- Nxa MCUXpresso SDK Documentation
Release 25.09.00-pvw2

NXP

Aug 12, 2025 -

Table of contents

1 RD-RW612-BGA 3
11 OVEIVIEW . . o oo e e e e e e e e e e e e e e e e 3
1.2 Getting Started with MCUXpresso SDKPackage 3

1.2.1 Getting Started with Package, 3
1.3 Getting Started with MCUXpresso SDKGitHub 4
1.3.1 Getting Started with MCUXpresso SDK Repository 4
1.4 Release NOteS ot i e e e e e 17
1.41 MCUXpresso SDKReleaseNotes, 17
1.5 Changelog o ittt e e e e e e e e e e e e e e e e e 23
1.5.1 MCUXpresso SDKChangelogo ... 23
1.6 Driver API Reference Manual 84
1.7 Middleware Documentation 84
1.7.1 Wireless Connectivity Framework 84
172 MCUBOOU . v v v vt it e e e e e e e e 84
1.7.3 Audio Voice COMPONENtES v v v v vt e e e e et e et e et e e e 85
1.7.4 Maestro Audio Frameworkfor MCU, 85
1.7.5 FreeMASTER e 85
1.7.6 AWSIOT . . o e e 85
177 NXPWI-FL .o 85
1.7.8 FreeRTOS o e 85
1.7.9 Wireless EdgeFast Bluetooth PAL. 85
1700 IWIP . .o e e e 85
1.7.11 FilesystemFatfs e e 85

2 RW612 87
2.1 ACOMP: Analog Comparator v vttt ittt et oo 87
2.2 ADC: Analog Digital Converterottt ittt e 96
2.3 CACHE: CACHE Memory Controller 112
24 CDOG . vt e e 116
2.5 Clock DIivVer o e e e 120
2.6 CRC: Cyclic Redundancy Check Driver, 138
2.7 CTIMER: Standard counter/timerst i ittt ittt it e e 141
2.8 DAC: Digital Analog Convertert ittt ittt it 150
2.9 DMA: Direct Memory Access Controller Driver 161
2.10 DMIC: Digital Microphone. e 178
211 DMICDMADIIVEL . . . ot ot et e 178
212 DMICDIIVEL . . . ottt e e e e e e e e e e e e e e e e 180
2.13 ENET: Ethernet MACDriver @ittt it it e 189
2.14 FLEXCOMM: FLEXCOMMDTIiver.« v v v vttt i e e e e e u s 220
2.15 FLEXCOMMDIIVEL o ot it it e 220
2.16 FLEXSPI: Flexible Serial Peripheral Interface Driver 221
2.17 FLEXSPIDMADIIVEL . . o . ot o it i e 238
2.18 FMEAS: Frequency Measure Driverottt it it e e 241
2.19 GDMA: General DMA(GDMA) Driverttt 241
2.20 I2C:Inter-Integrated CircuitDriver 250
2.21 I2CDMADTIVEL . . o ot e e e e e e s e e e e e e e e e e e e e e e 250

3

2.22 T2CDTIVET . . o ot e e e e e e e e e 252
2.23 T2CMaster DIIiVer o ot i e e e e e e e e 256
2.24 T2CSlave DIiVer o ot e e e e e e e e e e e e e e e e e 265
225 I2S:I2SDIIVET . . o o o o e 274
2.26 I2S_BRIDGE: I2S bridging and signal sharing configuration 274
2.27 I2SDMADIIVEL . . . o ottt e e e e e e e e e e e e e e e e 276
228 I2SDIIVET . . L o ot e e e e e e e 280
2.29 IMU: Inter CPU Messaging Unit ittt ittt et et e e 288
2.30 INPUTMUX: Input Multiplexing Driver oo, 295
2.31 TIO_MUXDIIVET . . ottt e 310
2.32 IPED DIIVET o o e e e e e e e 318
2.33 Intrusion and Tamper Response Controller 322
234 ITRC . . o o ot e e e e e e e e e 322
2.35 CommoOn DIIVEr e e e e e e e e 325
236 LCDICDIIVET ot ot e 337
2.37 LCDICDMADIIVEL . . . o ot e 356
2.38 LCDIC: LCD Interface Controller it 358
2.39 GPIO: General Purpose I/O i it e e e 358
240 MRT: Multi-Rate Timer. ot e e e e e e et e e 362
2.41 This type defines status return values used by NBOOT functions that are not easily
disturbed by Fault Attacks e 366
242 OCOTPDIIVEr . . . ottt e 367
243 OSTIMER: OSEvent Timer Driver v it v i i ittt et et e e e 369
2.44 PINT: Pin Interrupt and Pattern Match Driver 372
245 POWEr DIIVET ot et e e e e e e e e e e e e 381
2.46 POWERQUAD: PowerQuad hardware accelerator 389
247 Reset Driver e e 419
248 RTC:Real Time Clock o oo e e e e 422
249 Sbhloader 428
2.50 SCTimer: SCTIimer/PWM (SCT) o it e e e e e et e e e e e 432
2.51 Sdioslv_sdu_driver i i i e e e e e e e e 449
252 SmartCard e e e e 461
2.53 SmartCard PHY Driver @ e 469
2.54 Smart Card PHY USIM W e et e e e 471
2.55 Smart Card USIM DIIVer o vttt e e e e e e 471
2.56 SPI: Serial Peripheral Interface Driver 474
257 SPIDMADIIVET o e e e e e e e e e e e 474
258 SPIDTIVEr. . . . ot i e e e e e e e e e 478
2.59 TRNG: True Random Number Generator.o o.... 486
2.60 USART: Universal Synchronous/Asynchronous Receiver/Transmitter Driver 491
2.61 USART DMADTIVET . . . o ottt e 491
2.62 USART DIIVETr ¢ ot i e 493
2.63 UTICK: MictoTick Timer Driver ittt 510
2.64 WWDT: Windowed Watchdog Timer Driverot 511
Middleware 517
31 BOOt . . e e e e 517
3.1.1 MCUXpresso SDK : mcuxsdk-middleware-mcuboot_opensource 517
3.1.2 MCUDOOL. . . v ittt e e e e e e e 518
3.2 Cloudo e e e e e e 519
321 AWSIOT . . .o e e e e e 519
3.3 ConnectiVItY . . . o vttt e e e e e e e e e e e e e e 528
331 IWIP. . e 528
34 File Systemo e e e e e e e e e e e 529
340 FatFs . .. oo e e 529
3.5 Motor Control 531
3.5.1 FreeMASTER e 531
3.6 Multimedia ot i e e e e 568

ii

36,1 AUudiOVOICE . . . v vttt e e e e e e e e e e e e e e e 568

3.7 WIreless . . . ot e e e e e e e e e e e e 651
3.7.1 NXP Wireless Frameworkand Stacks 651

4 RTOS 715
4.1 FreeRTOS o e e e e e e 715
4.1.1 FreeRTOSkernel i 715

4.1.2 FreeRTOSAIIVEIS ot it ittt e e e e e et e e et et e e e 721

4.1.3 backoffalgorithm 721

414 COrenttD . . . vt e e e e e e e e e e e e e e 724

415 COTEJSOML . o v v ot e 726

4.1.6 coremqtt. o i e e e e e e e e e e e e e 729

4.1.7 coremqtt-agent e 732

4.1.8 corepkesll e e e 736

4.1.9 freertos-plus-tCp . . v v v v vt i e e e e e e e e e e 739

iii

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

This documentation contains information specific to the rdrw612bga board.

Table of contents 1

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

2 Table of contents

Chapter 1

RD-RW612-BGA

1.1 Overview

MCU device and part on board is shown below:
* Device: RW612
* PartNumber: RW612ETA2I

1.2 Getting Started with MCUXpresso SDK Package

1.2.1 Getting Started with Package

* Overview
* MCUXpresso SDK board support package folders
- Example application structure
— Locating example application source files
* Run a demo using MCUXpresso IDE
— Select the workspace location
— Build an example application
— Run an example application

* Run a demo application using IAR

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

— Build an example application
— Run an example application
— IAR RAM debugging notes
* Run a demo using Arm GCC
— Set up toolchain
Install GCC ARM Embedded tool chain
* Install MinGW
* Add a new system environment variable for ARMGCC_DIR
* Install CMake
— Build a demo application
— Run a demo application
* Run a demo using Keil MDK/uVision
— Install CMSIS device pack
— Build an example application
— Run an example application
* MCUXpresso IDE New Project Wizard
* How to determine COM port
How to define IRQ handler in CPP files

Default debug interfaces

Updating debugger firmware
— Updating OpenSDA firmware
— Updating MCU-Link firmware

1.3 Getting Started with MCUXpresso SDK GitHub

1.3.1 Getting Started with MCUXpresso SDK Repository
Installation

NOTE

If the installation instruction asks/selects whether to have the tool installation path added to
the PATH variable, agree/select the choice. This option ensures that the tool can be used in any
terminal in any path. Verify the installation after each tool installation.

Install Prerequisites with MCUXpresso Installer The MCUXpresso Installer offers a quick
and easy way to install the basic tools needed. The MCUXpresso Installer can be obtained from
https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Dependency-Installation. The MCUX-
presso Installer is an automated installation process, simply select MCUXpresso SDK Developer
from the menu and click install. If you prefer to install the basic tools manually, refer to the next
section.

4 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

MCUXpresso Installer v24.09

MCUXpresso Installer

Choose one or more categories from the list below:

Software Kits

MCUXpresso SDK Developer

fora Vv M will install:
1. macos-homebrew - Homebrew, package mang

[

Zephyr Developer
Ne - 3

&

Lo W

. Arm GNU Toolchain - Toolchain for Arm Archit
0. libncurses5 - Library managing an application’
. Arm GNU Toolchain add-ons - Additional NXP
. Arm GNU Toolchain Standalone add-ons - Ad
. Python - Programming language support.
Arm GNU Toolchain 10. pip - Package installer for Python.

. . . vest - Manage multiple Git repositories unde
iain and additional B hre hbrre o

Standalone Toolchain Add-ons

Matter Developer
Ne s for a Matte

al

~ g

=]

ARM components

o

Alternative: Manual Installation
Basic tools

Git Git is a free and open source distributed version control system. Git is designed to handle
everything from small to large projects with speed and efficiency. To install Git, visit the official
Git website. Download the appropriate version(you may use the latest one) for your operating
system (Windows, macOS, Linux). Then run the installer and follow the installation instructions.

User git --version to check the version if you have a version installed.
Then configure your username and email using the commands:

git config --global user.name ”Your Name”
git config --global user.email "youremail@example.com”

Python Install python 3.10 or latest. Follow the Python Download guide.

Use python --version to check the version if you have a version installed.

West Please use the west version equal or greater than 1.2.0

Note: you can add option '--default-timeout=1000" if you meet connection issue. Or you may set a different,
—source using option '-i'.

for example, in China you could try: pip install -U west -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install -U west

1.3. Getting Started with MCUXpresso SDK GitHub 5

https://git-scm.com/
https://wiki.python.org/moin/BeginnersGuide/Download

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Build And Configuration System

CMake Itis strongly recommended to use CMake version equal or later than 3.30.0. You can get
latest CMake distributions from the official CMake download page.

For Windows, you can directly use the .msi installer like cmake-3.31.4-windows-x86_64.msi to
install.

For Linux, CMake can be installed using the system package manager or by getting binaries from
the official CMake download page.

After installation, you can use cmake --version to check the version.

Ninja Please use the ninja version equal or later than 1.12.1.

By default, Windows comes with the Ninja program. If the default Ninja version is too old, you
can directly download the ninja binary and register the ninja executor location path into your
system path variable to work.

For Linux, you can use your system package manager or you can directly download the ninja
binary to work.

After installation, you can use ninja --version to check the version.

Kconfig MCUXpresso SDK uses Kconfig python implementation. We customize it based on our
needs and integrate it into our build and configuration system. The Kconfiglib sources are placed
under mcuxsdk/scripts/kconfig folder.

Please make sure python environment is setup ready then you can use the Kconfig.

Ruby Our build system supports IDE project generation for iar, mdk, codewarrior and xtensa
to provide OOBE from build to debug. This feature is implemented with ruby. You can follow
the guide ruby environment setup to setup the ruby environment. Since we provide a built-in
portable ruby, it is just a simple one cmd installation.

If you only work with CLI, you can skip this step.

Toolchain MCUXpresso SDK supports all mainstream toolchains for embedded development.
You can install your used or interested toolchains following the guides.

Toolchain Download and Installation Guide Note
Armgcc Arm GNU Toolchain Install Guide ARMGCC is default
toolchain
IAR IAR Installation and Licensing quick ref-
erence guide
MDK MDK Installation
Armclang Installing Arm Compiler for Embedded
Zephyr Zephyr SDK
Codewarrior NXP CodeWarrior
Xtensa Tensilica Tools

NXP S32Compiler RISC- NXP Website
V Zen-V

6 Chapter 1. RD-RW612-BGA

https://cmake.org/download/
https://github.com/Kitware/CMake/releases/download/v3.31.4/cmake-3.31.4-windows-x86_64.msi
https://cmake.org/download/
https://github.com/ninja-build/ninja/releases
https://github.com/ninja-build/ninja/wiki/Pre-built-Ninja-packages
https://github.com/ninja-build/ninja/releases
https://github.com/ninja-build/ninja/releases
https://learn.arm.com/install-guides/gcc/arm-gnu/
https://www.iar.com/siteassets/knowledge/support/tech-notes/qr_lms2.pdf
https://www.iar.com/siteassets/knowledge/support/tech-notes/qr_lms2.pdf
https://developer.arm.com/documentation/109350/v6/Installation?lang=en
https://developer.arm.com/documentation/100748/0618/Getting-Started/Installing-Arm-Compiler-for-Embedded
https://docs.zephyrproject.org/latest/develop/toolchains/zephyr_sdk.html
https://www.nxp.com/design/design-center/software/development-software/codewarrior-development-tools:CW_HOME
https://tensilicatools.com/platforms/
https://www.nxp.com/search?keyword=NXP%2520S32Compiler%2520RISC-V&start=0

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

After you have installed the toolchains, register them in the system environment variables. This
will allow the west build to recognize them:

Toolchain Environ- Example Cmd
ment Line Ar-
Variable gument
Armgcc AR- C:\armgcc for windows/usr for Linux. Typically -
MGCC_DIR arm-none-eabi-* is installed under /usr/bin toolchain
armgcc
IAR IAR DIR C:\iar\ewarm-9.60.3 for =~ Windows/opt/iarsystems/ -
bxarm-9.60.3 for Linux toolchain
iar
MDK MDK DIR C:\Keil_v5 for Windows.MDK IDE is not officially sup- -
ported with Linux. toolchain
mdk
Armclang ARM- C:\ArmCompilerforEmbedded6.22 for ~Windows/opt/ -
CLANG_DIF ArmCompilerforEmbedded6.21 for Linux toolchain
mdk
Zephyr ZEPHYR SL c:\NXP\zephyr-sdk-<version> for windows/opt/ -
zephyr-sdk-<version> for Linux toolchain
zephyr
CodeWar- CW_DIR C:\Freescale\CW MCU v11.2 for windowsCodeWarrioris -
rior not supported with Linux toolchain
code-
warrior
Xtensa XCC_DIR C:\xtensa\XtDevTools\install\tools\RI-2023.11-win32\ =
XtensaTools for windows/opt/xtensa/XtDevTools/ toolchain
install/tools/RI-2023.11-Linux/XtensaTools for Linux Xtensa
NXP RISCVL- C:\riscv-llvin-win32_b298 b298 2024.08.12 for Win- -
S32Compiler LVM_DIR dows/opt/riscv-llvin-Linux-x64_ b298_b298_ 2024.08.12 toolchain
RISC-V for Linux riscvl-
Zen-V lvm

* The <toolchain>_DIR is the root installation folder, not the binary location folder. For IAR,
it is directory containing following installation folders:

arm
common
install-info

* MDK IDE using armclang toolchain only officially supports Windows. In Linux, please di-
rectly use armclang toolchain by setting ARMCLANG_DIR. In Windows, since most Keil
users will install MDK IDE instead of standalone armclang toolchain, the MDK_ DIR has
higher priority than ARMCLANG_ DIR.

* For Xtensa toolchain, please set the XTENSA_CORE environment variable. Here’s an ex-

ample list:

1.3. Getting Started with MCUXpresso SDK GitHub

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Device Core XTENSA_CORE

RT500 fusion1 nxp_ rt500 RI23 11 newlib
RT600 hifi4 nxp_ rt600__RI23_11_newlib
RT700 hifi1l rt700_hifil RI23 11 nlib
RT700 hifi4 t700__hifi4 RI23 11 nlib

i.MX8ULP fusionl fusion nxp02 dsp_ prod

* In Windows, the short path is used in environment variables. If any toolchain is using
the long path, you can open a command window from the toolchain folder and use below
command to get the short path: for %i in (.) do echo %-~fsi

Tool installation check Once installed, open a terminal or command prompt and type the
associated command to verify the installation.

If you see the version number, you have successfully installed the tool. Else, check whether the
tool’s installation path is added into the PATH variable. You can add the installation path to the
PATH with the commands below:

* Windows: Open command prompt or powershell, run below command to show the user
PATH variable.

reg query HKEY_CURRENT__USER)\Environment /v PATH

The tool installation path should be C:\Users\xxx\AppData\Local\Programs\Git\cmd. If the
path is not seen in the output from above, append the path value to the PATH variable with
the command below:

reg add HKEY_CURRENT__USER)\Environment /v PATH /d "% PATH%;C:\Users\xxx\AppData\

—Local\Programs\Git\cmd”

Then close the command prompt or powershell and verify the tool command again.

e Linux:

1.
2.
3.

Open the $HOME/ .bashrc file using a text editor, such as vim.
Go to the end of the file.

Add the line which appends the tool installation path to the PATH variable and export
PATH at the end of the file. For example, export PATH="/Directory1:$PATH".

. Save and exit.

5. Execute the script with source .bashrc or reboot the system to make the changes live. To

verify the changes, run echo $PATH.

* macOS:

. Open the $SHOME/.bash_profile file using a text editor, such as nano.
. Go to the end of the file.
. Add the line which appends the tool installation path to the PATH variable and export

PATH at the end of the file. For example, export PATH="/Directory1:$PATH".

. Save and exit.

5. Execute the script with source .bash_ profile or reboot the system to make the changes

live. To verify the changes, run echo $PATH.

Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Get MCUXpresso SDK Repo

Establish SDK Workspace To get the MCUXpresso SDK repository, use the west tool to clone
the manifest repository and checkout all the west projects.

Initialize west with the manifest repository
west init -m https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/ mcuxpresso-sdk

Update the west projects
cd mcuxpresso-sdk
west update

Allow the usage of west extensions provided by MCUXpresso SDK
west config commands.allow__extensions true

Install Python Dependency(If do tool installation manually) To create a Python virtual en-
vironment in the west workspace core repo directory mcuxsdk, follow these steps:

1. Navigate to the core directory:

cd mcuxsdk

2. [Optional] Create and activate the virtual environment: If you don’t want to use the python
virtual environment, skip this step. We strongly suggest you use venv to avoid conflicts
with other projects using python.

python -m venv .venv

For Linux/MacOS
source .venv/bin/activate

For Windows

\.venv\Scripts\activate

If you are using powershell and see the issue that the activate script cannot be run.

You may fix the issue by opening the powershell as administrator and run below command:
powershell Set-ExecutionPolicy RemoteSigned

then run above activate command again.

Once activated, your shell will be prefixed with (.venv). The virtual environment can be
deactivated at any time by running deactivate command.

Remember to activate the virtual environment every time you start working in this
directory. If you are using some modern shell like zsh, there are some powerful plugins to
help you auto switch venv among workspaces. For example, zsh-autoswitch-virtualenv.

3. Install the required Python packages:

1

Note: you can add option '--default-timeout=1000" if you meet connection issue. Or you may set a,
—different source using option '-i'.
for example, in China you could try: pip3 install -r mcuxsdk/scripts/requirements.txt -i https://pypi.
<tuna.tsinghua.edu.cn/simple

pip install -r scripts/requirements.txt

Explore Contents

This section helps you build basic understanding of current fundamental project content and
guides you how to build and run the provided example project in whole SDK delivery.

1.3. Getting Started with MCUXpresso SDK GitHub 9

https://github.com/MichaelAquilina/zsh-autoswitch-virtualenv

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Folder View The whole MCUXpresso SDK project, after you have done the west init and west
update operations follow the guideline at Getting Started Guide, have below folder structure:

Folder Description

mani- Manifest repo, contains the manifest file to initialize and update the west

fests workspace.

mcuxsdk The MCUXpresso SDK source code, examples, middleware integration and script
files.

All the projects record in the Manifest repo are checked out to the folder mcuxsdk/, the layout of
mcuxsdk folder is shown as below:

Folder Description

arch Arch related files such as ARM CMSIS core files, RISC-V files and the build files related
to the architecture.

cmake The cmake modules, files which organize the build system.

com- Software components.

po-

nents

de- Device support package which categorized by device series. For each device, header

vices file, feature file, startup file and linker files are provided, also device specific drivers
are included.

docs Documentation source and build configuration for this sphinx built online documen-

tation.
drivers Peripheral drivers.
ex- Various demos and examples, support files on different supported boards. For each
am- board support, there are board configuration files.
ples
mid- Middleware components integrated into SDK.
dle-
ware

rtos Rtos components integrated into SDK.

scripts Script files for the west extension command and build system support.

svd Svd files for devices, this is optional because of large size. Customers run west manifest
config group.filter +optional and west update mcux-soc-svd to get this folder.

Examples Project The examples project is part of the whole SDK delivery, and locates in the
folder mcuxsdk/examples of west workspace.

Examples files are placed in folder of <example_category>, these examples include (but are not
limited to)

* demo_apps: Basic demo set to start using SDK, including hello_world and led_blinky.

* driver_examples: Simple applications that show how to use the peripheral drivers for a
single use case. These applications typically only use a single peripheral but there are cases
where multiple peripherals are used (for example, SPI transfer using DMA).

Board porting layers are placed in folder of _boards/<board name> which aims at providing the
board specific parts for examples code mentioned above.

Run a demo using MCUXpresso for VS Code

This section explains how to configure MCUXpresso for VS Code to build, run, and debug example
applications. This guide uses the hello_ world demo application as an example. However, these

10 Chapter 1. RD-RW612-BGA

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

steps can be applied to any example application in the MCUXpresso SDK.

Build an example application This section assumes that the user has already obtained the
SDK as outlined in Get MCUXpresso SDK Repo.

To build an example application:

1. Import the SDK into your workspace. Click Import Repository from the QUICKSTART
PANEL.

File Edit Selection WView Go Run Terminal Help

MCUXPRESSO FOR WS CODE
~ QUICKSTART PANEL @ o [0 £
-+ Import Repository

1% Import Example from FLE-pI:'E“-r‘_'," Import Local/Remote Repository

B+8 Import Pro
13 New Proje

o

~ IMPORTED REPOSITORIES

Note: You can import the SDK in several ways. Refer to MCUXpresso for VS Code Wiki for
details.

Select Local if you’ve already obtained the SDK as seen in Get MCUXpresso SDK Repo. Select
your location and click Import.

= Import Repository X

Import Repository

Location: c\Repos\mouxsdk

Import

2. Click Import Example from Repository from the QUICKSTART PANEL.
MCUXPRESS0 FOR W5 CODE

~ QUICKSTART PAMEL
~+ Import Repository

% import Example from Repository “

£+8 Import Project
13 New Project Wizard

Import Examg

In the dropdown menu, select the MCUXpresso SDK, the Arm GNU Toolchain, your board,
template, and application type. Click Import.

1.3. Getting Started with MCUXpresso SDK GitHub 11

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Working-with-MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

< Import Example from Repository X

Import Example from Repository

Repository: c\Repos\mouxsdk

Toolchain: (Arm GNU Toolchain 13.2.rel1 (Build arm-13.7)) 13.2.1 20231009 ®

Board:

FRDM-MCXC444

Template: demo_apps/hello_world

The Helloworld demo prints the "Hello World" string to the terminal using the S

input. The purpose of this demo is to show how to use the UART, and to provide a simple project for debugging and
further developm

Please refer to README file for more details.

App type: Freestanding application

Name: frdmmacxc444_hello_world

Location: c\nxp_examples

Note: Path doesn't exist. Folder(s) will be created.

Open readme file after project is imported

import

Note: The MCUXpresso SDK projects can be imported as Repository applications or Free-
standing applications. The difference between the two is the import location. Projects im-
ported as Repository examples will be located inside the MCUXpresso SDK, whereas Free-
standing examples can be imported to a user-defined location. Select between these by
designating your selection in the App type dropdown menu.

3. VS Code will prompt you to confirm if the imported files are trusted. Click Yes.
4. Navigate to the PROJECTS view. Find your project and click the Build Project icon.

~ PROJECTS MY 88 T &
> frdmmcxc444 hello world MCU SDK 25.6.0 |._'-1'| L @

Build Project

The integrated terminal will open at the bottom and will display the build output.

12 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

OUTPUT TERMINAL PORTS E OLE SERIALMONITOR O PERIPHERALS [] CMake: build|

debug_console.c.obj
Building C ob; keFiles/| W di dk d 51 k.c.obj
Building C ob;
Building C ob: / art/fsl_uart.c.obj
Linking C executable hello worl
Xage Used
1 rupts: 512 37.58%
m_flash_config: & .eex
3 3.02%
74

- Terminal will be reused by tasks, press any key to close it.

Run an example application Note: for full details on MCUXpresso for VS Code debug probe
support, see MCUXpresso for VS Code Wiki.

1. Open the Serial Monitor from the VS Code’s integrated terminal. Select the VCom Port for
your device and set the baud rate to 115200.

+ Open an additional monitor
Monitor e Serial V' View e Text “ Port COM40 - MCU-Link VCom Port (COM40) v U Baudrate 115200 v
Line ending CR - [> Start Monitoring = & B &

2. Navigate to the PROJECTS view and click the play button to initiate a debug session.

~ PROJECTS
> frdmmcxcd44 hello_world M

The debug session will begin. The debug controls are initially at the top.

1.3. Getting Started with MCUXpresso SDK GitHub 13

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/DebugK

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

hello world.c X

main(

ch;

BOARD InitHardware();
PRINTF("hello

while
ch = GETCHAR
PUTCHAR(ch) ;

3. Click Continue on the debug controls to resume execution of the code. Observe the output
on the Serial Monitor.

SERIAL MOMIT
—+ Open an additional menitor
Monitor Mode View Mode ' Port COMA40 - MCU-Link VCom Port (COM40)

¢y

[stop Monitoring = & [@ (1]

tark

---- Opened the serial port COM4@ ----
hello world.

Running a demo using ARMGCC CLI/IAR/MDK

Supported Boards Use the west extension west list_project to understand the board support
scope for a specified example. All supported build command will be listed in output:

west list__project -p examples/demo__apps/hello_world [-t armgcc]

INFO: [1][west build -p always examples/demo_apps/hello world --toolchain armgcc --config release -b,

—evk9mimx8ulp -Dcore_ id=cm33]

INFO: [2|[west build -p always examples/demo_ apps/hello_ world --toolchain armgcc --config release -b,

—evkbimxrt1050]

INFO: | 3][west build -p always examples/demo__apps/hello_ world --toolchain armgcc --config release -b,
(continues on next page)

14 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

(continued from previous page)
—evkbmimxrt1060]
INFO: [4][west build -p always examples/demo__apps/hello_ world --toolchain armgcc --config release -b,
—evkbmimxrt1170 -Dcore_ id=cm4]
INFO: [5][west build -p always examples/demo__apps/hello_ world --toolchain armgcc --config release -b,
—evkbmimxrt1170 -Dcore_id=cm7]
INFO: [6][west build -p always examples/demo_ apps/hello_world --toolchain armgcc --config release -b,
—evkemimxrt1060]
INFO: [7|[west build -p always examples/demo_ apps/hello_ world --toolchain armgcc --config release -b,
—evkmecimx7ulp]

The supported toolchains and build targets for an example are decided by the example-self exam-
ple.yml and board example.yml, please refer Example Toolchains and Targets for more details.

Build the project Use west build -h to see help information for west build command. Compared
to zephyr’s west build, MCUXpresso SDK’s west build command provides following additional
options for mcux examples:

* —toolchain: specify the toolchain for this build, default armgce.

* —-config: value for CMAKE_BUILD_TYPE. If not provided, build system will get all the ex-
ample supported build targets and use the first debug target as the default one. Please refer
Example Toolchains and Targets for more details about example supported build targets.

Here are some typical usages for generating a SDK example:

Generate example with default settings, default used device is the mainset MK22F51212
west build -b frdmk22f examples/demo_apps/hello_ world

Just print cmake commands, do not execute it
west build -b frdmk22f examples/demo_ apps/hello_ world --dry-run

Generate example with other toolchain like iar, default armgcc
west build -b frdmk22f examples/demo_ apps/hello_ world --toolchain iar

Generate example with other config type
west build -b frdmk22f examples/demo_ apps/hello_ world --config release

Generate example with other devices with --device
west build -b frdmk22f examples/demo_ apps/hello_ world --device MK22F12810 --config release

For multicore devices, you shall specify the corresponding core id by passing the command line
argument -Dcore__id. For example

west build -b evkbmimxrt1170 examples/demo__apps/hello_ world --toolchain iar -Dcore_id=cm?7 --config, ,
—flexspi__nor__ debug

For shield, please use the --shield to specify the shield to run, like

west build -b mimxrt700evk --shield a8974 examples/issdk examples/sensors/fx1s8974cf/fx1s8974cf poll -
—Dcore_id=cm33__core0

Syshuild(System build) To support multicore project building, we ported Sysbuild from
Zephyr. It supports combine multiple projects for compilation. You can build all projects by
adding --sysbuild for main application. For example:

west build -b evkbmimxrt1170 --sysbuild ./examples/multicore_examples/hello_world /primary -Dcore__
—id=cm7 --config flexspi nor_ debug --toolchain=armgcc -p always

For more details, please refer to System build.

1.3. Getting Started with MCUXpresso SDK GitHub 15

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Config a Project Example in MCUXpresso SDK is configured and tested with pre-defined con-
figuration. You can follow steps blow to change the configuration.

1. Run cmake configuration

west build -b evkbmimxrt1170 examples/demo_ apps/hello_ world -Dcore_id=cm7 --cmake-only -p

Please note the project will be built without --cmake-only parameter.

2. Run guiconfig target

west build -t guiconfig

Then you will get the Kconfig GUI launched, like

) Hello World - O ot

Save Save as.. || 5ave minimal (advanced]... Open... Jump to...

[] Show name [] Showall [] Single-menu mode

(Top)
Board Boot Header s
Project Segrments
Device Boot Header
=l Device MIMXRT1176 Part (Device part MIMXRTT1760YVIMAAL)
@Device part MIMXRT1176DVIMAL
ODevice part MIMERT1176AVIMEA
ODevice part MIMERT11TECVIMEA
B Device specific drivers
K |Use driver clock
EUse driver iormuxe
:|U5e driver mipi csi2rx
:|U5E driver mipi dsi
EUEE driver anatop_ai
E'Use driver memory
:|U5e driver nic301
E'Use driver dedc
EUse driver gpc
EUse driver pgrmc
EUEE driver prmu
EUEE driver src W

Econfig definition., with parent deps. propagated to " depends on’

4t D fedk_next/mouxsdkydevicesh.. /devices/ET/RT1170/NIMET11 76 \drivers/Kconfig: B
Included wia D: fadk_next/mouxsdk/examples/demo_appsfhello_world/Econfiz: 6 —>

D: fedk_next/mouzsdk/Koconfig. mouxpreszo: @ —» D fedk_next/mouxsdk\devices/Econfig: 1
= I f=dk_next/mouxsdkydevicesh.. fdevices/RT/RT1170,/ NIMET11 76,/ Econfig: &

Merm path: (Topd

memi “Device specific driwers”

You can reconfigure the project by selecting/deselecting Kconfig options.

After saving and closing the Kconfig GUI, you can directly run west build to build with the new
configuration.

16 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Flash Note: Please refer Flash and Debug The Example to enable west flash/debug support.
Flash the hello_world example:

west flash -r linkserver

Debug Start a gdb interface by following command:

west debug -r linkserver

Work with IDE Project The above build functionalities are all with CLI If you want to use
the toolchain IDE to work to enjoy the better user experience especially for debugging or you
are already used to develop with IDEs like IAR, MDK, Xtensa and CodeWarrior in the embedded
world, you can play with our IDE project generation functionality.

This is the cmd to generate the evkbmimxrt1170 hello_world IAR IDE project files.

west build -b evkbmimxrt1170 examples/demo__apps/hello_ world --toolchain iar -Dcore_id=cm?7 --config, |
—flexspi_nor__debug -p always -t guiproject

By default, the IDE project files are generated in mcuxsdk/build/<toolchain> folder, you can open
the project file with the IDE tool to work:

k-next\mcu-sdk-3.0
N-3¢) rc west build frdmk64f . \exampl

Note, please follow the Installation to setup the environment especially make sure that ruby has
been installed.

1.4 Release Notes

1.4.1 MCUXpresso SDK Release Notes
Overview

The MCUXpresso SDK is a comprehensive software enablement package designed to simplify
and accelerate application development with Arm Cortex-M-based devices from NXP, including
its general purpose, crossover and Bluetooth-enabled MCUs. MCUXpresso SW and Tools for DSC

1.4. Release Notes 17

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

further extends the SDK support to current 32-bit Digital Signal Controllers. The MCUXpresso
SDK includes production-grade software with integrated RTOS (optional), integrated enabling
software technologies (stacks and middleware), reference software, and more.

In addition to working seamlessly with the MCUXpresso IDE, the MCUXpresso SDK also supports
and provides example projects for various toolchains. The Development tools chapter in the
associated Release Notes provides details about toolchain support for your board. Support for
the MCUXpresso Config Tools allows easy cloning of existing SDK examples and demos, allowing
users to leverage the existing software examples provided by the SDK for their own projects.

Underscoring our commitment to high quality, the MCUXpresso SDK is MISRA compliant and
checked with Coverity static analysis tools. For details on MCUXpresso SDK, see MCUXpresso-
SDK: Software Development Kit for MCUXpresso.

MCUXpresso SDK

As part of the MCUXpresso software and tools, MCUXpresso SDK is the evolution of Kinetis SDK,
includes support for LPC, DSC,PN76, and i.MX System-on-Chip (SoC). The same drivers, APIs, and
middleware are still available with support for Kinetis, LPC, DSC, and i.MX silicon. The MCUX-
presso SDK adds support for the MCUXpresso IDE, an Eclipse-based toolchain that works with
all MCUXpresso SDKs. Easily import your SDK into the new toolchain to access to all of the avail-
able components, examples, and demos for your target silicon. In addition to the MCUXpresso
IDE, support for the MCUXpresso Config Tools allows easy cloning of existing SDK examples and
demos, allowing users to leverage the existing software examples provided by the SDK for their
own projects.

In order to maintain compatibility with legacy Freescale code, the filenames and source code in
MCUXpresso SDK containing the legacy Freescale prefix FSL has been left as is. The FSL prefix
has been redefined as the NXP Foundation Software Library.

Development tools

The MCUXpresso SDK was tested with following development tools. Same versions or above are
recommended.

* MCUZXpresso IDE, Rev. 25.06.xx

IAR Embedded Workbench for Arm, version is 9.60.4
Keil MDK, version is 5.41

* MCUZXpresso for VS Code v25.06

GCC Arm Embedded Toolchain 14.2.x

Supported development systems

This release supports board and devices listed in following table. The board and devices in bold
were tested in this release.

Development MCU devices

boards

RD-RW612-BGA RW610ETA2I, RW610HNA2I, RW610UKA2I, RW612ETA2I, RW612HNAZ2I,
RW612UKA2I

18 Chapter 1. RD-RW612-BGA

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

MCUXpresso SDK release package

The MCUXpresso SDK release package content is aligned with the silicon subfamily it supports.
This includes the boards, CMSIS, devices, middleware, and RTOS support.

Device support The device folder contains the whole software enablement available for the
specific System-on-Chip (SoC) subfamily. This folder includes clock-specific implementation,
device register header files, device register feature header files, and the system configuration
source files. Included with the standard SoC support are folders containing peripheral drivers,
toolchain support, and a standard debug console. The device-specific header files provide a di-
rect access to the microcontroller peripheral registers. The device header file provides an overall
SoC memory mapped register definition. The folder also includes the feature header file for each
peripheral on the microcontroller. The toolchain folder contains the startup code and linker files
for each supported toolchain. The startup code efficiently transfers the code execution to the
main() function.

Board support The boards folder provides the board-specific demo applications, driver exam-
ples, and middleware examples.

Demo application and other examples The demo applications demonstrate the usage of the
peripheral drivers to achieve a system level solution. Each demo application contains a readme
file that describes the operation of the demo and required setup steps. The driver examples
demonstrate the capabilities of the peripheral drivers. Each example implements a common
use case to help demonstrate the driver functionality.

RTOS

FreeRTOS Real-time operating system for microcontrollers from Amazon

Middleware

CMSIS DSP Library The MCUXpresso SDK is shipped with the standard CMSIS development
pack, including the prebuilt libraries.

memfault-firmware-sdk memfault-firmware-sdk

Wireless Connectivity Framework The Connectivity Framework is a software component
that provides hardware abstraction modules to the upper layer connectivity stacks and com-
ponents. It also provides a list of services and APIs, such as, Low power, Over the Air (OTA)
Firmware update, File System, Security, Sensors, Serial Connectivity Interface (FSCI), and oth-
ers. The Connectivity Framework modules are located in the middleware|\wireless|framework
SDK folder.

wpa_supplicant-rtos NXP Wi-Fi WPA Supplicant

Wireless EdgeFast Bluetooth PAL For more information, see the MCUXpresso SDK EdgeFast
Bluetooth Protocol Abstraction Layer User’s Guide.

1.4. Release Notes 19

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Ethermind BT/BLE Stack nxp_bt_ble_stack

coreHTTP coreHTTP

NXP Wi-Fi The MCUXpresso SDK provides driver for NXP Wi-Fi external modules. The Wi-Fi
driver is integrated with LWIP TCPIP stack and demonstrated with several network applications
(iperf and AWS IoT).

For more information, see Getting Started with NXP based Wireless Modules and i.MX RT Plat-
form Running on RTOS (document: UM11441).

USB Type-C PD Stack See the MCUXpresso SDK USB Type-C PD Stack User’s Guide (document
MCUXSDKUSBPDUG) for more information

USB Host, Device, OTG Stack See the MCUXpresso SDK USB Stack User’s Guide (document
MCUXSDKUSBSUG) for more information.

TinyCBOR Concise Binary Object Representation (CBOR) Library

TF-M Trusted Firmware - M Library

PSA Test Suite Arm Platform Security Architecture Test Suite

PKCS#11 The PKCS#11 standard specifies an application programming interface (API), called
“Cryptoki,” for devices that hold cryptographic information and perform cryptographic func-
tions. Cryptoki follows a simple object based approach, addressing the goals of technology in-
dependence (any kind of device) and resource sharing (multiple applications accessing multiple
devices), presenting to applications a common, logical view of the device called a “cryptographic
token”.

