr, expected, newValue)
For the variable at address address, check whether the value equal to expected. If value
same as expected then update newValue to address and return true , else return false .

SDK_ATOMIC_LOCAL_TEST_AND_SET(addr, newValue)
For the variable at address address, set as newValue value and return old value.

USEC_TO_COUNT(us, clockFreqInHz)
Macro to convert a microsecond period to raw count value

COUNT_TO_USEC(count, clockFreqInHz)
Macro to convert a raw count value to microsecond

MSEC_TO_COUNT(ms, clockFreqInHz)
Macro to convert a millisecond period to raw count value

COUNT_TO_MSEC(count, clockFreqInHz)
Macro to convert a raw count value to millisecond

SDK_ISR_EXIT_BARRIER

172 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

SDK_SIZEALIGN(var, alignbytes)
Macro to define a variable with L1 d-cache line size alignment

Macro to define a variable with L2 cache line size alignment

Macro to change a value to a given size aligned value

AT_NONCACHEABLE_SECTION(var)
Define a variable var, and place it in non-cacheable section.

AT_NONCACHEABLE_SECTION_ALIGN(var, alignbytes)
Define a variable var, and place it in non-cacheable section, the start address of the variable
is aligned to alignbytes.

AT_NONCACHEABLE_SECTION_INIT(var)
Define a variable var with initial value, and place it in non-cacheable section.

AT_NONCACHEABLE_SECTION_ALIGN_INIT(var, alignbytes)
Define a variable var with initial value, and place it in non-cacheable section, the start
address of the variable is aligned to alignbytes.

enum _status_groups
Status group numbers.

Values:

enumerator kStatusGroup_Generic
Group number for generic status codes.

enumerator kStatusGroup_FLASH
Group number for FLASH status codes.

enumerator kStatusGroup_LPSPI
Group number for LPSPI status codes.

enumerator kStatusGroup_FLEXIO_SPI
Group number for FLEXIO SPI status codes.

enumerator kStatusGroup_DSPI
Group number for DSPI status codes.

enumerator kStatusGroup_FLEXIO_UART
Group number for FLEXIO UART status codes.

enumerator kStatusGroup_FLEXIO_I2C
Group number for FLEXIO I2C status codes.

enumerator kStatusGroup_LPI2C
Group number for LPI2C status codes.

enumerator kStatusGroup_UART
Group number for UART status codes.

enumerator kStatusGroup_I2C
Group number for UART status codes.

enumerator kStatusGroup_LPSCI
Group number for LPSCI status codes.

enumerator kStatusGroup_LPUART
Group number for LPUART status codes.

enumerator kStatusGroup_SPI
Group number for SPI status code.

2.14. Common Driver 173

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_XRDC
Group number for XRDC status code.

enumerator kStatusGroup_SEMA42
Group number for SEMA42 status code.

enumerator kStatusGroup_SDHC
Group number for SDHC status code

enumerator kStatusGroup_SDMMC
Group number for SDMMC status code

enumerator kStatusGroup_SAI
Group number for SAI status code

enumerator kStatusGroup_MCG
Group number for MCG status codes.

enumerator kStatusGroup_SCG
Group number for SCG status codes.

enumerator kStatusGroup_SDSPI
Group number for SDSPI status codes.

enumerator kStatusGroup_FLEXIO_I2S
Group number for FLEXIO I2S status codes

enumerator kStatusGroup_FLEXIO_MCULCD
Group number for FLEXIO LCD status codes

enumerator kStatusGroup_FLASHIAP
Group number for FLASHIAP status codes

enumerator kStatusGroup_FLEXCOMM_I2C
Group number for FLEXCOMM I2C status codes

enumerator kStatusGroup_I2S
Group number for I2S status codes

enumerator kStatusGroup_IUART
Group number for IUART status codes

enumerator kStatusGroup_CSI
Group number for CSI status codes

enumerator kStatusGroup_MIPI_DSI
Group number for MIPI DSI status codes

enumerator kStatusGroup_SDRAMC
Group number for SDRAMC status codes.

enumerator kStatusGroup_POWER
Group number for POWER status codes.

enumerator kStatusGroup_ENET
Group number for ENET status codes.

enumerator kStatusGroup_PHY
Group number for PHY status codes.

enumerator kStatusGroup_TRGMUX
Group number for TRGMUX status codes.

174 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_SMARTCARD
Group number for SMARTCARD status codes.

enumerator kStatusGroup_LMEM
Group number for LMEM status codes.

enumerator kStatusGroup_QSPI
Group number for QSPI status codes.

enumerator kStatusGroup_DMA
Group number for DMA status codes.

enumerator kStatusGroup_EDMA
Group number for EDMA status codes.

enumerator kStatusGroup_DMAMGR
Group number for DMAMGR status codes.

enumerator kStatusGroup_FLEXCAN
Group number for FlexCAN status codes.

enumerator kStatusGroup_LTC
Group number for LTC status codes.

enumerator kStatusGroup_FLEXIO_CAMERA
Group number for FLEXIO CAMERA status codes.

enumerator kStatusGroup_LPC_SPI
Group number for LPC_SPI status codes.

enumerator kStatusGroup_LPC_USART
Group number for LPC_USART status codes.

enumerator kStatusGroup_DMIC
Group number for DMIC status codes.

enumerator kStatusGroup_SDIF
Group number for SDIF status codes.

enumerator kStatusGroup_SPIFI
Group number for SPIFI status codes.

enumerator kStatusGroup_OTP
Group number for OTP status codes.

enumerator kStatusGroup_MCAN
Group number for MCAN status codes.

enumerator kStatusGroup_CAAM
Group number for CAAM status codes.

enumerator kStatusGroup_ECSPI
Group number for ECSPI status codes.

enumerator kStatusGroup_USDHC
Group number for USDHC status codes.

enumerator kStatusGroup_LPC_I2C
Group number for LPC_I2C status codes.

enumerator kStatusGroup_DCP
Group number for DCP status codes.

2.14. Common Driver 175

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_MSCAN
Group number for MSCAN status codes.

enumerator kStatusGroup_ESAI
Group number for ESAI status codes.

enumerator kStatusGroup_FLEXSPI
Group number for FLEXSPI status codes.

enumerator kStatusGroup_MMDC
Group number for MMDC status codes.

enumerator kStatusGroup_PDM
Group number for MIC status codes.

enumerator kStatusGroup_SDMA
Group number for SDMA status codes.

enumerator kStatusGroup_ICS
Group number for ICS status codes.

enumerator kStatusGroup_SPDIF
Group number for SPDIF status codes.

enumerator kStatusGroup_LPC_MINISPI
Group number for LPC_MINISPI status codes.

enumerator kStatusGroup_HASHCRYPT
Group number for Hashcrypt status codes

enumerator kStatusGroup_LPC_SPI_SSP
Group number for LPC_SPI_SSP status codes.

enumerator kStatusGroup_I3C
Group number for I3C status codes

enumerator kStatusGroup_LPC_I2C_1
Group number for LPC_I2C_1 status codes.

enumerator kStatusGroup_NOTIFIER
Group number for NOTIFIER status codes.

enumerator kStatusGroup_DebugConsole
Group number for debug console status codes.

enumerator kStatusGroup_SEMC
Group number for SEMC status codes.

enumerator kStatusGroup_ApplicationRangeStart
Starting number for application groups.

enumerator kStatusGroup_IAP
Group number for IAP status codes

enumerator kStatusGroup_SFA
Group number for SFA status codes

enumerator kStatusGroup_SPC
Group number for SPC status codes.

enumerator kStatusGroup_PUF
Group number for PUF status codes.

176 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_TOUCH_PANEL
Group number for touch panel status codes

enumerator kStatusGroup_VBAT
Group number for VBAT status codes

enumerator kStatusGroup_XSPI
Group number for XSPI status codes

enumerator kStatusGroup_PNGDEC
Group number for PNGDEC status codes

enumerator kStatusGroup_JPEGDEC
Group number for JPEGDEC status codes

enumerator kStatusGroup_AUDMIX
Group number for AUDMIX status codes

enumerator kStatusGroup_HAL_GPIO
Group number for HAL GPIO status codes.

enumerator kStatusGroup_HAL_UART
Group number for HAL UART status codes.

enumerator kStatusGroup_HAL_TIMER
Group number for HAL TIMER status codes.

enumerator kStatusGroup_HAL_SPI
Group number for HAL SPI status codes.

enumerator kStatusGroup_HAL_I2C
Group number for HAL I2C status codes.

enumerator kStatusGroup_HAL_FLASH
Group number for HAL FLASH status codes.

enumerator kStatusGroup_HAL_PWM
Group number for HAL PWM status codes.

enumerator kStatusGroup_HAL_RNG
Group number for HAL RNG status codes.

enumerator kStatusGroup_HAL_I2S
Group number for HAL I2S status codes.

enumerator kStatusGroup_HAL_ADC_SENSOR
Group number for HAL ADC SENSOR status codes.

enumerator kStatusGroup_TIMERMANAGER
Group number for TiMER MANAGER status codes.

enumerator kStatusGroup_SERIALMANAGER
Group number for SERIAL MANAGER status codes.

enumerator kStatusGroup_LED
Group number for LED status codes.

enumerator kStatusGroup_BUTTON
Group number for BUTTON status codes.

enumerator kStatusGroup_EXTERN_EEPROM
Group number for EXTERN EEPROM status codes.

2.14. Common Driver 177

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_SHELL
Group number for SHELL status codes.

enumerator kStatusGroup_MEM_MANAGER
Group number for MEMMANAGER status codes.

enumerator kStatusGroup_LIST
Group number for List status codes.

enumerator kStatusGroup_OSA
Group number for OSA status codes.

enumerator kStatusGroup_COMMON_TASK
Group number for Common task status codes.

enumerator kStatusGroup_MSG
Group number for messaging status codes.

enumerator kStatusGroup_SDK_OCOTP
Group number for OCOTP status codes.

enumerator kStatusGroup_SDK_FLEXSPINOR
Group number for FLEXSPINOR status codes.

enumerator kStatusGroup_CODEC
Group number for codec status codes.

enumerator kStatusGroup_ASRC
Group number for codec status ASRC.

enumerator kStatusGroup_OTFAD
Group number for codec status codes.

enumerator kStatusGroup_SDIOSLV
Group number for SDIOSLV status codes.

enumerator kStatusGroup_MECC
Group number for MECC status codes.

enumerator kStatusGroup_ENET_QOS
Group number for ENET_QOS status codes.

enumerator kStatusGroup_LOG
Group number for LOG status codes.

enumerator kStatusGroup_I3CBUS
Group number for I3CBUS status codes.

enumerator kStatusGroup_QSCI
Group number for QSCI status codes.

enumerator kStatusGroup_ELEMU
Group number for ELEMU status codes.

enumerator kStatusGroup_QUEUEDSPI
Group number for QSPI status codes.

enumerator kStatusGroup_POWER_MANAGER
Group number for POWER_MANAGER status codes.

enumerator kStatusGroup_IPED
Group number for IPED status codes.

178 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatusGroup_ELS_PKC
Group number for ELS PKC status codes.

enumerator kStatusGroup_CSS_PKC
Group number for CSS PKC status codes.

enumerator kStatusGroup_HOSTIF
Group number for HOSTIF status codes.

enumerator kStatusGroup_CLIF
Group number for CLIF status codes.

enumerator kStatusGroup_BMA
Group number for BMA status codes.

enumerator kStatusGroup_NETC
Group number for NETC status codes.

enumerator kStatusGroup_ELE
Group number for ELE status codes.

enumerator kStatusGroup_GLIKEY
Group number for GLIKEY status codes.

enumerator kStatusGroup_AON_POWER
Group number for AON_POWER status codes.

enumerator kStatusGroup_AON_COMMON
Group number for AON_COMMON status codes.

enumerator kStatusGroup_ENDAT3
Group number for ENDAT3 status codes.

enumerator kStatusGroup_HIPERFACE
Group number for HIPERFACE status codes.

enumerator kStatusGroup_NPX
Group number for NPX status codes.

enumerator kStatusGroup_ELA_CSEC
Group number for ELA_CSEC status codes.

enumerator kStatusGroup_FLEXIO_T_FORMAT
Group number for T-format status codes.

enumerator kStatusGroup_FLEXIO_A_FORMAT
Group number for A-format status codes.

Generic status return codes.

Values:

enumerator kStatus_Success
Generic status for Success.

enumerator kStatus_Fail
Generic status for Fail.

enumerator kStatus_ReadOnly
Generic status for read only failure.

2.14. Common Driver 179

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus_OutOfRange
Generic status for out of range access.

enumerator kStatus_InvalidArgument
Generic status for invalid argument check.

enumerator kStatus_Timeout
Generic status for timeout.

enumerator kStatus_NoTransferInProgress
Generic status for no transfer in progress.

enumerator kStatus_Busy
Generic status for module is busy.

enumerator kStatus_NoData
Generic status for no data is found for the operation.

typedef int32_t status_t
Type used for all status and error return values.

void *SDK_Malloc(size_t size, size_t alignbytes)
Allocate memory with given alignment and aligned size.

This is provided to support the dynamically allocated memory used in cache-able region.

Parameters
• size – The length required to malloc.

• alignbytes – The alignment size.

Return values
The – allocated memory.

void SDK_Free(void *ptr)
Free memory.

Parameters
• ptr – The memory to be release.

void SDK_DelayAtLeastUs(uint32_t delayTime_us, uint32_t coreClock_Hz)
Delay at least for some time. Please note that, this API uses while loop for delay, different
run-time environmentsmake the timenot precise, if precise delay countwas needed, please
implement a new delay function with hardware timer.

Parameters
• delayTime_us – Delay time in unit of microsecond.

• coreClock_Hz – Core clock frequency with Hz.

static inline status_t EnableIRQ(IRQn_Type interrupt)
Enable specific interrupt.

Enable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For
example, there areNVIC and intmux. Here the interrupts connected toNVIC are the LEVEL1
interrupts, because they are routed to the core directly. The interrupts connected to intmux
are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only enables the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ number.

180 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Return values
• kStatus_Success – Interrupt enabled successfully

• kStatus_Fail – Failed to enable the interrupt

static inline status_t DisableIRQ(IRQn_Type interrupt)
Disable specific interrupt.

Disable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For
example, there areNVIC and intmux. Here the interrupts connected toNVIC are the LEVEL1
interrupts, because they are routed to the core directly. The interrupts connected to intmux
are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only disables the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ number.

Return values
• kStatus_Success – Interrupt disabled successfully

• kStatus_Fail – Failed to disable the interrupt

static inline status_t EnableIRQWithPriority(IRQn_Type interrupt, uint8_t priNum)
Enable the IRQ, and also set the interrupt priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ to Enable.

• priNum – Priority number set to interrupt controller register.

Return values
• kStatus_Success – Interrupt priority set successfully

• kStatus_Fail – Failed to set the interrupt priority.

static inline status_t IRQ_SetPriority(IRQn_Type interrupt, uint8_t priNum)
Set the IRQ priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ to set.

• priNum – Priority number set to interrupt controller register.

Return values
• kStatus_Success – Interrupt priority set successfully

2.14. Common Driver 181

MCUXpresso SDK Documentation, Release 25.09.00

• kStatus_Fail – Failed to set the interrupt priority.

static inline status_t IRQ_ClearPendingIRQ(IRQn_Type interrupt)
Clear the pending IRQ flag.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The flag which IRQ to clear.

Return values
• kStatus_Success – Interrupt priority set successfully

• kStatus_Fail – Failed to set the interrupt priority.

static inline uint32_t DisableGlobalIRQ(void)
Disable the global IRQ.

Disable the global interrupt and return the current primask register. User is required to
provided the primask register for the EnableGlobalIRQ().

Returns
Current primask value.

static inline void EnableGlobalIRQ(uint32_t primask)
Enable the global IRQ.

Set the primask register with the provided primask value but not just enable the primask.
The idea is for the convenience of integration of RTOS. some RTOS get its ownmanagement
mechanism of primask. User is required to use the EnableGlobalIRQ() and DisableGlob-
alIRQ() in pair.

Parameters
• primask – value of primask register to be restored. The primask value is
supposed to be provided by the DisableGlobalIRQ().

static inline bool _SDK_AtomicLocalCompareAndSet(uint32_t *addr, uint32_t expected, uint32_t
newValue)

static inline uint32_t _SDK_AtomicTestAndSet(uint32_t *addr, uint32_t newValue)

FSL_DRIVER_TRANSFER_DOUBLE_WEAK_IRQ
Macro to use the default weak IRQ handler in drivers.

MAKE_STATUS(group, code)
Construct a status code value from a group and code number.

MAKE_VERSION(major, minor, bugfix)
Construct the version number for drivers.

The driver version is a 32-bit number, for both 32-bit platforms(such as CortexM) and 16-bit
platforms(such as DSC).

| Unused || Major Version || Minor Version || Bug Fix |
31 25 24 17 16 9 8 0

182 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

ARRAY_SIZE(x)
Computes the number of elements in an array.

UINT64_H(X)
Macro to get upper 32 bits of a 64-bit value

UINT64_L(X)
Macro to get lower 32 bits of a 64-bit value

SUPPRESS_FALL_THROUGH_WARNING()
For switch case code block, if case section ends without “break;” statement, there wil be
fallthrough warning with compiler flag -Wextra or -Wimplicit-fallthrough=n when using
armgcc. To suppress this warning, “SUPPRESS_FALL_THROUGH_WARNING();” need to be
added at the end of each case section which misses “break;”statement.

MSDK_REG_SECURE_ADDR(x)
Convert the register address to the one used in secure mode.

MSDK_REG_NONSECURE_ADDR(x)
Convert the register address to the one used in non-secure mode.

MSDK_INVALID_IRQ_HANDLER
Invalid IRQ handler address.

2.15 LCDIF: LCD interface

status_t LCDIF_Init(LCDIF_Type *base)
Initialize the LCDIF.

This function initializes the LCDIF to work.

Parameters
• base – LCDIF peripheral base address.

Return values
kStatus_Success – Initialize successfully.

void LCDIF_Deinit(LCDIF_Type *base)
De-initialize the LCDIF.

This function disables the LCDIF peripheral clock.

Parameters
• base – LCDIF peripheral base address.

void LCDIF_DpiModeGetDefaultConfig(lcdif_dpi_config_t *config)
Get the default configuration for to initialize the LCDIF.

The default configuration value is:

config->panelWidth = 0;
config->panelHeight = 0;
config->hsw = 0;
config->hfp = 0;
config->hbp = 0;
config->vsw = 0;
config->vfp = 0;
config->vbp = 0;
config->polarityFlags = kLCDIF_VsyncActiveLow | kLCDIF_HsyncActiveLow | kLCDIF_
↪→DataEnableActiveHigh |
kLCDIF_DriveDataOnFallingClkEdge; config->format = kLCDIF_Output24Bit;

2.15. LCDIF: LCD interface 183

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• config – Pointer to the LCDIF configuration.

status_t LCDIF_DpiModeSetConfig(LCDIF_Type *base, uint8_t displayIndex, const
lcdif_dpi_config_t *config)

Initialize the LCDIF to work in DPI mode.

This function configures the LCDIF DPI display.

Parameters
• base – LCDIF peripheral base address.

• displayIndex – Display index.

• config – Pointer to the configuration structure.

Return values
• kStatus_Success – Initialize successfully.

• kStatus_InvalidArgument – Initialize failed because of invalid argument.

status_t LCDIF_DbiModeSetConfig(LCDIF_Type *base, uint8_t displayIndex, const
lcdif_dbi_config_t *config)

Initialize the LCDIF to work in DBI mode.

This function configures the LCDIF DBI display.

Parameters
• base – LCDIF peripheral base address.

• displayIndex – Display index.

• config – Pointer to the configuration structure.

Return values
• kStatus_Success – Initialize successfully.

• kStatus_InvalidArgument – Initialize failed because of invalid argument.

void LCDIF_DbiModeGetDefaultConfig(lcdif_dbi_config_t *config)
Get the default configuration to initialize the LCDIF DBI mode.

The default configuration value is:

config->swizzle = kLCDIF_DbiOutSwizzleRGB;
config->format = kLCDIF_DbiOutD8RGB332;
config->acTimeUnit = 0;
config->type = kLCDIF_DbiTypeA_ClockedE;
config->reversePolarity = false;
config->writeWRPeriod = 3U;
config->writeWRAssert = 0U;
config->writeCSAssert = 0U;
config->writeWRDeassert = 0U;
config->writeCSDeassert = 0U;
config->typeCTas = 1U;
config->typeCSCLTwrl = 1U;
config->typeCSCLTwrh = 1U;

Parameters
• config – Pointer to the LCDIF DBI configuration.

184 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline void LCDIF_DbiReset(LCDIF_Type *base, uint8_t displayIndex)
Reset the DBI module.

Parameters
• displayIndex – Display index.

• base – LCDIF peripheral base address.

void LCDIF_DbiSelectArea(LCDIF_Type *base, uint8_t displayIndex, uint16_t startX, uint16_t
startY, uint16_t endX, uint16_t endY, bool isTiled)

Select the update area in DBI mode.

Parameters
• base – LCDIF peripheral base address.

• displayIndex – Display index.

• startX – X coordinate for start pixel.

• startY – Y coordinate for start pixel.

• endX – X coordinate for end pixel.

• endY – Y coordinate for end pixel.

• isTiled – true if the pixel data is tiled.

static inline void LCDIF_DbiSendCommand(LCDIF_Type *base, uint8_t displayIndex, uint8_t
cmd)

Send command to DBI port.

Parameters
• base – LCDIF peripheral base address.

• displayIndex – Display index.

• cmd – the DBI command to send.

void LCDIF_DbiSendData(LCDIF_Type *base, uint8_t displayIndex, const uint8_t *data, uint32_t
dataLen_Byte)

brief Send data to DBI port.

Can be used to send light weight data to panel. To send pixel data in frame buffer, use
LCDIF_DbiWriteMem.

parambase LCDIF peripheral base address. paramdisplayIndex Display index. paramdata
pointer to data buffer. param dataLen_Byte data buffer length in byte.

void LCDIF_DbiSendCommandAndData(LCDIF_Type *base, uint8_t displayIndex, uint8_t cmd,
const uint8_t *data, uint32_t dataLen_Byte)

Send command followed by data to DBI port.

Parameters
• base – LCDIF peripheral base address.

• displayIndex – Display index.

• cmd – the DBI command to send.

• data – pointer to data buffer.

• dataLen_Byte – data buffer length in byte.

2.15. LCDIF: LCD interface 185

MCUXpresso SDK Documentation, Release 25.09.00

static inline void LCDIF_DbiWriteMem(LCDIF_Type *base, uint8_t displayIndex)
Send pixel data in frame buffer to panel controller memory.

This function starts sending the pixel data in frame buffer to panel controller, user can
monitor interrupt kLCDIF_Display0FrameDoneInterrupt to know when then data sending
finished.

Parameters
• base – LCDIF peripheral base address.

• displayIndex – Display index.

void LCDIF_SetFrameBufferConfig(LCDIF_Type *base, uint8_t displayIndex, const
lcdif_fb_config_t *config)

Configure the LCDIF frame buffer.

@Note: For LCDIF of version DC8000 there can be 3 layers in the pre-processing, compared
with the older version. Apart from the video layer, there are also 2 overlay layers which
shares the same configurations. Use this API to configure the legacy video layer, and use
LCDIF_SetOverlayFrameBufferConfig to configure the overlay layers.

Parameters
• base – LCDIF peripheral base address.

• displayIndex – Display index.

• config – Pointer to the configuration structure.

void LCDIF_FrameBufferGetDefaultConfig(lcdif_fb_config_t *config)
Get default frame buffer configuration.

@Note: For LCDIF of version DC8000 there can be 3 layers in the pre-processing, compared
with the older version. Apart from the video layer, there are also 2 overlay layers which
shares the same configurations. Use this API to get the default configuration for all the 3
layers.

The default configuration is

config->enable = true;
config->enableGamma = false;
config->format = kLCDIF_PixelFormatRGB565;

Parameters
• config – Pointer to the configuration structure.

static inline void LCDIF_SetFrameBufferAddr(LCDIF_Type *base, uint8_t displayIndex, uint32_t
address)

Set the frame buffer to LCDIF.

Note: The address must be 128 bytes aligned.

Parameters
• base – LCDIF peripheral base address.

• displayIndex – Display index.

• address – Frame buffer address.

186 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

void LCDIF_SetFrameBufferStride(LCDIF_Type *base, uint8_t displayIndex, uint32_t strideBytes)
Set the frame buffer stride.

Parameters
• base – LCDIF peripheral base address.

• displayIndex – Display index.

• strideBytes – The stride in byte.

void LCDIF_SetDitherConfig(LCDIF_Type *base, uint8_t displayIndex, const lcdif_dither_config_t
*config)

Set the dither configuration.

Parameters
• base – LCDIF peripheral base address.

• displayIndex – Index to configure.

• config – Pointer to the configuration structure.

void LCDIF_SetGammaData(LCDIF_Type *base, uint8_t displayIndex, uint16_t startIndex, const
uint32_t *gamma, uint16_t gammaLen)

Set the gamma translation values to the LCDIF gamma table.

Parameters
• base – LCDIF peripheral base address.

• displayIndex – Display index.

• startIndex – Start index in the gamma table that the value will be set to.

• gamma – The gamma values to set to the gamma table in LCDIF, could be
defined using LCDIF_MAKE_GAMMA_VALUE.

• gammaLen – The length of the gamma.

static inline void LCDIF_EnableInterrupts(LCDIF_Type *base, uint32_t mask)
Enables LCDIF interrupt requests.

Parameters
• base – LCDIF peripheral base address.

• mask – The interrupts to enable, pass in as OR’ed value of _lcdif_interrupt.

static inline void LCDIF_DisableInterrupts(LCDIF_Type *base, uint32_t mask)
Disable LCDIF interrupt requests.

Parameters
• base – LCDIF peripheral base address.

• mask – The interrupts to disable, pass in as OR’ed value of _lcdif_interrupt.

static inline uint32_t LCDIF_GetAndClearInterruptPendingFlags(LCDIF_Type *base)
Get and clear LCDIF interrupt pending status.

Note: The interrupt must be enabled, otherwise the interrupt flags will not assert.

Parameters
• base – LCDIF peripheral base address.

Returns
The interrupt pending status.

2.15. LCDIF: LCD interface 187

MCUXpresso SDK Documentation, Release 25.09.00

void LCDIF_CursorGetDefaultConfig(lcdif_cursor_config_t *config)
Get the hardware cursor default configuration.

The default configuration values are:

config->enable = true;
config->format = kLCDIF_CursorMasked;
config->hotspotOffsetX = 0;
config->hotspotOffsetY = 0;

Parameters
• config – Pointer to the hardware cursor configuration structure.

void LCDIF_SetCursorConfig(LCDIF_Type *base, const lcdif_cursor_config_t *config)
Configure the cursor.

Parameters
• base – LCDIF peripheral base address.

• config – Cursor configuration.

static inline void LCDIF_SetCursorHotspotPosition(LCDIF_Type *base, uint16_t x, uint16_t y)
Set the cursor hotspot postion.

Parameters
• base – LCDIF peripheral base address.

• x – X coordinate of the hotspot, range 0 ~ 8191.

• y – Y coordinate of the hotspot, range 0 ~ 8191.

static inline void LCDIF_SetCursorBufferAddress(LCDIF_Type *base, uint32_t address)
Set the cursor memory address.

Parameters
• base – LCDIF peripheral base address.

• address – Memory address.

void LCDIF_SetCursorColor(LCDIF_Type *base, uint32_t background, uint32_t foreground)
Set the cursor color.

Parameters
• base – LCDIF peripheral base address.

• background – Background color, could be defined use
LCDIF_MAKE_CURSOR_COLOR

• foreground – Foreground color, could be defined use
LCDIF_MAKE_CURSOR_COLOR

FSL_LCDIF_DRIVER_VERSION

enum _lcdif_polarity_flags
LCDIF signal polarity flags.

Values:

enumerator kLCDIF_VsyncActiveLow
VSYNC active low.

enumerator kLCDIF_VsyncActiveHigh
VSYNC active high.

188 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kLCDIF_HsyncActiveLow
HSYNC active low.

enumerator kLCDIF_HsyncActiveHigh
HSYNC active high.

enumerator kLCDIF_DataEnableActiveLow
Data enable line active low.

enumerator kLCDIF_DataEnableActiveHigh
Data enable line active high.

enumerator kLCDIF_DriveDataOnFallingClkEdge
Drive data on falling clock edge, capture data on rising clock edge.

enumerator kLCDIF_DriveDataOnRisingClkEdge
Drive data on falling clock edge, capture data on rising clock edge.

enum _lcdif_output_format
LCDIF DPI output format.

Values:

enumerator kLCDIF_Output16BitConfig1
16-bit configuration 1. RGB565: XXXXXXXX_RRRRRGGG_GGGBBBBB.

enumerator kLCDIF_Output16BitConfig2
16-bit configuration 2. RGB565: XXXRRRRR_XXGGGGGG_XXXBBBBB.

enumerator kLCDIF_Output16BitConfig3
16-bit configuration 3. RGB565: XXRRRRRX_XXGGGGGG_XXBBBBBX.

enumerator kLCDIF_Output18BitConfig1
18-bit configuration 1. RGB666: XXXXXXRR_RRRRGGGG_GGBBBBBB.

enumerator kLCDIF_Output18BitConfig2
18-bit configuration 2. RGB666: XXRRRRRR_XXGGGGGG_XXBBBBBB.

enumerator kLCDIF_Output24Bit
24-bit.

enum _lcdif_fb_format
LCDIF frame buffer pixel format.

Values:

enumerator kLCDIF_PixelFormatXRGB444
XRGB4444, deprecated, use kLCDIF_PixelFormatXRGB4444 instead.

enumerator kLCDIF_PixelFormatXRGB4444
XRGB4444, 16-bit each pixel, 4-bit each element. R4G4B4 in reference manual.

enumerator kLCDIF_PixelFormatXRGB1555
XRGB1555, 16-bit each pixel, 5-bit each element. R5G5B5 in reference manual.

enumerator kLCDIF_PixelFormatRGB565
RGB565, 16-bit each pixel. R5G6B5 in reference manual.

enumerator kLCDIF_PixelFormatXRGB8888
XRGB8888, 32-bit each pixel, 8-bit each element. R8G8B8 in reference manual.

enum _lcdif_interrupt
LCDIF interrupt and status.

Values:

2.15. LCDIF: LCD interface 189

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kLCDIF_Display0FrameDoneInterrupt
The last pixel of visible area in frame is shown.

enum _lcdif_cursor_format
LCDIF cursor format.

Values:

enumerator kLCDIF_CursorMasked
Masked format.

enumerator kLCDIF_CursorARGB8888
ARGB8888.

enum _lcdif_dbi_cmd_flag
LCDIF DBI command flag.

Values:

enumerator kLCDIF_DbiCmdAddress
Send address (or command).

enumerator kLCDIF_DbiCmdWriteMem
Start write memory.

enumerator kLCDIF_DbiCmdData
Send data.

enumerator kLCDIF_DbiCmdReadMem
Start read memory.

enum _lcdif_dbi_out_format
LCDIF DBI output format.

Values:

enumerator kLCDIF_DbiOutD8RGB332
8-bit data bus width, pixel RGB332. For type A or B. 1 pixel sent in 1 cycle.

enumerator kLCDIF_DbiOutD8RGB444
8-bit data bus width, pixel RGB444. For type A or B. 2 pixels sent in 3 cycles.

enumerator kLCDIF_DbiOutD8RGB565
8-bit data bus width, pixel RGB565. For type A or B. 1 pixel sent in 2 cycles.

enumerator kLCDIF_DbiOutD8RGB666
8-bit data bus width, pixel RGB666. For type A or B. 1 pixel sent in 3 cycles, data bus 2
LSB not used.

enumerator kLCDIF_DbiOutD8RGB888
8-bit data bus width, pixel RGB888. For type A or B. 1 pixel sent in 3 cycles.

enumerator kLCDIF_DbiOutD9RGB666
9-bit data bus width, pixel RGB666. For type A or B. 1 pixel sent in 2 cycles.

enumerator kLCDIF_DbiOutD16RGB332
16-bit data bus width, pixel RGB332. For type A or B. 2 pixels sent in 1 cycle.

enumerator kLCDIF_DbiOutD16RGB444
16-bit data bus width, pixel RGB444. For type A or B. 1 pixel sent in 1 cycle, data bus 4
MSB not used.

enumerator kLCDIF_DbiOutD16RGB565
16-bit data bus width, pixel RGB565. For type A or B. 1 pixel sent in 1 cycle.

190 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kLCDIF_DbiOutD16RGB666Option1
16-bit data bus width, pixel RGB666. For type A or B. 2 pixels sent in 3 cycles.

enumerator kLCDIF_DbiOutD16RGB666Option2
16-bit data bus width, pixel RGB666. For type A or B. 1 pixel sent in 2 cycles.

enumerator kLCDIF_DbiOutD16RGB888Option1
16-bit data bus width, pixel RGB888. For type A or B. 2 pixels sent in 3 cycles.

enumerator kLCDIF_DbiOutD16RGB888Option2
16-bit data bus width, pixel RGB888. For type A or B. 1 pixel sent in 2 cycles.

enum _lcdif_dbi_type
LCDIF DBI type.

Values:

enumerator kLCDIF_DbiTypeA_FixedE
Selects DBI type A fixed E mode, 68000, Motorola mode.

enumerator kLCDIF_DbiTypeA_ClockedE
Selects DBI Type A Clocked E mode, 68000, Motorola mode.

enumerator kLCDIF_DbiTypeB
Selects DBI type B, 8080, Intel mode.

enum _lcdif_dbi_out_swizzle
LCDIF DBI output swizzle.

Values:

enumerator kLCDIF_DbiOutSwizzleRGB
RGB

enumerator kLCDIF_DbiOutSwizzleBGR
BGR

typedef enum _lcdif_output_format lcdif_output_format_t
LCDIF DPI output format.

typedef struct _lcdif_dpi_config lcdif_dpi_config_t
Configuration for LCDIF module to work in DBI mode.

typedef enum _lcdif_fb_format lcdif_fb_format_t
LCDIF frame buffer pixel format.

typedef struct _lcdif_fb_config lcdif_fb_config_t
LCDIF frame buffer configuration.

typedef enum _lcdif_cursor_format lcdif_cursor_format_t
LCDIF cursor format.

typedef struct _lcdif_cursor_config lcdif_cursor_config_t
LCDIF cursor configuration.

typedef struct _lcdif_dither_config lcdif_dither_config_t
LCDIF dither configuration.

a. Decide which bit of pixel color to enhance. This is configured by
the lcdif_dither_config_t::redSize, lcdif_dither_config_t::greenSize, and
lcdif_dither_config_t::blueSize. For example, setting redSize=6 means it is the 6th
bit starting from the MSB that we want to enhance, in other words, it is the Red-
Color[2]bit from RedColor[7:0]. greenSize and blueSize function in the same way.

2.15. LCDIF: LCD interface 191

MCUXpresso SDK Documentation, Release 25.09.00

b. Create the look-up table. a. The Look-Up Table includes 16 entries, 4 bits for each.
b. The Look-Up Table provides a value U[3:0] through the index X[1:0] and Y[1:0]. c.
The color value RedColor[3:0] is used to compare with this U[3:0]. d. If RedColor[3:0] >
U[3:0], and RedColor[7:2] is not 6’b111111, then the final color value is: NewRedColor =
RedColor[7:2] + 1’b1. e. If RedColor[3:0] <= U[3:0], then NewRedColor = RedColor[7:2].

typedef enum _lcdif_dbi_out_format lcdif_dbi_out_format_t
LCDIF DBI output format.

typedef enum _lcdif_dbi_type lcdif_dbi_type_t
LCDIF DBI type.

typedef enum _lcdif_dbi_out_swizzle lcdif_dbi_out_swizzle_t
LCDIF DBI output swizzle.

typedef struct _lcdif_dbi_config lcdif_dbi_config_t
LCDIF DBI configuration.

LCDIF_MAKE_CURSOR_COLOR(r, g, b)
Construct the cursor color, every element should be in the range of 0 ~ 255.

LCDIF_MAKE_GAMMA_VALUE(r, g, b)
Construct the gamma value set to LCDIF gamma table, every element should be in the range
of 0~255.

LCDIF_ALIGN_ADDR(addr, align)
Calculate the aligned address for LCDIF buffer.

LCDIF_FB_ALIGN
The frame buffer should be 128 byte aligned.

LCDIF_GAMMA_INDEX_MAX
Gamma index max value.

LCDIF_CURSOR_SIZE
The cursor size is 32 x 32.

LCDIF_FRAMEBUFFERCONFIG0_OUTPUT_MASK

LCDIF_ADDR_CPU_2_IP(addr)

struct _lcdif_dpi_config
#include <fsl_lcdif.h> Configuration for LCDIF module to work in DBI mode.

Public Members

uint16_t panelWidth
Display panel width, pixels per line.

uint16_t panelHeight
Display panel height, how many lines per panel.

uint8_t hsw
HSYNC pulse width.

uint8_t hfp
Horizontal front porch.

uint8_t hbp
Horizontal back porch.

192 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

uint8_t vsw
VSYNC pulse width.

uint8_t vfp
Vrtical front porch.

uint8_t vbp
Vertical back porch.

uint32_t polarityFlags
OR’ed value of _lcdif_polarity_flags, used to contol the signal polarity.

lcdif_output_format_t format
DPI output format.

struct _lcdif_fb_config
#include <fsl_lcdif.h> LCDIF frame buffer configuration.

Public Members

bool enable
Enable the frame buffer output.

bool enableGamma
Enable the gamma correction.

lcdif_fb_format_t format
Frame buffer pixel format.

struct _lcdif_cursor_config
#include <fsl_lcdif.h> LCDIF cursor configuration.

Public Members

bool enable
Enable the cursor or not.

lcdif_cursor_format_t format
Cursor format.

uint8_t hotspotOffsetX
Offset of the hotspot to top left point, range 0 ~ 31

uint8_t hotspotOffsetY
Offset of the hotspot to top left point, range 0 ~ 31

struct _lcdif_dither_config
#include <fsl_lcdif.h> LCDIF dither configuration.

a. Decide which bit of pixel color to enhance. This is configured by
the lcdif_dither_config_t::redSize, lcdif_dither_config_t::greenSize, and
lcdif_dither_config_t::blueSize. For example, setting redSize=6 means it is the 6th
bit starting from the MSB that we want to enhance, in other words, it is the Red-
Color[2]bit from RedColor[7:0]. greenSize and blueSize function in the same way.

b. Create the look-up table. a. The Look-Up Table includes 16 entries, 4 bits for each.
b. The Look-Up Table provides a value U[3:0] through the index X[1:0] and Y[1:0]. c.
The color value RedColor[3:0] is used to compare with this U[3:0]. d. If RedColor[3:0] >
U[3:0], and RedColor[7:2] is not 6’b111111, then the final color value is: NewRedColor =
RedColor[7:2] + 1’b1. e. If RedColor[3:0] <= U[3:0], then NewRedColor = RedColor[7:2].

2.15. LCDIF: LCD interface 193

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

bool enable
Enable or not.

uint8_t redSize
Red color size, valid region 4-8.

uint8_t greenSize
Green color size, valid region 4-8.

uint8_t blueSize
Blue color size, valid region 4-8.

uint32_t low
Low part of the look up table.

uint32_t high
High part of the look up table.

struct _lcdif_dbi_config
#include <fsl_lcdif.h> LCDIF DBI configuration.

Public Members

lcdif_dbi_out_swizzle_t swizzle
Swizzle.

lcdif_dbi_out_format_t format
Output format.

uint8_t acTimeUnit
Time unit for AC characteristics.

lcdif_dbi_type_t type
DBI type.

uint16_t writeWRPeriod
WR signal period, Cycle number = writeWRPeriod * (acTimeUnit + 1), must be no less
than 3. Only for type A and type b.

uint8_t writeWRAssert
Cycle number = writeWRAssert * (acTimeUnit + 1), only for type A and type B. With
kLCDIF_DbiTypeA_FixedE: Not used. With kLCDIF_DbiTypeA_ClockedE: Time to assert
E. With kLCDIF_DbiTypeB: Time to assert WRX.

uint8_t writeCSAssert
Cycle number = writeCSAssert * (acTimeUnit + 1), only for type A and type B. With
kLCDIF_DbiTypeA_FixedE: Time to assert CSX. With kLCDIF_DbiTypeA_ClockedE: Not
used. With kLCDIF_DbiTypeB: Time to assert CSX.

uint16_t writeWRDeassert
Cycle number = writeWRDeassert * (acTimeUnit + 1), only for type A and type B. With
kLCDIF_DbiTypeA_FixedE: Not used. With kLCDIF_DbiTypeA_ClockedE: Time to de-
assert E. With kLCDIF_DbiTypeB: Time to de-assert WRX.

uint16_t writeCSDeassert
Cycle number = writeCSDeassert * (acTimeUnit + 1), only for type A and type B. With
kLCDIF_DbiTypeA_FixedE: Time to de-assert CSX. With kLCDIF_DbiTypeA_ClockedE:
Not used. With kLCDIF_DbiTypeB: Time to de-assert CSX.

194 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

2.16 MCM: Miscellaneous Control Module

FSL_MCM_DRIVER_VERSION
MCM driver version.

Enum _mcm_interrupt_flag. Interrupt status flag mask. .

Values:

enumerator kMCM_CacheWriteBuffer
Cache Write Buffer Error Enable.

enumerator kMCM_ParityError
Cache Parity Error Enable.

enumerator kMCM_FPUInvalidOperation
FPU Invalid Operation Interrupt Enable.

enumerator kMCM_FPUDivideByZero
FPU Divide-by-zero Interrupt Enable.

enumerator kMCM_FPUOverflow
FPU Overflow Interrupt Enable.

enumerator kMCM_FPUUnderflow
FPU Underflow Interrupt Enable.

enumerator kMCM_FPUInexact
FPU Inexact Interrupt Enable.

enumerator kMCM_FPUInputDenormalInterrupt
FPU Input Denormal Interrupt Enable.

typedef union _mcm_buffer_fault_attribute mcm_buffer_fault_attribute_t
The union of buffer fault attribute.

typedef union _mcm_lmem_fault_attribute mcm_lmem_fault_attribute_t
The union of LMEM fault attribute.

static inline voidMCM_EnableCrossbarRoundRobin(MCM_Type *base, bool enable)
Enables/Disables crossbar round robin.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable crossbar round robin.

– true Enable crossbar round robin.

– false disable crossbar round robin.

static inline voidMCM_EnableInterruptStatus(MCM_Type *base, uint32_t mask)
Enables the interrupt.

Parameters
• base – MCM peripheral base address.

• mask – Interrupt status flags mask(_mcm_interrupt_flag).

2.16. MCM: Miscellaneous Control Module 195

MCUXpresso SDK Documentation, Release 25.09.00

static inline voidMCM_DisableInterruptStatus(MCM_Type *base, uint32_t mask)
Disables the interrupt.

Parameters
• base – MCM peripheral base address.

• mask – Interrupt status flags mask(_mcm_interrupt_flag).

static inline uint16_tMCM_GetInterruptStatus(MCM_Type *base)
Gets the Interrupt status .

Parameters
• base – MCM peripheral base address.

static inline voidMCM_ClearCacheWriteBufferErroStatus(MCM_Type *base)
Clears the Interrupt status .

Parameters
• base – MCM peripheral base address.

static inline uint32_tMCM_GetBufferFaultAddress(MCM_Type *base)
Gets buffer fault address.

Parameters
• base – MCM peripheral base address.

static inline voidMCM_GetBufferFaultAttribute(MCM_Type *base,mcm_buffer_fault_attribute_t
*bufferfault)

Gets buffer fault attributes.

Parameters
• base – MCM peripheral base address.

static inline uint32_tMCM_GetBufferFaultData(MCM_Type *base)
Gets buffer fault data.

Parameters
• base – MCM peripheral base address.

static inline voidMCM_LimitCodeCachePeripheralWriteBuffering(MCM_Type *base, bool enable)
Limit code cache peripheral write buffering.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable limit code cache peripheralwrite buffering.

– true Enable limit code cache peripheral write buffering.

– false disable limit code cache peripheral write buffering.

static inline voidMCM_BypassFixedCodeCacheMap(MCM_Type *base, bool enable)
Bypass fixed code cache map.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable bypass fixed code cache map.

– true Enable bypass fixed code cache map.

– false disable bypass fixed code cache map.

196 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline voidMCM_EnableCodeBusCache(MCM_Type *base, bool enable)
Enables/Disables code bus cache.

Parameters
• base – MCM peripheral base address.

• enable – Used to disable/enable code bus cache.

– true Enable code bus cache.
– false disable code bus cache.

static inline voidMCM_ForceCodeCacheToNoAllocation(MCM_Type *base, bool enable)
Force code cache to no allocation.

Parameters
• base – MCM peripheral base address.

• enable – Used to force code cache to allocation or no allocation.

– true Force code cache to no allocation.
– false Force code cache to allocation.

static inline voidMCM_EnableCodeCacheWriteBuffer(MCM_Type *base, bool enable)
Enables/Disables code cache write buffer.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable code cache write buffer.

– true Enable code cache write buffer.

– false Disable code cache write buffer.

static inline voidMCM_ClearCodeBusCache(MCM_Type *base)
Clear code bus cache.

Parameters
• base – MCM peripheral base address.

static inline voidMCM_EnablePcParityFaultReport(MCM_Type *base, bool enable)
Enables/Disables PC Parity Fault Report.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable PC Parity Fault Report.

– true Enable PC Parity Fault Report.

– false disable PC Parity Fault Report.

static inline voidMCM_EnablePcParity(MCM_Type *base, bool enable)
Enables/Disables PC Parity.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable PC Parity.

– true Enable PC Parity.

– false disable PC Parity.

2.16. MCM: Miscellaneous Control Module 197

MCUXpresso SDK Documentation, Release 25.09.00

static inline voidMCM_LockConfigState(MCM_Type *base)
Lock the configuration state.

Parameters
• base – MCM peripheral base address.

static inline voidMCM_EnableCacheParityReporting(MCM_Type *base, bool enable)
Enables/Disables cache parity reporting.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable cache parity reporting.

– true Enable cache parity reporting.
– false disable cache parity reporting.

static inline uint32_tMCM_GetLmemFaultAddress(MCM_Type *base)
Gets LMEM fault address.

Parameters
• base – MCM peripheral base address.

static inline voidMCM_GetLmemFaultAttribute(MCM_Type *base,mcm_lmem_fault_attribute_t
*lmemFault)

Get LMEM fault attributes.

Parameters
• base – MCM peripheral base address.

static inline uint64_tMCM_GetLmemFaultData(MCM_Type *base)
Gets LMEM fault data.

Parameters
• base – MCM peripheral base address.

MCM_LMFATR_TYPE_MASK

MCM_LMFATR_MODE_MASK

MCM_LMFATR_BUFF_MASK

MCM_LMFATR_CACH_MASK

MCM_ISCR_STAT_MASK

FSL_COMPONENT_ID

union _mcm_buffer_fault_attribute
#include <fsl_mcm.h> The union of buffer fault attribute.

Public Members

uint32_t attribute
Indicates the faulting attributes, when a properly-enabled cache write buffer error
interrupt event is detected.

struct _mcm_buffer_fault_attribute._mcm_buffer_fault_attribut attribute_memory

struct _mcm_buffer_fault_attribut
#include <fsl_mcm.h>

198 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

uint32_t busErrorDataAccessType
Indicates the type of cache write buffer access.

uint32_t busErrorPrivilegeLevel
Indicates the privilege level of the cache write buffer access.

uint32_t busErrorSize
Indicates the size of the cache write buffer access.

uint32_t busErrorAccess
Indicates the type of system bus access.

uint32_t busErrorMasterID
Indicates the crossbar switch bus master number of the captured cache write
buffer bus error.

uint32_t busErrorOverrun
Indicates if another cache write buffer bus error is detected.

union _mcm_lmem_fault_attribute
#include <fsl_mcm.h> The union of LMEM fault attribute.

Public Members

uint32_t attribute
Indicates the attributes of the LMEM fault detected.

struct _mcm_lmem_fault_attribute._mcm_lmem_fault_attribut attribute_memory

struct _mcm_lmem_fault_attribut
#include <fsl_mcm.h>

Public Members

uint32_t parityFaultProtectionSignal
Indicates the features of parity fault protection signal.

uint32_t parityFaultMasterSize
Indicates the parity fault master size.

uint32_t parityFaultWrite
Indicates the parity fault is caused by read or write.

uint32_t backdoorAccess
Indicates the LMEM access fault is initiated by core access or backdoor access.

uint32_t parityFaultSyndrome
Indicates the parity fault syndrome.

uint32_t overrun
Indicates the number of faultss.

2.17 MIPI DSI Driver

2.17. MIPI DSI Driver 199

MCUXpresso SDK Documentation, Release 25.09.00

void DSI_Init(MIPI_DSI_HOST_Type *base, const dsi_config_t *config)
Initializes an MIPI DSI host with the user configuration.

This function initializes the MIPI DSI host with the configuration, it should be called first
before other MIPI DSI driver functions.

Parameters
• base – MIPI DSI host peripheral base address.

• config – Pointer to a user-defined configuration structure.

void DSI_Deinit(MIPI_DSI_HOST_Type *base)
Deinitializes an MIPI DSI host.

This function should be called after all bother MIPI DSI driver functions.

Parameters
• base – MIPI DSI host peripheral base address.

void DSI_GetDefaultConfig(dsi_config_t *config)
Get the default configuration to initialize the MIPI DSI host.

The default value is:

config->numLanes = 4;
config->enableNonContinuousHsClk = false;
config->enableTxUlps = false;
config->autoInsertEoTp = true;
config->numExtraEoTp = 0;
config->htxTo_ByteClk = 0;
config->lrxHostTo_ByteClk = 0;
config->btaTo_ByteClk = 0;

Parameters
• config – Pointer to a user-defined configuration structure.

void DSI_SetDpiConfig(MIPI_DSI_HOST_Type *base, const dsi_dpi_config_t *config, uint8_t
numLanes, uint32_t dpiPixelClkFreq_Hz, uint32_t dsiHsBitClkFreq_Hz)

Configure the DPI interface core.

This function sets the DPI interface configuration, it should be used in video mode.

Parameters
• base – MIPI DSI host peripheral base address.

• config – Pointer to the DPI interface configuration.

• numLanes – Lane number, should be same with the setting in
dsi_dpi_config_t.

• dpiPixelClkFreq_Hz – The DPI pixel clock frequency in Hz.

• dsiHsBitClkFreq_Hz – The DSI high speed bit clock frequency in Hz. It is
the same with DPHY PLL output.

uint32_t DSI_InitDphy(MIPI_DSI_HOST_Type *base, const dsi_dphy_config_t *config, uint32_t
refClkFreq_Hz)

Initializes the D-PHY.

This function configures the D-PHY timing and setups the D-PHY PLL based on user configu-
ration. The configuration structure could be got by the functionDSI_GetDphyDefaultConfig.

For some platforms there is not dedicated D-PHY PLL, indicated by the macro
FSL_FEATURE_MIPI_DSI_NO_DPHY_PLL. For these platforms, the refClkFreq_Hz is useless.

200 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• base – MIPI DSI host peripheral base address.

• config – Pointer to the D-PHY configuration.

• refClkFreq_Hz – The REFCLK frequency in Hz.

Returns
The actual D-PHY PLL output frequency. If could not configure the PLL to the
target frequency, the return value is 0.

void DSI_DeinitDphy(MIPI_DSI_HOST_Type *base)
Deinitializes the D-PHY.

Power down the D-PHY PLL and shut down D-PHY.

Parameters
• base – MIPI DSI host peripheral base address.

void DSI_GetDphyDefaultConfig(dsi_dphy_config_t *config, uint32_t txHsBitClk_Hz, uint32_t
txEscClk_Hz)

Get the default D-PHY configuration.

Gets the default D-PHY configuration, the timing parameters are set according to D-PHY
specification. User could use the configuration directly, or change some parameters ac-
cording to the special device.

Parameters
• config – Pointer to the D-PHY configuration.

• txHsBitClk_Hz – High speed bit clock in Hz.

• txEscClk_Hz – Esc clock in Hz.

static inline void DSI_EnableInterrupts(MIPI_DSI_HOST_Type *base, uint32_t intGroup1,
uint32_t intGroup2)

Enable the interrupts.

The interrupts to enable are passed in as OR’ed mask value of _dsi_interrupt.

Parameters
• base – MIPI DSI host peripheral base address.

• intGroup1 – Interrupts to enable in group 1.

• intGroup2 – Interrupts to enable in group 2.

static inline void DSI_DisableInterrupts(MIPI_DSI_HOST_Type *base, uint32_t intGroup1,
uint32_t intGroup2)

Disable the interrupts.

The interrupts to disable are passed in as OR’ed mask value of _dsi_interrupt.

Parameters
• base – MIPI DSI host peripheral base address.

• intGroup1 – Interrupts to disable in group 1.

• intGroup2 – Interrupts to disable in group 2.

static inline void DSI_GetAndClearInterruptStatus(MIPI_DSI_HOST_Type *base, uint32_t
*intGroup1, uint32_t *intGroup2)

Get and clear the interrupt status.

Parameters

2.17. MIPI DSI Driver 201

MCUXpresso SDK Documentation, Release 25.09.00

• base – MIPI DSI host peripheral base address.

• intGroup1 – Group 1 interrupt status.

• intGroup2 – Group 2 interrupt status.

static inline void DSI_SetDbiPixelFifoSendLevel(MIPI_DSI_HOST_Type *base, uint16_t
sendLevel)

Configure the DBI pixel FIFO send level.

This controls the level at which the DBI Host bridge begins sending pixels

Parameters
• base – MIPI DSI host peripheral base address.

• sendLevel – Send level value set to register.

static inline void DSI_SetDbiPixelPayloadSize(MIPI_DSI_HOST_Type *base, uint16_t payloadSize)
Configure the DBI pixel payload size.

Configures maximum number of pixels that should be sent as one DSI packet. Recom-
mended to be evenly divisible by the line size (in pixels).

Parameters
• base – MIPI DSI host peripheral base address.

• payloadSize – Payload size value set to register.

void DSI_SetApbPacketControl(MIPI_DSI_HOST_Type *base, uint16_t wordCount, uint8_t
virtualChannel, dsi_tx_data_type_t dataType, uint8_t flags)

Configure the APB packet to send.

This function configures the next APB packet transfer. After configuration, the packet trans-
fer could be started with function DSI_SendApbPacket. If the packet is long packet, Use
DSI_WriteApbTxPayload to fill the payload before start transfer.

Parameters
• base – MIPI DSI host peripheral base address.

• wordCount – For long packet, this is the byte count of the payload. For short
packet, this is (data1 « 8) | data0.

• virtualChannel – Virtual channel.

• dataType – The packet data type, (DI).

• flags – The transfer control flags, see _dsi_transfer_flags.

void DSI_WriteApbTxPayload(MIPI_DSI_HOST_Type *base, const uint8_t *payload, uint16_t
payloadSize)

Fill the long APB packet payload.

Write the long packet payload to TX FIFO.

Parameters
• base – MIPI DSI host peripheral base address.

• payload – Pointer to the payload.

• payloadSize – Payload size in byte.

void DSI_WriteApbTxPayloadExt(MIPI_DSI_HOST_Type *base, const uint8_t *payload, uint16_t
payloadSize, bool sendDcsCmd, uint8_t dcsCmd)

Extended function to fill the payload to TX FIFO.

Write the long packet payload to TX FIFO. This function could be used in two ways

202 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

a. Include the DCS command in parameter payload. In this case, the DCS command is the
first byte of payload. The parameter sendDcsCmd is set to false, the dcsCmd is not used.
This function is the same as DSI_WriteApbTxPayload when used in this way.

b. The DCS command in not in parameter payload, but specified by parameter dcsCmd. In
this case, the parameter sendDcsCmd is set to true, the dcsCmd is the DCS command to
send. The payload is sent after dcsCmd.

Parameters
• base – MIPI DSI host peripheral base address.

• payload – Pointer to the payload.

• payloadSize – Payload size in byte.

• sendDcsCmd – If set to true, the DCS command is specified by dcsCmd, oth-
erwise the DCS command is included in the payload.

• dcsCmd – The DCS command to send, only used when sendDCSCmd is true.

void DSI_ReadApbRxPayload(MIPI_DSI_HOST_Type *base, uint8_t *payload, uint16_t
payloadSize)

Read the long APB packet payload.

Read the long packet payload from RX FIFO. This function reads directly but does not check
the RX FIFO status. Upper layer should make sure there are available data.

Parameters
• base – MIPI DSI host peripheral base address.

• payload – Pointer to the payload.

• payloadSize – Payload size in byte.

static inline void DSI_SendApbPacket(MIPI_DSI_HOST_Type *base)
Trigger the controller to send out APB packet.

Send the packet set by DSI_SetApbPacketControl.

Parameters
• base – MIPI DSI host peripheral base address.

static inline uint32_t DSI_GetApbStatus(MIPI_DSI_HOST_Type *base)
Get the APB status.

The return value is OR’ed value of _dsi_apb_status.

Parameters
• base – MIPI DSI host peripheral base address.

Returns
The APB status.

static inline uint32_t DSI_GetRxErrorStatus(MIPI_DSI_HOST_Type *base)
Get the error status during data transfer.

The return value is OR’ed value of _dsi_rx_error_status.

Parameters
• base – MIPI DSI host peripheral base address.

Returns
The error status.

2.17. MIPI DSI Driver 203

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint8_t DSI_GetEccRxErrorPosition(uint32_t rxErrorStatus)
Get the one-bit RX ECC error position.

When one-bit ECC RX error detected using DSI_GetRxErrorStatus, this function could be
used to get the error bit position.

uint8_t eccErrorPos;
uint32_t rxErrorStatus = DSI_GetRxErrorStatus(MIPI_DSI);
if (kDSI_RxErrorEccOneBit & rxErrorStatus)
{

eccErrorPos = DSI_GetEccRxErrorPosition(rxErrorStatus);
}

Parameters
• rxErrorStatus – The error status returned by DSI_GetRxErrorStatus.

Returns
The 1-bit ECC error position.

static inline uint32_t DSI_GetAndClearHostStatus(MIPI_DSI_HOST_Type *base)
Get and clear the DSI host status.

The host status are returned as mask value of _dsi_host_status.

Parameters
• base – MIPI DSI host peripheral base address.

Returns
The DSI host status.

static inline uint32_t DSI_GetRxPacketHeader(MIPI_DSI_HOST_Type *base)
Get the RX packet header.

Parameters
• base – MIPI DSI host peripheral base address.

Returns
The RX packet header.

static inline dsi_rx_data_type_t DSI_GetRxPacketType(uint32_t rxPktHeader)
Extract the RX packet type from the packet header.

Extract the RX packet type from the packet header get by DSI_GetRxPacketHeader.

Parameters
• rxPktHeader – The RX packet header get by DSI_GetRxPacketHeader.

Returns
The RX packet type.

static inline uint16_t DSI_GetRxPacketWordCount(uint32_t rxPktHeader)
Extract the RX packet word count from the packet header.

Extract the RX packet word count from the packet header get by DSI_GetRxPacketHeader.

Parameters
• rxPktHeader – The RX packet header get by DSI_GetRxPacketHeader.

Returns
For long packet, return the payloadword count (byte). For short packet, return
the (data0 « 8) | data1.

204 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint8_t DSI_GetRxPacketVirtualChannel(uint32_t rxPktHeader)
Extract the RX packet virtual channel from the packet header.

Extract the RX packet virtual channel from the packet header get by
DSI_GetRxPacketHeader.

Parameters
• rxPktHeader – The RX packet header get by DSI_GetRxPacketHeader.

Returns
The virtual channel.

status_t DSI_TransferBlocking(MIPI_DSI_HOST_Type *base, dsi_transfer_t *xfer)
APB data transfer using blocking method.

Perform APB data transfer using blocking method. This function waits until all data send
or received, or timeout happens.

When using this API to read data, the actually read data count could be got from xfer-
>rxDataSize.

Parameters
• base – MIPI DSI host peripheral base address.

• xfer – Pointer to the transfer structure.

Return values
• kStatus_Success – Data transfer finished with no error.

• kStatus_Timeout – Transfer failed because of timeout.

• kStatus_DSI_RxDataError – RX data error, user could use
DSI_GetRxErrorStatus to check the error details.

• kStatus_DSI_ErrorReportReceived – Error Report packet received, user
could use DSI_GetAndClearHostStatus to check the error report status.

• kStatus_DSI_NotSupported – Transfer format not supported.

• kStatus_DSI_Fail – Transfer failed for other reasons.

status_t DSI_TransferCreateHandle(MIPI_DSI_HOST_Type *base, dsi_handle_t *handle,
dsi_callback_t callback, void *userData)

Create the MIPI DSI handle.

This function initializes theMIPI DSI handlewhich can be used for other transactional APIs.

Parameters
• base – MIPI DSI host peripheral base address.

• handle – Handle pointer.

• callback – Callback function.

• userData – User data.

status_t DSI_TransferNonBlocking(MIPI_DSI_HOST_Type *base, dsi_handle_t *handle,
dsi_transfer_t *xfer)

APB data transfer using interrupt method.

Perform APB data transfer using interrupt method, when transfer finished, upper layer
could be informed through callback function.

When using this API to read data, the actually read data count could be got from handle-
>xfer->rxDataSize after read finished.

Parameters

2.17. MIPI DSI Driver 205

MCUXpresso SDK Documentation, Release 25.09.00

• base – MIPI DSI host peripheral base address.

• handle – pointer to dsi_handle_t structure which stores the transfer state.

• xfer – Pointer to the transfer structure.

Return values
• kStatus_Success – Data transfer started successfully.

• kStatus_DSI_Busy – Failed to start transfer because DSI is busy with per-
vious transfer.

• kStatus_DSI_NotSupported – Transfer format not supported.

void DSI_TransferAbort(MIPI_DSI_HOST_Type *base, dsi_handle_t *handle)
Abort current APB data transfer.

Parameters
• base – MIPI DSI host peripheral base address.

• handle – pointer to dsi_handle_t structure which stores the transfer state.

void DSI_TransferHandleIRQ(MIPI_DSI_HOST_Type *base, dsi_handle_t *handle)
Interrupt handler for the DSI.

Parameters
• base – MIPI DSI host peripheral base address.

• handle – pointer to dsi_handle_t structure which stores the transfer state.

FSL_MIPI_DSI_DRIVER_VERSION

Error codes for the MIPI DSI driver.

Values:

enumerator kStatus_DSI_Busy
DSI is busy.

enumerator kStatus_DSI_RxDataError
Read data error.

enumerator kStatus_DSI_ErrorReportReceived
Error report package received.

enumerator kStatus_DSI_NotSupported
The transfer type not supported.

enum _dsi_dpi_color_coding
MIPI DPI interface color coding.

Values:

enumerator kDSI_Dpi16BitConfig1
16-bit configuration 1. RGB565: XXXXXXXX_RRRRRGGG_GGGBBBBB.

enumerator kDSI_Dpi16BitConfig2
16-bit configuration 2. RGB565: XXXRRRRR_XXGGGGGG_XXXBBBBB.

enumerator kDSI_Dpi16BitConfig3
16-bit configuration 3. RGB565: XXRRRRRX_XXGGGGGG_XXBBBBBX.

enumerator kDSI_Dpi18BitConfig1
18-bit configuration 1. RGB666: XXXXXXRR_RRRRGGGG_GGBBBBBB.

206 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kDSI_Dpi18BitConfig2
18-bit configuration 2. RGB666: XXRRRRRR_XXGGGGGG_XXBBBBBB.

enumerator kDSI_Dpi24Bit
24-bit.

enum _dsi_dpi_pixel_packet
MIPI DSI pixel packet type send through DPI interface.

Values:

enumerator kDSI_PixelPacket16Bit
16 bit RGB565.

enumerator kDSI_PixelPacket18Bit
18 bit RGB666 packed.

enumerator kDSI_PixelPacket18BitLoosely
18 bit RGB666 loosely packed into three bytes.

enumerator kDSI_PixelPacket24Bit
24 bit RGB888, each pixel uses three bytes.

_dsi_dpi_polarity_flag DPI signal polarity.

Values:

enumerator kDSI_DpiVsyncActiveLow
VSYNC active low.

enumerator kDSI_DpiHsyncActiveLow
HSYNC active low.

enumerator kDSI_DpiVsyncActiveHigh
VSYNC active high.

enumerator kDSI_DpiHsyncActiveHigh
HSYNC active high.

enum _dsi_dpi_video_mode
DPI video mode.

Values:

enumerator kDSI_DpiNonBurstWithSyncPulse
Non-Burst mode with Sync Pulses.

enumerator kDSI_DpiNonBurstWithSyncEvent
Non-Burst mode with Sync Events.

enumerator kDSI_DpiBurst
Burst mode.

enum _dsi_dpi_bllp_mode
Behavior in BLLP (Blanking or Low-Power Interval).

Values:

enumerator kDSI_DpiBllpLowPower
LP mode used in BLLP periods.

enumerator kDSI_DpiBllpBlanking
Blanking packets used in BLLP periods.

2.17. MIPI DSI Driver 207

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kDSI_DpiBllpNull
Null packets used in BLLP periods.

_dsi_apb_status Status of APB to packet interface.

Values:

enumerator kDSI_ApbNotIdle
State machine not idle

enumerator kDSI_ApbTxDone
Tx packet done

enumerator kDSI_ApbRxControl
DPHY direction 0 - tx had control, 1 - rx has control

enumerator kDSI_ApbTxOverflow
TX fifo overflow

enumerator kDSI_ApbTxUnderflow
TX fifo underflow

enumerator kDSI_ApbRxOverflow
RX fifo overflow

enumerator kDSI_ApbRxUnderflow
RX fifo underflow

enumerator kDSI_ApbRxHeaderReceived
RX packet header has been received

enumerator kDSI_ApbRxPacketReceived
All RX packet payload data has been received

_dsi_rx_error_status Host receive error status.

