
MCUXpresso SDK Documentation
Release 25.09.00

NXP
Sep 19, 2025

Table of contents

1 Middleware 3
1.1 Boot . 3

1.1.1 MCUXpresso SDK : mcuxsdk-middleware-mcuboot_opensource 3
1.1.2 MCUboot . 4

1.2 Cloud . 5
1.2.1 AWS IoT . 5

1.3 Connectivity . 14
1.3.1 lwIP . 14

1.4 eIQ . 15
1.4.1 eIQ . 15

1.5 File System . 43
1.5.1 FatFs . 43

1.6 Motor Control . 45
1.6.1 FreeMASTER . 45

1.7 Multimedia . 83
1.7.1 Audio Voice . 83

1.8 Wireless . 166
1.8.1 NXP Wireless Framework and Stacks . 166
1.8.2 EdgeFast Bluetooth . 218

2 RTOS 293
2.1 FreeRTOS . 293

2.1.1 FreeRTOS kernel . 293
2.1.2 FreeRTOS drivers . 299
2.1.3 backoffalgorithm . 299
2.1.4 corehttp . 302
2.1.5 corejson . 304
2.1.6 coremqtt . 307
2.1.7 coremqtt-agent . 310
2.1.8 corepkcs11 . 314
2.1.9 freertos-plus-tcp . 317

i

ii

MCUXpresso SDK Documentation, Release 25.09.00

This documentation contains information specific to the evkbmimxrt1170 board.

Table of contents 1

MCUXpresso SDK Documentation, Release 25.09.00

2 Table of contents

Chapter 1

Middleware

1.1 Boot

1.1.1 MCUXpresso SDK : mcuxsdk-middleware-mcuboot_opensource

Overview

This repository is a fork of MCUboot (https://github.com/mcu-tools/mcuboot) for MCUXpresso
SDK delivery and it contains the components officially provided in NXP MCUXpresso SDK. This
repository is part of the MCUXpresso SDK overall delivery which is composed of several sub-
repositories/projects. Navigate to the top/parent repository (mcuxsdk-manifests) for the com-
plete delivery of MCUXpresso SDK.

Documentation

Overall details can be reviewed here: MCUXpresso SDK Online Documentation

Visit MCUboot - Documentation to review details on the contents in this sub-repo.

Setup

Instructions on how to install the MCUXpresso SDK provided from GitHub via west manifest
Getting Started with SDK - Detailed Installation Instructions

Contribution

Contributions are not currently accepted. If the intended contribution is not related to NXP spe-
cific code, consider contributing directly to the upstream MCUboot project. Once this MCUboot
fork is synchronized with the upstream project, such contributions will end up here as well. If
the intended contribution is a bugfix or improvement for NXP porting layer or for code added
or modified by NXP, please open an issue or contact NXP support.

3

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://docs.mcuboot.com/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation

MCUXpresso SDK Documentation, Release 25.09.00

NXP Fork

This fork of MCUboot contains specific modifications and enhancements for NXP MCUXpresso
SDK integration.

See changelog for details.

1.1.2 MCUboot

This is MCUboot version 2.2.0

MCUboot is a secure bootloader for 32-bits microcontrollers. It defines a common infrastructure
for the bootloader and the systemflash layout onmicrocontroller systems, and provides a secure
bootloader that enables easy software upgrade.

MCUboot is not dependent on any specific operating system and hardware and relies on hard-
ware porting layers from the operating system it works with. Currently, MCUboot works with
the following operating systems and SoCs:

• Zephyr

• Apache Mynewt

• Apache NuttX

• RIOT

• Mbed OS

• Espressif

• Cypress/Infineon

RIOT is supported only as a boot target. We will accept any new port contributed by the commu-
nity once it is good enough.

MCUboot How-tos

See the following pages for instructions on using MCUboot with different operating systems and
SoCs:

• Zephyr

• Apache Mynewt

• Apache NuttX

• RIOT

• Mbed OS

• Espressif

• Cypress/Infineon

There are also instructions for the Simulator.

4 Chapter 1. Middleware

https://github.com/mcu-tools/mcuboot/actions?query=workflow:Sim
https://github.com/mcu-tools/mcuboot/actions?query=workflow:Mynewt
https://github.com/mcu-tools/mcuboot/actions?query=workflow:Espressif
https://github.com/mcu-tools/mcuboot/actions?query=workflow:imgtool
https://www.zephyrproject.org/
https://mynewt.apache.org/
https://nuttx.apache.org/
https://www.riot-os.org/
https://os.mbed.com/
https://www.espressif.com/
https://www.cypress.com/

MCUXpresso SDK Documentation, Release 25.09.00

Roadmap

The issues being planned and worked on are tracked using GitHub issues. To give your input,
visit MCUboot GitHub Issues.

Source files

You can find additional documentation on the bootloader in the source files. For more informa-
tion, use the following links:

• boot/bootutil - The core of the bootloader itself.

• boot/boot_serial - Support for serial upgrade within the bootloader itself.

• boot/zephyr - Port of the bootloader to Zephyr.

• boot/mynewt - Bootloader application for Apache Mynewt.

• boot/nuttx - Bootloader application and port of MCUboot interfaces for Apache NuttX.

• boot/mbed - Port of the bootloader to Mbed OS.

• boot/espressif - Bootloader application and MCUboot port for Espressif SoCs.

• boot/cypress - Bootloader application and MCUboot port for Cypress/Infineon SoCs.

• imgtool - A tool to securely sign firmware images for booting by MCUboot.

• sim - A bootloader simulator for testing and regression.

Joining the project

Developers are welcome!

Use the following links to join or see more about the project:

• Our developer mailing list

• Our Discord channel Get your invite

1.2 Cloud

1.2.1 AWS IoT

Device Shadow Library

AWS IoT Device Shadow library The AWS IoT Device Shadow library enables you to store
and retrieve the current state (the “shadow”) of every registered device. The device’s shadow is
a persistent, virtual representation of your device that you can interact with from AWS IoT Core
even if the device is offline. The device state is captured as its “shadow”within a JSON document.
The device can send commands over MQTT to get, update and delete its latest state as well as
receive notifications over MQTT about changes in its state. Each device’s shadow is uniquely
identified by the name of the corresponding “thing”, a representation of a specific device or
logical entity on the AWS Cloud. See Managing Devices with AWS IoT for more information on
IoT “thing”. More details about AWS IoTDevice Shadow can be found in AWS IoT documentation.
This library is distributed under theMIT Open Source License.

Note: Fromv1.1.0 release onwards, you canused named shadow, a feature of theAWS IoTDevice
Shadow service that allows you to create multiple shadows for a single IoT device.

1.2. Cloud 5

https://github.com/mcu-tools/mcuboot/issues
https://github.com/mcu-tools/mcuboot/tree/main/boot/bootutil
https://github.com/mcu-tools/mcuboot/tree/main/boot/boot_serial
https://github.com/mcu-tools/mcuboot/tree/main/boot/zephyr
https://github.com/mcu-tools/mcuboot/tree/main/boot/mynewt
https://github.com/mcu-tools/mcuboot/tree/main/boot/nuttx
https://github.com/mcu-tools/mcuboot/tree/main/boot/mbed
https://github.com/mcu-tools/mcuboot/tree/main/boot/espressif
https://github.com/mcu-tools/mcuboot/tree/main/boot/cypress
https://github.com/mcu-tools/mcuboot/tree/main/scripts/imgtool.py
https://github.com/mcu-tools/mcuboot/tree/main/sim
https://groups.io/g/MCUBoot
https://discord.com/channels/1106321706588577904/1106322802308550716
https://discord.com/invite/5PpXhvda5p
https://www.json.org/
https://docs.aws.amazon.com/iot/latest/developerguide/iot-thing-management.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
https://github.com/aws/Device-Shadow-for-AWS-IoT-embedded-sdk/tree/v1.1.0

MCUXpresso SDK Documentation, Release 25.09.00

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations frommandatory rules in theMISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis from Coverity static analy-
sis, and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.

AWS IoT Device Shadow v1.3.0 source code is part of the FreeRTOS 202210.00 LTS release.
AWS IoT Device Shadow v1.0.2 source code is part of the FreeRTOS 202012.00 LTS release.

AWS IoT Device Shadow Config File The AWS IoT Device Shadow library exposes configura-
tion macros that are required for building the library. A list of all the configurations and their
default values are defined in shadow_config_defaults.h. To provide custom values for the config-
uration macros, a custom config file named shadow_config.h can be provided by the user appli-
cation to the library.

By default, a shadow_config.h custom config is required to build the library. To dis-
able this requirement and build the library with default configuration values, provide
SHADOW_DO_NOT_USE_CUSTOM_CONFIG as a compile time preprocessor macro.

Building the Library The shadowFilePaths.cmake file contains the information of all source
files and the header include path required to build the AWS IoT Device Shadow library.

As mentioned in the previous section, either a custom config file (i.e. shadow_config.h) OR the
SHADOW_DO_NOT_USE_CUSTOM_CONFIG macro needs to be provided to build the AWS
IoT Device Shadow library.

For a CMake example of building the AWS IoT Device Shadow library with the shadowFilePaths.
cmake file, refer to the coverity_analysis library target in test/CMakeLists.txt file.

Building Unit Tests

Checkout CMock Submodule By default, the submodules in this repository are configured
with update=none in .gitmodules to avoid increasing clone time and disk space usage of other
repositories (like amazon-freertos that submodules this repository).

To build unit tests, the submodule dependency of CMock is required. Use the following command
to clone the submodule:

git submodule update --checkout --init --recursive --test/unit-test/CMock

Platform Prerequisites
• For building the library, CMake 3.13.0 or later and a C90 compiler.
• For running unit tests, Ruby 2.0.0 or later is additionally required for the CMock test frame-
work (that we use).

• For running the coverage target, gcov and lcov are additionally required.

Steps to build unit tests
1. Go to the root directory of this repository. (Make sure that the CMock submodule is cloned

as described above.)

2. Run the cmake command: cmake -S test -B build

6 Chapter 1. Middleware

https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://docs.aws.amazon.com/embedded-csdk/202103.00/lib-ref/libraries/aws/device-shadow-for-aws-iot-embedded-sdk/docs/doxygen/output/html/index.html#shadow_memory_requirements
https://github.com/aws/Device-Shadow-for-AWS-IoT-embedded-sdk/tree/v1.3.0
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/aws/Device-Shadow-for-AWS-IoT-embedded-sdk/tree/v1.0.2
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS
https://github.com/aws/amazon-freertos

MCUXpresso SDK Documentation, Release 25.09.00

3. Run this command to build the library and unit tests: make -C build all

4. The generated test executables will be present in build/bin/tests folder.

5. Run cd build && ctest to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Reference examples Please refer to the demos of the AWS IoT Device Shadow library in the
following locations for reference examples on POSIX and FreeRTOS platforms:

Plat-
form

Location Transport Interface Implementation (for
coreMQTT stack)

POSIX AWS IoT Device SDK for Embed-
ded C

POSIX sockets for TCP/IP and OpenSSL for TLS
stack

FreeR-
TOS

FreeRTOS/FreeRTOS FreeRTOS+TCP for TCP/IP and mbedTLS for TLS
stack

FreeR-
TOS

FreeRTOS AWS Reference Inte-
grations

Based on Secure Sockets Abstraction

Documentation

Existing Documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location
AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of IoT Device Shadow librarymay differ across repositories.

Generating documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Contributing See CONTRIBUTING.md for information on contributing.

Device Defender Library

AWS IoT Device Defender Library The Device Defender library enables you to send device
metrics to the AWS IoT Device Defender Service. This library also supports custom metrics, a
feature that helps you monitor operational health metrics that are unique to your fleet or use
case. For example, you can define a new metric to monitor the memory usage or CPU usage

1.2. Cloud 7

https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://github.com/FreeRTOS/coreMQTT
https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/shadow/shadow_demo_main
https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/shadow/shadow_demo_main
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/AWS/Device_Shadow_Windows_Simulator
https://github.com/aws/amazon-freertos/tree/main/demos/device_shadow_for_aws
https://github.com/aws/amazon-freertos/tree/main/demos/device_shadow_for_aws
https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/device-shadow-for-aws-iot-embedded-sdk/docs/doxygen/output/html/index.html
https://aws.amazon.com/iot-device-defender/

MCUXpresso SDK Documentation, Release 25.09.00

on your devices. This library has no dependencies on any additional libraries other than the
standard C library, and therefore, can be used with any MQTT client library. This library is dis-
tributed under theMIT Open Source License.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations frommandatory rules in theMISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone static code analysis using Coverity static analysis,
and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.

AWS IoT Device Defender v1.3.0 source code is part of the FreeRTOS 202210.00 LTS release.
AWS IoT Device Defender v1.1.0 source code is part of the FreeRTOS 202012.01 LTS release.

AWS IoT Device Defender Client Config File The AWS IoT Device Defender Client Library ex-
poses build configuration macros that are required for building the library. A list of all the con-
figurations and their default values are defined in defender_config_defaults.h. To provide custom
values for the configurationmacros, a config file named defender_config.h can be provided by the
application to the library.

By default, a defender_config.h config file is required to build the library. To disable
this requirement and build the library with default configuration values, provide DE-
FENDER_DO_NOT_USE_CUSTOM_CONFIG as a compile time preprocessor macro.

Thus, the Device Defender client library can be built by either:
• Defining a defender_config.h file in the application, and adding it to the include directories
list of the library.

OR
• Defining theDEFENDER_DO_NOT_USE_CUSTOM_CONFIG preprocessormacro for the
library build.

Building the Library The defenderFilePaths.cmake file contains the information of all source
files and the header include paths required to build the Device Defender client library.

As mentioned in the previous section, either a custom config file (i.e. defender_config.h) or DE-
FENDER_DO_NOT_USE_CUSTOM_CONFIG macro needs to be provided to build the Device
Defender client library.

For a CMake example of building the Device Defender client library with the defenderFilePaths.
cmake file, refer to the coverity_analysis library target in test/CMakeLists.txt file.

Building Unit Tests

Platform Prerequisites
• For running unit tests:

– C90 compiler like gcc.

– CMake 3.13.0 or later.
– Ruby 2.0.0 or later is additionally required for the CMock test framework (that we
use).

• For running the coverage target, gcov and lcov are additionally required.

8 Chapter 1. Middleware

https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/aws/Device-Defender-for-AWS-IoT-embedded-sdk/tree/v1.3.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/aws/Device-Defender-for-AWS-IoT-embedded-sdk/tree/v1.1.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.01-LTS

MCUXpresso SDK Documentation, Release 25.09.00

Steps to build Unit Tests
1. Go to the root directory of this repository.

2. Run the cmake command: cmake -S test -B build -DBUILD_CLONE_SUBMODULES=ON.

3. Run this command to build the library and unit tests: make -C build all.

4. The generated test executables will be present in build/bin/tests folder.

5. Run cd build && ctest to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Reference examples The AWS IoT Embedded C-SDK repository contains a demo showing the
use of AWS IoT Device Defender Client Library here on a POSIX platform.

Documentation

Existing documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location
AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of the AWS IoT Device Defender library may differ across
repositories.

Generating documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Contributing See CONTRIBUTING.md for information on contributing.

Jobs Library

README

1.2. Cloud 9

https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/defender/defender_demo_json
https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/device-defender-for-aws-iot-embedded-sdk/docs/doxygen/output/html/index.html

MCUXpresso SDK Documentation, Release 25.09.00

AWS IoT Jobs library The AWS IoT Jobs library helps you notify connected IoT devices of a
pending Job. A Job can be used to manage your fleet of devices, update firmware and secu-
rity certificates on your devices, or perform administrative tasks such as restarting devices and
performing diagnostics. It interacts with the AWS IoT Jobs service using MQTT, a lightweight
publish-subscribe protocol. This library provides a convenience API to compose and recognize
the MQTT topic strings used by the Jobs service. The library is written in C compliant with ISO
C90 and MISRA C:2012, and is distributed under theMIT Open Source License.

This library has gone through code quality checks including verification that no function has
a GNU Complexity score over 8, and checks against deviations from mandatory rules in the
MISRA coding standard . Deviations from the MISRA C:2012 guidelines are documented under
MISRA Deviations. This library has also undergone both static code analysis from Coverity, and
validation of memory safety with the CBMC bounded model checker.

See memory requirements for this library here.

AWS IoT Jobs v1.3.0 source code is part of the FreeRTOS 202210.00 LTS release.
AWS IoT Jobs v1.1.0 source code is part of the FreeRTOS 202012.01 LTS release.

Building the Jobs library A compiler that supportsC90 or later such as gcc is required to build
the library.

Given an application in a file named example.c, gcc can be used like so:

gcc -I source/include example.c source/jobs.c -o example

gcc can also produce an object file to be linked later:

gcc -I source/include -c source/jobs.c

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Reference example The AWS IoT Device SDK for Embedded C repository contains a demo us-
ing the jobs library on a POSIX platform. https://github.com/aws/aws-iot-device-sdk-embedded-
C/tree/main/demos/jobs/jobs_demo_mosquitto

Documentation

Existing Documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location
AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of the AWS IoT Jobs library may differ across repositories.

10 Chapter 1. Middleware

https://freertos.org/jobs/jobs-terminology.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/aws/Jobs-for-AWS-IoT-embedded-sdk/tree/v1.3.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/aws/Jobs-for-AWS-IoT-embedded-sdk/tree/v1.1.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.01-LTS
https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/jobs-for-aws-iot-embedded-sdk/docs/doxygen/output/html/index.html

MCUXpresso SDK Documentation, Release 25.09.00

Generating Documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Building unit tests

Checkout Unity Submodule By default, the submodules in this repository are configured with
update=none in .gitmodules to avoid increasing clone time and disk space usage of other reposi-
tories that submodule this repository.

To build unit tests, the submodule dependency of Unity is required. Use the following command
to clone the submodule:

git submodule update --checkout --init --recursive --test/unit-test/Unity

Platform Prerequisites
• For running unit tests

– C90 compiler like gcc

– CMake 3.13.0 or later

– Ruby 2.0.0 or later is additionally required for the Unity test framework (that we use).

• For running the coverage target, lcov is additionally required.

Steps to build Unit Tests
1. Go to the root directory of this repository. (Make sure that the Unity submodule is cloned

as described above.)

2. Create build directory: mkdir build && cd build

3. Run cmake while inside build directory: cmake -S ../test

4. Run this command to build the library and unit tests: make all

5. The generated test executables will be present in build/bin/tests folder.

6. Run ctest to execute all tests and view the test run summary.

Contributing See CONTRIBUTING.md for information on contributing.

Over-the-air Update Library

AWS IoT Over-the-air Update Library TheOTA library enables you tomanage the notification
of a newly available update, download the update, and perform cryptographic verification of
the firmware update. Using the library, you can logically separate firmware updates from the
application running on your devices. The OTA library can share a network connection with the
application, saving memory in resource-constrained devices. In addition, the OTA library lets
you define application-specific logic for testing, committing, or rolling back a firmware update.
The library supports different application protocols like Message Queuing Telemetry Transport
(MQTT) andHypertext Transfer Protocol (HTTP), and provides various configuration options you
can fine tune depending on network type and conditions. This library is distributed under the
MIT Open Source License.

1.2. Cloud 11

MCUXpresso SDK Documentation, Release 25.09.00

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8. This library has also undergone static code analysis from Coverity
static analysis.

See memory requirements for this library here.

AWS IoT Over-the-air Update Library v3.4.0 source code is part of the FreeRTOS 202210.00
LTS release.
AWS IoT Over-the-air Update Library v3.3.0 source code is part of the FreeRTOS 202012.01
LTS release.

AWS IoT Over-the-air Updates Config File The AWS IoT Over-the-air Updates library exposes
configuration macros that are required for building the library. A list of all the configurations
and their default values are defined in ota_config_defaults.h. To provide custom values for the
configuration macros, a custom config file named ota_config.h can be provided by the user ap-
plication to the library.

By default, a ota_config.h custom config is required to build the library. To dis-
able this requirement and build the library with default configuration values, provide
OTA_DO_NOT_USE_CUSTOM_CONFIG as a compile time preprocessor macro.

Building the Library The otaFilePaths.cmake file contains the information of all source files
and the header include paths required to build the AWS IoT Over-the-air Updates library.

As mentioned in the previous section, either a custom config file (i.e. ota_config.h) OR the
OTA_DO_NOT_USE_CUSTOM_CONFIG macro needs to be provided to build the AWS IoT
Over-the-air Updates library.

For a CMake example of building the AWS IoT Over-the-air Updates library with the otaFilePaths.
cmake file, refer to the coverity_analysis library target in the test/CMakeLists.txt file.

Building Unit Tests

Checkout CMock Submodule By default, the submodules in this repository are configured
with update=none in .gitmodules to avoid increasing clone time and disk space usage of other
repositories (like AWS IoT Device SDK for Embedded C that submodules this repository).

To build unit tests, the submodule dependency of CMock is required. Use the following command
to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/CMock

Platform Prerequisites
• For building the library, CMake 3.13.0 or later and a C90 compiler.
• For running unit tests, Ruby 2.0.0 or later is additionally required for the CMock test frame-
work (that we use).

• For running the coverage target, gcov and lcov are additionally required.

Steps to build unit tests
1. Go to the root directory of this repository. (Make sure that the CMock submodule is cloned

as described above.)

2. Run the cmake command: cmake -S test -B build

12 Chapter 1. Middleware

https://www.gnu.org/software/complexity/manual/complexity.html
https://scan.coverity.com/
https://scan.coverity.com/
https://github.com/aws/ota-for-aws-iot-embedded-sdk/tree/v3.4.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/aws/ota-for-aws-iot-embedded-sdk/tree/v3.3.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.01-LTS
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.01-LTS
https://github.com/aws/aws-iot-device-sdk-embedded-C

MCUXpresso SDK Documentation, Release 25.09.00

3. Run this command to build the library and unit tests: make -C build all

4. The generated test executables will be present in build/bin/tests folder.

5. Run cd build && ctest to execute all tests and view the test run summary.

Migration Guide

How to migrate from v2.0.0 (Release Candidate) to v3.4.0 The following table lists equivalent
API function signatures in v2.0.0 (Release Candidate) and v3.4.0 declared in ota.h

v2.0.0 (Release
Candidate)

v3.4.0 Notes

OtaState_t
OTA_Shutdown(
uint32_t tick-
sToWait);

OtaState_t
OTA_Shutdown(
uint32_t ticksToWait,
uint8_t unsubscribeFlag
);

unsubscribeFlag indicates if unsubscribe opera-
tions should be performed from the job topics
when shutdown is called. Set this as 1 to unsub-
scribe, 0 otherwise.

How to migrate from version 1.0.0 to version 3.4.0 for OTA applications Refer to OTA Mi-
gration document for the summary of updates to the API. Migration document for OTA PAL also
provides a summary of updates required for upgrading the OTA-PAL to work with v3.4.0 of the
library.

Porting In order to support AWS IoT Over-the-air Updates on your device, it is necessary to
provide the following components:

1. Port for the OTA Portable Abstraction Layer (PAL).

2. OS Interface

3. MQTT Interface

For enabling data transfer over HTTP dataplane the following component should also be pro-
vided:

1. HTTP Interface

NOTE When using OTA over HTTP dataplane, MQTT is required for control plane operations and
should also be provided.

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Reference examples Please refer to the demos of the AWS IoT Over-the-air Updates library in
the following location for reference examples on POSIX and FreeRTOS:

Platform Location
POSIX AWS IoT Device SDK for Embedded C
FreeRTOS FreeRTOS/FreeRTOS
FreeRTOS FreeRTOS AWS Reference Integrations

1.2. Cloud 13

https://docs.aws.amazon.com/freertos/latest/portingguide/porting-migration-ota.html
https://docs.aws.amazon.com/freertos/latest/portingguide/porting-migration-ota.html
https://docs.aws.amazon.com/freertos/latest/portingguide/porting-migration-ota-pal.html
https://docs.aws.amazon.com/embedded-csdk/202103.00/lib-ref/libraries/aws/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/ota_porting.html#ota_porting_pal
https://docs.aws.amazon.com/embedded-csdk/202103.00/lib-ref/libraries/aws/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/ota_porting.html#ota_porting_os
https://docs.aws.amazon.com/embedded-csdk/202103.00/lib-ref/libraries/aws/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/ota_porting.html#ota_porting_mqtt
https://docs.aws.amazon.com/embedded-csdk/202103.00/lib-ref/libraries/aws/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/ota_porting.html#ota_porting_http
https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/ota
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/AWS/Ota_Windows_Simulator
https://github.com/aws/amazon-freertos/tree/main/demos/ota

MCUXpresso SDK Documentation, Release 25.09.00

Documentation

Existing Documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location
AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of coreMQTT may differ across repositories.

Generating documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Contributing See CONTRIBUTING.md for information on contributing.

1.3 Connectivity

1.3.1 lwIP

This is the NXP fork of the lwIP networking stack.
• For details about changes and additions made by NXP, see CHANGELOG.

• For details about the NXP porting layer, see The NXP lwIP Port.

• For usage and API of lwIP, use official documentation at http://www.nongnu.org/lwip/.

The NXP lwIP Port

Below is description of possible settings of the port layer and an overview of a few helper func-
tions.

The best place for redefinition of any mentioned macro is lwipopts.h.

The declaration of every mentioned function is in ethernetif.h. Please check the doxygen com-
ments of those functions before.

Link state Physical link state (up/down) and its speed and duplex must be read out from PHY
over MDIO bus. Especially link information is useful for lwIP stack so it can for example send
DHCP discovery immediately when a link becomes up.

To simplify this port layer offers a function ethernetif_probe_link() which reads those data from
PHY and forwards them into lwIP stack.

In almost all examples this function is called every ETH_LINK_POLLING_INTERVAL_MS
(1500ms) by a function probe_link_cyclic().

By setting ETH_LINK_POLLING_INTERVAL_MS to 0 polling will be disabled. On FreeRTOS,
probe_link_cyclic() will be then called on an interrupt generated by PHY. GPIO port and pin for

14 Chapter 1. Middleware

https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/index.html
https://savannah.nongnu.org/projects/lwip/
http://www.nongnu.org/lwip/

MCUXpresso SDK Documentation, Release 25.09.00

the interrupt line must be set in the ethernetifConfig struct passed to ethernetif_init(). On bare
metal interrupts are not supported right now.

Rx task To improve the reaction time of the app, reception of packets is done in a dedicated
task. The rx task stack size can be set by ETH_RX_TASK_STACK_SIZE macro, its priority by
ETH_RX_TASK_PRIO.

If you want to save memory you can set reception to be done in an interrupt by setting
ETH_DO_RX_IN_SEPARATE_TASKmacro to 0.

Disabling Rx interrupt when out of buffers If ETH_DISABLE_RX_INT_WHEN_OUT_OF_BUFFERS
is set to 1, then when the port gets out of Rx buffers, Rx enet interrupt will be disabled for a
particular controller. Everytime Rx buffer is freed, Rx interrupt will be enabled.

This prevents your app from never getting out of Rx interrupt when the network is flooded with
traffic.

ETH_DISABLE_RX_INT_WHEN_OUT_OF_BUFFERS is by default turned on, on FreeRTOS
and off on bare metal.

Limit the number of packets read out from the driver at once on bare metal. You may
define macro ETH_MAX_RX_PKTS_AT_ONCE to limit the number of received packets read
out from the driver at once.

In case of heavy Rx traffic, lowering this number improves the realtime behaviour of an app.
Increasing improves Rx throughput.

Setting it to value < 1 or not defining means “no limit”.

Helper functions If your application needs to wait for the link to become up you can use one
of the following functions:

• ethernetif_wait_linkup()- Blocks until the link on the passed netif is not up.

• ethernetif_wait_linkup_array() - Blocks until the link on at least one netif from the passed
list of netifs becomes up.

If your app needs to wait for the IPv4 address on a particular netif to become different than
“ANY” address (255.255.255.255) function ethernetif_wait_ipv4_valid() does this.

1.4 eIQ

1.4.1 eIQ

eIQ TensorFlow Lite for Micro Library User Guide

• Overview

• TensorFlow Lite for Microcontrollers

• Build Status

– Official Builds

– Community Supported TFLM Examples

– Community Supported Kernels and Unit Tests

• Contributing

1.4. eIQ 15

MCUXpresso SDK Documentation, Release 25.09.00

• Getting Help

• Additional Documentation

• RFCs

Overview TensorFlow Lite is an open source software library for running machine learning
models on mobile and embedded devices. For more information, see www.tensorflow.org/lite.

For memory constrained devices, the library contains TensorFlow Lite for Microcontrollers. For
more information, see www.tensorflow.org/lite/microcontrollers.

The MCUXpresso Software Development Kit (MCUXpresso SDK) provides a comprehensive soft-
ware package with a pre-integrated TensorFlow Lite for Microcontrollers based on version 25-
04-08 (from the 8th of April 2025 with commit). This document describes the steps required to
download and start using the library. Additionally, the document describes the steps required
to create an application for running pre-trained models.

Note: The document also assumes knowledge of machine learning frameworks for model train-
ing.

TensorFlow Lite for Microcontrollers TensorFlow Lite for Microcontrollers is a port of Ten-
sorFlow Lite designed to run machine learning models on DSPs, microcontrollers and other de-
vices with limited memory.

Additional Links:

• Tensorflow github repository

• TFLM at tensorflow.org

Build Status
• GitHub Status

Official Builds
Build Type Status

CI (Linux)

Code Sync

Community Supported TFLM Examples This table captures platforms that TFLM has been
ported to. Please see New Platform Support for additional documentation.

16 Chapter 1. Middleware

http://www.tensorflow.org/lite
https://github.com/tensorflow/tflite-micro/commit/bc68d362d6f3ac93ce11d8712974d05b1d6a8305
https://github.com/tensorflow/tensorflow/
https://www.tensorflow.org/lite/microcontrollers
https://www.githubstatus.com/
https://github.com/tensorflow/tflite-micro/actions/workflows/run_ci.yml
https://github.com/tensorflow/tflite-micro/actions/workflows/sync.yml

MCUXpresso SDK Documentation, Release 25.09.00

Platform Status

Arduino
Coral Dev Board Micro TFLM + EdgeTPU Examples for Coral Dev Board Micro

Espressif Systems Dev
Boards
Renesas Boards TFLM Examples for Renesas Boards
Silicon Labs Dev Kits TFLM Examples for Silicon Labs Dev Kits

Sparkfun Edge
Texas Instruments Dev
Boards

Community Supported Kernels and Unit Tests This is a list of targets that have optimized
kernel implementations and/or run the TFLM unit tests using software emulation or instruction
set simulators.

Build Type Status

Cortex-M

Hexagon

RISC-V

Xtensa

Generate Integration Test

Contributing See our contribution documentation.

Getting Help A Github issue should be the primary method of getting in touch with the Ten-
sorFlow Lite Micro (TFLM) team.

The following resources may also be useful:

1. SIG Micro email group and monthly meetings.

2. SIG Micro gitter chat room.

3. For questions that are not specific to TFLM, please consult the broader TensorFlow project,
e.g.:

• Create a topic on the TensorFlow Discourse forum

• Send an email to the TensorFlow Lite mailing list

• Create a TensorFlow issue

• Create a Model Optimization Toolkit issue

Additional Documentation
• Continuous Integration

1.4. eIQ 17

https://github.com/tensorflow/tflite-micro-arduino-examples/actions/workflows/ci.yml
https://github.com/antmicro/tensorflow-arduino-examples/actions/workflows/test_examples.yml
https://coral.ai/products/dev-board-micro
https://github.com/google-coral/coralmicro
https://github.com/espressif/tflite-micro-esp-examples/actions/workflows/ci.yml
https://github.com/renesas/tflite-micro-renesas
https://github.com/SiliconLabs/tflite-micro-efr32-examples
https://github.com/advaitjain/tflite-micro-sparkfun-edge-examples/actions/workflows/ci.yml
https://github.com/tensorflow/tflite-micro/actions/workflows/cortex_m.yml
https://github.com/tensorflow/tflite-micro/actions/workflows/run_hexagon.yml
https://github.com/tensorflow/tflite-micro/actions/workflows/riscv.yml
https://github.com/tensorflow/tflite-micro/actions/workflows/run_xtensa.yml
https://github.com/tensorflow/tflite-micro/actions/workflows/generate_integration_tests.yml
https://github.com/tensorflow/tflite-micro/issues/new/choose
https://groups.google.com/a/tensorflow.org/g/micro
http://doc/1YHq9rmhrOUdcZnrEnVCWvd87s2wQbq4z17HbeRl-DBc
https://gitter.im/tensorflow/sig-micro
https://discuss.tensorflow.org
https://groups.google.com/a/tensorflow.org/g/tflite
https://github.com/tensorflow/tensorflow/issues/new/choose
https://github.com/tensorflow/model-optimization

MCUXpresso SDK Documentation, Release 25.09.00

• Benchmarks

• Profiling

• Memory Management

• Logging

• Porting Reference Kernels from TfLite to TFLM

• Optimized Kernel Implementations

• New Platform Support

• Platform/IP support

– Arm IP support

• Software Emulation with Renode

• Software Emulation with QEMU

• Python Dev Guide

• Automatically Generated Files

• Python Interpreter Guide

RFCs
1. Pre-allocated tensors

2. TensorFlow Lite for Microcontrollers Port of 16x8 Quantized Operators

Deployment The eIQ TensorFlow Lite for Microcontrollers library is part of the eIQ machine
learning software package, which is an optional middleware component of MCUXpresso SDK.
The eIQ component is integrated into the MCUXpresso SDK Builder delivery system available on
mcuxpresso.nxp.com. To include eIQ machine learning into the MCUXpresso SDK package, the
eIQ middleware component is selected in the software component selector on the SDK Builder
page when building a new package. See Figure 1.

18 Chapter 1. Middleware

https://mcuxpresso.nxp.com

MCUXpresso SDK Documentation, Release 25.09.00

|

|

Once the MCUXpresso SDK package is downloaded, it can be extracted on a local machine or
imported into the MCUXpresso IDE. For more information on the MCUXpresso SDK folder struc-
ture, see the Getting Started with MCUXpresso SDK User’s Guide (document: MCUXSDKGSUG).
The package directory structure is similar to Figure 2. The eIQ TensorFlowLite library directories
are highlighted in red.

1.4. eIQ 19

MCUXpresso SDK Documentation, Release 25.09.00

|

20 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

| |

1.4. eIQ 21

MCUXpresso SDK Documentation, Release 25.09.00

|

The boards directory contains example application projects for supported toolchains. For the
list of supported toolchains, see the MCUXpresso SDK Release Notes. The middleware directory
contains the eIQ library source code and example application source code and data.

Example applications The eIQ TensorFlowLite library is providedwith a set of example appli-
cations. For details, see Table 1. The applications demonstrate the usage of the library in several
use cases.

Name Description Availability
tflm_cifar10CIFAR-10 classification of 32 × 32 RGB pixel im-

ages into 10 categories using a small Convolu-
tional Neural Network (CNN).

MCX-N947-EVK (no camera and
display support) MCX-N947-
FRDM (no camera and display
support) MCX-N547-EVK (no
camera and display support)
MIMXRT700-EVK (no camera and
display support)

tflm_kwsKeyword spotting application using a neural net-
work for word detection in pre-processed audio
input.

MCX-N947-EVK (no audio sup-
port) MCX-N947-FRDM (no audio
support) MCX-N547-EVK (no au-
dio support)MIMXRT700-EVK (no
audio support)

tflm_label_imageImage recognition application using a MobileNet
model architecture to classify 128 × 128 RGB pixel
images into 1000 categorieswith eIQNeutronNPU.

MCX-N947-EVK (no camera and
display support) MCX-N947-
FRDM (no camera and display
support) MCX-N547-EVK (no
camera and display support)
MIMXRT700-EVK (no camera and
display support)

tflm_label_image_ext_memImage recognition application using a MobileNet
model architecture to classify 224 × 224 RGB pixel
images into 1000 categorieswith eIQNeutronNPU.
In this example, it demonstrates how to fetch
model’s weight from external memory(xSPI flash)
to internal SRAM for Neutron NPU execution.

MIMXRT700-EVK (no camera and
display support)

tflm_cifar10_hifi4CIFAR-10 classification of 32 × 32 RGBpixel images
into 10 categories using a small Convolutional
Neural Network. In this example,M33 core0 starts
HiFi4 DSP core with HiFi4 DSP image. HiFi4 DSP
does the inference for CIFAR-10 classification.

MIMXRT700-EVK (no camera and
display support)

tflm_label_image_hifi4Image recognition application using a MobileNet
model architecture to classify 128 × 128 RGB pixel
images into 1000 categories. In this example, M33
core0 starts HiFi4 DSP core with HiFi4 DSP image.
HiFi4 DSP does the inference for image recogni-
tion application.

MIMXRT700-EVK (no camera and
display support)

For details on how to build and run the example applications with supported toolchains, see
Getting Started with MCUXpresso SDK User’s Guide (document: MCUXSDKGSUG). When using
MCUXpresso IDE, the example applications can be imported through the SDK Import Wizard as
shown in Figure 1.

22 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

|

1.4. eIQ 23

MCUXpresso SDK Documentation, Release 25.09.00

|

After building the example application and downloading it to the target, the execution stops in
the main function. When the execution resumes, an output message displays on the connected
terminal. For example, Figure 2 shows the output of the tflm_label_image_cm7``tflm_label_image
example application printed to the MCUXpresso IDE Console window when semihosting debug
console is selected in the SDK Import Wizard.

|

24 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

|

Model Conversion to TensorFlow Lite Format The eIQ® Toolkit provides a comprehensive
end-to-end environment for machine learning (ML) model development and deployment. De-
signed for NXP EdgeVerse processors, the toolkit includes both an intuitive GUI-based tool (eIQ
Portal) and command-line utilities for advanced workflows.

One key component, the eIQ ModelTool, enables seamless conversion of ML models from pop-
ular formats such as TensorFlow, PyTorch, and ONNX into the TensorFlow Lite (TFLite) format.
These converted models can be further optimized and deployed on NXP platforms for inference
acceleration.

Model Conversion for NXP eIQ Neutron NPU To leverage the NXP eIQ Neutron NPU for hard-
ware acceleration, models must undergo additional processing using the Neutron Converter
Tool. This tool transforms standard quantized TensorFlow Lite models into a format optimized
for execution on the Neutron NPU.

The key steps involved in this process are as follows:

1. Convert to Quantized TensorFlow Lite Model: Ensure the model is in a quantized TFLite
format before running the Neutron Converter.

2. Run the Neutron Converter Tool: The Neutron Converter analyzes the TFLite model, iden-
tifies supported operators, and replaces them with specialized NPU-compatible nodes. Un-
supported operations are executed using fallback mechanisms, such as:

• CMSIS-NN for optimized CPU execution

• Reference Operators for unsupported cases

3. Execute onTarget Platform: The convertedmodel runs efficiently on theNeutronNPUusing
a custom TFLite Micro-operator implementation.

Example: Converting a Quantized TensorFlow Lite Model for Neutron NPU The following
is a sample command-line invocation for the Neutron Converter tool:

neutron-converter --input mobilenet_v1_0.25_128_quant.tflite \
--output mobilenet_v1_0.25_128_quant_npu.tflite \
--target imxrt700 \
--dump-header-file-output

Note: This will convert the source tflite model to neutron compatable model, meanwhile, it will
dump the model as one headfile name as “mobilenet_v1_0.25_128_quant_npu.h”.

Run and debug eIQ HiFi4 and HiFi1 DSP examples using Xplorer IDE This section lists the
steps to Prepare CM33 Core for the examples and Prepare DSP core for the examples.

1.4. eIQ 25

MCUXpresso SDK Documentation, Release 25.09.00

Prepare CM33 Core for the examples
1. The tflm_cifar10_hifi4 and tflm_label_image_hifi4 examples consist of two separate applica-

tions that run on the CM33 core0 and DSP core. The CM33 core0 application initializes the
DSP core and starts it.

To debug the application:

1. Set up and execute the CM33 application using an environment of your choice.

2. Build and execute the examples located in:

<SDK_ROOT>/boards/mimxrt700evk/eiq_examples/tflm_cifar10_hifi4/cm33/

<SDK_ROOT>/ boards/mimxrt700evk/eiq_examples/tflm_label_image_hifi4/cm33/

2. The tflm_cifar10_hifi1 example consists of three separate applications that run on the CM33
core0, CM33 core1, and DSP core. The CM33 core0 application initializes the CM33 core1
core and starts it. The CM33 core1 application initializes the DSP core and starts it.

To debug the application:

1. Set up and build the CM33 core1 application using an environment of your choice.

2. Set up and execute the CM33 core0 application using an environment of your choice.

3. Build and execute the example located in:

<SDK_ROOT>/boards/mimxrt700evk/eiq_examples/tflm_cifar10_hifi1/cm33_core1/

<SDK_ROOT>/boards/mimxrt700evk/eiq_examples/tflm_cifar10_hifi1/cm33_core0/

Note: ARMGCC toolchain and IAR Embedded Workbench are both supported. To en-
able compatibility with RT700, IAR EmbeddedWorkbenchmay require a patch. There
are default DSP core images in the SDK. For details on how to build the examples, refer
to Prepare DSP core for the examples.

Parent topic:Run and debug eIQ HiFi4 and HiFi1 DSP examples using Xplorer IDE

Prepare DSP core for the examples The projects for different supported toolchains are built.
The “xcc” project builds on the command line and the “xtensa” directory is an Xplorer IDE
project.

To run the tflm_cifar10_hifi4 example, import the SDK sources into the Xplorer IDE.

1. Select File > Import > General > Existing Projects into Workspace.

26 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

2. Click Next.
3. Select the SDK directory/boards/mimxrt700evk/eiq_examples/tflm_cifar10_hifi4/hifi4/xtensa

as the root directory.

1.4. eIQ 27

MCUXpresso SDK Documentation, Release 25.09.00

4. Click Select Folder.
5. Leave all the other options check boxes blank.

28 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Once imported, the tflm_cifar10_hifi4 example appears in the Project Explorer.
6. To make a build selection for the project and hardware target configuration, use the drop-

down buttons on the menu bar.

1.4. eIQ 29

MCUXpresso SDK Documentation, Release 25.09.00

7. To build the DSP application image for the CM33 application, select the Release target op-
tion in the Xplorer IDE as below.

8. Three DSP binaries are generated and are loaded into different TCM or SRAM address seg-
ments:

• <SDK_ROOT/>/boards/mimxrt700evk/eiq_examples/tflm_cifar10_hifi4/hifi4/binary/
dsp_data_release.bin

• <SDK_ROOT/>/boards/mimxrt700evk/eiq_examples/tflm_cifar10_hifi4/hifi4/binary/
dsp_literal_release.bin

• <SDK_ROOT/>/boards/mimxrt700evk/eiq_examples/tflm_cifar10_hifi4/hifi4/binary/
dsp_text_release.bin

Parent topic:Run and debug eIQ HiFi4 and HiFi1 DSP examples using Xplorer IDE

Running an inference After converting the model to the TensorFlow Lite format, it is con-
verted into a C language array to include it in the application source code. The xxd utility
can be used for this purpose (distributed with the Vim editor for many platforms on https:
//www.vim.org/) as shown in Converting a model to a C language header file. The utility con-
verts a TensorFlow Lite model into a C header file with an array definition containing the binary
image of the model and a variable containing the data size.

Converting a model to a C language header file {#EXAMPLE_4 .section}
xxd -i mobilenet_v1_0.25_128_quant.tflite > mobilenet_v1_0.25_128_quant_model.h

30 Chapter 1. Middleware

https://www.vim.org/
https://www.vim.org/

MCUXpresso SDK Documentation, Release 25.09.00

After the header file is generated, the type of the array is changed from unsigned char to const
char to match the library API input parameters and the default array name can be changed to a
more convenient one. The user must align the buffer to at least 64-bit boundary (the size of a
double-precision floating-point number) to avoidmisalignedmemory access. The alignment can
be achieved by using the__ALIGNED(16)macro from the cmsis_compiler.h header file (available
in the MCUXpresso SDK) in the array declaration before the data assignment.

The easiest way to create an application with the proper configuration is to copy and modify an
existing example application. To learn where to find the example applications and how to build
them, see the Example applications.

Running an inference using TensorFlow Lite for Microcontrollers involves several steps (shown
for quantized model with signed 8-bit values as input and 32-floating point values as output):

1. Include the necessary eIQ TensorFlow Lite Micro library header files and the converted
model.

Including header files

#include ”tensorflow/lite/micro/micro_error_reporter.h”
#include ”tensorflow/lite/micro/micro_interpreter.h”
#include ”tensorflow/lite/micro/all_ops_resolver.h”
#include ”mobilenet_v1_0.25_128_quant_model.h”

2. Allocate a static memory buffer for input and output tensors and intermediate arrays.
Load the FlatBuffer model image (assuming themobilenet_v1_0.25_128_quant_model.h file
generated in Converting a model to a C language header file defines an array named mo-
bilenet_model and a size variable named mobilenet_model_len), build the interpreter ob-
ject and allocate memory for tensors.

Loading the FlatBuffer model

constexpr int kTensorArenaSize = 1024 * 1024;
static uint8_t tensorArena[kTensorArenaSize];
const tflite::Model* model = tflite::GetModel(mobilenet_model);
// TODO: Report an error if model->version() != TFLITE_SCHEMA_VERSION
static tflite::AllOpsResolver microOpResolver;
static tflite::MicroErrorReporter microErrorReporter;
static tflite::MicroInterpreter interpreter(model,
microOpResolver, tensorArena, kTensorArenaSize,
microErrorReporter);

interpreter->AllocateTensors();
// TODO: Check return value for kTfLiteOk

3. Fillhe input data into the input tensor. For example, if a speech recognition model, image
data from a camera or audio data from a microphone. The dimensions of the input data
must be the same as the dimensions of the input tensor. These dimensions were specified
when the model was created.

Fill-in input data

// Get access to the input tensor data
TfLiteTensor* inputTensor = interpreter->input(0);
// Copy the input tensor data from an application buffer
for (int i = 0; i < inputTensor->bytes; i++)
inputTensor->data.int8[i] = input_data[i];

4. Run the inference and read the output data from the output tensor. The dimensions of the
output data must be the same as the dimensions of the output tensor. These dimensions
were specified when the model was created.

Running inference and reading output data

1.4. eIQ 31

MCUXpresso SDK Documentation, Release 25.09.00

// Run the inference
interpreter->Invoke();
// TODO: Check the return value for TfLiteOk
// Get access to the output tensor data
TfLiteTensor* outputTensor = interpreter->output(0);
// Copy the output tensor data to an application buffer
for (int i = 0; i < outputTensor->bytes / sizeof(float32); i++)
output_data[i] = outputTensor->data.f[i];

NPU inference {#npu_infer .section} Running an inference using a model converted for the
NPU requires registration of a custom operator implementation. First the header file with the
custom operator implementation interface must be included.

#include ”tensorflow/lite/micro/kernels/micro_ops.h”
#include ”tensorflow/lite/micro/all_ops_resolver.h”
#include ”tensorflow/lite/micro/kernels/neutron/neutron.h”

Next, the specialized implemetation has to be registered in the operator resolver object.

static tflite::AllOpsResolver microOpResolver;
microOpResolver.AddCustom(tflite::GetString_NEUTRON_GRAPH(),

tflite::Register_NEUTRON_GRAPH());

The specialized NPU nodes from the converted model are the executed using this newly regis-
tered implementation.

Adjusting the tensor arena size {#adjust_arena .section} The tensor arena is a staticmemory
buffer used for intermediate tensor and scratch buffer allocation. The size of the tensor arena
buffer is set by the kTensorArenaSize constant in the example above. The value depends on the
tensor sizes used in the model and on the hardware-specific implementations of kernels, which
may require various sizes of scratch buffers for intermediate computations. The value can be
determined experimentally by running an inference with a small value, so the library fails with
an insufficient tensor memory error and prints the missing amount. Continue adjusting the size
until the error stops being reported. If the target hardware changes, readjust the value.

Code size optimization Typically, models do not use all the operators that are available in
TensorFlow Lite. However, because of the default operator registration mechanism used in the
library, the toolchain linker is not able to remove the code of unused operators. In order to reduce
code size, it is possible to only register the specific operators used by a model. To determine
which operators are used by a particular model, a model visualizer tool like Netron can be used.
Then amutable operator resolver object can be created that only registers the operators that are
used by the model being inferenced.

Use the tflite::MicroMutableOpResolver object template, which is later passed to the
tflite::MicroInterpreter object. Depending on the list of used operators, the result should be
similar to the following code snippet. Make sure to update the MicroMutableOpResolver
template parameter to reflect the number of operators that need to be registered.

Register only used operators in TensorFlow Lite Micro {#SECTION_SS1_DJQ_QPB .section}
#include ”tensorflow/lite/micro/kernels/micro_ops.h”

#include ”tensorflow/lite/micro/micro_mutable_op_resolver.h”
tflite::MicroMutableOpResolver<6> microOpResolver;
microOpResolver.AddAveragePool2D();
microOpResolver.AddConv2D();
microOpResolver.AddDepthwiseConv2D();

(continues on next page)

32 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
microOpResolver.AddDequantize();
microOpResolver.AddReshape();
microOpResolver.AddSoftmax();
static tflite::MicroInterpreter interpreter(
model, microOpResolver, tensorArena, kTensorArenaSize, microErrorReporter);

Note about the source code in the document Example code shown in this document has the
following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

1. Redistributions of source codemust retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or othermaterials provided
with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUTNOTLIMITEDTO, PROCUREMENTOF SUBSTITUTEGOODSOR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORYOF LIABILITY,WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDINGNEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

eIQ ExecuTorch Library User Guide

Overview ExecuTorch is an end-to-end solution for enabling on-device inference capabilities
across mobile and edge devices including wearables, embedded devices and microcontrollers.
It is part of the PyTorch Edge ecosystem and enables efficient deployment of PyTorch models to
edge devices. For more information, see https://pytorch.org/executorch-overview.

The MCUXpresso Software Development Kit (MCUXpresso SDK) provides a comprehensive soft-
ware package with a pre-integrated ExecuTorch based on version v0.5.0 with initial support for
Neutron Backend. Neutron Backend enables acceleration of ML models on the eIQ® Neutron
Neural Processing Unit (NPU).

This document describes the steps required to download and start using the ExecuTorch. Ad-
ditionally, the document describes the steps required to create an application for running pre-
trained models.

Note: The document also assumes knowledge of machine learning frameworks for model train-
ing.

Supported platforms:
• i.MX RT700

1.4. eIQ 33

https://www.nxp.com/applications/technologies/ai-and-machine-learning/eiq-neutron-npu:EIQ-NEUTRON-NPU
https://www.nxp.com/applications/technologies/ai-and-machine-learning/eiq-neutron-npu:EIQ-NEUTRON-NPU
https://www.nxp.com/products/i.MX-RT700

MCUXpresso SDK Documentation, Release 25.09.00

Installation The ExecuTorch, with the Neutron Backend consists of:

• ExecuTorch with Neutron Backend for Ahead of Time ML Model Compilation

• Neutron Converter

• MCUXpresso SDK

Here we briefly describe each components purpose and steps to install them.

The ExecuTorch AoT and Neutron Converter are needed to convert a PyTorchmodel to Execu-
Torch and Delegate it to eIQ Neutron NPU using the Neutron Backend. The MCUXpresso SDK
provides project to build the ExecuTorch Runtime Library, the example application with simple
CNN, toolchains and othermiddleware libraries to build and deploy the application on the target
platform.

If youwant run to prepared example application on the i.MX RT700 platform, and skip themodel
preparation phase continue with theMCUXpresso SDK Part.

ExecuTorch for Ahead of Time model preparation The ExecuTorch enables to deploy Py-
Torch models on edge devices. For this purpose the PyTorch model must be processed and con-
verter by the ExecuTorch Ahead of Time (AoT) part. You can obtain the full ExecuTorch including
the AoT part aligned with this version of MCUX SDK from the mcuxsdk-middleware-executorch
release/mcux-full branch.

Installation Prerequisities:

• x86 Linux Machine with GLIBC-2.29 or higher (e.g. Ubuntu 20.04 or higher)

• Python 3.10, 3.11 or 3.12

To build and install the ExecuTorch follow these steps:

1. (Optional) Setup python virtual environment on desired location and activate it.

$ python3 -m venv venv
$ source venv/bin/activate

2. Clone the ExecuTorch from mcuxsdk-middleware-executorch

$ git clone --branch release/mcux-full https://github.com/nxp-mcuxpresso/mcuxsdk-middleware-executorch.git
$ cd mcuxsdk-middleware-executorch
$ git submodule update --init --recursive

3. Build and install the ExecuTorch and its dependencies:

$./install_requirements.sh

[!WARNING] The install_requirements.sh installs the CPU version of torch from https://
download.pytorch.org/whl/cpu. If you are behind corporate proxy, it might have issues
accessing it and you will see warnings like:

WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None,␣
↪→status=None)) after connection broken by 'SSLError(SSLCertVerificationError(1, '[SSL:␣
↪→CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer␣
↪→certificate (_ssl.c:1006)'))': /whl/test/cpu/torch/

In this case the CUDA version of torch is installed and the install_requirements.sh script
fails with:

PyTorch: CUDA cannot be found. Depending on whether you are building

Make sure the pip can access the https://download.pytorch.org/whl/cpu PyPI.

34 Chapter 1. Middleware

https://github.com/nxp-mcuxpresso/mcuxsdk-middleware-executorch/tree/release/mcux-full
https://github.com/nxp-mcuxpresso/mcuxsdk-middleware-executorch/tree/release/mcux-full

MCUXpresso SDK Documentation, Release 25.09.00

Next continue with installation of the Neutron Converter

Neutron Converter The eIQ Neutron Backend uses the Neutron Converter to convert the Ex-
ecuTorch program to the eIQ Neutron NPU microcode.

Installation The Neutron Converter is available as a Python package and can be installed by
the pip command from eiq.nxp.com/repository:

pip install --index-url https://eiq.nxp.com/repository neutron_converter_SDK_25_09==1.0.0

The Neutron Converter is used internally by the ExecuTorch, and it is tied to the particular BSP
you are using - the suffix of the python package name. In the code snippet above the flavor is
the SDK_25_09. In the aot_neutron_convert.py example script by the --neutron_converter_flavor
parameter.

MCUXpresso SDK The MCUXpresso SDK is used to build, debug and deploy the application
using the ExecuTorch on the target platform.

You can obtain the MCUXpresso SDK from MCUXpresso SDK Builder including the IDE. See the
getting_mcuxpress for details.

In the MCUXpresso SDK, there are 2 projects available related to ExecuTorch:

• executorch_lib

• executorch_cifarnet

For more details see example_applications. Here you will find the details to run build and run
the demo applications.

Getting the MCUXpresso SDK with eIQ ExecuTorch The eIQ ExecuTorch library is part of
the eIQ machine learning software package, which is an optional middleware component of
MCUXpresso SDK. The eIQ component is integrated into the MCUXpresso SDK Builder delivery
systemavailable onmcuxpresso.nxp.com. To include eIQmachine learning into theMCUXpresso
SDK package, the eIQ middleware component is selected in the software component selector on
the SDK Builder page when building a new package. See Figure 1.

1.4. eIQ 35

https://mcuxpresso.nxp.com/en
https://mcuxpresso.nxp.com

MCUXpresso SDK Documentation, Release 25.09.00

Once the MCUXpresso SDK package is downloaded, it can be extracted on a local machine or
imported into the MCUXpresso IDE. For more information on the MCUXpresso SDK folder struc-
ture, see the Getting Started with MCUXpresso SDK User’s Guide (document: MCUXSDKGSUG).
The package directory structure is similar to Figure 2.

36 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

The boards directory contains example application projects for supported toolchains. For the
list of supported toolchains, see the MCUXpresso SDK Release Notes. The middleware directory
contains the eIQ library source code and example application source code and data.

PyTorch Model Conversion to ExecuTorch Format In this guideline we will show how to use
the ExecuTorch AoT part to convert a PyTorch model to ExecuTorch format and delegate the
model computation to eIQ Neutron NPU using the eIQ Neutron Backend.

First we will start with an example script converting the model. This example show the CifarNet
model preparation. It is the same model which is part of the example_cifarnet

The steps are expected to be executed from the executorch root folder, in our case the
mcuxsdk-middleware-executorch

1. After building the ExecuTorch you shall have the libquantized_ops_aot_lib.so located in the
pip-out folder. Wewill need this librarywhen generating the quantized cifarnet ExecuTorch
model. So as first step we will find it:

$ find ./pip-out -name 'libquantized_ops_aot_lib.so'
./pip-out/temp.linux-x86_64-cpython-310/cmake-out/kernels/quantized/libquantized_ops_aot_lib.so
./pip-out/lib.linux-x86_64-cpython-310/executorch/kernels/quantized/libquantized_ops_aot_lib.so

2. Now run the aot_neutron_compile.py example with the cifar10model

1.4. eIQ 37

MCUXpresso SDK Documentation, Release 25.09.00

$ python examples/nxp/aot_neutron_compile.py \
--quantize --so_library ./pip-out/lib.linux-x86_64-cpython-310/executorch/kernels/quantized/libquantized_

↪→ops_aot_lib.so \
--delegate --neutron_converter_flavor SDK_25_09 -m cifar10

3. It will generate you cifar10_nxp_delegate.pte file which can be used with the MXUXpresso
SDK cifarnet_example project.

The generated PTE file is used in the executorch_cifarnet example application, see exam-
ple_application.

MCUXpresso SDK Example applications The MCUXpresso SDK provides a set of projects and
example application with the eIQ ExecuTorch. For details, see Table 1.

The eIQ ExecuTorch library is provided with a set of example applications. For details, see Table
1. The applications demonstrate the usage of the library in several use cases.

Name Description Availability
ex-
ecu-
torch_lib

This project contains the ExecuTorch Runtime Library source code and
is used to build the ExecuTorch Runtime Library. The library is further
used to build a full application using the leveraging ExecuTorch.

MIMXRT700-
EVK (no
camera and
display sup-
port)

ex-
ecu-
torch_cifarnet

Example application demonstrating the use of the ExecuTorch running
a CifarNet classification model accelerated on the eIQ Neutron NPU.
The Cifarnet is a small Convolutional Neural Network (CNN), trained
on CIFAR-10 [1] dataset. The model clasifies the input images into 10
caterories.

MIMXRT700-
EVK (no
camera and
display sup-
port)

For details on how to build and run the example applications with supported toolchains, see
Getting Started with MCUXpresso SDK User’s Guide (document: MCUXSDKGSUG).

How to build and run executorch_cifarnet example The example needs ExecuTorch Runtime
Library and Neutron Libraries.

ExecuTorch Runtime Library:

• middleware/eiq/executorch/lib/cm33/armgcc/libexecutorch.a

Neutron Libraries:

• middleware/eiq/executorch/third-party/neutron/rt700/libNeutronDriver.a and

• middleware/eiq/executorch/third-party/neutron/rt700/libNeutronFirmware.a

In the example the model and the input image is already embedded into the program and ready
to build and deploy to i.MX RT700, so you can continue right to the building and deployment
section.

Convert the model and example input to C array In this sectionwe describewhere themodel
and example input is located in the example application sources, and how it was generated.

The cifar10 model ExecuTorch model is stored in boards/mimxrt700evk/eiq_examples/
executorch_cifarnet/cm33_core0/model_pte.h. and was generated from the cifar10_nxp_delegate.
pte (see convert_model).

We use the xxd command to get the C array containing the model data and array size:

38 Chapter 1. Middleware

https://www.cs.toronto.edu/~kriz/cifar.html

MCUXpresso SDK Documentation, Release 25.09.00

$ xxd -i cifar10_nxp_delegate.pte > model_pte_data.h

then use the array data and size in the model_pte.h.

As input image we use the image from CIFAR-10 dataset [1]. After preprocessing and
normalization it is converted to bytes and located here boards/mimxrt700evk/eiq_examples/
executorch_cifarnet/cm33_core0/image_data.h. The preprocessing is performed as follows:

import torch
import torchvision
import numpy as np

batch_size = 1

transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

])

test_set = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=0)

index = 0
num_images = 10
for data in test_loader:
images, labels = data
for image, label in zip(images,labels):
arr = image.numpy().astype(np.float32)
arr.tofile(”img” + str(index) + ”_” + str(int(label)) + ”.bin”)
index = index + 1
if index >= num_images:
break

if index >= num_images:
break

This generates the num_images count of images from Cifar10 dataset, as input tensors for the
cifar10 model and store them in corresponding .bin files. Then we use the xxd command to get
the C array data and size:

$ xxd -i img0_3.bin > image_data_base.h

and again copy the array data and size in the image_data.h

Note, the img0 is the image picturing a cat, what is a class number 3.

Build, Deploy and Run
1. When using ARMGCC toolchain, the example application can be built as below. After build-

ing the example application, download it to the target with JLink as shown in Figure 3, an
output message displays on the connected terminal as Figure 4.

$ boards/mimxrt700evk/eiq_examples/executorch_cifarnet/cm33_core0/armgcc$./build_flash_release.sh

1.4. eIQ 39

https://www.cs.toronto.edu/~kriz/cifar.html

MCUXpresso SDK Documentation, Release 25.09.00

2. When using MCUXpresso IDE, the example applications can be imported through the SDK
Import Wizard as shown in Figure 5.

40 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

After building the example application and downloading it to the target, the execution stops in
the main function. When the execution resumes, an output message displays on the connected
terminal. For example, Figure 6 shows the output of the executorch_cifarnet example application.

1.4. eIQ 41

MCUXpresso SDK Documentation, Release 25.09.00

In case of missing probabilities in the printed output, add PRINTF_FLOAT_ENABLE=1 to the Pre-
processor settings for C++ and C compiler:

42 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

How to build executorch_lib example If you want to build a new ExecuTorch Runtime Library,
follow the commands as below and use the new library to replace the default Runtime library
middleware/eiq/executorch/lib/cm33/armgcc/libexecutorch.a.

1. When using ARMGCC toolchain, the example application can be built as below.

$ boards/mimxrt700evk/eiq_examples/executorch_lib/cm33_core0/armgcc$./build_release.sh
$ boards/mimxrt700evk/eiq_examples/executorch_lib/cm33_core0/armgcc$ cp release/libexecutorch_lib_
↪→cm33_core0.a.a ../../../../../../middleware/eiq/executorch/lib/cm33/armgcc/libexecutorch.a

2. When using MCUXpresso IDE, the example applications can be imported through the SDK
Import Wizard as shown in the above Figure 5.

After building the example application, copy the new library
mimxrt700evk_executorch_lib_cm33_core0\Debug\libmimxrt700evk_executorch_lib_cm33_core0.a
to replace the default Runtime library mimxrt700evk_executorch_cifarnet_cm33_core0\eiq\
executorch\lib\cm33\armgcc\libexecutorch.a.

[1] Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, 2009

1.5 File System

1.5.1 FatFs

1.5. File System 43

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

MCUXpresso SDK Documentation, Release 25.09.00

MCUXpresso SDK : mcuxsdk-middleware-fatfs

Overview This repository is for FatFs middleware delivery and it contains the components of-
ficially provided in NXP MCUXpresso SDK. This repository is part of the MCUXpresso SDK over-
all delivery which is composed of several sub-repositories/projects. Navigate to the top/parent
repository (mcuxsdk-manifests) for the complete delivery of MCUXpresso SDK.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit FatFs - Documentation to review details on the contents in this sub-repo.

Setup Instructions on how to install theMCUXpresso SDK provided fromGitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution Contributions are not currently accepted. Guidelines to contributewill be posted
in the future.

Repo Specific Content This isMCUXpresso SDK fork of FatFs (FAT file system created by ChaN).
Official documentation is available at http://elm-chan.org/fsw/ff/

MCUXpresso version is extending original content by following hardware specific porting layers:

• mmc_disk

• nand_disk

• ram_disk

• sd_disk

• sdspi_disk

• usb_disk

Changelog FatFs

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog

[R0.15_rev0]
• Upgraded to version 0.15

• Applied patches from http://elm-chan.org/fsw/ff/patches.html

[R0.14b_rev1]
• Applied patches from http://elm-chan.org/fsw/ff/patches.html

[R0.14b_rev0]
• Upgraded to version 0.14b

44 Chapter 1. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/fatfs/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation
http://elm-chan.org/fsw/ff/
https://keepachangelog.com/en/1.1.0/

MCUXpresso SDK Documentation, Release 25.09.00

[R0.14a_rev0]
• Upgraded to version 0.14a

• Applied patch ff14a_p1.diff and ff14a_p2.diff

[R0.14_rev0]
• Upgraded to version 0.14

• Applied patch ff14_p1.diff and ff14_p2.diff

[R0.13c_rev0]
• Upgraded to version 0.13c

• Applied patches ff_13c_p1.diff,ff_13c_p2.diff, ff_13c_p3.diff and ff_13c_p4.diff.

[R0.13b_rev0]
• Upgraded to version 0.13b

[R0.13a_rev0]
• Upgraded to version 0.13a. Added patch ff_13a_p1.diff.

[R0.12c_rev1]
• Add NAND disk support.

[R0.12c_rev0]
• Upgraded to version 0.12c and applied patches ff_12c_p1.diff and ff_12c_p2.diff.

[R0.12b_rev0]
• Upgraded to version 0.12b.

[R0.11a]
• Added glue functions for low-level drivers (SDHC, SDSPI, RAM, MMC). Modified diskio.c.

• Added RTOS wrappers to make FatFs thread safe. Modified syscall.c.

• Renamed ffconf.h to ffconf_template.h. Each application should contain its own ffconf.h.

• Includedffconf.h into diskio.c to enable the selection of physical disk fromffconf.h bymacro
definition.

• Conditional compilation of physical disk interfaces in diskio.c.

1.6 Motor Control

1.6.1 FreeMASTER

Communication Driver User Guide

1.6. Motor Control 45

MCUXpresso SDK Documentation, Release 25.09.00

Introduction

What is FreeMASTER? FreeMASTER is a PC-based application developed by NXP for NXP cus-
tomers. It is a versatile tool usable as a real-time monitor, visualization tool, and a graphical
control panel of embedded applications based on the NXP processing units.

This document describes the embedded-side software driver which implements an interface be-
tween the application and the host PC. The interface covers the following communication:

• Serial UART communication either over plain RS232 interface or more typically over a
USB-to-Serial either external or built in a debugger probe.

• USB direct connection to target microcontroller

• CAN bus
• TCP/IP network wired or WiFi

• Segger J-Link RTT
• JTAG debug port communication

• …and all of the above also using a Zephyr generic drivers.

The driver also supports so-called “packet-drivenBDM” interfacewhich enables a protocol-based
communication over a debugging port. The BDM stands for Background Debugging Module
and its physical implementation is different on each platform. Some platforms leverage a semi-
standard JTAG interface, other platforms provide a custom implementation called BDM. Regard-
less of the name, this debugging interface enables non-intrusive access to the memory space
while the target CPU is running. For basic memory read and write operations, there is no com-
munication driver required on the target when communicating with the host PC. Use this driver
to getmore advanced FreeMASTER protocol features over the BDM interface. The drivermust be
configured for the packet-driven BDM mode, in which the host PC uses the debugging interface
to write serial command frames directly to the target memory buffer. The same method is then
used to read response frames from that memory buffer.

Similar to “packet-driven BDM”, the FreeMASTER also supports a communication over
[J-Link RTT]((https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-
transfer/) interface defined by SEGGER Microcontroller GmbH for ARM CortexM-based micro-
controllers. This method also uses JTAG physical interface and enables high-speed real time
communication to run over the same channel as used for application debugging.

Driver version 3 This document describes version 3 of the FreeMASTER Communication
Driver. This version features the implementation of the new Serial Protocol, which significantly
extends the features and security of its predecessor. The new protocol internal number is v4 and
its specification is available in the documentation accompanying the driver code.

Driver V3 is deployed to modern 32-bit MCU platforms first, so the portfolio of supported plat-
forms is smaller than for the previous V2 versions. It is recommended to keep using the V2 driver
for legacy platforms, such as S08, S12, ColdFire, or Power Architecture. Reach out to FreeMAS-
TER community or to the local NXP representative with requests for more information or to port
the V3 driver to legacy MCU devices.