NXP IoT Agent NXP IoT Agent

MCU Boot Open source MCU Bootloader.

mbedTLS mbedtls SSL/TLS library v3.x

mbedTLS mbedtls SSL/TLS library v2.x

Voice Seeker (no AEC) VoiceSeeker is a multi-microphone voice control audio front-end signal
processing solution. VoiceSeeker is not featuring acoustic echo cancellation (AEC).

Voice intelligent technology library Voice Intelligent Technology (VIT) Library provides wake
word and voice command engine for voice control

Audio Voice components Audio Voice components for MCU

20 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Maestro Audio Framework for MCU Maestro Audio Framework library for MCU

IwIP The IwlIP TCP/IP stack is pre-integrated with MCUXpresso SDK and runs on top of the
MCUZXpresso SDK Ethernet driver with Ethernet-capable devices/boards.

For details, see the IwIP TCPIP Stack and MCUXpresso SDK Integration User’s Guide (document
MCUXSDKLWIPUG).

IwlIP is a small independent implementation of the TCP/IP protocol suite.

LVGL LVGL Open Source Graphics Library

Ilhttp HTTP parser llhttp

LittleFS LittleFS filesystem stack

FreeMASTER FreeMASTER communication driver for 32-bit platforms.

File systemFatfs The FatFs file system is integrated with the MCUXpresso SDK and can be used
to access either the SD card or the USB memory stick when the SD card driver or the USB Mass
Storage Device class implementation is used.

emWin The MCUXpresso SDK is pre-integrated with the SEGGER emWin GUI middleware. The
AppWizard provides developers and designers with a flexible tool to create stunning user inter-
face applications, without writing any code.

cJSON Ultralightweight JSON parser in ANSI C

AWS IoT Amazon Web Service (AWS) IoT Core SDK.

NXP PSA CRYPTO DRIVER PSA crypto driver for crypto library integration via driver wrappers

NXP ELS PKC ELS PKC crypto library

Release contents

Provides an overview of the MCUXpresso SDK release package contents and locations.

1.4. Release Notes 21

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Deliverable

Location

Boards

Demo Applications

Driver Examples

elQ examples

Board Project Template for MCUXpresso IDE NPW
Driver, SoC header files, extension header files and
feature header files, utilities

CMSIS drivers

Peripheral drivers

Toolchain linker files and startup code

Utilities such as debug console

Device Project Template for MCUXpresso IDE NPW
CMSIS Arm Cortex-M header files, DSP library source
Components and board device drivers

RTOS

Release Notes, Getting Started Document and other
documents

Tools such as shared cmake files

Middleware

INSTALL_DIR/boards
INSTALL_DIR/boards/<board_name>/demo_apps
INSTALL_DIR/boards/<board_name>/driver_examples
INSTALL_DIR/boards/<board_name>/eiq_examples
INSTALL_DIR/boards/<board_name>/project_template
INSTALL_DIR/devices/<device_name>

INSTALL_DIR/devices/<device_name>/cmsis_drivers
INSTALL_DIR/devices/<device_name>/drivers
INSTALL_DIR/devices/<device_name>/<toolchain_nam
INSTALL_DIR/devices/<device_name>/utilities
INSTALL_DIR/devices/<device_name>/project_templat
INSTALL_DIR/CMSIS

INSTALL_DIR/components

INSTALL_DIR/rtos

INSTALL_DIR/docs

INSTALL_DIR/tools
INSTALL_DIR/middleware

Known issues

This section lists the known issues, limitations, and/or workarounds.

Low speed devices not supported

The host examples cannot support low-speed devices.

IAR cannot debug RAM application with J-Link

Currently, IAR will call J-Link reset after the application is downloaded to SRAM, but such oper-

ation will cause SRAM data lost.

Here is a workaround to avoid real reset, with the cost of no any reset during the debugging, and

hardware status uncleared.

1. Build and debug IAR project once and see the settings folder created.

2. Create the _.JLinkScript file in the settings folder with the following contents.

void ResetTarget(void) {
JLINK_TARGET _Halt();

}

3. Debug the project again and now it can work.

usb_device_mtp example cannot boot on Keil MDK uVision

After reset, the usb_device_mtp and usb_device_mtp_lite examples cannot boot successfully
when using Keil MDK uVision. Adding the —predefine="-DXIP_BOOT_HEADER ENABLE=1” into
Options for target > Linker > Misc controls can fix this issue.

22

Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Log output may be mixed in shell/hfp example

When multiple tasks print the log, the serial port terminal output has the probability to appear
mixed.

Example mbedtls_benchmark may hang on some targets on devices with ELS acceleration
Some targets of ELS accelerated devices may experience runtime issues when run with the de-
fault configuration of the mbedtls_benchmark application.

Examples: mbedtls_benchmark

Affected toolchains: All

TF-M secure and EL2GO examples incorrect path in “Download extra image” with iar and
mdk IDEs with Kex package

TF-M secure and EL2GO examples are missing the target path for ns binary in “extra download
image” with iar and mdk IDEs

Examples: tfm_demo_s, tfm_psatest_s, tfm_regression_s, tfm_secureboot_s, el2go_agent_s,
el2go_blob_test_s, el2go_import_blob_s, el2go_mqtt_demo_s Affected toolchains: mdk, iar
Affected platforms: mcxn5xxevk, frdmmcexn947, mcxn9xxevk, rdrw612bga, frdmrw612
Workaround: There are two ways 1.) Flash secure and non secure bins via Jlink or SPSDK
after the build with IDE and providing with correct paths of secure and non-secure binaries.
or 2.) Add {target} debug/release in path of “Download extra image” for iar and for MDK in
xxx_flashdownload.ini file.

1.5 ChangeLog

1.5.1 MCUXpresso SDK Changelog
Board Support Files

board

[25.06.00]

 Initial version
clock_config

[25.06.00]

 Initial version

pin_mux

1.5. ChangeLog 23

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[25.06.00]

 Initial version

CNS_ACOMP

[2.0.1]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules.

[2.0.0]

 Initial version.

CNS_ADC

[2.2.1]
* Improvements
— Fixed CERT-C issues.

[2.2.0]
* Improvements
— Updated cns adc trigger sources.
— Migrated cns adc trigger sources enumeration from cns_adc.h to device.h

— Reserved single-end mode channel 15, differential mode channel 5, and channel 15.

[2.1.0]
* Bug Fixes

— Fixed temperature measurement error, and provided ‘enableChop’ member to control
the ADC chop.

[2.0.2]
* Bug Fixes
— Fixed ADC scan channel misconfiguration issue.
— Fixed violation of MISRA C-2012 rule 10.1 and rule 10.4.
* Improvements

— Added new member “enableInputBufferChop” into “adc_config_t” to enable/disable in-
put buffer chopper.

24 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.0.1]
* Bug Fixes
— Fixed MISRA-2012 rules.
* Rule 14.2, rule 10.3.
[2.0.0]

 Initial version.

CACHE®64

[2.0.11]
* Bug Fixes

— Fixed CERT INT30-C violations: check and guarantee address plus size is equal or
smaller than UINT32_MAX.

[2.0.10]
* Improvements

— Updated CACHE64_InvalidateCacheByRange(), CACHE64_CleanCacheByRange() and
CACHE®64_CleanInvalidateCacheByRange() to support some platforms that multiple re-
gions in the memory map are remapped to create a continuous address space.

[2.0.9]
* Improvements
— Removed assert(false) in CACHE64_GetInstanceByAddr.

[2.0.8]
* Improvements

— Updated function CACHE64_GetInstanceByAddr() to support some devices that provide
alias of cacheable memory section.

[2.0.7]
* Improvements

— Check input parameter “size_byte” must be larger than 0.

[2.0.6]
* Bug Fixes
— Fixed overflow for CACHE64_GetInstanceByAddr()/CACHE64_CleanCacheByRange()/CACHE64_Invalid
APIs.

1.5. ChangeLog 25

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.0.5]
* Improvement
— Made use of FSL_FEATURE_CACHE64_CTRL_HAS_NO_WRITE_BUF feature

[2.0.4]
* Improvement
— Disable cache policy feature on SoC without CACHE64_POLSEL IP.
* Bug Fixes

— Fixed doxygen issue.

[2.0.3]
* Bug Fixes
— Fixed violations of the MISRA C-2012 Rule 10.3.

[2.0.2]
* Bug Fixes
— Fixed violations of the MISRA C-2012 Rule 10.1, 10.3, 10.4 and 14.4.

— Fixed doxygen issue.

[2.0.1]
¢ Improvements

— Moved CLCRregister configuration out of the while loop, it’s unnecessary to repeat this
operation.

[2.0.0]

 Initial version.

CDOG

[2.1.3]
* Re-design multiple instance IRQs and Clocks
* Add fix for RESTART command errata

[2.1.2]
* Support multiple IRQs
» Tix default CONTROL values

[2.1.1]
* Remove bit CONTROL[CONTROL_CTRL].

26 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.1.0]
* Rename CWT to CDOG.

[2.0.2]
» Fix MISRA-2012 issues.

[2.0.1]

* Fix doxygen issues.

[2.0.0]

 Initial version.

CLOCK

[2.3.2]

» Fixed MSG issues. No function change.

[2.3.1]

* Updated code according to new header file. No function change.

[2.3.0]
* Added CLOCK_GetFreq() API

* Removed DTRNG flag wait in clock API to avoid unconditional delay. DTRNG will be
reloaded in crypto init function.

[2.2.0]
* Added els_gdet clock source enumeration
» Fixed KMAIN_CLK_to_DMIC_CLK value

[2.1.4]

* Added noinline attribute to CLOCK_Delay() to work around compiler optimization issue

[2.1.3]
» Added delay for DTRNG busy flag before disabling T3 256M

[2.1.2]
* Renamed kCLOCK_Css/kCLOCK_CssApb to kKCLOCK_Els/kCLOCK_ElsApb

1.5. ChangeLog 27

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.1.1]
* Added ANA_GRP XTL power control in USB PHY API

[2.1.0]
* Added USIM_CLOCKS macro
* Added CLOCK_DisableUsbhsPhyClock API

[2.0.1]

* Moved g_clkinFreq and g_mclkinFreq inside extern “C”

[2.0.0]

* initial version.

COMMON

[2.6.0]
* Bug Fixes
— Fix CERT-C violations.

[2.5.0]
* New Features

— Added new APIs InitCriticalSectionMeasurementContext, DisableGlobalIRQEx and En-
ableGloballRQEx so that user can measure the execution time of the protected sections.

[2.4.3]
* Improvements

— Enable irgs that mount under irgsteer interrupt extender.

[2.4.2]
* Improvements

— Add the macros to convert peripheral address to secure address or non-secure address.

[2.4.1]
* Improvements

— Improve for the macro redefinition error when integrated with zephyr.

[2.4.0]
* New Features
— Added EnableIRQWithPriority, IRQ_SetPriority, and IRQ_ClearPendingIRQ for ARM.
— Added MSDK_EnableCpuCycleCounter, MSDK_GetCpuCycleCount for ARM.

28 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.3.3]
* New Features
— Added NETC into status group.

[2.3.2]
* Improvements

— Make driver aarch64 compatible

[2.3.1]
* Bug Fixes
— Fixed MAKE_VERSION overflow on 16-bit platformes.
[2.3.0]

* Improvements

— Split the driver to common part and CPU architecture related part.

[2.2.10]
* Bug Fixes
— Fixed the ATOMIC macros build error in cpp files.

[2.2.9]
* Bug Fixes
- Fixed MISRA C-2012 issue, 5.6, 5.8, 8.4, 8.5, 8.6, 10.1, 10.4, 17.7, 21.3.

— Fixed SDK_Malloc issue that not allocate memory with required size.

[2.2.8]
* Improvements
— Included stddef.h header file for MDK tool chain.
* New Features:

— Added atomic modification macros.

[2.2.7]
* Other Change
— Added MECC status group definition.

1.5. ChangeLog

29

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.2.6]
* Other Change
— Added more status group definition.
* Bug Fixes
— Undef _ VECTOR_TABLE to avoid duplicate definition in cmsis_clang.h

[2.2.5]
* Bug Fixes
- Fixed MISRA C-2012 rule-15.5.

[2.2.4]
* Bug Fixes
— Fixed MISRA C-2012 rule-10.4.

[2.2.3]
* New Features

— Provided better accuracy of SDK_DelayAtLeastUs with DWT, wuse macro
SDK_DELAY USE_DWT to enable this feature.

— Modified the Cortex-M7 delay count divisor based on latest tests on RT series boards,
this setting lets result be closer to actual delay time.

[2.2.2]
* New Features
— Added include RTE_Components.h for CMSIS pack RTE.

[2.2.1]
* Bug Fixes
- Fixed violation of MISRA C-2012 Rule 3.1, 10.1, 10.3, 10.4, 11.6, 11.9.
[2.2.0]

* New Features

— Moved SDK_DelayAtLeastUs function from clock driver to common driver.

[2.1.4]
* New Features
— Added OTFAD into status group.

30 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.1.3]
* Bug Fixes
— MISRA C-2012 issue fixed.
* Fixed the rule: rule-10.3.
[2.1.2]

* Improvements
— Add SUPPRESS_FALL_THROUGH_WARNING() macro for the usage of suppressing

fallthrough warning.
[2.1.1]
* Bug Fixes
— Deleted and optimized repeated macro.
[2.1.0]

* New Features
— Added IRQ operation for XCC toolchain.
— Added group IDs for newly supported drivers.

[2.0.2]
* Bug Fixes
— MISRA C-2012 issue fixed.
* Fixed the rule: rule-10.4.
[2.0.1]

* Improvements
— Removed the implementation of LPC8XX Enable/DisableDeepSleepIRQ() function.

- Added new feature macro switch “FSL_FEATURE_HAS_NO_NONCACHEABLE_SECTION”
for specific SoCs which have no noncacheable sections, that helps avoid an unneces-
sary complex in link file and the startup file.

— Updated the align(x) to attribute(aligned(x)) to support MDK v6 armclang compiler.

[2.0.0]

« Initial version.

CRC

[2.1.1]
» Fix MISRA issue.

1.5. ChangeLog 31

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.1.0]
* Add CRC_WriteSeed function.

[2.0.2]
» Fix MISRA issue.

[2.0.1]

* Fixed KPSDK-13362. MDK compiler issue when writing to WR_DATA with -O3 optimize for
time.

[2.0.0]

 Initial version.

CTIMER
[2.3.3]
* Bug Fixes
— Fix CERT INT30-C INT31-C issue.
— Make API CTIMER_SetupPwm and CTIMER_UpdatePwmDutycycle return fail if pulse
width register overflow.
[2.3.2]
* Bug Fixes
— Clear unexpected DMA request generated by RESET PeripheralReset in API
CTIMER Init to avoid trigger DMA by mistake.
[2.3.1]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 10.7 and 12.2.
[2.3.0]
* Improvements
— Added the CTIMER_ SetPrescale(), CTIMER_GetCaptureValue(),
CTIMER_EnableResetMatchChannel(), CTIMER_EnableStopMatchChannel(),
CTIMER_EnableRisingEdgeCapture(), CTIMER_EnableFallingEdgeCapture(),
CTIMER_SetShadowValue(),APIs Interface to reduce code complexity.
[2.2.2]
* Bug Fixes

— Fixed SetupPwm() API only can use match 3 as period channel issue.

32 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.2.1]
* Bug Fixes
— Fixed use specified channel to setting the PWM period in SetupPwmPeriod() API.
— Fixed Coverity Out-of-bounds issue.
[2.2.0]

* Improvements

— Updated three API Interface to support Users to flexibly configure the PWM period and
PWM output.

* Bug Fixes
— MISRA C-2012 issue fixed: rule 8.4.

[2.1.0]
* Improvements
— Added the CTIMER_GetOutputMatchStatus() API Interface.

— Added feature macro for FSL_FEATURE CTIMER_HAS NO CCR_CAP2 and
FSL_FEATURE_CTIMER_HAS NO_IR_CR2INT.

[2.0.3]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 10.3, 10.4, 10.6, 10.7 and 11.9.
[2.0.2]

* New Features
— Added new API “CTIMER_GetTimerCountValue” to get the current timer count value.
— Added a control macro to enable/disable the RESET and CLOCK code in current driver.

— Added a new feature macro to update the API of CTimer driver for lpc8n04.

[2.0.1]
* Improvements
— API Interface Change

* Changed API interface by adding CTIMER SetupPwmPeriod API and
CTIMER_UpdatePwmPulsePeriod API, which both can set up the right PWM
with high resolution.

[2.0.0]

 Initial version.

1.5. ChangeLog 33

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

CNS_DAC

[2.1.1]
* Improvements
— Fixed CERT-C issues.

[2.1.0]
* Improvements
— Updated cns dac trigger sources.

— Migrated cns dac trigger sources enumeration from cns_dac.h to device.h

[2.0.1]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules.
[2.0.0]

 Initial version.

LPC_DMA

[2.5.3]
* Improvements

— Add assert in DMA_SetChannelXferConfig to prevent XFERCOUNT value overflow.

[2.5.2]
* Bug Fixes
— Use separate “SET” and “CLR” registers to modify shared registers for all channels, in
case of thread-safe issue.
[2.5.1]
* Bug Fixes
— Fixed violation of the MISRA C-2012 rule 11.6.
[2.5.0]

* Improvements
— Added a new api DMA_SetChannelXferConfig to set DMA xfer config.

34 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.4.4]
* Bug Fixes
— Fixed the issue that DMA_IRQHandle might generate redundant callbacks.
— Fixed the issue that DMA driver cannot support channel bigger then 32.
— Fixed violation of the MISRA C-2012 rule 13.5.
[2.4.3]

* Improvements

— Added features FSL_FEATURE_DMA_DESCRIPTOR_ALIGN_SIZEn/FSL_FEATURE_DMAOQO_DESCRIPTOR _
to support the descriptor align size not constant in the two instances.

[2.4.2]
* Bug Fixes
— Fixed violation of the MISRA C-2012 rule 8.4.

[2.4.1]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 5.7, 8.3.

[2.4.0]
* Improvements

— Added new APIs DMA_LoadChannelDescriptor/DMA_ChannellsBusy to support polling
transfer case.

* Bug Fixes
— Added address alignment check for descriptor source and destination address.
— Added DMA_ALLOCATE_DATA_TRANSFER_BUFFER for application buffer allocation.
— Fixed the sign-compare warning.

— Fixed violations of the MISRA C-2012 rules 18.1, 10.4, 11.6, 10.7, 14.4, 16.3, 20.7, 10.8,
16.1,17.7,10.3, 3.1, 18.1.

[2.3.0]
* Bug Fixes
— Removed DMA_HandleIRQ prototype definition from header file.
— Added DMA_IRQHandle prototype definition in header file.
[2.2.5]

* Improvements
— Added new API DMA_SetupChannelDescriptor to support configuring wrap descriptor.
— Added wrap support in function DMA_SubmitChannelTransfer.

1.5. ChangeLog 35

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.2.4]
* Bug Fixes

— Fixed the issue that macro DMA_CHANNEL_CFER used wrong parameter to calculate
DSTINC.

[2.2.3]
* Bug Fixes
— Improved DMA driver Deinit function for correct logic order.
* Improvements

— Added API DMA_SubmitChannelTransferParameter to support creating head descrip-
tor directly.

— Added API DMA_SubmitChannelDescriptor to support ping pong transfer.

- Added macro DMA_ALLOCATE_HEAD_DESCRIPTOR/DMA_ALLOCATE_LINK_DESCRIPTOR
to simplify DMA descriptor allocation.

[2.2.2]
* Bug Fixes

— Do not use software trigger when hardware trigger is enabled.

[2.2.1]
* Bug Fixes

— Fixed Coverity issue.

[2.2.0]
* Improvements

— Changed API DMA_SetupDMADescriptor to non-static.

— Marked APIs below as deprecated.
% DMA_PrepareTransfer.
* DMA_Submit transfer.

— Added new APIs as below:
% DMA_SetChannelConfig.
DMA_PrepareChannelTransfer.
% DMA_InstallDescriptorMemory.
* DMA_SubmitChannelTransfer.
% DMA_SetChannelConfigValid.
* DMA_DoChannelSoftwareTrigger.
* DMA_LoadChannelTransferConfig.

36 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.0.1]
* Improvements

— Added volatile for DMA descriptor member xfercfg to avoid optimization.

[2.0.0]

 Initial version.

DMIC
[2.3.3]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8.
[2.3.2]

* New Features

— Supported 4 channels in driver.

[2.3.1]
* Bug Fixes
— Fixed the issue that DMIC_EnableChannelDma and DMIC_EnableChannelFifo did not
clean relevant bits.
[2.3.0]

* Improvements
— Added new apis DMIC_ResetChannelDecimator/DMIC_EnableChannelGlobalSync/DMIC_DisableChanr

[2.2.1]
* Bug Fixes
- Fixed violations of the MISRA C-2012 rules 14.4, 17.7, 10.4, 10.3, 10.8, 14.3.

[2.2.0]
* Bug Fixes
— Corrected the usage of feature FSL._FEATURE_DMIC_IO_HAS_NO_BYPASS.

[2.1.1]
* Improvements
— Added feature FSL, FEATURE_DMIC_HAS_NO_IOCFG for IOCFG register.

1.5. ChangeLog 37

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.1.0]
* New Features

— Added API DMIC_EnbleChannellnterrupt/DMIC_EnbleChannelDma to replace API
DMIC_SetOperationMode.

— Added API DMIC_SetIOCFG and marked DMIC_ConfigIO as deprecated.
— Added API DMIC_EnableChannelSignExtend to support sign extend feature.

[2.0.5]
* Improvements

— Changed some parameters’ value of DMIC_FifoChannel API, such as enable, resetn,
and trig_level. This is not possible for the current code logic, so it improves the
DMIC_FifoChannel logic and fixes incorrect math logic.

[2.0.4]
* Bug Fixes
— Fixed the issue that DMIC DMA driver(ver2.0.3) did not support calling
DMIC_TransferReceiveDMA in DMA callback as it did before version 2.0.3. But
calling DMIC_TransferReceiveDMA in callback is not recommended.
[2.0.3]

* New Features
* Supported linked transfer in DMIC DMA driver.
* Added new API DMIC_EnableChannelFifo/DMIC_DoFifoReset/DMIC_InstallDMADescriptor.

[2.0.2]
* New Features

— Supported more channels in driver.

[2.0.1]
* New Features
— Added a control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.0]

 Initial version.

DMIC_DMA

[2.4.1]
* Bug Fixes
- Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8.

38 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.4.0]
* Bug Fixes

— Fixed the issue that DMIC_TransferAbortReceiveDMA can not disable dmic and dma
request issue.

[2.3.1]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 10.3.

[2.3.0]
* Refer DMIC driver change log 2.0.1 to 2.3.0

ENET
[2.9.3]
* Bug Fixes
— Fixed ENET_Ptp1588GetTimer incorrect timestamps when timer wraps occur after
nanosecond capture:
% Now only increments second field when nanosecond value is less than half a sec-
ond
[2.9.2]
* Bug Fixes
— RGMII mode is (temporarily) disabled before selecting between 10/100-Mbit/s and
1000-Mbit/s modes of operation. The bit RGMII_EN of RCR register must not be set
while changing ECR register’s speed bit, otherwise there is a possibility of ENET IP
ending in an incorrect state.
[2.9.1]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 8.4, 10.4.
[2.9.0]
* Bug Fixes

— Enabled collection of transfer statistics, so the function ENET_ GetStatistics does not
always return zeroes.

* New Features

— Added new function ENET EnableStatistics to enable/disable collection of transfer
statistics.

— Added new function ENET_ResetStatistics to reset transfer statistics.
* Improvements

— Renamed the function ENET ResetHareware to ENET_ResetHardware.

1.5. ChangeLog 39

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.8.0]
* New Features

— Added the function to reset hardware on certain devices.

[2.7.1]
* Bug Fixes
— Fixed the issue that free wrong buffer address when one frame stores in multiple
buffers and memory pool is not enough to allocate these buffers to receive one com-
plete frame.
[2.7.0]

* Improvements

— Deleted deprecated zero copy Tx/Rx functions and set callback function which can be
configured in ENET _Init.

— Moved the Rx zero copy buffer allocation to Rx BD initialization function to reduce
unnecessary looping code.

* Bug Fixes

— Fixed the issue that predefined Rx buffers which should not be used when enabling
Rx zero copy are still be handled by cache operation, it causes hardfault on some plat-
forms.

— Fixed the issue that zero-copy Rx function doesn’t check Rx length of 0 in the BD with
EMPTY bit is 0, it may occur in the corner case reported by customer. Not sure how it
turns out, consider it as an ENET IP issue and drop this abnormal BD.

[2.6.3]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 11.6.
[2.6.2]

* Improvements

— Changed ENET1_MACO_Rx_Tx_Done0O_DriverI[RQHandler/ENET1_MACO_Rx_Tx_Donel_DriverIRQHan
to ENET1_MACO_Rx_Tx_Donel_DriverIRQHandler/ENET1_MACO_Rx_Tx_Done2_DriverIRQHandler
which represent ring 1 and ring 2.

[2.6.1]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 10.3, 10.4, 10.7, 11.6, 11.8.
[2.6.0]

* Improvements
— Added MDIO access wrapper APIs for ease of use.
— Fixed the build warning introduced by 64-bit compatibility patch.

40 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.5.4]
* Improvements

— Made the driver compatible with 64-bit platforms.

[2.5.3]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 11.6.
[2.5.2]

* Improvements

— Updated the TXIC/RXIC register handling code according to the new header file.

[2.5.1]
* Bug Fixes

— Fixed document typo.

[2.5.0]
* Bug Fixes
— Fixed the SendFrame/SendFrameZeroCopy functions issue with scattered buffers.
— Updated the formula of MDC calculation.

— Used a feature macro to distinguish the old IP design from the new design, because
old IP design always reads a value zero from ATCR->CAPTURE bit. For old IP, driver
caculates and wait the necessary delay cycles after setting ATCR->CAPTURE then gets
the timestamp value.

* New Features
— Added new zero copy Tx/Rx function.

— New zero copy Tx function combines scattered and contiguous Tx buffer in one API,
it also supports more Tx featrues which buffer descriptor supports but previous Tx
function doesn’t support.

— New zero copy Rx function use dynamic buffer mechanism and simpler interface.
* Improvements

— Corrected the interrupt handler for PTP timestamp IRQ and PTP1588 event IRQ since
platform difference.

— Added missing IRQ handlers for PTP1588 events on some platforms.

— Corrected the max Tx frame length verification, it will not depend on a fixed macro.
The ENET_FRAME_MAX FRAMELEN is only an default value for driver, application
can configure it. Driver caculates the limitation with the max frame length in register
which may takes extended 4 or 8 bytes VLAN tag if VLAN/SVLAN enables.

— Deleted deprecated Clause 45 read/write legacy APIs.

1.5. ChangeLog 1

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.4.3]
* Improvements
— Aligned the IRQ handler name with header file.

[2.4.2]
* Bug Fixes

- Fixed the MISRA issue of speculative out-of-bounds access.

[2.4.1]
* Bug Fixes

— Fixed the PTP time capture issue.

[2.4.0]
* Improvements

— Exposed API ENET_ReclaimTxDescriptor for user application to relaim tx descriptors
in their application.

— Added counter to record multicast hash conflict in struct _enet_handle, improved the
situation that one multicast group could be left by other conflict multicast address left
operation.

- Improved concurrent usage of relaim and send frame operation.

[2.3.4]
* Bug Fixes
— Fixed the issue that interrupt handler only checks the interrupt event flag but not
checks interrupt mask flag.
[2.3.3]
* Bug Fixes
— Fixed the issue that some compilers may choose the memcpy with 4-bit aligned address
limitation due to the type of address pointer is ‘unsigned int *’, the data address doesn’t
have to be 4-bit aligned.
[2.3.2]

* New Features

— Added the feature that ENET driver can be used in the platform which integrates both
10/100M and 1G ENET IP.

— Deleted duplicated code about ARM errata 838869 in first/second level IRQ handler.

[2.3.1]
* Improvements

— Added function pointer checking in IRQ handler to make sure code can be used even
it runs into the interrupt when the second level interupt handler is NULL.

42 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.3.0]
* Bug Fixes

— Fixed the issue that clause 45 MDIO read/write API doesn’t check the transmission over
status between two transmissions.

— Fixed violations of the MISRA C-2012 rules 2.2,10.3,10.4,10.7,11.6,11.8,13.5,14.4,15.7,17.7.
* New Features

— Added APIs to support send/receive frame with Zero-Copy.
* Improvements

— Separated the clock configuration from module configuration when init and deinit.

— Added functions to set second level interrupt handler.

— Provided new function to get 1588 timer count without disabling interrupt.

— Improved timestamp controlling, deleted all old timestamp management APIs and data
structures.

— Merged the single/multiple ring(s) APIs, now these APIs can handle both.

— Used base and index to control buffer descriptor, aligned with qos and Ipc enet driver.

[2.2.6]
* Bug Fixes
— Updated MII speed formula referring to the manual.
[2.2.5]
* Bug Fixes

— Fixed violations of the MISRA C-2012 rules 10.1, 10.3, 10.4, 10.6, 10.7, 11.6, 11.9, 13.5,
14.4,16.4,17.7, 21.15, 3.1, 8.4.

— Changed to use ARRAY_SIZE(s_enetBases) as the array size for s_ ENETHandle, fixed
the hardfault issue for using some ENET instance when ARRAY_SIZE(s_enetBases) is
not same as FSL,_ FEATURE_SOC_ENET_COUNT.

[2.2.4]

* Improvements

— Added call to Data Synchronization Barrier instruction before activating Tx/Rx buffer
descriptor to ensure previous data update is completed.

— Improved ENET_TransmitIRQHandler to store timestamps for multiple transmit buffer
descriptors.

— Bug Fixes
— Fixed the issue that ENET_Ptp1588GetTimer did not handle the timer wrap situation.

[2.2.3]
* Improvements

— Improved data buffer cache maintenance in the ENET driver.

1.5. ChangeLog 43

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.2.2]
* New Features
— Added APIs for extended multi-ring support.
— Added the AVB configure API for extended AVB feature support.

[2.2.1]
* Improvements

— Changed the input data pointer attribute to const in ENET_SendFrame().

[2.1.1]
* New Features
— Added the extended MDIO IEEE802.3 Clause 45 MDIO format SMI command APIs.
— Added the extended interrupt coalescing feature.
* Improvements

— Combined all storage operations in the ENET_Init to ENET_SetHandler API.

[2.0.1]
* Bug Fixes
— Used direct transmit busy check when doing data transmit.
* Miscellaneous Changes
— Updated IRQ handler work flow.

— Changed the TX/RX interrupt macro from KENET _RxBytelnterrupt to
KENET_RxBufferInterrupt, from KENET_TxBytelnterrupt to KENET_TxBufferInterrupt.

— Deleted unnecessary parameters in ENET handler.

[2.0.0]

 Initial version.

FLEXCOMM

[2.0.2]
* Bug Fixes
— Fixed typos in FLEXCOMM15_DriverIRQHandler().
— Fixed MISRA issues.
* Fixed rules 10.1, 10.3, 10.4, 10.7, 10.8, 11.3, 11.6, 11.8, 11.9, 13.5.
* Improvements

— Added instance calculation in FLEXCOMM16_DriverIRQHandler() to align with Flex-
comm 14 and 15.

44 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.0.1]
* Improvements

— Added more IRQHandler code in drivers to adapt new devices.

[2.0.0]

 Initial version.

FLEXSPI

[2.8.0]
* Bug Fixes

— Introduced the disableAhbReadResume field in the flexspi_config_t structure to pro-
vide control over the AHBCR[RESUMEDISABLE] register bit.

— Implemented a workaround for hardware erratum ERR052733 by setting the default
value of disableAhbReadResume to true.

— Fixed issue in FLEXSPI_ TransferHandleIRQ where the transfer completion was incor-
rectly signaled despite pending read/write operations.

* New Features

— Introduced a new function(FLEXSPI_ UpdateAhbBuffersSettings) that allows users to
update the AHB buffer configuration after the FLEXSPI module has been initialized

[2.7.0]
* New Features
— Added new API to support address remapping.

[2.6.4]
* Improvements

— Added new macro “FSL_SDK_ENABLE_FLEXSPI_RESET_CONTROL” to support driver
level reset control.

[2.6.3]
* Bug Fixes
— Fixed an issue which cause IPCR1[IPAREN] cleared by mistake.

[2.6.2]
* Bug Fixes

- Wait Bus IDLE before operation of FLEXSPI_SoftwareReset(),
FLEXSPI_TransferBlocking() and FLEXSPI_TransferNonBlocking().

1.5. ChangeLog 45

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.6.1]
* Bug Fixes
— Updated code of reset peripheral.
- Upc.lated FLEXSPI_UpdateLUT() to check if input lut address is not in Flexspi AMBA
region.
— Updated FLEXSPI_Init() to check if input AHB buffer size exceeded maximum AHB size.
[2.6.0]

* New Features
— Added new API to set AHB memory-mapped flash base address.

— Added support of DLLXCR[REFPHASEGAP] bit field, it is recommended to set it as 0x2
if DLL calibration is enabled.

[2.5.1]
* Bugfixes
— Fixed handling of W1C bits in the INTR register
— Removed FIFO resets from FLEXSPI_CheckAndClearError
— FLEXSPI_TransferBlocking is observing IPCMDDONE and then fetches the final status
of the transfer

- Fixed issue that FLEXSPI2_DriverIRQHandler not defined.

[2.5.0]

* Improvements
— Supported word un-aligned access for write/read blocking/non-blocking API functions.
— Fixed dead loop issue in DLL update function when using FRO clock source.
— Fixed violations of the MISRA C-2012 Rule 10.3.

[2.4.0]
* Improvements

— Isolated IP command parallel mode and AHB command parallel mode using feature
MACRO.

— Supported new column address shift feature for external memory.

[2.3.5]
* Bug Fixes
— Fixed violations of the MISRA C-2012 Rule 14.2.

[2.3.4]
* Bug Fixes

— Updated flexspi_config t structure and FlexSPI_Init to support new feature
FSL_FEATURE_FLEXSPI_HAS_NO_MCRO_CONBINATION.

46 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.3.3]
* Bug Fixes
— Removed feature FSL_FEATURE_FLEXSPI_DQS_DELAY PS for DLL delay setting.
Changed to use feature FSL_FEATURE_FLEXSPI_DQS_DELAY_MIN to set slave delay tar-
get as 0 for DLL enable and clock frequency higher than 100MHz.
[2.3.2]
* Bug Fixes
- Fixed violations of the MISRA C-2012 Rule 8.4, 8.5, 10.1, 10.3, 10.4, 11.6 and 14.4.
[2.3.1]
* Bug Fixes
— Wait for bus to be idle before using it as access to external flash with new setting in
FLEXSPI_SetFlashConfig() API.
- Fixed the potential buffer overread and Tx FIFO overwrite issue in
FLEXSPI_WriteBlocking.
[2.3.0]

* New Features

— Added new API FLEXSPI_UpdateDIllValue for users to update DLL value after updating
flexspi root clock.

— Corrected grammatical issues for comments.
— Added support for new feature FSL._FEATURE_FLEXSPI_DQS_DELAY_PS in DLL config-

uration.
[2.2.2]
* Bug Fixes
— Fixed violations of the MISRA C-2012 Rule 10.1, 10.3 and 10.4.
— Updated _flexspi_command from named enumerator into anonymous enumerator.
[2.2.1]
* Bug Fixes
- Fixed violations of the MISRA C-2012 Rule 10.1, 10.3, 10.4, 10.8, 11.9, 14.4, 15.7, 16.4,
17.7,7.3.

— Fixed IAR build warning Pe167.

— Fixed the potential buffer overwrite and Rx FIFO overread issue in
FLEXSPI_ReadBlocking.

1.5. ChangeLog 47

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.2.0]
* Bug Fixes

— Fixed flag name typos: KFLEXSPI_IpTxFifoWatermarkEmpltyFlag to
KFLEXSPI_IpTxFifoWatermarkEmptyFlag; KFLEXSPI IpCommandExcutionDoneFlag
to KFLEXSPI_IpCommandExecutionDoneFlag.

— Fixed comments typos such as sequencen->sequence, levle->level.

— Fixed FLSHCR2[ARDSEQID] field clean issue.

— Updated flexspi_config t structure and FlexSPI_Init to support
new feature FSL_FEATURE_FLEXSPI_HAS_NO_MCRO_ATDFEN and
FSL_FEATURE_FLEXSPI_HAS_NO_MCRO_ARDFEN.

— Updated flexspi_flags_t structure to support new feature
FSL_FEATURE_FLEXSPI_HAS_INTEN_AHBBUSERROREN.

[2.1.1]

* Improvements

— Defaulted enable prefetch for AHB RX buffer configuration in
FLEXSPI_GetDefaultConfig, which is align with the reset value in AHBRXBUFxCRO.

— Added software workaround for ERR011377 in FLEXSPI_SetFlashConfig; added some
delay after DLL lock status set to ensure correct data read/write.

[2.1.0]
* New Features

— Added new API FLEXSPI_UpdateRxSampleClock for users to update read sample clock
source after initialization.

— Added reset peripheral operation in FLEXSPI_Init if required.

[2.0.5]
* Bug Fixes

— Fixed FLEXSPI_UpdateLUT cannot do partial update issue.

[2.0.4]
* Bug Fixes

— Reset flash size to zero for all ports in FLEXSPI_Init; fixed the possible out-of-range
flash access with no error reported.

[2.0.3]
* Bug Fixes

— Fixed AHB receive buffer size configuration issue. The
FLEXSPI_AHBRXBUFCRO_BUFSZ field should configure 64 bits size, and currently
the AHB receive buffer size is in bytes which means 8-bit, so the correct configuration
should be config->ahbConfig.buffer[i].bufferSize / 8.

48 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.0.2]
* New Features
— Supported DQS write mask enable/disable feature during set FLEXSPI configuration.

— Provided new API FLEXSPI_TransferUpdateSizeEDMA for users to update eDMA trans-
fer size(SSIZE/DSIZE) per DMA transfer.

* Bug Fixes
— Fixed invalid operation of FLEXSPI_Init to enable AHB bus Read Access to IP RX FIFO.
— Fixed incorrect operation of FLEXSPI_Init to configure IP TX FIFO watermark.

[2.0.1]
* Bug Fixes

— Fixed the flag clear issue and AHB read Command index configuration issue in
FLEXSPI_SetFlashConfig.

— Updated FLEXSPI_UpdateLUT function to update LUT table from any index instead of
previous command index.

— Added bus idle wait in FLEXSPI_SetFlashConfig and FLEXSPI_UpdateLUT to ensure bus
is idle before any change to FlexSPI controller.

— Updated interrupt API FLEXSPI TransferNonBlocking and interrupt handle flow
FLEXSPI_TransferHandleIRQ.

— Updated eDMA API FLEXSPI_TransferEDMA.

[2.0.0]

« Initial version.