Values:

enumerator kDSI_RxErrorEccOneBit
ECC single bit error detected.

enumerator kDSI_RxErrorEccMultiBit
ECC multi bit error detected.

enumerator kDSI_RxErrorCrc
CRC error detected.

enumerator kDSI_RxErrorHtxTo
High Speed forward TX timeout detected.

enumerator kDSI_RxErrorLrxTo
Reverse Low power data receive timeout detected.

enumerator kDSI_RxErrorBtaTo
BTA timeout detected.

enum _dsi_host_status
DSI host controller status (status_out)

Values:

208 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kDSI_HostSoTError
SoT error from peripheral error report.

enumerator kDSI_HostSoTSyncError
SoT Sync error from peripheral error report.

enumerator kDSI_HostEoTSyncError
EoT Sync error from peripheral error report.

enumerator kDSI_HostEscEntryCmdError
Escape Mode Entry Command Error from peripheral error report.

enumerator kDSI_HostLpTxSyncError
Low-power transmit Sync Error from peripheral error report.

enumerator kDSI_HostPeriphToError
Peripheral timeout error from peripheral error report.

enumerator kDSI_HostFalseControlError
False control error from peripheral error report.

enumerator kDSI_HostContentionDetected
Contention detected from peripheral error report.

enumerator kDSI_HostEccErrorOneBit
Single bit ECC error (corrected) from peripheral error report.

enumerator kDSI_HostEccErrorMultiBit
Multi bit ECC error (not corrected) from peripheral error report.

enumerator kDSI_HostChecksumError
Checksum error from peripheral error report.

enumerator kDSI_HostInvalidDataType
DSI data type not recognized.

enumerator kDSI_HostInvalidVcId
DSI VC ID invalid.

enumerator kDSI_HostInvalidTxLength
Invalid transmission length.

enumerator kDSI_HostProtocalViolation
DSI protocal violation.

enumerator kDSI_HostResetTriggerReceived
Reset trigger received.

enumerator kDSI_HostTearTriggerReceived
Tear effect trigger receive.

enumerator kDSI_HostAckTriggerReceived
Acknowledge trigger message received.

_dsi_interrupt DSI interrupt.

Values:

enumerator kDSI_InterruptGroup1ApbNotIdle
State machine not idle

2.17. MIPI DSI Driver 209

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kDSI_InterruptGroup1ApbTxDone
Tx packet done

enumerator kDSI_InterruptGroup1ApbRxControl
DPHY direction 0 - tx control, 1 - rx control

enumerator kDSI_InterruptGroup1ApbTxOverflow
TX fifo overflow

enumerator kDSI_InterruptGroup1ApbTxUnderflow
TX fifo underflow

enumerator kDSI_InterruptGroup1ApbRxOverflow
RX fifo overflow

enumerator kDSI_InterruptGroup1ApbRxUnderflow
RX fifo underflow

enumerator kDSI_InterruptGroup1ApbRxHeaderReceived
RX packet header has been received

enumerator kDSI_InterruptGroup1ApbRxPacketReceived
All RX packet payload data has been received

enumerator kDSI_InterruptGroup1SoTError
SoT error from peripheral error report.

enumerator kDSI_InterruptGroup1SoTSyncError
SoT Sync error from peripheral error report.

enumerator kDSI_InterruptGroup1EoTSyncError
EoT Sync error from peripheral error report.

enumerator kDSI_InterruptGroup1EscEntryCmdError
Escape Mode Entry Command Error from peripheral error report.

enumerator kDSI_InterruptGroup1LpTxSyncError
Low-power transmit Sync Error from peripheral error report.

enumerator kDSI_InterruptGroup1PeriphToError
Peripheral timeout error from peripheral error report.

enumerator kDSI_InterruptGroup1FalseControlError
False control error from peripheral error report.

enumerator kDSI_InterruptGroup1ContentionDetected
Contention detected from peripheral error report.

enumerator kDSI_InterruptGroup1EccErrorOneBit
Single bit ECC error (corrected) from peripheral error report.

enumerator kDSI_InterruptGroup1EccErrorMultiBit
Multi bit ECC error (not corrected) from peripheral error report.

enumerator kDSI_InterruptGroup1ChecksumError
Checksum error from peripheral error report.

enumerator kDSI_InterruptGroup1InvalidDataType
DSI data type not recognized.

enumerator kDSI_InterruptGroup1InvalidVcId
DSI VC ID invalid.

210 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kDSI_InterruptGroup1InvalidTxLength
Invalid transmission length.

enumerator kDSI_InterruptGroup1ProtocalViolation
DSI protocal violation.

enumerator kDSI_InterruptGroup1ResetTriggerReceived
Reset trigger received.

enumerator kDSI_InterruptGroup1TearTriggerReceived
Tear effect trigger receive.

enumerator kDSI_InterruptGroup1AckTriggerReceived
Acknowledge trigger message received.

enumerator kDSI_InterruptGroup1HtxTo
High speed TX timeout.

enumerator kDSI_InterruptGroup1LrxTo
Low power RX timeout.

enumerator kDSI_InterruptGroup1BtaTo
Host BTA timeout.

enumerator kDSI_InterruptGroup2EccOneBit
Sinle bit ECC error.

enumerator kDSI_InterruptGroup2EccMultiBit
Multi bit ECC error.

enumerator kDSI_InterruptGroup2CrcError
CRC error.

enum _dsi_tx_data_type
DSI TX data type.

Values:

enumerator kDSI_TxDataVsyncStart
V Sync start.

enumerator kDSI_TxDataVsyncEnd
V Sync end.

enumerator kDSI_TxDataHsyncStart
H Sync start.

enumerator kDSI_TxDataHsyncEnd
H Sync end.

enumerator kDSI_TxDataEoTp
End of transmission packet.

enumerator kDSI_TxDataCmOff
Color mode off.

enumerator kDSI_TxDataCmOn
Color mode on.

enumerator kDSI_TxDataShutDownPeriph
Shut down peripheral.

2.17. MIPI DSI Driver 211

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kDSI_TxDataTurnOnPeriph
Turn on peripheral.

enumerator kDSI_TxDataGenShortWrNoParam
Generic Short WRITE, no parameters.

enumerator kDSI_TxDataGenShortWrOneParam
Generic Short WRITE, one parameter.

enumerator kDSI_TxDataGenShortWrTwoParam
Generic Short WRITE, two parameter.

enumerator kDSI_TxDataGenShortRdNoParam
Generic Short READ, no parameters.

enumerator kDSI_TxDataGenShortRdOneParam
Generic Short READ, one parameter.

enumerator kDSI_TxDataGenShortRdTwoParam
Generic Short READ, two parameter.

enumerator kDSI_TxDataDcsShortWrNoParam
DCS Short WRITE, no parameters.

enumerator kDSI_TxDataDcsShortWrOneParam
DCS Short WRITE, one parameter.

enumerator kDSI_TxDataDcsShortRdNoParam
DCS Short READ, no parameters.

enumerator kDSI_TxDataSetMaxReturnPktSize
Set the Maximum Return Packet Size.

enumerator kDSI_TxDataNull
Null Packet, no data.

enumerator kDSI_TxDataBlanking
Blanking Packet, no data.

enumerator kDSI_TxDataGenLongWr
Generic long write.

enumerator kDSI_TxDataDcsLongWr
DCS Long Write/write_LUT Command Packet.

enumerator kDSI_TxDataLooselyPackedPixel20BitYCbCr
Loosely Packed Pixel Stream, 20-bit YCbCr, 4:2:2 Format.

enumerator kDSI_TxDataPackedPixel24BitYCbCr
Packed Pixel Stream, 24-bit YCbCr, 4:2:2 Format.

enumerator kDSI_TxDataPackedPixel16BitYCbCr
Packed Pixel Stream, 16-bit YCbCr, 4:2:2 Format.

enumerator kDSI_TxDataPackedPixel30BitRGB
Packed Pixel Stream, 30-bit RGB, 10-10-10 Format.

enumerator kDSI_TxDataPackedPixel36BitRGB
Packed Pixel Stream, 36-bit RGB, 12-12-12 Format.

enumerator kDSI_TxDataPackedPixel12BitYCrCb
Packed Pixel Stream, 12-bit YCbCr, 4:2:0 Format.

212 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kDSI_TxDataPackedPixel16BitRGB
Packed Pixel Stream, 16-bit RGB, 5-6-5 Format.

enumerator kDSI_TxDataPackedPixel18BitRGB
Packed Pixel Stream, 18-bit RGB, 6-6-6 Format.

enumerator kDSI_TxDataLooselyPackedPixel18BitRGB
Loosely Packed Pixel Stream, 18-bit RGB, 6-6-6 Format.

enumerator kDSI_TxDataPackedPixel24BitRGB
Packed Pixel Stream, 24-bit RGB, 8-8-8 Format.

enum _dsi_rx_data_type
DSI RX data type.

Values:

enumerator kDSI_RxDataAckAndErrorReport
Acknowledge and Error Report

enumerator kDSI_RxDataEoTp
End of Transmission packet.

enumerator kDSI_RxDataGenShortRdResponseOneByte
Generic Short READ Response, 1 byte returned.

enumerator kDSI_RxDataGenShortRdResponseTwoByte
Generic Short READ Response, 2 byte returned.

enumerator kDSI_RxDataGenLongRdResponse
Generic Long READ Response.

enumerator kDSI_RxDataDcsLongRdResponse
DCS Long READ Response.

enumerator kDSI_RxDataDcsShortRdResponseOneByte
DCS Short READ Response, 1 byte returned.

enumerator kDSI_RxDataDcsShortRdResponseTwoByte
DCS Short READ Response, 2 byte returned.

_dsi_transfer_flags DSI transfer control flags.

Values:

enumerator kDSI_TransferUseHighSpeed
Use high speed mode or not.

enumerator kDSI_TransferPerformBTA
Perform BTA or not.

typedef struct _dsi_config dsi_config_t
MIPI DSI controller configuration.

typedef enum _dsi_dpi_color_coding dsi_dpi_color_coding_t
MIPI DPI interface color coding.

typedef enum _dsi_dpi_pixel_packet dsi_dpi_pixel_packet_t
MIPI DSI pixel packet type send through DPI interface.

typedef enum _dsi_dpi_video_mode dsi_dpi_video_mode_t
DPI video mode.

2.17. MIPI DSI Driver 213

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _dsi_dpi_bllp_mode dsi_dpi_bllp_mode_t
Behavior in BLLP (Blanking or Low-Power Interval).

typedef struct _dsi_dpi_config dsi_dpi_config_t
MIPI DSI controller DPI interface configuration.

typedef struct _dsi_dphy_config dsi_dphy_config_t
MIPI DSI D-PHY configuration.

typedef enum _dsi_tx_data_type dsi_tx_data_type_t
DSI TX data type.

typedef enum _dsi_rx_data_type dsi_rx_data_type_t
DSI RX data type.

typedef struct _dsi_transfer dsi_transfer_t
Structure for the data transfer.

typedef struct _dsi_handle dsi_handle_t
MIPI DSI transfer handle.

typedef void (*dsi_callback_t)(MIPI_DSI_HOST_Type *base, dsi_handle_t *handle, status_t
status, void *userData)

MIPI DSI callback for finished transfer.

When transfer finished, one of these status values will be passed to the user:

• kStatus_Success Data transfer finished with no error.

• kStatus_Timeout Transfer failed because of timeout.

• kStatus_DSI_RxDataError RX data error, user could use DSI_GetRxErrorStatus to check
the error details.

• kStatus_DSI_ErrorReportReceived Error Report packet received, user could use
DSI_GetAndClearHostStatus to check the error report status.

• kStatus_Fail Transfer failed for other reasons.

FSL_DSI_TX_MAX_PAYLOAD_BYTE

FSL_DSI_RX_MAX_PAYLOAD_BYTE

struct _dsi_config
#include <fsl_mipi_dsi.h>MIPI DSI controller configuration.

Public Members

uint8_t numLanes
Number of lanes.

bool enableNonContinuousHsClk
In enabled, the high speed clock will enter low power mode between transmissions.

bool autoInsertEoTp
Insert an EoTp short package when switching from HS to LP.

uint8_t numExtraEoTp
How many extra EoTp to send after the end of a packet.

uint32_t htxTo_ByteClk
HS TX timeout count (HTX_TO) in byte clock.

214 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t lrxHostTo_ByteClk
LP RX host timeout count (LRX-H_TO) in byte clock.

uint32_t btaTo_ByteClk
Bus turn around timeout count (TA_TO) in byte clock.

struct _dsi_dpi_config
#include <fsl_mipi_dsi.h>MIPI DSI controller DPI interface configuration.

Public Members

uint16_t pixelPayloadSize
Maximum number of pixels that should be sent as one DSI packet. Recommended that
the line size (in pixels) is evenly divisible by this parameter.

dsi_dpi_color_coding_t dpiColorCoding
DPI color coding.

dsi_dpi_pixel_packet_t pixelPacket
Pixel packet format.

dsi_dpi_video_mode_t videoMode
Video mode.

dsi_dpi_bllp_mode_t bllpMode
Behavior in BLLP.

uint8_t polarityFlags
OR’ed value of _dsi_dpi_polarity_flag controls signal polarity.

uint16_t hfp
Horizontal front porch, in dpi pixel clock.

uint16_t hbp
Horizontal back porch, in dpi pixel clock.

uint16_t hsw
Horizontal sync width, in dpi pixel clock.

uint8_t vfp
Number of lines in vertical front porch.

uint8_t vbp
Number of lines in vertical back porch.

uint16_t panelHeight
Line number in vertical active area.

uint8_t virtualChannel
Virtual channel.

struct _dsi_dphy_config
#include <fsl_mipi_dsi.h>MIPI DSI D-PHY configuration.

Public Members

uint32_t txHsBitClk_Hz
The generated HS TX bit clock in Hz.

2.17. MIPI DSI Driver 215

MCUXpresso SDK Documentation, Release 25.09.00

uint8_t tClkPre_ByteClk
TLPX + TCLK-PREPARE + TCLK-ZERO + TCLK-PRE in byte clock. Set how long the con-
troller will wait after enabling clock lane for HS before enabling data lanes for HS.

uint8_t tClkPost_ByteClk
TCLK-POST + T_CLK-TRAIL in byte clock. Set how long the controller will wait before
putting clock lane into LP mode after data lanes detected in stop state.

uint8_t tHsExit_ByteClk
THS-EXIT in byte clock. Set how long the controller will wait after the clock lane has
been put into LP mode before enabling clock lane for HS again.

uint8_t tHsPrepare_HalfEscClk
THS-PREPARE in clk_esc/2. Set how long to drive the LP-00 state before HS transmis-
sions, available values are 2, 3, 4, 5.

uint8_t tClkPrepare_HalfEscClk
TCLK-PREPARE in clk_esc/2. Set how long to drive the LP-00 state before HS transmis-
sions, available values are 2, 3.

uint8_t tHsZero_ByteClk
THS-ZERO in clk_byte. Set how long that controller drives data lane HS-0 state before
transmit the Sync sequence. Available values are 6, 7, …, 37.

uint8_t tClkZero_ByteClk
TCLK-ZERO in clk_byte. Set how long that controller drives clock lane HS-0 state before
transmit the Sync sequence. Available values are 3, 4, …, 66.

uint8_t tHsTrail_ByteClk
THS-TRAIL + 4*UI in clk_byte. Set the time of the flipped differential state after last
payload data bit of HS transmission burst. Available values are 0, 1, …, 15.

uint8_t tClkTrail_ByteClk
TCLK-TRAIL + 4*UI in clk_byte. Set the time of the flipped differential state after last
payload data bit of HS transmission burst. Available values are 0, 1, …, 15.

struct _dsi_transfer
#include <fsl_mipi_dsi.h> Structure for the data transfer.

Public Members

uint8_t virtualChannel
Virtual channel.

dsi_tx_data_type_t txDataType
TX data type.

uint8_t flags
Flags to control the transfer, see _dsi_transfer_flags.

const uint8_t *txData
The TX data buffer.

uint8_t *rxData
The RX data buffer.

uint16_t txDataSize
Size of the TX data.

uint16_t rxDataSize
Size of the RX data.

216 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

bool sendDcsCmd
If set to true, the DCS command is specified by dcsCmd, otherwise the DCS command
is included in the txData.

uint8_t dcsCmd
The DCS command to send, only valid when sendDcsCmd is true.

struct _dsi_handle
#include <fsl_mipi_dsi.h>MIPI DSI transfer handle structure.

Public Members

volatile bool isBusy
MIPI DSI is busy with APB data transfer.

dsi_transfer_t xfer
Transfer information.

dsi_callback_t callback
DSI callback

void *userData
Callback parameter

2.18 MIPI_DSI: MIPI DSI Host Controller

2.19 MU: Messaging Unit

voidMU_Init(MU_Type *base)
Initializes the MU module.

This function enables the MU clock only.

Parameters
• base – MU peripheral base address.

voidMU_Deinit(MU_Type *base)
De-initializes the MU module.

This function disables the MU clock only.

Parameters
• base – MU peripheral base address.

static inline voidMU_SendMsgNonBlocking(MU_Type *base, uint32_t regIndex, uint32_t msg)
Writes a message to the TX register.

This function writes a message to the specific TX register. It does not check whether the TX
register is empty or not. The upper layer should make sure the TX register is empty before
calling this function. This function can be used in ISR for better performance.

while (!(kMU_Tx0EmptyFlag & MU_GetStatusFlags(base))) { } Wait for TX0 register empty.
MU_SendMsgNonBlocking(base, kMU_MsgReg0, MSG_VAL); Write message to the TX0 register.

Parameters
• base – MU peripheral base address.

2.18. MIPI_DSI: MIPI DSI Host Controller 217

MCUXpresso SDK Documentation, Release 25.09.00

• regIndex – TX register index, see mu_msg_reg_index_t.

• msg – Message to send.

status_tMU_SendMsg(MU_Type *base, uint32_t regIndex, uint32_t msg)
Blocks to send a message.

This function waits until the TX register is empty and sends the message. If
MU_BUSY_POLL_COUNT is defined and non-zero, the function will timeout after the speci-
fied number of polling iterations and returns kStatus_Timeout.

Parameters
• base – MU peripheral base address.

• regIndex – MU message register, see mu_msg_reg_index_t.

• msg – Message to send.

Return values
• kStatus_Success – Message sent successfully.

• kStatus_Timeout – Timeout occurred while waiting for TX register to be
empty.

Returns
status_t

static inline uint32_tMU_ReceiveMsgNonBlocking(MU_Type *base, uint32_t regIndex)
Reads a message from the RX register.

This function reads a message from the specific RX register. It does not check whether the
RX register is full or not. The upper layer should make sure the RX register is full before
calling this function. This function can be used in ISR for better performance.

uint32_t msg;
while (!(kMU_Rx0FullFlag & MU_GetStatusFlags(base)))
{
} Wait for the RX0 register full.

msg = MU_ReceiveMsgNonBlocking(base, kMU_MsgReg0); Read message from RX0 register.

Parameters
• base – MU peripheral base address.

• regIndex – RX register index, see mu_msg_reg_index_t.

Returns
The received message.

status_tMU_ReceiveMsgTimeout(MU_Type *base, uint32_t regIndex, uint32_t *readValue)
Blocks to receive a message with timeout protection.

This function waits until the RX register is full and receives the message. If
MU_BUSY_POLL_COUNT is defined and non-zero, the function will timeout after the speci-
fied number of polling iterations and return kStatus_Timeout.

This function provides the same blocking behavior asMU_ReceiveMsg() butwith additional
timeout protection to prevent system hangs if the other core becomes unresponsive or if
hardware issues occur.

Note: Both MU_ReceiveMsg() and MU_ReceiveMsgTimeout() are blocking functions. The
difference is that this function includes timeout protection while MU_ReceiveMsg() waits
indefinitely.

218 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• base – MU peripheral base address.

• regIndex – RX register index, see mu_msg_reg_index_t.

• readValue – Pointer to store the received message.

Return values
• kStatus_Success – Message received successfully.

• kStatus_InvalidArgument – Invalid readValue pointer.

• kStatus_Timeout – Timeout occurred while waiting for RX register to be
full.

Returns
status_t

uint32_tMU_ReceiveMsg(MU_Type *base, uint32_t regIndex)
Blocks to receive a message (infinite wait, no timeout protection).

This function waits until the RX register is full and receives the message. This function will
wait indefinitely until a message is received.

Note: Both MU_ReceiveMsg() and MU_ReceiveMsgTimeout() are blocking functions. The
difference is thatMU_ReceiveMsgTimeout() includes timeout protectionwhile this function
waits indefinitely.

Warning: This function does not include timeout protection and may cause system
hangs if the other core becomes unresponsive. For applications requiring timeout pro-
tection, use MU_ReceiveMsgTimeout() instead.

Parameters
• base – MU peripheral base address.

• regIndex – RX register index, see mu_msg_reg_index_t.

Returns
The received message.

static inline voidMU_SetFlagsNonBlocking(MU_Type *base, uint32_t flags)
Sets the 3-bit MU flags reflect on the other MU side.

This function sets the 3-bit MU flags directly. Every time the 3-bit MU flags are changed,
the status flag kMU_FlagsUpdatingFlag asserts indicating the 3-bit MU flags are updating to
the other side. After the 3-bit MU flags are updated, the status flag kMU_FlagsUpdatingFlag
is cleared by hardware. During the flags updating period, the flags cannot be changed.
The upper layer should make sure the status flag kMU_FlagsUpdatingFlag is cleared before
calling this function.

while (kMU_FlagsUpdatingFlag & MU_GetStatusFlags(base))
{
} Wait for previous MU flags updating.

MU_SetFlagsNonBlocking(base, 0U); Set the mU flags.

Parameters
• base – MU peripheral base address.

2.19. MU: Messaging Unit 219

MCUXpresso SDK Documentation, Release 25.09.00

• flags – The 3-bit MU flags to set.

status_tMU_SetFlags(MU_Type *base, uint32_t flags)
Blocks setting the 3-bit MU flags reflect on the other MU side.

This function blocks setting the 3-bit MU flags. Every time the 3-bit MU flags are changed,
the status flag kMU_FlagsUpdatingFlag asserts indicating the 3-bit MU flags are updating to
the other side. After the 3-bit MU flags are updated, the status flag kMU_FlagsUpdatingFlag
is cleared by hardware. During the flags updating period, the flags cannot be changed. This
function waits for the MU status flag kMU_FlagsUpdatingFlag cleared and sets the 3-bit MU
flags.

If MU_BUSY_POLL_COUNT is defined and non-zero, the functionwill timeout after the spec-
ified number of polling iterations and return kStatus_Timeout.

Parameters
• base – MU peripheral base address.

• flags – The 3-bit MU flags to set.

Return values
• kStatus_Success – Flags were set successfully.

• kStatus_Timeout – Timeout occurred while waiting for flags to update.

Returns
status_t

static inline uint32_tMU_GetFlags(MU_Type *base)
Gets the current value of the 3-bit MU flags set by the other side.

This function gets the current 3-bit MU flags on the current side.

Parameters
• base – MU peripheral base address.

Returns
flags Current value of the 3-bit flags.

static inline uint32_tMU_GetStatusFlags(MU_Type *base)
Gets the MU status flags.

This function returns the bit mask of the MU status flags. See _mu_status_flags.

uint32_t flags;
flags = MU_GetStatusFlags(base); Get all status flags.
if (kMU_Tx0EmptyFlag & flags)
{

The TX0 register is empty. Message can be sent.
MU_SendMsgNonBlocking(base, kMU_MsgReg0, MSG0_VAL);

}
if (kMU_Tx1EmptyFlag & flags)
{

The TX1 register is empty. Message can be sent.
MU_SendMsgNonBlocking(base, kMU_MsgReg1, MSG1_VAL);

}

Parameters
• base – MU peripheral base address.

Returns
Bit mask of the MU status flags, see _mu_status_flags.

220 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_tMU_GetRxStatusFlags(MU_Type *base)
Return the RX status flags.

This function return the RX status flags. Note: RFn bits of SR[27-24](mu status register) are
mapped in reverse numerical order: RF0 -> SR[27] RF1 -> SR[26] RF2 -> SR[25] RF3 -> SR[24]

status_reg = MU_GetRxStatusFlags(base);

Parameters
• base – MU peripheral base address.

Returns
MU RX status

static inline uint32_tMU_GetInterruptsPending(MU_Type *base)
Gets the MU IRQ pending status of enabled interrupts.

This function returns the bit mask of the pending MU IRQs of enabled inter-
rupts. Only these flags are checked. kMU_Tx0EmptyFlag kMU_Tx1EmptyFlag
kMU_Tx2EmptyFlag kMU_Tx3EmptyFlag kMU_Rx0FullFlag kMU_Rx1FullFlag
kMU_Rx2FullFlag kMU_Rx3FullFlag kMU_GenInt0Flag kMU_GenInt1Flag
kMU_GenInt2Flag kMU_GenInt3Flag

Parameters
• base – MU peripheral base address.

Returns
Bit mask of the MU IRQs pending.

static inline voidMU_ClearStatusFlags(MU_Type *base, uint32_t mask)
Clears the specific MU status flags.

This function clears the specific MU status flags. The flags to clear should be passed in as
bit mask. See _mu_status_flags.

Clear general interrupt 0 and general interrupt 1 pending flags.
MU_ClearStatusFlags(base, kMU_GenInt0Flag | kMU_GenInt1Flag);

Parameters
• base – MU peripheral base address.

• mask – Bit mask of theMU status flags. See _mu_status_flags. The following
flags are cleared by hardware, this function could not clear them.

– kMU_Tx0EmptyFlag

– kMU_Tx1EmptyFlag

– kMU_Tx2EmptyFlag

– kMU_Tx3EmptyFlag

– kMU_Rx0FullFlag

– kMU_Rx1FullFlag

– kMU_Rx2FullFlag

– kMU_Rx3FullFlag

– kMU_EventPendingFlag

– kMU_FlagsUpdatingFlag

– kMU_OtherSideInResetFlag

2.19. MU: Messaging Unit 221

MCUXpresso SDK Documentation, Release 25.09.00

static inline voidMU_EnableInterrupts(MU_Type *base, uint32_t mask)
Enables the specific MU interrupts.

This function enables the specificMU interrupts. The interrupts to enable should be passed
in as bit mask. See _mu_interrupt_enable.

Enable general interrupt 0 and TX0 empty interrupt.
MU_EnableInterrupts(base, kMU_GenInt0InterruptEnable | kMU_Tx0EmptyInterruptEnable);

Parameters
• base – MU peripheral base address.

• mask – Bit mask of the MU interrupts. See _mu_interrupt_enable.

static inline voidMU_DisableInterrupts(MU_Type *base, uint32_t mask)
Disables the specific MU interrupts.

This function disables the specificMU interrupts. The interrupts to disable should be passed
in as bit mask. See _mu_interrupt_enable.

Disable general interrupt 0 and TX0 empty interrupt.
MU_DisableInterrupts(base, kMU_GenInt0InterruptEnable | kMU_Tx0EmptyInterruptEnable);

Parameters
• base – MU peripheral base address.

• mask – Bit mask of the MU interrupts. See _mu_interrupt_enable.

status_tMU_TriggerInterrupts(MU_Type *base, uint32_t mask)
Triggers interrupts to the other core.

This function triggers the specific interrupts to the other core. The interrupts to trigger are
passed in as bit mask. See _mu_interrupt_trigger. TheMU should not trigger an interrupt to
the other core when the previous interrupt has not been processed by the other core. This
function checks whether the previous interrupts have been processed. If not, it returns an
error.

if (kStatus_Success != MU_TriggerInterrupts(base, kMU_GenInt0InterruptTrigger | kMU_
↪→GenInt2InterruptTrigger))
{

Previous general purpose interrupt 0 or general purpose interrupt 2
has not been processed by the other core.

}

Parameters
• base – MU peripheral base address.

• mask – Bit mask of the interrupts to trigger. See _mu_interrupt_trigger.

Return values
• kStatus_Success – Interrupts have been triggered successfully.

• kStatus_Fail – Previous interrupts have not been accepted.

static inline voidMU_ClearNmi(MU_Type *base)
Clear non-maskable interrupt (NMI) sent by the other core.

This function clears non-maskable interrupt (NMI) sent by the other core.

Parameters
• base – MU peripheral base address.

222 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

voidMU_BootCoreB(MU_Type *base, mu_core_boot_mode_t mode)
Boots the core at B side.

This function sets the B side core’s boot configuration and releases the core from reset.

Note: Only MU side A can use this function.

Parameters
• base – MU peripheral base address.

• mode – Core B boot mode.

static inline voidMU_HoldCoreBReset(MU_Type *base)
Holds the core reset of B side.

This function causes the core of B side to be held in reset following any reset event.

Note: Only A side could call this function.

Parameters
• base – MU peripheral base address.

voidMU_BootOtherCore(MU_Type *base, mu_core_boot_mode_t mode)
Boots the other core.

This function boots the other core with a boot configuration.

Parameters
• base – MU peripheral base address.

• mode – The other core boot mode.

static inline voidMU_HoldOtherCoreReset(MU_Type *base)
Holds the other core reset.

This function causes the other core to be held in reset following any reset event.

Parameters
• base – MU peripheral base address.

static inline status_tMU_ResetBothSides(MU_Type *base)
Resets the MU for both A side and B side.

This function resets the MU for both A side and B side. Before reset, it is recommended to
interrupt processor B, because this function may affect the ongoing processor B programs.

If MU_BUSY_POLL_COUNT is defined and non-zero, the functionwill timeout after the spec-
ified number of polling iterations if waiting for the other side to come out of reset takes too
long.

Note: For some platforms, onlyMU side A could use this function, check referencemanual
for details.

Parameters
• base – MU peripheral base address.

Return values

2.19. MU: Messaging Unit 223

MCUXpresso SDK Documentation, Release 25.09.00

• kStatus_Success – The MU was reset successfully.

• kStatus_Timeout – Timeout occurred while waiting for the other side to
come out of reset.

Returns
status_t

status_tMU_HardwareResetOtherCore(MU_Type *base, bool waitReset, bool holdReset,
mu_core_boot_mode_t bootMode)

Hardware reset the other core.

This function resets the other core, the other core couldmask the hardware reset by calling
MU_MaskHardwareReset. The hardware resetmask feature is only available for some plat-
forms. This function could be used together with MU_BootOtherCore to control the other
core reset workflow.

If MU_BUSY_POLL_COUNT is defined and non-zero, the functionwill timeout after the spec-
ified number of polling iterations and return kStatus_Timeout if waiting for the other core
to enter or exit reset takes too long.

Example 1: Reset the other core, and no hold reset

MU_HardwareResetOtherCore(MU_A, true, false, bootMode);

In this example, the core at MU side B will reset with the specified boot mode.

Example 2: Reset the other core and hold it, then boot the other core later. Here the other
core enters reset, and the reset is hold

MU_HardwareResetOtherCore(MU_A, true, true, modeDontCare);

Current core boot the other core when necessary.

MU_BootOtherCore(MU_A, bootMode);

Parameters
• base – MU peripheral base address.

• waitReset – Wait the other core enters reset.

– true: Wait until the other core enters reset, if the other core has masked
the hardware reset, then this function will be blocked.

– false: Don’t wait the reset.

• holdReset – Hold the other core reset or not.

– true: Hold the other core in reset, this function returns directly when
the other core enters reset.

– false: Don’t hold the other core in reset, this function waits until the
other core out of reset.

• bootMode – Boot mode of the other core, if holdReset is true, this parameter
is useless.

Return values
• kStatus_Success – The other core was reset successfully.

• kStatus_Timeout – Timeout occurred while waiting for the other core to
enter or exit reset.

Returns
status_t

224 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline voidMU_SetClockOnOtherCoreEnable(MU_Type *base, bool enable)
Enables or disables the clock on the other core.

This function enables or disables the platform clock on the other corewhen that core enters
a stop mode. If disabled, the platform clock for the other core is disabled when it enters
stop mode. If enabled, the platform clock keeps running on the other core in stop mode,
until this core also enters stop mode.

Parameters
• base – MU peripheral base address.

• enable – Enable or disable the clock on the other core.

static inline mu_power_mode_tMU_GetOtherCorePowerMode(MU_Type *base)
Gets the power mode of the other core.

This function gets the power mode of the other core.

Parameters
• base – MU peripheral base address.

Returns
Power mode of the other core.

FSL_MU_DRIVER_VERSION
MU driver version.

enum _mu_status_flags
MU status flags.

Values:

enumerator kMU_Tx0EmptyFlag
TX0 empty.

enumerator kMU_Tx1EmptyFlag
TX1 empty.

enumerator kMU_Tx2EmptyFlag
TX2 empty.

enumerator kMU_Tx3EmptyFlag
TX3 empty.

enumerator kMU_Rx0FullFlag
RX0 full.

enumerator kMU_Rx1FullFlag
RX1 full.

enumerator kMU_Rx2FullFlag
RX2 full.

enumerator kMU_Rx3FullFlag
RX3 full.

enumerator kMU_GenInt0Flag
General purpose interrupt 0 pending.

enumerator kMU_GenInt1Flag
General purpose interrupt 1 pending.

enumerator kMU_GenInt2Flag
General purpose interrupt 2 pending.

2.19. MU: Messaging Unit 225

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kMU_GenInt3Flag
General purpose interrupt 3 pending.

enumerator kMU_EventPendingFlag
MU event pending.

enumerator kMU_FlagsUpdatingFlag
MU flags update is on-going.

enum _mu_interrupt_enable
MU interrupt source to enable.

Values:

enumerator kMU_Tx0EmptyInterruptEnable
TX0 empty.

enumerator kMU_Tx1EmptyInterruptEnable
TX1 empty.

enumerator kMU_Tx2EmptyInterruptEnable
TX2 empty.

enumerator kMU_Tx3EmptyInterruptEnable
TX3 empty.

enumerator kMU_Rx0FullInterruptEnable
RX0 full.

enumerator kMU_Rx1FullInterruptEnable
RX1 full.

enumerator kMU_Rx2FullInterruptEnable
RX2 full.

enumerator kMU_Rx3FullInterruptEnable
RX3 full.

enumerator kMU_GenInt0InterruptEnable
General purpose interrupt 0.

enumerator kMU_GenInt1InterruptEnable
General purpose interrupt 1.

enumerator kMU_GenInt2InterruptEnable
General purpose interrupt 2.

enumerator kMU_GenInt3InterruptEnable
General purpose interrupt 3.

enum _mu_interrupt_trigger
MU interrupt that could be triggered to the other core.

Values:

enumerator kMU_NmiInterruptTrigger
NMI interrupt.

enumerator kMU_GenInt0InterruptTrigger
General purpose interrupt 0.

enumerator kMU_GenInt1InterruptTrigger
General purpose interrupt 1.

226 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kMU_GenInt2InterruptTrigger
General purpose interrupt 2.

enumerator kMU_GenInt3InterruptTrigger
General purpose interrupt 3.

enum _mu_msg_reg_index
MUmessage register.

Values:

enumerator kMU_MsgReg0

enumerator kMU_MsgReg1

enumerator kMU_MsgReg2

enumerator kMU_MsgReg3

typedef enum _mu_msg_reg_index mu_msg_reg_index_t
MUmessage register.

MU_CR_NMI_MASK

MU_BUSY_POLL_COUNT
Maximum polling iterations for MU waiting loops.

This parameter defines the maximum number of iterations for any polling loop in the MU
code before timing out and returning an error.

It applies to all waiting loops in MU driver, such as waiting for TX register to be empty or
waiting for RX register to be full.

This is a count of loop iterations, not a time-based value.

If defined as 0, polling loops will continue indefinitely until their exit condition is met,
which could potentially cause the system to hang if a core becomes unresponsive.

MU_GET_CORE_FLAG(flags)

MU_GET_STAT_FLAG(flags)

MU_GET_TX_FLAG(flags)

MU_GET_RX_FLAG(flags)

MU_GET_GI_FLAG(flags)

2.20 OCOTP: On Chip One-Time Programmable controller.

FSL_OCOTP_DRIVER_VERSION
OCOTP driver version.

_ocotp_status Error codes for the OCOTP driver.

Values:

enumerator kStatus_OCOTP_AccessError
eFuse and shadow register access error.

enumerator kStatus_OCOTP_CrcFail
CRC check failed.

2.20. OCOTP: On Chip One-Time Programmable controller. 227

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus_OCOTP_ReloadError
Error happens during reload shadow register.

enumerator kStatus_OCOTP_ProgramFail
Fuse programming failed.

enumerator kStatus_OCOTP_Locked
Fuse is locked and cannot be programmed.

void OCOTP_Init(OCOTP_Type *base, uint32_t srcClock_Hz)
Initializes OCOTP controller.

Parameters
• base – OCOTP peripheral base address.

• srcClock_Hz – source clock frequency in unit of Hz. When the macro
FSL_FEATURE_OCOTP_HAS_TIMING_CTRL is defined as 0, this parameter
is not used, application could pass in 0 in this case.

void OCOTP_Deinit(OCOTP_Type *base)
De-initializes OCOTP controller.

Return values
kStatus_Success – upon successful execution, error status otherwise.

static inline bool OCOTP_CheckBusyStatus(OCOTP_Type *base)
Checking the BUSY bit in CTRL register. Checking this BUSY bit will help confirm if the
OCOTP controller is ready for access.

Parameters
• base – OCOTP peripheral base address.

Return values
true – for bit set and false for cleared.

static inline bool OCOTP_CheckErrorStatus(OCOTP_Type *base)
Checking the ERROR bit in CTRL register.

Parameters
• base – OCOTP peripheral base address.

Return values
true – for bit set and false for cleared.

static inline void OCOTP_ClearErrorStatus(OCOTP_Type *base)
Clear the error bit if this bit is set.

Parameters
• base – OCOTP peripheral base address.

status_t OCOTP_ReloadShadowRegister(OCOTP_Type *base)
Reload the shadow register. This function will help reload the shadow register without
reseting the OCOTPmodule. Pleasemake sure the OCOTP has been initialized before calling
this API.

Parameters
• base – OCOTP peripheral base addess.

Return values
• kStatus_Success – Reload success.

• kStatus_OCOTP_ReloadError – Reload failed.

228 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t OCOTP_ReadFuseShadowRegister(OCOTP_Type *base, uint32_t address)
Read the fuse shadow register with the fuse addess.

Deprecated:
Use OCOTP_ReadFuseShadowRegisterExt instead of this function.

Parameters
• base – OCOTP peripheral base address.

• address – the fuse address to be read from.

Returns
The read out data.

status_t OCOTP_ReadFuseShadowRegisterExt(OCOTP_Type *base, uint32_t address, uint32_t
*data, uint8_t fuseWords)

Read the fuse shadow register from the fuse addess.

This function reads fuse from address, howmanywords to read is specified by the parameter
fuseWords. This function could read at most OCOTP_READ_FUSE_DATA_COUNT fuse word
one time.

Parameters
• base – OCOTP peripheral base address.

• address – the fuse address to be read from.

• data – Data array to save the readout fuse value.

• fuseWords – How many words to read.

Return values
• kStatus_Success – Read success.

• kStatus_Fail – Error occurs during read.

status_t OCOTP_WriteFuseShadowRegister(OCOTP_Type *base, uint32_t address, uint32_t data)
Write the fuse shadow register with the fuse addess and data. Please make sure the wrtie
address is not locked while calling this API.

Parameters
• base – OCOTP peripheral base address.

• address – the fuse address to be written.

• data – the value will be writen to fuse address.

Return values
write – status, kStatus_Success for success and kStatus_Fail for failed.

status_t OCOTP_WriteFuseShadowRegisterWithLock(OCOTP_Type *base, uint32_t address,
uint32_t data, bool lock)

Write the fuse shadow register and lock it.

Please make sure the wrtie address is not locked while calling this API.

Some OCOTP controller supports ECC mode and redundancy mode (see reference manan-
ual for more details). OCOTP controller will auto select ECC or redundancy mode to pro-
gram the fuse word according to fuse map definition. In ECC mode, the 32 fuse bits in one
word can only be written once. In redundancy mode, the word can be written more than
once as long as they are different fuse bits. Set parameter lock as true to force use ECCmode.

Parameters

2.20. OCOTP: On Chip One-Time Programmable controller. 229

MCUXpresso SDK Documentation, Release 25.09.00

• base – OCOTP peripheral base address.

• address – The fuse address to be written.

• data – The value will be writen to fuse address.

• lock – Lock or unlock write fuse shadow register operation.

Return values
• kStatus_Success – Program and reload success.

• kStatus_OCOTP_Locked – The eFuse word is locked and cannot be pro-
grammed.

• kStatus_OCOTP_ProgramFail – eFuse word programming failed.

• kStatus_OCOTP_ReloadError – eFuse word programming success, but er-
ror happens during reload the values.

• kStatus_OCOTP_AccessError – Cannot access eFuse word.

static inline uint32_t OCOTP_GetVersion(OCOTP_Type *base)
Get the OCOTP controller version from the register.

Parameters
• base – OCOTP peripheral base address.

Return values
return – the version value.

OCOTP_READ_FUSE_DATA_COUNT

2.21 PWM: Pulse Width Modulation Driver

status_t PWM_Init(PWM_Type *base, const pwm_config_t *config)
Ungates the PWM clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the PWM driver.

Parameters
• base – PWM peripheral base address

• config – Pointer to user’s PWM config structure.

Returns
kStatus_Success means success; else failed.

void PWM_Deinit(PWM_Type *base)
Gate the PWM submodule clock.

Parameters
• base – PWM peripheral base address

void PWM_GetDefaultConfig(pwm_config_t *config)
Fill in the PWM config struct with the default settings.

The default values are:

230 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

config->enableStopMode = false;
config->enableDozeMode = false;
config->enableWaitMode = false;
config->enableDozeMode = false;
config->clockSource = kPWM_LowFrequencyClock;
config->prescale = 0U;
config->outputConfig = kPWM_SetAtRolloverAndClearAtcomparison;
config->fifoWater = kPWM_FIFOWaterMark_2;
config->sampleRepeat = kPWM_EachSampleOnce;
config->byteSwap = kPWM_ByteNoSwap;
config->halfWordSwap = kPWM_HalfWordNoSwap;

Parameters
• config – Pointer to user’s PWM config structure.

static inline void PWM_StartTimer(PWM_Type *base)
Starts the PWM counter when the PWM is enabled.

When the PWM is enabled, it begins a new period, the output pin is set to start a new period
while the prescaler and counter are released and counting begins.

Parameters
• base – PWM peripheral base address

static inline void PWM_StopTimer(PWM_Type *base)
Stops the PWM counter when the pwm is disabled.

Parameters
• base – PWM peripheral base address

static inline void PWM_EnableInterrupts(PWM_Type *base, uint32_t mask)
Enables the selected PWM interrupts.

Parameters
• base – PWM peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration pwm_interrupt_enable_t

static inline void PWM_DisableInterrupts(PWM_Type *base, uint32_t mask)
Disables the selected PWM interrupts.

Parameters
• base – PWM peripheral base address

• mask – The interrupts to disable. This is a logical OR of members of the
enumeration pwm_interrupt_enable_t

static inline uint32_t PWM_GetEnabledInterrupts(PWM_Type *base)
Gets the enabled PWM interrupts.

Parameters
• base – PWM peripheral base address

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
pwm_interrupt_enable_t

static inline uint32_t PWM_GetStatusFlags(PWM_Type *base)
Gets the PWM status flags.

Parameters

2.21. PWM: Pulse Width Modulation Driver 231

MCUXpresso SDK Documentation, Release 25.09.00

• base – PWM peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
pwm_status_flags_t

static inline void PWM_clearStatusFlags(PWM_Type *base, uint32_t mask)
Clears the PWM status flags.

Parameters
• base – PWM peripheral base address

• mask – The status flags to clear. This is a logical OR of members of the
enumeration pwm_status_flags_t

static inline uint32_t PWM_GetFIFOAvailable(PWM_Type *base)
Gets the PWM FIFO available.

Parameters
• base – PWM peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
pwm_fifo_available_t

static inline void PWM_SetSampleValue(PWM_Type *base, uint32_t value)
Sets the PWM sample value.

Parameters
• base – PWM peripheral base address

• value – The sample value. This is the input to the 4x16 FIFO. The value in
this register denotes the value of the sample being currently used.

static inline uint32_t PWM_GetSampleValue(PWM_Type *base)
Gets the PWM sample value.

Parameters
• base – PWM peripheral base address

Returns
The sample value. It can be read only when the PWM is enable.

FSL_PWM_DRIVER_VERSION

enum _pwm_clock_source
PWM clock source select.

Values:

enumerator kPWM_PeripheralClock
The Peripheral clock is used as the clock

enumerator kPWM_HighFrequencyClock
High-frequency reference clock is used as the clock

enumerator kPWM_LowFrequencyClock
Low-frequency reference clock(32KHz) is used as the clock

enum _pwm_fifo_water_mark
PWM FIFO water mark select. Sets the data level at which the FIFO empty flag will be set.

Values:

232 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPWM_FIFOWaterMark_1
FIFO empty flag is set when there are more than or equal to 1 empty slots

enumerator kPWM_FIFOWaterMark_2
FIFO empty flag is set when there are more than or equal to 2 empty slots

enumerator kPWM_FIFOWaterMark_3
FIFO empty flag is set when there are more than or equal to 3 empty slots

enumerator kPWM_FIFOWaterMark_4
FIFO empty flag is set when there are more than or equal to 4 empty slots

enum _pwm_byte_data_swap
PWM byte data swap select. It determines the byte ordering of the 16-bit data when it goes
into the FIFO from the sample register.

Values:

enumerator kPWM_ByteNoSwap
byte ordering remains the same

enumerator kPWM_ByteSwap
byte ordering is reversed

enum _pwm_half_word_data_swap
PWM half-word data swap select.

Values:

enumerator kPWM_HalfWordNoSwap
Half word swapping does not take place

enumerator kPWM_HalfWordSwap
Half word from write data bus are swapped

enum _pwm_output_configuration
PWM Output Configuration.

Values:

enumerator kPWM_SetAtRolloverAndClearAtcomparison
Output pin is set at rollover and cleared at comparison

enumerator kPWM_ClearAtRolloverAndSetAtcomparison
Output pin is cleared at rollover and set at comparison

enumerator kPWM_NoConfigure
PWM output is disconnected

enum _pwm_sample_repeat
PWM FIFO sample repeat It determines the number of times each sample from the FIFO is
to be used.

Values:

enumerator kPWM_EachSampleOnce
Use each sample once

enumerator kPWM_EachSampletwice
Use each sample twice

enumerator kPWM_EachSampleFourTimes
Use each sample four times

2.21. PWM: Pulse Width Modulation Driver 233

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kPWM_EachSampleEightTimes
Use each sample eight times

enum _pwm_interrupt_enable
List of PWM interrupt options.

Values:

enumerator kPWM_FIFOEmptyInterruptEnable
This bit controls the generation of the FIFO Empty interrupt.

enumerator kPWM_RolloverInterruptEnable
This bit controls the generation of the Rollover interrupt.

enumerator kPWM_CompareInterruptEnable
This bit controls the generation of the Compare interrupt

enum _pwm_status_flags
List of PWM status flags.

Values:

enumerator kPWM_FIFOEmptyFlag
This bit indicates the FIFO data level in comparison to the water level set by FWMfield
in the control register.

enumerator kPWM_RolloverFlag
This bit shows that a roll-over event has occurred.

enumerator kPWM_CompareFlag
This bit shows that a compare event has occurred.

enumerator kPWM_FIFOWriteErrorFlag
This bit shows that an attempt has been made to write FIFO when it is full.

enum _pwm_fifo_available
List of PWM FIFO available.

Values:

enumerator kPWM_NoDataInFIFOFlag
No data available

enumerator kPWM_OneWordInFIFOFlag
1 word of data in FIFO

enumerator kPWM_TwoWordsInFIFOFlag
2 word of data in FIFO

enumerator kPWM_ThreeWordsInFIFOFlag
3 word of data in FIFO

enumerator kPWM_FourWordsInFIFOFlag
4 word of data in FIFO

typedef enum _pwm_clock_source pwm_clock_source_t
PWM clock source select.

typedef enum _pwm_fifo_water_mark pwm_fifo_water_mark_t
PWM FIFO water mark select. Sets the data level at which the FIFO empty flag will be set.

typedef enum _pwm_byte_data_swap pwm_byte_data_swap_t
PWM byte data swap select. It determines the byte ordering of the 16-bit data when it goes
into the FIFO from the sample register.

234 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _pwm_half_word_data_swap pwm_half_word_data_swap_t
PWM half-word data swap select.

typedef enum _pwm_output_configuration pwm_output_configuration_t
PWM Output Configuration.

typedef enum _pwm_sample_repeat pwm_sample_repeat_t
PWM FIFO sample repeat It determines the number of times each sample from the FIFO is
to be used.

typedef enum _pwm_interrupt_enable pwm_interrupt_enable_t
List of PWM interrupt options.

typedef enum _pwm_status_flags pwm_status_flags_t
List of PWM status flags.

typedef enum _pwm_fifo_available pwm_fifo_available_t
List of PWM FIFO available.

typedef struct _pwm_config pwm_config_t

static inline void PWM_SoftwareReset(PWM_Type *base)
Sofrware reset.

PWM is reset when this bit is set to 1. It is a self clearing bit. Setting this bit resets all the
registers to their reset values except for the STOPEN, DOZEN, WAITEN, and DBGEN bits in
this control register.

Parameters
• base – PWM peripheral base address

static inline void PWM_SetPeriodValue(PWM_Type *base, uint32_t value)
Sets the PWM period value.

Parameters
• base – PWM peripheral base address

• value – The period value. The PWM period register (PWM_PWMPR) deter-
mines the period of the PWMoutput signal. Writing 0xFFFF to this register
will achieve the same result as writing 0xFFFE. PWMO (Hz) = PCLK(Hz) /
(period +2)

static inline uint32_t PWM_GetPeriodValue(PWM_Type *base)
Gets the PWM period value.

Parameters
• base – PWM peripheral base address

Returns
The period value. The PWM period register (PWM_PWMPR) determines the
period of the PWM output signal.

static inline uint32_t PWM_GetCounterValue(PWM_Type *base)
Gets the PWM counter value.

Parameters
• base – PWM peripheral base address

Returns
The counter value. The current count value.

struct _pwm_config
#include <fsl_pwm.h>

2.21. PWM: Pulse Width Modulation Driver 235

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

bool enableStopMode
True: PWM continues to run in stop mode; False: PWM is paused in stop mode.

bool enableDozeMode
True: PWM continues to run in doze mode; False: PWM is paused in doze mode.

bool enableWaitMode
True: PWM continues to run in wait mode; False: PWM is paused in wait mode.

bool enableDebugMode
True: PWM continues to run in debug mode; False: PWM is paused in debug mode.

uint16_t prescale
Pre-scaler to divide down the clock The prescaler value is not more than 0xFFF. Divide
by (value + 1)

pwm_clock_source_t clockSource
Clock source for the counter

pwm_output_configuration_t outputConfig
Set the mode of the PWM output on the output pin.

pwm_fifo_water_mark_t fifoWater
Set the data level for FIFO.

pwm_sample_repeat_t sampleRepeat
The number of times each sample from the FIFO is to be used.

pwm_byte_data_swap_t byteSwap
It determines the byte ordering of the 16-bit data when it goes into the FIFO from the
sample register.

pwm_half_word_data_swap_t halfWordSwap
It determines which half word data from the 32-bit IP Bus interface is written into the
lower 16 bits of the sample register.

2.22 QSPI: Quad Serial Peripheral Interface

2.23 Quad Serial Peripheral Interface Driver

uint32_t QSPI_GetInstance(QuadSPI_Type *base)
Get the instance number for QSPI.

Parameters
• base – QSPI base pointer.

void QSPI_Init(QuadSPI_Type *base, qspi_config_t *config, uint32_t srcClock_Hz)
Initializes the QSPI module and internal state.

This function enables the clock for QSPI and also configures the QSPI with the input config-
ure parameters. Users should call this function before any QSPI operations.

Parameters
• base – Pointer to QuadSPI Type.

• config – QSPI configure structure.

236 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

• srcClock_Hz – QSPI source clock frequency in Hz.

void QSPI_GetDefaultQspiConfig(qspi_config_t *config)
Gets default settings for QSPI.

Parameters
• config – QSPI configuration structure.

void QSPI_Deinit(QuadSPI_Type *base)
Deinitializes the QSPI module.

Clears the QSPI state and QSPI module registers.

Parameters
• base – Pointer to QuadSPI Type.

void QSPI_SetFlashConfig(QuadSPI_Type *base, qspi_flash_config_t *config)
Configures the serial flash parameter.

This function configures the serial flash relevant parameters, such as the size, command,
and so on. The flash configuration value cannot have a default value. The user needs to
configure it according to the QSPI features.

Parameters
• base – Pointer to QuadSPI Type.

• config – Flash configuration parameters.

void QSPI_SetDqsConfig(QuadSPI_Type *base, qspi_dqs_config_t *config)
Configures the serial flash DQS parameter.

This function configures the serial flash DQS relevant parameters, such as the delay chain
tap number, . DQS shift phase, whether need to inverse and the rxc sample clock selection.

Parameters
• base – Pointer to QuadSPI Type.

• config – Dqs configuration parameters.

void QSPI_SoftwareReset(QuadSPI_Type *base)
Software reset for the QSPI logic.

This function sets the software reset flags for both AHB and buffer domain and resets both
AHB buffer and also IP FIFOs.

Parameters
• base – Pointer to QuadSPI Type.

static inline void QSPI_Enable(QuadSPI_Type *base, bool enable)
Enables or disables the QSPI module.

Parameters
• base – Pointer to QuadSPI Type.

• enable – True means enable QSPI, false means disable.

static inline uint32_t QSPI_GetStatusFlags(QuadSPI_Type *base)
Gets the state value of QSPI.

Parameters
• base – Pointer to QuadSPI Type.

Returns
status flag, use status flag to AND _qspi_flags could get the related status.

2.23. Quad Serial Peripheral Interface Driver 237

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t QSPI_GetErrorStatusFlags(QuadSPI_Type *base)
Gets QSPI error status flags.

Parameters
• base – Pointer to QuadSPI Type.

Returns
status flag, use status flag to AND _qspi_error_flags could get the related status.

static inline void QSPI_ClearErrorFlag(QuadSPI_Type *base, uint32_t mask)
Clears the QSPI error flags.

Parameters
• base – Pointer to QuadSPI Type.

• mask – Which kind of QSPI flags to be cleared, a combination of
_qspi_error_flags.

static inline void QSPI_EnableInterrupts(QuadSPI_Type *base, uint32_t mask)
Enables the QSPI interrupts.

Parameters
• base – Pointer to QuadSPI Type.

• mask – QSPI interrupt source.

static inline void QSPI_DisableInterrupts(QuadSPI_Type *base, uint32_t mask)
Disables the QSPI interrupts.

Parameters
• base – Pointer to QuadSPI Type.

• mask – QSPI interrupt source.

static inline void QSPI_EnableDMA(QuadSPI_Type *base, uint32_t mask, bool enable)
Enables the QSPI DMA source.

Parameters
• base – Pointer to QuadSPI Type.

• mask – QSPI DMA source.

• enable – True means enable DMA, false means disable.

static inline uint32_t QSPI_GetTxDataRegisterAddress(QuadSPI_Type *base)
Gets the Tx data register address. It is used for DMA operation.

Parameters
• base – Pointer to QuadSPI Type.

Returns
QSPI Tx data register address.

uint32_t QSPI_GetRxDataRegisterAddress(QuadSPI_Type *base)
Gets the Rx data register address used for DMA operation.

This function returns the Rx data register address or Rx buffer address according to the Rx
read area settings.

Parameters
• base – Pointer to QuadSPI Type.

Returns
QSPI Rx data register address.

238 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline void QSPI_SetIPCommandAddress(QuadSPI_Type *base, uint32_t addr)
Sets the IP command address.

Parameters
• base – Pointer to QuadSPI Type.

• addr – IP command address.

static inline void QSPI_SetIPCommandSize(QuadSPI_Type *base, uint32_t size)
Sets the IP command size.

Parameters
• base – Pointer to QuadSPI Type.

• size – IP command size.

void QSPI_ExecuteIPCommand(QuadSPI_Type *base, uint32_t index)
Executes IP commands located in LUT table.

Parameters
• base – Pointer to QuadSPI Type.

• index – IP command located in which LUT table index.

void QSPI_ExecuteAHBCommand(QuadSPI_Type *base, uint32_t index)
Executes AHB commands located in LUT table.

Parameters
• base – Pointer to QuadSPI Type.

• index – AHB command located in which LUT table index.

void QSPI_UpdateLUT(QuadSPI_Type *base, uint32_t index, uint32_t *cmd)
Updates the LUT table.

Parameters
• base – Pointer to QuadSPI Type.

• index – Which LUT index needs to be located. It should be an integer di-
vided by 4.

• cmd – Command sequence array.

static inline void QSPI_ClearFifo(QuadSPI_Type *base, uint32_t mask)
Clears the QSPI FIFO logic.

Parameters
• base – Pointer to QuadSPI Type.

• mask – Which kind of QSPI FIFO to be cleared.

static inline void QSPI_ClearCommandSequence(QuadSPI_Type *base, qspi_command_seq_t seq)
@ brief Clears the command sequence for the IP/buffer command.

This function can reset the command sequence.

Parameters
• base – QSPI base address.

• seq – Which command sequence need to reset, IP command, buffer com-
mand or both.

2.23. Quad Serial Peripheral Interface Driver 239

MCUXpresso SDK Documentation, Release 25.09.00

void QSPI_SetReadDataArea(QuadSPI_Type *base, qspi_read_area_t area)
@ brief Set the RX buffer readout area.

This function can set the RX buffer readout, from AHB bus or IP Bus.

Parameters
• base – QSPI base address.

• area – QSPI Rx buffer readout area. AHB bus buffer or IP bus buffer.

void QSPI_WriteBlocking(QuadSPI_Type *base, const uint32_t *buffer, size_t size)
Sends a buffer of data bytes using a blocking method.

Note: This function blocks via polling until all bytes have been sent.

Parameters
• base – QSPI base pointer

• buffer – The data bytes to send

• size – The number of data bytes to send

static inline void QSPI_WriteData(QuadSPI_Type *base, uint32_t data)
Writes data into FIFO.

Parameters
• base – QSPI base pointer

• data – The data bytes to send

void QSPI_ReadBlocking(QuadSPI_Type *base, uint32_t *buffer, size_t size)
Receives a buffer of data bytes using a blocking method.

Note: This function blocks via polling until all bytes have been sent. Users shall notice that
this receive size shall not bigger than 64 bytes. As this interface is used to read flash status
registers. For flash contents read, please use AHB bus read, this is much more efficiency.

Parameters
• base – QSPI base pointer

• buffer – The data bytes to send

• size – The number of data bytes to receive

uint32_t QSPI_ReadData(QuadSPI_Type *base)
Receives data from data FIFO.

Parameters
• base – QSPI base pointer

Returns
The data in the FIFO.

static inline void QSPI_TransferSendBlocking(QuadSPI_Type *base, qspi_transfer_t *xfer)
Writes data to the QSPI transmit buffer.

This function writes a continuous data to the QSPI transmit FIFO. This function is a block
function and can return only when finished. This function uses polling methods.

Parameters

240 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

• base – Pointer to QuadSPI Type.

• xfer – QSPI transfer structure.

static inline void QSPI_TransferReceiveBlocking(QuadSPI_Type *base, qspi_transfer_t *xfer)
Reads data from the QSPI receive buffer in polling way.

This function reads continuous data from the QSPI receive buffer/FIFO. This function is a
blocking function and can return only when finished. This function uses polling methods.
Users shall notice that this receive size shall not bigger than 64 bytes. As this interface is
used to read flash status registers. For flash contents read, please use AHB bus read, this is
much more efficiency.

Parameters
• base – Pointer to QuadSPI Type.

• xfer – QSPI transfer structure.

FSL_QSPI_DRIVER_VERSION
QSPI driver version.

Status structure of QSPI.

Values:

enumerator kStatus_QSPI_Idle
QSPI is in idle state

enumerator kStatus_QSPI_Busy
QSPI is busy

enumerator kStatus_QSPI_Error
Error occurred during QSPI transfer

enum _qspi_read_area
QSPI read data area, from IP FIFO or AHB buffer.

Values:

enumerator kQSPI_ReadAHB
QSPI read from AHB buffer.

enumerator kQSPI_ReadIP
QSPI read from IP FIFO.

enum _qspi_command_seq
QSPI command sequence type.

Values:

enumerator kQSPI_IPSeq
IP command sequence

enumerator kQSPI_BufferSeq
Buffer command sequence

enumerator kQSPI_AllSeq

enum _qspi_fifo
QSPI buffer type.

Values:

2.23. Quad Serial Peripheral Interface Driver 241

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQSPI_TxFifo
QSPI Tx FIFO

enumerator kQSPI_RxFifo
QSPI Rx FIFO

enumerator kQSPI_AllFifo
QSPI all FIFO, including Tx and Rx

enum _qspi_endianness
QSPI transfer endianess.

Values:

enumerator kQSPI_64BigEndian
64 bits big endian

enumerator kQSPI_32LittleEndian
32 bit little endian

enumerator kQSPI_32BigEndian
32 bit big endian

enumerator kQSPI_64LittleEndian
64 bit little endian

enum _qspi_error_flags
QSPI error flags.

Values:

enumerator kQSPI_TxBufferFill
Tx buffer fill flag

enumerator kQSPI_TxBufferUnderrun
Tx buffer underrun flag

enumerator kQSPI_IllegalInstruction
Illegal instruction error flag

enumerator kQSPI_RxBufferOverflow
Rx buffer overflow flag

enumerator kQSPI_RxBufferDrain
Rx buffer drain flag

enumerator kQSPI_AHBIllegalTransaction
AHB illegal transaction error flag

enumerator kQSPI_AHBIllegalBurstSize
AHB illegal burst error flag

enumerator kQSPI_AHBBufferOverflow
AHB buffer overflow flag

enumerator kQSPI_IPCommandTriggerDuringAHBAccess
IP command trigger during AHB access error

enumerator kQSPI_IPCommandTriggerDuringIPAccess
IP command trigger cannot be executed

enumerator kQSPI_IPCommandTransactionFinished
IP command transaction finished flag

242 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQSPI_FlagAll
All error flag

enum _qspi_flags
QSPI state bit.

Values:

enumerator kQSPI_TxBufferFull
Tx buffer full flag

enumerator kQSPI_TxDMA
Tx DMA is requested or running

enumerator kQSPI_TxWatermark
Tx buffer watermark available

enumerator kQSPI_RxDMA
Rx DMA is requesting or running

enumerator kQSPI_RxBufferFull
Rx buffer full

enumerator kQSPI_RxWatermark
Rx buffer watermark exceeded

enumerator kQSPI_AHB3BufferFull
AHB buffer 3 full

enumerator kQSPI_AHB2BufferFull
AHB buffer 2 full

enumerator kQSPI_AHB1BufferFull
AHB buffer 1 full

enumerator kQSPI_AHB0BufferFull
AHB buffer 0 full

enumerator kQSPI_AHB3BufferNotEmpty
AHB buffer 3 not empty

enumerator kQSPI_AHB2BufferNotEmpty
AHB buffer 2 not empty

enumerator kQSPI_AHB1BufferNotEmpty
AHB buffer 1 not empty

enumerator kQSPI_AHB0BufferNotEmpty
AHB buffer 0 not empty

enumerator kQSPI_AHBTransactionPending
AHB access transaction pending

enumerator kQSPI_AHBAccess
AHB access

enumerator kQSPI_IPAccess
IP access

enumerator kQSPI_Busy
Module busy

2.23. Quad Serial Peripheral Interface Driver 243

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQSPI_StateAll
All flags

enum _qspi_interrupt_enable
QSPI interrupt enable.

Values:

enumerator kQSPI_TxBufferFillInterruptEnable
Tx buffer fill interrupt enable

enumerator kQSPI_TxBufferUnderrunInterruptEnable
Tx buffer underrun interrupt enable

enumerator kQSPI_IllegalInstructionInterruptEnable
Illegal instruction error interrupt enable

enumerator kQSPI_RxBufferOverflowInterruptEnable
Rx buffer overflow interrupt enable

enumerator kQSPI_RxBufferDrainInterruptEnable
Rx buffer drain interrupt enable

enumerator kQSPI_AHBIllegalTransactionInterruptEnable
AHB illegal transaction error interrupt enable

enumerator kQSPI_AHBIllegalBurstSizeInterruptEnable
AHB illegal burst error interrupt enable

enumerator kQSPI_AHBBufferOverflowInterruptEnable
AHB buffer overflow interrupt enable

enumerator kQSPI_IPCommandTriggerDuringAHBAccessInterruptEnable
IP command trigger during AHB access error

enumerator kQSPI_IPCommandTriggerDuringIPAccessInterruptEnable
IP command trigger cannot be executed

enumerator kQSPI_IPCommandTransactionFinishedInterruptEnable
IP command transaction finished interrupt enable

enumerator kQSPI_AllInterruptEnable
All error interrupt enable

enum _qspi_dma_enable
QSPI DMA request flag.

Values:

enumerator kQSPI_TxBufferFillDMAEnable
Tx buffer fill DMA

enumerator kQSPI_RxBufferDrainDMAEnable
Rx buffer drain DMA

enumerator kQSPI_AllDDMAEnable
All DMA source

enum _qspi_dqs_phrase_shift
Phrase shift number for DQS mode.