Thanks to a layered approach, the new driver simplifies the porting of the driver to new UART,
CAN or networking communication interfaces significantly. Users are encouraged to port the
driver to more NXP MCU platforms and contribute the code back to NXP for integration into
future releases. Existing code and low-level driver layers may be used as an example when
porting to new targets.

Note: Using the FreeMASTER tool and FreeMASTER Communication Driver is only allowed in
systemsbased onNXPmicrocontroller ormicroprocessor unit. Usewith non-NXPMCUplatforms
is not permitted by the license terms.

46 Chapter 1. Middleware

https://www.nxp.com/freemaster
https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster
https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster

MCUXpresso SDK Documentation, Release 25.09.00

Target platforms The driver implementation uses the following abstraction mechanisms
which simplify driver porting and supporting new communication modules:

• General CPU Platform (see source code in the src/platforms directory). The code in
this layer is only specific to native data type sizes and CPU architectures (for example;
alignment-aware memory copy routines). This driver version brings two generic imple-
mentations of 32-bit platforms supporting both little-endian and big-endian architectures.
There are also implementations customized for the 56F800E family of digital signal con-
trollers and S12Z MCUs. Zephyr is treated as a specific CPU platform as it brings unified
user configuration (Kconfig) and generic hardware device drivers. With Zephyr, the trans-
port layer and low-level communication layers described below are configured automati-
cally using Kconfig and Device Tree technologies.

• Transport Communication Layer - The Serial, CAN,Networking, PD-BDM, and othermeth-
ods of transport logic are implemented as a driver layer called FMSTR_TRANSPORT with a
uniform API. A support of the Network transport also extends single-client modes of oper-
ation which are native for Serial, USB and CAN by a concept of multiple client sessions.

• Low-level Communication Driver - Each type of transport further defines a low-level
API used to access the physical communication module. For example, the Serial trans-
port defines a character-orientedAPI implemented by different serial communicationmod-
ules like UART, LPUART, USART, and also USB-CDC. Similarly, the CAN transport defines a
message-oriented API implemented by the FlexCAN or MCAN modules. Moreover, there
are multiple different implementations for the same kind of communication peripherals.
The difference between the implementation is in the way the low-level hardware regis-
ters are accessed. The mcuxsdk folder contains implementations which use MCUXpresso
SDK drivers. These drivers should be used in applications based on the NXP MCUXpresso
SDK. The “ampsdk” drivers target automotive-specific MCUs and their respective SDKs.
The “dreg” implementations use a plain C-language access to hardware register addresses
which makes it a universal and the most portable solution. In this case, users are encour-
aged to add more drivers for other communication modules or other respective SDKs and
contribute the code back to NXP for integration.

The low-level drivers defined for the Networking transport enable datagram-oriented UDP
and stream TCP communication. This implementation is demonstrated using the lwIP soft-
ware stack but shall be portable to other TCP/IP stacks. It may sound surprisingly, but also
the Segger J-Link RTT communication driver is linked to the Networking transport (RTT is
stream oriented communication handled similarly to TCP).

Replacing existing drivers For all supported platforms, the driver described in this document
replaces the V2 implementation and also older driver implementations that were available sep-
arately for individual platforms (PC Master SCI drivers).

Clocks, pins, and peripheral initialization The FreeMASTER communication driver is only
responsible for runtime processing of the communication and must be integrated with an user
application code to function properly. The user application code is responsible for general initial-
ization of clock sources, pinmultiplexers, and peripheral registers related to the communication
speed. Such initialization should be done before calling the FMSTR_Init function.

It is recommended to develop the user application using one of the Software Development Kits
(SDKs) available from third parties or directly from NXP, such as MCUXpresso SDK, MCUXpresso
IDE, and related tools. This approach simplifies the general configuration process significantly.

MCUXpresso SDK TheMCUXpresso SDK is a software package providedbyNXPwhich contains
the device initialization code, linker files, and software driverswith example applications for the
NXP family of MCUs. The MCUXpresso Config Tools may be used to generate the clock-setup and
pin-multiplexer setup code suitable for the selected processor.

1.6. Motor Control 47

MCUXpresso SDK Documentation, Release 25.09.00

The MCUXpresso SDK also contains this FreeMASTER communication driver as a “middle-
ware” component which may be downloaded along with the example applications from https:
//mcuxpresso.nxp.com/en/welcome.

MCUXpresso SDK on GitHub The FreeMASTER communication driver is also released as one
of the middleware components of the MCUXpresso SDK on the GitHub. This release enables
direct integration of the FreeMASTER source code Git repository into a target applications in-
cluding Zephyr applications.

Related links:

• The official FreeMASTER middleware repository.

• Online version of this document

FreeMASTER in Zephyr The FreeMASTER middleware repository can be used with MCUX-
presso SDK as well as a Zephyr module. Zephyr-specific samples which include examples of
Kconfig and Device Tree configurations for Serial, USB and Network communications are avail-
able in separate repository. West manifest in this sample repository fetches the full Zephyr pack-
age including the FreeMASTER middleware repository used as a Zephyr module.

Example applications

MCUX SDK Example applications There are several example applications available for each
supported MCU platform.

• fmstr_uart demonstrates a plain serial transmission, typically connecting to a computer’s
physical or virtual COM port. The typical transmission speed is 115200 bps.

• fmstr_can demonstrates CAN bus communication. This requires a suitable CAN interface
connected to the computer and interconnected with the target MCU using a properly ter-
minated CAN bus. The typical transmission speed is 500 kbps. A FreeMASTER-over-CAN
communication plug-in must be used.

• fmstr_usb_cdc uses an on-chip USB controller to implement a CDC communication class.
It is connected directly to a computer’s USB port and creates a virtual COM port device. The
typical transmission speed is above 1 Mbps.

• fmstr_net demonstrates the Network communication over UDP or TCP protocol. Existing
examples use lwIP stack to implement the communication, but in general, it shall be possi-
ble to use any other TCP/IP stack to achieve the same functionality.

• fmstr_wifi is the fmstr_net application modified to use aWiFi network interface instead of
a wired Ethernet connection.

• fmstr_rtt demonstrates the communication over SEGGER J-Link RTT interface. Both fm-
str_net and fmstr_rtt examples require the FreeMASTER TCP/UDP communication plug-in
to be used on the PC host side.

• fmstr_eonce uses the real-time data unit on the JTAG EOnCEmodule of the 56F800E family
to implement pseudo-serial communication over the JTAG port. The typical transmission
speed is around 10 kbps. This communication requires FreeMASTER JTAG/EOnCE commu-
nication plug-in.

• fmstr_pdbdm uses JTAG or BDM debugging interface to access the target RAM directly
while the CPU is running. Note that such approach can be used with any MCU applica-
tion, even without any special driver code. The computer reads from and writes into the
RAMdirectly without CPU intervention. The Packet-Driven BDM (PD-BDM) communication
uses the same memory access to exchange command and response frames. With PD-BDM,

48 Chapter 1. Middleware

https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/user_guide/user_guide.html#multi-session-support

MCUXpresso SDK Documentation, Release 25.09.00

the FreeMASTER tool is able to go beyond basic memory read/write operations and ac-
cesses also advanced features like Recorder, TSA, or Pipes. The typical transmission speed
is around 10 kbps. A PD-BDM communication plug-in must be used in FreeMASTER and
configured properly for the selected debugging interface. Note that this communication
cannot be used while a debugging interface is used by a debugger session.

• fmstr_any is a special example application which demonstrates how the NXPMCUXpresso
Config Tools can be used to configure pins, clocks, peripherals, interrupts, and even the
FreeMASTER “middleware” driver features in a graphical and user friendly way. The user
can switch between the Serial, CAN, and other ways of communication and generate the
required initialization code automatically.

Zephyr sample spplications Zephyr sample applications demonstrate Kconfig and Device
Tree configuration which configure the FreeMASTER middleware module for a selected com-
munication option (Serial, CAN, Network or RTT).

Refer to readme.md files in each sample directory for description of configuration options re-
quired to implement FreeMASTER connectivity.

Description

This section shows how to add the FreeMASTER Communication Driver into application and how
to configure the connection to the FreeMASTER visualization tool.

Features The FreeMASTER driver implements the FreeMASTER protocol V4 and provides the
following features which may be accessed using the FreeMASTER visualization tool:

• Read/write access to any memory location on the target.

• Optional password protection of the read, read/write, and read/write/flash access levels.

• Atomic bit manipulation on the target memory (bit-wise write access).

• Optimal size-aligned access to memory which is also suitable to access the peripheral reg-
ister space.

• Oscilloscope access—real-time access to target variables. The sample rate may be limited
by the communication speed.

• Recorder— access to the fast transient recorder running on the board as a part of the
FreeMASTER driver. The sample rate is only limited by the MCU CPU speed. The length
of the data recorded depends on the amount of available memory.

• Multiple instances of Oscilloscopes andRecorderswithout the limitation ofmaximumnum-
ber of variables.

• Application commands—high-level message delivery from the PC to the application.

• TSA tables—describing the data types, variables, files, or hyperlinks exported by the target
application. The TSA newly supports also non-memory mapped resources like external
EEPROM or SD Card files.

• Pipes—enabling the buffered stream-oriented data exchange for a general-purpose
terminal-like communication, diagnostic data streaming, or other data exchange.

The FreeMASTER driver features:

• Full FreeMASTER protocol V4 implementation with a new V4 style of CRC used.

• Layered approach supporting Serial, CAN, Network, PD-BDM, and other transports.

• Layered low-level Serial transport driver architecture enabling to select UART, LPUART,
USART, and other physical implementations of serial interfaces, including USB-CDC.

1.6. Motor Control 49

MCUXpresso SDK Documentation, Release 25.09.00

• Layered low-level CAN transport driver architecture enabling to select FlexCAN, msCAN,
MCAN, and other physical implementations of the CAN interface.

• Layered low-level Networking transport enabling to select TCP, UDP or J-Link RTT commu-
nication.

• TSA support towrite-protectmemory regions or individual variables and to deny the access
to the unsafe memory.

• The pipe callback handlers are invoked whenever new data is available for reading from
the pipe.

• Two Serial Single-Wire modes of operation are enabled. The “external” mode has the RX
and TX shorted on-board. The “true” single-wire mode interconnects internally when the
MCU or UART modules support it.

The following sections briefly describe all FreeMASTER features implemented by the driver. See
the PC-based FreeMASTER User Manual for more details on how to use the features to monitor,
tune, or control an embedded application.

Board Detection The FreeMASTER protocol V4 defines the standard set of configuration values
which the host PC tool reads to identify the target and to access other target resources properly.
The configuration includes the following parameters:

• Version of the driver and the version of the protocol implemented.

• MTU as the Maximum size of the Transmission Unit (for example; communication buffer
size).

• Application name, description, and version strings.

• Application build date and time as a string.

• Target processor byte ordering (little/big endian).

• Protection level that requires password authentication.

• Number of the Recorder and Oscilloscope instances.

• RAM Base Address for optimized memory access commands.

Memory Read This basic feature enables the host PC to read any data memory location by
specifying the address and size of the required memory area. The device response frame must
be shorter than theMTU to fit into the outgoing communication buffer. To read a devicememory
of any size, the host uses the information retrieved during the Board Detection and splits the
large-block request to multiple partial requests.

The driver uses size-aligned operations to read the target memory (for example; uses proper
read-word instruction when an address is aligned to 4 bytes).

Memory Write Similarly to the Memory Read operation, the MemoryWrite feature enables to
write to any RAMmemory location on the target device. A single write command framemust be
shorter than the MTU to fit into the target communication buffer. Larger requests must be split
into smaller ones.

The driver uses size-aligned operations to write to the target memory (for example; uses proper
write-word instruction when an address is aligned to 4 bytes).

50 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Masked Memory Write To implement thewrite access to a single bit or a group of bits of target
variables, the Masked Memory Write feature is available in the FreeMASTER protocol and it is
supported by the driver using the Read-Modify-Write approach.

Be careful when writing to bit fields of volatile variables that are also modified in an application
interrupt. The interrupt may be serviced in the middle of a read-modify-write operation and it
may cause data corruption.

Oscilloscope The protocol and driver enables any number of variables to be read at once with
a single request from the host. This feature is called Oscilloscope and the FreeMASTER tool uses
it to display a real-time graph of variable values.

The driver can be configured to support any number of Oscilloscope instances and enable simul-
taneously running graphs to be displayed on the host computer screen.

Recorder The protocol enables the host to select target variableswhose values are then period-
ically recorded into a dedicated on-board memory buffer. After such data sampling stops (either
on a host request or by evaluating a threshold-crossing condition), the data buffer is downloaded
to the host and displayed as a graph. The data sampling rate is not limited by the speed of the
communication line, so it enables displaying the variable transitions in a very high resolution.

The driver can be configured to support multiple Recorder instances and enable multiple
recorder graphs to be displayed on the host screen. Having multiple recorders also enables set-
ting the recording point differently for each instance. For example; one instance may be record-
ing data in a general timer interrupt while another instance may record at a specific control
algorithm time in the PWM interrupt.

TSA With the TSA feature, data types and variables can be described directly in the application
source code. Such information is later provided to the FreeMASTER toolwhichmay use it instead
of reading symbol data from the application ELF executable file.

The information is encoded as so-called TSA tables which become direct part of the application
code. The TSA tables contain descriptors of variables that shall be visible to the host tool. The
descriptors can describe the memory areas by specifying the address and size of the memory
block or more conveniently using the C variable names directly. Different set of TSA descriptors
can be used to encode information about the structure types, unions, enumerations, or arrays.

The driver also supports special types of TSA table entries to describe user resources like external
EEPROM and SD Card files, memory-mapped files, virtual directories, web URL hyperlinks, and
constant enumerations.

TSA Safety When the TSA is enabled in the application, the TSA Safety can be enabled and
validate the memory accesses directly by the embedded-side driver. When the TSA Safety is
turned on, anymemory request received from thehost is validated and accepted only if it belongs
to a TSA-described object. The TSA entries can be declared as Read-Write or Read-Only so that
the driver can actively deny the write access to the Read-Only objects.

Application commands The Application Commands are high-level messages that can be de-
livered from the PC Host to the embedded application for further processing. The embedded
application can either poll the status, or be called back when a new Application Command ar-
rives to be processed. After the embedded application acknowledges that the command is han-
dled, the host receives the Result Code and reads the other return data from memory. Both the
Application Commands and the Result Codes are specific to a given application and it is user’s
responsibility to define them. The FreeMASTER protocol and the FreeMASTER driver only imple-
ment the delivery channel and a set of API calls to enable the Application Command processing
in general.

1.6. Motor Control 51

MCUXpresso SDK Documentation, Release 25.09.00

Pipes The Pipes enable buffered and stream-oriented data exchange between the PC Host and
the target application. Any pipe can be written to and read from at both ends (either on the
PC or the MCU). The data transmission is acknowledged using the special FreeMASTER protocol
commands. It is guaranteed that the data bytes are delivered from the writer to the reader in a
proper order and without losses.

Serial single-wire operation TheMCUSerial CommunicationDriver natively supports normal
dual-wire operation. Because the protocol is half-duplex only, the driver can also operate in two
single-wire modes:

• “External” single-wire operation where the Receiver and Transmitter pins are shorted on
the board. This mode is supported by default in the MCU driver because the Receiver and
Transmitter units are enabled or disabled whenever needed. It is also easy to extend this
operation for the RS485 communication.

• “True” single-wire mode which uses only a single pin and the direction switching is made
by the UART module. This mode of operation must be enabled by defining the FM-
STR_SERIAL_SINGLEWIRE configuration option.

Multi-session support With networking interface it is possible for multiple clients to access
the target MCU simultaneously. Reading and writing of target memory is processed atomically
so there is no risk of data corruption. The state-full resources such as Recorders or Oscilloscopes
are locked to a client session upon first use and access is denied to other clients until lock is
released..

Zephyr-specific

Dedicated communication task FreeMASTER communicationmay run isolated in a dedicated
task. The task automates the FMSTR_Init and FMSTR_Poll calls together with periodic activities
enabling the FreeMASTER UI to fetch information about tasks and CPU utilization. The task can
be started automatically or manually, and it must be assigned a priority to be able to react on
interrupts and other communication events. Refer to Zephyr FreeMASTER sample applications
which all use this communication task.

Zephyr shell and logging over FreeMASTER pipe FreeMASTER implements a shell backend
whichmay use FreeMASTER pipe as a I/O terminal and logging output. Refer to Zephyr FreeMAS-
TER sample applications which all use this feature.

Automatic TSA tables TSA tables can be declared as “automatic” in Zephyr which make them
automatically registered in the table list. This may be very useful when there are many TSA
tables or when the tables are defined in different (often unrelated) libraries linked together. In
this case user does not need to build a list of all tables manually.

Driver files The driver source files can be found in a top-level src folder, further divided into
the sub-folders:

• src/platforms platform-specific folder—one folder exists for each supported processor
platform (for example; 32-bit Little Endian platform). Each such folder contains a platform
header file with data types and a code which implements the potentially platform-specific
operations, such as aligned memory access.

• src/common folder—contains the common driver source files shared by the driver for all
supported platforms. All the .c files must be added to the project, compiled, and linked
together with the application.

52 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

– freemaster.h - master driver header file, which declares the common data types,
macros, and prototypes of the FreeMASTER driver API functions.

– freemaster_cfg.h.example - this file can serve as an example of the FreeMASTER driver
configuration file. Save this file into a project source code folder and rename it to
freemaster_cfg.h. The FreeMASTER driver code includes this file to get the project-
specific configuration options and to optimize the compilation of the driver.

– freemaster_defcfg.h - defines the default values for each FreeMASTER configuration
option if the option is not set in the freemaster_cfg.h file.

– freemaster_protocol.h - defines the FreeMASTER protocol constants used internally by
the driver.

– freemaster_protocol.c - implements the FreeMASTER protocol decoder and handles the
basic Get Configuration Value, Memory Read, and Memory Write commands.

– freemaster_rec.c - handles the Recorder-specific commands and implements the
Recorder sampling and triggering routines. When the Recorder is disabled by the
FreeMASTER driver configuration file, this file only compiles to empty API functions.

– freemaster_scope.c - handles the Oscilloscope-specific commands. If the Oscilloscope is
disabled by the FreeMASTER driver configuration file, this file compiles as void.

– freemaster_pipes.c - implements the Pipes functionality when the Pipes feature is en-
abled.

– freemaster_appcmd.c - handles the communication commands used to deliver and exe-
cute theApplicationCommandswithin the context of the embedded application. When
the Application Commands are disabled by the FreeMASTER driver configuration file,
this file only compiles to empty API functions.

– freemaster_tsa.c - handles the commands specific to the TSA feature. This feature en-
ables the FreeMASTER host tool to obtain the TSA memory descriptors declared in the
embedded application. If the TSA is disabled by the FreeMASTER driver configuration
file, this file compiles as void.

– freemaster_tsa.h - contains the declaration of the macros used to define the TSA mem-
ory descriptors. This file is indirectly included into the user application code (via
freemaster.h).

– freemaster_sha.c - implements the SHA-1 hash code used in the password authentica-
tion algorithm.

– freemaster_private.h - contains the declarations of functions and data types used in-
ternally in the driver. It also contains the C pre-processor statements to perform the
compile-time verification of the user configuration provided in the freemaster_cfg.h
file.

– freemaster_serial.c - implements the serial protocol logic including the CRC, FIFO queu-
ing, and other communication-related operations. This code calls the functions of the
low-level communication driver indirectly via a character-oriented API exported by
the specific low-level driver.

– freemaster_serial.h - defines the low-level character-oriented Serial API.

– freemaster_can.c - implements the CAN protocol logic including the CAN message
preparation, signalling using the first data byte in the CAN frame, and other
communication-related operations. This code calls the functions of the low-level com-
munication driver indirectly via a message-oriented API exported by the specific low-
level driver.

– freemaster_can.h - defines the low-level message-oriented CAN API.

– freemaster_net.c - implements the Network protocol transport logic including multiple
session management code.

1.6. Motor Control 53

MCUXpresso SDK Documentation, Release 25.09.00

– freemaster_net.h - definitions related to the Network transport.

– freemaster_pdbdm.c - implements the packet-driven BDM communication buffer and
other communication-related operations.

– freemaster_utils.c - aligned memory copy routines, circular buffer management and
other utility functions

– freemaster_utils.h - definitions related to utility code.

• src/drivers/[sdk]/serial - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

– freemaster_serial_XXX.c and .h - implement low-level access to the communication pe-
ripheral registers. Different files exist for the UART, LPUART, USART, and other kinds
of Serial communication modules.

• src/drivers/[sdk]/can - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

– freemaster_XXX.c and .h - implement low-level access to the communication peripheral
registers. Different files exist for the FlexCAN, msCAN, MCAN, and other kinds of CAN
communication modules.

• src/drivers/[sdk]/network - contains low-level code adapting the FreeMASTER Network
transport to an underlying TCP/IP or RTT stack.

– freemaster_net_lwip_tcp.c and _udp.c - default networking implementation of TCP and
UDP transports using lwIP stack.

– freemaster_net_segger_rtt.c - implementation of network transport using Segger J-Link
RTT interface

Driver configuration The driver is configured using a single header file (freemaster_cfg.h).
Create this file and save it together with other project source files before compiling the driver
code. All FreeMASTER driver source files include the freemaster_cfg.h file and use the macros
defined here for the conditional and parameterized compilation. The C compiler must locate the
configuration file when compiling the driver files. Typically, it can be achieved by putting this
file into a folder where the other project-specific included files are stored.

As a starting point to create the configuration file, get the freemaster_cfg.h.example file, rename
it to freemaster_cfg.h, and save it into the project area.

Note: It is NOT recommended to leave the freemaster_cfg.h file in the FreeMASTER driver source
code folder. The configuration filemust be placed at a project-specific location, so that it does not
affect the other applications that use the same driver.

Configurable items This section describes the configuration options which can be defined in
freemaster_cfg.h.

Interrupt modes
#define FMSTR_LONG_INTR [0|1]
#define FMSTR_SHORT_INTR [0|1]
#define FMSTR_POLL_DRIVEN [0|1]

Value Type boolean (0 or 1)

54 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Description Exactly one of the three macros must be defined to non-zero. The others must be
defined to zero or left undefined. The non-zero-defined constant selects the interrupt mode of
the driver. See Driver interrupt modes.

• FMSTR_LONG_INTR— long interrupt mode

• FMSTR_SHORT_INTR— short interrupt mode

• FMSTR_POLL_DRIVEN— poll-driven mode

Note: Some options may not be supported by all communication interfaces. For example, the
FMSTR_SHORT_INTR option is not supported by the USB_CDC interface.

Protocol transport
#define FMSTR_TRANSPORT [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER source
code. Specify one of existing instances to make use of the protocol transport.

Description Use one of the pre-defined constants, as implemented by the FreeMASTER code.
The current driver supports the following transports:

• FMSTR_SERIAL - serial communication protocol

• FMSTR_CAN - using CAN communication

• FMSTR_PDBDM - using packet-driven BDM communication

• FMSTR_NET - network communication using TCP or UDP protocol

Serial transport This section describes configuration parameters used when serial transport
is used:

#define FMSTR_TRANSPORT FMSTR_SERIAL

FMSTR_SERIAL_DRV Select what low-level driver interface will be used when implementing
the Serial communication.

#define FMSTR_SERIAL_DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing serial driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/serial implementation):

• FMSTR_SERIAL_MCUX_UART - UART driver

• FMSTR_SERIAL_MCUX_LPUART - LPUART driver

• FMSTR_SERIAL_MCUX_USART - USART driver

• FMSTR_SERIAL_MCUX_MINIUSART - miniUSART driver

• FMSTR_SERIAL_MCUX_QSCI - DSC QSCI driver

• FMSTR_SERIAL_MCUX_USB - USB/CDC class driver (also see code in the /sup-
port/mcuxsdk_usb folder)

1.6. Motor Control 55

MCUXpresso SDK Documentation, Release 25.09.00

• FMSTR_SERIAL_56F800E_EONCE - DSC JTAG EOnCE driver

Other SDKs or BSPs may define custom low-level driver interface structure which may be used
as FMSTR_SERIAL_DRV. For example:

• FMSTR_SERIAL_DREG_UART - demonstrates the low-level interface implementedwithout
the MCUXpresso SDK and using direct access to peripheral registers.

FMSTR_SERIAL_BASE
#define FMSTR_SERIAL_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the UART, LPUART, USART, or other serial peripheral
module to be used for the communication. This value is not defined by default. User application
should call FMSTR_SetSerialBaseAddress() to select the peripheral module.

FMSTR_COMM_BUFFER_SIZE
#define FMSTR_COMM_BUFFER_SIZE [number]

Value Type 0 or a value in range 32…255

Description Specify the size of the communication buffer to be allocated by the driver.
Default value, which suits all driver features, is used when this option is defined as 0.

FMSTR_COMM_RQUEUE_SIZE
#define FMSTR_COMM_RQUEUE_SIZE [number]

Value Type Value in range 0…255

Description Specify the size of the FIFO receiver queue used to quickly receive and store char-
acters in the FMSTR_SHORT_INTR interrupt mode.
The default value is 32 B.

FMSTR_SERIAL_SINGLEWIRE
#define FMSTR_SERIAL_SINGLEWIRE [0|1]

Value Type Boolean 0 or 1.

Description Set to non-zero to enable the “True” single-wire mode which uses a single MCU
pin to communicate. The low-level driver enables the pin direction switching when the MCU
peripheral supports it.

56 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

CAN Bus transport This section describes configuration parameters usedwhen CAN transport
is used:

#define FMSTR_TRANSPORT FMSTR_CAN

FMSTR_CAN_DRV Select what low-level driver interface will be used when implementing the
CAN communication.

#define FMSTR_CAN_DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing CAN driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/can implementation):

• FMSTR_CAN_MCUX_FLEXCAN - FlexCAN driver

• FMSTR_CAN_MCUX_MCAN - MCAN driver

• FMSTR_CAN_MCUX_MSCAN - msCAN driver

• FMSTR_CAN_MCUX_DSCFLEXCAN - DSC FlexCAN driver

• FMSTR_CAN_MCUX_DSCMSCAN - DSC msCAN driver

Other SDKs or BSPs may define the custom low-level driver interface structure which may be
used as FMSTR_CAN_DRV.

FMSTR_CAN_BASE
#define FMSTR_CAN_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the FlexCAN, msCAN, or other CAN peripheral module
to be used for the communication. This value is not defined by default. User application should
call FMSTR_SetCanBaseAddress() to select the peripheral module.

FMSTR_CAN_CMDID
#define FMSTR_CAN_CMDID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CANmessage identifier used for FreeMASTER commands (direction from PC Host
tool to target application). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Default value is 0x7AA.

FMSTR_CAN_RSPID
#define FMSTR_CAN_RSPID [number]

1.6. Motor Control 57

MCUXpresso SDK Documentation, Release 25.09.00

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for responding messages (direction from target ap-
plication to PC Host tool). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Note that both CMDID and RSPID values may be the same. Default value
is 0x7AA.

FMSTR_FLEXCAN_TXMB
#define FMSTR_FLEXCAN_TXMB [number]

Value Type Number in range of 0..N where N is number of CANmessage-buffers supported by
HWmodule.

Description Only usedwhen the FlexCAN low-level driver is used. Define the FlexCANmessage
buffer for CAN frame transmission. Default value is 0.

FMSTR_FLEXCAN_RXMB
#define FMSTR_FLEXCAN_RXMB [number]

Value Type Number in range of 0..N where N is number of CANmessage-buffers supported by
HWmodule.

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN mes-
sage buffer for CAN frame reception. Note that the FreeMASTER driver may also operate with a
common message buffer used by both TX and RX directions. Default value is 1.

Network transport This section describes configuration parameters used when Network
transport is used:

#define FMSTR_TRANSPORT FMSTR_NET

FMSTR_NET_DRV Select network interface implementation.

#define FMSTR_NET_DRV [identifier]

Value Type Identifiers are structure instance names defined in FreeMASTER drivers code.
Specify one of existing NET driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/network implementation):

• FMSTR_NET_LWIP_TCP - TCP communication using lwIP stack

• FMSTR_NET_LWIP_UDP - UDP communication using lwIP stack

• FMSTR_NET_SEGGER_RTT - Communication using SEGGER J-Link RTT interface

58 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Other SDKs or BSPs may define the custom networking interface which may be used as FM-
STR_CAN_DRV.

Add another row below:

FMSTR_NET_PORT
#define FMSTR_NET_PORT [number]

Value Type TCP or UDP port number (short integer)

Description Specifies the server port number used by TCP or UDP protocols.

FMSTR_NET_BLOCKING_TIMEOUT
#define FMSTR_NET_BLOCKING_TIMEOUT [number]

Value Type Timeout as number of milliseconds

Description This value specifies a timeout in milliseconds for which the network socket op-
erations may block the execution inside FMSTR_Poll. This may be set high (e.g. 250) when a
dedicated RTOS task is used to handle FreeMASTER protocol polling. Set to a lower value when
the polling task is also responsible for other operations. Set to 0 to attempt to use non-blocking
socket operations.

FMSTR_NET_AUTODISCOVERY
#define FMSTR_NET_AUTODISCOVERY [0|1]

Value Type Boolean 0 or 1.

Description This option enables the FreeMASTER driver to use a separate UDP socket to broad-
cast auto-discovery messages to network. This helps the FreeMASTER tool to discover the target
device address, port and protocol options.

Debugging options

FMSTR_DISABLE
#define FMSTR_DISABLE [0|1]

Value Type boolean (0 or 1)

Description Define as non-zero to disable all FreeMASTER features, exclude the driver code
from build, and compile all its API functions empty. This may be useful to remove FreeMASTER
without modifying any application source code. Default value is 0 (false).

1.6. Motor Control 59

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_DEBUG_TX
#define FMSTR_DEBUG_TX [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to enable the driver to periodically transmit test frames out on
the selected communication interface (SCI or CAN). With the debug transmission enabled, it is
simpler to detect problems in the baudrate or other communication configuration settings.

The test frames are transmitted until the first valid command frame is received from the PC Host
tool. The test frame is a valid error status frame, as defined by the protocol format. On the serial
line, the test frame consists of three printable characters (+©W) which are easy to capture using
the serial terminal tools.

This feature requires the FMSTR_Poll() function to be called periodically. Default value is 0 (false).

FMSTR_APPLICATION_STR
#define FMSTR_APPLICATION_STR

Value Type String.

Description Name of the application visible in FreeMASTER host application.

Memory access

FMSTR_USE_READMEM
#define FMSTR_USE_READMEM [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Memory Read command and enable
FreeMASTER to have read access to memory and variables. The access can be further restricted
by using a TSA feature.
Default value is 1 (true).

FMSTR_USE_WRITEMEM
#define FMSTR_USE_WRITEMEM [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Memory Write command.
The default value is 1 (true).

Oscilloscope options

60 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_USE_SCOPE
#define FMSTR_USE_SCOPE [number]

Value Type Integer number.

Description Number of Oscilloscope instances to be supported. Set to 0 to disable the Oscillo-
scope feature.
Default value is 0.

FMSTR_MAX_SCOPE_VARS
#define FMSTR_MAX_SCOPE_VARS [number]

Value Type Integer number larger than 2.

Description Number of variables to be supported by each Oscilloscope instance.
Default value is 8.

Recorder options

FMSTR_USE_RECORDER
#define FMSTR_USE_RECORDER [number]

Value Type Integer number.

Description Number of Recorder instances to be supported. Set to 0 to disable the Recorder
feature.
Default value is 0.

FMSTR_REC_BUFF_SIZE
#define FMSTR_REC_BUFF_SIZE [number]

Value Type Integer number larger than 2.

Description Defines the size of the memory buffer used by the Recorder instance #0.
Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_TIMEBASE
#define FMSTR_REC_TIMEBASE [time specification]

Value Type Number (nanoseconds time).

1.6. Motor Control 61

MCUXpresso SDK Documentation, Release 25.09.00

Description Defines the base sampling rate in nanoseconds (sampling speed) Recorder in-
stance #0.

Use one of the following macros:

• FMSTR_REC_BASE_SECONDS(x)

• FMSTR_REC_BASE_MILLISEC(x)

• FMSTR_REC_BASE_MICROSEC(x)

• FMSTR_REC_BASE_NANOSEC(x)

Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_FLOAT_TRIG
#define FMSTR_REC_FLOAT_TRIG [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the floating-point triggering. Be aware that
floating-point triggering may grow the code size by linking the floating-point standard library.

Default value is 0 (false).

Application Commands options

FMSTR_USE_APPCMD
#define FMSTR_USE_APPCMD [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Application Commands feature.
Default value is 0 (false).

FMSTR_APPCMD_BUFF_SIZE
#define FMSTR_APPCMD_BUFF_SIZE [size]

Value Type Numeric buffer size in range 1..255

Description The size of the Application Command data buffer allocated by the driver. The
buffer stores the (optional) parameters of the Application Commandwhichwaits to be processed.

FMSTR_MAX_APPCMD_CALLS
#define FMSTR_MAX_APPCMD_CALLS [number]

Value Type Number in range 0..255

62 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Description The number of different Application Commands that can be assigned a callback
handler function using FMSTR_RegisterAppCmdCall(). Default value is 0.

TSA options

FMSTR_USE_TSA
#define FMSTR_USE_TSA [0|1]

Value Type Boolean 0 or 1.

Description Enable the FreeMASTER TSA feature to be used. With this option enabled, the TSA
tables defined in the applications are made available to the FreeMASTER host tool.
Default value is 0 (false).

FMSTR_USE_TSA_SAFETY
#define FMSTR_USE_TSA_SAFETY [0|1]

Value Type Boolean 0 or 1.

Description Enable thememory access validation in the FreeMASTER driver. With this option,
the host tool is not able to access the memory which is not described by at least one TSA descrip-
tor. Also a write access is denied for objects defined as read-only in TSA tables.
Default value is 0 (false).

FMSTR_USE_TSA_INROM
#define FMSTR_USE_TSA_INROM [0|1]

Value Type Boolean 0 or 1.

Description Declare all TSA descriptors as const, which enables the linker to put the data into
the flash memory. The actual result depends on linker settings or the linker commands used in
the project.
Default value is 0 (false).

FMSTR_USE_TSA_DYNAMIC
#define FMSTR_USE_TSA_DYNAMIC [0|1]

Value Type Boolean 0 or 1.

Description Enable runtime-defined TSA entries to be added to the TSA table by the FM-
STR_SetUpTsaBuff() and FMSTR_TsaAddVar() functions.
Default value is 0 (false).

1.6. Motor Control 63

MCUXpresso SDK Documentation, Release 25.09.00

Pipes options

FMSTR_USE_PIPES
#define FMSTR_USE_PIPES [0|1]

Value Type Boolean 0 or 1.

Description Enable the FreeMASTER Pipes feature to be used.
Default value is 0 (false).

FMSTR_MAX_PIPES_COUNT
#define FMSTR_MAX_PIPES_COUNT [number]

Value Type Number in range 1..63.

Description The number of simultaneous pipe connections to support.
The default value is 1.

Driver interrupt modes To implement the communication, the FreeMASTER driver handles
the Serial or CANmodule’s receive and transmit requests. Use the freemaster_cfg.h configuration
file to select whether the driver processes the communication automatically in the interrupt
service routine handler or if it only polls the status of themodule (typically during the application
idle time).

This section describes each of the interrupt mode in more details.

Completely Interrupt-Driven operation Activated using:

#define FMSTR_LONG_INTR 1

In this mode, both the communication and the FreeMASTER protocol decoding is done in the
FMSTR_SerialIsr, FMSTR_CanIsr, or other interrupt service routine. Because the protocol execu-
tionmay be a lengthy task (especially with the TSA-Safety enabled) it is recommended to use this
mode only if the interrupt prioritization scheme is possible in the application and the FreeMAS-
TER interrupt is assigned to a lower (the lowest) priority.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_SerialIsr or FM-
STR_CanIsr functions from that handler.

Mixed Interrupt and Polling Modes Activated using:

#define FMSTR_SHORT_INTR 1

In this mode, the communication processing time is split between the interrupt routine and the
main application loop or task. The raw communication is handled by the FMSTR_SerialIsr, FM-
STR_CanIsr, or other interrupt service routine, while the protocol decoding and execution is han-
dled by the FMSTR_Poll routine. Call FMSTR_Poll during the idle time in the application main
loop.

64 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

The interrupt processing in this mode is relatively fast and deterministic. Upon a serial-receive
event, the received character is only placed into a FIFO-like queue and it is not further processed.
Upon a CAN receive event, the received frame is stored into a receive buffer. When transmitting,
the characters are fetched from the prepared transmit buffer.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_SerialIsr or FM-
STR_CanIsr functions from that handler.

When the serial interface is used as the serial communication interface, ensure that the FM-
STR_Poll function is called at least once per N character time periods. N is the length of the
FreeMASTER FIFO queue (FMSTR_COMM_RQUEUE_SIZE) and the character time is the time
needed to transmit or receive a single byte over the SCI line.

Completely Poll-driven
#define FMSTR_POLL_DRIVEN 1

In this mode, both the communication and the FreeMASTER protocol decoding are done in the
FMSTR_Poll routine. No interrupts are needed and the FMSTR_SerialIsr, FMSTR_CanIsr, and sim-
ilar handlers compile to an empty code.

When using this mode, ensure that the FMSTR_Poll function is called by the application at least
once per the serial “character time” which is the time needed to transmit or receive a single
character.

In the latter twomodes (FMSTR_SHORT_INTR and FMSTR_POLL_DRIVEN), the protocol handling
takes place in the FMSTR_Poll routine. An application interrupt can occur in the middle of the
Read Memory or Write Memory commands’ execution and corrupt the variable being accessed
by the FreeMASTER driver. In these two modes, some issues or glitches may occur when using
FreeMASTER to visualize or monitor volatile variables modified in interrupt servicing code.

The same issuemay appear even in the full interruptmode (FMSTR_LONG_INTR), if volatile vari-
ables are modified in the interrupt code with a priority higher than the priority of the commu-
nication interrupt.

Data types Simple portability was one of the main requirements when writing the FreeMAS-
TER driver. This is why the driver code uses the privately-declared data types and the vast ma-
jority of the platform-dependent code is separated in the platform-dependent source files. The
data types used in the driver API are all defined in the platform-specific header file.

To prevent name conflicts with the symbols used in the application, all data types, macros, and
functions have the FMSTR_ prefix. The only global variables used in the driver are the transport
and low-level API structures exported from the driver-implementation layer to upper layers.
Other than that, all private variables are declared as static and named using the fmstr_ prefix.

Communication interface initialization The FreeMASTER driver does not perform neither
the initialization nor the configuration of the peripheral module that it uses to communicate. It
is the application startup code responsibility to configure the communicationmodule before the
FreeMASTER driver is initialized by the FMSTR_Init call.

When the Serial communication module is used as the FreeMASTER communication interface,
configure the UART receive and transmit pins, the serial communication baud rate, parity (no-
parity), the character length (eight bits), and the number of stop bits (one) before initializing the
FreeMASTER driver. For either the long or the short interrupt modes of the driver (see Driver
interrupt modes), configure the interrupt controller and register an application-specific inter-
rupt handler for all interrupt sources related to the selected serial peripheral module. Call the
FMSTR_SerialIsr function from the application handler.

1.6. Motor Control 65

MCUXpresso SDK Documentation, Release 25.09.00

When a CANmodule is used as the FreeMASTER communication interface, configure the CAN re-
ceive and transmit pins and the CAN module bit rate before initializing the FreeMASTER driver.
For either the long or the short interrupt modes of the driver (see Driver interrupt modes), con-
figure the interrupt controller and register an application-specific interrupt handler for all in-
terrupt sources related to the selected CAN peripheral module. Call the FMSTR_CanIsr function
from the application handler.

Note: It is not necessary to enable or unmask the serial nor the CAN interrupts before initializing
the FreeMASTER driver. The driver enables or disables the interrupts and communication lines,
as required during runtime.

FreeMASTER Recorder calls When using the FreeMASTER Recorder in the application (FM-
STR_USE_RECORDER > 0), call the FMSTR_RecorderCreate function early after FMSTR_Init to set
up each recorder instance to be used in the application. Then call the FMSTR_Recorder func-
tion periodically in the code where the data recording should occur. A typical place to call the
Recorder routine is at the timer or PWM interrupts, but it can be anywhere else. The exam-
ple applications provided together with the driver code call the FMSTR_Recorder in the main
application loop.

In applications where FMSTR_Recorder is called periodically with a constant period, specify the
period in the Recorder configuration structure before calling FMSTR_RecorderCreate. This set-
ting enables the PC Host FreeMASTER tool to display the X-axis of the Recorder graph properly
scaled for the time domain.

Driver usage Start using or evaluating FreeMASTER by opening some of the example applica-
tions available in the driver setup package.

Follow these steps to enable the basic FreeMASTER connectivity in the application:

• Make sure that all *.c files of the FreeMASTER driver from the
src/common/platforms/[your_platform] folder are a part of the project. See Driver files
for more details.

• Configure the FreeMASTER driver by creating or editing the freemaster_cfg.h file and by
saving it into the application project directory. See Driver configuration for more details.

• Include the freemaster.h file into any application source file that makes the FreeMASTER
API calls.

• Initialize the Serial or CAN modules. Set the baud rate, parity, and other parameters of
the communication. Do not enable the communication interrupts in the interrupt mask
registers.

• For the FMSTR_LONG_INTR and FMSTR_SHORT_INTR modes, install the application-
specific interrupt routine and call the FMSTR_SerialIsr or FMSTR_CanIsr functions from
this handler.

• Call the FMSTR_Init function early on in the application initialization code.

• Call the FMSTR_RecorderCreate functions for each Recorder instance to enable the
Recorder feature.

• In the main application loop, call the FMSTR_Poll API function periodically when the appli-
cation is idle.

• For the FMSTR_SHORT_INTR and FMSTR_LONG_INTRmodes, enable the interrupts globally
so that the interrupts can be handled by the CPU.

Communication troubleshooting The most common problem that causes communication is-
sues is a wrong baud rate setting or a wrong pin multiplexer setting of the target MCU. When

66 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

a communication between the PC Host running FreeMASTER and the target MCU cannot be es-
tablished, try enabling the FMSTR_DEBUG_TX option in the freemaster_cfg.h file and call the FM-
STR_Poll function periodically in the main application task loop.

With this feature enabled, the FreeMASTER driver periodically transmits a test frame through
the Serial or CAN lines. Use a logic analyzer or an oscilloscope to monitor the signals at the
communication pins of the CPU device to examine whether the bit rate and signal polarity are
configured properly.

Driver API

This section describes the driver Application Programmers’ Interface (API) needed to initialize
and use the FreeMASTER serial communication driver.

Control API There are three key functions to initialize and use the driver.

FMSTR_Init

Prototype
FMSTR_BOOL FMSTR_Init(void);

• Declaration: freemaster.h

• Implementation: freemaster_protocol.c

Description This function initializes the internal variables of the FreeMASTER driver and en-
ables the communication interface. This function does not change the configuration of the se-
lected communicationmodule. The hardware module must be initialized before the FMSTR_Init
function is called.

A call to this function must occur before calling any other FreeMASTER driver API functions.

FMSTR_Poll

Prototype
void FMSTR_Poll(void);

• Declaration: freemaster.h

• Implementation: freemaster_protocol.c

Description In the poll-driven or short interrupt modes, this function handles the protocol
decoding and execution (see Driver interrupt modes). In the poll-driven mode, this function also
handles the communication interface with the PC. Typically, the FMSTR_Poll function is called
during the “idle” time in the main application task loop.

To prevent the receive data overflow (loss) on a serial interface, make sure that the FMSTR_Poll
function is called at least once per the time calculated as:

N * Tchar

where:

1.6. Motor Control 67

MCUXpresso SDK Documentation, Release 25.09.00

• N is equal to the length of the receive FIFO queue (configured by the FM-
STR_COMM_RQUEUE_SIZE macro). N is 1 for the poll-driven mode.

• Tchar is the character time, which is the time needed to transmit or receive a single byte
over the SCI line.

Note: In the long interrupt mode, this function typically compiles as an empty function and can
still be called. It is worthwhile to call this function regardless of the interrupt mode used in
the application. This approach enables a convenient switching between the different interrupt
modes only by changing the configuration macros in the freemaster_cfg.h file.

FMSTR_SerialIsr / FMSTR_CanIsr

Prototype
void FMSTR_SerialIsr(void);
void FMSTR_CanIsr(void);

• Declaration: freemaster.h

• Implementation: hw-specific low-level driver C file

Description This function contains the interrupt-processing code of the FreeMASTER driver.
In long or short interrupt modes (see Driver interrupt modes), this function must be called from
the application interrupt service routine registered for the communication interrupt vector. On
platforms where the communication module uses multiple interrupt vectors, the application
should register a handler for all vectors and call this function at each interrupt.

Note: In a poll-driven mode, this function is compiled as an empty function and does not have
to be used.

Recorder API

FMSTR_RecorderCreate

Prototype
FMSTR_BOOL FMSTR_RecorderCreate(FMSTR_INDEX recIndex, FMSTR_REC_BUFF* buffCfg);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function registers a recorder instance and enables it to be used by the PC
Host tool. Call this function for all recorder instances from 0 to the maximum number de-
fined by the FMSTR_USE_RECORDER configuration option (minus one). An exception to this
requirement is the recorder of instance 0 which may be automatically configured by FM-
STR_Init when the freemaster_cfg.h configuration file defines the FMSTR_REC_BUFF_SIZE and
FMSTR_REC_TIMEBASE options.

For more information, see Configurable items.

FMSTR_Recorder

68 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Prototype
void FMSTR_Recorder(FMSTR_INDEX recIndex);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function takes a sample of the variables being recorded using the FreeMAS-
TER Recorder instance recIndex. If the selected Recorder is not active when the FMSTR_Recorder
function is being called, the function returns immediately. When the Recorder is active, the val-
ues of the variables being recorded are copied into the recorder buffer and the trigger conditions
are evaluated.

If a trigger condition is satisfied, the Recorder enters the post-triggermode, where it counts down
the follow-up samples (number of FMSTR_Recorder function calls) and de-activates the Recorder
when the required post-trigger samples are finished.

The FMSTR_Recorder function is typically called in the timer or PWM interrupt service routines.
This function can also be called in the application main loop (for testing purposes).

FMSTR_RecorderTrigger

Prototype
void FMSTR_RecorderTrigger(FMSTR_INDEX recIndex);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function forces the Recorder trigger condition to happen, which causes the
Recorder to be automatically deactivated after the post-trigger samples are sampled. Use this
function in the application code for programmatic control over the Recorder triggering. This
can be useful when a more complex triggering conditions need to be used.

Fast Recorder API The Fast Recorder feature is not available in the FreeMASTERdriver version
3. This feature was heavily dependent on the target platform and it was only available for the
56F8xxxx DSCs.

TSA Tables When the TSA is enabled in the FreeMASTER driver configuration file (by setting
the FMSTR_USE_TSA macro to a non-zero value), it defines the so-called TSA tables in the appli-
cation. This section describes the macros that must to be used to define the TSA tables.

There can be any number of TSA tables spread across the application source files. There must
be always exactly one TSA Table List defined, which informs the FreeMASTER driver about the
active TSA tables.

When there is at least one TSA table and one TSA Table List defined in the application, the TSA
information automatically appears in the FreeMASTER symbols list. The symbols can then be
used to create FreeMASTER variables for visualization or control.

1.6. Motor Control 69

MCUXpresso SDK Documentation, Release 25.09.00

TSA table definition The TSA table describes the static or global variables together with their
address, size, type, and access-protection information. If the TSA-described variables are of a
structure type, the TSA table may also describe this type and provide an access to the individual
structure members of the variable.

The TSA table definition begins with the FMSTR_TSA_TABLE_BEGIN macro with a table_id iden-
tifying the table. The table_id shall be a valid C-langiage symbol.

FMSTR_TSA_TABLE_BEGIN(table_id)

After this opening macro, the TSA descriptors are placed using these macros:

/* Adding variable descriptors */
FMSTR_TSA_RW_VAR(name, type) /* read/write variable entry */
FMSTR_TSA_RO_VAR(name, type) /* read-only variable entry */

/* Description of complex data types */
FMSTR_TSA_STRUCT(struct_name) /* structure or union type entry */
FMSTR_TSA_MEMBER(struct_name, member_name, type) /* structure member entry */

/* Memory blocks */
FMSTR_TSA_RW_MEM(name, type, address, size) /* read/write memory block */
FMSTR_TSA_RO_MEM(name, type, address, size) /* read-only memory block */

The table is closed using the FMSTR_TSA_TABLE_END macro:

FMSTR_TSA_TABLE_END()

TSA descriptor parameters The TSA descriptor macros accept these parameters:

• name—variable name. The variable must be defined before the TSA descriptor references
it.

• type — variable or member type. Only one of the pre-defined type constants may be used
(see below).

• struct_name — structure type name. The type must be defined (typedef) before the TSA
descriptor references it.

• member_name— structure member name.

Note: The structure member descriptors (FMSTR_TSA_MEMBER) must immediately follow the
parent structure descriptor (FMSTR_TSA_STRUCT) in the table.

Note: To write-protect the variables in the FreeMASTER driver (FMSTR_TSA_RO_VAR), enable
the TSA-Safety feature in the configuration file.

TSA variable types The table lists type identifiers which can be used in TSA descriptors:

70 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Constant Description
FMSTR_TSA_UINTn Unsigned integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_SINTn Signed integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_FRACn Fractional number of size n bits (n=16,32,64).
FMSTR_TSA_FRAC_Q(m,n) Signed fractional number in general Q form (m+n+1 total bits)
FMSTR_TSA_FRAC_UQ(m,n) Unsigned fractional number in general UQ form (m+n total

bits)
FMSTR_TSA_FLOAT 4-byte standard IEEE floating-point type
FMSTR_TSA_DOUBLE 8-byte standard IEEE floating-point type
FMSTR_TSA_POINTER Generic pointer type defined (platform-specific 16 or 32 bit)
FM-
STR_TSA_USERTYPE(name)

Structure or union type declared with FMSTR_TSA_STRUCT
record

TSA table list There shall be exactly one TSA Table List in the application. The list contains
one entry for each TSA table defined anywhere in the application.

The TSA Table List begins with the FMSTR_TSA_TABLE_LIST_BEGIN macro and continues with
the TSA table entries for each table.

FMSTR_TSA_TABLE_LIST_BEGIN()

FMSTR_TSA_TABLE(table_id)
FMSTR_TSA_TABLE(table_id2)
FMSTR_TSA_TABLE(table_id3)
...

The list is closed with the FMSTR_TSA_TABLE_LIST_END macro:

FMSTR_TSA_TABLE_LIST_END()

TSA Active Content entries FreeMASTER v2.0 and higher supports TSA Active Content, en-
abling the TSA tables to describe the memory-mapped files, virtual directories, and URL hyper-
links. FreeMASTER can access such objects similarly to accessing the files and folders on the
local hard drive.

With this set of TSA entries, the FreeMASTER pages can be embedded directly into the target
MCU flash and accessed by FreeMASTER directly over the communication line. The HTML-coded
pages rendered inside the FreeMASTER window can access the TSA Active Content resources
using a special URL referencing the fmstr: protocol.

This example provides an overview of the supported TSA Active Content entries:

FMSTR_TSA_TABLE_BEGIN(files_and_links)

/* Directory entry applies to all subsequent MEMFILE entries */
FMSTR_TSA_DIRECTORY(”/text_files”) /* entering a new virtual directory */

/* The readme.txt file will be accessible at the fmstr://text_files/readme.txt URL */
FMSTR_TSA_MEMFILE(”readme.txt”, readme_txt, sizeof(readme_txt)) /* memory-mapped file */

/* Files can also be specified with a full path so the DIRECTORY entry does not apply */
FMSTR_TSA_MEMFILE(”/index.htm”, index, sizeof(index)) /* memory-mapped file */
FMSTR_TSA_MEMFILE(”/prj/demo.pmp”, demo_pmp, sizeof(demo_pmp)) /* memory-mapped file */

/* Hyperlinks can point to a local MEMFILE object or to the Internet */
FMSTR_TSA_HREF(”Board's Built-in Welcome Page”, ”/index.htm”)
FMSTR_TSA_HREF(”FreeMASTER Home Page”, ”http://www.nxp.com/freemaster”)

(continues on next page)

1.6. Motor Control 71

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)

/* Project file links simplify opening the projects from any URLs */
FMSTR_TSA_PROJECT(”Demonstration Project (embedded)”, ”/prj/demo.pmp”)
FMSTR_TSA_PROJECT(”Full Project (online)”, ”http://mycompany.com/prj/demo.pmp”)

FMSTR_TSA_TABLE_END()

TSA API

FMSTR_SetUpTsaBuff

Prototype
FMSTR_BOOL FMSTR_SetUpTsaBuff(FMSTR_ADDR buffAddr, FMSTR_SIZE buffSize);

• Declaration: freemaster.h

• Implementation: freemaster_tsa.c

Arguments
• buffAddr [in] - address of the memory buffer for the dynamic TSA table

• buffSize [in] - size of the memory buffer which determines the maximum number of TSA
entries to be added in the runtime

Description This functionmust be used to assign the RAMmemory buffer to the TSA subsystem
when FMSTR_USE_TSA_DYNAMIC is enabled. The memory buffer is then used to store the TSA
entries added dynamically to the runtime TSA table using the FMSTR_TsaAddVar function call.
The runtime TSA table is processed by the FreeMASTER PC Host tool along with all static tables
as soon as the communication port is open.

The size of the memory buffer determines the number of TSA entries that can be added dynam-
ically. Depending on the MCU platform, one TSA entry takes either 8 or 16 bytes.

FMSTR_TsaAddVar

Prototype
FMSTR_BOOL FMSTR_TsaAddVar(FMSTR_TSATBL_STRPTR tsaName, FMSTR_TSATBL_STRPTR␣
↪→tsaType,

FMSTR_TSATBL_VOIDPTR varAddr, FMSTR_SIZE32 varSize,
FMSTR_SIZE flags);

• Declaration: freemaster.h

• Implementation: freemaster_tsa.c

Arguments
• tsaName [in] - name of the object

• tsaType [in] - name of the object type

• varAddr [in] - address of the object

72 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

• varSize [in] - size of the object

• flags [in] - access flags; a combination of these values:

– FMSTR_TSA_INFO_RO_VAR— read-only memory-mapped object (typically a variable)

– FMSTR_TSA_INFO_RW_VAR— read/write memory-mapped object

– FMSTR_TSA_INFO_NON_VAR — other entry, describing structure types, structure
members, enumerations, and other types

Description This function can be called only when the dynamic TSA table is enabled by the
FMSTR_USE_TSA_DYNAMIC configuration option and when the FMSTR_SetUpTsaBuff function
call is made to assign the dynamic TSA table memory. This function adds an entry into the dy-
namic TSA table. It can be used to register a read-only or read/write memory object or describe
an item of the user-defined type.

See TSA table definition for more details about the TSA table entries.

Application Commands API

FMSTR_GetAppCmd

Prototype
FMSTR_APPCMD_CODE FMSTR_GetAppCmd(void);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Description This function can be used to detect if there is an Application Command waiting
to be processed by the application. If no command is pending, this function returns the FM-
STR_APPCMDRESULT_NOCMD constant. Otherwise, this function returns the code of the Appli-
cation Command that must be processed. Use the FMSTR_AppCmdAck call to acknowledge the
Application Command after it is processed and to return the appropriate result code to the host.

The FMSTR_GetAppCmd function does not report the commands for which a callback handler
function exists. If the FMSTR_GetAppCmd function is called when a callback-registered com-
mand is pending (and before it is actually processed by the callback function), this function re-
turns FMSTR_APPCMDRESULT_NOCMD.

FMSTR_GetAppCmdData

Prototype
FMSTR_APPCMD_PDATA FMSTR_GetAppCmdData(FMSTR_SIZE* dataLen);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• dataLen [out] - pointer to the variable that receives the length of the data available in the
buffer. It can be NULL when this information is not needed.

1.6. Motor Control 73

MCUXpresso SDK Documentation, Release 25.09.00

Description This function can be used to retrieve the Application Command data when the
application determines that an Application Command is pending (see FMSTR_GetAppCmd).

There is just a single buffer to hold the Application Command data (the buffer length is FM-
STR_APPCMD_BUFF_SIZE bytes). If the data are to be used in the application after the command
is processed by the FMSTR_AppCmdAck call, copy the data out to a private buffer.

FMSTR_AppCmdAck

Prototype
void FMSTR_AppCmdAck(FMSTR_APPCMD_RESULT resultCode);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• resultCode [in] - the result code which is to be returned to FreeMASTER

Description This function is used when the Application Command processing finishes in the
application. The resultCode passed to this function is returned back to the host and the driver is
re-initialized to expect the next Application Command.

After this function is called and before the next Application Command arrives, the return value
of the FMSTR_GetAppCmd function is FMSTR_APPCMDRESULT_NOCMD.

FMSTR_AppCmdSetResponseData

Prototype
void FMSTR_AppCmdSetResponseData(FMSTR_ADDR resultDataAddr, FMSTR_SIZE resultDataLen);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• resultDataAddr [in] - pointer to the data buffer that is to be copied to the Application Com-
mand data buffer

• resultDataLen [in] - length of the data to be copied. It must not exceed the FM-
STR_APPCMD_BUFF_SIZE value.

Description This function can be used before the Application Command processing finishes,
when there are data to be returned back to the PC.

The response data buffer is copied into the Application Command data buffer, from where it is
accessed when the host requires it. Do not use FMSTR_GetAppCmdData and the data buffer after
FMSTR_AppCmdSetResponseData is called.

Note: The current version of FreeMASTER does not support the Application Command response
data.

74 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_RegisterAppCmdCall

Prototype
FMSTR_BOOL FMSTR_RegisterAppCmdCall(FMSTR_APPCMD_CODE appCmdCode, FMSTR_
↪→PAPPCMDFUNC callbackFunc);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• appCmdCode [in] - the Application Command code for which the callback is to be registered

• callbackFunc [in] - pointer to the callback function that is to be registered. Use NULL to
unregister a callback registered previously with this Application Command.

Return value This function returns a non-zero value when the callback function was success-
fully registered or unregistered. It can return zero when trying to register a callback function
for more than FMSTR_MAX_APPCMD_CALLS different Application Commands.

Description This function can be used to register the given function as a callback handler for
the Application Command. The Application Command is identified using single-byte code. The
callback function is invoked automatically by the FreeMASTER driverwhen the protocol decoder
obtains a request to get the application command result code.

The prototype of the callback function is

FMSTR_APPCMD_RESULT HandlerFunction(FMSTR_APPCMD_CODE nAppcmd,
FMSTR_APPCMD_PDATA pData, FMSTR_SIZE nDataLen);

Where:

• nAppcmd -Application Command code

• pData—points to the Application Command data received (if any)

• nDataLen—information about the Application Command data length

The return value of the callback function is used as the Application Command Result Code and
returned to FreeMASTER.

Note: The FMSTR_MAX_APPCMD_CALLS configurationmacro defines howmanydifferent Appli-
cation Commands may be handled by a callback function. When FMSTR_MAX_APPCMD_CALLS
is undefined or defined as zero, the FMSTR_RegisterAppCmdCall function always fails.

Pipes API

FMSTR_PipeOpen

Prototype
FMSTR_HPIPE FMSTR_PipeOpen(FMSTR_PIPE_PORT pipePort, FMSTR_PPIPEFUNC pipeCallback,
↪→

FMSTR_ADDR pipeRxBuff, FMSTR_PIPE_SIZE pipeRxSize,
FMSTR_ADDR pipeTxBuff, FMSTR_PIPE_SIZE pipeTxSize,
FMSTR_U8 type, const FMSTR_CHAR *name);

1.6. Motor Control 75

MCUXpresso SDK Documentation, Release 25.09.00

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipePort [in] - port number that identifies the pipe for the client

• pipeCallback [in] - pointer to the callback function that is calledwhenever a pipe data status
changes

• pipeRxBuff [in] - address of the receive memory buffer

• pipeRxSize [in] - size of the receive memory buffer

• pipeTxBuff [in] - address of the transmit memory buffer

• pipeTxSize [in] - size of the transmit memory buffer

• type [in] - a combination of FMSTR_PIPE_MODE_xxx and FMSTR_PIPE_SIZE_xxx constants
describing primary pipe data format and usage. This type helps FreeMASTER decide how
to access the pipe by default. Optional, use 0 when undetermined.

• name [in] - user name of the pipe port. This name is visible to the FreeMASTER user when
creating the graphical pipe interface.

Description This function initializes a new pipe and makes it ready to accept or send the data
to the PCHost client. The receivememory buffer is used to store the received data before they are
read out by the FMSTR_PipeRead call. When this buffer gets full, the PC Host client denies the
data transmission into this pipe until there is enough free space again. The transmit memory
buffer is used to store the data transmitted by the application to the PC Host client using the
FMSTR_PipeWrite call. The transmit buffer can get full when the PC Host is disconnected or
when it is slow in receiving and reading out the pipe data.

The function returns the pipe handle which must be stored and used in the subsequent calls to
manage the pipe object.

The callback function (if specified) is called whenever new data are received through the pipe
and available for reading. This callback is also called when the data waiting in the transmit
buffer are successfully pushed to the PC Host and the transmit buffer free space increases. The
prototype of the callback function provided by the user application must be as follows. The
PipeHandler name is only a placeholder and must be defined by the application.

void PipeHandler(FMSTR_HPIPE pipeHandle);

FMSTR_PipeClose

Prototype
void FMSTR_PipeClose(FMSTR_HPIPE pipeHandle);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

76 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Description This function de-initializes the pipe object. No data can be received or sent on the
pipe after this call.

FMSTR_PipeWrite

Prototype
FMSTR_PIPE_SIZE FMSTR_PipeWrite(FMSTR_HPIPE pipeHandle, FMSTR_ADDR pipeData,

FMSTR_PIPE_SIZE pipeDataLen, FMSTR_PIPE_SIZE writeGranularity);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

• pipeData [in] - address of the data to be written

• pipeDataLen [in] - length of the data to be written

• writeGranularity [in] - size of the minimum unit of data which is to be written

Description This function puts the user-specified data into the pipe’s transmit memory buffer
and schedules it for transmission. This function returns the number of bytes that were success-
fully written into the buffer. This number may be smaller than the number of the requested
bytes if there is not enough free space in the transmit buffer.

The writeGranularity argument can be used to split the data into smaller chunks, each of the
size given by the writeGranularity value. The FMSTR_PipeWrite function writes as many data
chunks as possible into the transmit buffer and does not attempt to write an incomplete chunk.
This feature can prove to be useful to avoid the intermediate caching when writing an array of
integer values or other multi-byte data items. When making the nGranularity value equal to the
nLength value, all data are considered as one chunk which is either written successfully as a
whole or not at all. The nGranularity value of 0 or 1 disables the data-chunk approach.

FMSTR_PipeRead

Prototype
FMSTR_PIPE_SIZE FMSTR_PipeRead(FMSTR_HPIPE pipeHandle, FMSTR_ADDR pipeData,

FMSTR_PIPE_SIZE pipeDataLen, FMSTR_PIPE_SIZE readGranularity);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

• pipeData [in] - address of the data buffer to be filled with the received data

• pipeDataLen [in] - length of the data to be read

• readGranularity [in] - size of the minimum unit of data which is to be read

1.6. Motor Control 77

MCUXpresso SDK Documentation, Release 25.09.00

Description This function copies the data received from the pipe from its receive buffer to the
user buffer for further processing. The function returns the number of bytes that were success-
fully copied to the buffer. This number may be smaller than the number of the requested bytes
if there is not enough data bytes available in the receive buffer.

The readGranularity argument can be used to copy the data in larger chunks in the same way as
described in the FMSTR_PipeWrite function.

API data types This section describes the data types used in the FreeMASTER driver. The infor-
mationprovidedhere canbeusefulwhenmodifying or porting the FreeMASTERCommunication
Driver to new NXP platforms.

Note: The licensing conditions prohibit use of FreeMASTER and the FreeMASTER Communica-
tion Driver with non-NXP MPU or MCU products.

Public common types The table belowdescribes the public data types used in the FreeMASTER
driver API calls. The data types are declared in the freemaster.h header file.

78 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Type name Description
FM-
STR_ADDR

Data type used to hold the memory address. Onmost platforms, this is normally
a C-pointer, but it may also be a pure integer type.

For exam-
ple, this
type is
defined as
long inte-
ger on the
56F8xxx
platform
where
the 24-bit
addresses
must be
supported,
but the
C-pointer
may be
only 16
bits wide
in some
compiler
configura-
tions.
FM-
STR_SIZE

Data type used to hold the memory block size.

It is re-
quired
that this
type is un-
signed and
at least 16
bits wide
integer.
FM-
STR_BOOL

Data type used as a general boolean type.

This type
is used
only in
zero/non-
zero con-
ditions in
the driver
code.
FM-
STR_APPCMD_CODE

Data type used to hold the Application Command code.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCMD_DATA

Data type used to create the Application Command data buffer.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCMD_RESULT

Data type used to hold the Application Command result code.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_PAPPCMDFUNC

Pointer to the Application Command handler function.

See FM-
STR_RegisterAppCmdCall
for more
details.

1.6. Motor Control 79

MCUXpresso SDK Documentation, Release 25.09.00

Public TSA types The table describes the TSA-specific public data types. These types are de-
clared in the freemaster_tsa.h header file, which is included in the user application indirectly by
the freemaster.h file.

FM-
STR_TSA_TINDEX

Data type used to hold a descriptor index in the TSA table or a table index in the
list of TSA tables.

By default,
this is
defined
as FM-
STR_SIZE.
FM-
STR_TSA_TSIZE

Data type used to hold a memory block size, as used in the TSA descriptors.

By default,
this is
defined
as FM-
STR_SIZE.

Public Pipes types The table describes the data types used by the FreeMASTER Pipes API:

FM-
STR_HPIPE

Pipe handle that identifies the open-pipe object.

Generally,
this is a
pointer
to a void
type.
FM-
STR_PIPE_PORT

Integer type required to hold at least 7 bits of data.

Generally,
this is an
unsigned
8-bit or
16-bit type.
FM-
STR_PIPE_SIZE

Integer type required to hold at least 16 bits of data.

This is
used to
store the
data buffer
sizes.
FM-
STR_PPIPEFUNC

Pointer to the pipe handler function.

See FM-
STR_PipeOpen
for more
details.

Internal types The table describes the data types used internally by the FreeMASTER driver.
The data types are declared in the platform-specific header file and they are not available in the
application code.

80 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

FMSTR_U8 The smallest memory entity.
On the vast
majority of
platforms,
this is an
unsigned
8-bit inte-
ger.
On the
56F8xx
DSP plat-
form, this
is defined
as an un-
signed
16-bit inte-
ger.
FM-
STR_U16

Unsigned 16-bit integer.

FM-
STR_U32

Unsigned 32-bit integer.

FMSTR_S8 Signed 8-bit integer.
FM-
STR_S16

Signed 16-bit integer.

FM-
STR_S32

Signed 32-bit integer.

FM-
STR_FLOAT

4-byte standard IEEE floating-point type.

FM-
STR_FLAGS

Data type forming a union with a structure of flag bit-fields.

FM-
STR_SIZE8

Data type holding a general size value, at least 8 bits wide.

FM-
STR_INDEX

General for-loop index. Must be signed, at least 16 bits wide.

FM-
STR_BCHR

A single character in the communication buffer.

Typically,
this is
an 8-bit
unsigned
integer,
except for
the DSP
platforms
where it
is a 16-bit
integer.
FM-
STR_BPTR

A pointer to the communication buffer (an array of FMSTR_BCHR).