FLEXSPI DMA Driver

[2.2.1]
* Bug Fixes
— Fixed violations of the MISRA C-2012 Rule 10.1, 10.3, 10.4, 10.8.

[2.2.0]
* Bug Fixes
— Fixed violations of the MISRA C-2012 Rule 10.1, 10.3.
* New Features
— Updated name of FLEXSPI_TransferGetTransferCountDMA API.

[2.1.1]
* New Features
— Updated driver to support feature FSL,_FEATURE_FLEXSPI_DMA_MULTIPLE_DES.

1.5. ChangeLog 49

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.1.0]
* Bug Fixes

— Updated enumaration flexspi_dma_transfer_nsize_t and remove the unsupported
items.

* New Features

— Updated driver for deprecating the multiple linked descriptors inside
FLEXSPI_TransferDMA, only up to one linked descriptor is needed according to
hardware update.

[2.0.0]

 Initial version.

FMEAS

[2.1.1]
* Bug Fixes
— MISRA C-2012 issues fixed: rule 10.4, rule 10.8.

[2.1.0]

* Updated “FMEAS_GetFrequency”,”FMEAS_StartMeasure”,”FMEAS_IsMeasureComplete”
API and add definition to match ASYNC_SYSCON.

[2.0.0]

¢ Initial version ported from LPCOpen.

GDMA
[2.0.3]
* Bug Fixes
— Fixed MISRA C-2012 violation.
[2.0.2]

* Improvements
— Changed to use FSL_FEATURE_GDMA_CHANNEL_NUM defined by feature header.

[2.0.1]
* Bug Fixes
— Fixed MISRA C-2012 violation.

30 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.0.0]

 Initial version.

GPIO

[2.1.7]
* Improvements

— Enhanced GPIO_PinlInit to enable clock internally.

[2.1.6]
* Bug Fixes
— Clear bit before set it within GPIO_SetPinInterruptConfig() APL

[2.1.5]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 3.1, 10.6, 10.7, 17.7.

[2.1.4]
* Improvements
— Added API GPIO_PortGetInterruptStatus to retrieve interrupt status for whole port.
— Corrected typos in header file.

[2.1.3]
* Improvements

— Updated “GPIO_PinInit” APL If it has DIRCLR and DIRSET registers, use them at set 1
or clean 0.

[2.1.2]
* Improvements

— Removed deprecated APIs.

[2.1.1]
* Improvements
— APl interface changes:

* Refined naming of APIs while keeping all original APIs, marking them as depre-
cated. Original APIs will be removed in next release. The mainin change is updat-
ing APIs with prefix of _PinXXX() and _PorortXXX

1.5. ChangeLog 51

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.1.0]
* New Features
— Added GPIO initialize API.

[2.0.0]

 Initial version.

12C
[2.3.3]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 10.1.
— Fixed issue that if master only sends address without data during I2C interrupt trans-
fer, address nack cannot be detected.
[2.3.2]

* Improvement

— Enable or disable timeout option according to enableTimeout.
* Bug Fixes

— Fixed timeout value calculation error.

— Fixed bug that the interrupt transfer cannot recover from the timeout error.

[2.3.1]
* Improvement

— Before master transfer with transactional APIs, enable master function while disable
slave function and vise versa for slave transfer to avoid the one affecting the other.

* Bug Fixes

— Fixed bug in I2C_SlaveEnable that the slave enable/disable should not affect the other
register bits.

[2.3.0]
* Improvement

— Added new return codes kStatus_I2C_EventTimeout and kStatus_I2C_SclLowTimeout,
and added the check for event timeout and SCL timeout in I2C master transfer.

— Fixed bug in slave transfer that the address match event should be invoked before not
after slave transmit/receive event.

52 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.2.0]
* New Features

— Added enumeration _i2c_status_flags to include all previous master and slave status
flags, and added missing status flags.

— Modified I2C_GetStatusFlags to get all I12C flags.
— Added API I2C_ClearStatusFlags to clear all clearable flags not just master flags.

— Modified master transactional APIs to enable bus event timeout interrupt during trans-
fer, to avoid glitch on bus causing transfer hangs indefinitely.

* Bug Fixes

— Fixed bug that status flags and interrupt enable masks share the same enumerations by
adding enumeration _i2c_interrupt_enable for all master and slave interrupt sources.

[2.1.0]
* Bug Fixes

- Fixed bug that during master transfer, when master is nacked during slave probing
or sending subaddress, the return status should be kStatus_I2C_Addr_Nak rather than
kStatus_I2C_Nak.

* Bug Fixes
— Fixed MISRA issues.
* Fixed rules 10.1, 10.4, 13.5.
* New Features

— Added macro I2C_MASTER_TRANSMIT_IGNORE_LAST NACK, so that user can config-
ure whether to ignore the last byte being nacked by slave during master transfer.

[2.0.8]
* Bug Fixes
— Fixed I2C_MasterSetBaudRate issue that MSTSCLLOW and MSTSCLHIGH are incorrect
when MSTTIME is odd.
[2.0.7]
* Bug Fixes
— Two dividers, CLKDIV and MSTTIME are used to configure baudrate. According to
reference manual, in order to generate 400kHz baudrate, the clock frequency after
CLKDIV must be less than 2mHz. Fixed the bug that, the clock frequency after CLKDIV
may be larger than 2mHz using the previous calculation method.
— Fixed MISRA 10.1 issues.
— Fixed wrong baudrate calculation when feature FSL,_FEATURE_I2C_PREPCLKFRG_8MHZ
is enabled.
[2.0.6]

* New Features

- Added master timeout self-recovery support for feature
FSL_FEATURE_I2C_TIMEOUT_RECOVERY.

1.5. ChangeLog 53

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

* Bug Fixes
— Eliminated IAR Pa082 warning.
— Fixed MISRA issues.
* Fixed rules 10.1, 10.3, 10.4, 10.7,10.8, 11.3, 11.6, 11.8, 11.9, 13.5.

[2.0.5]
* Bug Fixes
- Fixed wrong assignment for datasize in 12C_InitTransferStateMachineDMA.

— Fixed wrong working flow in I2C_RunTransferStateMachineDMA to ensure master can
work in no start flag and no stop flag mode.

— Fixed wrong working flow in I2C_RunTransferStateMachine and added kReceive-
DataBeginState in _i2c_transfer_states to ensure master can work in no start flag and
no stop flag mode.

— Fixed wrong handle state in 12C_MasterTransferDMAHandleIRQ. After all the data has
been transfered or nak is returned, handle state should be changed to idle.

¢ Improvements

— Rounded up the calculated divider value in I12C_MasterSetBaudRate.

[2.0.4]
* Improvements
— Updated the 12C_WATI_TIMEOUT macro to unified name I2C_RETRY_TIMES

— Updated the “I2C_MasterSetBaudRate” API to support baudrate configuration for fea-
ture QN9090.

* Bug Fixes
— Fixed build warnning caused by uninitialized variable.
— Fixed COVERITY issue of unchecked return value in I2C_RTOS_Transfer.

[2.0.3]
* Improvements

— Unified the component full name to FLEXCOMM I2C(DMA/FREERTOS) driver.

[2.0.2]
* Improvements
- In slave IRQ:

1. Changed slave receive process to first set the I2C_SLVCTL_SLVCONTINUE_MASK to
acknowledge the received data, then do data receive.

2. Improved slave transmit process to set the I2C_SLVCTL_SLVCONTINUE_MASK im-
mediately after writing the data.

534 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.0.1]
* Improvements

— Added I2C_WATI_TIMEOUT macro to allow users to specify the timeout times for wait-
ing flags in functional API and blocking transfer API.

[2.0.0]

« Initial version.

128

[2.3.2]
* Bug Fixes

- Fixed warning for comparison between pointer and integer.

[2.3.1]
* Bug Fixes

— Updated the value of TX/RX software transfer state machine after transfer contents are
submitted to avoid race condition.

[2.3.0]
* Improvements

— Added apiI2S_InstallDMADescriptorMemory/I12S_TransferSendLoopDMA/I2S_TransferReceiveLoopD
to support loop transfer.

— Added api I2S_EmptyTxFifo to support blocking flush tx fifo.

— Updated api 12S_TransferAbortDMA by removed the blocking flush tx fifo from this
function.

* Bug Fixes

— Removed the while loop in abort transfer function to fix the dead loop issue under
specific user case.

[2.2.2]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 8.4.
[2.2.1]

* Improvements

— Added feature FSL_FEATURE_FLEXCOMM_INSTANCE_I2S_SUPPORT SECONDARY_CHANNELn
for the SOC has parts of instance support secondary channel.
* Bug Fixes

— Added volatile statement for the state variable of i2s_handle and enable the mainline
channel pair before enable interrupt to avoid the issue of code excution reordering
which may cause the interrupt generated unexpectedly.

1.5. ChangeLog 55

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.2.0]
* Improvements
— Added 8/16/24 bits mono data format transfer support in I12S driver.
— Added new apis I12S_SetBitClockRate.
* Bug Fixes
— Fixed the PA082 build warning.
— Fixed the sign-compare warning.

— Fixed violations of the MISRA C-2012 rules 10.4, 10.8, 11.9, 10.1, 11.3, 13.5, 11.8, 10.3,
10.7.

- Fixed the Operand don’t affect result Coverity issue.

[2.1.0]
* Improvements

— Added a feature for the FLEXCOMM which supports I12S and has interconnection with
DMIC.

— Used a feature to control PDMDATA instead of 12S_CFG1_PDMDATA.

— Added member bytesPerFrame in i2s_dma_handle_t, used for DMA transfer width con-
figure, instead of using sizeof(uint32_t) hardcode.

— Used the macro provided by DMA driver to define the 12S DMA descriptor.
* Bug Fixes

— Fixed the issue that 12S DMA driver always generated duplicate callback.

[2.0.3]
* New Features

— Added a feature to remove configuration for the second channel on LPC51U68.

[2.0.2]
* New Features
— Added ENABLE_IRQ handle after register I12S interrupt handle.

[2.0.1]
* Improvements
— Unified the component full name to FLEXCOMM I2S (DMA) driver.

[2.0.0]

« Initial version.

56 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

I2S_BRIDGE

[2.0.0]

* initial version

I12S_DMA

[2.3.3]
* Bug Fixes
— Fixed data size limit does not match the macro DMA_MAX_TRANSFER_BYTES issue.

[2.3.2]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 10.3.
[2.3.1]

 Refer I2S driver change log 2.0.1 to 2.3.1

IMU

[2.2.0]
* New Features

— Added IMU_BUSY_POLL_COUNT parameter to prevent infinite polling loops in IMU op-
erations.

— Added timeout mechanism to all polling loops in IMU driver code.

* Improvements
— Enhanced error handling in blocking functions to return timeout status.
— Updated documentation to clarify timeout behavior and return values.
— Added IMU_ERR_TIMEOUT error code for timeout conditions.

[2.1.1]
* Bug Fixes
— Fix MISRA C-2012 violations.
— Fixed IMU_GetStatusFlags bug that returns wrong RX FIFO status.
[2.1.0]

* Improvements:

— Updated API prototype, remove CIU2_Type from parameters.

1.5. ChangeLog 57

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.0.0]

 Initial version.

INPUTMUX

[2.0.9]
* Improvements

— Use INPUTMUX_CLOCKS to initialize the inputmux module clock to adapt to multiple
inputmux instances.

— Modify the API base type from INPUTMUX_Type to void.

[2.0.8]
* Improvements

— Updated a feature macro usage for function INPUTMUX_EnableSignal.

[2.0.7]
* Improvements

— Release peripheral from reset if necessary in init function.

[2.0.6]
* Bug Fixes
— Fixed the documentation wrong in API INPUTMUX_AttachSignal.

[2.0.5]
* Bug Fixes

— Fixed build error because some devices has no sct.

[2.0.4]
* Bug Fixes

— Fixed violations of the MISRA C-2012 rule 10.4, 12.2 in INPUTMUZX_EnableSignal() func-
tion.

[2.0.3]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 10.4, 10.7, 12.2.

[2.0.2]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 10.4, 12.2.

38 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.0.1]
* Support channel mux setting in INPUTMUX_EnableSignal(.

[2.0.0]

 Initial version.

10_MUX

[2.2.2]

* Fixed MSG issues. No function change.

[2.2.1]

* Fixed component id.

[2.2.0]

* Update io_mux signals according to data sheet.

[2.1.2]

* Fixed misra issues

[2.1.1]

» Added driver strength configuration

[2.1.0]
* Added IO_MUZX_SetPinOutLevellnSleep API
* Added I0_MUZX_SetRfPinOutLevellnSleep API
* Added capture pulse macro I0_MUX_AON_CAPTURE

[2.0.0]

* initial version.

IPED
[1.0.1]

* Fixed component id.

[1.0.0]

* initial version

1.5. ChangeLog 59

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

ITRC

[2.0.0]

 Initial version.

LCDIC

[2.2.0]
* New Features

— Add software timeout when waiting for CMD done.

[2.1.0]
* New Features
— Add seperate APIs for send and receive data in non-blocking way.
* Others

— Return error status when sending or receiving data larger than 0x40000, current driver
doesn’t support this.

[2.0.3]
* Bug Fixes
— Fixed potential issue that clock may not be send out when sending data array.
[2.0.2]
* Bug Fixes
- Fixed build error with MDK 5.37.
[2.0.1]
* Bug Fixes
— Added delay after setting LCDIC_EN to make sure LCDIC is out of reset.
[2.0.0]

 Initial version.

60 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

LCDIC_DMA

[2.1.0]
* New Features
— Add seperate APIs for send and receive data.
* Others

— Return error status when sending or receiving data larger than 0x40000, current driver
doesn’t support this.

[2.0.0]

« Initial version.

MRT
[2.0.5]
* Bug Fixes
— Fixed CERT INT31-C violations.
[2.0.4]

* Improvements

— Don’t reset MRT when there is not system level MRT reset functions.

[2.0.3]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 10.1 and 10.4.

— Fixed the wrong count value assertion in MRT_StartTimer API.

[2.0.2]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 10.4.

[2.0.1]
» Added control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.0]

 Initial version.

1.5. ChangeLog 61

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

OCOTP

[2.2.3]

* Fixed MSG issues. No function change.

[2.2.2]

* Fixed component id.

[2.2.1]

* Removed reset on OTP init and deinit to keep OTP configuration on boot.

[2.2.0]
* Added OCOTP_ReadPackage() API
* Exposed OCOTP_ReadSocOtp() API

[2.1.0]
* Added OCOTP_ReadSVC() APIL
* Avoid access OTP register before busy wait in OCOTP_OtpFuseRead()

[2.0.1]

» Tixed an misra issue 10.1

[2.0.0]

« initial version.

OSTIMER

[2.2.5]
* Improvements

— Support binary encoded ostimer.

[2.2.4]
* Bug Fixes
— Fixed CERT INT31-C violations.
[2.2.3]

* Improvements

— Disable and clear pending interrupts before disabling the OSTIMER clock to avoid in-
terrupts being executed when the clock is already disabled.

62 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.2.2]
* Improvements

— Support devices with different OSTIMER instance name.

[2.2.1]
* Improvements

— Release peripheral from reset if necessary in init function.

[2.2.0]
* Improvements
— Move the PMC operation out of the OSTIMER driver to board specific files.
— Added low level APIs to control OSTIMER MATCH and interrupt.

[2.1.2]
* Bug Fixes
— Fixed MISRA-2012 rule 10.8.

[2.1.1]
* Bug Fixes
- removes the suffix ‘n’ for some register names and bit fields’ names
* Improvements
— Added HW CODE GRAY feature supported by CODE GRAY in SYSCTRL register group.

[2.1.0]
* Bug Fixes

— Added a workaround to fix the issue that no interrupt was reported when user set
smaller period.

— Fixed violation of MISRA C-2012 rule 10.3 and 11.9.
* Improvements
— Added return value for the two APIs to set match value.
* OSTIMER_SetMatchRawValue
% OSTIMER_SetMatchValue

[2.0.3]
* Bug Fixes
— Fixed violation of MISRA C-2012 rule 10.3, 14.4, 17.7.
[2.0.2]

* Improvements
— Added support for OSTIMERO

1.5. ChangeLog 63

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.0.1]
* Improvements
— Removed the software reset function out of the initialization API.

— Enabled interrupt directly instead of enabling deep sleep interrupt. Users need to en-
able the deep sleep interrupt in application code if needed.

[2.0.0]

 Initial version.

PINT
[2.2.0]
* Fixed
— Fixed the issue that clear interrupt flag when it’s not handled. This causes events to be
lost.
* Changed
— Used one callback for one PINT instance. It’s unnecessary to provide different callbacks
for all PINT events.
[2.1.13]

* Improvements
— Added instance array for PINT to adapt more devices.

— Used release reset instead of reset PINT which may clear other related registers out of
PINT.

[2.1.12]
* Bug Fixes

— Fixed coverity issue.

[2.1.11]
* Bug Fixes
— Fixed MISRA C-2012 rule 10.7 violation.

[2.1.10]
* New Features

— Added the driver support for MCXN10 platform with combined interrupt handler.

[2.1.9]
* Bug Fixes
— Fixed MISRA-2012 rule 8.4.

64 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.1.8]
* Bug Fixes
— Fixed MISRA-2012 rule 10.1 rule 10.4 rule 10.8 rule 18.1 rule 20.9.
[2.1.7]

* Improvements
— Added fully support for the SECPINT, making it can be used just like PINT.

[2.1.6]
* Bug Fixes
— Fixed the bug of not enabling common pint clock when enabling security pint clock.
[2.1.5]
* Bug Fixes
— Fixed issue for MISRA-2012 check.
* Fixed rule 10.1 rule 10.3 rule 10.4 rule 10.8 rule 14.4.
— Changed interrupt init order to make pin interrupt configuration more reasonable.
[2.1.4]

* Improvements

— Added feature to control distinguish PINT/SECPINT relevant interrupt/clock configura-
tions for PINT _Init and PINT_Deinit APIL

— Swapped the order of clearing PIN interrupt status flag and clearing pending NVIC
interrupt in PINT_EnableCallback and PINT_EnableCallbackByIndex function.

— Bug Fixes

* Fixed build issue caused by incorrect macro definitions.

[2.1.3]
* Bug fix:

— Updated PINT_PinInterruptClrStatus to clear PINT interrupt status when the bit is as-
serted and check whether was triggered by edge-sensitive mode.

— Write 1 to IST corresponding bit will clear interrupt status only in edge-sensitive mode
and will switch the active level for this pin in level-sensitive mode.

— Fixed MISRA c-2012 rule 10.1, rule 10.6, rule 10.7.

— Added FSL_FEATURE_SECPINT NUMBER_OF_CONNECTED_OUTPUTS to distinguish
IRQ relevant array definitions for SECPINT/PINT on lpc55s69 board.

— Fixed PINT driver c++ build error and remove index offset operation.

[2.1.2]
* Improvement:
— Improved way of initialization for SECPINT/PINT in PINT _Init APL

1.5. ChangeLog 65

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.1.1]
* Improvement:

— Enabled secure pint interrupt and add secure interrupt handle.

[2.1.0]

* Added PINT_EnableCallbackByIndex/PINT_DisableCallbackByIndex APIs to enable/disable
callback by index.

[2.0.2]
* Added control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.1]
* Bug fix:
— Updated PINT driver to clear interrupt only in Edge sensitive.
[2.0.0]

« Initial version.

POWER

[2.5.3]
* Fixed MSG issues. No function change.

[2.5.2]

* Updated code according to new header file. No function change.

[2.5.1]

* Added new SVC trim equation for new samples

[2.5.0]
* Added Power_InitLoadGdetCfg() API
* Added bool return value for POWER_EnableGDetVSensors()

[2.4.0]

* Added POWER_TrimSvc() API
Added pack parameter to POWER_InitVoltage() API
Moved POWER_DelayUs() to execute in SRAM
Added barriar around WFI
Tweaked SVC table
Fixed POWER_GetResetCause() to get correct cause

66 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.3.0]

Added POWER_SetPowerSwitchCallback() API

Added POWER _InitVoltage() API

* Remove PMIP_BUCK_LVL configuration from POWER_InitPowerConfig().

* Fixed a potential compiling issue in Power_Delay()

[2.2.0]
* Added POWER_DisableGDetVSensors() API
* Added POWER_EnableGDetVSensors() API
* Added GDET/VSensor setting around PM2 PM3

[2.1.1]
* Renamed kPOWER_Pm2MemPuCss to kPOWER_Pm2MemPuEls
* Supported PM3 wakeup on Al device

[2.1.0]
* Added PM3 wakeup support for Al device.

* Added POWER ConfigCaulnSleep()) API. Remove pm3CauPd
power_sleep_config_t structure.

* Added power_init_config_t parameter in POWER_InitPowerConfig() APIL.

[2.0.1]
* Improved power performance
e Added return value for POWER_EnterPowerMode()

[2.0.0]

« initial version.

field

from

POWERQUAD

[2.2.0]
* New Features
— Added new API PQ_Arctan2Fixed.

[2.1.1]

* Bug Fixes

— Remove PQ_WaitDone from PQ_ArctanFixed and PQ_ArctanhFixed because it is un-

necessary.

1.5. ChangeLog

67

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.1.0]
* Improvements
— Fixed typo issue for biquad related function name.

— Changed operator from “%” into “&” to reduce heavy cycle for biquad functions.

[2.0.5]
* Improvements

— Added a note in driver for FIR that powerquad has a hardware limitation, when using
it for FIR increment calculation, the address of pSrc needs to be a continuous address.

[2.0.4]
* Improvements

— Supported the platforms which don’t have PowerQuad clock and reset control.

[2.0.3]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 8.4, 10.1, 10.3, 10.4, 10.6, and so on.
[2.0.2]
* Bug Fixes
- Fixed array size issue in fsl_powerquad_data.h file.
— Fixed vector function pipeline issue.
[2.0.1]
* Bug Fixes
— Fixed build error in C++ mode.
[2.0.0]

 Initial version.

RESET

[2.1.1]
e Corrected XX_RSTS definitions.
 Removed USDHC_RSTS.

[2.1.0]
* Added RESET_ReleasePeripheralReset() API

68 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.0.3]

* Renamed CSS(Crypto subsystem) related macros to ELS(Edge lock security)

[2.0.2]
* Added USIM_RSTS macro

[2.0.1]
» Added kCSS_GDET_REF_RST_SHIFT_RSTn

[2.0.0]

* initial version.

ROMAPI

[2.0.0]

* initial version for AO.

RTC

[2.2.0]
* New Features
— Created new APIs for the RTC driver.
* RTC_EnableSubsecCounter
* RTC_GetSubsecValue

[2.1.3]

* Bug Fixes

— Fixed issue that RTC_GetWakeupCount may return wrong value.

[2.1.2]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 10.1, 10.4 and 10.7.

[2.1.1]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 10.3 and 11.9.

1.5. ChangeLog

69

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.1.0]

* Bug Fixes
— Created new APIs for the RTC driver.

%

*

*

*

RTC_EnableTimer
RTC_EnableWakeUpTimerInterruptFromDPD
RTC_EnableAlarmTimerInterruptFromDPD
RTC_EnableWakeupTimer
RTC_GetEnabledWakeupTimer
RTC_SetSecondsTimerMatch
RTC_GetSecondsTimerMatch
RTC_SetSecondsTimerCount
RTC_GetSecondsTimerCount

— deprecated legacy APIs for the RTC driver.

%
%
(3
%

*

[2.0.0]

RTC_StartTimer
RTC_StopTimer
RTC_Enablelnterrupts
RTC_DisableInterrupts
RTC_GetEnabledInterrupts

 Initial version.

SCTIMER

[2.5.1]

* Bug Fixes

— Fixed bug in SCTIMER_SetupCaptureAction: When kSCTIMER_Counter_H is selected,
events 12-15 and capture registers 12-15 CAPn_H field can’t be used.

[2.5.0]

* Improvements

— Add SCTIMER_GetCaptureValue API to get capture value in capture registers.

[2.4.9]

* Improvements

— Supported platforms which don’t have system level SCTIMER reset.

70

Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.4.8]
* Bug Fixes
— Fixed the issue that the SCTIMER_UpdatePwmDutycycle() can’t writes MATCH_H bit
and RELOADn_H.
[2.4.7]
* Bug Fixes
— Fixed the issue that the SCTIMER_UpdatePwmDutycycle() can’t configure 100% duty
cycle PWM.
[2.4.6]
* Bug Fixes
— Fixed the issue where the H register was not written as a word along with the L register.
— Fixed the issue that the SCTIMER_SetCOUNTValue() is not configured with high 16 bits
in unify mode.
[2.4.5]
* Bug Fixes
— Fix SCT_EV_STATE_STATEMSKn macro build error.
[2.4.4]
* Bug Fixes
— Fix MISRA C-2012 issue 10.8.
[2.4.3]
* Bug Fixes
- Fixed the wrong way of writing CAPCTRL and REGMODE registers in SC-
TIMER_SetupCaptureAction.
[2.4.2]
* Bug Fixes
— Fixed SCTIMER_SetupPwm 100% duty cycle issue.
[2.4.1]
* Bug Fixes
— Fixed the issue that MATCHn_H bit and RELOADn_H bit could not be written.
[2.4.0]

1.5. ChangeLog 71

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.3.0]
* Bug Fixes

— Fixed the potential overflow issue of pulseperiod variable in SC-
TIMER_SetupPwm/SCTIMER_UpdatePwmDutycycle API.

— Fixed the issue of SCTIMER_CreateAndScheduleEvent API does not correctly work with
32 bit unified counter.

— Fixed the issue of position of clear counter operation in SCTIMER_Init APIL
* Improvements

— Update SCTIMER_SetupPwm/SCTIMER_UpdatePwmDutycycle to support generate 0%
and 100% PWM signal.

— Add SCTIMER_SetupEventActiveDirection API to configure event activity direction.

— Update SCTIMER_StartTimer/SCTIMER_StopTimer API to support start/stop low
counter and high counter at the same time.

— Add SCTIMER_SetCounterState/SCTIMER_GetCounterState API to write/read counter
current state value.

— Update APIs to make it meaningful.
4% SCTIMER_SetEventInState
% SCTIMER_ClearEventInState
* SCTIMER_GetEventInState

[2.2.0]
* Improvements

— Updated for 16-bit register access.

[2.1.3]
* Bug Fixes
— Fixed the issue of uninitialized variables in SCTIMER_SetupPwm.

— Fixed the issue that the Low 16-bit and high 16-bit work independently in SCTIMER
driver.

* Improvements

— Added an enumerable macro of unify counter for user.
* KSCTIMER_Counter U

— Created new APIs for the RTC driver.
* SCTIMER_SetupStateLdMethodAction
* SCTIMER_SetupNextStateActionwithL.dMethod
SCTIMER_SetCOUNTValue
* SCTIMER_GetCOUNTValue
* SCTIMER_SetEventInState
* SCTIMER_ClearEventInState
% SCTIMER_GetEventInState

— Deprecated legacy APIs for the RTC driver.

72 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

% SCTIMER_SetupNextStateAction

[2.1.2]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 10.3, 10.4, 10.6, 10.7, 11.9, 14.2 and 15.5.
[2.1.1]

* Improvements

— Updated the register and macro names to align with the header of devices.

[2.1.0]
* Bug Fixes
— Fixed issue where SCT application level Interrupt handler function is occupied by SCT
driver.
— Fixed issue where wrong value for INSYNC field inside SCTIMER_Init function.
— Fixed issue to change Default value for INSYNC field inside SCTIMER_GetDefaultConfig.
[2.0.1]

* New Features
— Added control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.0]

 Initial version.

SDU

[1.0.0]

¢ Initial version.

SMARTCARD

[2.3.0]
* New features:
— Added support for USIM

[2.2.2]
* Bug fix:
— Fixed MISRA C-2012 rule 10.4.

1.5. ChangeLog 73

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.2.1]
* Bug fix:
— Fixed IAR warnings Pa082 in smartcard_emvsim
— Fixed MISRA issues
— Fixed rules 10.1, 10.3, 10.4, 10.6, 10.7, 10.8, 14.4, 16.1, 16.3, 16.4, 17.7
[2.2.0]
* New features:
— Updated to use RX/TX FIFO
[2.1.2]

* Provided time delay function which works in microseconds.
* Bug fix:
— Changed event to semaphore in RTOS driver (KPSDK-11634).

— Added check if de-initialized variables are not null iSMARTCARD RTOS Deinit()
(KPSDK-8788).

— Changed deactivation sequence iSMARTCARD_PHY_TDA8035_Deactivate() to properly
stop the clockPOSCR-35).

— Fixed timing issue with VSELO/1 signals in smartcard TDA803driver (KPSDK-10160)

[2.1.1]
* New features:
— Added default phy interface selection into smartcard RTOS drivers (KPSDK-9063).
— Replaced smartcard_phy_ncn8025 driver by smartcard_phy_tda8035.
* Bug fix:

— Fixed protocol timers activation sequences in smartcard_emvsim and smart-
card_phy_tda8035 drivers during emvl1 pre-certification tests (KPSDK-9170, KPSDK-
9556).

[2.1.0]

 Initial version.

SPI

[2.3.2]
* Bug Fixes

— Fixed the txData from void * to const void * in transmit API

74 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.3.1]
* Improvements
- Changed SPI_DUMMYDATA to 0x00.

[2.3.0]

* Update version.

[2.2.2]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules.
[2.2.1]
* Bug Fixes
— Fixed MISRA 2012 10.4 issue.
— Added code to clear FIFOs before transfer using DMA.
[2.2.0]
* Bug Fixes
— Fixed bug that slave gets stuck during interrupt transfer.
[2.1.1]

* Improvements

— Added timeout mechanism when waiting certain states in transfer driver.
* Bug Fixes

— Fixed MISRA 10.1, 5.7 issues.

[2.1.0]
* Bug Fixes
— Fixed Coverity issue of incrementing null pointer in SPI_TransferHandleIRQInternal.
— Eliminated IAR Pa082 warnings.
— Fixed MISRA issues.
* Fixed rules 10.1, 10.3, 10.4, 10.7, 10.8, 11.3, 11.6, 11.8, 11.9, 13.5.
* New Features

— Modified the definition of SPI_SSELPOL_MASK to support the socs that have only 3
SSEL pins.

1.5. ChangeLog 75

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.0.4]
* Bug Fixes

— Fixed the bug of using read only mode in DMA transfer. In DMA transfer mode, if
transfer->txData is NULL, code attempts to read data from the address of 0x0 for con-
figuring the last frame.

- Fixed wrong assignment of handle->state. During transfer handle->state should be
kSPI_Busy rather than kStatus_SPI_Busy.

* Improvements

— Rounded up the calculated divider value in SPI_MasterSetBaud.

[2.0.3]
¢ Improvements
— Added “SPI_FIFO_DEPTH(base)” with more definition.

[2.0.2]
* Improvements
— Unified the component full name to FLEXCOMM SPI(DMA/FREERTOS) driver.

[2.0.1]

* Changed the data buffer from uint32_t to uint8_t which matches the real applications for
SPI DMA driver.

* Added dummy data setup API to allow users to configure the dummy data to be transferred.

* Added new APIs for half-duplex transfer function. Users can not only send and receive
data by one API in polling/interrupt/DMA way, but choose either to transmit first or to re-
ceive first. Besides, the PCS pin can be configured as assert status in transmission (between
transmit and receive) by setting the isPcsAssertInTransfer to true.

[2.0.0]

 Initial version.

SPI_DMA

[2.2.1]
* Bug Fixes
— Fixed MISRA 2012 11.6 issue..

[2.2.0]
* Improvements

— Supported dataSize larger than 1024 data transmit.

76 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

TRNG

[2.0.18]
* Bug fix:

— TRNG health checks now done in software on RT5xx and RT6xX.

[2.0.17]
* New features:
— Add support for RT700.

[2.0.16]
* Improvements:

— Added support for Dual oscillator mode.

[2.0.15]
* Other changes:

— Changed TRNG_USER_CONFIG_DEFAULT_XXX values according to latest reccomended
by design team.

[2.0.14]
* New features:
— Add support for RW610 and RW612.

[2.0.13]
* Bug fix:

— After deepsleep it might return error, added clearing bits in TRNG_GetRandomData()
and generating new entropy.

— Modified reloading entropy in TRNG_GetRandomData(), for some data length it doesn’t
reloading entropy correctly.

[2.0.12]
* Bug fix:

- For KW34A4 SERIES, KW35A4_SERIES, KW36A4_SERIES set
TRNG_USER_CONFIG_DEFAULT_OSC_DIV to kTRNG_RingOscDiv8.

[2.0.11]
* Bug fix:
— Add clearing pending errors in TRNG_Init().

1.5. ChangeLog 77

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.0.10]
* Bug Fix:
— Fixed doxygen issues.
[2.0.9]
* Bug Fix:
— Fix HIS_CCM metrics issues.
[2.0.8]
* Bug fix:
— For K32L2A41A_SERIES set TRNG_USER_CONFIG_DEFAULT_OSC_DIV to
KkTRNG_RingOscDiv4.
[2.0.7]
* Bug fix:
— Fix MISRA 2004 issue rule 12.5.
[2.0.6]
* Bug fix:
— For KW35Z4_SERIES set TRNG_USER_CONFIG_DEFAULT_OSC_DIV to
KkTRNG_RingOscDiv8.
[2.0.5]

* Improvements:

— For FRQMIN, FRQMAX and OSCDIV, add possibility to use device specific preprocessor
macro to define default value in TRNG user configuration structure.

[2.0.4]
* Bug Fix:
— Fix MISRA-2012 issues.
* Rule 10.1, rule 10.3, rule 13.5, rule 16.1.
[2.0.3]

* Improvements:

— update TRNG_Init to restart new entropy generation.

[2.0.2]
* Improvements:
— fix MISRA issues
* Rule 14.4.

78 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.0.1]
* New features:
— Set default OSCDIV for Kinetis devices KL.8x and KL28Z.
* Other changes:
— Changed default OSCDIV for K81 to divide by 2.

[2.0.0]

 Initial version.

USART
[2.8.5]
* Bug Fixes
— Fixed race condition during call of USART_EnableTxDMA and USART_EnableRxDMA.
[2.8.4]
* Bug Fixes
— Fixed exclusive access in USART_TransferReceiveNonBlocking and US-
ART_TransferSendNonBlocking.
[2.8.3]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 10.3, 11.8.
[2.8.2]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 14.2.
[2.8.1]
* Bug Fixes
— Fixed the Baud Rate Generator(BRG) configuration in 32kHz mode.
[2.8.0]

* New Features

— Added the rx timeout interrupts and status flags of bus status.

— Added new rx timeout configuration item in usart_config_t.

— Added API USART_SetRxTimeoutConfig for rx timeout configuration.
* Improvements

— When the calculated baudrate cannot meet user’s configuration, lower OSR value is
allewed to use.

1.5. ChangeLog 79

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.7.0]
* New Features
— Added the missing interrupts and status flags of bus status.

— Added the check of tx error, noise error framing error and parity error in interrupt
handler.

[2.6.0]
e Improvements
— Used separate data for TX and RX in usart_transfer_t.
* Bug Fixes

— Fixed bug that when ring buffer is used, if some data is received in ring buffer first
before calling USART_TransferReceiveNonBlocking, the received data count returned
by USART_TransferGetReceiveCount is wrong.

* New Features
— Added missing API USART_TransferGetSendCountDMA get send count using DMA.

[2.5.0]
* New Features

— Added APIs USART_GetRxFifoCount/USART GetTxFifoCount to get rx/tx FIFO data
count.

— Added APIs USART SetRxFifoWatermark/USART SetTxFifoWatermark to set rx/tx FIFO
water mark.

* Bug Fixes

— Fixed DMA transfer blocking issue by enabling tx idle interrupt after DMA transmis-
sion finishes.

[2.4.0]
* New Features

— Modified usart_config_t, USART_Init and USART_GetDefaultConfig APIs so that the
hardware flow control can be enabled during module initialization.

* Bug Fixes
— Fixed MISRA 10.4 violation.

[2.3.1]
* Bug Fixes

- Fixed bug that operation on INTENSET, INTENCLR, FIFOINTENSET and FIFOINTENCLR
should use bitwise operation not ‘or’ operation.

— Fixed bug that if rx interrupt occurrs before TX interrupt is enabled and after txData-
Size is configured, the data will be sent early by mistake, thus TX interrupt will be
enabled after data is sent out.

* Improvements

80 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

— Added check for baud rate’s accuracy that returns kSta-
tus_USART_BaudrateNotSupport when the best achieved baud rate is not within
3% error of configured baud rate.

[2.3.0]
* New Features
— Added APIs to configure 9-bit data mode, set slave address and send address.

— Modified USART_TransferReceiveNonBlocking and USART_TransferHandleIRQ to use
9-bit mode in multi-slave system.

[2.2.0]
* New Features
— Added the feature of supporting USART working at 32 kHz clocking mode.
* Improvements

— Modified USART_TransferHandleIRQ so that txState will be set to idle only when all
data has been sent out to bus.

— Modified USART_TransferGetSendCount so that this API returns the real byte count
that USART has sent out rather than the software buffer status.

— Added timeout mechanism when waiting for certain states in transfer driver.
* Bug Fixes
— Fixed MISRA 10.1 issues.

— Fixed bug that operation on INTENSET, INTENCLR, FIFOINTENSET and FIFOINTENCLR
should use bitwise operation not ‘or’ operation.

— Fixed bug that if rx interrupt occurrs before TX interrupt is enabled and after txData-
Size is configured, the data will be sent early by mistake, thus TX interrupt will be
enabled after data is sent out.

[2.1.1]
* Improvements

— Added check for transmitter idle in USART TransferHandleIRQ and US-
ART TransferSendDMACallback to ensure all the data would be sent out to bus.

— Modified USART_ReadBlocking so that if more than one receiver errors occur, all status
flags will be cleared and the most severe error status will be returned.

* Bug Fixes
— Eliminated IAR Pa082 warnings.
— Fixed MISRA issues.
* Fixed rules 10.1, 10.3, 10.4, 10.7, 10.8, 11.3, 11.6, 11.8, 11.9, 13.5.

[2.1.0]
* New Features

— Added features to allow users to configure the USART to synchronous transfer(master
and slave) mode.

* Bug Fixes

1.5. ChangeLog 81

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

— Modified USART_SetBaudRate to get more acurate configuration.

[2.0.3]
* New Features

— Added new APIs to allow users to enable the CTS which determines whether CTS is
used for flow control.

[2.0.2]
* Bug Fixes
- Fixed the bug where transfer abort APIs could not disable the interrupts. The FIFOIN-
TENSET register should not be used to disable the interrupts, so use the FIFOINTENCLR
register instead.
[2.0.1]

* Improvements
— Unified the component full name to FLEXCOMM USART (DMA/FREERTOS) driver.

[2.0.0]

¢ Initial version.

USART_DMA

[2.6.0]
» Refer USART driver change log 2.0.1 to 2.6.0

UTICK
[2.0.5]
¢ Improvements
— Improved for SOC RW610.
[2.0.4]
* Bug Fixes
— Fixed compile fail issue of no-supporting PD configuration in utick driver.
[2.0.3]
* Bug Fixes

— Fixed violations of MISRA C-2012 rules: 8.4, 14.4, 17.7

82 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.0.2]

* Added new feature definition macro to enable/disable power control in drivers for some
devices have no power control function.