Values:

244 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kQSPI_DQSNoPhraseShift
No phase shift

enumerator kQSPI_DQSPhraseShift45Degree
Select 45 degree phase shift

enumerator kQSPI_DQSPhraseShift90Degree
Select 90 degree phase shift

enumerator kQSPI_DQSPhraseShift135Degree
Select 135 degree phase shift

enum _qspi_dqs_read_sample_clock
Qspi read sampling option.

Values:

enumerator kQSPI_ReadSampleClkInternalLoopback
Read sample clock adopts internal loopback mode.

enumerator kQSPI_ReadSampleClkLoopbackFromDqsPad
Dummy Read strobe generated by QSPI Controller and loopback from DQS pad.

enumerator kQSPI_ReadSampleClkExternalInputFromDqsPad
Flash provided Read strobe and input from DQS pad.

typedef enum _qspi_read_area qspi_read_area_t
QSPI read data area, from IP FIFO or AHB buffer.

typedef enum _qspi_command_seq qspi_command_seq_t
QSPI command sequence type.

typedef enum _qspi_fifo qspi_fifo_t
QSPI buffer type.

typedef enum _qspi_endianness qspi_endianness_t
QSPI transfer endianess.

typedef enum _qspi_dqs_phrase_shift qspi_dqs_phrase_shift_t
Phrase shift number for DQS mode.

typedef enum _qspi_dqs_read_sample_clock qspi_dqs_read_sample_clock_t
Qspi read sampling option.

typedef struct QspiDQSConfig qspi_dqs_config_t
DQS configure features.

typedef struct QspiFlashTiming qspi_flash_timing_t
Flash timing configuration.

typedef struct QspiConfig qspi_config_t
QSPI configuration structure.

typedef struct _qspi_flash_config qspi_flash_config_t
External flash configuration items.

typedef struct _qspi_transfer qspi_transfer_t
Transfer structure for QSPI.

typedef struct _ip_command_config ip_command_config_t
16-bit access reg for IPCR register

2.23. Quad Serial Peripheral Interface Driver 245

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _qspi_delay_chain_config qspi_delay_chain_config_t
Slave delay chain configuration items.

QSPI_LUT_SEQ(cmd0, pad0, op0, cmd1, pad1, op1)
Macro functions for LUT table.

FSL_FEATURE_QSPI_LUT_SEQ_UNIT

QSPI_CMD
Macro for QSPI LUT command.

QSPI_ADDR

QSPI_DUMMY

QSPI_MODE

QSPI_MODE2

QSPI_MODE4

QSPI_READ

QSPI_WRITE

QSPI_JMP_ON_CS

QSPI_ADDR_DDR

QSPI_MODE_DDR

QSPI_MODE2_DDR

QSPI_MODE4_DDR

QSPI_READ_DDR

QSPI_WRITE_DDR

QSPI_DATA_LEARN

QSPI_CMD_DDR

QSPI_CADDR

QSPI_CADDR_DDR

QSPI_STOP

QSPI_PAD_1
Macro for QSPI PAD.

QSPI_PAD_2

QSPI_PAD_4

QSPI_PAD_8

struct QspiDQSConfig
#include <fsl_qspi.h> DQS configure features.

246 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

uint32_t portADelayTapNum
Delay chain tap number selection for QSPI port A DQS

qspi_dqs_phrase_shift_t shift
Phase shift for internal DQS generation

qspi_dqs_read_sample_clock_t rxSampleClock
Read sample clock for Dqs.

bool enableDQSClkInverse
Enable inverse clock for internal DQS generation

struct QspiFlashTiming
#include <fsl_qspi.h> Flash timing configuration.

Public Members

uint32_t dataHoldTime
Serial flash data in hold time

uint32_t CSHoldTime
Serial flash CS hold time in terms of serial flash clock cycles

uint32_t CSSetupTime
Serial flash CS setup time in terms of serial flash clock cycles

struct QspiConfig
#include <fsl_qspi.h> QSPI configuration structure.

Public Members

uint32_t clockSource
Clock source for QSPI module

uint32_t baudRate
Serial flash clock baud rate

uint8_t txWatermark
QSPI transmit watermark value

uint8_t rxWatermark
QSPI receive watermark value.

uint32_t AHBbufferSize[FSL_FEATURE_QSPI_AHB_BUFFER_COUNT]
AHB buffer size.

uint8_t AHBbufferMaster[FSL_FEATURE_QSPI_AHB_BUFFER_COUNT]
AHB buffer master.

bool enableAHBbuffer3AllMaster
Is AHB buffer3 for all master.

qspi_read_area_t area
Which area Rx data readout

bool enableQspi
Enable QSPI after initialization

struct _qspi_flash_config
#include <fsl_qspi.h> External flash configuration items.

2.23. Quad Serial Peripheral Interface Driver 247

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

uint32_t flashA1Size
Flash A1 size

uint32_t flashA2Size
Flash A2 size

uint32_t lookuptable[FSL_FEATURE_QSPI_LUT_DEPTH]
Flash command in LUT

uint32_t dataHoldTime
Data line hold time.

uint32_t CSHoldTime
CS line hold time

uint32_t CSSetupTime
CS line setup time

uint32_t cloumnspace
Column space size

uint32_t dataLearnValue
Data Learn value if enable data learn

qspi_endianness_t endian
Flash data endianess.

bool enableWordAddress
If enable word address.

struct _qspi_transfer
#include <fsl_qspi.h> Transfer structure for QSPI.

Public Members

uint32_t *data
Pointer to data to transmit

size_t dataSize
Bytes to be transmit

struct _ip_command_config
#include <fsl_qspi.h> 16-bit access reg for IPCR register

struct _qspi_delay_chain_config
#include <fsl_qspi.h> Slave delay chain configuration items.

Public Members

bool highFreqDelay
Selects delay chain for low/high frequency of operation.

union IPCR_REG

248 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

__IO uint32_t IPCR
IP Configuration Register

struct _ip_command_config BITFIELD

struct BITFIELD

Public Members

__IO uint16_t IDATZ
16-bit access for IDATZ field in IPCR register

__IO uint8_t RESERVED_0
8-bit access for RESERVED_0 field in IPCR register

__IO uint8_t SEQID
8-bit access for SEQID field in IPCR register

2.24 RDC: Resource Domain Controller

enum _rdc_interrupts
RDC interrupts.

Values:

enumerator kRDC_RestoreCompleteInterrupt
Interrupt generated when the RDC has completed restoring state to a recently re-
powered memory regions.

enum _rdc_flags
RDC status.

Values:

enumerator kRDC_PowerDownDomainOn
Power down domain is ON.

enum _rdc_access_policy
Access permission policy.

Values:

enumerator kRDC_NoAccess
Could not read or write.

enumerator kRDC_WriteOnly
Write only.

enumerator kRDC_ReadOnly
Read only.

enumerator kRDC_ReadWrite
Read and write.

typedef struct _rdc_hardware_config rdc_hardware_config_t
RDC hardware configuration.

2.24. RDC: Resource Domain Controller 249

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _rdc_domain_assignment rdc_domain_assignment_t
Master domain assignment.

typedef struct _rdc_periph_access_config rdc_periph_access_config_t
Peripheral domain access permission configuration.

typedef struct _rdc_mem_access_config rdc_mem_access_config_t
Memory region domain access control configuration.

Note that when setting the rdc_mem_access_config_t::baseAddress and
rdc_mem_access_config_t::endAddress, should be aligned to the region resolution, see
rdc_mem_t definitions.

typedef struct _rdc_mem_status rdc_mem_status_t
Memory region access violation status.

void RDC_Init(RDC_Type *base)
Initializes the RDC module.

This function enables the RDC clock.

Parameters
• base – RDC peripheral base address.

void RDC_Deinit(RDC_Type *base)
De-initializes the RDC module.

This function disables the RDC clock.

Parameters
• base – RDC peripheral base address.

void RDC_GetHardwareConfig(RDC_Type *base, rdc_hardware_config_t *config)
Gets the RDC hardware configuration.

This function gets the RDC hardware configurations, including number of bus masters,
number of domains, number of memory regions and number of peripherals.

Parameters
• base – RDC peripheral base address.

• config – Pointer to the structure to get the configuration.

static inline void RDC_EnableInterrupts(RDC_Type *base, uint32_t mask)
Enable interrupts.

Parameters
• base – RDC peripheral base address.

• mask – Interrupts to enable, it is OR’ed value of enum _rdc_interrupts.

static inline void RDC_DisableInterrupts(RDC_Type *base, uint32_t mask)
Disable interrupts.

Parameters
• base – RDC peripheral base address.

• mask – Interrupts to disable, it is OR’ed value of enum _rdc_interrupts.

static inline uint32_t RDC_GetInterruptStatus(RDC_Type *base)
Get the interrupt pending status.

Parameters
• base – RDC peripheral base address.

250 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Returns
Interrupts pending status, it is OR’ed value of enum _rdc_interrupts.

static inline void RDC_ClearInterruptStatus(RDC_Type *base, uint32_t mask)
Clear interrupt pending status.

Parameters
• base – RDC peripheral base address.

• mask – Status to clear, it is OR’ed value of enum _rdc_interrupts.

static inline uint32_t RDC_GetStatus(RDC_Type *base)
Get RDC status.

Parameters
• base – RDC peripheral base address.

Returns
mask RDC status, it is OR’ed value of enum _rdc_flags.

static inline void RDC_ClearStatus(RDC_Type *base, uint32_t mask)
Clear RDC status.

Parameters
• base – RDC peripheral base address.

• mask – RDC status to clear, it is OR’ed value of enum _rdc_flags.

void RDC_SetMasterDomainAssignment(RDC_Type *base, rdc_master_t master, const
rdc_domain_assignment_t *domainAssignment)

Set master domain assignment.

Parameters
• base – RDC peripheral base address.

• master – Which master to set.

• domainAssignment – Pointer to the assignment.

void RDC_GetDefaultMasterDomainAssignment(rdc_domain_assignment_t *domainAssignment)
Get default master domain assignment.

The default configuration is:

assignment->domainId = 0U;
assignment->lock = 0U;

Parameters
• domainAssignment – Pointer to the assignment.

static inline void RDC_LockMasterDomainAssignment(RDC_Type *base, rdc_master_t master)
Lock master domain assignment.

Once locked, it could not be unlocked until next reset.

Parameters
• base – RDC peripheral base address.

• master – Which master to lock.

2.24. RDC: Resource Domain Controller 251

MCUXpresso SDK Documentation, Release 25.09.00

void RDC_SetPeriphAccessConfig(RDC_Type *base, const rdc_periph_access_config_t *config)
Set peripheral access policy.

Parameters
• base – RDC peripheral base address.

• config – Pointer to the policy configuration.

void RDC_GetDefaultPeriphAccessConfig(rdc_periph_access_config_t *config)
Get default peripheral access policy.

The default configuration is:

config->lock = false;
config->enableSema = false;
config->policy = RDC_ACCESS_POLICY(0, kRDC_ReadWrite) |

RDC_ACCESS_POLICY(1, kRDC_ReadWrite) |
RDC_ACCESS_POLICY(2, kRDC_ReadWrite) |
RDC_ACCESS_POLICY(3, kRDC_ReadWrite);

Parameters
• config – Pointer to the policy configuration.

static inline void RDC_LockPeriphAccessConfig(RDC_Type *base, rdc_periph_t periph)
Lock peripheral access policy configuration.

Once locked, it could not be unlocked until reset.

Parameters
• base – RDC peripheral base address.

• periph – Which peripheral to lock.

static inline uint8_t RDC_GetPeriphAccessPolicy(RDC_Type *base, rdc_periph_t periph, uint8_t
domainId)

Get the peripheral access policy for specific domain.

Parameters
• base – RDC peripheral base address.

• periph – Which peripheral to get.

• domainId – Get policy for which domain.

Returns
Access policy, see _rdc_access_policy.

void RDC_SetMemAccessConfig(RDC_Type *base, const rdc_mem_access_config_t *config)
Set memory region access policy.

Note that when setting the baseAddress and endAddress in config, should be aligned to the
region resolution, see rdc_mem_t definitions.

Parameters
• base – RDC peripheral base address.

• config – Pointer to the policy configuration.

void RDC_GetDefaultMemAccessConfig(rdc_mem_access_config_t *config)
Get default memory region access policy.

The default configuration is:

252 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

config->lock = false;
config->baseAddress = 0;
config->endAddress = 0;
config->policy = RDC_ACCESS_POLICY(0, kRDC_ReadWrite) |

RDC_ACCESS_POLICY(1, kRDC_ReadWrite) |
RDC_ACCESS_POLICY(2, kRDC_ReadWrite) |
RDC_ACCESS_POLICY(3, kRDC_ReadWrite);

Parameters
• config – Pointer to the policy configuration.

static inline void RDC_LockMemAccessConfig(RDC_Type *base, rdc_mem_t mem)
Lock memory access policy configuration.

Once locked, it could not be unlocked until reset. After locked, you can only call
RDC_SetMemAccessValid to enable the configuration, but can not disable it or change other
settings.

Parameters
• base – RDC peripheral base address.

• mem – Which memory region to lock.

static inline void RDC_SetMemAccessValid(RDC_Type *base, rdc_mem_t mem, bool valid)
Enable or disable memory access policy configuration.

Parameters
• base – RDC peripheral base address.

• mem – Which memory region to operate.

• valid – Pass in true to valid, false to invalid.

void RDC_GetMemViolationStatus(RDC_Type *base, rdc_mem_t mem, rdc_mem_status_t *status)
Get the memory region violation status.

The first access violation is captured. Subsequent violations are ignored until the status
register is cleared. Contents are cleared upon reading the register. Clearing of contents
occurs only when the status is read by the memory region’s associated domain ID(s).

Parameters
• base – RDC peripheral base address.

• mem – Which memory region to get.

• status – The returned status.

static inline void RDC_ClearMemViolationFlag(RDC_Type *base, rdc_mem_t mem)
Clear the memory region violation flag.

Parameters
• base – RDC peripheral base address.

• mem – Which memory region to clear.

static inline uint8_t RDC_GetMemAccessPolicy(RDC_Type *base, rdc_mem_t mem, uint8_t
domainId)

Get the memory region access policy for specific domain.

Parameters
• base – RDC peripheral base address.

• mem – Which memory region to get.

2.24. RDC: Resource Domain Controller 253

MCUXpresso SDK Documentation, Release 25.09.00

• domainId – Get policy for which domain.

Returns
Access policy, see _rdc_access_policy.

static inline uint8_t RDC_GetCurrentMasterDomainId(RDC_Type *base)
Gets the domain ID of the current bus master.

This function returns the domain ID of the current bus master.

Parameters
• base – RDC peripheral base address.

Returns
Domain ID of current bus master.

FSL_RDC_DRIVER_VERSION

RDC_ACCESS_POLICY(domainID, policy)

struct _rdc_hardware_config
#include <fsl_rdc.h> RDC hardware configuration.

Public Members

uint32_t domainNumber
Number of domains.

uint32_t masterNumber
Number of bus masters.

uint32_t periphNumber
Number of peripherals.

uint32_t memNumber
Number of memory regions.

struct _rdc_domain_assignment
#include <fsl_rdc.h>Master domain assignment.

Public Members

uint32_t domainId
Domain ID.

uint32_t __pad0__
Reserved.

uint32_t lock
Lock the domain assignment.

struct _rdc_periph_access_config
#include <fsl_rdc.h> Peripheral domain access permission configuration.

Public Members

rdc_periph_t periph
Peripheral name.

254 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

bool lock
Lock the permission until reset.

bool enableSema
Enable semaphore or not, when enabled, master should call RDC_SEMA42_Lock to lock
the semaphore gate accordingly before access the peripheral.

uint16_t policy
Access policy.

struct _rdc_mem_access_config
#include <fsl_rdc.h>Memory region domain access control configuration.

Note that when setting the rdc_mem_access_config_t::baseAddress and
rdc_mem_access_config_t::endAddress, should be aligned to the region resolution, see
rdc_mem_t definitions.

Public Members

rdc_mem_t mem
Memory region descriptor name.

bool lock
Lock the configuration.

uint64_t baseAddress
Start address of the memory region.

uint64_t endAddress
End address of the memory region.

uint16_t policy
Access policy.

struct _rdc_mem_status
#include <fsl_rdc.h>Memory region access violation status.

Public Members

bool hasViolation
Violating happens or not.

uint8_t domainID
Violating Domain ID.

uint64_t address
Violating Address.

2.25 RDC_SEMA42: Hardware Semaphores Driver

FSL_RDC_SEMA42_DRIVER_VERSION
RDC_SEMA42 driver version.

2.25. RDC_SEMA42: Hardware Semaphores Driver 255

MCUXpresso SDK Documentation, Release 25.09.00

void RDC_SEMA42_Init(RDC_SEMAPHORE_Type *base)
Initializes the RDC_SEMA42 module.

This function initializes the RDC_SEMA42 module. It only enables the clock but does not
reset the gates because the module might be used by other processors at the same time. To
reset the gates, call either RDC_SEMA42_ResetGate or RDC_SEMA42_ResetAllGates function.

Parameters
• base – RDC_SEMA42 peripheral base address.

void RDC_SEMA42_Deinit(RDC_SEMAPHORE_Type *base)
De-initializes the RDC_SEMA42 module.

This function de-initializes the RDC_SEMA42 module. It only disables the clock.

Parameters
• base – RDC_SEMA42 peripheral base address.

status_t RDC_SEMA42_TryLock(RDC_SEMAPHORE_Type *base, uint8_t gateNum, uint8_t
masterIndex, uint8_t domainId)

Tries to lock the RDC_SEMA42 gate.

This function tries to lock the specific RDC_SEMA42 gate. If the gate has been locked by
another processor, this function returns an error code.

Parameters
• base – RDC_SEMA42 peripheral base address.

• gateNum – Gate number to lock.

• masterIndex – Current processor master index.

• domainId – Current processor domain ID.

Return values
• kStatus_Success – Lock the sema42 gate successfully.

• kStatus_Failed – Sema42 gate has been locked by another processor.

void RDC_SEMA42_Lock(RDC_SEMAPHORE_Type *base, uint8_t gateNum, uint8_t
masterIndex, uint8_t domainId)

Locks the RDC_SEMA42 gate.

This function locks the specific RDC_SEMA42 gate. If the gate has been locked by other
processors, this function waits until it is unlocked and then lock it.

Parameters
• base – RDC_SEMA42 peripheral base address.

• gateNum – Gate number to lock.

• masterIndex – Current processor master index.

• domainId – Current processor domain ID.

static inline void RDC_SEMA42_Unlock(RDC_SEMAPHORE_Type *base, uint8_t gateNum)
Unlocks the RDC_SEMA42 gate.

This function unlocks the specific RDC_SEMA42 gate. It only writes unlock value to the
RDC_SEMA42 gate register. However, it does not check whether the RDC_SEMA42 gate is
locked by the current processor or not. As a result, if the RDC_SEMA42 gate is not locked by
the current processor, this function has no effect.

Parameters
• base – RDC_SEMA42 peripheral base address.

256 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

• gateNum – Gate number to unlock.

static inline int32_t RDC_SEMA42_GetLockMasterIndex(RDC_SEMAPHORE_Type *base, uint8_t
gateNum)

Gets which master has currently locked the gate.

Parameters
• base – RDC_SEMA42 peripheral base address.

• gateNum – Gate number.

Returns
Return -1 if the gate is not locked by any master, otherwise return the master
index.

int32_t RDC_SEMA42_GetLockDomainID(RDC_SEMAPHORE_Type *base, uint8_t gateNum)
Gets which domain has currently locked the gate.

Parameters
• base – RDC_SEMA42 peripheral base address.

• gateNum – Gate number.

Returns
Return -1 if the gate is not locked by any domain, otherwise return the domain
ID.

status_t RDC_SEMA42_ResetGate(RDC_SEMAPHORE_Type *base, uint8_t gateNum)
Resets the RDC_SEMA42 gate to an unlocked status.

This function resets a RDC_SEMA42 gate to an unlocked status.

Parameters
• base – RDC_SEMA42 peripheral base address.

• gateNum – Gate number.

Return values
• kStatus_Success – RDC_SEMA42 gate is reset successfully.

• kStatus_Failed – Some other reset process is ongoing.

static inline status_t RDC_SEMA42_ResetAllGates(RDC_SEMAPHORE_Type *base)
Resets all RDC_SEMA42 gates to an unlocked status.

This function resets all RDC_SEMA42 gate to an unlocked status.

Parameters
• base – RDC_SEMA42 peripheral base address.

Return values
• kStatus_Success – RDC_SEMA42 is reset successfully.

• kStatus_RDC_SEMA42_Reseting – Some other reset process is ongoing.

RDC_SEMA42_GATE_NUM_RESET_ALL
The number to reset all RDC_SEMA42 gates.

RDC_SEMA42_GATEn(base, n)
RDC_SEMA42 gate n register address.

RDC_SEMA42_GATE_COUNT
RDC_SEMA42 gate count.

RDC_SEMAPHORE_GATE_GTFSM_MASK

2.25. RDC_SEMA42: Hardware Semaphores Driver 257

MCUXpresso SDK Documentation, Release 25.09.00

2.26 SAI: Serial Audio Interface

2.27 SAI Driver

void SAI_Init(I2S_Type *base)
Initializes the SAI peripheral.

This API gates the SAI clock. The SAImodule can’t operate unless SAI_Init is called to enable
the clock.

Parameters
• base – SAI base pointer.

void SAI_Deinit(I2S_Type *base)
De-initializes the SAI peripheral.

This API gates the SAI clock. The SAI module can’t operate unless SAI_TxInit or SAI_RxInit
is called to enable the clock.

Parameters
• base – SAI base pointer.

void SAI_TxReset(I2S_Type *base)
Resets the SAI Tx.

This function enables the software reset and FIFO reset of SAI Tx. After reset, clear the reset
bit.

Parameters
• base – SAI base pointer

void SAI_RxReset(I2S_Type *base)
Resets the SAI Rx.

This function enables the software reset and FIFO reset of SAI Rx. After reset, clear the reset
bit.

Parameters
• base – SAI base pointer

void SAI_TxEnable(I2S_Type *base, bool enable)
Enables/disables the SAI Tx.

Parameters
• base – SAI base pointer.

• enable – True means enable SAI Tx, false means disable.

void SAI_RxEnable(I2S_Type *base, bool enable)
Enables/disables the SAI Rx.

Parameters
• base – SAI base pointer.

• enable – True means enable SAI Rx, false means disable.

static inline void SAI_TxSetBitClockDirection(I2S_Type *base, sai_master_slave_tmasterSlave)
Set Rx bit clock direction.

Select bit clock direction, master or slave.

Parameters

258 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

• base – SAI base pointer.

• masterSlave – reference sai_master_slave_t.

static inline void SAI_RxSetBitClockDirection(I2S_Type *base, sai_master_slave_tmasterSlave)
Set Rx bit clock direction.

Select bit clock direction, master or slave.

Parameters
• base – SAI base pointer.

• masterSlave – reference sai_master_slave_t.

static inline void SAI_RxSetFrameSyncDirection(I2S_Type *base, sai_master_slave_t
masterSlave)

Set Rx frame sync direction.

Select frame sync direction, master or slave.

Parameters
• base – SAI base pointer.

• masterSlave – reference sai_master_slave_t.

static inline void SAI_TxSetFrameSyncDirection(I2S_Type *base, sai_master_slave_tmasterSlave)
Set Tx frame sync direction.

Select frame sync direction, master or slave.

Parameters
• base – SAI base pointer.

• masterSlave – reference sai_master_slave_t.

void SAI_TxSetBitClockRate(I2S_Type *base, uint32_t sourceClockHz, uint32_t sampleRate,
uint32_t bitWidth, uint32_t channelNumbers)

Transmitter bit clock rate configurations.

Parameters
• base – SAI base pointer.

• sourceClockHz – Bit clock source frequency.

• sampleRate – Audio data sample rate.

• bitWidth – Audio data bitWidth.

• channelNumbers – Audio channel numbers.

void SAI_RxSetBitClockRate(I2S_Type *base, uint32_t sourceClockHz, uint32_t sampleRate,
uint32_t bitWidth, uint32_t channelNumbers)

Receiver bit clock rate configurations.

Parameters
• base – SAI base pointer.

• sourceClockHz – Bit clock source frequency.

• sampleRate – Audio data sample rate.

• bitWidth – Audio data bitWidth.

• channelNumbers – Audio channel numbers.

2.27. SAI Driver 259

MCUXpresso SDK Documentation, Release 25.09.00

void SAI_TxSetBitclockConfig(I2S_Type *base, sai_master_slave_tmasterSlave, sai_bit_clock_t
*config)

Transmitter Bit clock configurations.

Parameters
• base – SAI base pointer.

• masterSlave – master or slave.

• config – bit clock other configurations, can be NULL in slave mode.

void SAI_RxSetBitclockConfig(I2S_Type *base, sai_master_slave_tmasterSlave, sai_bit_clock_t
*config)

Receiver Bit clock configurations.

Parameters
• base – SAI base pointer.

• masterSlave – master or slave.

• config – bit clock other configurations, can be NULL in slave mode.

void SAI_TxSetFrameSyncConfig(I2S_Type *base, sai_master_slave_tmasterSlave,
sai_frame_sync_t *config)

SAI transmitter Frame sync configurations.

Parameters
• base – SAI base pointer.

• masterSlave – master or slave.

• config – frame sync configurations, can be NULL in slave mode.

void SAI_RxSetFrameSyncConfig(I2S_Type *base, sai_master_slave_tmasterSlave,
sai_frame_sync_t *config)

SAI receiver Frame sync configurations.

Parameters
• base – SAI base pointer.

• masterSlave – master or slave.

• config – frame sync configurations, can be NULL in slave mode.

void SAI_TxSetSerialDataConfig(I2S_Type *base, sai_serial_data_t *config)
SAI transmitter Serial data configurations.

Parameters
• base – SAI base pointer.

• config – serial data configurations.

void SAI_RxSetSerialDataConfig(I2S_Type *base, sai_serial_data_t *config)
SAI receiver Serial data configurations.

Parameters
• base – SAI base pointer.

• config – serial data configurations.

void SAI_TxSetConfig(I2S_Type *base, sai_transceiver_t *config)
SAI transmitter configurations.

Parameters

260 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

• base – SAI base pointer.

• config – transmitter configurations.

void SAI_RxSetConfig(I2S_Type *base, sai_transceiver_t *config)
SAI receiver configurations.

Parameters
• base – SAI base pointer.

• config – receiver configurations.

void SAI_GetClassicI2SConfig(sai_transceiver_t *config, sai_word_width_t bitWidth,
sai_mono_stereo_tmode, uint32_t saiChannelMask)

Get classic I2S mode configurations.

Parameters
• config – transceiver configurations.

• bitWidth – audio data bitWidth.

• mode – audio data channel.

• saiChannelMask – mask value of the channel to be enable.

void SAI_GetLeftJustifiedConfig(sai_transceiver_t *config, sai_word_width_t bitWidth,
sai_mono_stereo_tmode, uint32_t saiChannelMask)

Get left justified mode configurations.

Parameters
• config – transceiver configurations.

• bitWidth – audio data bitWidth.

• mode – audio data channel.

• saiChannelMask – mask value of the channel to be enable.

void SAI_GetRightJustifiedConfig(sai_transceiver_t *config, sai_word_width_t bitWidth,
sai_mono_stereo_tmode, uint32_t saiChannelMask)

Get right justified mode configurations.

Parameters
• config – transceiver configurations.

• bitWidth – audio data bitWidth.

• mode – audio data channel.

• saiChannelMask – mask value of the channel to be enable.

void SAI_GetTDMConfig(sai_transceiver_t *config, sai_frame_sync_len_t frameSyncWidth,
sai_word_width_t bitWidth, uint32_t dataWordNum, uint32_t
saiChannelMask)

Get TDMmode configurations.

Parameters
• config – transceiver configurations.

• frameSyncWidth – length of frame sync.

• bitWidth – audio data word width.

• dataWordNum – word number in one frame.

• saiChannelMask – mask value of the channel to be enable.

2.27. SAI Driver 261

MCUXpresso SDK Documentation, Release 25.09.00

void SAI_GetDSPConfig(sai_transceiver_t *config, sai_frame_sync_len_t frameSyncWidth,
sai_word_width_t bitWidth, sai_mono_stereo_tmode, uint32_t
saiChannelMask)

Get DSP mode configurations.

DSP/PCMMODEB configuration flow for TX. RX is similiar but uses SAI_RxSetConfig instead
of SAI_TxSetConfig:

SAI_GetDSPConfig(config, kSAI_FrameSyncLenOneBitClk, bitWidth, kSAI_Stereo, channelMask)
SAI_TxSetConfig(base, config)

Note: DSP mode is also called PCM mode which support MODE A and MODE B,
DSP/PCM MODE A configuration flow. RX is similiar but uses SAI_RxSetConfig instead of
SAI_TxSetConfig:

SAI_GetDSPConfig(config, kSAI_FrameSyncLenOneBitClk, bitWidth, kSAI_Stereo, channelMask)
config->frameSync.frameSyncEarly = true;
SAI_TxSetConfig(base, config)

Parameters
• config – transceiver configurations.

• frameSyncWidth – length of frame sync.

• bitWidth – audio data bitWidth.

• mode – audio data channel.

• saiChannelMask – mask value of the channel to enable.

static inline uint32_t SAI_TxGetStatusFlag(I2S_Type *base)
Gets the SAI Tx status flag state.

Parameters
• base – SAI base pointer

Returns
SAI Tx status flag value. Use the Status Mask to get the status value needed.

static inline void SAI_TxClearStatusFlags(I2S_Type *base, uint32_t mask)
Clears the SAI Tx status flag state.

Parameters
• base – SAI base pointer

• mask – State mask. It can be a combination of the following source if de-
fined:

– kSAI_WordStartFlag

– kSAI_SyncErrorFlag

– kSAI_FIFOErrorFlag

static inline uint32_t SAI_RxGetStatusFlag(I2S_Type *base)
Gets the SAI Tx status flag state.

Parameters
• base – SAI base pointer

262 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Returns
SAI Rx status flag value. Use the Status Mask to get the status value needed.

static inline void SAI_RxClearStatusFlags(I2S_Type *base, uint32_t mask)
Clears the SAI Rx status flag state.

Parameters
• base – SAI base pointer

• mask – State mask. It can be a combination of the following sources if de-
fined.

– kSAI_WordStartFlag

– kSAI_SyncErrorFlag

– kSAI_FIFOErrorFlag

void SAI_TxSoftwareReset(I2S_Type *base, sai_reset_type_t resetType)
Do software reset or FIFO reset .

FIFO reset means clear all the data in the FIFO, and make the FIFO pointer both to 0. Soft-
ware reset means clear the Tx internal logic, including the bit clock, frame count etc. But
software reset will not clear any configuration registers like TCR1~TCR5. This function will
also clear all the error flags such as FIFO error, sync error etc.

Parameters
• base – SAI base pointer

• resetType – Reset type, FIFO reset or software reset

void SAI_RxSoftwareReset(I2S_Type *base, sai_reset_type_t resetType)
Do software reset or FIFO reset .

FIFO reset means clear all the data in the FIFO, and make the FIFO pointer both to 0. Soft-
ware reset means clear the Rx internal logic, including the bit clock, frame count etc. But
software reset will not clear any configuration registers like RCR1~RCR5. This function will
also clear all the error flags such as FIFO error, sync error etc.

Parameters
• base – SAI base pointer

• resetType – Reset type, FIFO reset or software reset

void SAI_TxSetChannelFIFOMask(I2S_Type *base, uint8_t mask)
Set the Tx channel FIFO enable mask.

Parameters
• base – SAI base pointer

• mask – Channel enable mask, 0 means all channel FIFO disabled, 1 means
channel 0 enabled, 3 means both channel 0 and channel 1 enabled.

void SAI_RxSetChannelFIFOMask(I2S_Type *base, uint8_t mask)
Set the Rx channel FIFO enable mask.

Parameters
• base – SAI base pointer

• mask – Channel enable mask, 0 means all channel FIFO disabled, 1 means
channel 0 enabled, 3 means both channel 0 and channel 1 enabled.

2.27. SAI Driver 263

MCUXpresso SDK Documentation, Release 25.09.00

void SAI_TxSetDataOrder(I2S_Type *base, sai_data_order_t order)
Set the Tx data order.

Parameters
• base – SAI base pointer

• order – Data order MSB or LSB

void SAI_RxSetDataOrder(I2S_Type *base, sai_data_order_t order)
Set the Rx data order.

Parameters
• base – SAI base pointer

• order – Data order MSB or LSB

void SAI_TxSetBitClockPolarity(I2S_Type *base, sai_clock_polarity_t polarity)
Set the Tx data order.

Parameters
• base – SAI base pointer

• polarity –

void SAI_RxSetBitClockPolarity(I2S_Type *base, sai_clock_polarity_t polarity)
Set the Rx data order.

Parameters
• base – SAI base pointer

• polarity –

void SAI_TxSetFrameSyncPolarity(I2S_Type *base, sai_clock_polarity_t polarity)
Set the Tx data order.

Parameters
• base – SAI base pointer

• polarity –

void SAI_RxSetFrameSyncPolarity(I2S_Type *base, sai_clock_polarity_t polarity)
Set the Rx data order.

Parameters
• base – SAI base pointer

• polarity –

static inline void SAI_TxEnableInterrupts(I2S_Type *base, uint32_t mask)
Enables the SAI Tx interrupt requests.

Parameters
• base – SAI base pointer

• mask – interrupt source The parameter can be a combination of the follow-
ing sources if defined.

– kSAI_WordStartInterruptEnable

– kSAI_SyncErrorInterruptEnable

– kSAI_FIFOWarningInterruptEnable

– kSAI_FIFORequestInterruptEnable

264 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

– kSAI_FIFOErrorInterruptEnable

static inline void SAI_RxEnableInterrupts(I2S_Type *base, uint32_t mask)
Enables the SAI Rx interrupt requests.

Parameters
• base – SAI base pointer

• mask – interrupt source The parameter can be a combination of the follow-
ing sources if defined.

– kSAI_WordStartInterruptEnable

– kSAI_SyncErrorInterruptEnable

– kSAI_FIFOWarningInterruptEnable

– kSAI_FIFORequestInterruptEnable

– kSAI_FIFOErrorInterruptEnable

static inline void SAI_TxDisableInterrupts(I2S_Type *base, uint32_t mask)
Disables the SAI Tx interrupt requests.

Parameters
• base – SAI base pointer

• mask – interrupt source The parameter can be a combination of the follow-
ing sources if defined.

– kSAI_WordStartInterruptEnable

– kSAI_SyncErrorInterruptEnable

– kSAI_FIFOWarningInterruptEnable

– kSAI_FIFORequestInterruptEnable

– kSAI_FIFOErrorInterruptEnable

static inline void SAI_RxDisableInterrupts(I2S_Type *base, uint32_t mask)
Disables the SAI Rx interrupt requests.

Parameters
• base – SAI base pointer

• mask – interrupt source The parameter can be a combination of the follow-
ing sources if defined.

– kSAI_WordStartInterruptEnable

– kSAI_SyncErrorInterruptEnable

– kSAI_FIFOWarningInterruptEnable

– kSAI_FIFORequestInterruptEnable

– kSAI_FIFOErrorInterruptEnable

static inline void SAI_TxEnableDMA(I2S_Type *base, uint32_t mask, bool enable)
Enables/disables the SAI Tx DMA requests.

Parameters
• base – SAI base pointer

• mask – DMA source The parameter can be combination of the following
sources if defined.

– kSAI_FIFOWarningDMAEnable

2.27. SAI Driver 265

MCUXpresso SDK Documentation, Release 25.09.00

– kSAI_FIFORequestDMAEnable

• enable – True means enable DMA, false means disable DMA.

static inline void SAI_RxEnableDMA(I2S_Type *base, uint32_t mask, bool enable)
Enables/disables the SAI Rx DMA requests.

Parameters
• base – SAI base pointer

• mask – DMA source The parameter can be a combination of the following
sources if defined.

– kSAI_FIFOWarningDMAEnable

– kSAI_FIFORequestDMAEnable

• enable – True means enable DMA, false means disable DMA.

static inline uintptr_t SAI_TxGetDataRegisterAddress(I2S_Type *base, uint32_t channel)
Gets the SAI Tx data register address.

This API is used to provide a transfer address for the SAI DMA transfer configuration.

Parameters
• base – SAI base pointer.

• channel – Which data channel used.

Returns
data register address.

static inline uintptr_t SAI_RxGetDataRegisterAddress(I2S_Type *base, uint32_t channel)
Gets the SAI Rx data register address.

This API is used to provide a transfer address for the SAI DMA transfer configuration.

Parameters
• base – SAI base pointer.

• channel – Which data channel used.

Returns
data register address.

void SAI_WriteBlocking(I2S_Type *base, uint32_t channel, uint32_t bitWidth, uint8_t *buffer,
uint32_t size)

Sends data using a blocking method.

Note: This function blocks by polling until data is ready to be sent.

Parameters
• base – SAI base pointer.

• channel – Data channel used.

• bitWidth – How many bits in an audio word; usually 8/16/24/32 bits.

• buffer – Pointer to the data to be written.

• size – Bytes to be written.

266 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

void SAI_WriteMultiChannelBlocking(I2S_Type *base, uint32_t channel, uint32_t channelMask,
uint32_t bitWidth, uint8_t *buffer, uint32_t size)

Sends data to multi channel using a blocking method.

Note: This function blocks by polling until data is ready to be sent.

Parameters
• base – SAI base pointer.

• channel – Data channel used.

• channelMask – channel mask.

• bitWidth – How many bits in an audio word; usually 8/16/24/32 bits.

• buffer – Pointer to the data to be written.

• size – Bytes to be written.

static inline void SAI_WriteData(I2S_Type *base, uint32_t channel, uint32_t data)
Writes data into SAI FIFO.

Parameters
• base – SAI base pointer.

• channel – Data channel used.

• data – Data needs to be written.

void SAI_ReadBlocking(I2S_Type *base, uint32_t channel, uint32_t bitWidth, uint8_t *buffer,
uint32_t size)

Receives data using a blocking method.

Note: This function blocks by polling until data is ready to be sent.

Parameters
• base – SAI base pointer.

• channel – Data channel used.

• bitWidth – How many bits in an audio word; usually 8/16/24/32 bits.

• buffer – Pointer to the data to be read.

• size – Bytes to be read.

void SAI_ReadMultiChannelBlocking(I2S_Type *base, uint32_t channel, uint32_t channelMask,
uint32_t bitWidth, uint8_t *buffer, uint32_t size)

Receives multi channel data using a blocking method.

Note: This function blocks by polling until data is ready to be sent.

Parameters
• base – SAI base pointer.

• channel – Data channel used.

• channelMask – channel mask.

2.27. SAI Driver 267

MCUXpresso SDK Documentation, Release 25.09.00

• bitWidth – How many bits in an audio word; usually 8/16/24/32 bits.

• buffer – Pointer to the data to be read.

• size – Bytes to be read.

static inline uint32_t SAI_ReadData(I2S_Type *base, uint32_t channel)
Reads data from the SAI FIFO.

Parameters
• base – SAI base pointer.

• channel – Data channel used.

Returns
Data in SAI FIFO.

void SAI_TransferTxCreateHandle(I2S_Type *base, sai_handle_t *handle, sai_transfer_callback_t
callback, void *userData)

Initializes the SAI Tx handle.

This function initializes the Tx handle for the SAI Tx transactional APIs. Call this function
once to get the handle initialized.

Parameters
• base – SAI base pointer

• handle – SAI handle pointer.

• callback – Pointer to the user callback function.

• userData – User parameter passed to the callback function

void SAI_TransferRxCreateHandle(I2S_Type *base, sai_handle_t *handle, sai_transfer_callback_t
callback, void *userData)

Initializes the SAI Rx handle.

This function initializes the Rx handle for the SAI Rx transactional APIs. Call this function
once to get the handle initialized.

Parameters
• base – SAI base pointer.

• handle – SAI handle pointer.

• callback – Pointer to the user callback function.

• userData – User parameter passed to the callback function.

void SAI_TransferTxSetConfig(I2S_Type *base, sai_handle_t *handle, sai_transceiver_t *config)
SAI transmitter transfer configurations.

This function initializes the Tx, include bit clock, frame sync, master clock, serial data and
fifo configurations.

Parameters
• base – SAI base pointer.

• handle – SAI handle pointer.

• config – tranmitter configurations.

void SAI_TransferRxSetConfig(I2S_Type *base, sai_handle_t *handle, sai_transceiver_t *config)
SAI receiver transfer configurations.

This function initializes the Rx, include bit clock, frame sync, master clock, serial data and
fifo configurations.

268 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• base – SAI base pointer.

• handle – SAI handle pointer.

• config – receiver configurations.

status_t SAI_TransferSendNonBlocking(I2S_Type *base, sai_handle_t *handle, sai_transfer_t
*xfer)

Performs an interrupt non-blocking send transfer on SAI.

Note: This API returns immediately after the transfer initiates. Call the
SAI_TxGetTransferStatusIRQ to poll the transfer status and check whether the trans-
fer is finished. If the return status is not kStatus_SAI_Busy, the transfer is finished.

Parameters
• base – SAI base pointer.

• handle – Pointer to the sai_handle_t structure which stores the transfer
state.

• xfer – Pointer to the sai_transfer_t structure.

Return values
• kStatus_Success – Successfully started the data receive.

• kStatus_SAI_TxBusy – Previous receive still not finished.

• kStatus_InvalidArgument – The input parameter is invalid.

status_t SAI_TransferReceiveNonBlocking(I2S_Type *base, sai_handle_t *handle, sai_transfer_t
*xfer)

Performs an interrupt non-blocking receive transfer on SAI.

Note: This API returns immediately after the transfer initiates. Call the
SAI_RxGetTransferStatusIRQ to poll the transfer status and check whether the trans-
fer is finished. If the return status is not kStatus_SAI_Busy, the transfer is finished.

Parameters
• base – SAI base pointer

• handle – Pointer to the sai_handle_t structure which stores the transfer
state.

• xfer – Pointer to the sai_transfer_t structure.

Return values
• kStatus_Success – Successfully started the data receive.

• kStatus_SAI_RxBusy – Previous receive still not finished.

• kStatus_InvalidArgument – The input parameter is invalid.

status_t SAI_TransferGetSendCount(I2S_Type *base, sai_handle_t *handle, size_t *count)
Gets a set byte count.

Parameters
• base – SAI base pointer.

2.27. SAI Driver 269

MCUXpresso SDK Documentation, Release 25.09.00

• handle – Pointer to the sai_handle_t structure which stores the transfer
state.

• count – Bytes count sent.

Return values
• kStatus_Success – Succeed get the transfer count.

• kStatus_NoTransferInProgress – There is not a non-blocking transaction cur-
rently in progress.

status_t SAI_TransferGetReceiveCount(I2S_Type *base, sai_handle_t *handle, size_t *count)
Gets a received byte count.

Parameters
• base – SAI base pointer.

• handle – Pointer to the sai_handle_t structure which stores the transfer
state.

• count – Bytes count received.

Return values
• kStatus_Success – Succeed get the transfer count.

• kStatus_NoTransferInProgress – There is not a non-blocking transaction cur-
rently in progress.

void SAI_TransferAbortSend(I2S_Type *base, sai_handle_t *handle)
Aborts the current send.

Note: This API can be called any time when an interrupt non-blocking transfer initiates to
abort the transfer early.

Parameters
• base – SAI base pointer.

• handle – Pointer to the sai_handle_t structure which stores the transfer
state.

void SAI_TransferAbortReceive(I2S_Type *base, sai_handle_t *handle)
Aborts the current IRQ receive.

Note: This API can be called when an interrupt non-blocking transfer initiates to abort the
transfer early.

Parameters
• base – SAI base pointer

• handle – Pointer to the sai_handle_t structure which stores the transfer
state.

void SAI_TransferTerminateSend(I2S_Type *base, sai_handle_t *handle)
Terminate all SAI send.

This function will clear all transfer slots buffered in the sai queue. If users only want to
abort the current transfer slot, please call SAI_TransferAbortSend.

Parameters

270 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

• base – SAI base pointer.

• handle – SAI eDMA handle pointer.

void SAI_TransferTerminateReceive(I2S_Type *base, sai_handle_t *handle)
Terminate all SAI receive.

This function will clear all transfer slots buffered in the sai queue. If users only want to
abort the current transfer slot, please call SAI_TransferAbortReceive.

Parameters
• base – SAI base pointer.

• handle – SAI eDMA handle pointer.

void SAI_TransferTxHandleIRQ(I2S_Type *base, sai_handle_t *handle)
Tx interrupt handler.

Parameters
• base – SAI base pointer.

• handle – Pointer to the sai_handle_t structure.

void SAI_TransferRxHandleIRQ(I2S_Type *base, sai_handle_t *handle)
Tx interrupt handler.

Parameters
• base – SAI base pointer.

• handle – Pointer to the sai_handle_t structure.

void SAI_DriverIRQHandler(uint32_t instance)
SAI driver IRQ handler common entry.

This function provides the common IRQ request entry for SAI.

Parameters
• instance – SAI instance.

FSL_SAI_DRIVER_VERSION
Version 2.4.9

_sai_status_t, SAI return status.

Values:

enumerator kStatus_SAI_TxBusy
SAI Tx is busy.

enumerator kStatus_SAI_RxBusy
SAI Rx is busy.

enumerator kStatus_SAI_TxError
SAI Tx FIFO error.

enumerator kStatus_SAI_RxError
SAI Rx FIFO error.

enumerator kStatus_SAI_QueueFull
SAI transfer queue is full.

enumerator kStatus_SAI_TxIdle
SAI Tx is idle

2.27. SAI Driver 271

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus_SAI_RxIdle
SAI Rx is idle

_sai_channel_mask,.sai channel mask value, actual channel numbers is depend soc specific

Values:

enumerator kSAI_Channel0Mask
channel 0 mask value

enumerator kSAI_Channel1Mask
channel 1 mask value

enumerator kSAI_Channel2Mask
channel 2 mask value

enumerator kSAI_Channel3Mask
channel 3 mask value

enumerator kSAI_Channel4Mask
channel 4 mask value

enumerator kSAI_Channel5Mask
channel 5 mask value

enumerator kSAI_Channel6Mask
channel 6 mask value

enumerator kSAI_Channel7Mask
channel 7 mask value

enum _sai_protocol
Define the SAI bus type.

Values:

enumerator kSAI_BusLeftJustified
Uses left justified format.

enumerator kSAI_BusRightJustified
Uses right justified format.

enumerator kSAI_BusI2S
Uses I2S format.

enumerator kSAI_BusPCMA
Uses I2S PCM A format.

enumerator kSAI_BusPCMB
Uses I2S PCM B format.

enum _sai_master_slave
Master or slave mode.

Values:

enumerator kSAI_Master
Master mode include bclk and frame sync

enumerator kSAI_Slave
Slave mode include bclk and frame sync

272 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSAI_Bclk_Master_FrameSync_Slave
bclk in master mode, frame sync in slave mode

enumerator kSAI_Bclk_Slave_FrameSync_Master
bclk in slave mode, frame sync in master mode

enum _sai_mono_stereo
Mono or stereo audio format.

Values:

enumerator kSAI_Stereo
Stereo sound.

enumerator kSAI_MonoRight
Only Right channel have sound.

enumerator kSAI_MonoLeft
Only left channel have sound.

enum _sai_data_order
SAI data order, MSB or LSB.

Values:

enumerator kSAI_DataLSB
LSB bit transferred first

enumerator kSAI_DataMSB
MSB bit transferred first

enum _sai_clock_polarity
SAI clock polarity, active high or low.

Values:

enumerator kSAI_PolarityActiveHigh
Drive outputs on rising edge

enumerator kSAI_PolarityActiveLow
Drive outputs on falling edge

enumerator kSAI_SampleOnFallingEdge
Sample inputs on falling edge

enumerator kSAI_SampleOnRisingEdge
Sample inputs on rising edge

enum _sai_sync_mode
Synchronous or asynchronous mode.

Values:

enumerator kSAI_ModeAsync
Asynchronous mode

enumerator kSAI_ModeSync
Synchronous mode (with receiver or transmit)

enum _sai_mclk_source
Mater clock source.

Values:

2.27. SAI Driver 273

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSAI_MclkSourceSysclk
Master clock from the system clock

enumerator kSAI_MclkSourceSelect1
Master clock from source 1

enumerator kSAI_MclkSourceSelect2
Master clock from source 2

enumerator kSAI_MclkSourceSelect3
Master clock from source 3

enum _sai_bclk_source
Bit clock source.

Values:

enumerator kSAI_BclkSourceBusclk
Bit clock using bus clock

enumerator kSAI_BclkSourceMclkOption1
Bit clock MCLK option 1

enumerator kSAI_BclkSourceMclkOption2
Bit clock MCLK option2

enumerator kSAI_BclkSourceMclkOption3
Bit clock MCLK option3

enumerator kSAI_BclkSourceMclkDiv
Bit clock using master clock divider

enumerator kSAI_BclkSourceOtherSai0
Bit clock from other SAI device

enumerator kSAI_BclkSourceOtherSai1
Bit clock from other SAI device

_sai_interrupt_enable_t, The SAI interrupt enable flag

Values:

enumerator kSAI_WordStartInterruptEnable
Word start flag, means the first word in a frame detected

enumerator kSAI_SyncErrorInterruptEnable
Sync error flag, means the sync error is detected

enumerator kSAI_FIFOWarningInterruptEnable
FIFO warning flag, means the FIFO is empty

enumerator kSAI_FIFOErrorInterruptEnable
FIFO error flag

_sai_dma_enable_t, The DMA request sources

Values:

enumerator kSAI_FIFOWarningDMAEnable
FIFO warning caused by the DMA request

274 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

_sai_flags, The SAI status flag

Values:

enumerator kSAI_WordStartFlag
Word start flag, means the first word in a frame detected

enumerator kSAI_SyncErrorFlag
Sync error flag, means the sync error is detected

enumerator kSAI_FIFOErrorFlag
FIFO error flag

enumerator kSAI_FIFOWarningFlag
FIFO warning flag

enum _sai_reset_type
The reset type.

Values:

enumerator kSAI_ResetTypeSoftware
Software reset, reset the logic state

enumerator kSAI_ResetTypeFIFO
FIFO reset, reset the FIFO read and write pointer

enumerator kSAI_ResetAll
All reset.

enum _sai_sample_rate
Audio sample rate.

Values:

enumerator kSAI_SampleRate8KHz
Sample rate 8000 Hz

enumerator kSAI_SampleRate11025Hz
Sample rate 11025 Hz

enumerator kSAI_SampleRate12KHz
Sample rate 12000 Hz

enumerator kSAI_SampleRate16KHz
Sample rate 16000 Hz

enumerator kSAI_SampleRate22050Hz
Sample rate 22050 Hz

enumerator kSAI_SampleRate24KHz
Sample rate 24000 Hz

enumerator kSAI_SampleRate32KHz
Sample rate 32000 Hz

enumerator kSAI_SampleRate44100Hz
Sample rate 44100 Hz

enumerator kSAI_SampleRate48KHz
Sample rate 48000 Hz

2.27. SAI Driver 275

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSAI_SampleRate96KHz
Sample rate 96000 Hz

enumerator kSAI_SampleRate192KHz
Sample rate 192000 Hz

enumerator kSAI_SampleRate384KHz
Sample rate 384000 Hz

enum _sai_word_width
Audio word width.

Values:

enumerator kSAI_WordWidth8bits
Audio data width 8 bits

enumerator kSAI_WordWidth16bits
Audio data width 16 bits

enumerator kSAI_WordWidth24bits
Audio data width 24 bits

enumerator kSAI_WordWidth32bits
Audio data width 32 bits

enum _sai_transceiver_type
sai transceiver type

Values:

enumerator kSAI_Transmitter
sai transmitter

enumerator kSAI_Receiver
sai receiver

enum _sai_frame_sync_len
sai frame sync len

Values:

enumerator kSAI_FrameSyncLenOneBitClk
1 bit clock frame sync len for DSP mode

enumerator kSAI_FrameSyncLenPerWordWidth
Frame sync length decided by word width

typedef enum _sai_protocol sai_protocol_t
Define the SAI bus type.

typedef enum _sai_master_slave sai_master_slave_t
Master or slave mode.

typedef enum _sai_mono_stereo sai_mono_stereo_t
Mono or stereo audio format.

typedef enum _sai_data_order sai_data_order_t
SAI data order, MSB or LSB.

typedef enum _sai_clock_polarity sai_clock_polarity_t
SAI clock polarity, active high or low.

276 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _sai_sync_mode sai_sync_mode_t
Synchronous or asynchronous mode.

typedef enum _sai_mclk_source sai_mclk_source_t
Mater clock source.

typedef enum _sai_bclk_source sai_bclk_source_t
Bit clock source.

typedef enum _sai_reset_type sai_reset_type_t
The reset type.

typedef struct _sai_config sai_config_t
SAI user configuration structure.

typedef enum _sai_sample_rate sai_sample_rate_t
Audio sample rate.

typedef enum _sai_word_width sai_word_width_t
Audio word width.

typedef enum _sai_transceiver_type sai_transceiver_type_t
sai transceiver type

typedef enum _sai_frame_sync_len sai_frame_sync_len_t
sai frame sync len

typedef struct _sai_transfer_format sai_transfer_format_t
sai transfer format

typedef struct _sai_bit_clock sai_bit_clock_t
sai bit clock configurations

typedef struct _sai_frame_sync sai_frame_sync_t
sai frame sync configurations

typedef struct _sai_serial_data sai_serial_data_t
sai serial data configurations

typedef struct _sai_transceiver sai_transceiver_t
sai transceiver configurations

typedef struct _sai_transfer sai_transfer_t
SAI transfer structure.

typedef struct _sai_handle sai_handle_t

typedef void (*sai_transfer_callback_t)(I2S_Type *base, sai_handle_t *handle, status_t status,
void *userData)

SAI transfer callback prototype.

SAI_XFER_QUEUE_SIZE
SAI transfer queue size, user can refine it according to use case.

FSL_SAI_HAS_FIFO_EXTEND_FEATURE
sai fifo feature

struct _sai_config
#include <fsl_sai.h> SAI user configuration structure.

2.27. SAI Driver 277

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

sai_protocol_t protocol
Audio bus protocol in SAI

sai_sync_mode_t syncMode
SAI sync mode, control Tx/Rx clock sync

sai_bclk_source_t bclkSource
Bit Clock source

sai_master_slave_t masterSlave
Master or slave

struct _sai_transfer_format
#include <fsl_sai.h> sai transfer format

Public Members

uint32_t sampleRate_Hz
Sample rate of audio data

uint32_t bitWidth
Data length of audio data, usually 8/16/24/32 bits

sai_mono_stereo_t stereo
Mono or stereo

uint8_t channel
Transfer start channel

uint8_t channelMask
enabled channel mask value, reference _sai_channel_mask

uint8_t endChannel
end channel number

uint8_t channelNums
Total enabled channel numbers

sai_protocol_t protocol
Which audio protocol used

bool isFrameSyncCompact
True means Frame sync length is configurable according to bitWidth, false means
frame sync length is 64 times of bit clock.

struct _sai_bit_clock
#include <fsl_sai.h> sai bit clock configurations

Public Members

bool bclkInputDelay
bit clock actually used by the transmitter is delayed by the pad output delay, this has
effect of decreasing the data input setup time, but increasing the data output valid time
.

sai_clock_polarity_t bclkPolarity
bit clock polarity

278 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

sai_bclk_source_t bclkSource
bit Clock source

struct _sai_frame_sync
#include <fsl_sai.h> sai frame sync configurations

Public Members

uint8_t frameSyncWidth
frame sync width in number of bit clocks

bool frameSyncEarly
TRUE is frame sync assert one bit before the first bit of frame FALSE is frame sync
assert with the first bit of the frame

sai_clock_polarity_t frameSyncPolarity
frame sync polarity

struct _sai_serial_data
#include <fsl_sai.h> sai serial data configurations

Public Members

sai_data_order_t dataOrder
configure whether the LSB or MSB is transmitted first

uint8_t dataWord0Length
configure the number of bits in the first word in each frame

uint8_t dataWordNLength
configure the number of bits in the each word in each frame, except the first word

uint8_t dataWordLength
used to record the data length for dma transfer

uint8_t dataFirstBitShifted
Configure the bit index for the first bit transmitted for each word in the frame

uint8_t dataWordNum
configure the number of words in each frame

uint32_t dataMaskedWord
configure whether the transmit word is masked

struct _sai_transceiver
#include <fsl_sai.h> sai transceiver configurations

Public Members

sai_serial_data_t serialData
serial data configurations

sai_frame_sync_t frameSync
ws configurations

sai_bit_clock_t bitClock
bit clock configurations

2.27. SAI Driver 279

MCUXpresso SDK Documentation, Release 25.09.00

sai_master_slave_t masterSlave
transceiver is master or slave

sai_sync_mode_t syncMode
transceiver sync mode

uint8_t startChannel
Transfer start channel

uint8_t channelMask
enabled channel mask value, reference _sai_channel_mask

uint8_t endChannel
end channel number

uint8_t channelNums
Total enabled channel numbers

struct _sai_transfer
#include <fsl_sai.h> SAI transfer structure.

Public Members

uint8_t *data
Data start address to transfer.

size_t dataSize
Transfer size.

struct _sai_handle
#include <fsl_sai.h> SAI handle structure.

Public Members

I2S_Type *base
base address

uint32_t state
Transfer status

sai_transfer_callback_t callback
Callback function called at transfer event

void *userData
Callback parameter passed to callback function

uint8_t bitWidth
Bit width for transfer, 8/16/24/32 bits

uint8_t channel
Transfer start channel

uint8_t channelMask
enabled channel mask value, refernece _sai_channel_mask

uint8_t endChannel
end channel number

uint8_t channelNums
Total enabled channel numbers

280 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

sai_transfer_t saiQueue[(4U)]
Transfer queue storing queued transfer

size_t transferSize[(4U)]
Data bytes need to transfer

volatile uint8_t queueUser
Index for user to queue transfer

volatile uint8_t queueDriver
Index for driver to get the transfer data and size

2.28 SAI SDMA Driver

void SAI_TransferTxCreateHandleSDMA(I2S_Type *base, sai_sdma_handle_t *handle,
sai_sdma_callback_t callback, void *userData,
sdma_handle_t *dmaHandle, uint32_t eventSource)

Initializes the SAI SDMA handle.

This function initializes the SAI master DMA handle, which can be used for other SAI mas-
ter transactional APIs. Usually, for a specified SAI instance, call this API once to get the
initialized handle.

Parameters
• base – SAI base pointer.

• handle – SAI SDMA handle pointer.

• base – SAI peripheral base address.

• callback – Pointer to user callback function.

• userData – User parameter passed to the callback function.

• dmaHandle – SDMA handle pointer, this handle shall be static allocated by
users.

• eventSource – SAI event source number.

void SAI_TransferRxCreateHandleSDMA(I2S_Type *base, sai_sdma_handle_t *handle,
sai_sdma_callback_t callback, void *userData,
sdma_handle_t *dmaHandle, uint32_t eventSource)

Initializes the SAI Rx SDMA handle.

This function initializes the SAI slave DMA handle, which can be used for other SAI mas-
ter transactional APIs. Usually, for a specified SAI instance, call this API once to get the
initialized handle.

Parameters
• base – SAI base pointer.

• handle – SAI SDMA handle pointer.

• base – SAI peripheral base address.

• callback – Pointer to user callback function.

• userData – User parameter passed to the callback function.

• dmaHandle – SDMA handle pointer, this handle shall be static allocated by
users.

• eventSource – SAI event source number.

2.28. SAI SDMA Driver 281

MCUXpresso SDK Documentation, Release 25.09.00

status_t SAI_TransferSendSDMA(I2S_Type *base, sai_sdma_handle_t *handle, sai_transfer_t
*xfer)

Performs a non-blocking SAI transfer using DMA.

Note: This interface returns immediately after the transfer initiates. Call
SAI_GetTransferStatus to poll the transfer status and check whether the SAI transfer is fin-
ished.

Parameters
• base – SAI base pointer.

• handle – SAI SDMA handle pointer.

• xfer – Pointer to the DMA transfer structure.

Return values
• kStatus_Success – Start a SAI SDMA send successfully.

• kStatus_InvalidArgument – The input argument is invalid.

• kStatus_TxBusy – SAI is busy sending data.

status_t SAI_TransferReceiveSDMA(I2S_Type *base, sai_sdma_handle_t *handle, sai_transfer_t
*xfer)

Performs a non-blocking SAI receive using SDMA.

Note: This interface returns immediately after the transfer initiates. Call the
SAI_GetReceiveRemainingBytes to poll the transfer status and check whether the SAI trans-
fer is finished.

Parameters
• base – SAI base pointer

• handle – SAI SDMA handle pointer.

• xfer – Pointer to DMA transfer structure.

Return values
• kStatus_Success – Start a SAI SDMA receive successfully.

• kStatus_InvalidArgument – The input argument is invalid.

• kStatus_RxBusy – SAI is busy receiving data.

void SAI_TransferAbortSendSDMA(I2S_Type *base, sai_sdma_handle_t *handle)
Aborts a SAI transfer using SDMA.

Parameters
• base – SAI base pointer.

• handle – SAI SDMA handle pointer.

void SAI_TransferAbortReceiveSDMA(I2S_Type *base, sai_sdma_handle_t *handle)
Aborts a SAI receive using SDMA.

Parameters
• base – SAI base pointer

• handle – SAI SDMA handle pointer.

282 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

void SAI_TransferTerminateReceiveSDMA(I2S_Type *base, sai_sdma_handle_t *handle)
Terminate all the SAI sdma receive transfer.

Parameters
• base – SAI base pointer.

• handle – SAI SDMA handle pointer.

void SAI_TransferTerminateSendSDMA(I2S_Type *base, sai_sdma_handle_t *handle)
Terminate all the SAI sdma send transfer.

Parameters
• base – SAI base pointer.

• handle – SAI SDMA handle pointer.

void SAI_TransferRxSetConfigSDMA(I2S_Type *base, sai_sdma_handle_t *handle,
sai_transceiver_t *saiConfig)

brief Configures the SAI RX.

param base SAI base pointer. param handle SAI SDMA handle pointer. param saiConig sai
configurations.

void SAI_TransferTxSetConfigSDMA(I2S_Type *base, sai_sdma_handle_t *handle,
sai_transceiver_t *saiConfig)

brief Configures the SAI Tx.

param base SAI base pointer. param handle SAI SDMA handle pointer. param saiConig sai
configurations.

FSL_SAI_SDMA_DRIVER_VERSION
Version 2.6.0

typedef struct _sai_sdma_handle sai_sdma_handle_t

typedef void (*sai_sdma_callback_t)(I2S_Type *base, sai_sdma_handle_t *handle, status_t status,
void *userData)

SAI SDMA transfer callback function for finish and error.

struct _sai_sdma_handle
#include <fsl_sai_sdma.h> SAI DMA transfer handle, users should not touch the content of
the handle.

Public Members

sdma_handle_t *dmaHandle
DMA handler for SAI send

uint8_t bytesPerFrame
Bytes in a frame

uint8_t channel
start data channel

uint8_t channelNums
total transfer channel numbers, used for multififo

uint8_t channelMask
enabled channel mask value, refernece _sai_channel_mask

uint8_t fifoOffset
fifo address offset between multifo

2.28. SAI SDMA Driver 283

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t count
The transfer data count in a DMA request

uint32_t state
Internal state for SAI SDMA transfer

uint32_t eventSource
SAI event source number

sai_sdma_callback_t callback
Callback for users while transfer finish or error occurs

void *userData
User callback parameter

sdma_buffer_descriptor_t bdPool[(4U)]
BD pool for SDMA transfer.

sai_transfer_t saiQueue[(4U)]
Transfer queue storing queued transfer.

size_t transferSize[(4U)]
Data bytes need to transfer

volatile uint8_t queueUser
Index for user to queue transfer.

volatile uint8_t queueDriver
Index for driver to get the transfer data and size

2.29 SDMA: Smart Direct Memory Access (SDMA) Controller
Driver

void SDMA_Init(SDMAARM_Type *base, const sdma_config_t *config)
Initializes the SDMA peripheral.

This function ungates the SDMA clock and configures the SDMA peripheral according to the
configuration structure.

Note: This function enables the minor loop map feature.

Parameters
• base – SDMA peripheral base address.

• config – A pointer to the configuration structure, see “sdma_config_t”.

void SDMA_Deinit(SDMAARM_Type *base)
Deinitializes the SDMA peripheral.

This function gates the SDMA clock.

Parameters
• base – SDMA peripheral base address.

284 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

void SDMA_GetDefaultConfig(sdma_config_t *config)
Gets the SDMA default configuration structure.

This function sets the configuration structure to default values. The default configuration
is set to the following values.

config.enableRealTimeDebugPin = false;
config.isSoftwareResetClearLock = true;
config.ratio = kSDMA_HalfARMClockFreq;

Parameters
• config – A pointer to the SDMA configuration structure.

void SDMA_ResetModule(SDMAARM_Type *base)
Sets all SDMA core register to reset status.

If only reset ARM core, SDMA register cannot return to reset value, shall call this function
to reset all SDMA register to reset value. But the internal status cannot be reset.

Parameters
• base – SDMA peripheral base address.

static inline void SDMA_EnableChannelErrorInterrupts(SDMAARM_Type *base, uint32_t
channel)

Enables the interrupt source for the SDMA error.

Enable this will trigger an interrupt while SDMA occurs error while executing scripts.

Parameters
• base – SDMA peripheral base address.

• channel – SDMA channel number.

static inline void SDMA_DisableChannelErrorInterrupts(SDMAARM_Type *base, uint32_t
channel)

Disables the interrupt source for the SDMA error.