Document references

Links
• This document online: https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/
freemaster/doc/index.html

1.6. Motor Control 81

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html

MCUXpresso SDK Documentation, Release 25.09.00

• FreeMASTER tool home: www.nxp.com/freemaster

• FreeMASTER community area: community.nxp.com/community/freemaster

• FreeMASTER GitHub code repo: https://github.com/nxp-mcuxpresso/mcux-freemaster

• MCUXpresso SDK home: www.nxp.com/mcuxpresso

• MCUXpresso SDK builder: mcuxpresso.nxp.com/en

Documents
• FreeMASTER Usage Serial Driver Implementation (document AN4752)

• Integrating FreeMASTER Time Debugging ToolWith CodeWarrior ForMicrocontrollers v10.X
Project (document AN4771)

• Flash Driver Library For MC56F847xx And MC56F827xx DSC Family (document AN4860)

Revision history This Table summarizes the changes done to this document since the initial
release.

82 Chapter 1. Middleware

https://www.nxp.com/freemaster
https://community.nxp.com/community/freemaster
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://www.nxp.com/mcuxpresso
https://mcuxpresso.nxp.com/en
http://www.nxp.com/doc/AN4752
http://www.nxp.com/doc/AN4771
http://www.nxp.com/doc/AN4860

MCUXpresso SDK Documentation, Release 25.09.00

Revi-
sion

Date Description

1.0 03/2006 Limited initial release
2.0 09/2007 Updated for FreeMASTER version. New Freescale doc-

ument template used.
2.1 12/2007 Added description of the newFast Recorder feature and

its API.
2.2 04/2010 Added support for MPC56xx platform, Added new API

for use CAN interface.
2.3 04/2011 Added support for Kxx Kinetis platform andMQX oper-

ating system.
2.4 06/2011 Serial driver update, adds support for USB CDC inter-

face.
2.5 08/2011 Added Packet Driven BDM interface.
2.7 12/2013 Added FLEXCAN32 interface, byte access and isr call-

back configuration option.
2.8 06/2014 Removed obsolete license text, see the software pack-

age content for up-to-date license.
2.9 03/2015 Update for driver version 1.8.2 and 1.9: FreeMAS-

TER Pipes, TSA Active Content, LIN Transport Layer
support, DEBUG-TX communication troubleshooting,
Kinetis SDK support.

3.0 08/2016 Update for driver version 2.0: Added support for
MPC56xx, MPC57xx, KEAxx and S32Kxx platforms.
New NXP document template as well as new license
agreement used. added MCAN interface. Folders struc-
ture at the installation destination was rearranged.

4.0 04/2019 Update for driver released as part of FreeMASTER v3.0
and MCUXpresso SDK 2.6. Updated to match new V4
serial communication protocol and new configuration
options. This version of the document removes sub-
stantial portion of outdated information related to S08,
S12, ColdFire, Power and other legacy platforms.

4.1 04/2020 Minor update for FreeMASTER driver included in
MCUXpresso SDK 2.8.

4.2 09/2020 Added example applications description and informa-
tion about the MCUXpresso Config Tools. Fixed the
pipe-related API description.

4.3 10/2024 Added description ofNetwork and Segger J-Link RTT in-
terface configuration. Accompanying the MCUXpresso
SDK version 24.12.00.

4.4 04/2025 Added Zephyr-specific information. Accompanying the
MCUXpresso SDK version 25.06.00.

1.7 Multimedia

1.7.1 Audio Voice

Audio Voice Components

MCUXpresso SDK : audio-voice-components

1.7. Multimedia 83

MCUXpresso SDK Documentation, Release 25.09.00

Overview This repository is for MCUXpresso SDK audio-voice-components middleware deliv-
ery and it contains the components officially provided in NXP MCUXpresso SDK. This repos-
itory is part of the MCUXpresso SDK overall delivery which is composed of several sub-
repositories/projects. Navigate to the top/parent repository (mcuxsdk-manifests) for the com-
plete delivery of MCUXpresso SDK.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit Audio Voice Components - Documentation to review details on the contents in this sub-repo.

Setup Instructions on how to install theMCUXpresso SDK provided fromGitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution Contributions are not currently accepted. Guidelines to contributewill be posted
in the future.

Overview This repository allows users to add additional functionality to the Maestro Audio
framework. This structure is designed for integration with Maestro and is not intended for stan-
dalone use. For information on the use of individual components, please refer to the Maestro
programmer’s guide.

This repository acts as Zephyr module, to be able to use these libraries in Zephyr build system.

Content
• asrc - Libraries and public files of Asynchronous Sample Rate Converter, version 1.0.0

• ssrc - Libraries and public files of Synchronous Sample Rate Converter, version 1.0.0

• opus - Source files of Opus decoder and encoder, version 1.3.1

• opusfile - Source files for Opus streams in the Ogg container, version 0.12

• ogg - Source files of Ogg container, version 1.3.5

• decoders - Libraries and public files of following audio decoders:

– aac - AAC decoder, version 1.0.0

– flac - FLAC decoder, version 1.0.0

– mp3 - MP3 decoder, version 1.0.0

– wav - WAV decoder, version 1.0.0

• zephyr/ - Files allowing usage of the libraries in Zephyr build

Following table contains information about libraries and source files availability:

Asynchronous Sample Rate Converter TheAsynchronous Sample Rate Converter (ASRC) soft-
ware module compensates the drift between two mono audio signals. This is not a frequency
converter and so the nominal signal frequency is the same before and after the ASRC. More de-
tails about ASRC are available in the User Guide, which is located in asrc\doc\.

84 Chapter 1. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/audio_voice/components/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation
https://github.com/nxp-mcuxpresso/maestro
https://github.com/nxp-mcuxpresso/maestro
https://github.com/nxp-mcuxpresso/maestro/blob/main/doxygen/ProgrammersGuide.md

MCUXpresso SDK Documentation, Release 25.09.00

Synchronous Sample Rate Converter The Synchronous Sample Rate Converter (SSRC) soft-
ware module converts an audio signal (mono or stereo) with a certain sampling frequency to
an audio signal with another sampling frequency. More details about SSRC are available in the
User Guide.

Opus For Opus decoder and encoder documentation please see following link: opus.

Opus File The Opus File provides a API for decoding and basic manipulation of Opus streams
in Ogg container and depends on Opus and Ogg libraries. For Opus File documentation please
see following link: opusfile.

Ogg Container For Ogg container documentation please see following link: ogg.

Decoders Each decoder contains libraries for supported processor and toolchain (see table
above), corresponding Public API file and documentation folder.

AAC For decoder features please see aacdec, for API Usage please see aacd_ug.

FLAC For decoder features please see flacdec, for API Usage please see flacd_ug.

MP3 For decoder features please seemp3dec, for API Usage please seemp3d_ug.

WAV For decoder features please see wavdec, for API Usage please see wavd_ug.

Zephyr build To add library into the Zephyr build, add CON-
FIG_NXP_AUDIO_VOICE_COMPONENTS_* for specific libraries into your prj.conf. For
all configuration options, see zephyr/Kconfig.

List of supported libraries in Zephyr:

• Decoders:

– AAC

– FLAC

– MP3

– FLAC

– OPUS

• Encoders

– OPUS

AAC decoder

1.7. Multimedia 85

https://opus-codec.org/docs/opus_api-1.3.1/
https://opus-codec.org/docs/opusfile_api-0.12/index.html
https://xiph.org/ogg/doc/

MCUXpresso SDK Documentation, Release 25.09.00

AAC decoder features
• The AAC decoder implementation supports the following:

• Supported profile : AAC-LC

• Sampling rate : 8 kHz, 11.025 kHz, 12 kHz, 16 kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, 48
kHz

• Channel : stereo and mono

• Bits per samples : 16 bit

• Container format : (MPEG-2 Style)AAC transport format - ADTS and ADIF.

Specification and reference

Performance

Memory information The memory usage of the decoder in bytes is:

• Code/flash = 26332 + 19264 = 45596

• Data/RAM = 26832

Section Size
.text 26332
.ro & .const 19264
.bss 26832

CPU usage
• CPU core clock in MHz: 20.97.

Track type Duration of track in sec-
ond

Frame size in
bytes

Performance MIPS of codec (in
MHz)

48 kHz,
stereo

38 s 4096 12.2 MHz

API Usage of AAC Decoder

Overview
• This section describes the integration steps to call AAC decoder APIs by the application code.
During each step, the used data structures and functions are explained. All CCI public APIs
are defined in aac_cci.h header file. This file is located at \decoders\aac.

Configuration

Build Options AAC Decoder library is built with the following defined/enabled macros.

• There is no macro or define used to build the AAC decoder.

86 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Buffer Allocation
• The AAC decoder does not perform dynamic memory allocation. The application calls
the function AACDecoderGetMemorySize() to get the decoder memory requirements. This
function must be called before all other decoder functions are invoked.

• The application first gets the required memory size for the decoder, then allocates mem-
ory for the decoder structures. Structures contain Main Decoder parameters and decoder
information parameters.

• This function populates the required memory for the decoder and returns the required
memory size in bytes.

Initialization
• AACDecoderInit() functionmust be called before decodeAPI. This API allocates thememory
to decoder main structure and also initializes the decoder main structure parameters.

• It also registers the call back functions to the decoder, which is used by the decoder to read
or seek the input stream.

Decoding
• AACDecoderDecode() function is main decoding API of the decoder. This API decodes the
encoded input stream and fills the PCM output samples into decoder output PCM buffer.

• This API gives the information about the number of samples produced by the decoder and
also provides the pointer to the decoder output PCM samples buffer.

Seeking
• AACDecoderSeek() function calculates the actual frame boundary align offset from the un-
align seek offset and returns the actual seek offset. It also resets the decoder internal states
and variables.

Callback Usage All the callback functions are assigned to the respective pointers before the
codec initialization is called. Callback APIs are described below.

Read Callback API AAC Decoder read call back API reads the bytes from the input stream and
fills them into decoder internal bit stream buffer. It returns the number of bytes read from the
input stream.

Seek Callback API This call back API is for the seek operation.

Get File Position Callback API This call back API gives the current file position.

FLAC decoder

1.7. Multimedia 87

MCUXpresso SDK Documentation, Release 25.09.00

FLAC decoder features
• The FLAC decoder implementation support the following:

• Sampling rate: 8 kHz, 11.05 kHz, 12 kHz, 16 kHz, 22.05 kHz, 32 kHz, 44.1 kHz, and 48 kHz.

• Channel : stereo and mono

• Bits per samples : 16 bits

Specification and reference

Official website
• FLAC lossless audio codec is at https://xiph.org/flac.

Inbound licensing
• For licensing information please refer to FLAC’s official website:
https://xiph.org/flac/license.html.

Performance

Memory information The memory usage of the decoder in bytes is:

• Code/flash = 15744 + 2080 = 17824

• Data/RAM = 27936

Section Size
.text 15744
.ro & .const 2080
.bss 27936

CPU usage
• Output frame size: 16384 bytes.

• CPU core clock in MHz: 20.97.

Track type Duration of track in second Performance MIPS of codec (in MHz)
48 kHz, stereo 76 s 30.7 MHz
32 kHz, stereo 76 s 20.3 MHz
8 kHz, stereo 37 s 5.34 MHz

Following test cases are performed:
• Audio format listening test

• Audio quality test

For all above test cases, test tracks are played through the end without any distortion, glitching,
hanging, or crashing.

88 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

API Usage of FLAC Decoder

Overview
• This section describes the integration steps to call FLAC decoder APIs by the application
code. During each step the used data structures and functions are explained. All cci public
APIs are defined in flac_cci.h header file. This file is located at \decoders\flac\include.

Configuration

Build Options
• SUPPORT_16_BITS_ONLY :- This macro is used to enable 16bits per sample flac decoder.

• ASM :- This macro is used to enable ARM assembly macros for 24bits per sample flac de-
coder.

Buffer Allocation
• The FLAC decoder does not perform dynamic memory allocation. The application calls
the function FLACDecoderGetMemorySize() to get the decodermemory requirements. This
function must be called before all other decoder functions are invoked.

• The application first gets the requiredmemory size for the decoder and then allocatesmem-
ory for the decoder structures. Structures contain Main Decoder parameters and decoder
information parameters.

• This function populates the required memory for the decoder and returns the required
memory size in bytes.

Initialization
• FLACDecoderInit() function must be called before decode API. This API allocates the mem-
ory to decoder main structure and also initializes the decoder main structure parameters.

• It also registers the call back functions to the decoder, whichwill be used by decoder to read
or to seek the input stream.

Decoding
• FLACDecoderDecode() function is main decoding API of the decoder. This API decodes the
encoded input stream and fills the PCM output samples into decoder output PCM buffer.

• This API gives the information about the number of samples produced by the decoder and
also provides the pointer to the decoder output PCM samples buffer.

Seeking
• FLACDecoderSeek() function calculates the actual frame boundary align offset from the
unalign seek offset and returns the actual seek offset. It also resets the decoder internal
states and variables.

Callback Usage All the callback functions will be assigned to the respective pointers before the
codec initialization is called. Callback APIs are described below.

1.7. Multimedia 89

MCUXpresso SDK Documentation, Release 25.09.00

Read Callback API FLAC Decoder read call back API reads the bytes from the input stream and
fills them into decoder internal bit stream buffer. It returns the number of bytes read from the
input stream.

Seek Callback API This call back API is for the seek operation.

Get File Position Callback API This call back API gives the current file position.

MP3 decoder

MP3 decoder features
• MP3 decoder supports mpeg-1, mpeg-2, mpeg-2.5.

• All MP3 features supported , including joint stereo, mid-side stereo, intensity stereo, and
dual channel.

• Supported sampling rate: 8 kHz, 11.025 kHz, 12 kHz, 16 kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1
kHz and 48 kHz.

• Supported channel: stereo and mono

• Supported bits per samples: 16 bit

• Supported bit rate: 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, 176, 192, 224, 256,
320, 384, 416, and 448.

Performance

Memory information Thememory usage of the decoder (data obtained from IAR compiler) in
bytes is:

• Code/flash = 26884 + 18372 = 45256

• RAM = 16200

Section Size
.text 26884
.ro & .const 18372
.bss 16200

CPU usage The performance of the decoder was measured using the real hardware platform
(RT1060).

• CPU core clock in MHz: 600.

Track type Duration of track in
second

Frame size in
bytes

Performance MIPS of codec
(in MHz)

320 Kbps, 44.1 kHz,
stereo

358 s 2304 ~24 MHz

192 Kbps, 48 kHz,
stereo

10 s 2304 ~18 MHz

90 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

API Usage of MP3 Decoder

Overview
• This section describes the integration steps to callMP3decoderAPIs by the application code.
During each step the used data structures and functions are explained. All cci public APIs
are defined in mp3_cci.h header file. This file is located at \decoders\mp3.

Configuration

Build Options MP3 Decoder library is built with the following defined/enabled macros.

• There is no macro or define used to build the MP3 decoder.

Buffer Allocation
• The MP3 decoder does not perform dynamic memory allocation. The application calls
the function MP3DecoderGetMemorySize() to get the decoder memory requirements. This
function must be called before all other decoder functions are invoked.

• The application first gets the requiredmemory size for the decoder and then allocatesmem-
ory for the decoder structures. Structures contain Main Decoder parameters and decoder
information parameters.

• This function populates the required memory for the decoder and returns the required
memory size in bytes.

Initialization
• MP3DecoderInit() functionmust be called before decodeAPI. This API allocates thememory
to decoder main structure and also initializes the decoder main structure parameters.

• It also registers the call back functions to the decoder, whichwill be used by decoder to read
or to seek the input stream.

Decoding
• MP3DecoderDecode() function is main decoding API of the decoder. This API decodes the
encoded input stream and fills the PCM output samples into decoder output PCM buffer.

• This API gives the information about the number of samples produced by the decoder and
also provides the pointer to the decoder output PCM samples buffer.

Seeking
• MP3DecoderSeek() function calculates the actual frame boundary align offset from the un-
align seek offset and returns the actual seek offset. It also resets the decoder internal states
and variables.

Callback Usage All the callback functions will be assigned to the respective pointers before the
codec initialization is called. Callback APIs are described below.

Read Callback API MP3 Decoder read call back API reads the bytes from the input stream and
fills them into decoder internal bit stream buffer. It returns the number of bytes read from the
input stream.

1.7. Multimedia 91

MCUXpresso SDK Documentation, Release 25.09.00

Seek Callback API This call back API is for the seek operation.

Get File Position Callback API This call back API gives the current file position.

WAV decoder

WAV decoder features
• The WAV decoder implementation support the following:

• Sampling rate: 8 kHz, 11.025kHz, 16 kHz, 22.05 kHz, 32 kHz, 44.1 kHz, and 48 kHz.

• Channel: stereo and mono

• PCM format with 8/16/24 bits per sample.

Performance

Memory information The memory usage of the decoder in bytes is:

• Code/flash = 6260 + 342 = 6602

• Data/RAM = 16 + 20696 = 20712

Section Size
.text 6260
.ro & .const 342
.bss 20696
.data 16

CPU usage The performance of the decoder was measured using the decoder standalone unit
test.

• CPU core clock in MHz: 20.97 MHz.

Track type Duration of track in
second

Frame size in
bytes

Performance MIPS of codec (in
MHz)

48 kHz, stereo,
PCM

12 s 4096 9.68 MHz

Following test cases were performed:
• Audio format listening test

• Audio quality test

For all above test cases, test tracks are played through the end without any distortion, glitching,
hanging, or crashing.

API Usage of WAV Decoder

92 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Overview
• This section describes the integration steps to callMP3decoderAPIs by the application code.
During each step the used data structures and functions are explained. All cci public APIs
are defined in wav_cci.h header file. This file is located at \decoders\wav.

Configuration

Build Options WAV Decoder library is built with the following defined/enabled macros.

• There is no macro or define used to build the WAV decoder.

Buffer Allocation
• The WAV decoder does not perform dynamic memory allocation. The application calls
the functionWAVDecoderGetMemorySize() to get the decoder memory requirements. This
function must be called before all other decoder functions are invoked.

• The application first gets the requiredmemory size for the decoder and then allocatesmem-
ory for the decoder structures. Structures contain Main Decoder parameters and decoder
information parameters.

• This function populates the required memory for the decoder and returns the required
memory size in bytes.

Initialization
• WAVDecoderInit() function must be called before decode API. This API allocates the mem-
ory to decoder main structure and also initializes the decoder main structure parameters.

• It also registers the call back functions to the decoder, whichwill be used by decoder to read
or to seek the input stream.

Decoding
• WAVDecoderDecode() function is main decoding API of the decoder. This API decodes the
encoded input stream and fills the PCM output samples into decoder output PCM buffer.

• This API gives the information about the number of samples produced by the decoder and
also provides the pointer to the decoder output PCM samples buffer.

Seeking
• WAVDecoderSeek() function calculates the actual frame boundary align offset from the un-
align seek offset and returns the actual seek offset. It also resets the decoder internal states
and variables.

Callback Usage All the callback functions will be assigned to the respective pointers before the
codec initialization is called. Callback APIs are described below.

Read Callback API WAVDecoder read call back API reads the bytes from the input stream and
fills them into decoder internal bit stream buffer. It returns the number of bytes read from the
input stream.

Seek Callback API This call back API is for the seek operation.

1.7. Multimedia 93

MCUXpresso SDK Documentation, Release 25.09.00

Get File Position Callback API This call back API gives the current file position.

Synchronous Sample Rate Converter

Introduction The Synchronous Sample Rate Converter (SSRC) software module converts a
mono or stereo audio signal with a certain sampling frequency to an audio signal with a differ-
ent sampling frequency. The sample rate converter works synchronously, meaning that input
and output sampling rates are exactly known for a mutual clock reference.

To accomplish a professional sampling conversion quality and minimal system footprint, the
SRC SWmodule contains highly optimized components.

The SSRC module supports the following features.

• Multiple instances of the sample rate converter can run at the same time.

• Supported sampling frequencies: 32 kHz, 44.1 kHz, and 48 kHzplus the halves and the quar-
ters of these three sample rates. The input and output sample rates are freely selectable out
of the supported sampling rates

• Selectable Mono/Stereo Input/Output.

• Selectable quality level: high quality/ very high quality.

Acronyms Table 1 lists the acronyms used in this document.

AcronymDescription
Fs Sampling Frequency
Fs-
LOWow

Lowest sample rate used for the conversion Note: Input sample rate for up sampling
and the output sample rate for down sampling

FsIN Input sample rate
FsOUTOutput sample rate
MIPS Million Instructions Per Second
SSRC Synchronous sample rate converter
THD+NTotal Harmonic Distortion plus Noise Note: The THD+N is defined as the total power of

the unwanted signal divided by the power of the wanted signal. The wanted signal is
defined as a full scale, 1 kHz sine wave.

Parent topic:Introduction

Performance figures The Total Harmonic Distortion Plus Noise (THD+N) of the converted sig-
nals is below - 76 (high-quality mode) and - 85 (very high-quality mode) for signal frequencies
below 0.45*FsLOW (=90 % of the Nyquist range of the lowest sample clock)

Table 1 and Table 2 give the THD+N performance (FsIN on the vertical axis and FsOUT on the
horizontal axis) for the two supported quality levels. The numbers in the tables give the worst-
case THD+N measured for signal frequencies below 0.45*FsLOW. For each conversion ratio, 100
THD+Nmeasurements were executed with signal frequencies linearly spread over the complete
Nyquist range.

94 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

FsIN/ FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 -92.1 -79.7 -80.1 -80.1 -79.6 -80.2 -79.4 -79.1 -79.2
11025 -79 -92.9 -80 -79.9 -80.2 -79.8 -79.9 -79.5 -78.9
12000 -79 -79.2 -92.7 -80.1 -79.8 -80.3 -79.8 -79.8 -79.5
16000 -81.7 -78.8 -80.2 -93 -78.3 -77.7 -78.3 -78.3 -77.9
22050 -77.5 -81.8 -78.2 -79 -93 -79.9 -79.8 -80.3 -79.9
24000 -77.4 -77.9 -81.2 -79.1 -79.2 -92.5 -80.1 -79.8 -79.9
32000 -81 -77.5 -78.9 -81.2 -78.7 -80.1 -92.9 -79.7 -79.2
44100 -79.1 -81.2 -76.7 -77.8 -82 -78.2 -79.1 -93 -79.7
48000 -78.7 -78.8 -81.1 -77.6 -77.9 -81.8 -79.1 -79.3 -93

FsIN/ FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 -92.1 -86.6 -88.6 -91.5 -86.4 -89 -89.7 -89.3 -89.3
11025 -89.1 -92.9 -86.3 -86.3 -91.6 -86.3 -86.5 -89.7 -89.3
12000 -91.4 -88.4 -92.7 -89.6 -86.6 -91.5 -86.8 -86.6 -89.7
16000 -93.1 -88.4 -90.4 -93 -86.6 -88.8 -91.5 -86.5 -89.4
22050 -90.7 -93.5 -89.7 -89.3 -93 -86.5 -86.3 -91.5 -86.6
24000 -93.8 -90.5 -93.5 -91.7 -88.4 -92.5 -89.7 -86.6 -91.5
32000 -93.8 -91 -91.2 -93.3 -88.4 -90.5 -92.9 -86.7 -89
44100 -93.7 -93.6 -91.5 -90.6 -93.8 -89.8 -89.3 -93 -86.5
48000 -94.1 -92.6 -94 -94 -90.1 -93.7 -91.8 -88.4 -93

Parent topic:Introduction

Resource usage This section lists the memory and processing requirements for the SSRCmod-
ule.

Memory requirements The following are the memory requirements for the SSRC module.

Memory item Size in bytes
Instance memory (persistent) 548
Scratch memory (non-persistent) 15.536 1
Program memory for Arm9E and XScale 14k
Program memory for Arm7 15k

Parent topic:Resource usage
1 Worst case number for I/O buffers of 40 ms. If smaller I/O buffers are used, this number is
smaller. The required scratch memory is roughly equal to 2 times the buffer size on the highest
sample rate.

Processing requirements The following tables give theMIPS performance of the SSRCmodule.
The cycles are measured with zero wait state memory and for I/O buffers of 40 ms.

Note: The user processing 32-bit processing must refer to the very high-quality MIPS results.

On Arm7 and Arm9

1.7. Multimedia 95

MCUXpresso SDK Documentation, Release 25.09.00

FsIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 0.13 4.77 5.17 1.84 6.75 7.33 3.55 9.1 9.89
11025 5.42 0.18 5.58 6.84 2.53 7.75 9.71 4.89 10.31
12000 5.85 6.39 0.2 7.01 8.97 2.76 9.89 12.94 5.32
16000 1.69 7.74 7.99 0.26 9.54 10.33 3.68 13.5 14.65
22050 7.2 2.33 10.09 10.83 0.36 11.17 13.67 5.07 15.49
24000 7.79 8.33 2.53 11.7 12.78 0.39 14.03 17.94 5.51
32000 3.12 10.32 10.58 3.38 15.48 15.98 0.52 19.08 20.66
44100 9.96 4.3 13.65 14.4 4.65 20.18 21.67 0.72 22.34
48000 10.8 11.34 4.68 15.58 16.67 5.06 23.4 25.56 0.78

FsIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 0.07 7.71 8.24 2.28 10.5 11.28 4.41 13.44 14.48
11025 8.19 0.1 8.96 11.04 3.14 12 15.09 6.08 15.2
12000 8.76 9.52 0.1 11.3 14.48 3.41 15.36 20.07 6.61
16000 2.14 11.73 12.01 0.14 15.41 16.48 4.55 21 22.56
22050 10.78 2.94 15.39 16.38 0.19 17.92 22.08 6.27 24
24000 11.57 12.34 3.2 17.51 19.04 0.21 22.61 28.97 6.83
32000 4.19 15.48 15.77 4.27 23.46 24.01 0.28 30.83 32.96
44100 14.78 5.77 20.56 21.56 5.89 30.77 32.75 0.38 35.83
48000 15.92 16.7 6.28 23.15 24.69 6.41 35.02 38.08 0.42

FsIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 0.13 13.61 14.52 4.43 19.03 20.43 8.8 25.06 26.99
11025 14.85 0.18 15.91 19.47 6.1 21.82 27.35 12.13 28.38
12000 15.84 17.36 0.2 19.97 25.4 6.64 27.85 36.26 13.21
16000 4.25 21.24 21.79 0.26 27.22 29.03 8.86 38.07 40.85
22050 20.02 5.85 27.72 29.7 0.36 31.81 38.94 12.2 43.63
24000 21.45 22.98 6.37 31.68 34.71 0.39 39.94 50.8 13.28
32000 8.39 28.74 29.29 8.5 42.48 43.58 0.52 54.43 58.07
44100 28.11 11.57 38.05 40.03 11.71 55.43 59.4 0.72 63.62
48000 30.19 31.71 12.59 42.9 45.96 12.74 63.36 69.42 0.78

Parent topic:Processing requirements

On Arm9e and XScale

FsIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 0.03 1.14 1.25 0.54 1.95 2.14 1.04 3.85 4.23
11025 1.31 0.05 1.36 1.62 0.75 2.23 2.78 1.44 4.38
12000 1.43 1.57 0.05 1.68 2.13 0.82 2.84 3.72 1.57
16000 0.5 1.86 1.93 0.07 2.27 2.5 1.09 3.9 4.29
22050 2.19 0.69 2.42 2.61 0.1 2.72 3.24 1.5 4.46
24000 2.4 2.52 0.75 2.86 3.15 0.1 3.35 4.25 1.63
32000 0.92 3.12 3.18 1.01 3.72 3.86 0.14 4.55 4.99
44100 4.28 1.27 4.15 4.37 1.39 4.83 5.23 0.19 5.43
48000 4.7 4.9 1.39 4.8 5.03 1.51 5.72 6.3 0.21

96 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

FsIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 0.06 1.87 2.02 1.07 3.09 3.36 2.07 6.09 6.63
11025 2.27 0.09 2.25 2.66 1.47 3.56 4.4 2.85 7.01
12000 2.45 2.76 0.09 2.75 3.43 1.6 4.5 5.83 3.1
16000 0.99 3.23 3.36 0.13 3.73 4.05 2.14 6.17 6.72
22050 3.69 1.36 4.14 4.55 0.17 4.51 5.31 2.95 7.13
24000 4.01 4.28 1.48 4.9 5.51 0.19 5.51 6.85 3.21
32000 1.83 5.26 5.39 1.98 6.46 6.71 0.25 7.47 8.09
44100 7.22 2.52 6.94 7.38 2.72 8.27 9.1 0.35 9.02
48000 7.85 8.33 2.74 8.02 8.57 2.97 9.81 11.03 0.38

FsIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 0.03 1.21 1.33 0.61 2.08 2.29 1.17 4.1 4.51
11025 1.47 0.05 1.44 1.72 0.84 2.38 2.97 1.61 4.66
12000 1.62 1.76 0.05 1.78 2.26 0.91 3.03 3.98 1.75
16000 0.55 2.1 2.17 0.07 2.42 2.65 1.22 4.16 4.57
22050 2.49 0.76 2.73 2.95 0.1 2.88 3.45 1.68 4.75
24000 2.75 2.86 0.83 3.23 3.52 0.1 3.56 4.53 1.83
32000 1 3.56 3.63 1.11 4.2 4.34 0.14 4.84 5.3
44100 4.86 1.38 4.74 4.98 1.53 5.46 5.89 0.19 5.75
48000 5.38 5.55 1.5 5.5 5.71 1.66 6.47 7.05 0.21

FsIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 0.06 2.11 2.29 1.2 3.55 3.86 2.31 6.99 7.61
11025 2.62 0.09 2.52 3.01 1.66 4.07 5.07 3.19 8
12000 2.85 3.15 0.09 3.11 3.9 1.81 5.17 6.75 3.47
16000 1.09 3.73 3.85 0.13 4.22 4.57 2.41 7.1 7.72
22050 4.32 1.5 4.79 5.23 0.17 5.05 6.02 3.32 8.15
24000 4.74 4.99 1.64 5.69 6.3 0.19 6.22 7.8 3.61
32000 1.98 6.18 6.3 2.18 7.45 7.71 0.25 8.44 9.14
44100 8.43 2.72 8.18 8.64 3.01 9.59 10.47 0.35 10.1
48000 9.26 9.66 2.97 9.49 9.97 3.27 11.39 12.59 0.38

Parent topic:Processing requirements

On Cortex-A8 for worst case of 48000 Hz to 44100 Hz
Mode MIPs
Mono at High Quality 3.13
Stereo at High Quality 3.61
Mono at Very High Quality 4.13
Stereo at Very High Quality 6.52

Parent topic:Processing requirements

Parent topic:Resource usage
Parent topic:Introduction

Application programmers interface (API) This section describes the application program-
ming interface (API) libraries of the SSRC module.

1.7. Multimedia 97

MCUXpresso SDK Documentation, Release 25.09.00

Type definitions This section describes the type definitions of the SSRC module.

Types for allocation of instance and scratch memory The instance memory is the memory
that contains the state of one instance of the SSRC module. Multiple instances of the SSRC mod-
ule can exist, each with it is own instance memory. S memory is the memory that is only used
temporarily by the process function of the SSRC module. This memory can be used as scratch
memory by any other function running in the same thread as the SSRCmodule. Different threads
cannot share the scratch memories.

The application must allocate both the instance and the scratch memory. The SSRC module does
not allocate memory.

There is a data type available for both the instance and the scratch memory, namely
SSRC_Instance_t and SSRC_Scratch_t. The instance type is defined as structures of the correct
size in the SSRC header file. Both the instance and the scratch memory must be 4 bytes aligned.

Parent topic:Type definitions

LVM_Fs_en Definition:

typedef enum
{

LVM_FS_8000 = 0,
LVM_FS_11025 = 1,
LVM_FS_12000 = 2,
LVM_FS_16000 = 3,
LVM_FS_22050 = 4,
LVM_FS_24000 = 5,
LVM_FS_32000 = 6,
LVM_FS_44100 = 7,
LVM_FS_48000 = 8

} LVM_Fs_en;

Description:
Used to pass the input and the output sample rate to the SSRC.

Parent topic:Type definitions

LVM_Format_en Definition:

typedef enum
{

LVM_STEREO = 0,
LVM_MONOINSTEREO = 1,
LVM_MONO = 2

} LVM_Format_en;

Description:
The LVM_Format_en enumerated type is used to set the value of the SSRC data format.

The SSRC supports input data in two formatsMono and Stereo. For an input buffer of NumSamples
= N (meaning N sample pairs for Stereo and MonoInStereo or N samples for Mono), the format
of data in the buffer is as listed in Table 1:

98 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Sample Number Stereo MonoInStereo Mono
0 Left(0) Mono(0) Mono(0)
1 Right(0) Mono(0) Mono(1)
2 Left(1) Mono(1) Mono(2)
3 Right(1) Mono(1) Mono(3)
4 Left(2) Mono(2) Mono(4)
“ “ “ “
“ “ “ “
N-2 Left(N/2-1) Mono(N/2-1) Mono(N-2)
N-1 Right(N/2-1) Mono(N/2-1) Mono(N-1)
N Left(N/2) Mono(N/2) Not Used
N+1 Right(N/2) Mono(N/2) Not Used
N+2 Left(N/2+1) Mono(N/2+1) Not Used
N+3 Right(N/2+1) Mono(N/2+1) Not Used
“ “ “ Not Used
“ “ “ Not Used
2*N-2 Left(N-1) Mono(N-1) Not Used

Parent topic:Type definitions

SSRC_Quality_en Definition:

typedef enum
{

SSRC_QUALITY_HIGH = 0,
SSRC_QUALITY_VERY_HIGH = 1,
SSRC_QUALITY_DUMMY = LVM_MAXENUM

} SSRC_Quality_en;

Description:
Used to select the quality level of the SSRC. For details, see Performance figures. Selecting the
highest-quality level, comeswith a cost in the SSRCprocessing requirements. Therefore, it should
only be done for critical applications.

Parent topic:Type definitions

Instance parameters Definition:

typedef struct
{

SSRC_Quality_en Quality;
LVM_Fs_en SSRC_Fs_In;
LVM_Fs_en SSRC_Fs_Out;
LVM_Format_en SSRC_NrOfChannels;
short NrSamplesIn;
short NrSamplesOut;

} SSRC_Params_t;

Description:
Used to pass the SSRC instance parameters to the SSRCmodule. It is a structure that contains the
members for input sample rate, output sample rate, the number of channels, and the number of
samples on the input and output audio stream.

Parent topic:Type definitions

1.7. Multimedia 99

MCUXpresso SDK Documentation, Release 25.09.00

Nr of samples mode Definition:

typedef enum
{

SSRC_NR_SAMPLES_DEFAULT = 0,
SSRC_NR_SAMPLES_MIN = 1,
SSRC_NR_SAMPLES_DUMMY = LVM_MAXENUM

} SSRC_NR_SAMPLES_MODE_en;

Description:
The SSRC_NR_SAMPLES_MODE_en enumerated type specifies the two different modes that
can be used to retrieve the number of samples using the SSRC_GetNrSamples function.

Parent topic:Type definitions

Function return status Definition:

typedef enum
{

SSRC_OK = 0,
SSRC_INVALID_FS = 1,
SSRC_INVALID_NR_CHANNELS = 2,
SSRC_NULL_POINTER = 3,
SSRC_WRONG_NR_SAMPLES = 4,
SSRC_ALLINGMENT_ERROR = 5,
SSRC_INVALID_MODE = 6,
SSRC_INVALID_VALUE = 7,
SSRC_ALLINGMENT_ERROR = 8,
LVXXX_RETURNSTATUS_DUMMY = LVM_MAXENUM

} SSRC_ReturnStatus_en;

Description:
The SSRC_ReturnStatus_en enumerated type specifies the different error codes returned by the
API functions. For the exact meaning, see the individual function descriptions.

Parent topic:Type definitions
Parent topic:Application programmers interface (API)

Functions This section lists all the API functions of the SSRCmodule and explains their param-
eters.

SSRC_GetNrSamples Prototype:

SSRC_ReturnStatus_en SSRC_GetNrSamples
(SSRC_NR_SAMPLES_MODE_en Mode,
SSRC_Params_t* pSSRC_Params);

Description:
This function retrieves the number of samples or sample pairs for stereo used as an input and
as an output of the SSRC module.

100 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

NameType Description
ModeSSRC_NR_SAMPLES_MODE_enThere are two modes: - SSRC_NR_SAMPLES_DEFAULT: In this

mode, the function returns the number of samples for 40 ms blocks -
SSRC_NR_SAMPLES_MIN: the function returns the minimal number of sam-
ples supported for this conversion ratio. The SSRC_Init function accepts each
integer multiple of this ratio. Formula: blocksize (ms) = 1/gcd(Fs_In,Fs_Out)

pSSRC_ParamsSSRC_Params_t*Pointer to the instance parameters. The application fills in the values of the in-
put sample rate, the output sample rate, and the number of channels. Based on
this input, the SSRC_GetNrSamples fills in the values for the number of samples
for the input and the output audio stream.

Returns:

SSRC_OK When the function call succeeds.
SSRC_INVALID_FS When the requested input or output sampling rates are in-

valid.
SSRC_INVALID_NR_CHANNELSWhen the channel format is not equal to LVM_MONO or

LVM_STEREO.
SSRC_NULL_POINTER When pSSRC_Params is a NULL pointer.
SSRC_INVALID_MODE When mode is not a valid setting.

Note: The SSRC_GetNrSamples function returns the values from the following tables. Instead of
calling the SSRC_GetNrSamples function, use the values from these tables directly.

Sample rate Nr of samples
8000 320
11025 441
12000 480
16000 640
22050 882
24000 960
32000 1280
44100 1764
48000 1920

In/Out 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 11 320441 23 12 160441 13 14 80441 16
11025 441320 11 147160 441640 12 147320 4411280 14 147640
12000 32 160147 11 34 80147 12 38 40147 14
16000 21 640441 43 11 320441 23 12 160441 13
22050 441160 21 14780 441320 11 147160 441640 12 147320
24000 31 320147 21 32 160147 11 34 80147 12
32000 41 1280441 83 21 640441 43 11 320441 23
44100 44180 41 14740 441160 21 14780 441320 11 147160
48000 61 640147 41 31 320147 21 32 160147 11

Parent topic:Functions

SSRC_GetScratchSize Prototype:

1.7. Multimedia 101

MCUXpresso SDK Documentation, Release 25.09.00

SSRC_ReturnStatus_en SSRC_GetScratchSize
(SSRC_Params_t* pSSRC_Params,
LVM_INT32* pScratchSize);

Description:
This function retrieves the scratch size for a given conversion ratio and for given buffer sizes at
the input and at the output.

Name Type Description
pSSRC_ParamsSSRC_Params_t*Pointer to the instance parameters. All members should have a

valid value.
pScratch-
Size

LVM_INT32* Pointer to the scratch size. The SSRC_GetScratchSize function fills
in the correct value (in bytes).

|

Returns:

SSRC_OK When the function call succeeds.
SSRC_INVALID_FS When the requested input or output sampling rates are in-

valid.
SSRC_INVALID_NR_CHANNELSWhen the channel format is not equal to LVM_MONO or

LVM_STEREO.
SSRC_NULL_POINTER When pSSRC_Params or pScratchSize is a NULL pointer.
SSRC_WRONG_NR_SAMPLESWhen the number of samples on the input or on the output are

incorrect.

Parent topic:Functions

SSRC_Init Prototype:

SSRC_ReturnStatus_en SSRC_Init
(SSRC_Instance_t* pSSRC_Instance,
SSRC_Scratch_t* pSSRC_Scratch,
SSRC_Params_t* pSSRC_Params,
LVM_INT16** ppInputInScratch,
LVM_INT16** ppOutputInScratch);

Description:
The SSRC_Init function initializes an instance of the SSRC module.

102 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Name Type Description
pSSRC_InstanceSSRC_Instance_t*Pointer to the instance of the SSRC. This applicationmust allocate thememory

before calling the SSRC_Init function.
pSSRC_ScratchSSRC_Scratch_t*Pointer to the scratchmemory. The pointer is saved inside the instance and is

used by the SSRC_Process function. The applicationmust allocate the scratch
memory before calling the SSRC_Init function.

pSSRC_ParamsSSRC_Params_t*Pointer to the instance parameters.
ppIn-
putIn-
Scratch

LVM_INT16**The SSRC module can be called with the input samples located in scratch.
This pointer points to a location that holds the pointer to the location in the
scratch memory that can be used to store the input samples. For example, to
save memory.

ppOut-
putIn-
Scratch

LVM_INT16**The SSRC module can store the output samples in the scratch memory. This
pointer points to a location that holds the pointer to the location in the scratch
memory that can be used to store the output samples. For example, to save
memory.

Returns:

SSRC_OK When the function call succeeds.
SSRC_INVALID_FS When the requested input or output sampling rates are in-

valid.
SSRC_INVALID_NR_CHANNELSWhen the channel format is not equal to LVM_MONO or

LVM_STEREO.
SSRC_NULL_POINTER When pSSRC_Params or pScratchSize is a NULL pointer.
SSRC_WRONG_NR_SAMPLESWhen the number of samples on the input or on the output are

incorrect.
SSRC_ALIGNMENT_ERROR When the instance memory or the scratch memory is not 4

bytes aligned.

Parent topic:Functions

SSRC_SetGains Prototype:

SSRC_ReturnStatus_en SSRC_SetGains
(SSRC_Instance_t* pSSRC_Instance,
LVM_Mode_en bHeadroomGainEnabled,
LVM_Mode_en bOutputGainEnabled,
LVM_INT16 OutputGain);

Description:
This function sets headroom gain and the post gain of the SSRC. The SSRC_SetGains function is
an optional function that should be used only in rare cases. Preferably, use the default settings.

1.7. Multimedia 103

MCUXpresso SDK Documentation, Release 25.09.00

Name Type Description
pSSRC_InstanceSSRC_Instance_t*Pointer to the instance of the SSRC.
bHead-
room-
GainEn-
abled

LVM_Mode_enParameter to enable or disable the headroom gain of the SSRC. The default
value is LVM_MODE_ON. LVM_MODE_OFF can be used if it can be guaran-
teed that the input level is below - 6 in all cases (the default headroom is -6 dB).

bOut-
put-
GainEn-
abled

LVM_Mode_enParameter to enable or disable the output gain. The default value is
LVM_MODE_ON.

Out-
put-
Gain

LVM_INT16The value of the output gain. The output gain is a linear gain value. 0x7FFF
is equal to +6 dB and 0x0000 corresponds to -inf dB. By default, a 3 dB gain is
applied (OutputGain = 23197), resulting in an overall gain of -3 dB (-6 dB head-
room +3 dB output gain). Unit Q format Data Range Default value Linear gain
Q1.14 [0;32767] 23197

Returns:

SSRC_OK When the function call succeeds
SSRC_NULL_POINTERWhen pSSRC_Instance is a NULL pointer
SSRC_INVALID_MODEWrong value used for the bHeadroomGainEnabled or the OutputGainEn-

abled parameters.
SSRC_INVALID_VALUEWhen OutputGain is out of the range [0;32767].

Parent topic:Functions

SSRC_Process Prototype:

SSRC_ReturnStatus_en SSRC_Process
(SSRC_Instance_t* pSSRC_Instance,
LVM_INT16* pSSRC_AudioIn,
LVM_INT16* pSSRC_AudioOut);

Description:
Process function for the SSRC module. The function takes pointers as input and output audio
buffers.

The sample format used for the input and output buffers is 16-bit little-endian. Stereo buffers
are interleaved (L1, R1, L2, R2, and so on), mono buffers are deinterleaved (L1, L2, and so on).

Name Type Description
pSSRC_Instance SSRC_Instance_t* Pointer to the instance of the SSRC.
pSSRC_AudioIn LVM_INT16* Pointer to the input samples.
pSSRC_AudioOut LVM_INT16* Pointer to the output samples.

Returns:

104 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

SSRC_OK When the function call succeeds.
SSRC_NULL_POINTERWhen one of pSSRC_Instance, pSSRC_AudioIn, or pSSRC_AudioOut is

NULL.

Parent topic:Functions

SSRC_Process_D32 Prototype:

SSRC_ReturnStatus_en SSRC_Process_D32
(SSRC_Instance_t* pSSRC_Instance,
LVM_INT32* pSSRC_AudioIn,
LVM_INT32* pSSRC_AudioOut);

Description:
Process function for the SSRC module. The function takes pointers as input and output audio
buffers.

The sample format used for the input and output buffers is 32-bit little-endian. Stereo buffers
are interleaved (L1, R1, L2, R2, and so on), mono buffers are deinterleaved (L1, L2, and so on).

Name Type Description
pSSRC_Instance SSRC_Instance_t* Pointer to the instance of the SSRC.
pSSRC_AudioIn LVM_INT32* Pointer to the input samples.
pSSRC_AudioOut LVM_INT32* Pointer to the output samples.

Returns:
|SSRC_OK|When the function call succeeds.| |SSRC_NULL_POINTER|When one of
pSSRC_Instance, pSSRC_AudioIn, or pSSRC_AudioOut is NULL.|

Parent topic:Functions
Parent topic:Application programmers interface (API)

Dynamic function usage This chapter explains how and when the SSRC functions are or can
be used.

Define the number of samples to be used on input and output Call the function
SSRC_GetNrSamples. Each integer multiple of the returned number of samples can be used.

Parent topic:Dynamic function usage

Allocate scratch memory To calculate the required size of the scratch memory, call the
SSRC_GetScratchSize function. Allocate memory for the returned size.

Parent topic:Dynamic function usage

Initialize the SSRC instance Call the SSRC_Init function.

Parent topic:Dynamic function usage

1.7. Multimedia 105

MCUXpresso SDK Documentation, Release 25.09.00

Process samples The SSRC_Process function can now be called any number of times.

Parent topic:Dynamic function usage

Destroy the SSRC instance When the processing is completed, the allocated memory for the
instance and the scratch can be freed.

Parent topic:Dynamic function usage

Parent topic:Application programmers interface (API)

Reentrancy None of the SSRC functions are re-entrant.

Parent topic:Application programmers interface (API)

Additional user information This section provides information on the Attenuation of the sig-
nal and Notes on integration.

Attenuation of the signal When a fully saturated or clipped input is applied to an SRCmodule,
the aliases after the sample rate conversion, although sufficiently suppressed, can still result in
a clipped output. To prevent clipped output, the output of the SSRC module is by default atten-
uated with 3 dB. Although not advised, this gain value can be changed using the SSRC_SetGains
function.

Parent topic:Additional user information

Notes on integration Although the sample rate converter module works with audio signals on
different sampling rates, it is a synchronous module. Themodule takes a block of input samples,
consumes the input completely, and produces a full buffer with output samples. As a result, the
SSRC only accepts a limited number of input and output block sizes. To flush last, incomplete,
block of an audio stream, the block is padded with zeros until it is full before the SSRC processes
it.

Parent topic:Additional user information

Example application The source code of the example application can be found in the .
\EX_APP\APP_FileIO\SRC directory of the release package. The .\EX_APP\APP_FileIO\
MAKE directory contains a make file that can be used to build the example application. When
building the application, an executable is generated in the .\EX_APP\APP_FileIO\EXE direc-
tory.

The example application takes as command-line input parameters:

1. The path toward the input PCM file. It assumes raw 16 bit signed little-endian put. Stereo
input samples should be interleaved (L1, L2 R1, R2,…), mono samples should be deinter-
leaved (L1, L2, and so on).

2. The path toward the output PCM file.

3. The input sample rate.

4. The output sample rate.

5. The channel format (mono or stereo).

106 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Integration test A correct integration of the SSRC module can be verified in two ways.

• Bit accurate test

• THD+N measurement

Bit accurate test The TestFiles directory of the release package contains a test input (sampled
at 44,100 Hz) and several expected output files (sample rates from 8000 Hz to 48,000 Hz). If the
same test input file is applied to the SRC after integration in the target platform, the output is bit
accurate with the expected output file that matches the output-sample rate

Parent topic:Integration test

THD+N measurement Produce a swept sine and feed it through the SSRCmodule. Do a THD+N
measurement on the obtained output signal. The THD+N of the converted signals should be
below - 77 in the interval [0 - 0.45] FsLOW.

Parent topic:Integration test

Maestro Audio Framework

MCUXpresso SDK : Maestro

Overview This repository is forMCUXpresso SDKmaestromiddleware delivery and it contains
the components officially provided in NXPMCUXpresso SDK. This repository is part of theMCUX-
presso SDK overall delivery which is composed of several sub-repositories/projects. Navigate to
the top/parent repository (mcuxsdk-manifests) for the complete delivery of MCUXpresso SDK.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit Maestro - Documentation to review details on the contents in this sub-repo.

Setup Instructions on how to install theMCUXpresso SDK provided fromGitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution We welcome and encourage the community to submit patches directly to the
Maestro project placed on github. Contributing can be managed via pull-requests.

Introduction Maestro audio framework intends to enable chaining of basic audio processing
blocks, called elements. These blocks then form stream processing objects, called pipeline. This
pipeline can be used for multiple audio processing use cases.

The processing blocks can include (but are not limited to) different audio sources (for exam-
ple file or microphone), decoders or encoders, filters or effects, and audio sinks. Framework
overview is depicted in the following picture:

1.7. Multimedia 107

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/audio_voice/maestro/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation

MCUXpresso SDK Documentation, Release 25.09.00

*not all elements and libraries are supported in Zephyr port. For more information, seeMaestro
on Zephyr

The Maestro audio framework is an open-source component developed by NXP Semiconductors
and released under the BSD-compatible license. It is running on RTOS (Zephyr or FreeRTOS),
abstracted by OSA layer.

For detailed description of the audioMaestro framework, please refer to the programmer’s guide.

To see what is new, see changelog.

Maestro on Zephyr Getting started guide and further information for Maestro on Zephyr may
be found here.

Maestro on FreeRTOS Maestro on FreeRTOS is supported in NXP’s SDK. To get started, see
mcuxsdk doc.

Supported examples The current version of the Maestro audio framework supports several
optional features, some of which are used in these examples:

• maestro_playback

• maestro_record

• maestro_usb_mic

• maestro_usb_speaker

• maestro_sync

The examples can be found in the audio_examples folder of the desired board. The demo ap-
plications are based on FreeRTOS and use multiple tasks to form the application functionality.

Example applications overview To set up the audio framework properly, it is necessary to
create a streamer with streamer_create API. It is also essential to set up the desired hardware
peripherals using the functions described in streamer_pcm.h. The Maestro example projects con-
sist of several files regarding the audio framework. The initial file is main.c with code to create
multiple tasks. For features including SD card (in the maestro_playback examples, reading a
file from SD card is supported and in maestro_record writing to SD card is currently supported)
the APP_SDCARD_Task is created. The command prompt and connected functionalities are
handled by APP_Shell_Task.

108 Chapter 1. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/index.html

MCUXpresso SDK Documentation, Release 25.09.00

One of the most important parts of the configuration is the streamer_pcm.c where the initial-
ization of the hardware peripherals, input and output buffer management can be found. For
further information please see also streamer_pcm.h

In the Maestro USB examples (maestro_usb_mic and maestro_usb_speaker), the USB configura-
tion is located in the usb_device_descriptor.c, audio_microphone.c and audio_speaker.cfiles. For fur-
ther information please see also usb_device_descriptor.h, audio_microphone.h and audio_speaker.h.

In order to be able to get the messages from the audio framework, it is necessary to create a
thread for receiving the messages from the streamer, which is usually called aMessage Task. The
message thread is placed in the app_streamer.cfile, reads the streamermessage queue, and reacts
to the following messages:

• STREAM_MSG_ERROR - stops the streamer and exits the message thread

• STREAM_MSG_EOS - stops the streamer and exits the message thread

• STREAM_MSG_UPDATE_DURATION - prints info about the stream duration

• STREAM_MSG_UPDATE_POSITION - prints info about current stream position

• STREAM_MSG_CLOSE_TASK - exits the message thread

File structure

Folder Description
src Maestro audio framework sources
src/inc Maestro include files
src/core Maestro core sources
src/cci Common decoder interface sources
src/cei Common encoder interface sources
src/elements Maestro elements sources
src/devices External audio devices implementation (audio source & audio sink ele-

ments)
src/utils Helper utilities utilized by Maestro
docs Generated documentation
doxygen Documentation sources
components Glue for audio libraries, so they can be used in elements
tests Maestro tests
zephyr/ Zephyr related files
zephyr/samples/ Zephyr samples
zephyr/tests/ Zephyr tests
zephyr/audioTracks/ Audio tracks for testing
zephyr/wrappers/ Zephyr NXP SDK Wrappers
zephyr/doc/ Zephyr documentation configuration for Sphinx
zephyr/scripts/ Zephyr helper scripts, mostly for testing

Maestro Audio Framework Programmer’s Guide

Introduction Maestro audio framework provides instruments for playback and capture of dif-
ferent audio streams. In order to do that the framework uses API for creating various audio and
voice pipelines with the support of media and track information. This document describes the
framework in its detail, and the usage of API for pipeline creation using different elements. The
framework needs an operating system in order to create different tasks for audio processing and
communication with the application.

1.7. Multimedia 109

MCUXpresso SDK Documentation, Release 25.09.00

Architecture overview A high-level block diagram of the streamer used in Maestro is shown
below. An element is themost important class of objects in the streamer (see streamer_element.c).
A chain of elements will be created and linked together when a pipeline is created. Data flows
through this chain of elements in form of data buffers. An element has one specific function,
which can be the reading of data from a file, decoding of this data, or outputting this data to
a sink device. By chaining together several such elements, a pipeline is created that can do a
specific task, for example, the playback.

Pipeline
The pipeline is created within the streamer_create API using the streamer_create_pipeline call.
In the example applications provided in the MCUXpresso SDK the pipeline is created in the
app_streamer.c file. In order to create a pipeline user needs to provide a PipelineElements struc-
ture consisting of array of element indexes ElementIndex and the number of elements in the
pipeline. Then the pipeline is built automatically and user can specify the properties of the
elements using the streamer_set_property API. All the element properties can be found in the
streamer_element_properties.h file.

The streamer can handle up to two pipelines within a single task. The first pipeline with
index 0 can be created using the streamer_create function as described above. Then the
streamer_create_pipeline function should be used to create the second pipeline (pipeline with in-
dex 1). An example creation can be found in the app_streamer.c file in themaestro_sync_example.
Both pipelines are processed sequentially, so after the first pipeline is processed, the second
pipeline is processed.

After the pipeline is sucessfully created, all elements and entire pipeline are in STATE_NULL
state. A user can start the streamer by setting the pipeline state to STATE_PLAYING using the
streamer_set_state function. The pipeline can also be paused or stopped using the same function.
Use the STATE_PAUSED to pause and use STATE_NULL to stop. The function changes the state
of each element that is in the pipeline in turn, and after all the elements have obtained the desired
state, the state of entire pipeline is changed.

Elements The current version of the Maestro framework supports several types of elements
(StreamElementType). In each pipeline should be used one source element (elements with the
_SRC suffix) and one sink element (elements with the _SINK suffix). A decoder, encoder or au-
dio_proc element can be connected between these two elements. The audio_proc element can be
used more than once within the same pipeline.

Each element type (StreamElementType) has several functions that are determined by a unique el-
ement index (ElementIndex). These indexes are used to create a pipeline, and each element index
can only be used once in the same pipeline. The type_lookup_table shows which StreamElement-
Type supports which ElementIndex.

Each element index (ElementIndex) has its own properties and a list of these properties can be
found in the streamer_element_properties.hfile. These properties are divided into groups and each
group is identified by a property mask (e.g. for speaker it is PROP_SPEAKER_MASK). Then
the property_lookup_table in the streamer_msg.c file determines which property group relates to

110 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

which element index (ElementIndex). When an element is created and added to the pipeline, its
properties are set to their defalut values. Default values can be seen in the initialization function
of a particular element. The initialization functions are specified in the element_list array in the
streamer_element.c file (e.g. for the audio_proc element it is the audio_proc_init_element function).
The user can get the value of the property using the streamer_get_property function or change its
value using the streamer_set_property function.

The source code of the elements canbe found in themiddleware\audio_voice\maestro\src\elements\
folder.

Add a new element type The user can add a new element type (StreamElementType) to the
Maestro audio framework. For this, the following steps need to be done.

• Add a new element type to the StreamElementType enum type in the streamer_api.h.

• Create a new *.c and *.h files for the new element type in the middleware\audio_voice\
maestro\src\elements\ folder. All necessary structures and functions (functions for src pads,
sink pads and element itself) needs to be defined in these files. Inspiration can be found in
other elements.

• Link the initialization function to the element type in the element_list array in the
streamer_element.c file. To do this, a new definition that enables the element needs to be
created (e.g. there is a STREAMER_ENABLE_AUDIO_PROC definition for the audio_proc
element).

• Associate the newly created element type with an element index (ElementIndex) by adding
a new pair to the type_lookup_table in the streamer.c file.

• If the user wants to use the newly created element in an application, the definiton that
enables the element must be defined at the project level.

Mostly the user doesn’t need to create a new element type, but just create an element index.

Add a new element index To create a new element index in the Maestro audio framework,
follow these steps:

• Add a new element index to the ElementIndex enum type in the streamer_api.h.

• Create the required properties for the newly created element index in the
streamer_element_properties.h file.

• Associate the newly created property group with newly created element index by adding a
new pair to the property_lookup_table in the streamer_msg.c file.

• Associate the newly created element index with an element type (StreamElementType) by
adding a new pair to the type_lookup_table in the streamer.c file.

• Add support for the created properties to functions of the associated element type. These
functions are defined in files that correspond to a particular element type. The files are
located in the middleware\audio_voice\maestro\src\elements\ folder.

It is important to know that each element type (StreamElementType) can be associated with
more than one element index (ElementIndex), but each element index (ElementIndex) can be
associated with only one element type (StreamElementType).

Pads Pads are elements’ inputs and outputs. A pad can be viewed as a “plug” or “port” on an
element where links may be made with other elements, and through which data can flow to or
from those elements. Data flows out of an element through a source pad, and elements accept
incoming data through a sink pad. Source and sink elements have only source and sink pads,
respectively. For detailed information about pads, please see the API reference from pad.c.

1.7. Multimedia 111

MCUXpresso SDK Documentation, Release 25.09.00

Internal communication The streamer (the core of the framework) provides several mecha-
nisms for communication and data exchange between the application, a pipeline, and pipeline
elements:

• Buffers are objects for passing streaming data between elements in the pipeline. Buffers
always travel from sources to sinks (downstream).

• Messages are objects sent from the application to the streamer task to construct, configure,
and control a streamer pipeline.

• Callbacks are used to transmit information such as errors, tags, state changes, etc. from the
pipeline and elements to the application.

• Events are objects sent between elements. Events can travel upstream and downstream.
Events may also be sent to the application

• Queries allow applications to request information such as duration or current playback
position from the pipeline. Elements can also use queries to request information from their
peer elements (such as the file size or duration). They can be used both ways within a
pipeline, but upstream queries are more common

112 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Decoders and encoders Maestro framework uses a common codec interface for decoding pur-
poses and a common encoder interface for encoding. Those interfaces encapsulate the usage
of specific codecs. Reference codecs are available in audio-voice-components repository which
should be in \middleware\audio_voice\components\ folder.

Common codec interface The Common Codec Interface is the intended interface for all used
decoders. The framework will integrate a CCI decoder element into the streamer to interface
with all decoders.

Using the CCI to interface with Metadata
• cci_extract_meta_data must be called before any other Codec Interface APIs. This
API extracts the metadata information of the codec and fills this information in the
file_meta_data_t structure. The file_meta_data_t structure must be allocated by the appli-
cation.

• This function first extracts the input file extension and based on that it calls the specific
codec’s metadata extraction function. If it finds an invalid extension or unsupported ex-
tension then it returnswithMETA_DATA_FILE_NOT_SUPPORTED code for any unsupported
file format.

• If this API finds the valid metadata then it returns with META_DATA_FOUND code. If this
API does not find anymetadata information then it returns withMETA_DATA_NOT_FOUND
code. It also returns with META_DATA_FILE_NOT_SUPPORTED code for any unsupported
file format.

Using the CCI to interface with Decoders
• codec_get_mem_info gets the memory requirement based on the specific decoder stream
type. It returns the size in bytes of the specific codec. The user of the decoders must al-
locate memory of this size and this memory is used by the initialization API. The user or
application must pass this allocated memory pointer to the init API.

1.7. Multimedia 113

MCUXpresso SDK Documentation, Release 25.09.00

• codec_init must be called before the codec’s decode API. This API calls the codec-specific
initialization function based on the codec stream type. This API allocates the memory to
the codec main structure and also initializes the codec main structure parameters. It also
registers the call back functions to the codec whichwill be used by the codec to read or seek
the input stream.

• codec_decode is the main decoding API of the codec. This API calls the codec-specific decod-
ing function based on the codec stream type. This API decodes the input raw stream and
fills the PCM output samples into codec output PCM buffer. This API gives the information
about the number of samples produced by the codec and also gives the pointer of the codec
output PCM samples buffer.

• codec_get_pcm_samplesmust be called after the codec’s decode API. This API calls the codec
specific Get PCM Sample API based on the codec stream type. This API gets the PCM samples
from the codec in constant block size and fills them into the output PCM buffer. It returns
the number of samples get from the codec and also gives the pointer of the output PCM
buffer.

• codec_reset calls the codec specific reset API base on stream type and resets the codec.

• codec_seek accepts the seek bytes offset converted from the time by application. This API
calls the decoder’s internal seek API to calculate the actual seek offset which frame bound-
ary aligns. This API returns the actual seek offset.

The basic sequence to use a decoder with the CCI is shown below:

114 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Adding new decoders to the CCI This section explains how to integrate a new decoder in the
Common Codec Interface. The CCI assumes the decoder library to be used is in the \middleware\
audio_voice\audiocomponents\decoders*decoder*\libs\ folder of the maestro framework. The CCI
is just a wrapper around a specific implementation. The decoder is expected to be extended as
needed to meet the APIs described above.

• Register Decoder Top level APIs in Common Codec Interface

– Place the decoder lib in libs folder.

– Add prototypes of the decoder top level APIs in codec_interface.h file (located at
maestro\src\cci\inc\ folder).

– In codec_interface.c file (located at maestro\src\cci\src\), add top level Decoder APIs in
decoder function table.

– Pseudo code for this is as described below.

const codec_interface_function_table_t g_codec_function_table[STREAM_TYPE_COUNT] = {
#ifdef VORBIS_CODEC

{
&VORBISDecoderGetMemorySize,
&VORBISDecoderInit,
&VORBISDecoderDecode,
NULL,
NULL,
&VORBISDecoderSeek,
&VORBISDecoderGetIOFrameSize,

},
#else

{
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,

}
#endif
};

• Enable or Disable Decoder

– Define VORBIS_CODECmacro in audio_cfg.h file.

– Comment this macro if you want to disable VORBIS Decoder otherwise keep it defined
in order to enable the decoder.

• Add Extract Metadata API for the decoder

– Add extract metadata API source file for the decoder at
streamer/cci/metadata/src/vorbis folder.

– Add this code in extract metadata lib project space.

– Build the extract metadata lib and copy that lib to libs folder.

– Add the desired stream type into ccidec_extract_meta_data API (in codecextractmeta-
data.c file) to call VORBIS Decoder extract metadata API.

• Add stream type of the new decoder in the stream type enum audio_stream_type_t in
codec_interface_public_api.h

– Stream type of the decoder in stream type enum and decoder APIs in decoder function
table must be in the same sequence.

1.7. Multimedia 115

MCUXpresso SDK Documentation, Release 25.09.00

Common encoder interface Please see the following section about the cei.

Maestro performance

Memory information The memory usage of the framework components using reference
codecs (data obtained from GNU ARM compiler) in bytes is:

text data bss component
48790 2752 4 aac decoder
4348 16400 212 asrc
15512 0 4 flac decoder
76462 16 5013 maestro
34211 0 4 mp3 decoder
211974 0 0 opus
65446 0 4 ssrc
5850 16 12 wav decoder

Maestro framework uses dynamic allocation of audio buffers. The total amount of memory al-
located for the pipeline depends on the following parameters:

• Number of elements in the pipeline

• Element types

• Audio stream properties

– Sampling rate

– Bit width

– Channel number

– Frame size

CPU usage The performance of the pipeline was measured using the real hardware platform
(RT1060).

• CPU core clock in MHz: 600.

Pipeline type Performance MIPS of pipeline (in MHz)
audio source -> audio sink ~10.26 MHz
audio source -> file sink ~9.84 MHz
file source (8-channel PCM) -> audio sink ~16.5 MHz

For performance details about the supported codecs please see audio-voice-components reposi-
tory documentation.

CEI encoder TheMaestro streamer contains an element adapting an extensible set of audio en-
coders in the formof functions conforming to the CEI (CommonEncoder Interface). This element
enables the user to choose and configure a suitable encoder at runtime.

116 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Header files CEI itself and the CEI encoders are using following header files, in which youmay
be interested:

• cei.h - contains types used by the element itself and an encoder implementing the CEI

• cei_enctypes.h - contains a list of possible encoders and types used for interfacing with a CEI
encoder

• cei_table.h - contains a table of functions implementing integrated CEI encoders

Instantiating the element This element’s index is ELEMENT_ENCODER_INDEX and its type
is TYPE_ELEMENT_ENCODER, as defined in streamer_api.h. It has one source pad (data in-
put) and one sink pad (data output). It is initialized like any other element, meaning that
it is instantiated and inserted into the pipeline using the create_element, add_element_pipeline
and link_elements functions. Inversely, for destroying the element, the unlink_elements, re-
move_element_pipeline and destroy_element are used. This element alone does not depend on
any additional software layers other than these required by the Maestro streamer itself, so no
pre-initialization before this element instantiation is necessary.

Element properties Use Maestro streamer property API (streamer_set_property and
streamer_get_property) for setting or getting these. The constants are defined in
streamer_element_properties.h.

• PROP_ENCODER_CHUNK_SIZE

– Synopsis: Determines the length of a chunk pulled from the sibling of the source pad
and essentially influences the size of allocated buffers. If the actual amount of data
pulled is smaller, the rest is zero-filled.

– Type: unsigned 32-bit integer

– Default value: 1920
– Constraints:

* Must be bigger than zero, otherwise STREAM_ERR_INVALID_ARGS is returned.

* Cannot be changed if the actual encoder has been created. If done so,
STREAM_ERR_ELEMENT_BAD_STATUS is returned.

• PROP_ENCODER_TYPE

– Synopsis: Determines the exact encoder (CEI implementation) to be used.

– Type: CeiEncoderType (cei_enctypes.h)

– Default value: CEIENC_LAST

– Constraints:

* Must not be equal to CEIENC_LAST, otherwise STREAM_ERR_INVALID_ARGS
will be returned.

* Selected encoder must be implemented, otherwise
STREAM_ERR_INVALID_ARGS will be returned.

* Cannot be changed if the actual encoder has been created. If done so,
STREAM_ERR_ELEMENT_BAD_STATUS will be returned.

– Behaviour influenced: The encoder element process function will return
FLOW_ERROR if this property isn’t set.

• PROP_ENCODER_CONFIG

– Synopsis: Determines encoder-specific configuration (application, bitrate, …).

– Type: Pointer to the encoder-specific configuration structure.

1.7. Multimedia 117

MCUXpresso SDK Documentation, Release 25.09.00

– Default value: Determined by the encoder.

– Constraints:

* The encoder has to be configurable. If it is not, STREAM_ERR_ERR_GENERAL
will be returned on any access.

* The structure has to conform to the encoder requirements. If the encoder returns
an error code, STREAM_ERR_GENERAL will be returned.

• PROP_ENCODER_BITSTREAMINFO

– Synopsis: Specifies information about the incoming bitstream (sample rate, sample
depth, …).

– Type: Pointer to CeiBitstreamInfo (cei_enctypes.h).

– Default value:

(CeiBitstreamInfo) {
.sample_rate = 0,
.num_channels = 0,
.endian = AF_LITTLE_ENDIAN,
.sign = TRUE,
.sample_size = 0,
.interleaved = TRUE

}

– Constraints:

* Cannot be changed if the actual encoder has been created. If done so,
STREAM_ERR_ELEMENT_BAD_STATUS will be returned.

* As of now, only bitstreams containing 16-bit interleaved (if 2 ormore channels will
be encoded) samples are supported. If anything else was set to the sample_size and
interleavedmembers, STREAM_ERR_INVALID_ARGS will be returned.