[2.0.1]

» Added control macro to enable/disable the CLOCK code in current driver.

[2.0.0]

 Initial version.

WWDT
[2.1.9]
* Bug Fixes
— Fixed violation of the MISRA C-2012 rule 10.4.
[2.1.8]

* Improvements

— Updated the “WWDT_Init” API to add wait operation. Which can avoid the TV value
read by CPU still be 0XFF (reset value) after WWDT _Init function returns.

[2.1.7]
* Bug Fixes
- Fixed the issue that the watchdog reset event affected the system from PMC.
— Fixed the issue of setting watchdog WDPROTECT field without considering the back-
wards compatibility.
— Fixed the issue of clearing bit fields by mistake in the function of
WWDT_ClearStatusFlags.
[2.1.5]
* Bug Fixes
— deprecated a unusable API in WWWDT driver.
* WWDT _Disable
[2.1.4]
* Bug Fixes

- Fixed violation of the MISRA C-2012 rules Rule 10.1, 10.3, 10.4 and 11.9.
— Fixed the issue of the inseparable process interrupted by other interrupt source.
* WWDT _Init

1.5. ChangeLog 83

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

[2.1.3]
* Bug Fixes
— Fixed legacy issue when initializing the MOD register.
[2.1.2]

* Improvements

— Updated the “WWDT_ClearStatusFlags” API and “WWDT_GetStatusFlags” API to match
QN9090. WDTOF is not set in case of WD reset. Get info from PMC instead.

[2.1.1]
* New Features

— Added new feature definition macro for devices which have no LCOK control bit in
MOD register.

— Implemented delay/retry in WWDT driver.

[2.1.0]
* Improvements

— Added new parameter in configuration when initializing WWDT module. This param-
eter, which must be set, allows the user to deliver the WWDT clock frequency.

[2.0.0]

 Initial version.

1.6 Driver API Reference Manual

This section provides a link to the Driver API RM, detailing available drivers and their usage to
help you integrate hardware efficiently.

RW612

1.7 Middleware Documentation

Find links to detailed middleware documentation for key components. While not all onboard
middleware is covered, this serves as a useful reference for configuration and development.

1.7.1 Wireless Connectivity Framework

framework

1.7.2 MCU Boot

mcuboot_opensource

84 Chapter 1. RD-RW612-BGA

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

1.7.3 Audio Voice components

Audio Voice Components

1.7.4 Maestro Audio Framework for MCU

Maestro Audio Framework

1.7.5 FreeMASTER

freemaster

1.7.6 AWS IoT

AWS IoT

1.7.7 NXP Wi-Fi

Wi-Fi

1.7.8 FreeRTOS

FreeRTOS

1.7.9 Wireless EdgeFast Bluetooth PAL

edgefast_bluetooth

1.7.10 1IwIP

lwIP

1.7.11 File systemFatfs

FatFs

1.7. Middleware Documentation 85

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

86 Chapter 1. RD-RW612-BGA

Chapter 2

RW612

2.1 ACOMP: Analog Comparator

void ACOMP_ Init(ACOMP_Type *base, const acomp_config_t *config)
Initializes the module, including warm up time, response mode, inactive value and so on.

Parameters
* base — ACOMP peripheral base address.
* config — The pointer to the structure acomp_config_t.

void ACOMP_ GetDefaultConfig(acomp_config_t *config)
Gets the default configuration of ACOMP module.

config->id = kKACOMP__Acomp0;

config->enable = false;

config->warmupTime = KACOMP_ WarmUpTimelus;
config->responseMode = kACOMP__SlowResponseMode;
config->inactiveValue = kACOMP__ResultLogicLow;
config->intTrigType = KACOMP__HighLevelTrig;
config->edgeDetect TrigSrc = kKACOMP__EdgePulseDis;
config->outPinMode = kKACOMP_ PinOutDisable;
config->poslnput = NULL;

config->neglnput = NULL;

Parameters
* config — The pointer to the structure acomp_config_t.

void ACOMP_ Deinit(ACOMP_Type *base)
De-initializes the module.

Parameters
* base — ACOMP peripheral base address.

void ACOMP_ SetInputConfig(ACOMP_Type *base, acomp_comparator_id_t id, const
acomp_positive_input_config_t *posInput, const
acomp_negative_input_config_t *neglnput)

Configures selected comparator’s inputs, inclduing input channel and hysteresis level.
Parameters

* base — ACOMP peripheral base address.

87

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

*id - The selected acomp comparator’s id, please refer to
acomp_comparator_id_t.

* posInput—The configuration of selected comparator’s positive input, please
refer to acomp_positive_input_config_t.

* neglnput — The configuration of selected comparator’s negative input,
please refer to acomp_negative_input_config_t.

static inline void ACOMP_ DoSoftwareReset(ACOMP_Type *base, acomp_comparator_id_t id)
Does software reset to the selected ACOMP module.

Parameters
* base — ACOMP peripheral base address.

*id - The selected acomp comparator’s id, please refer to
acomp_comparator_id_t.

static inline void ACOMP_ Enable(ACOMP_Type *base, acomp_comparator._id_t id, bool enable)
Enables/Disables ACOMP module.

Parameters
* base — ACOMP peripheral base address.

*id — The selected acomp comparator’s id, please refer to
acomp_comparator_id_t.

* enable — Used to enable/disable module.
— true Enable comparator instance.
- false Disable comparator instance.

static inline void ACOMP_ ResetClockDivider(ACOMP_Type *base)
Resets clock divider.

Parameters
* base — ACOMP peripheral base address.

static inline acomp_result_logic_status_t ACOMP__GetResult(ACOMP_Type *base,
acomp_comparator._id_t id)

Gets the selected acomp conversion result.
Parameters
* base — ACOMP peripheral base address.

*id - The selected acomp comparator’s id, please refer to
acomp_comparator_id_t.

Returns
The result of the selected acomp instance.

static inline void ACOMP__Enablelnterrupts(ACOMP_Type *base, uint32_t interruptMask)
ACOMP Interrupt Control Interfaces.

Enables interrupts, including acomp0 asynchronized interrupt, acomp0O synchronized in-
terrupt, acompl asynchronized interrupt, and acomp1 synchronized interrupt.

Parameters
* base — ACOMP peripheral base address.

* interruptMask — The OR’ed value of the interrupts to be enabled, please re-
fer to _acomp_interrupt_enable.

88 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

static inline void ACOMP_ Disablelnterrupt(ACOMP_Type *base, uint32_t interruptMask)

Disables interrupts, including acomp0 asynchronized interrupt, acomp0 synchronized in-
terrupt, acompl asynchronized interrupt, and acompl synchronized interrupt.

Parameters
* base — ACOMP peripheral base address.

* interruptMask — The OR’ed value of the interrupts to be disabled, please
refer to _acomp_interrupt_enable.

uint32_t ACOMP_ GetStatusFlags(ACOMP_Type *base)
ACOMP Status Flag Interfaces.

Gets status flags, such as ACOMPO active status flags, ACOMP1 active status flags, and so on.
Parameters
* base — ACOMP peripheral base address.

Returns
The OR’ed value ACOMP status flags, please refer to _acomp_status_flags for
details.
static inline void ACOMP__ClearStatusFlags(ACOMP_Type *base, uint32_t statusFlagMask)
Clears status flags that can be cleared by software.

Note: Only KACOMP_AcompOOutInterruptFlag, KACOMP_AcompOOutAlnterruptFlag, kA-
COMP_Acomp1OutinterruptFlag, and kACOMP_Acomp1OutAlnterruptFlag can be cleared
by software.

Parameters
* base — ACOMP peripheral base address.
* statusFlagMask — The OR’ed value of the status flags that can be cleared.

enum _ acomp__interrupt_ enable

The enumeration of interrupts, including ACOMPO synchrnized output interrupt, ACOMPO
asynchrnized output interrupt, ACOMP1 synchrnized output interrupt, and ACOMP1 asyn-
chrnized output interrupt.

Values:

enumerator kACOMP_ OutOInterruptEnable
ACOMPO synchrnized output interrupt enable.

enumerator kACOMP_ OutAOInterruptEnable
ACOMPO asynchrnized output interrupt enable.

enumerator kKACOMP__OutlInterruptEnable
ACOMP1 synchrnized output interrupt enable.

enumerator kACOMP_ OutAlInterruptEnable
ACOMP1 asynchrnized output interrupt enable.

enum _acomp_status flags

The enumeration of status flags, including ACOMPO active staus flag, ACOMP1 active status
flag, and so on.

Values:

enumerator kACOMP__ AcompOActiveFlag
ACOMPO active status flag, if this flag is set it means the ACOMPO is active.

2.1. ACOMP: Analog Comparator 89

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kACOMP__ Acomp0OutInterruptFlag

ACOMPO Synchronized output interrupt flags, this flag is set when ACOMPO synchro-
nized output changes from 0 to 1 and the corresponding interrupt is enabled.

enumerator kACOMP__Acomp0OutAlnterruptFlag

ACOMPO Asynchronized output interrupt flags, this flag is set when ACOMPO asynchro-
nized output changes from 0 to 1 and the corresponding interrupt is enabled.

enumerator kACOMP_ AcompORawOutInterruptFlag
ACOMPO raw synchroized output interrrupt flags.
enumerator kACOMP__AcompORawOutAlInterruptFlag
ACOMPO raw asynchroized output interrupt flags.
enumerator kKACOMP__AcomplActiveFlag
ACOMP1 active status flag, if this flag is set it means the ACOMPO is active.

enumerator kACOMP__AcomplOutInterruptFlag

ACOMP1 Synchronized output interrupt flags, this flag is set when ACOMP1 synchro-
nized output changes from 0 to 1 and the corresponding interrupt is enabled.

enumerator kACOMP__ AcomplOutAlnterruptFlag

ACOMP1 Asynchronized output interrupt flags, this flag is set when ACOMP1 asynchro-
nized output changes from 0 to 1 and the corresponding interrupt is enabled.

enumerator kACOMP_ AcomplRawOutInterruptFlag
ACOMP1 raw synchroized output interrrupt flags.

enumerator kACOMP__AcomplRawOutAlInterruptFlag
ACOMP1 raw asynchroized output interrupt flags.

enum _ acomp_ result_ logic_ status
ACOMP result logical status Type definition.

Values:

enumerator kACOMP_ ResultLogicLow
The comparsion result is high logic.
enumerator kACOMP__ResultLogicHigh
The comparsion result is low logic.
enum _ acomp__comparator id
ACOMP comparator id.
Values:
enumerator kACOMP__ Acomp0
Index for ACOMPO
enumerator kACOMP__ Acompl
Index for ACOMP1
enum _ acomp_ warm_ up_ time
The enumeration of wave up time.
Values:
enumerator kKACOMP_ WarmUpTimelus

Set wave-up time as 1us.

enumerator kACOMP_ WarmUpTime2us
Set wave-up time as 2us.

90 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kACOMP_ WarmUpTime4us
Set wave-up time as 4us.

enumerator kACOMP_ WarmUpTime8us
Set wave-up time as 8us.

enum _ acomp_ response_ mode

The enumeration of response mode. The response mode will affect the delay from input to
output.

Values:
enumerator kACOMP__SlowResponseMode
Slow response mode also called power mode 1.
enumerator kACOMP_ MediumResponseMode
Medium response mode also called power mode 2.
enumerator kACOMP__FastResponseMode
Fast response mode also called power mode 3.
enum _ acomp__ interrupt_ trigger type
ACOMP interrupt trigger type definition.
Values:
enumerator kACOMP_ LowLevel Trig
Low level trigger interrupt.
enumerator kACOMP_ HighLevel Trig
High level trigger interrupt.
enumerator kACOMP_ FallingEdgeTrig
Falling edge trigger interrupt.
enumerator kACOMP_ RisingEdgeTrig
Rising edge trigger interrupt.
enum _ acomp_ edge pulse_trig_source
ACOMP edge pule trigger source type definition.
Values:
enumerator kACOMP__EdgePulseDis
edge pulse function is disable
enumerator kACOMP__EdgePulseRising
Rising edge can trigger edge pulse
enumerator kACOMP__EdgePulseFalling
Falling edge can trigger edge pulse
enumerator kACOMP__EdgePulseBothEdge
Both edge can trigger edge pulse
enum _ acomp_ pin_ out_ type
ACOMP synchronous/asynchronous output type to pin.
Values:

enumerator kACOMP_ PinOutSyn
Enable ACOMP synchronous pin output

2.1. ACOMP: Analog Comparator 91

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kACOMP_ PinOutAsyn
Enable ACOMP asynchronous pin output

enumerator kACOMP_ PinOutSynInverted
Enable ACOMP inverted synchronous pin output
enumerator kACOMP_ PinOutAsynInverted
Enable ACOMP inverted asynchronous pin output
enumerator kACOMP_ PinOutDisable
Diable ACOMP pin output
enum _ acomp_ positive_ channel
ACOMP positive channel enumeration.
Values:
enumerator kACOMP_ PosCh0
ACOMP ChannelO selection
enumerator kACOMP_ PosChl
ACOMP Channel1 selection
enumerator kACOMP_ PosCh2
ACOMP Channel2 selection
enumerator kACOMP_ PosCh3
ACOMP Channel3 selection
enumerator kACOMP_ PosCh4
ACOMP Channel4 selection
enumerator kACOMP_ PosChb
ACOMP Channel5 selection
enumerator kACOMP_ PosCh6
ACOMP Channel6 selection
enumerator kACOMP_ PosCh?7
ACOMP Channel7 selection
enumerator kACOMP_ PosChDACA
DACA selection
enumerator kACOMP_ PosChDACB
DACB selection
enum _ acomp_ negative_channel
ACOMP negative channel enumeration.
Values:
enumerator kACOMP_ NegCh0
ACOMP ChannelO selection
enumerator kACOMP_ NegChl
ACOMP Channell selection
enumerator kACOMP_ NegCh2
ACOMP Channel2 selection

enumerator kACOMP_ NegCh3
ACOMP Channel3 selection

92

Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kACOMP_ NegCh4
ACOMP Channel4 selection

enumerator kACOMP_ NegChb
ACOMP Channel5 selection

enumerator kACOMP_ NegCh6
ACOMP Channel6 selection

enumerator kACOMP_ NegCh7
ACOMP Channel7 selection

enumerator kACOMP_ NegChDACA
DACA selection

enumerator kACOMP_ NegChDACB
DACB selection

enumerator kACOMP_ NegChVREF1P2
Vreflp2 selection

enumerator kACOMP_ NegChAVSS
AVSS selection

enumerator kACOMP_ NegChVIO__0P25
VIO Scaling factor 0.25

enumerator kACOMP_ NegChVIO_ 0P50
VIO Scaling factor 0.50

enumerator kACOMP_ NegChVIO_0P75
VIO Scaling factor 0.75

enumerator kACOMP_ NegChVIO__1P00
VIO Scaling factor 1.00

enum _ acomp_ input_ hysteresis

ACOMP hysteresis level enumeration.
Values:
enumerator kACOMP_ HysterOMV
Hysteresis level = Omv
enumerator kACOMP__ Hyster10MV
Hysteresis level = 10mv
enumerator kACOMP_ Hyster20MV
Hysteresis level = 20mv
enumerator kACOMP_ Hyster30MV
Hysteresis level = 30mv
enumerator kACOMP_ Hyster4OMV
Hysteresis level = 40mv
enumerator kACOMP_ Hyster50MV
Hysteresis level = 50mv

enumerator kACOMP_ Hyster60MV
Hysteresis level = 60mv

2.1.

ACOMP: Analog Comparator

93

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kACOMP_ Hyster70MV
Hysteresis level = 70mv

typedef enum _acomp_result_logic_status acomp_result_logic_status_t
ACOMP result logical status Type definition.

typedef enum _acomp_comparator._id acomp__comparator_id_t
ACOMP comparator id.

typedef enum _acomp_warm_up_time acomp_ warm_ up_ time_ t
The enumeration of wave up time.

typedef enum _acomp_response_mode acomp_ response_ mode_ t

The enumeration of response mode. The response mode will affect the delay from input to
output.

typedef enum _acomp_interrupt_trigger_type acomp_ interrupt_ trigger_type t
ACOMP interrupt trigger type definition.
typedef enum _acomp_edge_pulse_trig_source acomp_ edge pulse_ trig source t
ACOMP edge pule trigger source type definition.
typedef enum _acomp_pin_out_type acomp_ pin_out_ type t
ACOMP synchronous/asynchronous output type to pin.
typedef enum _acomp_positive_channel acomp_ positive_channel t
ACOMP positive channel enumeration.
typedef enum _acomp_negative_channel acomp_negative channel
ACOMP negative channel enumeration.
typedef enum _acomp_input_hysteresis acomp_ input_ hysteresis_t
ACOMP hysteresis level enumeration.
typedef struct _acomp_positive_input_config acomp_ positive_input_ config t
The configuration of positive input, including channel selection and hysteresis level.
typedef struct _acomp_negative_input_config acomp_ negative input_ config_t
The configuration of negative input, including channel selection and hysteresis level.
typedef struct _acomp_config acomp_ config_t
The configure structure of acomp, including warm up time, response mode and so on.
FSL__ACOMP_DRIVER_ VERSION
ACOMP driver version.
Version 2.0.1.
ACOMP_REG_ ADDR(startAddr, id)
The macro to get the address based on start address and acomp id.

ACOMP_REG_CONST_ADDR(startAddr, id)
ACOMP_GET_REG_ VAL(startAddr, id)
The macro to get register value based on start address and acomp id.
ACOMP_GET_REG_CONST__VAL(startAddy, id)
ACOMP_SET REG_BIT(startAddr, id, val)
Sets register’s bit field.

ACOMP_CLEAR_REG_ BIT(startAddr, id, val)
Clears register’s bit field.

94 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

struct _acomp_ positive_input_ config

#include <fsl_acomp.h> The configuration of positive input, including channel selection and
hysteresis level.

Public Members
acomp_positive_channel_t channel
Positive input channel selection, please refer to acomp_positive_channel t.

acomp_input_hysteresis_t hysterLevel
Positive hysteresis voltage level selection, please refer to acomp_input_hysteresis_t.

struct _acomp_ negative input_ config

#include <fsl_acomp.h> The configuration of negative input, including channel selection and
hysteresis level.

Public Members
acomp_negative_channel_t channel
Negative input channel selection, please refer to acomp_negative_channel_t.

acomp_input_hysteresis_t hysterLevel
Negative hystersis voltage level selection, please refer to acomp_input_hysteresis_t.

struct _acomp_ config

#include <fsl_acomp.h> The configure structure of acomp, including warm up time, re-
sponse mode and so on.

Public Members
acomp_comparator_id_t id
The id of comparator, please refer to acomp_comparator_id_t.

bool enable
Enable/Disable the selected ACOMP.

* true Enable the selected ACOMP.
 false Disable the selected ACOMP.

acomp_warm_up_time_t warmupTime
Configure warm-up time, please refer to acomp_warm_up_time_t.

acomp_response_mode_t responseMode
Configure responde mode(power mode), please refer to acomp_response_mode_t for
details.
acomp_interrupt_trigger_type_t intTrigType
Select interrupt trigger type, please refer to acomp_interrupt_trigger_type_t.
acomp_result_logic_status_t inactiveValue
Configure output value for inactive state.

acomp_edge_pulse_trig _source_t edgeDetect TrigSrc

Config edge detect trigger source, please refer to acomp_edge_pulse_trig_source_t.
acomp_pin_out_type_t outPinMode

Config the output pin mode, please refer to acomp_pin_out_type_t for details.

2.1. ACOMP: Analog Comparator 95

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

const acomp_positive_input_config t *posInput
The pointer to the configuration structure of positive input, please refer to
acomp_positive_input_config _t.

const acomp_negative_input_config t *neglnput

The pointer to the configuration structure of negative input, please refer to
acomp_positive_input_config_t.

2.2 ADC: Analog Digital Converter

void ADC_ Init(ADC_Type *base, const adc_config t *config)
Initialize ADC module, including clock divider, power mode, and so on.

Parameters
* base — ADC peripheral base address.
* config — The pointer to the structure adc_config_t.

void ADC_ GetDefaultConfig(adc_config_t *config)
Get default configuration.

config->clockDivider = kADC__ClockDividerl;
config->powerMode = kADC_ PowerModeFullBiasingCurrent;
config->resolution = kADC_ Resolution12Bit;
config->warmupTime = kADC_ WarmUpTimel6us;
config->vrefSource = kADC_ Vrefl P2V,
config->inputMode = kADC_ InputSingleEnded;
config->conversionMode = kADC__ConversionContinuous;
config->scanLength = kADC__ScanLength_1;
config->averageLength = kADC_ AverageNone;
config->triggerSource = kKADC__ TriggerSourceSoftware;
config->inputGain = kKADC_ InputGainl;
config->enablelnputGainBuffer = false;
config->resultWidth = kADC_ ResultWidth16;
config->fifoThreshold = kADC_ FifoThresholdDatal;
config->enableDMA = false;

config->enableADC = false;

Parameters
* config — The Pointer to the structure adc_config_t.

void ADC_ Deinit(ADC_Type *base)
De-initialize the ADC module.

Parameters
* base — ADC peripheral base address.
static inline void ADC_ DoSoftwareReset(ADC_Type *base)
Reset the whole ADC block.
Parameters
* base — ADC peripheral base address.

static inline void ADC_ Select AnalogPortionPowerMode(ADC_Type *base,
adc_analog _portion_power_mode_t
powerMode)

Select ADC analog portion power mode.

96 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Parameters
* base — ADC peripheral base address.

* powerMode - The power mode to be set, please refer to
adc_analog_portion_power_mode_t.

status_t ADC_DoAutoCalibration(ADC_Type *base, adc_calibration_ref t calVref)
Do automatic calibration measurement.

Note: After auto calibrate successful, user can invoke ADC_GetAutoCalibrationData() to
get self offset calibration value and self gain calibration value.

Parameters
* base — ADC peripheral base address.

» calVref — The inpul reference channel for gain calibration, please refer to
adc_calibration_ref t for details.

Return values
* kStatus_ Success — Auto calibrate successfully.
» kStatus Fail — Auto calibrate failure.

static inline void ADC_ GetAutoCalibrationData(ADC_Type *base, uint16_t *offsetCal, uint16_t
N
gainCal)

Get the ADC automatic calibration data.
Parameters
* base — ADC peripheral base address.

* offsetCal — Self offset calibration data pointer, evaluate NULL if not re-
quried.

* gainCal — Self gain calibration data pointer, evaluate NULL if not requried.

static inline void ADC_ Reset AutoCalibrationData(ADC_Type *base)
Reset the automatic calibration data.

Parameters
* base — ADC peripheral base address.

static inline void ADC_ DoUserCalibration(ADC_Type *base, uint16_t offsetCal, uint16_t gainCal)
Do user defined calibration.

Parameters
* base — ADC peripheral base address.
* offsetCal — User defined offset calibration data.
* gainCal — User defined gain calibration date.

static inline void ADC_ EnableTemperatureSensor(ADC_Type *base, bool enable)
Enable/disable temperature sensor.

Note: This function is useful only when the channel source is temperature sensor.

Parameters

* base — ADC peripheral base address.

2.2. ADC: Analog Digital Converter 97

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

* enable — Used to enable/disable temperature sensor.
— true Enable temperature sensor.
— false Disable temperature sensor.

static inline void ADC_ SetTemperatureSensorMode(ADC_Type *base,
adc_temperature_sensor_mode_t

tSensorMode)
Set temperature sensor mode, available selections are internal diode mode and external
diode mode.
Parameters

* base — ADC peripheral base address.

* tSensorMode — The temperature sensor mode to be set, please refer to
adc_temperature_sensor_mode_t.

static inline void ADC_ EnableAudio(ADC_Type *base, bool enable)
Enable/disable audio PGA and decimation rate select.

Parameters
* base — ADC peripheral base address.
* enable — Used to enable/disable audio PGA and decimation rate select.
— true Enable audio PGA and decimation rate select.
- false Disable audio PGA and decimation rate select.

static inline void ADC_ SetAudioPGAVoltageGain(ADC_Type *base,
adc_audio_pga voltage_gain_t voltageGain)

Set audio PGA voltage gain.
Parameters
* base — ADC peripheral base address.

* voltageGain — The selected audio PGA voltage gain, please refer to
adc_audio_pga_voltage_gain_t.

void ADC_ ConfigAudioVoiceLevel(ADC_Type *base, bool enableDetect, adc_audio_voice_level t
voiceLevel)

Configure audio voice level.
Parameters
* base — ADC peripheral base address.
* enableDetect — Used to enable/disable voice level detection.
— true Enable voice level detection.
— false Disable voice level detection.
* voiceLevel — Selected voice level, please refer to adc_audio_voice_level t.

void ADC_ SetScanChannel(ADC_Type *base, adc_scan_channel_t scanChannel,
adc_channel_source_t channelSource)

Set scan channel mux source.
Parameters
* base — ADC peripheral base address.

 scanChannel — The selected channel, please refer to adc_scan_channel_t for
details.

98 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

* channelSource — The mux source to be set to the selected channel, please
refer to adc_channel _source_t for details.

static inline void ADC_ DoSoftwareTrigger(ADC_Type *base)
If trigger mode is selected as software trigger, invoking this function to start conversion.

Note: This API will also clear the FIFO.

Parameters
* base — ADC peripheral base address.

static inline void ADC_ StopConversion(ADC_Type *base)
Invoke this function to stop conversion.

Parameters
* base — ADC peripheral base address.

static inline uint32_t ADC_ GetConversionResult(ADC_Type *base)
Get the 32-bit width packed ADC conversion result.

Parameters
* base — ADC peripheral base address.

Returns
32-bit width packed ADC conversion result.

static inline uint8_t ADC_ GetFifoDataCount(ADC_Type *base)
Get the ADC FIFO data count.

Parameters
* base — ADC peripheral base address.

Returns
ADC FIFO data count.

static inline void ADC_ EnableInterrupts(ADC_Type *base, uint32_t interruptMask)

Enable interrupts, such as conversion data ready interrupt, gain correction saturation in-
terrupt, FIFO under run interrupt, and so on.

Parameters
* base — ADC peripheral base address.

¢ interruptMask — The interrupts to be enabled, should be the OR’ed value of
_adc_interrupt_enable.

static inline void ADC_ DisableInterrupts(ADC_Type *base, uint32_t interruptMask)

Disable interrupts, such as conversion data ready interrupt, gain correction saturation in-
terrupt, FIFO under run interrupt, and so on.

Parameters
* base — ADC peripheral base address.

* interruptMask — The interrupts to be disabled, should be the OR’ed value of
_adc_interrupt_enable.

uint32_t ADC_ GetStatusFlags(ADC_Type *base)
Get status flags, including interrupt flags, raw flags, and so on.

Parameters

* base — ADC peripheral base address.

2.2. ADC: Analog Digital Converter 99

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Returns
The OR’ed value of ADC status flags, please refer to _adc_status_flags for de-
tails.
static inline void ADC_ ClearStatusFlags(ADC_Type *base, uint32_t statusFlagsMask)
Clear status flags.

Note: Only interrupt flags and raw flags can be cleared.

Parameters
* base — ADC peripheral base address.

* statusFlagsMask — The OR’ed value of status flags to be cleared, please refer
to _adc_status_flags for details.

enum _ adc_ interrupt_ enable
The enumeration of interrupts, this enumeration can be used to enable/disable interrupts.

Values:

enumerator kADC_ DataReadyInterruptEnable
Conversion data ready interrupt.

enumerator kADC_ GainSaturationInterruptEnable
Gain correction saturation interrupt

enumerator kADC_ OffsetSaturationInterruptEnable
Offset correction saturation interupt enable.

enumerator kADC_ NegativeSaturationInterruptEnable
ADC data negative side saturation interrupt enable.

enumerator kADC_ PositiveSaturationInterruptEnable
ADC data positive side saturation interrupt enable.

enumerator kADC_ FifoOverrunInterruptEnable
FIFO overrun interrupt enable.

enumerator kADC_ FifoUnderrunInterruptEnable
FIFO underrun interrupt enable.
enum _adc_status_ flags
The enumeration of adc status flags, including interrupt flags, raw flags, and so on.

Note: The raw flags will be captured regardless the interrupt mask. Both interrupt flags
and raw flags can be cleared.

Values:

enumerator kADC_ DataReadyInterruptFlag
Conversion Data Ready interrupt flag.

enumerator kADC_ GainSaturationInterruptFlag
Gain correction saturation interrupt flag.

enumerator kADC_ OffsetSaturationInterruptFlag
Offset correction saturation interupt flag.

100 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kADC_ NegativeSaturationInterruptFlag
ADC data negative side saturation interrupt flag.

enumerator kADC_ PositiveSaturationlnterruptFlag
ADC data positive side saturation interrupt flag.

enumerator kADC_ FifoOverrunInterruptFlag
FIFO overrun interrupt flag.

enumerator kADC_ FifoUnderrunInterruptFlag
FIFO underrun interrupt flag.

enumerator kADC_ DataReadyRawFlag
Conversion data ready raw flag, this flag will be captured regardless the interrupt
mask.

enumerator kADC_ GainSaturationRawFlag
Gain correction saturation raw flag, this flag will be captured regardless the interrupt
mask.

enumerator kADC_ OffsetSaturationRawFlag
Offset correction saturation raw flag, this flag will be captured regardless the interrupt
mask.

enumerator kADC_ NegativeSaturationRawFlag
ADC data negative side saturation raw flag, this flag will be captured regardless the
interrupt mask.

enumerator kADC_ PositiveSaturationRawFlag
ADC data positive side saturation raw flag, this flag will be captured regardless the
interrupt mask.

enumerator kADC_ FifoOverrunRawFlag
FIFO overrun raw flag, this flag will be captured regardless the interrupt mask.

enumerator kADC_ FifoUnderrunRawFlag
FIFO underrun interrupt mask, this flag will be captured regardless the interrupt
mask.

enumerator kADC__ ActiveStatusFlag
ADC conversion active status flag.

enumerator kADC_ FIFONotEmptyStatusFlag
FIFO not empty status flag.

enumerator kADC_ FifoFullStatusFlag
FIFO full status flag.

enum adc_clock divider

ADC clock divider ratio type.
Values:

enumerator kADC_ ClockDividerl
Clock divider ratio is 1

enumerator kADC_ ClockDivider2
Clock divider ratio is 2

enumerator kADC_ ClockDivider3
Clock divider ratio is 3

2.2. ADC: Analog Digital Converter 101

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kADC ClockDivider4
Clock divider ratio is 4

enumerator kADC_ ClockDividerb
Clock divider ratio is 5
enumerator kADC_ ClockDivider6
Clock divider ratio is 6
enumerator kADC_ ClockDivider7
Clock divider ratio is 7
enumerator kADC_ ClockDivider8
Clock divider ratio is 8
enumerator kADC_ ClockDivider9
Clock divider ratio is 9
enumerator kKADC_ ClockDivider10
Clock divider ratio is 10
enumerator kKADC_ ClockDivider11
Clock divider ratio is 11
enumerator kKADC_ ClockDivider12
Clock divider ratio is 12
enumerator kKADC_ ClockDivider13
Clock divider ratio is 13
enumerator kKADC_ ClockDivider14
Clock divider ratio is 14
enumerator kKADC_ ClockDivider15
Clock divider ratio is 15
enumerator kKADC_ ClockDivider16
Clock divider ratio is 16
enumerator kKADC_ ClockDivider17
Clock divider ratio is 17
enumerator kKADC_ ClockDivider18
Clock divider ratio is 18
enumerator kKADC_ ClockDivider19
Clock divider ratio is 19
enumerator kKADC_ ClockDivider20
Clock divider ratio is 20
enumerator kKADC_ ClockDivider21
Clock divider ratio is 21
enumerator kKADC_ ClockDivider22
Clock divider ratio is 22
enumerator kKADC_ ClockDivider23
Clock divider ratio is 23

enumerator kADC _ClockDivider24
Clock divider ratio is 24

102

Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kADC ClockDivider25
Clock divider ratio is 25

enumerator kADC_ ClockDivider26
Clock divider ratio is 26
enumerator kADC_ ClockDivider27
Clock divider ratio is 27
enumerator kADC_ ClockDivider28
Clock divider ratio is 28
enumerator kADC_ ClockDivider29
Clock divider ratio is 29
enumerator kADC_ ClockDivider30
Clock divider ratio is 30
enumerator kADC_ ClockDivider31
Clock divider ratio is 31
enumerator kADC_ ClockDivider32
Clock divider ratio is 32
enum _ adc_ analog portion_ power__mode
ADC analog portion low-power mode selection.
Values:
enumerator kADC_ PowerModeFullBiasingCurrent
Full biasing current.
enumerator kADC_ PowerModeHalfBiasingCurrent
Half biasing current.
enum _adc_resolution
ADC resolution type.
Values:
enumerator kADC_ Resolution12Bit
12-bit resolution
enumerator kADC_ Resolution14Bit
14-bit resolution
enumerator kADC_ Resolution16Bit
16-bit resolution
enumerator kADC_ Resolution16BitAudio
16-bit resolution for audio application

enum _adc_warm_ up_ time

The enumeration of adc warm up time, the ADC warm-up state can also bypassed.

Values:

enumerator kADC_ WarmUpTimelus
ADC warm-up time is 1 us.

enumerator kADC_ WarmUpTime2us
ADC warm-up time is 2 us.

2.2. ADC: Analog Digital Converter

103

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kADC_ WarmUpTime3us
ADC warm-up time is 3 us.

enumerator kADC_ WarmUpTime4us
ADC warm-up time is 4 us.

enumerator kADC_ WarmUpTimebus
ADC warm-up time is 5 us.
enumerator kADC_ WarmUpTime6us
ADC warm-up time is 6 us.
enumerator kADC_ WarmUpTimeT7us
ADC warm-up time is 7 us.
enumerator kADC_ WarmUpTime8us
ADC warm-up time is 8 us.
enumerator kADC_ WarmUpTime9us
ADC warm-up time is 9 us.
enumerator kADC_WarmUpTimelOus
ADC warm-up time is 10 us.
enumerator kADC_WarmUpTimellus
ADC warm-up time is 11 us.
enumerator kADC_ WarmUpTimel2us
ADC warm-up time is 12 us.
enumerator kKADC_ WarmUpTimel3us
ADC warm-up time is 13 us.
enumerator kADC_ WarmUpTimel4us
ADC warm-up time is 14 us.
enumerator kKADC_ WarmUpTimel5us
ADC warm-up time is 15 us.
enumerator kKADC_ WarmUpTimel6us
ADC warm-up time is 16 us.
enumerator kKADC_ WarmUpTimel7us
ADC warm-up time is 17 us.
enumerator kKADC_ WarmUpTimel8us
ADC warm-up time is 18 us.
enumerator kKADC_ WarmUpTimel9us
ADC warm-up time is 19 us.
enumerator kKADC_ WarmUpTime20us
ADC warm-up time is 20 us.
enumerator kADC_ WarmUpTime21lus
ADC warm-up time is 21 us.
enumerator kADC_ WarmUpTime22us
ADC warm-up time is 22 us.

enumerator kKADC_ WarmUpTime23us
ADC warm-up time is 23 us.

104

Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kADC_ WarmUpTime24us
ADC warm-up time is 24 us.

enumerator kADC_ WarmUpTime25us
ADC warm-up time is 25 us.

enumerator kADC_ WarmUpTime26us
ADC warm-up time is 26 us.

enumerator kADC_ WarmUpTime27us
ADC warm-up time is 27 us.

enumerator kADC_ WarmUpTime28us
ADC warm-up time is 28 us.

enumerator kADC_ WarmUpTime29us
ADC warm-up time is 29 us.

enumerator kADC_ WarmUpTime30us
ADC warm-up time is 30 us.

enumerator kADC_ WarmUpTime31lus
ADC warm-up time is 31 us.

enumerator kKADC_ WarmUpTime32us
ADC warm-up time is 32 us.

enumerator kADC_ WarmUpStateBypass
ADC warm-up state bypassed.

enum adc_vref source
ADC voltage reference source type.

Values:

enumerator kADC VreflP8V
Internal 1.8V reference

enumerator kADC_ VreflP2V
Internal 1.2V reference

enumerator kADC_ VrefExternal
External single-ended reference though ADC_CH3

enumerator kADC_ VrefInternallP2V
Internal 1.2V reference with cap filter though ADC_CH3

enum _ adc_ input_ mode
ADC input mode type.

Values:

enumerator kADC_ InputSingleEnded
Single-ended mode

enumerator kADC_ InputDifferential
Differential mode

enum adc_conversion mode
ADC conversion mode type.

Values:

2.2. ADC: Analog Digital Converter 105

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kADC ConversionOneShot
One shot mode

enumerator kADC ConversionContinuous
Continuous mode

enum _ adc_scan_ length
ADC scan length type.

Values:

enumerator kADC_ ScanLength 1
Scan length is 1

enumerator kADC_ ScanLength_ 2
Scan length is 2

enumerator kADC_ ScanLength_ 3
Scan length is 3

enumerator kADC_ ScanLength_ 4
Scan length is 4

enumerator kADC_ ScanLength_ 5
Scan length is 5

enumerator kADC_ ScanLength_6
Scan length is 6

enumerator kADC_ ScanLength 7
Scan length is 7

enumerator kADC_ ScanLength_ 8
Scan length is 8

enumerator kADC_ ScanLength_ 9
Scan length is 9

enumerator kADC_ ScanLength_ 10
Scan length is 10

enumerator kADC_ ScanLength_ 11
Scan length is 11

enumerator kADC_ ScanLength_ 12
Scan length is 12

enumerator kADC_ ScanLength_ 13
Scan length is 13

enumerator kADC_ ScanLength_ 14
Scan length is 14

enumerator kADC_ ScanLength_ 15
Scan length is 15

enumerator kADC_ ScanLength_ 16
Scan length is 16

enum _ adc_ average_ length
ADC average length type.

Values:

106

Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kADC__ AverageNone
Average length: no average

enumerator kADC_ Average2
Average length: 2

enumerator kADC_ Averaged
Average length: 4

enumerator kADC__ Average8
Average length: 8

enumerator kADC_ Averagel6
Average length: 16

enum _ adc_ input_ gain
ADC input buffer gain type.
Values:

enumerator kKADC_ InputGain0P5
Input buffer gain is 0.5

enumerator kADC_ InputGainl
Input buffer gain is 1

enumerator kADC_ InputGain2
Input buffer gain is 2

enum _adc_result_ width
ADC result width type.

Values:

enumerator kADC_ResultWidth16
16-bit final result buffer width

enumerator kADC_ResultWidth32
32-bit final result buffer width

enum _adc_fifo threshold
The threshold of FIFO.

Values:

enumerator kADC FifoThresholdDatal
FIFO Threshold is 1 data.

enumerator kADC FifoThresholdData4
FIFO Threshold is 4 data.

enumerator kADC FifoThresholdDatag
FIFO Threshold is 8 data.

enumerator kADC FifoThresholdDatal6
FIFO Threshold is 16 data.

enum adc_calibration ref
ADC calibration voltage reference type.