Parameters
• base – SDMA peripheral base address.

• channel – SDMA channel number.

void SDMA_ConfigBufferDescriptor(sdma_buffer_descriptor_t *bd, uint32_t srcAddr, uint32_t
destAddr, sdma_transfer_size_t busWidth, size_t bufferSize,
bool isLast, bool enableInterrupt, bool isWrap,
sdma_transfer_type_t type)

Sets buffer descriptor contents.

This function sets the descriptor contents such as source, dest address and status bits.

Parameters
• bd – Pointer to the buffer descriptor structure.

• srcAddr – Source address for the buffer descriptor.

• destAddr – Destination address for the buffer descriptor.

• busWidth – The transfer width, it only can be a member of
sdma_transfer_size_t.

• bufferSize – Buffer size for this descriptor, this number shall less than
0xFFFF. If need to transfer a big size, shall divide into several buffer de-
scriptors.

2.29. SDMA: Smart Direct Memory Access (SDMA) Controller Driver 285

MCUXpresso SDK Documentation, Release 25.09.00

• isLast – Is the buffer descriptor the last one for the channel to transfer. If
only one descriptor used for the channel, this bit shall set to TRUE.

• enableInterrupt – If trigger an interruptwhile this buffer descriptor transfer
finished.

• isWrap – Is the buffer descriptor need to be wrapped. While this bit set to
true, it will automaticallywrap to the first buffer descrtiptor to do transfer.

• type – Transfer type, memory to memory, peripheral to memory or mem-
ory to peripheral.

static inline void SDMA_SetChannelPriority(SDMAARM_Type *base, uint32_t channel, uint8_t
priority)

Set SDMA channel priority.

This function sets the channel priority. The default value is 0 for all channels, priority 0
will prevents channel from starting, so the priority must be set before start a channel.

Parameters
• base – SDMA peripheral base address.

• channel – SDMA channel number.

• priority – SDMA channel priority.

static inline void SDMA_SetSourceChannel(SDMAARM_Type *base, uint32_t source, uint32_t
channelMask)

Set SDMA request source mapping channel.

This function sets which channel will be triggered by the dma request source.

Parameters
• base – SDMA peripheral base address.

• source – SDMA dma request source number.

• channelMask – SDMA channel mask. 1 means channel 0, 2 means channel
1, 4 means channel 3. SDMA supports an event trigger multi-channel. A
channel can also be triggered by several source events.

static inline void SDMA_StartChannelSoftware(SDMAARM_Type *base, uint32_t channel)
Start a SDMA channel by software trigger.

This function start a channel.

Parameters
• base – SDMA peripheral base address.

• channel – SDMA channel number.

static inline void SDMA_StartChannelEvents(SDMAARM_Type *base, uint32_t channel)
Start a SDMA channel by hardware events.

This function start a channel.

Parameters
• base – SDMA peripheral base address.

• channel – SDMA channel number.

static inline void SDMA_StopChannel(SDMAARM_Type *base, uint32_t channel)
Stop a SDMA channel.

This function stops a channel.

Parameters

286 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

• base – SDMA peripheral base address.

• channel – SDMA channel number.

void SDMA_SetContextSwitchMode(SDMAARM_Type *base, sdma_context_switch_mode_tmode)
Set the SDMA context switch mode.

Parameters
• base – SDMA peripheral base address.

• mode – SDMA context switch mode.

static inline uint32_t SDMA_GetChannelInterruptStatus(SDMAARM_Type *base)
Gets the SDMA interrupt status of all channels.

Parameters
• base – SDMA peripheral base address.

Returns
The interrupt status for all channels. Check the relevant bits for specific chan-
nel.

static inline void SDMA_ClearChannelInterruptStatus(SDMAARM_Type *base, uint32_t mask)
Clear the SDMA channel interrupt status of specific channels.

Parameters
• base – SDMA peripheral base address.

• mask – The interrupt status need to be cleared.

static inline uint32_t SDMA_GetChannelStopStatus(SDMAARM_Type *base)
Gets the SDMA stop status of all channels.

Parameters
• base – SDMA peripheral base address.

Returns
The stop status for all channels. Check the relevant bits for specific channel.

static inline void SDMA_ClearChannelStopStatus(SDMAARM_Type *base, uint32_t mask)
Clear the SDMA channel stop status of specific channels.

Parameters
• base – SDMA peripheral base address.

• mask – The stop status need to be cleared.

static inline uint32_t SDMA_GetChannelPendStatus(SDMAARM_Type *base)
Gets the SDMA channel pending status of all channels.

Parameters
• base – SDMA peripheral base address.

Returns
The pending status for all channels. Check the relevant bits for specific chan-
nel.

static inline void SDMA_ClearChannelPendStatus(SDMAARM_Type *base, uint32_t mask)
Clear the SDMA channel pending status of specific channels.

Parameters
• base – SDMA peripheral base address.

• mask – The pending status need to be cleared.

2.29. SDMA: Smart Direct Memory Access (SDMA) Controller Driver 287

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t SDMA_GetErrorStatus(SDMAARM_Type *base)
Gets the SDMA channel error status.

SDMA channel error flag is asserted while an incoming DMA request was detected and it
triggers a channel that is already pending or being serviced. This probably means there is
an overflow of data for that channel.

Parameters
• base – SDMA peripheral base address.

Returns
The error status for all channels. Check the relevant bits for specific channel.

bool SDMA_GetRequestSourceStatus(SDMAARM_Type *base, uint32_t source)
Gets the SDMA request source pending status.

Parameters
• base – SDMA peripheral base address.

• source – DMA request source number.

Returns
True means the request source is pending, otherwise not pending.

void SDMA_CreateHandle(sdma_handle_t *handle, SDMAARM_Type *base, uint32_t channel,
sdma_context_data_t *context)

Creates the SDMA handle.

This function is called if using the transactional API for SDMA. This function initializes the
internal state of the SDMA handle.

Parameters
• handle – SDMA handle pointer. The SDMA handle stores callback function
and parameters.

• base – SDMA peripheral base address.

• channel – SDMA channel number.

• context – Context structure for the channel to download into SDMA. Users
shall make sure the context located in a non-cacheable memory, or it will
cause SDMA run fail. Users shall not touch the context contents, it only be
filled by SDMA driver in SDMA_SubmitTransfer function.

void SDMA_InstallBDMemory(sdma_handle_t *handle, sdma_buffer_descriptor_t *BDPool,
uint32_t BDCount)

Installs the BDs memory pool into the SDMA handle.

This function is called after the SDMA_CreateHandle to use multi-buffer feature.

Parameters
• handle – SDMA handle pointer.

• BDPool – Amemory pool to store BDs. It must be located in non-cacheable
address.

• BDCount – The number of BD slots.

void SDMA_SetCallback(sdma_handle_t *handle, sdma_callback callback, void *userData)
Installs a callback function for the SDMA transfer.

This callback is called in the SDMA IRQ handler. Use the callback to do something after the
current major loop transfer completes.

Parameters

288 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

• handle – SDMA handle pointer.

• callback – SDMA callback function pointer.

• userData – A parameter for the callback function.

void SDMA_SetMultiFifoConfig(sdma_transfer_config_t *config, uint32_t fifoNums, uint32_t
fifoOffset)

multi fifo configurations.

This api is used to support multi fifo for SDMA, if user want to get multi fifo data, then this
api shoule be called before submit transfer.

Parameters
• config – transfer configurations.

• fifoNums – fifo numbers that multi fifo operation perform, support up to 15
fifo numbers.

• fifoOffset – fifoOffset = fifo address offset / sizeof(uint32_t) - 1.

void SDMA_EnableSwDone(SDMAARM_Type *base, sdma_transfer_config_t *config, uint8_t sel,
sdma_peripheral_t type)

enable sdma sw done feature.

Deprecated:
Do not use this function. It has been superceded by SDMA_SetDoneConfig.

Parameters
• base – SDMA base.

• config – transfer configurations.

• sel – sw done selector.

• type – peripheral type is used to determine the corresponding peripheral
sw done selector bit.

void SDMA_SetDoneConfig(SDMAARM_Type *base, sdma_transfer_config_t *config,
sdma_peripheral_t type, sdma_done_src_t doneSrc)

sdma channel done configurations.

Parameters
• base – SDMA base.

• config – transfer configurations.

• type – peripheral type.

• doneSrc – reference sdma_done_src_t.

void SDMA_LoadScript(SDMAARM_Type *base, uint32_t destAddr, void *srcAddr, size_t
bufferSizeBytes)

load script to sdma program memory.

Parameters
• base – SDMA base.

• destAddr – dest script address, should be SDMA programmemory address.

• srcAddr – source address of target script.

• bufferSizeBytes – bytes size of script.

2.29. SDMA: Smart Direct Memory Access (SDMA) Controller Driver 289

MCUXpresso SDK Documentation, Release 25.09.00

void SDMA_DumpScript(SDMAARM_Type *base, uint32_t srcAddr, void *destAddr, size_t
bufferSizeBytes)

dump script from sdma program memory.

Parameters
• base – SDMA base.

• srcAddr – should be SDMA program memory address.

• destAddr – address to store scripts.

• bufferSizeBytes – bytes size of script.

static inline const char *SDMA_GetRamScriptVersion(SDMAARM_Type *base)
Get RAM script version.

Parameters
• base – SDMA base.

Returns
The script version of RAM.

void SDMA_PrepareTransfer(sdma_transfer_config_t *config, uint32_t srcAddr, uint32_t
destAddr, uint32_t srcWidth, uint32_t destWidth, uint32_t
bytesEachRequest, uint32_t transferSize, uint32_t eventSource,
sdma_peripheral_t peripheral, sdma_transfer_type_t type)

Prepares the SDMA transfer structure.

This function prepares the transfer configuration structure according to the user input.

Note: The data address and the data width must be consistent. For example, if the SRC is
4 bytes, the source address must be 4 bytes aligned, or it results in source address error.

Parameters
• config – The user configuration structure of type sdma_transfer_t.

• srcAddr – SDMA transfer source address.

• destAddr – SDMA transfer destination address.

• srcWidth – SDMA transfer source address width(bytes).

• destWidth – SDMA transfer destination address width(bytes).

• bytesEachRequest – SDMA transfer bytes per channel request.

• transferSize – SDMA transfer bytes to be transferred.

• eventSource – Event source number for the transfer, if use software trigger,
just write 0.

• peripheral – Peripheral type, used to decide if need to use some special
scripts.

• type – SDMA transfer type. Used to decide the correct SDMA script address
in SDMA ROM.

void SDMA_PrepareP2PTransfer(sdma_transfer_config_t *config, uint32_t srcAddr, uint32_t
destAddr, uint32_t srcWidth, uint32_t destWidth, uint32_t
bytesEachRequest, uint32_t transferSize, uint32_t eventSource,
uint32_t eventSource1, sdma_peripheral_t peripheral,
sdma_p2p_config_t *p2p)

290 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Prepares the SDMA P2P transfer structure.

This function prepares the transfer configuration structure according to the user input.

Note: The data address and the data width must be consistent. For example, if the SRC is
4 bytes, the source address must be 4 bytes aligned, or it results in source address error.

Parameters
• config – The user configuration structure of type sdma_transfer_t.

• srcAddr – SDMA transfer source address.

• destAddr – SDMA transfer destination address.

• srcWidth – SDMA transfer source address width(bytes).

• destWidth – SDMA transfer destination address width(bytes).

• bytesEachRequest – SDMA transfer bytes per channel request.

• transferSize – SDMA transfer bytes to be transferred.

• eventSource – Event source number for the transfer.

• eventSource1 – Event source1 number for the transfer.

• peripheral – Peripheral type, used to decide if need to use some special
scripts.

• p2p – sdma p2p configuration pointer.

void SDMA_SubmitTransfer(sdma_handle_t *handle, const sdma_transfer_config_t *config)
Submits the SDMA transfer request.

This function submits the SDMA transfer request according to the transfer configuration
structure.

Parameters
• handle – SDMA handle pointer.

• config – Pointer to SDMA transfer configuration structure.

void SDMA_StartTransfer(sdma_handle_t *handle)
SDMA starts transfer.

This function enables the channel request. Users can call this function after submitting the
transfer request or before submitting the transfer request.

Parameters
• handle – SDMA handle pointer.

void SDMA_StopTransfer(sdma_handle_t *handle)
SDMA stops transfer.

This function disables the channel request to pause the transfer. Users can call
SDMA_StartTransfer() again to resume the transfer.

Parameters
• handle – SDMA handle pointer.

2.29. SDMA: Smart Direct Memory Access (SDMA) Controller Driver 291

MCUXpresso SDK Documentation, Release 25.09.00

void SDMA_AbortTransfer(sdma_handle_t *handle)
SDMA aborts transfer.

This function disables the channel request and clear transfer status bits. Users can submit
another transfer after calling this API.

Parameters
• handle – DMA handle pointer.

uint32_t SDMA_GetTransferredBytes(sdma_handle_t *handle)
Get transferred bytes while not using BD pools.

This function returns the buffer descriptor count value if not using buffer descriptor. While
do a simple transfer, which only uses one descriptor, the SDMA driver inside handle the
buffer descriptor. In uart receive case, it can tell users how many data already received,
also it can tells users how many data transfferd while error occurred. Notice, the count
would not change while transfer is on-going using default SDMA script.

Parameters
• handle – DMA handle pointer.

Returns
Transferred bytes.

void SDMA_HandleIRQ(sdma_handle_t *handle)
SDMA IRQ handler for complete a buffer descriptor transfer.

This function clears the interrupt flags and also handle the CCB for the channel.

Parameters
• handle – SDMA handle pointer.

FSL_SDMA_DRIVER_VERSION
SDMA driver version.

Version 2.4.2.

enum _sdma_transfer_size
SDMA transfer configuration.

Values:

enumerator kSDMA_TransferSize1Bytes
Source/Destination data transfer size is 1 byte every time

enumerator kSDMA_TransferSize2Bytes
Source/Destination data transfer size is 2 bytes every time

enumerator kSDMA_TransferSize3Bytes
Source/Destination data transfer size is 3 bytes every time

enumerator kSDMA_TransferSize4Bytes
Source/Destination data transfer size is 4 bytes every time

enum _sdma_bd_status
SDMA buffer descriptor status.

Values:

enumerator kSDMA_BDStatusDone
BD ownership, 0 means ARM core owns the BD, while 1 means SDMA owns BD.

enumerator kSDMA_BDStatusWrap
While this BD is last one, the next BD will be the first one

292 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSDMA_BDStatusContinuous
Buffer is allowed to transfer/receive to/from multiple buffers

enumerator kSDMA_BDStatusInterrupt
While this BD finished, send an interrupt.

enumerator kSDMA_BDStatusError
Error occurred on buffer descriptor command.

enumerator kSDMA_BDStatusLast
This BD is the last BD in this array. It means the transfer ended after this buffer

enumerator kSDMA_BDStatusExtend
Buffer descriptor extend status for SDMA scripts

enum _sdma_bd_command
SDMA buffer descriptor command.

Values:

enumerator kSDMA_BDCommandSETDM
Load SDMA data memory from ARM core memory buffer.

enumerator kSDMA_BDCommandGETDM
Copy SDMA data memory to ARM core memory buffer.

enumerator kSDMA_BDCommandSETPM
Load SDMA program memory from ARM core memory buffer.

enumerator kSDMA_BDCommandGETPM
Copy SDMA program memory to ARM core memory buffer.

enumerator kSDMA_BDCommandSETCTX
Load context for one channel into SDMA RAM from ARM platform memory buffer.

enumerator kSDMA_BDCommandGETCTX
Copy context for one channel from SDMA RAM to ARM platform memory buffer.

enum _sdma_context_switch_mode
SDMA context switch mode.

Values:

enumerator kSDMA_ContextSwitchModeStatic
SDMA context switch mode static

enumerator kSDMA_ContextSwitchModeDynamicLowPower
SDMA context switch mode dynamic with low power

enumerator kSDMA_ContextSwitchModeDynamicWithNoLoop
SDMA context switch mode dynamic with no loop

enumerator kSDMA_ContextSwitchModeDynamic
SDMA context switch mode dynamic

enum _sdma_clock_ratio
SDMA core clock frequency ratio to the ARM DMA interface.

Values:

enumerator kSDMA_HalfARMClockFreq
SDMA core clock frequency half of ARM platform

2.29. SDMA: Smart Direct Memory Access (SDMA) Controller Driver 293

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSDMA_ARMClockFreq
SDMA core clock frequency equals to ARM platform

enum _sdma_transfer_type
SDMA transfer type.

Values:

enumerator kSDMA_MemoryToMemory
Transfer from memory to memory

enumerator kSDMA_PeripheralToMemory
Transfer from peripheral to memory

enumerator kSDMA_MemoryToPeripheral
Transfer from memory to peripheral

enumerator kSDMA_PeripheralToPeripheral
Transfer from peripheral to peripheral

enum sdma_peripheral
Peripheral type use SDMA.

Values:

enumerator kSDMA_PeripheralTypeMemory
Peripheral DDR memory

enumerator kSDMA_PeripheralTypeUART
UART use SDMA

enumerator kSDMA_PeripheralTypeUART_SP
UART instance in SPBA use SDMA

enumerator kSDMA_PeripheralTypeSPDIF
SPDIF use SDMA

enumerator kSDMA_PeripheralNormal
Normal peripheral use SDMA

enumerator kSDMA_PeripheralNormal_SP
Normal peripheral in SPBA use SDMA

enumerator kSDMA_PeripheralMultiFifoPDM
multi fifo PDM

enumerator kSDMA_PeripheralMultiFifoSaiRX
multi fifo sai rx use SDMA

enumerator kSDMA_PeripheralMultiFifoSaiTX
multi fifo sai tx use SDMA

enumerator kSDMA_PeripheralASRCM2P
asrc m2p

enumerator kSDMA_PeripheralASRCP2M
asrc p2m

enumerator kSDMA_PeripheralASRCP2P
asrc p2p

_sdma_transfer_status SDMA transfer status

Values:

294 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus_SDMA_ERROR
SDMA context error.

enumerator kStatus_SDMA_Busy
Channel is busy and can’t handle the transfer request.

_sdma_multi_fifo_mask SDMA multi fifo mask

Values:

enumerator kSDMA_MultiFifoWatermarkLevelMask
multi fifo watermark level mask

enumerator kSDMA_MultiFifoNumsMask
multi fifo nums mask

enumerator kSDMA_MultiFifoOffsetMask
multi fifo offset mask

enumerator kSDMA_MultiFifoSwDoneMask
multi fifo sw done mask

enumerator kSDMA_MultiFifoSwDoneSelectorMask
multi fifo sw done selector mask

_sdma_multi_fifo_shift SDMA multi fifo shift

Values:

enumerator kSDMA_MultiFifoWatermarkLevelShift
multi fifo watermark level shift

enumerator kSDMA_MultiFifoNumsShift
multi fifo nums shift

enumerator kSDMA_MultiFifoOffsetShift
multi fifo offset shift

enumerator kSDMA_MultiFifoSwDoneShift
multi fifo sw done shift

enumerator kSDMA_MultiFifoSwDoneSelectorShift
multi fifo sw done selector shift

_sdma_done_channel SDMA done channel

Values:

enumerator kSDMA_DoneChannel0
SDMA done channel 0

enumerator kSDMA_DoneChannel1
SDMA done channel 1

enumerator kSDMA_DoneChannel2
SDMA done channel 2

enumerator kSDMA_DoneChannel3
SDMA done channel 3

2.29. SDMA: Smart Direct Memory Access (SDMA) Controller Driver 295

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSDMA_DoneChannel4
SDMA done channel 4

enumerator kSDMA_DoneChannel5
SDMA done channel 5

enumerator kSDMA_DoneChannel6
SDMA done channel 6

enumerator kSDMA_DoneChannel7
SDMA done channel 7

enum _sdma_done_src
SDMA done source.

Values:

enumerator kSDMA_DoneSrcSW
software done

enumerator kSDMA_DoneSrcHwEvent0U
HW event 0 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent1U
HW event 1 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent2U
HW event 2 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent3U
HW event 3 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent4U
HW event 4 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent5U
HW event 5 is used for DONE event

enumerator kSDMA_DoneSrCHwEvent6U
HW event 6 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent7U
HW event 7 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent8U
HW event 8 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent9U
HW event 9 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent10U
HW event 10 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent11U
HW event 11 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent12U
HW event 12 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent13U
HW event 13 is used for DONE event

296 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSDMA_DoneSrcHwEvent14U
HW event 14 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent15U
HW event 15 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent16U
HW event 16 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent17U
HW event 17 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent18U
HW event 18 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent19U
HW event 19 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent20U
HW event 20 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent21U
HW event 21 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent22U
HW event 22 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent23U
HW event 23 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent24U
HW event 24 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent25U
HW event 25 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent26U
HW event 26 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent27U
HW event 27 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent28U
HW event 28 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent29U
HW event 29 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent30U
HW event 30 is used for DONE event

enumerator kSDMA_DoneSrcHwEvent31U
HW event 31 is used for DONE event

typedef enum _sdma_transfer_size sdma_transfer_size_t
SDMA transfer configuration.

typedef enum _sdma_bd_status sdma_bd_status_t
SDMA buffer descriptor status.

typedef enum _sdma_bd_command sdma_bd_command_t
SDMA buffer descriptor command.

2.29. SDMA: Smart Direct Memory Access (SDMA) Controller Driver 297

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _sdma_context_switch_mode sdma_context_switch_mode_t
SDMA context switch mode.

typedef enum _sdma_clock_ratio sdma_clock_ratio_t
SDMA core clock frequency ratio to the ARM DMA interface.

typedef enum _sdma_transfer_type sdma_transfer_type_t
SDMA transfer type.

typedef enum sdma_peripheral sdma_peripheral_t
Peripheral type use SDMA.

typedef enum _sdma_done_src sdma_done_src_t
SDMA done source.

typedef struct _sdma_config sdma_config_t
SDMA global configuration structure.

typedef struct _sdma_multi_fifo_config sdma_multi_fifo_config_t
SDMA multi fifo configurations.

typedef struct _sdma_sw_done_config sdma_sw_done_config_t
SDMA sw done configurations.

typedef struct _sdma_p2p_config sdma_p2p_config_t
SDMA peripheral to peripheral R7 config.

typedef struct _sdma_transfer_config sdma_transfer_config_t
SDMA transfer configuration.

This structure configures the source/destination transfer attribute.

typedef struct _sdma_buffer_descriptor sdma_buffer_descriptor_t
SDMA buffer descriptor structure.

This structure is a buffer descriptor, this structure describes the buffer start address and
other options

typedef struct _sdma_channel_control sdma_channel_control_t
SDMA channel control descriptor structure.

typedef struct _sdma_context_data sdma_context_data_t
SDMA context structure for each channel. This structure can be load into SDMA core, with
this structure, SDMA scripts can start work.

typedef void (*sdma_callback)(struct _sdma_handle *handle, void *userData, bool transferDone,
uint32_t bdIndex)

Define callback function for SDMA.

typedef struct _sdma_handle sdma_handle_t
SDMA transfer handle structure.

SDMA_DRIVER_LOAD_RAM_SCRIPT

struct _sdma_config
#include <fsl_sdma.h> SDMA global configuration structure.

Public Members

bool enableRealTimeDebugPin
If enable real-time debug pin, default is closed to reduce power consumption.

298 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

bool isSoftwareResetClearLock
If software reset clears the LOCK bit which prevent writing SDMA scripts into SDMA.

sdma_clock_ratio_t ratio
SDMA core clock ratio to ARM platform DMA interface

struct _sdma_multi_fifo_config
#include <fsl_sdma.h> SDMA multi fifo configurations.

Public Members

uint8_t fifoNums
fifo numbers

uint8_t fifoOffset
offset between multi fifo data register address

struct _sdma_sw_done_config
#include <fsl_sdma.h> SDMA sw done configurations.

Public Members

bool enableSwDone
true is enable sw done, false is disable

uint8_t swDoneSel
sw done channel number per peripheral type

struct _sdma_p2p_config
#include <fsl_sdma.h> SDMA peripheral to peripheral R7 config.

Public Members

uint8_t sourceWatermark
lower watermark value

uint8_t destWatermark
higher water makr value

bool continuousTransfer
0: the amount of samples to be transferred is equal to the cont field ofmodeword 1: the
amount of samples to be transferred is unknown and script will keep on transferring
as long as both events are detected and script must be stopped by application.

struct _sdma_transfer_config
#include <fsl_sdma.h> SDMA transfer configuration.

This structure configures the source/destination transfer attribute.

Public Members

uint32_t srcAddr
Source address of the transfer

uint32_t destAddr
Destination address of the transfer

2.29. SDMA: Smart Direct Memory Access (SDMA) Controller Driver 299

MCUXpresso SDK Documentation, Release 25.09.00

sdma_transfer_size_t srcTransferSize
Source data transfer size.

sdma_transfer_size_t destTransferSize
Destination data transfer size.

uint32_t bytesPerRequest
Bytes to transfer in a minor loop

uint32_t transferSzie
Bytes to transfer for this descriptor

uint32_t scriptAddr
SDMA script address located in SDMA ROM.

uint32_t eventSource
Event source number for the channel. 0 means no event, use software trigger

uint32_t eventSource1
event source 1

bool isEventIgnore
True means software trigger, false means hardware trigger

bool isSoftTriggerIgnore
If ignore the HE bit, 1 means use hardware events trigger, 0 means software trigger

sdma_transfer_type_t type
Transfer type, transfer type used to decide the SDMA script.

sdma_multi_fifo_config_t multiFifo
multi fifo configurations

sdma_sw_done_config_t swDone
sw done selector

uint32_t watermarkLevel
watermark level

uint32_t eventMask0
event mask 0

uint32_t eventMask1
event mask 1

struct _sdma_buffer_descriptor
#include <fsl_sdma.h> SDMA buffer descriptor structure.

This structure is a buffer descriptor, this structure describes the buffer start address and
other options

Public Members

uint32_t count
Bytes of the buffer length for this buffer descriptor.

uint32_t status
E,R,I,C,W,D status bits stored here

uint32_t command
command mostlky used for channel 0

300 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t bufferAddr
Buffer start address for this descriptor.

uint32_t extendBufferAddr
External buffer start address, this is an optional for a transfer.

struct _sdma_channel_control
#include <fsl_sdma.h> SDMA channel control descriptor structure.

Public Members

uint32_t currentBDAddr
Address of current buffer descriptor processed

uint32_t baseBDAddr
The start address of the buffer descriptor array

uint32_t channelDesc
Optional for transfer

uint32_t status
Channel status

struct _sdma_context_data
#include <fsl_sdma.h> SDMA context structure for each channel. This structure can be load
into SDMA core, with this structure, SDMA scripts can start work.

Public Members

uint32_t GeneralReg[8]
8 general regsiters used for SDMA RISC core

struct _sdma_handle
#include <fsl_sdma.h> SDMA transfer handle structure.

Public Members

sdma_callback callback
Callback function for major count exhausted.

void *userData
Callback function parameter.

SDMAARM_Type *base
SDMA peripheral base address.

sdma_buffer_descriptor_t *BDPool
Pointer to memory stored BD arrays.

uint32_t bdCount
How many buffer descriptor

uint32_t bdIndex
How many buffer descriptor

uint32_t eventSource
Event source count for the channel

2.29. SDMA: Smart Direct Memory Access (SDMA) Controller Driver 301

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t eventSource1
Event source 1 count for the channel

sdma_context_data_t *context
Channel context to exectute in SDMA

uint8_t channel
SDMA channel number.

uint8_t priority
SDMA channel priority

uint8_t flags
The status of the current channel.

2.30 SEMA4: Hardware Semaphores Driver

FSL_SEMA4_DRIVER_VERSION
SEMA4 driver version.

void SEMA4_Init(SEMA4_Type *base)
Initializes the SEMA4 module.

This function initializes the SEMA4module. It only enables the clock but does not reset the
gates because the module might be used by other processors at the same time. To reset the
gates, call either SEMA4_ResetGate or SEMA4_ResetAllGates function.

Parameters
• base – SEMA4 peripheral base address.

void SEMA4_Deinit(SEMA4_Type *base)
De-initializes the SEMA4 module.

This function de-initializes the SEMA4 module. It only disables the clock.

Parameters
• base – SEMA4 peripheral base address.

status_t SEMA4_TryLock(SEMA4_Type *base, uint8_t gateNum, uint8_t procNum)
Tries to lock the SEMA4 gate.

This function tries to lock the specific SEMA4 gate. If the gate has been locked by another
processor, this function returns an error code.

Parameters
• base – SEMA4 peripheral base address.

• gateNum – Gate number to lock.

• procNum – Current processor number.

Return values
• kStatus_Success – Lock the sema4 gate successfully.

• kStatus_Fail – Sema4 gate has been locked by another processor.

302 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

status_t SEMA4_Lock(SEMA4_Type *base, uint8_t gateNum, uint8_t procNum)
Locks the SEMA4 gate.

This function locks the specific SEMA4 gate. If the gate has been locked by other processors,
this function waits until it is unlocked and then lock it.

If SEMA4_BUSY_POLL_COUNT is defined and non-zero, the function will timeout after the
specified number of polling iterations and return kStatus_Timeout.

Parameters
• base – SEMA4 peripheral base address.

• gateNum – Gate number to lock.

• procNum – Current processor number.

Return values
• kStatus_Success – The gate was successfully locked.

• kStatus_Timeout – Timeout occurred while waiting for the gate to be un-
locked.

Returns
status_t

static inline void SEMA4_Unlock(SEMA4_Type *base, uint8_t gateNum)
Unlocks the SEMA4 gate.

This function unlocks the specific SEMA4 gate. It only writes unlock value to the SEMA4
gate register. However, it does not check whether the SEMA4 gate is locked by the current
processor or not. As a result, if the SEMA4 gate is not locked by the current processor, this
function has no effect.

Parameters
• base – SEMA4 peripheral base address.

• gateNum – Gate number to unlock.

static inline int32_t SEMA4_GetLockProc(SEMA4_Type *base, uint8_t gateNum)
Gets the status of the SEMA4 gate.

This function checks the lock status of a specific SEMA4 gate.

Parameters
• base – SEMA4 peripheral base address.

• gateNum – Gate number.

Returns
Return -1 if the gate is unlocked, otherwise return the processor number
which has locked the gate.

status_t SEMA4_ResetGate(SEMA4_Type *base, uint8_t gateNum)
Resets the SEMA4 gate to an unlocked status.

This function resets a SEMA4 gate to an unlocked status.

Parameters
• base – SEMA4 peripheral base address.

• gateNum – Gate number.

Return values
• kStatus_Success – SEMA4 gate is reset successfully.

• kStatus_Fail – Some other reset process is ongoing.

2.30. SEMA4: Hardware Semaphores Driver 303

MCUXpresso SDK Documentation, Release 25.09.00

static inline status_t SEMA4_ResetAllGates(SEMA4_Type *base)
Resets all SEMA4 gates to an unlocked status.

This function resets all SEMA4 gate to an unlocked status.

Parameters
• base – SEMA4 peripheral base address.

Return values
• kStatus_Success – SEMA4 is reset successfully.

• kStatus_Fail – Some other reset process is ongoing.

static inline void SEMA4_EnableGateNotifyInterrupt(SEMA4_Type *base, uint8_t procNum,
uint16_t mask)

Enable the gate notification interrupt.

Gate notification provides such feature, when core tried to lock the gate and failed, it could
get notification when the gate is idle.

Parameters
• base – SEMA4 peripheral base address.

• procNum – Current processor number.

• mask – OR’ed value of the gate index, for example: (1«0) | (1«1) means gate
0 and gate 1.

static inline void SEMA4_DisableGateNotifyInterrupt(SEMA4_Type *base, uint8_t procNum,
uint16_t mask)

Disable the gate notification interrupt.

Gate notification provides such feature, when core tried to lock the gate and failed, it could
get notification when the gate is idle.

Parameters
• base – SEMA4 peripheral base address.

• procNum – Current processor number.

• mask – OR’ed value of the gate index, for example: (1«0) | (1«1) means gate
0 and gate 1.

static inline uint32_t SEMA4_GetGateNotifyStatus(SEMA4_Type *base, uint8_t procNum)
Get the gate notification flags.

Gate notification provides such feature, when core tried to lock the gate and failed, it could
get notification when the gate is idle. The status flags are cleared automatically when the
gate is locked by current core or locked again before the other core.

Parameters
• base – SEMA4 peripheral base address.

• procNum – Current processor number.

Returns
OR’ed value of the gate index, for example: (1«0) | (1«1) means gate 0 and gate
1 flags are pending.

status_t SEMA4_ResetGateNotify(SEMA4_Type *base, uint8_t gateNum)
Resets the SEMA4 gate IRQ notification.

This function resets a SEMA4 gate IRQ notification.

Parameters

304 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

• base – SEMA4 peripheral base address.

• gateNum – Gate number.

Return values
• kStatus_Success – Reset successfully.

• kStatus_Fail – Some other reset process is ongoing.

static inline status_t SEMA4_ResetAllGateNotify(SEMA4_Type *base)
Resets all SEMA4 gates IRQ notification.

This function resets all SEMA4 gate IRQ notifications.

Parameters
• base – SEMA4 peripheral base address.

Return values
• kStatus_Success – Reset successfully.

• kStatus_Fail – Some other reset process is ongoing.

SEMA4_GATE_NUM_RESET_ALL
The number to reset all SEMA4 gates.

SEMA4_GATEn(base, n)
SEMA4 gate n register address.

SEMA4_BUSY_POLL_COUNT
Maximum polling iterations for SEMA4 waiting loops.

This parameter defines the maximum number of iterations for any polling loop in the
SEMA4 driver code before timing out and returning an error.

It applies to all waiting loops in SEMA4 driver, such as waiting for a gate to be unlocked,
waiting for a reset to complete, or waiting for a resource to become available.

This is a count of loop iterations, not a time-based value.

If defined as 0, polling loops will continue indefinitely until their exit condition is met,
which could potentially cause the system to hang if hardware doesn’t respond or if a re-
source is never released.

2.31 SNVS: Secure Non-Volatile Storage

2.32 Secure Non-Volatile Storage High-Power

void SNVS_HP_Init(SNVS_Type *base)
Initialize the SNVS.

Note: This API should be called at the beginning of the application using the SNVS driver.

Parameters
• base – SNVS peripheral base address

2.31. SNVS: Secure Non-Volatile Storage 305

MCUXpresso SDK Documentation, Release 25.09.00

void SNVS_HP_Deinit(SNVS_Type *base)
Deinitialize the SNVS.

Parameters
• base – SNVS peripheral base address

void SNVS_HP_RTC_Init(SNVS_Type *base, const snvs_hp_rtc_config_t *config)
Ungates the SNVS clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the SNVS driver.

Parameters
• base – SNVS peripheral base address

• config – Pointer to the user’s SNVS configuration structure.

void SNVS_HP_RTC_Deinit(SNVS_Type *base)
Stops the RTC and SRTC timers.

Parameters
• base – SNVS peripheral base address

void SNVS_HP_RTC_GetDefaultConfig(snvs_hp_rtc_config_t *config)
Fills in the SNVS config struct with the default settings.

The default values are as follows.

config->rtccalenable = false;
config->rtccalvalue = 0U;
config->PIFreq = 0U;

Parameters
• config – Pointer to the user’s SNVS configuration structure.

status_t SNVS_HP_RTC_SetDatetime(SNVS_Type *base, const snvs_hp_rtc_datetime_t
*datetime)

Sets the SNVS RTC date and time according to the given time structure.

Parameters
• base – SNVS peripheral base address

• datetime – Pointer to the structure where the date and time details are
stored.

Returns
kStatus_Success: Success in setting the time and starting the SNVS RTC kSta-
tus_InvalidArgument: Error because the datetime format is incorrect

void SNVS_HP_RTC_GetDatetime(SNVS_Type *base, snvs_hp_rtc_datetime_t *datetime)
Gets the SNVS RTC time and stores it in the given time structure.

Parameters
• base – SNVS peripheral base address

• datetime – Pointer to the structure where the date and time details are
stored.

306 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

status_t SNVS_HP_RTC_SetAlarm(SNVS_Type *base, const snvs_hp_rtc_datetime_t
*alarmTime)

Sets the SNVS RTC alarm time.

The function sets the RTC alarm. It also checks whether the specified alarm time is greater
than the present time. If not, the function does not set the alarm and returns an error.

Parameters
• base – SNVS peripheral base address

• alarmTime – Pointer to the structure where the alarm time is stored.

Returns
kStatus_Success: success in setting the SNVS RTC alarm kSta-
tus_InvalidArgument: Error because the alarm datetime format is incorrect
kStatus_Fail: Error because the alarm time has already passed

void SNVS_HP_RTC_GetAlarm(SNVS_Type *base, snvs_hp_rtc_datetime_t *datetime)
Returns the SNVS RTC alarm time.

Parameters
• base – SNVS peripheral base address

• datetime – Pointer to the structure where the alarm date and time details
are stored.

static inline void SNVS_HP_RTC_EnableInterrupts(SNVS_Type *base, uint32_t mask)
Enables the selected SNVS interrupts.

Parameters
• base – SNVS peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration :: _snvs_hp_interrupts_t

static inline void SNVS_HP_RTC_DisableInterrupts(SNVS_Type *base, uint32_t mask)
Disables the selected SNVS interrupts.

Parameters
• base – SNVS peripheral base address

• mask – The interrupts to disable. This is a logical OR of members of the
enumeration :: _snvs_hp_interrupts_t

uint32_t SNVS_HP_RTC_GetEnabledInterrupts(SNVS_Type *base)
Gets the enabled SNVS interrupts.

Parameters
• base – SNVS peripheral base address

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
:: _snvs_hp_interrupts_t

uint32_t SNVS_HP_RTC_GetStatusFlags(SNVS_Type *base)
Gets the SNVS status flags.

Parameters
• base – SNVS peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration ::
_snvs_hp_status_flags_t

2.32. Secure Non-Volatile Storage High-Power 307

MCUXpresso SDK Documentation, Release 25.09.00

static inline void SNVS_HP_RTC_ClearStatusFlags(SNVS_Type *base, uint32_t mask)
Clears the SNVS status flags.

Parameters
• base – SNVS peripheral base address

• mask – The status flags to clear. This is a logical OR of members of the
enumeration :: _snvs_hp_status_flags_t

static inline void SNVS_HP_RTC_StartTimer(SNVS_Type *base)
Starts the SNVS RTC time counter.

Parameters
• base – SNVS peripheral base address

static inline void SNVS_HP_RTC_StopTimer(SNVS_Type *base)
Stops the SNVS RTC time counter.

Parameters
• base – SNVS peripheral base address

static inline void SNVS_HP_EnableHighAssuranceCounter(SNVS_Type *base, bool enable)
Enable or disable the High Assurance Counter (HAC)

Parameters
• base – SNVS peripheral base address

• enable – Pass true to enable, false to disable.

static inline void SNVS_HP_StartHighAssuranceCounter(SNVS_Type *base, bool start)
Start or stop the High Assurance Counter (HAC)

Parameters
• base – SNVS peripheral base address

• start – Pass true to start, false to stop.

static inline void SNVS_HP_SetHighAssuranceCounterInitialValue(SNVS_Type *base, uint32_t
value)

Set the High Assurance Counter (HAC) initialize value.

Parameters
• base – SNVS peripheral base address

• value – The initial value to set.

static inline void SNVS_HP_LoadHighAssuranceCounter(SNVS_Type *base)
Load the High Assurance Counter (HAC)

This function loads the HAC initialize value to counter register.

Parameters
• base – SNVS peripheral base address

static inline uint32_t SNVS_HP_GetHighAssuranceCounter(SNVS_Type *base)
Get the current High Assurance Counter (HAC) value.

Parameters
• base – SNVS peripheral base address

Returns
HAC currnet value.

308 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline void SNVS_HP_ClearHighAssuranceCounter(SNVS_Type *base)
Clear the High Assurance Counter (HAC)

This function can be called in a functional or soft fail state. When the HAC is enabled:

• If the HAC is cleared in the soft fail state, the SSM transitions to the hard fail state
immediately;

• If theHAC is cleared in functional state, the SSMwill transition to hard fail immediately
after transitioning to soft fail.

Parameters
• base – SNVS peripheral base address

static inline void SNVS_HP_LockHighAssuranceCounter(SNVS_Type *base)
Lock the High Assurance Counter (HAC)

Once locked, the HAC initialize value could not be changed, the HAC enable status could
not be changed. This could only be unlocked by system reset.

Parameters
• base – SNVS peripheral base address

FSL_SNVS_HP_DRIVER_VERSION
Version 2.3.2

enum _snvs_hp_interrupts
List of SNVS interrupts.

Values:

enumerator kSNVS_RTC_AlarmInterrupt
RTC time alarm

enumerator kSNVS_RTC_PeriodicInterrupt
RTC periodic interrupt

enum _snvs_hp_status_flags
List of SNVS flags.

Values:

enumerator kSNVS_RTC_AlarmInterruptFlag
RTC time alarm flag

enumerator kSNVS_RTC_PeriodicInterruptFlag
RTC periodic interrupt flag

enumerator kSNVS_ZMK_ZeroFlag
The ZMK is zero

enumerator kSNVS_OTPMK_ZeroFlag
The OTPMK is zero

enum _snvs_hp_sv_status_flags
List of SNVS security violation flags.

Values:

enumerator kSNVS_LP_ViolationFlag
Low Power section Security Violation

enumerator kSNVS_ZMK_EccFailFlag
Zeroizable Master Key Error Correcting Code Check Failure

2.32. Secure Non-Volatile Storage High-Power 309

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSNVS_LP_SoftwareViolationFlag
LP Software Security Violation

enumerator kSNVS_FatalSoftwareViolationFlag
Software Fatal Security Violation

enumerator kSNVS_SoftwareViolationFlag
Software Security Violation

enumerator kSNVS_Violation0Flag
Security Violation 0

enumerator kSNVS_Violation1Flag
Security Violation 1

enumerator kSNVS_Violation2Flag
Security Violation 2

enumerator kSNVS_Violation4Flag
Security Violation 4

enumerator kSNVS_Violation5Flag
Security Violation 5

enum _snvs_hp_ssm_state
List of SNVS Security State Machine State.

Values:

enumerator kSNVS_SSMInit
Init

enumerator kSNVS_SSMHardFail
Hard Fail

enumerator kSNVS_SSMSoftFail
Soft Fail

enumerator kSNVS_SSMInitInter
Init Intermediate (transition state between Init and Check)

enumerator kSNVS_SSMCheck
Check

enumerator kSNVS_SSMNonSecure
Non-Secure

enumerator kSNVS_SSMTrusted
Trusted

enumerator kSNVS_SSMSecure
Secure

typedef enum _snvs_hp_interrupts snvs_hp_interrupts_t
List of SNVS interrupts.

typedef enum _snvs_hp_status_flags snvs_hp_status_flags_t
List of SNVS flags.

typedef enum _snvs_hp_sv_status_flags snvs_hp_sv_status_flags_t
List of SNVS security violation flags.

310 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _snvs_hp_rtc_datetime snvs_hp_rtc_datetime_t
Structure is used to hold the date and time.

typedef struct _snvs_hp_rtc_config snvs_hp_rtc_config_t
SNVS config structure.

This structure holds the configuration settings for the SNVS peripheral. To initialize this
structure to reasonable defaults, call the SNVS_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

typedef enum _snvs_hp_ssm_state snvs_hp_ssm_state_t
List of SNVS Security State Machine State.

static inline void SNVS_HP_EnableMasterKeySelection(SNVS_Type *base, bool enable)
Enable or disable master key selection.

Parameters
• base – SNVS peripheral base address

• enable – Pass true to enable, false to disable.

static inline void SNVS_HP_ProgramZeroizableMasterKey(SNVS_Type *base)
Trigger to program Zeroizable Master Key.

Parameters
• base – SNVS peripheral base address

static inline void SNVS_HP_ChangeSSMState(SNVS_Type *base)
Trigger SSM State Transition.

Trigger state transition of the system security monitor (SSM). It results only the following
transitions of the SSM:

• Check State -> Non-Secure (when Non-Secure Boot and not in Fab Configuration)

• Check State –> Trusted (when Secure Boot or in Fab Configuration)

• Trusted State –> Secure

• Secure State –> Trusted

• Soft Fail –> Non-Secure

Parameters
• base – SNVS peripheral base address

static inline void SNVS_HP_SetSoftwareFatalSecurityViolation(SNVS_Type *base)
Trigger Software Fatal Security Violation.

The result SSM state transition is:

• Check State -> Soft Fail

• Non-Secure State -> Soft Fail

• Trusted State -> Soft Fail

• Secure State -> Soft Fail

Parameters
• base – SNVS peripheral base address

2.32. Secure Non-Volatile Storage High-Power 311

MCUXpresso SDK Documentation, Release 25.09.00

static inline void SNVS_HP_SetSoftwareSecurityViolation(SNVS_Type *base)
Trigger Software Security Violation.

The result SSM state transition is:

• Check -> Non-Secure

• Trusted -> Soft Fail

• Secure -> Soft Fail

Parameters
• base – SNVS peripheral base address

static inline snvs_hp_ssm_state_t SNVS_HP_GetSSMState(SNVS_Type *base)
Get current SSM State.

Parameters
• base – SNVS peripheral base address

Returns
Current SSM state

static inline void SNVS_HP_ResetLP(SNVS_Type *base)
Reset the SNVS LP section.

Reset the LP section except SRTC and Time alarm.

Parameters
• base – SNVS peripheral base address

static inline uint32_t SNVS_HP_GetStatusFlags(SNVS_Type *base)
Get the SNVS HP status flags.

The flags are returned as the OR’ed value f the enumeration :: _snvs_hp_status_flags_t.

Parameters
• base – SNVS peripheral base address

Returns
The OR’ed value of status flags.

static inline void SNVS_HP_ClearStatusFlags(SNVS_Type *base, uint32_t mask)
Clear the SNVS HP status flags.

The flags to clear are passed in as the OR’ed value of the enumeration ::
_snvs_hp_status_flags_t. Only these flags could be cleared using this API.

• kSNVS_RTC_PeriodicInterruptFlag

• kSNVS_RTC_AlarmInterruptFlag

Parameters
• base – SNVS peripheral base address

• mask – OR’ed value of the flags to clear.

static inline uint32_t SNVS_HP_GetSecurityViolationStatusFlags(SNVS_Type *base)
Get the SNVS HP security violation status flags.

The flags are returned as the OR’ed value of the enumeration :: _snvs_hp_sv_status_flags_t.

Parameters
• base – SNVS peripheral base address

312 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Returns
The OR’ed value of security violation status flags.

static inline void SNVS_HP_ClearSecurityViolationStatusFlags(SNVS_Type *base, uint32_t mask)
Clear the SNVS HP security violation status flags.

The flags to clear are passed in as the OR’ed value of the enumeration ::
_snvs_hp_sv_status_flags_t. Only these flags could be cleared using this API.

• kSNVS_ZMK_EccFailFlag

• kSNVS_Violation0Flag

• kSNVS_Violation1Flag

• kSNVS_Violation2Flag

• kSNVS_Violation3Flag

• kSNVS_Violation4Flag

• kSNVS_Violation5Flag

Parameters
• base – SNVS peripheral base address

• mask – OR’ed value of the flags to clear.

SNVS_HPSVSR_SV0_MASK

SNVS_HPSVSR_SV1_MASK

SNVS_HPSVSR_SV2_MASK

SNVS_HPSVSR_SV4_MASK

SNVS_HPSVSR_SV5_MASK

SNVS_MAKE_HP_SV_FLAG(x)
Macro to make security violation flag.

Macro help to make security violation flag kSNVS_Violation0Flag to kSNVS_Violation5Flag,
For example, SNVS_MAKE_HP_SV_FLAG(0) is kSNVS_Violation0Flag.

struct _snvs_hp_rtc_datetime
#include <fsl_snvs_hp.h> Structure is used to hold the date and time.

Public Members

uint16_t year
Range from 1970 to 2099.

uint8_t month
Range from 1 to 12.

uint8_t day
Range from 1 to 31 (depending on month).

uint8_t hour
Range from 0 to 23.

uint8_t minute
Range from 0 to 59.

2.32. Secure Non-Volatile Storage High-Power 313

MCUXpresso SDK Documentation, Release 25.09.00

uint8_t second
Range from 0 to 59.

struct _snvs_hp_rtc_config
#include <fsl_snvs_hp.h> SNVS config structure.

This structure holds the configuration settings for the SNVS peripheral. To initialize this
structure to reasonable defaults, call the SNVS_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

Public Members

bool rtcCalEnable
true: RTC calibration mechanism is enabled; false:No calibration is used

uint32_t rtcCalValue
Defines signed calibration value for nonsecure RTC; This is a 5-bit 2’s complement
value, range from -16 to +15

uint32_t periodicInterruptFreq
Defines frequency of the periodic interrupt; Range from 0 to 15

2.33 Secure Non-Volatile Storage Low-Power

void SNVS_LP_Init(SNVS_Type *base)
Ungates the SNVS clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the SNVS driver.

Parameters
• base – SNVS peripheral base address

void SNVS_LP_Deinit(SNVS_Type *base)
Deinit the SNVS LP section.

Parameters
• base – SNVS peripheral base address

status_t SNVS_LP_SRTC_SetDatetime(SNVS_Type *base, const snvs_lp_srtc_datetime_t
*datetime)

Sets the SNVS SRTC date and time according to the given time structure.

Parameters
• base – SNVS peripheral base address

• datetime – Pointer to the structure where the date and time details are
stored.

Returns
kStatus_Success: Success in setting the time and starting the SNVS SRTC kSta-
tus_InvalidArgument: Error because the datetime format is incorrect

314 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

void SNVS_LP_SRTC_GetDatetime(SNVS_Type *base, snvs_lp_srtc_datetime_t *datetime)
Gets the SNVS SRTC time and stores it in the given time structure.

Parameters
• base – SNVS peripheral base address

• datetime – Pointer to the structure where the date and time details are
stored.

status_t SNVS_LP_SRTC_SetAlarm(SNVS_Type *base, const snvs_lp_srtc_datetime_t
*alarmTime)

Sets the SNVS SRTC alarm time.

The function sets the SRTC alarm. It also checks whether the specified alarm time is greater
than the present time. If not, the functiondoes not set the alarmand returns an error. Please
note, that SRTC alarm has limited resolution because only 32 most significant bits of SRTC
counter are compared to SRTC Alarm register. If the alarm time is beyond SRTC resolution,
the function does not set the alarm and returns an error.

Parameters
• base – SNVS peripheral base address

• alarmTime – Pointer to the structure where the alarm time is stored.

Returns
kStatus_Success: success in setting the SNVS SRTC alarm kSta-
tus_InvalidArgument: Error because the alarm datetime format is incorrect
kStatus_Fail: Error because the alarm time has already passed or is beyond
resolution

void SNVS_LP_SRTC_GetAlarm(SNVS_Type *base, snvs_lp_srtc_datetime_t *datetime)
Returns the SNVS SRTC alarm time.

Parameters
• base – SNVS peripheral base address

• datetime – Pointer to the structure where the alarm date and time details
are stored.

static inline void SNVS_LP_SRTC_EnableInterrupts(SNVS_Type *base, uint32_t mask)
Enables the selected SNVS interrupts.

Parameters
• base – SNVS peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration :: _snvs_lp_srtc_interrupts

static inline void SNVS_LP_SRTC_DisableInterrupts(SNVS_Type *base, uint32_t mask)
Disables the selected SNVS interrupts.

Parameters
• base – SNVS peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration :: _snvs_lp_srtc_interrupts

uint32_t SNVS_LP_SRTC_GetEnabledInterrupts(SNVS_Type *base)
Gets the enabled SNVS interrupts.

Parameters
• base – SNVS peripheral base address

2.33. Secure Non-Volatile Storage Low-Power 315

MCUXpresso SDK Documentation, Release 25.09.00

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
:: _snvs_lp_srtc_interrupts

uint32_t SNVS_LP_SRTC_GetStatusFlags(SNVS_Type *base)
Gets the SNVS status flags.

Parameters
• base – SNVS peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration ::
_snvs_lp_srtc_status_flags

static inline void SNVS_LP_SRTC_ClearStatusFlags(SNVS_Type *base, uint32_t mask)
Clears the SNVS status flags.

Parameters
• base – SNVS peripheral base address

• mask – The status flags to clear. This is a logical OR of members of the
enumeration :: _snvs_lp_srtc_status_flags

static inline void SNVS_LP_SRTC_StartTimer(SNVS_Type *base)
Starts the SNVS SRTC time counter.

Parameters
• base – SNVS peripheral base address

static inline void SNVS_LP_SRTC_StopTimer(SNVS_Type *base)
Stops the SNVS SRTC time counter.

Parameters
• base – SNVS peripheral base address

void SNVS_LP_PassiveTamperPin_GetDefaultConfig(snvs_lp_passive_tamper_t *config)
Fills in the SNVS tamper pin config struct with the default settings.

The default values are as follows. code config->polarity = 0U; config->filterenable = 0U; if
available on SoC config->filter = 0U; if available on SoC endcode

Parameters
• config – Pointer to the user’s SNVS configuration structure.

static inline void SNVS_LP_EnableMonotonicCounter(SNVS_Type *base, bool enable)
Enable or disable the Monotonic Counter.

Parameters
• base – SNVS peripheral base address

• enable – Pass true to enable, false to disable.

uint64_t SNVS_LP_GetMonotonicCounter(SNVS_Type *base)
Get the current Monotonic Counter.

Parameters
• base – SNVS peripheral base address

Returns
Current Monotonic Counter value.

316 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline void SNVS_LP_IncreaseMonotonicCounter(SNVS_Type *base)
Increase the Monotonic Counter.

Increase the Monotonic Counter by 1.

Parameters
• base – SNVS peripheral base address

void SNVS_LP_WriteZeroizableMasterKey(SNVS_Type *base, uint32_t ZMKey[8U])
Write Zeroizable Master Key (ZMK) to the SNVS registers.

Parameters
• base – SNVS peripheral base address

• ZMKey – The ZMK write to the SNVS register.

static inline void SNVS_LP_SetZeroizableMasterKeyValid(SNVS_Type *base, bool valid)
Set Zeroizable Master Key valid.

This API could only be called when using software programming mode. After writing ZMK
using SNVS_LP_WriteZeroizableMasterKey, call this API to make the ZMK valid.

Parameters
• base – SNVS peripheral base address

• valid – Pass true to set valid, false to set invalid.

static inline bool SNVS_LP_GetZeroizableMasterKeyValid(SNVS_Type *base)
Get Zeroizable Master Key valid status.

In hardware programming mode, call this API to check whether the ZMK is valid.

Parameters
• base – SNVS peripheral base address

Returns
true if valid, false if invalid.

static inline void SNVS_LP_SetZeroizableMasterKeyProgramMode(SNVS_Type *base,
snvs_lp_zmk_program_mode_t
mode)

Set Zeroizable Master Key programming mode.

Parameters
• base – SNVS peripheral base address

• mode – ZMK programming mode.

static inline void SNVS_LP_EnableZeroizableMasterKeyECC(SNVS_Type *base, bool enable)
Enable or disable Zeroizable Master Key ECC.

Parameters
• base – SNVS peripheral base address

• enable – Pass true to enable, false to disable.

static inline void SNVS_LP_SetMasterKeyMode(SNVS_Type *base, snvs_lp_master_key_mode_t
mode)

Set SNVS Master Key mode.

Note: When kSNVS_ZMK or kSNVS_CMK used, the SNVS_HP must be configured to enable
the master key selection.

2.33. Secure Non-Volatile Storage Low-Power 317

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• base – SNVS peripheral base address

• mode – Master Key mode.

FSL_SNVS_LP_DRIVER_VERSION
Version 2.4.6

enum _snvs_lp_srtc_interrupts
List of SNVS_LP interrupts.

Values:

enumerator kSNVS_SRTC_AlarmInterrupt
SRTC time alarm.

enum _snvs_lp_srtc_status_flags
List of SNVS_LP flags.

Values:

enumerator kSNVS_SRTC_AlarmInterruptFlag
SRTC time alarm flag

enum _snvs_lp_external_tamper_status
List of SNVS_LP external tampers status.

Values:

enumerator kSNVS_TamperNotDetected

enumerator kSNVS_TamperDetected

enum _snvs_lp_external_tamper_polarity
SNVS_LP external tamper polarity.

Values:

enumerator kSNVS_ExternalTamperActiveLow

enumerator kSNVS_ExternalTamperActiveHigh

enum _snvs_lp_zmk_program_mode
SNVS_LP Zeroizable Master Key programming mode.

Values:

enumerator kSNVS_ZMKSoftwareProgram
Software programming mode.

enumerator kSNVS_ZMKHardwareProgram
Hardware programming mode.

enum _snvs_lp_master_key_mode
SNVS_LP Master Key mode.

Values:

enumerator kSNVS_OTPMK
One Time Programmable Master Key.

enumerator kSNVS_ZMK
Zeroizable Master Key.

318 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSNVS_CMK
Combined Master Key, it is XOR of OPTMK and ZMK.

typedef enum _snvs_lp_srtc_interrupts snvs_lp_srtc_interrupts_t
List of SNVS_LP interrupts.

typedef enum _snvs_lp_srtc_status_flags snvs_lp_srtc_status_flags_t
List of SNVS_LP flags.

typedef enum _snvs_lp_external_tamper_status snvs_lp_external_tamper_status_t
List of SNVS_LP external tampers status.

typedef enum _snvs_lp_external_tamper_polarity snvs_lp_external_tamper_polarity_t
SNVS_LP external tamper polarity.

typedef struct _snvs_lp_srtc_datetime snvs_lp_srtc_datetime_t
Structure is used to hold the date and time.

typedef struct _snvs_lp_srtc_config snvs_lp_srtc_config_t
SNVS_LP config structure.

This structure holds the configuration settings for the SNVS_LP peripheral. To initialize this
structure to reasonable defaults, call the SNVS_LP_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

typedef enum _snvs_lp_zmk_program_mode snvs_lp_zmk_program_mode_t
SNVS_LP Zeroizable Master Key programming mode.

typedef enum _snvs_lp_master_key_mode snvs_lp_master_key_mode_t
SNVS_LP Master Key mode.

void SNVS_LP_SRTC_Init(SNVS_Type *base, const snvs_lp_srtc_config_t *config)
Ungates the SNVS clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the SNVS driver.

Parameters
• base – SNVS peripheral base address

• config – Pointer to the user’s SNVS configuration structure.

void SNVS_LP_SRTC_Deinit(SNVS_Type *base)
Stops the SRTC timer.

Parameters
• base – SNVS peripheral base address

void SNVS_LP_SRTC_GetDefaultConfig(snvs_lp_srtc_config_t *config)
Fills in the SNVS_LP config struct with the default settings.

The default values are as follows.

config->srtccalenable = false;
config->srtccalvalue = 0U;

Parameters
• config – Pointer to the user’s SNVS configuration structure.

2.33. Secure Non-Volatile Storage Low-Power 319

MCUXpresso SDK Documentation, Release 25.09.00

SNVS_ZMK_REG_COUNT
Define of SNVS_LP Zeroizable Master Key registers.

SNVS_LP_MAX_TAMPER
Define of SNVS_LP Max possible tamper.

struct snvs_lp_passive_tamper_t
#include <fsl_snvs_lp.h> Structure is used to configure SNVS LP passive tamper pins.

struct _snvs_lp_srtc_datetime
#include <fsl_snvs_lp.h> Structure is used to hold the date and time.

Public Members

uint16_t year
Range from 1970 to 2099.

uint8_t month
Range from 1 to 12.

uint8_t day
Range from 1 to 31 (depending on month).

uint8_t hour
Range from 0 to 23.

uint8_t minute
Range from 0 to 59.

uint8_t second
Range from 0 to 59.

struct _snvs_lp_srtc_config
#include <fsl_snvs_lp.h> SNVS_LP config structure.

This structure holds the configuration settings for the SNVS_LP peripheral. To initialize this
structure to reasonable defaults, call the SNVS_LP_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

Public Members

bool srtcCalEnable
true: SRTC calibration mechanism is enabled; false: No calibration is used

uint32_t srtcCalValue
Defines signed calibration value for SRTC; This is a 5-bit 2’s complement value, range
from -16 to +15

2.34 SPDIF: Sony/Philips Digital Interface

void SPDIF_Init(SPDIF_Type *base, const spdif_config_t *config)
Initializes the SPDIF peripheral.

Ungates the SPDIF clock, resets the module, and configures SPDIF with a configuration
structure. The configuration structure can be custom filled or set with default values by
SPDIF_GetDefaultConfig().

320 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Note: This API should be called at the beginning of the application to use the SPDIF driver.
Otherwise, accessing the SPDIF module can cause a hard fault because the clock is not en-
abled.

Parameters
• base – SPDIF base pointer

• config – SPDIF configuration structure.

void SPDIF_GetDefaultConfig(spdif_config_t *config)
Sets the SPDIF configuration structure to default values.

This API initializes the configuration structure for use in SPDIF_Init. The initialized struc-
ture can remain unchanged in SPDIF_Init, or it can be modified before calling SPDIF_Init.
This is an example.

spdif_config_t config;
SPDIF_GetDefaultConfig(&config);

Parameters
• config – pointer to master configuration structure

void SPDIF_Deinit(SPDIF_Type *base)
De-initializes the SPDIF peripheral.

This API gates the SPDIF clock. The SPDIF module can’t operate unless SPDIF_Init is called
to enable the clock.

Parameters
• base – SPDIF base pointer

uint32_t SPDIF_GetInstance(SPDIF_Type *base)
Get the instance number for SPDIF.

Parameters
• base – SPDIF base pointer.

static inline void SPDIF_TxFIFOReset(SPDIF_Type *base)
Resets the SPDIF Tx.

This function makes Tx FIFO in reset mode.

Parameters
• base – SPDIF base pointer

static inline void SPDIF_RxFIFOReset(SPDIF_Type *base)
Resets the SPDIF Rx.

This function enables the software reset and FIFO reset of SPDIF Rx. After reset, clear the
reset bit.

Parameters
• base – SPDIF base pointer

void SPDIF_TxEnable(SPDIF_Type *base, bool enable)
Enables/disables the SPDIF Tx.

Parameters
• base – SPDIF base pointer

2.34. SPDIF: Sony/Philips Digital Interface 321

MCUXpresso SDK Documentation, Release 25.09.00

• enable – True means enable SPDIF Tx, false means disable.

static inline void SPDIF_RxEnable(SPDIF_Type *base, bool enable)
Enables/disables the SPDIF Rx.

Parameters
• base – SPDIF base pointer

• enable – True means enable SPDIF Rx, false means disable.

static inline uint32_t SPDIF_GetStatusFlag(SPDIF_Type *base)
Gets the SPDIF status flag state.

Parameters
• base – SPDIF base pointer

Returns
SPDIF status flag value. Use the _spdif_interrupt_enable_t to get the status
value needed.

static inline void SPDIF_ClearStatusFlags(SPDIF_Type *base, uint32_t mask)
Clears the SPDIF status flag state.

Parameters
• base – SPDIF base pointer

• mask – Statemask. It can be a combination of the _spdif_interrupt_enable_t
member. Notice these members cannot be included, as these flags cannot
be cleared by writing 1 to these bits:

– kSPDIF_UChannelReceiveRegisterFull

– kSPDIF_QChannelReceiveRegisterFull

– kSPDIF_TxFIFOEmpty

– kSPDIF_RxFIFOFull

static inline void SPDIF_EnableInterrupts(SPDIF_Type *base, uint32_t mask)
Enables the SPDIF Tx interrupt requests.

Parameters
• base – SPDIF base pointer

• mask – interrupt source The parameter can be a combination of the follow-
ing sources if defined.

– kSPDIF_WordStartInterruptEnable

– kSPDIF_SyncErrorInterruptEnable

– kSPDIF_FIFOWarningInterruptEnable

– kSPDIF_FIFORequestInterruptEnable

– kSPDIF_FIFOErrorInterruptEnable

static inline void SPDIF_DisableInterrupts(SPDIF_Type *base, uint32_t mask)
Disables the SPDIF Tx interrupt requests.

Parameters
• base – SPDIF base pointer

• mask – interrupt source The parameter can be a combination of the follow-
ing sources if defined.

– kSPDIF_WordStartInterruptEnable

322 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

– kSPDIF_SyncErrorInterruptEnable

– kSPDIF_FIFOWarningInterruptEnable

– kSPDIF_FIFORequestInterruptEnable

– kSPDIF_FIFOErrorInterruptEnable

static inline void SPDIF_EnableDMA(SPDIF_Type *base, uint32_t mask, bool enable)
Enables/disables the SPDIF DMA requests.

Parameters
• base – SPDIF base pointer

• mask – SPDIF DMA enable mask, The parameter can be a combination of
the following sources if defined

– kSPDIF_RxDMAEnable

– kSPDIF_TxDMAEnable

• enable – True means enable DMA, false means disable DMA.

static inline uint32_t SPDIF_TxGetLeftDataRegisterAddress(SPDIF_Type *base)
Gets the SPDIF Tx left data register address.

This API is used to provide a transfer address for the SPDIF DMA transfer configuration.

Parameters
• base – SPDIF base pointer.

Returns
data register address.

static inline uint32_t SPDIF_TxGetRightDataRegisterAddress(SPDIF_Type *base)
Gets the SPDIF Tx right data register address.

This API is used to provide a transfer address for the SPDIF DMA transfer configuration.

Parameters
• base – SPDIF base pointer.

Returns
data register address.

static inline uint32_t SPDIF_RxGetLeftDataRegisterAddress(SPDIF_Type *base)
Gets the SPDIF Rx left data register address.