– Behaviour influenced:

* Given the characteristics of some elements available, different packets of data
(header and payload, referred to as “chunk” above) may be pulled by this element.
Each packet can contain a different header, which may or may not contain useful
information about the bitstream. If a packet with theAudioPacketHeader (todofile.h)
is pulled at first and any other iteration of the streamer pipeline, the bitstream pa-
rameters configured by this property are implicitly available and are not expected
to be specified by the user. Other packet header types (such as RawPacketHeader)
don’t contain any bitstream parameters and require the user to specify the param-
eters manually using this property. Failure to do so will result in the element’s
process function returning FLOW_ERROR. Same situation will occur if a packet
with the AudioPacketHeader is received and its contents differ from the already ac-
quired bitstream parameters.

* As of now, CEI is defined to work with 16-bit signed little-endian (s16le) samples,
which are interleaved if the bitstream contains more than one channels. This ele-
ment handles endianness and unsigned to signed conversion.

CEI definition - implementing your own encoder The CEI defines following function pointer
types:

• CeiFnGetMemorySize: Returns number of bytes required for encoder state for a given num-
ber of channels.

• CeiFnEncoderInit: Initialize an encoder for a given sample rate and channel count.

• CeiFnEncoderGetConfig: Copy current or default configuration to a given structure pointer.

118 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

• CeiFnEncoderSetConfig: Configure the encoder from a given structure pointer.

• CeiFnEncode: Encode a given buffer to a given output buffer.

Detailed descriptions of function behaviour, parameters and expected return values are avail-
able as docblocks in the cei.h file.

Each encoder is implemented as a set of pointers pointing to functions conforming to these types,
grouped in theCeiEncoderFunctions structure. Specifying theCeiEncoderGetConfig fnGetConfig and
CeiFnEncoderSetConfig fnSetConfig members is optional, as an encoder does not have to be con-
figurable. If so desired, specify NULL. Implementation of the remaining functions is mandatory,
however. If at least one of these functions isn’t implemented and NULL is specified instead, the
encoder will be considered as not implemented.

To register an implemented encoder with the element, add a new entry to the CeiEncoderType
enum and add the CeiEncoderFunctions struct value to the table CeiEncoderFunctions ceiEncTable[]
located in the cei_table.h header file. Note and match the order of items in that table, as a CeiEn-
coderType value is used as an index. Same goes for the size_t ceiEncConfigSizeTable[]. If configura-
tion is not applicable, specify 0 at the appropriate index. If configuration is applicable, describe
the configuration structure in the cei_enctypes.h header file and add its size to that table.

Maestro playback example

Table of content
• Overview

• Hardware requirements

• Hardware modifications

• Preparation

• Running the demo

• Example configuration

• Functionality

• States

• Commands in detail

• Processing Time

Overview The Maestro playback example demonstrates audio processing on the ARM cortex
core utilizing the Maestro Audio Framework library.

The application is controlled by commands from a shell interface using serial console and the
audio files are read from the SD card.

Depending on target platform or development board there are different modes and features of
the demo supported.

• Standard - The mode demonstrates playback of encoded files from an SD card with up to 2
channels, up to 48 kHz sample rate and up to 16 bit width. This mode is enabled by default.

• Multi-channel - The mode demonstrates playback of raw PCM files from an SD card with 2
or 8 channels, 96kHz sample rate and 32 bit width. The decoders and synchronous sample
rate converter are not supported in this mode. The Multi-channel mode is only supported
on selected platforms, see the table below. The Example configuration section contains in-
formation on how to enable it.

1.7. Multimedia 119

MCUXpresso SDK Documentation, Release 25.09.00

As shown in the table below, the application is supported on several development boards and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow to use of an audio expansion board. Therefore, please
check the supported features and Hardware modifications or Example configuration sections be-
fore running the demo.

Limitations:
• Note:

– LPCXPresso55s69 - MCUXpresso IDE project default debug console is semihost

• Decoder:

– AAC:

* The reference decoder is supported only in the MCUXpresso IDE and ARMGCC.

– FLAC:

* LPCXpresso55s69 - When playing FLAC audio files with too small frame size (block
size), the audio output may be distorted because the board is not fast enough.

– OPUS:

* LPCXpresso55s69 - The decoder is disabled due to insufficient memorymay be dis-
torted because the board is not fast enough.

• Sample rate converter:

– SSRC:

* LPCXpresso55s69 - When a memory allocation ERROR occurs, it is necessary to
disable the SSRC element due to insufficient memory.

Known issues:
• Decoder:

– MP3:

* The reference decoder has issues with some of the files. One of the channels can
be sometimes distorted or missing parts of the signal.

– OPUS:

* The decoder doesn’t support all the combinations of frame sizes and sample rates.
The application might crash when playing an unspupported file.

More information about supported features can be found on the Supported features page.

Hardware requirements
• Desired development board

• Micro USB cable

• Headphones with 3.5 mm stereo jack

• SD card with supported audio files

• Personal computer

• Optional:

– Audio expansion board AUD-EXP-42448 (REV B)

120 Chapter 1. Middleware

https://www.nxp.com/part/AUD-EXP-42448#/

MCUXpresso SDK Documentation, Release 25.09.00

Hardware modifications Some development boards need some hardware modifications to
run the application. If the development board is not listed here, its default setting is required.

• EVKB-MIMXRT1170:

1. Please remove below resistors if on board wifi chip is not DNP:

– R228, R229, R232, R234

2. Please make sure R136 is weld for GPIO card detect.

Preparation
1. Connect amicro USB cable between the PC host and the debug USB port on the development

board.

2. Open a serial terminal with the following settings:

• 115200 baud rate

• 8 data bits

• No parity

• One stop bit

• No flow control

3. Download the program to the target board.

4. Insert the headphones into the Line-Out connector (headphone jack) on the development
board.

5. Either press the reset button on your development board or launch the debugger in your
IDE to begin running the demo.

Running the demo When the example runs successfully, you should see similar output on the
serial terminal as below:

Maestro audio playback demo start

[APP_Main_Task] started

Copyright 2022 NXP
[APP_SDCARD_Task] start
[APP_Shell_Task] start

>> [APP_SDCARD_Task] SD card drive mounted

Type help to see the command list. Similar description will be displayed on serial console (If
multi-channel playback mode is enabled, the description is slightly different):

>> help

”help”: List all the registered commands

”exit”: Exit program

”version”: Display component versions

”file”: Perform audio file decode and playback

USAGE: file [stop|pause|volume|seek|play|list|info]
(continues on next page)

1.7. Multimedia 121

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
stop Stops actual playback.
pause Pause actual track or resume if already paused.
volume <volume> Set volume. The volume can be set from 0 to 100.
seek <seek_time> Seek currently paused track. Seek time is absolute time in milliseconds.
play <filename> Select audio track to play.
list List audio files available on mounted SD card.
info Prints playback info.

Details of commands can be found here.

Example configuration The example can be configured by user. Before configuration, please
check the table to see if the feature is supported on the development board.

• Enable Multi-channel mode:
– Add theMULTICHANNEL_EXAMPLE symbol to preprocessor defines on project level.

– Connect AUD-EXP-42448 (see the point below).

• Connect AUD-EXP-42448:
– EVKC-MIMXRT1060:

1. Disconnect the power supply for safety reasons.

2. Insert AUD-EXP-42448 into J19 to be able to use the CS42448 codec formultichannel
output.

3. Uninstall J99.

4. Set the DEMO_CODEC_WM8962macro to 0 in the app_definitions.h file

5. Set the DEMO_CODEC_CS42448macro to 1 in the app_definitions.h file.

Functionality The file play <filename> command calls the STREAMER_file_Create or
STREAMER_PCM_Create function from the app_streamer.cfile depending on the selectedmode.

• When the Standardmode is enabled, the command calls the STREAMER_file_Create func-
tion that creates a pipeline with the following elements:

– ELEMENT_FILE_SRC_INDEX

– ELEMENT_DECODER_INDEX

– ELEMENT_SRC_INDEX (If SSRC_PROC is defined)

– ELEMENT_SPEAKER_INDEX

• When the Multi-channel mode is enabled, the command calls STREAMER_PCM_Create
function, which creates a pipeline with the following elements:

– ELEMENT_FILE_SRC_INDEX (PCM format only)

– ELEMENT_SPEAKER_INDEX

– Note:

* If the input file is an 8 channel PCM file, output to all 8 channels is available. The
properties of the PCM file are set in the app_streamer.c file using file source prop-
erties sent to the streamer:

· PROP_FILESRC_SET_SAMPLE_RATE - default value is 96000 [Hz]

· PROP_FILESRC_SET_NUM_CHANNELS - default value is 8

· PROP_FILESRC_SET_BIT_WIDTH - default value is 32

122 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Playback itself can be started with the STREAMER_Start function.

Each of the elements has several properties that can be accessed using the streamer_get_property
or streamer_set_property function. These properties allow a user to change the values of the
appropriate elements. The list of properties can be found in streamer_element_properties.h. See
the example of setting property value in the following piece of code from the app_streamer.c file:

ELEMENT_PROPERTY_T prop;

EXT_PROCESS_DESC_T ssrc_proc = {SSRC_Proc_Init, SSRC_Proc_Execute, SSRC_Proc_Deinit,␣
↪→&get_app_data()->proc_args};

prop.prop = PROP_SRC_PROC_FUNCPTR;
prop.val = (uintptr_t)&ssrc_proc;

if (streamer_set_property(streamer, 0, prop, true) != 0)
{

return -1;
}

prop.prop = PROP_AUDIOSINK_SET_VOLUME;
prop.val = volume;
streamer_set_property(streamer, 0, prop, true);

Some of the predefined values can be found in the streamer_api.h.

States The application can be in 3 different states:

• Idle

• Running

• Paused

In each state, each command can have a different behavior. For more information, see Com-
mands in detail section.

Commands in detail The applicatin is controlled by commands from the shell interface and the
available commands for the selectedmode can be displayed using the help command. Commands
are processed in the cmd.c file.

• help, version

• file stop

• file pause

• file volume <volume>

• file seek <seek_time>

• file play <filename>

• file list

• file info

Legend for diagrams:

flowchart TD
classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500

1.7. Multimedia 123

MCUXpresso SDK Documentation, Release 25.09.00

classDef error fill:#F54D4D

A((State)):::state
B{Condition}:::condition
C[Error message]:::error
D[Process function]:::function

help, version
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((Idle)):::state --> D[Write help or version]:::function
B((Running)):::state --> D
C((Paused)):::state --> D
D-->E((No state
change)):::state

file stop
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state --> B
C((Running)):::state -->E((Idle)):::state
D((Paused)):::state -->E

file pause
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state --> B
C((Running)):::state -->E((Paused)):::state
D((Paused)):::state -->F((Running)):::state

file volume <volume>
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state --> M[Error: Play a track first]:::error
C((Running)):::state --> G{Volume
parameter

124 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

empty?}:::condition
D((Paused)):::state --> G
G -- Yes -->H[Error: Enter volume parameter]:::error
G -- No -->I{Volume
in range?}:::condition
I -- No -->J[Error: invalid value]:::error
I -- Yes -->K[Set volume]:::function
J --> L((No state
change)):::state
K --> L
H--> L

file seek <seek_time> The seek argument is only supported in the Standard mode.

flowchart TD
classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state --> E[Error: First select
an audio track to play]:::error
E-->B
C((Running)):::state --> F[Error: First
pause the track]:::error
F --> C
D((Paused)):::state --> G{Seek
parameter
empty?}:::condition
G --No --> H{AAC file?}:::condition
G --Yes --> I[Error: Enter
a seek time value]:::error
I-->N((Paused)):::state;
H --Yes -->J[Error: The AAC decoder
does not support
the seek command]:::error
J-->N
H --No -->K{Seek
parameter
positive?}:::condition
K --No -->L[Error: The seek
time must be
a positive value]:::error
L-->N
K --Yes -->M[Seek the file]:::function
M-->N

file play <filename>
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

C((Running)):::state --> Z[Error: First stop
current track]:::error

1.7. Multimedia 125

MCUXpresso SDK Documentation, Release 25.09.00

D((Paused)):::state --> Z
B((Idle)):::state --> E{SD Card
inserted?}:::condition
E -- No -->F[Error: Insert SD
card]:::error
E -- Yes -->G{File
name
empty?}:::condition
G -- Yes -->H[Error: Enter
file name]:::error
G -- No -->I{File exists?}:::condition
I -- No -->O[Error: File
doesn't exist]:::error
I -- Yes -->J{Supported
format?}:::condition
J -- Yes -->K[Play the track]:::function
J -- No -->L[Error: Unsupported
file]:::error
K -->M((Running)):::state
L --> W((No state
change)):::state
O --> W
H --> W
F --> W
Z --> W

file list
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state --> G{SD Card
inserted?}:::condition
C((Running)):::state --> G
D((Paused)):::state --> G
G -- Yes -->H[List supported files]:::function
G -- No -->I[Error: Insert SD card]:::error
I --> J((No state
change)):::state
H --> J

file info
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state -->E[Write file info]:::function
C((Running)):::state -->E
D((Paused)):::state -->E
E --> F((No state

change)):::state

126 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Processing Time Typical streamer pipeline execution times and their individual elements for
the EVKC-MIMXRT1060 development board are presented in the following tables. The time spent
on output buffers is not included in the traversal measurements. However, file reading time
is accounted for. In the case of the WAV codec, the audio file was accessed in every pipeline
run. Therefore, during each run, the file was read from the SD card. However, for the MP3
codec, where data must be processed in complete MP3 frames, the file was not read in every
run. Instead, it was read periodically only when the codec buffer did not contain a complete
frame of data.

For further details, please refer to the Processing Time document.

WAV streamer file_src codec SSRC_proc speaker
48kHz 1.1 ms 850 μs 150 μs 70 μs 40 μs
44kHz 1.75 ms 850 μs 180 μs 670 μs 40 μs

MP3 streamer file_src codec SSRC_proc speaker
48 kHz with file read 2.9 ms 2.3 μs 450 μs 60 μs 50 μs
48 kHz without file read 0.5 ms x 400 μs 40 μs 40 μs
44 kHz with file read 3.2 ms 2.3 μs 440 μs 400 μs 50 μs
44 kHz without file read 0.9 ms x 440 μs 390 μs 40 μs

Maestro record example

Table of content
• Overview

• Hardware requirements

• Hardware modifications

• Preparation

• Running the demo

• Example configuration

• Functionality

• States

• Commands in detail

• Processing Time

Overview TheMaestro record example demonstrates audio processing on the ARM cortex core
utilizing the Maestro Audio Framework library.

The application is controlled by commands from a shell interface using serial console.

Depending on target platform or development board there are different modes and features of
the demo supported.

• Loopback - The application demonstrates a loopback from the microphone to the speaker
without any audio processing. Mono, stereo or multichannel mode can be used, depending
on the hardware, see table below.

• File recording - The application takes audio samples from the microphone inputs and
stores them to an SD card as an PCM file. The PCM file has following parameters:

1.7. Multimedia 127

MCUXpresso SDK Documentation, Release 25.09.00

– Mono and stereo : 2 channels, 16kHz, 16bit width

– Multi-channel (AUD-EXP-42448): 6 channels, 16kHz, 32bit width

• Voice control - The application takes audio samples from the microphone input and uses
the VIT library to recognize wake words and voice commands. If a wake word or a voice
command is recognized, the application write it to the serial terminal.

• Encoding - The application takes PCM samples from memory and sends them to the Opus
encoder. The encoded data is stored in memory and compared to a reference. The result of
the comparison is finally written into the serial terminal.

As shown in the table below, the application is supported on several development boards, and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow to use of an audio expansion board. Therefore, please
check the supported features and Hardware modifications or Example configuration sections be-
fore running the demo.

Limitations:
• Note:

– LPCXPresso55s69 - MCUXpresso IDE project default debug console is semihost

• Addition labraries

– VIT:

* The VIT is supported only in the MCUXpresso IDE and ARMGCC.

* LPCXpresso55s69 - The VIT is disabled by default due to insufficient memory. To
enable it, see the Example configuration section.

* EVK-MCXN5XX - Some VIT models can’t fit into memory. In order to free some
space it is necessary to disable SD card handling and opus encoder. To disable it,
see the Example configuration section.

– VoiceSeeker:

* The VoiceSeeker is supported only in the MCUXpresso IDE and ARMGCC.

• Encoder

– OPUS:

* LPCXpresso55s69 - The encoder is not supported due to insufficient memory.

• The File recordingmode is not supported on RW612BGA development board due tomissing
SD card slot.

Known issues:
• EVKB-MIMXRT1170 - After several tens of runs (the number of runs is not deterministic),
the development board restarts because a power-up sequence is detected on the RESET pin
(due to a voltage drop).

More information about supported features can be found on the Supported features page.

Hardware requirements
• Desired development board

• Micro USB cable

• Headphones with 3.5 mm stereo jack

• Personal computer

• Optional:

– SD card for file output

128 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

– Audio expansion board AUD-EXP-42448 (REV B)

• LPCXpresso55s69:

– Source of sound with 3.5 mm stereo jack connector

Hardware modifications Some development boards need some hardware modifications to
run the application. If the development board is not listed here, its default setting is required.

• EVKB-MIMXRT1170:

1. Please remove below resistors if on board wifi chip is not DNP:

– R228, R229, R232, R234

2. Please make sure R136 is weld for GPIO card detect.

• EVK-MCXN5XX:

– Short: JP7 2-3, JP8 2-3, JP10 2-3, JP11 2-3

• RW612BGA:

– Connect: JP50; Disconnect JP9, JP11

Preparation
1. Connect amicro USB cable between the PC host and the debug USB port on the development

board

2. Open a serial terminal with the following settings:

• 115200 baud rate

• 8 data bits

• No parity

• One stop bit

• No flow control

3. Download the program to the target board.

4. Insert the headphones into the Line-Out connector (headphone jack) on the development
board.

5. LPCXpresso55s69:

• Insert source of sound to audio Line-In connector (headphone jack) on the develop-
ment board.

6. Either press the reset button on your development board or launch the debugger in your
IDE to begin running the demo.

Running the demo When the example runs successfully, you should see similar output on the
serial terminal as below:

Maestro audio record demo start

Copyright 2022 NXP
[APP_SDCARD_Task] start
[APP_Shell_Task] start

>> [APP_SDCARD_Task] SD card drive mounted

1.7. Multimedia 129

https://www.nxp.com/part/AUD-EXP-42448#/

MCUXpresso SDK Documentation, Release 25.09.00

Type help to see the command list. Similar description will be displayed on serial console:

>> help

”help”: List all the registered commands

”exit”: Exit program

”version”: Display component versions

”record_mic”: Record MIC audio and perform one (or more) of following actions:
- playback on codec
- perform VoiceSeeker processing
- perform voice recognition (VIT)
- store samples to a file.

USAGE: record_mic [audio|file|<file_name>|vit] 20 [<language>]
The number defines length of recording in seconds.

Please see the project defined symbols for the languages supported.
Then specify one of: en/cn/de/es/fr/it/ja/ko/pt/tr as the language parameter.
For voice recognition say supported WakeWord and in 3s frame supported command.
Please note that this VIT demo is near-field and uses 1 on-board microphone.

NOTES: This command returns to shell after the recording is finished.
To store samples to a file, the ”file” option can be used to create a file
with a predefined name, or any file name (without whitespaces) can be specified
instead of the ”file” option.

”opus_encode”: Initializes the streamer with the Opus memory-to-memory pipeline and
encodes a hardcoded buffer.

Details of commands can be found here.

Example configuration The example can be configured byuser. There are several options how
to configure the example settings, depending on the environment. For configuration using west
and Kconfig, please follow the instructions here. Before configuration, please check the table to
see if the feature is supported on the development board.

• Connect AUD-EXP-42448:
– EVKC-MIMXRT1060:

1. Disconnect the power supply for safety reasons.

2. Insert AUD-EXP-42448 into J19 to be able to use the CS42448 codec formultichannel
output.

3. Uninstall J99.

4. Set the DEMO_CODEC_WM8962macro to 0 in the app_definitions.h file

5. Set the DEMO_CODEC_CS42448macro to 1 in the app_definitions.h file.

6. Enable VoiceSeeker, see point bellow.

– Note:

* The audio stream is as follows:

· Stereo INPUT 1 (J12) -> LINE 1&2 OUTPUT (J6)

· Stereo INPUT 2 (J15) -> LINE 3&4 OUTPUT (J7)

· MIC1 & MIC2 (P1, P2) -> LINE 5&6 OUTPUT (J8)

· Insert the headphones into the different line outputs to hear the inputs.

130 Chapter 1. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/develop/build_system/Configuration_System.html

MCUXpresso SDK Documentation, Release 25.09.00

· To use the Stereo INPUT 1, 2, connect an audio source LINE IN jack.

• Enable VoiceSeeker:
– On some development boards the VoiceSeeker is enabled by default, see the table
above.

– If more than one channel is used and VIT is enabled, the VoiceSeeker that combines
multiple channels into one must be used, as VIT can only work with mono signal.

– Using MCUXPresso IDE:

* It is necessary to add VOICE_SEEKER_PROC symbol to preprocessor defines on
project level:

· (Project -> Properties -> C/C++ Build -> Settings -> MCU C Compiler -> Preproces-
sor)

– Using Kconfig:

* Enable the VoiceSeeker in the guiconfig using MCUX_PRJSEG_middleware.
audio_voice.components.voice_seeker

• Enable VIT:
– LPCXpresso55s69 and MCX-N5XX:

* In MCUXPresso IDE (SDK package):

1. Remove SD_ENABLED and STREAMER_ENABLE_FILE_SINK symbols from
preprocessor defines on project level.

2. Add VIT_PROC symbol to preprocessor defines on project level:

· (Project -> Properties -> C/C++ Build -> Settings -> MCU C Compiler -> Prepro-
cessor)

* In armgcc in SDK package:

1. Remove SD_ENABLED and STREAMER_ENABLE_FILE_SINK symbols from
preprocessor defines in flags.cmake file.

2. Remove OPUS_ENCODE=1 and STREAMER_ENABLE_ENCODER prepro-
cessor defines in flags.cmake file.

3. Add VIT_PROC symbol to preprocessor defines in flags.cmake file.

4. Remove sdmmc_config.c,.h files from CMakeLists.txt file.

* In Kconfig:

1. Disable File sink MCUX_COMPONENT_middleware.audio_voice.maestro.
element.file_sink.enable

2. Make sure SD card support is disabled MCUX_COMPONENT_middleware.
sdmmc.sd andMCUX_COMPONENT_middleware.sdmmc.host.usdhc

3. Make sure sdmmc_config files (.c, .h) is excluded from project build

· remove mcux_add_source function that adds the sources in reconfig.cmake
in maestro_record/cm33_core0 folder

4. Disable fatfs MCUX_COMPONENT_middleware.fatfs and
MCUX_COMPONENT_middleware.fatfs.sd

5. Disable file utils MCUX_COMPONENT_middleware.audio_voice.maestro.
file_utils.enable

6. Make sure Opus encoder is disabled MCUX_COMPONENT_middleware.
audio_voice.maestro.element.encoder.opus.enable

7. Make sure VIT_PROC symbol is defined

1.7. Multimedia 131

MCUXpresso SDK Documentation, Release 25.09.00

· removemcux_remove_macro function that removes the VIT_PROC preproces-
sor definition in reconfig.cmake in maestro_record folder

8. Make sure VIT processing is enabledMCUX_PRJSEG_middleware.audio_voice.
components.vit

• VIT model generation:
– For custom VIT model generation (defining own wake words and voice commands)
please use https://vit.nxp.com/

• Disable SD card handling:
– In MCUXPresso IDE:

* Remove SD_ENABLED and STREAMER_ENABLE_FILE_SINK symbols from
preprocessor defines on project level:

· (Project -> Properties -> C/C++ Build -> Settings -> MCU C Compiler -> Preproces-
sor)

– In armgcc in SDK package:

* Remove SD_ENABLED and STREAMER_ENABLE_FILE_SINK symbols from
preprocessor defines in flags.cmake file.

– In Kconfig:

1. Disable File sink MCUX_COMPONENT_middleware.audio_voice.maestro.element.
file_sink.enable

2. Make sure SD card support is disabled MCUX_COMPONENT_middleware.sdmmc.
sd

Functionality The record_mic or opus_encode command calls the STREAMER_mic_Create or
STREAMER_opusmem2mem_Create function from the app_streamer.c file depending on the se-
lected mode.

• When the Loopbackmode is selected, the command calls the STREAMER_mic_Create func-
tion that creates a pipeline with the following elements:

– ELEMENT_MICROPHONE_INDEX

– ELEMENT_SPEAKER_INDEX

• When the File recording mode is selected, the command calls the STREAMER_mic_Create
function that creates a pipeline with the following elements: - ELE-
MENT_MICROPHONE_INDEX - ELEMENT_FILE_SINK_INDEX

• When the Voice control mode is selected, the command calls the
STREAMER_mic_Create function that creates a pipeline with the following el-
ements: - ELEMENT_MICROPHONE_INDEX - ELEMENT_VOICESEEKER_INDEX (If
VOICE_SEEKER_PROC is defined) - ELEMENT_VIT_INDEX

• When the Encoding mode is selected, the command calls the
STREAMER_opusmem2mem_Create function that creates a pipeline with the fol-
lowing elements: - ELEMENT_MEM_SRC_INDEX - ELEMENT_ENCODER_INDEX - ELE-
MENT_MEM_SINK_INDEX

Recording itself can be started with the STREAMER_Start function.

Each of the elements has several properties that can be accessed using the streamer_get_property
or streamer_set_property function. These properties allow a user to change the values of the
appropriate elements. The list of properties can be found in streamer_element_properties.h. See
the example of setting property value in the following piece of code from the app_streamer.c file:

132 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

ELEMENT_PROPERTY_T prop;

prop.prop = PROP_MICROPHONE_SET_NUM_CHANNELS;
prop.val = DEMO_MIC_CHANNEL_NUM;
streamer_set_property(handle->streamer, 0, prop, true);

prop.prop = PROP_MICROPHONE_SET_BITS_PER_SAMPLE;
prop.val = DEMO_AUDIO_BIT_WIDTH;
streamer_set_property(handle->streamer, 0, prop, true);

prop.prop = PROP_MICROPHONE_SET_FRAME_MS;
prop.val = DEMO_MIC_FRAME_SIZE;
streamer_set_property(handle->streamer, 0, prop, true);

prop.prop = PROP_MICROPHONE_SET_SAMPLE_RATE;
prop.val = DEMO_AUDIO_SAMPLE_RATE;
streamer_set_property(handle->streamer, 0, prop, true);

Some of the predefined values can be found in the streamer_api.h.

States The application can be in 2 different states:

• Idle

• Running

Commands in detail
• help, version

• record_mic audio <time>

• record_mic file <time>

• record_mic <file_name> <time>

• record_mic vit <time> <language>

• opus_encode

Legend for diagrams:

flowchart TD
classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((State)):::state
B{Condition}:::condition
C[Error message]:::error
D[Process function]:::function

help, version
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((Idle)):::state --> C[Write help or version]:::function

1.7. Multimedia 133

MCUXpresso SDK Documentation, Release 25.09.00

B((Running)):::state --> C
C --> E((No state
change)):::state

record_mic audio <time>
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state --> D{time
> 0 ?}:::condition
D -- Yes --> F[recording]:::function
D -- No --> E[Error: Record length
must be greater than 0]:::error
E --> B
F --> C((Running)):::state
C -->G{time
expired?}:::condition
G -- No --> C
G -- Yes --> B

record_mic file <time>/record_mic <file_name> <time>
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state --> C{time
> 0 ?}:::condition
C -- Yes --> D{SD card
inserted?}:::condition
C -- No --> E[Error: Record length
must be greater than 0]:::error
E --> B
D -- Yes --> G{Custom
file name?}:::condition
G -- Yes --> H[Create custom
file name]:::function
G -- No --> I[Create default
file name]:::function
H --> J[Recording]:::function
I --> J
J --> K((Running)):::state
K -->L{time
expired?}:::condition
L -- No --> K
L -- Yes --> B
D -- No --> F[Error: Insert SD
card first]:::error
F --> B

134 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

record_mic vit <time> <language>
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state --> C{time
> 0 ?}:::condition
C -- Yes --> E{Selected
language?}:::condition
C -- No --> D[Error: Record length
must be greater than 0]:::error
D --> B
E -- Yes --> G{Supported
language?}:::condition
E -- No --> F[Error: Language
not selected]:::error
F -->B
G -- Yes -->I[Recording with
voice recognition]:::function
G -- No -->H[Error: Language not supported]:::error
H --> B
I --> J((Running)):::state
J -->K{time
expired?}:::condition
K -- No --> J
K -- Yes --> B

opus_encode
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state -->C[Encode file]:::function
C -->D[Check result]:::function
D -->B

Processing Time Typical execution times of the streamer pipeline for the EVKC-MIMXRT1060
development board are detailed in the following table. The duration spent on output buffers
and reading from the microphone is excluded from traversal measurements. Three measured
pipelines were considered. The first involves a loopback from microphone to speaker, support-
ing both mono and stereo configurations. The second pipeline is a mono voice control setup,
comprising microphone and VIT blocks. The final pipeline is a stereo voice control setup, inte-
grating microphone, voice seeker, and VIT blocks.

For further details of execution times on individual elements, please refer to the Processing Time
document.

1.7. Multimedia 135

MCUXpresso SDK Documentation, Release 25.09.00

streamer

microphone -> speaker 1 channel 40 μs
microphone -> speaker 2 channels 115 μs
microphone -> VIT 7.4 ms
microphone -> voice seeker -> VIT 9.9 ms

Maestro sync example

Table of content
• Overview

• Hardware requirements

• Hardware modifications

• Preparation

• Running the demo

• Example configuration

• Functionality

• States

• Commands in detail

Overview The Maestro sync example demonstrates the use of synchronous pipelines (Tx and
Rx in this case) processing in a single streamer task on the ARM cortex core utilizing the Maestro
Audio Framework library.

The application is controlled by commands from a shell interface using serial console.

The feature is useful for testing the latency of the pipeline or implementing algorithms requiring
reference signals such as echo cancellation. The VoiceSeeker library available in this example
is not featuring AEC (Acoustic Echo Cancellation), but NXP is offering it in the premium version
of the library. More information about the premium version can be found at VoiceSeeker. page.
The demo uses two pipelines running synchronously in a single streamer task:

1. Playback (Tx) pipeline:

• Playback of audio data in PCM format stored in flash memory to the audio Line-Out
connector (speaker).

2. Recording (Rx) pipline:

• Record audio data using a microphone.

• VoiceSeeker processing.

• Wake words + voice commands recognition.

• Save the VoiceSeeker output to the voiceseeker_output.pcm file on the SD card.

As shown in the table below, the application is supported on several development boards, and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow to use of an audio expansion board. Therefore, please
check the supported features and Hardware modifications or Example configuration sections be-
fore running the demo.

Limitations:

136 Chapter 1. Middleware

https://nxp.com/voiceseeker

MCUXpresso SDK Documentation, Release 25.09.00

• Addition labraries

– VIT:

* The VIT is supported only in the MCUXpresso IDE.

– VoiceSeeker:

* The VoiceSeeker is supported only in the MCUXpresso IDE.

Known issues:
• No known issues.

More information about supported features can be found on the Supported features page.

Hardware requirements
• Desired development board

• Micro USB cable

• Speaker with 3.5 mm stereo jack

• Personal computer

• Optional:

– SD card for file output

Hardware modifications Some development boards need some hardware modifications to
run the application. If the development board is not listed here, its default setting is required.

• EVKC-MIMXRT1060:

1. Please make sure resistors below are removed to be able to use SD-Card.

– R368, R347, R349, R365, R363

2. Please Make sure J99 is installed.

Preparation
1. Connect amicro USB cable between the PC host and the debug USB port on the development

board

2. Open a serial terminal with the following settings:

• 115200 baud rate

• 8 data bits

• No parity

• One stop bit

• No flow control

3. Download the program to the target board.

4. Insert the speaker into the Line-Out connector (headphone jack) on the development board.

5. Optional: Insert an SD card into the SD card slot to record to the VoiceSeeker output.

6. Either press the reset button on your development board or launch the debugger in your
IDE to begin running the demo.

1.7. Multimedia 137

MCUXpresso SDK Documentation, Release 25.09.00

Running the demo When the example runs successfully, you should see similar output on the
serial terminal as below:

Maestro audio sync demo start

Copyright 2022 NXP
[APP_SDCARD_Task] start
[APP_Shell_Task] start

>> [APP_SDCARD_Task] SD card drive mounted

Type help to see the command list. Similar description will be displayed on serial console:

>> help

”help”: List all the registered commands

”exit”: Exit program

”version”: Display component versions

”start [nosdcard]”: Starts a streamer task.
- Initializes the streamer with the Memory->Speaker pipeline and with
the Microphone->VoiceSeeker->VIT->SDcard pipeline.

- Runs repeatedly until stop command.
nosdcard - Doesn't use SD card to store data.

”stop”: Stops a running streamer:

”debug [on|off]”: Starts / stops debugging.
- Starts / stops saving VoiceSeeker input data (reference and microphone data)
to SDRAM.

- After the stop command, this data is transferred to the SD card.

Details of commands can be found here.

Example configuration The example can be configured by user. Before configuration, please
check the table to see if the feature is supported on the development board.

• Enable the premium version of VoiceSeeker:
– The premium version of the VoiceSeeker library with AEC is API compatible with this
example.

– To get the premium version, please visit VoiceSeeker page.

– The following steps are required to run this example with the VoiceSeeker&AEC li-
brary.

* Link the voiceseeker.a library instead of voiceseeker_no_aec.a.

* Set the RDSP_ENABLE_AEC definition to 1U in the voiceseeker.h file

• VIT model generation:
– For custom VIT model generation (defining own wake words and voice commands)
please use https://vit.nxp.com/

Functionality The start <nosdcard> command calls the STREAMER_Create function from the
app_streamer.c file that creates pipelines with the following elements:

• Playback pipeline:

138 Chapter 1. Middleware

https:%5Cwww.nxp.com%5Cvoiceseeker

MCUXpresso SDK Documentation, Release 25.09.00

– ELEMENT_MEM_SRC_INDEX

– ELEMENT_SPEAKER_INDEX

• Record pipeline:

– ELEMENT_MICROPHONE_INDEX

– ELEMENT_VOICESEEKER_INDEX

– ELEMENT_VIT_PROC_INDEX

– ELEMENT_FILE_SINK_INDEX (If the nosdcard argument is not used)

Processing itself can be started with the STREAMER_Start function.

Each of the elements has several properties that can be accessed using the streamer_get_property
or streamer_set_property function. These properties allow a user to change the values of the
appropriate elements. The list of properties can be found in streamer_element_properties.h. See
the example of setting property value in the following piece of code from the app_streamer.c file:

ELEMENT_PROPERTY_T prop;

MEMSRC_SET_BUFFER_T buf;
buf.location = (int8_t *)TESTAUDIO_DATA;
buf.size = TESTAUDIO_LEN;

prop.prop = PROP_MEMSRC_SET_BUFF;
prop.val = (uintptr_t)&buf;
if (STREAM_OK != streamer_set_property(handle->streamer, 0, prop, true))
{

return kStatus_Fail;
}

prop.prop = PROP_MEMSRC_SET_MEM_TYPE;
prop.val = AUDIO_DATA;
if (STREAM_OK != streamer_set_property(handle->streamer, 0, prop, true))
{

return kStatus_Fail;
}

prop.prop = PROP_MEMSRC_SET_SAMPLE_RATE;
prop.val = DEMO_SAMPLE_RATE;
if (STREAM_OK != streamer_set_property(handle->streamer, 0, prop, true))
{

return kStatus_Fail;
}

Some of the predefined values can be found in the streamer_api.h.

States The application can be in 2 different states:

• Idle

• Running

Commands in detail
• help, version

• start [nosdcard]

• stop

• debug [on|off]

1.7. Multimedia 139

MCUXpresso SDK Documentation, Release 25.09.00

Legend for diagrams:

flowchart TD
classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((State)):::state
B{Condition}:::condition
C[Error message]:::error
D[Process function]:::function

help, version
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((Idle)):::state --> C[Write help or version]:::function
B((Running)):::state --> C
C --> E((No state
change)):::state

start [nosdcard]
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((Idle)):::state --> B{nosdcard
parameter?}:::condition
B -- Yes --> CH[Playing to Line-out and
recording]:::function
CH --> L((Running)):::state
B -- No --> C{Is SD card
inserted?}:::condition
C -- Yes --> E[Playing to Line-out and
recording to SD card]:::function
E --> F((Running)):::state
F --> G{Debugging
is enabled?}:::condition
G -- No --> F
G -- Yes --> H[Save reference and
microphone data to SDRAM]:::function
H --> F
C -- No --> D[Error: Insert SD

card first]:::error
D --> A
J((Running)):::state --> K[Error: The streamer task is
already running]:::error
K --> J

140 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

stop
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((Idle)):::state --> A
B((Running)):::state --> C{Is debugging
enabled?}:::condition
C --Yes -->E[Copy reference and

microphone data to
the SD card]:::function

E --> G((Idle)):::state
C -- No --> G

debug [on|off]
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((Idle)):::state --> B[Error: First, start
the streamer task]:::error
C((Running)):::state --> D{Any
parameter?}:::condition
D -- Yes --> F{Started with
nosdcard
parameter?}:::condition
F -- No --> H[Set debugging]:::function
H --> C
F --Yes --> G[Error: Debugging cannot be used]:::error
G --> C
D -- No --> E[Error: Use the parameter
either on or off]:::error
E --> C

Maestro USB microphone example

Table of content
• Overview

• Hardware requirements

• Hardware modifications

• Preparation

• Running the demo

• Example configuration

• Functionality

• States

• Commands in detail

1.7. Multimedia 141

MCUXpresso SDK Documentation, Release 25.09.00

Overview The Maestro USB microphone example demonstrates audio processing on the ARM
cortex core utilizing the Maestro Audio Framework library.

The application is controlled by commands from a shell interface using serial console.

The development board will be enumerated as a USB audio class 2.0 device on the USB host. The
application takes audio samples from the microphone inputs and sends them to the USB host
via the USB bus. User will see the volume levels obtained from the USB host but this is only an
example application. To leverage the volume values, the demo has to be modified.

As shown in the table below, the application is supported on several development boards, and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow to use of an audio expansion board. Therefore, please
check the supported features and Hardware modifications or Example configuration sections be-
fore running the demo.

Limitations:
• Note:

1. When connected to MacBook, change the PCM format from (0x02,0x00,) to (0x01,0x00,
) in the g_config_descriptor[CONFIG_DESC_SIZE] in the usb_descriptor.cfile. Otherwise,
it can’t be enumerated and noise is present when recordingwith the QuickTime player
because the sampling frequency and bit resolution do not match.

2. When device functionality is changed, please uninstall the previous PC driver to make
sure the device with changed functionality can run normally.

3. If you’re having audio problems on Windows 10 for recorder, please disable signal
enhancement as the following if it is enabled and have a try again.

Known issues:
• No known issues.

More information about supported features can be found on the Supported features page.

Hardware requirements
• Desired development board

• 2x Micro USB cable

• Personal Computer

• LPCXpresso55s69:

– Source of sound with 3.5 mm stereo jack connector

Hardware modifications Some development boards need some hardware modifications to
run the application. If the development board is not listed here, its default setting is required.

Preparation
1. Connect the first micro USB cable between the PC host and the debug USB port on the de-

velopment board

2. Open a serial terminal with the following settings:

• 115200 baud rate

• 8 data bits

• No parity

• One stop bit

142 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

• No flow control

3. Download the program to the target board.

4. LPCXpresso55s69:

• Insert source of sound to Audio Line-In connector (headphone jack) on the develop-
ment board.

5. Connect the second micro USB cable between the PC host and the USB port on the develop-
ment board.

6. Either press the reset button on your development board or launch the debugger in your
IDE to begin running the demo.

Running the demo When the example runs successfully, you should see similar output on the
serial terminal as below:

Maestro audio USB microphone solutions demo start

Copyright 2022 NXP
[APP_Shell_Task] start

>> usb_mic -1

Starting maestro usb microphone application
The application will run until the board restarts
[STREAMER] Message Task started
Starting recording
[STREAMER] start usb microphone
Set Cur Volume : 1f00

Type help to see the command list. Similar description will be displayed on serial console:

>> help

”help”: List all the registered commands

”exit”: Exit program

”version”: Display component versions

”usb_mic”: Record MIC audio and playback to the USB port as an audio 2.0
microphone device.

USAGE: usb_mic <seconds>
<seconds> Time in seconds how long the application should run.

When you enter a negative number the application will
run until the board restarts.

EXAMPLE: The application will run for 20 seconds: usb_mic 20

Details of commands can be found here.

Example configuration The example only supports one mode and do not support any addi-
tional libraries, so the example can’t be configured by user.

Functionality The usb_mic command calls the STREAMER_mic_Create function
from the app_streamer.cfile that creates pipeline with the following elements: - ELE-
MENT_MICROPHONE_INDEX - ELEMENT_USB_SINK_INDEX

1.7. Multimedia 143

MCUXpresso SDK Documentation, Release 25.09.00

Recording itself can be started with the STREAMER_Start function.

Each of the elements has several properties that can be accessed using the streamer_get_property
or streamer_set_property function. These properties allow a user to change the values of the
appropriate elements. The list of properties can be found in streamer_element_properties.h. See
the example of setting property value in the following piece of code from the app_streamer.c file:

ELEMENT_PROPERTY_T prop;

prop.prop = PROP_MICROPHONE_SET_SAMPLE_RATE;
prop.val = AUDIO_SAMPLING_RATE;

streamer_set_property(handle->streamer, 0, prop, true);

prop.prop = PROP_MICROPHONE_SET_NUM_CHANNELS;
prop.val = 1;

streamer_set_property(handle->streamer, 0, prop, true);

prop.prop = PROP_MICROPHONE_SET_FRAME_MS;
prop.val = 1;

streamer_set_property(handle->streamer, 0, prop, true);

Some of the predefined values can be found in the streamer_api.h.

States The application can be in 2 different states:

• Idle

• Running

Commands in detail
• help, version

• usb_mic <seconds>

Legend for diagrams:

flowchart TD
classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((State)):::state
B{Condition}:::condition
C[Error message]:::error
D[Process function]:::function

help, version
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((Idle)):::state --> C[Write help or version]:::function
B((Running)):::state --> C

144 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

C --> E((No state
change)):::state

usb_mic <seconds>
flowchart TD

classDef function fill:#c6d22c
classDef condition fill:#7cb2de
classDef state fill:#fcb415
classDef error fill:#FF999C

B((Idle)):::state -->C{seconds
== 0?}:::condition
C -- No --> E{seconds
< 0?}:::condition
C -- Yes --> D[Error: Incorrect
command parameter]:::error
D -->B
E -- Yes --> G[recording]:::function
G --> H((Running)):::state
H --> H
E -- No --> F[recording]:::function
F --> I((Running)):::state
I --> J{seconds
expired?}:::condition
J -- No -->I
J -- Yes --> B

Maestro USB speaker example

Table of content
• Overview

• Hardware requirements

• Hardware modifications

• Preparation

• Running the demo

• Example configuration

• Functionality

• States

• Commands in detail

Overview The Maestro USB speaker example demonstrates audio processing on the ARM cor-
tex core utilizing the Maestro Audio Framework library.

The application is controlled by commands from a shell interface using serial console.

The development board will be enumerated as a USB audio class 2.0 device on the USB host.
The application takes audio samples from the USB host and sends them to the audio Line-Out
port. User will see the volume levels obtained from the USB host but this is only an example
application. To leverage the volume values, the demo has to be modified.

1.7. Multimedia 145

MCUXpresso SDK Documentation, Release 25.09.00

Depending on target platform or development board there are different modes and features of
the demo supported.

• Standard - The mode demonstrates playback with up to 2 channels, up to 48 kHz sample
rate and up to 16 bit width. This mode is enabled by default.

• Multi-Channel - In this mode the device is enumerated as a UAC 5.1. This mode is disabled
by default. See the Example configuration section to see how to enable the mode.

– When playing an 5.1 audio file, the example sends only the front-left and front-right
channels to the audio Line-Out port (the other channels are ignored), since this exam-
ple only supports on-board codecs with stereo audio output.

As shown in the table below, the application is supported on several development boards, and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow to use of an audio expansion board. Therefore, please
check the supported features and Hardware modifications or Example configuration sections be-
fore running the demo.

Limitations:
• Note:

– If the USB device audio speaker example uses an ISO IN feedback endpoint, please
attach the device to a host like PC which supports feedback function. Otherwise, there
might be attachment issue or other problems.

Known issues:
• No known issues.

More information about supported features can be found on the Supported features page.

Hardware requirements
• Desired development board

• 2x Micro USB cable

• Personal Computer

• Headphones with 3.5 mm stereo jack

Hardware modifications Some development boards need some hardware modifications to
run the application. If the development board is not listed here, its default setting is required.

Preparation
1. Connect the first micro USB cable between the PC host and the debug USB port on the de-

velopment board

2. Open a serial terminal with the following settings:

• 115200 baud rate

• 8 data bits

• No parity

• One stop bit

• No flow control

3. Download the program to the target board.

4. Connect the second micro USB cable between the PC host and the USB port on the develop-
ment board.

146 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

5. Insert the headphones into Line-Out connector (headphone jack) on the development
board.

6. Either press the reset button on your development board or launch the debugger in your
IDE to begin running the demo.

Running the demo When the example runs successfully, you should see similar output on the
serial terminal as below:

**
Maestro audio USB speaker solutions demo start
**

Copyright 2022 NXP
[APP_Shell_Task] start

>> usb_speaker -1

Starting maestro usb speaker application
The application will run until the board restarts
[STREAMER] Message Task started
Starting playing
[STREAMER] start usb speaker
Set Cur Volume : fbd5

Type help to see the command list. Similar description will be displayed on serial console:

>> help

”help”: List all the registered commands

”exit”: Exit program

”version”: Display component versions

”usb_speaker”: Play data from the USB port as an audio 2.0
speaker device.

USAGE: usb_speaker <seconds>
<seconds> Time in seconds how long the application should run.

When you enter a negative number the application will
run until the board restarts.

EXAMPLE: The application will run for 20 seconds: usb_speaker 20

Details of commands can be found here.

Example configuration The example can be configured by user. Before configuration, please
check the table to see if the feature is supported on the development board.

• Enable Multi-channel mode:
– The feature can be enabled by set the USB_AUDIO_CHANNEL5_1macro to 1U in the
usb_device_descriptor.h file.

– Note: When device functionality is changed, such as UAC 5.1, please uninstall the pre-
vious PC driver to make sure the device with changed functionality can run normally.

Functionality The Usb_speaker command calls the STREAMER_speaker_Create function
from the app_streamer.cfile that creates pipeline with the following elements: - ELE-
MENT_USB_SRC_INDEX - ELEMENT_SPEAKER_INDEX

1.7. Multimedia 147

MCUXpresso SDK Documentation, Release 25.09.00

Playback itself can be started with the STREAMER_Start function.

Each of the elements has several properties that can be accessed using the streamer_get_property
or streamer_set_property function. These properties allow a user to change the values of the
appropriate elements. The list of properties can be found in streamer_element_properties.h. See
the example of setting property value in the following piece of code from the app_streamer.c file:

ELEMENT_PROPERTY_T prop;

prop.prop = PROP_USB_SRC_SET_SAMPLE_RATE;
prop.val = AUDIO_SAMPLING_RATE;

streamer_set_property(handle->streamer, 0, prop, true);

prop.prop = PROP_USB_SRC_SET_NUM_CHANNELS;
prop.val = 2;

streamer_set_property(handle->streamer, 0, prop, true);

prop.prop = PROP_USB_SRC_SET_FRAME_MS;
prop.val = 1;

streamer_set_property(handle->streamer, 0, prop, true);

Some of the predefined values can be found in the streamer_api.h.

States The application can be in 2 different states:

• Idle

• Running

Commands in detail
• help, version

• usb_speaker <seconds>

Legend for diagrams:

flowchart TD
classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((State)):::state
B{Condition}:::condition
C[Error message]:::error
D[Process function]:::function

help, version
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((Idle)):::state --> C[Write help or version]:::function
B((Running)):::state --> C

148 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

C --> E((No state
change)):::state

usb_speaker <seconds>
flowchart TD

classDef function fill:#c6d22c
classDef condition fill:#7cb2de
classDef state fill:#fcb415
classDef error fill:#FF999C

B((Idle)):::state -->C{Duration
== 0?}:::condition
C -- No --> E{Duration
< 0?}:::condition
C -- Yes --> D[Error: Incorrect
command parameter]:::error
D -->B
E -- Yes --> G[playing]:::function
G --> H((Running)):::state
H --> H
E -- No --> F[playing]:::function
F --> I((Running)):::state
I --> J{Duration
expired?}:::condition
J -- No -->I
J -- Yes --> B

Supported features The current version of the audio framework supports several optional
features. These can be limited to some MCU cores or development boards variants. More infor-
mation about support can be found on the specific example page:

• maestro_playback

• maestro_record

• maestro_usb_mic

• maestro_usb_speaker

• maestro_sync

Some features are delivered as prebuilt library and the binaries can be found in the \middleware\
audio_voice\components*component*\libs folder. The source code of some features can be found
in the \middleware\audio_voice\maestro\src folder.

Decoders Supported decoders and its options are:

Decoder Sample rates [kHz] Number of channels Bit depth
AAC 8, 11.025, 12, 16, 22.05, 24, 32, 44.1, 48 1, 2 (mono/stereo) 16
FLAC 8, 11.025, 12, 16, 22.05, 32, 44.1, 48 1, 2 (mono/stereo) 16
MP3 8, 11.025, 12, 16, 22.05, 24, 32, 44.1, 48 1, 2 (mono/stereo) 16
OPUS 8, 16, 24, 48 1, 2 (mono/stereo) 16
WAV 8, 11.025, 16, 22.05, 32, 44.1, 48 1, 2 (mono/stereo) 8, 16, 24

For more details about the reference decoders please see audio-voice-components repository
documentation \middleware\audio_voice\components\.

1.7. Multimedia 149

MCUXpresso SDK Documentation, Release 25.09.00

Encoders
• OPUS encoder - The current verion of the audio framework only supports a OPUS encoder.
For more details about the encoder please see the following link.

Sample rate converters
• SSRC - Synchronous sample rate converter. More details about SSRC are available in the
User Guide, which is located in middleware\audio_voice\components\ssrc\doc\.

• ASRC - Asynchronous sample rate converter is not used in our examples, but it is part of the
maestro middleware and can be enabled. To enable ASRC, themaestro_framework_asrc and
CMSIS_DSP_Library_Source components must be added to the project. Furthermore, it is
necessary to switch from Redlib to Newlib (semihost) library and add a platform definition
to the project (e.g. for RT1170: PLATFORM_RT1170_CORTEXM7). Supported platforms
can be found in the PL_platformTypes.h file. More details about ASRC are available in the
User Guide, which is located in middleware\audio_voice\components\asrc\doc\.

Additional libraries
• VIT - Voice Intelligent Technology (VIT) Wake Word and Voice Command Engines pro-
vide free, ready to use voice UI enablement for developers. It enables customer-defined
wake words and commands using free online tools. More details about VIT are available
in the VIT package, which is located in middleware\audio_voice\components\vit\{platform}\
Doc\(depending on the platform) or via following link.

• VoiceSeeker - VoiceSeeker is a multi-microphone voice control audio front-end signal pro-
cessing solution. More details about VoiceSeeker are available in the VoiceSeeker pack-
age, which is located in middleware\audio_voice\components\voice_seeker\{platform}\Doc\
(depending on the platform) or via following link.

Processing Time

Table of content
• Maestro playback example

• Maestro record example

The individual time measurements were conducted using a logic analyzer by monitoring
changes in the GPIO port levels on the EVKC-MIMXRT1060 development board. These measure-
ments were executed for each individual pipeline run, capturing the timing at each correspond-
ing element, and, when relevant, the interconnections between these elements.

Maestro playback example For the Maestro playback example the following reference audio
file was used: test_48khz_16bit_2ch.wav. In this example, the pipeline depicted in the diagram
was considered. Media codecs WAV and MP3 were taken into account. To compare the times
spent on the SSRC block, sampling rates for both codecs were selected: 44.1 kHz and 48 kHz.

150 Chapter 1. Middleware

https://opus-codec.org/docs/opus_api-1.3.1/
https://nxp.com/vit
https://nxp.com/voiceseeker

MCUXpresso SDK Documentation, Release 25.09.00

The measurement of streamer pipeline run started at the beginning of
streamer_process_pipelines(): streamer.c and ended in the function streamer_pcm_write():
streamer_pcm.c just before the output buffer.

In the scenario involving the WAV codec, the audio file was accessed in every iteration of the
streamer pipeline. Meaning, during each run, the file was read directly from the SD card. How-
ever, in the case of the MP3 codec, where data processing necessitates complete MP3 frames,
the file wasn’t read during every run. Rather, it was accessed periodically, triggered when the
codec buffer lacked a complete MP3 frame of data. The total time spent on codec processing
varies significantly depending on the type and implementation of the codec. For certain types of
codecs, like FLAC, there may be multiple file accesses during a single pipeline run. The provided
values are specific to the reference implementation. For details about the codecs please see see
audio-voice-components documentation middleware\audio_voice\components\.

The duration of the streamer pipeline illustrates that with a sampling frequency of 48 kHz, there
is no resampling occurring at the SSRC element. Consequently, the overall pipeline time is lower
than in the case of 44.1 kHz audio, where resampling takes place.

To enhance comprehension of the system’s behavior, histograms of the pipeline run times and
its elements are included. The greater time variance with the MP3 codec is precisely due to
the absence of file reads in every run. In clusters with shorter times, there are no file accesses,
while in clusters with longer times, file reads occur. This indicates that the majority of runs do
not involve file access.

WAV 48
kHz

WAV 44
kHz

MP3 48 kHz
file read

MP3 48 kHz w/o
file read

MP3 44 kHz
file read

MP3 44 kHz w/o
file read

mean 1.11 ms 1.76 ms 2.87 ms 0.51 ms 3.22 ms 0.89 ms
min 1.03 ms 1.60 ms 2.74 ms 0.41 ms 2.33 ms 0.74 ms
max 1.29 ms 2.23 ms 3.24 ms 1.83 ms 3.73 ms 1.12 ms

Time on each element In the tables and histograms below, the timings for individual elements
and their connections are provided. Given that the file reading function was invoked during the
codec’s operation, the tables for individual elements display the total time on the codec element,
the time on the codec element before the file read, and the time on the codec element after the
file read. The individual blocks in the tables are as follows:

• streamer - total time of one pipeline run without time on output buffers

• codec start - time on decoder before file read

• codec end - time on decoder after file read

• codec total - codec_start+codec_end
• file_src - file reading time

• SSRC_proc - time on SSRC element

• audio_sink - time on audio sink without ouput buffers

1.7. Multimedia 151

MCUXpresso SDK Documentation, Release 25.09.00

• pcm_write - time on output buffers

• link - time on element links

The start times of the time intervals for individual blocks and their respective links were mea-
sured by altering the GPIO pin level in the following functions:

• streamer - streamer_process_pipelines():streamer.c

• codec - decoder_sink_pad_process_handler():decoder_pads.c

• file_src - filesrc_read():file_src_rtos.c

• SSRC_proc - SSRC_Proc_Execute():ssrc_proc.c

• audio_sink - audiosink_sink_pad_chain_handler():audio_sink.c

• pcm_write - streamer_pcm_write():streamer_pcm.c

• link - pad_push():pad.c

WAV
48kHz

streamercodec
total

codec
start

file_src codec
end

link
codec-
SSRC

SSRC_proclink SSRC-
audio_sink

au-
dio_sink

pcm_write

mean 1.119
ms

152
μs

31 μs 0.843
ms

120
μs

5 μs 64 μs 2 μs 40 μs 20.228
ms

min 1.026
ms

125
μs

21 μs 0.773
ms

104
μs

<1 μs 47 μs <1 μs 30 μs 19.805
ms

max 1.290
ms

193
μs

49 μs 1.311
ms

144
μs

23 μs 93 μs 14 μs 91 μs 20.324
ms

WAV
44kHz

streamercodec
total

codec
start

file_src codec
end

link
codec-
SSRC

SSRC_proclink SSRC-
audio_sink

au-
dio_sink

pcm_write

mean 1.765
ms

178
μs

44 μs 0.853
ms

134
μs

5 μs 671
μs

3 μs 42 μs 21.472
ms

min 1.604
ms

145
μs

33 μs 0.770
ms

112
μs

<1 μs 574
μs

<1 μs 33 μs 18.163
ms

max 2.233
ms

218
μs

57 μs 1.335
ms

161
μs

18 μs 715
μs

5 μs 89 μs 21.746
ms

152 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

MP3 48 kHz
w/ file read

streamercodec
total

codec
start

file_srccodec
end

link
codec-
SSRC

SSRC_proclink SSRC-
audio_sink

au-
dio_sink

pcm_write

mean 2.871
ms

441
μs

279
μs

2.271
ms

162
μs

6 μs 56 μs 3 μs 50 μs 11.019
ms

min 2.739
ms

353
μs

74 μs 1.353
ms

26
μs

<1 μs 40 μs <1 μs 34 μs 10.091
ms

max 3.244
ms

570
μs

409
μs

2.728
ms

467
μs

18 μs 80 μs 14 μs 62 μs 12.910
ms

MP3 48
kHz w/o file
read

streamercodec
total

codec
start

file_srccodec
end

link
codec-
SSRC

SSRC_proclink SSRC-
audio_sink

au-
dio_sink

pcm_write

mean 0.508
ms

403
μs

x x x 8 μs 39 μs 3 μs 36 μs 11.326
ms

min 0.407
ms

208
μs

x x x <1 μs 25 μs <1 μs 21 μs 7.715
ms

max 1.834
ms

563
μs

x x x 41 μs 69 μs 16 μs 104
μs

12.941
ms

MP3 44 kHz
w/ file read

streamercodec
total

codec
start

file_srccodec
end

link
codec-
SSRC

SSRC_proclink SSRC-
audio_sink

au-
dio_sink

pcm_write

mean 3.217
ms

436
μs

367
μs

2.300
ms

66
μs

7 μs 403
μs

3 μs 51 μs 12.188
ms

min 2.329
ms

383
μs

73 μs 1.411
ms

26
μs

2 μs 318
μs

<1 μs 35 μs 9.119
ms

max 3.726
ms

547
μs

464
μs

2.801
ms

441
μs

27 μs 454
μs

12 μs 65 μs 12.529
ms

1.7. Multimedia 153

MCUXpresso SDK Documentation, Release 25.09.00

MP3 44
kHz w/o file
read

streamercodec
total

codec
start

file_srccodec
end

link
codec-
SSRC

SSRC_proclink SSRC-
audio_sink

au-
dio_sink

pcm_write

mean 0.891
ms

437
μs

x x x 9 μs 388
μs

3 μs 38 μs 11.934
ms

min 0.738
ms

268
μs

x x x <1 μs 290
μs

<1 μs 22 μs 8.964
ms

max 1.115
ms

620
μs

x x x 45 μs 438
μs

17 μs 92 μs 12.624
ms

Maestro record example Typical execution times of the streamer pipeline and its individ-
ual elements for the EVKC-MIMXRT1060 development board are detailed in the following ta-
bles. The duration spent on output buffers and reading from the microphone is excluded
from traversal measurements. Three measured pipelines are depicted in the figure below.
The first involves a loopback from microphone to speaker, supporting both mono and stereo
configurations. The second pipeline is a mono voice control setup, comprising microphone
and VIT blocks. The final pipeline is a stereo voice control setup, integrating microphone,
voice seeker, and VIT blocks. The measurement of streamer pipeline run started at the begin-
ning of streamer_process_pipelines():streamer.c and ended in the function streamer_pcm_write():
streamer_pcm.c just before the output buffer.

The individual blocks in the tables are as follows:

154 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

• streamer - total time of one pipeline run without time on output buffers and without time
reading from the microphone

• audio_src_start - time on audio src before reading from the microphone

• audio_src_end - time on audio src after reading from the microphone

• pcm_read - reading from the microphone

• voiceseeker - time on voice seeker element

• vit - time on VIT element

• audio_sink - time on audio sink without ouput buffers

• pcm_write - time on output buffers

• link - time on element links

The start times of the time intervals for individual blocks and their respective links were mea-
sured by altering the GPIO pin level in the following functions:

• streamer - streamer_process_pipelines():streamer.c

• audio_src - audiosrc_src_process():audio_src.c

• pcm_read - streamer_pcm_read():streamer_pcm.c

• voiceseeker - audio_proc_sink_pad_chain_handler():audio_proc.c

• vit - vitsink_sink_pad_chain_handler():vit_sink.c

• audio_sink - audiosink_sink_pad_chain_handler():audio_sink.c

• pcm_write - streamer_pcm_write():streamer_pcm.c

• link - pad_push():pad.c

Pipeline Microphone -> Speaker

microphone ->
speaker mono

streamerau-
dio_src_start

pcm_readau-
dio_src_end

link audio_src-
audio_sink

au-
dio_sink

pcm_write

mean 43 μs 3 μs 29.938
ms

29 μs <1 μs 10 μs 18 μs

min 26 μs <1 μs 29.350
ms

19 μs <1 μs 5 μs 12 μs

max 72 μs 12 μs 29.957
ms

44 μs 1 μs 15 μs 25 μs

microphone ->
speaker stereo

streamerau-
dio_src_start

pcm_readau-
dio_src_end

link audio_src-
audio_sink

au-
dio_sink

pcm_write

mean 115
μs

5 μs 29.861
ms

54 μs 2 μs 55 μs 23 μs

min 94 μs <1 μs 29.768
ms

43 μs <1 μs 50 μs 12 μs

max 154
μs

14 μs 29.880
ms

67 μs 8 μs 65 μs 49 μs

1.7. Multimedia 155

MCUXpresso SDK Documentation, Release 25.09.00

Pipeline Microphone -> VIT

microphone ->
VIT

streamer au-
dio_src_start

pcm_read au-
dio_src_end

link audio_src-
vit

vit

mean 7.380
ms

30 μs 22.624
ms

78 μs 2 μs 7.261
ms

min 2.641
ms

10 μs 2.2265
ms

58 μs <1 μs 2.559
ms

max 7.780
ms

42 μs 2.7341
ms

94 μs 5 μs 7.624
ms

Pipeline Microphone -> Voice seeker -> VIT

microphone ->
voice seeker ->
VIT

streamerau-
dio_src_start

pcm_readau-
dio_src_end

link
audio_src-
voiceseeker

voic-
e-
seeker

link
voiceseeker-
vit

vit

mean 9.916
ms

22 μs 20.084
ms

84 μs 4 μs 2.386
ms

13 μs 7.407
ms

min 4.983
ms

19 μs 19.738
ms

72 μs <1 μs 2.228
ms

2 μs 2.662
ms

max 10.423
ms

34 μs 24.777
ms

100 μs 7 μs 2.522
ms

31 μs 7.729
ms

156 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Maestro on Zephyr
• Based on and tested with Zephyr version, given by tag v4.0.0

• Tested with Zephyr SDK version 16.4

• To see the pre-built documentation, see: README.html. Also see the documentation section.

Maestro sample for recording data from microphone to RAM

Description This sample records data from microphone (alias dmic0 in devicetree) and stores
them to a buffer in RAM.

Currently one PDM channel with fixed 16 kHz sample rate and 16 bit sample width is supported.

For configuration options, see Kconfig and prj.conf.

User Input/Output
• Input:

None.

• Output:

UART Output:

– Demo result: OK if everything went OK

– Demo result: FAIL otherwise

Supported platforms Currently tested for:

• RD_RW612_BGA.

Maestro voice detection sample using VIT

Description Records data from microphone (alias dmic0 in devicetree) and detects voice com-
mands from selected language model. Detected commands are printed via UART.

Languagemodelmaybe changedviaKconfigusingCONFIG_MAESTRO_EXAMPLE_VIT_LANGUAGE
selection. For other configuration options, see example’s Kconfig and prj.conf.

This project requires an NXP board supported by the VIT library.

The example has to be modified if a new board needs to be added. Please create an issue in that
case.

User Input/Output
• Input:

None.

• Output:

UART Output:

– List of voice commands themodel can detect (printed immediately after start)

– <Specific voice command> if voice command was detected

– Demo result: FAIL otherwise

1.7. Multimedia 157

doc/doc/README.html

MCUXpresso SDK Documentation, Release 25.09.00

Dependencies
• VIT library: https://www.nxp.com/design/design-center/software/embedded-software/
voice-intelligent-technology-wake-word-and-voice-command-engines:
VOICE-INTELLIGENT-TECHNOLOGY

Supported platforms Currently tested for:

• RD_RW612_BGA.

Maestro decoder sample

Description Tests and demonstrates decoder functionality in Maestro pipeline.

Supported decoders:

• MP3

• WAV

• AAC

• FLAC

• OPUS with OGG envelop

• (RAW OPUS - TBD)

Data Input:

• Prepared encoded audio data (part of Maestro repository, folder zephyr/audioTracks)

• Prepared decoded audio data (RAW PCM format, part of Maestro repository, folder zephyr/
audioTracks)

Function:

1. Loads encoded data into source buffer stored in RAM

2. Decodes audio data using selected decoder and stores data in RAM

3. Compares prepared data with decoded data to check if its the same

4. Prints Demo result: OK or Demo result: FAIL via UART

User Input/Output
• Input:

None

• Output:

UART Output

– Demo result: OK if everything went OK

– Demo result: FAIL otherwise

Dependencies
• Audio voice component library (pulled in by Maestro’s west), containing Decoder libraries

158 Chapter 1. Middleware

https://www.nxp.com/design/design-center/software/embedded-software/voice-intelligent-technology-wake-word-and-voice-command-engines:VOICE-INTELLIGENT-TECHNOLOGY
https://www.nxp.com/design/design-center/software/embedded-software/voice-intelligent-technology-wake-word-and-voice-command-engines:VOICE-INTELLIGENT-TECHNOLOGY
https://www.nxp.com/design/design-center/software/embedded-software/voice-intelligent-technology-wake-word-and-voice-command-engines:VOICE-INTELLIGENT-TECHNOLOGY

MCUXpresso SDK Documentation, Release 25.09.00

Configuration
• See prj.conf for user input sections

– Selecting decodermaybedoneby enablingCONFIG_MAESTRO_EXAMPLE_DECODER_SELECTED_<DECODER_NAME>
in prj.conf file. When no decoder is selected, default one (WAV) is used instead.

– System settings should be modified (stack size, heap size) based on selected decoder
and system capabilities/requirements in prj.conf.

• For other configuration options, see example’s Kconfig and prj.conf.

Supported platforms Currently tested for:

• RD_RW612_BGA - Working decoders: FLAC, WAV, OPUS OGG

Maestro encoder sample

Description Tests and demonstrates encoder functionality in Maestro pipeline.

Supported encoders:
• OPUS with OGG envelop - TBD

• RAW OPUS - TBD

Input:

• Prepared decoded audio data (RAW PCM format, part of Maestro repository)

• Prepared encoded audio data (part of Maestro repository)

Function:

1. Loads RAW data into source buffer stored in RAM

2. Encodes audio data using selected encoder and stores data in RAM

3. Compares prepared data with decoded data if same

4. Prints Demo result: OK or Demo result: FAIL via UART

Dependencies
• Audio voice component library (pulled in by Maestro’s west), containing Encoder libraries

User Input/Output Input:

• None

Output:

• UART Output

– Demo result: OK if everything went OK

– Demo result: FAIL otherwise

1.7. Multimedia 159

MCUXpresso SDK Documentation, Release 25.09.00

Configuration
• See prj.conf for user input sections

– Selecting encodermaybedoneby enablingCONFIG_MAESTRO_EXAMPLE_ENCODER_SELECTED_<ENCODER_NAME>
in prj.conf file. When no encoder is selected, default one (OPUS) is used instead.

– System settings should be modified (stack size, heap size) based on selected encoder
and system capabilities/requirements in prj.conf file.

• For other configuration options, see example’s Kconfig and prj.conf.

Supported platforms Currently tested for:

• RD_RW612_BGA - Working encoders: None.