Values:

enumerator kADC __CalibrationVrefInternal
Internal vref as input for calibration

2.2. ADC: Analog Digital Converter

107

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kADC _CalibrationVrefExternal
External vref as input for calibration

enum adc_scan_channel
ADC scan channel type.

Values:

enumerator kADC ScanChannelQ
Scan channel 0

enumerator kADC ScanChannell
Scan channel 1

enumerator kADC ScanChannel2
Scan channel 2

enumerator kADC_ScanChannel3
Scan channel 3

enumerator kADC_ScanChannel4
Scan channel 4

enumerator kADC_ScanChannelb
Scan channel 5

enumerator kADC_ScanChannel6
Scan channel 6

enumerator kADC ScanChannel7
Scan channel 7

enumerator kADC_ScanChannel8
Scan channel 8

enumerator kADC_ScanChannel9
Scan channel 9

enumerator kADC__ScanChannell0
Scan channel 10

enumerator kADC_ScanChannelll
Scan channel 11

enumerator kADC__ScanChannell2
Scan channel 12

enumerator kADC_ScanChannell3
Scan channel 13

enumerator kADC_ScanChannell4
Scan channel 14

enumerator kADC_ScanChannell5
Scan channel 15

enum _adc_channel source
ADC channel source type.

Values:

enumerator kADC_CHO
Single-ended mode, channel[0] and vssa

108

Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kADC_CH1
Single-ended mode, channel[1] and vssa

enumerator kADC_ CH2

Single-ended mode, channel[2] and vssa
enumerator kADC_ CH3

Single-ended mode, channel[3] and vssa
enumerator kADC_ CH4

Single-ended mode, channel[4] and vssa
enumerator kADC_ CH5

Single-ended mode, channel[5] and vssa
enumerator kADC_ CH6

Single-ended mode, channel[6] and vssa
enumerator kADC__CH7

Single-ended mode, channel[7] and vssa
enumerator kADC__ VBATS

Single-ended mode, vbat_s and vssa
enumerator kADC_ VREF

Single-ended mode, vref 12 and vssa
enumerator kADC_DACA

Single-ended mode, daca and vssa
enumerator kADC_DACB

Single-ended mode, dacb and vssa
enumerator kADC__ VSSA

Single-ended mode, vssa and vssa
enumerator kADC__CHO_CH1

Differential mode, channel[0] and channel[1]
enumerator kADC_CH2_ CH3

Differential mode, channel[2] and channel[3]
enumerator kADC_CH4_CH5

Differential mode, channel[4] and channel[5]
enumerator kADC__CH6__CH7

Differential mode, channel[6] and channel[7]
enumerator kADC_DACA_DACB

Differential mode, daca and dacb

enum _ adc_ temperature_sensor_mode

Temperature sensor mode, including internal diode mode and external diode mode.
Values:
enumerator kADC_TSensorExternal

External diode mode.

enum _ adc_audio_pga_ voltage gain

ADC audio pga gain type.

Values:

2.2. ADC: Analog Digital Converter 109

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kADC_ AudioGain4
Audio pga gain is 4

enumerator kADC_ AudioGain8
Audio pga gain is 8

enumerator kADC_ AudioGainl6
Audio pga gain is 16

enumerator kKADC_ AudioGain32
Audio pga gain is 32

enum adc_audio voice level
ADC audio voice level selection.
Values:

enumerator kADC_VoiceLevelO

Input voice level >+255LSB or <-256LSB
enumerator kADC_ VoiceLevell

Input voice level >+511LSB or <-512LSB
enumerator kADC_ VoiceLevel2

Input voice level >+1023LSB or <-1024LSB
enumerator kADC_VoiceLevel3

Input voice level >+2047LSB or <-2048LSB

typedef enum _adc_clock_divider adc_ clock_ divider t

ADC clock divider ratio type.

typedef enum _adc_analog_portion_power_mode adc_analog portion_power_mode_ t
ADC analog portion low-power mode selection.

typedef enum _adc_resolution adc_resolution_ t
ADC resolution type.
typedef enum _adc_warm_up_time adc_ warm_ up_ time_ t
The enumeration of adc warm up time, the ADC warm-up state can also bypassed.
typedef enum _adc_vref source adc_vref_source_t
ADC voltage reference source type.
typedef enum _adc_input_mode adc_input_mode_t
ADC input mode type.
typedef enum _adc_conversion_mode adc_ conversion_mode_ t
ADC conversion mode type.

typedef enum _adc_scan_length adc_scan_length_t
ADC scan length type.

typedef enum _adc_average_length adc_average length_t
ADC average length type.

typedef enum _adc_input_gain adc_input_ gain_ t
ADC input buffer gain type.

typedef enum _adc_result width adc_ result_ width_t
ADC result width type.

110 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

typedef enum _adc_fifo_threshold adc_ fifo_ threshold_t
The threshold of FIFO.

typedef enum _adc_calibration_ref adc_ calibration_ref_t
ADC calibration voltage reference type.

typedef enum _adc_scan_channel adc_scan_ channel__t
ADC scan channel type.

typedef enum _adc_channel_source adc_ channel_source_t
ADC channel source type.

typedef enum _adc_temperature_sensor_mode adc_temperature_sensor mode_t
Temperature sensor mode, including internal diode mode and external diode mode.
typedef enum _adc_audio_pga voltage_gain adc_audio_pga_ voltage gain_t
ADC audio pga gain type.
typedef enum _adc_audio_voice_level adc_audio_ voice_level t
ADC audio voice level selection.
typedef struct _adc_config adc_ config t
The structure of adc options, including clock divider, power mode, and so on.
FSL__ADC_DRIVER__VERSION
ADC driver version.
Version 2.2.1.
struct _adc_ config

#include <fsl_adc.h> The structure of adc options, including clock divider, power mode, and
SO on.

Public Members

adc_clock_divider_t clockDivider

Analog 64M clock division ratio, please refer to adc_clock_divider_t.
adc_resolution_t resolution

Configure ADC resolution, please refer to adc_resolution_t.
adc_warm_up_time_t warmupTime

Configure warm-up time.
adc_vref _source_t vrefSource

Configure voltage reference source, please refer to adc_vref_source_t.
adc_input_mode_t inputMode

Configure input mode, such as kKADC_InputSingleEnded or kADC_InputDifferential.

adc_conversion_mode_t conversionMode

Configure convrsion mode, such as kADC_ConversionOneShot or
kADC_ConversionContinuous.

adc_scan_length_t scanLength
Configure the length of scan, please refer to adc_scan_length_t.

adc_average_length_t averageLength
Configure hardware average number, please refer to adc_average_length_t

2.2. ADC: Analog Digital Converter 111

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

adc_trigger_source_t triggerSource

Configure trigger source, the trigger source can be divided into hardware trigger and
software trigger, please refer to adc_trigger_source_t for details.

adc_input_gain_t inputGain
Configure ADC input buffer gain, please refer to adc_input_gain_t.

bool enableInputGainBuffer
Enable/Disable input gain buffer.

* true Enable input gain buffer.
» false Disable input gain buffer.

bool enableInputBufferChop
Enable/Disable input buffer chopper:

* true Enable input buffer chopper;
« false Disable input buffer chopper.

bool enableChop
Enable/Disable the ADC chopper:

* true Enable the chopper;
» false Disable the chopper.

adc_result_width_t resultWidth
Select result FIFO data packed format, please refer to adc_result_width_t.

adc_fifo_threshold._t fifoThreshold
Configure FIFO threshold, please refer to adc_fifo_threshold_t.

bool enableDMA
Enable/Disable DMA reqeust.

* true Enable DMA request.
» false Disable DMA request.

bool enableADC
Enable/Disable ADC module.

* true Enable ADC module.
» false Disable ADC module.

2.3 CACHE: CACHE Memory Controller

uint32_t CACHEG64_ GetInstance(CACHE64_POLSEL_Type *base)
Returns an instance number given peripheral base address.

Parameters
* base — The peripheral base address.

Returns
CACHEG64_POLSEL instance number starting from O.

uint32_t CACHE64_ GetInstanceByAddr(uint32_t address)
brief Returns an instance number given physical memory address.

param address The physical memory address.

112 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Returns
CACHEG64_CTRL instance number starting from 0.

status_t CACHE64 Init(CACHE64_POLSEL_Type *base, const cache64 _config_t *config)
Initializes an CACHE64 instance with the user configuration structure.

This function configures the CACHE64 module with user-defined settings. Call the
CACHEG64_GetDefaultConfig() function to configure the configuration structure and get the
default configuration.

Parameters
* base — CACHE64_POLSEL peripheral base address.
* config — Pointer to a user-defined configuration structure.

Return values
kStatus Success — CACHEG64 initialize succeed

void CACHEG4_ GetDefaultConfig(cache64_config_t *config)
Gets the default configuration structure.

This function initializes the CACHE64 configuration structure to a default value. The default
values are first region covers whole cacheable area, and policy set to write back.

Parameters
* config — Pointer to a configuration structure.

void CACHE64_EnableCache(CACHE64_CTRL_Type *base)
Enables the cache.

Parameters
* base — CACHE64_CTRL peripheral base address.

void CACHE64_ DisableCache(CACHE64_CTRL_Type *base)
Disables the cache.

Parameters
* base - CACHE64_CTRL peripheral base address.

void CACHE64_ InvalidateCache(CACHE64_CTRL_Type *base)
Invalidates the cache.

Parameters
* base —- CACHE64_CTRL peripheral base address.

void CACHE64_ InvalidateCacheByRange(uint32_t address, uint32_t size_byte)
Invalidates cache by range.

Note: Address and size should be aligned to “CACHE64_LINESIZE_BYTE”. The startAddr
here will be forced to align to CACHE64_LINESIZE_BYTE if startAddr is not aligned. For the
size_byte, application should make sure the alignment or make sure the right operation
order if the size_byte is not aligned.

Parameters
* address — The physical address of cache.

* size_byte — size of the memory to be invalidated, should be larger than 0.

2.3. CACHE: CACHE Memory Controller 113

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

void CACHE64_ CleanCache(CACHE64_CTRL_Type *base)
Cleans the cache.

Parameters
* base —- CACHE64_CTRL peripheral base address.

void CACHE64 _CleanCacheByRange(uint32_t address, uint32_t size_byte)
Cleans cache by range.

Note: Address and size should be aligned to “CACHE64_LINESIZE_BYTE”. The startAddr
here will be forced to align to CACHE64_LINESIZE_BYTE if startAddr is not aligned. For the
size_byte, application should make sure the alignment or make sure the right operation
order if the size_byte is not aligned.

Parameters
¢ address — The physical address of cache.
* size_ byte — size of the memory to be cleaned, should be larger than 0.

void CACHEG4_ CleanInvalidateCache(CACHE64_CTRL_Type *base)
Cleans and invalidates the cache.

Parameters
* base —- CACHE64_CTRL peripheral base address.

void CACHEG64 CleanInvalidateCacheByRange(uint32_t address, uint32_t size_byte)
Cleans and invalidate cache by range.

Note: Address and size should be aligned to “CACHE64_LINESIZE_BYTE”. The startAddr
here will be forced to align to CACHE64_LINESIZE_BYTE if startAddr is not aligned. For the
size_byte, application should make sure the alignment or make sure the right operation
order if the size_byte is not aligned.

Parameters
* address — The physical address of cache.

* size_byte — size of the memory to be Cleaned and Invalidated, should be
larger than 0.

void CACHE64_EnableWriteBuffer(CACHE64_CTRL_Type *base, bool enable)
Enables/disables the write buffer.

Parameters
* base —- CACHE64_CTRL peripheral base address.

* enable — The enable or disable flag. true - enable the write buffer. false -
disable the write buffer.

static inline void ICACHE_ InvalidateByRange(uint32_t address, uint32_t size_byte)
Invalidates instruction cache by range.

Note: Address and size should be aligned to CACHE64_LINESIZE_BYTE due to the cache
operation unit FSL._FEATURE_CACHE64_CTRL_LINESIZE_BYTE. The startAddr here will be
forced to align to the cache line size if startAddr is not aligned. For the size_byte, application

114 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

should make sure the alignment or make sure the right operation order if the size_byte is
not aligned.

Parameters
* address — The physical address.
* size_byte — size of the memory to be invalidated, should be larger than 0.

static inline void DCACHE_ InvalidateByRange(uint32_t address, uint32_t size_byte)
Invalidates data cache by range.

Note: Address and size should be aligned to CACHE64_LINESIZE_BYTE due to the cache
operation unit FSL_FEATURE_CACHEG64_CTRL_LINESIZE_BYTE. The startAddr here will be
forced to align to the cache line size if startAddr is not aligned. For the size_byte, application
should make sure the alignment or make sure the right operation order if the size_byte is
not aligned.

Parameters
* address — The physical address.
* size_ byte — size of the memory to be invalidated, should be larger than 0.

static inline void DCACHE_ CleanByRange(uint32_t address, uint32_t size_byte)
Clean data cache by range.

Note: Address and size should be aligned to CACHE64_LINESIZE_BYTE due to the cache
operation unit FSL._FEATURE_CACHE64_CTRL_LINESIZE_BYTE. The startAddr here will be
forced to align to the cache line size if startAddr is not aligned. For the size_byte, application
should make sure the alignment or make sure the right operation order if the size_byte is
not aligned.

Parameters
* address — The physical address.
* size_byte — size of the memory to be cleaned, should be larger than 0.

static inline void DCACHE_ CleanInvalidateByRange(uint32_t address, uint32_t size_byte)
Cleans and Invalidates data cache by range.

Note: Address and size should be aligned to CACHE64_LINESIZE_BYTE due to the cache
operation unit FSL_FEATURE_CACHEG64_CTRL_LINESIZE_BYTE. The startAddr here will be
forced to align to the cache line size if startAddr is not aligned. For the size_byte, application
should make sure the alignment or make sure the right operation order if the size_byte is
not aligned.

Parameters
* address — The physical address.

* size_byte — size of the memory to be Cleaned and Invalidated, should be
larger than 0.

FSLL. CACHE DRIVER VERSION
cache driver version.

2.3. CACHE: CACHE Memory Controller 115

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enum _ cache64_ policy
Level 2 cache controller way size.

Values:

enumerator kCACHEG4_ PolicyNonCacheable
Non-cacheable

enumerator kCACHEG64_ Policy WriteThrough
Write through

enumerator kCACHEG64_ Policy WriteBack
Write back

typedef enum _cache64_policy cache64 policy t
Level 2 cache controller way size.

typedef struct _cache64_config cache64_config_t
CACHE®64 configuration structure.

CACHE64 LINESIZE BYTE
cache line size.

CACHE64_REGION_NUM
cache region number.

CACHE64_REGION__ALIGNMENT
cache region alignment.

struct _ cache64_ config
#include <fsl_cache.h> CACHEG64 configuration structure.

Public Members

uint32_t boundaryAddr[(3U) - 1]

< The cache controller can divide whole memory into 3 regions. Boundary address is
the FlexSPIlinternal address (start from 0) instead of system address (start from FlexSPI
AMBA base) to split adjacent regions and must be 1KB aligned. The boundary address
itself locates in upper region. Cacheable policy for each region.

2.4 CDOG

status_t CDOG_ Init(CDOG_Type *base, cdog_config t *conf)
Initialize CDOG.

This function initializes CDOG block and setting.
Parameters
* base — CDOG peripheral base address
* conf — CDOG configuration structure

Returns
Status of the init operation

void CDOG_ Deinit(CDOG_Type *base)
Deinitialize CDOG.

This function deinitializes CDOG secure counter.

116 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Parameters
* base — CDOG peripheral base address

void CDOG__GetDefaultConfig(cdog config t *conf)
Sets the default configuration of CDOG.

This function initialize CDOG config structure to default values.
Parameters
* conf — CDOG configuration structure

void CDOG _ Stop(CDOG_Type *base, uint32_t stop)
Stops secure counter and instruction timer.

This function stops instruction timer and secure counter. This also change state od CDOG
to IDLE.

Parameters
* base — CDOG peripheral base address
* stop —expected value which will be compared with value of secure counter

void CDOG_ Start(CDOG_Type *base, uint32_t reload, uint32_t start)
Sets secure counter and instruction timer values.

This function sets value in RELOAD and START registers for instruction timer and secure
counter

Parameters
* base — CDOG peripheral base address
* reload —reload value
* start — start value

void CDOG_ Check(CDOG_Type *base, uint32_t check)
Checks secure counter.

This function compares stop value in handler with secure counter value by writting to
RELOAD refister.

Parameters
* base — CDOG peripheral base address
* check — expected (stop) value

void CDOG_ Set(CDOG_Type *base, uint32_t stop, uint32_t reload, uint32_t start)
Sets secure counter and instruction timer values.

This function sets value in STOP, RELOAD and START registers for instruction timer and
secure counter.

Parameters
* base — CDOG peripheral base address
* stop —expected value which will be compared with value of secure counter
* reload — reload value for instruction timer
* start — start value for secure timer

void CDOG__Add(CDOG_Type *base, uint32_t add)
Add value to secure counter.

This function add specified value to secure counter.

2.4. CDOG 117

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Parameters
* base — CDOG peripheral base address.
* add — Value to be added.

void CDOG__Add1(CDOG_Type *base)
Add 1 to secure counter.

This function add 1 to secure counter.
Parameters
* base — CDOG peripheral base address.

void CDOG__Add16(CDOG_Type *base)
Add 16 to secure counter.

This function add 16 to secure counter.
Parameters
* base — CDOG peripheral base address.

void CDOG__Add256(CDOG_Type *base)
Add 256 to secure counter.

This function add 256 to secure counter.
Parameters
* base — CDOG peripheral base address.

void CDOG_ Sub(CDOG_Type *base, uint32_t sub)
brief Substract value to secure counter

This function substract specified value to secure counter.
param base CDOG peripheral base address. param sub Value to be substracted.

void CDOG__Sub1(CDOG_Type *base)
Substract 1 from secure counter.

This function substract specified 1 from secure counter.
Parameters
* base — CDOG peripheral base address.

void CDOG_ Sub16(CDOG_Type *base)
Substract 16 from secure counter.

This function substract specified 16 from secure counter.
Parameters
* base — CDOG peripheral base address.

void CDOG__Sub256(CDOG_Type *base)
Substract 256 from secure counter.

This function substract specified 256 from secure counter.
Parameters
* base — CDOG peripheral base address.

void CDOG__ WritePersistent(CDOG_Type *base, uint32_t value)
Set the CDOG persistent word.

Parameters

118 Chapter 2

. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

* base — CDOG peripheral base address.
* value — The value to be written.

uint32_t CDOG_ ReadPersistent(CDOG_Type *base)
Get the CDOG persistent word.

Parameters
* base — CDOG peripheral base address.

Returns
The persistent word.

FSL CDOG_DRIVER VERSION
Defines CDOG driver version 2.1.3.

Change log:
* Version 2.1.3
- Re-design multiple instance IRQs and Clocks
— Add fix for RESTART command errata

Version 2.1.2

— Support multiple IRQs

- Fix default CONTROL values
* Version 2.1.1

— Remove bit CONTROL[CONTROL_CTRL]

* Version 2.1.0

— Rename CWT to CDOG
Version 2.0.2

- Fix MISRA-2012 issues
Version 2.0.1

- Fix doxygen issues
Version 2.0.0

— initial version

enum __ cdog_debug_ Action_ ctrl_enum
Values:

enumerator kCDOG__DebugHaltCtrl_Run
enumerator kCDOG_ DebugHaltCtrl_Pause

enum __ cdog_irq pause_ctrl enum
Values:

enumerator kCDOG_ IrqPauseCtrl_Run
enumerator kCDOG_ IrqPauseCtrl_Pause

enum __ cdog_fault_ctrl _enum
Values:

enumerator kCDOG_ FaultCtrl EnableReset

enumerator kCDOG__FaultCtrl__EnableInterrupt

2.4. CDOG 119

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kCDOG_FaultCtrl NoAction

enum __ code lock ctrl enum
Values:

enumerator kCDOG__LockCtrl_Lock
enumerator kCDOG__LockCtrl__Unlock
typedef uint32_t secure_ counter_t
SC_ADD(add)
SC_ADD1
SC_ADDI16
SC_ADD256
SC_SUB(sub)
SC_SUB1
SC_SUBI16
SC_SUB256
SC_CHECK(val)

struct cdog_ config_t
#include <fsl_cdog.h>

2.5 Clock Driver

enum _ clock name
Clock name used to get clock frequency.

Values:

enumerator kCLOCK__ CoreSysClk
Core clock (aka HCLK)

enumerator kCLOCK_BusClk
Bus clock (AHB/APB clock, aka HCLK)

enumerator kCLOCK_MclkClk
MCLK, to MCLK pin

enum _ clock ip name
Peripheral clock name difinition used for clock gate.

Values:

enumerator kCLOCK_ IpInvalid
enumerator kCLOCK_ TepuMciClk
enumerator kCLOCK_ TepuMciFlexspiClk
enumerator kCLOCK__TddrMciEnetClk

enumerator kCLOCK__ TddrMciFlexspiClk

120

Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kCLOCK __T3PIIMcilrcClk
enumerator kCLOCK__T3PIIMci256mClk
enumerator kCLOCK__T3PIlIMci213mClk
enumerator kCLOCK__T3PIlIMciFlexspiClk
enumerator kCLOCK_ RefClkSys
enumerator kCLOCK__RefClkTcpu
enumerator kCLOCK__RefClkTddr
enumerator kCLOCK__RefClkAud
enumerator kCLOCK__RefClkUsb
enumerator kCLOCK_RefClkCauSlp
enumerator kCLOCK__ Cpu
enumerator kCLOCK_ Matrix
enumerator kCLOCK_ Romcp
enumerator kCLOCK_ PowerQuad
enumerator kCLOCK_Pkc
enumerator kCLOCK__Els
enumerator kCLOCK_ Puf
enumerator kCLOCK_ Flexspi
enumerator kCLOCK__Hpu
enumerator kCLOCK_Usb
enumerator kCLOCK__Sct
enumerator kCLOCK_AonMem
enumerator kCLOCK__Gdma
enumerator kCLOCK__Dma0
enumerator kCLOCK_Dmal
enumerator kCLOCK__Sdio
enumerator kCLOCK__ElsApb
enumerator kCLOCK__SdioSlv
enumerator kCLOCK__Gau
enumerator kCLOCK_ Otp
enumerator kCLOCK_SecureGpio
enumerator kCLOCK_ Enetlpg

enumerator kCLOCK_ EnetlpgS

2.5. Clock Driver 121

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kCLOCK_ Trng
enumerator kCLOCK_ Utick
enumerator kCLOCK__ Wwdt0
enumerator kCLOCK_ Usim
enumerator kCLOCK_ Itrc
enumerator kCLOCK__FreeMrt
enumerator kCLOCK_ Ledic
enumerator kCLOCK_ FlexcommO
enumerator kCLOCK_Flexcomm1
enumerator kCLOCK _Flexcomm?2
enumerator kCLOCK_ Flexcomm3
enumerator kCLOCK_ Flexcomm14
enumerator kCLOCK__Dmic0
enumerator kCLOCK__OsEventTimer
enumerator kCLOCK__HsGpio0
enumerator kCLOCK__HsGpiol
enumerator kCLOCK_ Crc
enumerator kCLOCK__Freqme
enumerator kCLOCK__Ct32b0
enumerator kCLOCK__Ct32bl
enumerator kCLOCK__Ct32b2
enumerator kCLOCK__Ct32b3
enumerator kCLOCK__Ct32b4
enumerator kCLOCK_ Pmu
enumerator kCLOCK__Rtc
enumerator kCLOCK__Mrt
enumerator kCLOCK_ Pint

enumerator kCLOCK_ InputMux

enum _clock attach_id

Peripheral clock source selection definition.
Values:
enumerator kXTAL to SYSOSC_CLK

enumerator kCLKIN to_ SYSOSC_CLK

enumerator kNONE to_ SYSOSC_CLK

122

Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kSYSOSC_to_ MAIN_CLK

enumerator kFFRO_DIV4_ to_ MAIN_CLK
enumerator kLPOSC_to_ MAIN_CLK

enumerator kFFRO_ to_ MAIN_CLK

enumerator kSFRO_to. MAIN_ CLK

enumerator kMAIN PLL to MAIN CLK
enumerator kCLK32K to_ MAIN_CLK

enumerator kMAIN CLK_to FLEXSPI CLK
enumerator kT3PLL_MCI_FLEXSPI to FLEXSPI CLK
enumerator kAUX0_PLL_to_FLEXSPI_CLK
enumerator kTCPU_MCI_FLEXSPI_to_ FLEXSPI_CLK
enumerator kAUX1 PLL_to FLEXSPI CLK
enumerator kTDDR__MCI_FLEXSPI to_ FLEXSPI CLK
enumerator kT3PLL_MCI_256M_to_ FLEXSPI CLK
enumerator kNONE_ to FLEXSPI CLK

enumerator kMAIN_CLK_to_SCT_CLK
enumerator kMAIN_PLL_to_SCT_ CLK
enumerator kAUX0_ PLL_ to_ SCT CLK
enumerator kFFRO_to_SCT_CLK

enumerator kAUX1 PLL_to_SCT_ CLK
enumerator kAUDIO_PLL_to_SCT_CLK
enumerator kNONE_ to_SCT_CLK

enumerator kLPOSC_to_UTICK__CLK

enumerator kMAIN CLK_ to_UTICK_CLK
enumerator kNONE_to_ UTICK_CLK

enumerator kLPOSC_to_ WDT0__CLK

enumerator kMAIN_CLK_to_ WDTO0_CLK
enumerator kNONE_to. WDTO0_CLK

enumerator kSYSTICK__DIV_to_ SYSTICK_CLK
enumerator kLPOSC_to_ SYSTICK CLK
enumerator kCLK32K to_ SYSTICK CLK
enumerator kSFRO_ to_ SYSTICK__CLK

enumerator kNONE_ to_ SYSTICK__CLK

2.5. Clock Driver 123

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kMAIN CLK_ to_USIM_CLK
enumerator kAUDIO_PLL_to_USIM_CLK
enumerator kFFRO_ to_ USIM__CLK

enumerator kNONE_ to_ USIM__ CLK

enumerator kMAIN_CLK_to_LCD_CLK
enumerator kT3PLL_MCI_FLEXSPI_to_LCD_CLK
enumerator kTCPU_MCI_FLEXSPI to LCD_CLK
enumerator kTDDR__MCI_FLEXSPI to_LCD_CLK
enumerator kNONE_to LCD_ CLK

enumerator kMAIN_ CLK_to_ GAU_CLK
enumerator kT3PLL_MCI_256M_to_ GAU_CLK
enumerator kAVPLL_CH2_to_GAU_CLK
enumerator kNONE_ to_ GAU_ CLK

enumerator kT3PLL_MCI_256M_to_ELS GDET
enumerator kELS 128M_ to ELS GDET
enumerator kELS_64M_to_ ELS_GDET
enumerator kOTP_FUSE_32M_to_ELS_GDET
enumerator kNONE_to ELS GDET

enumerator kLPOSC_to_ OSTIMER_ CLK
enumerator kCLK32K to_ OSTIMER, CLK
enumerator kHCLK_to_ OSTIMER_ CLK
enumerator kMAIN_CLK_to_ OSTIMER_ CLK
enumerator kNONE_ to_ OSTIMER, CLK
enumerator kSFRO_ to_ FLEXCOMMO
enumerator kFFRO_to_ FLEXCOMMO
enumerator kAUDIO PLL to FLEXCOMMO
enumerator kMCLK__IN_ to_ FLEXCOMMO
enumerator kFRG_ to_ FLEXCOMMO

enumerator kNONE_ to_ FLEXCOMMO
enumerator kSFRO_ to_ FLEXCOMM1
enumerator kFFRO_ to_ FLEXCOMM1
enumerator kAUDIO PLL_ to FLEXCOMM1

enumerator kMCLK_IN_to_ FLEXCOMM1

124

Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kFRG_ to_ FLEXCOMM1
enumerator kNONE_ to FLEXCOMM1
enumerator kSFRO_to FLEXCOMM?2
enumerator kFFRO to FLEXCOMM?2
enumerator kAUDIO_PLL_to_ FLEXCOMM?2
enumerator kMCLK__IN_ to_ FLEXCOMM?2
enumerator kFRG_to FLEXCOMM2
enumerator kNONE_to FLEXCOMM2
enumerator kSFRO__to_ FLEXCOMM3
enumerator kFFRO_ to_ FLEXCOMM3
enumerator kAUDIO_PLL_to_ FLEXCOMM3
enumerator kMCLK_IN_to_ FLEXCOMM3
enumerator kFRG_ to_ FLEXCOMM3
enumerator kNONE_to FLEXCOMM3
enumerator kSFRO to FLEXCOMM14
enumerator kFFRO_ to_ FLEXCOMM14
enumerator kAUDIO_PLL_ to_ FLEXCOMM14
enumerator kMCLK IN_ to FLEXCOMM14
enumerator kFRG__to_ FLEXCOMM14
enumerator kNONE to FLEXCOMM14
enumerator kSFRO_ to_ DMIC__CLK
enumerator kFFRO_to. DMIC _CLK
enumerator kAUDIO_PLL_ to_ DMIC_CLK
enumerator kMCLK_IN_to_DMIC_ CLK
enumerator kLPOSC_to_ DMIC_CLK
enumerator kCLK32K_to DMIC CLK
enumerator kMAIN_CLK_to_ DMIC_CLK
enumerator kNONE_ to DMIC__CLK
enumerator kMAIN_CLK_to_ CTIMERO
enumerator kSFRO_ to_ CTIMERO
enumerator kFFRO_ to_ CTIMERO
enumerator kAUDIO_PLL_ to_ CTIMERO

enumerator kMCLK IN to CTIMERO

2.5. Clock Driver 125

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kLPOSC_to_ CTIMERO
enumerator kNONE_ to_ CTIMERO
enumerator kMAIN CLK_to CTIMER1
enumerator kSFRO_ to_ CTIMERI1
enumerator kFFRO_to CTIMER1
enumerator kAUDIO_PLL_ to_ CTIMER1
enumerator kMCLK_IN_ to CTIMERI1
enumerator kLPOSC_to_ CTIMERI1
enumerator kNONE_to CTIMERL1
enumerator kMAIN_CLK_to_ CTIMER2
enumerator kSFRO_ to_ CTIMER?2
enumerator kFFRO_ to_ CTIMER2
enumerator kAUDIO_PLL_to_ CTIMER2
enumerator kMCLK_IN_ to CTIMER2
enumerator kLPOSC_to_ CTIMER2
enumerator kNONE_ to_ CTIMER2
enumerator kMAIN_CLK_to_ CTIMERS3
enumerator kSFRO_ to_ CTIMER3
enumerator kFFRO_ to_ CTIMER3
enumerator kAUDIO_PLL_to_ CTIMER3
enumerator kMCLK _IN to CTIMERS3
enumerator kLPOSC_ to_ CTIMER3
enumerator kNONE_ to_ CTIMERS3
enumerator kFFRO_to_ MCLK_CLK
enumerator kAUDIO_PLL_to_ MCLK_CLK
enumerator kMAIN CLK_ to MCLK_ CLK
enumerator kNONE_ to MCLK_ CLK
enumerator kSFRO__to_ CLKOUT
enumerator kSYSOSC_to_ CLKOUT
enumerator kLPOSC_to_ CLKOUT
enumerator kFFRO_to_ CLKOUT
enumerator kMAIN CLK_ to CLKOUT

enumerator kREFCLK SYS to CLKOUT

126

Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kAVPLL_CH2_ to_ CLKOUT
enumerator kMAIN_PLL_to_ CLKOUT
enumerator kAUX0_ PLL to_ CLKOUT
enumerator kAUX1 PLL to CLKOUT
enumerator kAUDIO_PLL_to_ CLKOUT
enumerator kCLK32K_to_ CLKOUT

enumerator kTCPU__MCI_FLEXSPI_to_ CLKOUT
enumerator kTDDR_ MCI__FLEXSPI_to_ CLKOUT
enumerator kT3PLL_MCI_FLEXSPI to CLKOUT
enumerator kT3PLL_ MCI_ 256M_to_ CLKOUT
enumerator kCAU_SLP_REF_CLK_to_CLKOUT
enumerator kTDDR_MCI_ENET_to_ CLKOUT
enumerator kNONE_to CLKOUT

enumerator kRC32K_to CLK32K

enumerator kXTAL32K_to_ CLK32K

enumerator kNCO32K_ to_ CLK32K

enum clock div_name
Clock divider definition.

Values:
enumerator kCLOCK DivMainPlIClk

enumerator kCLOCK_DivAux0P1IClk
enumerator kCLOCK__DivAux1PlClk
enumerator kCLOCK_ DivSysCpuAhbClk
enumerator kCLOCK__DivPfc1Clk
enumerator kCLOCK__ DivFlexspiClk
enumerator kCLOCK __DivSctClk
enumerator kCLOCK __DivUsbHsFclk
enumerator kCLOCK__DivSystickClk
enumerator kCLOCK_ DivLcdClk
enumerator kCLOCK__DivGauClk
enumerator kCLOCK__DivUsimClk
enumerator kCLOCK_ DivPmuFclk
enumerator kCLOCK_ DivAudioPlIClk

enumerator kCLOCK_ DivPllFrgClk

2.5. Clock Driver 127

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kCLOCK__DivDmicClk
enumerator kCLOCK __DivMclkClk
enumerator kCLOCK__DivClockOut

enum clock_tcpu_flexspi_div_t
TCPU PLL divider for tcpu_mci_flexspi_clk.
Values:

enumerator kCLOCK_ TepuFlexspiDiv12
Divided by 12
enumerator kCLOCK_ TcpuFlexspiDivl1
Divided by 11
enumerator kCLOCK_ TepuFlexspiDiv10
Divided by 10
enumerator kCLOCK_ TepuFlexspiDiv9
Divided by 9
enum clock tddr flexspi_div_t
TDDR PLL divider for tddr_mci_flexspi_clk.
Values:
enumerator kCLOCK__TddrFlexspiDiv11
Divided by 11
enumerator kCLOCK_ TddrFlexspiDiv10
Divided by 10
enumerator kCLOCK__TddrFlexspiDiv9
Divided by 9
enumerator kCLOCK__TddrFlexspiDiv8
Divided by 8
enum clock t3_ mci_irc_config t
T3 PLL IRC configuration.
Values:
enumerator kCLOCK__T3Mcilrc60m
T3 MCI IRC 59.53MHz
enumerator kCLOCK__T3Mcilrc48m
T3 MCI IRC 48.30MHz
enum clock_avpll _ch_freq t
AVPLL channell frequency configuration.
Values:
enumerator kCLOCK__AvPlIChUnchanged
AVPLL channel frequency unchanged.
enumerator kCLOCK__AvPlIChFreq2p048m
AVPLL channel frequency 2.048MHz

enumerator kCLOCK__AvPlIChFreq4p096m
AVPLL channel frequency 4.096 MHz

128

Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kCLOCK__AvPlIChFreq6pl44m
AVPLL channel frequency 6.144MHz

enumerator kCLOCK__AvPlIChFreq8p192m
AVPLL channel frequency 8.192MHz

enumerator kCLOCK__AvPlIChFreql11p2896m
AVPLL channel frequency 11.2896 MHz

enumerator kCLOCK__AvPlIChFreq12m
AVPLL channel frequency 12MHz

enumerator kCLOCK__AvPlIChFreq12p288m
AVPLL channel frequency 12.288MHz

enumerator kCLOCK__AvPlIChFreq24p576m
AVPLL channel frequency 24.576 MHz

enumerator kCLOCK__AvPlIChFreq64m
AVPLL channel frequency 64MHz

enumerator kCLOCK__AvPlIChFreq98p304m
AVPLL channel frequency 98.304MHz

typedef enum _clock_name clock_name_ t
Clock name used to get clock frequency.

typedef enum _clock_ip_name clock_ip_name_t
Peripheral clock name difinition used for clock gate.

typedef enum _clock_attach_id clock_ attach_id_t
Peripheral clock source selection definition.

typedef enum _clock_div_name clock_div_name_t
Clock divider definition.

typedef struct _clock_frg clk_config clock_frg clk_config_t
PLL configuration for FRG.

volatile uint32_t g clkinFreq
External CLK_IN pin clock frequency (clkin) clock frequency.

The CLK_IN pin (clkin) clock frequency in Hz, when the clock is setup, use the function
CLOCK _SetClkinFreq to set the value in to clock driver. For example, if CLK_IN is 16 MHz,

CLOCK _ SetClkinFreq(16000000);

volatile uint32_t g mclkinFreq
External MCLK IN clock frequency.

The MCLK in (mclk_in) PIN clock frequency in Hz, when the clock is setup, use the function
CLOCK_SetMclkInFreq to set the value in to clock driver. For example, if mclk_In is 16 MHz,

CLOCK_SetMclkInFreq(16000000);

uint32_t CLOCK_ GetT3PlIMcilrcClkFreq(void)
Return Frequency of t3pll_mci_48_60m_irc.

Returns
Frequency of t3pll_mci_48_60m_irc

2.5. Clock Driver 129

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

uint32_t CLOCK_ GetT3P1IMci213mClkFreq(void)
Return Frequency of t3pll_mci_213p3m.

Returns
Frequency of t3pll_mci_213p3m

uint32_t CLOCK _GetT3PlIMci256mClkFreq(void)
Return Frequency of t3pll_mci_256m.

Returns
Frequency of t3pll_mci_256m

uint32_t CLOCK_ GetT3PlIMciFlexspiClkFreq(void)
Return Frequency of t3pll_mci_flexspi_clk.

Returns
Frequency of t3pll_mci_flexspi_clk

uint32_t CLOCK__ GetTcpuMciClkFreq(void)
Return Frequency of tcpu_mci_clk.

Returns
Frequency of tcpu_mci_clk

uint32_t CLOCK_ GetTcpuMciFlexspiClkFreq(void)
Return Frequency of tcpu_mci_flexspi_clk.

Returns
Frequency of tcpu_mci_flexspi_clk

uint32_t CLOCK__ GetTddrMciFlexspiClkFreq(void)
Return Frequency of tddr_mci_flexspi_clk.

Returns
Frequency of tddr_mci_flexspi_clk

uint32_t CLOCK__GetTddrMciEnetClkFreq(void)
Return Frequency of tddr_mci_enet_clk.

Returns
Frequency of tddr_mci_enet_clk

void CLOCK _EnableClock(clock_ip_name_t clk)
Enable the clock for specific IP.

Parameters
* clk — Which clock to enable, see clock_ip_name_t.

void CLOCK_ DisableClock(clock_ip_name_t clk)
Disable the clock for specific IP.

Parameters

* clk — Which clock to disable, see clock_ip_name_t.

void CLOCK _AttachClk(clock_attach_id_t connection)
Configure the clock selection muxes.

Parameters
* connection — : Clock to be configured.

void CLOCK_SetClkDiv(clock_div_name_t name, uint32_t divider)
Setup clock dividers.