This API is used to provide a transfer address for the SPDIF DMA transfer configuration.

Parameters
• base – SPDIF base pointer.

Returns
data register address.

static inline uint32_t SPDIF_RxGetRightDataRegisterAddress(SPDIF_Type *base)
Gets the SPDIF Rx right data register address.

This API is used to provide a transfer address for the SPDIF DMA transfer configuration.

Parameters
• base – SPDIF base pointer.

Returns
data register address.

2.34. SPDIF: Sony/Philips Digital Interface 323

MCUXpresso SDK Documentation, Release 25.09.00

void SPDIF_TxSetSampleRate(SPDIF_Type *base, uint32_t sampleRate_Hz, uint32_t
sourceClockFreq_Hz)

Configures the SPDIF Tx sample rate.

The audio format can be changed at run-time. This function configures the sample rate.

Parameters
• base – SPDIF base pointer.

• sampleRate_Hz – SPDIF sample rate frequency in Hz.

• sourceClockFreq_Hz – SPDIF tx clock source frequency in Hz.

uint32_t SPDIF_GetRxSampleRate(SPDIF_Type *base, uint32_t clockSourceFreq_Hz)
Configures the SPDIF Rx audio format.

The audio format can be changed at run-time. This function configures the sample rate and
audio data format to be transferred.

Parameters
• base – SPDIF base pointer.

• clockSourceFreq_Hz – SPDIF system clock frequency in hz.

void SPDIF_WriteBlocking(SPDIF_Type *base, uint8_t *buffer, uint32_t size)
Sends data using a blocking method.

Note: This function blocks by polling until data is ready to be sent.

Parameters
• base – SPDIF base pointer.

• buffer – Pointer to the data to be written.

• size – Bytes to be written.

static inline void SPDIF_WriteLeftData(SPDIF_Type *base, uint32_t data)
Writes data into SPDIF FIFO.

Parameters
• base – SPDIF base pointer.

• data – Data needs to be written.

static inline void SPDIF_WriteRightData(SPDIF_Type *base, uint32_t data)
Writes data into SPDIF FIFO.

Parameters
• base – SPDIF base pointer.

• data – Data needs to be written.

static inline void SPDIF_WriteChannelStatusHigh(SPDIF_Type *base, uint32_t data)
Writes data into SPDIF FIFO.

Parameters
• base – SPDIF base pointer.

• data – Data needs to be written.

324 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline void SPDIF_WriteChannelStatusLow(SPDIF_Type *base, uint32_t data)
Writes data into SPDIF FIFO.

Parameters
• base – SPDIF base pointer.

• data – Data needs to be written.

void SPDIF_ReadBlocking(SPDIF_Type *base, uint8_t *buffer, uint32_t size)
Receives data using a blocking method.

Note: This function blocks by polling until data is ready to be sent.

Parameters
• base – SPDIF base pointer.

• buffer – Pointer to the data to be read.

• size – Bytes to be read.

static inline uint32_t SPDIF_ReadLeftData(SPDIF_Type *base)
Reads data from the SPDIF FIFO.

Parameters
• base – SPDIF base pointer.

Returns
Data in SPDIF FIFO.

static inline uint32_t SPDIF_ReadRightData(SPDIF_Type *base)
Reads data from the SPDIF FIFO.

Parameters
• base – SPDIF base pointer.

Returns
Data in SPDIF FIFO.

static inline uint32_t SPDIF_ReadChannelStatusHigh(SPDIF_Type *base)
Reads data from the SPDIF FIFO.

Parameters
• base – SPDIF base pointer.

Returns
Data in SPDIF FIFO.

static inline uint32_t SPDIF_ReadChannelStatusLow(SPDIF_Type *base)
Reads data from the SPDIF FIFO.

Parameters
• base – SPDIF base pointer.

Returns
Data in SPDIF FIFO.

static inline uint32_t SPDIF_ReadQChannel(SPDIF_Type *base)
Reads data from the SPDIF FIFO.

Parameters
• base – SPDIF base pointer.

2.34. SPDIF: Sony/Philips Digital Interface 325

MCUXpresso SDK Documentation, Release 25.09.00

Returns
Data in SPDIF FIFO.

static inline uint32_t SPDIF_ReadUChannel(SPDIF_Type *base)
Reads data from the SPDIF FIFO.

Parameters
• base – SPDIF base pointer.

Returns
Data in SPDIF FIFO.

void SPDIF_TransferTxCreateHandle(SPDIF_Type *base, spdif_handle_t *handle,
spdif_transfer_callback_t callback, void *userData)

Initializes the SPDIF Tx handle.

This function initializes the Tx handle for the SPDIF Tx transactional APIs. Call this function
once to get the handle initialized.

Parameters
• base – SPDIF base pointer

• handle – SPDIF handle pointer.

• callback – Pointer to the user callback function.

• userData – User parameter passed to the callback function

void SPDIF_TransferRxCreateHandle(SPDIF_Type *base, spdif_handle_t *handle,
spdif_transfer_callback_t callback, void *userData)

Initializes the SPDIF Rx handle.

This function initializes the Rx handle for the SPDIF Rx transactional APIs. Call this function
once to get the handle initialized.

Parameters
• base – SPDIF base pointer.

• handle – SPDIF handle pointer.

• callback – Pointer to the user callback function.

• userData – User parameter passed to the callback function.

status_t SPDIF_TransferSendNonBlocking(SPDIF_Type *base, spdif_handle_t *handle,
spdif_transfer_t *xfer)

Performs an interrupt non-blocking send transfer on SPDIF.

Note: This API returns immediately after the transfer initiates. Call the
SPDIF_TxGetTransferStatusIRQ to poll the transfer status and check whether the transfer
is finished. If the return status is not kStatus_SPDIF_Busy, the transfer is finished.

Parameters
• base – SPDIF base pointer.

• handle – Pointer to the spdif_handle_t structure which stores the transfer
state.

• xfer – Pointer to the spdif_transfer_t structure.

Return values
• kStatus_Success – Successfully started the data receive.

326 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

• kStatus_SPDIF_TxBusy – Previous receive still not finished.

• kStatus_InvalidArgument – The input parameter is invalid.

status_t SPDIF_TransferReceiveNonBlocking(SPDIF_Type *base, spdif_handle_t *handle,
spdif_transfer_t *xfer)

Performs an interrupt non-blocking receive transfer on SPDIF.

Note: This API returns immediately after the transfer initiates. Call the
SPDIF_RxGetTransferStatusIRQ to poll the transfer status and check whether the transfer
is finished. If the return status is not kStatus_SPDIF_Busy, the transfer is finished.

Parameters
• base – SPDIF base pointer

• handle – Pointer to the spdif_handle_t structure which stores the transfer
state.

• xfer – Pointer to the spdif_transfer_t structure.

Return values
• kStatus_Success – Successfully started the data receive.

• kStatus_SPDIF_RxBusy – Previous receive still not finished.

• kStatus_InvalidArgument – The input parameter is invalid.

status_t SPDIF_TransferGetSendCount(SPDIF_Type *base, spdif_handle_t *handle, size_t *count)
Gets a set byte count.

Parameters
• base – SPDIF base pointer.

• handle – Pointer to the spdif_handle_t structure which stores the transfer
state.

• count – Bytes count sent.

Return values
• kStatus_Success – Succeed get the transfer count.

• kStatus_NoTransferInProgress – There is not a non-blocking transaction cur-
rently in progress.

status_t SPDIF_TransferGetReceiveCount(SPDIF_Type *base, spdif_handle_t *handle, size_t
*count)

Gets a received byte count.

Parameters
• base – SPDIF base pointer.

• handle – Pointer to the spdif_handle_t structure which stores the transfer
state.

• count – Bytes count received.

Return values
• kStatus_Success – Succeed get the transfer count.

• kStatus_NoTransferInProgress – There is not a non-blocking transaction cur-
rently in progress.

2.34. SPDIF: Sony/Philips Digital Interface 327

MCUXpresso SDK Documentation, Release 25.09.00

void SPDIF_TransferAbortSend(SPDIF_Type *base, spdif_handle_t *handle)
Aborts the current send.

Note: This API can be called any time when an interrupt non-blocking transfer initiates to
abort the transfer early.

Parameters
• base – SPDIF base pointer.

• handle – Pointer to the spdif_handle_t structure which stores the transfer
state.

void SPDIF_TransferAbortReceive(SPDIF_Type *base, spdif_handle_t *handle)
Aborts the current IRQ receive.

Note: This API can be called when an interrupt non-blocking transfer initiates to abort the
transfer early.

Parameters
• base – SPDIF base pointer

• handle – Pointer to the spdif_handle_t structure which stores the transfer
state.

void SPDIF_TransferTxHandleIRQ(SPDIF_Type *base, spdif_handle_t *handle)
Tx interrupt handler.

Parameters
• base – SPDIF base pointer.

• handle – Pointer to the spdif_handle_t structure.

void SPDIF_TransferRxHandleIRQ(SPDIF_Type *base, spdif_handle_t *handle)
Tx interrupt handler.

Parameters
• base – SPDIF base pointer.

• handle – Pointer to the spdif_handle_t structure.

FSL_SPDIF_DRIVER_VERSION
Version 2.0.7

SPDIF return status.

Values:

enumerator kStatus_SPDIF_RxDPLLLocked
SPDIF Rx PLL locked.

enumerator kStatus_SPDIF_TxFIFOError
SPDIF Tx FIFO error.

enumerator kStatus_SPDIF_TxFIFOResync
SPDIF Tx left and right FIFO resync.

328 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus_SPDIF_RxCnew
SPDIF Rx status channel value updated.

enumerator kStatus_SPDIF_ValidatyNoGood
SPDIF validaty flag not good.

enumerator kStatus_SPDIF_RxIllegalSymbol
SPDIF Rx receive illegal symbol.

enumerator kStatus_SPDIF_RxParityBitError
SPDIF Rx parity bit error.

enumerator kStatus_SPDIF_UChannelOverrun
SPDIF receive U channel overrun.

enumerator kStatus_SPDIF_QChannelOverrun
SPDIF receive Q channel overrun.

enumerator kStatus_SPDIF_UQChannelSync
SPDIF U/Q channel sync found.

enumerator kStatus_SPDIF_UQChannelFrameError
SPDIF U/Q channel frame error.

enumerator kStatus_SPDIF_RxFIFOError
SPDIF Rx FIFO error.

enumerator kStatus_SPDIF_RxFIFOResync
SPDIF Rx left and right FIFO resync.

enumerator kStatus_SPDIF_LockLoss
SPDIF Rx PLL clock lock loss.

enumerator kStatus_SPDIF_TxIdle
SPDIF Tx is idle

enumerator kStatus_SPDIF_RxIdle
SPDIF Rx is idle

enumerator kStatus_SPDIF_QueueFull
SPDIF queue full

enum _spdif_rxfull_select
SPDIF Rx FIFO full falg select, it decides when assert the rx full flag.

Values:

enumerator kSPDIF_RxFull1Sample
Rx full at least 1 sample in left and right FIFO

enumerator kSPDIF_RxFull4Samples
Rx full at least 4 sample in left and right FIFO

enumerator kSPDIF_RxFull8Samples
Rx full at least 8 sample in left and right FIFO

enumerator kSPDIF_RxFull16Samples
Rx full at least 16 sample in left and right FIFO

enum _spdif_txempty_select
SPDIF tx FIFO EMPTY falg select, it decides when assert the tx empty flag.

Values:

2.34. SPDIF: Sony/Philips Digital Interface 329

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSPDIF_TxEmpty0Sample
Tx empty at most 0 sample in left and right FIFO

enumerator kSPDIF_TxEmpty4Samples
Tx empty at most 4 sample in left and right FIFO

enumerator kSPDIF_TxEmpty8Samples
Tx empty at most 8 sample in left and right FIFO

enumerator kSPDIF_TxEmpty12Samples
Tx empty at most 12 sample in left and right FIFO

enum _spdif_uchannel_source
SPDIF U channel source.

Values:

enumerator kSPDIF_NoUChannel
No embedded U channel

enumerator kSPDIF_UChannelFromRx
U channel from receiver, it is CD mode

enumerator kSPDIF_UChannelFromTx
U channel from on chip tx

enum _spdif_gain_select
SPDIF clock gain.

Values:

enumerator kSPDIF_GAIN_24
Gain select is 24

enumerator kSPDIF_GAIN_16
Gain select is 16

enumerator kSPDIF_GAIN_12
Gain select is 12

enumerator kSPDIF_GAIN_8
Gain select is 8

enumerator kSPDIF_GAIN_6
Gain select is 6

enumerator kSPDIF_GAIN_4
Gain select is 4

enumerator kSPDIF_GAIN_3
Gain select is 3

enum _spdif_tx_source
SPDIF tx data source.

Values:

enumerator kSPDIF_txFromReceiver
Tx data directly through SPDIF receiver

enumerator kSPDIF_txNormal
Normal operation, data from processor

330 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enum _spdif_validity_config
SPDIF tx data source.

Values:

enumerator kSPDIF_validityFlagAlwaysSet
Outgoing validity flags always set

enumerator kSPDIF_validityFlagAlwaysClear
Outgoing validity flags always clear

The SPDIF interrupt enable flag.

Values:

enumerator kSPDIF_RxDPLLLocked
SPDIF DPLL locked

enumerator kSPDIF_TxFIFOError
Tx FIFO underrun or overrun

enumerator kSPDIF_TxFIFOResync
Tx FIFO left and right channel resync

enumerator kSPDIF_RxControlChannelChange
SPDIF Rx control channel value changed

enumerator kSPDIF_ValidityFlagNoGood
SPDIF validity flag no good

enumerator kSPDIF_RxIllegalSymbol
SPDIF receiver found illegal symbol

enumerator kSPDIF_RxParityBitError
SPDIF receiver found parity bit error

enumerator kSPDIF_UChannelReceiveRegisterFull
SPDIF U channel revceive register full

enumerator kSPDIF_UChannelReceiveRegisterOverrun
SPDIF U channel receive register overrun

enumerator kSPDIF_QChannelReceiveRegisterFull
SPDIF Q channel receive reigster full

enumerator kSPDIF_QChannelReceiveRegisterOverrun
SPDIF Q channel receive register overrun

enumerator kSPDIF_UQChannelSync
SPDIF U/Q channel sync found

enumerator kSPDIF_UQChannelFrameError
SPDIF U/Q channel frame error

enumerator kSPDIF_RxFIFOError
SPDIF Rx FIFO underrun/overrun

enumerator kSPDIF_RxFIFOResync
SPDIF Rx left and right FIFO resync

enumerator kSPDIF_LockLoss
SPDIF receiver loss of lock

2.34. SPDIF: Sony/Philips Digital Interface 331

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kSPDIF_TxFIFOEmpty
SPDIF Tx FIFO empty

enumerator kSPDIF_RxFIFOFull
SPDIF Rx FIFO full

enumerator kSPDIF_AllInterrupt
all interrupt

The DMA request sources.

Values:

enumerator kSPDIF_RxDMAEnable
Rx FIFO full

enumerator kSPDIF_TxDMAEnable
Tx FIFO empty

typedef enum _spdif_rxfull_select spdif_rxfull_select_t
SPDIF Rx FIFO full falg select, it decides when assert the rx full flag.

typedef enum _spdif_txempty_select spdif_txempty_select_t
SPDIF tx FIFO EMPTY falg select, it decides when assert the tx empty flag.

typedef enum _spdif_uchannel_source spdif_uchannel_source_t
SPDIF U channel source.

typedef enum _spdif_gain_select spdif_gain_select_t
SPDIF clock gain.

typedef enum _spdif_tx_source spdif_tx_source_t
SPDIF tx data source.

typedef enum _spdif_validity_config spdif_validity_config_t
SPDIF tx data source.

typedef struct _spdif_config spdif_config_t
SPDIF user configuration structure.

typedef struct _spdif_transfer spdif_transfer_t
SPDIF transfer structure.

typedef struct _spdif_handle spdif_handle_t

typedef void (*spdif_transfer_callback_t)(SPDIF_Type *base, spdif_handle_t *handle, status_t
status, void *userData)

SPDIF transfer callback prototype.

SPDIF_XFER_QUEUE_SIZE
SPDIF transfer queue size, user can refine it according to use case.

struct _spdif_config
#include <fsl_spdif.h> SPDIF user configuration structure.

Public Members

bool isTxAutoSync
If auto sync mechanism open

332 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

bool isRxAutoSync
If auto sync mechanism open

uint8_t DPLLClkSource
SPDIF DPLL clock source, range from 0~15, meaning is chip-specific

uint8_t txClkSource
SPDIF tx clock source, range from 0~7, meaning is chip-specific

spdif_rxfull_select_t rxFullSelect
SPDIF rx buffer full select

spdif_txempty_select_t txFullSelect
SPDIF tx buffer empty select

spdif_uchannel_source_t uChannelSrc
U channel source

spdif_tx_source_t txSource
SPDIF tx data source

spdif_validity_config_t validityConfig
Validity flag config

spdif_gain_select_t gain
Rx receive clock measure gain parameter.

struct _spdif_transfer
#include <fsl_spdif.h> SPDIF transfer structure.

Public Members

uint8_t *data
Data start address to transfer.

uint8_t *qdata
Data buffer for Q channel

uint8_t *udata
Data buffer for C channel

size_t dataSize
Transfer size.

struct _spdif_handle
#include <fsl_spdif.h> SPDIF handle structure.

Public Members

uint32_t state
Transfer status

spdif_transfer_callback_t callback
Callback function called at transfer event

void *userData
Callback parameter passed to callback function

spdif_transfer_t spdifQueue[(4U)]
Transfer queue storing queued transfer

2.34. SPDIF: Sony/Philips Digital Interface 333

MCUXpresso SDK Documentation, Release 25.09.00

size_t transferSize[(4U)]
Data bytes need to transfer

volatile uint8_t queueUser
Index for user to queue transfer

volatile uint8_t queueDriver
Index for driver to get the transfer data and size

uint8_t watermark
Watermark value

2.35 SRC: System Reset Controller Driver

FSL_SRC_DRIVER_VERSION
SRC driver version 2.0.1.

enum _src_reset_status_flags
SRC reset status flags.

Values:

enumerator kSRC_WarmBootIndicationFlag
WARM boot indication shows that WARM boot was initiated by software.

enumerator kSRC_TemperatureSensorResetFlag
Indicates whether the reset was the result of software reset from on-chip Temperature
Sensor. Temperature Sensor Interrupt needs to be servedbefore this bit canbe cleaned.

enumerator kSRC_JTAGSoftwareResetFlag
Indicates whether the reset was the result of setting SJC_GPCCR bit 31.

enumerator kSRC_JTAGGeneratedResetFlag
Indicates a reset has been caused by JTAG selection of certain IR codes: EXTEST or
HIGHZ.

enumerator kSRC_WatchdogResetFlag
Indicates a reset has been caused by the watchdog timer timing out. This reset source
can be blocked by disabling the watchdog.

enum _src_warm_reset_bypass_count
Selection of WARM reset bypass count.

This type defines the 32KHz clock cycles to count before bypassing theMMDC acknowledge
for WARM reset. If the MMDC acknowledge is not asserted before this counter is elapsed, a
COLD reset will be initiated.

Values:

enumerator kSRC_WarmResetWaitAlways
System will wait until MMDC acknowledge is asserted.

enumerator kSRC_WarmResetWaitClk16
Wait 16 32KHz clock cycles before switching the reset.

enumerator kSRC_WarmResetWaitClk32
Wait 32 32KHz clock cycles before switching the reset.

enumerator kSRC_WarmResetWaitClk64
Wait 64 32KHz clock cycles before switching the reset.

334 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

typedef enum _src_warm_reset_bypass_count src_warm_reset_bypass_count_t
Selection of WARM reset bypass count.

This type defines the 32KHz clock cycles to count before bypassing theMMDC acknowledge
for WARM reset. If the MMDC acknowledge is not asserted before this counter is elapsed, a
COLD reset will be initiated.

static inline void SRC_EnableWDOGReset(SRC_Type *base, bool enable)
Enable the WDOG Reset in SRC.

WDOG Reset is enabled in SRC by default. If the WDOG event to SRC is masked, it would
not create a reset to the chip. During the time theWDOG event is masked, when theWDOG
event flag is asserted, it would remain asserted regardless of servicing the WDOG module.
The only way to clear that bit is the hardware reset.

Parameters
• base – SRC peripheral base address.

• enable – Enable the reset or not.

static inline void SRC_SetWarmResetBypassCount(SRC_Type *base,
src_warm_reset_bypass_count_t option)

Set the delay count of waiting MMDC’s acknowledge.

This function would define the 32KHz clock cycles to count before bypassing the MMDC
acknowledge forWARMreset. If theMMDC acknowledge is not asserted before this counter
is elapsed, a COLD reset will be initiated.

Parameters
• base – SRC peripheral base address.

• option – The option of settingmode, see to src_warm_reset_bypass_count_t.

static inline void SRC_EnableWarmReset(SRC_Type *base, bool enable)
Enable the WARM reset.

Onlywhen theWARMreset is enabled, theWARMreset requestswould be served byWARM
reset. Otherwise, all the WARM reset sources would generate COLD reset.

Parameters
• base – SRC peripheral base address.

• enable – Enable the WARM reset or not.

static inline uint32_t SRC_GetBootModeWord1(SRC_Type *base)
Get the boot mode register 1 value.

The Boot Mode register contains bits that reflect the status of BOOT_CFGx pins of the chip.
See to chip-specific document for detail information about value.

Parameters
• base – SRC peripheral base address.

Returns
status of BOOT_CFGx pins of the chip.

static inline uint32_t SRC_GetBootModeWord2(SRC_Type *base)
Get the boot mode register 2 value.

The Boot Mode register contains bits that reflect the status of BOOT_MODEx Pins and fuse
values that controls boot of the chip. See to chip-specific document for detail information
about value.

Parameters

2.35. SRC: System Reset Controller Driver 335

MCUXpresso SDK Documentation, Release 25.09.00

• base – SRC peripheral base address.

Returns
status of BOOT_MODEx Pins and fuse values that controls boot of the chip.

static inline void SRC_SetWarmBootIndication(SRC_Type *base, bool enable)
Set the warm boot indication flag.

WARM boot indication shows that WARM boot was initiated by software. This indicates
to the software that it saved the needed information in the memory before initiating the
WARM reset. In this case, software will set this bit to ‘1’, before initiating the WARM re-
set. The warm_boot bit should be used as indication only after a warm_reset sequence.
Software should clear this bit after warm_reset to indicate that the next warm_reset is not
performed with warm_boot.

Parameters
• base – SRC peripheral base address.

• enable – Assert the flag or not.

static inline uint32_t SRC_GetResetStatusFlags(SRC_Type *base)
Get the status flags of SRC.

Parameters
• base – SRC peripheral base address.

Returns
Mask value of status flags, see to _src_reset_status_flags.

void SRC_ClearResetStatusFlags(SRC_Type *base, uint32_t flags)
Clear the status flags of SRC.

Parameters
• base – SRC peripheral base address.

• flags – value of status flags to be cleared, see to _src_reset_status_flags.

static inline void SRC_SetGeneralPurposeRegister(SRC_Type *base, uint32_t index, uint32_t
value)

Set value to general purpose registers.

General purpose registers (GPRx) would hold the value during reset process. Wakeup func-
tion could be kept in these register. For example, the GPR1 holds the entry function for
waking-up from Partial SLEEP mode while the GPR2 holds the argument. Other GPRx reg-
ister would store the arbitray values.

Parameters
• base – SRC peripheral base address.

• index – The index of GPRx register array. Note index 0 reponses the GPR1
register.

• value – Setting value for GPRx register.

static inline uint32_t SRC_GetGeneralPurposeRegister(SRC_Type *base, uint32_t index)
Get the value from general purpose registers.

Parameters
• base – SRC peripheral base address.

• index – The index of GPRx register array. Note index 0 reponses the GPR1
register.

336 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Returns
The setting value for GPRx register.

2.36 TMU: Thermal Management Unit Driver

enum _tmu_monitor_site
Values:

enumerator kTMU_MonitorSite0

enumerator kTMU_MonitorSite1

enumerator kTMU_MonitorSite2

enumerator kTMU_MonitorSite3

enumerator kTMU_MonitorSite4

enumerator kTMU_MonitorSite5

enumerator kTMU_MonitorSite6

enumerator kTMU_MonitorSite7

enumerator kTMU_MonitorSite8

enumerator kTMU_MonitorSite9

enumerator kTMU_MonitorSite10

enumerator kTMU_MonitorSite11

enumerator kTMU_MonitorSite12

enumerator kTMU_MonitorSite13

enumerator kTMU_MonitorSite14

enumerator kTMU_MonitorSite15

enum _tmu_interrupt_enable
TMU interrupt enable.

Values:

enumerator kTMU_ImmediateTemperatureInterruptEnable
Immediate temperature threshold exceeded interrupt enable.

enumerator kTMU_AverageTemperatureInterruptEnable
Average temperature threshold exceeded interrupt enable.

enumerator kTMU_AverageTemperatureCriticalInterruptEnable
Average temperature critical threshold exceeded interrupt enable. >

enum _tmu_interrupt_status_flags
TMU interrupt status flags.

Values:

enumerator kTMU_ImmediateTemperatureStatusFlags
Immediate temperature threshold exceeded(ITTE).

2.36. TMU: Thermal Management Unit Driver 337

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kTMU_AverageTemperatureStatusFlags
Average temperature threshold exceeded(ATTE).

enumerator kTMU_AverageTemperatureCriticalStatusFlags
Average temperature critical threshold exceeded.(ATCTE)

enum _tmu_status_flags
TMU status flags.

Values:

enumerator kTMU_IntervalExceededStatusFlags
Monitoring interval exceeded. The time required to performmeasurement of all mon-
itored sites has exceeded the monitoring interval as defined by TMTMIR.

enumerator kTMU_OutOfLowRangeStatusFlags
Out-of-range low temperature measurement detected. A temperature sensor detected
a temperature reading below the lowest measurable temperature of 0 °C.

enumerator kTMU_OutOfHighRangeStatusFlags
Out-of-range high temperaturemeasurement detected. A temperature sensor detected
a temperature reading above the highest measurable temperature of 125 °C.

enum _tmu_average_low_pass_filter
Average low pass filter setting.

Values:

enumerator kTMU_AverageLowPassFilter1_0
Average low pass filter = 1.

enumerator kTMU_AverageLowPassFilter0_5
Average low pass filter = 0.5.

enumerator kTMU_AverageLowPassFilter0_25
Average low pass filter = 0.25.

enumerator kTMU_AverageLowPassFilter0_125
Average low pass filter = 0.125.

typedef struct _tmu_thresold_config tmu_thresold_config_t
configuration for TMU thresold.

typedef struct _tmu_interrupt_status tmu_interrupt_status_t
TMU interrupt status.

typedef enum _tmu_average_low_pass_filter tmu_average_low_pass_filter_t
Average low pass filter setting.

typedef struct _tmu_config tmu_config_t
Configuration for TMU module.

void TMU_Init(TMU_Type *base, const tmu_config_t *config)
Enable the access to TMU registers and Initialize TMU module.

Parameters
• base – TMU peripheral base address.

• config – Pointer to configuration structure. Refer to “tmu_config_t” struc-
ture.

338 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

void TMU_Deinit(TMU_Type *base)
De-initialize TMU module and Disable the access to DCDC registers.

Parameters
• base – TMU peripheral base address.

void TMU_GetDefaultConfig(tmu_config_t *config)
Gets the default configuration for TMU.

This function initializes the user configuration structure to default value. The default value
are:

Example:

config->monitorInterval = 0U;
config->monitorSiteSelection = 0U;
config->averageLPF = kTMU_AverageLowPassFilter1_0;

Parameters
• config – Pointer to TMU configuration structure.

static inline void TMU_Enable(TMU_Type *base, bool enable)
Enable/Disable the TMU module.

Parameters
• base – TMU peripheral base address.

• enable – Switcher to enable/disable TMU.

static inline void TMU_EnableInterrupts(TMU_Type *base, uint32_t mask)
Enable the TMU interrupts.

Parameters
• base – TMU peripheral base address.

• mask – The interrupt mask. Refer to “_tmu_interrupt_enable” enumera-
tion.

static inline void TMU_DisableInterrupts(TMU_Type *base, uint32_t mask)
Disable the TMU interrupts.

Parameters
• base – TMU peripheral base address.

• mask – The interrupt mask. Refer to “_tmu_interrupt_enable” enumera-
tion.

void TMU_GetInterruptStatusFlags(TMU_Type *base, tmu_interrupt_status_t *status)
Get interrupt status flags.

Parameters
• base – TMU peripheral base address.

• status – The pointer to interrupt status structure. Record the current inter-
rupt status. Please refer to “tmu_interrupt_status_t” structure.

void TMU_ClearInterruptStatusFlags(TMU_Type *base, uint32_t mask)
Clear interrupt status flags and corresponding interrupt critical site capture register.

Parameters
• base – TMU peripheral base address.

2.36. TMU: Thermal Management Unit Driver 339

MCUXpresso SDK Documentation, Release 25.09.00

• mask – The mask of interrupt status flags. Refer to
“_tmu_interrupt_status_flags” enumeration.

static inline uint32_t TMU_GetStatusFlags(TMU_Type *base)
Get TMU status flags.

Parameters
• base – TMU peripheral base address.

Returns
The mask of status flags. Refer to “_tmu_status_flags” enumeration.

status_t TMU_GetHighestTemperature(TMU_Type *base, uint32_t *temperature)
Get the highest temperature reached for any enabled monitored site within the tempera-
ture sensor range.

Parameters
• base – TMU peripheral base address.

• temperature – Highest temperature recorded in degrees Celsius by any en-
abled monitored site.

Return values
• kStatus_Success – Temperature reading is valid.

• kStatus_Fail – Temperature reading is not valid due to no measured tem-
perature within the sensor range of 0-125 °C for an enabled monitored
site.

Returns
Execution status.

status_t TMU_GetLowestTemperature(TMU_Type *base, uint32_t *temperature)
Get the lowest temperature reached for any enabledmonitored site within the temperature
sensor range.

Parameters
• base – TMU peripheral base address.

• temperature – Lowest temperature recorded in degrees Celsius by any en-
abled monitored site.

Return values
• kStatus_Success – Temperature reading is valid.

• kStatus_Fail – Temperature reading is not valid due to no measured tem-
perature within the sensor range of 0-125 °C for an enabled monitored
site.

Returns
Execution status.

status_t TMU_GetImmediateTemperature(TMU_Type *base, uint32_t siteIndex, uint32_t
*temperature)

Get the last immediate temperature at site n. The site must be part of the list of enabled
monitored sites as defined by monitorSiteSelection in “tmu_config_t” structure.

Parameters
• base – TMU peripheral base address.

• siteIndex – The index of the site user want to read. 0U: site0 ~ 15U: site15.

• temperature – Last immediate temperature reading at site n .

340 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Return values
• kStatus_Success – Temperature reading is valid.

• kStatus_Fail – Temperature reading is not valid because temperature out
of sensor range or first measurement still pending.

Returns
Execution status.

status_t TMU_GetAverageTemperature(TMU_Type *base, uint32_t siteIndex, uint32_t
*temperature)

Get the last average temperature at site n. The site must be part of the list of enabled mon-
itored sites as defined by monitorSiteSelection in “tmu_config_t” structure.

Parameters
• base – TMU peripheral base address.

• siteIndex – The index of the site user want to read. 0U: site0 ~ 15U: site15.

• temperature – Last average temperature reading at site n .

Return values
• kStatus_Success – Temperature reading is valid.

• kStatus_Fail – Temperature reading is not valid because temperature out
of sensor range or first measurement still pending.

Returns
Execution status.

void TMU_SetHighTemperatureThresold(TMU_Type *base, const tmu_thresold_config_t *config)
Configure the high temperature thresold value and enable/disable relevant thresold.

Parameters
• base – TMU peripheral base address.

• config – Pointer to configuration structure. Refer to
“tmu_thresold_config_t” structure.

FSL_TMU_DRIVER_VERSION
TMU driver version.

Version 2.0.3.

struct _tmu_thresold_config
#include <fsl_tmu.h> configuration for TMU thresold.

Public Members

bool immediateThresoldEnable
Enable high temperature immediate threshold.

bool AverageThresoldEnable
Enable high temperature average threshold.

bool AverageCriticalThresoldEnable
Enable high temperature average critical threshold.

uint8_t immediateThresoldValue
Range:0U-125U. Valid when corresponding thresold is enabled. High temperature im-
mediate threshold value. Determines the current upper temperature threshold, for
anyenabled monitored site.

2.36. TMU: Thermal Management Unit Driver 341

MCUXpresso SDK Documentation, Release 25.09.00

uint8_t averageThresoldValue
Range:0U-125U. Valid when corresponding thresold is enabled. High temperature av-
erage threshold value. Determines the average upper temperature threshold, for any
enabled monitored site.

uint8_t averageCriticalThresoldValue
Range:0U-125U. Valid when corresponding thresold is enabled. High temperature av-
erage critical threshold value. Determines the average upper critical temperature
threshold, for any enabled monitored site.

struct _tmu_interrupt_status
#include <fsl_tmu.h> TMU interrupt status.

Public Members

uint32_t interruptDetectMask
The mask of interrupt status flags. Refer to “_tmu_interrupt_status_flags” enumera-
tion.

uint16_t immediateInterruptsSiteMask
The mask of the temperature sensor site associated with a detected ITTE event. Please
refer to “_tmu_monitor_site” enumeration.

uint16_t AverageInterruptsSiteMask
Themask of the temperature sensor site associated with a detected ATTE event. Please
refer to “_tmu_monitor_site” enumeration.

uint16_t AverageCriticalInterruptsSiteMask
The mask of the temperature sensor site associated with a detected ATCTE event.
Please refer to “_tmu_monitor_site” enumeration.

struct _tmu_config
#include <fsl_tmu.h> Configuration for TMU module.

Public Members

uint8_t monitorInterval
Temperature monitoring interval in seconds. Please refer to specific table in RM.

uint16_t monitorSiteSelection
By setting the select bit for a temperature sensor site, it is enabled and included in all
monitoring functions. If no site is selected, site 0 is monitored by default. Refer to
“_tmu_monitor_site” enumeration. Please look up relevant table in reference manual.

tmu_average_low_pass_filter_t averageLPF
The average temperature is calculated as: ALPF x Current_Temp + (1 - ALPF) x Aver-
age_Temp. For proper operation, this field should only change when monitoring is
disabled.

2.37 UART: Universal Asynchronous Receiver/Transmitter
Driver

2.38 UART Driver

342 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline void UART_SoftwareReset(UART_Type *base)
Resets the UART using software.

This function resets the transmit and receive state machines, all FIFOs and register USR1,
USR2, UBIR, UBMR, UBRC , URXD, UTXD and UTS[6-3]

Parameters
• base – UART peripheral base address.

status_t UART_Init(UART_Type *base, const uart_config_t *config, uint32_t srcClock_Hz)
Initializes an UART instancewith the user configuration structure and the peripheral clock.

This function configures the UART module with user-defined settings. Call the
UART_GetDefaultConfig() function to configure the configuration structure and get the de-
fault configuration. The example below shows how to use this API to configure the UART.

uart_config_t uartConfig;
uartConfig.baudRate_Bps = 115200U;
uartConfig.parityMode = kUART_ParityDisabled;
uartConfig.dataBitsCount = kUART_EightDataBits;
uartConfig.stopBitCount = kUART_OneStopBit;
uartConfig.txFifoWatermark = 2;
uartConfig.rxFifoWatermark = 1;
uartConfig.enableAutoBaudrate = false;
uartConfig.enableTx = true;
uartConfig.enableRx = true;
UART_Init(UART1, &uartConfig, 24000000U);

Parameters
• base – UART peripheral base address.

• config – Pointer to a user-defined configuration structure.

• srcClock_Hz – UART clock source frequency in HZ.

Return values
kStatus_Success – UART initialize succeed

void UART_Deinit(UART_Type *base)
Deinitializes a UART instance.

This function waits for transmit to complete, disables TX and RX, and disables the UART
clock.

Parameters
• base – UART peripheral base address.

void UART_GetDefaultConfig(uart_config_t *config)
Gets the default configuration structure.

l

This function initializes the UART configuration structure to a default value. The
default values are: uartConfig->baudRate_Bps = 115200U; uartConfig->parityMode =
kUART_ParityDisabled; uartConfig->dataBitsCount = kUART_EightDataBits; uartConfig-
>stopBitCount = kUART_OneStopBit; uartConfig->txFifoWatermark = 2; uartConfig-
>rxFifoWatermark = 1; uartConfig->enableAutoBaudrate = flase; uartConfig->enableTx =
false; uartConfig->enableRx = false;

Parameters
• config – Pointer to a configuration structure.

2.38. UART Driver 343

MCUXpresso SDK Documentation, Release 25.09.00

status_t UART_SetBaudRate(UART_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
Sets the UART instance baud rate.

This function configures the UART module baud rate. This function is used to update the
UART module baud rate after the UART module is initialized by the UART_Init.

UART_SetBaudRate(UART1, 115200U, 20000000U);

Parameters
• base – UART peripheral base address.

• baudRate_Bps – UART baudrate to be set.

• srcClock_Hz – UART clock source frequency in Hz.

Return values
• kStatus_UART_BaudrateNotSupport – Baudrate is not support in the cur-
rent clock source.

• kStatus_Success – Set baudrate succeeded.

static inline void UART_Enable(UART_Type *base)
This function is used to Enable the UART Module.

Parameters
• base – UART base pointer.

static inline void UART_SetIdleCondition(UART_Type *base, uart_idle_condition_t condition)
This function is used to configure the IDLE line condition.

Parameters
• base – UART base pointer.

• condition – IDLE line detect condition of the enumerators in
uart_idle_condition_t.

static inline void UART_Disable(UART_Type *base)
This function is used to Disable the UART Module.

Parameters
• base – UART base pointer.

bool UART_GetStatusFlag(UART_Type *base, uint32_t flag)
This function is used to get the current status of specificUART status flag(including interrupt
flag). The available status flag can be select from uart_status_flag_t enumeration.

Parameters
• base – UART base pointer.

• flag – Status flag to check.

Return values
current – state of corresponding status flag.

void UART_ClearStatusFlag(UART_Type *base, uint32_t flag)
This function is used to clear the current status of specific UART status flag. The available
status flag can be select from uart_status_flag_t enumeration.

Parameters
• base – UART base pointer.

• flag – Status flag to clear.

344 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

void UART_EnableInterrupts(UART_Type *base, uint32_t mask)
Enables UART interrupts according to the provided mask.

This function enables the UART interrupts according to the provided mask. The mask is a
logical OR of enumeration members. See _uart_interrupt_enable. For example, to enable
TX empty interrupt and RX data ready interrupt, do the following.

UART_EnableInterrupts(UART1,kUART_TxEmptyEnable | kUART_RxDataReadyEnable);

Parameters
• base – UART peripheral base address.

• mask – The interrupts to enable. Logical OR of _uart_interrupt_enable.

void UART_DisableInterrupts(UART_Type *base, uint32_t mask)
Disables the UART interrupts according to the provided mask.

This function disables the UART interrupts according to the provided mask. The mask is a
logical OR of enumeration members. See _uart_interrupt_enable. For example, to disable
TX empty interrupt and RX data ready interrupt do the following.

UART_EnableInterrupts(UART1,kUART_TxEmptyEnable | kUART_RxDataReadyEnable);

Parameters
• base – UART peripheral base address.

• mask – The interrupts to disable. Logical OR of _uart_interrupt_enable.

uint32_t UART_GetEnabledInterrupts(UART_Type *base)
Gets enabled UART interrupts.

This function gets the enabled UART interrupts. The enabled interrupts are returned as the
logical OR value of the enumerators _uart_interrupt_enable. To check a specific interrupt
enable status, compare the return value with enumerators in _uart_interrupt_enable. For
example, to check whether the TX empty interrupt is enabled:

uint32_t enabledInterrupts = UART_GetEnabledInterrupts(UART1);

if (kUART_TxEmptyEnable & enabledInterrupts)
{

...
}

Parameters
• base – UART peripheral base address.

Returns
UART interrupt flags which are logical OR of the enumerators in
_uart_interrupt_enable.

static inline void UART_EnableTx(UART_Type *base, bool enable)
Enables or disables the UART transmitter.

This function enables or disables the UART transmitter.

Parameters
• base – UART peripheral base address.

• enable – True to enable, false to disable.

2.38. UART Driver 345

MCUXpresso SDK Documentation, Release 25.09.00

static inline void UART_EnableRx(UART_Type *base, bool enable)
Enables or disables the UART receiver.

This function enables or disables the UART receiver.

Parameters
• base – UART peripheral base address.

• enable – True to enable, false to disable.

static inline void UART_WriteByte(UART_Type *base, uint8_t data)
Writes to the transmitter register.

This function is used to write data to transmitter register. The upper layer must ensure that
the TX register is empty or that the TX FIFO has room before calling this function.

Parameters
• base – UART peripheral base address.

• data – Data write to the TX register.

static inline uint8_t UART_ReadByte(UART_Type *base)
Reads the receiver register.

This function is used to read data from receiver register. The upper layer must ensure that
the receiver register is full or that the RX FIFO has data before calling this function.

Parameters
• base – UART peripheral base address.

Returns
Data read from data register.

status_t UART_WriteBlocking(UART_Type *base, const uint8_t *data, size_t length)
Writes to the TX register using a blocking method.

This function polls the TX register, waits for the TX register to be empty or for the TX FIFO
to have room and writes data to the TX buffer.

Parameters
• base – UART peripheral base address.

• data – Start address of the data to write.

• length – Size of the data to write.

Return values
• kStatus_UART_Timeout – Transmission timed out and was aborted.

• kStatus_Success – Successfully wrote all data.

status_t UART_ReadBlocking(UART_Type *base, uint8_t *data, size_t length)
Read RX data register using a blocking method.

This function polls the RX register, waits for the RX register to be full or for RX FIFO to have
data, and reads data from the TX register.

Parameters
• base – UART peripheral base address.

• data – Start address of the buffer to store the received data.

• length – Size of the buffer.

Return values

346 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

• kStatus_UART_RxHardwareOverrun – Receiver overrun occurredwhile re-
ceiving data.

• kStatus_UART_NoiseError – A noise error occurred while receiving data.

• kStatus_UART_FramingError – A framing error occurred while receiving
data.

• kStatus_UART_ParityError – A parity error occurred while receiving data.

• kStatus_UART_Timeout – Transmission timed out and was aborted.

• kStatus_Success – Successfully received all data.

void UART_TransferCreateHandle(UART_Type *base, uart_handle_t *handle,
uart_transfer_callback_t callback, void *userData)

Initializes the UART handle.

This function initializes the UART handle which can be used for other UART transactional
APIs. Usually, for a specified UART instance, call this API once to get the initialized handle.

Parameters
• base – UART peripheral base address.

• handle – UART handle pointer.

• callback – The callback function.

• userData – The parameter of the callback function.

void UART_TransferStartRingBuffer(UART_Type *base, uart_handle_t *handle, uint8_t
*ringBuffer, size_t ringBufferSize)

Sets up the RX ring buffer.

This function sets up the RX ring buffer to a specific UART handle.

When the RX ring buffer is used, data received are stored into the ring buffer evenwhen the
user doesn’t call the UART_TransferReceiveNonBlocking() API. If data is already received
in the ring buffer, the user can get the received data from the ring buffer directly.

Note: When using the RX ring buffer, one byte is reserved for internal use. In other words,
if ringBufferSize is 32, only 31 bytes are used for saving data.

Parameters
• base – UART peripheral base address.

• handle – UART handle pointer.

• ringBuffer – Start address of the ring buffer for background receiving. Pass
NULL to disable the ring buffer.

• ringBufferSize – Size of the ring buffer.

void UART_TransferStopRingBuffer(UART_Type *base, uart_handle_t *handle)
Aborts the background transfer and uninstalls the ring buffer.

This function aborts the background transfer and uninstalls the ring buffer.

Parameters
• base – UART peripheral base address.

• handle – UART handle pointer.

2.38. UART Driver 347

MCUXpresso SDK Documentation, Release 25.09.00

size_t UART_TransferGetRxRingBufferLength(uart_handle_t *handle)
Get the length of received data in RX ring buffer.

Parameters
• handle – UART handle pointer.

Returns
Length of received data in RX ring buffer.

status_t UART_TransferSendNonBlocking(UART_Type *base, uart_handle_t *handle,
uart_transfer_t *xfer)

Transmits a buffer of data using the interrupt method.

This function sends data using an interrupt method. This is a non-blocking function, which
returns directlywithoutwaiting for all data to bewritten to the TX register. When all data is
written to the TX register in the ISR, the UART driver calls the callback function and passes
the kStatus_UART_TxIdle as status parameter.

Note: The kStatus_UART_TxIdle is passed to the upper layer when all data is written to the
TX register. However, it does not ensure that all data is sent out. Before disabling the TX,
check the kUART_TransmissionCompleteFlag to ensure that the TX is finished.

Parameters
• base – UART peripheral base address.

• handle – UART handle pointer.

• xfer – UART transfer structure. See uart_transfer_t.

Return values
• kStatus_Success – Successfully start the data transmission.

• kStatus_UART_TxBusy – Previous transmission still not finished; data not
all written to TX register yet.

• kStatus_InvalidArgument – Invalid argument.

void UART_TransferAbortSend(UART_Type *base, uart_handle_t *handle)
Aborts the interrupt-driven data transmit.

This function aborts the interrupt-driven data sending. The user can get the remainBytes
to find out how many bytes are not sent out.

Parameters
• base – UART peripheral base address.

• handle – UART handle pointer.

status_t UART_TransferGetSendCount(UART_Type *base, uart_handle_t *handle, uint32_t
*count)

Gets the number of bytes written to the UART TX register.

This function gets thenumber of byteswritten to theUARTTX register byusing the interrupt
method.

Parameters
• base – UART peripheral base address.

• handle – UART handle pointer.

• count – Send bytes count.

348 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Return values
• kStatus_NoTransferInProgress – No send in progress.

• kStatus_InvalidArgument – The parameter is invalid.

• kStatus_Success – Get successfully through the parameter count;

status_t UART_TransferReceiveNonBlocking(UART_Type *base, uart_handle_t *handle,
uart_transfer_t *xfer, size_t *receivedBytes)

Receives a buffer of data using an interrupt method.

This function receives data using an interrupt method. This is a non-blocking function,
which returns without waiting for all data to be received. If the RX ring buffer is used and
not empty, the data in the ring buffer is copied and the parameter receivedBytes shows how
many bytes are copied from the ring buffer. After copying, if the data in the ring buffer is
not enough to read, the receive request is saved by the UART driver. When the new data
arrives, the receive request is serviced first. When all data is received, the UART driver
notifies the upper layer through a callback function and passes the status parameter kSta-
tus_UART_RxIdle. For example, the upper layer needs 10 bytes but there are only 5 bytes in
the ring buffer. The 5 bytes are copied to the xfer->data and this function returns with the
parameter receivedBytes set to 5. For the left 5 bytes, newly arrived data is saved from the
xfer->data[5]. When 5 bytes are received, the UART driver notifies the upper layer. If the
RX ring buffer is not enabled, this function enables the RX and RX interrupt to receive data
to the xfer->data. When all data is received, the upper layer is notified.

Parameters
• base – UART peripheral base address.

• handle – UART handle pointer.

• xfer – UART transfer structure, see uart_transfer_t.

• receivedBytes – Bytes received from the ring buffer directly.

Return values
• kStatus_Success – Successfully queue the transfer into transmit queue.

• kStatus_UART_RxBusy – Previous receive request is not finished.

• kStatus_InvalidArgument – Invalid argument.

void UART_TransferAbortReceive(UART_Type *base, uart_handle_t *handle)
Aborts the interrupt-driven data receiving.

This function aborts the interrupt-driven data receiving. The user can get the remainBytes
to know how many bytes are not received yet.

Parameters
• base – UART peripheral base address.

• handle – UART handle pointer.

status_t UART_TransferGetReceiveCount(UART_Type *base, uart_handle_t *handle, uint32_t
*count)

Gets the number of bytes that have been received.

This function gets the number of bytes that have been received.

Parameters
• base – UART peripheral base address.

• handle – UART handle pointer.

• count – Receive bytes count.

2.38. UART Driver 349

MCUXpresso SDK Documentation, Release 25.09.00

Return values
• kStatus_NoTransferInProgress – No receive in progress.

• kStatus_InvalidArgument – Parameter is invalid.

• kStatus_Success – Get successfully through the parameter count;

void UART_TransferHandleIRQ(UART_Type *base, void *irqHandle)
UART IRQ handle function.

This function handles the UART transmit and receive IRQ request.

Parameters
• base – UART peripheral base address.

• irqHandle – UART handle pointer.

static inline void UART_EnableTxDMA(UART_Type *base, bool enable)
Enables or disables the UART transmitter DMA request.

This function enables or disables the transmit request when the transmitter has one or
more slots available in the TxFIFO. The fill level in the TxFIFO that generates the DMA re-
quest is controlled by the TXTL bits.

Parameters
• base – UART peripheral base address.

• enable – True to enable, false to disable.

static inline void UART_EnableRxDMA(UART_Type *base, bool enable)
Enables or disables the UART receiver DMA request.

This function enables or disables the receive request when the receiver has data in the
RxFIFO. The fill level in the RxFIFO at which a DMA request is generated is controlled by
the RXTL bits .

Parameters
• base – UART peripheral base address.

• enable – True to enable, false to disable.

static inline void UART_SetTxFifoWatermark(UART_Type *base, uint8_t watermark)
This function is used to set the watermark of UART Tx FIFO. A maskable interrupt is gener-
ated whenever the data level in the TxFIFO falls below the Tx FIFO watermark.

Parameters
• base – UART base pointer.

• watermark – The Tx FIFO watermark.

static inline void UART_SetRxRTSWatermark(UART_Type *base, uint8_t watermark)
This function is used to set the watermark of UART RTS deassertion.

TheRTS signal deassertswhenever the data count in RxFIFO reaches the RxRTSwatermark.

Parameters
• base – UART base pointer.

• watermark – The Rx RTS watermark.

static inline void UART_SetRxFifoWatermark(UART_Type *base, uint8_t watermark)
This function is used to set the watermark of UART Rx FIFO. A maskable interrupt is gener-
ated whenever the data level in the RxFIFO reaches the Rx FIFO watermark.

Parameters

350 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

• base – UART base pointer.

• watermark – The Rx FIFO watermark.

static inline void UART_EnableAutoBaudRate(UART_Type *base, bool enable)
This function is used to set the enable condition of Automatic Baud Rate Detection feature.

Parameters
• base – UART base pointer.

• enable – Enable/Disable Automatic Baud Rate Detection feature.

– true: Enable Automatic Baud Rate Detection feature.

– false: Disable Automatic Baud Rate Detection feature.

static inline bool UART_IsAutoBaudRateComplete(UART_Type *base)
This function is used to read if the automatic baud rate detection has finished.

Parameters
• base – UART base pointer.

Returns
- true: Automatic baud rate detection has finished.

• false: Automatic baud rate detection has not finished.

FSL_UART_DRIVER_VERSION
UART driver version.

Error codes for the UART driver.

Values:

enumerator kStatus_UART_TxBusy
Transmitter is busy.

enumerator kStatus_UART_RxBusy
Receiver is busy.

enumerator kStatus_UART_TxIdle
UART transmitter is idle.

enumerator kStatus_UART_RxIdle
UART receiver is idle.

enumerator kStatus_UART_TxWatermarkTooLarge
TX FIFO watermark too large

enumerator kStatus_UART_RxWatermarkTooLarge
RX FIFO watermark too large

enumerator kStatus_UART_FlagCannotClearManually
UART flag can’t be manually cleared.

enumerator kStatus_UART_Error
Error happens on UART.

enumerator kStatus_UART_RxRingBufferOverrun
UART RX software ring buffer overrun.

enumerator kStatus_UART_RxHardwareOverrun
UART RX receiver overrun.

2.38. UART Driver 351

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus_UART_NoiseError
UART noise error.

enumerator kStatus_UART_FramingError
UART framing error.

enumerator kStatus_UART_ParityError
UART parity error.

enumerator kStatus_UART_BaudrateNotSupport
Baudrate is not support in current clock source

enumerator kStatus_UART_BreakDetect
Receiver detect BREAK signal

enumerator kStatus_UART_Timeout
UART times out.

enum _uart_data_bits
UART data bits count.

Values:

enumerator kUART_SevenDataBits
Seven data bit

enumerator kUART_EightDataBits
Eight data bit

enum _uart_parity_mode
UART parity mode.

Values:

enumerator kUART_ParityDisabled
Parity disabled

enumerator kUART_ParityEven
Even error check is selected

enumerator kUART_ParityOdd
Odd error check is selected

enum _uart_stop_bit_count
UART stop bit count.

Values:

enumerator kUART_OneStopBit
One stop bit

enumerator kUART_TwoStopBit
Two stop bits

enum _uart_idle_condition
UART idle condition detect.

Values:

enumerator kUART_IdleFor4Frames
Idle for more than 4 frames

enumerator kUART_IdleFor8Frames
Idle for more than 8 frames

352 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUART_IdleFor16Frames
Idle for more than 16 frames

enumerator kUART_IdleFor32Frames
Idle for more than 32 frames

enum _uart_interrupt_enable
This structure contains the settings for all of the UART interrupt configurations.

Values:

enumerator kUART_AutoBaudEnable

enumerator kUART_TxReadyEnable

enumerator kUART_IdleEnable

enumerator kUART_RxReadyEnable

enumerator kUART_TxEmptyEnable

enumerator kUART_RtsDeltaEnable

enumerator kUART_EscapeEnable

enumerator kUART_RtsEnable

enumerator kUART_AgingTimerEnable

enumerator kUART_DtrEnable

enumerator kUART_ParityErrorEnable

enumerator kUART_FrameErrorEnable

enumerator kUART_DcdEnable

enumerator kUART_RiEnable

enumerator kUART_RxDsEnable

enumerator kUART_tAirWakeEnable

enumerator kUART_AwakeEnable

enumerator kUART_DtrDeltaEnable

enumerator kUART_AutoBaudCntEnable

enumerator kUART_IrEnable

enumerator kUART_WakeEnable

enumerator kUART_TxCompleteEnable

enumerator kUART_BreakDetectEnable

enumerator kUART_RxOverrunEnable

enumerator kUART_RxDataReadyEnable

enumerator kUART_RxDmaIdleEnable

enumerator kUART_AllInterruptsEnable

2.38. UART Driver 353

MCUXpresso SDK Documentation, Release 25.09.00

UART status flags.

This provides constants for the UART status flags for use in the UART functions.

Values:

enumerator kUART_RxCharReadyFlag
Rx Character Ready Flag.

enumerator kUART_RxErrorFlag
Rx Error Detect Flag.

enumerator kUART_RxOverrunErrorFlag
Rx Overrun Flag.

enumerator kUART_RxFrameErrorFlag
Rx Frame Error Flag.

enumerator kUART_RxBreakDetectFlag
Rx Break Detect Flag.

enumerator kUART_RxParityErrorFlag
Rx Parity Error Flag.

enumerator kUART_ParityErrorFlag
Parity Error Interrupt Flag.

enumerator kUART_RtsStatusFlag
RTS_B Pin Status Flag.

enumerator kUART_TxReadyFlag
Transmitter Ready Interrupt/DMA Flag.

enumerator kUART_RtsDeltaFlag
RTS Delta Flag.

enumerator kUART_EscapeFlag
Escape Sequence Interrupt Flag.

enumerator kUART_FrameErrorFlag
Frame Error Interrupt Flag.

enumerator kUART_RxReadyFlag
Receiver Ready Interrupt/DMA Flag.

enumerator kUART_AgingTimerFlag
Aging Timer Interrupt Flag.

enumerator kUART_DtrDeltaFlag
DTR Delta Flag.

enumerator kUART_RxDsFlag
Receiver IDLE Interrupt Flag.

enumerator kUART_tAirWakeFlag
Asynchronous IR WAKE Interrupt Flag.

enumerator kUART_AwakeFlag
Asynchronous WAKE Interrupt Flag.

enumerator kUART_Rs485SlaveAddrMatchFlag
RS-485 Slave Address Detected Interrupt Flag.

354 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUART_AutoBaudFlag
Automatic Baud Rate Detect Complete Flag.

enumerator kUART_TxEmptyFlag
Transmit Buffer FIFO Empty.

enumerator kUART_DtrFlag
DTR edge triggered interrupt flag.

enumerator kUART_IdleFlag
Idle Condition Flag.

enumerator kUART_AutoBaudCntStopFlag
Auto-baud Counter Stopped Flag.

enumerator kUART_RiDeltaFlag
Ring Indicator Delta Flag.

enumerator kUART_RiFlag
Ring Indicator Input Flag.

enumerator kUART_IrFlag
Serial Infrared Interrupt Flag.

enumerator kUART_WakeFlag
Wake Flag.

enumerator kUART_DcdDeltaFlag
Data Carrier Detect Delta Flag.

enumerator kUART_DcdFlag
Data Carrier Detect Input Flag.

enumerator kUART_RtsFlag
RTS Edge Triggered Interrupt Flag.

enumerator kUART_TxCompleteFlag
Transmitter Complete Flag.

enumerator kUART_BreakDetectFlag
BREAK Condition Detected Flag.

enumerator kUART_RxOverrunFlag
Overrun Error Flag.

enumerator kUART_RxDataReadyFlag
Receive Data Ready Flag.

typedef enum _uart_data_bits uart_data_bits_t
UART data bits count.

typedef enum _uart_parity_mode uart_parity_mode_t
UART parity mode.

typedef enum _uart_stop_bit_count uart_stop_bit_count_t
UART stop bit count.

typedef enum _uart_idle_condition uart_idle_condition_t
UART idle condition detect.

typedef struct _uart_config uart_config_t
UART configuration structure.

2.38. UART Driver 355

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _uart_transfer uart_transfer_t
UART transfer structure.

typedef struct _uart_handle uart_handle_t
Forward declaration of the handle typedef.

typedef void (*uart_transfer_callback_t)(UART_Type *base, uart_handle_t *handle, status_t
status, void *userData)

UART transfer callback function.

typedef void (*uart_isr_t)(UART_Type *base, void *handle)

const IRQn_Type s_uartIRQ[]

uart_isr_t s_uartIsr

void *s_uartHandle[]
Pointers to uart handles for each instance.

uint32_t UART_GetInstance(UART_Type *base)
Get the UART instance from peripheral base address.

Parameters
• base – UART peripheral base address.

Returns
UART instance.

UART_RETRY_TIMES
Retry times for waiting flag.

struct _uart_config
#include <fsl_uart.h> UART configuration structure.

Public Members

uint32_t baudRate_Bps
UART baud rate.

uart_parity_mode_t parityMode
Parity error check mode of this module.

uart_data_bits_t dataBitsCount
Data bits count, eight (default), seven

uart_stop_bit_count_t stopBitCount
Number of stop bits in one frame.

uint8_t txFifoWatermark
TX FIFO watermark

uint8_t rxFifoWatermark
RX FIFO watermark

uint8_t rxRTSWatermark
RX RTS watermark, RX FIFO data count being larger than this triggers RTS deassertion

bool enableAutoBaudRate
Enable automatic baud rate detection

bool enableTx
Enable TX

356 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

bool enableRx
Enable RX

bool enableRxRTS
RX RTS enable

bool enableTxCTS
TX CTS enable

struct _uart_transfer
#include <fsl_uart.h> UART transfer structure.

Public Members

size_t dataSize
The byte count to be transfer.

struct _uart_handle
#include <fsl_uart.h> UART handle structure.

Public Members

const uint8_t *volatile txData
Address of remaining data to send.

volatile size_t txDataSize
Size of the remaining data to send.

size_t txDataSizeAll
Size of the data to send out.

uint8_t *volatile rxData
Address of remaining data to receive.

volatile size_t rxDataSize
Size of the remaining data to receive.

size_t rxDataSizeAll
Size of the data to receive.

uint8_t *rxRingBuffer
Start address of the receiver ring buffer.

size_t rxRingBufferSize
Size of the ring buffer.

volatile uint16_t rxRingBufferHead
Index for the driver to store received data into ring buffer.

volatile uint16_t rxRingBufferTail
Index for the user to get data from the ring buffer.

uart_transfer_callback_t callback
Callback function.

void *userData
UART callback function parameter.

volatile uint8_t txState
TX transfer state.

2.38. UART Driver 357

MCUXpresso SDK Documentation, Release 25.09.00

volatile uint8_t rxState
RX transfer state

union __unnamed9__

Public Members

uint8_t *data
The buffer of data to be transfer.

uint8_t *rxData
The buffer to receive data.

const uint8_t *txData
The buffer of data to be sent.

2.39 UART FreeRTOS Driver

2.40 UART SDMA Driver

void UART_TransferCreateHandleSDMA(UART_Type *base, uart_sdma_handle_t *handle,
uart_sdma_transfer_callback_t callback, void
*userData, sdma_handle_t *txSdmaHandle,
sdma_handle_t *rxSdmaHandle, uint32_t
eventSourceTx, uint32_t eventSourceRx)

Initializes the UART handle which is used in transactional functions.

Parameters
• base – UART peripheral base address.

• handle – Pointer to the uart_sdma_handle_t structure.

• callback – UART callback, NULL means no callback.

• userData – User callback function data.

• rxSdmaHandle – User-requested DMA handle for RX DMA transfer.

• txSdmaHandle – User-requested DMA handle for TX DMA transfer.

• eventSourceTx – Eventsource for TX DMA transfer.

• eventSourceRx – Eventsource for RX DMA transfer.

status_t UART_SendSDMA(UART_Type *base, uart_sdma_handle_t *handle, uart_transfer_t
*xfer)

Sends data using sDMA.

This function sends data using sDMA. This is a non-blocking function, which returns right
away. When all data is sent, the send callback function is called.

Parameters
• base – UART peripheral base address.

• handle – UART handle pointer.

• xfer – UART sDMA transfer structure. See uart_transfer_t.

Return values
• kStatus_Success – if succeeded; otherwise failed.

358 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

• kStatus_UART_TxBusy – Previous transfer ongoing.

• kStatus_InvalidArgument – Invalid argument.

status_t UART_ReceiveSDMA(UART_Type *base, uart_sdma_handle_t *handle, uart_transfer_t
*xfer)

Receives data using sDMA.

This function receives data using sDMA. This is a non-blocking function, which returns right
away. When all data is received, the receive callback function is called.

Parameters
• base – UART peripheral base address.

• handle – Pointer to the uart_sdma_handle_t structure.

• xfer – UART sDMA transfer structure. See uart_transfer_t.

Return values
• kStatus_Success – if succeeded; otherwise failed.

• kStatus_UART_RxBusy – Previous transfer ongoing.

• kStatus_InvalidArgument – Invalid argument.

void UART_TransferAbortSendSDMA(UART_Type *base, uart_sdma_handle_t *handle)
Aborts the sent data using sDMA.

This function aborts sent data using sDMA.

Parameters
• base – UART peripheral base address.

• handle – Pointer to the uart_sdma_handle_t structure.

void UART_TransferAbortReceiveSDMA(UART_Type *base, uart_sdma_handle_t *handle)
Aborts the receive data using sDMA.

This function aborts receive data using sDMA.

Parameters
• base – UART peripheral base address.

• handle – Pointer to the uart_sdma_handle_t structure.

void UART_TransferSdmaHandleIRQ(UART_Type *base, void *uartSdmaHandle)
UART IRQ handle function.

This function handles the UART transmit complete IRQ request and invoke user callback.

Parameters
• base – UART peripheral base address.

• uartSdmaHandle – UART handle pointer.

FSL_UART_SDMA_DRIVER_VERSION
UART SDMA driver version.

typedef struct _uart_sdma_handle uart_sdma_handle_t

typedef void (*uart_sdma_transfer_callback_t)(UART_Type *base, uart_sdma_handle_t *handle,
status_t status, void *userData)

UART transfer callback function.

struct _uart_sdma_handle
#include <fsl_uart_sdma.h> UART sDMA handle.

2.40. UART SDMA Driver 359

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

uart_sdma_transfer_callback_t callback
Callback function.

void *userData
UART callback function parameter.

size_t rxDataSizeAll
Size of the data to receive.

size_t txDataSizeAll
Size of the data to send out.

sdma_handle_t *txSdmaHandle
The sDMA TX channel used.

sdma_handle_t *rxSdmaHandle
The sDMA RX channel used.

volatile uint8_t txState
TX transfer state.

volatile uint8_t rxState
RX transfer state

2.41 USDHC: Ultra Secured Digital Host Controller Driver

void USDHC_Init(USDHC_Type *base, const usdhc_config_t *config)
USDHC module initialization function.

Configures the USDHC according to the user configuration.

Example:

usdhc_config_t config;
config.cardDetectDat3 = false;
config.endianMode = kUSDHC_EndianModeLittle;
config.dmaMode = kUSDHC_DmaModeAdma2;
config.readWatermarkLevel = 128U;
config.writeWatermarkLevel = 128U;
USDHC_Init(USDHC, &config);

Parameters
• base – USDHC peripheral base address.

• config – USDHC configuration information.

Return values
kStatus_Success – Operate successfully.

void USDHC_Deinit(USDHC_Type *base)
Deinitializes the USDHC.

Parameters
• base – USDHC peripheral base address.

360 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

bool USDHC_Reset(USDHC_Type *base, uint32_t mask, uint32_t timeout)
Resets the USDHC.

Parameters
• base – USDHC peripheral base address.

• mask – The reset type mask(_usdhc_reset).

• timeout – Timeout for reset.

Return values
• true – Reset successfully.