Maestro mem2mem sample

Description Tests basic memory to memory pipeline.

Function:
1. Moves generated data with fixed size of 256B from memory source to memory sink.

2. Compares copied data to check if they’re the same.

3. Returns Demo result: OK or Demo result: FAIL via UART.

• Maestro environment setup

• Build and run Maestro example

– Using command line

– Using MCUXpresso for VS Code

• Folder structure

• Supported elements and libraries

• Examples support

• Creating your own example

• Documentation

• FAQ

Maestro environment setup Follow these steps to set up aMaestro development environment
on your machine.

1. If you haven’t already, please follow this guide to set up a Zephyr development environment
and its dependencies first:

• Cmake

• Python

• Devicetree compiler

• West

• Zephyr SDK bundle

160 Chapter 1. Middleware

https://docs.zephyrproject.org/latest/develop/getting_started/index.html

MCUXpresso SDK Documentation, Release 25.09.00

2. Get Maestro. You can pick either of the options listed below. If you need help deciding
which option is the best fit for your needs, please see the FAQ.

• Freestanding Maestro - This option pulls in only Maestro’s necessary dependencies.

Run:

1. west init -m <maestro repository url> --mr <revision> --mf west-freestanding.yml
↪→<foldername>
2. cd <foldername>
3. west update

• Maestro as a Zephyr module

To include Maestro into Zephyr, update Zephyr’s west.yml file:

projects:
name: maestro
url: <maestro repository url>
revision: <revision with Zephyr support>
path: modules/audio/maestro
import: west.yml

Then run west update maestro command.

Build and run Maestro example These steps will guide you through building and running
Maestro samples. You can use either the command line utilizing Zephyr’s powerful west tool or
you can use VS Code’s GUI. Detailed steps for both options are listed below.

Using command line See Zephyr’s Building, Flashing and Debugging guide if you aren’t famil-
iar with it yet.

1. To build a project, run:

west build -b <board> -d <output build directory> <path to example> -p

For example, this compiles VIT example for rd_rw612_bga board:

1. cd maestro/zephyr
2. west build -b rd_rw612_bga -d build samples/vit -p

2. To run a project, run:

west flash -d <directory>

e.g.:

west flash -d build

3. To debug a project, run:

west debug -d <directory>

e.g.:

west debug -d build

Using MCUXpresso for VS Code For this you have to have NXP’s MCUXpresso for VS Code
extension installed.

1. Import your topdir as a repository to MCUXPresso for VS Code:

1.7. Multimedia 161

https://docs.zephyrproject.org/latest/develop/west/build-flash-debug.html
https://github.com/nxp-mcuxpresso/vscode-for-mcux
https://github.com/nxp-mcuxpresso/vscode-for-mcux

MCUXpresso SDK Documentation, Release 25.09.00

• Open the MCUXpresso Extension. In the Quickstart Panel click Import Repository.

• In the displayed menu click LOCAL tab and select the folder location of your topdir.

• Click Import.

• The repository is successfully added to the Installed Repositories view once the import
is successful.

2. To import any project from the imported repository:

• In the Quickstart Panel click Import Example from Repository.

• For Repository select your imported repository.

• For Zephyr SDK the installed Zephyr SDK is selected automatically. If not, select one.

• For Board select your board (make sure you’ve selected the correct revision).

• For Template select the folder path to your project.

• Click the Create button.

3. Build the project by clicking the Build Selected icon (displayed on hover) in the extension’s
Projects view. After the build, the debug console window displays the memory usage (or
compiler errors if any).

4. Debug the project by clicking the Debug (play) icon (displayed on hover) in the extension’s
Projects view.

5. The execution will pause. To continue execution click Continue on the debug options.

6. In the SERIAL MONITOR tab of your console panel, the application prints the Zephyr boot
banner during startup and then prints the test results.

Folder structure
maestro/
���� ...
���� zephyr/ All Zephyr related files

��� samples/ Sample examples
��� tests/ Tests
��� audioTracks/ Audio tracks for testing
��� doc/ Documentation configuration for Sphinx
��� wrappers/ NXP SDK Wrappers
��� scripts/ Helper scripts, mostly for testing
��� module.yml Defines module name, Cmake and Kconfig locations
��� CMakeList.txt Defines module's build process
��� Kconfig Defines module's configuration
��� osa/ Deprecated. OSA port for Zephyr
��� ...

Supported elements and libraries Here is the list of all features currently supported in Mae-
stro on Zephyr. Our goal is to support all features in Maestro on Zephyr that are already sup-
ported in Maestro on NXP’s SDK and to extend them further.

Supported elements:
• Memory source

• Memory sink

• Audio source

• Audio sink

• Process sink

162 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

• Decoder

• Encoder

Supported decoders:
• WAV

• MP3

• FLAC

• OPUS OGG

• AAC

Supported encoders:
• OPUS RAW

Supported libraries:
• VIT

Examples support All included examples use UART as output. Examples are located in zephyr/
tests and zephyr/samples directories.

List of included examples:
• Maestro sample for recording data from microphone to RAM

• Maestro voice detection sample using VIT

• Maestro encoder sample

• Maestro decoder sample

• Maestro mem2mem sample

Examples support for specific boards:

Example RDRW612BGA LPCx-
presso55s69

MIMXRT1060EVKB MIMXRT1170EVKB

Record YES TO BE TESTED TO BE TESTED TO BE TESTED
VIT YES TO BE TESTED TO BE TESTED TO BE TESTED
Encoder In progress: OPUS RAW TO BE TESTED TO BE TESTED TO BE TESTED
Decoder YES - WAV, FLAC, OPUS

OGG
TO BE TESTED TO BE TESTED TO BE TESTED

Mem2mem YES TO BE TESTED TO BE TESTED TO BE TESTED

Creating your own example There are two ways to create your own example - you can either
one of the included examples as a reference or you can create your own example from scratch
by hand.

When creating your ownexample fromscratch, setCONFIG_MAESTRO_AUDIO_FRAMEWORK=y
in your prj.conf file. Then you can start enabling specific elements by setting CON-
FIG_MAESTRO_ELEMENT_<NAME>_ENABLE=y.

However, the recommended way to edit config options is to open gui-config (or menuconfig) by
callingwest build -t guiconfig. Then you can use the graphical interface to interactively turn on/off
the features you need.

1.7. Multimedia 163

https://www.nxp.com/design/design-center/software/embedded-software/voice-intelligent-technology-wake-word-and-voice-command-engines:VOICE-INTELLIGENT-TECHNOLOGY

MCUXpresso SDK Documentation, Release 25.09.00

Documentation Please note, Maestro documentation is under reconstruction. It is currently
mixing several tools and formats.

To see the pre-generated Maestro Zephyr documentation, see zephyr/doc/doc/README.html

To generate the Zephyr documentation, go under zephyr/doc folder and execute make html.
Sphinx version sphinx-build 8.1.3must be installed. Open doc/doc/html/README.hml afterwards.

To see Maestro core documentation, go to the Maestro top directory and see README.md.

FAQ
1. Should I choose the freestanding version of Maestro or should integrate it into my west

instead?

• Freestanding version of Maestro pulls in all the dependencies it needs including
Zephyr itself.

• Integrating it as a module is easier if you already have your Zephyr environment set
up.

Maestro Audio Framework changelog

2.0.0 (newest)
• Added Zephyr port, see Zephyr README.

– Possible to use standalone version, pulling its own Zephyr and dependencies

– Possible to import it as a module in your Zephyr project

• Changed build system - newly uses Kconfig and Cmake

• Supports NXP MCUXSDK (previously 2.x)

• Changed folder structure and names to improve readability (description may be found in
README)

• Removed audio libraries and placed into audio-voice-components repository

• Added libraries are pulled into the build via Kconfig and Cmake

• Changed Maestro library core - minor changes

1.8.0
• New platforms support: MCX-N5XX-EVK, FRDMMCXN236 and RD-RW612-BGA

• Fixed compilation warnings

• Documentation improvements and updates

– Added section with processing time information

– Added application state diagrams

• Various updates and fixes

164 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

1.7.0
• Removed EAP support for future SDK releases

• Created new API for audio_sink and audio_src to support USB source, sink

• ASRC library integrated

• License changed to BSD 3-Clause

• Improved pipeline creation API

• Fixed compilation warnings in Opus

• Various other improvements and bug fixes

1.6.0
• Up to 2 parallel pipelines supported

• Synchronous Sample Rate Converter support Added

• Various improvements and bug fixes

1.5.0
• Enabled switching from 2 to 4 channel output during processing

• PadReturn type has been replaced by FlowReturn

• Support of AAC, WAV, FLAC decoders

• Renamed eap element to audio_proc element

• Added audio_proc to VIT pipeline to support VoiceSeeker

• Minor bug fixes

1.4.0
• Use Opusfile lib for Ogg Opus decoder

• Refactor code, fix issues found in unit tests

• Various bug fixes

1.3.0
• Make Maestro framework open source (except mp3 and wav decoder)

• Refactor code, remove unused parts, add comments

1.2.0
• Unified buffering in audio source, audio sink

• Various improvements and bug fixes

1.0_rev0
• Initial version of framework with support for Cortex-M7 platforms

1.7. Multimedia 165

MCUXpresso SDK Documentation, Release 25.09.00

1.8 Wireless

1.8.1 NXP Wireless Framework and Stacks

Wi-Fi, Bluetooth, 802.15.4

Application notes
• Link AN12918-Wi-Fi-Tx-Power-Table-and-Channel-Scan-Management-for-i.MX-RT-SDK.pdf

• Link TN00066-WFA-Derivative-Certification-Process.pdf

User manuals
• Link UM11441-Getting-Started-with-NXP-based-Wireless-Modules-and-i.MX-RT-
Platforms.pdf

• UM11442-NXP-Wi-Fi-and-Bluetooth-Demo-Applications-for-i.MX-RT-Platforms.pdf

• Link UM11443-NXP-Wi-Fi-and-Bluetooth-Debug-Feature-Configuration-Guide-for-i.MX-RT-
Platforms.pdf

• Link UM11567-WFA-Certification-Guide-for-NXP-based-Wireless-Modules-on-i.MX-RT-
Platform-Running-RTOS.pdf

Release notes

Wireless SoC features and release notes for FreeRTOS

About this document This document provides information about the supported features, re-
lease versions, fixed and/or known issues, performance of the Wi-Fi, Bluetooth/802.15.4 radios,
including the coexistence.

The SDK release version 25.09.00 has been tested for the wireless SoCs listed in Supported prod-
ucts.

Supported products
• 88W8987

• IW416

• IW6111

• IW6122

• AW6113

• RW610

• RW612

Parent topic:About this document

[1]: The support of IW611 is enabled in i.MX RT1170 EVKB and i.MX RT1060 EVKC. [2]: The sup-
port of IW612 is enabled in i.MX RT1170 EVKB and i.MX RT1060 EVKC. [3]: AW611 module sup-
port is available only in i.MX RT1180 EVKA

Features

166 Chapter 1. Middleware

https://www.nxp.com/docs/en/application-note/AN12918.pdf
https://www.nxp.com/docs/en/application-note/TN00066.pdf
https://www.nxp.com/webapp/Download?colCode=UM11441
https://www.nxp.com/webapp/Download?colCode=UM11441
https://www.nxp.com/webapp/Download?colCode=UM11443
https://www.nxp.com/webapp/Download?colCode=UM11443
https://www.nxp.com/webapp/Download?colCode=UM11567
https://www.nxp.com/webapp/Download?colCode=UM11567

MCUXpresso SDK Documentation, Release 25.09.00

Wi-Fi radio

Client mode
Features Sub features 88W8987 IW416 IW611/IW612 RW610/RW612 IW610 AW611
802.11n - High throughput 2.4 GHz band operation supported channel bandwidth: 20 MHz Y Y Y Y Y Y
802.11n - High throughput 2.4 GHz band supported channel bandwidth: 40 MHz Y Y Y N N Y
802.11n - High throughput 5 GHz band supported channel bandwidth: 20 MHz Y Y Y Y Y Y
802.11n - High throughput 5 GHz band supported channel bandwidth: 40 MHz Y Y Y N N Y
802.11n - High throughput Short/long guard interval (400 ns/800 ns) Y Y Y Y Y Y
802.11n - High throughput Data rates up to 72 Mbit/s (MCS 0 to MCS 7) Y Y Y Y Y Y
802.11n - High throughput Data rates up to 150 Mbit/s (MCS 0 to MCS 7) Y Y Y Y Y Y
802.11n - High throughput 1 spatial stream (1x1) Y Y Y Y Y Y
802.11n - High throughput HT protection mechanisms Y Y Y Y Y Y
802.11n - High throughput Aggregated MAC protocol data unit (AMPDU) TX and RX support Y Y Y Y Y Y
802.11n - High throughput Aggregated MAC service data unit (AMSDU) 4k TX and RX support Y Y Y Y Y Y
802.11n - High throughput TX MCS rate adaptation (BGN) Y Y Y Y Y Y
802.11n - High throughput RX low density parity check (LDPC) 1x1 20 MHz and 40 MHz Y N Y N N Y
802.11n - High throughput HT Beamformee (explicit) Y Y Y N N Y
802.11ac - Very high throughput 2.4 GHz band supported channel bandwidth: 20MHz Y N Y Y Y Y
802.11ac - Very high throughput 5 GHz band supported channel bandwidth: 20 MHz Y N Y Y Y Y
802.11ac - Very high throughput 5 GHz band supported channel bandwidth: 40 MHz Y N Y N N Y
802.11ac - Very high throughput 5 GHz band supported channel bandwidth: 80 MHz Y N Y N N Y
802.11ac - Very high throughput Data rates up to 86.7 Mbps (MCS0 to MCS 8) Y N Y Y Y Y
802.11ac - Very high throughput Data rates up to 433.3 Mbps (MCS 0 to MCS 9) - 1x1 Y N Y N N Y
802.11ac - Very high throughput MU-MIMO Beamformee (Explicit and Implicit) Y N Y Y Y Y
802.11ac - Very high throughput RTS/CTS with BW signaling N N N N N N
802.11ac - Very high throughput Operation mode notification Y N Y N N Y
802.11ac - Very high throughput Backward compatibility with non-VHT devices Y N Y Y Y Y
802.11ac - Very high throughput TX VHT MCS rate adaptation Y N Y Y Y Y
802.11ac - Very high throughput Low density parity check (LDPC) Y N Y N N Y
802.11ax - High efficiency 2.4 GHz band supported channel bandwidth: 20MHz N N Y Y Y Y
802.11ax - High efficiency 5 GHz band supported channel bandwidth: 20 MHz N N Y Y Y Y
802.11ax - High efficiency 5 GHz band supported channel bandwidth: 40 MHz N N Y N N Y
802.11ax - High efficiency 5 GHz band supported channel bandwidths: 80 MHz N N Y N N Y
802.11ax - High efficiency OFDMA (UL/DL, 106 RU) N N Y Y Y Y
802.11ax - High efficiency OFDMA (UL/DL, 484 RU) N N Y N N Y
802.11ax - High efficiency 1024 QAM N N Y N N Y
802.11ax - High efficiency Target wake time (TWT) N N Y Y Y Y
802.11ax - High efficiency 256 QAMmodulation – MCS8 and MCS9 N N Y Y Y Y
802.11ax - High efficiency 1024 QAMmodulation – MCS10 and MCS11, 2.4 GHz N N Y N N Y
802.11ax - High efficiency 1024 QAMmodulation – MCS10 and MCS11, 5 GHz N N Y N N Y
802.11ax - High efficiency DCM N N Y N N Y
802.11ax - High efficiency DCM N N Y Y N Y
802.11ax - High efficiency ER (extended range) N N Y Y Y Y
802.11ax - High efficiency SU Beamforming N N Y Y Y Y
802.11ax - High efficiency OMI (operating mode indication) N N Y Y Y Y
802.11a/b/g features 802.11b/g data rates up to 54 Mbit/s Y Y Y Y Y Y
802.11a/b/g features 802.11a data rates up to 54 Mbit/s Y Y Y Y Y Y
802.11a/b/g features TX rate adaptation (BG) Y Y Y Y Y Y
802.11a/b/g features Fragmentation/defragmentation N N N Y Y N
802.11a/b/g features ERP protection, slot time, preamble Y Y Y Y Y Y
802.11d 802.11d - Regulatory domain/operating class/country info Y Y Y Y Y Y
802.11e QoS EDCA [enhanced distributed channel access] / WMM (wireless multi-media) Y Y Y Y Y Y
802.11i security Opensource WPA Supplicant Support Y Y Y Y Y Y

continues on next page

1.8. Wireless 167

MCUXpresso SDK Documentation, Release 25.09.00

Table 1 – continued from previous page
Features Sub features 88W8987 IW416 IW611/IW612 RW610/RW612 IW610 AW611
802.11i security WPA2-PSK AES | WPA Supplicant Y Y Y Y Y Y
802.11i security WPA3-SAE (Simultaneous Authentication of Equals) | WPA Supplicant Y Y Y Y Y Y
802.11i security WPA2+WPA3 PSK Mixed Mode (WPA3 Transition Mode) | WPA Supplicant Y Y Y Y Y Y
802.11i security Wi-Fi Enhanced Open - OWE (Opportunistic Wireless Encryption) | WPA Supplicant Y Y Y Y Y Y
802.11i security 802.1x EAP Authentication Methods | WPA Supplicant Y Y Y Y Y Y
802.11i security WPA2-Enterprise Mixed Mode | WPA Supplicant N N N Y Y N
802.11i security WPA3-Enterprise (Suite-B) |National Security Algorithm (CSNA) | WPA Supplicant Y N Y Y Y Y
802.11i security 802.11w - PMF (Protected Management Frames) | WPA Supplicant Y Y Y Y Y Y
802.11i security Embedded Supplicant Support Y Y Y Y Y Y
802.11i security WPA2-PSK AES | Embedded Supplicant Y Y Y Y Y Y
802.11i security WPA+WPA2 PSK Mixed Mode | Embedded Supplicant N N N Y Y N
802.11i security WPA3-SAE (Simultaneous Authentication of Equals) | Embedded Supplicant Y Y Y Y Y Y
802.11i security 802.11w - PMF (Protected Management Frames) | Embedded Supplicant Y Y Y Y Y Y
802.11i security Wi-Fi Roaming Y Y Y Y Y Y
802.11i security WPA3 Enterprise Y Y Y YY Y
Power save mode Deep sleep Y Y Y Y Y Y
Power save mode IEEE power save Y Y Y Y Y Y
Power save mode Host sleep/WoWLAN (inband) N N N Y Y N
Power save mode Host sleep/WoWLAN (outband) Y Y Y N N Y
Power save mode U-APSD Y Y Y Y Y Y
802.11w - PMF (protected management frames) PMF require and capable Y Y Y Y Y Y
802.11w - PMF (protected management frames) Unicast management frames - Encryption/decryption - using CCMP Y Y Y Y Y Y
802.11w - PMF (protected management frames) Broadcast management frames - Encryption/decryption - using BIP Y Y Y Y Y Y
802.11w - PMF (protected management frames) SA query request/response Y Y Y Y Y Y
802.11w - PMF (protected management frames) PMF support using embedded supplicant Y Y Y Y Y Y
DPP functionality Wi-Fi easy connect3 N N Y Y Y Y
General features Embedded supplicant Y Y Y Y Y Y
General features Host sleep packet filtering N N Y Y Y Y
General features Host-based supplicant Y Y Y Y Y Y
General features Embedded MLME Y Y Y Y Y Y
General features EDMAC - EU adaptivity support (ETSI certification) Y Y Y Y Y Y
General features External coexistence N N N N N N
General features IPv6 NS offload N N Y Y Y Y
General features FIPS Y Y Y Y Y Y
General features TKIP1 N N N N N Y
General features RF test mode Y Y Y Y Y Y
General features 802.11k Y Y Y Y Y Y
General features 802.11v Y Y Y Y Y Y
General features DFS radar detection in peripheral mode (follow AP)5 Y Y Y Y Y Y
General features Embedded roaming based on RSSI threshold beacon loss N N Y Y Y Y
General features ARP offload N N Y Y Y Y
General features Cloud keep alive Y Y Y N N Y
General features UNII-4 channel support N N Y Y Y Y
General features ClockSync using TSF N N Y N N Y
General features Auto reconnect Y Y N N N N
General features CSI (channel state information) Y N Y Y Y Y
General features Ambient Motion Index (AMI) N N Y Y Y Y
General features Independent reset (in-band)3 Y Y Y Y Y Y
General features Independent reset (out-band)3 Y Y Y N N Y
General features Wi-Fi agile multiband N N Y Y Y Y
General features Network co-processor (NCP) mode N N N Y4 N N
General features 802.11mc - WLS (Wi-Fi location service) N N Y N N Y
General features 802.11az N N Y N N Y

Parent topic:Wi-Fi radio

168 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

[1] As per Wi-Fi specification, connecting in TKIP security in non 802.11n mode is allowed.

[2] Support available in host-base supplicant.

[3] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for the
macro to enable the feature and the impact on the memory when enabling the feature.

[4] Readmore about NCP feature in References. [5] To enable the feature, CONFIG_ECSA = 1must
be defined in wifi_config.h (does not apply to RW610 and RW612).

AP mode
Features Sub features 88W8987 IW416 IW611/IW612 RW610/RW612 IW610 AW611
802.11n - High throughput 2.4 GHz band operation supported channel bandwidth: 20 MHz Y Y Y Y Y Y
802.11n - High throughput 2.4 GHz band supported channel bandwidth: 40 MHz Y Y Y N N Y
802.11n - High throughput 5 GHz band supported channel bandwidth: 20 MHz Y Y Y Y Y Y
802.11n - High throughput 5 GHz band supported channel bandwidth: 40 MHz Y Y Y N N Y
802.11n - High throughput Short/long guard interval (400 ns/800 ns) Y Y Y Y Y Y
802.11n - High throughput Data rates up to 72 Mbit/s (MCS 0 to MCS 7) Y Y Y Y Y Y
802.11n - High throughput Data rates up to 150 Mbit/s (MCS 0 to MCS 7) Y Y Y N N Y
802.11n - High throughput 1 spatial stream (1x1) Y Y Y Y Y Y
802.11n - High throughput HT protection mechanisms Y Y Y Y Y Y
802.11n - High throughput Aggregated MAC protocol data unit (AMPDU) Rx support Y Y Y Y Y Y
802.11n - High throughput Aggregated MAC service data unit (AMSDU) -4k RX support Y Y Y Y Y Y
802.11n - High throughput Max client support (up to 8 devices) Y Y Y Y Y Y
802.11n - High throughput TX MCS rate adaptation (BGN) Y Y Y Y Y Y
802.11n - High throughput RX low density parity check (LDPC) Y N Y N N Y
802.11ac – Very high throughput 5 GHz band supported channel bandwidth: 20 MHz Y N Y Y Y Y
802.11ac – Very high throughput 5 GHz band supported channel bandwidth: 40 MHz Y N Y N N Y
802.11ac – Very high throughput 5 GHz band supported channel bandwidth: 80MHz Y N Y N N Y
802.11ac – Very high throughput Short/long guard interval (400ns/800ns) Y N Y Y Y Y
802.11ac – Very high throughput Data rates up to 86.7 Mbps (MCS0 to MCS 8) Y N Y Y Y Y
802.11ac – Very high throughput Data rates up to 433.3 Mbps (MCS 0 to MCS 9) Y N Y Y N Y
802.11ac – Very high throughput Single user- Aggregated MAC protocol data unit (SU-AMPDU) aggregation Y N Y Y Y Y
802.11ac – Very high throughput RTS/CTS with BW signaling N N Y N N Y
802.11ac – Very high throughput Backward compatibility with non-VHT devices Y N Y Y Y Y
802.11ac – Very high throughput TX VHT MCS rate adaptation Y N N Y Y N
802.11ac – Very high throughput MU-MIMO Beamformee (explicit and implicit) Y N Y Y Y Y
802.11ac – Very high throughput Operation mode notification Y N Y N N Y
802.11ax – High efficiency 2.4 GHz band operation (20 MHz channel bandwidth) N N Y Y Y Y
802.11ax – High efficiency 2.4 GHz band operation (40 MHz channel bandwidth) N N Y N N Y
802.11ax – High efficiency 5 GHz band operation (20MHz channel bandwidth) N N Y Y Y Y
802.11ax – High efficiency 5 GHz band operation (40MHz channel bandwidth) N N Y N N Y
802.11ax – High efficiency 5 GHz band operation (80 MHz channel bandwidth) N N Y N N Y
802.11d 802.11d - Regulatory domain/operating class/country info Y Y Y Y Y Y
802.11e -QoS EDCA [enhanced distributed channel access] / WMM (wireless multi-media) Y Y Y Y Y Y
802.11i security Hostapd Support Y Y Y Y Y Y
802.11i security WPA2-PSK AES | hostapd Y Y Y Y Y Y
802.11i security WPA3-SAE (Simultaneous Authentication of Equals) | Hostapd Y Y Y Y Y Y
802.11i security WPA2+WPA3 PSK Mixed Mode (WPA3 Transition Mode) | Hostapd Y Y Y Y Y Y
802.11i security Wi-Fi Enhanced Open - OWE (Opportunistic Wireless Encryption) | Hostapd Y Y Y N N Y
802.11i security 802.1x EAP Authentication Methods | Hostapd Y Y Y Y Y Y
802.11i security WPA2-Enterprise Mixed Mode | Hostapd N N N Y Y N
802.11i security WPA3-Enterprise (Suite-B) |National Security Algorithm (CSNA) | Hostapd Y N Y Y Y Y
802.11i security 802.11w - PMF (Protected Management Frames) | Hostapd Y Y Y Y Y Y
802.11i security Embedded Authenticator Y Y Y Y Y Y
802.11i security WPA2-PSK AES | Embedded Supplicant Y Y Y Y Y Y

continues on next page

1.8. Wireless 169

MCUXpresso SDK Documentation, Release 25.09.00

Table 2 – continued from previous page
Features Sub features 88W8987 IW416 IW611/IW612 RW610/RW612 IW610 AW611
802.11i security WPA+WPA2 PSK Mixed Mode | Embedded Supplicant N N N Y Y N
802.11i security WPA3-SAE (Simultaneous Authentication of Equals) | Embedded Supplicant Y Y Y Y Y Y
802.11i security 802.11w - PMF (Protected Management Frames) | Embedded Supplicant Y Y Y Y Y Y
802.11y Extended channel switch announcement (ECSA) Y Y Y Y Y Y
802.11w - protected management frames (PMF) PMF require and capable Y Y Y Y Y Y
802.11w - protected management frames (PMF) Unicast management frames -Encryption/decryption - using CCMP Y Y Y Y Y Y
802.11w - protected management frames (PMF) Broadcast management frames -encryption/decryption - using BIP Y Y Y Y Y Y
802.11w - protected management frames (PMF) SA query request/response Y Y Y Y Y Y
General features Embedded authenticator Y Y Y Y Y Y
General features Embedded MLME Y Y Y Y Y Y
General features EU adaptivity support Y Y Y Y Y Y
General features Automatic channel selection (ACS) Y Y Y Y Y Y
General features External coexistence (software interface) N N N N N N
General features Independent reset (in-band)1 Y Y Y Y Y Y
General features Network co-processor (NCP) mode2 N N N Y N N
General features Vendor specific IE (custom IE) Y Y Y Y Y Y
General features Hidden SSID (broadcast SSID disabled) Y Y Y Y Y Y
General features MAC address filter N N N Y Y N
General features Multiple external STA support Y Y Y Y Y Y

Parent topic:Wi-Fi radio

[1] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for the
macro to enable the feature and the impact on the memory. [2] Read more about NCP feature in
References.

AP-STA mode

Features Sub features 88W8987IW416IW611/IW612RW610/RW612IW610AW611
Simultaneous AP-STA oper-
ation (same channel)

AP-STA func-
tionality

Y Y Y Y Y Y

SAD Software an-
tenna diver-
sity1

Y Y Y Y Y Y

Parent topic:Wi-Fi radio

[1] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for the
macro to enable the feature and the impact on the memory when enabling the feature.

Parent topic:Features

Wi-Fi Generic features

170 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Fea-
tures

Sub features 88W8987IW416 IW611/IW612RW610/RW612IW610 AW611

Generic Firmware download (paral-
lel)1

Y Y Y N N Y

Generic Secure boot N N Y Y Y Y
Generic Kconfig memory optimizer3 Y Y Y Y Y Y
Generic Firmware Compression2 N Y N N N N
Generic u-AP intra-BSS Y N Y Y Y Y
Generic Net Monitor Mode N N N Y Y N
Generic Net Monitor Mode with packet

transmission
N N N Y Y N

Generic In-Channel Net Monitor mode N N N N N N

Parent topic:Wi-Fi radio

[1] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for the
macro to enable the feature and the impact on the memory when enabling the feature. [2] The
feature is used to compress the Wi-Fi Bluetooth firmware and optimize the flashing of the host
[3] Refer to 10.

Wi-Fi direct/P2P

Features Sub features 88W89873IW4162IW611/IW6123RW610/RW6123IW6103AW6113
P2P basic func-
tionality1

P2P Auto GO Y Y Y Y Y Y

P2P basic func-
tionality1

P2P GO Y Y Y Y Y Y

P2P basic func-
tionality1

P2P GC Y Y Y Y Y Y

P2P basic func-
tionality1

P2P Persistent
Group

Y Y Y Y Y Y

P2P basic func-
tionality1

P2P Invitation Y Y Y Y Y Y

P2P basic func-
tionality1

P2P Device Dis-
covery

Y Y Y Y Y Y

P2P basic func-
tionality1

P2P Provision
Discovery

Y Y Y Y Y Y

Parent topic:Wi-Fi radio

[1] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for
the macro to enable the feature and the impact on the memory when enabling the feature. [2]
This is an experimental software release for this feature for IW416. [3] Contact your support
representative to use this feature for.

Bluetooth radio

1.8. Wireless 171

MCUXpresso SDK Documentation, Release 25.09.00

Bluetooth classic

Feature Sub feature 88W8987IW416IW611/IW612RW610/RW612IW610AW611
General fea-
tures

Bluetooth Class 1.5 and Class 2 sup-
port

Y Y Y N N Y

General fea-
tures

Scatternet support Y Y Y N N Y

General fea-
tures

Maximum of seven simultaneous
ACL connections – Central links

Y Y Y N N Y

General fea-
tures

Automatic packet type selection Y Y Y N N Y

General fea-
tures

Bluetooth - 2.1 to 5.0 specification
support

Y Y Y N N Y

General fea-
tures

Low power sniff Y Y Y N N Y

General fea-
tures

Deep sleep using out-of-band Y Y N N N N

General fea-
tures

Wake on Bluetooth (SoC to host) Y Y Y N N Y

General fea-
tures

Independent reset (in-band)1 Y Y Y Y N Y

General fea-
tures

Independent reset (out-band)1 Y Y N N N N

General fea-
tures

Firmware download (parallel)1 Y Y N N N N

General fea-
tures

RF test mode Y Y Y N N Y

Bluetooth
packet type
supported

ACL (DM1, DH1, DM3, DH3, DM5,
DH5, 2-DH1, 2-DH3, 2-DH5, 3-DH1,
3-DH3, 3-DH5)

Y Y Y N N Y

Bluetooth
packet type
supported

SCO (HV1, HV3) Y Y Y N N Y

Bluetooth
packet type
supported

eSCO (EV3, EV4, EV5, 2EV3, 3EV3,
2EV5, 3EV5)

Y Y Y N N Y

Bluetooth
profiles sup-
ported

A2DP source/sink Y Y Y N N Y

Bluetooth
profiles sup-
ported

AVRCP target/controller Y Y Y N N Y

Bluetooth
profiles sup-
ported

HFP Dev/AG Y Y Y N N Y

Bluetooth
profiles sup-
ported

OPP server/client Y Y Y N N Y

Bluetooth
profiles sup-
ported

SPP server/client Y Y Y N N Y

Bluetooth
profiles sup-
ported

HID target/device Y Y Y N N Y

Bluetooth au-
dio features

PCM NBS central/peripheral Y Y Y N N Y

Bluetooth au-
dio features

PCMWBS central/peripheral Y Y Y N N Y

172 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Parent topic:Bluetooth radio

[1] Experimental feature intended for evaluation/early development only and not production.
Incomplete mandatory certification.

Bluetooth LE
Features Sub features 88W8987 IW416 IW611/IW612 RW610/RW612 IW610 AW611
Generic features Maximum 16 Bluetooth LE connections (central role) Y Y Y Y Y Y
Generic features Deep sleep using out-of-band Y Y N N N N
Generic features Wake on Bluetooth LE (SoC to Host) Y Y Y N N Y
Generic features RF Test mode Y Y Y Y Y Y
Bluetooth profile support Bluetooth LE GATT Y Y Y Y Y Y
Bluetooth profile support Bluetooth LE HID over GATT Y Y Y Y Y Y
Bluetooth profile support Bluetooth LE GAP Y Y Y Y Y Y
Bluetooth LE 4.0 support Low Energy physical layer Y Y Y Y Y Y
Bluetooth LE 4.0 support Low Energy link layer Y Y Y Y Y Y
Bluetooth LE 4.0 support Enhancements to HCI for Low Energy Y Y Y Y Y Y
Bluetooth LE 4.0 support Low energy direct test mode Y Y Y Y Y Y
Bluetooth 4.1 support Low duty cycle directed advertising Y Y Y Y Y Y
Bluetooth 4.1 support Bluetooth LE dual mode topology Y Y Y Y Y Y
Bluetooth 4.1 support Bluetooth LE privacy v1.1 Y Y Y Y Y Y
Bluetooth 4.1 support Bluetooth LE link layer topology Y Y Y Y Y Y
Bluetooth 4.2 support Bluetooth LE secure connection Y Y Y Y Y Y
Bluetooth 4.2 support Bluetooth LE link layer privacy v1.2 Y Y Y Y Y Y
Bluetooth 4.2 support Bluetooth LE data length extension Y Y Y Y Y Y
Bluetooth 4.2 support Link layer extended scanner filter policies Y Y Y Y Y Y
Bluetooth 5.0 support Bluetooth LE 2 Mbps support Y Y Y Y Y Y
Bluetooth 5.0 support High duty cycle directed advertising Y Y Y Y Y Y
Bluetooth 5.0 support Low Energy advertising extension N Y Y Y Y Y
Bluetooth 5.0 support Low Energy long range N Y Y Y Y Y
Bluetooth 5.0 support Low Energy periodic advertisement N Y Y Y Y Y
Bluetooth 5.2 support Low Energy power control N N Y Y Y Y
Bluetooth LE audio support1 2 Isochronous channel N N Y Y Y Y
Bluetooth LE audio support1 2 Broadcast LE Audio BIS source N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio BIS sink N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio BIG Validation N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio Phy: 1M/2M/ coded N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio framed mode N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio unframed mode N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio sequential packing N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio: Mono and Stereo N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio BIS encrypted audio N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio BIS unencrypted audio N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio CIS source N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio CIS sink N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio CIG validation N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio CIS synchronization N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio Phy: 1M/2M/ coded N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio framed mode N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio unframed mode N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio sequential packing N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio: mono and stereo N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio CIS encrypted audio N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio CIS unencrypted audio N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio TX/RX and bidirectional traffic N N Y N N Y

continues on next page

1.8. Wireless 173

MCUXpresso SDK Documentation, Release 25.09.00

Table 3 – continued from previous page
Features Sub features 88W8987 IW416 IW611/IW612 RW610/RW612 IW610 AW611
Bluetooth LE audio support1 2 ISO interval for LE Audio: 7.5ms 10ms 20ms 30ms N N Y N N Y
Bluetooth LE audio support1 2 Sampling frequency for LE Audio: 8kHz 16kHz 24kHz, 32kHz, 44.1kHz, 48kHz N N Y N N Y
Bluetooth LE audio support1 2 LE Audio Auracast use cases: Auracast streaming 2 BISes N N Y N N Y
Bluetooth LE audio support1 2 LE Audio Unicast use cases: Unicast streaming 2 CISes N N Y N N Y
Bluetooth LE audio support1 2 LE Audio Unicast Use cases: Unicast streaming 4 CISes N N Y N N Y
Bluetooth LE audio support1 2 A2DP + Auracast/Unicast Bridge use cases – CIS/BIS N N Y N N Y
BCA TDM Coexistence mode (shared antenna) STA + Bluetooth coexistence Y Y Y N N Y
BCA TDM Coexistence mode (shared antenna) STA + Bluetooth LE coexistence Y Y Y Y Y Y
BCA TDM Coexistence mode (shared antenna) STA + Bluetooth + Bluetooth LE coexistence Y Y Y N N Y
BCA TDM Coexistence mode (shared antenna) AP + Bluetooth coexistence Y Y Y N N Y
BCA TDM Coexistence mode (shared antenna) AP + Bluetooth LE coexistence Y Y Y Y Y Y
BCA TDM Coexistence mode (shared antenna) AP + Bluetooth + Bluetooth LE coexistence Y Y Y N N Y
BCA TDM coexistence mode (separate antenna) STA + Bluetooth coexistence Y Y Y N N Y
BCA TDM coexistence mode (separate antenna) STA + Bluetooth LE coexistence Y Y Y Y Y Y
BCA TDM coexistence mode (separate antenna) STA + Bluetooth + Bluetooth LE coexistence Y Y Y N N Y
BCA TDM coexistence mode (separate antenna) AP + Bluetooth coexistence Y Y Y N N Y
BCA TDM coexistence mode (separate antenna) AP + Bluetooth LE coexistence Y Y Y Y Y Y
BCA TDM coexistence mode (separate antenna) AP + Bluetooth + Bluetooth LE coexistence Y Y Y N N Y

Note: Details of the tested Bluetooth LE Audio use cases:

• Number of streams:

– 1-CIG | upto 4-CIS with 1 LE ACL (for 4-CIS: execute only mono UCs, SDU Int: 10ms)

– 1-CIG | upto 4-CIS with 4 separate LE ACL (for 4-CIS: SDU Size= Max 100 Oct, PHY=2M,
RTN=1, SDU Int: 10ms only) (execute only mono UCs for 4-CIS)

– 1-BIG | upto 4-BIS (for 4-BIS: execute only mono UCs, SDU Int: 10ms only)

• PHY: 2M and 1M

• Audio mode: mono (for 1 to 4 streams) and stereo (for 1 stream)

• Packing: sequential and interleaved

• Bit rate: maximum 96kbps

– For 1-CIG with upto 3-CIS: maximum bit rate 96kbps

– For 1-CIG with 4-CIS: maximum bit rate 80kbps

– For 1-BIG with 4-BIS: maximum bit rate 80kbps

– For 2-CIG cases: maximum bit rate 80kbps

• Mode: unframed mode

• 48_5 and 48_6 mono and stereo configurations are not supported.

Details of the tested Bluetooth coexistence (Bluetooth + Bluetooth LE Audio) use cases:

• Bluetooth + Bluetooth LE Audio

• A2DP + Bluetooth LE Audio bridging support

• A2DP sink link (central) -> LEA 2-CIS (SDU Int: 10ms only | A2DP only with SBC Codec |
PHY: 2M)

Parent topic:Bluetooth radio

[1] Experimental feature intended for evaluation/early development only and not production.
Incomplete mandatory certification.

[2] LE audio feature is supported for standalone scenarios only and not for BR/EDR andWi-Fi co-
existence scenarios such as LE audio + BR/EDR link or LE audio +Wi-Fi link. From the perspective

174 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

of NXP Edgefast Bluetooth host stack, LE audio feature can be disabled by the CONFIG_BT_AUDIO
macro without impact on any other features. LE audio feature can be tested by the user, using
their own supported host stack.

Parent topic:Features

802.15.4 radio

Features Sub features IW612 IW610 RW612
General fea-
tures

Spinel over SPI Y N N

General fea-
tures

OpenThread RCPMode implementing Thread1.3 Y N N

General fea-
tures

802.15.4-2015 MAC/PHY as required by Thread
1.3

Y Y Y

General fea-
tures

OpenThread Border Router (OTBR) v1.1 Y Y Y

General fea-
tures

Direct/indirect transmission with/without ACK Y Y Y

General fea-
tures

802.15.4 CSL parent feature implementation Y Y Y

General fea-
tures

Enhanced Frame Pending Y Y Y

General fea-
tures

Enhanced keep alive Y Y Y

General fea-
tures

Router Y Y Y

General fea-
tures

Leader Y Y Y

General fea-
tures

Router Eligible End Device (REED) Y Y Y

General fea-
tures

End Device (FED, MED) Y Y Y

Zigbee features Coordinator N N Y
Zigbee features Router N N Y
Zigbee features End Device (RX ON) N N Y
Zigbee features R23 N N Y
Zigbee features OTA Client N N Y
Zigbee features OTA server N N Y
Matter features Matter over Wi-Fi Y N N
Matter features Matter over Thread Y N Y

Parent topic:Features

Coexistence

1.8. Wireless 175

MCUXpresso SDK Documentation, Release 25.09.00

Wi-Fi and Bluetooth/802.15.4 coexistence

Features Sub features IW612IW610RW612
BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

STA + Bluetooth Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Mobile AP + Bluetooth Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Bluetooth LE + Wi-Fi Y Y Y

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Bluetooth + Bluetooth
LE + Wi-Fi

Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

OpenThread + Blue-
tooth

Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

OpenThread + Blue-
tooth LE2

Y Y Y

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

OpenThread + Blue-
tooth + Bluetooth LE

Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

OpenThread + Wi-Fi Y Y Y

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Bluetooth +
OpenThread + Wi-
Fi

Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Bluetooth LE +
OpenThread + Wi-
Fi

Y Y Y

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Bluetooth + Bluetooth
LE + OpenThread + Wi-
Fi

Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Single antenna configu-
ration

Y Y Y

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

External Coexistence
PTA

N Y Y

Parent topic:Coexistence
[1] Experimental feature intended for evaluation/early development only and not production.
Incomplete mandatory certification.

[2] The narrow-band radio can be configured to support Bluetooth LE, 802.15.4, and to time-slice
between Bluetooth LE and 802.15.4.

Parent topic:Features

Feature enable and memory impact

176 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Features Macros to enable the feature Memory
impact

CSI CONFIG_CSI Flash
- 60K,
RAM -
4K

DPP CONFIG_WPA_SUPP_DPP Flash -
240K,
RAM -
12K

Independent
reset

CONFIG_WIFI_IND_DNLDCONFIG_WIFI_IND_RESET Minimal

Parallel
firmware
download
Wi-Fi

CONFIG_WIFI_IND_DNLD Minimal

Parallel
firmware
download
Bluetooth

CONFIG_BT_IND_DNLD Minimal

WPA3 enter-
prise

CONFIG_WPA_SUPP_CRYPTO_ENTERPRISE [Macros specific to
EAP-methods included] CONFIG_EAP_TLS CONFIG_EAP_PEAP
CONFIG_EAP_TTLS CONFIG_EAP_FAST CONFIG_EAP_SIM CON-
FIG_EAP_AKA CONFIG_EAP_AKA_PRIME

Flash -
165K,
RAM -
18K

WPA2 enter-
prise

CONFIG_WPA_SUPP_CRYPTO_ENTERPRISE [Macros specific to
EAP-methods included] CONFIG_EAP_TLS CONFIG_EAP_PEAP
CONFIG_EAP_TTLS CONFIG_EAP_FAST CONFIG_EAP_SIM CON-
FIG_EAP_AKA CONFIG_EAP_AKA_PRIME

Flash -
165K,
RAM -
18K

Host sleep CONFIG_HOST_SLEEP Minimal
WMM CONFIG_WMM1 Flash

- 10K,
RAM -
57K

802.11mc CONFIG_11MC CONFIG_CSI CONFIG_WLS_CSI_PROC2 CON-
FIG_11AZ

Flash:
52.78KB,
RAM :
121.1KB

802.11az CONFIG_11MC CONFIG_CSI[2] CONFIG_WLS_CSI_PROC2 CON-
FIG_11AZ

Flash:
52.78KB,
RAM :
121.1KB

Non-
blocking
firmware
download
mechanism

CONFIG_FW_DNLD_ASYNC —

Antenna di-
versity

CONFIG_WLAN_CALDATA_2ANT_DIVERSITY -

P2P CONFIG_WPA_SUPP_P2P -

Note:
• For Wi-Fi, the macros are set with the value “0” by default in the file wifi_config_default.h
located in <SDK_PATH>/middleware/wifi_nxp/incl/ directory.

To enable the features, set the value of the macros to “1*” in the file wifi_config.h located
in*<SDK_Wi-Fi_Example_PATH>/ directory***.***

1.8. Wireless 177

MCUXpresso SDK Documentation, Release 25.09.00

• Bluetooth

To enable the features, set the value of the macros to “1” in the file app_bluetooth_config.h
located in <SDK_Bluetooth_Example_PATH>/ directory.

[1] The macro is not used for IW416.

[2] Prerequisite macros for 802.11mc and 802.11az features

88W8987 release notes

Package information
• SDK version: 25.09.00

Parent topic:88W8987 release notes

Version information
• Wireless SoC: 88W8987

• Wi-Fi and Bluetooth/Bluetooth LE firmware version: 16.92.21.p153.5

– 16 - Major revision

– 92 - Feature pack

– 21 - Release version

– p153.5 - Patch number

Parent topic:88W8987 release notes

Host platform
• All i.MX RT platforms running FreeRTOS.

• Host interfaces

– Wi-Fi over SDIO (SDIO 2.0 support, SDIO clock frequency: 50 MHz)

– Bluetooth/Bluetooth LE over UART

• Test tools

– iPerf (version 2.1.9)

Parent topic:88W8987 release notes

Wi-Fi and Bluetooth certification The Wi-Fi and Bluetooth certification is obtained with the
following combinations.

WFA certifications
• STA | 802.11n

• STA | 802.11ac

• STA | PMF

• STA | FFD

• STA | SVD

• STA | WPA3 SAE (R3)

178 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

• STA | QTT

Refer to 6.

Note: This release supports STAUT only certifications.

Parent topic:Wi-Fi and Bluetooth certification

Bluetooth controller certification QDID: refer to 4.

Parent topic:Wi-Fi and Bluetooth certification

Parent topic:88W8987 release notes

Wi-Fi throughput

Throughput test setup
• Environment: Shield Room - Over the Air

• External Access Point: ASUS AX88U

• DUT: W8987 Murata (Module: 1ZM M.2) with EVK-MIMXRT1060 EVKC platform

• DUT Power Source: External power supply

• External Client: Apple MacBook Air

• Channel: 6 | 36

• Wi-Fi application: wifi_wpa_supplicant

• Compiler used to build application: armgcc

• Compiler Version: gcc-arm-none-eabi-13.2

• iPerf commands used in test:

TCP TX

iperf -c <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

iperf -c <remote_ip> -t 60 -u -B <local_ip> -b 120

Note: The default rate is 100 Mbps.

UDP RX

iperf -s -u -B <local_ip>

Note: Read more about the throughput test setup and topology in 2.

Parent topic:Wi-Fi throughput

1.8. Wireless 179

MCUXpresso SDK Documentation, Release 25.09.00

STA throughput External APs: ASUS AX88U

STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 48 46 60 56
WPA2-AES 48 47 60 55
WPA3-SAE 45 46 60 56

STA mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 62 83 121 124
WPA2-AES 61 82 120 126
WPA3-SAE 60 82 120 126

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 43 52 60 64
WPA2-AES 43 52 61 64
WPA3-SAE 43 52 60 65

STA mode throughput - AN Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 64 87 126 125
WPA2-AES 63 85 125 120
WPA3-SAE 63 80 125 123

STA mode throughput - AC Mode | 5 GHz Band | 20 MHz (VHT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 48 60 73 78
WPA2-AES 47 60 73 77
WPA3-SAE 47 60 73 77

STA mode throughput - AC Mode | 5 GHz Band | 40 MHz (VHT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 68 96 161 157
WPA2-AES 69 92 160 155
WPA3-SAE 70 94 160 155

STA mode throughput - AC Mode | 5 GHz Band | 80 MHz (VHT)

180 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 81 98 125 228
WPA2-AES 80 96 125 203
WPA3-SAE 80 96 125 203

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple Macbook Air

Mobile AP Mode Throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 50 50 57 60
WPA2-AES 49 50 57 60
WPA3-SAE 49 49 57 60

Mobile AP Mode Throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 66 81 107 121
WPA2-AES 65 80 107 120
WPA3-SAE 65 80 108 120

Mobile AP Mode Throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 44 52 60 61
WPA2-AES 44 51 60 61
WPA3-SAE 44 51 60 61

Mobile AP Mode Throughput - AN Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 70 89 126 103
WPA2-AES 70 87 124 102
WPA3-SAE 70 88 125 103

Mobile AP Mode Throughput - AC Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 49 60 73 76
WPA2-AES 48 59 73 76
WPA3-SAE 48 60 73 76

1.8. Wireless 181

MCUXpresso SDK Documentation, Release 25.09.00

Mobile AP Mode Throughput - AC Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 77 106 161 102
WPA2-AES 77 104 160 102
WPA3-SAE 77 104 160 111

Mobile AP Mode Throughput - AC Mode | 5 GHz Band | 80 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 103 121 125 217
WPA2-AES 97 117 125 197
WPA3-SAE 98 115 125 173

Parent topic:Wi-Fi throughput

Parent topic:88W8987 release notes

EU conformance tests
• EU Adaptivity test - EN 300 328 v2.1.1 (for 2.4 GHz)

• EU Adaptivity test - EN 301 893 v2.1.1 (for 5 GHz)

Parent topic:88W8987 release notes

Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p64.1 to 16.91.21.p82

Com-
po-
nent

Description

Wi-
Fi

WPA3-R3 enabled APUT beacons does not have RSNXE when configured in H2E mode-
Associated event is received even when connecting using wrong password WFA APUT
Low iperf TCP/UDP Tx throughput with Realtek station

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p82 to 16.91.21.p91.6

Compo-
nent

Description

Wi-Fi In wrong password scenario, After updating new password the phone is not able
to connect with DUTAP

Parent topic:Bug fixes and/or feature enhancements

182 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Firmware version: From 16.91.21.p91.6 to 16.91.21.p124

Compo-
nent

Description

Wi-Fi Cloud keep alive packets not seen after DUT enters host sleep. DUT is sending QOS
null packets even in host sleep

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p124 to 16.91.21.p133

Com-
ponent

Description

Wi-Fi Samsung S24 Ultra and Google Pixel 7 mobiles having Android 14 are not able con-
nect to the DUTAP with WPA3 SAE security.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p133 to 16.91.21.p142.5

Compo-
nent

Description

Wi-Fi Fails to encrypt and decrypt data with ccmp 128 and 256 using CLI crypto com-
mands.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p142.5 to 16.91.21.p149.2

Component Description
Wi-Fi DUTSTA does not associate to hidden SSID beaconing in DFS channel.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p149.2 to 16.92.21.p151.7

Compo-
nent

Description

Wi-Fi Getting low TCP/UDP TP in DUT-AP 11ac-vht80 mode after hard-reset or wlan-
reset.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p149.2 to 16.92.21.p151.7

Compo-
nent

Description

Wi-Fi Getting low TCP/UDP TP in DUT-AP 11ac-vht80 mode after hard-reset or wlan-
reset.

1.8. Wireless 183

MCUXpresso SDK Documentation, Release 25.09.00

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.92.21.p151.7 to 16.92.21.p153.5

Component Description
Wi-Fi Added P2P Persistance and P2P Invitation

Parent topic:Bug fixes and/or feature enhancements

Parent topic:88W8987 release notes

Known issues
Component Description
- NA

Parent topic:88W8987 release notes

IW416 release notes

Package information
• SDK version: 25.09.00

Parent topic:IW416 release notes

Version information
• Wireless SoC: IW416

• Wi-Fi and Bluetooth/Bluetooth LE firmware version: 16.92.21.p153.5

– 16 - Major revision

– 92 - Feature pack

– 21 - Release version

– p153.5 - Patch number

Parent topic:IW416 release notes

Host platform
• All i.MX RT platforms running FreeRTOS.

• Host interfaces

– Wi-Fi over SDIO (SDIO 2.0 Support, SDIO clock frequency: 50 MHz)

– Bluetooth/Bluetooth LE over UART

• Test tools

– iPerf (version 2.1.9)

Parent topic:IW416 release notes

184 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Wi-Fi and Bluetooth certification The Wi-Fi and Bluetooth certification is obtained with the
following combinations.

WFA certifications
• STA | 802.11n

• STA | PMF

• STA | FFD

• STA | SVD

• STA | WPA3 SAE (R3)

• STA | QTT

Refer to 6.

Note: This release supports STAUT only certifications.

Parent topic:Wi-Fi and Bluetooth certification

Bluetooth controller certification QDID: refer to 4.

Note: QDID upgrade to Bluetooth Core Specification Version 5.4 is in progress.

Parent topic:Wi-Fi and Bluetooth certification

Parent topic:IW416 release notes

Wi-Fi throughput

Throughput test setup
• Environment: Shield Room - Over the Air

• Access Point: Asus AX88u

• DUT: IW416 Murata (Module: 1XK M.2) with EVK-MIMXRT1060 EVKC platform

• DUT Power Source: External power supply

• Client: Apple MacBook Air

• Channel: 6 | 36

• Wi-Fi application: wifi_wpa_supplicant

• Compiler used to build application: armgcc

• Compiler Version: gcc-arm-none-eabi-13.2

• iPerf commands used in test:

TCP TX

iperf -c <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

iperf -c <remote_ip> -t 60 -u -B <local_ip> -b 120

1.8. Wireless 185

MCUXpresso SDK Documentation, Release 25.09.00

Note: The default rate is 100 Mbps.

UDP RX

iperf -s -u -B <local_ip>

Note: Read more about the throughput test setup and topology in 2.

Parent topic:Wi-Fi throughput

STA throughput External AP: Asus AX88u

STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 40 45 61 55
WPA2-AES 39 43 61 57
WPA3-SAE 39 43 61 57

STA mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 56 59 117 103
WPA2-AES 57 58 115 102
WPA3-SAE 57 56 116 100

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 40 45 61 58
WPA2-AES 40 43 61 57
WPA3-SAE 40 44 61 57

STA mode throughput - AN Mode | 5 GHz Band | 40 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 62 74 118 134
WPA2-AES 58 61 101 118
WPA3-SAE 59 61 103 112

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple MacBook Air

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

186 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 40 43 59 57
WPA2-AES 40 42 59 57
WPA3-SAE 39 42 59 57

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 62 74 121 118
WPA2-AES 60 64 116 91
WPA3-SAE 60 65 116 91

Mobile AP mode throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 50 43 55 62
WPA2-AES 42 45 53 62
WPA3-SAE 42 62 53 62

Mobile AP mode throughput - AN Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 66 76 126 103
WPA2-AES 63 68 121 101
WPA3-SAE 63 67 121 101

Parent topic:Wi-Fi throughput

Parent topic:IW416 release notes

EU conformance tests
• EU Adaptivity test - EN 300 328 v2.1.1 (for 2.4 GHz)

• EU Adaptivity test - EN 301 893 v2.1.1 (for 5 GHz)

Parent topic:IW416 release notes

Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p64.1 to 16.91.21.p82

Compo-
nent

Description

Wi-Fi WPA3-R3 enabled APUT beacons does not have RSNXE when configured in H2E
mode

1.8. Wireless 187

MCUXpresso SDK Documentation, Release 25.09.00

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p82 to 16.91.21.p91.6
Component Description
Wi-Fi NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p91.6 to 16.91.21.p124

Compo-
nent

Description

Wi-Fi Cloud keep alive packets not seen after DUT enters host sleep. DUT is sending QOS
null packets even in host sleep

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p124 to 16.91.21.p133
Component Description
Wi-Fi NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p133 to 16.91.21.p133.2

Com-
ponent

Description

Wi-Fi DUT STA getting rebooted after 15~20 iterations of 11R-Command based roam-
ing0xa4 command timeout after several hours of stress test

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p133.2 to 16.91.21.p142.5

Component Description
Wi-Fi DUT fails to reconnect after the configured auto-reconnect time interval.
Coex During HFP call, TX side noise is observed with coex CLI

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p142.5 to 16.91.21.p149.4
Component Description
- NA

Parent topic:Bug fixes and/or feature enhancements

188 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Firmware version: From 16.91.21.p149.4 to 16.92.21.p151.7

Com-
ponent

Description

Wi-Fi Samsung S24 Ultra and Google Pixel 7 mobiles having Android 14 are not able con-
nect to the DUTAP with WPA3 SAE security.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.92.21.p151.7 to 16.92.21.p153.5

Com-
ponent

Description

Wi-Fi TheDUT encounters a command response timeout during the execution of thewlan-
info command following UDP traffic tests.

Wi-Fi Random hang issue seen when using wlan-p2p-find/stop in succession

Parent topic:Bug fixes and/or feature enhancements

Parent topic:IW416 release notes

Known issues

Compo-
nent

Description

Coex Wi-Fi connection in 2.4GHz is not stable, observed deauthentication within
10sec.

Parent topic:IW416 release notes

IW611/IW612 release notes Note: The IW611/IW612 support is enabled in i.MX RT1170 EVKB
and i.MX RT1060 EVKC.

Package information
• SDK version: 25.09.00

Parent topic:IW611/IW612 release notes

Version information
• Wireless SoC: IW611/IW612

• Wi-Fi and Bluetooth/Bluetooth LE firmware version: 18.99.3.p26.10

– 18 - Major revision

– 99 - Feature pack

– 3 - Release version

– p26.10 - Patch number

Parent topic:IW611/IW612 release notes

1.8. Wireless 189

MCUXpresso SDK Documentation, Release 25.09.00

Host platform
• i.MX RT1170 EVKB and i.MX RT1060 EVKC Platforms running FreeRTOS

• Host interfaces

– Wi-Fi over SDIO (SDIO 2.0 support, SDIO clock frequency: 50 MHz)

– Bluetooth/Bluetooth LE over UART

– 802.15.4 over SPI (IW612 only)

• Test tools

– iPerf (version 2.1.9)

Parent topic:IW611/IW612 release notes

Wi-Fi and Bluetooth certification The Wi-Fi and Bluetooth certification is obtained with the
following combinations.

WFA certifications
• STA | 802.11n

• STA | PMF

• STA | FFD

• STA | SVD

• STA | WPA3 SAE (R3)

• STA | 802.11ac

• STA | 802.11ax

• STA | QTT

Refer to 6.

Note: This release supports STAUT only certifications.

Parent topic:Wi-Fi and Bluetooth certification

Bluetooth controller certification QDID: refer to 4.

Note: QDID upgrade to Bluetooth Core Specification Version 5.4 is in progress.

Parent topic:Wi-Fi and Bluetooth certification

Parent topic:IW611/IW612 release notes

Wi-Fi throughput

Throughput test setup
• Environment: Shield Room - Over the Air

• Access Point: Asus AX88u

• DUT: IW612 Murata (Module: 2EL M.2) with EVK-MIMXRT1060 EVKC platform

• DUT Power Source: External power supply

• Client: Apple MacBook Air

190 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

• Channel: 6 | 36

• Wi-Fi application: wifi_wpa_supplicant

• Compiler used to build application: armgcc

• Compiler Version gcc-arm-none-eabi-13.2

• iPerf commands used in test:

TCP TX

iperf -c <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

iperf -c <remote_ip> -t 60 -u -B <local_ip> -b 120

Note: The default rate is 100 Mbps.

UDP RX

iperf -s -u -B <local_ip>

Note: Read more about the throughput test setup and topology in 2

The throughput numbers are captured with default configurations using wifi_wpa_supplicant
sample application.

Parent topic:Wi-Fi throughput

iPerf host configuration and impact on throughput {#iperf_host_configuration_and_impact_on_throughput}
To get the highest throughput, the throughput values shown in STA throughput and Mobile
AP throughput are measured with the maximum values of the default host configuration
macros. STA and AP throughput captured with the minimum values of the host configuration
macros shows the throughput numbers obtained when using the minimum values of the host
configuration macros. The macro values are defined in lwipopts.h file.

The table below lists the minimum and maximum values of the host configuration macros.

Values of the host configuration macros

Parameter Maximum value Minimum value
TCPIP_MBOX_SIZE 96 32
DEFAULT_RAW_RECVMBOX_SIZE 32 12
DEFAULT_UDP_RECVMBOX_SIZE 64 12
DEFAULT_TCP_RECVMBOX_SIZE 64 12
TCP_MSS 1460 536
TCP_SND_BUF 24 * TCP_MSS 2 * TCP_MSS
MEM_SIZE 319160 41,080
TCP_WND 15 * TCP_MSS 10 * TCP_MSS
MEMP_NUM_PBUF 20 10
MEMP_NUM_TCP_SEG 96 12
MEMP_NUM_TCPIP_MSG_INPKT 80 16
MEMP_NUM_TCPIP_MSG_API 80 8
MEMP_NUM_NETBUF 32 16

1.8. Wireless 191

MCUXpresso SDK Documentation, Release 25.09.00

STA and AP throughput captured with the minimum values of the host configuration
macros {#sta_and_ap_throughput_captured_with_the_minimum_values_of_the_host_configuration_macros}
STA mode throughput - HE Mode | 5 GHz Band | 80 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open Security 7 18 111 124
WPA2-AES 7 18 110 124
WPA3-SAE 6 18 110 124

Mobile AP mode throughput - HE Mode | 5 GHz Band | 80 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open Security 2 19 93 127
WPA2-AES 2 19 105 126
WPA3-SAE 2 19 104 132

Parent topic:iPerf host configuration and impact on throughput

Parent topic:Wi-Fi throughput

STA throughput External AP: Asus AX88u

STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 45 48 61 61
WPA2-AES 44 47 60 60
WPA3-SAE 46 49 62 62

STA mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 66 82 128 131
WPA2-AES 69 82 126 128
WPA3-SAE 65 80 126 129

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 39 51 63 65
WPA2-AES 39 50 63 64
WPA3-SAE 44 51 63 64

STA mode throughput - AN Mode | 5 GHz Band | 40 MHz (HT)

192 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 64 82 125 133
WPA2-AES 63 83 124 132
WPA3-SAE 64 84 124 132

STA mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 48 54 71 72
WPA2-AES 48 54 71 71
WPA3-SAE 45 55 72 70

STA mode throughput - VHT Mode | 2.4 GHz Band | 40 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 74 92 162 170
WPA2-AES 74 90 160 169
WPA3-SAE 71 91 161 171

STA mode throughput - VHT Mode | 5 GHz Band | 20 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 43 57 76 78
WPA2-AES 42 57 75 77
WPA3-SAE 43 57 75 77

STA mode throughput - VHT Mode | 5 GHz Band | 40 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 70 90 156 177
WPA2-AES 70 91 154 175
WPA3-SAE 70 90 154 175

STA mode throughput - VHT Mode | 5 GHz Band | 80 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 86 94 218 196
WPA2-AES 84 96 219 195
WPA3-SAE 84 95 219 196

STA mode throughput - HE Mode | 2.4 GHz Band | 20 MHz (HT)

1.8. Wireless 193

MCUXpresso SDK Documentation, Release 25.09.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 62 62 112 114
WPA2-AES 62 63 110 112
WPA3-SAE 56 63 107 114

STA mode throughput - HE Mode | 2.4 GHz Band | 40 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 73 94 193 192
WPA2-AES 76 93 188 191
WPA3-SAE 78 94 190 189

STA mode throughput - HE Mode | 5 GHz Band | 20 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 54 57 86 125
WPA2-AES 53 58 85 124
WPA3-SAE 53 66 118 123

STA mode throughput - HE Mode | 5 GHz Band | 40 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 77 95 163 198
WPA2-AES 76 95 160 198
WPA3-SAE 75 94 172 197

STA mode throughput - HE Mode | 5 GHz Band | 80 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 88 93 219 197
WPA2-AES 88 95 221 196
WPA3-SAE 85 94 217 195

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple MacBook Air

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 40 50 58 62
WPA2-AES 40 51 62 62
WPA3-SAE 40 51 62 62

194 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 64 87 120 131
WPA2-AES 63 87 119 130
WPA3-SAE 63 86 118 130

Mobile AP mode throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 40 52 63 62
WPA2-AES 41 51 62 57
WPA3-SAE 33 51 60 56

Mobile AP mode throughput - AN Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 64 96 120 139
WPA2-AES 71 95 120 132
WPA3-SAE 67 94 121 133

Mobile AP mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 44 60 67 62
WPA2-AES 43 59 67 74
WPA3-SAE 44 59 73 63

Mobile AP mode throughput - VHT Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 70 96 124 151
WPA2-AES 70 97 128 165
WPA3-SAE 72 95 124 164

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 45 60 69 71
WPA2-AES 43 59 74 75
WPA3-SAE 44 59 68 64

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 40 MHz

1.8. Wireless 195

MCUXpresso SDK Documentation, Release 25.09.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 70 99 140 137
WPA2-AES 68 98 145 175
WPA3-SAE 72 98 138 157

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 80 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 82 122 186 182
WPA2-AES 82 121 197 179
WPA3-SAE 63 119 174 165

Mobile AP mode throughput - HE Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 47 55 64 78
WPA2-AES 47 54 70 86
WPA3-SAE 45 54 60 53

Mobile AP mode throughput - HE Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 66 102 123 178
WPA2-AES 75 100 94 179
WPA3-SAE 75 100 99 127

Mobile AP mode throughput - HE Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 53 61 60 103
WPA2-AES 47 54 77 92
WPA3-SAE 23 28 74 45

Mobile AP mode throughput - HE Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 79 105 140 195
WPA2-AES 78 107 138 174
WPA3-SAE 78 104 129 146

Mobile AP mode throughput - HE Mode | 5 GHz Band | 80 MHz

196 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 89 123 210 188
WPA2-AES 88 122 194 179
WPA3-SAE 80 122 187 188

Parent topic:Wi-Fi throughput

Parent topic:IW611/IW612 release notes

EU conformance tests
• EU Adaptivity test - EN 300 328 v2.1.1 (for 2.4 GHz)

• EU Adaptivity test - EN 301 893 v2.1.1 (for 5 GHz)

Parent topic:IW611/IW612 release notes

Bug fixes and/or feature enhancements

Firmware version: 18.99.2.p7.19
Component Description
- NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.2.p7.19 to 18.99.2.p49.9
Component Description
- NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.2.p49.9 to 18.99.2.p155

Com-
po-
nent

Description

Blue-
tooth

Audio lost occurs due to periodic adv sync lost, during 2 BIS 44.1kHz unencrypted
streams with 1M PHY configuration.BIS sync loss may occur in long audio streaming
sessions.

Parent topic:Bug fixes and/or feature enhancements

1.8. Wireless 197

MCUXpresso SDK Documentation, Release 25.09.00

Firmware version: 18.99.2.p155 to 18.99.2.p66.30

Com-
po-
nent

Description

Wi-
Fi

802.11R Fast BSS roaming works only with hostapd and does not work with standard
APs (supporting 11R)

Blue-
tooth

DUT is not able to sustain a connection with the remote device that does extended ad-
vertisement with coded PHY configuration. When 2 CIS streams are active, after the first
device disconnects followed by the second device disconnecting, the second peripheral
device hangs.Audio Play/Pause does not work in BIS case.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.2.p66.30 to 18.99.3.p10.5

Com-
po-
nent

Description

Wi-
Fi

STAUTnot sendingNeighbor Advertisement packet after receivingNeighbor Solicitation
packet from Ex-AP.Antenna selection time exceeds configured evaluation time

Blue-
tooth

When DUT works as CIS source and CIS Offset is 612us, high packet drops observed
which affects the audio streaming.For BIS Source Use Cases, Periodic Interval and ISO
Interval should be multiple of each other value.In 1-CIS and 2-CIS, Continuous Audio
Glitches are observed with 96 kbps bit rate.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p10.5 to 18.99.3.p17.9

Com-
po-
nent

Description

Wi-
Fi

After performing independent reset (out-of-band mode), the STAUT fails to connect to
the external AP via wlan-connect command, observed command timeout 0x107 error.