Parameters

130

Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

* name — : Clock divider name
e divider — : Value to be divided.
uint32_t CLOCK__ GetFreq(clock_name_t clockName)
Return Frequency of selected clock.

Returns
Frequency of selected clock

uint32_t CLOCK_ GetFRGClock(uint32_t id)
Return Input frequency for the Fractional baud rate generator.

Returns
Input Frequency for FRG

void CLOCK_SetFRGClock(const clock_frg clk_config_t *config)
Set output of the Fractional baud rate generator.
Parameters
* config —: Configuration to set to FRGn clock.
uint32_t CLOCK_ GetFFroFreq(void)
Return Frequency of FFRO.

Returns
Frequency of FFRO

uint32_t CLOCK_GetSFroFreq(void)
Return Frequency of SFRO.

Returns
Frequency of SFRO

uint32_t CLOCK_ GetAvPlICh1Freq(void)
Return Frequency of AUDIO PLL (AVPLL CH1)

Returns
Frequency of AUDIO PLL

uint32_t CLOCK_ GetAvPlICh2Freq(void)
Return Frequency of AVPLL CH2.

Returns
Frequency of AVPLL CH2

uint32_t CLOCK_ GetMainClkFreq(void)
Return Frequency of main clk.

Returns
Frequency of main clk

uint32_t CLOCK_ GetCoreSysClkFreq(void)
Return Frequency of core/bus clk.

Returns
Frequency of core/bus clk

uint32_t CLOCK_ GetSystickClkFreq(void)
Return Frequency of systick clk.

Returns
Frequency of systick clk

2.5. Clock Driver

131

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

static inline uint32_t CLOCK_ GetSysOscFreq(void)
Return Frequency of sys osc Clock.

Returns
Frequency of sys osc Clock. Or CLK_IN pin frequency.

static inline uint32_t CLOCK_ GetMclkInClkFreq(void)
Return Frequency of MCLK Input Clock.

Returns
Frequency of MCLK input Clock.

static inline uint32_t CLOCK_ GetLpOscFreq(void)
Return Frequency of LPOSC.

Returns
Frequency of LPOSC

static inline uint32_t CLOCK_ GetClk32KFreq(void)
Return Frequency of CLK_32K.

Returns
Frequency of 32KHz osc

void CLOCK _EnableXtal32K (bool enable)
Enables and disables 32KHz XTAL.

Parameters
* enable —: true to enable 32k XTAL clock, false to disable clock

void CLOCK_ EnableRtc32K (bool enable)
Enables and disables RTC 32KHz.

Parameters
* enable —: true to enable 32k RTC clock, false to disable clock

static inline void CLOCK_SetClkinFreq(uint32_t freq)
Set the CLKIN (CLKIN pin) frequency based on GPIO4 input.

Parameters
* freq —: The CLK_IN pin input clock frequency in Hz.

static inline void CLOCK _SetMclkinFreq(uint32_t freq)
Set the MCLK in (mclk_in) clock frequency based on board setting.

Parameters
* freq —: The MCLK input clock frequency in Hz.

uint32_t CLOCK_ GetDmicClkFreq(void)
Return Frequency of DMIC clk.

Returns
Frequency of DMIC clk

uint32_t CLOCK _GetLcdClkFreq(void)
Return Frequency of LCD clk.

Returns
Frequency of LCD clk

132 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

uint32_t CLOCK_ GetWdtClkFreq(void)
Return Frequency of WDT clk.

Returns
Frequency of WDT clk

uint32_t CLOCK_ GetMclkClkFreq(void)
Return Frequency of mclk.

Returns
Frequency of mclk clk

uint32_t CLOCK_ GetSctClkFreq(void)
Return Frequency of sct.

Returns
Frequency of sct clk

uint32_t CLOCK_ GetFlexCommClkFreq(uint32_t id)
Return Frequency of Flexcomm functional Clock.
Parameters
* id —: flexcomm index to get frequency.

Returns
Frequency of Flexcomm functional Clock

uint32_t CLOCK_ GetCTimerClkFreq(uint32_t id)
Return Frequency of CTimer Clock.
Parameters
* id —: ctimer index to get frequency.

Returns
Frequency of CTimer Clock

uint32_t CLOCK GetUtickClkFreq(void)
Return Frequency of Utick Clock.

Returns
Frequency of Utick Clock

uint32_t CLOCK__GetFlexspiClkFreq(void)
Return Frequency of Flexspi Clock.

Returns
Frequency of Flexspi.

uint32_t CLOCK_ GetUsimClkFreq(void)
Return Frequency of USIM Clock.

Returns
Frequency of USIM.

uint32_t CLOCK_ GetGauClkFreq(void)
Return Frequency of GAU Clock.

Returns
Frequency of GAU.

uint32_t CLOCK__GetOSTimerClkFreq(void)
Return Frequency of OSTimer Clock.

Returns
Frequency of OSTimer.

2.5. Clock Driver

133

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

uint32_t CLOCK_ InitTcpuRefClk(uint32_t targetHz, clock_tcpu flexspi div_t div)

Initialize TCPU FVCO to target frequency. For 40MHz XTAL, FVCO ranges from 3000MHz to
3840MHz. For 38.4MHz XTAL, FVCO ranges from 2995.2MHz to 3840MHz.

Parameters
* targetHz —: Target FVCO frequency in Hz.
* div—: Divider for tcpu_mci_flexspi_clk.

Returns
Actual FVCO frequency in Hz.

void CLOCK_ DeinitTcpuRefClk(void)
Deinit the TCPU reference clock.

void CLOCK _InitTddrRefClk(clock_tddr_flexspi_div_t div)
Initialize the TDDR reference clock.

Parameters
* div—: Divider for tddr_mci_flexspi_clk.

void CLOCK_ DeinitTddrRefClk(void)
Deinit the TDDR reference clock.

void CLOCK_InitT3RefClk(clock_t3_mci_irc_config t cnfg)
Initialize the T3 reference clock.

Parameters
* cnfg —: t3pll_mci_48_60m_irc clock configuration

void CLOCK _ Deinit T3RefClk(void)
Deinit the T3 reference clock.

void CLOCK _InitAvPll(const clock_avpll config t *cnfg)
Initialize the AVPLL. Both channel 1 and 2 are enabled.

Parameters
* cnfg —: AVPLL clock configuration

void CLOCK _ DeinitAvPll(void)
Deinit the AVPLL. All channels are disabled.

void CLOCK __ConfigAvPlICh(clock_avpll_ch_freq_t ch1Freq, clock_avpll_ch_freq_t ch2Freq, bool
enableCali)

Update the AVPLL channel configuration. Enable/Disable state keeps unchanged.
Parameters
* chlFreq—: Channel 1 frequency to set.
* ch2Freq —: Channel 2 frequency to set.
* enableCali —: Enable AVPLL calibration.

void CLOCK_ EnableAvPlICh(bool enableCh1, bool enableCh2, bool enableCali)
Enable the AVPLL channel.

Parameters
* enableChl - : Enable AVPLL channell, channel unchanged on false.
* enableCh2 - : Enable AVPLL channel2, channel unchanged on false.
* enableCali —: Enable AVPLL calibration.

134 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

void CLOCK_ DisableAvPlICh(bool disableCh1, bool disableCh2)
Disable the AVPLL.
Parameters
* disableChl —: Disable AVPLL channell, channel unchanged on false.
* disableCh2 —: Disable AVPLL channel2, channel unchanged on false.
void CLOCK _EnableUsbhsPhyClock(void)
Enable USB HS PHY PLL clock.
This function enables USB HS PHY PLL clock.
void CLOCK_ DisableUsbhsPhyClock(void)
Disable USB HS PHY PLL clock.
This function disables USB HS PHY PLL clock.
FSL_ CLOCK_DRIVER_ VERSION
CLOCK driver version 2.3.2.
SDK_DEVICE_MAXIMUM_ CPU_CLOCK_FREQUENCY

GPIO_CLOCKS
Clock ip name array for GPIO.

CACHE64 CLOCKS
Clock ip name array for CACHEG64.

FLEXSPI _CLOCKS
Clock ip name array for FLEXSPIL.

FLEXCOMM.__CLOCKS
Clock ip name array for FLEXCOMM.

USART CLOCKS

Clock ip name array for LPUART.
I12C_CLOCKS

Clock ip name array for I2C.
SPI_CLOCKS

Clock ip name array for SPI.
ACOMP__CLOCKS

Clock ip name array for ACOMP.
ADC_CLOCKS

Clock ip name array for ADC.

DAC_CLOCKS
Clock ip name array for DAC.

LCDIC CLOCKS

Clock ip name array for LCDIC.
DMA__CLOCKS

Clock ip name array for DMA.
DMIC__CLOCKS

Clock ip name array for DMIC.

ENET_CLOCKS
Clock ip name array for ENET.

2.5. Clock Driver 135

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

ENET_ EXTRA_CLOCKS
Extra clock ip name array for ENET.

POWERQUAD_ CLOCKS
Clock ip name array for Powerquad.

OSTIMER__CLOCKS
Clock ip name array for OSTimer.

CTIMER,__CLOCKS
Clock ip name array for CT32B.

UTICK CLOCKS
Clock ip name array for UTICK.

MRT CLOCKS
Clock ip name array for MRT.

SCT CLOCKS
Clock ip name array for SCT.

RTC CLOCKS
Clock ip name array for RTC.

WWDT__ CLOCKS
Clock ip name array for WWDT.

TRNG_CLOCKS
Clock ip name array for TRNG.

USIM_CLOCKS
Clock ip name array for USIM.

CLK _GATE REG_ OFFSET SHIFT
Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.

CLK_GATE_REG_OFFSET_MASK
CLK_GATE_BIT SHIFT SHIFT
CLK_GATE_BIT SHIFT MASK
CLK__GATE_DEFINE(reg_offset, bit_shift)
CLK_GATE_ABSTRACT_ REG_OFFSET(X)
CLK_GATE_ABSTRACT _ BITS_SHIFT(X)
CLK_CTLO_PSCCTLO
CLK_CTL0_PSCCTL1
CLK_CTL0_PSCCTL2
CLK_CTL1_PSCCTLO
CLK_CTL1_PSCCTL1
CLK_CTL1_PSCCTL2
SYS_CLK_GATE_FLAG_MASK

SYS_ CLK_GATE_DEFINE(bit_shift)

136 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

SYS_CLK_GATE_BIT_ MASK(X)
CLKCTLO_TUPLE MUZXA(reg, choice)
CLKCTLO_TUPLE_MUXB(reg, choice)
CLKCTL1_TUPLE_FLAG_MASK
CLKCTL1_TUPLE_ MUZXA(reg, choice)
CLKCTL1_TUPLE_MUXB(reg, choice)
CLKCTL_TUPLE_REG(base, tuple)
CLKCTL_TUPLE_SEL(tuple)
CLKOUT_TUPLE_MUX_AVAIL
CLKOUT TUPLE_ MUX(chO, ch1, ch2)
PMU_TUPLE_MUX__AVAIL
PMU_TUPLE_MUX(reg, choice)
PMU_TUPLE_ REG(base, tuple)
PMU_TUPLE_SEL(tuple)

Values:
enumerator kCLOCK_ FrgMainClk
Main System clock
enumerator kCLOCK_ FrgPlIDiv
Main pll clock divider
enumerator kCLOCK__ FrgSFro
16MHz FRO
enumerator kCLOCK__FrgFFro
FRO48/60
uint8_t num
FRG clock
enum _clock_frg clk_config sfg_ clock_src
uint8_t divider
Denominator of the fractional divider.
uint8_t mult
Numerator of the fractional divider.
clock_avpll_ch_freq_t ch1Freq
AVPLL channel 1 frequency configuration
clock_avpll_ch_freq_t ch2Freq
AVPLL channel 2 frequency configuration

bool enableCali
Enable calibration

2.5. Clock Driver

137

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

FSL_SDK_DISABLE_ DRIVER_ CLOCK_CONTROL
Configure whether driver controls clock.
When set to 0, peripheral drivers will enable clock in initialize function and disable clock in

de-initialize function. When set to 1, peripheral driver will not control the clock, application
could control the clock out of the driver.

Note: All drivers share this feature switcher. If it is set to 1, application should handle
clock enable and disable for all drivers.

struct _ clock_ frg_clk_ config
#include <fsl_clock.h> PLL configuration for FRG.

struct clock_avpll_config t
#include <fsl_clock.h> AVPLL configuration.

2.6 CRC: Cyclic Redundancy Check Driver

FSL CRC_DRIVER VERSION
CRC driver version. Version 2.1.1.

Current version: 2.1.1
Change log:
* Version 2.0.0

— initial version
Version 2.0.1

— add explicit type cast when writing to WR_DATA
Version 2.0.2

— Fix MISRA issue

Version 2.1.0
— Add CRC_WriteSeed function

* Version 2.1.1
— Fix MISRA issue

enum _ crc_ polynomial

CRC polynomials to use.

Values:

enumerator kCRC_ Polynomial CRC_CCITT
XA16+xA12+xA5+1

enumerator kCRC_ Polynomial CRC_ 16
XA16+xA15+xA2+1

enumerator kCRC_ Polynomial CRC_ 32
XA32+XA26+XA23+XA22+XA16+XAT12+XAT1+XAT0+XAB+XATHXAS+XA+XA2+X+1

typedef enum _crc_polynomial crc_ polynomial_t
CRC polynomials to use.

138 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

typedef struct _crc_config crc_config_t
CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

void CRC_ Init(CRC_Type *base, const crc_config_t *config)
Enables and configures the CRC peripheral module.

This functions enables the CRC peripheral clock in the LPC SYSCON block. It also configures
the CRC engine and starts checksum computation by writing the seed.

Parameters
* base — CRC peripheral address.
* config — CRC module configuration structure.
static inline void CRC_ Deinit(CRC_Type *base)
Disables the CRC peripheral module.
This functions disables the CRC peripheral clock in the LPC SYSCON block.
Parameters
* base — CRC peripheral address.

void CRC_ Reset(CRC_Type *base)
resets CRC peripheral module.

Parameters
* base — CRC peripheral address.

void CRC_ WriteSeed (CRC_Type *base, uint32_t seed)
Write seed to CRC peripheral module.

Parameters
* base — CRC peripheral address.
* seed — CRC Seed value.

void CRC_ GetDefaultConfig(crc_config t *config)
Loads default values to CRC protocol configuration structure.

Loads default values to CRC protocol configuration structure. The default values are:

config->polynomial = kCRC_ Polynomial CRC_ CCITT;
config->reverseln = false;

config->complementIn = false;

config- >reverseOut = false;

config->complementOut = false;

config->seed = OxFFFFU;

Parameters
* config — CRC protocol configuration structure

void CRC_ GetConfig(CRC_Type *base, crc_config t *config)
Loads actual values configured in CRC peripheral to CRC protocol configuration structure.

The values, including seed, can be used to resume CRC calculation later.
Parameters
* base — CRC peripheral address.
* config — CRC protocol configuration structure

2.6. CRC: Cyclic Redundancy Check Driver 139

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

void CRC_ WriteData(CRC_Type *base, const uint8_t *data, size_t dataSize)
Writes data to the CRC module.

Writes input data buffer bytes to CRC data register.
Parameters
* base — CRC peripheral address.
» data — Input data stream, MSByte in data[0].
* dataSize — Size of the input data buffer in bytes.

static inline uint32_t CRC_ Get32bitResult(CRC_Type *base)
Reads 32-bit checksum from the CRC module.

Reads CRC data register.
Parameters
* base — CRC peripheral address.

Returns
final 32-bit checksum, after configured bit reverse and complement opera-
tions.

static inline uint16_t CRC_ Get16bitResult(CRC_Type *base)
Reads 16-bit checksum from the CRC module.

Reads CRC data register.
Parameters
* base — CRC peripheral address.

Returns
final 16-bit checksum, after configured bit reverse and complement opera-
tions.

CRC_DRIVER,_USE_CRC16_CCITT_FALSE AS DEFAULT

Default configuration structure filled by CRC_GetDefaultConfig(). Uses CRC-16/CCITT-FALSE
as default.

struct _ crc_ config
#include <fsl_crc.h> CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

Public Members
crc_polynomial_t polynomial
CRC polynomial.

bool reverseln
Reverse bits on input.

bool complementIn
Perform 1’s complement on input.

bool reverseOut
Reverse hits on output.

bool complementOut
Perform 1’s complement on output.

uint32_t seed
Starting checksum value.

140 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

2.7 CTIMER: Standard counter/timers

void CTIMER,_ Init(CTIMER_Type *base, const ctimer_config_t *config)
Ungates the clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application before using the driver.

Parameters
* base — Ctimer peripheral base address
* config — Pointer to the user configuration structure.
void CTIMER._ Deinit(CTIMER_Type *base)
Gates the timer clock.
Parameters
* base — Ctimer peripheral base address

void CTIMER, GetDefaultConfig(ctimer_config_t *config)
Fills in the timers configuration structure with the default settings.

The default values are:

config->mode = kCTIMER_ TimerMode;
config->input = kCTIMER, Capture_0;
config->prescale = 0;

Parameters
* config — Pointer to the user configuration structure.

status_t CTIMER._SetupPwmPeriod(CTIMER_Type *base, const ctimer_match_t
pwmPeriodChannel, ctimer_match_t matchChannel,
uint32_t pwmPeriod, uint32_t pulsePeriod, bool enablelnt)

Configures the PWM signal parameters.
Enables PWM mode on the match channel passed in and will then setup the match value

and other match parameters to generate a PWM signal. This function can manually assign
the specified channel to set the PWM cycle.

Note: When setting PWM output from multiple output pins, all should use the same PWM
period

Parameters
* base — Ctimer peripheral base address
» pwmPeriodChannel — Specify the channel to control the PWM period
* matchChannel — Match pin to be used to output the PWM signal
* pwmPeriod - PWM period match value
¢ pulsePeriod — Pulse width match value

* enablelnt — Enable interrupt when the timer value reaches the match value
of the PWM pulse, if it is 0 then no interrupt will be generated.

2.7. CTIMER: Standard counter/timers 141

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Returns
kStatus_Success on success kStatus_Fail If matchChannel is equal to pwmPeri-
odChannel; this channel is reserved to set the PWM cycle If PWM pulse width
register value is larger than OXFFFFFFFF.

status_t CTIMER_ SetupPwm(CTIMER_Type *base, const ctimer_match_t pwmPeriodChannel,

ctimer_match_t matchChannel, uint8_t dutyCyclePercent, uint32_t
pwmFreq_Hz, uint32_t srcClock_Hz, bool enablelnt)

Configures the PWM signal parameters.

Enables PWM mode on the match channel passed in and will then setup the match value
and other match parameters to generate a PWM signal. This function can manually assign
the specified channel to set the PWM cycle.

Note: When setting PWM output from multiple output pins, all should use the same PWM
frequency. Please use CTIMER_SetupPwmPeriod to set up the PWM with high resolution.

Parameters
* base — Ctimer peripheral base address
» pwmPeriodChannel — Specify the channel to control the PWM period
» matchChannel - Match pin to be used to output the PWM signal
* dutyCyclePercent - PWM pulse width; the value should be between 0 to 100
* pwmFreq Hz - PWM signal frequency in Hz
* srcClock_Hz — Timer counter clock in Hz

* enablelnt — Enable interrupt when the timer value reaches the match value
of the PWM pulse, if it is 0 then no interrupt will be generated.

static inline void CTIMER, UpdatePwmPulsePeriod(CTIMER_Type *base, ctimer_match_t

matchChannel, uint32_t pulsePeriod)
Updates the pulse period of an active PWM signal.
Parameters
* base — Ctimer peripheral base address
» matchChannel - Match pin to be used to output the PWM signal
* pulsePeriod - New PWM pulse width match value

status_t CTIMER_ UpdatePwmDutycycle(CTIMER_Type *base, const ctimer_match _t

pwmPeriodChannel, ctimer_match_t matchChannel,
uint8_t dutyCyclePercent)

Updates the duty cycle of an active PWM signal.

Note: Please use CTIMER_SetupPwmPeriod to update the PWM with high resolution. This
function can manually assign the specified channel to set the PWM cycle.

Parameters
* base — Ctimer peripheral base address
» pwmPeriodChannel — Specify the channel to control the PWM period
* matchChannel — Match pin to be used to output the PWM signal

dutyCyclePercent — New PWM pulse width; the value should be between 0
to 100

142

Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Returns
kStatus_Success on success kStatus_Fail If PWM pulse width register value is
larger than OXFFFFFFFF.

static inline void CTIMER_ Enablelnterrupts(CTIMER_Type *base, uint32_t mask)
Enables the selected Timer interrupts.

Parameters
* base — Ctimer peripheral base address

» mask — The interrupts to enable. This is a logical OR of members of the
enumeration ctimer_interrupt_enable_t

static inline void CTIMER._ Disablelnterrupts(CTIMER_Type *base, uint32_t mask)
Disables the selected Timer interrupts.

Parameters
* base — Ctimer peripheral base address

» mask — The interrupts to enable. This is a logical OR of members of the
enumeration ctimer_interrupt_enable_t

static inline uint32_t CTIMER _ GetEnabledInterrupts(CTIMER_Type *base)
Gets the enabled Timer interrupts.

Parameters
* base — Ctimer peripheral base address

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
ctimer_interrupt_enable_t

static inline uint32_t CTIMER_ GetStatusFlags(CTIMER_Type *base)
Gets the Timer status flags.

Parameters
* base — Ctimer peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
ctimer_status_flags_t

static inline void CTIMER_ ClearStatusFlags(CTIMER_Type *base, uint32_t mask)
Clears the Timer status flags.

Parameters
* base — Ctimer peripheral base address

» mask — The status flags to clear. This is a logical OR of members of the
enumeration ctimer_status_flags_t

static inline void CTIMER_ StartTimer(CTIMER_Type *base)
Starts the Timer counter.

Parameters
* base — Ctimer peripheral base address

static inline void CTIMER_ StopTimer(CTIMER_Type *base)
Stops the Timer counter.

Parameters

* base — Ctimer peripheral base address

2.7. CTIMER: Standard counter/timers 143

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

FSL CTIMER_ DRIVER_VERSION
Version 2.3.3

enum _ ctimer_ capture_ channel
List of Timer capture channels.
Values:
enumerator kCTIMER, __Capture_ 0
Timer capture channel 0
enumerator kCTIMER.__ Capture_ 1
Timer capture channel 1
enumerator kCTIMER, _Capture_ 3
Timer capture channel 3
enum _ ctimer_capture_edge
List of capture edge options.
Values:
enumerator kCTIMER_ Capture_ RiseEdge
Capture on rising edge
enumerator kCTIMER_ Capture_ FallEdge
Capture on falling edge
enumerator kCTIMER,_ Capture_ BothEdge
Capture on rising and falling edge
enum _ ctimer_match
List of Timer match registers.
Values:
enumerator kCTIMER_Match_ 0
Timer match register 0
enumerator kCTIMER_ Match_1
Timer match register 1
enumerator kCTIMER_Match 2
Timer match register 2
enumerator kCTIMER_Match 3
Timer match register 3

enum _ ctimer external match
List of external match.

Values:

enumerator kCTIMER_ External _Match_ 0
External match 0

enumerator kCTIMER External Match 1
External match 1

enumerator kCTIMER External Match 2
External match 2

enumerator kCTIMER__External Match 3
External match 3

144

Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enum _ ctimer_match_ output_ control
List of output control options.

Values:

enumerator kCTIMER, Output_ NoAction
No action is taken

enumerator kCTIMER__Output_ Clear
Clear the EM bit/output to 0

enumerator kCTIMER.__Output_ Set
Set the EM hit/output to 1

enumerator kCTIMER_ Output_ Toggle
Toggle the EM bit/output

enum _ ctimer timer mode
List of Timer modes.

Values:
enumerator kCTIMER_ TimerMode

enumerator kCTIMER, IncreaseOnRiseEdge

enumerator kCTIMER, IncreaseOnFallEdge

enumerator kCTIMER, IncreaseOnBothEdge
enum _ ctimer_ interrupt_ enable

List of Timer interrupts.

Values:

enumerator kCTIMER__MatchOInterruptEnable
Match 0 interrupt

enumerator kCTIMER,_ MatchlInterruptEnable
Match 1 interrupt

enumerator kCTIMER,_ Match2InterruptEnable
Match 2 interrupt

enumerator kCTIMER.__Match3InterruptEnable
Match 3 interrupt

enum _ ctimer_status_ flags

List of Timer flags.

Values:

enumerator kCTIMER, MatchOFlag
Match 0 interrupt flag

enumerator kCTIMER_ Match1Flag
Match 1 interrupt flag

enumerator kCTIMER_ Match2Flag
Match 2 interrupt flag

enumerator kCTIMER_ Match3Flag
Match 3 interrupt flag

2.7. CTIMER: Standard counter/timers 145

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enum ctimer_ callback type_t

Callback type when registering for a callback. When registering a callback an array of
function pointers is passed the size could be 1 or 8, the callback type will tell that.

Values:

enumerator kCTIMER_ SingleCallback

Single Callback type where there is only one callback for the timer. based on the status
flags different channels needs to be handled differently

enumerator kCTIMER_ MultipleCallback

Multiple Callback type where there can be 8 valid callbacks, one per channel. for both
match/capture

typedef enum _ctimer_capture_channel ctimer_ capture_ channel t
List of Timer capture channels.

typedef enum _ctimer_capture_edge ctimer__capture_edge_t
List of capture edge options.

typedef enum _ctimer_match ctimer__match_t
List of Timer match registers.

typedef enum _ctimer_external_match ctimer__external _match_t
List of external match.

typedef enum _ctimer_match_output_control ctimer__match_output_ control_t
List of output control options.

typedef enum _ctimer_timer_mode ctimer_timer_mode_t
List of Timer modes.

typedef enum _ctimer_interrupt_enable ctimer__interrupt_ enable_ t
List of Timer interrupts.

typedef enum _ctimer_status_flags ctimer_status_flags t
List of Timer flags.

typedef void (*ctimer_ callback_ t)(uint32_t flags)
typedef struct _ctimer_match_config ctimer match_ config_t
Match configuration.
This structure holds the configuration settings for each match register.

typedef struct _ctimer_config ctimer_ config_t
Timer configuration structure.

This structure holds the configuration settings for the Timer peripheral. To initialize this
structure to reasonable defaults, call the CTIMER_GetDefaultConfig() function and pass a
pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

void CTIMER, SetupMatch(CTIMER_Type *base, ctimer_match_t matchChannel, const
ctimer_match_config_t *config)

Setup the match register.

User configuration is used to setup the match value and action to be taken when a match
occurs.

Parameters
* base — Ctimer peripheral base address

» matchChannel - Match register to configure

146 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

* config — Pointer to the match configuration structure

uint32_t CTIMER_ GetOutputMatchStatus(CTIMER_Type *base, uint32_t matchChannel)
Get the status of output match.

This function gets the status of output MAT, whether or not this output is connected to a
pin. This status is driven to the MAT pins if the match function is selected via IOCON. 0 =
LOW. 1 = HIGH.

Parameters
* base — Ctimer peripheral base address

* matchChannel — External match channel, user can obtain the status of mul-
tiple match channels at the same time by using the logic of “|” enumera-
tion ctimer_external_match_t

Returns
The mask of external match channel status flags. Users need to use the
_ctimer_external_match type to decode the return variables.

void CTIMER,_SetupCapture(CTIMER_Type *base, ctimer_capture_channel_t capture,
ctimer_capture_edge_t edge, bool enablelnt)

Setup the capture.
Parameters
* base — Ctimer peripheral base address
* capture — Capture channel to configure
* edge — Edge on the channel that will trigger a capture

* enablelnt — Flag to enable channel interrupts, if enabled then the registered
call back is called upon capture

static inline uint32_t CTIMER,_ GetTimerCountValue(CTIMER_Type *base)
Get the timer count value from TC register.
Parameters
* base — Ctimer peripheral base address.

Returns
return the timer count value.

void CTIMER, RegisterCallBack(CTIMER_Type *base, ctimer_callback_t *cb_func,
ctimer_callback_type_t cb_type)

Register callback.
This function configures CTimer Callback in following modes:

» Single Callback: cb_func should be pointer to callback function pointer
For example: ctimer_callback_t ctimer_callback = pwm_match_callback;
CTIMER_RegisterCallBack(CTIMER, &ctimer_callback, kCTIMER_SingleCallback);

o Multiple Callback: cb_func should be pointer to array of callback func-

tion pointers Each element corresponds to Interrupt Flag in IR reg-
ister. For example: ctimer_callback t ctimer_callback_table[] = {
ctimer_matchO_callback, NULL, NULL, ctimer _match3_callback, NULL, NULL,
NULL, NULL}; CTIMER_RegisterCallBack(CTIMER, &ctimer_callback_table[0], kC-
TIMER_MultipleCallback);

Parameters
* base — Ctimer peripheral base address

* cb_func — Pointer to callback function pointer

2.7. CTIMER: Standard counter/timers 147

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

* cb_type — callback function type, singular or multiple

static inline void CTIMER_ Reset(CTIMER_Type *base)
Reset the counter.

The timer counter and prescale counter are reset on the next positive edge of the APB clock.
Parameters
* base — Ctimer peripheral base address

static inline void CTIMER_ SetPrescale(CTIMER_Type *base, uint32_t prescale)
Setup the timer prescale value.

Specifies the maximum value for the Prescale Counter.
Parameters
* base — Ctimer peripheral base address
* prescale — Prescale value

static inline uint32_t CTIMER,_ GetCaptureValue(CTIMER_Type *base, ctimer_capture_channel t
capture)

Get capture channel value.
Get the counter/timer value on the corresponding capture channel.
Parameters
* base — Ctimer peripheral base address
* capture — Select capture channel

Returns
The timer count capture value.

static inline void CTIMER_ EnableResetMatchChannel(CTIMER_Type *base, ctimer_match_t
match, bool enable)

Enable reset match channel.
Set the specified match channel reset operation.
Parameters
* base — Ctimer peripheral base address
* match — match channel used
* enable — Enable match channel reset operation.

static inline void CTIMER, EnableStopMatchChannel(CTIMER_Type *base, ctimer_match_t
match, bool enable)

Enable stop match channel.
Set the specified match channel stop operation.
Parameters
* base — Ctimer peripheral base address.
* match — match channel used.
* enable — Enable match channel stop operation.

static inline void CTIMER_ EnableMatchChannelReload(CTIMER_Type *base, ctimer_match_t
match, bool enable)

Enable reload channel falling edge.

Enable the specified match channel reload match shadow value.

148 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Parameters
* base — Ctimer peripheral base address.
* match — match channel used.
* enable — Enable .

static inline void CTIMER_ EnableRisingEdgeCapture(CTIMER_Type *base,
ctimer_capture_channel_t capture, bool
enable)

Enable capture channel rising edge.
Sets the specified capture channel for rising edge capture.
Parameters
* base — Ctimer peripheral base address.
* capture — capture channel used.
* enable — Enable rising edge capture.

static inline void CTIMER_ EnableFallingEdgeCapture(CTIMER_Type *base,
ctimer_capture_channel_t capture, bool
enable)

Enable capture channel falling edge.
Sets the specified capture channel for falling edge capture.
Parameters
* base — Ctimer peripheral base address.
* capture — capture channel used.
* enable — Enable falling edge capture.

static inline void CTIMER, SetShadowValue(CTIMER_Type *base, ctimer_match_t match,
uint32_t matchvalue)

Set the specified match shadow channel.
Parameters
* base — Ctimer peripheral base address.
* match — match channel used.
* matchvalue — Reload the value of the corresponding match register.

struct _ ctimer match_config
#include <fsl_ctimer.h> Match configuration.

This structure holds the configuration settings for each match register.

Public Members

uint32_t matchValue
This is stored in the match register

bool enableCounterReset
true: Match will reset the counter false: Match will not reser the counter

bool enableCounterStop
true: Match will stop the counter false: Match will not stop the counter

2.7. CTIMER: Standard counter/timers 149

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

ctimer_match_output_control_t outControl
Action to be taken on a match on the EM bit/output

bool outPinInitState
Initial value of the EM hit/output

bool enableInterrupt
true: Generate interrupt upon match false: Do not generate interrupt on match

struct _ ctimer_ config
#include <fsl_ctimer.h> Timer configuration structure.

This structure holds the configuration settings for the Timer peripheral. To initialize this
structure to reasonable defaults, call the CTIMER_GetDefaultConfig() function and pass a
pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

Public Members
ctimer_timer_mode_t mode
Timer mode

ctimer_capture_channel_t input

Input channel to increment the timer, used only in timer modes that rely on this input
signal to increment TC

uint32_t prescale
Prescale value

2.8 DAC: Digital Analog Converter

void DAC_Init(DAC_Type *base, const dac_config_t *config)

Initializes DAC module, including set reference voltage source, set conversion range, and
set output voltage range.

Parameters
* base — DAC peripheral base address.
* config — Pointer to the structure which in type of dac_config_t.
void DAC_ GetDefaultConfig(dac_config_t *config)
Gets the default configurations of DAC module.

config->conversionRate = kDAC__ConversionRate62P5KHZ;
config->refSource = kDAC_ Referencelnternal VoltageSource;
config- >rangeSelect = kDAC__RangeLarge;

Parameters
* config — Pointer to the structure which in the type of dac_config_t.

void DAC_ Deinit(DAC_Type *base)
De-initializes the DAC module, including reset clock divider, reset each channel, and so on.

Parameters

* base — DAC peripheral base address.

150 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

void DAC_ SetChannelConfig(DAC_Type *base, uint32_t channelMask, const
dac_channel_config_t *channelConfig)

Configures the DAC channels, including enable channel conversion, set wave type, set tim-
ing mode, and so on.

Parameters
* base — DAC peripheral base address.

* channelMask — The mask of channel, can be the ORed value of
dac_channel id_t.

* channelConfig — The pointer of structure which in the type of
dac_channel_config_t.

static inline void DAC_ ResetChannel(DAC_Type *base, uint32_t channelMask)
Does software reset for the selected DAC channels.

Parameters
* base — DAC peripheral base address.

* channelMask — The mask of channel to be reset, should be the OR’ed value
of dac_channel id_t.

static inline void DAC_ EnableChannelConversion(DAC_Type *base, uint32_t channelMask, bool
enable)

Enables/Disables selected channel conversion.

Note: To enable/disable the conversions of both channels, invoking this API with the pa-
rameter channelMask set as KDAC_ChannelA | KDAC_ChannelB .

Parameters
* base — DAC peripheral base address.

* channelMask — The mask of channel to be reset, can be the OR’ed value of
dac_channel id_t.

* enable — Enable/Disable channel conversion.
— true Enable selected channels’ conversion.
— false Disable selected channels’ conversion.

static inline void DAC_ SetChannelOutMode(DAC_Type *base, uint32_t channelMask,
dac_channel output_t outMode)

Sets channels out mode, including kKDAC_ChannelOutputinternal and
kDAC_ChannelOutputPad.
Parameters

* base — DAC peripheral base address.

* channelMask — The mask of channel, can be the ORed value of
dac_channel id_t.

* outMode — The out mode of selected channels, please refer to
dac_channel_output_t for details.

static inline void DAC_ EnableChannel TriggerMode(DAC_Type *base, uint32_t channelMask, bool
enable)

Enables/Disables channels trigger mode.

2.8. DAC: Digital Analog Converter 151

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Note: To enable/disable the trigger mode of both two channels, invoking this API with the
parameter channelMask set as KDAC_ChannelA | KDAC_ChannelB .

Parameters
* base — DAC peripheral base address.

* channelMask — The mask of channel, can be the ORed value of
dac_channel id_t.

* enable — Enable/Disable channel trigger mode.
— true Channels’ conversion triggered by external event enabled.
- false Channels’ conversion trigged by external event disabled.

static inline void DAC_ SetChannel TrigSource(DAC_Type *base, uint32_t channelMask,
dac_channel_trigger_source_t trigSource)

Sets channels trigger source.

Note: To set the same trigger source to both two channels, invoking this API with the
parameter channelMask set as KDAC_ChannelA | KDAC_ChannelB .

Parameters
* base — DAC peripheral base address.

* channelMask — The mask of channel, can be the ORed value of
dac_channel id_t.

* trigSource — The selected trigger source, please refer to
dac_channel_trigger_source_t for details.

static inline void DAC_ SetChannelTrigType(DAC_Type *base, uint32_t channelMask,
dac_channel_trigger_type_t trigType)

Sets channels trigger type, such as rising edge trigger, falling edge trigger, or both edge
trigger.

Note: To set the same trigger type to both two channels, invoking this API with the param-
eter channelMask set as KDAC_ChannelA | kDAC_ChannelB .

Parameters
* base — DAC peripheral base address.

e channelMask — The mask of channel, can be the ORed value of
dac_channel id_t;

» trigType - The selected trigger type, please refer to
dac_channel_trigger_type_t;
static inline void DAC_ SetChannel TimingMode(DAC_Type *base, uint32_t channelMask,
dac_channel_timing_mode_t timingMode)
Sets channels timing mode, including not-timing related or timing related.

Note: To the same timing mode to both two channels, invoking this API with the parameter
channelMask set as KDAC_ChannelA |kDAC_ChannelB .

152 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Parameters
* base — DAC peripheral base address.

* channelMask — The mask of channel, can be the ORed value of
dac_channel id_t.

* timingMode — The selected timing mode, please refer to
dac_channel_timing_mode_t for details.

static inline void DAC_ EnableChannelDMA (DAC_Type *base, uint32_t channelMask, bool
enable)

Enables/Disables channels DMA.
Parameters
* base — DAC peripheral base address.

* channelMask — The mask of channel, can be the ORed value of
dac_channel id_t.

* enable — Enable/Disable channel DMA data transfer.
— true DMA data transfer enabled.
— false DMA data transfer disabled.

static inline void DAC_ SetChannelWaveType(DAC_Type *base, uint32_t channelMask,
dac_channel_wave_type_t waveType)

Sets channels wave type, such as sine, noise, or triangle.

Note: To set the same wave type to both channel, invoking this API with the parameter
channelMask set as KDAC_ChannelA |kDAC_ChannelB .

Parameters
* base — DAC peripheral base address.

* channelMask — The mask of channel, should be the OR’ed value of
dac_channel id_t.

» waveType — The wave type to set, please refer to dac_channel_wave_type_t.

static inline void DAC_ SetChannelData(DAC_Type *base, uint32_t channelMask, uint16_t data)
Sets DAC channels data.

Note: To set the same data to both channel, invoking this API with the parameter chan-
nelMask set as KDAC_ChannelA | KDAC_ChannelB .

Parameters
* base — DAC peripheral base address.

e channelMask — The mask of channel, can be the ORed value of
dac_channel id_t.

e data —

void DAC_ SetTriangleConfig(DAC_Type *base, const dac_triangle_config t *triangleConfig)
Configures the options of triangle waveform.

2.8. DAC: Digital Analog Converter 153

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Note: This API should be invoked to set the options of triangle waveform when channel
A’s output wave type is selected as KDAC_WaveTriangle.

Parameters
* base — DAC peripheral base address.