• false – Reset failed.

status_t USDHC_SetAdmaTableConfig(USDHC_Type *base, usdhc_adma_config_t *dmaConfig,
usdhc_data_t *dataConfig, uint32_t flags)

Sets the DMA descriptor table configuration. A high level DMA descriptor configuration
function.

Parameters
• base – USDHC peripheral base address.

• dmaConfig – ADMA configuration

• dataConfig – Data descriptor

• flags – ADAM descriptor flag, used to indicate to create multiple or single
descriptor, please refer to enum _usdhc_adma_flag.

Return values
• kStatus_OutOfRange – ADMA descriptor table length isn’t enough to de-
scribe data.

• kStatus_Success – Operate successfully.

status_t USDHC_SetInternalDmaConfig(USDHC_Type *base, usdhc_adma_config_t *dmaConfig,
const uint32_t *dataAddr, bool enAutoCmd23)

Internal DMA configuration. This function is used to config the USDHC DMA related regis-
ters.

Parameters
• base – USDHC peripheral base address.

• dmaConfig – ADMA configuration.

• dataAddr – Transfer data address, a simple DMA parameter, if ADMA is
used, leave it to NULL.

• enAutoCmd23 – Flag to indicate Auto CMD23 is enable or not, a simple DMA
parameter, if ADMA is used, leave it to false.

Return values
• kStatus_OutOfRange – ADMA descriptor table length isn’t enough to de-
scribe data.

• kStatus_Success – Operate successfully.

status_t USDHC_SetADMA2Descriptor(uint32_t *admaTable, uint32_t admaTableWords, const
uint32_t *dataBufferAddr, uint32_t dataBytes, uint32_t
flags)

Sets the ADMA2 descriptor table configuration.

Parameters

2.41. USDHC: Ultra Secured Digital Host Controller Driver 361

MCUXpresso SDK Documentation, Release 25.09.00

• admaTable – ADMA table address.

• admaTableWords – ADMA table length.

• dataBufferAddr – Data buffer address.

• dataBytes – Data Data length.

• flags – ADAM descriptor flag, used to indicate to create multiple or single
descriptor, please refer to enum _usdhc_adma_flag.

Return values
• kStatus_OutOfRange – ADMA descriptor table length isn’t enough to de-
scribe data.

• kStatus_Success – Operate successfully.

status_t USDHC_SetADMA1Descriptor(uint32_t *admaTable, uint32_t admaTableWords, const
uint32_t *dataBufferAddr, uint32_t dataBytes, uint32_t
flags)

Sets the ADMA1 descriptor table configuration.

Parameters
• admaTable – ADMA table address.

• admaTableWords – ADMA table length.

• dataBufferAddr – Data buffer address.

• dataBytes – Data length.

• flags – ADAM descriptor flag, used to indicate to create multiple or single
descriptor, please refer to enum _usdhc_adma_flag.

Return values
• kStatus_OutOfRange – ADMA descriptor table length isn’t enough to de-
scribe data.

• kStatus_Success – Operate successfully.

static inline void USDHC_EnableInternalDMA(USDHC_Type *base, bool enable)
Enables internal DMA.

Parameters
• base – USDHC peripheral base address.

• enable – enable or disable flag

static inline void USDHC_EnableInterruptStatus(USDHC_Type *base, uint32_t mask)
Enables the interrupt status.

Parameters
• base – USDHC peripheral base address.

• mask – Interrupt status flags mask(_usdhc_interrupt_status_flag).

static inline void USDHC_DisableInterruptStatus(USDHC_Type *base, uint32_t mask)
Disables the interrupt status.

Parameters
• base – USDHC peripheral base address.

• mask – The interrupt status flags mask(_usdhc_interrupt_status_flag).

362 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline void USDHC_EnableInterruptSignal(USDHC_Type *base, uint32_t mask)
Enables the interrupt signal corresponding to the interrupt status flag.

Parameters
• base – USDHC peripheral base address.

• mask – The interrupt status flags mask(_usdhc_interrupt_status_flag).

static inline void USDHC_DisableInterruptSignal(USDHC_Type *base, uint32_t mask)
Disables the interrupt signal corresponding to the interrupt status flag.

Parameters
• base – USDHC peripheral base address.

• mask – The interrupt status flags mask(_usdhc_interrupt_status_flag).

static inline uint32_t USDHC_GetEnabledInterruptStatusFlags(USDHC_Type *base)
Gets the enabled interrupt status.

Parameters
• base – USDHC peripheral base address.

Returns
Current interrupt status flags mask(_usdhc_interrupt_status_flag).

static inline uint32_t USDHC_GetInterruptStatusFlags(USDHC_Type *base)
Gets the current interrupt status.

Parameters
• base – USDHC peripheral base address.

Returns
Current interrupt status flags mask(_usdhc_interrupt_status_flag).

static inline void USDHC_ClearInterruptStatusFlags(USDHC_Type *base, uint32_t mask)
Clears a specified interrupt status. write 1 clears.

Parameters
• base – USDHC peripheral base address.

• mask – The interrupt status flags mask(_usdhc_interrupt_status_flag).

static inline uint32_t USDHC_GetAutoCommand12ErrorStatusFlags(USDHC_Type *base)
Gets the status of auto command 12 error.

Parameters
• base – USDHC peripheral base address.

Returns
Auto command12 error status flagsmask(_usdhc_auto_command12_error_status_flag).

static inline uint32_t USDHC_GetAdmaErrorStatusFlags(USDHC_Type *base)
Gets the status of the ADMA error.

Parameters
• base – USDHC peripheral base address.

Returns
ADMA error status flags mask(_usdhc_adma_error_status_flag).

2.41. USDHC: Ultra Secured Digital Host Controller Driver 363

MCUXpresso SDK Documentation, Release 25.09.00

static inline uint32_t USDHC_GetPresentStatusFlags(USDHC_Type *base)
Gets a present status.

This function gets the present USDHC’s status except for an interrupt status and an error
status.

Parameters
• base – USDHC peripheral base address.

Returns
Present USDHC’s status flags mask(_usdhc_present_status_flag).

void USDHC_GetCapability(USDHC_Type *base, usdhc_capability_t *capability)
Gets the capability information.

Parameters
• base – USDHC peripheral base address.

• capability – Structure to save capability information.

static inline void USDHC_ForceClockOn(USDHC_Type *base, bool enable)
Forces the card clock on.

Parameters
• base – USDHC peripheral base address.

• enable – enable/disable flag

uint32_t USDHC_SetSdClock(USDHC_Type *base, uint32_t srcClock_Hz, uint32_t busClock_Hz)
Sets the SD bus clock frequency.

Parameters
• base – USDHC peripheral base address.

• srcClock_Hz – USDHC source clock frequency united in Hz.

• busClock_Hz – SD bus clock frequency united in Hz.

Returns
The nearest frequency of busClock_Hz configured for SD bus.

bool USDHC_SetCardActive(USDHC_Type *base, uint32_t timeout)
Sends 80 clocks to the card to set it to the active state.

This function must be called each time the card is inserted to ensure that the card can
receive the command correctly.

Parameters
• base – USDHC peripheral base address.

• timeout – Timeout to initialize card.

Return values
• true – Set card active successfully.

• false – Set card active failed.

static inline void USDHC_AssertHardwareReset(USDHC_Type *base, bool high)
Triggers a hardware reset.

Parameters
• base – USDHC peripheral base address.

• high – 1 or 0 level

364 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline void USDHC_SetDataBusWidth(USDHC_Type *base, usdhc_data_bus_width_t width)
Sets the data transfer width.

Parameters
• base – USDHC peripheral base address.

• width – Data transfer width.

static inline void USDHC_WriteData(USDHC_Type *base, uint32_t data)
Fills the data port.

This function is used to implement the data transfer by Data Port instead of DMA.

Parameters
• base – USDHC peripheral base address.

• data – The data about to be sent.

static inline uint32_t USDHC_ReadData(USDHC_Type *base)
Retrieves the data from the data port.

This function is used to implement the data transfer by Data Port instead of DMA.

Parameters
• base – USDHC peripheral base address.

Returns
The data has been read.

void USDHC_SendCommand(USDHC_Type *base, usdhc_command_t *command)
Sends command function.

Parameters
• base – USDHC peripheral base address.

• command – configuration

static inline void USDHC_EnableWakeupEvent(USDHC_Type *base, uint32_t mask, bool enable)
Enables or disables a wakeup event in low-power mode.

Parameters
• base – USDHC peripheral base address.

• mask – Wakeup events mask(_usdhc_wakeup_event).

• enable – True to enable, false to disable.

static inline void USDHC_CardDetectByData3(USDHC_Type *base, bool enable)
Detects card insert status.

Parameters
• base – USDHC peripheral base address.

• enable – enable/disable flag

static inline bool USDHC_DetectCardInsert(USDHC_Type *base)
Detects card insert status.

Parameters
• base – USDHC peripheral base address.

2.41. USDHC: Ultra Secured Digital Host Controller Driver 365

MCUXpresso SDK Documentation, Release 25.09.00

static inline void USDHC_EnableSdioControl(USDHC_Type *base, uint32_t mask, bool enable)
Enables or disables the SDIO card control.

Parameters
• base – USDHC peripheral base address.

• mask – SDIO card control flags mask(_usdhc_sdio_control_flag).

• enable – True to enable, false to disable.

static inline void USDHC_SetContinueRequest(USDHC_Type *base)
Restarts a transaction which has stopped at the block GAP for the SDIO card.

Parameters
• base – USDHC peripheral base address.

static inline void USDHC_RequestStopAtBlockGap(USDHC_Type *base, bool enable)
Request stop at block gap function.

Parameters
• base – USDHC peripheral base address.

• enable – True to stop at block gap, false to normal transfer.

void USDHC_SetMmcBootConfig(USDHC_Type *base, const usdhc_boot_config_t *config)
Configures the MMC boot feature.

Example:

usdhc_boot_config_t config;
config.ackTimeoutCount = 4;
config.bootMode = kUSDHC_BootModeNormal;
config.blockCount = 5;
config.enableBootAck = true;
config.enableBoot = true;
config.enableAutoStopAtBlockGap = true;
USDHC_SetMmcBootConfig(USDHC, &config);

Parameters
• base – USDHC peripheral base address.

• config – The MMC boot configuration information.

static inline void USDHC_EnableMmcBoot(USDHC_Type *base, bool enable)
Enables or disables the mmc boot mode.

Parameters
• base – USDHC peripheral base address.

• enable – True to enable, false to disable.

static inline void USDHC_SetForceEvent(USDHC_Type *base, uint32_t mask)
Forces generating events according to the given mask.

Parameters
• base – USDHC peripheral base address.

• mask – The force events bit posistion (_usdhc_force_event).

static inline void UDSHC_SelectVoltage(USDHC_Type *base, bool en18v)
Selects the USDHC output voltage.

Parameters

366 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

• base – USDHC peripheral base address.

• en18v – True means 1.8V, false means 3.0V.

void USDHC_EnableDDRMode(USDHC_Type *base, bool enable, uint32_t nibblePos)
The enable/disable DDR mode.

Parameters
• base – USDHC peripheral base address.

• enable – enable/disable flag

• nibblePos – nibble position

void USDHC_SetDataConfig(USDHC_Type *base, usdhc_transfer_direction_t dataDirection,
uint32_t blockCount, uint32_t blockSize)

USDHC data configuration.

Parameters
• base – USDHC peripheral base address.

• dataDirection – Data direction, tx or rx.

• blockCount – Data block count.

• blockSize – Data block size.

void USDHC_TransferCreateHandle(USDHC_Type *base, usdhc_handle_t *handle, const
usdhc_transfer_callback_t *callback, void *userData)

Creates the USDHC handle.

Parameters
• base – USDHC peripheral base address.

• handle – USDHC handle pointer.

• callback – Structure pointer to contain all callback functions.

• userData – Callback function parameter.

status_t USDHC_TransferNonBlocking(USDHC_Type *base, usdhc_handle_t *handle,
usdhc_adma_config_t *dmaConfig, usdhc_transfer_t
*transfer)

Transfers the command/data using an interrupt and an asynchronous method.

This function sends a command and data and returns immediately. It doesn’t wait for the
transfer to complete or to encounter an error. The application must not call this API in
multiple threads at the same time. Because of that this API doesn’t support the re-entry
mechanism.

Note: Call API USDHC_TransferCreateHandle when calling this API.

Parameters
• base – USDHC peripheral base address.

• handle – USDHC handle.

• dmaConfig – ADMA configuration.

• transfer – Transfer content.

Return values
• kStatus_InvalidArgument – Argument is invalid.

2.41. USDHC: Ultra Secured Digital Host Controller Driver 367

MCUXpresso SDK Documentation, Release 25.09.00

• kStatus_USDHC_BusyTransferring – Busy transferring.

• kStatus_USDHC_PrepareAdmaDescriptorFailed – Prepare ADMA descriptor
failed.

• kStatus_Success – Operate successfully.

status_t USDHC_TransferBlocking(USDHC_Type *base, usdhc_adma_config_t *dmaConfig,
usdhc_transfer_t *transfer)

Transfers the command/data using a blocking method.

This function waits until the command response/data is received or the USDHC encounters
an error by polling the status flag.

The application must not call this API in multiple threads at the same time. Because this
API doesn’t support the re-entry mechanism.

Note: There is no need to call API USDHC_TransferCreateHandle when calling this API.

Parameters
• base – USDHC peripheral base address.

• dmaConfig – adma configuration

• transfer – Transfer content.

Return values
• kStatus_InvalidArgument – Argument is invalid.

• kStatus_USDHC_PrepareAdmaDescriptorFailed – Prepare ADMA descriptor
failed.

• kStatus_USDHC_SendCommandFailed – Send command failed.

• kStatus_USDHC_TransferDataFailed – Transfer data failed.

• kStatus_Success – Operate successfully.

void USDHC_TransferHandleIRQ(USDHC_Type *base, usdhc_handle_t *handle)
IRQ handler for the USDHC.

This function deals with the IRQs on the given host controller.

Parameters
• base – USDHC peripheral base address.

• handle – USDHC handle.

FSL_USDHC_DRIVER_VERSION
Driver version 2.8.5.

Enum _usdhc_status. USDHC status.

Values:

enumerator kStatus_USDHC_BusyTransferring
Transfer is on-going.

enumerator kStatus_USDHC_PrepareAdmaDescriptorFailed
Set DMA descriptor failed.

368 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kStatus_USDHC_SendCommandFailed
Send command failed.

enumerator kStatus_USDHC_TransferDataFailed
Transfer data failed.

enumerator kStatus_USDHC_DMADataAddrNotAlign
Data address not aligned.

enumerator kStatus_USDHC_ReTuningRequest
Re-tuning request.

enumerator kStatus_USDHC_TuningError
Tuning error.

enumerator kStatus_USDHC_NotSupport
Not support.

enumerator kStatus_USDHC_TransferDataComplete
Transfer data complete.

enumerator kStatus_USDHC_SendCommandSuccess
Transfer command complete.

enumerator kStatus_USDHC_TransferDMAComplete
Transfer DMA complete.

Enum _usdhc_capability_flag. Host controller capabilities flag mask. .

Values:

enumerator kUSDHC_SupportAdmaFlag
Support ADMA.

enumerator kUSDHC_SupportHighSpeedFlag
Support high-speed.

enumerator kUSDHC_SupportDmaFlag
Support DMA.

enumerator kUSDHC_SupportSuspendResumeFlag
Support suspend/resume.

enumerator kUSDHC_SupportV330Flag
Support voltage 3.3V.

enumerator kUSDHC_SupportV300Flag
Support voltage 3.0V.

enumerator kUSDHC_SupportV180Flag
Support voltage 1.8V.

enumerator kUSDHC_Support4BitFlag
Flag in HTCAPBLT_MBL’s position, supporting 4-bit mode.

enumerator kUSDHC_Support8BitFlag
Flag in HTCAPBLT_MBL’s position, supporting 8-bit mode.

enumerator kUSDHC_SupportDDR50Flag
SD version 3.0 new feature, supporting DDR50 mode.

2.41. USDHC: Ultra Secured Digital Host Controller Driver 369

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUSDHC_SupportSDR104Flag
Support SDR104 mode.

enumerator kUSDHC_SupportSDR50Flag
Support SDR50 mode.

Enum _usdhc_wakeup_event. Wakeup event mask. .

Values:

enumerator kUSDHC_WakeupEventOnCardInt
Wakeup on card interrupt.

enumerator kUSDHC_WakeupEventOnCardInsert
Wakeup on card insertion.

enumerator kUSDHC_WakeupEventOnCardRemove
Wakeup on card removal.

enumerator kUSDHC_WakeupEventsAll
All wakeup events

Enum _usdhc_reset. Reset type mask. .

Values:

enumerator kUSDHC_ResetAll
Reset all except card detection.

enumerator kUSDHC_ResetCommand
Reset command line.

enumerator kUSDHC_ResetData
Reset data line.

enumerator kUSDHC_ResetTuning
Reset tuning circuit.

enumerator kUSDHC_ResetsAll
All reset types

Enum _usdhc_transfer_flag. Transfer flag mask.

Values:

enumerator kUSDHC_EnableDmaFlag
Enable DMA.

enumerator kUSDHC_CommandTypeSuspendFlag
Suspend command.

enumerator kUSDHC_CommandTypeResumeFlag
Resume command.

enumerator kUSDHC_CommandTypeAbortFlag
Abort command.

enumerator kUSDHC_EnableBlockCountFlag
Enable block count.

370 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUSDHC_EnableAutoCommand12Flag
Enable auto CMD12.

enumerator kUSDHC_DataReadFlag
Enable data read.

enumerator kUSDHC_MultipleBlockFlag
Multiple block data read/write.

enumerator kUSDHC_EnableAutoCommand23Flag
Enable auto CMD23.

enumerator kUSDHC_ResponseLength136Flag
136-bit response length.

enumerator kUSDHC_ResponseLength48Flag
48-bit response length.

enumerator kUSDHC_ResponseLength48BusyFlag
48-bit response length with busy status.

enumerator kUSDHC_EnableCrcCheckFlag
Enable CRC check.

enumerator kUSDHC_EnableIndexCheckFlag
Enable index check.

enumerator kUSDHC_DataPresentFlag
Data present flag.

Enum _usdhc_present_status_flag. Present status flag mask. .

Values:

enumerator kUSDHC_CommandInhibitFlag
Command inhibit.

enumerator kUSDHC_DataInhibitFlag
Data inhibit.

enumerator kUSDHC_DataLineActiveFlag
Data line active.

enumerator kUSDHC_SdClockStableFlag
SD bus clock stable.

enumerator kUSDHC_WriteTransferActiveFlag
Write transfer active.

enumerator kUSDHC_ReadTransferActiveFlag
Read transfer active.

enumerator kUSDHC_BufferWriteEnableFlag
Buffer write enable.

enumerator kUSDHC_BufferReadEnableFlag
Buffer read enable.

enumerator kUSDHC_ReTuningRequestFlag
Re-tuning request flag, only used for SDR104 mode.

2.41. USDHC: Ultra Secured Digital Host Controller Driver 371

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUSDHC_DelaySettingFinishedFlag
Delay setting finished flag.

enumerator kUSDHC_CardInsertedFlag
Card inserted.

enumerator kUSDHC_CommandLineLevelFlag
Command line signal level.

enumerator kUSDHC_Data0LineLevelFlag
Data0 line signal level.

enumerator kUSDHC_Data1LineLevelFlag
Data1 line signal level.

enumerator kUSDHC_Data2LineLevelFlag
Data2 line signal level.

enumerator kUSDHC_Data3LineLevelFlag
Data3 line signal level.

enumerator kUSDHC_Data4LineLevelFlag
Data4 line signal level.

enumerator kUSDHC_Data5LineLevelFlag
Data5 line signal level.

enumerator kUSDHC_Data6LineLevelFlag
Data6 line signal level.

enumerator kUSDHC_Data7LineLevelFlag
Data7 line signal level.

Enum _usdhc_interrupt_status_flag. Interrupt status flag mask. .

Values:

enumerator kUSDHC_CommandCompleteFlag
Command complete.

enumerator kUSDHC_DataCompleteFlag
Data complete.

enumerator kUSDHC_BlockGapEventFlag
Block gap event.

enumerator kUSDHC_DmaCompleteFlag
DMA interrupt.

enumerator kUSDHC_BufferWriteReadyFlag
Buffer write ready.

enumerator kUSDHC_BufferReadReadyFlag
Buffer read ready.

enumerator kUSDHC_CardInsertionFlag
Card inserted.

enumerator kUSDHC_CardRemovalFlag
Card removed.

372 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUSDHC_CardInterruptFlag
Card interrupt.

enumerator kUSDHC_ReTuningEventFlag
Re-Tuning event, only for SD3.0 SDR104 mode.

enumerator kUSDHC_TuningPassFlag
SDR104 mode tuning pass flag.

enumerator kUSDHC_TuningErrorFlag
SDR104 tuning error flag.

enumerator kUSDHC_CommandTimeoutFlag
Command timeout error.

enumerator kUSDHC_CommandCrcErrorFlag
Command CRC error.

enumerator kUSDHC_CommandEndBitErrorFlag
Command end bit error.

enumerator kUSDHC_CommandIndexErrorFlag
Command index error.

enumerator kUSDHC_DataTimeoutFlag
Data timeout error.

enumerator kUSDHC_DataCrcErrorFlag
Data CRC error.

enumerator kUSDHC_DataEndBitErrorFlag
Data end bit error.

enumerator kUSDHC_AutoCommand12ErrorFlag
Auto CMD12 error.

enumerator kUSDHC_DmaErrorFlag
DMA error.

enumerator kUSDHC_CommandErrorFlag
Command error

enumerator kUSDHC_DataErrorFlag
Data error

enumerator kUSDHC_ErrorFlag
All error

enumerator kUSDHC_DataFlag
Data interrupts

enumerator kUSDHC_DataDMAFlag
Data interrupts

enumerator kUSDHC_CommandFlag
Command interrupts

enumerator kUSDHC_CardDetectFlag
Card detection interrupts

enumerator kUSDHC_SDR104TuningFlag
SDR104 tuning flag.

2.41. USDHC: Ultra Secured Digital Host Controller Driver 373

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUSDHC_AllInterruptFlags
All flags mask

Enum _usdhc_auto_command12_error_status_flag. Auto CMD12 error status flag mask. .

Values:

enumerator kUSDHC_AutoCommand12NotExecutedFlag
Not executed error.

enumerator kUSDHC_AutoCommand12TimeoutFlag
Timeout error.

enumerator kUSDHC_AutoCommand12EndBitErrorFlag
End bit error.

enumerator kUSDHC_AutoCommand12CrcErrorFlag
CRC error.

enumerator kUSDHC_AutoCommand12IndexErrorFlag
Index error.

enumerator kUSDHC_AutoCommand12NotIssuedFlag
Not issued error.

Enum _usdhc_standard_tuning. Standard tuning flag.

Values:

enumerator kUSDHC_ExecuteTuning
Used to start tuning procedure.

enumerator kUSDHC_TuningSampleClockSel
When std_tuning_en bit is set, this bit is used to select sampleing clock.

Enum _usdhc_adma_error_status_flag. ADMA error status flag mask. .

Values:

enumerator kUSDHC_AdmaLenghMismatchFlag
Length mismatch error.

enumerator kUSDHC_AdmaDescriptorErrorFlag
Descriptor error.

Enum _usdhc_adma_error_state. ADMA error state.

This state is the detail state when ADMA error has occurred.

Values:

enumerator kUSDHC_AdmaErrorStateStopDma
Stop DMA, previous location set in the ADMA system address is errored address.

enumerator kUSDHC_AdmaErrorStateFetchDescriptor
Fetch descriptor, current location set in the ADMA system address is errored address.

enumerator kUSDHC_AdmaErrorStateChangeAddress
Change address, no DMA error has occurred.

374 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUSDHC_AdmaErrorStateTransferData
Transfer data, previous location set in the ADMA system address is errored address.

enumerator kUSDHC_AdmaErrorStateInvalidLength
Invalid length in ADMA descriptor.

enumerator kUSDHC_AdmaErrorStateInvalidDescriptor
Invalid descriptor fetched by ADMA.

enumerator kUSDHC_AdmaErrorState
ADMA error state

Enum _usdhc_force_event. Force event bit position. .

Values:

enumerator kUSDHC_ForceEventAutoCommand12NotExecuted
Auto CMD12 not executed error.

enumerator kUSDHC_ForceEventAutoCommand12Timeout
Auto CMD12 timeout error.

enumerator kUSDHC_ForceEventAutoCommand12CrcError
Auto CMD12 CRC error.

enumerator kUSDHC_ForceEventEndBitError
Auto CMD12 end bit error.

enumerator kUSDHC_ForceEventAutoCommand12IndexError
Auto CMD12 index error.

enumerator kUSDHC_ForceEventAutoCommand12NotIssued
Auto CMD12 not issued error.

enumerator kUSDHC_ForceEventCommandTimeout
Command timeout error.

enumerator kUSDHC_ForceEventCommandCrcError
Command CRC error.

enumerator kUSDHC_ForceEventCommandEndBitError
Command end bit error.

enumerator kUSDHC_ForceEventCommandIndexError
Command index error.

enumerator kUSDHC_ForceEventDataTimeout
Data timeout error.

enumerator kUSDHC_ForceEventDataCrcError
Data CRC error.

enumerator kUSDHC_ForceEventDataEndBitError
Data end bit error.

enumerator kUSDHC_ForceEventAutoCommand12Error
Auto CMD12 error.

enumerator kUSDHC_ForceEventCardInt
Card interrupt.

2.41. USDHC: Ultra Secured Digital Host Controller Driver 375

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUSDHC_ForceEventDmaError
Dma error.

enumerator kUSDHC_ForceEventTuningError
Tuning error.

enumerator kUSDHC_ForceEventsAll
All force event flags mask.

enum _usdhc_transfer_direction
Data transfer direction.

Values:

enumerator kUSDHC_TransferDirectionReceive
USDHC transfer direction receive.

enumerator kUSDHC_TransferDirectionSend
USDHC transfer direction send.

enum _usdhc_data_bus_width
Data transfer width.

Values:

enumerator kUSDHC_DataBusWidth1Bit
1-bit mode

enumerator kUSDHC_DataBusWidth4Bit
4-bit mode

enumerator kUSDHC_DataBusWidth8Bit
8-bit mode

enum _usdhc_endian_mode
Endian mode.

Values:

enumerator kUSDHC_EndianModeBig
Big endian mode.

enumerator kUSDHC_EndianModeHalfWordBig
Half word big endian mode.

enumerator kUSDHC_EndianModeLittle
Little endian mode.

enum _usdhc_dma_mode
DMA mode.

Values:

enumerator kUSDHC_DmaModeSimple
External DMA.

enumerator kUSDHC_DmaModeAdma1
ADMA1 is selected.

enumerator kUSDHC_DmaModeAdma2
ADMA2 is selected.

enumerator kUSDHC_ExternalDMA
External DMA mode selected.

376 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Enum _usdhc_sdio_control_flag. SDIO control flag mask. .

Values:

enumerator kUSDHC_StopAtBlockGapFlag
Stop at block gap.

enumerator kUSDHC_ReadWaitControlFlag
Read wait control.

enumerator kUSDHC_InterruptAtBlockGapFlag
Interrupt at block gap.

enumerator kUSDHC_ReadDoneNo8CLK
Read done without 8 clk for block gap.

enumerator kUSDHC_ExactBlockNumberReadFlag
Exact block number read.

enum _usdhc_boot_mode
MMC card boot mode.

Values:

enumerator kUSDHC_BootModeNormal
Normal boot

enumerator kUSDHC_BootModeAlternative
Alternative boot

enum _usdhc_card_command_type
The command type.

Values:

enumerator kCARD_CommandTypeNormal
Normal command

enumerator kCARD_CommandTypeSuspend
Suspend command

enumerator kCARD_CommandTypeResume
Resume command

enumerator kCARD_CommandTypeAbort
Abort command

enumerator kCARD_CommandTypeEmpty
Empty command

enum _usdhc_card_response_type
The command response type.

Defines the command response type from card to host controller.

Values:

enumerator kCARD_ResponseTypeNone
Response type: none

enumerator kCARD_ResponseTypeR1
Response type: R1

2.41. USDHC: Ultra Secured Digital Host Controller Driver 377

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kCARD_ResponseTypeR1b
Response type: R1b

enumerator kCARD_ResponseTypeR2
Response type: R2

enumerator kCARD_ResponseTypeR3
Response type: R3

enumerator kCARD_ResponseTypeR4
Response type: R4

enumerator kCARD_ResponseTypeR5
Response type: R5

enumerator kCARD_ResponseTypeR5b
Response type: R5b

enumerator kCARD_ResponseTypeR6
Response type: R6

enumerator kCARD_ResponseTypeR7
Response type: R7

Enum _usdhc_adma1_descriptor_flag. The mask for the control/status field in ADMA1 de-
scriptor.

Values:

enumerator kUSDHC_Adma1DescriptorValidFlag
Valid flag.

enumerator kUSDHC_Adma1DescriptorEndFlag
End flag.

enumerator kUSDHC_Adma1DescriptorInterrupFlag
Interrupt flag.

enumerator kUSDHC_Adma1DescriptorActivity1Flag
Activity 1 flag.

enumerator kUSDHC_Adma1DescriptorActivity2Flag
Activity 2 flag.

enumerator kUSDHC_Adma1DescriptorTypeNop
No operation.

enumerator kUSDHC_Adma1DescriptorTypeTransfer
Transfer data.

enumerator kUSDHC_Adma1DescriptorTypeLink
Link descriptor.

enumerator kUSDHC_Adma1DescriptorTypeSetLength
Set data length.

Enum _usdhc_adma2_descriptor_flag. ADMA1 descriptor control and status mask.

Values:

enumerator kUSDHC_Adma2DescriptorValidFlag
Valid flag.

378 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUSDHC_Adma2DescriptorEndFlag
End flag.

enumerator kUSDHC_Adma2DescriptorInterruptFlag
Interrupt flag.

enumerator kUSDHC_Adma2DescriptorActivity1Flag
Activity 1 mask.

enumerator kUSDHC_Adma2DescriptorActivity2Flag
Activity 2 mask.

enumerator kUSDHC_Adma2DescriptorTypeNop
No operation.

enumerator kUSDHC_Adma2DescriptorTypeReserved
Reserved.

enumerator kUSDHC_Adma2DescriptorTypeTransfer
Transfer type.

enumerator kUSDHC_Adma2DescriptorTypeLink
Link type.

Enum _usdhc_adma_flag. ADMA descriptor configuration flag. .

Values:

enumerator kUSDHC_AdmaDescriptorSingleFlag
Try to finish the transfer in a single ADMA descriptor. If transfer size is bigger than
one ADMA descriptor’s ability, new another descriptor for data transfer.

enumerator kUSDHC_AdmaDescriptorMultipleFlag
Create multiple ADMA descriptors within the ADMA table, this is used for mmc boot
mode specifically, which need to modify the ADMA descriptor on the fly, so the flag
should be used combining with stop at block gap feature.

enum _usdhc_burst_len
DMA transfer burst len config.

Values:

enumerator kUSDHC_EnBurstLenForINCR
Enable burst len for INCR.

enumerator kUSDHC_EnBurstLenForINCR4816
Enable burst len for INCR4/INCR8/INCR16.

enumerator kUSDHC_EnBurstLenForINCR4816WRAP
Enable burst len for INCR4/8/16 WRAP.

Enum _usdhc_transfer_data_type. Tansfer data type definition.

Values:

enumerator kUSDHC_TransferDataNormal
Transfer normal read/write data.

enumerator kUSDHC_TransferDataTuning
Transfer tuning data.

2.41. USDHC: Ultra Secured Digital Host Controller Driver 379

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kUSDHC_TransferDataBoot
Transfer boot data.

enumerator kUSDHC_TransferDataBootcontinous
Transfer boot data continuously.

typedef enum _usdhc_transfer_direction usdhc_transfer_direction_t
Data transfer direction.

typedef enum _usdhc_data_bus_width usdhc_data_bus_width_t
Data transfer width.

typedef enum _usdhc_endian_mode usdhc_endian_mode_t
Endian mode.

typedef enum _usdhc_dma_mode usdhc_dma_mode_t
DMA mode.

typedef enum _usdhc_boot_mode usdhc_boot_mode_t
MMC card boot mode.

typedef enum _usdhc_card_command_type usdhc_card_command_type_t
The command type.

typedef enum _usdhc_card_response_type usdhc_card_response_type_t
The command response type.

Defines the command response type from card to host controller.

typedef enum _usdhc_burst_len usdhc_burst_len_t
DMA transfer burst len config.

typedef uint32_t usdhc_adma1_descriptor_t
Defines the ADMA1 descriptor structure.

typedef struct _usdhc_adma2_descriptor usdhc_adma2_descriptor_t
Defines the ADMA2 descriptor structure.

typedef struct _usdhc_capability usdhc_capability_t
USDHC capability information.

Defines a structure to save the capability information of USDHC.

typedef struct _usdhc_boot_config usdhc_boot_config_t
Data structure to configure the MMC boot feature.

typedef struct _usdhc_config usdhc_config_t
Data structure to initialize the USDHC.

typedef struct _usdhc_command usdhc_command_t
Card command descriptor.

Defines card command-related attribute.

typedef struct _usdhc_adma_config usdhc_adma_config_t
ADMA configuration.

typedef struct _usdhc_scatter_gather_data_list usdhc_scatter_gather_data_list_t
Card scatter gather data list.

Allow application register uncontinuous data buffer for data transfer.

380 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

typedef struct _usdhc_scatter_gather_data usdhc_scatter_gather_data_t
Card scatter gather data descriptor.

Defines a structure to contain data-related attribute. The ‘enableIgnoreError’ is used when
upper card driver wants to ignore the error event to read/write all the data and not to stop
read/write immediately when an error event happens. For example, bus testing procedure
for MMC card.

typedef struct _usdhc_scatter_gather_transfer usdhc_scatter_gather_transfer_t
usdhc scatter gather transfer.

typedef struct _usdhc_data usdhc_data_t
Card data descriptor.

Defines a structure to contain data-related attribute. The ‘enableIgnoreError’ is used when
upper card driver wants to ignore the error event to read/write all the data and not to stop
read/write immediately when an error event happens. For example, bus testing procedure
for MMC card.

typedef struct _usdhc_transfer usdhc_transfer_t
Transfer state.

typedef struct _usdhc_handle usdhc_handle_t
USDHC handle typedef.

typedef struct _usdhc_transfer_callback usdhc_transfer_callback_t
USDHC callback functions.

typedef status_t (*usdhc_transfer_function_t)(USDHC_Type *base, usdhc_transfer_t *content)
USDHC transfer function.

typedef struct _usdhc_host usdhc_host_t
USDHC host descriptor.

USDHC_MAX_BLOCK_COUNT
Maximum block count can be set one time.

FSL_USDHC_ENABLE_SCATTER_GATHER_TRANSFER
USDHC scatter gather feature control macro.

USDHC_ADMA1_ADDRESS_ALIGN
The alignment size for ADDRESS filed in ADMA1’s descriptor.

USDHC_ADMA1_LENGTH_ALIGN
The alignment size for LENGTH field in ADMA1’s descriptor.

USDHC_ADMA2_ADDRESS_ALIGN
The alignment size for ADDRESS field in ADMA2’s descriptor.

USDHC_ADMA2_LENGTH_ALIGN
The alignment size for LENGTH filed in ADMA2’s descriptor.

USDHC_ADMA1_DESCRIPTOR_ADDRESS_SHIFT
The bit shift for ADDRESS filed in ADMA1’s descriptor.

Address/page field Reserved Attribute
31 12 11 6 05 04 03 02 01 00
address or data length 000000 Act2 Act1 0 Int End Valid

2.41. USDHC: Ultra Secured Digital Host Controller Driver 381

MCUXpresso SDK Documentation, Release 25.09.00

Act2 Act1 Comment 31-28 27-12
0 0 No op Don’t care
0 1 Set data length 0000 Data Length
1 0 Transfer data Data address
1 1 Link descriptor Descriptor address

USDHC_ADMA1_DESCRIPTOR_ADDRESS_MASK
The bit mask for ADDRESS field in ADMA1’s descriptor.

USDHC_ADMA1_DESCRIPTOR_LENGTH_SHIFT
The bit shift for LENGTH filed in ADMA1’s descriptor.

USDHC_ADMA1_DESCRIPTOR_LENGTH_MASK
The mask for LENGTH field in ADMA1’s descriptor.

USDHC_ADMA1_DESCRIPTOR_MAX_LENGTH_PER_ENTRY
The maximum value of LENGTH filed in ADMA1’s descriptor. Since the max transfer size
ADMA1 support is 65535 which is indivisible by 4096, so to make sure a large data load
transfer (>64KB) continuously (require the data address be always align with 4096), soft-
ware will set the maximum data length for ADMA1 to (64 - 4)KB.

USDHC_ADMA2_DESCRIPTOR_LENGTH_SHIFT
The bit shift for LENGTH field in ADMA2’s descriptor.

Address field Length Reserved Attribute
63 32 31 16 15 06 05 04 03 02 01 00
32-bit address 16-bit length 0000000000 Act2 Act1 0 Int End Valid

Act2 Act1 Comment Operation
0 0 No op Don’t care
0 1 Reserved Read this line and go to next one
1 0 Transfer data Transfer datawith address and length set in this descriptor

line
1 1 Link descrip-

tor
Link to another descriptor

USDHC_ADMA2_DESCRIPTOR_LENGTH_MASK
The bit mask for LENGTH field in ADMA2’s descriptor.

USDHC_ADMA2_DESCRIPTOR_MAX_LENGTH_PER_ENTRY
The maximum value of LENGTH field in ADMA2’s descriptor.

struct _usdhc_adma2_descriptor
#include <fsl_usdhc.h> Defines the ADMA2 descriptor structure.

Public Members

uint32_t attribute
The control and status field.

382 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

uint32_t address
The address field.

struct _usdhc_capability
#include <fsl_usdhc.h> USDHC capability information.

Defines a structure to save the capability information of USDHC.

Public Members

uint32_t sdVersion
Support SD card/sdio version.

uint32_t mmcVersion
Support EMMC card version.

uint32_t maxBlockLength
Maximum block length united as byte.

uint32_t maxBlockCount
Maximum block count can be set one time.

uint32_t flags
Capability flags to indicate the support information(_usdhc_capability_flag).

struct _usdhc_boot_config
#include <fsl_usdhc.h> Data structure to configure the MMC boot feature.

Public Members

uint32_t ackTimeoutCount
Timeout value for the boot ACK. The available range is 0 ~ 15.

usdhc_boot_mode_t bootMode
Boot mode selection.

uint32_t blockCount
Stop at block gap value of automatic mode. Available range is 0 ~ 65535.

size_t blockSize
Block size.

bool enableBootAck
Enable or disable boot ACK.

bool enableAutoStopAtBlockGap
Enable or disable auto stop at block gap function in boot period.

struct _usdhc_config
#include <fsl_usdhc.h> Data structure to initialize the USDHC.

Public Members

uint32_t dataTimeout
Data timeout value.

usdhc_endian_mode_t endianMode
Endian mode.

2.41. USDHC: Ultra Secured Digital Host Controller Driver 383

MCUXpresso SDK Documentation, Release 25.09.00

uint8_t readWatermarkLevel
Watermark level for DMA read operation. Available range is 1 ~ 128.

uint8_t writeWatermarkLevel
Watermark level for DMA write operation. Available range is 1 ~ 128.

uint8_t readBurstLen
Read burst len.

uint8_t writeBurstLen
Write burst len.

struct _usdhc_command
#include <fsl_usdhc.h> Card command descriptor.

Defines card command-related attribute.

Public Members

uint32_t index
Command index.

uint32_t argument
Command argument.

usdhc_card_command_type_t type
Command type.

usdhc_card_response_type_t responseType
Command response type.

uint32_t response[4U]
Response for this command.

uint32_t responseErrorFlags
Response error flag, which need to check the command reponse.

uint32_t flags
Cmd flags.

struct _usdhc_adma_config
#include <fsl_usdhc.h> ADMA configuration.

Public Members

usdhc_dma_mode_t dmaMode
DMA mode.

usdhc_burst_len_t burstLen
Burst len config.

uint32_t *admaTable
ADMA table address, can’t be null if transfer way is ADMA1/ADMA2.

uint32_t admaTableWords
ADMA table length united as words, can’t be 0 if transfer way is ADMA1/ADMA2.

struct _usdhc_scatter_gather_data_list
#include <fsl_usdhc.h> Card scatter gather data list.

Allow application register uncontinuous data buffer for data transfer.

384 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

struct _usdhc_scatter_gather_data
#include <fsl_usdhc.h> Card scatter gather data descriptor.

Defines a structure to contain data-related attribute. The ‘enableIgnoreError’ is used when
upper card driver wants to ignore the error event to read/write all the data and not to stop
read/write immediately when an error event happens. For example, bus testing procedure
for MMC card.

Public Members

bool enableAutoCommand12
Enable auto CMD12.

bool enableAutoCommand23
Enable auto CMD23.

bool enableIgnoreError
Enable to ignore error event to read/write all the data.

usdhc_transfer_direction_t dataDirection
data direction

uint8_t dataType
this is used to distinguish the normal/tuning/boot data.

size_t blockSize
Block size.

usdhc_scatter_gather_data_list_t sgData
scatter gather data

struct _usdhc_scatter_gather_transfer
#include <fsl_usdhc.h> usdhc scatter gather transfer.

Public Members

usdhc_scatter_gather_data_t *data
Data to transfer.

usdhc_command_t *command
Command to send.

struct _usdhc_data
#include <fsl_usdhc.h> Card data descriptor.

Defines a structure to contain data-related attribute. The ‘enableIgnoreError’ is used when
upper card driver wants to ignore the error event to read/write all the data and not to stop
read/write immediately when an error event happens. For example, bus testing procedure
for MMC card.

Public Members

bool enableAutoCommand12
Enable auto CMD12.

bool enableAutoCommand23
Enable auto CMD23.

2.41. USDHC: Ultra Secured Digital Host Controller Driver 385

MCUXpresso SDK Documentation, Release 25.09.00

bool enableIgnoreError
Enable to ignore error event to read/write all the data.

uint8_t dataType
this is used to distinguish the normal/tuning/boot data.

size_t blockSize
Block size.

uint32_t blockCount
Block count.

uint32_t *rxData
Buffer to save data read.

const uint32_t *txData
Data buffer to write.

struct _usdhc_transfer
#include <fsl_usdhc.h> Transfer state.

Public Members

usdhc_data_t *data
Data to transfer.

usdhc_command_t *command
Command to send.

struct _usdhc_transfer_callback
#include <fsl_usdhc.h> USDHC callback functions.

Public Members

void (*CardInserted)(USDHC_Type *base, void *userData)
Card inserted occurs when DAT3/CD pin is for card detect

void (*CardRemoved)(USDHC_Type *base, void *userData)
Card removed occurs

void (*SdioInterrupt)(USDHC_Type *base, void *userData)
SDIO card interrupt occurs

void (*BlockGap)(USDHC_Type *base, void *userData)
stopped at block gap event

void (*TransferComplete)(USDHC_Type *base, usdhc_handle_t *handle, status_t status, void
*userData)

Transfer complete callback.

void (*ReTuning)(USDHC_Type *base, void *userData)
Handle the re-tuning.

struct _usdhc_handle
#include <fsl_usdhc.h> USDHC handle.

Defines the structure to save the USDHC state information and callback function.

Note: All the fields except interruptFlags and transferredWords must be allocated by the
user.

386 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

Public Members

usdhc_data_t *volatile data
Transfer parameter. Data to transfer.

usdhc_command_t *volatile command
Transfer parameter. Command to send.

volatile uint32_t transferredWords
Transfer status. Words transferred by DATAPORT way.

usdhc_transfer_callback_t callback
Callback function.

void *userData
Parameter for transfer complete callback.

struct _usdhc_host
#include <fsl_usdhc.h> USDHC host descriptor.

Public Members

USDHC_Type *base
USDHC peripheral base address.

uint32_t sourceClock_Hz
USDHC source clock frequency united in Hz.

usdhc_config_t config
USDHC configuration.

usdhc_capability_t capability
USDHC capability information.

usdhc_transfer_function_t transfer
USDHC transfer function.

2.42 WDOG: Watchdog Timer Driver

voidWDOG_GetDefaultConfig(wdog_config_t *config)
Initializes the WDOG configuration structure.

This function initializes the WDOG configuration structure to default values. The default
values are as follows.

wdogConfig->enableWdog = true;
wdogConfig->workMode.enableWait = true;
wdogConfig->workMode.enableStop = true;
wdogConfig->workMode.enableDebug = true;
wdogConfig->enableInterrupt = false;
wdogConfig->enablePowerdown = false;
wdogConfig->resetExtension = flase;
wdogConfig->timeoutValue = 0xFFU;
wdogConfig->interruptTimeValue = 0x04u;

See also:
wdog_config_t

2.42. WDOG: Watchdog Timer Driver 387

MCUXpresso SDK Documentation, Release 25.09.00

Parameters
• config – Pointer to the WDOG configuration structure.

voidWDOG_Init(WDOG_Type *base, const wdog_config_t *config)
Initializes the WDOG.

This function initializes the WDOG. When called, the WDOG runs according to the configu-
ration.

This is an example.

wdog_config_t config;
WDOG_GetDefaultConfig(&config);
config.timeoutValue = 0xffU;
config->interruptTimeValue = 0x04u;
WDOG_Init(wdog_base,&config);

Parameters
• base – WDOG peripheral base address

• config – The configuration of WDOG

voidWDOG_Deinit(WDOG_Type *base)
Shuts down the WDOG.

This function shuts down the WDOG. Watchdog Enable bit is a write one once only bit. It
is not possible to clear this bit by a software write, once the bit is set. This bit(WDE) can be
set/reset only in debug mode(exception).

static inline voidWDOG_Enable(WDOG_Type *base)
Enables the WDOG module.

This function writes a value into the WDOG_WCR register to enable the WDOG. This is a
write one once only bit. It is not possible to clear this bit by a software write, once the bit
is set. only debug mode exception.

Parameters
• base – WDOG peripheral base address

static inline voidWDOG_Disable(WDOG_Type *base)
Disables the WDOG module.

This function writes a value into the WDOG_WCR register to disable the WDOG. This is a
write one once only bit. It is not possible to clear this bit by a software write,once the bit is
set. only debug mode exception

Parameters
• base – WDOG peripheral base address

static inline voidWDOG_TriggerSystemSoftwareReset(WDOG_Type *base)
Trigger the system software reset.

This function will write to the WCR[SRS] bit to trigger a software system reset. This bit will
automatically resets to “1” after it has been asserted to “0”. Note: Calling this API will reset
the system right now, please using it with more attention.

Parameters
• base – WDOG peripheral base address

388 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

static inline voidWDOG_TriggerSoftwareSignal(WDOG_Type *base)
Trigger an output assertion.

This function will write to the WCR[WDA] bit to trigger WDOG_B signal assertion. The
WDOG_B signal can be routed to external pin of the chip, the output pin will turn to as-
sertion along with WDOG_B signal. Note: The WDOG_B signal will remain assert until a
power on reset occurred, so, please take more attention while calling it.

Parameters
• base – WDOG peripheral base address

static inline voidWDOG_EnableInterrupts(WDOG_Type *base, uint16_t mask)
Enables the WDOG interrupt.

This bit is a write once only bit. Once the software does a write access to this bit, it will get
locked and cannot be reprogrammed until the next system reset assertion

Parameters
• base – WDOG peripheral base address

• mask – The interrupts to enable The parameter can be combination of the
following source if defined.

– kWDOG_InterruptEnable

uint16_tWDOG_GetStatusFlags(WDOG_Type *base)
Gets the WDOG all reset status flags.

This function gets all reset status flags.

uint16_t status;
status = WDOG_GetStatusFlags (wdog_base);

See also:
_wdog_status_flags

• true: a related status flag has been set.

• false: a related status flag is not set.

Parameters
• base – WDOG peripheral base address

Returns
State of the status flag: asserted (true) or not-asserted (false).

voidWDOG_ClearInterruptStatus(WDOG_Type *base, uint16_t mask)
Clears the WDOG flag.

This function clears the WDOG status flag.

This is an example for clearing the interrupt flag.

WDOG_ClearStatusFlags(wdog_base,KWDOG_InterruptFlag);

Parameters
• base – WDOG peripheral base address

• mask – The status flags to clear. The parameter could be any combination
of the following values. kWDOG_TimeoutFlag

2.42. WDOG: Watchdog Timer Driver 389

MCUXpresso SDK Documentation, Release 25.09.00

static inline voidWDOG_SetTimeoutValue(WDOG_Type *base, uint16_t timeoutCount)
Sets the WDOG timeout value.

This function sets the timeout value. This function writes a value into WCR registers. The
time-out value can be written at any point of time but it is loaded to the counter at the time
when WDOG is enabled or after the service routine has been performed.

Parameters
• base – WDOG peripheral base address

• timeoutCount – WDOG timeout value; count of WDOG clock tick.

static inline voidWDOG_SetInterrputTimeoutValue(WDOG_Type *base, uint16_t timeoutCount)
Sets the WDOG interrupt count timeout value.

This function sets the interrupt count timeout value. This function writes a value into WIC
registers which are wirte-once. This field is write once only. Once the software does a write
access to this field, it will get locked and cannot be reprogrammed until the next system
reset assertion.

Parameters
• base – WDOG peripheral base address

• timeoutCount – WDOG timeout value; count of WDOG clock tick.

static inline voidWDOG_DisablePowerDownEnable(WDOG_Type *base)
Disable the WDOG power down enable bit.

This function disable theWDOGpower down enable(PDE). This functionwrites a value into
WMCR registers which are wirte-once. This field is write once only. Once software sets this
bit it cannot be reset until the next system reset.

Parameters
• base – WDOG peripheral base address

voidWDOG_Refresh(WDOG_Type *base)
Refreshes the WDOG timer.

This function feeds the WDOG. This function should be called before the WDOG timer is in
timeout. Otherwise, a reset is asserted.

Parameters
• base – WDOG peripheral base address

FSL_WDOG_DRIVER_VERSION
Defines WDOG driver version.

WDOG_REFRESH_KEY

enum _wdog_interrupt_enable
WDOG interrupt configuration structure, default settings all disabled.

This structure contains the settings for all of the WDOG interrupt configurations.

Values:

enumerator kWDOG_InterruptEnable
WDOG timeout generates an interrupt before reset

enum _wdog_status_flags
WDOG status flags.

This structure contains the WDOG status flags for use in the WDOG functions.

Values:

390 Chapter 2. MIMX8MQ6

MCUXpresso SDK Documentation, Release 25.09.00

enumerator kWDOG_RunningFlag
Running flag, set when WDOG is enabled

enumerator kWDOG_PowerOnResetFlag
Power On flag, set when reset is the result of a powerOnReset

enumerator kWDOG_TimeoutResetFlag
Timeout flag, set when reset is the result of a timeout

enumerator kWDOG_SoftwareResetFlag
Software flag, set when reset is the result of a software

enumerator kWDOG_InterruptFlag
interrupt flag,whether interrupt has occurred or not

typedef struct _wdog_work_mode wdog_work_mode_t
Defines WDOG work mode.

typedef struct _wdog_config wdog_config_t
Describes WDOG configuration structure.

struct _wdog_work_mode
#include <fsl_wdog.h> Defines WDOG work mode.

Public Members

bool enableWait
If set to true, WDOG continues in wait mode

bool enableStop
If set to true, WDOG continues in stop mode

bool enableDebug
If set to true, WDOG continues in debug mode

struct _wdog_config
#include <fsl_wdog.h> Describes WDOG configuration structure.

Public Members

bool enableWdog
Enables or disables WDOG

wdog_work_mode_t workMode
Configures WDOG work mode in debug stop and wait mode

bool enableInterrupt
Enables or disables WDOG interrupt

uint16_t timeoutValue
Timeout value

uint16_t interruptTimeValue
Interrupt count timeout value

bool softwareResetExtension
software reset extension

bool enablePowerDown
power down enable bit

2.42. WDOG: Watchdog Timer Driver 391

MCUXpresso SDK Documentation, Release 25.09.00

bool enableTimeOutAssert
Enable WDOG_B timeout assertion.

392 Chapter 2. MIMX8MQ6

Chapter 3

Middleware

3.1 Motor Control

3.1.1 FreeMASTER

Communication Driver User Guide

Introduction

What is FreeMASTER? FreeMASTER is a PC-based application developed by NXP for NXP cus-
tomers. It is a versatile tool usable as a real-time monitor, visualization tool, and a graphical
control panel of embedded applications based on the NXP processing units.

This document describes the embedded-side software driver which implements an interface be-
tween the application and the host PC. The interface covers the following communication:

• Serial UART communication either over plain RS232 interface or more typically over a
USB-to-Serial either external or built in a debugger probe.

• USB direct connection to target microcontroller

• CAN bus
• TCP/IP network wired or WiFi

• Segger J-Link RTT
• JTAG debug port communication

• …and all of the above also using a Zephyr generic drivers.
The driver also supports so-called “packet-drivenBDM” interfacewhich enables a protocol-based
communication over a debugging port. The BDM stands for Background Debugging Module
and its physical implementation is different on each platform. Some platforms leverage a semi-
standard JTAG interface, other platforms provide a custom implementation called BDM. Regard-
less of the name, this debugging interface enables non-intrusive access to the memory space
while the target CPU is running. For basic memory read and write operations, there is no com-
munication driver required on the target when communicating with the host PC. Use this driver
to getmore advanced FreeMASTER protocol features over the BDM interface. The drivermust be
configured for the packet-driven BDM mode, in which the host PC uses the debugging interface
to write serial command frames directly to the target memory buffer. The same method is then
used to read response frames from that memory buffer.

393

https://www.nxp.com/freemaster

MCUXpresso SDK Documentation, Release 25.09.00

Similar to “packet-driven BDM”, the FreeMASTER also supports a communication over
[J-Link RTT]((https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-
transfer/) interface defined by SEGGER Microcontroller GmbH for ARM CortexM-based micro-
controllers. This method also uses JTAG physical interface and enables high-speed real time
communication to run over the same channel as used for application debugging.

Driver version 3 This document describes version 3 of the FreeMASTER Communication
Driver. This version features the implementation of the new Serial Protocol, which significantly
extends the features and security of its predecessor. The new protocol internal number is v4 and
its specification is available in the documentation accompanying the driver code.

Driver V3 is deployed to modern 32-bit MCU platforms first, so the portfolio of supported plat-
forms is smaller than for the previous V2 versions. It is recommended to keep using the V2 driver
for legacy platforms, such as S08, S12, ColdFire, or Power Architecture. Reach out to FreeMAS-
TER community or to the local NXP representative with requests for more information or to port
the V3 driver to legacy MCU devices.

Thanks to a layered approach, the new driver simplifies the porting of the driver to new UART,
CAN or networking communication interfaces significantly. Users are encouraged to port the
driver to more NXP MCU platforms and contribute the code back to NXP for integration into
future releases. Existing code and low-level driver layers may be used as an example when
porting to new targets.

Note: Using the FreeMASTER tool and FreeMASTER Communication Driver is only allowed in
systemsbased onNXPmicrocontroller ormicroprocessor unit. Usewith non-NXPMCUplatforms
is not permitted by the license terms.

Target platforms The driver implementation uses the following abstraction mechanisms
which simplify driver porting and supporting new communication modules:

• General CPU Platform (see source code in the src/platforms directory). The code in
this layer is only specific to native data type sizes and CPU architectures (for example;
alignment-aware memory copy routines). This driver version brings two generic imple-
mentations of 32-bit platforms supporting both little-endian and big-endian architectures.
There are also implementations customized for the 56F800E family of digital signal con-
trollers and S12Z MCUs. Zephyr is treated as a specific CPU platform as it brings unified
user configuration (Kconfig) and generic hardware device drivers. With Zephyr, the trans-
port layer and low-level communication layers described below are configured automati-
cally using Kconfig and Device Tree technologies.

• Transport CommunicationLayer - The Serial, CAN,Networking, PD-BDM, and othermeth-
ods of transport logic are implemented as a driver layer called FMSTR_TRANSPORT with a
uniform API. A support of the Network transport also extends single-client modes of oper-
ation which are native for Serial, USB and CAN by a concept of multiple client sessions.

• Low-level Communication Driver - Each type of transport further defines a low-level
API used to access the physical communication module. For example, the Serial trans-
port defines a character-orientedAPI implemented by different serial communicationmod-
ules like UART, LPUART, USART, and also USB-CDC. Similarly, the CAN transport defines a
message-oriented API implemented by the FlexCAN or MCAN modules. Moreover, there
are multiple different implementations for the same kind of communication peripherals.
The difference between the implementation is in the way the low-level hardware regis-
ters are accessed. The mcuxsdk folder contains implementations which use MCUXpresso
SDK drivers. These drivers should be used in applications based on the NXP MCUXpresso
SDK. The “ampsdk” drivers target automotive-specific MCUs and their respective SDKs.
The “dreg” implementations use a plain C-language access to hardware register addresses
which makes it a universal and the most portable solution. In this case, users are encour-
aged to add more drivers for other communication modules or other respective SDKs and
contribute the code back to NXP for integration.

394 Chapter 3. Middleware

https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster
https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster

MCUXpresso SDK Documentation, Release 25.09.00

The low-level drivers defined for the Networking transport enable datagram-oriented UDP
and stream TCP communication. This implementation is demonstrated using the lwIP soft-
ware stack but shall be portable to other TCP/IP stacks. It may sound surprisingly, but also
the Segger J-Link RTT communication driver is linked to the Networking transport (RTT is
stream oriented communication handled similarly to TCP).

Replacing existing drivers For all supported platforms, the driver described in this document
replaces the V2 implementation and also older driver implementations that were available sep-
arately for individual platforms (PC Master SCI drivers).

Clocks, pins, and peripheral initialization The FreeMASTER communication driver is only
responsible for runtime processing of the communication and must be integrated with an user
application code to function properly. The user application code is responsible for general initial-
ization of clock sources, pinmultiplexers, and peripheral registers related to the communication
speed. Such initialization should be done before calling the FMSTR_Init function.

It is recommended to develop the user application using one of the Software Development Kits
(SDKs) available from third parties or directly from NXP, such as MCUXpresso SDK, MCUXpresso
IDE, and related tools. This approach simplifies the general configuration process significantly.

MCUXpresso SDK TheMCUXpresso SDK is a software package providedbyNXPwhich contains
the device initialization code, linker files, and software driverswith example applications for the
NXP family of MCUs. The MCUXpresso Config Tools may be used to generate the clock-setup and
pin-multiplexer setup code suitable for the selected processor.

The MCUXpresso SDK also contains this FreeMASTER communication driver as a “middle-
ware” component which may be downloaded along with the example applications from https:
//mcuxpresso.nxp.com/en/welcome.

MCUXpresso SDK on GitHub The FreeMASTER communication driver is also released as one
of the middleware components of the MCUXpresso SDK on the GitHub. This release enables
direct integration of the FreeMASTER source code Git repository into a target applications in-
cluding Zephyr applications.

Related links:

• The official FreeMASTER middleware repository.

• Online version of this document

FreeMASTER in Zephyr The FreeMASTER middleware repository can be used with MCUX-
presso SDK as well as a Zephyr module. Zephyr-specific samples which include examples of
Kconfig and Device Tree configurations for Serial, USB and Network communications are avail-
able in separate repository. West manifest in this sample repository fetches the full Zephyr pack-
age including the FreeMASTER middleware repository used as a Zephyr module.

Example applications

MCUX SDK Example applications There are several example applications available for each
supported MCU platform.

• fmstr_uart demonstrates a plain serial transmission, typically connecting to a computer’s
physical or virtual COM port. The typical transmission speed is 115200 bps.

3.1. Motor Control 395

https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/user_guide/user_guide.html#multi-session-support

MCUXpresso SDK Documentation, Release 25.09.00

• fmstr_can demonstrates CAN bus communication. This requires a suitable CAN interface
connected to the computer and interconnected with the target MCU using a properly ter-
minated CAN bus. The typical transmission speed is 500 kbps. A FreeMASTER-over-CAN
communication plug-in must be used.

• fmstr_usb_cdc uses an on-chip USB controller to implement a CDC communication class.
It is connected directly to a computer’s USB port and creates a virtual COM port device. The
typical transmission speed is above 1 Mbps.

• fmstr_net demonstrates the Network communication over UDP or TCP protocol. Existing
examples use lwIP stack to implement the communication, but in general, it shall be possi-
ble to use any other TCP/IP stack to achieve the same functionality.

• fmstr_wifi is the fmstr_net application modified to use aWiFi network interface instead of
a wired Ethernet connection.

• fmstr_rtt demonstrates the communication over SEGGER J-Link RTT interface. Both fm-
str_net and fmstr_rtt examples require the FreeMASTER TCP/UDP communication plug-in
to be used on the PC host side.

• fmstr_eonce uses the real-time data unit on the JTAG EOnCEmodule of the 56F800E family
to implement pseudo-serial communication over the JTAG port. The typical transmission
speed is around 10 kbps. This communication requires FreeMASTER JTAG/EOnCE commu-
nication plug-in.

• fmstr_pdbdm uses JTAG or BDM debugging interface to access the target RAM directly
while the CPU is running. Note that such approach can be used with any MCU applica-
tion, even without any special driver code. The computer reads from and writes into the
RAMdirectly without CPU intervention. The Packet-Driven BDM (PD-BDM) communication
uses the same memory access to exchange command and response frames. With PD-BDM,
the FreeMASTER tool is able to go beyond basic memory read/write operations and ac-
cesses also advanced features like Recorder, TSA, or Pipes. The typical transmission speed
is around 10 kbps. A PD-BDM communication plug-in must be used in FreeMASTER and
configured properly for the selected debugging interface. Note that this communication
cannot be used while a debugging interface is used by a debugger session.

• fmstr_any is a special example application which demonstrates how the NXPMCUXpresso
Config Tools can be used to configure pins, clocks, peripherals, interrupts, and even the
FreeMASTER “middleware” driver features in a graphical and user friendly way. The user
can switch between the Serial, CAN, and other ways of communication and generate the
required initialization code automatically.

Zephyr sample spplications Zephyr sample applications demonstrate Kconfig and Device
Tree configuration which configure the FreeMASTER middleware module for a selected com-
munication option (Serial, CAN, Network or RTT).

Refer to readme.md files in each sample directory for description of configuration options re-
quired to implement FreeMASTER connectivity.

Description

This section shows how to add the FreeMASTER Communication Driver into application and how
to configure the connection to the FreeMASTER visualization tool.

Features The FreeMASTER driver implements the FreeMASTER protocol V4 and provides the
following features which may be accessed using the FreeMASTER visualization tool:

• Read/write access to any memory location on the target.

• Optional password protection of the read, read/write, and read/write/flash access levels.

396 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

• Atomic bit manipulation on the target memory (bit-wise write access).

• Optimal size-aligned access to memory which is also suitable to access the peripheral reg-
ister space.

• Oscilloscope access—real-time access to target variables. The sample rate may be limited
by the communication speed.

• Recorder— access to the fast transient recorder running on the board as a part of the
FreeMASTER driver. The sample rate is only limited by the MCU CPU speed. The length
of the data recorded depends on the amount of available memory.

• Multiple instances of Oscilloscopes andRecorderswithout the limitation ofmaximumnum-
ber of variables.

• Application commands—high-level message delivery from the PC to the application.

• TSA tables—describing the data types, variables, files, or hyperlinks exported by the target
application. The TSA newly supports also non-memory mapped resources like external
EEPROM or SD Card files.

• Pipes—enabling the buffered stream-oriented data exchange for a general-purpose
terminal-like communication, diagnostic data streaming, or other data exchange.

The FreeMASTER driver features:

• Full FreeMASTER protocol V4 implementation with a new V4 style of CRC used.

• Layered approach supporting Serial, CAN, Network, PD-BDM, and other transports.

• Layered low-level Serial transport driver architecture enabling to select UART, LPUART,
USART, and other physical implementations of serial interfaces, including USB-CDC.

• Layered low-level CAN transport driver architecture enabling to select FlexCAN, msCAN,
MCAN, and other physical implementations of the CAN interface.

• Layered low-level Networking transport enabling to select TCP, UDP or J-Link RTT commu-
nication.

• TSA support towrite-protectmemory regions or individual variables and to deny the access
to the unsafe memory.

• The pipe callback handlers are invoked whenever new data is available for reading from
the pipe.

• Two Serial Single-Wire modes of operation are enabled. The “external” mode has the RX
and TX shorted on-board. The “true” single-wire mode interconnects internally when the
MCU or UART modules support it.

The following sections briefly describe all FreeMASTER features implemented by the driver. See
the PC-based FreeMASTER User Manual for more details on how to use the features to monitor,
tune, or control an embedded application.

BoardDetection The FreeMASTER protocol V4 defines the standard set of configuration values
which the host PC tool reads to identify the target and to access other target resources properly.
The configuration includes the following parameters:

• Version of the driver and the version of the protocol implemented.

• MTU as the Maximum size of the Transmission Unit (for example; communication buffer
size).

• Application name, description, and version strings.

• Application build date and time as a string.

• Target processor byte ordering (little/big endian).

• Protection level that requires password authentication.

3.1. Motor Control 397

MCUXpresso SDK Documentation, Release 25.09.00

• Number of the Recorder and Oscilloscope instances.

• RAM Base Address for optimized memory access commands.

Memory Read This basic feature enables the host PC to read any data memory location by
specifying the address and size of the required memory area. The device response frame must
be shorter than theMTU to fit into the outgoing communication buffer. To read a devicememory
of any size, the host uses the information retrieved during the Board Detection and splits the
large-block request to multiple partial requests.

The driver uses size-aligned operations to read the target memory (for example; uses proper
read-word instruction when an address is aligned to 4 bytes).