Blue-
tooth

Audio glitches observed with Google Pixel 7 Pro streaming audio after CIS is established
with DUT.During Call Gateway (CG) / Call Terminal (CT) Use Case, the firmware peri-
odically sends NULL PDU, which results in frequent Audio Glitch on both CG and CT
sides.Heavy audio glitches observed with CIS SRC Google Pixel 7 ProContinuous audio
glitches observed in 1 CIS and 2 CIS for 48_3 and 48_4 config.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p17.9 to 18.99.3.p21.154

Compo-
nent

Description

Wi-Fi STAUT fail to ping AP backend machine when connected with DFS channel and
DUTSTA went in bad state.

Blue-
tooth

CIS Sink frequently fails to acknowledge CIS Source TX PDU.

198 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p21.154 to 18.99.3.p23.16
Component Description
- NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p23.16 to 18.99.3.p25.11

Component Description
Bluetooth Packet lost observed in CIS case, which causes audio noise.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p25.11 to 18.99.3.p26.10

Com-
ponent

Description

Wi-Fi During legacy roaming when the “Link Lost” observed the DUTSTA fails to roam
Wi-Fi During the automated testing of the channel performance, a system hang can occur,

with the error message “.sdio_drv_write failed”.

Parent topic:Bug fixes and/or feature enhancements

Parent topic:IW611/IW612 release notes

Known issues

Com-
po-
nent

Description

Blue-
tooth

Sequential Removal of CIS Handles as per current Controller implementation i.e CIS Dis-
connection sequence should be in sequence => CIS - 4,3,2,1While 4-CIS streaming, audio
glitches observed on all CIS SINK with Samsung Galaxy budsWhile 4-CIS streaming, dis-
connection with connection timeout observed on first CIS SINK with Samsung Galaxy
budsOnly two streams (CIS/BIS) with one channel is supported.

Parent topic:IW611/IW612 release notes

RW610/RW612 release notes

Package information
• SDK version: 25.09.00

Parent topic:RW610/RW612 release notes

1.8. Wireless 199

MCUXpresso SDK Documentation, Release 25.09.00

Version information
• Wi-Fi firmware version: 18.99.6.p46

– rw61x_sb_wifi_a2.bin for A2

– 18 - Major revision

– 99 - Feature pack

– 6 - Release version

– p46 - Patch number

• Bluetooth LE firmware version: 18.25.6.p46

– rw61x_sb_ble_a2.bin for A2

– 18 - Major revision

– 25 - Feature pack

– 6 - Release version

– p46 - Patch number

• 802.15.4 and Bluetooth LE (up to core 4.1) firmware version: 18.34.6.p46

– rw61x_sb_ble_15d4_combo_a2.bin for A2

– 18 - Major revision

– 34 - Feature pack

– 6 - Release version

– p46 - Patch number

Parent topic:RW610/RW612 release notes

Host platform
• RW610/RW612 platform running FreeRTOS

• Test tools

– iPerf (version 2.1.9)

Parent topic:RW610/RW612 release notes

Wireless certification The Wi-Fi and Bluetooth certification is obtained with the following
combinations.

WFA certifications
• STA | 802.11n

• STA | PMF

• STA | FFD

• STA | SVD

• STA | WPA3 SAE (R3)

• STA | 802.11ac

• STA | 802.11ax

• STA | QTT

200 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Refer to 1.

Note: This release supports STAUT only certifications.

Parent topic:Wireless certification

Bluetooth LE controller certification QDID: Refer to 4.

Parent topic:Wireless certification

Thread Thread group: refer to 7.

Product Name: NXP RW612 Wireless MCU with Integrated Tri-Radio

Thread version: V1.3.0

CID #: 13A109

Parent topic:Wireless certification

Matter RW612 certification: refer to 8.

Certificate ID: CSA23C36MAT41746-24

Device type: Root Node, Thermostat

Transport: Matter over Wi-Fi

RW610 certification: refer to 9.

Certificate ID: CSA23C43MAT41753-50

Device type: Root Node, Thermostat

Transport: Matter over Wi-Fi and Matter over Thread

Parent topic:Wireless certification

Parent topic:RW610/RW612 release notes

Wi-Fi throughput

Throughput test setup
• Environment: Shield Room - Over the Air

• Access Point: Asus AX88u

• DUT: RW610/RW612

• External Client: Intel AX210

• Channel: 6 | 36

• Wi-Fi application: wifi_cli

• Compiler used to build application: armgcc

• Compiler version gcc-arm-none-eabi-13.2

• iPerf commands used in test:

TCP TX

iperf -c <remote_ip> -t 60

TCP RX

1.8. Wireless 201

MCUXpresso SDK Documentation, Release 25.09.00

iperf -s

UDP TX

iperf -c <remote_ip> -t 60 -u -B <local_ip> -b 120

Note: The default rate is 100 Mbps.

UDP RX

iperf -s -u -B <local_ip>

Note: Read more about the throughput test setup and topology in 3.

Parent topic:Wi-Fi throughput

STA throughput External AP: Asus AX88u

STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 38 38 62 62
WPA2-AES 37 37 61 63
WPA3-SAE 37 37 60 61

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 39 39 64 64
WPA2-AES 37 38 62 64
WPA3-SAE 39 38 62 64

STA mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 41 41 75 74
WPA2-AES 41 41 73 74
WPA3-SAE 40 41 72 73

STA mode throughput - VHT Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 42 42 76 76
WPA2-AES 42 41 75 75
WPA3-SAE 42 41 75 74

STA mode throughput - HE Mode | 2.4 GHz Band | 20 MHz

202 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 44 45 97 99
WPA2-AES 43 44 96 98
WPA3-SAE 42 44 97 98

STA mode throughput - HE Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 47 47 100 103
WPA2-AES 45 46 100 101
WPA3-SAE 47 46 100 101

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple MacBook Air

Mobile AP throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 39 39 62 62
WPA2-AES 39 39 61 61
WPA3-SAE 38 39 61 61

Mobile AP throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 40 40 63 63
WPA2-AES 39 39 62 61
WPA3-SAE 39 39 62 61

Mobile AP throughput - VHT Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 43 43 73 73
WPA2-AES 43 42 72 72
WPA3-SAE 43 42 73 72

Mobile AP throughput - VHT Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 44 44 74 74
WPA2-AES 43 43 74 74
WPA3-SAE 43 43 74 74

1.8. Wireless 203

MCUXpresso SDK Documentation, Release 25.09.00

Mobile AP throughput - HE Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 48 48 95 96
WPA2-AES 47 47 98 95
WPA3-SAE 47 47 97 95

Mobile AP throughput - HE Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 49 49 96 97
WPA2-AES 48 48 101 97
WPA3-SAE 48 48 101 97

Parent topic:Wi-Fi throughput

Parent topic:RW610/RW612 release notes

Bug fixes and/or feature enhancements

Firmware version: 18.99.6.p34 to 18.99.6.p40

Com-
ponent

Description

Zigbee Zigbee Coordinator andRouter are disconnected during BLE connection pairing and
bonding with a mobile app for the first time.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.6.p40 to 18.99.6.p46

Compo-
nent

Description

Wi-Fi Fails to establish a persistent connection when the device attempts to reinvoke the
second stored Persistent Group

Blue-
tooth

NCP cannot work after flash uart bins for both host and device side

Parent topic:Bug fixes and/or feature enhancements

Parent topic:RW610/RW612 release notes

Known issues
Component Description
Wi-Fi —
Bluetooth LE —
Zigbee -

Parent topic:RW610/RW612 release notes

204 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

IW610 release notes

Package information
• SDK version: 25.09.00

Parent topic:IW610 release notes

Version information
• Wireless SoC: IW610

• Wi-Fi and Bluetooth/Bluetooth LE firmware version: 18.99.6.p76

– 18 - Major revision

– 99 - Feature pack

– 6 - Release version

– p76 - Patch number

Parent topic:IW610 release notes

Host platform
• IW610 platform running FreeRTOS

• Test tools

– iPerf (version 2.1.9)

Parent topic:IW610 release notes

Wi-Fi and Bluetooth certification The Wi-Fi and Bluetooth certification is obtained with the
following combinations.

WFA certifications
• STA | 802.11n

• STA | PMF

• STA | FFD

• STA | SVD

• STA | WPA3 SAE (R3)

• STA | 802.11ac

• STA | 802.11ax

• STA | QTT

Refer to 6.

Note: This release supports STAUT only certifications.

Parent topic:Wi-Fi and Bluetooth certification

1.8. Wireless 205

MCUXpresso SDK Documentation, Release 25.09.00

Bluetooth controller certification QDID: Refer to 4.

Note: QDID upgrade to Bluetooth Core Specification Version 5.4 is in progress.

Parent topic:Wi-Fi and Bluetooth certification

Parent topic:IW610 release notes

Wi-Fi throughput

Throughput test setup
• Environment: Shield Room - Over the Air

• Access Point: Asus AX88u

• DUT: IW610

• External Client: Intel AX210

• Channel: 6 | 36

• Wi-Fi application: wifi_cli

• Compiler used to build application: armgcc

• Compiler version gcc-arm-none-eabi-13.2

• iPerf commands used in test:

TCP TX

iperf -c <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

iperf -c <remote_ip> -t 60 -u -B <local_ip> -b 120

Note: The default rate is 100 Mbps.

UDP RX

iperf -s -u -B <local_ip>

Note: Read more about the throughput test setup and topology in 3.

Parent topic:Wi-Fi throughput

STA throughput External AP: Asus AX88u

STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 37 37 60 62
WPA2-AES 36 37 59 61
WPA3-SAE 36 37 59 61

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz

206 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 35 40 64 65
WPA2-AES 34 39 62 64
WPA3-SAE 35 39 77 76

STA mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 41 40 72 72
WPA2-AES 40 40 72 72
WPA3-SAE 40 40 72 71

STA mode throughput - VHT Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 38 42 77 76
WPA2-AES 37 41 75 75
WPA3-SAE 37 40 75 75

STA mode throughput - HE Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 45 44 93 96
WPA2-AES 43 43 93 95
WPA3-SAE 44 43 93 96

STA mode throughput - HE Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 42 46 94 100
WPA2-AES 42 45 94 101
WPA3-SAE 41 45 94 101

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple MacBook Air

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 37 40 63 62
WPA2-AES 35 38 58 60
WPA3-SAE 37 39 61 61

1.8. Wireless 207

MCUXpresso SDK Documentation, Release 25.09.00

Mobile AP mode throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 38 41 62 64
WPA2-AES 38 40 62 64
WPA3-SAE 38 40 62 62

Mobile AP mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 39 43 68 73
WPA2-AES 40 43 71 72
WPA3-SAE 39 43 68 72

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 42 45 72 74
WPA2-AES 41 44 71 73
WPA3-SAE 41 44 71 73

Mobile AP mode throughput - HE Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 44 48 94 94
WPA2-AES 43 46 95 95
WPA3-SAE 43 46 95 95

Mobile AP mode throughput - HE Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 45 49 97 97
WPA2-AES 44 48 97 97
WPA3-SAE 44 48 96 95

Parent topic:Wi-Fi throughput

Parent topic:IW610 release notes

Bug fixes and/or feature enhancements

208 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Firmware version: 18.99.5.p66 to 18.99.5.p76

Compo-
nent

Description

Wi-Fi The P2P client connection fails when an attempt is made to connect after the P2P
Group Owner (P2P-GO) has been stopped.

Parent topic:Bug fixes and/or feature enhancements

Parent topic:IW610 release notes

Known issues
Component Description
Wi-Fi —
Bluetooth LE —

Parent topic:IW610 release notes

AW611 release notes Note: The AW611 support is enabled in i.MX RT1180 EVKA.

Package information
• SDK version: 25.09.00

Parent topic:AW611 release notes

Version information
• Wireless SoC: AW611

• Wi-Fi and Bluetooth/Bluetooth LE firmware version: 18.99.3.p26.10

– 18 - Major revision

– 99 - Feature pack

– 3 - Release version

– p26.10 - Patch number

Parent topic:AW611 release notes

Host platform
• i.MX RT1180 EVKA Platform running FreeRTOS

• Host interfaces

– Wi-Fi over SDIO (SDIO 2.0 Support, SDIO clock frequency: 50 MHz)

– Bluetooth/Bluetooth LE over UART

• Test tools

– iPerf (version 2.1.9)

Parent topic:AW611 release notes

1.8. Wireless 209

MCUXpresso SDK Documentation, Release 25.09.00

Wi-Fi and Bluetooth certification The Wi-Fi and Bluetooth certification is obtained with the
following combinations.

WFA certifications
• STA | 802.11n

• STA | PMF

• STA | FFD

• STA | SVD

• STA | WPA3 SAE (R3)

• STA | 802.11ac

• STA | 802.11ax

• STA | QTT

Refer to 6.

Note: This release supports STAUT only certifications.

Parent topic:Wi-Fi and Bluetooth certification

Bluetooth controller certification QDID: Refer to 4.

Note: QDID upgrade to Bluetooth Core Specification Version 5.4 is in progress.

Parent topic:Wi-Fi and Bluetooth certification

Parent topic:AW611 release notes

Wi-Fi throughput

Throughput test setup
• Environment: Shield Room - Over the Air

• Access Point: Asus AX88u

• DUT: AW611 uBlox (Module: U-BLOX_Jody_W5M.2) with EVK-MIMXRT1180 EVKA platform

• DUT Power Source: External power supply

• Client: Apple MacBook Air

• Channel: 6 | 36

• Wi-Fi application: wifi_wpa_supplicant

• Compiler used to build application: armgcc

• Compiler Version: gcc-arm-none-eabi-13.2

• iPerf commands used in test:

TCP TX

iperf -c <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

210 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

iperf -c <remote_ip> -t 60 -u -B <local_ip> -b 120

Note: The default rate is 100 Mbps.

UDP RX

iperf -s -u -B <local_ip>

Note: Read more about the throughput test setup and topology in 2.

The throughput numbers are captured with default configurations using wifi_wpa_supplicant
sample application.

Parent topic:Wi-Fi throughput

STA throughput External AP: Asus AX88u

STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 45 48 61 61
WPA2-AES 44 47 60 60
WPA3-SAE 46 49 62 62

STA mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 66 82 128 131
WPA2-AES 69 82 126 128
WPA3-SAE 65 80 126 129

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 39 51 63 65
WPA2-AES 39 50 63 64
WPA3-SAE 44 51 63 64

STA mode throughput - AN Mode | 5 GHz Band | 40 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 64 82 125 133
WPA2-AES 63 83 124 132
WPA3-SAE 64 84 124 132

STA mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz (HT)

1.8. Wireless 211

MCUXpresso SDK Documentation, Release 25.09.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 48 54 71 72
WPA2-AES 48 54 71 71
WPA3-SAE 45 55 72 70

STA mode throughput - VHT Mode | 2.4 GHz Band | 40 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 74 92 162 170
WPA2-AES 74 90 160 169
WPA3-SAE 71 91 161 171

STA mode throughput - VHT Mode | 5 GHz Band | 20 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 43 57 76 78
WPA2-AES 42 57 75 77
WPA3-SAE 43 57 75 77

STA mode throughput - VHT Mode | 5 GHz Band | 40 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 70 90 156 177
WPA2-AES 70 91 154 175
WPA3-SAE 70 90 154 175

STA mode throughput - VHT Mode | 5 GHz Band | 80 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 86 94 218 196
WPA2-AES 84 96 219 195
WPA3-SAE 84 95 219 196

STA mode throughput - HE Mode | 2.4 GHz Band | 20 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 62 62 112 114
WPA2-AES 62 63 110 112
WPA3-SAE 56 63 107 114

STA mode throughput - HE Mode | 2.4 GHz Band | 40 MHz (HT)

212 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 73 94 193 192
WPA2-AES 76 93 188 191
WPA3-SAE 78 94 190 189

STA mode throughput - HE Mode | 5 GHz Band | 20 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 54 57 86 125
WPA2-AES 53 58 85 124
WPA3-SAE 53 66 118 123

STA mode throughput - HE Mode | 5 GHz Band | 40 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 77 95 163 198
WPA2-AES 76 95 160 198
WPA3-SAE 75 94 172 197

STA mode throughput - HE Mode | 5 GHz Band | 80 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 88 93 219 197
WPA2-AES 88 95 221 196
WPA3-SAE 85 94 217 195

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple MacBook Air

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 40 50 58 62
WPA2-AES 40 51 62 62
WPA3-SAE 40 51 62 62

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 64 87 120 131
WPA2-AES 63 87 119 130
WPA3-SAE 63 86 118 130

1.8. Wireless 213

MCUXpresso SDK Documentation, Release 25.09.00

Mobile AP mode throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 40 52 63 62
WPA2-AES 41 51 62 57
WPA3-SAE 33 51 60 56

Mobile AP mode throughput - AN Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 64 96 120 139
WPA2-AES 71 95 120 132
WPA3-SAE 67 94 121 133

Mobile AP mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 44 60 67 62
WPA2-AES 43 59 67 74
WPA3-SAE 44 59 73 63

Mobile AP mode throughput - VHT Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 70 96 124 151
WPA2-AES 70 97 128 165
WPA3-SAE 72 95 124 164

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 45 60 69 71
WPA2-AES 43 59 74 75
WPA3-SAE 44 59 68 64

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 70 99 140 137
WPA2-AES 68 98 145 175
WPA3-SAE 72 98 138 157

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 80 MHz

214 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 82 122 186 182
WPA2-AES 82 121 197 179
WPA3-SAE 63 119 174 165

Mobile AP mode throughput - HE Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 47 55 64 78
WPA2-AES 47 54 70 86
WPA3-SAE 45 54 60 53

Mobile AP mode throughput - HE Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 66 102 123 178
WPA2-AES 75 100 94 179
WPA3-SAE 75 100 99 127

Mobile AP mode throughput - HE Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 53 61 60 103
WPA2-AES 47 54 77 92
WPA3-SAE 23 28 74 45

Mobile AP mode throughput - HE Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 79 105 140 195
WPA2-AES 78 107 138 174
WPA3-SAE 78 104 129 146

Mobile AP mode throughput - HE Mode | 5 GHz Band | 80 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 89 123 210 188
WPA2-AES 88 122 194 179
WPA3-SAE 80 122 187 188

Parent topic:Wi-Fi throughput

Parent topic:AW611 release notes

1.8. Wireless 215

MCUXpresso SDK Documentation, Release 25.09.00

EU conformance tests
• EU Adaptivity test - EN 300 328 v2.1.1 (for 2.4 GHz)

• EU Adaptivity test - EN 301 893 v2.1.1 (for 5 GHz)

Parent topic:AW611 release notes

Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p10.5 to 18.99.3.p17.9

Com-
po-
nent

Description

Wi-
Fi

After performing independent reset (out-of-band mode), the STAUT fails to connect to
the external AP via wlan-connect command, observed command timeout 0x107 error.

Blue-
tooth

Audio glitches observed with Google Pixel 7 Pro streaming audio after CIS is established
with DUT.During Call Gateway (CG) / Call Terminal (CT) Use Case, the firmware peri-
odically sends NULL PDU, which results in frequent Audio Glitch on both CG and CT
sides.Heavy audio glitches observed with CIS SRC Google Pixel 7 ProContinuous audio
glitches observed in 1 CIS and 2 CIS for 48_3 and 48_4 config.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p17.9 to 18.99.3.p21.154

Compo-
nent

Description

Wi-Fi STAUT fail to ping AP backend machine when connected with DFS channel and
DUTSTA went in bad state.

Blue-
tooth

CIS Sink frequently fails to acknowledge CIS Source TX PDU.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p23.16 to 18.99.3.p25.11

Component Description
Bluetooth Packet lost observed in CIS case, which causes audio noise.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p25.11 to 18.99.3.p26.10

Com-
ponent

Description

Wi-Fi During legacy roaming when the “Link Lost” observed the DUTSTA fails to roam
Wi-Fi During the automated testing of the channel performance, a system hang can occur,

with the error message “.sdio_drv_write failed”.

Parent topic:Bug fixes and/or feature enhancements

216 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Parent topic:AW611 release notes

Known issues

Com-
po-
nent

Description

Blue-
tooth

Packet lost would be observed in CIS case which causes audio noise.Sequential Removal
of CIS Handles as per current Controller implementation i.e CIS Disconnection sequence
should be in sequence => CIS - 4,3,2,1While 4-CIS streaming, audio glitches observed on
all CIS SINK with Samsung Galaxy budsWhile 4-CIS streaming, disconnection with con-
nection timeout observed on first CIS SINK with Samsung Galaxy budsOnly two streams
(CIS/BIS) with one channel is supported.

Parent topic:AW611 release notes

Abbreviations
Abbreviation Definition
A2DP Advanced audio distribution profile
AMPDU Aggregated MAC protocol data unit
AMSDU Aggregated MAC service data unit
AP Access point
BW Bandwidth
CCMP Counter mode CBC-MAC protocol
CSI Channel state information
CTS Clear To Send
DL Down link
EDCA Enhanced distributed channel access
ER Extended range
ERP Extended rate physical
GATT Generic attribute profile
HFP Hands free profile
HID Human interface device
HT High throughput
LDPC Low density parity check
MCS Modulation and coding scheme
MLME Mac layer management entity
OMI Operating mode indication
PMF Protected management frames
RTS Request to send
SAE Simultaneous authentication of equals
STA Station
TWT Target wake time
UL Up link
VHT Very high throughput
WEP Wired equivalent private
WFD Wi-Fi direct
WMM Wireless multi-media
WPA Wi-Fi protected access
WPS Wi-Fi protected setup
WSC Wi-Fi Simple Configuration

1.8. Wireless 217

MCUXpresso SDK Documentation, Release 25.09.00

References
1. Application note - AN13681 – Wi-Fi Alliance (WFA) Derivative Certification Process (avail-

able in the SDK package)

2. User manual – UM11442 - NXPWi-Fi and Bluetooth Demo Applications User Guide for i.MX
RT Platforms (available in the SDK package)

3. User manual – UM11799 - NXP Wi-Fi and Bluetooth Demo Applications User Guide for
RW61x (available in the SDK package)

4. Certification – Bluetooth controller - QDID (link)

5. User manual - UM12133 - NXP NCP Application Guide for RW612 with MCU Host

6. Technical note - TN00066 –Wi-Fi Alliance (WFA) Derivative Certification Process (available
in the SDK package)

7. Web page – Thread certified products (link)

8. Web page – Connectivity standard alliance (csa) – NXP RW612 Tri-Radio Wireless MCU De-
velopment Platform (link)

9. Web page – Connectivity standard alliance (csa) – NXP RW610 Wireless MCU Development
Platform (link)

10. Application note - AN14634 – Kconfig Memory Optimizer (link)

1.8.2 EdgeFast Bluetooth

Currently we provide pdf version of those documentation, later release may convert the pdf
documentation to markdown for better review and aligned format.

• EdgeFast BT PAL API Reference Manual pdf.

MCUXpressoSDK EdgeFast Bluetooth Protocol Abstraction

Introduction This document provides an overview of the EdgeFast Bluetooth Protocol Abstrac-
tion Layer stack software based on FreeRTOS OS on the NXP board with variant wireless module
chipsets. This document covers hardware setup, build, and usage of the provided demo applica-
tions.

Stack API Reference EdgeFast Bluetooth Protocol Abstraction Layer is a wrapper layer on top
of the bluetooth host stack. Zephyr Bluetooth host stack API is used as the basis of the EdgeFast
Bluetooth Protocol Abstraction Layer with some enhancement on A2DP/SPP/HFP.

The APIs of the EdgeFast Bluetooth Protocol Abstraction Layer host stack are described in the
EdgeFast Bluetooth Protocol Abstraction Layer RM document.

Note: The online document of the Zephyr Bluetooth Host stack is available here: https://docs.
zephyrproject.org/latest/reference/bluetooth/index.html.

Parent topic:Introduction

Overview The EdgeFast Bluetooth Protocol Abstraction Layer host stack software is built based
on MCUXpresso SDK. The following chapter uses RT1060 as an example, other boards have sim-
ilar folder structure and corresponding document.

218 Chapter 1. Middleware

https:/launchstudio.bluetooth.com/ListingDetails/115533
https://www.threadgroup.org/What-is-Thread/Thread-Benefits
https://csa-iot.org/csa_product/nxp-rw612-tri-radio-wireless-mcu-development-platform
https://csa-iot.org/csa_product/nxp-rw610-wireless-mcu-development-platform/
https://docs.nxp.com/bundle/AN14634/page/topics/about_this_document.html
https://docs.zephyrproject.org/latest/reference/bluetooth/index.html
https://docs.zephyrproject.org/latest/reference/bluetooth/index.html

MCUXpresso SDK Documentation, Release 25.09.00

Folder structure The following figure shows the EdgeFast Bluetooth examples folder struc-
ture.

The following figure shows the EdgeFast Bluetooth Protocol Abstraction Layer host stack folder
structure.

The following table provides information regarding the structure and description.

|Folder
|Description
| |————|—————–| |boards/

CMSIS/

1.8. Wireless 219

MCUXpresso SDK Documentation, Release 25.09.00

devices/

docs/

middleware/

rtos/

tools/

|MCUXpresso SDK directory. Refer to Chapter 5

Release contents of MCUXpresso SDK Release Notes at root/docs/ MCUXpresso SDK Release Notes
for EVK-MIMXRT1060.pdf to know the details

| |boards/<board>/wireless/edgefast_bluetooth_examples

|EdgeFast Bluetooth Protocol Abstraction Layer host stack example projects| |middle-
ware/wireless/edgefast_bluetooth

|EdgeFast Bluetooth Protocol Abstraction Layer host stack source code

|

The EdgeFast Bluetooth folder includes two subfolders:

• include: This subfolder includes EdgeFast Bluetooth Protocol Abstraction Layer host stack
headers.

• source: This subfolder includes EdgeFast Bluetooth Protocol Abstraction Layer host stack
source code based on the Ethermind Bluetooth host stack APIs.

Parent topic:Overview

Architecture The figure Architecture of EdgeFast Bluetooth Protocol Abstraction Layer demo
in MCUXpresso SDK below shows that the EdgeFast Bluetooth Protocol Abstraction Layer host
stack is integrated into the MCUXpresso SDK as a middleware component. It leverages the RTOS,
the board support, the peripheral driver/component, and other components in the MCUXpresso
SDK. The Bluetooth application is built on top of the EdgeFast Bluetooth Protocol Abstraction
Layer host stack and supports different peripheral features, Bluetooth features, and different
RTOSes required by the user.

MCUXpresso SDK has the dual-chip architecture defined by EdgeFast Bluetooth Protocol Abstrac-
tion Layer project, the Bluetooth application code, and the EdgeFast Bluetooth Protocol Abstrac-
tion Layer host stack running on the reference board. For example, MIMXRT1060-EVK and the
Linker Layer (LL) run on the Bluetoothmodules like AW-AM457-USD, Murata Type 1XK, andMu-
rata Type 1ZM and has single-chip architecture. Bluetooth Host stack and LL runs on the same
chip, and communicate with Internal Communication Unit (IMU).

The communication between the host stack and the LL is implemented via the standard HCI
UART interface and PCM interface for voice, or the IMU interface.

For details about the different components in MCUXpresso SDK, see Getting Started with MCUX-
presso SDK User’s Guide (document MCUXSDKGSUG) at root/docs/Getting Started with MCUX-
presso SDK.pdf. For details onpossible hardware rework requirements, see thehardware rework
guide document of the relative board. For example, Hardware Rework Guide for EdgeFast BT

220 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

PAL.
Parent topic:Overview

Features This section provides an overview of Bluetooth features, toolchain support, and RTOS
support.

Bluetooth features
• Bluetooth 5.0 compliant

• Protocol support

– L2CAP, GAP, GATT, RFCOMM, SDP, and SM

Note: The Enhanced Attribute (EATT) protocol is not supported in the current version.
However, the support will be available in a future version.

• Classic profile

– SPP, A2DP, and HFP

• LE profile

– HTP, PXP, IPSP, HPS

1.8. Wireless 221

MCUXpresso SDK Documentation, Release 25.09.00

• Integrated the Fatfs based on USB Host MSD in SDK

• Digital Audio Interface including PCM interface for HFP

Parent topic:Features

Toolchain support
• IAR Embedded Workbench for ARM®

• MCUXpresso IDE

• Keil® MDK/μVision

• Makefiles support with GCC from Arm Embedded

Note: For details on IDE Development tools version details, see Section 3, Development tools
in MCUXpresso SDK Release Notes (document MCUXSDKMIMXRT106XRN). The Release Notes
document is available at root/docs/ MCUXpresso SDK Release Notes for EVK-MIMXRT1060.pdf.

Parent topic:Features

RTOS support
• FreeRTOSTMOS

Note: The FreeRTOS static allocation feature is required by Edgefast Bluetooth. The macro con-
figSUPPORT_STATIC_ALLOCATION needs to be set to enable this feature.

Parent topic:Features
Parent topic:Overview

Examples list
• The following examples are provided. Not all the examples are implemented on all the
boards. See the board package for a list of the implemented examples.

– central_hpc (central http proxy service client): Demonstrates a basic Bluetooth Low
Energy Central role functionality. The application scans for other Bluetooth Low En-
ergy devices and establishes a connection to the peripheral with the strongest signal.
The application specifically looks for HPS Server and programs a set of characteristics
that configures a Hyper Text Transfer Protocol (HTTP) request, initiates request, and
reads the response once connected.

– central_ht (central health thermometer): Demonstrates a basic Bluetooth Low En-
ergy Central role functionality. The application scans for other Bluetooth Low Energy
devices and establishes a connection to the peripheral with the strongest signal. The
application specifically looks for health thermometer sensor and reports the die tem-
perature readings once connected.

– central_ipsp (central Internet protocol support profile): Demonstrates a basic Blue-
tooth Low Energy Central role functionality. The application scans for other Bluetooth
Low Energy devices and establishes connection to the peripheral with the strongest
signal. The application specifically looks for IPSP Service and communicates between
the devices that support IPSP. Once connected, the communication is done using IPv6
packets over the Bluetooth Low Energy transport.

– central_pxm (central proximity monitor): Demonstrates a basic Bluetooth Low En-
ergy Central role functionality. The application scans for other Bluetooth Low Energy
devices and establishes a connection to the peripheral with the strongest signal. The
application specifically looks for Proximity Reporter.

222 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

– peripheral beacon: Demonstrates the Bluetooth Low Energy Peripheral role, This ap-
plication implements types of beacon applications.

* beacon: Demonstrates the Bluetooth Low Energy Broadcaster role functionality
by advertising Company Identifier, Beacon Identifier, UUID, A, B, C, RSSI.

* Eddystone: The Eddystone Configuration Service runs as a GATT service on the
beacon while it is connectable and allows configuration of the advertised data, the
broadcast power levels, and the advertising intervals.

* iBeacon: Demonstrates the Bluetooth Low Energy Broadcaster role functionality
by advertising an Apple iBeacon.

– peripheral_hps (peripheral http proxy service): Demonstrates the Bluetooth Low
Energy Peripheral role. The application specifically exposes the HTTP Proxy GATT Ser-
vice.

– peripheral_ht (peripheral health thermometer): Demonstrates the Bluetooth Low
Energy Peripheral role. The application specifically exposes the HT (Health Ther-
mometer) GATT Service. Once a device connects, it generates dummy temperature
values.

– peripheral_ipsp (peripheral Internet protocol support profile): Demonstrates the
Bluetooth Low Energy Peripheral role. The application specifically exposes the Inter-
net Protocol Support GATT Service.

– peripheral_pxr (peripheral proximity reporter): Demonstrates the Bluetooth Low
Energy Peripheral role. The application specifically exposes the Proximity Reporter
(including LLS, IAS, and TPS) GATT Service.

– wireless uart: The application automatically starts advertising the wireless uart ser-
vice and connects to the wireless uart service after the role switch. The wireless UART
service is a custom service that implements a custom writable ASCII Char characteris-
tic (UUID: 01ff0101-ba5e-f4ee-5ca1-eb1e5e4b1ce0) that holds the character written by
the peer device.

– spp (serial prot profile): Application demonstrates the use of the SPP feature.

– handsfree: Application demonstrating usage of the Hands-free Profile (HFP) feature.

– handsfree_ag: Application demonstrating usage of the Hands-free Profile Audio Gate-
way (HFP-AG) feature.

– a2dp_sink: Application demonstrating how to use the a2dp sink feature.

– a2dp_source: Application demonstrating how to use the a2dp source feature.

– audio_profile: Demonstrates the following functions.

* There are five parts working in the demo: AWS cloud, Android app, audio demo
(running on RT1060), U-disk, and Bluetooth headset.

* With an app running on the smartphone (Android phone), the end user connects
to the AWS cloud and controls the audio demo running on the RT1060 EVK board
through AWS cloud. Some operations like play, play next, and pause are used to
control the media play functionalities.

* Audio demo running on the RT1060 EVK board connects to the AWS throughWiFi.
A connection establishes between the RT1060 EVK board and a Bluetooth headset.
To get the media resource (mp3 files) from the U-disk, an HS USB host is enabled,
and a U-diskwithmp3 files is connected to RT1060 EVK board via the USB port. The
audio demo searches the root directory of the U-disk for the music files (only mp3
files are supported) and uploads the song file list to AWS. The song list is shown
in the app running on the smartphone. The music can then be played out via the
Bluetooth headset once end user controls the app to play the mp3 file.

1.8. Wireless 223

MCUXpresso SDK Documentation, Release 25.09.00

– wifi_provisioning: Demonstrates the WiFi provisioning service that safely sends cre-
dential from phone to device over Bluetooth low energy. By default, AWS Wi-Fi pro-
visioning demo starts advertising if the Wi-Fi access point (AP) is not configured and
waits for the Wi-Fi AP configuration. After connecting to the Android APK, the demo
executes the request from cellphone and sends the response. When theWi-Fi AP is con-
figured, the Shadow demo connects to the AWS viaWi-Fi and publishes the configured
Wi-Fi AP information.

– shell: Shell application demonstrating the shell mode of the simplified Adapter APIs.

Parent topic:Overview

Hardware For dual-chip implementation, the Bluetooth demo runs on a (reference board)
along with the ported EdgeFast Bluetooth Protocol Abstraction Layer API host stack. The Linker
Layer (LL) runs on a wireless module. A standard UART HCI and PCM is used to communicate
between the two boards, the IMU is used to communicate in between. The Bluetooth host and
controller stack run on different boards. The demo hardware requires two different boards; a
development board for host stack and application and a wireless module adapter board for con-
troller running. For example, the evkmimxrt1060 and uSD-15x15 Adapter Board for AW-AM457-
uSD board, or any of the supported Murata modules with the Murata uSD-M.2 adapter. For de-
tails on the board hardware requirement and board setting, see the following documents. For
one-chip implementation, the Bluetooth demo, EdgeFast Bluetooth Protocol Abstraction Layer
API host stack, and LL run on one chip and they communicate with IMU.

• Hardware rework guide document of the relative board, Hardware Rework Guide for
MIMXRT1060-EVK and AW-AM457-uSD, or Hardware Interconnection Guide for i.MX RT
EVKs and Murata M.2 modules.

• Readme file of the examples.

Reference boards list
• MIMXRT1170: For details, see the quick start guide of this reference board (MIMXRT1170).

• MIMXRT685-EVK: For details, see the quick start guide of this reference board (MIMXRT685-
EVK).

• MIMXRT595-EVK: For details, see the quick start guide of this reference board.
(MIMXRT595-EVK).

• MIMXRT1050-EVKB: For details, see the quick start guide of this reference board
(MIMXRT1050-EVKB).

Parent topic:Hardware

Dual-chip wireless module list

Module HCI
uSD-15x15 Adapter Board for AW-AM457-uSD UART
uSD-15x15 Adapter Board for AW-CM358-uSD UART
uSD-15x15 Adapter Board for AW-AM510-uSD UART
AW-CM358MA UART
AW-CM510MA UART
K32W061 UART
Murata uSD-M.2 Adapter (LBEE0ZZ1WE-uSD-M2) and Embedded Artists 1ZMM.2Mod-
ule (EAR00364)

UART

Murata uSD-M.2 Adapter (LBEE0ZZ1WE-uSD-M2) and Embedded Artists 1XKM.2 Mod-
ule (EAR00385)

UART

224 Chapter 1. Middleware

https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt1170-evaluation-kit:MIMXRT1170-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt600-evaluation-kit:MIMXRT685-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt600-evaluation-kit:MIMXRT685-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt595-evaluation-kit:MIMXRT595-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt1050-evaluation-kit:MIMXRT1050-EVK

MCUXpresso SDK Documentation, Release 25.09.00

For details on AzureWave module, see the quick start guide of this reference board AW-AM457-
uSD, AW-CM358-uSD, AW-CM358MA, AW-AM510-uSD, AW-CM510MA, and K32W061.

For Murata documentation, refer to the Quick Start Guide and User Guide here.

Note: The boards and wireless module lists are not random combination. For the wireless mod-
ule support list of specific board, see the readme.txt of each example.

Parent topic:Hardware

Demo This topic lists the steps to run a demo application using IAR, steps to run a demo ap-
plication using MCUXpresso IDE, and steps to download LL firmware from the reference board.
The following chapter uses RT1060 and peripheral_ht as an example.

Before you run the example, see the readme.txt in current the peripheral_ht directory and the
Hardware Rework Guide for EdgeFast BT PAL document to set the jumper and connect the wire-
less module with development board.

The uSD type wireless module is similar to the Development board connector in the Run an IAR
example section. If the module is M2 type, connect the module to the onboard M2 interface.

Run a demo application using IAR This document uses EVKRT1060 EdgeFast Bluetooth Proto-
col Abstraction Layer API example to describe the steps to open a project, build an example,
and run a project. For details, see Section 3 in Getting Started with MCUXpresso SDK User’s
Guide(document MCUXSDKGSUG) atroot/docs/Getting Started with MCUXpresso SDK.pdf.

Open an IAR example For the IAR Embedded Workbench, unpack the contents of the archive
to a folder on a local drive.

1. The example projects are available at:

<root>/boards/evkmimxrt1060/edgefast_bluetooth_examples/peripheral_ht/iar

2. Open the IAR workspace file. For example, the highlighted *.eww format file

Parent topic:Run a demo application using IAR

1.8. Wireless 225

http://www.azurewave.com/img/nxp/uSD-1515%20Adaptor%20Board_User%20guide_C_20200821.pdf
http://www.azurewave.com/img/nxp/uSD-1515%20Adaptor%20Board_User%20guide_C_20200821.pdf
http://www.azurewave.com/img/nxp/uSD-1212%20Adaptor%20Board_User%20guide_G_20210127.pdf
http://www.azurewave.com/img/nxp/AW-CM358MA_DS_DF_C_STD.pdf
https://www.azurewave.com/img/nxp/AW-AM510-uSD_User%20guide_A_210126.pdf
https://www.azurewave.com/img/nxp/AW-AM510MA_DS_DF_C_STD.pdf
https://www.nxp.com/products/wireless/thread/k32w061-41-high-performance-secure-and-ultra-low-power-mcu-for-zigbeethread-and-bluetooth-le-5-0-with-built-in-nfc-option:K32W061_41
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/nxp-imx

MCUXpresso SDK Documentation, Release 25.09.00

Build an IAR example
1. Select flexspi_nor_debug or flexspi_nor_release configurations from the drop-down selector

above the project tree in the workspace.

2. Build the EdgeFast Bluetooth Protocol Abstraction Layer project.

Note: Wireless module does not have flash hardware and requires 512 KB image loaded
from board (such as RT1060) on system startup. The 512 KB image is kept on RT1060 side
and only flexspi_nor target is supported for Bluetooth examples. Other targets are not sup-
ported because memory size limit.

Parent topic:Run a demo application using IAR

Run an IAR example This document uses the peripheral_ht as an example to describe the
steps to run an example. For details on other projects and compilers, see the readme file in
the corresponding example directory.

The following figure shows the connection of RT1060 and the uSD wireless module.

226 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

1. Connect the USB debug console port to PC. For example, connect J14 of EVKRT1060 to the
PC.

2. Connect a 5 V power source to the J1 jack in the Wireless module board.

3. Make the appropriate debugger settings in the project options window, as shown in the
figure below.

1.8. Wireless 227

MCUXpresso SDK Documentation, Release 25.09.00

4. Click the Download and Debug button to flash the executable onto the board, as shown
in the following figure. After the download is complete, if you must test the function of
HFP, stop IAR debugging, and then connect the PCM interface. Reset the target board by
manually.

5. Linker layer (LL) Firmware running in wireless module loads from EVKRT1060 by SDIO
interface, so need take a bit time to download the LL firmware, “Initialize AW-AM457-uSD
Driver” prints in the debug console. For example, it depends on the firmware. For details,
see readme.txt.

Note: The projects are configured to use “CMSIS DAP” as the default debugger. Ensure that the
OpenSDA chip of the board contains a CMSIS. DAP firmware or that the debugger selection cor-
responds to the physical interface used to interface to the board.

Parent topic:Run a demo application using IAR

Parent topic:Demo

Run a demo application using MCUXpresso IDE This document uses peripheral_ht example
to describe the steps to open a project, build an example, and run a project on MCUXpresso IDE.

For details, see Section 3 inGetting StartedwithMCUXpresso SDKUser’s Guide (documentMCUXS-
DKGSUG) at root/docs/Getting Started with MCUXpresso SDK.pdf and refer to the readme file in
the corresponding demo’s directory.

Open an MCUXpresso IDE example
1. Open MCUXpresso IDE and open an existing or a new workspace location.

2. Drag and drop the package archive into the MCUXpresso Installed SDKs area in the lower
right of the main window.

228 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

3. After the SDK is loaded successfully, select the Import the SDK examples(s)… to add ex-
amples to your workspace.

4. Select the evkmimxrt1060 board and click the Next button to select the desired example(s).

5. Select the evkmimxrt1060 board EdgeFast Bluetooth example. For example, peripheral_ht.

6. Ensure to change SDK debug console from Semihost to UART.
7. Click Finish.

1.8. Wireless 229

MCUXpresso SDK Documentation, Release 25.09.00

Parent topic:Run a demo application using MCUXpresso IDE

Build an MCUXpresso IDE example
1. Select desired target for your project.

2. Build MCUXpresso IDE EdgeFast Bluetooth Protocol Abstraction Layer project.

230 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Parent topic:Run a demo application using MCUXpresso IDE

Run an MCUXpresso IDE example For MCUXpresso IDE project running, all steps are similar
to Run an IAR example except the steps of downloading image from compiler.

To download MCUXpresso IDE image to board, click the Debug button to download the exe-
cutable file onto the board.

Parent topic:Run a demo application using MCUXpresso IDE

Parent topic:Demo

Run a demo application using MDK This document uses peripheral_ht example to describe
the steps to open a project, build an example, and run a project on MDK.

For details, see the related section in the Getting Started with MCUXpresso SDK User’s Guide
(document: MCUXSDKGSUG) in the directory root/docs/ and the readmefile in the corresponding
demo’s directory.

1.8. Wireless 231

MCUXpresso SDK Documentation, Release 25.09.00

Open an MDK project For the IAR Embedded Workbench, unpack the contents of the archive
to a folder on a local drive.

1. The example projects are available at: <root>/boards/evkmimxrt1060/
edgefast_bluetooth_examples/peripheral_ht/mdk.

2. Open the mdk workspace file. For example, the highlighted *.uvmpw format file.

Parent topic:Run a demo application using MDK

Build an MDK example To build an MDK example:

1. Select flexspi_nor_debug or flexspi_nor_release configurations from the drop-down selector
above the project tree in the workspace.

2. Click the highlighted icon to build the EdgeFast Bluetooth Protocol Abstraction Layer
project.

232 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Parent topic:Run a demo application using MDK

Run an MDK example For MDK project running, all steps are similar to Run an IAR example
except the steps of downloading image from compiler.

To download theMDK image to the board, click theDebug button. The executable file downloads
to the board.

Parent topic:Run a demo application using MDK

Parent topic:Demo

Run a demo application using Arm GCC This document uses peripheral_ht example to de-
scribe the steps to open a project, build an example, and run a project on MDK.

For details, see the related section in Getting Started with MCUXpresso SDK User’s Guide (docu-
ment: MCUXSDKGSUG) at root/docs/ and the readme file in the corresponding demo’s directory.

Setup tool chains See the section “Run a demo using Arm GCC” of getting start document. For
example, Getting Started with MCUXpresso SDK for MIMXRT1160-EVK.

Parent topic:Run a demo application using Arm GCC

Build a GCC example To build a GCC example:

1. Change the directory to the project directory: <install_dir>\boards\evkmimxrt1060\
edgefast_bluetooth_examples\peripheral_ht\armgcc.

2. Run the build script.

For windows, the script is build_flexspi_nor_debug.bat/ build_flexspi_nor_release.bat.

The build output is shown in the following figure.

Parent topic:Run a demo application using Arm GCC

1.8. Wireless 233

MCUXpresso SDK Documentation, Release 25.09.00

Run a GCC example Refer to the section “Run a demo using Arm GCC” of the getting start
document. For example, see Getting Started with MCUXpresso SDK for MIMXRT1060-EVK. The
peripheral_ht.elf is the target to download.

Parent topic:Run a demo application using Arm GCC

Parent topic:Demo

Download Linker Layer firmware from the reference board Download the Linker Layer
(LL) Firmware fromReference board EVKRT1060 by SDIO interface before running the Bluetooth
Controller stack. The LL download is necessary because wireless module does not support flash.

Parent topic:Demo

Change board-specific parameters There are some board-specific parameters that can be
changed in the application layer for EdgeFast BT PAL.

Change HCI UART parameters Since the controller can support different baud
rates, the demo provides an interface with configurable baud rates. The func-
tioncontroller_hci_uart_get_configuration is used to get HCI UART parameters, including
the instance, default baud rate, which depends on the controller, running baud rate which
defined by macro BOARD_BT_UART_BAUDRATE and so on. If this function returns ‘0’ and the
running baud rate is inconsistent with the default baud rate, EdgeFast BT PAL switches the baud
rate of the controller to the running baud rate.

Parent topic:Change board-specific parameters

Change USB Host stack parameters Since the board supports multiple USB ports, the demo
provides a configurable interface for USB Host stack. The functionUSB_HostGetConfiguration
received the instance of USB for EdgeFast BT PAL. For the case where there is a USBPHY, the
demo configures the properties of the PHY throughUSB_HostPhyGetConfiguration.

Note: There are series of hex bytes printed on the console after the wireless module resets.
However, it does not impact the EdgeFast BT PAL application running.

Parent topic:Change board-specific parameters

Parent topic:Demo

Known issues This section provides a list of known issues in the release package.

Notes This section provides a list of notes to use EdgeFast Bluetooth stack

• the follow configuration items related to resource needs more attention

– CONFIG_BT_MAX_CONN The max connections that can be created.

– CONFIG_BT_MAX_PAIRED The max supported paired devices.

– CONFIG_BT_BUF_EVT_RX_COUNT The max received hci events and acl data packets
at one time if the sys work queue task is blocked. One example is: when LE connec-
tion is created and HCI_LE_Enhanced_Connection_Complete is received, the sys work
queue task is busywith processing theHCI_LE_Enhanced_Connection_Complete. If the
received hci events exceed CONFIG_BT_BUF_EVT_RX_COUNT, it may leads potential is-
sue, please increase value of the macro.

• All the EdgeFast Bluetooth API should be called only after EdgeFast Bluetooth is initialized.

• Don’t send HCI cmd from the sys work queue task or any stack’s callbacks.

234 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

EdgeFast BT PAL configuration documentation CONFIG_BT_BUF_RESERVE
Buffer reserved length, suggested value is 8.

CONFIG_BT_SNOOP
Whether enable bt snoop feature, 0 - disable, 1 - enable.

CONFIG_BT_HCI_CMD_COUNT
Number of HCI command buffers, ranging from 2 to 64. Number of buffers available for HCI
commands Range 2 to 64 is valid.

CONFIG_BT_RX_BUF_COUNT
Number of HCI RX buffers, ranging from 2 to 255. Number of buffers available for incoming ACL
packets or HCI events from the controller Range 2 to 255 is valid.

CONFIG_BT_RX_BUF_LEN
Maximum supportedHCI RX buffer length, ranging from 73 to 2000. Maximumdata size for each
HCI RX buffer. This size includes everything starting with the ACL or HCI event headers. Note
that buffer sizes are always rounded up to the nearest multiple of 4, so if this Kconfig value is
something else then there is some wasted space. The minimum of 73 has been taken for LE SC
which has an L2CAP MTU of 65 bytes. On top of this, The L2CAP header (4 bytes) and the ACL
header (also 4 bytes) which yields 73 bytes. Range is 73 to 2000.

CONFIG_BT_HCI_RESERVE
Reserve buffer size for user. Headroom that the driver needs for sending and receiving buffers.
Add a new ‘default’ entry for each new driver.

CONFIG_BT_DISCARDABLE_BUF_COUNT
Number of discardable event buffers, if the macro is set to 0, disable this feature, if greater than
0, this feature is enabled. Number of buffers in a separate buffer pool for events which the
HCI driver considers discardable. Examples of such events could be , for example, Advertising
Reports. The benefit of having such a pool means that if there is a heavy inflow of such events it
does not cause the allocation for other critical events to block andmay even eliminate deadlocks
in some cases.

CONFIG_BT_DISCARDABLE_BUF_SIZE
Size of discardable event buffers, ranging from 45 to 257. Size of buffers in the separate discard-
able event buffer pool. The minimum size is set based on the Advertising Report. Setting the
buffer can save memory if with size set differently from that of the CONFIG_BT_RX_BUF_LEN.
range is 45 to 257.

CONFIG_BT_HCI_TX_STACK_SIZE
HCI TX task stack size needed for executing bt_send with specified driver, should be no less than
512.

CONFIG_BT_HCI_TX_PRIO
HCI TX task priority.

CONFIG_BT_RX_STACK_SIZE
Size of the receiving thread stack. This is the context fromwhich all event callbacks to the appli-
cation occur. The default value is sufficient for basic operation, but if the application needs to
do advanced things in its callbacks that require extra stack space, this value can be increased to
accommodate for that.

CONFIG_BT_RX_PRIO
RX task priority.

CONFIG_BT_PERIPHERAL

1.8. Wireless 235

MCUXpresso SDK Documentation, Release 25.09.00

Peripheral Role support, if themacro is set to 0, feature is disabled, if 1, feature is enabled. Select
this for LE Peripheral role support.

CONFIG_BT_BROADCASTER
Broadcaster Role support, if the macro is set to 0, feature is disabled, if 1, feature is enabled.
Select this for LE Broadcaster role support.

CONFIG_BT_EXT_ADV
Extended Advertising and Scanning support [EXPERIMENTAL], if the macro is set to 0, feature
is disabled, if 1, feature is enabled. Select this to enable Extended Advertising API support. This
enables support for advertising with multiple advertising sets, extended advertising data, and
advertising on LE Coded PHY. It enables support for receiving extended advertising data as a
scanner, including support for advertising data over the LE coded PHY. It enables establishing
connections over LE Coded PHY.

CONFIG_BT_CENTRAL
Central Role support, if the macro is set to 0, feature is disabled, if 1, feature is enabled. Select
this for LE Central role support.

CONFIG_BT_WHITELIST
Enable whitelist support. This option enables the whitelist API. This takes advantage of the
whitelisting feature of a Bluetooth LE controller. The whitelist is a global list and the same
whitelist is used by both scanner and advertiser. The whitelist cannot be modified while it is
in use. An Advertiser can whitelist which peers can connect or request scan response data. A
scanner can whitelist advertiser for which it generates advertising reports. Connections can be
established automatically for whitelisted peers.

This option deprecates the bt_le_set_auto_conn API in favor of the bt_conn_create_aute_le API.

CONFIG_BT_DEVICE_NAME
Bluetooth device name. Name can be up to 248 bytes long (excluding NULL termination). Can
be empty string.

CONFIG_BT_DEVICE_APPEARANCE
Bluetooth device appearance. For the list of possible values, see the link:
www.bluetooth.com/specifications/assigned-numbers.

CONFIG_BT_DEVICE_NAME_DYNAMIC
Allow to set Bluetooth device name on runtime. Enabling this option allows for runtime config-
uration of Bluetooth device name.

CONFIG_BT_ID_MAX
Maximum number of local identities, range 1 to 10 is valid. Maximum number of supported
local identity addresses. For most products, this is safe to leave as the default value (1). Range 1
to 10 is valid.

CONFIG_BT_CONN
Connection enablement, if the macro is set to 0, feature is disabled, if 1, feature is enabled.

CONFIG_BT_MAX_CONN
it is the max connection supported by host stack. Maximum number of simultaneous Bluetooth
connections supported.

CONFIG_BT_HCI_ACL_FLOW_CONTROL
Controller to host ACL flow control support. Enable support for throttling ACL buffers from the
controller to the host. This is useful when the host and controller are on separate cores, since it
ensures that we do not run out of incoming ACL buffers.

CONFIG_BT_PHY_UPDATE

236 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

PHY Update, if the macro is set to 0, feature is disabled, if 1, feature is enabled. Enable support
for Bluetooth 5.0 PHY Update Procedure.

CONFIG_BT_DATA_LEN_UPDATE
Data Length Update. If the macro is set to 0, feature is disabled, if 1, feature is enabled. Enable
support for Bluetooth v4.2 LE Data Length Update procedure.

CONFIG_BT_CREATE_CONN_TIMEOUT
Timeout for pending LE Create Connection command in seconds.

CONFIG_BT_CONN_PARAM_UPDATE_TIMEOUT
Peripheral connection parameter update timeout in milliseconds, range 1 to 65535 is valid. The
value is a timeout used by peripheral device to wait until it starts the connection parameters
update procedure to change default connection parameters. The default value is set to 5s, to
comply with BT protocol specification: Core 4.2 Vol 3, Part C, 9.3.12.2 Range 1 to 65535 is valid.

CONFIG_BT_CONN_TX_MAX
Maximum number of pending TX buffers. Maximum number of pending TX buffers that have
not yet been acknowledged by the controller.

CONFIG_BT_REMOTE_INFO
Enable application access to remote information. Enable application access to the remote in-
formation available in the stack. The remote information is retrieved once a connection has
been established and the application is notified when this information is available through the
remote_version_available connection callback.

CONFIG_BT_REMOTE_VERSION
Enable fetching of remote version. Enable this to get access to the remote version in the Con-
troller and in the host through bt_conn_get_info(). The fields in question can be then found in
the bt_conn_info struct.

CONFIG_BT_SMP_SC_ONLY
Secure Connections Only Mode. This option enables support for Secure Connection Only Mode.
In this mode device shall only use Security Mode 1 Level 4 with exception for services that only
require Security Mode 1 Level 1 (no security). Security Mode 1 Level 4 stands for authenticated
LE Secure Connections pairing with encryption. Enabling this option disables legacy pairing.

CONFIG_BT_SMP_OOB_LEGACY_PAIR_ONLY
Force Out of Band Legacy pairing. This option disables Legacy and LE SC pairing and forces
legacy OOB.

CONFIG_BT_SMP_DISABLE_LEGACY_JW_PASSKEY
Forbid usage of insecure legacy pairing methods. This option disables Just Works and Passkey
legacy pairing methods to increase security.

CONFIG_BT_PRIVACY
Privacy Feature, if the macro is set to 0, feature is disabled, if 1, feature is enabled. Enable local
Privacy Feature support. This makes it possible to use Resolvable Private Addresses (RPAs).

CONFIG_BT_ECC
Enable ECDH key generation support. This option adds support for ECDH HCI commands.

CONFIG_BT_TINYCRYPT_ECC
Use TinyCrypt library for ECDH. If this option is used to set TinyCrypt library which is used for
emulating the ECDH HCI commands and events needed by e.g. LE Secure Connections. In builds
including the Bluetooth LE host, if don’t set the controller crypto which is used for ECDH and if
the controller doesn’t support the required HCI commands the LE Secure Connections support
will be disabled. In builds including the HCI Raw interface and the Bluetooth LE controller, this

1.8. Wireless 237

MCUXpresso SDK Documentation, Release 25.09.00

option injects support for the 2 HCI commands required for LE Secure Connections so that hosts
can make use of those. The option defaults to enabled for a combined build with Zephyr’s own
controller, since it does not have any special ECC support itself (at least not currently).

CONFIG_BT_TINYCRYPT_ECC_PRIORITY
Thread priority of ECC Task.

CONFIG_BT_HCI_ECC_STACK_SIZE
Thread stack size of ECC Task.

CONFIG_BT_RPA
Bluetooth Resolvable Private Address (RPA)

CONFIG_BT_RPA_TIMEOUT
Resolvable Private Address timeout, defaults to 900 seconds. This option defines how often re-
solvable private address is rotated. Value is provided in seconds and defaults to 900 seconds (15
minutes).

CONFIG_BT_SIGNING
Data signing support, if the macro is set to 0, feature is disabled, if 1, feature is enabled. This
option enables data signing which is used for transferring authenticated data in an unencrypted
connection.

CONFIG_BT_SMP_APP_PAIRING_ACCEPT
Accept or reject pairing initiative. When receiving pairing request or pairing response queries,
the application shall either accept proceeding with pairing or not. This is for pairing over SMP
and does not affect SSP, which will continue pairing without querying the application. The ap-
plication can return an error code, which is translated into an SMP return value if the pairing is
not allowed.

CONFIG_BT_SMP_ALLOW_UNAUTH_OVERWRITE
Allow unauthenticated pairing for paired device. This option allows all unauthenticated pairing
attempts made by the peer where an unauthenticated bond already exists. This would enable
cases where an attacker could copy the peer device address to connect and start an unauthen-
ticated pairing procedure to replace the existing bond. When this option is disabled in order to
create a new bond the old bond must be explicitly deleted with bt_unpair.

CONFIG_BT_FIXED_PASSKEY
Use a fixed passkey for pairing, set passkey to fixed or not. With this option enabled, the applica-
tion will be able to call the bt_passkey_set() API to set a fixed passkey. If set, the pairing_confim()
callback will be called for all incoming pairings.

CONFIG_BT_BONDABLE
Bondable Mode, if the macro is set to 0, feature is disabled, if 1, feature is enabled. This op-
tion enables support for Bondable Mode. In this mode, Bonding flag in AuthReq of SMP Pairing
Request/Response is set indicating the support for this mode.

CONFIG_BT_BONDING_REQUIRED
Always require bonding. When this option is enabled remote devices are required to always set
the bondable flag in their pairing request. Any other kind of requests will be rejected.

CONFIG_BT_SMP_ENFORCE_MITM
EnforceMITMprotection, if themacro is set to 0, feature is disabled, if 1, feature is enabled. With
this option enabled, the SecurityManager is setMITMoption in theAuthenticationRequirements
Flags whenever local IO Capabilities allow the generated key to be authenticated.

CONFIG_BT_OOB_DATA_FIXED

238 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Use a fixed random number for LESC OOB pairing. With this option enabled, the application
will be able to perform LESC pairing with OOB data that consists of fixed random number and
confirm value. This option should only be enabled for debugging and should never be used in
production.

CONFIG_BT_KEYS_OVERWRITE_OLDEST
Overwrite oldest keys with new ones if key storage is full. With this option enabled, if a pairing
attempt occurs and the key storage is full, then the oldest keys in storage will be removed to free
space for the new pairing keys.

CONFIG_BT_HOST_CCM
Enable host side AES-CCMmodule. Enables the software-based AES-CCM engine in the host. Will
use the controller’s AES encryption functions if available, or BT_HOST_CRYPTO otherwise.

CONFIG_BT_L2CAP_RX_MTU
Maximum supported L2CAP MTU for incoming data, if CONFIG_BT_SMP is set, range is 65 to
1300, otherwise range is 23 to 1300. Maximum size of each incoming L2CAP PDU. Range is 23 to
1300 range is 65 to 1300 for CONFIG_BT_SMP.

CONFIG_BT_L2CAP_TX_BUF_COUNT
Number of buffers available for outgoing L2CAP packets, ranging from 2 to 255. Range is 2 to
255.

CONFIG_BT_L2CAP_TX_FRAG_COUNT
Number of L2CAP TX fragment buffers, ranging from 0 to 255. Number of buffers available for
fragments of TX buffers.

Warning: Setting this to 0 means that the application must ensure that queued TX buffers never
need to be fragmented, that is the controller’s buffer size is large enough. If this is not ensured,
and there are no dedicated fragment buffers, a deadlock may occur. In most cases the default
value of 2 is a safe bet. Range is 0 to 255.

CONFIG_BT_L2CAP_TX_MTU
Maximum supported L2CAP MTU for L2CAP TX buffers, if CONFIG_BT_SMP is set, the range is
65 to 2000. Otherwise, range is 23 to 2000. Range is 23 to 2000. Range is 65 to 2000 for CON-
FIG_BT_SMP.

CONFIG_BT_L2CAP_DYNAMIC_CHANNEL
L2CAP Dynamic Channel support. This option enables support for LE Connection oriented Chan-
nels, allowing the creation of dynamic L2CAP Channels.

CONFIG_BT_L2CAP_DYNAMIC_CHANNEL
L2CAP Dynamic Channel support. This option enables support for LE Connection oriented Chan-
nels, allowing the creation of dynamic L2CAP Channels.

Bluetooth BR/EDR support [EXPERIMENTAL] This option enables Bluetooth BR/EDR support.

CONFIG_BT_ATT_PREPARE_COUNT
Number of ATT prepares write buffers, if the macro is set to 0, feature is disabled, if greater
than 1, feature is enabled. Number of buffers available for ATT prepares write, setting this to 0
disables GATT long/reliable writes.

CONFIG_BT_ATT_TX_MAX
Maximum number of queued outgoing ATT PDUs. Number of ATT PDUs that can be at a single
moment queued for transmission. If the application tries to sendmore than this amount the calls
blocks until an existing queued PDU gets sent. Range is 1 to CONFIG_BT_L2CAP_TX_BUF_COUNT.

CONFIG_BT_GATT_SERVICE_CHANGED

1.8. Wireless 239

MCUXpresso SDK Documentation, Release 25.09.00

GATT Service Changed support, if themacro is set to 0, feature is disabled, if 1, feature is enabled.
This option enables support for the service changed characteristic.

CONFIG_BT_GATT_DYNAMIC_DB
GATT dynamic database support, if the macro is set to 0, feature is disabled, if 1, feature is en-
abled. This option enables registering/unregistering services at runtime.

CONFIG_BT_GATT_CACHING
GATT Caching support, if the macro is set to 0, feature is disabled, if 1, feature is enabled. This
option enables support for GATT Caching. When enabled the stack registers Client Supported
Features and Database Hash characteristics which is used by clients to detect if anything has
changed on the GATT database.

CONFIG_BT_GATT_CLIENT
GATT client support, if the macro is set to 0, feature is disabled, if 1, feature is enabled. This
option enables support for the GATT Client role.

CONFIG_BT_GATT_READ_MULTIPLE
GATT Read Multiple Characteristic. Values support, if the macro is set to 0, feature is disabled,
if 1, feature is enabled. This option enables support for the GATT Read Multiple Characteristic
Values procedure.

CONFIG_BT_GAP_AUTO_UPDATE_CONN_PARAMS
Automatic Update of Connection Parameters, if the macro is set to 0, feature is disabled, if 1,
feature is enabled. This option, if enabled, allows automatically sending request for connection
parameters update after GAP recommended 5 seconds of connection as peripheral.

CONFIG_BT_GAP_PERIPHERAL_PREF_PARAMS
Configure peripheral preferred connection parameters. This configures peripheral preferred
connection parameters. Enabling this option results in adding PPCP characteristic in GAP. If
disabled it is up to application to set expected connection parameters.

CONFIG_BT_MAX_PAIRED
Maximum number of paired devices. Maximum number of paired Bluetooth devices. The min-
imum (and default) number is 1.

CONFIG_BT_MAX_SCO_CONN
Maximum number of simultaneous SCO connections. Maximum number of simultaneous Blue-
tooth synchronous connections supported. The minimum (and default) number is 1. Range 1 to
3 is valid.

CONFIG_BT_RFCOMM
Bluetooth RFCOMM protocol support [EXPERIMENTAL], if the macro is set to 0, feature is dis-
abled, if 1, feature is enabled. This option enables Bluetooth RFCOMM support.

CONFIG_BT_RFCOMM_L2CAP_MTU
L2CAP MTU for RFCOMM frames. Maximum size of L2CAP PDU for RFCOMM frames.

CONFIG_BT_HFP_HF
Bluetooth Handsfree profile HF Role support [EXPERIMENTAL], if the macro is set to 0, feature
is disabled, if 1, feature is enabled. This option enables Bluetooth HF support.

CONFIG_BT_AVDTP
Bluetooth AVDTP protocol support [EXPERIMENTAL], if the macro is set to 0, feature is disabled,
if 1, feature is enabled. This option enables Bluetooth AVDTP support.

CONFIG_BT_A2DP
Bluetooth A2DP Profile [EXPERIMENTAL]. This option enables the A2DP profile.

240 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

CONFIG_BT_A2DP_SOURCE
Bluetooth A2DP profile source function. This option enables the A2DP profile Source function.

CONFIG_BT_A2DP_SINK
Bluetooth A2DP profile sink function. This option enables the A2DP profile Sink function.

CONFIG_BT_A2DP_TASK_PRIORITY
Bluetooth A2DP profile task priority. This option sets the task priority. The task is used to process
the streamer data and retry command.

CONFIG_BT_A2DP_TASK_STACK_SIZE
Bluetooth A2DP profile task stack size. This option sets the task stack size.

CONFIG_BT_PAGE_TIMEOUT
Bluetooth Page Timeout. This option sets the page timeout value. Value is selected as (N * 0.625)
ms.

CONFIG_BT_DIS_MODEL
Model name. The device model inside Device Information Service.

CONFIG_BT_DIS_MANUF
Manufacturer name. The device manufacturer inside Device Information Service.

CONFIG_BT_DIS_PNP
Enable PnP_ID characteristic. Enable PnP_ID characteristic in Device Information Service.

CONFIG_BT_DIS_PNP_VID_SRC
Vendor ID source, range 1 - 2. The Vendor ID Source field designateswhich organization assigned
the value used in the Vendor ID field value. The possible values are:

• 1 Bluetooth SIG, the Vendor ID was assigned by the Bluetooth SIG

• 2 USB IF, the Vendor ID was assigned by the USB IF

CONFIG_BT_DIS_PNP_VID
Vendor ID, range 0 - 0xFFFF. The Vendor ID field is intended to uniquely identify the vendor
of the device. This field is used in conjunction with Vendor ID Source field, which determines
which organization assigned the Vendor ID field value. Note: The Bluetooth Special Interest
Group assigns Device ID Vendor ID, and the USB Implementers Forum assigns Vendor IDs, either
of which can be used for the Vendor ID field value. Device providers should procure the Vendor
ID from the USB Implementers Forum or the Company Identifier from the Bluetooth SIG.

CONFIG_BT_DIS_PNP_PID
Product ID, range 0 - 0xFFFF. The Product ID field is intended to distinguish between different
products made by the vendor identified with the Vendor ID field. The vendors themselves man-
age Product ID field values.

CONFIG_BT_DIS_PNP_VER
Product Version, range 0 - 0xFFFF. The Product Version field is a numeric expression identify-
ing the device release number in Binary-Coded Decimal. This is a vendor-assigned value, which
defines the version of the product identified by the Vendor ID and Product ID fields. This field
is intended to differentiate between versions of products with identical Vendor IDs and Product
IDs. The value of the field value is 0xJJMN for version JJ.M.N (JJ -major version number,M -minor
version number, N - subminor version number); For example, version 2.1.3 is represented with
value 0x0213 and version 2.0.0 is represented with a value of 0x0200. When upward-compatible
changes are made to the device, it is recommended that the minor version number be incre-
mented. If incompatible changes are made to the device. It is recommended that the major
version number is incremented. The subminor version is incremented for bug fixes.

1.8. Wireless 241

MCUXpresso SDK Documentation, Release 25.09.00

CONFIG_BT_DIS_SERIAL_NUMBER
Enable DIS Serial number characteristic, 1 - enable, 0 - disable. Enable Serial Number character-
istic in Device Information Service.

CONFIG_BT_DIS_SERIAL_NUMBER_STR
Serial Number. Serial Number characteristic string in Device Information Service.

CONFIG_BT_DIS_FW_REV
Enable DIS Firmware Revision characteristic, 1 - enable, 0 - disable. Enable Firmware Revision
characteristic in Device Information Service.