* triangleConfig - The pointer of structure which in the type of
dac_triangle_config_t.

static inline void DAC_ EnableInterrupts(DAC_Type *base, uint32_t interruptMask)

Enables interrupts, such as channel A data ready interupt, channel A timeout interrupt,
and so on.

Parameters
* base — DAC peripheral base address.

* interruptMask — The or’ed value of the interrupts to be enabled, please refer
to _dac_interrupt_enable.

static inline void DAC_ DisableInterrupts(DAC_Type *base, uint32_t interruptMask)

Disables interrupts, such as channel B data ready interrupt, channel B timeout interrupt,
and so on.

Parameters
* base — DAC peripheral base address.

* interruptMask — The or’ed value of the interrupts to be disabled, please refer
to _dac_interrupt_enable.

static inline uint32_t DAC_ GetStatusFlags(DAC_Type *base)

Gets the status flags, including interrupt status flags, raw status flags, and conversion status
flags.

Parameters
* base — DAC peripheral base address.

Returns
The mask of status flags, please refer to _dac_status_flags.

static inline void DAC__ClearStatusFlags(DAC_Type *base, uint32_t statusFlagsMask)

Clears the interrups status flags, such as channel A data ready interrupt flag, channel B data
ready interrupt flag, and so on.

Parameters
* base — DAC peripheral base address.

* statusFlagsMask — The mask of the status flags to be cleared, please refer to
_dac_status_flags.

enum _ dac_ interrupt__enable
The enumeration of interrupts that DAC support.

Values:

enumerator kDAC__ChannelAReadyInterruptEnable
Enable channel A data ready interrupt.

enumerator kDAC _ChannelBReadyInterruptEnable
Enable channel B data ready interrupt.

154 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kDAC__ChannelATimeoutInterruptEnable
Enable channel A time out interrupt.

enumerator kDAC__ChannelBTimeoutInterruptEnable
Enable channel B time out interrupt.

enumerator kDAC_ TriangleOverflowInterruptEnable
Enable triangle overflow interrupt.

enum _ dac_status_ flags

The enumeration of DAC status flags, including interrupt status flags, raw status flags, and
conversion status flags.

Note: The interrupt status flags can only be asserted upon both enabling and happening
of related interrupts. Comparatively, the raw status flags will be asserted as long as related
events happen regardless of whether related interrupts are enabled or not.

Note: Only interrupt status flags can be cleared mannually.

Values:

enumerator kDAC__ChannelADataReadyInterruptFlag
Channel A data ready.

enumerator kDAC__ChannelBDataReadyInterruptFlag
Channel B data ready.

enumerator kDAC__ChannelATimeoutInterruptFlag
Channel A time out.

enumerator kDAC__ChannelBTimeoutInterruptFlag
Channel B time out.

enumerator kDAC_ TriangleOverflowInterruptFlag
Triangle overflow.

enumerator kDAC__RawChannelADataReadyFlag
Channel A data ready raw.

enumerator kDAC__RawChannelBDataReadyFlag
Channel B data ready raw.

enumerator kDAC__RawChannelATimeoutFlag
Channel A timeout raw.

enumerator kDAC__RawChannelBTimeoutFlag
Channel B timeout raw.

enumerator kDAC_RawTriangleOverflowFlag
Triangle overflow raw.

enumerator kDAC__ChannelAConversionCompleteFlag
Channel A conversion complete.

enumerator kDAC__ ChannelBConversionCompleteFlag
Channel B conversion complete.

2.8. DAC: Digital Analog Converter 155

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enum _dac_ channel id
The enumeration of dac channels, including channel A and channel B.

Values:
enumerator kDAC ChannelA

enumerator kDAC_ChannelB

enum dac conversion rate

The enumeration of dac converion rate, including 62.5 KHz, 125 KHz, 250 KHz, and 500
KHz.

Values:

enumerator kDAC ConversionRate62P5KHZ
DAC Conversion Rate selects as 62.5 KHz.

enumerator kDAC ConversionRatel125KHZ
DAC Conversion Rate selects as 125 KHz.

enumerator kDAC _ConversionRate250KHZ
DAC Conversion Rate selects as 250 KHz.

enumerator kDAC ConversionRate500KHZ
DAC Conversion Rate selects as 500 KHz.

enum _ dac_ reference_ voltage source
The enumeration of dac reference voltage source.

Values:

enumerator kDAC_ Referencelnternal VoltageSource
Select internal voltage reference.

enumerator kDAC_ReferenceExternalVoltageSource
Select external voltage reference.

enum _ dac_ output_ voltage range
The enumeration of dac output voltage range.

Values:

enumerator kDAC__RangeSmall
DAC output small range.
enumerator kDAC_RangeMiddle
DAC output middle range.
enumerator kDAC_RangelLarge
DAC output large range.
enum _ dac_ channel output
The enumeration of dac channel’s output mode.
Values:
enumerator kDAC ChannelOutputInternal
Enable internal output but disable output to pad

enumerator kDAC__ChannelOutputPAD
Enable output to pad but disable internal output

156 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enum _ dac_ channel trigger_type

The enumeration of dac channel’s trigger type, including rising edge trigger, falling edge

trigger, and both edge triggers.

Values:

enumerator kDAC_RisingEdgeTrigger
Rising edge trigger.

enumerator kDAC_ FallingEdgeTrigger
Failing edge trigger.

enumerator kDAC_BothEdgeTrigger
Rising and Failing edge trigger.

enum _ dac_ channel timing_mode
The enumeration of dac channel timing mode.
Values:

enumerator kDAC_NonTimingCorrelated
DAC non-timing-correlated mode.

enumerator kDAC_TimingCorrelated
DAC timing-correlated mode.

enum _ dac_ channel wave_ type

The enumerator of channel output wave type, please note that not all wave types are effec-

tive to A and B channel.
Values:

enumerator kDAC WaveNormal

No predefined waveform, effective to A or B channel

enumerator kDAC__WaveTriangle
Triangle wave, effective only to A channel

enumerator kDAC WaveSine
Sine wave, effective only to A channel

enumerator kDAC_WaveNoiseDifferential

Noise wave, effective only to A channel; Differential mode, one’s complemental code

from A data, effective only to B channel

enum _ dac_ triangle mamp
DAC triangle maximum amplitude type.

Values:

enumerator kDAC__ TriangleAmplitude63
DAC triangle amplitude 63 Ish

enumerator kDAC_TriangleAmplitudel27
DAC triangle amplitude 127 1sb

enumerator kDAC_ TriangleAmplitudel91
DAC triangle amplitude 191 1sb

enumerator kDAC_ TriangleAmplitude255
DAC triangle amplitude 255 Isb

enumerator kDAC_ TriangleAmplitude319
DAC triangle amplitude 319 Isb

2.8. DAC: Digital Analog Converter

157

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kDAC_TriangleAmplitude383
DAC triangle amplitude 383 1sb

enumerator kDAC_TriangleAmplitude447
DAC triangle amplitude 447 1sb

enumerator kDAC_TriangleAmplitude511
DAC triangle amplitude 511 1sb

enumerator kDAC_TriangleAmplitude575
DAC triangle amplitude 575 1sb

enumerator kDAC_TriangleAmplitude639
DAC triangle amplitude 639 Isb

enumerator kDAC_TriangleAmplitude703
DAC triangle amplitude 703 1sb

enumerator kDAC_TriangleAmplitude767
DAC triangle amplitude 767 1sb

enumerator kDAC _TriangleAmplitude831
DAC triangle amplitude 831 1sb

enumerator kDAC_ TriangleAmplitude895
DAC triangle amplitude 895 1sb

enumerator kDAC_ TriangleAmplitude959
DAC triangle amplitude 959 Isb

enumerator kDAC_TriangleAmplitude1023
DAC triangle amplitude 1023 Ish

enum _ dac_ triangle_ step_ size
DAC triangle step size type.

Values:

enumerator kDAC_TriangleStepSizel
DAC triangle step size 1 Isb

enumerator kDAC_ TriangleStepSize3
DAC triangle step size 3 1sb

enumerator kDAC_ TriangleStepSizelb
DAC triangle step size 15 Isb

enumerator kDAC_ TriangleStepSize511
DAC triangle step size 511 Isb

enum _ dac_ triangle waveform_ type
DAC triangle waveform type.

Values:

enumerator kDAC_TriangleFull
DAC full triangle waveform

enumerator kDAC _TriangleHalf
DAC half triangle waveform

typedef enum _dac_channel id dac_ channel id_t
The enumeration of dac channels, including channel A and channel B.

158 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

typedef enum _dac_conversion_rate dac__conversion_rate_t
The enumeration of dac converion rate, including 62.5 KHz, 125 KHz, 250 KHz, and 500
KHz.

typedef enum _dac_reference_voltage_source dac_ reference voltage source t
The enumeration of dac reference voltage source.

typedef enum _dac_output_voltage_range dac_output_voltage range t
The enumeration of dac output voltage range.

typedef enum _dac_channel output dac_ channel output_ t
The enumeration of dac channel’s output mode.

typedef enum _dac_channel trigger_type dac_ channel trigger type t
The enumeration of dac channel’s trigger type, including rising edge trigger, falling edge
trigger, and both edge triggers.

typedef enum _dac_channel_timing_mode dac_ channel timing mode_t
The enumeration of dac channel timing mode.

typedef enum _dac_channel wave_type dac_channel wave type t
The enumerator of channel output wave type, please note that not all wave types are effec-
tive to A and B channel.

typedef enum _dac_triangle_mamp dac_ triangle_mamp_t
DAC triangle maximum amplitude type.

typedef enum _dac_triangle_step_size dac_ triangle_step_ size t
DAC triangle step size type.

typedef enum _dac_triangle_waveform_type dac_ triangle_ waveform_ type_t
DAC triangle waveform type.

typedef struct _dac_config dac_ config_t
The structure of dac module basic configuration, including conversion rate, output range,
and reference voltage source.

typedef struct _dac_channel_config dac_ channel_config_t
The structure of dac channel configuration, such as trigger type, wave type, timing mode,
and so on.

typedef struct _dac_triangle_config dac_ triangle_ config_t
The structure of triangle waveform, including maximum value, minimum value, step size,
and so on.

FSL_DAC_DRIVER_ VERSION
DAC driver version.

Version 2.1.1.
IS. DAC_CHANNEL_A_ WAVE(CH_WAVE)
DAC channel A wave mode check.
IS_. DAC_CHANNEL_B_ WAVE(CH_WAVE)
DAC channel B wave mode check.

struct _ dac_ config

#include <fsl_dac.h> The structure of dac module basic configuration, including conversion
rate, output range, and reference voltage source.

2.8. DAC: Digital Analog Converter 159

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Public Members
dac_conversion_rate_t conversionRate
Configure DAC conversion rate, please refer to dac_conversion_rate_t.

dac_reference_voltage_source_t refSource
Configure DAC vref source, please refer to dac_reference_voltage_source_t.

dac_output_voltage_range_t rangeSelect
Configure DAC channel output range, please refer to dac_output_voltage_range_t.

struct _ dac_ channel config

#include <fsl_dac.h> The structure of dac channel configuration, such as trigger type, wave
type, timing mode, and so on.

Public Members
bool enableConversion
Enable/Disable selected channel’s conversion.
 true Enable selected channel’s conversion.
« false Disable selected channel’s conversion.
dac_channel_output_t outMode
Configure channel output mode, please refer to dac_channel_output_t
bool enableDMA
Enable/Disable channel DAM data transfer.
* true DMA data transfer enabled.
» false DMA data transfer disabled.

bool enableTrigger
Enable/Disable external event trigger.

dac_channel_trigger._type_t triggerType

Configure the channel trigger type, please refer to dac_channel_trigger_type_t.
dac_channel_trigger_source_t triggerSource

Configure DAC channel trigger source, please refer to dac_channel_trigger_source_t.

dac_channel_timing mode_t timingMode
Configure channel timing mode, please refer to dac_channel_timing _mode_t.

dac_channel_wave_type_t waveType
Configure wave type for the selected channel, ©please refer to
dac_channel wave_type_t.
struct _dac_triangle config

#include <fsl_dac.h> The structure of triangle waveform, including maximum value, mini-
mum value, step size, and so on.

Public Members
dac_triangle_mamp_t triangleMamp
Configure triangle maximum value.

dac_triangle_step_size_t triangleStepSize
Configure triangle step size.

160 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

dac_triangle_waveform_type_t triangleWaveform
Configure triangle waveform type.

uint32_t triangleBase
Configure triangle minimum value.

2.9 DMA: Direct Memory Access Controller Driver

void DMA_ Init(DMA_Type *base)
Initializes DMA peripheral.

This function enable the DMA clock, set descriptor table and enable DMA peripheral.
Parameters
* base — DMA peripheral base address.

void DMA_ Deinit(DMA_Type *base)
Deinitializes DMA peripheral.

This function gates the DMA clock.
Parameters
* base — DMA peripheral base address.

void DMA_ InstallDescriptorMemory(DMA_Type *base, void *addr)
Install DMA descriptor memory.

This function used to register DMA descriptor memory for linked transfer, a typical case
is ping pong transfer which will request more than one DMA descriptor memory space,
althrough current DMA driver has a default DMA descriptor buffer, but it support one DMA
descriptor for one channel only.

Parameters
* base — DMA base address.
* addr - DMA descriptor address

static inline bool DMA_ ChannellsActive(DMA_Type *base, uint32_t channel)
Return whether DMA channel is processing transfer.

Parameters
* base — DMA peripheral base address.
* channel — DMA channel number.

Returns
True for active state, false otherwise.

static inline bool DMA_ ChannellsBusy(DMA_Type *base, uint32_t channel)
Return whether DMA channel is busy.

Parameters
* base — DMA peripheral base address.
* channel - DMA channel number.

Returns
True for busy state, false otherwise.

2.9. DMA: Direct Memory Access Controller Driver 161

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

static inline void DMA_ EnableChannellnterrupts(DMA_Type *base, uint32_t channel)
Enables the interrupt source for the DMA transfer.

Parameters
* base — DMA peripheral base address.
* channel - DMA channel number.

static inline void DMA_ DisableChannellnterrupts(DMA_Type *base, uint32_t channel)
Disables the interrupt source for the DMA transfer.

Parameters
* base — DMA peripheral base address.
* channel - DMA channel number.

static inline void DMA_ EnableChannel(DMA_Type *base, uint32_t channel)
Enable DMA channel.

Parameters
* base — DMA peripheral base address.
* channel - DMA channel number.

static inline void DMA_ DisableChannel(DMA_Type *base, uint32_t channel)
Disable DMA channel.

Parameters
* base — DMA peripheral base address.
* channel - DMA channel number.

static inline void DMA_ EnableChannelPeriphRq(DMA_Type *base, uint32_t channel)
Set PERIPHREQEN of channel configuration register.

Parameters
* base —- DMA peripheral base address.
* channel - DMA channel number.

static inline void DMA_ DisableChannelPeriphRq(DMA_Type *base, uint32_t channel)
Get PERIPHREQEN value of channel configuration register.

Parameters
* base — DMA peripheral base address.
e channel — DMA channel number.

Returns
True for enabled PeriphRq, false for disabled.

void DMA_ ConfigureChannel Trigger(DMA_Type *base, uint32_t channel, dma_channel_trigger._t
*trigger)
Set trigger settings of DMA channel.

Deprecated:
Do not use this function. It has been superceded by DMA_SetChannelConfig.

Parameters
* base — DMA peripheral base address.

* channel - DMA channel number.

162 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

* trigger — trigger configuration.

void DMA_ SetChannelConfig(DMA_Type *base, uint32_t channel, dma_channel trigger._t
*trigger, bool isPeriph)

set channel config.
This function provide a interface to configure channel configuration reisters.
Parameters
* base — DMA base address.
 channel - DMA channel number.
* trigger — channel configurations structure.
* isPeriph — true is periph request, false is not.

static inline uint32_t DMA_ SetChannelXferConfig(bool reload, bool clrTrig, bool intA, bool intB,
uint8_t width, uint8_t srcInc, uint8_t dstInc,
uint32_t bytes)

DMA channel xfer transfer configurations.
Parameters

* reload —true is reload link descriptor after current exhaust, false is not
* clrTrig — true is clear trigger status, wait software trigger, false is not
* intA — enable interruptA
* intB — enable interruptB
* width — transfer width
* srcInc — source address interleave size
* dstInc — destination address interleave size
* bytes — transfer bytes

Returns
The vaule of xfer config

uint32_t DMA_ GetRemainingBytes(DMA_Type *base, uint32_t channel)
Gets the remaining bytes of the current DMA descriptor transfer.

Parameters
* base — DMA peripheral base address.
* channel - DMA channel number.

Returns
The number of bytes which have not been transferred yet.

static inline void DMA_ SetChannelPriority(DMA_Type *base, uint32_t channel, dma_priority_t
priority)

Set priority of channel configuration register.
Parameters
* base — DMA peripheral base address.
* channel - DMA channel number.

* priority — Channel priority value.

2.9. DMA: Direct Memory Access Controller Driver 163

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

static inline dma_priority_t DMA_ GetChannelPriority(DMA_Type *base, uint32_t channel)
Get priority of channel configuration register.

Parameters
* base — DMA peripheral base address.
* channel - DMA channel number.

Returns
Channel priority value.

static inline void DMA_ SetChannelConfigValid(DMA_Type *base, uint32_t channel)
Set channel configuration valid.

Parameters
* base — DMA peripheral base address.
* channel - DMA channel number.

static inline void DMA_ DoChannelSoftwareTrigger(DMA_Type *base, uint32_t channel)
Do software trigger for the channel.

Parameters
* base — DMA peripheral base address.
* channel - DMA channel number.

static inline void DMA_ LoadChannel TransferConfig(DMA_Type *base, uint32_t channel, uint32_t
xfer)

Load channel transfer configurations.
Parameters
* base — DMA peripheral base address.
* channel - DMA channel number.
* xfer — transfer configurations.

void DMA _ CreateDescriptor(dma_descriptor_t *desc, dma_xfercfg_t *xfercfg, void *srcAddr, void
*dstAddr, void *nextDesc)

Create application specific DMA descriptor to be used in a chain in transfer.

Deprecated:
Do not use this function. It has been superceded by DMA_SetupDescriptor.

Parameters
* desc — DMA descriptor address.
o xfercfg — Transfer configuration for DMA descriptor.

* srcAddr — Address of last item to transmit

dstAddr — Address of last item to receive.
* nextDesc — Address of next descriptor in chain.

void DMA_ SetupDescriptor(dma_descriptor._t *desc, uint32_t xfercfg, void *srcStartAddr, void
*dstStartAddr, void *nextDesc)

setup dma descriptor
Note: This function do not support configure wrap descriptor.

Parameters

164 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

* desc — DMA descriptor address.

o xfercfg — Transfer configuration for DMA descriptor.
* srcStartAddr — Start address of source address.

* dstStartAddr — Start address of destination address.
* nextDesc — Address of next descriptor in chain.

void DMA_ SetupChannelDescriptor(dma_descriptor._t *desc, uint32_t xfercfg, void *srcStartAddr,
void *dstStartAddr, void *nextDesc, dma_burst_wrap_t
wrapType, uint32_t burstSize)

setup dma channel descriptor
Note: This function support configure wrap descriptor.
Parameters
* desc — DMA descriptor address.
» xfercfg — Transfer configuration for DMA descriptor.
* srcStartAddr — Start address of source address.
¢ dstStartAddr — Start address of destination address.
* nextDesc — Address of next descriptor in chain.
» wrapType — burst wrap type.
* burstSize — burst size, reference _dma_burst_size.

void DMA_ LoadChannelDescriptor(DMA_Type *base, uint32_t channel, dma_descriptor_t
*descriptor)

load channel transfer decriptor.

This function can be used to load desscriptor to driver internal channel descriptor that is
used to start DMA transfer, the head descriptor table is defined in DMA driver, it is useful
for the case:

a. for the polling transfer, application can allocate a local descriptor memory table to
prepare a descriptor firstly and then call this api to load the configured descriptor to
driver descriptor table.

DMA_ Init(DMAO);

DMA__EnableChannel(DMAO, DEMO_DMA_CHANNEL);

DMA_ SetupDescriptor(desc, xferCfg, s_srcBuffer, &s_ destBuffer[0], NULL);

DMA_ LoadChannelDescriptor(DMAO, DEMO__DMA__ CHANNEL, (dma_ descriptor_t *)desc);
DMA_ DoChannelSoftwareTrigger(DMAO, DEMO_DMA_CHANNEL);

while(DMA__ ChannellsBusy(DMAO, DEMO_DMA_CHANNEL))

{

Parameters
* base —- DMA base address.
 channel - DMA channel.
* descriptor — configured DMA descriptor.

void DMA__ AbortTransfer(dma_handle_t *handle)
Abort running transfer by handle.

This function aborts DMA transfer specified by handle.
Parameters

* handle —- DMA handle pointer.

2.9. DMA: Direct Memory Access Controller Driver 165

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

void DMA_ CreateHandle(dma_handle_t *handle, DMA_Type *base, uint32_t channel)
Creates the DMA handle.

This function is called if using transaction API for DMA. This function initializes the internal
state of DMA handle.

Parameters

* handle —- DMA handle pointer. The DMA handle stores callback function
and parameters.

* base — DMA peripheral base address.
* channel - DMA channel number.

void DMA_ SetCallback(dma_handle_t *handle, dma_callback callback, void *userData)
Installs a callback function for the DMA transfer.

This callback is called in DMA IRQ handler. Use the callback to do something after the
current major loop transfer completes.

Parameters
* handle - DMA handle pointer.
* callback — DMA callback function pointer.
* userData — Parameter for callback function.

void DMA_ PrepareTransfer(dma_transfer_config_t *config, void *srcAddr, void *dstAddr,
uint32_t byteWidth, uint32_t transferBytes, dma_transfer_type_t
type, void *nextDesc)

Prepares the DMA transfer structure.

Deprecated:

Do not use this function. It has been superceded by DMA_PrepareChannelTransfer.
This function prepares the transfer configuration structure according to the user input.

Note: The data address and the data width must be consistent. For example, if the SRC is
4 bytes, so the source address must be 4 bytes aligned, or it shall result in source address
error(SAE).

Parameters
* config — The user configuration structure of type dma_transfer_t.
* srcAddr - DMA transfer source address.
* dstAddr —- DMA transfer destination address.
* byteWidth — DMA transfer destination address width(bytes).
* transferBytes — DMA transfer bytes to be transferred.
* type — DMA transfer type.
¢ nextDesc — Chain custom descriptor to transfer.

void DMA_ PrepareChannel Transfer(dma_channel_config_t *config, void *srcStartAddr, void
*dstStartAddr, uint32_t xferCfg, dma_transfer_type_t type,
dma_channel trigger_t *trigger, void *nextDesc)

Prepare channel transfer configurations.

This function used to prepare channel transfer configurations.

166 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Parameters
* config — Pointer to DMA channel transfer configuration structure.
* srcStartAddr — source start address.
¢ dstStartAddr — destination start address.

 xferCfg — xfer configuration, user can reference DMA_CHANNEL_XFER
about to how to get xferCfg value.

* type — transfer type.
* trigger — DMA channel trigger configurations.
* nextDesc — address of next descriptor.

status_t DMA_ SubmitTransfer(dma_handle_t *handle, dma_transfer_config_t *config)
Submits the DMA transfer request.

Deprecated:
Do not use this function. It has been superceded by DMA_SubmitChannelTransfer.
This function submits the DMA transfer request according to the transfer configuration

structure. If the user submits the transfer request repeatedly, this function packs an un-
processed request as a TCD and enables scatter/gather feature to process it in the next time.

Parameters
* handle - DMA handle pointer.
* config — Pointer to DMA transfer configuration structure.
Return values
* kStatus_ DMA_ Success — It means submit transfer request succeed.

* kStatus_ DMA_ QueueFull — It means TCD queue is full. Submit transfer re-
quest is not allowed.

* kStatus_ DMA_ Busy — It means the given channel is busy, need to submit
request later.

void DMA_ SubmitChannel TransferParameter(dma_handle_t *handle, uint32_t xferCfg, void
*srcStartAddr, void *dstStartAddr, void *nextDesc)

Submit channel transfer paramter directly.

This function used to configue channel head descriptor that is used to start DMA transfer,
the head descriptor table is defined in DMA driver, it is useful for the case:

a. for the single transfer, application doesn’t need to allocate descriptor table, the head
descriptor can be used for it.

DMA__ SetChannelConfig(base, channel, trigger, isPeriph);

DMA_ CreateHandle(handle, base, channel)

DMA__ SubmitChannelTransferParameter (handle, DMA__CHANNEL_XFER(reload, clrTrig,
—intA, intB, width, srcInc, dstlnc,
bytes), srcStartAddr, dstStartAddr, NULL);

DMA_ StartTransfer(handle)

b. for the linked transfer, application should responsible for link descriptor, for example,
if 4 transfer is required, then application should prepare three descriptor table with
macro , the head descriptor in driver can be used for the first transfer descriptor.

2.9. DMA: Direct Memory Access Controller Driver 167

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

define link descriptor table in application with macro
DMA_ALLOCATE_LINK_ DESCRIPTOR (nextDesc[3]);

DMA_ SetupDescriptor(nextDesc0, DMA_CHANNEL_ XFER(reload, clr'Trig, intA, intB, width,
— srclne, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDescl);

DMA_ SetupDescriptor(nextDescl, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
— srclne, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc2);

DMA_ SetupDescriptor(nextDesc2, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
— srclne, dstInc, bytes),
srcStartAddr, dstStartAddr, NULL);

DMA__ SetChannelConfig(base, channel, trigger, isPeriph);

DMA_ CreateHandle(handle, base, channel)

DMA _ SubmitChannel TransferParameter(handle, DMA_CHANNEL_ XFER(reload, clrTrig,
—intA, intB, width, srcIne, dstlnc,
bytes), srcStartAddr, dstStartAddr, nextDesc0);

DMA _ StartTransfer(handle);

Parameters
* handle — Pointer to DMA handle.

* xferCfg — xfer configuration, user can reference DMA_CHANNEL_XFER
about to how to get xferCfg value.

* srcStartAddr — source start address.
* dstStartAddr — destination start address.
* nextDesc — address of next descriptor.

void DMA_SubmitChannelDescriptor(dma_handle_t *handle, dma_descriptor_t *descriptor)
Submit channel descriptor.

This function used to configue channel head descriptor that is used to start DMA transfer,
the head descriptor table is defined in DMA driver, this functiono is typical for the ping
pong case:

a. for the ping pong case, application should responsible for the descriptor, for example,
application should prepare two descriptor table with macro.

define link descriptor table in application with macro
DMA__ALLOCATE_LINK_DESCRIPTOR(nextDesc[2]);

DMA_ SetupDescriptor(nextDesc0, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
— srclne, dstInce, bytes),
srcStartAddr, dstStartAddr, nextDescl);

DMA_ SetupDescriptor(nextDescl, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
— srclne, dstInge, bytes),
srcStartAddr, dstStartAddr, nextDesc0);

DMA_ SetChannelConfig(base, channel, trigger, isPeriph);

DMA _CreateHandle(handle, base, channel)

DMA__ SubmitChannelDescriptor (handle, nextDesc0);

DMA _ StartTransfer(handle);

Parameters
* handle — Pointer to DMA handle.

* descriptor — descriptor to submit.

168 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

status_t DMA_ SubmitChannel Transfer(dma_handle_t *handle, dma_channel_config_t *config)
Submits the DMA channel transfer request.

This function submits the DMA transfer request according to the transfer configuration
structure. If the user submits the transfer request repeatedly, this function packs an un-
processed request as a TCD and enables scatter/gather feature to process it in the next time.
It is used for the case:

a. for the single transfer, application doesn’t need to allocate descriptor table, the head
descriptor can be used for it.

DMA_ CreateHandle(handle, base, channel)

DMA_ PrepareChannel Transfer(config,srcStart Addr,dstStart Addr xferCfg,type,trigger, NULL);
DMA__SubmitChannelTransfer(handle, config)

DMA_ StartTransfer(handle)

b. for the linked transfer; application should responsible for link descriptor, for example,
if 4 transfer is required, then application should prepare three descriptor table with
macro , the head descriptor in driver can be used for the first transfer descriptor.

define link descriptor table in application with macro

DMA_ALLOCATE_LINK DESCRIPTOR (nextDesc);

DMA_ SetupDescriptor(nextDesc0, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
- srclne, dstInce, bytes),
srcStartAddr, dstStartAddr, nextDescl);

DMA_ SetupDescriptor(nextDescl, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
— srclne, dstInge, bytes),
srcStartAddr, dstStartAddr, nextDesc2);

DMA_ SetupDescriptor(nextDesc2, DMA_CHANNEL_XFER(reload, clr'Trig, intA, intB, width,
— srclne, dstInge, bytes),
srcStartAddr, dstStartAddr, NULL);

DMA_ CreateHandle(handle, base, channel)

DMA_ PrepareChannelTransfer(config,srcStart Addr,dstStart Addr,xferCfg,type,trigger,
—nextDesc0);

DMA_ SubmitChannelTransfer(handle, config)

DMA_ StartTransfer(handle)

c. for the ping pong case, application should responsible for link descriptor, for example,
application should prepare two descriptor table with macro, the head descriptor in
driver can be used for the first transfer descriptor.

define link descriptor table in application with macro
DMA__ALLOCATE_LINK_DESCRIPTOR(nextDesc);

DMA_ SetupDescriptor(nextDesc0, DMA_CHANNEL_XFER(reload, clr'Trig, intA, intB, width,
- srclne, dstInge, bytes),
srcStartAddr, dstStartAddr, nextDescl);

DMA_ SetupDescriptor(nextDescl, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
— srclne, dstIng, bytes),
srcStartAddr, dstStartAddr, nextDesc0);

DMA_ CreateHandle(handle, base, channel)

DMA _ PrepareChannel Transfer(config,srcStart Addr,dstStart Addr,xferCfg, type,trigger,
—nextDesc0);

DMA_ SubmitChannelTransfer(handle, config)

DMA _ StartTransfer(handle)

Parameters
* handle - DMA handle pointer.
* config — Pointer to DMA transfer configuration structure.

Return values

2.9. DMA: Direct Memory Access Controller Driver 169

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

* kStatus_ DMA_ Success — It means submit transfer request succeed.

* kStatus_ DMA_ QueueFull — It means TCD queue is full. Submit transfer re-
quest is not allowed.

* kStatus_ DMA_ Busy — It means the given channel is busy, need to submit
request later.

void DMA_ StartTransfer(dma_handle_t *handle)
DMA start transfer.

This function enables the channel request. User can call this function after submitting the
transfer request It will trigger transfer start with software trigger only when hardware
trigger is not used.

Parameters
* handle - DMA handle pointer.

void DMA_TRQHandle(DMA_Type *base)
DMA IRQ handler for descriptor transfer complete.

This function clears the channel major interrupt flag and call the callback function if it is
not NULL.

Parameters
* base — DMA base address.

FSL._DMA_ DRIVER_VERSION
DMA driver version.

Version 2.5.3.

_dma_transfer_status DMA transfer status
Values:

enumerator kStatus. DMA_ Busy
Channel is busy and can’t handle the transfer request.

_dma_addr_interleave_size dma address interleave size
Values:

enumerator kDMA AddressInterleaveOxWidth
dma source/destination address no interleave

enumerator kDMA_AddressInterleavelxWidth
dma source/destination address interleave 1xwidth

enumerator kDMA_AddressInterleave2xWidth
dma source/destination address interleave 2xwidth

enumerator kDMA_AddressInterleavedxWidth
dma source/destination address interleave 3xwidth

_dma_transfer width dma transfer width
Values:

enumerator kDMA_Transfer8BitWidth
dma channel transfer bit width is 8 bit

170 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kDMA_Transfer16BitWidth
dma channel transfer bit width is 16 bit

enumerator kDMA_Transfer32BitWidth
dma channel transfer bit width is 32 bit

enum _ dma_ priority
DMA channel priority.
Values:
enumerator kDMA_ChannelPriority0
Highest channel priority - priority 0
enumerator kDMA__ChannelPriorityl
Channel priority 1

enumerator kDMA__ChannelPriority2
Channel priority 2

enumerator kDMA_ ChannelPriority3
Channel priority 3

enumerator kDMA_ ChannelPriority4
Channel priority 4

enumerator kDMA_ ChannelPriority5
Channel priority 5

enumerator kDMA_ ChannelPriority6
Channel priority 6

enumerator kDMA_ ChannelPriority7
Lowest channel priority - priority 7

enum dma_ int
DMA interrupt flags.

Values:

enumerator kDMA_ IntA
DMA interrupt flag A

enumerator kDMA_IntB
DMA interrupt flag B

enumerator kDMA_IntError
DMA interrupt flag error

enum _ dma_ trigger type
DMA trigger type.

Values:

enumerator kDMA_ NoTrigger
Trigger is disabled

enumerator kDMA_ LowLevel Trigger
Low level active trigger

enumerator kDMA_ HighLevel Trigger
High level active trigger

2.9. DMA: Direct Memory Access Controller Driver 171

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kDMA _ FallingEdgeTrigger
Falling edge active trigger

enumerator kDMA_ RisingEdgeTrigger
Rising edge active trigger

_dma_burst_size DMA burst size

Values:

enumerator kDMA BurstSizel
burst size 1 transfer

enumerator kDMA BurstSize2
burst size 2 transfer

enumerator kDMA BurstSize4
burst size 4 transfer

enumerator kDMA_BurstSize8
burst size 8 transfer

enumerator kDMA_BurstSizel6
burst size 16 transfer

enumerator kDMA_BurstSize32
burst size 32 transfer

enumerator kDMA_BurstSize64
burst size 64 transfer

enumerator kDMA_BurstSizel28
burst size 128 transfer

enumerator kDMA_BurstSize256
burst size 256 transfer

enumerator kDMA BurstSize512
burst size 512 transfer

enumerator kDMA_BurstSizel024
burst size 1024 transfer

enum _ dma_ trigger burst

DMA trigger burst.
Values:

enumerator kDMA _ SingleTransfer
Single transfer

enumerator kDMA_LevelBurstTransfer
Burst transfer driven by level trigger

enumerator kDMA_EdgeBurstTransferl
Perform 1 transfer by edge trigger

enumerator kDMA _EdgeBurstTransfer2
Perform 2 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer4
Perform 4 transfers by edge trigger

172

Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kDMA_EdgeBurstTransfer8
Perform 8 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer16
Perform 16 transfers by edge trigger
enumerator kDMA_EdgeBurstTransfer32
Perform 32 transfers by edge trigger
enumerator kDMA_EdgeBurstTransfer64
Perform 64 transfers by edge trigger
enumerator kDMA _EdgeBurstTransfer128
Perform 128 transfers by edge trigger
enumerator kDMA _EdgeBurstTransfer256
Perform 256 transfers by edge trigger
enumerator kDMA_ EdgeBurstTransfer512
Perform 512 transfers by edge trigger
enumerator kDMA_EdgeBurstTransfer1024
Perform 1024 transfers by edge trigger
enum _ dma_ burst_ wrap
DMA burst wrapping.
Values:
enumerator kDMA_NoWrap
Wrapping is disabled
enumerator kDMA__SrcWrap
Wrapping is enabled for source
enumerator kDMA_ DstWrap
Wrapping is enabled for destination
enumerator kDMA SrcAndDstWrap
Wrapping is enabled for source and destination
enum _dma_ transfer type
DMA transfer type.
Values:
enumerator kDMA_MemoryToMemory
Transfer from memory to memory (increment source and destination)
enumerator kDMA_ PeripheralToMemory
Transfer from peripheral to memory (increment only destination)
enumerator kDMA_MemoryToPeripheral
Transfer from memory to peripheral (increment only source)
enumerator kDMA _StaticToStatic
Peripheral to static memory (do not increment source or destination)
typedef struct _dma_descriptor dma_ descriptor_t
DMA descriptor structure.

typedef struct _dma_xfercfg dma_ xfercfg t
DMA transfer configuration.

2.9. DMA: Direct Memory Access Controller Driver 173

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

typedef enum _dma_priority dma_ priority_t
DMA channel priority.

typedef enum _dma _int dma_irq_t
DMA interrupt flags.

typedef enum _dma trigger_type dma_ trigger_ type_t
DMA trigger type.

typedef enum _dma_trigger_burst dma_ trigger burst_t
DMA trigger burst.

typedef enum _dma_burst wrap dma_ burst_wrap_t
DMA burst wrapping.

typedef enum _dma_transfer_type dma_ transfer type_t
DMA transfer type.

typedef struct _dma_channel_trigger dma_ channel trigger t
DMA channel trigger.

typedef struct _dma_channel_config dma_ channel config_t
DMA channel trigger.

typedef struct _dma_transfer_config dma_ transfer_config_t
DMA transfer configuration.

typedef void (*dma_ callback)(struct _dma_handle *handle, void *userData, bool transferDone,
uint32_t intmode)

Define Callback function for DMA.
typedef struct _dma_handle dma_ handle_t
DMA transfer handle structure.
DMA_MAX TRANSFER_ COUNT
DMA max transfer size.
FSL_FEATURE_DMA_ LINK DESCRIPTOR_ALIGN_SIZE
DMA channel numbers.
DMA head link descriptor table align size

DMA_ALLOCATE_HEAD_ DESCRIPTORS(name, number)

DMA head descriptor table allocate macro To simplify user interface, this macro will help
allocate descriptor memory, user just need to provide the name and the number for the
allocate descriptor.

Parameters
* name — Allocate decriptor name.
* number — Number of descriptor to be allocated.

DMA_ALLOCATE_HEAD_DESCRIPTORS_AT NONCACHEABLE(name, number)

DMA head descriptor table allocate macro at noncacheable section To simplify user inter-
face, this macro will help allocate descriptor memory at noncacheable section, user just
need to provide the name and the number for the allocate descriptor.

Parameters
* name — Allocate decriptor name.

* number — Number of descriptor to be allocated.

174 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

DMA_ALLOCATE_LINK_DESCRIPTORS(name, number)

DMA link descriptor table allocate macro To simplify user interface, this macro will help
allocate descriptor memory, user just need to provide the name and the number for the
allocate descriptor.

Parameters
» name — Allocate decriptor name.
* number — Number of descriptor to be allocated.

DMA_ALLOCATE_LINK_DESCRIPTORS_AT_NONCACHEABLE(name, number)

DMA link descriptor table allocate macro at noncacheable section To simplify user inter-
face, this macro will help allocate descriptor memory at noncacheable section, user just
need to provide the name and the number for the allocate descriptor.

Parameters
» name — Allocate decriptor name.
* number — Number of descriptor to be allocated.

DMA_ALLOCATE_DATA TRANSFER_ BUFFER(name, width)
DMA transfer buffer address need to align with the transfer width.

DMA_CHANNEL_ GROUP(channel)
DMA_CHANNEL_INDEX(base, channel)
DMA_COMMON_REG_GET(base, channel, reg)

DMA linked descriptor address algin size.
DMA_COMMON_CONST_REG_ GET(base, channel, reg)
DMA_COMMON_REG_SET(base, channel, reg, value)
DMA_DESCRIPTOR_END_ADDRESS(start, inc, bytes, width)

DMA descriptor end address calculate.