MemoryWrite Similarly to the Memory Read operation, the MemoryWrite feature enables to
write to any RAMmemory location on the target device. A single write command framemust be
shorter than the MTU to fit into the target communication buffer. Larger requests must be split
into smaller ones.

The driver uses size-aligned operations to write to the target memory (for example; uses proper
write-word instruction when an address is aligned to 4 bytes).

MaskedMemoryWrite To implement thewrite access to a single bit or a group of bits of target
variables, the Masked Memory Write feature is available in the FreeMASTER protocol and it is
supported by the driver using the Read-Modify-Write approach.

Be careful when writing to bit fields of volatile variables that are also modified in an application
interrupt. The interrupt may be serviced in the middle of a read-modify-write operation and it
may cause data corruption.

Oscilloscope The protocol and driver enables any number of variables to be read at once with
a single request from the host. This feature is called Oscilloscope and the FreeMASTER tool uses
it to display a real-time graph of variable values.

The driver can be configured to support any number of Oscilloscope instances and enable simul-
taneously running graphs to be displayed on the host computer screen.

Recorder The protocol enables the host to select target variableswhose values are then period-
ically recorded into a dedicated on-board memory buffer. After such data sampling stops (either
on a host request or by evaluating a threshold-crossing condition), the data buffer is downloaded
to the host and displayed as a graph. The data sampling rate is not limited by the speed of the
communication line, so it enables displaying the variable transitions in a very high resolution.

The driver can be configured to support multiple Recorder instances and enable multiple
recorder graphs to be displayed on the host screen. Having multiple recorders also enables set-
ting the recording point differently for each instance. For example; one instance may be record-
ing data in a general timer interrupt while another instance may record at a specific control
algorithm time in the PWM interrupt.

TSA With the TSA feature, data types and variables can be described directly in the application
source code. Such information is later provided to the FreeMASTER toolwhichmay use it instead
of reading symbol data from the application ELF executable file.

The information is encoded as so-called TSA tables which become direct part of the application
code. The TSA tables contain descriptors of variables that shall be visible to the host tool. The
descriptors can describe the memory areas by specifying the address and size of the memory

398 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

block or more conveniently using the C variable names directly. Different set of TSA descriptors
can be used to encode information about the structure types, unions, enumerations, or arrays.

The driver also supports special types of TSA table entries to describe user resources like external
EEPROM and SD Card files, memory-mapped files, virtual directories, web URL hyperlinks, and
constant enumerations.

TSA Safety When the TSA is enabled in the application, the TSA Safety can be enabled and
validate the memory accesses directly by the embedded-side driver. When the TSA Safety is
turned on, anymemory request received from thehost is validated and accepted only if it belongs
to a TSA-described object. The TSA entries can be declared as Read-Write or Read-Only so that
the driver can actively deny the write access to the Read-Only objects.

Application commands The Application Commands are high-level messages that can be de-
livered from the PC Host to the embedded application for further processing. The embedded
application can either poll the status, or be called back when a new Application Command ar-
rives to be processed. After the embedded application acknowledges that the command is han-
dled, the host receives the Result Code and reads the other return data from memory. Both the
Application Commands and the Result Codes are specific to a given application and it is user’s
responsibility to define them. The FreeMASTER protocol and the FreeMASTER driver only imple-
ment the delivery channel and a set of API calls to enable the Application Command processing
in general.

Pipes The Pipes enable buffered and stream-oriented data exchange between the PC Host and
the target application. Any pipe can be written to and read from at both ends (either on the
PC or the MCU). The data transmission is acknowledged using the special FreeMASTER protocol
commands. It is guaranteed that the data bytes are delivered from the writer to the reader in a
proper order and without losses.

Serial single-wire operation TheMCUSerial CommunicationDriver natively supports normal
dual-wire operation. Because the protocol is half-duplex only, the driver can also operate in two
single-wire modes:

• “External” single-wire operation where the Receiver and Transmitter pins are shorted on
the board. This mode is supported by default in the MCU driver because the Receiver and
Transmitter units are enabled or disabled whenever needed. It is also easy to extend this
operation for the RS485 communication.

• “True” single-wire mode which uses only a single pin and the direction switching is made
by the UART module. This mode of operation must be enabled by defining the FM-
STR_SERIAL_SINGLEWIRE configuration option.

Multi-session support With networking interface it is possible for multiple clients to access
the target MCU simultaneously. Reading and writing of target memory is processed atomically
so there is no risk of data corruption. The state-full resources such as Recorders or Oscilloscopes
are locked to a client session upon first use and access is denied to other clients until lock is
released..

Zephyr-specific

3.1. Motor Control 399

MCUXpresso SDK Documentation, Release 25.09.00

Dedicated communication task FreeMASTER communicationmay run isolated in a dedicated
task. The task automates the FMSTR_Init and FMSTR_Poll calls together with periodic activities
enabling the FreeMASTER UI to fetch information about tasks and CPU utilization. The task can
be started automatically or manually, and it must be assigned a priority to be able to react on
interrupts and other communication events. Refer to Zephyr FreeMASTER sample applications
which all use this communication task.

Zephyr shell and logging over FreeMASTER pipe FreeMASTER implements a shell backend
whichmay use FreeMASTER pipe as a I/O terminal and logging output. Refer to Zephyr FreeMAS-
TER sample applications which all use this feature.

Automatic TSA tables TSA tables can be declared as “automatic” in Zephyr which make them
automatically registered in the table list. This may be very useful when there are many TSA
tables or when the tables are defined in different (often unrelated) libraries linked together. In
this case user does not need to build a list of all tables manually.

Driver files The driver source files can be found in a top-level src folder, further divided into
the sub-folders:

• src/platforms platform-specific folder—one folder exists for each supported processor
platform (for example; 32-bit Little Endian platform). Each such folder contains a platform
header file with data types and a code which implements the potentially platform-specific
operations, such as aligned memory access.

• src/common folder—contains the common driver source files shared by the driver for all
supported platforms. All the .c files must be added to the project, compiled, and linked
together with the application.

– freemaster.h - master driver header file, which declares the common data types,
macros, and prototypes of the FreeMASTER driver API functions.

– freemaster_cfg.h.example - this file can serve as an example of the FreeMASTER driver
configuration file. Save this file into a project source code folder and rename it to
freemaster_cfg.h. The FreeMASTER driver code includes this file to get the project-
specific configuration options and to optimize the compilation of the driver.

– freemaster_defcfg.h - defines the default values for each FreeMASTER configuration
option if the option is not set in the freemaster_cfg.h file.

– freemaster_protocol.h - defines the FreeMASTER protocol constants used internally by
the driver.

– freemaster_protocol.c - implements the FreeMASTER protocol decoder and handles the
basic Get Configuration Value, Memory Read, and Memory Write commands.

– freemaster_rec.c - handles the Recorder-specific commands and implements the
Recorder sampling and triggering routines. When the Recorder is disabled by the
FreeMASTER driver configuration file, this file only compiles to empty API functions.

– freemaster_scope.c - handles the Oscilloscope-specific commands. If the Oscilloscope is
disabled by the FreeMASTER driver configuration file, this file compiles as void.

– freemaster_pipes.c - implements the Pipes functionality when the Pipes feature is en-
abled.

– freemaster_appcmd.c - handles the communication commands used to deliver and exe-
cute theApplicationCommandswithin the context of the embedded application. When
the Application Commands are disabled by the FreeMASTER driver configuration file,
this file only compiles to empty API functions.

400 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

– freemaster_tsa.c - handles the commands specific to the TSA feature. This feature en-
ables the FreeMASTER host tool to obtain the TSA memory descriptors declared in the
embedded application. If the TSA is disabled by the FreeMASTER driver configuration
file, this file compiles as void.

– freemaster_tsa.h - contains the declaration of the macros used to define the TSA mem-
ory descriptors. This file is indirectly included into the user application code (via
freemaster.h).

– freemaster_sha.c - implements the SHA-1 hash code used in the password authentica-
tion algorithm.

– freemaster_private.h - contains the declarations of functions and data types used in-
ternally in the driver. It also contains the C pre-processor statements to perform the
compile-time verification of the user configuration provided in the freemaster_cfg.h
file.

– freemaster_serial.c - implements the serial protocol logic including the CRC, FIFO queu-
ing, and other communication-related operations. This code calls the functions of the
low-level communication driver indirectly via a character-oriented API exported by
the specific low-level driver.

– freemaster_serial.h - defines the low-level character-oriented Serial API.

– freemaster_can.c - implements the CAN protocol logic including the CAN message
preparation, signalling using the first data byte in the CAN frame, and other
communication-related operations. This code calls the functions of the low-level com-
munication driver indirectly via a message-oriented API exported by the specific low-
level driver.

– freemaster_can.h - defines the low-level message-oriented CAN API.

– freemaster_net.c - implements the Network protocol transport logic including multiple
session management code.

– freemaster_net.h - definitions related to the Network transport.

– freemaster_pdbdm.c - implements the packet-driven BDM communication buffer and
other communication-related operations.

– freemaster_utils.c - aligned memory copy routines, circular buffer management and
other utility functions

– freemaster_utils.h - definitions related to utility code.

• src/drivers/[sdk]/serial - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

– freemaster_serial_XXX.c and .h - implement low-level access to the communication pe-
ripheral registers. Different files exist for the UART, LPUART, USART, and other kinds
of Serial communication modules.

• src/drivers/[sdk]/can - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

– freemaster_XXX.c and .h - implement low-level access to the communication peripheral
registers. Different files exist for the FlexCAN, msCAN, MCAN, and other kinds of CAN
communication modules.

• src/drivers/[sdk]/network - contains low-level code adapting the FreeMASTER Network
transport to an underlying TCP/IP or RTT stack.

– freemaster_net_lwip_tcp.c and _udp.c - default networking implementation of TCP and
UDP transports using lwIP stack.

– freemaster_net_segger_rtt.c - implementation of network transport using Segger J-Link
RTT interface

3.1. Motor Control 401

MCUXpresso SDK Documentation, Release 25.09.00

Driver configuration The driver is configured using a single header file (freemaster_cfg.h).
Create this file and save it together with other project source files before compiling the driver
code. All FreeMASTER driver source files include the freemaster_cfg.h file and use the macros
defined here for the conditional and parameterized compilation. The C compiler must locate the
configuration file when compiling the driver files. Typically, it can be achieved by putting this
file into a folder where the other project-specific included files are stored.

As a starting point to create the configuration file, get the freemaster_cfg.h.example file, rename
it to freemaster_cfg.h, and save it into the project area.

Note: It is NOT recommended to leave the freemaster_cfg.h file in the FreeMASTER driver source
code folder. The configuration filemust be placed at a project-specific location, so that it does not
affect the other applications that use the same driver.

Configurable items This section describes the configuration options which can be defined in
freemaster_cfg.h.

Interrupt modes
#define FMSTR_LONG_INTR [0|1]
#define FMSTR_SHORT_INTR [0|1]
#define FMSTR_POLL_DRIVEN [0|1]

Value Type boolean (0 or 1)

Description Exactly one of the three macros must be defined to non-zero. The others must be
defined to zero or left undefined. The non-zero-defined constant selects the interrupt mode of
the driver. See Driver interrupt modes.

• FMSTR_LONG_INTR— long interrupt mode

• FMSTR_SHORT_INTR— short interrupt mode

• FMSTR_POLL_DRIVEN— poll-driven mode

Note: Some options may not be supported by all communication interfaces. For example, the
FMSTR_SHORT_INTR option is not supported by the USB_CDC interface.

Protocol transport
#define FMSTR_TRANSPORT [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER source
code. Specify one of existing instances to make use of the protocol transport.

Description Use one of the pre-defined constants, as implemented by the FreeMASTER code.
The current driver supports the following transports:

• FMSTR_SERIAL - serial communication protocol

• FMSTR_CAN - using CAN communication

• FMSTR_PDBDM - using packet-driven BDM communication

• FMSTR_NET - network communication using TCP or UDP protocol

402 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Serial transport This section describes configuration parameters used when serial transport
is used:

#define FMSTR_TRANSPORT FMSTR_SERIAL

FMSTR_SERIAL_DRV Select what low-level driver interface will be used when implementing
the Serial communication.

#define FMSTR_SERIAL_DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing serial driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/serial implementation):

• FMSTR_SERIAL_MCUX_UART - UART driver

• FMSTR_SERIAL_MCUX_LPUART - LPUART driver

• FMSTR_SERIAL_MCUX_USART - USART driver

• FMSTR_SERIAL_MCUX_MINIUSART - miniUSART driver

• FMSTR_SERIAL_MCUX_QSCI - DSC QSCI driver

• FMSTR_SERIAL_MCUX_USB - USB/CDC class driver (also see code in the /sup-
port/mcuxsdk_usb folder)

• FMSTR_SERIAL_56F800E_EONCE - DSC JTAG EOnCE driver

Other SDKs or BSPs may define custom low-level driver interface structure which may be used
as FMSTR_SERIAL_DRV. For example:

• FMSTR_SERIAL_DREG_UART - demonstrates the low-level interface implementedwithout
the MCUXpresso SDK and using direct access to peripheral registers.

FMSTR_SERIAL_BASE
#define FMSTR_SERIAL_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the UART, LPUART, USART, or other serial peripheral
module to be used for the communication. This value is not defined by default. User application
should call FMSTR_SetSerialBaseAddress() to select the peripheral module.

FMSTR_COMM_BUFFER_SIZE
#define FMSTR_COMM_BUFFER_SIZE [number]

Value Type 0 or a value in range 32…255

Description Specify the size of the communication buffer to be allocated by the driver.
Default value, which suits all driver features, is used when this option is defined as 0.

3.1. Motor Control 403

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_COMM_RQUEUE_SIZE
#define FMSTR_COMM_RQUEUE_SIZE [number]

Value Type Value in range 0…255

Description Specify the size of the FIFO receiver queue used to quickly receive and store char-
acters in the FMSTR_SHORT_INTR interrupt mode.
The default value is 32 B.

FMSTR_SERIAL_SINGLEWIRE
#define FMSTR_SERIAL_SINGLEWIRE [0|1]

Value Type Boolean 0 or 1.

Description Set to non-zero to enable the “True” single-wire mode which uses a single MCU
pin to communicate. The low-level driver enables the pin direction switching when the MCU
peripheral supports it.

CANBus transport This section describes configuration parameters usedwhen CAN transport
is used:

#define FMSTR_TRANSPORT FMSTR_CAN

FMSTR_CAN_DRV Select what low-level driver interface will be used when implementing the
CAN communication.

#define FMSTR_CAN_DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing CAN driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/can implementation):

• FMSTR_CAN_MCUX_FLEXCAN - FlexCAN driver

• FMSTR_CAN_MCUX_MCAN - MCAN driver

• FMSTR_CAN_MCUX_MSCAN - msCAN driver

• FMSTR_CAN_MCUX_DSCFLEXCAN - DSC FlexCAN driver

• FMSTR_CAN_MCUX_DSCMSCAN - DSC msCAN driver

Other SDKs or BSPs may define the custom low-level driver interface structure which may be
used as FMSTR_CAN_DRV.

FMSTR_CAN_BASE

404 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

#define FMSTR_CAN_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the FlexCAN, msCAN, or other CAN peripheral module
to be used for the communication. This value is not defined by default. User application should
call FMSTR_SetCanBaseAddress() to select the peripheral module.

FMSTR_CAN_CMDID
#define FMSTR_CAN_CMDID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CANmessage identifier used for FreeMASTER commands (direction from PC Host
tool to target application). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Default value is 0x7AA.

FMSTR_CAN_RSPID
#define FMSTR_CAN_RSPID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for responding messages (direction from target ap-
plication to PC Host tool). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Note that both CMDID and RSPID values may be the same. Default value
is 0x7AA.

FMSTR_FLEXCAN_TXMB
#define FMSTR_FLEXCAN_TXMB [number]

Value Type Number in range of 0..N where N is number of CANmessage-buffers supported by
HWmodule.

Description Only usedwhen the FlexCAN low-level driver is used. Define the FlexCANmessage
buffer for CAN frame transmission. Default value is 0.

FMSTR_FLEXCAN_RXMB
#define FMSTR_FLEXCAN_RXMB [number]

Value Type Number in range of 0..N where N is number of CANmessage-buffers supported by
HWmodule.

3.1. Motor Control 405

MCUXpresso SDK Documentation, Release 25.09.00

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN mes-
sage buffer for CAN frame reception. Note that the FreeMASTER driver may also operate with a
common message buffer used by both TX and RX directions. Default value is 1.

Network transport This section describes configuration parameters used when Network
transport is used:

#define FMSTR_TRANSPORT FMSTR_NET

FMSTR_NET_DRV Select network interface implementation.

#define FMSTR_NET_DRV [identifier]

Value Type Identifiers are structure instance names defined in FreeMASTER drivers code.
Specify one of existing NET driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/network implementation):

• FMSTR_NET_LWIP_TCP - TCP communication using lwIP stack

• FMSTR_NET_LWIP_UDP - UDP communication using lwIP stack

• FMSTR_NET_SEGGER_RTT - Communication using SEGGER J-Link RTT interface

Other SDKs or BSPs may define the custom networking interface which may be used as FM-
STR_CAN_DRV.

Add another row below:

FMSTR_NET_PORT
#define FMSTR_NET_PORT [number]

Value Type TCP or UDP port number (short integer)

Description Specifies the server port number used by TCP or UDP protocols.

FMSTR_NET_BLOCKING_TIMEOUT
#define FMSTR_NET_BLOCKING_TIMEOUT [number]

Value Type Timeout as number of milliseconds

Description This value specifies a timeout in milliseconds for which the network socket op-
erations may block the execution inside FMSTR_Poll. This may be set high (e.g. 250) when a
dedicated RTOS task is used to handle FreeMASTER protocol polling. Set to a lower value when
the polling task is also responsible for other operations. Set to 0 to attempt to use non-blocking
socket operations.

406 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_NET_AUTODISCOVERY
#define FMSTR_NET_AUTODISCOVERY [0|1]

Value Type Boolean 0 or 1.

Description This option enables the FreeMASTER driver to use a separate UDP socket to broad-
cast auto-discovery messages to network. This helps the FreeMASTER tool to discover the target
device address, port and protocol options.

Debugging options

FMSTR_DISABLE
#define FMSTR_DISABLE [0|1]

Value Type boolean (0 or 1)

Description Define as non-zero to disable all FreeMASTER features, exclude the driver code
from build, and compile all its API functions empty. This may be useful to remove FreeMASTER
without modifying any application source code. Default value is 0 (false).

FMSTR_DEBUG_TX
#define FMSTR_DEBUG_TX [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to enable the driver to periodically transmit test frames out on
the selected communication interface (SCI or CAN). With the debug transmission enabled, it is
simpler to detect problems in the baudrate or other communication configuration settings.

The test frames are transmitted until the first valid command frame is received from the PC Host
tool. The test frame is a valid error status frame, as defined by the protocol format. On the serial
line, the test frame consists of three printable characters (+©W) which are easy to capture using
the serial terminal tools.

This feature requires the FMSTR_Poll() function to be called periodically. Default value is 0 (false).

FMSTR_APPLICATION_STR
#define FMSTR_APPLICATION_STR

Value Type String.

Description Name of the application visible in FreeMASTER host application.

Memory access

3.1. Motor Control 407

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_USE_READMEM
#define FMSTR_USE_READMEM [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Memory Read command and enable
FreeMASTER to have read access to memory and variables. The access can be further restricted
by using a TSA feature.
Default value is 1 (true).

FMSTR_USE_WRITEMEM
#define FMSTR_USE_WRITEMEM [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Memory Write command.
The default value is 1 (true).

Oscilloscope options

FMSTR_USE_SCOPE
#define FMSTR_USE_SCOPE [number]

Value Type Integer number.

Description Number of Oscilloscope instances to be supported. Set to 0 to disable the Oscillo-
scope feature.
Default value is 0.

FMSTR_MAX_SCOPE_VARS
#define FMSTR_MAX_SCOPE_VARS [number]

Value Type Integer number larger than 2.

Description Number of variables to be supported by each Oscilloscope instance.
Default value is 8.

Recorder options

FMSTR_USE_RECORDER
#define FMSTR_USE_RECORDER [number]

408 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Value Type Integer number.

Description Number of Recorder instances to be supported. Set to 0 to disable the Recorder
feature.
Default value is 0.

FMSTR_REC_BUFF_SIZE
#define FMSTR_REC_BUFF_SIZE [number]

Value Type Integer number larger than 2.

Description Defines the size of the memory buffer used by the Recorder instance #0.
Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_TIMEBASE
#define FMSTR_REC_TIMEBASE [time specification]

Value Type Number (nanoseconds time).

Description Defines the base sampling rate in nanoseconds (sampling speed) Recorder in-
stance #0.

Use one of the following macros:

• FMSTR_REC_BASE_SECONDS(x)

• FMSTR_REC_BASE_MILLISEC(x)

• FMSTR_REC_BASE_MICROSEC(x)

• FMSTR_REC_BASE_NANOSEC(x)

Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_FLOAT_TRIG
#define FMSTR_REC_FLOAT_TRIG [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the floating-point triggering. Be aware that
floating-point triggering may grow the code size by linking the floating-point standard library.

Default value is 0 (false).

Application Commands options

3.1. Motor Control 409

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_USE_APPCMD
#define FMSTR_USE_APPCMD [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Application Commands feature.
Default value is 0 (false).

FMSTR_APPCMD_BUFF_SIZE
#define FMSTR_APPCMD_BUFF_SIZE [size]

Value Type Numeric buffer size in range 1..255

Description The size of the Application Command data buffer allocated by the driver. The
buffer stores the (optional) parameters of the Application Commandwhichwaits to be processed.

FMSTR_MAX_APPCMD_CALLS
#define FMSTR_MAX_APPCMD_CALLS [number]

Value Type Number in range 0..255

Description The number of different Application Commands that can be assigned a callback
handler function using FMSTR_RegisterAppCmdCall(). Default value is 0.

TSA options

FMSTR_USE_TSA
#define FMSTR_USE_TSA [0|1]

Value Type Boolean 0 or 1.

Description Enable the FreeMASTER TSA feature to be used. With this option enabled, the TSA
tables defined in the applications are made available to the FreeMASTER host tool.
Default value is 0 (false).

FMSTR_USE_TSA_SAFETY
#define FMSTR_USE_TSA_SAFETY [0|1]

Value Type Boolean 0 or 1.

410 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Description Enable thememory access validation in the FreeMASTER driver. With this option,
the host tool is not able to access the memory which is not described by at least one TSA descrip-
tor. Also a write access is denied for objects defined as read-only in TSA tables.
Default value is 0 (false).

FMSTR_USE_TSA_INROM
#define FMSTR_USE_TSA_INROM [0|1]

Value Type Boolean 0 or 1.

Description Declare all TSA descriptors as const, which enables the linker to put the data into
the flash memory. The actual result depends on linker settings or the linker commands used in
the project.
Default value is 0 (false).

FMSTR_USE_TSA_DYNAMIC
#define FMSTR_USE_TSA_DYNAMIC [0|1]

Value Type Boolean 0 or 1.

Description Enable runtime-defined TSA entries to be added to the TSA table by the FM-
STR_SetUpTsaBuff() and FMSTR_TsaAddVar() functions.
Default value is 0 (false).

Pipes options

FMSTR_USE_PIPES
#define FMSTR_USE_PIPES [0|1]

Value Type Boolean 0 or 1.

Description Enable the FreeMASTER Pipes feature to be used.
Default value is 0 (false).

FMSTR_MAX_PIPES_COUNT
#define FMSTR_MAX_PIPES_COUNT [number]

Value Type Number in range 1..63.

Description The number of simultaneous pipe connections to support.
The default value is 1.

3.1. Motor Control 411

MCUXpresso SDK Documentation, Release 25.09.00

Driver interrupt modes To implement the communication, the FreeMASTER driver handles
the Serial or CANmodule’s receive and transmit requests. Use the freemaster_cfg.h configuration
file to select whether the driver processes the communication automatically in the interrupt
service routine handler or if it only polls the status of themodule (typically during the application
idle time).

This section describes each of the interrupt mode in more details.

Completely Interrupt-Driven operation Activated using:

#define FMSTR_LONG_INTR 1

In this mode, both the communication and the FreeMASTER protocol decoding is done in the
FMSTR_SerialIsr, FMSTR_CanIsr, or other interrupt service routine. Because the protocol execu-
tionmay be a lengthy task (especially with the TSA-Safety enabled) it is recommended to use this
mode only if the interrupt prioritization scheme is possible in the application and the FreeMAS-
TER interrupt is assigned to a lower (the lowest) priority.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_SerialIsr or FM-
STR_CanIsr functions from that handler.

Mixed Interrupt and Polling Modes Activated using:

#define FMSTR_SHORT_INTR 1

In this mode, the communication processing time is split between the interrupt routine and the
main application loop or task. The raw communication is handled by the FMSTR_SerialIsr, FM-
STR_CanIsr, or other interrupt service routine, while the protocol decoding and execution is han-
dled by the FMSTR_Poll routine. Call FMSTR_Poll during the idle time in the application main
loop.

The interrupt processing in this mode is relatively fast and deterministic. Upon a serial-receive
event, the received character is only placed into a FIFO-like queue and it is not further processed.
Upon a CAN receive event, the received frame is stored into a receive buffer. When transmitting,
the characters are fetched from the prepared transmit buffer.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_SerialIsr or FM-
STR_CanIsr functions from that handler.

When the serial interface is used as the serial communication interface, ensure that the FM-
STR_Poll function is called at least once per N character time periods. N is the length of the
FreeMASTER FIFO queue (FMSTR_COMM_RQUEUE_SIZE) and the character time is the time
needed to transmit or receive a single byte over the SCI line.

Completely Poll-driven
#define FMSTR_POLL_DRIVEN 1

In this mode, both the communication and the FreeMASTER protocol decoding are done in the
FMSTR_Poll routine. No interrupts are needed and the FMSTR_SerialIsr, FMSTR_CanIsr, and sim-
ilar handlers compile to an empty code.

When using this mode, ensure that the FMSTR_Poll function is called by the application at least
once per the serial “character time” which is the time needed to transmit or receive a single
character.

In the latter twomodes (FMSTR_SHORT_INTR and FMSTR_POLL_DRIVEN), the protocol handling
takes place in the FMSTR_Poll routine. An application interrupt can occur in the middle of the

412 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Read Memory or Write Memory commands’ execution and corrupt the variable being accessed
by the FreeMASTER driver. In these two modes, some issues or glitches may occur when using
FreeMASTER to visualize or monitor volatile variables modified in interrupt servicing code.

The same issuemay appear even in the full interruptmode (FMSTR_LONG_INTR), if volatile vari-
ables are modified in the interrupt code with a priority higher than the priority of the commu-
nication interrupt.

Data types Simple portability was one of the main requirements when writing the FreeMAS-
TER driver. This is why the driver code uses the privately-declared data types and the vast ma-
jority of the platform-dependent code is separated in the platform-dependent source files. The
data types used in the driver API are all defined in the platform-specific header file.

To prevent name conflicts with the symbols used in the application, all data types, macros, and
functions have the FMSTR_ prefix. The only global variables used in the driver are the transport
and low-level API structures exported from the driver-implementation layer to upper layers.
Other than that, all private variables are declared as static and named using the fmstr_ prefix.

Communication interface initialization The FreeMASTER driver does not perform neither
the initialization nor the configuration of the peripheral module that it uses to communicate. It
is the application startup code responsibility to configure the communicationmodule before the
FreeMASTER driver is initialized by the FMSTR_Init call.

When the Serial communication module is used as the FreeMASTER communication interface,
configure the UART receive and transmit pins, the serial communication baud rate, parity (no-
parity), the character length (eight bits), and the number of stop bits (one) before initializing the
FreeMASTER driver. For either the long or the short interrupt modes of the driver (see Driver
interrupt modes), configure the interrupt controller and register an application-specific inter-
rupt handler for all interrupt sources related to the selected serial peripheral module. Call the
FMSTR_SerialIsr function from the application handler.

When a CANmodule is used as the FreeMASTER communication interface, configure the CAN re-
ceive and transmit pins and the CAN module bit rate before initializing the FreeMASTER driver.
For either the long or the short interrupt modes of the driver (see Driver interrupt modes), con-
figure the interrupt controller and register an application-specific interrupt handler for all in-
terrupt sources related to the selected CAN peripheral module. Call the FMSTR_CanIsr function
from the application handler.

Note: It is not necessary to enable or unmask the serial nor the CAN interrupts before initializing
the FreeMASTER driver. The driver enables or disables the interrupts and communication lines,
as required during runtime.

FreeMASTER Recorder calls When using the FreeMASTER Recorder in the application (FM-
STR_USE_RECORDER > 0), call the FMSTR_RecorderCreate function early after FMSTR_Init to set
up each recorder instance to be used in the application. Then call the FMSTR_Recorder func-
tion periodically in the code where the data recording should occur. A typical place to call the
Recorder routine is at the timer or PWM interrupts, but it can be anywhere else. The exam-
ple applications provided together with the driver code call the FMSTR_Recorder in the main
application loop.

In applications where FMSTR_Recorder is called periodically with a constant period, specify the
period in the Recorder configuration structure before calling FMSTR_RecorderCreate. This set-
ting enables the PC Host FreeMASTER tool to display the X-axis of the Recorder graph properly
scaled for the time domain.

Driver usage Start using or evaluating FreeMASTER by opening some of the example applica-
tions available in the driver setup package.

3.1. Motor Control 413

MCUXpresso SDK Documentation, Release 25.09.00

Follow these steps to enable the basic FreeMASTER connectivity in the application:

• Make sure that all *.c files of the FreeMASTER driver from the
src/common/platforms/[your_platform] folder are a part of the project. See Driver files
for more details.

• Configure the FreeMASTER driver by creating or editing the freemaster_cfg.h file and by
saving it into the application project directory. See Driver configuration for more details.

• Include the freemaster.h file into any application source file that makes the FreeMASTER
API calls.

• Initialize the Serial or CAN modules. Set the baud rate, parity, and other parameters of
the communication. Do not enable the communication interrupts in the interrupt mask
registers.

• For the FMSTR_LONG_INTR and FMSTR_SHORT_INTR modes, install the application-
specific interrupt routine and call the FMSTR_SerialIsr or FMSTR_CanIsr functions from
this handler.

• Call the FMSTR_Init function early on in the application initialization code.

• Call the FMSTR_RecorderCreate functions for each Recorder instance to enable the
Recorder feature.

• In the main application loop, call the FMSTR_Poll API function periodically when the appli-
cation is idle.

• For the FMSTR_SHORT_INTR and FMSTR_LONG_INTRmodes, enable the interrupts globally
so that the interrupts can be handled by the CPU.

Communication troubleshooting The most common problem that causes communication is-
sues is a wrong baud rate setting or a wrong pin multiplexer setting of the target MCU. When
a communication between the PC Host running FreeMASTER and the target MCU cannot be es-
tablished, try enabling the FMSTR_DEBUG_TX option in the freemaster_cfg.h file and call the FM-
STR_Poll function periodically in the main application task loop.

With this feature enabled, the FreeMASTER driver periodically transmits a test frame through
the Serial or CAN lines. Use a logic analyzer or an oscilloscope to monitor the signals at the
communication pins of the CPU device to examine whether the bit rate and signal polarity are
configured properly.

Driver API

This section describes the driver Application Programmers’ Interface (API) needed to initialize
and use the FreeMASTER serial communication driver.

Control API There are three key functions to initialize and use the driver.

FMSTR_Init

Prototype
FMSTR_BOOL FMSTR_Init(void);

• Declaration: freemaster.h

• Implementation: freemaster_protocol.c

414 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Description This function initializes the internal variables of the FreeMASTER driver and en-
ables the communication interface. This function does not change the configuration of the se-
lected communicationmodule. The hardware module must be initialized before the FMSTR_Init
function is called.

A call to this function must occur before calling any other FreeMASTER driver API functions.

FMSTR_Poll

Prototype
void FMSTR_Poll(void);

• Declaration: freemaster.h

• Implementation: freemaster_protocol.c

Description In the poll-driven or short interrupt modes, this function handles the protocol
decoding and execution (see Driver interrupt modes). In the poll-driven mode, this function also
handles the communication interface with the PC. Typically, the FMSTR_Poll function is called
during the “idle” time in the main application task loop.

To prevent the receive data overflow (loss) on a serial interface, make sure that the FMSTR_Poll
function is called at least once per the time calculated as:

N * Tchar

where:

• N is equal to the length of the receive FIFO queue (configured by the FM-
STR_COMM_RQUEUE_SIZE macro). N is 1 for the poll-driven mode.

• Tchar is the character time, which is the time needed to transmit or receive a single byte
over the SCI line.

Note: In the long interrupt mode, this function typically compiles as an empty function and can
still be called. It is worthwhile to call this function regardless of the interrupt mode used in
the application. This approach enables a convenient switching between the different interrupt
modes only by changing the configuration macros in the freemaster_cfg.h file.

FMSTR_SerialIsr / FMSTR_CanIsr

Prototype
void FMSTR_SerialIsr(void);
void FMSTR_CanIsr(void);

• Declaration: freemaster.h

• Implementation: hw-specific low-level driver C file

Description This function contains the interrupt-processing code of the FreeMASTER driver.
In long or short interrupt modes (see Driver interrupt modes), this function must be called from
the application interrupt service routine registered for the communication interrupt vector. On
platforms where the communication module uses multiple interrupt vectors, the application
should register a handler for all vectors and call this function at each interrupt.

Note: In a poll-driven mode, this function is compiled as an empty function and does not have
to be used.

3.1. Motor Control 415

MCUXpresso SDK Documentation, Release 25.09.00

Recorder API

FMSTR_RecorderCreate

Prototype
FMSTR_BOOL FMSTR_RecorderCreate(FMSTR_INDEX recIndex, FMSTR_REC_BUFF* buffCfg);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function registers a recorder instance and enables it to be used by the PC
Host tool. Call this function for all recorder instances from 0 to the maximum number de-
fined by the FMSTR_USE_RECORDER configuration option (minus one). An exception to this
requirement is the recorder of instance 0 which may be automatically configured by FM-
STR_Init when the freemaster_cfg.h configuration file defines the FMSTR_REC_BUFF_SIZE and
FMSTR_REC_TIMEBASE options.

For more information, see Configurable items.

FMSTR_Recorder

Prototype
void FMSTR_Recorder(FMSTR_INDEX recIndex);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function takes a sample of the variables being recorded using the FreeMAS-
TER Recorder instance recIndex. If the selected Recorder is not active when the FMSTR_Recorder
function is being called, the function returns immediately. When the Recorder is active, the val-
ues of the variables being recorded are copied into the recorder buffer and the trigger conditions
are evaluated.

If a trigger condition is satisfied, the Recorder enters the post-triggermode, where it counts down
the follow-up samples (number of FMSTR_Recorder function calls) and de-activates the Recorder
when the required post-trigger samples are finished.

The FMSTR_Recorder function is typically called in the timer or PWM interrupt service routines.
This function can also be called in the application main loop (for testing purposes).

FMSTR_RecorderTrigger

Prototype
void FMSTR_RecorderTrigger(FMSTR_INDEX recIndex);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

416 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Description This function forces the Recorder trigger condition to happen, which causes the
Recorder to be automatically deactivated after the post-trigger samples are sampled. Use this
function in the application code for programmatic control over the Recorder triggering. This
can be useful when a more complex triggering conditions need to be used.

FastRecorderAPI The Fast Recorder feature is not available in the FreeMASTERdriver version
3. This feature was heavily dependent on the target platform and it was only available for the
56F8xxxx DSCs.

TSA Tables When the TSA is enabled in the FreeMASTER driver configuration file (by setting
the FMSTR_USE_TSA macro to a non-zero value), it defines the so-called TSA tables in the appli-
cation. This section describes the macros that must to be used to define the TSA tables.

There can be any number of TSA tables spread across the application source files. There must
be always exactly one TSA Table List defined, which informs the FreeMASTER driver about the
active TSA tables.

When there is at least one TSA table and one TSA Table List defined in the application, the TSA
information automatically appears in the FreeMASTER symbols list. The symbols can then be
used to create FreeMASTER variables for visualization or control.

TSA table definition The TSA table describes the static or global variables together with their
address, size, type, and access-protection information. If the TSA-described variables are of a
structure type, the TSA table may also describe this type and provide an access to the individual
structure members of the variable.

The TSA table definition begins with the FMSTR_TSA_TABLE_BEGIN macro with a table_id iden-
tifying the table. The table_id shall be a valid C-langiage symbol.

FMSTR_TSA_TABLE_BEGIN(table_id)

After this opening macro, the TSA descriptors are placed using these macros:

/* Adding variable descriptors */
FMSTR_TSA_RW_VAR(name, type) /* read/write variable entry */
FMSTR_TSA_RO_VAR(name, type) /* read-only variable entry */

/* Description of complex data types */
FMSTR_TSA_STRUCT(struct_name) /* structure or union type entry */
FMSTR_TSA_MEMBER(struct_name, member_name, type) /* structure member entry */

/* Memory blocks */
FMSTR_TSA_RW_MEM(name, type, address, size) /* read/write memory block */
FMSTR_TSA_RO_MEM(name, type, address, size) /* read-only memory block */

The table is closed using the FMSTR_TSA_TABLE_END macro:

FMSTR_TSA_TABLE_END()

TSA descriptor parameters The TSA descriptor macros accept these parameters:

• name—variable name. The variable must be defined before the TSA descriptor references
it.

• type — variable or member type. Only one of the pre-defined type constants may be used
(see below).

• struct_name — structure type name. The type must be defined (typedef) before the TSA
descriptor references it.

3.1. Motor Control 417

MCUXpresso SDK Documentation, Release 25.09.00

• member_name— structure member name.

Note: The structure member descriptors (FMSTR_TSA_MEMBER) must immediately follow the
parent structure descriptor (FMSTR_TSA_STRUCT) in the table.

Note: To write-protect the variables in the FreeMASTER driver (FMSTR_TSA_RO_VAR), enable
the TSA-Safety feature in the configuration file.

TSA variable types The table lists type identifiers which can be used in TSA descriptors:

Constant Description
FMSTR_TSA_UINTn Unsigned integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_SINTn Signed integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_FRACn Fractional number of size n bits (n=16,32,64).
FMSTR_TSA_FRAC_Q(m,n) Signed fractional number in general Q form (m+n+1 total bits)
FMSTR_TSA_FRAC_UQ(m,n) Unsigned fractional number in general UQ form (m+n total

bits)
FMSTR_TSA_FLOAT 4-byte standard IEEE floating-point type
FMSTR_TSA_DOUBLE 8-byte standard IEEE floating-point type
FMSTR_TSA_POINTER Generic pointer type defined (platform-specific 16 or 32 bit)
FM-
STR_TSA_USERTYPE(name)

Structure or union type declared with FMSTR_TSA_STRUCT
record

TSA table list There shall be exactly one TSA Table List in the application. The list contains
one entry for each TSA table defined anywhere in the application.

The TSA Table List begins with the FMSTR_TSA_TABLE_LIST_BEGIN macro and continues with
the TSA table entries for each table.

FMSTR_TSA_TABLE_LIST_BEGIN()

FMSTR_TSA_TABLE(table_id)
FMSTR_TSA_TABLE(table_id2)
FMSTR_TSA_TABLE(table_id3)
...

The list is closed with the FMSTR_TSA_TABLE_LIST_END macro:

FMSTR_TSA_TABLE_LIST_END()

TSA Active Content entries FreeMASTER v2.0 and higher supports TSA Active Content, en-
abling the TSA tables to describe the memory-mapped files, virtual directories, and URL hyper-
links. FreeMASTER can access such objects similarly to accessing the files and folders on the
local hard drive.

With this set of TSA entries, the FreeMASTER pages can be embedded directly into the target
MCU flash and accessed by FreeMASTER directly over the communication line. The HTML-coded
pages rendered inside the FreeMASTER window can access the TSA Active Content resources
using a special URL referencing the fmstr: protocol.

This example provides an overview of the supported TSA Active Content entries:

FMSTR_TSA_TABLE_BEGIN(files_and_links)

/* Directory entry applies to all subsequent MEMFILE entries */
FMSTR_TSA_DIRECTORY(”/text_files”) /* entering a new virtual directory */

(continues on next page)

418 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
/* The readme.txt file will be accessible at the fmstr://text_files/readme.txt URL */
FMSTR_TSA_MEMFILE(”readme.txt”, readme_txt, sizeof(readme_txt)) /* memory-mapped file */

/* Files can also be specified with a full path so the DIRECTORY entry does not apply */
FMSTR_TSA_MEMFILE(”/index.htm”, index, sizeof(index)) /* memory-mapped file */
FMSTR_TSA_MEMFILE(”/prj/demo.pmp”, demo_pmp, sizeof(demo_pmp)) /* memory-mapped file */

/* Hyperlinks can point to a local MEMFILE object or to the Internet */
FMSTR_TSA_HREF(”Board's Built-in Welcome Page”, ”/index.htm”)
FMSTR_TSA_HREF(”FreeMASTER Home Page”, ”http://www.nxp.com/freemaster”)

/* Project file links simplify opening the projects from any URLs */
FMSTR_TSA_PROJECT(”Demonstration Project (embedded)”, ”/prj/demo.pmp”)
FMSTR_TSA_PROJECT(”Full Project (online)”, ”http://mycompany.com/prj/demo.pmp”)

FMSTR_TSA_TABLE_END()

TSA API

FMSTR_SetUpTsaBuff

Prototype
FMSTR_BOOL FMSTR_SetUpTsaBuff(FMSTR_ADDR buffAddr, FMSTR_SIZE buffSize);

• Declaration: freemaster.h

• Implementation: freemaster_tsa.c

Arguments
• buffAddr [in] - address of the memory buffer for the dynamic TSA table

• buffSize [in] - size of the memory buffer which determines the maximum number of TSA
entries to be added in the runtime

Description This functionmust be used to assign the RAMmemory buffer to the TSA subsystem
when FMSTR_USE_TSA_DYNAMIC is enabled. The memory buffer is then used to store the TSA
entries added dynamically to the runtime TSA table using the FMSTR_TsaAddVar function call.
The runtime TSA table is processed by the FreeMASTER PC Host tool along with all static tables
as soon as the communication port is open.

The size of the memory buffer determines the number of TSA entries that can be added dynam-
ically. Depending on the MCU platform, one TSA entry takes either 8 or 16 bytes.

FMSTR_TsaAddVar

Prototype
FMSTR_BOOL FMSTR_TsaAddVar(FMSTR_TSATBL_STRPTR tsaName, FMSTR_TSATBL_STRPTR␣
↪→tsaType,

FMSTR_TSATBL_VOIDPTR varAddr, FMSTR_SIZE32 varSize,
FMSTR_SIZE flags);

• Declaration: freemaster.h

3.1. Motor Control 419

MCUXpresso SDK Documentation, Release 25.09.00

• Implementation: freemaster_tsa.c

Arguments
• tsaName [in] - name of the object

• tsaType [in] - name of the object type

• varAddr [in] - address of the object

• varSize [in] - size of the object

• flags [in] - access flags; a combination of these values:

– FMSTR_TSA_INFO_RO_VAR— read-only memory-mapped object (typically a variable)

– FMSTR_TSA_INFO_RW_VAR— read/write memory-mapped object

– FMSTR_TSA_INFO_NON_VAR — other entry, describing structure types, structure
members, enumerations, and other types

Description This function can be called only when the dynamic TSA table is enabled by the
FMSTR_USE_TSA_DYNAMIC configuration option and when the FMSTR_SetUpTsaBuff function
call is made to assign the dynamic TSA table memory. This function adds an entry into the dy-
namic TSA table. It can be used to register a read-only or read/write memory object or describe
an item of the user-defined type.

See TSA table definition for more details about the TSA table entries.

Application Commands API

FMSTR_GetAppCmd

Prototype
FMSTR_APPCMD_CODE FMSTR_GetAppCmd(void);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Description This function can be used to detect if there is an Application Command waiting
to be processed by the application. If no command is pending, this function returns the FM-
STR_APPCMDRESULT_NOCMD constant. Otherwise, this function returns the code of the Appli-
cation Command that must be processed. Use the FMSTR_AppCmdAck call to acknowledge the
Application Command after it is processed and to return the appropriate result code to the host.

The FMSTR_GetAppCmd function does not report the commands for which a callback handler
function exists. If the FMSTR_GetAppCmd function is called when a callback-registered com-
mand is pending (and before it is actually processed by the callback function), this function re-
turns FMSTR_APPCMDRESULT_NOCMD.

FMSTR_GetAppCmdData

420 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Prototype
FMSTR_APPCMD_PDATA FMSTR_GetAppCmdData(FMSTR_SIZE* dataLen);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• dataLen [out] - pointer to the variable that receives the length of the data available in the
buffer. It can be NULL when this information is not needed.

Description This function can be used to retrieve the Application Command data when the
application determines that an Application Command is pending (see FMSTR_GetAppCmd).

There is just a single buffer to hold the Application Command data (the buffer length is FM-
STR_APPCMD_BUFF_SIZE bytes). If the data are to be used in the application after the command
is processed by the FMSTR_AppCmdAck call, copy the data out to a private buffer.

FMSTR_AppCmdAck

Prototype
void FMSTR_AppCmdAck(FMSTR_APPCMD_RESULT resultCode);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• resultCode [in] - the result code which is to be returned to FreeMASTER

Description This function is used when the Application Command processing finishes in the
application. The resultCode passed to this function is returned back to the host and the driver is
re-initialized to expect the next Application Command.

After this function is called and before the next Application Command arrives, the return value
of the FMSTR_GetAppCmd function is FMSTR_APPCMDRESULT_NOCMD.

FMSTR_AppCmdSetResponseData

Prototype
void FMSTR_AppCmdSetResponseData(FMSTR_ADDR resultDataAddr, FMSTR_SIZE resultDataLen);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

3.1. Motor Control 421

MCUXpresso SDK Documentation, Release 25.09.00

Arguments
• resultDataAddr [in] - pointer to the data buffer that is to be copied to the Application Com-
mand data buffer

• resultDataLen [in] - length of the data to be copied. It must not exceed the FM-
STR_APPCMD_BUFF_SIZE value.

Description This function can be used before the Application Command processing finishes,
when there are data to be returned back to the PC.

The response data buffer is copied into the Application Command data buffer, from where it is
accessed when the host requires it. Do not use FMSTR_GetAppCmdData and the data buffer after
FMSTR_AppCmdSetResponseData is called.

Note: The current version of FreeMASTER does not support the Application Command response
data.

FMSTR_RegisterAppCmdCall

Prototype
FMSTR_BOOL FMSTR_RegisterAppCmdCall(FMSTR_APPCMD_CODE appCmdCode, FMSTR_
↪→PAPPCMDFUNC callbackFunc);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• appCmdCode [in] - the Application Command code for which the callback is to be registered

• callbackFunc [in] - pointer to the callback function that is to be registered. Use NULL to
unregister a callback registered previously with this Application Command.

Return value This function returns a non-zero value when the callback function was success-
fully registered or unregistered. It can return zero when trying to register a callback function
for more than FMSTR_MAX_APPCMD_CALLS different Application Commands.

Description This function can be used to register the given function as a callback handler for
the Application Command. The Application Command is identified using single-byte code. The
callback function is invoked automatically by the FreeMASTER driverwhen the protocol decoder
obtains a request to get the application command result code.

The prototype of the callback function is

FMSTR_APPCMD_RESULT HandlerFunction(FMSTR_APPCMD_CODE nAppcmd,
FMSTR_APPCMD_PDATA pData, FMSTR_SIZE nDataLen);

Where:

• nAppcmd -Application Command code

• pData—points to the Application Command data received (if any)

• nDataLen—information about the Application Command data length

422 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

The return value of the callback function is used as the Application Command Result Code and
returned to FreeMASTER.

Note: The FMSTR_MAX_APPCMD_CALLS configurationmacro defines howmanydifferent Appli-
cation Commands may be handled by a callback function. When FMSTR_MAX_APPCMD_CALLS
is undefined or defined as zero, the FMSTR_RegisterAppCmdCall function always fails.

Pipes API

FMSTR_PipeOpen

Prototype
FMSTR_HPIPE FMSTR_PipeOpen(FMSTR_PIPE_PORT pipePort, FMSTR_PPIPEFUNC pipeCallback,
↪→

FMSTR_ADDR pipeRxBuff, FMSTR_PIPE_SIZE pipeRxSize,
FMSTR_ADDR pipeTxBuff, FMSTR_PIPE_SIZE pipeTxSize,
FMSTR_U8 type, const FMSTR_CHAR *name);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipePort [in] - port number that identifies the pipe for the client

• pipeCallback [in] - pointer to the callback function that is calledwhenever a pipe data status
changes

• pipeRxBuff [in] - address of the receive memory buffer

• pipeRxSize [in] - size of the receive memory buffer

• pipeTxBuff [in] - address of the transmit memory buffer

• pipeTxSize [in] - size of the transmit memory buffer

• type [in] - a combination of FMSTR_PIPE_MODE_xxx and FMSTR_PIPE_SIZE_xxx constants
describing primary pipe data format and usage. This type helps FreeMASTER decide how
to access the pipe by default. Optional, use 0 when undetermined.

• name [in] - user name of the pipe port. This name is visible to the FreeMASTER user when
creating the graphical pipe interface.

Description This function initializes a new pipe and makes it ready to accept or send the data
to the PCHost client. The receivememory buffer is used to store the received data before they are
read out by the FMSTR_PipeRead call. When this buffer gets full, the PC Host client denies the
data transmission into this pipe until there is enough free space again. The transmit memory
buffer is used to store the data transmitted by the application to the PC Host client using the
FMSTR_PipeWrite call. The transmit buffer can get full when the PC Host is disconnected or
when it is slow in receiving and reading out the pipe data.

The function returns the pipe handle which must be stored and used in the subsequent calls to
manage the pipe object.

The callback function (if specified) is called whenever new data are received through the pipe
and available for reading. This callback is also called when the data waiting in the transmit
buffer are successfully pushed to the PC Host and the transmit buffer free space increases. The
prototype of the callback function provided by the user application must be as follows. The
PipeHandler name is only a placeholder and must be defined by the application.

3.1. Motor Control 423

MCUXpresso SDK Documentation, Release 25.09.00

void PipeHandler(FMSTR_HPIPE pipeHandle);

FMSTR_PipeClose

Prototype
void FMSTR_PipeClose(FMSTR_HPIPE pipeHandle);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

Description This function de-initializes the pipe object. No data can be received or sent on the
pipe after this call.

FMSTR_PipeWrite

Prototype
FMSTR_PIPE_SIZE FMSTR_PipeWrite(FMSTR_HPIPE pipeHandle, FMSTR_ADDR pipeData,

FMSTR_PIPE_SIZE pipeDataLen, FMSTR_PIPE_SIZE writeGranularity);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

• pipeData [in] - address of the data to be written

• pipeDataLen [in] - length of the data to be written

• writeGranularity [in] - size of the minimum unit of data which is to be written

Description This function puts the user-specified data into the pipe’s transmit memory buffer
and schedules it for transmission. This function returns the number of bytes that were success-
fully written into the buffer. This number may be smaller than the number of the requested
bytes if there is not enough free space in the transmit buffer.

The writeGranularity argument can be used to split the data into smaller chunks, each of the
size given by the writeGranularity value. The FMSTR_PipeWrite function writes as many data
chunks as possible into the transmit buffer and does not attempt to write an incomplete chunk.
This feature can prove to be useful to avoid the intermediate caching when writing an array of
integer values or other multi-byte data items. When making the nGranularity value equal to the
nLength value, all data are considered as one chunk which is either written successfully as a
whole or not at all. The nGranularity value of 0 or 1 disables the data-chunk approach.

FMSTR_PipeRead

424 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Prototype
FMSTR_PIPE_SIZE FMSTR_PipeRead(FMSTR_HPIPE pipeHandle, FMSTR_ADDR pipeData,

FMSTR_PIPE_SIZE pipeDataLen, FMSTR_PIPE_SIZE readGranularity);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

• pipeData [in] - address of the data buffer to be filled with the received data

• pipeDataLen [in] - length of the data to be read

• readGranularity [in] - size of the minimum unit of data which is to be read

Description This function copies the data received from the pipe from its receive buffer to the
user buffer for further processing. The function returns the number of bytes that were success-
fully copied to the buffer. This number may be smaller than the number of the requested bytes
if there is not enough data bytes available in the receive buffer.

The readGranularity argument can be used to copy the data in larger chunks in the same way as
described in the FMSTR_PipeWrite function.

API data types This section describes the data types used in the FreeMASTER driver. The infor-
mationprovidedhere canbeusefulwhenmodifying or porting the FreeMASTERCommunication
Driver to new NXP platforms.

Note: The licensing conditions prohibit use of FreeMASTER and the FreeMASTER Communica-
tion Driver with non-NXP MPU or MCU products.

Public common types The table belowdescribes the public data types used in the FreeMASTER
driver API calls. The data types are declared in the freemaster.h header file.

3.1. Motor Control 425

MCUXpresso SDK Documentation, Release 25.09.00

Type name Description
FM-
STR_ADDR

Data type used to hold the memory address. Onmost platforms, this is normally
a C-pointer, but it may also be a pure integer type.

For exam-
ple, this
type is
defined as
long inte-
ger on the
56F8xxx
platform
where
the 24-bit
addresses
must be
supported,
but the
C-pointer
may be
only 16
bits wide
in some
compiler
configura-
tions.
FM-
STR_SIZE

Data type used to hold the memory block size.

It is re-
quired
that this
type is un-
signed and
at least 16
bits wide
integer.
FM-
STR_BOOL

Data type used as a general boolean type.

This type
is used
only in
zero/non-
zero con-
ditions in
the driver
code.
FM-
STR_APPCMD_CODE

Data type used to hold the Application Command code.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCMD_DATA

Data type used to create the Application Command data buffer.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCMD_RESULT

Data type used to hold the Application Command result code.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_PAPPCMDFUNC

Pointer to the Application Command handler function.

See FM-
STR_RegisterAppCmdCall
for more
details.

426 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Public TSA types The table describes the TSA-specific public data types. These types are de-
clared in the freemaster_tsa.h header file, which is included in the user application indirectly by
the freemaster.h file.

FM-
STR_TSA_TINDEX

Data type used to hold a descriptor index in the TSA table or a table index in the
list of TSA tables.

By default,
this is
defined
as FM-
STR_SIZE.
FM-
STR_TSA_TSIZE

Data type used to hold a memory block size, as used in the TSA descriptors.

By default,
this is
defined
as FM-
STR_SIZE.

Public Pipes types The table describes the data types used by the FreeMASTER Pipes API:

FM-
STR_HPIPE

Pipe handle that identifies the open-pipe object.

Generally,
this is a
pointer
to a void
type.
FM-
STR_PIPE_PORT

Integer type required to hold at least 7 bits of data.

Generally,
this is an
unsigned
8-bit or
16-bit type.
FM-
STR_PIPE_SIZE

Integer type required to hold at least 16 bits of data.

This is
used to
store the
data buffer
sizes.
FM-
STR_PPIPEFUNC

Pointer to the pipe handler function.

See FM-
STR_PipeOpen
for more
details.

Internal types The table describes the data types used internally by the FreeMASTER driver.
The data types are declared in the platform-specific header file and they are not available in the
application code.

3.1. Motor Control 427

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_U8 The smallest memory entity.
On the vast
majority of
platforms,
this is an
unsigned
8-bit inte-
ger.
On the
56F8xx
DSP plat-
form, this
is defined
as an un-
signed
16-bit inte-
ger.
FM-
STR_U16

Unsigned 16-bit integer.

FM-
STR_U32

Unsigned 32-bit integer.

FMSTR_S8 Signed 8-bit integer.
FM-
STR_S16

Signed 16-bit integer.

FM-
STR_S32

Signed 32-bit integer.

FM-
STR_FLOAT

4-byte standard IEEE floating-point type.

FM-
STR_FLAGS

Data type forming a union with a structure of flag bit-fields.

FM-
STR_SIZE8

Data type holding a general size value, at least 8 bits wide.

FM-
STR_INDEX

General for-loop index. Must be signed, at least 16 bits wide.

FM-
STR_BCHR

A single character in the communication buffer.

Typically,
this is
an 8-bit
unsigned
integer,
except for
the DSP
platforms
where it
is a 16-bit
integer.
FM-
STR_BPTR

A pointer to the communication buffer (an array of FMSTR_BCHR).

Document references

Links
• This document online: https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/
freemaster/doc/index.html

428 Chapter 3. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html

MCUXpresso SDK Documentation, Release 25.09.00

• FreeMASTER tool home: www.nxp.com/freemaster

• FreeMASTER community area: community.nxp.com/community/freemaster

• FreeMASTER GitHub code repo: https://github.com/nxp-mcuxpresso/mcux-freemaster

• MCUXpresso SDK home: www.nxp.com/mcuxpresso

• MCUXpresso SDK builder: mcuxpresso.nxp.com/en

Documents
• FreeMASTER Usage Serial Driver Implementation (document AN4752)

• Integrating FreeMASTER Time Debugging ToolWith CodeWarrior ForMicrocontrollers v10.X
Project (document AN4771)

• Flash Driver Library For MC56F847xx And MC56F827xx DSC Family (document AN4860)

Revision history This Table summarizes the changes done to this document since the initial
release.

3.1. Motor Control 429

https://www.nxp.com/freemaster
https://community.nxp.com/community/freemaster
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://www.nxp.com/mcuxpresso
https://mcuxpresso.nxp.com/en
http://www.nxp.com/doc/AN4752
http://www.nxp.com/doc/AN4771
http://www.nxp.com/doc/AN4860

MCUXpresso SDK Documentation, Release 25.09.00

Revi-
sion

Date Description

1.0 03/2006 Limited initial release
2.0 09/2007 Updated for FreeMASTER version. New Freescale doc-

ument template used.
2.1 12/2007 Added description of the newFast Recorder feature and

its API.
2.2 04/2010 Added support for MPC56xx platform, Added new API

for use CAN interface.
2.3 04/2011 Added support for Kxx Kinetis platform andMQX oper-

ating system.
2.4 06/2011 Serial driver update, adds support for USB CDC inter-

face.
2.5 08/2011 Added Packet Driven BDM interface.
2.7 12/2013 Added FLEXCAN32 interface, byte access and isr call-

back configuration option.
2.8 06/2014 Removed obsolete license text, see the software pack-

age content for up-to-date license.
2.9 03/2015 Update for driver version 1.8.2 and 1.9: FreeMAS-

TER Pipes, TSA Active Content, LIN Transport Layer
support, DEBUG-TX communication troubleshooting,
Kinetis SDK support.

3.0 08/2016 Update for driver version 2.0: Added support for
MPC56xx, MPC57xx, KEAxx and S32Kxx platforms.
New NXP document template as well as new license
agreement used. added MCAN interface. Folders struc-
ture at the installation destination was rearranged.

4.0 04/2019 Update for driver released as part of FreeMASTER v3.0
and MCUXpresso SDK 2.6. Updated to match new V4
serial communication protocol and new configuration
options. This version of the document removes sub-
stantial portion of outdated information related to S08,
S12, ColdFire, Power and other legacy platforms.

4.1 04/2020 Minor update for FreeMASTER driver included in
MCUXpresso SDK 2.8.

4.2 09/2020 Added example applications description and informa-
tion about the MCUXpresso Config Tools. Fixed the
pipe-related API description.

4.3 10/2024 Added description ofNetwork and Segger J-Link RTT in-
terface configuration. Accompanying the MCUXpresso
SDK version 24.12.00.

4.4 04/2025 Added Zephyr-specific information. Accompanying the
MCUXpresso SDK version 25.06.00.

430 Chapter 3. Middleware

Chapter 4

RTOS

4.1 FreeRTOS

4.1.1 FreeRTOS kernel

Open source RTOS kernel for small devices.

FreeRTOS kernel for MCUXpresso SDK Readme

FreeRTOS kernel for MCUXpresso SDK

Overview The purpose of this document is to describes the FreeRTOS kernel repo integration
into the NXP MCUXpresso Software Development Kit: mcuxsdk. MCUXpresso SDK provides a
comprehensive development solutions designed to optimize, ease, and help accelerate embed-
ded system development of applications based on MCUs from NXP. This project involves the
FreeRTOS kernel repo fork with:

• cmake andKconfig support to allow the configuration andbuild inMCUXpresso SDK ecosys-
tem

• FreeRTOS OS additions, such as FreeRTOS driver wrappers, RTOS ready FatFs file system,
and the implementation of FreeRTOS tickless mode

The history of changes in FreeRTOS kernel repo for MCUXpresso SDK are summarized in
CHANGELOG_mcuxsdk.md file.

The MCUXpresso SDK framework also contains a set of FreeRTOS examples which show basic
FreeRTOS OS features. This makes it easy to start a new FreeRTOS project or begin experiment-
ing with FreeRTOS OS. Selected drivers and middleware are RTOS ready with related FreeRTOS
adaptation layer.

FreeRTOS example applications The FreeRTOS examples are written to demonstrate basic
FreeRTOS features and the interaction between peripheral drivers and the RTOS.

List of examples The list of freertos_examples, their description and availability for individual
supportedMCUXpresso SDK development boards can be obtained here: https://mcuxpresso.nxp.
com/mcuxsdk/latest/html/examples/freertos_examples/index.html

431

https://github.com/FreeRTOS/FreeRTOS
https://github.com/nxp-mcuxpresso/mcuxsdk-manifests
https://github.com/nxp-mcuxpresso/mcux-freertos-drivers
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/examples/freertos_examples/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/examples/freertos_examples/index.html

MCUXpresso SDK Documentation, Release 25.09.00

Location of examples The FreeRTOS examples are located in mcuxsdk-examples repository,
see the freertos_examples folder.

OnceusingMCUXpresso SDKzip packages created via theMCUXpresso SDKBuilder the FreeRTOS
kernel library and associated freertos_examples are added into final zip package once FreeRTOS
components is selected on the Developer Environment Settings page:

The FreeRTOS examples in MCUXpresso SDK zip packages are located in <MCUXpres-
soSDK_install_dir>/boards/<board_name>/freertos_examples/ subfolders.

Building a FreeRTOS example application For information how to use the cmake andKconfig
based build and configuration system and how to build freertos_examples visit: MCUXpresso
SDK documentation for Build And Configuration MCUXpresso SDK Getting Start Guide

Tip: To list all FreeRTOS example projects and targets that can be built via the west build com-
mand, use this west list_project command in mcuxsdk workspace:

west list_project -p examples/freertos_examples

FreeRTOS aware debugger plugin NXP provides FreeRTOS task aware debugger for GDB. The
plugin is compatible with Eclipse-based (MCUXpressoIDE) and is available after the installation.

FreeRTOS kernel for MCUXpresso SDK ChangeLog

Changelog FreeRTOS kernel for MCUXpresso SDK All notable changes to this project will be
documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

432 Chapter 4. RTOS

https://github.com/nxp-mcuxpresso/mcuxsdk-examples
https://mcuxpresso.nxp.com
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/develop/build_system/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/develop/build_system/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/repo.html#gsd-index
https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html

MCUXpresso SDK Documentation, Release 25.09.00

[Unreleased]

Added
• Kconfig added CONFIG_FREERTOS_USE_CUSTOM_CONFIG_FRAGMENT config to op-
tionally include custom FreeRTOSConfig fragment
include file FreeRTOSConfig_frag.h. File must be provided by application.

• Added missing Kconfig option for configUSE_PICOLIBC_TLS.

• Add correct header files to build when configUSE_NEWLIB_REENTRANT and confi-
gUSE_PICOLIBC_TLS is selected in config.

[11.1.0_rev0]
• update amazon freertos version

[11.0.1_rev0]
• update amazon freertos version

[10.5.1_rev0]
• update amazon freertos version

[10.4.3_rev1]
• Apply CM33 security fix from10.4.3-LTS-Patch-2. See rtos\freertos\freertos_kernel\History.txt

• Apply CM33 security fix from10.4.3-LTS-Patch-1. See rtos\freertos\freertos_kernel\History.txt

[10.4.3_rev0]
• update amazon freertos version.

[10.4.3_rev0]
• update amazon freertos version.

[9.0.0_rev3]
• New features:

– Tickless idle mode support for Cortex-A7. Add fsl_tickless_epit.c and
fsl_tickless_generic.h in portable/IAR/ARM_CA9 folder.

– Enabled float context saving in IAR for Cortex-A7. Added confi-
gUSE_TASK_FPU_SUPPORT macros. Modified port.c and portmacro.h in
portable/IAR/ARM_CA9 folder.

• Other changes:

– Transformed ARM_CM core specific tickless low power support into generic form un-
der freertos/Source/portable/low_power_tickless/.

4.1. FreeRTOS 433

MCUXpresso SDK Documentation, Release 25.09.00

[9.0.0_rev2]
• New features:

– Enabled MCUXpresso thread aware debugging. Add freertos_tasks_c_additions.h
and configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H and configFR-
TOS_MEMORY_SCHEME macros.

[9.0.0_rev1]
• New features:

– Enabled -flto optimization in GCC by adding attribute((used)) for vTaskSwitchContext.

– Enabled KDS Task Aware Debugger. Apply FreeRTOS patch to enable confi-
gRECORD_STACK_HIGH_ADDRESS macro. Modified files are task.c and FreeRTOS.h.

[9.0.0_rev0]
• New features:

– Example freertos_sem_static.

– Static allocation support RTOS driver wrappers.

• Other changes:

– Tickless idle rework. Support for different timers is in separated files
(fsl_tickless_systick.c, fsl_tickless_lptmr.c).

– Removed configuration option configSYSTICK_USE_LOW_POWER_TIMER. Low power
timer is now selected by linking of apropriate file fsl_tickless_lptmr.c.