CONFIG_BT_DIS_FW_REV_STR
Firmware revision. Firmware Revision characteristic String in Device Information Service.

CONFIG_BT_DIS_HW_REV
Enable DIS Hardware Revision characteristic, 1 - enable, 0 - disable. Enable Hardware Revision
characteristic in Device Information Service.

CONFIG_BT_DIS_HW_REV_STR
Hardware revision. Hardware Revision characteristic String in Device Information Service.

CONFIG_BT_DIS_SW_REV
Enable DIS Software Revision characteristic, 1 - enable, 0 - disable. Enable Software Revision
characteristic in Device Information Service.

CONFIG_BT_DIS_SW_REV_STR
Software revision Software revision characteristic String in Device Information Service.

CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE
System work queue stack size.

CONFIG_SYSTEM_WORKQUEUE_PRIORITY
System work queue priority.

CONFIG_BT_HCI_TRANSPORT_INTERFACE_TYPE
HCI transport interface type.

CONFIG_BT_HCI_TRANSPORT_INTERFACE_INSTANCE
HCI transport interface instance number.

CONFIG_BT_HCI_TRANSPORT_INTERFACE_SPEED
HCI transport interface rate. Configures the interface speed, for example, the default interface
is h4, the speed to 115200

CONFIG_BT_HCI_TRANSPORT_TX_THREAD
Whether enable HCI transport TX thread.

CONFIG_BT_HCI_TRANSPORT_RX_THREAD
Whether enable HCI transport RX thread.

CONFIG_BT_HCI_TRANSPORT_RX_STACK_SIZE
HCI transport RX thread stack size.

CONFIG_BT_HCI_TRANSPORT_TX_STACK_SIZE
HCI transport TX thread stack size.

CONFIG_BT_HCI_TRANSPORT_TX_PRIO
HCI transport TX thread priority.

242 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

CONFIG_BT_HCI_TRANSPORT_RX_PRIO
HCI transport RX thread priority.

CONFIG_BT_MSG_QUEUE_COUNT
Message number in message queue.

Rework Guide for EdgeFast Bluetooth Protocol Abstraction Layer

Hardware Rework Guide for MIMXRT1170-EVKB and Murata M.2 Module This section is a
brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i.MX MIMXRT1170-
EVKBand theMurata’s 1XK, 1ZM, 2EL or 2LL solution - directM.2 connection to EmbeddedArtists
EAR00385 (1XK), EAR00364 (1ZM), Rev-A1 (2EL) or EAR00500 (2LL) M.2 modules.

The hardware rework has two parts:

• HCI UART rework

• PCM interface rework

Hardware rework
• HCI UART rework
1. Mount R93, R96.

2. Remove R193.

3. Connect J109, connect J76 2-3.

• PCM interface rework
1. Remove J54 and J55, connect J56 and J57.

2. Remove R220.

3. Connect J103.

Note: When J103 is connected, flash cannot be downloaded. So, remove the connection when
downloading flash and reconnect it after downloading.

1.8. Wireless 243

MCUXpresso SDK Documentation, Release 25.09.00

Parent topic:Hardware Rework Guide for MIMXRT1060-EVKC and Murata M.2 Module

Hardware Rework Guide for MIMXRT1170-EVKB and Murata 2EL M.2 Module Hardware
Rework Guide for MIMXRT1170-EVKB and Murata

2EL M.2 Module

This section is a brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP
i.MX MIMXRT1170-EVKB and the Murata 2EL M.2 solution - direct M.2 connection to Embedded
Artists’ Rev-A1 (2EL) M.2 modules.

The hardware rework has three parts:

• HCI UART rework

• PCM interface rework

• LE Audio Synchronization interface rework (only used on sink side)

Hardware rework
• HCI UART rework

1. Remove resistors R183 and R1816.

2. Solder 0 ohm resistor to R404, R1901, and R1902.

244 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

• PCM interface rework
1. Disconnect header J79 and J80.

1.8. Wireless 245

MCUXpresso SDK Documentation, Release 25.09.00

2. Connect header J81 and J82.

3. Remove resistors R1985, R1986, R1987, R1988, R1992, R1993, R1994, and R1995.

4. Solder 0 ohm resistor to R228, R229, R232, R234, and R1903.

246 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

• LE Audio Synchronization interface rework (only used on sink side)

1. Connect J25-15 with J97.

2. Connect J25-13 with 2EL’s GPIO_27

1.8. Wireless 247

MCUXpresso SDK Documentation, Release 25.09.00

248 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Parent topic:Hardware Rework Guide for MIMXRT1170-EVKB and Murata 2EL M.2 Adapter

Hardware Rework Guide for MIMXRT685-EVK and AW-AM457-uSD This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i.MX MIMXRT685-EVK
board and AW-AM457-uSD. The AW-AM457-uSD user guide is available here.The hardware re-
work has one part:

• HCI UART rework

Hardware rework HCI UART rework
• R398 move from 1-2 to 2-3

• JP12 2-3

• Connect the pins of two boards as the following table.

1.8. Wireless 249

https://www.azurewave.com/img/nxp/uSD-1515%20Adaptor%20Board_User%20guide_D_20201103.pdf

MCUXpresso SDK Documentation, Release 25.09.00

Pin Name AW-AM457-
uSD

i.MX RT685 PIN NAME GPIONAME of i.MX RT685

UART_TXD J10 (pin 4) J27 (pin 1) US-
ART4_RXD

FC4_RXD_SDA_MOSI_DATA

UART_RXD J10 (pin 2) J27 (pin 2) USART4_TXD FC4_TXD_SCL_MISO_WS
UART_RTS J10 (pin 6) J47 (pin 9) USART4_CTS FC4_CTS_SDA_SSEL0
UART_CTS J10 (pin 8) J27 (pin 5) USART4_RTS FC4_RTS_SCL_SSEL1
GND J6 (pin 7) J29 (pin 6) GND GND

250 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Jumper Settings:
• Connect J4[2-3] for VIO 3.3 V supply

• Connect J11[2-3] for VIO_SD 3.3 V supply

PCM interface rework
Connect the pins of two boards as the following table.

Pin Name AW-AM457-
uSD

i.MX
RT685

PIN NAME of I.MX
RT685

GPIONAME of I.MX RT685

PCM_IN J9 (pin 1) J47 (pin 7) I2S2_TXD FC2_RXD_SDA_MOSI_DATA
PCM_OUT J9 (pin 2) J28 (pin 4) I2S5_RXD FC5_RXD_SDA_MOSI_DATA
PCM_SYNC J9 (pin 3) J28 (pin 5) I2S5_WS FC5_TXD_SCL_MISO_WS
PCM_CLK J9 (pin 4) J28 (pin 6) I2S5_SCK FC5_SCK
GND J9 (pin 6) J29 (pin 7) GND GND

Parent topic:Hardware Rework Guide for MIMXRT685-EVK and AW-AM457-uSD

Hardware Rework Guide for MIMXRT685-EVK and AW-CM358-uSD This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i.MX MIMXRT685-EVK
board and AW-CM358-uSD. The AW-CM358-uSD user guide is available here. The hardware re-
work has one part:

• HCI UART rework

Hardware rework HCI UART rework
R398 move from 1-2 to 2-3.

1.8. Wireless 251

http://www.azurewave.com/img/nxp/uSD-1212%20Adaptor%20Board_User%20guide_G_20210127.pdf

MCUXpresso SDK Documentation, Release 25.09.00

Connect the pins of two boards as the following table.

Pin Name AW-CM358-USD i.MXRT685 PIN NAME GPIONAME of RT685
UART_TXD J10 (pin 4) J27 (pin 1) USART4_RXD FC4_RXD_SDA_MOSI_DATA
UART_RXD J10 (pin 2) J27 (pin 2) USART4_TXD FC4_TXD_SCL_MISO_WS
UART_RTS J10 (pin 6) J47 (pin 9) USART4_CTS FC4_CTS_SDA_SSEL0
UART_CTS J10 (pin 8) J27 (pin 5) USART4_RTS FC4_RTS_SCL_SSEL1
GND J6 (pin 7) J29 (pin 6) GND GND

252 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Jumper Setting:
Connect J4[1-2] for VIO 1.8 V supply.

PCM interface rework
Connect the pins of two boards as the following table.

Pin Name AW-CM358-
USD

i.MX RT685 PIN NAME of RT685 GPIONAME of RT685

PCM_IN J11 (pin 1) J47 (pin 7) I2S2_TXD FC2_RXD_SDA_MOSI_DATA
PCM_OUT J11 (pin 2) J28 (pin 4) I2S5_RXD FC5_RXD_SDA_MOSI_DATA
PCM_SYNC J11 (pin 3) J28 (pin 5) I2S5_WS FC5_TXD_SCL_MISO_WS
PCM_CLK J11 (pin 4) J28 (pin 6) I2S5_SCK FC5_SCK
GND J11 (pin 5) J29 (pin 7) GND GND

Parent topic:Hardware Rework Guide for MIMXRT685-EVK and AW-CM358-uSD

Hardware Rework Guide for MIMXRT685-EVK and AW-AM510-uSD This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i.MX MIMXRT685-EVK
board and AW-AM510-uSD. The AW-AM510-uSD user guide is available here. The hardware re-
work has one part:

• HCI UART rework

Hardware rework
• HCI UART rework

1.8. Wireless 253

https://www.azurewave.com/img/nxp/AW-AM510-uSD_User%20guide_A_210126.pdf

MCUXpresso SDK Documentation, Release 25.09.00

Connect the pins of two boards as the following table.

Pin Name AW- AM510- uSD i. MXRT685 PIN NAME GPIO NAME of RT685
UART_ TXD J10 (pin 4) J27 (pin 1) USART4_RXD FC4_RXD_SDA_MOSI_DATA
UART_ RXD J10 (pin 2) J27 (pin 2) USART4_TXD FC4_TXD_SCL_MISO_WS
UART_ RTS J10 (pin 6) J47 (pin 9) USART4_CTS FC4_CTS_SDA_SSEL0
UART_ CTS J10 (pin 8) J27 (pin 5) USART4_RTS FC4_RTS_SCL_SSEL1
GND J6 (pin 7) J29 (pin 6) GND GND

Jumper Setting:
– Connect J4[2-3] for VIO 3.3 V supply

• PCM interface rework
Connect the pins of two boards as the following table.

PIN NAME AW- AM510-
 USD

i.MX
RT685

PIN NAME of
RT685

GPIONAME of RT685

PCM_ IN J11 (pin 1) J47 (pin 7) I2S2_TXD FC2_RXD_SDA_MOSI_DATA
PCM_ OUT J11 (pin 2) J28 (pin 4) I2S5_RXD FC5_RXD_SDA_MOSI_DATA
PCM_ SYNC J11 (pin 3) J28 (pin 5) I2S5_WS FC5_TXD_SCL_MISO_WS
PCM_ CLK J11 (pin 4) J28 (pin 6) I2S5_SCK FC5_SCK
GND J11 (pin 6) J29 (pin 7) GND GND

254 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Parent topic:Hardware Rework Guide for MIMXRT685-EVK and AW-AM510-uSD

Hardware Rework Guide for MIMXRT685-EVK and Murata uSD-M.2 Adapter This section is
a brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i.MX MIMXRT685-
EVK board and the Murata uSD-M.2 adapter. For details on the Murata uSD-M.2 Adapter, see
Murata’s uSD-M.2 webpage.

The hardware rework has one part:

• HCI UART rework

Hardware rework HCI UART rework :
• JP12 2-3

• Connect the pins of two boards as the following table using jumper cables included in Mu-
rata’s uSD-M.2 Adapter kit.

Pin name uSD-M.2 adapter
pin

i.MX RT685
pin

Pin name of
RT685

GPIO name of RT685

BT_UART_TXD_HOSTJ9 (pin 1) J27 (pin 1) USART4_RXD FC4_RXD_SDA_MOSI_DATA
BT_UART_RXD_HOSTJ9 (pin 2) J27 (pin 2) USART4_TXD FC4_TXD_SCL_MISO_WS
BT_UART_RTS_HOSTJ8 (pin 3) J47 (pin 9) USART4_CTS FC4_CTS_SDA_SSEL0
BT_UART_CTS_HOSTJ8 (pin 4) J27 (pin 5) USART4_RTS FC4_RTS_SCL_SSEL1

1.8. Wireless 255

https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter

MCUXpresso SDK Documentation, Release 25.09.00

Murata uSD-M.2 jumper settings:
• Both J12 and J13 = 1-2 (WLAN-SDIO = 1.8 V; and BT-UART and WLAN/BT-CTRL = 3.3 V)

• J1 = 2-3 (3.3 V from uSD connector)

Parent topic:Hardware Rework Guide for MIMXRT685-EVK and Murata uSD-M.2 Adapter

Hardware Rework Guide for MIMXRT685-AUD-EVK and Murata M.2 Module This section is
a brief hardware rework guidance of the Edgefast Bluetooth PAL on the NXP i.MX MIMXRT685-
AUD-EVK board and the Murata’s 1XK, 1ZM, 2EL or 2LL solution - direct M.2 connection to Em-
bedded Artists EAR00385 (1XK), EAR00364 (1ZM), Rev-A1 (2EL) or EAR00500 (2LL) M.2 modules.

The hardware rework has one part:

• HCI UART rework

256 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Hardware rework HCI UART rework:
Mount R300~R305 A-B

Jumper Setting:
• Connect JP41[2-3]

Parent topic:Hardware Rework Guide for MIMXRT685-AUD-EVK and Murata M.2 Module

Hardware Rework Guide for Low Power Feature on MIMXRT595-EVK and Murata 2EL M.2
Module This section is a brief hardware rework guidance of the EdgeFast Bluetooth PAL for
low power feature on the NXP i.MX MIMXRT595-EVK board and the Murata’s 2EL - direct M.2
connection to Embedded Artists’ Rev-A1 (2EL) M.2 modules.

The hardware rework has three parts:

• Debug console serial rework

• Host wake-up controller pin rework (H2C)

• Controller wake-up host pin rework (C2H)

Hardware rework
• Debug console serial rework
For details, refer Hardware Rework Guide for MIMXRT595-EVK and Murata M.2 Module.

• Host wake-up controller pin rework:
For details, refer Hardware Rework Guide for Low Power Feature onMIMXRT595-EVK and
Murata 1XK M.2 Module.

• Controller wake-up host pin rework:
1. Remove resistors R709 on MIMXRT595-EVK,

2. Solder 0K ohm resistor on R33 of Murata 2EL M.2 Module

3. Solder 10K ohm resistor on the Murata 2EL M.2 Module between TP1 and TP20.

1.8. Wireless 257

MCUXpresso SDK Documentation, Release 25.09.00

Parent topic:Hardware Rework Guide for Low Power Feature on MIMXRT595-EVK and Murata
2EL M.2 Module

Hardware Rework Guide for MIMXRT595-EVK and Murata M.2 Module This section is a
brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i.MX MIMXRT595-
EVK board and the Murata’s 1XK, 1ZM, 2EL or 2LL solution - direct M.2 connection to Embedded
Artists EAR00385 (1XK), EAR00364 (1ZM), Rev-A1 (2EL) or EAR00500 (2LL) M.2 modules.

The hardware rework has one part:

• Debug console serial rework

Hardware rework Debug console serial rework:
No special rework is required, except the following to enable the debug port.

• JP4 1-2.

• J27 1 - TX of USB to serial converter

• J27 2 - RX of USB to serial converter

258 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Parent topic:Hardware Rework Guide for MIMXRT595-EVK and Murata M.2 Module

Hardware Rework Guide for Low Power Feature on MIMXRT595-EVK and Murata 1XK M.2
Module This section is a brief hardware rework guidance of the EdgeFast Bluetooth PAL for
low power feature on the NXP i.MX MIMXRT595-EVK board and the Murata’s 1XK - direct M.2
connection to Embedded Artists EAR00385 (1XK) M.2 modules.

1.8. Wireless 259

MCUXpresso SDK Documentation, Release 25.09.00

The hardware rework has three parts:

• Debug console serial rework

• Host wake-up controller pin rework (H2C)

• Controller wake-up host pin rework (C2H)

Hardware rework Debug console serial rework:
For details, refer Hardware Rework Guide for MIMXRT595-EVK and Murata M.2 Module.

Host wake-up controller pin rework:
Connect M.2 (pin 42) to JP26 (pin 4) with a wire.

Controller wake-up host pin rework:
1. Remove resistors R709 on MIMXRT595-EVK.

2. Solder 10K ohm resistor on the Murata 1XK M.2 Module at the location shown in the fol-
lowing figure.

Parent topic:Hardware Rework Guide for Low Power Feature on MIMXRT595-EVK and Murata
1XK M.2 Module

260 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Hardware Rework Guide for MIMXRT595-EVK and AW-AM510MA This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i.MX MIMXRT595-EVK
board and AW-AM510MA. The AW-AM510MA user guide is available here. The hardware re-
work has one part:

• Debug console serial rework

Hardware rework Debug console serial rework:
No special rework is required, except the following to enable the debug port.

• Connect J39 with external power.

• Connect JP4 1-2.

• J27 1 — TX of USB to serial converter.

• J27 2 — RX of USB to serial converter.

1.8. Wireless 261

https://www.azurewave.com/img/nxp/AW-AM510MA_DS_DF_A_STD.pdf

MCUXpresso SDK Documentation, Release 25.09.00

Parent topic:Hardware Rework Guide for MIMXRT595-EVK and AW-AM510MA

Hardware Rework Guide for MIMXRT595-EVK and AW-CM358MA This section is a brief
hardware rework guidance of the Ethermind Bluetooth stack on the NXP i.MX MIMXRT595-EVK
board and AW-CM358MA. The AW-CM358MAuser guide is available here. The hardware rework
has one part:

• Debug console serial rework

262 Chapter 1. Middleware

https://www.azurewave.com/img/nxp/AW-CM358MA_DS_DF_E_STD.pdf

MCUXpresso SDK Documentation, Release 25.09.00

Hardware rework Debug console serial rework:
• Connect J39 with external power.

• JP4 1-2

• J27 1 - TX of USB to serial converter

• J27 2 - RX of USB to serial converter

Parent topic:Hardware Rework Guide for MIMXRT595-EVK and AW-CM358MA

1.8. Wireless 263

MCUXpresso SDK Documentation, Release 25.09.00

Hardware Rework Guide for MIMXRT1040-EVK and Murata M.2 Module This section is a
brief hardware rework guidance of the Edgefast Bluetooth PAL on the NXP i.MX MIMXRT1040-
EVK board and the Murata’s 1XK, 1ZM or 2LL solution - direct M.2 connection to Embedded
Artists EAR00385 (1XK), EAR00364 (1ZM) or EAR00500 (2LL) M.2 modules.

The hardware rework has two parts:

• HCI UART rework

• PCM interface rework

• Wake pin rework

Hardware rework
1. HCI UART rework

• Solder R93 and R96

2. PCM interface rework

• Solder R70 and R79; remove R76 and R86; Connect J80.

3. Wake pin rework

• Whenusing 2LLM.2module, removeR456 andR457 to avoid themodule has an impact
on boot configuration.

Note: Make sure to disconnect J80 when debugging. Otherwise, the debugger downloading fails.

Parent topic:Hardware Rework Guide for MIMXRT1040-EVK and Murata M.2 Module

Hardware Rework Guide for MIMXRT1060-EVKC and Murata M.2 Module This section is a
brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i.MX MIMXRT1060-
EVKC and theMurata’s 1XK, 1ZM, 2EL or 2LL solution - directM.2 connection to EmbeddedArtists
EAR00385 (1XK), EAR00364 (1ZM), Rev-A1 (2EL) or EAR00500 (2LL) M.2 modules.

The hardware rework has two parts:

• HCI UART rework

• PCM interface rework

Hardware rework
• HCI UART rework
1. Mount R93, R96.

2. Remove R193.

3. Connect J109, connect J76 2-3.

• PCM interface rework
1. Remove J54 and J55, connect J56 and J57.

2. Remove R220.

3. Connect J103.

Note: When J103 is connected, flash cannot be downloaded. So, remove the connection when
downloading flash and reconnect it after downloading.

264 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Parent topic:Hardware Rework Guide for MIMXRT1060-EVKC and Murata M.2 Module

Hardware Rework Guide for MIMXRT1060-EVKC and Murata 2EL M.2 Adapter This sec-
tion is a brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i.MX
MIMXRT1060-EVKCand theMurata 2ELM.2 solution - directM.2 connection to EmbeddedArtists’
Rev-A1 (2EL) M.2 modules.

The hardware rework has three parts:

• HCI UART rework

• PCM interface rework

• LE Audio Synchronization interface rework (only used on sink side)

Hardware rework
• HCI UART rework

1. Mount R93, R96.

2. Remove R193.

3. Connect J109, connect J76 2-3.

• PCM interface rework

1. Remove J54 and J55, connect J56, and J57.

2. Remove R220.

3. Connect J103.

Note: When J103 is connected, flash cannot be downloaded. So, remove the connection
when downloading flash and reconnect it after downloading.

1.8. Wireless 265

MCUXpresso SDK Documentation, Release 25.09.00

• LE Audio Synchronization interface rework (only used on sink side)

1. Remove J110 jumper cap.

2. Remove R196, R201, R213, and R211.

3. Connect J110-1 (GPT2_CLK) to R2140 (SAI_MCLK).

4. Connect ENET_MDIO (GPT2_CAP1) with J97 (SAI_SW).

5. Connect ENET_MDC (GPT2_CAP2) with 2EL’s GPIO_27 (Sync Signal).

266 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

1.8. Wireless 267

MCUXpresso SDK Documentation, Release 25.09.00

Parent topic:Hardware Rework Guide for MIMXRT1060-EVKC and Murata 2EL M.2 Adapter

Hardware Rework Guide for MCXN547-EVK and Murata M.2 Module This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP MCXN547-EVK board and
the Murata’s 1XK, 1ZM or 2LL solution - direct M.2 connection to Embedded Artists EAR00385
(1XK), EAR00364 (1ZM) or EAR00500 (2LL) M.2 modules.

The hardware rework consists of two parts:

• M.2 UART interface

• M.2 SDIO interface

Hardware rework
• M.2 UART interface rework

268 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

– Mount R835

– Connect JP45 2-3 to supply 1.8V for GPIO4

• M.2 SDIO interface rework

– Connect JP47 2-3 to supply 1.8V for GPIO2

– Remove R818, connect R823

– Remove R819, connect R824

– Remove R817, connect R822

– Remove R815, connect R816

– Remove R820, connect R825

– RemoveR821, connect R826

Hardware Rework Guide for MCXN947-EVK and Murata M.2 Module This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP MCXN947-EVK board and
the Murata’s 1XK, 1ZM or 2LL solution - direct M.2 connection to Embedded Artists EAR00385
(1XK), EAR00364 (1ZM) or EAR00500 (2LL) M.2 modules.

The hardware rework consists of two parts:

• M.2 UART interface

• M.2 SDIO interface

Hardware rework
• M.2 UART interface rework

– Mount R835

– Connect JP45 2-3 to supply 1.8V for GPIO4

• M.2 SDIO interface rework

– Connect JP47 2-3 to supply 1.8V for GPIO2

1.8. Wireless 269

MCUXpresso SDK Documentation, Release 25.09.00

– Remove R818, connect R823

– Remove R819, connect R824

– Remove R817, connect R822

– Remove R815, connect R816

– Remove R820, connect R825

– RemoveR821, connect R826

Hardware Rework Guide for IMXRT1050-EVKB and Murata M.2 Module This section is a
brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP IMXRT1050-EVKB
board and the Murata 1XK,1ZM and 2EL solution - direct M.2 connection to Embedded Artists’
EAR00385 (1XK) , EAR00364 (1ZM) or EAR00409 (2EL)M.2 modules. The hardware rework con-
sists of three parts:

• Murata uSDM

• HCI UART rework

Hardware rework
• Murata uSD-M.2 jumper settings

– J12 = 1-2: WLAN-SDIO & BT-PCM = 1.8 V

– J13 = 1-2: BT-UART &WLAN/BT-CTRL = 3.3 V

– J1 = 2-3: 3.3 V from uSD connector

• HCI UART interface rework

Connect the TX/RX/RTS/CTS pins of the two boards as show in Table 1 using the jumper
cables included in the Murata’s uSD-M.2 Adapter kit as shown in the following table.

270 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Pin name uSD-M.2
adapter pin

i.MX RT1050-
EVKB pin

Pin name of
RT1050-EVKB

GPIO name of
RT1050-EVKB

BT_UART_TXD_HOSTJ9 (pin 1) J22 (pin 1) LPUART3_RXD GPIO_AD_B1_07
BT_UART_RXD_HOSTJ9 (pin 2) J22 (pin 2) LPUART3_TXD GPIO_AD_B1_06
BT_UART_RTS_HOSTJ8 (pin 3) J23 (pin 3) LPUART3_CTS GPIO_AD_B1_04
BT_UART_CTS_HOSTJ8 (pin 4) J23 (pin 4) LPUART3_RTS GPIO_AD_B1_05
GND J7 (pin 7) J25 (pin 7) GND GND

Parent topic:Hardware Rework Guide for IMXRT1050-EVKB and Murata M.2 Module

Hardware Rework Guide for MIMXRT1180 and Murata M.2 Module This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP MIMXRT1180 board
and the Murata’s 1XK, 1ZM, 2EL or 2LL solution - direct M.2 connection to Embedded Artists
EAR00385 (1XK), EAR00364 (1ZM), Rev-A1 (2EL) or EAR00500 (2LL) M.2 modules.

The hardware rework consists of two parts:

• HCI UART rework

• PCM interface rework

Hardware rework
• HCI UART rework:

– Remove: R124,R126

– Mount R696, R697

– Connect J57 [2-3], J76 [2-3]

• PCM interface rework

– Mount R699

– Disconnect J78 J79

– Connect J80 J81

1.8. Wireless 271

MCUXpresso SDK Documentation, Release 25.09.00

Hardware Rework Guide for FRDM-MCXN947 and X-FRDM-WIFI-M.2 Adapter This section
is a brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP FRDM-MCXN947
board and X-FRDM-WIFI-M.2 or the Murata’s 2LL EAR00500 (2LL) M.2 modules solution.

The hardware rework consists of one part:

• UART interface rework

Hardware rework
• UART interface rework

– Remove SJ11 1-2, connect SJ11 2-3

– Remove SJ10 1-2, connect J1-3 to J9-26

• X-FRDM-WIFI-M.2 jumper setting

– Connect J8(On X-FRDM-WIFI-M.2) for 1.8V

– Connect J24(On X-FRDM-WIFI-M.2) for 3.3V

– Connect J19(On X-FRDM-WIFI-M.2) for 1.8V

– Connect J25(On X-FRDM-WIFI-M.2) for 3.3V

– Connect J15(On X-FRDM-WIFI-M.2) for 1.8V

– Connect J16(On X-FRDM-WIFI-M.2) for 3.3V

– Connect J17(On X-FRDM-WIFI-M.2) for 1.8V

272 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

– Connect J18(OnX-FRDM-WIFI-M.2) for 3.3V

Hardware Rework Guide for FRDM-MCXN947 and FRDM-IW416-AW-AM510 This section is
a brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP FRDM-MCXN947
board and FRDM-IW416-AW-AM510 board. The hardware rework consists of two parts:

• UART interface rework

• FRDM-IW416-AW-AM510

Hardware rework
• UART interface rework

– Remove SJ11 1-2, connect SJ11 2-3

– Remove SJ10 1-2, connect J1-3 to J9-26

• FRDM-IW416-AW-AM510 jumper setting

– Connect J16 2-3 for 3.3V supply

– Connect J17 2-3 for 3.3V UART voltage level

– Connect J7 2-3 for 3.3V SDIOvoltage level

1.8. Wireless 273

MCUXpresso SDK Documentation, Release 25.09.00

Enabling Additional EdgeFast Bluetooth Protocol Abstraction Layer Examples on RT1064

Introduction NXP supports Bluetooth/Bluetooth Low Energy on RT1060EVK and RT1060EVKC.
RT1064 has the same MCU die with RT1060EVK and RT1060EVKC and therefore it is possible to
migrate the examples.

This document takes peripheral_ht as an example and describes the steps to migrate EdgeFast
examples from RT1060EVK to RT1064 (based on SDK 2.13.0) and from RT1060EVKC to RT1064
(based on SDK 2.14.0) with different toolchains including IAR, Arm GCC, and MDK.

Migrate examples from RT1060EVK to RT1064 This topic describes the Common steps and
the steps to migrate with the IAR, Arm GCC, and MDKtoolchains.

Common steps
1. Download SDK_2.13.0_EVK-MIMXRT1060 and SDK_2.13.0_EVK-MIMXRT1064.

2. Copy the following folders from RT1060EVK package to RT1064 package: <install_dir>/
components/internal_flash/ <install_dir>/middleware/edgefast_bluetooth/ <install_dir>/
middleware/wireless/.

274 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

3. Create a folder named edgefast_bluetooth_examples/ under <rt1064_install_dir>/boards/
evkmimxrt1064/.

4. Copy the entire folder from <rt1060evk_install_dir>/boards/evkmimxrt1060/
edgefast_bluetooth_examples/peripheral_ht/ to< rt1064_install_dir>/boards/evkmimxrt1064/
edgefast_bluetooth_examples/.

5. Copy clock_config.[c/h] and board.c from <rt1064_install_dir>/boards/
evkmimxrt1064/demo_apps/hello_world/ to <rt1064_installed>/boards/evkmimxrt1064/
edgefast_bluetooth_examples/peripheral_ht/ to replace the previous files.

6. Add #define EDGEFAST_BT_LITTLEFS_MFLASH 1 in <rt1064_install_dir>/boards/
evkmimxrt1064/edgefast_bluetooth_examples/peripheral_ht /app_config.c.

7. Make the following changes in <rt1064_installed>/boards/evkmimxrt1064/
edgefast_bluetooth/peripheral_ht/board.h.

Parent topic:Migrate examples from RT1060EVK to RT1064

IAR
1. Navigate to <rt1064_install_dir>/boards/evkmimxrt1064/edgefast_bluetooth_examples/

peripheral_ht/iar/.

2. Make the following changes.

File name Previous item New item
peripheral_ht.ewp 1060 1064

1062 1064

3. Rename MIMXRT1062xxxxx_flexspi_nor.icf as MIMXRT1064xxxxx_flexspi_nor.icf and make
the following changes.

Parent topic:Migrate examples from RT1060EVK to RT1064

Arm GCC
1. Navigate to <rt1064_install_dir>/boards/evkmimxrt1064/edgefast_bluetooth_examples/

peripheral_ht/armgcc/.

2. Rename the following files.

Path Previous name New name
<rt1064_install_dir>/
middleware/wireless/
ethermind/

middleware_edgefast_bluetooth_k32w061_controller_MIMXRT1062.
cmake

middleware_edgefast_bluetooth_k32w061_controller_MIMXRT1064.
cmake

1.8. Wireless 275

MCUXpresso SDK Documentation, Release 25.09.00

3. Make following changes.

File name Previous item New item
config.cmake 1060 1064

1062 1064

flags.cmake 1062 1064
CMakeLists.txt 1060 1064

1062 1064

4. mflash is used in RT1064 instead of flash_adapter,therefore, comment in-
clude(component_flexspi_nor_flash_adapter_rt1064_MIMXRT1064) in CMakeLists.txt.

5. Rename MIMXRT1062xxxxx_flexspi_nor.ld as MIMXRT1064xxxxx_flexspi_nor.ld and make
the following changes.

Parent topic:Migrate examples from RT1060EVK to RT1064

MDK
1. Navigate to <rt1064_install_dir>/boards/evkmimxrt1064/edgefast_bluetooth_examples/

peripheral_ht/mdk/.

2. Make following changes.

File name Previous item New item
peripheral_ht.uvprojx 1060 1064

1062 1064

3. Copy evkmimxrt1064_flexspi_nor.ini from <rt1064_install_dir>/boards/evkmimxrt1064/
demo_apps/hello_world/mdk/ to <rt1064_install_dir>/boards/evkmimxrt1064/
edgefast_bluetooth_examples/peripheral_ht/mdk/.

4. Rename MIMXRT1062xxxxx_flexspi_nor as MIMXRT1064xxxxx_flexspi_nor and make the
following changes.

276 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Parent topic:Migrate examples from RT1060EVK to RT1064

Migrate examples from RT1060EVKC to RT1064 This topic describes the Common steps and
the steps to migrate with the IAR, Arm GCC, and MDK toolchains.

Common steps
1. Download SDK_2.14.0_EVKC-MIMXRT1060 and SDK_2.14.0_EVK-MIMXRT1064.

2. Copy the following folders from the RT1060EVKC package to the RT1064 package:
<install_dir>/middleware/edgefast_bluetooth/ <install_dir>/middleware/wireless/ethermind.

3. Create a new folder named edgefast_bluetooth_examples/ under <rt1064_install_dir>/
boards/evkmimxrt1064/.

4. Copy the entire folder from <rt1060evkc_install_dir>/boards/evkcmimxrt1060/
edgefast_bluetooth_examples/peripheral_ht/ to <rt1064_install_dir>/boards/evkmimxrt1064/
edgefast_bluetooth_examples/.

5. Copy clock_config.[c/h] and board.c from <rt1064_install_dir>/boards/
evkmimxrt1064/demo_apps/hello_world/ to <rt1064_installed>/boards/evkmimxrt1064/
edgefast_bluetooth_examples/peripheral_ht/ to replace the previous files.

Parent topic:Migrate examples from RT1060EVKC to RT1064

IAR
1. Navigate to <rt1064_install_dir>/boards/evkmimxrt1064/edgefast_bluetooth_examples/

peripheral_ht/iar/.

2. Make the following changes in the listed order.

File name Previous item New item
peripheral_ht.ewp 1062 1064
mflash/evkcmimxrt1060 mflash/mimxrt1064

evkcmimxrt1060 evkmimxrt1064

6B 6A

3. Rename MIMXRT1062xxxxx_flexspi_nor.icf as MIMXRT1064xxxxx_flexspi_nor.icf and make
the following changes.

Parent topic:Migrate examples from RT1060EVKC to RT1064

Arm GCC
1. Navigate to <rt1064_install_dir>/boards/evkmimxrt1064/edgefast_bluetooth_examples/

peripheral_ht/armgcc/.

1.8. Wireless 277

MCUXpresso SDK Documentation, Release 25.09.00

2. Copy folder from <rt1060evkc_install_dir>/boards/evkcmimxrt1060/
edgefast_bluetooth_examples/template/ to <rt1064_install_dir>/boards/evkmimxrt1064/
edgefast_bluetooth_examples/ and rename the files.

|Path|Previous name|New name| |<rt1064_install_dir>/boards/evkmimxrt1064/
edgefast_bluetooth_examples/|middleware_edgefast_bluetooth_mcux_linker_template_evkcmimxrt1060.
cmake|middleware_edgefast_bluetooth_mcux_linker_template_evkmimxrt1064.
cmake| |middleware_edgefast_bluetooth_sdio_template_evkcmimxrt1060.
cmake|middleware_edgefast_bluetooth_sdio_template_evkmimxrt1064.cmake|

3. Add the following content to<rt1064_install_dir>/devices/MIMXRT1064/all_lib_device.
cmake at appropriate location.

…
${CMAKE_CURRENT_LIST_DIR}/../../boards
${CMAKE_CURRENT_LIST_DIR}/../../boards/evkmimxrt1064/edgefast_bluetooth_examples/

↪→template
${CMAKE_CURRENT_LIST_DIR}/../../middleware/edgefast_bluetooth
${CMAKE_CURRENT_LIST_DIR}/../../middleware/wireless/ethermind

…
include_if_use(middleware_edgefast_bluetooth_ble_ethermind_cm7f)
include_if_use(middleware_edgefast_bluetooth_ble_ethermind_lib_cm7f)
include_if_use(middleware_edgefast_bluetooth_br_ethermind_cm7f)
include_if_use(middleware_edgefast_bluetooth_br_ethermind_lib_cm7f)
include_if_use(middleware_edgefast_bluetooth_btble_ethermind_cm7f)
include_if_use(middleware_edgefast_bluetooth_btble_ethermind_lib_cm7f)
include_if_use(middleware_edgefast_bluetooth_common_ethermind)
include_if_use(middleware_edgefast_bluetooth_common_ethermind_hci)
include_if_use(middleware_edgefast_bluetooth_common_ethermind_hci_uart)
include_if_use(middleware_edgefast_bluetooth_config_ethermind)
include_if_use(middleware_edgefast_bluetooth_config_template)
include_if_use(middleware_edgefast_bluetooth_extension_common_ethermind)
include_if_use(middleware_edgefast_bluetooth_k32w061_controller)
include_if_use(middleware_edgefast_bluetooth_mcux_linker_template_ evkmimxrt1064)
include_if_use(middleware_edgefast_bluetooth_pal)
include_if_use(middleware_edgefast_bluetooth_pal_db_gen_ethermind)
include_if_use(middleware_edgefast_bluetooth_pal_host_msd_fatfs_ethermind)
include_if_use(middleware_edgefast_bluetooth_pal_platform_ethermind)
include_if_use(middleware_edgefast_bluetooth_porting)
include_if_use(middleware_edgefast_bluetooth_porting_atomic)
include_if_use(middleware_edgefast_bluetooth_porting_list)
include_if_use(middleware_edgefast_bluetooth_porting_net)
include_if_use(middleware_edgefast_bluetooth_porting_toolchain)
include_if_use(middleware_edgefast_bluetooth_porting_work_queue)
include_if_use(middleware_edgefast_bluetooth_profile_bas)
include_if_use(middleware_edgefast_bluetooth_profile_dis)
include_if_use(middleware_edgefast_bluetooth_profile_fmp)
include_if_use(middleware_edgefast_bluetooth_profile_hps)
include_if_use(middleware_edgefast_bluetooth_profile_hrs)
include_if_use(middleware_edgefast_bluetooth_profile_hts)
include_if_use(middleware_edgefast_bluetooth_profile_ipsp)
include_if_use(middleware_edgefast_bluetooth_profile_pxr)
include_if_use(middleware_edgefast_bluetooth_profile_tip)
include_if_use(middleware_edgefast_bluetooth_profile_wu)
include_if_use(middleware_edgefast_bluetooth_sdio_template_evkmimxrt1064)
include_if_use(middleware_edgefast_bluetooth_shell)
include_if_use(middleware_edgefast_bluetooth_shell_ble)
include_if_use(middleware_edgefast_bluetooth_template)
include_if_use(middleware_edgefast_bluetooth_wifi_nxp_controller_base)...

4. Make the following changes in the listed order.

278 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

File name Previous
item

New
item

config.cmake MIMXRT1062xxxxBMIMXRT1064xxxxA
mflash_evkcmimxrt1060 mflash_rt1064

1062 1064

evkcmimxrt1060 evk-
mimxrt1064

flags.cmake 1062 1064
6B 6A

CMakeLists.txt 1062 1064
<rt1064_install_dir>/middleware/edgefast_bluetooth/
middleware_edgefast_bluetooth_template.cmake

evkcmimxrt1060evk-
mimxrt1064

<rt1064_install_dir>/middleware/wireless/ethermind/
middleware_edgefast_bluetooth_common_ethermind_hci_uart.
cmake

1062 1064

<rt1064_install_dir>/middleware/wireless/ethermind/
middleware_edgefast_bluetooth_k32w061_controller.cmake

1062 1064

<rt1064_install_dir>/middleware/wireless/ethermind/
middleware_edgefast_bluetooth_wifi_nxp_controller_base.cmake

evkcmimxrt1060evk-
mimxrt1064

<rt1064_install_dir>/boards/evkmimxrt1064/
edgefast_bluetooth_examples/middleware_edgefast_bluetooth_mcux_linker_template_evkmimxrt1064.
cmake

1062 1064

<rt1064_install_dir>/boards/evkmimxrt1064/
edgefast_bluetooth_examples/middleware_edgefast_bluetooth_sdio_template_evkmimxrt1064.
cmake

1062 1064

5. Rename MIMXRT1062xxxxx_flexspi_nor.ld as MIMXRT1064xxxxx_flexspi_nor.ld and make
the following changes.

Parent topic:Migrate examples from RT1060EVKC to RT1064

MDK
1. Navigate to <rt1064_install_dir>/boards/evkmimxrt1064/edgefast_bluetooth_examples/

peripheral_ht/mdk/.

2. Make the following changes in the listed order.

File name Previous item New item
peripheral_ht.uvprojx 1062 1064

mflash/evkcmimxrt1060 mflash/mimxrt1064

evkcmimxrt1060 evkcmimxrt1064

6B 6A

1.8. Wireless 279

MCUXpresso SDK Documentation, Release 25.09.00

3. Copy evkmimxrt1064_flexspi_nor.ini from <rt1064_install_dir>/boards/evkmimxrt1064/
demo_apps/hello_world/mdk/ to <rt1064_install_dir>/boards/evkmimxrt1064/
edgefast_bluetooth_examples/peripheral_ht/mdk/.

4. Rename MIMXRT1062xxxxx_flexspi_nor as MIMXRT1064xxxxx_flexspi_nor and make the
following changes.

Parent topic:Migrate examples from RT1060EVKC to RT1064

Note about the source code in the document Example code shown in this document has the
following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

1. Redistributions of source codemust retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or othermaterials provided
with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUTNOTLIMITEDTO, PROCUREMENTOF SUBSTITUTEGOODSOR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORYOF LIABILITY,WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDINGNEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Enabling Additional Edgefast BT PAL Examples on M4 core for RT1170

Introduction RT1170 works with two cores: M7 and M4, on which both all EdgeFast examples
can run. However, all the EdgeFast examples in the release package are enabled onM7. Only the
A2DP source example is enabled on M4.

EdgeFast projects for both the cores share the demo source files but with different project set-
tings. Therefore, the examples can be migrated.

This document describes the steps to migrate EdgeFast examples from M7 to M4 with different
toolchains. There are four main steps required. Additionally, you can also delete the function.

1. Create an M4 project

2. Rearrange source files

3. Rearrange project files

280 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

4. Adjust project settings

5. Delete function

In this document, the peripheral_ht example is used to demonstrate how to enable EdgeFast
examples on M4 core with IAR and ARMGCC.

IAR This section describes the steps to create an M4 project with IAR, rearrange source and
project files, adjust project settings, and delete function.

Create an M4 project To create an M4 project, perform the following steps:

1. Copy the folder cm4 in the directory <install_dir>boards\evkmimxrt1170\edgefast_bluetooth_examples\a2dp_source\cm4
into the folder in which the example should be enabled.
In this case, copy the folder cm4 into the directory <in-
stall_dir>\boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht.

2. Open the folder iar in the directory <install_dir>boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4\iar.

3. Rename the files. Change the file name name a2dp_source_cm4 to peripheral_ht_cm4 in all
the respective files.

|

|

4. Open the files peripheral_ht_cm4.eww and peripheral_ht_cm4.ewpwith a text editor, such as
Notepad, Notepad++, Sublime, or Visual Studio Code.

5. Search and replace all a2dp_source_cm4 with peripheral_ht _cm4, and then save the files.

|

|

Parent topic:IAR

1.8. Wireless 281

MCUXpresso SDK Documentation, Release 25.09.00

Rearrange source files To rearrange source files, perform the following steps:

1. Open the folder cm4 in the directory <install_dir> boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4
and delete all files with the extensions *.c and *.h.

2. Copy the files with the extensions *.c and *.h from the folder
boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm7\ to the folder
<install_dir> boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4.

|

|

Parent topic:IAR

Rearrange project files To rearrange project files, perform the following steps:

1. Open the peripheral_ht _cm7and peripheral_ht _cm4 IAR projects in the directories <in-
stall_dir> boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht \cm7\iar and
<install_dir> boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht \cm4\iar.

1. Compare the whole project directory, find file groups that the cm7 project has but are
missing in the cm4 project. Add the missing file groups from the cm7 project into the
cm4 project.

2. Compare the difference between the two groups with the same name. Remove files
that do not exist in the cm7 project but exist in the cm4 project. Find files that are
available in the cm7 project but are missing in the cm4 project. Add the missing files
from the cm7 project into the cm4 project.

2. For example, in the following figure, the files in the source group
in the cm4 project must be removed, and the files in the path: <in-
stall_dir>\boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht with the
same name as the files in the cm7 project must be added into the source group.

282 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

3. Compare the services group.

The peripheral hts profile is in the services folder. Add the hts.c file to the services group of
the cm4 folder.

1.8. Wireless 283

MCUXpresso SDK Documentation, Release 25.09.00

Parent topic:IAR

Adjust project settings To adjust the project settings, perform the following steps:

1. Compare the macro in the project settings: Option > C/C++ compiler > Preprocessor.
2. Find the macros that do not exist in the cm4 project but are available in the cm7 project.

Delete these macro. The rule is that m7 macro setting should be same with m4.

284 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

|

|

The macros are in the**peripheral_ht_cm4.ewp** file.

|

|

Parent topic:IAR

Delete function As a final step, remove the function “SCB_DisableDCache(); in main.c.

On the completion of the above steps, the M7 project successfully migrates to an M4 project. You
can now download and debug the M4 example project.

Parent topic:IAR

Arm GCC This section describes the steps to create an M4 project with Arm GCC, rearrange
source and project files, adjust project settings, and delete function.

Create an M4 project To create an M4 project, perform the following steps:

1. Copy the folder <install_dir> boards\evkmimxrt1170\edgefast_bluetooth_examples\a2dp_source
\cm4 into another folder in which the example should
be enabled. In this case, copy the folder <install_dir>

1.8. Wireless 285

MCUXpresso SDK Documentation, Release 25.09.00

boards\evkmimxrt1170\edgefast_bluetooth_examples\a2dp_source \cm4 into*<install_dir>
boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4*.

2. Open the file CMakeLists.txt located in the path: <install_dir>
boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4\ armgcc.

3. Search and replace all a2dp_source_cm4 with peripheral_ht_cm4, and then save the files.

Parent topic:Arm GCC

Rearrange source files To rearrange source files, perform the following steps:

1. Open the folder <install_dir>boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4
and delete all files with the extensions *.c and *.h.

2. Copy the files with the extensions *.c and *.h in the folder <in-
stall_dir>boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm7 to the
folder <install_dir>boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4.

|

|

Parent topic:Arm GCC

Rearrange project files To rearrange project files, perform the following steps:

1. Open the CMakeLists.txt of the two examples respectively. The two files are in the <in-
stall_dir>boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm7\armgcc
and <install_dir>boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4\armgcc
folders respectively.

2. Search the section add_executable. Compare the difference between the two sections. Re-
move files that do not exist in the cm7 project but are available in the cm4 project. Add
the files that exist in the cm7 project but are not available in the cm4 project into the cm4
project. For example, in the following figure, the files in the red box should be removed
and the files in the green box must be added into the cm4 project.

286 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

Parent topic:Arm GCC

Adjust project setting To adjust the project settings, perform the following steps:

1. Open the flags.cmake of the two examples respectively. The two files are in the <in-
stall_dir>boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm7\armgcc
and <install_dir>boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4\armgcc
folders respectively.

2. Search the CMAKE_C_FLAGS_DEBUG section.

1. Compare the macro between the two sections.

2. Add themacros that do not exist in the cm4 project but are available in the cm7 project
into the cm4 project. The rule is that macro setting should be same.

3. Delete the macros highlighted in the red rectangle.

|

|

Parent topic:Arm GCC

Delete function As a final step, remove the function “SCB_DisableDCache() in main.c.

On the completion of the above steps, the M7 project successfully migrates to an M4 project. You
can now download and debug the M4 example project.

Parent topic:Arm GCC

MDK This section describes the steps to create an M4 project with MDK, rearrange source and
project files, adjust project settings, and delete function.

1.8. Wireless 287

MCUXpresso SDK Documentation, Release 25.09.00

Create an M4 project
1. Copy folder cm4 from <install_dir>boards\evkmimxrt1170\edgefast_bluetooth_examples\a2dp_source\cm4

into the folder in where the example must be enabled. In this case, copy folder cm4 into
directory <install_dir>\boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht.

2. Open foldermdk from <install_dir>boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4\mdk.

|

|

3. Change the filename a2dp_source_cm4 to peripheral_ht_cm4 respectively.

4. Open the files *peripheral_ht_cm4.*uvmpw and peripheral_ht_cm4. uvoptx, periph-
eral_ht_cm4.uvprojxwith a text editor, such as Notepad, Notepad++, Sublime, or Visual Stu-
dio code.

5. Search and replace a2dp_source_cm4 with peripheral_ht _cm4, and then save the files.

|

|

Parent topic:MDK

Rearrange source files
1. Open folder cm4 in *<install_dir>*boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4,

and delete all files with the .c and .h file name extension.

2. Copy files with the .c and .h filename extension in folder cm7 with directory <install_dir>
boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm7to folder cm4 with
directory <install_dir> boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4.

288 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

|

|

.

Parent topic:MDK

Rearrange project files
1. Open the peripheral_ht _cm7 and peripheral_ht _cm4 IAR projects. The two workspaces are

located in *<install_dir>*boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht
\cm7\mdk and *<install_dir>*boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht
\cm4\mdk respectively.

• Compare the whole project directory, find file groups that the cm7 project has but the
cm4 project not and then add these groups into the cm4 project.

• Compare the difference between the two groups with the same name, remove files
that do not exist in the cm7 project but exist in the cm4 project; find files that the cm7
project has but the cm4 project not and then add these files into the cm4 project.

2. For the source group, in this case, the files in the source group in the cm4 project
must be removed, and the files in the path <install_dir>\boards\evkmimxrt1170\
boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4 with the same
name as the files in the cm7 project must be added into the source group.

1.8. Wireless 289

MCUXpresso SDK Documentation, Release 25.09.00

3. Compare the service: group.
Peripheral hts profile is located in “service” folder. Add the hts.c file to the services group
of the cm4 folder.

290 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.09.00

.

Parent topic:MDK

Adjust project settings
1. Compare the macro in the project settings: preprocessor symbols.

2. Compare the macro that does exist in the cm4 project but exists in the cm7 project.

3. Delete the following macro. The rule is that m7 macro setting should be same as m4 .

The macro could also be found in be eripheral_ht_cm4.uvprojx.

1.8. Wireless 291

MCUXpresso SDK Documentation, Release 25.09.00

|

|

|

|

Parent topic:MDK

Delete function Remove function SCB_DisableDCache(); inmain.c.

On successful completion of the above steps, the M7 project is changed to the M4 project. You
can now download and debug the M4 example project.

Parent topic:MDK

Note The above steps are based on the a2dp_source example and help enable the periph-
eral_ht example on the m4 core. You can use the same steps for other examples and migrate
them from an m7 project to an m4 project.

292 Chapter 1. Middleware

Chapter 2

RTOS

2.1 FreeRTOS

2.1.1 FreeRTOS kernel

Open source RTOS kernel for small devices.

FreeRTOS kernel for MCUXpresso SDK Readme

FreeRTOS kernel for MCUXpresso SDK

Overview The purpose of this document is to describes the FreeRTOS kernel repo integration
into the NXP MCUXpresso Software Development Kit: mcuxsdk. MCUXpresso SDK provides a
comprehensive development solutions designed to optimize, ease, and help accelerate embed-
ded system development of applications based on MCUs from NXP. This project involves the
FreeRTOS kernel repo fork with:

• cmake andKconfig support to allow the configuration andbuild inMCUXpresso SDK ecosys-
tem

• FreeRTOS OS additions, such as FreeRTOS driver wrappers, RTOS ready FatFs file system,
and the implementation of FreeRTOS tickless mode

The history of changes in FreeRTOS kernel repo for MCUXpresso SDK are summarized in
CHANGELOG_mcuxsdk.md file.

The MCUXpresso SDK framework also contains a set of FreeRTOS examples which show basic
FreeRTOS OS features. This makes it easy to start a new FreeRTOS project or begin experiment-
ing with FreeRTOS OS. Selected drivers and middleware are RTOS ready with related FreeRTOS
adaptation layer.

FreeRTOS example applications The FreeRTOS examples are written to demonstrate basic
FreeRTOS features and the interaction between peripheral drivers and the RTOS.

List of examples The list of freertos_examples, their description and availability for individual
supportedMCUXpresso SDK development boards can be obtained here: https://mcuxpresso.nxp.
com/mcuxsdk/latest/html/examples/freertos_examples/index.html

293

https://github.com/FreeRTOS/FreeRTOS
https://github.com/nxp-mcuxpresso/mcuxsdk-manifests
https://github.com/nxp-mcuxpresso/mcux-freertos-drivers
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/examples/freertos_examples/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/examples/freertos_examples/index.html

MCUXpresso SDK Documentation, Release 25.09.00

Location of examples The FreeRTOS examples are located in mcuxsdk-examples repository,
see the freertos_examples folder.

OnceusingMCUXpresso SDKzip packages created via theMCUXpresso SDKBuilder the FreeRTOS
kernel library and associated freertos_examples are added into final zip package once FreeRTOS
components is selected on the Developer Environment Settings page:

The FreeRTOS examples in MCUXpresso SDK zip packages are located in <MCUXpres-
soSDK_install_dir>/boards/<board_name>/freertos_examples/ subfolders.

Building a FreeRTOS example application For information how to use the cmake andKconfig
based build and configuration system and how to build freertos_examples visit: MCUXpresso
SDK documentation for Build And Configuration MCUXpresso SDK Getting Start Guide

Tip: To list all FreeRTOS example projects and targets that can be built via the west build com-
mand, use this west list_project command in mcuxsdk workspace:

west list_project -p examples/freertos_examples

FreeRTOS aware debugger plugin NXP provides FreeRTOS task aware debugger for GDB. The
plugin is compatible with Eclipse-based (MCUXpressoIDE) and is available after the installation.

FreeRTOS kernel for MCUXpresso SDK ChangeLog

Changelog FreeRTOS kernel for MCUXpresso SDK All notable changes to this project will be
documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

294 Chapter 2. RTOS

https://github.com/nxp-mcuxpresso/mcuxsdk-examples
https://mcuxpresso.nxp.com
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/develop/build_system/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/develop/build_system/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/repo.html#gsd-index
https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html

MCUXpresso SDK Documentation, Release 25.09.00

[Unreleased]

Added
• Kconfig added CONFIG_FREERTOS_USE_CUSTOM_CONFIG_FRAGMENT config to op-
tionally include custom FreeRTOSConfig fragment
include file FreeRTOSConfig_frag.h. File must be provided by application.

• Added missing Kconfig option for configUSE_PICOLIBC_TLS.

• Add correct header files to build when configUSE_NEWLIB_REENTRANT and confi-
gUSE_PICOLIBC_TLS is selected in config.

[11.1.0_rev0]
• update amazon freertos version

[11.0.1_rev0]
• update amazon freertos version

[10.5.1_rev0]
• update amazon freertos version

[10.4.3_rev1]
• Apply CM33 security fix from10.4.3-LTS-Patch-2. See rtos\freertos\freertos_kernel\History.txt

• Apply CM33 security fix from10.4.3-LTS-Patch-1. See rtos\freertos\freertos_kernel\History.txt

[10.4.3_rev0]
• update amazon freertos version.

[10.4.3_rev0]
• update amazon freertos version.

[9.0.0_rev3]
• New features:

– Tickless idle mode support for Cortex-A7. Add fsl_tickless_epit.c and
fsl_tickless_generic.h in portable/IAR/ARM_CA9 folder.

– Enabled float context saving in IAR for Cortex-A7. Added confi-
gUSE_TASK_FPU_SUPPORT macros. Modified port.c and portmacro.h in
portable/IAR/ARM_CA9 folder.

• Other changes:

– Transformed ARM_CM core specific tickless low power support into generic form un-
der freertos/Source/portable/low_power_tickless/.

2.1. FreeRTOS 295

MCUXpresso SDK Documentation, Release 25.09.00

[9.0.0_rev2]
• New features:

– Enabled MCUXpresso thread aware debugging. Add freertos_tasks_c_additions.h
and configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H and configFR-
TOS_MEMORY_SCHEME macros.

[9.0.0_rev1]
• New features:

– Enabled -flto optimization in GCC by adding attribute((used)) for vTaskSwitchContext.

– Enabled KDS Task Aware Debugger. Apply FreeRTOS patch to enable confi-
gRECORD_STACK_HIGH_ADDRESS macro. Modified files are task.c and FreeRTOS.h.

[9.0.0_rev0]
• New features:

– Example freertos_sem_static.

– Static allocation support RTOS driver wrappers.

• Other changes:

– Tickless idle rework. Support for different timers is in separated files
(fsl_tickless_systick.c, fsl_tickless_lptmr.c).

– Removed configuration option configSYSTICK_USE_LOW_POWER_TIMER. Low power
timer is now selected by linking of apropriate file fsl_tickless_lptmr.c.

– Removed configOVERRIDE_DEFAULT_TICK_CONFIGURATION in RVDS port. Use of at-
tribute((weak)) is the preferred solution. Not same as _weak!

[8.2.3]
• New features:

– Tickless idle mode support.

– Added template application for Kinetis Expert (KEx) tool (template_application).

• Other changes:

– Folder structure reduction. Keep only Kinetis related parts.

FreeRTOS kernel Readme

MCUXpresso SDK: FreeRTOS kernel This repository is a fork of FreeRTOS kernel
(https://github.com/FreeRTOS/FreeRTOS-Kernel)(11.1.0). Modifications have been made to adapt
to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable FreeRTOS kernel repo
sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which is
composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

For more information about the FreeRTOS kernel repo adoption see README_mcuxsdk.md:
FreeRTOS kernel for MCUXpresso SDK Readme document.

296 Chapter 2. RTOS

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/rtos/freertos/freertos-kernel/README_mcuxsdk.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/rtos/freertos/freertos-kernel/README_mcuxsdk.html
https://github.com/FreeRTOS/FreeRTOS-Kernel/actions/workflows/unit-tests.yml?query=branch%3Amain+event%3Apush+workflow%3A%22CMock+Unit+Tests%22++

MCUXpresso SDK Documentation, Release 25.09.00

Getting started This repository contains FreeRTOS kernel source/header files and kernel ports
only. This repository is referenced as a submodule in FreeRTOS/FreeRTOS repository, which
contains pre-configured demo application projects under FreeRTOS/Demo directory.

The easiest way to use FreeRTOS is to start with one of the pre-configured demo application
projects. That way you will have the correct FreeRTOS source files included, and the correct
include paths configured. Once a demo application is building and executing you can remove
the demoapplicationfiles, and start to add in your ownapplication sourcefiles. See the FreeRTOS
Kernel Quick Start Guide for detailed instructions and other useful links.

Additionally, for FreeRTOS kernel feature information refer to the Developer Documentation,
and API Reference.

Also for contributing and creating a Pull Request please refer to the instructions here.

Getting help If you have any questions or need assistance troubleshooting your FreeRTOS
project, we have an active community that canhelp on the FreeRTOSCommunity Support Forum.

To consume FreeRTOS-Kernel

Consume with CMake If using CMake, it is recommended to use this repository using Fetch-
Content. Add the following into your project’s main or a subdirectory’s CMakeLists.txt:

• Define the source and version/tag you want to use:

FetchContent_Declare(freertos_kernel
GIT_REPOSITORY https://github.com/FreeRTOS/FreeRTOS-Kernel.git
GIT_TAG main #Note: Best practice to use specific git-hash or tagged version

)

In case you prefer to add it as a git submodule, do:

git submodule add https://github.com/FreeRTOS/FreeRTOS-Kernel.git <path of the submodule>
git submodule update --init

• Add a freertos_config library (typically an INTERFACE library) The following assumes the
directory structure:

– include/FreeRTOSConfig.h

add_library(freertos_config INTERFACE)

target_include_directories(freertos_config SYSTEM
INTERFACE

include
)

target_compile_definitions(freertos_config
INTERFACE
projCOVERAGE_TEST=0

)

In case you installed FreeRTOS-Kernel as a submodule, you will have to add it as a subdirectory:

add_subdirectory(${FREERTOS_PATH})

• Configure the FreeRTOS-Kernel and make it available

– this particular example supports a native and cross-compiled build option.

2.1. FreeRTOS 297

https://github.com/FreeRTOS/FreeRTOS
https://www.FreeRTOS.org/FreeRTOS-quick-start-guide.html
https://www.FreeRTOS.org/FreeRTOS-quick-start-guide.html
https://www.FreeRTOS.org/features.html
https://www.FreeRTOS.org/a00106.html
https://forums.freertos.org

MCUXpresso SDK Documentation, Release 25.09.00

set(FREERTOS_HEAP ”4” CACHE STRING ”” FORCE)
Select the native compile PORT
set(FREERTOS_PORT ”GCC_POSIX” CACHE STRING ”” FORCE)
Select the cross-compile PORT
if (CMAKE_CROSSCOMPILING)
set(FREERTOS_PORT ”GCC_ARM_CA9” CACHE STRING ”” FORCE)

endif()

FetchContent_MakeAvailable(freertos_kernel)

• In case of cross compilation, you should also add the following to freertos_config:

target_compile_definitions(freertos_config INTERFACE ${definitions})
target_compile_options(freertos_config INTERFACE ${options})

Consuming stand-alone - Cloning this repository To clone using HTTPS:

git clone https://github.com/FreeRTOS/FreeRTOS-Kernel.git

Using SSH:

git clone git@github.com:FreeRTOS/FreeRTOS-Kernel.git

Repository structure
• The root of this repository contains the three files that are common to every port - list.c,
queue.c and tasks.c. The kernel is containedwithin these three files. croutine.c implements
the optional co-routine functionality - which is normally only used on verymemory limited
systems.

• The ./portable directory contains the files that are specific to a particular microcontroller
and/or compiler. See the readme file in the ./portable directory for more information.

• The ./include directory contains the real time kernel header files.

• The ./template_configurationdirectory contains a sampleFreeRTOSConfig.h to help jumpstart
a new project. See the FreeRTOSConfig.h file for instructions.

Code Formatting FreeRTOS files are formatted using the “uncrustify” tool. The configuration
file used by uncrustify can be found in the FreeRTOS/CI-CD-GitHub-Actions’s uncrustify.cfg file.

Line Endings File checked into the FreeRTOS-Kernel repository use unix-style LF line endings
for the best compatibility with git.

For optimal compatibility with Microsoft Windows tools, it is best to enable the git autocrlf fea-
ture. You can enable this setting for the current repository using the following command:

git config core.autocrlf true

Git History Optimizations Some commits in this repository perform large refactors which
touch many lines and lead to unwanted behavior when using the git blame command. You can
configure git to ignore the list of large refactor commits in this repository with the following
command:

git config blame.ignoreRevsFile .git-blame-ignore-revs

298 Chapter 2. RTOS

https://github.com/uncrustify/uncrustify
https://github.com/FreeRTOS/CI-CD-Github-Actions
https://github.com/FreeRTOS/CI-CD-Github-Actions/tree/main/formatting

MCUXpresso SDK Documentation, Release 25.09.00

Spelling and Formatting We recommend using Visual Studio Code, commonly referred to as
VSCode, when working on the FreeRTOS-Kernel. The FreeRTOS-Kernel also uses cSpell as part
of its spelling check. The config file for which can be found at cspell.config.yaml There is addi-
tionally a cSpell plugin for VSCode that can be used as well. .cSpellWords.txt contains words
that are not traditionally found in an English dictionary. It is used by the spellchecker to ver-
ify the various jargon, variable names, and other odd words used in the FreeRTOS code base
are correct. If your pull request fails to pass the spelling and you believe this is a mistake, then
add the word to .cSpellWords.txt. When adding a word please then sort the list, which can be
done by running the bash command: sort -u .cSpellWords.txt -o .cSpellWords.txt Note that only
the FreeRTOS-Kernel Source Files, include, portable/MemMang, and portable/Common files are
checked for proper spelling, and formatting at this time.

2.1.2 FreeRTOS drivers

This is set of NXP provided FreeRTOS reentrant bus drivers.

2.1.3 backoffalgorithm

Algorithm for calculating exponential backoff with jitter for network retry attempts.

Readme

MCUXpresso SDK: backoffAlgorithm Library This repository is a fork of backoffAlgorithm
library (https://github.com/FreeRTOS/backoffalgorithm)(1.3.0). Modifications have beenmade to
adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable backoffAlgorithm
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repositorymcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

backoffAlgorithm Library This repository contains the backoffAlgorithm library, a utility li-
brary to calculate backoff period using an exponential backoff with jitter algorithm for retry-
ing network operations (like failed network connection with server). This library uses the “Full
Jitter” strategy for the exponential backoff with jitter algorithm. More information about the
algorithm can be seen in the Exponential Backoff and Jitter AWS blog.

The backoffAlgorithm library is distributed under theMIT Open Source License.

Exponential backoff with jitter is typically used when retrying a failed network connection or
operation request with the server. An exponential backoff with jitter helps to mitigate failed
network operations with servers, that are caused due to network congestion or high request
load on the server, by spreading out retry requests across multiple devices attempting network
operations. Besides, in an environment with poor connectivity, a client can get disconnected at
any time. A backoff strategy helps the client to conserve battery by not repeatedly attempting
reconnections when they are unlikely to succeed.

See memory requirements for this library here.

backoffAlgorithm v1.3.0 source code is part of the FreeRTOS 202210.00 LTS release.
backoffAlgorithm v1.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

2.1. FreeRTOS 299

https://code.visualstudio.com
https://cspell.org/
https://marketplace.visualstudio.com/items?itemName=streetsidesoftware.code-spell-checker
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
https://github.com/FreeRTOS/backoffAlgorithm/tree/v1.3.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/backoffAlgorithm/tree/v1.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00

Reference example The example below shows how to use the backoffAlgorithm library on a
POSIX platform to retry a DNS resolution query for amazon.com.

#include ”backoff_algorithm.h”
#include <stdlib.h>
#include <string.h>
#include <netdb.h>
#include <unistd.h>
#include <time.h>

/* The maximum number of retries for the example code. */
#define RETRY_MAX_ATTEMPTS (5U)

/* The maximum back-off delay (in milliseconds) for between retries in the example. */
#define RETRY_MAX_BACKOFF_DELAY_MS (5000U)

/* The base back-off delay (in milliseconds) for retry configuration in the example. */
#define RETRY_BACKOFF_BASE_MS (500U)

int main()
{

/* Variables used in this example. */
BackoffAlgorithmStatus_t retryStatus = BackoffAlgorithmSuccess;
BackoffAlgorithmContext_t retryParams;
char serverAddress[] = ”amazon.com”;
uint16_t nextRetryBackoff = 0;

int32_t dnsStatus = -1;
struct addrinfo hints;
struct addrinfo ** pListHead = NULL;
struct timespec tp;

/* Add hints to retrieve only TCP sockets in getaddrinfo. */
(void) memset(&hints, 0, sizeof(hints));

/* Address family of either IPv4 or IPv6. */
hints.ai_family = AF_UNSPEC;
/* TCP Socket. */
hints.ai_socktype = (int32_t) SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;

/* Initialize reconnect attempts and interval. */
BackoffAlgorithm_InitializeParams(&retryParams,

RETRY_BACKOFF_BASE_MS,
RETRY_MAX_BACKOFF_DELAY_MS,
RETRY_MAX_ATTEMPTS);

/* Seed the pseudo random number generator used in this example (with call to
* rand() function provided by ISO C standard library) for use in backoff period
* calculation when retrying failed DNS resolution. */

/* Get current time to seed pseudo random number generator. */
(void) clock_gettime(CLOCK_REALTIME, &tp);
/* Seed pseudo random number generator with seconds. */
srand(tp.tv_sec);

do
{

/* Perform a DNS lookup on the given host name. */
dnsStatus = getaddrinfo(serverAddress, NULL, &hints, pListHead);

(continues on next page)

300 Chapter 2. RTOS

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
/* Retry if DNS resolution query failed. */
if(dnsStatus != 0)
{

/* Generate a random number and get back-off value (in milliseconds) for the next retry.
* Note: It is recommended to use a random number generator that is seeded with
* device-specific entropy source so that backoff calculation across devices is different
* and possibility of network collision between devices attempting retries can be avoided.
*
* For the simplicity of this code example, the pseudo random number generator, rand()
* function is used. */
retryStatus = BackoffAlgorithm_GetNextBackoff(&retryParams, rand(), &nextRetryBackoff);

/* Wait for the calculated backoff period before the next retry attempt of querying DNS.
* As usleep() takes nanoseconds as the parameter, we multiply the backoff period by 1000. */
(void) usleep(nextRetryBackoff * 1000U);

}
} while((dnsStatus != 0) && (retryStatus != BackoffAlgorithmRetriesExhausted));

return dnsStatus;
}

Building the library A compiler that supports C90 or later such as gcc is required to build the
library.

Additionally, the library uses a header file introduced in ISO C99, stdint.h. For compilers that do
not provide this header file, the source/include directory contains stdint.readme, which can be
renamed to stdint.h to build the backoffAlgorithm library.

For instance, if the example above is copied to a file named example.c, gcc can be used like so:

gcc -I source/include example.c source/backoff_algorithm.c -o example
./example

gcc can also produce an output file to be linked:

gcc -I source/include -c source/backoff_algorithm.c

Building unit tests

Checkout Unity Submodule By default, the submodules in this repository are configured with
update=none in .gitmodules, to avoid increasing clone time and disk space usage of other reposi-
tories (like amazon-freertos that submodules this repository).

To build unit tests, the submodule dependency of Unity is required. Use the following command
to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/Unity

Platform Prerequisites
• For running unit tests

– C89 or later compiler like gcc

– CMake 3.13.0 or later

• For running the coverage target, gcov is additionally required.

2.1. FreeRTOS 301

https://github.com/aws/amazon-freertos

MCUXpresso SDK Documentation, Release 25.09.00

Steps to build Unit Tests
1. Go to the root directory of this repository. (Make sure that the Unity submodule is cloned

as described above.)

2. Create build directory: mkdir build && cd build

3. Run cmake while inside build directory: cmake -S ../test

4. Run this command to build the library and unit tests: make all

5. The generated test executables will be present in build/bin/tests folder.

6. Run ctest to execute all tests and view the test run summary.

Contributing See CONTRIBUTING.md for information on contributing.

2.1.4 corehttp

C language HTTP client library designed for embedded platforms.

MCUXpresso SDK: coreHTTP Client Library

This repository is a fork of coreHTTPClient library (https://github.com/FreeRTOS/corehttp)(3.0.0).
Modifications have been made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig
added to enable coreHTTP Client repo sources build in MCUXpresso SDK. It is part of the MCUX-
presso SDK overall delivery which is composed of several sub-repositories/projects. Navigate
to the top/parent repository mcuxsdk-manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-
manifests) for the complete delivery of MCUXpresso SDK.

coreHTTP Client Library

This repository contains a C language HTTP client library designed for embedded platforms. It
has no dependencies on any additional libraries other than the standard C library, llhttp, and
a customer-implemented transport interface. This library is distributed under the MIT Open
Source License.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8. This library has also undergone both static code analysis from
Coverity static analysis, and validation of memory safety and data structure invariance through
the CBMC automated reasoning tool.

See memory requirements for this library here.

coreHTTP v3.0.0 source code is part of the FreeRTOS 202210.00 LTS release.
coreHTTP v2.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

coreHTTP Config File The HTTP client library exposes configurationmacros that are required
for building the library. A list of all the configurations and their default values are defined in
core_http_config_defaults.h. To provide custom values for the configuration macros, a custom
config file named core_http_config.h can be provided by the user application to the library.

By default, a core_http_config.h custom config is required to build the library. To dis-
able this requirement and build the library with default configuration values, provide
HTTP_DO_NOT_USE_CUSTOM_CONFIG as a compile time preprocessor macro.

The HTTP client library can be built by either:

302 Chapter 2. RTOS

https://github.com/nodejs/llhttp
https://www.gnu.org/software/complexity/manual/complexity.html
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/coreHTTP/tree/v3.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/coreHTTP/tree/v2.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00

• Defining a core_http_config.h file in the application, and adding it to the include directories
for the library build. OR

• Defining the HTTP_DO_NOT_USE_CUSTOM_CONFIG preprocessor macro for the li-
brary build.

Building the Library The httpFilePaths.cmake file contains the information of all source files
and header include paths required to build the HTTP client library.

As mentioned in the previous section, either a custom config file (i.e. core_http_config.h) OR
HTTP_DO_NOT_USE_CUSTOM_CONFIGmacro needs to be provided to build theHTTP client
library.

For a CMake example of building the HTTP library with the httpFilePaths.cmake file, refer to the
coverity_analysis library target in test/CMakeLists.txt file.

Building Unit Tests

Platform Prerequisites
• For running unit tests, the following are required:

– C90 compiler like gcc

– CMake 3.13.0 or later
– Ruby 2.0.0 or later is required for this repository’s CMock test framework.

• For running the coverage target, the following are required:

– gcov
– lcov

Steps to build Unit Tests
1. Go to the root directory of this repository.

2. Run the cmake command: cmake -S test -B build -DBUILD_CLONE_SUBMODULES=ON

3. Run this command to build the library and unit tests: make -C build all

4. The generated test executables will be present in build/bin/tests folder.

5. Run cd build && ctest to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Reference examples The AWS IoT Device SDK for Embedded C repository contains demos of
using theHTTP client library here on a POSIX platform. These can be used as reference examples
for the library API.

Documentation

2.1. FreeRTOS 303

https://github.com/ThrowTheSwitch/CMock
https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/http

MCUXpresso SDK Documentation, Release 25.09.00

Existing Documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location
AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of coreHTTP may differ across repositories.

Generating Documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Contributing See CONTRIBUTING.md for information on contributing.

2.1.5 corejson

JSON parser.

Readme

MCUXpresso SDK: coreJSON Library This repository is a fork of coreJSON library
(https://github.com/FreeRTOS/corejson)(3.2.0). Modifications have been made to adapt to NXP
MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable coreJSON repo sources build
in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which is com-
posed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

coreJSON Library This repository contains the coreJSON library, a parser that strictly enforces
the ECMA-404 JSON standard and is suitable for low memory footprint embedded devices. The
coreJSON library is distributed under theMIT Open Source License.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations frommandatory rules in theMISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis from Coverity static analy-
sis, and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.

coreJSON v3.2.0 source code is part of the FreeRTOS 202210.00 LTS release.
coreJSON v3.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

Reference example

304 Chapter 2. RTOS

https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/coreHTTP/docs/doxygen/output/html/index.html
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/coreJSON/tree/v3.2.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/coreJSON/tree/v3.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00

#include <stdio.h>
#include ”core_json.h”

int main()
{

// Variables used in this example.
JSONStatus_t result;
char buffer[] = ”{\”foo\”:\”abc\”,\”bar\”:{\”foo\”:\”xyz\”}}”;
size_t bufferLength = sizeof(buffer) - 1;
char queryKey[] = ”bar.foo”;
size_t queryKeyLength = sizeof(queryKey) - 1;
char * value;
size_t valueLength;

// Calling JSON_Validate() is not necessary if the document is guaranteed to be valid.
result = JSON_Validate(buffer, bufferLength);

if(result == JSONSuccess)
{

result = JSON_Search(buffer, bufferLength, queryKey, queryKeyLength,
&value, &valueLength);

}

if(result == JSONSuccess)
{

// The pointer ”value” will point to a location in the ”buffer”.
char save = value[valueLength];
// After saving the character, set it to a null byte for printing.
value[valueLength] = '\0';
// ”Found: bar.foo -> xyz” will be printed.
printf(”Found: %s -> %s\n”, queryKey, value);
// Restore the original character.
value[valueLength] = save;

}

return 0;
}

A search may descend through nested objects when the queryKey contains matching key strings
joined by a separator, .. In the example above, bar has the value {”foo”:”xyz”}. Therefore, a search
for query key bar.foo would output xyz.

Building coreJSON A compiler that supports C90 or later such as gcc is required to build the
library.

Additionally, the library uses 2 header files introduced in ISO C99, stdbool.h and stdint.h. For com-
pilers that do not provide this header file, the source/include directory contains stdbool.readme
and stdint.readme, which can be renamed to stdbool.h and stdint.h respectively.

For instance, if the example above is copied to a file named example.c, gcc can be used like so:

gcc -I source/include example.c source/core_json.c -o example
./example

gcc can also produce an output file to be linked:

gcc -I source/include -c source/core_json.c

Documentation

2.1. FreeRTOS 305

MCUXpresso SDK Documentation, Release 25.09.00

Existing documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location
AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of the coreJSON library may differ across repositories.

Generating documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Building unit tests

Checkout Unity Submodule By default, the submodules in this repository are configured with
update=none in .gitmodules, to avoid increasing clone time and disk space usage of other reposi-
tories (like amazon-freertos that submodules this repository).

To build unit tests, the submodule dependency of Unity is required. Use the following command
to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/Unity

Platform Prerequisites
• For running unit tests

– C90 compiler like gcc

– CMake 3.13.0 or later

– Ruby 2.0.0 or later is additionally required for the Unity test framework (that we use).

• For running the coverage target, gcov is additionally required.

Steps to build Unit Tests
1. Go to the root directory of this repository. (Make sure that the Unity submodule is cloned

as described above.)

2. Create build directory: mkdir build && cd build

3. Run cmake while inside build directory: cmake -S ../test

4. Run this command to build the library and unit tests: make all

5. The generated test executables will be present in build/bin/tests folder.

6. Run ctest to execute all tests and view the test run summary.

306 Chapter 2. RTOS

https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/coreJSON/docs/doxygen/output/html/index.html
https://github.com/aws/amazon-freertos

MCUXpresso SDK Documentation, Release 25.09.00

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Contributing See CONTRIBUTING.md for information on contributing.

2.1.6 coremqtt

MQTT publish/subscribe messaging library.

MCUXpresso SDK: coreMQTT Library

This repository is a fork of coreMQTT library (https://github.com/FreeRTOS/coremqtt)(2.1.1).
Modifications have been made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kcon-
fig added to enable coreMQTT repo sources build in MCUXpresso SDK. It is part of the MCUX-
presso SDK overall delivery which is composed of several sub-repositories/projects. Navigate
to the top/parent repository mcuxsdk-manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-
manifests) for the complete delivery of MCUXpresso SDK.

coreMQTT Client Library

This repository contains the coreMQTT library that has been optimized for a low memory foot-
print. The coreMQTT library is compliant with the MQTT 3.1.1 standard. It has no dependencies
on any additional libraries other than the standard C library, a customer-implemented network
transport interface, and optionally a user-implemented platform time function. This library is
distributed under theMIT Open Source License.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations frommandatory rules in theMISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis from Coverity static analy-
sis, and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.

coreMQTT v2.1.1 source code is part of the FreeRTOS 202210.01 LTS release.

MQTT Config File The MQTT client library exposes build configuration macros that are re-
quired for building the library. A list of all the configurations and their default values are de-
fined in core_mqtt_config_defaults.h. To provide custom values for the configuration macros, a
custom config file named core_mqtt_config.h can be provided by the application to the library.

By default, a core_mqtt_config.h custom config is required to build the library. To dis-
able this requirement and build the library with default configuration values, provide
MQTT_DO_NOT_USE_CUSTOM_CONFIG as a compile time preprocessor macro.

Thus, the MQTT library can be built by either:
• Defining a core_mqtt_config.h file in the application, and adding it to the include directories
list of the library
OR

• Defining the MQTT_DO_NOT_USE_CUSTOM_CONFIG preprocessor macro for the li-
brary build.

2.1. FreeRTOS 307

https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/coreMQTT/tree/v2.1.1/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.01-LTS

MCUXpresso SDK Documentation, Release 25.09.00

Sending metrics to AWS IoT When establishing a connection with AWS IoT, users can option-
ally report the Operating System, Hardware Platform and MQTT client version information of
their device to AWS. This information can help AWS IoT provide faster issue resolution and tech-
nical support. If users want to report this information, they can send a specially formatted string
(see below) in the username field of the MQTT CONNECT packet.

Format

The format of the username string with metrics is:

<Actual_Username>?SDK=<OS_Name>&Version=<OS_Version>&Platform=<Hardware_Platform>&
↪→MQTTLib=<MQTT_Library_name>@<MQTT_Library_version>

Where

• <Actual_Username> is the actual username used for authentication, if username and pass-
word are used for authentication. When username and password based authentication is
not used, this is an empty value.

• <OS_Name> is the Operating System the application is running on (e.g. FreeRTOS)

• <OS_Version> is the version number of the Operating System (e.g. V10.4.3)

• <Hardware_Platform> is the Hardware Platform the application is running on (e.g. Win-
Sim)

• <MQTT_Library_name> is the MQTT Client library being used (e.g. coreMQTT)

• <MQTT_Library_version> is the version of the MQTT Client library being used (e.g. 1.0.2)

Example

• Actual_Username = “iotuser”, OS_Name = FreeRTOS, OS_Version = V10.4.3, Hard-
ware_Platform_Name =WinSim, MQTT_Library_Name = coremqtt, MQTT_Library_version
= 2.1.1. If username is not used, then “iotuser” can be removed.

/* Username string:
* iotuser?SDK=FreeRTOS&Version=v10.4.3&Platform=WinSim&MQTTLib=coremqtt@2.1.1
*/

#define OS_NAME ”FreeRTOS”
#define OS_VERSION ”V10.4.3”
#define HARDWARE_PLATFORM_NAME ”WinSim”
#define MQTT_LIB ”coremqtt@2.1.1”

#define USERNAME_STRING ”iotuser?SDK=” OS_NAME ”&Version=” OS_VERSION ”&
↪→Platform=” HARDWARE_PLATFORM_NAME ”&MQTTLib=” MQTT_LIB
#define USERNAME_STRING_LENGTH ((uint16_t) (sizeof(USERNAME_STRING) - 1))

MQTTConnectInfo_t connectInfo;
connectInfo.pUserName = USERNAME_STRING;
connectInfo.userNameLength = USERNAME_STRING_LENGTH;
mqttStatus = MQTT_Connect(pMqttContext, &connectInfo, NULL, CONNACK_RECV_TIMEOUT_MS,␣
↪→pSessionPresent);

Upgrading to v2.0.0 and above With coreMQTT versions >=v2.0.0, there are breaking changes.
Please refer to the coreMQTT version >=v2.0.0 Migration Guide.

Building the Library ThemqttFilePaths.cmake file contains the information of all source files
and the header include path required to build the MQTT library.

Additionally, the MQTT library requires two header files that are not part of the ISO C90 stan-
dard library, stdbool.h and stdint.h. For compilers that do not provide these header files, the

308 Chapter 2. RTOS

MCUXpresso SDK Documentation, Release 25.09.00

source/include directory contains the files stdbool.readme and stdint.readme, which can be re-
named to stdbool.h and stdint.h, respectively, to provide the type definitions required by MQTT.

As mentioned in the previous section, either a custom config file (i.e. core_mqtt_config.h) OR
MQTT_DO_NOT_USE_CUSTOM_CONFIG macro needs to be provided to build the MQTT li-
brary.

For a CMake example of building the MQTT library with themqttFilePaths.cmake file, refer to the
coverity_analysis library target in test/CMakeLists.txt file.

Building Unit Tests

Checkout CMock Submodule By default, the submodules in this repository are configured
with update=none in .gitmodules to avoid increasing clone time and disk space usage of other
repositories (like amazon-freertos that submodules this repository).

To build unit tests, the submodule dependency of CMock is required. Use the following command
to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/CMock

Platform Prerequisites
• Docker

or the following:

• For running unit tests

– C90 compiler like gcc

– CMake 3.13.0 or later
– Ruby 2.0.0 or later is additionally required for the CMock test framework (that we
use).

• For running the coverage target, gcov and lcov are additionally required.

Steps to build Unit Tests
1. If using docker, launch the container:

1. docker build -t coremqtt .

2. docker run -it -v ”$PWD”:/workspaces/coreMQTT -w /workspaces/coreMQTT coremqtt

2. Go to the root directory of this repository. (Make sure that the CMock submodule is cloned
as described above)

3. Run the cmake command: cmake -S test -B build

4. Run this command to build the library and unit tests: make -C build all

5. The generated test executables will be present in build/bin/tests folder.

6. Run cd build && ctest to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

2.1. FreeRTOS 309

https://github.com/aws/amazon-freertos
https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html

MCUXpresso SDK Documentation, Release 25.09.00

Reference examples Please refer to the demos of the MQTT client library in the following
locations for reference examples on POSIX and FreeRTOS platforms:

Plat-
form

Location Transport Interface Implementation

POSIX AWS IoT Device SDK for Embed-
ded C

POSIX sockets for TCP/IP and OpenSSL for TLS
stack

FreeR-
TOS

FreeRTOS/FreeRTOS FreeRTOS+TCP for TCP/IP and mbedTLS for
TLS stack

FreeR-
TOS

FreeRTOS AWS Reference Inte-
grations

Based on Secure Sockets Abstraction

Documentation

Existing Documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location
AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of coreMQTT may differ across repositories.

Generating Documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Contributing See CONTRIBUTING.md for information on contributing.

2.1.7 coremqtt-agent

The coreMQTT Agent library is a high level API that adds thread safety to the coreMQTT library.

Readme

MCUXpresso SDK: coreMQTT Agent Library This repository is a fork of coreMQTT Agent
library (https://github.com/FreeRTOS/coremqtt-agent)(1.2.0). Modifications have been made to
adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable coreMQTT Agent
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repositorymcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

310 Chapter 2. RTOS

https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/mqtt
https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/mqtt
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo
https://github.com/aws/amazon-freertos/tree/main/demos/coreMQTT
https://github.com/aws/amazon-freertos/tree/main/demos/coreMQTT
https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/coreMQTT/docs/doxygen/output/html/index.html

MCUXpresso SDK Documentation, Release 25.09.00

coreMQTT Agent Library The coreMQTT Agent library is a high level API that adds thread
safety to the coreMQTT library. The library provides thread safe equivalents to the coreMQTT’s
APIs, greatly simplifying its use in multi-threaded environments. The coreMQTT Agent library
manages the MQTT connection by serializing the access to the coreMQTT library and reduc-
ing implementation overhead (e.g., removing the need for the application to repeatedly call to
MQTT_ProcessLoop). This allows yourmulti-threaded applications to share the sameMQTT con-
nection, and enables you to design an embedded application without having to worry about
coreMQTT thread safety.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations frommandatory rules in theMISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis from Coverity static analy-
sis, and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.

Cloning this repository This repo uses Git Submodules to bring in dependent components.

To clone using HTTPS:

git clone https://github.com/FreeRTOS/coreMQTT-Agent.git --recurse-submodules

Using SSH:

git clone git@github.com:FreeRTOS/coreMQTT-Agent.git --recurse-submodules

If you have downloaded the repo without using the --recurse-submodules argument, you need to
run:

git submodule update --init --recursive

coreMQTT Agent Library Configurations The MQTT Agent library uses the same
core_mqtt_config.h configuration file as coreMQTT, with the addition of configuration con-
stants listed at the top of core_mqtt_agent.h and core_mqtt_agent_command_functions.h.
Documentation for these configurations can be found here.

To provide values for these configuration values, they must be either:

• Defined in core_mqtt_config.h used by coreMQTT OR
• Passed as compile time preprocessor macros

Porting the coreMQTT Agent Library In order to use the MQTT Agent library on a platform,
you need to supply thread safe functions for the agent’smessaging interface.

Messaging Interface Each of the following functions must be thread safe.

2.1. FreeRTOS 311

https://github.com/FreeRTOS/coreMQTT
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://freertos.org/Documentation/api-ref/coreMQTT-Agent/docs/doxygen/output/html/core_mqtt_agent_config.html

MCUXpresso SDK Documentation, Release 25.09.00

Function
Pointer

Description

MQTTA-
gentMes-
sage-
Send_t

A function that sends commands (as MQTTAgentCommand_t * pointers) to be re-
ceived by MQTTAgent_CommandLoop. This can be implemented by pushing to a
thread safe queue.

MQTTA-
gentMes-
sageRecv_t

A function used byMQTTAgent_CommandLoop to receiveMQTTAgentCommand_t
* pointers that were sent by API functions. This can be implemented by receiving
from a thread safe queue.

MQTTA-
gentCom-
mand-
Get_t

A function that returns a pointer to an allocatedMQTTAgentCommand_t structure,
which is used to hold information and arguments for a command to be executed in
MQTTAgent_CommandLoop(). If using dynamicmemory, this can be implemented
using malloc().

MQT-
TAgent-
Comman-
dRelease_t

A function called to indicate that a command structure that had been allocated
with the MQTTAgentCommandGet_t function pointer will no longer be used by
the agent, so it may be freed or marked as not in use. If using dynamic memory,
this can be implemented with free().

Reference implementations for the interface functions can be found in the reference examples
below.

Additional Considerations

Static Memory If only static allocation is used, then theMQTTAgentCommandGet_t andMQT-
TAgentCommandRelease_t could instead be implemented with a pool of MQTTAgentCommand_t
structures, with a queue or semaphore used to control access and provide thread safety. The
below reference examples use static memory with a command pool.

Subscription Management The MQTT Agent does not track subscriptions for MQTT topics.
The receipt of any incoming PUBLISH packet will result in the invocation of a single MQTTA-
gentIncomingPublishCallback_t callback, which is passed to MQTTAgent_Init() for initialization.
If it is desired for different handlers to be invoked for different incoming topics, then the pub-
lish callback will have to manage subscriptions and fan out messages. A platform independent
subscription manager example is implemented in the reference examples below.

Building the Library You canbuild theMQTTAgent source files that are in the sourcedirectory,
and add source/include to your compiler’s include path. Additionally, the MQTT Agent library
requires the coreMQTT library, whose files follow the same source/ and source/include pattern as
the agent library; its build instructions can be found here.

If using CMake, themqttAgentFilePaths.cmake file contains the above information of the source
files and the header include path from this repository. The same information is found for
coreMQTT from mqttFilePaths.cmake in the coreMQTT submodule.

For a CMake example of building the MQTT Agent library with themqttAgentFilePaths.cmake file,
refer to the coverity_analysis library target in test/CMakeLists.txt file.

Building Unit Tests

312 Chapter 2. RTOS

https://github.com/FreeRTOS/coreMQTT#building-the-library

MCUXpresso SDK Documentation, Release 25.09.00

Checkout CMock Submodule To build unit tests, the submodule dependency of CMock is re-
quired. Use the following command to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/CMock

Unit Test Platform Prerequisites
• For running unit tests

– C90 compiler like gcc

– CMake 3.13.0 or later
– Ruby 2.0.0 or later is additionally required for the CMock test framework (that we
use).

• For running the coverage target, gcov and lcov are additionally required.

Steps to build Unit Tests
1. Go to the root directory of this repository. (Make sure that the CMock submodule is cloned

as described above)

2. Run the cmake command: cmake -S test -B build

3. Run this command to build the library and unit tests: make -C build all

4. The generated test executables will be present in build/bin/tests folder.

5. Run cd build && ctest to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Reference examples Please refer to the demos of the MQTT Agent library in the following
locations for reference examples on FreeRTOS platforms:

Location
coreMQTT Agent Demos
FreeRTOS/FreeRTOS

Documentation The MQTT Agent API documentation can be found here.

Generating documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages yourself, please run the following command from the root
of this repository:

doxygen docs/doxygen/config.doxyfile

Getting help You can use your Github login to get support from both the FreeRTOS community
and directly from the primary FreeRTOS developers on our active support forum. You can find
a list of frequently asked questions here.

2.1. FreeRTOS 313

https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://github.com/FreeRTOS/coreMQTT-Agent-Demos
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/coreMQTT_Windows_Simulator/MQTT_Multitask
https://freertos.org/Documentation/api-ref/coreMQTT-Agent/docs/doxygen/output/html/index.html
https://forums.freertos.org
https://www.freertos.org/FAQ.html

MCUXpresso SDK Documentation, Release 25.09.00

Contributing See CONTRIBUTING.md for information on contributing.

License This library is licensed under the MIT License. See the LICENSE file.

2.1.8 corepkcs11

PKCS #11 key management library.

Readme

MCUXpresso SDK: corePKCS11 Library This repository is a fork of PKCS #11 keymanagement
library (https://github.com/FreeRTOS/corePKCS11/tree/v3.5.0)(v3.5.0). Modifications have been
made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable corepkcs11
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repositorymcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

corePKCS11 Library PKCS #11 is a standardized and widely used API for manipulating com-
mon cryptographic objects. It is important because the functions it specifies allow application
software to use, create, modify, and delete cryptographic objects, without ever exposing those
objects to the application’s memory. For example, FreeRTOS AWS reference integrations use a
small subset of the PKCS #11 API to, among other things, access the secret (private) key neces-
sary to create a network connection that is authenticated and secured by the Transport Layer
Security (TLS) protocol – without the application ever ‘seeing’ the key.

The Cryptoki or PKCS #11 standard defines a platform-independent API to manage and use cryp-
tographic tokens. The name, “PKCS #11”, is used interchangeably to refer to the API itself and
the standard which defines it.

This repository contains a software based mock implementation of the PKCS #11 interface (API)
that uses the cryptographic functionality provided by Mbed TLS. Using a software mock enables
rapid development and flexibility, but it is expected that the mock be replaced by an implemen-
tation specific to your chosen secure key storage in production devices.

Only a subset of the PKCS #11 standard is implemented, with a focus on operations involving
asymmetric keys, random number generation, and hashing.

The targeted use cases include certificate and keymanagement for TLS authentication and code-
sign signature verification, on small embedded devices.

corePKCS11 is implemented on PKCS #11 v2.4.0, the full PKCS #11 standard can be found on the
oasis website.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations frommandatory rules in theMISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis fromCoverity static analysis
and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.

corePKCS11 v3.5.0 source code is part of the FreeRTOS 202210.00 LTS release.
corePKCS11 v3.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

314 Chapter 2. RTOS

https://en.wikipedia.org/wiki/PKCS_11
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/corePKCS11/tree/v3.5.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/corePKCS11/tree/v3.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00

Purpose Generally vendors for secure cryptoprocessors such as Trusted Platform Module
(TPM), Hardware Security Module (HSM), Secure Element, or any other type of secure hard-
ware enclave, distribute a PKCS #11 implementation with the hardware. The purpose of the
corePKCS11 software only mock library is therefore to provide a non hardware specific PKCS
#11 implementation that allows for rapid prototyping and development before switching to a
cryptoprocessor specific PKCS #11 implementation in production devices.

Since the PKCS #11 interface is defined as part of the PKCS #11 specification replacing this li-
brary with another implementation should require little porting effort, as the interface will not
change. The system tests distributed in this repository can be leveraged to verify the behavior
of a different implementation is similar to corePKCS11.

corePKCS11 Configuration The corePKCS11 library exposes preprocessor macros whichmust
be defined prior to building the library. A list of all the configurations and their default values
are defined in the doxygen documentation for this library.

Build Prerequisites

Library Usage For building the library the following are required:

• A C99 compiler
• mbedcrypto library from mbedtls version 2.x or 3.x.

• pkcs11 API header(s) available from OASIS or OpenSC

Optionally, variables from the pkcsFilePaths.cmake file may be referenced if your project uses
cmake.

Integration and Unit Tests In order to run the integration and unit test suites the following
are dependencies are necessary:

• C Compiler
• CMake 3.13.0 or later
• Ruby 2.0.0 or later required by CMock.

• Python 3 required for configuring mbedtls.

• git required for fetching dependencies.

• GNU Make or Ninja
Thembedtls, CMock, andUnity libraries are downloaded and built automatically using the cmake
FetchContent feature.

Coverage Measurement and Instrumentation The following software is required to run the
coverage target:

• Linux, MacOS, or another POSIX-like environment.

• A recent version of GCC or Clang with support for gcov-like coverage instrumentation.

• gcov binary corresponding to your chosen compiler

• lcov from the Linux Test Project

• perl needed to run the lcov utility.

Coverage builds are validated on recent versions of Ubuntu Linux.

2.1. FreeRTOS 315

https://en.wikipedia.org/wiki/Trusted_Platform_Module
https://en.wikipedia.org/wiki/Hardware_security_module
https://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://github.com/ARMmbed/mbedtls
https://github.com/oasis-tcs/pkcs11
https://github.com/OpenSC/libp11/blob/master/src/pkcs11.h
https://github.com/linux-test-project/lcov

MCUXpresso SDK Documentation, Release 25.09.00

Running the Integration and Unit Tests
1. Navigate to the root directory of this repository in your shell.

2. Run cmake to construct a build tree: cmake -S test -B build

• You may specify your preferred build tool by appending -G'Unix Makefiles' or -GNinja
to the command above.

• You may append -DUNIT_TESTS=0 or -DSYSTEM_TESTS=0 to disable Unit Tests or
Integration Tests respectively.

3. Build the test binaries: cmake --build ./build --target all

4. Run ctest --test-dir ./build or cmake --build ./build --target test to run the tests without captur-
ing coverage.

5. Run cmake --build ./build --target coverage to run the tests and capture coverage data.

CBMC To learn more about CBMC and proofs specifically, review the training material here.

The test/cbmc/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Reference examples The FreeRTOS-Labs repository contains demos using the PKCS #11 li-
brary here using FreeRTOS on theWindows simulator platform. These can be used as reference
examples for the library API.

Porting Guide Documentation for porting corePKCS11 to a new platform can be found on the
AWS docs web page.

corePKCS11 is not meant to be ported to projects that have a TPM, HSM, or other hardware for
offloading crypto-processing. This library is specifically meant to be used for development and
prototyping.

Related Example Implementations These projects implement the PKCS #11 interface on real
hardware and have similar behavior to corePKCS11. It is preferred to use these, over coreP-
KCS11, as they allow for offloading Cryptography to separate hardware.

• ARM’s Platform Security Architecture.

• Microchip’s cryptoauthlib.

• Infineon’s Optiga Trust X.

Documentation

Existing Documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location
AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of corePKCS11 may differ across repositories.

316 Chapter 2. RTOS

https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://github.com/FreeRTOS/FreeRTOS-Labs/tree/master/FreeRTOS-Plus/Demo/FreeRTOS_Plus_PKCS11_Windows_Simulator/examples
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-pkcs.html
https://github.com/Linaro/freertos-pkcs11-psa
https://github.com/MicrochipTech/cryptoauthlib
https://github.com/aws/amazon-freertos/blob/main/vendors/infineon/secure_elements/pkcs11/iot_pkcs11_trustx.c
https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/corePKCS11/docs/doxygen/output/html/index.html

MCUXpresso SDK Documentation, Release 25.09.00

Generating Documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Security See CONTRIBUTING for more information.

License This library is licensed under the MIT-0 License. See the LICENSE file.

2.1.9 freertos-plus-tcp

Open source RTOS FreeRTOS Plus TCP.

Readme

MCUXpresso SDK: FreeRTOS-Plus-TCP Library This repository is a fork of FreeRTOS-Plus-TCP
library (https://github.com/FreeRTOS/freertos-plus-tcp)(4.3.3). Modifications have been made to
adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable FreeRTOS-Plus-TCP
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repositorymcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

FreeRTOS-Plus-TCP Library FreeRTOS-Plus-TCP is a lightweight TCP/IP stack for FreeRTOS. It
provides a familiar Berkeley sockets interface, making it as simple to use and learn as possi-
ble. FreeRTOS-Plus-TCP’s features and RAM footprint are fully scalable, making FreeRTOS-Plus-
TCP equally applicable to smaller lower throughput microcontrollers as well as larger higher
throughput microprocessors.

This library has undergone static code analysis and checks for compliance with the MISRA cod-
ing standard. Any deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. The library is validated for memory safety and data structure invariance through
the CBMC automated reasoning tool for the functions that parse data originating from the net-
work. The library is also protocol tested using Maxwell protocol tester for both IPv4 and IPv6.

FreeRTOS-Plus-TCP Library V4.2.2 source code is part of the FreeRTOS 202406.01 LTS re-
lease.

Getting started The easiest way to use version 4.0.0 and later of FreeRTOS-Plus-TCP is to refer
the Getting started Guide (found here) Another way is to start with the pre-configured IPv4Win-
dows Simulator demo (found in this directory) or IPv6Multi-endpointWindows Simulator demo
(found in this directory). That way you will have the correct FreeRTOS source files included, and
the correct include paths configured. Once a demo application is building and executing you can
remove the demo application files, and start to add in your own application source files. See the
FreeRTOS Kernel Quick Start Guide for detailed instructions and other useful links.

Additionally, for FreeRTOS-Plus-TCP source code organization refer to the Documentation, and
API Reference.

2.1. FreeRTOS 317

https://www.misra.org.uk/
https://www.misra.org.uk/
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/MISRA.md
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/MISRA.md
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/tree/V4.2.2/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202406.01-LTS
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/GettingStarted.md
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/FreeRTOS_Plus_TCP_Minimal_Windows_Simulator
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/FreeRTOS_Plus_TCP_IPv6_Demo/IPv6_Multi_WinSim_demo
https://www.freertos.org/Documentation/01-FreeRTOS-quick-start/01-Beginners-guide/02-Quick-start-guide
http://www.FreeRTOS.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/TCP_Networking_Tutorial.html
https://freertos.org/Documentation/03-Libraries/02-FreeRTOS-plus/02-FreeRTOS-plus-TCP/09-API-reference/01-FreeRTOS-plus-TCP-APIs

MCUXpresso SDK Documentation, Release 25.09.00

Getting help If you have any questions or need assistance troubleshooting your FreeRTOS
project, we have an active community that canhelp on the FreeRTOSCommunity Support Forum.
Please also refer to FAQ for frequently asked questions.

Also see the Submitting a bugs/feature request section of CONTRIBUTING.md for more details.

Note: All the remaining sections are generic and applies to all the versions from V3.0.0 onwards.

Upgrading to V4.3.0 and above For users of STM32 network interfaces:

Starting from version V4.3.0, the STM32 network interfaces have been consolidated into a sin-
gle unified implementation located at source/portable/NetworkInterface/STM32/NetworkInterface.c,
supporting STM32 F4, F7, and H7 series microcontrollers, with newly added support for STM32
H5. The new interface has been tested with the STM32 HAL Ethernet (ETH) drivers, avail-
able at source/portable/NetworkInterface/STM32/Drivers. For compatibility, the legacy interfaces
(STM32Fxx and STM32Hxx) have been retained and relocated to source/portable/NetworkInterface/
STM32/Legacy.

Upgrading to V3.0.0 and V3.1.0 In version 3.0.0 or 3.1.0, the folder structure of FreeRTOS-Plus-
TCP has changed and the files have been broken down into smaller logically separated mod-
ules. This changemakes the codemoremodular and conducive to unit-tests. FreeRTOS-Plus-TCP
V3.0.0 improves the robustness, security, and modularity of the library. Version 3.0.0 adds com-
prehensive unit test coverage for all lines and branches of code and has undergone protocol
testing, and penetration testing by AWS Security to reduce the exposure to security vulnerabili-
ties. Additionally, the source files have been moved to a source directory. This change requires
modification of any existing project(s) to include the modified source files and directories.

FreeRTOS-Plus-TCP V3.1.0 source code(.c .h) is part of the FreeRTOS 202210.00 LTS release.

Generating pre V3.0.0 folder structure for backward compatibility: If you wish to continue
using a version earlier than V3.0.0 i.e. continue to use your existing source code organization, a
script is provided to generate the folder structure similar to this.

Note: After running the script, while the .c files will have same names as the pre V3.0.0 source,
the files in the include directory will have different names and the number of files will differ as
well. This should, however, not pose any problems to most projects as projects generally include
all files in a given directory.

Running the script to generate pre V3.0.0 folder structure: For running the script, you will need
Python version > 3.7. You can download/install it from here.

Once python is downloaded and installed, you can verify the version from your termi-
nal/command window by typing python --version.

To run the script, you should switch to the FreeRTOS-Plus-TCP directory Then run python <Path/
to/the/script>/GenerateOriginalFiles.py.

To consume FreeRTOS+TCP

Consume with CMake If using CMake, it is recommended to use this repository using Fetch-
Content. Add the following into your project’s main or a subdirectory’s CMakeLists.txt:

• Define the source and version/tag you want to use:

FetchContent_Declare(freertos_plus_tcp
GIT_REPOSITORY https://github.com/FreeRTOS/FreeRTOS-Plus-TCP.git
GIT_TAG main #Note: Best practice to use specific git-hash or tagged version

(continues on next page)

318 Chapter 2. RTOS

https://forums.freertos.org
https://www.freertos.org/Why-FreeRTOS/FAQs
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/.github/CONTRIBUTING.md#submitting-a-bugsfeature-request
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/tree/V3.1.0
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/tree/f118c8415b4373e3d6e6dbd2d5a116f7eaf27b63
https://www.python.org/downloads/

MCUXpresso SDK Documentation, Release 25.09.00

(continued from previous page)
GIT_SUBMODULES ”” # Don't grab any submodules since not latest

)

• Configure the FreeRTOS-Kernel and make it available

– this particular example supports a native and cross-compiled build option.

Select the native compile PORT
set(FREERTOS_PLUS_TCP_NETWORK_IF ”POSIX” CACHE STRING ”” FORCE)
Or: select a cross-compile PORT
if (CMAKE_CROSSCOMPILING)
Eg. STM32Hxx version of port
set(FREERTOS_PLUS_TCP_NETWORK_IF ”STM32HXX” CACHE STRING ”” FORCE)

endif()

FetchContent_MakeAvailable(freertos_plus_tcp)

Consuming stand-alone This repository uses Git Submodules to bring in dependent compo-
nents.

Note: If you download the ZIP file provided by GitHub UI, you will not get the contents of the
submodules. (The ZIP file is also not a valid Git repository)

To clone using HTTPS:

git clone https://github.com/FreeRTOS/FreeRTOS-Plus-TCP.git ./FreeRTOS-Plus-TCP
cd ./FreeRTOS-Plus-TCP
git submodule update --checkout --init --recursive tools/CMock test/FreeRTOS-Kernel

Using SSH:

git clone git@github.com:FreeRTOS/FreeRTOS-Plus-TCP.git ./FreeRTOS-Plus-TCP
cd ./FreeRTOS-Plus-TCP
git submodule update --checkout --init --recursive tools/CMock test/FreeRTOS-Kernel

Porting The porting guide is available on this page.

Repository structure This repository contains the FreeRTOS-Plus-TCP repository and a num-
ber of supplementary libraries for testing/PR Checks. Below is the breakdown of what each di-
rectory contains:

• tools

– This directory contains the tools and related files (CMock/uncrustify) required to run
tests/checks on the TCP source code.

• tests

– This directory contains all the tests (unit tests and CBMC) and the dependencies
(FreeRTOS-Kernel/Litani-port) the tests require.

• source/portable

– This directory contains the portable files required to compile the FreeRTOS-Plus-TCP
source code for different hardware/compilers.

• source/include

– The include directory has all the ‘core’ header files of FreeRTOS-Plus-TCP source.

• source

2.1. FreeRTOS 319

https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://www.freertos.org/Documentation/03-Libraries/02-FreeRTOS-plus/02-FreeRTOS-plus-TCP/10-Porting/01-FreeRTOS_TCP_Porting
https://github.com/FreeRTOS/FreeRTOS-Kernel
https://github.com/awslabs/aws-build-accumulator

MCUXpresso SDK Documentation, Release 25.09.00

– This directory contains all the [.c] source files.

Note At this time it is recommended to use BufferAllocation_2.c in which case it is essential to
use the heap_4.c memory allocation scheme. See memory management.

Kernel sources The FreeRTOS Kernel Source is in FreeRTOS/FreeRTOS-Kernel repository, and
it is consumed by testing/PR checks as a submodule in this repository.

The version of the FreeRTOS Kernel Source in use could be accessed at ./test/FreeRTOS-Kernel
directory.

CBMC The test/cbmc/proofs directory contains CBMC proofs.

To learn more about CBMC and proofs specifically, review the training material here.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

320 Chapter 2. RTOS

http://www.FreeRTOS.org/a00111.html
https://github.com/FreeRTOS/FreeRTOS-Kernel
https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html

	Middleware
	Boot
	MCUXpresso SDK : mcuxsdk-middleware-mcuboot_opensource
	Overview
	Documentation
	Setup
	Contribution
	NXP Fork

	MCUboot
	MCUboot How-tos
	Roadmap
	Source files
	Joining the project

	Cloud
	AWS IoT
	Device Shadow Library
	AWS IoT Device Shadow library
	AWS IoT Device Shadow Config File
	Building the Library
	Building Unit Tests
	Checkout CMock Submodule
	Platform Prerequisites
	Steps to build unit tests
	CBMC
	Reference examples
	Documentation
	Existing Documentation
	Generating documentation
	Contributing

	Device Defender Library
	AWS IoT Device Defender Library
	AWS IoT Device Defender Client Config File
	Building the Library
	Building Unit Tests
	Platform Prerequisites
	Steps to build Unit Tests
	CBMC
	Reference examples
	Documentation
	Existing documentation
	Generating documentation
	Contributing

	Jobs Library
	README
	AWS IoT Jobs library
	Building the Jobs library
	CBMC
	Reference example
	Documentation
	Existing Documentation
	Generating Documentation
	Building unit tests
	Checkout Unity Submodule
	Platform Prerequisites
	Steps to build Unit Tests
	Contributing

	Over-the-air Update Library
	AWS IoT Over-the-air Update Library
	AWS IoT Over-the-air Updates Config File
	Building the Library
	Building Unit Tests
	Checkout CMock Submodule
	Platform Prerequisites
	Steps to build unit tests
	Migration Guide
	How to migrate from v2.0.0 (Release Candidate) to v3.4.0
	How to migrate from version 1.0.0 to version 3.4.0 for OTA applications
	Porting
	CBMC
	Reference examples
	Documentation
	Existing Documentation
	Generating documentation
	Contributing

	Connectivity
	lwIP
	The NXP lwIP Port
	Link state
	Rx task
	Disabling Rx interrupt when out of buffers
	Limit the number of packets read out from the driver at once on bare metal.
	Helper functions

	eIQ
	eIQ
	eIQ TensorFlow Lite for Micro Library User Guide
	Overview
	TensorFlow Lite for Microcontrollers
	Build Status
	Official Builds
	Community Supported TFLM Examples
	Community Supported Kernels and Unit Tests

	Contributing
	Getting Help
	Additional Documentation
	RFCs
	Deployment
	Example applications
	Model Conversion to TensorFlow Lite Format
	Model Conversion for NXP eIQ Neutron NPU
	Example: Converting a Quantized TensorFlow Lite Model for Neutron NPU
	Run and debug eIQ HiFi4 and HiFi1 DSP examples using Xplorer IDE
	Prepare CM33 Core for the examples
	Prepare DSP core for the examples

	Running an inference
	Converting a model to a C language header file {#EXAMPLE_4 .section}
	NPU inference {#npu_infer .section}
	Adjusting the tensor arena size {#adjust_arena .section}

	Code size optimization
	Register only used operators in TensorFlow Lite Micro {#SECTION_SS1_DJQ_QPB .section}

	Note about the source code in the document

	eIQ ExecuTorch Library User Guide
	Overview
	Supported platforms:
	Installation
	ExecuTorch for Ahead of Time model preparation
	Installation
	Neutron Converter
	Installation
	MCUXpresso SDK

	Getting the MCUXpresso SDK with eIQ ExecuTorch
	PyTorch Model Conversion to ExecuTorch Format
	MCUXpresso SDK Example applications
	How to build and run executorch_cifarnet example
	Convert the model and example input to C array
	Build, Deploy and Run
	How to build executorch_lib example

	File System
	FatFs
	MCUXpresso SDK : mcuxsdk-middleware-fatfs
	Overview
	Documentation
	Setup
	Contribution
	Repo Specific Content

	Changelog FatFs
	[R0.15_rev0]
	[R0.14b_rev1]
	[R0.14b_rev0]
	[R0.14a_rev0]
	[R0.14_rev0]
	[R0.13c_rev0]
	[R0.13b_rev0]
	[R0.13a_rev0]
	[R0.12c_rev1]
	[R0.12c_rev0]
	[R0.12b_rev0]
	[R0.11a]

	Motor Control
	FreeMASTER
	Introduction
	What is FreeMASTER?
	Driver version 3
	Target platforms
	Replacing existing drivers
	Clocks, pins, and peripheral initialization
	MCUXpresso SDK
	MCUXpresso SDK on GitHub
	FreeMASTER in Zephyr

	Example applications
	MCUX SDK Example applications
	Zephyr sample spplications

	Description
	Features
	Board Detection
	Memory Read
	Memory Write
	Masked Memory Write
	Oscilloscope
	Recorder
	TSA
	TSA Safety
	Application commands
	Pipes
	Serial single-wire operation
	Multi-session support
	Zephyr-specific
	Dedicated communication task
	Zephyr shell and logging over FreeMASTER pipe
	Automatic TSA tables

	Driver files
	Driver configuration
	Configurable items
	Interrupt modes
	Value Type
	Description
	Protocol transport
	Value Type
	Description
	Serial transport
	FMSTR_SERIAL_DRV
	Value Type
	Description
	FMSTR_SERIAL_BASE
	Value Type
	Description
	FMSTR_COMM_BUFFER_SIZE
	Value Type
	Description
	FMSTR_COMM_RQUEUE_SIZE
	Value Type
	Description
	FMSTR_SERIAL_SINGLEWIRE
	Value Type
	Description
	CAN Bus transport
	FMSTR_CAN_DRV
	Value Type
	Description
	FMSTR_CAN_BASE
	Value Type
	Description
	FMSTR_CAN_CMDID
	Value Type
	Description
	FMSTR_CAN_RSPID
	Value Type
	Description
	FMSTR_FLEXCAN_TXMB
	Value Type
	Description
	FMSTR_FLEXCAN_RXMB
	Value Type
	Description
	Network transport
	FMSTR_NET_DRV
	Value Type
	Description
	FMSTR_NET_PORT
	Value Type
	Description
	FMSTR_NET_BLOCKING_TIMEOUT
	Value Type
	Description
	FMSTR_NET_AUTODISCOVERY
	Value Type
	Description
	Debugging options
	FMSTR_DISABLE
	Value Type
	Description
	FMSTR_DEBUG_TX
	Value Type
	Description
	FMSTR_APPLICATION_STR
	Value Type
	Description
	Memory access
	FMSTR_USE_READMEM
	Value Type
	Description
	FMSTR_USE_WRITEMEM
	Value Type
	Description
	Oscilloscope options
	FMSTR_USE_SCOPE
	Value Type
	Description
	FMSTR_MAX_SCOPE_VARS
	Value Type
	Description
	Recorder options
	FMSTR_USE_RECORDER
	Value Type
	Description
	FMSTR_REC_BUFF_SIZE
	Value Type
	Description
	FMSTR_REC_TIMEBASE
	Value Type
	Description
	FMSTR_REC_FLOAT_TRIG
	Value Type
	Description
	Application Commands options
	FMSTR_USE_APPCMD
	Value Type
	Description
	FMSTR_APPCMD_BUFF_SIZE
	Value Type
	Description
	FMSTR_MAX_APPCMD_CALLS
	Value Type
	Description
	TSA options
	FMSTR_USE_TSA
	Value Type
	Description
	FMSTR_USE_TSA_SAFETY
	Value Type
	Description
	FMSTR_USE_TSA_INROM
	Value Type
	Description
	FMSTR_USE_TSA_DYNAMIC
	Value Type
	Description
	Pipes options
	FMSTR_USE_PIPES
	Value Type
	Description
	FMSTR_MAX_PIPES_COUNT
	Value Type
	Description

	Driver interrupt modes
	Completely Interrupt-Driven operation
	Mixed Interrupt and Polling Modes
	Completely Poll-driven

	Data types
	Communication interface initialization
	FreeMASTER Recorder calls
	Driver usage
	Communication troubleshooting

	Driver API
	Control API
	FMSTR_Init
	Prototype
	Description
	FMSTR_Poll
	Prototype
	Description
	FMSTR_SerialIsr / FMSTR_CanIsr
	Prototype
	Description

	Recorder API
	FMSTR_RecorderCreate
	Prototype
	Description
	FMSTR_Recorder
	Prototype
	Description
	FMSTR_RecorderTrigger
	Prototype
	Description

	Fast Recorder API
	TSA Tables
	TSA table definition
	TSA descriptor parameters
	TSA variable types
	TSA table list
	TSA Active Content entries

	TSA API
	FMSTR_SetUpTsaBuff
	Prototype
	Arguments
	Description
	FMSTR_TsaAddVar
	Prototype
	Arguments
	Description

	Application Commands API
	FMSTR_GetAppCmd
	Prototype
	Description
	FMSTR_GetAppCmdData
	Prototype
	Arguments
	Description
	FMSTR_AppCmdAck
	Prototype
	Arguments
	Description
	FMSTR_AppCmdSetResponseData
	Prototype
	Arguments
	Description
	FMSTR_RegisterAppCmdCall
	Prototype
	Arguments
	Return value
	Description

	Pipes API
	FMSTR_PipeOpen
	Prototype
	Arguments
	Description
	FMSTR_PipeClose
	Prototype
	Arguments
	Description
	FMSTR_PipeWrite
	Prototype
	Arguments
	Description
	FMSTR_PipeRead
	Prototype
	Arguments
	Description

	API data types
	Public common types
	Public TSA types
	Public Pipes types
	Internal types

	Document references
	Links
	Documents
	Revision history

	Multimedia
	Audio Voice
	Audio Voice Components
	MCUXpresso SDK : audio-voice-components
	Overview
	Documentation
	Setup
	Contribution
	Overview
	Content
	Asynchronous Sample Rate Converter
	Synchronous Sample Rate Converter
	Opus
	Opus File
	Ogg Container
	Decoders
	AAC
	FLAC
	MP3
	WAV
	Zephyr build

	AAC decoder
	AAC decoder features
	Specification and reference
	Performance
	Memory information
	CPU usage

	API Usage of AAC Decoder
	Overview
	Configuration
	Build Options
	Buffer Allocation
	Initialization
	Decoding
	Seeking
	Callback Usage
	Read Callback API
	Seek Callback API
	Get File Position Callback API

	FLAC decoder
	FLAC decoder features
	Specification and reference
	Official website
	Inbound licensing
	Performance
	Memory information
	CPU usage
	Following test cases are performed:

	API Usage of FLAC Decoder
	Overview
	Configuration
	Build Options
	Buffer Allocation
	Initialization
	Decoding
	Seeking
	Callback Usage
	Read Callback API
	Seek Callback API
	Get File Position Callback API

	MP3 decoder
	MP3 decoder features
	Performance
	Memory information
	CPU usage

	API Usage of MP3 Decoder
	Overview
	Configuration
	Build Options
	Buffer Allocation
	Initialization
	Decoding
	Seeking
	Callback Usage
	Read Callback API
	Seek Callback API
	Get File Position Callback API

	WAV decoder
	WAV decoder features
	Performance
	Memory information
	CPU usage
	Following test cases were performed:

	API Usage of WAV Decoder
	Overview
	Configuration
	Build Options
	Buffer Allocation
	Initialization
	Decoding
	Seeking
	Callback Usage
	Read Callback API
	Seek Callback API
	Get File Position Callback API

	Synchronous Sample Rate Converter
	Introduction
	Acronyms
	Performance figures
	Resource usage
	Memory requirements
	Processing requirements
	On Arm7 and Arm9
	On Arm9e and XScale
	On Cortex-A8 for worst case of 48000 Hz to 44100 Hz
	Application programmers interface (API)
	Type definitions
	Types for allocation of instance and scratch memory
	LVM_Fs_en
	LVM_Format_en
	SSRC_Quality_en
	Instance parameters
	Nr of samples mode
	Function return status
	Functions
	SSRC_GetNrSamples
	SSRC_GetScratchSize
	SSRC_Init
	SSRC_SetGains
	SSRC_Process
	SSRC_Process_D32
	Dynamic function usage
	Define the number of samples to be used on input and output
	Allocate scratch memory
	Initialize the SSRC instance
	Process samples
	Destroy the SSRC instance
	Reentrancy
	Additional user information
	Attenuation of the signal
	Notes on integration
	Example application
	Integration test
	Bit accurate test
	THD+N measurement

	Maestro Audio Framework
	MCUXpresso SDK : Maestro
	Overview
	Documentation
	Setup
	Contribution
	Introduction
	Maestro on Zephyr
	Maestro on FreeRTOS
	Supported examples
	Example applications overview
	File structure

	Maestro Audio Framework Programmer’s Guide
	Introduction
	Architecture overview
	Pipeline
	Elements
	Add a new element type
	Add a new element index
	Pads
	Internal communication
	Decoders and encoders
	Common codec interface
	Using the CCI to interface with Metadata
	Using the CCI to interface with Decoders
	Adding new decoders to the CCI
	Common encoder interface
	Maestro performance
	Memory information
	CPU usage

	CEI encoder
	Header files
	Instantiating the element
	Element properties
	CEI definition - implementing your own encoder

	Maestro playback example
	Table of content
	Overview
	Hardware requirements
	Hardware modifications
	Preparation
	Running the demo
	Example configuration
	Functionality
	States
	Commands in detail
	help, version
	file stop
	file pause
	file volume <volume>
	file seek <seek_time>
	file play <filename>
	file list
	file info
	Processing Time

	Maestro record example
	Table of content
	Overview
	Hardware requirements
	Hardware modifications
	Preparation
	Running the demo
	Example configuration
	Functionality
	States
	Commands in detail
	help, version
	record_mic audio <time>
	record_mic file <time>/record_mic <file_name> <time>
	record_mic vit <time> <language>
	opus_encode
	Processing Time

	Maestro sync example
	Table of content
	Overview
	Hardware requirements
	Hardware modifications
	Preparation
	Running the demo
	Example configuration
	Functionality
	States
	Commands in detail
	help, version
	start [nosdcard]
	stop
	debug [on|off]

	Maestro USB microphone example
	Table of content
	Overview
	Hardware requirements
	Hardware modifications
	Preparation
	Running the demo
	Example configuration
	Functionality
	States
	Commands in detail
	help, version
	usb_mic <seconds>

	Maestro USB speaker example
	Table of content
	Overview
	Hardware requirements
	Hardware modifications
	Preparation
	Running the demo
	Example configuration
	Functionality
	States
	Commands in detail
	help, version
	usb_speaker <seconds>

	Supported features
	Decoders
	Encoders
	Sample rate converters
	Additional libraries

	Processing Time
	Table of content
	Maestro playback example
	Time on each element
	Maestro record example
	Pipeline Microphone -> Speaker
	Pipeline Microphone -> VIT
	Pipeline Microphone -> Voice seeker -> VIT

	Maestro on Zephyr
	Maestro sample for recording data from microphone to RAM
	Description
	User Input/Output
	Supported platforms
	Maestro voice detection sample using VIT
	Description
	User Input/Output
	Dependencies
	Supported platforms
	Maestro decoder sample
	Description
	User Input/Output
	Dependencies
	Configuration
	Supported platforms
	Maestro encoder sample
	Description
	Dependencies
	User Input/Output
	Configuration
	Supported platforms
	Maestro mem2mem sample
	Description
	Maestro environment setup
	Build and run Maestro example
	Using command line
	Using MCUXpresso for VS Code
	Folder structure
	Supported elements and libraries
	Examples support
	Creating your own example
	Documentation
	FAQ

	Maestro Audio Framework changelog
	2.0.0 (newest)
	1.8.0
	1.7.0
	1.6.0
	1.5.0
	1.4.0
	1.3.0
	1.2.0
	1.0_rev0

	Wireless
	NXP Wireless Framework and Stacks
	Wi-Fi, Bluetooth, 802.15.4
	Application notes
	User manuals
	Release notes
	Wireless SoC features and release notes for FreeRTOS
	About this document
	Supported products
	Features
	Wi-Fi radio
	Client mode
	AP mode
	AP-STA mode
	Wi-Fi Generic features
	Wi-Fi direct/P2P
	Bluetooth radio
	Bluetooth classic
	Bluetooth LE
	802.15.4 radio
	Coexistence
	Wi-Fi and Bluetooth/802.15.4 coexistence
	Feature enable and memory impact
	88W8987 release notes
	Package information
	Version information
	Host platform
	Wi-Fi and Bluetooth certification
	WFA certifications
	Bluetooth controller certification
	Wi-Fi throughput
	Throughput test setup
	STA throughput
	Mobile AP throughput
	EU conformance tests
	Bug fixes and/or feature enhancements
	Firmware version: From 16.91.21.p64.1 to 16.91.21.p82
	Firmware version: From 16.91.21.p82 to 16.91.21.p91.6
	Firmware version: From 16.91.21.p91.6 to 16.91.21.p124
	Firmware version: From 16.91.21.p124 to 16.91.21.p133
	Firmware version: From 16.91.21.p133 to 16.91.21.p142.5
	Firmware version: From 16.91.21.p142.5 to 16.91.21.p149.2
	Firmware version: From 16.91.21.p149.2 to 16.92.21.p151.7
	Firmware version: From 16.91.21.p149.2 to 16.92.21.p151.7
	Firmware version: From 16.92.21.p151.7 to 16.92.21.p153.5
	Known issues
	IW416 release notes
	Package information
	Version information
	Host platform
	Wi-Fi and Bluetooth certification
	WFA certifications
	Bluetooth controller certification
	Wi-Fi throughput
	Throughput test setup
	STA throughput
	Mobile AP throughput
	EU conformance tests
	Bug fixes and/or feature enhancements
	Firmware version: From 16.91.21.p64.1 to 16.91.21.p82
	Firmware version: From 16.91.21.p82 to 16.91.21.p91.6
	Firmware version: From 16.91.21.p91.6 to 16.91.21.p124
	Firmware version: From 16.91.21.p124 to 16.91.21.p133
	Firmware version: From 16.91.21.p133 to 16.91.21.p133.2
	Firmware version: From 16.91.21.p133.2 to 16.91.21.p142.5
	Firmware version: From 16.91.21.p142.5 to 16.91.21.p149.4
	Firmware version: From 16.91.21.p149.4 to 16.92.21.p151.7
	Firmware version: From 16.92.21.p151.7 to 16.92.21.p153.5
	Known issues
	IW611/IW612 release notes
	Package information
	Version information
	Host platform
	Wi-Fi and Bluetooth certification
	WFA certifications
	Bluetooth controller certification
	Wi-Fi throughput
	Throughput test setup
	iPerf host configuration and impact on throughput {#iperf_host_configuration_and_impact_on_throughput}
	STA and AP throughput captured with the minimum values of the host configuration macros {#sta_and_ap_throughput_captured_with_the_minimum_values_of_the_host_configuration_macros}
	STA throughput
	Mobile AP throughput
	EU conformance tests
	Bug fixes and/or feature enhancements
	Firmware version: 18.99.2.p7.19
	Firmware version: 18.99.2.p7.19 to 18.99.2.p49.9
	Firmware version: 18.99.2.p49.9 to 18.99.2.p155
	Firmware version: 18.99.2.p155 to 18.99.2.p66.30
	Firmware version: 18.99.2.p66.30 to 18.99.3.p10.5
	Firmware version: 18.99.3.p10.5 to 18.99.3.p17.9
	Firmware version: 18.99.3.p17.9 to 18.99.3.p21.154
	Firmware version: 18.99.3.p21.154 to 18.99.3.p23.16
	Firmware version: 18.99.3.p23.16 to 18.99.3.p25.11
	Firmware version: 18.99.3.p25.11 to 18.99.3.p26.10
	Known issues
	RW610/RW612 release notes
	Package information
	Version information
	Host platform
	Wireless certification
	WFA certifications
	Bluetooth LE controller certification
	Thread
	Matter
	Wi-Fi throughput
	Throughput test setup
	STA throughput
	Mobile AP throughput
	Bug fixes and/or feature enhancements
	Firmware version: 18.99.6.p34 to 18.99.6.p40
	Firmware version: 18.99.6.p40 to 18.99.6.p46
	Known issues
	IW610 release notes
	Package information
	Version information
	Host platform
	Wi-Fi and Bluetooth certification
	WFA certifications
	Bluetooth controller certification
	Wi-Fi throughput
	Throughput test setup
	STA throughput
	Mobile AP throughput
	Bug fixes and/or feature enhancements
	Firmware version: 18.99.5.p66 to 18.99.5.p76
	Known issues
	AW611 release notes
	Package information
	Version information
	Host platform
	Wi-Fi and Bluetooth certification
	WFA certifications
	Bluetooth controller certification
	Wi-Fi throughput
	Throughput test setup
	STA throughput
	Mobile AP throughput
	EU conformance tests
	Bug fixes and/or feature enhancements
	Firmware version: 18.99.3.p10.5 to 18.99.3.p17.9
	Firmware version: 18.99.3.p17.9 to 18.99.3.p21.154
	Firmware version: 18.99.3.p23.16 to 18.99.3.p25.11
	Firmware version: 18.99.3.p25.11 to 18.99.3.p26.10
	Known issues
	Abbreviations
	References

	EdgeFast Bluetooth
	MCUXpressoSDK EdgeFast Bluetooth Protocol Abstraction
	Introduction
	Stack API Reference

	Overview
	Folder structure
	Architecture
	Features
	Bluetooth features
	Toolchain support
	RTOS support
	Examples list

	Hardware
	Reference boards list
	Dual-chip wireless module list

	Demo
	Run a demo application using IAR
	Open an IAR example
	Build an IAR example
	Run an IAR example
	Run a demo application using MCUXpresso IDE
	Open an MCUXpresso IDE example
	Build an MCUXpresso IDE example
	Run an MCUXpresso IDE example
	Run a demo application using MDK
	Open an MDK project
	Build an MDK example
	Run an MDK example
	Run a demo application using Arm GCC
	Setup tool chains
	Build a GCC example
	Run a GCC example
	Download Linker Layer firmware from the reference board
	Change board-specific parameters
	Change HCI UART parameters
	Change USB Host stack parameters

	Known issues
	Notes
	EdgeFast BT PAL configuration documentation

	Rework Guide for EdgeFast Bluetooth Protocol Abstraction Layer
	Hardware Rework Guide for MIMXRT1170-EVKB and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT1170-EVKB and Murata 2EL M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT685-EVK and AW-AM457-uSD
	Hardware rework

	Hardware Rework Guide for MIMXRT685-EVK and AW-CM358-uSD
	Hardware rework

	Hardware Rework Guide for MIMXRT685-EVK and AW-AM510-uSD
	Hardware rework

	Hardware Rework Guide for MIMXRT685-EVK and Murata uSD-M.2 Adapter
	Hardware rework

	Hardware Rework Guide for MIMXRT685-AUD-EVK and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for Low Power Feature on MIMXRT595-EVK and Murata 2EL M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT595-EVK and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for Low Power Feature on MIMXRT595-EVK and Murata 1XK M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT595-EVK and AW-AM510MA
	Hardware rework

	Hardware Rework Guide for MIMXRT595-EVK and AW-CM358MA
	Hardware rework

	Hardware Rework Guide for MIMXRT1040-EVK and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT1060-EVKC and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT1060-EVKC and Murata 2EL M.2 Adapter
	Hardware rework

	Hardware Rework Guide for MCXN547-EVK and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for MCXN947-EVK and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for IMXRT1050-EVKB and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT1180 and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for FRDM-MCXN947 and X-FRDM-WIFI-M.2 Adapter
	Hardware rework

	Hardware Rework Guide for FRDM-MCXN947 and FRDM-IW416-AW-AM510
	Hardware rework

	Enabling Additional EdgeFast Bluetooth Protocol Abstraction Layer Examples on RT1064
	Introduction
	Migrate examples from RT1060EVK to RT1064
	Common steps
	IAR
	Arm GCC
	MDK

	Migrate examples from RT1060EVKC to RT1064
	Common steps
	IAR
	Arm GCC
	MDK

	Note about the source code in the document

	Enabling Additional Edgefast BT PAL Examples on M4 core for RT1170
	Introduction
	IAR
	Create an M4 project
	Rearrange source files
	Rearrange project files
	Adjust project settings
	Delete function

	Arm GCC
	Create an M4 project
	Rearrange source files
	Rearrange project files
	Adjust project setting
	Delete function

	MDK
	Create an M4 project
	Rearrange source files
	Rearrange project files
	Adjust project settings
	Delete function

	Note

	RTOS
	FreeRTOS
	FreeRTOS kernel
	FreeRTOS kernel for MCUXpresso SDK Readme
	FreeRTOS kernel for MCUXpresso SDK
	Overview
	FreeRTOS example applications
	List of examples
	Location of examples
	Building a FreeRTOS example application
	FreeRTOS aware debugger plugin

	FreeRTOS kernel for MCUXpresso SDK ChangeLog
	Changelog FreeRTOS kernel for MCUXpresso SDK
	[Unreleased]
	Added
	[11.1.0_rev0]
	[11.0.1_rev0]
	[10.5.1_rev0]
	[10.4.3_rev1]
	[10.4.3_rev0]
	[10.4.3_rev0]
	[9.0.0_rev3]
	[9.0.0_rev2]
	[9.0.0_rev1]
	[9.0.0_rev0]
	[8.2.3]

	FreeRTOS kernel Readme
	MCUXpresso SDK: FreeRTOS kernel
	Getting started
	Getting help
	To consume FreeRTOS-Kernel
	Consume with CMake
	Consuming stand-alone - Cloning this repository
	Repository structure
	Code Formatting
	Line Endings
	Git History Optimizations
	Spelling and Formatting

	FreeRTOS drivers
	backoffalgorithm
	Readme
	MCUXpresso SDK: backoffAlgorithm Library
	backoffAlgorithm Library
	Reference example
	Building the library
	Building unit tests
	Checkout Unity Submodule
	Platform Prerequisites
	Steps to build Unit Tests
	Contributing

	corehttp
	MCUXpresso SDK: coreHTTP Client Library
	coreHTTP Client Library
	coreHTTP Config File
	Building the Library
	Building Unit Tests
	Platform Prerequisites
	Steps to build Unit Tests

	CBMC
	Reference examples
	Documentation
	Existing Documentation
	Generating Documentation

	Contributing

	corejson
	Readme
	MCUXpresso SDK: coreJSON Library
	coreJSON Library
	Reference example
	Building coreJSON
	Documentation
	Existing documentation
	Generating documentation
	Building unit tests
	Checkout Unity Submodule
	Platform Prerequisites
	Steps to build Unit Tests
	CBMC
	Contributing

	coremqtt
	MCUXpresso SDK: coreMQTT Library
	coreMQTT Client Library
	MQTT Config File
	Sending metrics to AWS IoT
	Upgrading to v2.0.0 and above
	Building the Library
	Building Unit Tests
	Checkout CMock Submodule
	Platform Prerequisites
	Steps to build Unit Tests

	CBMC
	Reference examples
	Documentation
	Existing Documentation
	Generating Documentation

	Contributing

	coremqtt-agent
	Readme
	MCUXpresso SDK: coreMQTT Agent Library
	coreMQTT Agent Library
	Cloning this repository
	coreMQTT Agent Library Configurations
	Porting the coreMQTT Agent Library
	Messaging Interface
	Additional Considerations
	Static Memory
	Subscription Management
	Building the Library
	Building Unit Tests
	Checkout CMock Submodule
	Unit Test Platform Prerequisites
	Steps to build Unit Tests
	CBMC
	Reference examples
	Documentation
	Generating documentation
	Getting help
	Contributing
	License

	corepkcs11
	Readme
	MCUXpresso SDK: corePKCS11 Library
	corePKCS11 Library
	Purpose
	corePKCS11 Configuration
	Build Prerequisites
	Library Usage
	Integration and Unit Tests
	Coverage Measurement and Instrumentation
	Running the Integration and Unit Tests
	CBMC
	Reference examples
	Porting Guide
	Related Example Implementations
	Documentation
	Existing Documentation
	Generating Documentation
	Security
	License

	freertos-plus-tcp
	Readme
	MCUXpresso SDK: FreeRTOS-Plus-TCP Library
	FreeRTOS-Plus-TCP Library
	Getting started
	Getting help
	Upgrading to V4.3.0 and above
	Upgrading to V3.0.0 and V3.1.0
	Generating pre V3.0.0 folder structure for backward compatibility:
	To consume FreeRTOS+TCP
	Consume with CMake
	Consuming stand-alone
	Porting
	Repository structure
	Note
	Kernel sources
	CBMC