– Removed configOVERRIDE_DEFAULT_TICK_CONFIGURATION in RVDS port. Use of at-
tribute((weak)) is the preferred solution. Not same as _weak!

[8.2.3]
• New features:

– Tickless idle mode support.

– Added template application for Kinetis Expert (KEx) tool (template_application).

• Other changes:

– Folder structure reduction. Keep only Kinetis related parts.

FreeRTOS kernel Readme

MCUXpresso SDK: FreeRTOS kernel This repository is a fork of FreeRTOS kernel
(https://github.com/FreeRTOS/FreeRTOS-Kernel)(11.1.0). Modifications have been made to adapt
to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable FreeRTOS kernel repo
sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which is
composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

For more information about the FreeRTOS kernel repo adoption see README_mcuxsdk.md:
FreeRTOS kernel for MCUXpresso SDK Readme document.

434 Chapter 4. RTOS

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/rtos/freertos/freertos-kernel/README_mcuxsdk.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/rtos/freertos/freertos-kernel/README_mcuxsdk.html
https://github.com/FreeRTOS/FreeRTOS-Kernel/actions/workflows/unit-tests.yml?query=branch%3Amain+event%3Apush+workflow%3A%22CMock+Unit+Tests%22++

MCUXpresso SDK Documentation, Release 25.09.00

Getting started This repository contains FreeRTOS kernel source/header files and kernel ports
only. This repository is referenced as a submodule in FreeRTOS/FreeRTOS repository, which
contains pre-configured demo application projects under FreeRTOS/Demo directory.

The easiest way to use FreeRTOS is to start with one of the pre-configured demo application
projects. That way you will have the correct FreeRTOS source files included, and the correct
include paths configured. Once a demo application is building and executing you can remove
the demoapplicationfiles, and start to add in your ownapplication sourcefiles. See the FreeRTOS
Kernel Quick Start Guide for detailed instructions and other useful links.

Additionally, for FreeRTOS kernel feature information refer to the Developer Documentation,
and API Reference.

Also for contributing and creating a Pull Request please refer to the instructions here.

Getting help If you have any questions or need assistance troubleshooting your FreeRTOS
project, we have an active community that canhelp on the FreeRTOSCommunity Support Forum.

To consume FreeRTOS-Kernel

Consume with CMake If using CMake, it is recommended to use this repository using Fetch-
Content. Add the following into your project’s main or a subdirectory’s CMakeLists.txt:

• Define the source and version/tag you want to use:

FetchContent_Declare(freertos_kernel
GIT_REPOSITORY https://github.com/FreeRTOS/FreeRTOS-Kernel.git
GIT_TAG main #Note: Best practice to use specific git-hash or tagged version

)

In case you prefer to add it as a git submodule, do:

git submodule add https://github.com/FreeRTOS/FreeRTOS-Kernel.git <path of the submodule>
git submodule update --init

• Add a freertos_config library (typically an INTERFACE library) The following assumes the
directory structure:

– include/FreeRTOSConfig.h

add_library(freertos_config INTERFACE)

target_include_directories(freertos_config SYSTEM
INTERFACE

include
)

target_compile_definitions(freertos_config
INTERFACE
projCOVERAGE_TEST=0

)

In case you installed FreeRTOS-Kernel as a submodule, you will have to add it as a subdirectory:

add_subdirectory(${FREERTOS_PATH})

• Configure the FreeRTOS-Kernel and make it available

– this particular example supports a native and cross-compiled build option.

4.1. FreeRTOS 435

https://github.com/FreeRTOS/FreeRTOS
https://www.FreeRTOS.org/FreeRTOS-quick-start-guide.html
https://www.FreeRTOS.org/FreeRTOS-quick-start-guide.html
https://www.FreeRTOS.org/features.html
https://www.FreeRTOS.org/a00106.html
https://forums.freertos.org

MCUXpresso SDK Documentation, Release 25.09.00

set(FREERTOS_HEAP ”4” CACHE STRING ”” FORCE)
Select the native compile PORT
set(FREERTOS_PORT ”GCC_POSIX” CACHE STRING ”” FORCE)
Select the cross-compile PORT
if (CMAKE_CROSSCOMPILING)
set(FREERTOS_PORT ”GCC_ARM_CA9” CACHE STRING ”” FORCE)

endif()

FetchContent_MakeAvailable(freertos_kernel)

• In case of cross compilation, you should also add the following to freertos_config:

target_compile_definitions(freertos_config INTERFACE ${definitions})
target_compile_options(freertos_config INTERFACE ${options})

Consuming stand-alone - Cloning this repository To clone using HTTPS:

git clone https://github.com/FreeRTOS/FreeRTOS-Kernel.git

Using SSH:

git clone git@github.com:FreeRTOS/FreeRTOS-Kernel.git

Repository structure
• The root of this repository contains the three files that are common to every port - list.c,
queue.c and tasks.c. The kernel is containedwithin these three files. croutine.c implements
the optional co-routine functionality - which is normally only used on verymemory limited
systems.

• The ./portable directory contains the files that are specific to a particular microcontroller
and/or compiler. See the readme file in the ./portable directory for more information.

• The ./include directory contains the real time kernel header files.

• The ./template_configurationdirectory contains a sampleFreeRTOSConfig.h to help jumpstart
a new project. See the FreeRTOSConfig.h file for instructions.

Code Formatting FreeRTOS files are formatted using the “uncrustify” tool. The configuration
file used by uncrustify can be found in the FreeRTOS/CI-CD-GitHub-Actions’s uncrustify.cfg file.

Line Endings File checked into the FreeRTOS-Kernel repository use unix-style LF line endings
for the best compatibility with git.

For optimal compatibility with Microsoft Windows tools, it is best to enable the git autocrlf fea-
ture. You can enable this setting for the current repository using the following command:

git config core.autocrlf true

Git History Optimizations Some commits in this repository perform large refactors which
touch many lines and lead to unwanted behavior when using the git blame command. You can
configure git to ignore the list of large refactor commits in this repository with the following
command:

git config blame.ignoreRevsFile .git-blame-ignore-revs

436 Chapter 4. RTOS

https://github.com/uncrustify/uncrustify
https://github.com/FreeRTOS/CI-CD-Github-Actions
https://github.com/FreeRTOS/CI-CD-Github-Actions/tree/main/formatting

MCUXpresso SDK Documentation, Release 25.09.00

Spelling and Formatting We recommend using Visual Studio Code, commonly referred to as
VSCode, when working on the FreeRTOS-Kernel. The FreeRTOS-Kernel also uses cSpell as part
of its spelling check. The config file for which can be found at cspell.config.yaml There is addi-
tionally a cSpell plugin for VSCode that can be used as well. .cSpellWords.txt contains words
that are not traditionally found in an English dictionary. It is used by the spellchecker to ver-
ify the various jargon, variable names, and other odd words used in the FreeRTOS code base
are correct. If your pull request fails to pass the spelling and you believe this is a mistake, then
add the word to .cSpellWords.txt. When adding a word please then sort the list, which can be
done by running the bash command: sort -u .cSpellWords.txt -o .cSpellWords.txt Note that only
the FreeRTOS-Kernel Source Files, include, portable/MemMang, and portable/Common files are
checked for proper spelling, and formatting at this time.

4.1.2 FreeRTOS drivers

This is set of NXP provided FreeRTOS reentrant bus drivers.

4.1.3 backoffalgorithm

Algorithm for calculating exponential backoff with jitter for network retry attempts.

Readme

MCUXpresso SDK: backoffAlgorithm Library This repository is a fork of backoffAlgorithm
library (https://github.com/FreeRTOS/backoffalgorithm)(1.3.0). Modifications have beenmade to
adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable backoffAlgorithm
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repositorymcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

backoffAlgorithm Library This repository contains the backoffAlgorithm library, a utility li-
brary to calculate backoff period using an exponential backoff with jitter algorithm for retry-
ing network operations (like failed network connection with server). This library uses the “Full
Jitter” strategy for the exponential backoff with jitter algorithm. More information about the
algorithm can be seen in the Exponential Backoff and Jitter AWS blog.

The backoffAlgorithm library is distributed under theMIT Open Source License.

Exponential backoff with jitter is typically used when retrying a failed network connection or
operation request with the server. An exponential backoff with jitter helps to mitigate failed
network operations with servers, that are caused due to network congestion or high request
load on the server, by spreading out retry requests across multiple devices attempting network
operations. Besides, in an environment with poor connectivity, a client can get disconnected at
any time. A backoff strategy helps the client to conserve battery by not repeatedly attempting
reconnections when they are unlikely to succeed.

See memory requirements for this library here.

backoffAlgorithm v1.3.0 source code is part of the FreeRTOS 202210.00 LTS release.
backoffAlgorithm v1.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

4.1. FreeRTOS 437

https://code.visualstudio.com
https://cspell.org/
https://marketplace.visualstudio.com/items?itemName=streetsidesoftware.code-spell-checker
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
https://github.com/FreeRTOS/backoffAlgorithm/tree/v1.3.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/backoffAlgorithm/tree/v1.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00

Reference example The example below shows how to use the backoffAlgorithm library on a
POSIX platform to retry a DNS resolution query for amazon.com.

#include ”backoff_algorithm.h”
#include <stdlib.h>
#include <string.h>
#include <netdb.h>
#include <unistd.h>
#include <time.h>

/* The maximum number of retries for the example code. */
#define RETRY_MAX_ATTEMPTS (5U)

/* The maximum back-off delay (in milliseconds) for between retries in the example. */
#define RETRY_MAX_BACKOFF_DELAY_MS (5000U)

/* The base back-off delay (in milliseconds) for retry configuration in the example. */
#define RETRY_BACKOFF_BASE_MS (500U)

int main()
{

/* Variables used in this example. */
BackoffAlgorithmStatus_t retryStatus = BackoffAlgorithmSuccess;
BackoffAlgorithmContext_t retryParams;
char serverAddress[] = ”amazon.com”;
uint16_t nextRetryBackoff = 0;

int32_t dnsStatus = -1;
struct addrinfo hints;
struct addrinfo ** pListHead = NULL;
struct timespec tp;

/* Add hints to retrieve only TCP sockets in getaddrinfo. */
(void) memset(&hints, 0, sizeof(hints));

/* Address family of either IPv4 or IPv6. */
hints.ai_family = AF_UNSPEC;
/* TCP Socket. */
hints.ai_socktype = (int32_t) SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;

/* Initialize reconnect attempts and interval. */
BackoffAlgorithm_InitializeParams(&retryParams,

RETRY_BACKOFF_BASE_MS,
RETRY_MAX_BACKOFF_DELAY_MS,
RETRY_MAX_ATTEMPTS);

/* Seed the pseudo random number generator used in this example (with call to
* rand() function provided by ISO C standard library) for use in backoff period
* calculation when retrying failed DNS resolution. */

/* Get current time to seed pseudo random number generator. */
(void) clock_gettime(CLOCK_REALTIME, &tp);
/* Seed pseudo random number generator with seconds. */
srand(tp.tv_sec);

do
{

/* Perform a DNS lookup on the given host name. */
dnsStatus = getaddrinfo(serverAddress, NULL, &hints, pListHead);

(continues on next page)

438 Chapter 4. RTOS

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
/* Retry if DNS resolution query failed. */
if(dnsStatus != 0)
{

/* Generate a random number and get back-off value (in milliseconds) for the next retry.
* Note: It is recommended to use a random number generator that is seeded with
* device-specific entropy source so that backoff calculation across devices is different
* and possibility of network collision between devices attempting retries can be avoided.
*
* For the simplicity of this code example, the pseudo random number generator, rand()
* function is used. */
retryStatus = BackoffAlgorithm_GetNextBackoff(&retryParams, rand(), &nextRetryBackoff);

/* Wait for the calculated backoff period before the next retry attempt of querying DNS.
* As usleep() takes nanoseconds as the parameter, we multiply the backoff period by 1000. */
(void) usleep(nextRetryBackoff * 1000U);

}
} while((dnsStatus != 0) && (retryStatus != BackoffAlgorithmRetriesExhausted));

return dnsStatus;
}

Building the library A compiler that supports C90 or later such as gcc is required to build the
library.

Additionally, the library uses a header file introduced in ISO C99, stdint.h. For compilers that do
not provide this header file, the source/include directory contains stdint.readme, which can be
renamed to stdint.h to build the backoffAlgorithm library.

For instance, if the example above is copied to a file named example.c, gcc can be used like so:

gcc -I source/include example.c source/backoff_algorithm.c -o example
./example

gcc can also produce an output file to be linked:

gcc -I source/include -c source/backoff_algorithm.c

Building unit tests

Checkout Unity Submodule By default, the submodules in this repository are configured with
update=none in .gitmodules, to avoid increasing clone time and disk space usage of other reposi-
tories (like amazon-freertos that submodules this repository).

To build unit tests, the submodule dependency of Unity is required. Use the following command
to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/Unity

Platform Prerequisites
• For running unit tests

– C89 or later compiler like gcc

– CMake 3.13.0 or later

• For running the coverage target, gcov is additionally required.

4.1. FreeRTOS 439

https://github.com/aws/amazon-freertos

MCUXpresso SDK Documentation, Release 25.09.00

Steps to build Unit Tests
1. Go to the root directory of this repository. (Make sure that the Unity submodule is cloned

as described above.)

2. Create build directory: mkdir build && cd build

3. Run cmake while inside build directory: cmake -S ../test

4. Run this command to build the library and unit tests: make all

5. The generated test executables will be present in build/bin/tests folder.

6. Run ctest to execute all tests and view the test run summary.

Contributing See CONTRIBUTING.md for information on contributing.

4.1.4 corehttp

C language HTTP client library designed for embedded platforms.

MCUXpresso SDK: coreHTTP Client Library

This repository is a fork of coreHTTPClient library (https://github.com/FreeRTOS/corehttp)(3.0.0).
Modifications have been made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig
added to enable coreHTTP Client repo sources build in MCUXpresso SDK. It is part of the MCUX-
presso SDK overall delivery which is composed of several sub-repositories/projects. Navigate
to the top/parent repository mcuxsdk-manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-
manifests) for the complete delivery of MCUXpresso SDK.

coreHTTP Client Library

This repository contains a C language HTTP client library designed for embedded platforms. It
has no dependencies on any additional libraries other than the standard C library, llhttp, and
a customer-implemented transport interface. This library is distributed under the MIT Open
Source License.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8. This library has also undergone both static code analysis from
Coverity static analysis, and validation of memory safety and data structure invariance through
the CBMC automated reasoning tool.

See memory requirements for this library here.

coreHTTP v3.0.0 source code is part of the FreeRTOS 202210.00 LTS release.
coreHTTP v2.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

coreHTTP Config File The HTTP client library exposes configurationmacros that are required
for building the library. A list of all the configurations and their default values are defined in
core_http_config_defaults.h. To provide custom values for the configuration macros, a custom
config file named core_http_config.h can be provided by the user application to the library.

By default, a core_http_config.h custom config is required to build the library. To dis-
able this requirement and build the library with default configuration values, provide
HTTP_DO_NOT_USE_CUSTOM_CONFIG as a compile time preprocessor macro.

The HTTP client library can be built by either:

440 Chapter 4. RTOS

https://github.com/nodejs/llhttp
https://www.gnu.org/software/complexity/manual/complexity.html
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/coreHTTP/tree/v3.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/coreHTTP/tree/v2.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00

• Defining a core_http_config.h file in the application, and adding it to the include directories
for the library build. OR

• Defining the HTTP_DO_NOT_USE_CUSTOM_CONFIG preprocessor macro for the li-
brary build.

Building the Library The httpFilePaths.cmake file contains the information of all source files
and header include paths required to build the HTTP client library.

As mentioned in the previous section, either a custom config file (i.e. core_http_config.h) OR
HTTP_DO_NOT_USE_CUSTOM_CONFIGmacro needs to be provided to build theHTTP client
library.

For a CMake example of building the HTTP library with the httpFilePaths.cmake file, refer to the
coverity_analysis library target in test/CMakeLists.txt file.

Building Unit Tests

Platform Prerequisites
• For running unit tests, the following are required:

– C90 compiler like gcc
– CMake 3.13.0 or later
– Ruby 2.0.0 or later is required for this repository’s CMock test framework.

• For running the coverage target, the following are required:

– gcov
– lcov

Steps to build Unit Tests
1. Go to the root directory of this repository.

2. Run the cmake command: cmake -S test -B build -DBUILD_CLONE_SUBMODULES=ON

3. Run this command to build the library and unit tests: make -C build all

4. The generated test executables will be present in build/bin/tests folder.

5. Run cd build && ctest to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Reference examples The AWS IoT Device SDK for Embedded C repository contains demos of
using theHTTP client library here on a POSIX platform. These can be used as reference examples
for the library API.

Documentation

4.1. FreeRTOS 441

https://github.com/ThrowTheSwitch/CMock
https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/http

MCUXpresso SDK Documentation, Release 25.09.00

Existing Documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location
AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of coreHTTP may differ across repositories.

Generating Documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Contributing See CONTRIBUTING.md for information on contributing.

4.1.5 corejson

JSON parser.

Readme

MCUXpresso SDK: coreJSON Library This repository is a fork of coreJSON library
(https://github.com/FreeRTOS/corejson)(3.2.0). Modifications have been made to adapt to NXP
MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable coreJSON repo sources build
in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which is com-
posed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

coreJSONLibrary This repository contains the coreJSON library, a parser that strictly enforces
the ECMA-404 JSON standard and is suitable for low memory footprint embedded devices. The
coreJSON library is distributed under theMIT Open Source License.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations frommandatory rules in theMISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis from Coverity static analy-
sis, and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.

coreJSON v3.2.0 source code is part of the FreeRTOS 202210.00 LTS release.
coreJSON v3.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

Reference example

442 Chapter 4. RTOS

https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/coreHTTP/docs/doxygen/output/html/index.html
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/coreJSON/tree/v3.2.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/coreJSON/tree/v3.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00

#include <stdio.h>
#include ”core_json.h”

int main()
{

// Variables used in this example.
JSONStatus_t result;
char buffer[] = ”{\”foo\”:\”abc\”,\”bar\”:{\”foo\”:\”xyz\”}}”;
size_t bufferLength = sizeof(buffer) - 1;
char queryKey[] = ”bar.foo”;
size_t queryKeyLength = sizeof(queryKey) - 1;
char * value;
size_t valueLength;

// Calling JSON_Validate() is not necessary if the document is guaranteed to be valid.
result = JSON_Validate(buffer, bufferLength);

if(result == JSONSuccess)
{

result = JSON_Search(buffer, bufferLength, queryKey, queryKeyLength,
&value, &valueLength);

}

if(result == JSONSuccess)
{

// The pointer ”value” will point to a location in the ”buffer”.
char save = value[valueLength];
// After saving the character, set it to a null byte for printing.
value[valueLength] = '\0';
// ”Found: bar.foo -> xyz” will be printed.
printf(”Found: %s -> %s\n”, queryKey, value);
// Restore the original character.
value[valueLength] = save;

}

return 0;
}

A search may descend through nested objects when the queryKey contains matching key strings
joined by a separator, .. In the example above, bar has the value {”foo”:”xyz”}. Therefore, a search
for query key bar.foo would output xyz.

Building coreJSON A compiler that supports C90 or later such as gcc is required to build the
library.

Additionally, the library uses 2 header files introduced in ISO C99, stdbool.h and stdint.h. For com-
pilers that do not provide this header file, the source/include directory contains stdbool.readme
and stdint.readme, which can be renamed to stdbool.h and stdint.h respectively.

For instance, if the example above is copied to a file named example.c, gcc can be used like so:

gcc -I source/include example.c source/core_json.c -o example
./example

gcc can also produce an output file to be linked:

gcc -I source/include -c source/core_json.c

Documentation

4.1. FreeRTOS 443

MCUXpresso SDK Documentation, Release 25.09.00

Existing documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location
AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of the coreJSON library may differ across repositories.

Generating documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Building unit tests

Checkout Unity Submodule By default, the submodules in this repository are configured with
update=none in .gitmodules, to avoid increasing clone time and disk space usage of other reposi-
tories (like amazon-freertos that submodules this repository).

To build unit tests, the submodule dependency of Unity is required. Use the following command
to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/Unity

Platform Prerequisites
• For running unit tests

– C90 compiler like gcc

– CMake 3.13.0 or later

– Ruby 2.0.0 or later is additionally required for the Unity test framework (that we use).

• For running the coverage target, gcov is additionally required.

Steps to build Unit Tests
1. Go to the root directory of this repository. (Make sure that the Unity submodule is cloned

as described above.)

2. Create build directory: mkdir build && cd build

3. Run cmake while inside build directory: cmake -S ../test

4. Run this command to build the library and unit tests: make all

5. The generated test executables will be present in build/bin/tests folder.

6. Run ctest to execute all tests and view the test run summary.

444 Chapter 4. RTOS

https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/coreJSON/docs/doxygen/output/html/index.html
https://github.com/aws/amazon-freertos

MCUXpresso SDK Documentation, Release 25.09.00

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Contributing See CONTRIBUTING.md for information on contributing.

4.1.6 coremqtt

MQTT publish/subscribe messaging library.

MCUXpresso SDK: coreMQTT Library

This repository is a fork of coreMQTT library (https://github.com/FreeRTOS/coremqtt)(2.1.1).
Modifications have been made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kcon-
fig added to enable coreMQTT repo sources build in MCUXpresso SDK. It is part of the MCUX-
presso SDK overall delivery which is composed of several sub-repositories/projects. Navigate
to the top/parent repository mcuxsdk-manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-
manifests) for the complete delivery of MCUXpresso SDK.

coreMQTT Client Library

This repository contains the coreMQTT library that has been optimized for a low memory foot-
print. The coreMQTT library is compliant with the MQTT 3.1.1 standard. It has no dependencies
on any additional libraries other than the standard C library, a customer-implemented network
transport interface, and optionally a user-implemented platform time function. This library is
distributed under theMIT Open Source License.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations frommandatory rules in theMISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis from Coverity static analy-
sis, and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.

coreMQTT v2.1.1 source code is part of the FreeRTOS 202210.01 LTS release.

MQTT Config File The MQTT client library exposes build configuration macros that are re-
quired for building the library. A list of all the configurations and their default values are de-
fined in core_mqtt_config_defaults.h. To provide custom values for the configuration macros, a
custom config file named core_mqtt_config.h can be provided by the application to the library.

By default, a core_mqtt_config.h custom config is required to build the library. To dis-
able this requirement and build the library with default configuration values, provide
MQTT_DO_NOT_USE_CUSTOM_CONFIG as a compile time preprocessor macro.

Thus, the MQTT library can be built by either:
• Defining a core_mqtt_config.h file in the application, and adding it to the include directories
list of the library
OR

• Defining the MQTT_DO_NOT_USE_CUSTOM_CONFIG preprocessor macro for the li-
brary build.

4.1. FreeRTOS 445

https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/coreMQTT/tree/v2.1.1/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.01-LTS

MCUXpresso SDK Documentation, Release 25.09.00

Sending metrics to AWS IoT When establishing a connection with AWS IoT, users can option-
ally report the Operating System, Hardware Platform and MQTT client version information of
their device to AWS. This information can help AWS IoT provide faster issue resolution and tech-
nical support. If users want to report this information, they can send a specially formatted string
(see below) in the username field of the MQTT CONNECT packet.

Format

The format of the username string with metrics is:

<Actual_Username>?SDK=<OS_Name>&Version=<OS_Version>&Platform=<Hardware_Platform>&
↪→MQTTLib=<MQTT_Library_name>@<MQTT_Library_version>

Where

• <Actual_Username> is the actual username used for authentication, if username and pass-
word are used for authentication. When username and password based authentication is
not used, this is an empty value.

• <OS_Name> is the Operating System the application is running on (e.g. FreeRTOS)

• <OS_Version> is the version number of the Operating System (e.g. V10.4.3)

• <Hardware_Platform> is the Hardware Platform the application is running on (e.g. Win-
Sim)

• <MQTT_Library_name> is the MQTT Client library being used (e.g. coreMQTT)

• <MQTT_Library_version> is the version of the MQTT Client library being used (e.g. 1.0.2)

Example

• Actual_Username = “iotuser”, OS_Name = FreeRTOS, OS_Version = V10.4.3, Hard-
ware_Platform_Name =WinSim, MQTT_Library_Name = coremqtt, MQTT_Library_version
= 2.1.1. If username is not used, then “iotuser” can be removed.

/* Username string:
* iotuser?SDK=FreeRTOS&Version=v10.4.3&Platform=WinSim&MQTTLib=coremqtt@2.1.1
*/

#define OS_NAME ”FreeRTOS”
#define OS_VERSION ”V10.4.3”
#define HARDWARE_PLATFORM_NAME ”WinSim”
#define MQTT_LIB ”coremqtt@2.1.1”

#define USERNAME_STRING ”iotuser?SDK=” OS_NAME ”&Version=” OS_VERSION ”&
↪→Platform=” HARDWARE_PLATFORM_NAME ”&MQTTLib=” MQTT_LIB
#define USERNAME_STRING_LENGTH ((uint16_t) (sizeof(USERNAME_STRING) - 1))

MQTTConnectInfo_t connectInfo;
connectInfo.pUserName = USERNAME_STRING;
connectInfo.userNameLength = USERNAME_STRING_LENGTH;
mqttStatus = MQTT_Connect(pMqttContext, &connectInfo, NULL, CONNACK_RECV_TIMEOUT_MS,␣
↪→pSessionPresent);

Upgrading to v2.0.0 and above With coreMQTT versions >=v2.0.0, there are breaking changes.
Please refer to the coreMQTT version >=v2.0.0 Migration Guide.

Building the Library ThemqttFilePaths.cmake file contains the information of all source files
and the header include path required to build the MQTT library.

Additionally, the MQTT library requires two header files that are not part of the ISO C90 stan-
dard library, stdbool.h and stdint.h. For compilers that do not provide these header files, the

446 Chapter 4. RTOS

MCUXpresso SDK Documentation, Release 25.09.00

source/include directory contains the files stdbool.readme and stdint.readme, which can be re-
named to stdbool.h and stdint.h, respectively, to provide the type definitions required by MQTT.

As mentioned in the previous section, either a custom config file (i.e. core_mqtt_config.h) OR
MQTT_DO_NOT_USE_CUSTOM_CONFIG macro needs to be provided to build the MQTT li-
brary.

For a CMake example of building the MQTT library with themqttFilePaths.cmake file, refer to the
coverity_analysis library target in test/CMakeLists.txt file.

Building Unit Tests

Checkout CMock Submodule By default, the submodules in this repository are configured
with update=none in .gitmodules to avoid increasing clone time and disk space usage of other
repositories (like amazon-freertos that submodules this repository).

To build unit tests, the submodule dependency of CMock is required. Use the following command
to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/CMock

Platform Prerequisites
• Docker

or the following:

• For running unit tests

– C90 compiler like gcc
– CMake 3.13.0 or later
– Ruby 2.0.0 or later is additionally required for the CMock test framework (that we
use).

• For running the coverage target, gcov and lcov are additionally required.

Steps to build Unit Tests
1. If using docker, launch the container:

1. docker build -t coremqtt .

2. docker run -it -v ”$PWD”:/workspaces/coreMQTT -w /workspaces/coreMQTT coremqtt

2. Go to the root directory of this repository. (Make sure that the CMock submodule is cloned
as described above)

3. Run the cmake command: cmake -S test -B build

4. Run this command to build the library and unit tests: make -C build all

5. The generated test executables will be present in build/bin/tests folder.

6. Run cd build && ctest to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

4.1. FreeRTOS 447

https://github.com/aws/amazon-freertos
https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html

MCUXpresso SDK Documentation, Release 25.09.00

Reference examples Please refer to the demos of the MQTT client library in the following
locations for reference examples on POSIX and FreeRTOS platforms:

Plat-
form

Location Transport Interface Implementation

POSIX AWS IoT Device SDK for Embed-
ded C

POSIX sockets for TCP/IP and OpenSSL for TLS
stack

FreeR-
TOS

FreeRTOS/FreeRTOS FreeRTOS+TCP for TCP/IP and mbedTLS for
TLS stack

FreeR-
TOS

FreeRTOS AWS Reference Inte-
grations

Based on Secure Sockets Abstraction

Documentation

Existing Documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location
AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of coreMQTT may differ across repositories.

Generating Documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Contributing See CONTRIBUTING.md for information on contributing.

4.1.7 coremqtt-agent

The coreMQTT Agent library is a high level API that adds thread safety to the coreMQTT library.

Readme

MCUXpresso SDK: coreMQTT Agent Library This repository is a fork of coreMQTT Agent
library (https://github.com/FreeRTOS/coremqtt-agent)(1.2.0). Modifications have been made to
adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable coreMQTT Agent
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repositorymcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

448 Chapter 4. RTOS

https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/mqtt
https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/mqtt
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo
https://github.com/aws/amazon-freertos/tree/main/demos/coreMQTT
https://github.com/aws/amazon-freertos/tree/main/demos/coreMQTT
https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/coreMQTT/docs/doxygen/output/html/index.html

MCUXpresso SDK Documentation, Release 25.09.00

coreMQTT Agent Library The coreMQTT Agent library is a high level API that adds thread
safety to the coreMQTT library. The library provides thread safe equivalents to the coreMQTT’s
APIs, greatly simplifying its use in multi-threaded environments. The coreMQTT Agent library
manages the MQTT connection by serializing the access to the coreMQTT library and reduc-
ing implementation overhead (e.g., removing the need for the application to repeatedly call to
MQTT_ProcessLoop). This allows yourmulti-threaded applications to share the sameMQTT con-
nection, and enables you to design an embedded application without having to worry about
coreMQTT thread safety.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations frommandatory rules in theMISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis from Coverity static analy-
sis, and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.

Cloning this repository This repo uses Git Submodules to bring in dependent components.

To clone using HTTPS:

git clone https://github.com/FreeRTOS/coreMQTT-Agent.git --recurse-submodules

Using SSH:

git clone git@github.com:FreeRTOS/coreMQTT-Agent.git --recurse-submodules

If you have downloaded the repo without using the --recurse-submodules argument, you need to
run:

git submodule update --init --recursive

coreMQTT Agent Library Configurations The MQTT Agent library uses the same
core_mqtt_config.h configuration file as coreMQTT, with the addition of configuration con-
stants listed at the top of core_mqtt_agent.h and core_mqtt_agent_command_functions.h.
Documentation for these configurations can be found here.

To provide values for these configuration values, they must be either:

• Defined in core_mqtt_config.h used by coreMQTT OR
• Passed as compile time preprocessor macros

Porting the coreMQTT Agent Library In order to use the MQTT Agent library on a platform,
you need to supply thread safe functions for the agent’smessaging interface.

Messaging Interface Each of the following functions must be thread safe.

4.1. FreeRTOS 449

https://github.com/FreeRTOS/coreMQTT
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://freertos.org/Documentation/api-ref/coreMQTT-Agent/docs/doxygen/output/html/core_mqtt_agent_config.html

MCUXpresso SDK Documentation, Release 25.09.00

Function
Pointer

Description

MQTTA-
gentMes-
sage-
Send_t

A function that sends commands (as MQTTAgentCommand_t * pointers) to be re-
ceived by MQTTAgent_CommandLoop. This can be implemented by pushing to a
thread safe queue.

MQTTA-
gentMes-
sageRecv_t

A function used byMQTTAgent_CommandLoop to receiveMQTTAgentCommand_t
* pointers that were sent by API functions. This can be implemented by receiving
from a thread safe queue.

MQTTA-
gentCom-
mand-
Get_t

A function that returns a pointer to an allocatedMQTTAgentCommand_t structure,
which is used to hold information and arguments for a command to be executed in
MQTTAgent_CommandLoop(). If using dynamicmemory, this can be implemented
using malloc().

MQT-
TAgent-
Comman-
dRelease_t

A function called to indicate that a command structure that had been allocated
with the MQTTAgentCommandGet_t function pointer will no longer be used by
the agent, so it may be freed or marked as not in use. If using dynamic memory,
this can be implemented with free().

Reference implementations for the interface functions can be found in the reference examples
below.

Additional Considerations

Static Memory If only static allocation is used, then theMQTTAgentCommandGet_t andMQT-
TAgentCommandRelease_t could instead be implemented with a pool of MQTTAgentCommand_t
structures, with a queue or semaphore used to control access and provide thread safety. The
below reference examples use static memory with a command pool.

Subscription Management The MQTT Agent does not track subscriptions for MQTT topics.
The receipt of any incoming PUBLISH packet will result in the invocation of a single MQTTA-
gentIncomingPublishCallback_t callback, which is passed to MQTTAgent_Init() for initialization.
If it is desired for different handlers to be invoked for different incoming topics, then the pub-
lish callback will have to manage subscriptions and fan out messages. A platform independent
subscription manager example is implemented in the reference examples below.

Building theLibrary You canbuild theMQTTAgent source files that are in the sourcedirectory,
and add source/include to your compiler’s include path. Additionally, the MQTT Agent library
requires the coreMQTT library, whose files follow the same source/ and source/include pattern as
the agent library; its build instructions can be found here.

If using CMake, themqttAgentFilePaths.cmake file contains the above information of the source
files and the header include path from this repository. The same information is found for
coreMQTT from mqttFilePaths.cmake in the coreMQTT submodule.

For a CMake example of building the MQTT Agent library with themqttAgentFilePaths.cmake file,
refer to the coverity_analysis library target in test/CMakeLists.txt file.

Building Unit Tests

450 Chapter 4. RTOS

https://github.com/FreeRTOS/coreMQTT#building-the-library

MCUXpresso SDK Documentation, Release 25.09.00

Checkout CMock Submodule To build unit tests, the submodule dependency of CMock is re-
quired. Use the following command to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/CMock

Unit Test Platform Prerequisites
• For running unit tests

– C90 compiler like gcc
– CMake 3.13.0 or later
– Ruby 2.0.0 or later is additionally required for the CMock test framework (that we
use).

• For running the coverage target, gcov and lcov are additionally required.

Steps to build Unit Tests
1. Go to the root directory of this repository. (Make sure that the CMock submodule is cloned

as described above)

2. Run the cmake command: cmake -S test -B build

3. Run this command to build the library and unit tests: make -C build all

4. The generated test executables will be present in build/bin/tests folder.

5. Run cd build && ctest to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Reference examples Please refer to the demos of the MQTT Agent library in the following
locations for reference examples on FreeRTOS platforms:

Location
coreMQTT Agent Demos
FreeRTOS/FreeRTOS

Documentation The MQTT Agent API documentation can be found here.

Generating documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages yourself, please run the following command from the root
of this repository:

doxygen docs/doxygen/config.doxyfile

Getting help You can use your Github login to get support from both the FreeRTOS community
and directly from the primary FreeRTOS developers on our active support forum. You can find
a list of frequently asked questions here.

4.1. FreeRTOS 451

https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://github.com/FreeRTOS/coreMQTT-Agent-Demos
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/coreMQTT_Windows_Simulator/MQTT_Multitask
https://freertos.org/Documentation/api-ref/coreMQTT-Agent/docs/doxygen/output/html/index.html
https://forums.freertos.org
https://www.freertos.org/FAQ.html

MCUXpresso SDK Documentation, Release 25.09.00

Contributing See CONTRIBUTING.md for information on contributing.

License This library is licensed under the MIT License. See the LICENSE file.

4.1.8 corepkcs11

PKCS #11 key management library.

Readme

MCUXpresso SDK: corePKCS11 Library This repository is a fork of PKCS #11 keymanagement
library (https://github.com/FreeRTOS/corePKCS11/tree/v3.5.0)(v3.5.0). Modifications have been
made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable corepkcs11
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repositorymcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

corePKCS11 Library PKCS #11 is a standardized and widely used API for manipulating com-
mon cryptographic objects. It is important because the functions it specifies allow application
software to use, create, modify, and delete cryptographic objects, without ever exposing those
objects to the application’s memory. For example, FreeRTOS AWS reference integrations use a
small subset of the PKCS #11 API to, among other things, access the secret (private) key neces-
sary to create a network connection that is authenticated and secured by the Transport Layer
Security (TLS) protocol – without the application ever ‘seeing’ the key.

The Cryptoki or PKCS #11 standard defines a platform-independent API to manage and use cryp-
tographic tokens. The name, “PKCS #11”, is used interchangeably to refer to the API itself and
the standard which defines it.

This repository contains a software based mock implementation of the PKCS #11 interface (API)
that uses the cryptographic functionality provided by Mbed TLS. Using a software mock enables
rapid development and flexibility, but it is expected that the mock be replaced by an implemen-
tation specific to your chosen secure key storage in production devices.

Only a subset of the PKCS #11 standard is implemented, with a focus on operations involving
asymmetric keys, random number generation, and hashing.

The targeted use cases include certificate and keymanagement for TLS authentication and code-
sign signature verification, on small embedded devices.

corePKCS11 is implemented on PKCS #11 v2.4.0, the full PKCS #11 standard can be found on the
oasis website.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations frommandatory rules in theMISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis fromCoverity static analysis
and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.

corePKCS11 v3.5.0 source code is part of the FreeRTOS 202210.00 LTS release.
corePKCS11 v3.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

452 Chapter 4. RTOS

https://en.wikipedia.org/wiki/PKCS_11
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/corePKCS11/tree/v3.5.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/corePKCS11/tree/v3.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00

Purpose Generally vendors for secure cryptoprocessors such as Trusted Platform Module
(TPM), Hardware Security Module (HSM), Secure Element, or any other type of secure hard-
ware enclave, distribute a PKCS #11 implementation with the hardware. The purpose of the
corePKCS11 software only mock library is therefore to provide a non hardware specific PKCS
#11 implementation that allows for rapid prototyping and development before switching to a
cryptoprocessor specific PKCS #11 implementation in production devices.

Since the PKCS #11 interface is defined as part of the PKCS #11 specification replacing this li-
brary with another implementation should require little porting effort, as the interface will not
change. The system tests distributed in this repository can be leveraged to verify the behavior
of a different implementation is similar to corePKCS11.

corePKCS11 Configuration The corePKCS11 library exposes preprocessor macros whichmust
be defined prior to building the library. A list of all the configurations and their default values
are defined in the doxygen documentation for this library.

Build Prerequisites

Library Usage For building the library the following are required:

• A C99 compiler
• mbedcrypto library from mbedtls version 2.x or 3.x.

• pkcs11 API header(s) available from OASIS or OpenSC

Optionally, variables from the pkcsFilePaths.cmake file may be referenced if your project uses
cmake.

Integration and Unit Tests In order to run the integration and unit test suites the following
are dependencies are necessary:

• C Compiler
• CMake 3.13.0 or later
• Ruby 2.0.0 or later required by CMock.

• Python 3 required for configuring mbedtls.

• git required for fetching dependencies.

• GNU Make or Ninja
Thembedtls, CMock, andUnity libraries are downloaded and built automatically using the cmake
FetchContent feature.

Coverage Measurement and Instrumentation The following software is required to run the
coverage target:

• Linux, MacOS, or another POSIX-like environment.

• A recent version of GCC or Clang with support for gcov-like coverage instrumentation.

• gcov binary corresponding to your chosen compiler

• lcov from the Linux Test Project

• perl needed to run the lcov utility.

Coverage builds are validated on recent versions of Ubuntu Linux.

4.1. FreeRTOS 453

https://en.wikipedia.org/wiki/Trusted_Platform_Module
https://en.wikipedia.org/wiki/Hardware_security_module
https://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://github.com/ARMmbed/mbedtls
https://github.com/oasis-tcs/pkcs11
https://github.com/OpenSC/libp11/blob/master/src/pkcs11.h
https://github.com/linux-test-project/lcov

MCUXpresso SDK Documentation, Release 25.09.00

Running the Integration and Unit Tests
1. Navigate to the root directory of this repository in your shell.

2. Run cmake to construct a build tree: cmake -S test -B build

• You may specify your preferred build tool by appending -G'Unix Makefiles' or -GNinja
to the command above.

• You may append -DUNIT_TESTS=0 or -DSYSTEM_TESTS=0 to disable Unit Tests or
Integration Tests respectively.

3. Build the test binaries: cmake --build ./build --target all

4. Run ctest --test-dir ./build or cmake --build ./build --target test to run the tests without captur-
ing coverage.

5. Run cmake --build ./build --target coverage to run the tests and capture coverage data.

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Reference examples The FreeRTOS-Labs repository contains demos using the PKCS #11 li-
brary here using FreeRTOS on theWindows simulator platform. These can be used as reference
examples for the library API.

Porting Guide Documentation for porting corePKCS11 to a new platform can be found on the
AWS docs web page.

corePKCS11 is not meant to be ported to projects that have a TPM, HSM, or other hardware for
offloading crypto-processing. This library is specifically meant to be used for development and
prototyping.

Related Example Implementations These projects implement the PKCS #11 interface on real
hardware and have similar behavior to corePKCS11. It is preferred to use these, over coreP-
KCS11, as they allow for offloading Cryptography to separate hardware.

• ARM’s Platform Security Architecture.

• Microchip’s cryptoauthlib.

• Infineon’s Optiga Trust X.

Documentation

Existing Documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location
AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of corePKCS11 may differ across repositories.

454 Chapter 4. RTOS

https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://github.com/FreeRTOS/FreeRTOS-Labs/tree/master/FreeRTOS-Plus/Demo/FreeRTOS_Plus_PKCS11_Windows_Simulator/examples
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-pkcs.html
https://github.com/Linaro/freertos-pkcs11-psa
https://github.com/MicrochipTech/cryptoauthlib
https://github.com/aws/amazon-freertos/blob/main/vendors/infineon/secure_elements/pkcs11/iot_pkcs11_trustx.c
https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/corePKCS11/docs/doxygen/output/html/index.html

MCUXpresso SDK Documentation, Release 25.09.00

Generating Documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Security See CONTRIBUTING for more information.

License This library is licensed under the MIT-0 License. See the LICENSE file.

4.1.9 freertos-plus-tcp

Open source RTOS FreeRTOS Plus TCP.

Readme

MCUXpresso SDK: FreeRTOS-Plus-TCPLibrary This repository is a fork of FreeRTOS-Plus-TCP
library (https://github.com/FreeRTOS/freertos-plus-tcp)(4.3.3). Modifications have been made to
adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable FreeRTOS-Plus-TCP
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repositorymcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

FreeRTOS-Plus-TCP Library FreeRTOS-Plus-TCP is a lightweight TCP/IP stack for FreeRTOS. It
provides a familiar Berkeley sockets interface, making it as simple to use and learn as possi-
ble. FreeRTOS-Plus-TCP’s features and RAM footprint are fully scalable, making FreeRTOS-Plus-
TCP equally applicable to smaller lower throughput microcontrollers as well as larger higher
throughput microprocessors.

This library has undergone static code analysis and checks for compliance with the MISRA cod-
ing standard. Any deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. The library is validated for memory safety and data structure invariance through
the CBMC automated reasoning tool for the functions that parse data originating from the net-
work. The library is also protocol tested using Maxwell protocol tester for both IPv4 and IPv6.

FreeRTOS-Plus-TCP Library V4.2.2 source code is part of the FreeRTOS 202406.01 LTS re-
lease.

Getting started The easiest way to use version 4.0.0 and later of FreeRTOS-Plus-TCP is to refer
the Getting started Guide (found here) Another way is to start with the pre-configured IPv4Win-
dows Simulator demo (found in this directory) or IPv6Multi-endpointWindows Simulator demo
(found in this directory). That way you will have the correct FreeRTOS source files included, and
the correct include paths configured. Once a demo application is building and executing you can
remove the demo application files, and start to add in your own application source files. See the
FreeRTOS Kernel Quick Start Guide for detailed instructions and other useful links.

Additionally, for FreeRTOS-Plus-TCP source code organization refer to the Documentation, and
API Reference.

4.1. FreeRTOS 455

https://www.misra.org.uk/
https://www.misra.org.uk/
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/MISRA.md
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/MISRA.md
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/tree/V4.2.2/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202406.01-LTS
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/GettingStarted.md
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/FreeRTOS_Plus_TCP_Minimal_Windows_Simulator
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/FreeRTOS_Plus_TCP_IPv6_Demo/IPv6_Multi_WinSim_demo
https://www.freertos.org/Documentation/01-FreeRTOS-quick-start/01-Beginners-guide/02-Quick-start-guide
http://www.FreeRTOS.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/TCP_Networking_Tutorial.html
https://freertos.org/Documentation/03-Libraries/02-FreeRTOS-plus/02-FreeRTOS-plus-TCP/09-API-reference/01-FreeRTOS-plus-TCP-APIs

MCUXpresso SDK Documentation, Release 25.09.00

Getting help If you have any questions or need assistance troubleshooting your FreeRTOS
project, we have an active community that canhelp on the FreeRTOSCommunity Support Forum.
Please also refer to FAQ for frequently asked questions.

Also see the Submitting a bugs/feature request section of CONTRIBUTING.md for more details.

Note: All the remaining sections are generic and applies to all the versions from V3.0.0 onwards.

Upgrading to V4.3.0 and above For users of STM32 network interfaces:

Starting from version V4.3.0, the STM32 network interfaces have been consolidated into a sin-
gle unified implementation located at source/portable/NetworkInterface/STM32/NetworkInterface.c,
supporting STM32 F4, F7, and H7 series microcontrollers, with newly added support for STM32
H5. The new interface has been tested with the STM32 HAL Ethernet (ETH) drivers, avail-
able at source/portable/NetworkInterface/STM32/Drivers. For compatibility, the legacy interfaces
(STM32Fxx and STM32Hxx) have been retained and relocated to source/portable/NetworkInterface/
STM32/Legacy.

Upgrading to V3.0.0 and V3.1.0 In version 3.0.0 or 3.1.0, the folder structure of FreeRTOS-Plus-
TCP has changed and the files have been broken down into smaller logically separated mod-
ules. This changemakes the codemoremodular and conducive to unit-tests. FreeRTOS-Plus-TCP
V3.0.0 improves the robustness, security, and modularity of the library. Version 3.0.0 adds com-
prehensive unit test coverage for all lines and branches of code and has undergone protocol
testing, and penetration testing by AWS Security to reduce the exposure to security vulnerabili-
ties. Additionally, the source files have been moved to a source directory. This change requires
modification of any existing project(s) to include the modified source files and directories.

FreeRTOS-Plus-TCP V3.1.0 source code(.c .h) is part of the FreeRTOS 202210.00 LTS release.

Generating pre V3.0.0 folder structure for backward compatibility: If you wish to continue
using a version earlier than V3.0.0 i.e. continue to use your existing source code organization, a
script is provided to generate the folder structure similar to this.

Note: After running the script, while the .c files will have same names as the pre V3.0.0 source,
the files in the include directory will have different names and the number of files will differ as
well. This should, however, not pose any problems to most projects as projects generally include
all files in a given directory.

Running the script to generate pre V3.0.0 folder structure: For running the script, you will need
Python version > 3.7. You can download/install it from here.

Once python is downloaded and installed, you can verify the version from your termi-
nal/command window by typing python --version.

To run the script, you should switch to the FreeRTOS-Plus-TCP directory Then run python <Path/
to/the/script>/GenerateOriginalFiles.py.

To consume FreeRTOS+TCP

Consume with CMake If using CMake, it is recommended to use this repository using Fetch-
Content. Add the following into your project’s main or a subdirectory’s CMakeLists.txt:

• Define the source and version/tag you want to use:

FetchContent_Declare(freertos_plus_tcp
GIT_REPOSITORY https://github.com/FreeRTOS/FreeRTOS-Plus-TCP.git
GIT_TAG main #Note: Best practice to use specific git-hash or tagged version

(continues on next page)

456 Chapter 4. RTOS

https://forums.freertos.org
https://www.freertos.org/Why-FreeRTOS/FAQs
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/.github/CONTRIBUTING.md#submitting-a-bugsfeature-request
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/tree/V3.1.0
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/tree/f118c8415b4373e3d6e6dbd2d5a116f7eaf27b63
https://www.python.org/downloads/

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
GIT_SUBMODULES ”” # Don't grab any submodules since not latest

)

• Configure the FreeRTOS-Kernel and make it available

– this particular example supports a native and cross-compiled build option.

Select the native compile PORT
set(FREERTOS_PLUS_TCP_NETWORK_IF ”POSIX” CACHE STRING ”” FORCE)
Or: select a cross-compile PORT
if (CMAKE_CROSSCOMPILING)
Eg. STM32Hxx version of port
set(FREERTOS_PLUS_TCP_NETWORK_IF ”STM32HXX” CACHE STRING ”” FORCE)

endif()

FetchContent_MakeAvailable(freertos_plus_tcp)

Consuming stand-alone This repository uses Git Submodules to bring in dependent compo-
nents.

Note: If you download the ZIP file provided by GitHub UI, you will not get the contents of the
submodules. (The ZIP file is also not a valid Git repository)

To clone using HTTPS:

git clone https://github.com/FreeRTOS/FreeRTOS-Plus-TCP.git ./FreeRTOS-Plus-TCP
cd ./FreeRTOS-Plus-TCP
git submodule update --checkout --init --recursive tools/CMock test/FreeRTOS-Kernel

Using SSH:

git clone git@github.com:FreeRTOS/FreeRTOS-Plus-TCP.git ./FreeRTOS-Plus-TCP
cd ./FreeRTOS-Plus-TCP
git submodule update --checkout --init --recursive tools/CMock test/FreeRTOS-Kernel

Porting The porting guide is available on this page.

Repository structure This repository contains the FreeRTOS-Plus-TCP repository and a num-
ber of supplementary libraries for testing/PR Checks. Below is the breakdown of what each di-
rectory contains:

• tools

– This directory contains the tools and related files (CMock/uncrustify) required to run
tests/checks on the TCP source code.

• tests

– This directory contains all the tests (unit tests and CBMC) and the dependencies
(FreeRTOS-Kernel/Litani-port) the tests require.

• source/portable

– This directory contains the portable files required to compile the FreeRTOS-Plus-TCP
source code for different hardware/compilers.

• source/include

– The include directory has all the ‘core’ header files of FreeRTOS-Plus-TCP source.

• source

4.1. FreeRTOS 457

https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://www.freertos.org/Documentation/03-Libraries/02-FreeRTOS-plus/02-FreeRTOS-plus-TCP/10-Porting/01-FreeRTOS_TCP_Porting
https://github.com/FreeRTOS/FreeRTOS-Kernel
https://github.com/awslabs/aws-build-accumulator

MCUXpresso SDK Documentation, Release 25.09.00

– This directory contains all the [.c] source files.

Note At this time it is recommended to use BufferAllocation_2.c in which case it is essential to
use the heap_4.c memory allocation scheme. See memory management.

Kernel sources The FreeRTOS Kernel Source is in FreeRTOS/FreeRTOS-Kernel repository, and
it is consumed by testing/PR checks as a submodule in this repository.

The version of the FreeRTOS Kernel Source in use could be accessed at ./test/FreeRTOS-Kernel
directory.

CBMC The test/cbmc/proofs directory contains CBMC proofs.

To learn more about CBMC and proofs specifically, review the training material here.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

458 Chapter 4. RTOS

http://www.FreeRTOS.org/a00111.html
https://github.com/FreeRTOS/FreeRTOS-Kernel
https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html

	EVK-MIMX8MQ
	Overview
	Getting Started with MCUXpresso SDK Package
	Getting Started with Package
	Overview
	MCUXpresso SDK board support folders
	Example application structure
	Locating example application source files

	Toolchain introduction
	Compiler/Debugger

	Run a demo application using IAR
	Build an example application
	Run an example application

	Run a demo using Arm GCC
	Linux OS host
	Set up toolchain
	Install GCC Arm embedded tool chain
	Add a new system environment variable for ARMGCC_DIR
	Build an example application
	Run an example application

	Windows OS host
	Set up toolchain
	Install GCC Arm Embedded tool chain
	Add a new system environment variable for ARMGCC_DIR
	Build an example application
	Run an example application

	Running an application by U-Boot
	How to determine COM port
	How to define IRQ handler in CPP files
	Host setup

	Getting Started with MCUXpresso SDK GitHub
	Getting Started with MCUXpresso SDK Repository
	Installation
	Install Prerequisites with MCUXpresso Installer
	Alternative: Manual Installation
	Basic tools
	Git
	Python
	West
	Build And Configuration System
	CMake
	Ninja
	Kconfig
	Ruby
	Toolchain
	Tool installation check

	Get MCUXpresso SDK Repo
	Establish SDK Workspace
	Install Python Dependency(If do tool installation manually)

	Explore Contents
	Folder View
	Examples Project

	Run a demo using MCUXpresso for VS Code
	Build an example application
	Run an example application

	Running a demo using ARMGCC CLI/IAR/MDK
	Supported Boards
	Build the project
	Sysbuild(System build)

	Config a Project
	Flash
	Debug
	Work with IDE Project

	Release Notes
	MCUXpresso SDK Release Notes
	Overview
	MCUXpresso SDK
	Development tools
	Supported development systems
	MCUXpresso SDK release package
	Device support
	Board support
	Demo application and other examples

	RTOS
	FreeRTOS

	Middleware
	CMSIS DSP Library
	USB Type-C PD Stack
	USB Host, Device, OTG Stack
	TinyCBOR
	PKCS#11
	Multicore
	llhttp
	FreeMASTER

	Release contents
	Known issues
	Cannot add SDK components into FreeRTOS projects
	The freertos_lpuart example does not complete successfully

	ChangeLog
	MCUXpresso SDK Changelog
	Board Support Files
	board
	[25.06.00]

	clock_config
	[25.06.00]

	pin_mux
	[25.06.00]

	CACHE LMEM
	[2.1.0]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	COMMON
	[2.6.0]
	[2.5.0]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.10]
	[2.2.9]
	[2.2.8]
	[2.2.7]
	[2.2.6]
	[2.2.5]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	ECSPI
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	GPIO
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	GPT
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	I2C
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	MCM
	[2.2.0]
	[2.1.0]
	[2.0.0]

	MU
	[2.3.0]
	[2.2.0]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	PWM
	[2.0.1]
	[2.0.0]

	QSPI
	[2.3.1]
	[2.3.0]
	[2.2.5]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	RDC
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	RDC_SEMA42
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	SAI
	[2.4.9]
	[2.4.8]
	[2.4.7]
	[2.4.6]
	[2.4.5]
	[2.4.4]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.8]
	[2.3.7]
	[2.3.6]
	[2.3.5]
	[2.3.4]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.9]
	[2.1.8]
	[2.1.7]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	SEMA4
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	SNVS_HP
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	SNVS_LP
	[2.4.6]
	[2.4.5]
	[2.4.4]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.0]
	[2.2.0]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	TMU
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	UART
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.1]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	WDOG
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	Driver API Reference Manual
	Middleware Documentation
	Multicore
	FreeMASTER
	FreeRTOS

	MIMX8MQ6
	CACHE: LMEM CACHE Memory Controller
	Clock
	MIPI CSI2 RX: MIPI CSI2 RX Driver
	ECSPI: Enhanced Configurable Serial Peripheral Interface Driver
	ECSPI Driver
	ECSPI SDMA Driver
	GPC: General Power Controller Driver
	GPIO: General-Purpose Input/Output Driver
	GPT: General Purpose Timer
	I2C: Inter-Integrated Circuit Driver
	I2C Driver
	Iomuxc_driver
	IRQSTEER: Interrupt Request Steering Driver
	Common Driver
	LCDIF: LCD interface
	MCM: Miscellaneous Control Module
	MIPI DSI Driver
	MIPI_DSI: MIPI DSI Host Controller
	MU: Messaging Unit
	OCOTP: On Chip One-Time Programmable controller.
	PWM: Pulse Width Modulation Driver
	QSPI: Quad Serial Peripheral Interface
	Quad Serial Peripheral Interface Driver
	RDC: Resource Domain Controller
	RDC_SEMA42: Hardware Semaphores Driver
	SAI: Serial Audio Interface
	SAI Driver
	SAI SDMA Driver
	SDMA: Smart Direct Memory Access (SDMA) Controller Driver
	SEMA4: Hardware Semaphores Driver
	SNVS: Secure Non-Volatile Storage
	Secure Non-Volatile Storage High-Power
	Secure Non-Volatile Storage Low-Power
	SPDIF: Sony/Philips Digital Interface
	SRC: System Reset Controller Driver
	TMU: Thermal Management Unit Driver
	UART: Universal Asynchronous Receiver/Transmitter Driver
	UART Driver
	UART FreeRTOS Driver
	UART SDMA Driver
	USDHC: Ultra Secured Digital Host Controller Driver
	WDOG: Watchdog Timer Driver

	Middleware
	Motor Control
	FreeMASTER
	Introduction
	What is FreeMASTER?
	Driver version 3
	Target platforms
	Replacing existing drivers
	Clocks, pins, and peripheral initialization
	MCUXpresso SDK
	MCUXpresso SDK on GitHub
	FreeMASTER in Zephyr

	Example applications
	MCUX SDK Example applications
	Zephyr sample spplications

	Description
	Features
	Board Detection
	Memory Read
	Memory Write
	Masked Memory Write
	Oscilloscope
	Recorder
	TSA
	TSA Safety
	Application commands
	Pipes
	Serial single-wire operation
	Multi-session support
	Zephyr-specific
	Dedicated communication task
	Zephyr shell and logging over FreeMASTER pipe
	Automatic TSA tables

	Driver files
	Driver configuration
	Configurable items
	Interrupt modes
	Value Type
	Description
	Protocol transport
	Value Type
	Description
	Serial transport
	FMSTR_SERIAL_DRV
	Value Type
	Description
	FMSTR_SERIAL_BASE
	Value Type
	Description
	FMSTR_COMM_BUFFER_SIZE
	Value Type
	Description
	FMSTR_COMM_RQUEUE_SIZE
	Value Type
	Description
	FMSTR_SERIAL_SINGLEWIRE
	Value Type
	Description
	CAN Bus transport
	FMSTR_CAN_DRV
	Value Type
	Description
	FMSTR_CAN_BASE
	Value Type
	Description
	FMSTR_CAN_CMDID
	Value Type
	Description
	FMSTR_CAN_RSPID
	Value Type
	Description
	FMSTR_FLEXCAN_TXMB
	Value Type
	Description
	FMSTR_FLEXCAN_RXMB
	Value Type
	Description
	Network transport
	FMSTR_NET_DRV
	Value Type
	Description
	FMSTR_NET_PORT
	Value Type
	Description
	FMSTR_NET_BLOCKING_TIMEOUT
	Value Type
	Description
	FMSTR_NET_AUTODISCOVERY
	Value Type
	Description
	Debugging options
	FMSTR_DISABLE
	Value Type
	Description
	FMSTR_DEBUG_TX
	Value Type
	Description
	FMSTR_APPLICATION_STR
	Value Type
	Description
	Memory access
	FMSTR_USE_READMEM
	Value Type
	Description
	FMSTR_USE_WRITEMEM
	Value Type
	Description
	Oscilloscope options
	FMSTR_USE_SCOPE
	Value Type
	Description
	FMSTR_MAX_SCOPE_VARS
	Value Type
	Description
	Recorder options
	FMSTR_USE_RECORDER
	Value Type
	Description
	FMSTR_REC_BUFF_SIZE
	Value Type
	Description
	FMSTR_REC_TIMEBASE
	Value Type
	Description
	FMSTR_REC_FLOAT_TRIG
	Value Type
	Description
	Application Commands options
	FMSTR_USE_APPCMD
	Value Type
	Description
	FMSTR_APPCMD_BUFF_SIZE
	Value Type
	Description
	FMSTR_MAX_APPCMD_CALLS
	Value Type
	Description
	TSA options
	FMSTR_USE_TSA
	Value Type
	Description
	FMSTR_USE_TSA_SAFETY
	Value Type
	Description
	FMSTR_USE_TSA_INROM
	Value Type
	Description
	FMSTR_USE_TSA_DYNAMIC
	Value Type
	Description
	Pipes options
	FMSTR_USE_PIPES
	Value Type
	Description
	FMSTR_MAX_PIPES_COUNT
	Value Type
	Description

	Driver interrupt modes
	Completely Interrupt-Driven operation
	Mixed Interrupt and Polling Modes
	Completely Poll-driven

	Data types
	Communication interface initialization
	FreeMASTER Recorder calls
	Driver usage
	Communication troubleshooting

	Driver API
	Control API
	FMSTR_Init
	Prototype
	Description
	FMSTR_Poll
	Prototype
	Description
	FMSTR_SerialIsr / FMSTR_CanIsr
	Prototype
	Description

	Recorder API
	FMSTR_RecorderCreate
	Prototype
	Description
	FMSTR_Recorder
	Prototype
	Description
	FMSTR_RecorderTrigger
	Prototype
	Description

	Fast Recorder API
	TSA Tables
	TSA table definition
	TSA descriptor parameters
	TSA variable types
	TSA table list
	TSA Active Content entries

	TSA API
	FMSTR_SetUpTsaBuff
	Prototype
	Arguments
	Description
	FMSTR_TsaAddVar
	Prototype
	Arguments
	Description

	Application Commands API
	FMSTR_GetAppCmd
	Prototype
	Description
	FMSTR_GetAppCmdData
	Prototype
	Arguments
	Description
	FMSTR_AppCmdAck
	Prototype
	Arguments
	Description
	FMSTR_AppCmdSetResponseData
	Prototype
	Arguments
	Description
	FMSTR_RegisterAppCmdCall
	Prototype
	Arguments
	Return value
	Description

	Pipes API
	FMSTR_PipeOpen
	Prototype
	Arguments
	Description
	FMSTR_PipeClose
	Prototype
	Arguments
	Description
	FMSTR_PipeWrite
	Prototype
	Arguments
	Description
	FMSTR_PipeRead
	Prototype
	Arguments
	Description

	API data types
	Public common types
	Public TSA types
	Public Pipes types
	Internal types

	Document references
	Links
	Documents
	Revision history

	RTOS
	FreeRTOS
	FreeRTOS kernel
	FreeRTOS kernel for MCUXpresso SDK Readme
	FreeRTOS kernel for MCUXpresso SDK
	Overview
	FreeRTOS example applications
	List of examples
	Location of examples
	Building a FreeRTOS example application
	FreeRTOS aware debugger plugin

	FreeRTOS kernel for MCUXpresso SDK ChangeLog
	Changelog FreeRTOS kernel for MCUXpresso SDK
	[Unreleased]
	Added
	[11.1.0_rev0]
	[11.0.1_rev0]
	[10.5.1_rev0]
	[10.4.3_rev1]
	[10.4.3_rev0]
	[10.4.3_rev0]
	[9.0.0_rev3]
	[9.0.0_rev2]
	[9.0.0_rev1]
	[9.0.0_rev0]
	[8.2.3]

	FreeRTOS kernel Readme
	MCUXpresso SDK: FreeRTOS kernel
	Getting started
	Getting help
	To consume FreeRTOS-Kernel
	Consume with CMake
	Consuming stand-alone - Cloning this repository
	Repository structure
	Code Formatting
	Line Endings
	Git History Optimizations
	Spelling and Formatting

	FreeRTOS drivers
	backoffalgorithm
	Readme
	MCUXpresso SDK: backoffAlgorithm Library
	backoffAlgorithm Library
	Reference example
	Building the library
	Building unit tests
	Checkout Unity Submodule
	Platform Prerequisites
	Steps to build Unit Tests
	Contributing

	corehttp
	MCUXpresso SDK: coreHTTP Client Library
	coreHTTP Client Library
	coreHTTP Config File
	Building the Library
	Building Unit Tests
	Platform Prerequisites
	Steps to build Unit Tests

	CBMC
	Reference examples
	Documentation
	Existing Documentation
	Generating Documentation

	Contributing

	corejson
	Readme
	MCUXpresso SDK: coreJSON Library
	coreJSON Library
	Reference example
	Building coreJSON
	Documentation
	Existing documentation
	Generating documentation
	Building unit tests
	Checkout Unity Submodule
	Platform Prerequisites
	Steps to build Unit Tests
	CBMC
	Contributing

	coremqtt
	MCUXpresso SDK: coreMQTT Library
	coreMQTT Client Library
	MQTT Config File
	Sending metrics to AWS IoT
	Upgrading to v2.0.0 and above
	Building the Library
	Building Unit Tests
	Checkout CMock Submodule
	Platform Prerequisites
	Steps to build Unit Tests

	CBMC
	Reference examples
	Documentation
	Existing Documentation
	Generating Documentation

	Contributing

	coremqtt-agent
	Readme
	MCUXpresso SDK: coreMQTT Agent Library
	coreMQTT Agent Library
	Cloning this repository
	coreMQTT Agent Library Configurations
	Porting the coreMQTT Agent Library
	Messaging Interface
	Additional Considerations
	Static Memory
	Subscription Management
	Building the Library
	Building Unit Tests
	Checkout CMock Submodule
	Unit Test Platform Prerequisites
	Steps to build Unit Tests
	CBMC
	Reference examples
	Documentation
	Generating documentation
	Getting help
	Contributing
	License

	corepkcs11
	Readme
	MCUXpresso SDK: corePKCS11 Library
	corePKCS11 Library
	Purpose
	corePKCS11 Configuration
	Build Prerequisites
	Library Usage
	Integration and Unit Tests
	Coverage Measurement and Instrumentation
	Running the Integration and Unit Tests
	CBMC
	Reference examples
	Porting Guide
	Related Example Implementations
	Documentation
	Existing Documentation
	Generating Documentation
	Security
	License

	freertos-plus-tcp
	Readme
	MCUXpresso SDK: FreeRTOS-Plus-TCP Library
	FreeRTOS-Plus-TCP Library
	Getting started
	Getting help
	Upgrading to V4.3.0 and above
	Upgrading to V3.0.0 and V3.1.0
	Generating pre V3.0.0 folder structure for backward compatibility:
	To consume FreeRTOS+TCP
	Consume with CMake
	Consuming stand-alone
	Porting
	Repository structure
	Note
	Kernel sources
	CBMC