Parameters
* start — start address
* inc — address interleave size
* bytes — transfer bytes
* width — transfer width
DMA_ CHANNEL_ XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes)

struct _ dma_ descriptor
#include <fsl_dma.h> DMA descriptor structure.

Public Members

volatile uint32_t xfercfg
Transfer configuration

void *srcEndAddr
Last source address of DMA transfer

void *dstEndAddr
Last destination address of DMA transfer

2.9. DMA: Direct Memory Access Controller Driver 175

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

void *linkToNextDesc
Address of next DMA descriptor in chain

struct _dma_ xfercfg
#include <fsl_dma.h> DMA transfer configuration.

Public Members
bool valid

Descriptor is ready to transfer
bool reload

Reload channel configuration register after current descriptor is exhausted
bool swtrig

Perform software trigger. Transfer if fired when ‘valid’ is set
bool clrtrig

Clear trigger
bool intA

Raises IRQ when transfer is done and set IRQA status register flag
bool intB

Raises IRQ when transfer is done and set IRQB status register flag
uint8_t byteWidth

Byte width of data to transfer
uint8_t srclnce

Increment source address by ‘srcInc’ x ‘byteWidth’
uint8_t dstInc

Increment destination address by ‘dstInc’ X ‘byteWidth’
uint16_t transferCount

Number of transfers

struct _dma_ channel_ trigger
#include <fsl_dma.h> DMA channel trigger.

Public Members
dma_trigger_type_t type

Select hardware trigger as edge triggered or level triggered.
dma_trigger_burst_t burst

Select whether hardware triggers cause a single or burst transfer.
dma_burst_wrap_t wrap

Select wrap type, source wrap or dest wrap, or both.

struct _dma_ channel config
#include <fsl_dma.h> DMA channel trigger.

176 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Public Members
void *srcStartAddr
Source data address
void *dstStartAddr
Destination data address
void *nextDesc
Chain custom descriptor
uint32_t xferCfg
channel transfer configurations
dma_channel_trigger._t *trigger
DMA trigger type
bool isPeriph
select the request type

struct _dma_ transfer config
#include <fsl_dma.h> DMA transfer configuration.

Public Members
uint8_t *srcAddr

Source data address
uint8_t *dstAddr

Destination data address
uint8_t *nextDesc

Chain custom descriptor

dma_xfercfg_t xfercfg
Transfer options

bool isPeriph
DMA transfer is driven by peripheral

struct dma_handle
#include <fsl_dma.h> DMA transfer handle structure.

Public Members
dma_callback callback
Callback function. Invoked when transfer of descriptor with interrupt flag finishes

void *userData

Callback function parameter
DMA_Type *base

DMA peripheral base address

uint8_t channel
DMA channel number

2.9. DMA: Direct Memory Access Controller Driver 177

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

2.10 DMIC: Digital Microphone

2.11 DMIC DMA Driver

status_t DMIC_ TransferCreateHandleDMA (DMIC_Type *base, dmic_dma_handle_t *handle,
dmic_dma_transfer_callback_t callback, void
*userData, dma_handle_t *rxDmaHandle)

Initializes the DMIC handle which is used in transactional functions.
Parameters
* base — DMIC peripheral base address.
* handle — Pointer to dmic_dma_handle_t structure.
* callback — Callback function.
 userData — User data.
* rxDmaHandle — User-requested DMA handle for RX DMA transfer.

status_t DMIC_ TransferReceiveDMA (DMIC_Type *base, dmic_dma_handle_t *handle,
dmic_transfer_t *xfer, uint32_t channel)

Receives data using DMA.

This function receives data using DMA. This is a non-blocking function, which returns right
away. When all data is received, the receive callback function is called.

Parameters
* base — USART peripheral base address.
* handle — Pointer to usart_dma_handle_t structure.
¢ xfer —- DMIC DMA transfer structure. See dmic_transfer_t.
* channel — DMIC start channel number.

Return values
kStatus Success —

void DMIC_ TransferAbortReceiveDMA (DMIC_Type *base, dmic_dma_handle_t *handle)
Aborts the received data using DMA.

This function aborts the received data using DMA.
Parameters
* base — DMIC peripheral base address
* handle — Pointer to dmic_dma_handle_t structure

status_t DMIC_TransferGetReceiveCount DMA (DMIC_Type *base, dmic_dma_handle_t *handle,
uint32_t *count)

Get the number of bytes that have been received.
This function gets the number of bytes that have been received.
Parameters
* base — DMIC peripheral base address.
* handle — DMIC handle pointer.
* count — Receive bytes count.
Return values

* kStatus NoTransferInProgress — No receive in progress.

178 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

* kStatus_InvalidArgument — Parameter is invalid.
* kStatus_ Success — Get successfully through the parameter count;

void DMIC_ InstallDMADescriptorMemory(dmic_dma_handle_t *handle, void *linkAddr, size_t
linkNum)

Install DMA descriptor memory.

This function used to register DMA descriptor memory for linked transfer, a typical case
is ping pong transfer which will request more than one DMA descriptor memory space,
it should be called after DMIC_TransferCreateHandleDMA. User should be take care about
the address of DMA descriptor pool which required align with 16BYTE at least.

Parameters
* handle — Pointer to DMA channel transfer handle.
* linkAddr - DMA link descriptor address.
* linkNum — DMA link descriptor number.

FSL _DMIC DMA_ DRIVER_ VERSION
DMIC DMA driver version 2.4.1.

typedef struct _dmic_transfer dmic_ transfer_t
DMIC transfer structure.

typedef struct _dmic_dma_handle dmic_dma_handle_t

typedef void (*dmic_ dma_ transfer callback t)(DMIC_Type *base, dmic_dma_handle_t *handle,
status_t status, void *userData)

DMIC transfer callback function.

struct _dmic_ transfer
#include <fsl_dmic_dma.h> DMIC transfer structure.

Public Members
void *data
The buffer of data to be transfer.

uint8_t dataWidth
DMIC support 16bit/32bit

size t dataSize
The byte count to be transfer.

uint8_t dataAddrInterleaveSize
destination address interleave size

struct_dmic_transfer *link Transfer
use to support link transfer

struct dmic dma handle
#include <fsl_dmic_dma.h> DMIC DMA handle.

Public Members

DMIC_Type *base
DMIC peripheral base address.

2.11. DMIC DMA Driver 179

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

dma_handle_t *rxDmaHandle
The DMA RX channel used.

dmic_dma_transfer_callback_t callback
Callback function.

void *userData
DMIC callback function parameter.

size_t transferSize
Size of the data to receive.

volatile uint8_t state
Internal state of DMIC DMA transfer

uint32_t channel
DMIC channel used.

bool isChannel Valid
DMIC channel initialization flag

dma_descriptor_t *desLink
descriptor pool pointer

size_t linkNum
number of descriptor in descriptors pool

2.12 DMIC Driver

uint32_t DMIC_ GetInstance(DMIC_Type *base)
Get the DMIC instance from peripheral base address.

Parameters

* base — DMIC peripheral base address.

Returns
DMIC instance.
void DMIC_ Init(DMIC_Type *base)
Turns DMIC Clock on.
Parameters
* base —: DMIC base
Returns
Nothing
void DMIC_ Delnit(DMIC_Type *base)
Turns DMIC Clock off.
Parameters
* base —: DMIC base
Returns
Nothing

void DMIC_ SetOperationMode(DMIC_Type *base, operation_mode_t mode)
Set DMIC operating mode.

180 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Deprecated:
Do not use this function. It has been superceded by DMIC_EnableChannellnterrupt,

DMIC_EnableChannelDma.

Parameters
* base —: The base address of DMIC interface
* mode —: DMIC mode

Returns
Nothing

void DMIC_ Use2fs(DMIC_Type *base, bool use2fs)
Configure Clock scaling.

Parameters
* base —: The base address of DMIC interface
* use2fs —: clock scaling

Returns
Nothing

void DMIC_ CfgChannelDc(DMIC_Type *base, dmic_channel t channel, dc_removal t
dc_cut_level, uint32_t post_dc_gain_reduce, bool saturate16bit)

Configure DMIC channel.
Parameters
* base —: The base address of DMIC interface
* channel —: DMIC channel
* dc_cut_level —: dc_removal_t, Cut off Frequency

* post_dc_gain_reduce —: Fine gain adjustment in the form of a number of
bits to downshift.

* saturatel6bit —: If selects 16-bit saturation.

static inline void DMIC_ EnableChannelSignExtend(DMIC_Type *base, dmic_channel t channel,
bool enable)

Enbale channel sign extend which allows processing of 24bit audio data on 32bit machines.
Parameters
* base —: The base address of DMIC interface
¢ channel —: DMIC channel
* enable —: true is enable sign extend, false is disable sign extend

void DMIC_ ConfigChannel(DMIC_Type *base, dmic_channel_t channel, stereo_side_t side,
dmic_channel _config_t *channel_config)

Configure DMIC channel.
Parameters
* base —: The base address of DMIC interface
* channel —: DMIC channel
* side —: stereo_side_t, choice of left or right
* channel_config —: Channel configuration

Returns
Nothing

2.12. DMIC Driver 181

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

void DMIC_ EnableChannnel(DMIC_Type *base, uint32_t channelmask)
Enable a particualr channel.

Parameters
* base —: The base address of DMIC interface
* channelmask — reference _dmic_channel mask

Returns
Nothing

void DMIC_ FifoChannel(DMIC_Type *base, uint32_t channel, uint32_t trig_level, uint32_t
enable, uint32_t resetn)

Configure fifo settings for DMIC channel.
Parameters
* base —: The base address of DMIC interface
* channel —: DMIC channel
* trig_level —: FIFO trigger level
* enable —: FIFO level
* resetn —: FIFO reset

Returns
Nothing

static inline void DMIC_ EnableChannelInterrupt(DMIC_Type *base, dmic_channel_t channel,
bool enable)

Enable a particualr channel interrupt request.
Parameters
* base —: The base address of DMIC interface
* channel —: Channel selection
* enable —: true is enable, false is disable

static inline void DMIC__EnableChannelDma(DMIC_Type *base, dmic_channel_t channel, bool
enable)

Enable a particualr channel dma request.
Parameters
* base —: The base address of DMIC interface
* channel —: Channel selection
* enable —: true is enable, false is disable

static inline void DMIC__EnableChannelFifo(DMIC_Type *base, dmic_channel_t channel, bool
enable)

Enable a particualr channel fifo.
Parameters
* base —: The base address of DMIC interface
* channel —: Channel selection

* enable —: true is enable, false is disable

182 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

static inline void DMIC_ DoFifoReset(DMIC_Type *base, dmic_channel_t channel)
Channel fifo reset.

Parameters
* base —: The base address of DMIC interface
* channel —: Channel selection

static inline uint32_t DMIC_ FifoGetStatus(DMIC_Type *base, uint32_t channel)
Get FIFO status.

Parameters
* base —: The base address of DMIC interface
* channel —: DMIC channel

Returns
FIFO status

static inline void DMIC__ FifoClearStatus(DMIC_Type *base, uint32_t channel, uint32_t mask)
Clear FIFO status.

Parameters
* base —: The base address of DMIC interface
* channel — : DMIC channel
* mask —: Bits to be cleared

Returns
FIFO status

static inline uint32_t DMIC_ FifoGetData(DMIC_Type *base, uint32_t channel)
Get FIFO data.

Parameters
* base —: The base address of DMIC interface
e channel —: DMIC channel

Returns
FIFO data

static inline uint32_t DMIC_ FifoGetAddress(DMIC_Type *base, uint32_t channel)
Get FIFO address.

Parameters
* base —: The base address of DMIC interface
* channel —: DMIC channel

Returns
FIFO data

void DMIC_ ResetChannelDecimator(DMIC_Type *base, uint32_t channelMask, bool reset)
DMIC channel Decimator reset.

Parameters
* base —: The base address of DMIC interface
* channelMask — : DMIC channel mask, reference _dmic_channel mask

* reset —: true is reset decimator, false is release decimator.

2.12. DMIC Driver 183

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

static inline void DMIC__EnableChannelGlobalSync(DMIC_Type *base, uint32_t channelMask,
uint32_t syncCounter)

Enable DMIC channel global sync function.
Parameters
* base —: The base address of DMIC interface
* channelMask —: DMIC channel mask, reference _dmic_channel_mask

* syncCounter — :sync counter will trigger a pulse whenever count reaches
CCOUNTVAL. If CCOUNTVAL is set to 0, there will be a pulse on every cycle

static inline void DMIC__DisableChannelGlobalSync(DMIC_Type *base, uint32_t channelMask)
Disbale DMIC channel global sync function.

Parameters
* base —: The base address of DMIC interface
* channelMask — : DMIC channel mask, reference _dmic_channel_mask

void DMIC_ EnableIntCallback(DMIC_Type *base, dmic_callback_t cb)
Enable callback.

This function enables the interrupt for the selected DMIC peripheral. The callback function
is not enabled until this function is called.

Parameters
* base — Base address of the DMIC peripheral.

* cb — callback Pointer to store callback function.

Return values
None. —

void DMIC_ DisableIntCallback(DMIC_Type *base, dmic_callback_t cb)
Disable callback.

This function disables the interrupt for the selected DMIC peripheral.
Parameters
* base — Base address of the DMIC peripheral.
* cb - callback Pointer to store callback function..

Return values
None. —

static inline void DMIC__SetGainNoiseEstHwvad(DMIC_Type *base, uint32_t value)
Sets the gain value for the noise estimator.

Parameters
* base — DMIC base pointer
* value — gain value for the noise estimator.

Return values
None. —

static inline void DMIC__SetGainSignalEstHwvad(DMIC_Type *base, uint32_t value)
Sets the gain value for the signal estimator.

Parameters
* base — DMIC base pointer

* value — gain value for the signal estimator.

184 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Return values
None. —

static inline void DMIC_ SetFilterCtrlHwvad(DMIC_Type *base, uint32_t value)
Sets the hwvad filter cutoff frequency parameter.

Parameters
* base — DMIC base pointer
* value — cut off frequency value.

Return values
None. —

static inline void DMIC__SetInputGainHwvad(DMIC_Type *base, uint32_t value)
Sets the input gain of hwvad.

Parameters
* base — DMIC base pointer
* value — input gain value for hwvad.

Return values
None. —

static inline void DMIC__ CtrlClrIntrHwvad(DMIC_Type *base, bool st10)
Clears hwvad internal interrupt flag.

Parameters
* base — DMIC base pointer
* st10 — bit value.

Return values
None. —

static inline void DMIC _ FilterResetHwvad(DMIC_Type *base, bool rstt)
Resets hwvad filters.

Parameters
* base — DMIC base pointer
* rstt — Reset bit value.

Return values
None. —

static inline uint16_t DMIC_ GetNoiseEnvlpEst(DMIC_Type *base)
Gets the value from output of the filter z7.

Parameters
* base — DMIC base pointer

Return values
output — of filter z7.

void DMIC_ HwvadEnableIntCallback(DMIC_Type *base, dmic_hwvad_callback_t vadch)
Enable hwvad callback.

This function enables the hwvad interrupt for the selected DMIC peripheral. The callback
function is not enabled until this function is called.

Parameters

* base — Base address of the DMIC peripheral.

2.12. DMIC Driver 185

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

* vadcb — callback Pointer to store callback function.

Return values
None. —

void DMIC_ HwvadDisableIntCallback(DMIC_Type *base, dmic_hwvad_callback_t vadcb)

Disable callback.

This function disables the hwvad interrupt for the selected DMIC peripheral.

Parameters

* base — Base address of the DMIC peripheral.

* vadcb — callback Pointer to store callback function..

Return values
None. —

FSL _DMIC_ DRIVER_VERSION
DMIC driver version 2.3.3.

_dmic_status DMIC transfer status.
Values:

enumerator kStatus_ DMIC_ Busy
DMIC is busy

enumerator kStatus_ DMIC__Idle
DMIC is idle

enumerator kStatus DMIC__OverRunError
DMIC over run Error

enumerator kStatus DMIC__UnderRunError
DMIC under run Error

enum _ operation_mode
DMIC different operation modes.

Values:

enumerator kDMIC__OperationModelnterrupt
Interrupt mode

enumerator kDMIC__OperationModeDma
DMA mode

enum _ stereo_side
DMIC left/right values.

Values:

enumerator kDMIC Left
Left Stereo channel

enumerator kDMIC__Right
Right Stereo channel

enum pdm_ div_t
DMIC Clock pre-divider values.

Values:

186

Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kDMIC_PdmDivl
DMIC pre-divider set in divide by 1

enumerator kDMIC _PdmDiv2
DMIC pre-divider set in divide by 2

enumerator kDMIC _PdmDiv3
DMIC pre-divider set in divide by 3

enumerator kDMIC _PdmDiv4
DMIC pre-divider set in divide by 4

enumerator kDMIC PdmDiv6
DMIC pre-divider set in divide by 6

enumerator kDMIC PdmDiv8
DMIC pre-divider set in divide by 8

enumerator kDMIC PdmDiv12
DMIC pre-divider set in divide by 12

enumerator kDMIC PdmDiv16
DMIC pre-divider set in divide by 16

enumerator kDMIC _PdmDiv24
DMIC pre-divider set in divide by 24

enumerator kDMIC PdmDiv32
DMIC pre-divider set in divide by 32

enumerator kDMIC PdmDiv48
DMIC pre-divider set in divide by 48

enumerator kDMIC _PdmDiv64
DMIC pre-divider set in divide by 64

enumerator kDMIC _PdmDiv96
DMIC pre-divider set in divide by 96

enumerator kDMIC PdmDiv128
DMIC pre-divider set in divide by 128

enum _ compensation
Pre-emphasis Filter coefficient value for 2FS and 4FS modes.

Values:

enumerator kDMIC_ CompValueZero
Compensation 0

enumerator kDMIC__CompValueNegativePoint16
Compensation -0.16

enumerator kDMIC__CompValueNegativePoint15
Compensation -0.15

enumerator kDMIC__CompValueNegativePoint13
Compensation -0.13

enum _dc_removal
DMIC DC filter control values.

Values:

2.12. DMIC Driver 187

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kDMIC__DcNoRemove
Flat response no filter

enumerator kDMIC_DcCut155
Cut off Frequency is 155 Hz

enumerator kDMIC_DcCut78
Cut off Frequency is 78 Hz

enumerator kDMIC_DcCut39
Cut off Frequency is 39 Hz

enum dmic_channel
DMIC Channel number.

Values:

enumerator kDMIC ChannelO
DMIC channel 0

enumerator kDMIC Channell
DMIC channel 1

enumerator kDMIC ChannelMAX
Maximum number of DMIC channels

_dmic_channel_mask DMIC Channel mask.
Values:
enumerator kDMIC_EnableChannelQ
DMIC channel 0 mask
enumerator kDMIC_EnableChannell
DMIC channel 1 mask
enum _ dmic_phy_sample_rate
DMIC and decimator sample rates.
Values:
enumerator kDMIC__PhyFullSpeed
Decimator gets one sample per each chosen clock edge of PDM interface
enumerator kDMIC__PhyHalfSpeed
PDM clock to Microphone is halved, decimator receives each sample twice
typedef enum _operation_mode operation_mode__t
DMIC different operation modes.
typedef enum _stereo_side stereo_side_ t
DMIC left/right values.
typedef enum _compensation compensation_ t
Pre-emphasis Filter coefficient value for 2FS and 4FS modes.
typedef enum _dc removal dc_removal_t
DMIC DC filter control values.

typedef enum _dmic_channel dmic_ channel t
DMIC Channel number.

188 Chapter 2

. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

typedef enum _dmic_phy_sample_rate dmic_phy_sample_rate_t
DMIC and decimator sample rates.
typedef struct _dmic_channel_config dmic_ channel__config_t
DMIC Channel configuration structure.
typedef void (*dmic_ callback__t)(void)
DMIC Callback function.
typedef void (*dmic_ hwvad_ callback_t)(void)
HWVAD Callback function.
struct _dmic_ channel config
#include <fsl_dmic.h> DMIC Channel configuration structure.

Public Members

pdm_div_t divhfclk

DMIC Clock pre-divider values
uint32_t osr

oversampling rate(CIC decimation rate) for PCM
uint32_t gainshft

4FS PCM data gain control
compensation_t preac2coef

Pre-emphasis Filter coefficient value for 2FS
compensation_t preacdcoef

Pre-emphasis Filter coefficient value for 4FS
dc_removal_t dc_cut_ level

DMIC DC filter control values.
uint32_t post_dc_ gain_ reduce

Fine gain adjustment in the form of a number of bits to downshift
dmic_phy_sample_rate_t sample_ rate

DMIC and decimator sample rates

bool saturatel6bit
Selects 16-bit saturation. 0 means results roll over if out range and do not saturate. 1
means if the result overflows, it saturates at OXFFFF for positive overflow and 0x8000
for negative overflow.

bool enableSignExtend
sign extend feature which allows processing of 24bit audio data on 32bit machine

2.13 ENET: Ethernet MAC Driver

void ENET _GetDefaultConfig(enet_config_t *config)
Gets the ENET default configuration structure.
The purpose of this API is to get the default ENET MAC controller configure structure for

ENET _Init(). User may use the initialized structure unchanged in ENET_Init(), or modify
some fields of the structure before calling ENET_Init(). Example:

2.13. ENET: Ethernet MAC Driver 189

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enet_ config_t config;
ENET__GetDefaultConfig(&config);

Parameters

* config — The ENET mac controller configuration structure pointer.

status_t ENET_Up(ENET_Type *base, enet_handle_t *handle, const enet_config t *config, const

enet_buffer_config_t *bufferConfig, uint8_t *macAddr, uint32_t srcClock_Hz)
Initializes the ENET module.

This function initializes the module with the ENET configuration.

Note: ENET has two buffer descriptors legacy buffer descriptors and enhanced
IEEE 1588 buffer descriptors. The legacy descriptor is used by default. To use
the IEEE 1588 feature, use the enhanced IEEE 1588 buffer descriptor by defining
“ENET_ENHANCEDBUFFERDESCRIPTOR_MODE” and calling ENET_Ptp1588Configure() to
configure the 1588 feature and related buffers after calling ENET_Up().

Parameters
* base — ENET peripheral base address.
* handle — ENET handler pointer.

* config — ENET mac configuration structure pointer. The “enet_config_t”
type mac configuration return from ENET_GetDefaultConfig can be used
directly. It is also possible to verify the Mac configuration using other
methods.

* bufferConfig — ENET buffer configuration structure pointer. The buffer
configuration should be prepared for ENET Initialization. It is the start
address of “ringNum” enet_buffer_config structures. To support added
multi-ring features in some soc and compatible with the previous enet
driver version. For single ring supported, this bufferConfig is a buffer
configure structure pointer, for multi-ring supported and used case, this
bufferConfig pointer should be a buffer configure structure array pointer.

* macAddr - ENET mac address of Ethernet device. This MAC address should
be provided.

* srcClock Hz — The internal module clock source for MII clock.
Return values
* kStatus Success — Succeed to initialize the ethernet driver.

* kStatus. ENET InitMemoryFail — Init fails since buffer memory is not
enough.

status_t ENET_Init(ENET_Type *base, enet_handle_t *handle, const enet_config_t *config, const

enet_buffer_config_t *bufferConfig, uint8_t *macAddr, uint32_t srcClock_Hz)
Initializes the ENET module.

This function ungates the module clock and initializes it with the ENET configuration.

Note: ENET has two buffer descriptors legacy buffer descriptors and enhanced
IEEE 1588 buffer descriptors. The legacy descriptor is used by default. To use
the IEEE 1588 feature, use the enhanced IEEE 1588 buffer descriptor by defining
“ENET_ENHANCEDBUFFERDESCRIPTOR_MODE” and calling ENET_Ptp1588Configure() to
configure the 1588 feature and related buffers after calling ENET_Init().

190

Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Parameters
* base — ENET peripheral base address.
* handle — ENET handler pointer.

* config — ENET mac configuration structure pointer. The “enet_config_t”
type mac configuration return from ENET_GetDefaultConfig can be used
directly. It is also possible to verify the Mac configuration using other
methods.

* bufferConfig — ENET buffer configuration structure pointer. The buffer
configuration should be prepared for ENET Initialization. It is the start
address of “ringNum” enet_buffer_config structures. To support added
multi-ring features in some soc and compatible with the previous enet
driver version. For single ring supported, this bufferConfig is a buffer
configure structure pointer, for multi-ring supported and used case, this
bufferConfig pointer should be a buffer configure structure array pointer.

* macAddr - ENET mac address of Ethernet device. This MAC address should
be provided.

* srcClock Hz - The internal module clock source for MII clock.
Return values
* kStatus Success — Succeed to initialize the ethernet driver.

* kStatus_ ENET_ InitMemoryFail — Init fails since buffer memory is not
enough.

void ENET_Down(ENET_Type *base)
Stops the ENET module.

This function disables the ENET module.
Parameters
* base — ENET peripheral base address.

void ENET_Deinit(ENET_Type *base)
Deinitializes the ENET module.

This function gates the module clock, clears ENET interrupts, and disables the ENET mod-
ule.

Parameters
* base — ENET peripheral base address.

static inline void ENET_ Reset(ENET_Type *base)
Resets the ENET module.

This function restores the ENET module to reset state. Note that this function sets all regis-
ters to reset state. As a result, the ENET module can’t work after calling this function.

Parameters
* base — ENET peripheral base address.

void ENET _ResetHardware(void)
Resets the ENET hardware.

This function resets ENET related resources in the hardware.

void ENET_SetMII(ENET_Type *base, enet_mii_speed_t speed, enet_mii_duplex_t duplex)
Sets the ENET MII speed and duplex.

This API is provided to dynamically change the speed and dulpex for MAC.

2.13. ENET: Ethernet MAC Driver 191

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Parameters
* base — ENET peripheral base address.
* speed — The speed of the RMII mode.
* duplex — The duplex of the RMII mode.

void ENET_SetSMI(ENET_Type *base, uint32_t srcClock_Hz, bool isPreambleDisabled)
Sets the ENET SMI(serial management interface)- MII management interface.

Parameters
* base — ENET peripheral base address.

* srcClock_Hz — This is the ENET module clock frequency. See clock distri-
bution.

¢ isPreambleDisabled — The preamble disable flag.
- true Enables the preamble.
— false Disables the preamble.

static inline bool ENET__ GetSMI(ENET_Type *base)
Gets the ENET SMI- MII management interface configuration.

This API is used to get the SMI configuration to check whether the MII management inter-
face has been set.

Parameters
* base — ENET peripheral base address.

Returns
The SMI setup status true or false.

static inline uint32_t ENET_ ReadSMIData(ENET_Type *base)
Reads data from the PHY register through an SMI interface.

Parameters
* base — ENET peripheral base address.

Returns
The data read from PHY

static inline void ENET _ StartSMIWrite(ENET_Type *base, uint8_t phyAddr, uint8_t regAddr,
enet_mii_write_t operation, uint16_t data)

Sends the MDIO IEEE802.3 Clause 22 format write command.

After calling this function, need to check whether the transmission is over then do next
MDIO operation. For ease of use, encapsulated ENET_MDIOWTite() can be called. For cus-
tomized requirements, implement with combining separated APIs.

Parameters
* base — ENET peripheral base address.
* phyAddr — The PHY address. Range from 0 ~ 31.
* regAddr — The PHY register address. Range from 0 ~ 31.
* operation — The write operation.
data — The data written to PHY.

192 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

static inline void ENET_ StartSMIRead(ENET_Type *base, uint8_t phyAddr, uint8_t regAddr,
enet_mii_read_t operation)

Sends the MDIO IEEE802.3 Clause 22 format read command.

After calling this function, need to check whether the transmission is over then do next
MDIO operation. For ease of use, encapsulated ENET_MDIORead() can be called. For cus-
tomized requirements, implement with combining separated APIs.

Parameters
* base — ENET peripheral base address.
* phyAddr — The PHY address. Range from 0 ~ 31.
* regAddr — The PHY register address. Range from 0 ~ 31.
* operation — The read operation.

status_t ENET__MDIOWrite(ENET_Type *base, uint8_t phyAddr, uint8_t regAddr, uint16_t data)
MDIO write with IEEE802.3 Clause 22 format.

Parameters
* base — ENET peripheral base address.
* phyAddr — The PHY address. Range from 0 ~ 31.
* regAddr — The PHY register. Range from 0 ~ 31.
* data — The data written to PHY.

Returns
kStatus_Success MDIO access succeeds.

Returns
kStatus_Timeout MDIO access timeout.

status_t ENET MDIORead(ENET_Type *base, uint8_t phyAddr, uint8_t regAddr, uint16_t
E3
pData)

MDIO read with IEEE802.3 Clause 22 format.
Parameters
* base — ENET peripheral base address.
* phyAddr — The PHY address. Range from 0 ~ 31.
* regAddr — The PHY register. Range from 0 ~ 31.
e pData — The data read from PHY.

Returns
kStatus_Success MDIO access succeeds.

Returns
kStatus_Timeout MDIO access timeout.

static inline void ENET _ StartExtC45SMIWriteReg(ENET_Type *base, uint8_t portAddr, uint8_t
devAddr, uint16_t regAddr)

Sends the MDIO IEEE802.3 Clause 45 format write register command.

After calling this function, need to check whether the transmission is
over then do next MDIO operation. For ease of use, encapsulated
ENET_MDIOC45Write()/ENET_MDIOC45Read() can be called. For customized require-
ments, implement with combining separated APIs.

Parameters

* base — ENET peripheral base address.

2.13. ENET: Ethernet MAC Driver 193

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

* portAddr — The MDIO port address(PHY address).
* devAddr - The device address.
* regAddr — The PHY register address.

static inline void ENET_ StartExtC45SMIWriteData(ENET_Type *base, uint8_t portAddr, uint8_t
devAddr, uint16_t data)

Sends the MDIO IEEE802.3 Clause 45 format write data command.

After calling this function, need to check whether the transmission is over then do next
MDIO operation. For ease of use, encapsulated ENET_MDIOC45Write() can be called. For
customized requirements, implement with combining separated APIs.

Parameters
* base — ENET peripheral base address.
» portAddr — The MDIO port address(PHY address).
* devAddr - The device address.
* data — The data written to PHY.

static inline void ENET_ StartExtC45SMIReadData(ENET_Type *base, uint8_t portAddr, uint8_t
devAddr)

Sends the MDIO IEEE802.3 Clause 45 format read data command.

After calling this function, need to check whether the transmission is over then do next
MDIO operation. For ease of use, encapsulated ENET_MDIOC45Read() can be called. For
customized requirements, implement with combining separated APIs.

Parameters
* base — ENET peripheral base address.
* portAddr — The MDIO port address(PHY address).
* devAddr - The device address.

status_t ENET__MDIOC45Write(ENET_Type *base, uint8_t portAddr, uint8_t devAddr, uint16_t
regAddr, uint16_t data)

MDIO write with IEEE802.3 Clause 45 format.
Parameters
* base — ENET peripheral base address.
* portAddr — The MDIO port address(PHY address).
* devAddr - The device address.
* regAddr — The PHY register address.
* data — The data written to PHY.

Returns
kStatus_Success MDIO access succeeds.

Returns
kStatus_Timeout MDIO access timeout.

status_t ENET MDIOC45Read(ENET_Type *base, uint8_t portAddr, uint8_t devAddr, uint16_t
regAddr, uint16_t *pData)

MDIO read with IEEE802.3 Clause 45 format.
Parameters
* base — ENET peripheral base address.
» portAddr — The MDIO port address(PHY address).

194 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

* devAddr - The device address.
* regAddr — The PHY register address.
e pData — The data read from PHY.

Returns
kStatus_Success MDIO access succeeds.

Returns
kStatus_Timeout MDIO access timeout.

static inline void ENET__SetRGMIIClockDelay (ENET_Type *base, bool txEnabled, bool
rxEnabled)

Control the usage of the delayed tx/rx RGMII clock.
Parameters
* base — ENET peripheral base address.

» txEnabled — Enable or disable to generate the delayed version of
RGMII_TXC.

* rxEnabled — Enable or disable to use the delayed version of RGMII_RXC.

void ENET_SetMacAddr(ENET_Type *base, uint8_t *macAddr)
Sets the ENET module Mac address.

Parameters
* base — ENET peripheral base address.

* macAddr — The six-byte Mac address pointer. The pointer is allocated by
application and input into the API.

void ENET_GetMacAddr(ENET_Type *base, uint8_t *macAddr)
Gets the ENET module Mac address.

Parameters
* base — ENET peripheral base address.

* macAddr — The six-byte Mac address pointer. The pointer is allocated by
application and input into the API.

void ENET__AddMulticastGroup(ENET_Type *base, uint8_t *address)
Adds the ENET device to a multicast group.

Parameters
* base — ENET peripheral base address.

* address — The six-byte multicast group address which is provided by appli-
cation.

void ENET_LeaveMulticastGroup(ENET_Type *base, uint8_t *address)
Moves the ENET device from a multicast group.

Parameters
* base — ENET peripheral base address.

* address — The six-byte multicast group address which is provided by appli-
cation.

static inline void ENET _ActiveRead(ENET_Type *base)
Activates frame reception for multiple rings.

This function is to active the enet read process.

2.13. ENET: Ethernet MAC Driver 195

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Note: This must be called after the MAC configuration and state are ready. It must be
called after the ENET _Init(). This should be called when the frame reception is required.

Parameters
* base — ENET peripheral base address.

static inline void ENET_ EnableSleepMode(ENET_Type *base, bool enable)

Enables/disables the MAC to enter sleep mode. This function is used to set the MAC en-
ter sleep mode. When entering sleep mode, the magic frame wakeup interrupt should be
enabled to wake up MAC from the sleep mode and reset it to normal mode.

Parameters
* base — ENET peripheral base address.
* enable — True enable sleep mode, false disable sleep mode.

static inline void ENET__ GetAccelFunction(ENET_Type *base, uint32_t *txAccelOption, uint32_t
*rxAccelOption)

Gets ENET transmit and receive accelerator functions from MAC controller.
Parameters
* base — ENET peripheral base address.

* txAccelOption - The transmit accelerator option. The
“enet_tx_accelerator_t” is recommended to be used to as the mask to
get the exact the accelerator option.

* rxAccelOption — The receive accelerator option. The
“enet_rx_accelerator_t” is recommended to be used to as the mask to
get the exact the accelerator option.

static inline void ENET_ Enablelnterrupts(ENET_Type *base, uint32_t mask)
Enables the ENET interrupt.

This function enables the ENET interrupt according to the provided mask. The mask is a
logical OR of enumeration members. See enet_interrupt_enable_t. For example, to enable
the TX frame interrupt and RX frame interrupt, do the following.

ENET_ Enablelnterrupts(ENET, kKENET_ TxFramelnterrupt | kKENET__RxFramelnterrupt);

Parameters
* base — ENET peripheral base address.

* mask — ENET interrupts to enable. This is a logical OR of the enumeration
enet_interrupt_enable_t.

static inline void ENET _ DisableInterrupts(ENET_Type *base, uint32_t mask)
Disables the ENET interrupt.

This function disables the ENET interrupts according to the provided mask. The mask is a
logical OR of enumeration members. See enet_interrupt_enable_t. For example, to disable
the TX frame interrupt and RX frame interrupt, do the following.

ENET_ DisableInterrupts(ENET, kENET_ TxFramelnterrupt | kKENET _RxFramelnterrupt);

Parameters

* base — ENET peripheral base address.

196 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

» mask — ENET interrupts to disable. This is a logical OR of the enumeration
enet_interrupt_enable_t.

static inline uint32_t ENET_ GetInterruptStatus(ENET_Type *base)
Gets the ENET interrupt status flag.

Parameters
* base — ENET peripheral base address.

Returns
The event status of the interrupt source. This is the logical OR of members of
the enumeration enet_interrupt_enable_t.

static inline void ENET_ ClearInterruptStatus(ENET_Type *base, uint32_t mask)
Clears the ENET interrupt events status flag.

This function clears enabled ENET interrupts according to the provided mask. The mask
is a logical OR of enumeration members. See the enet_interrupt_enable_t. For example, to
clear the TX frame interrupt and RX frame interrupt, do the following.

ENET_ ClearInterruptStatus(ENET, kENET TxFramelnterrupt | kKENET _RxFramelnterrupt);

Parameters
* base — ENET peripheral base address.

* mask — ENET interrupt source to be cleared. This is the logical OR of mem-
bers of the enumeration enet_interrupt_enable_t.

void ENET _SetRxISRHandler(ENET_Type *base, enet_isr_t ISRHandler)
Set the second level Rx IRQ handler.

Parameters
* base — ENET peripheral base address.
» ISRHandler — The handler to install.
void ENET _SetTxISRHandler(ENET_Type *base, enet_isr_t ISRHandler)
Set the second level Tx IRQ handler.
Parameters
* base — ENET peripheral base address.
» ISRHandler — The handler to install.
void ENET _SetErrISRHandler(ENET_Type *base, enet_isr_t ISRHandler)
Set the second level Err IRQ handler.
Parameters
* base — ENET peripheral base address.
» ISRHandler — The handler to install.

void ENET__GetRxErrBeforeReadFrame(enet_handle_t *handle, enet_data_error_stats_t
*eErrorStatic, uint8_t ringld)

Gets the error statistics of a received frame for ENET specified ring.

This API must be called after the ENET GetRxFrameSize and before the
ENET ReadFrame(). If the ENET GetRxFrameSize returns kStatus_ ENET RxFramekError,
the ENET_GetRxErrBeforeReadFrame can be used to get the exact error statistics. This is
an example.

2.13. ENET: Ethernet MAC Driver 197

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

status = ENET__ GetRxFrameSize(&g_handle, &length, 0);
if (status == kStatus ENET RxFrameError)

{
Comments: Get the error information of the received frame.
ENET__GetRxErrBeforeReadFrame(&g_handle, &eErrStatic, 0);
Comments: update the receive buffer.
ENET_ReadFrame(EXAMPLE_ENET, &g _handle, NULL, 0);

Parameters

* handle — The ENET handler structure pointer. This is the same handler
pointer used in the ENET _Init.

» eErrorStatic — The error statistics structure pointer.

* ringld - The ring index, range from 0 ~
(FSL_FEATURE_ENET_INSTANCE_QUEUEN(x) - 1).

void ENET _EnableStatistics(ENET_Type *base, bool enable)
Enables/disables collection of transfer statistics.

Note that this function does not reset any of the already collected data, use the function
ENET_ResetStatistics to clear the transfer statistics if needed.

Parameters
* base — ENET peripheral base address.
* enable — True enable statistics collection, false disable statistics collection.

void ENET__GetStatistics(ENET_Type *base, enet_transfer_stats_t *statistics)
Gets transfer statistics.

Copies the actual value of hardware counters into the provided structure. Calling this func-
tion does not reset the counters in hardware.

Parameters
* base — ENET peripheral base address.
* statistics — The statistics structure pointer.

void ENET_ResetStatistics(ENET_Type *base)
Resets transfer statistics.

Sets the value of hardware transfer counters to zero.
Parameters
* base — ENET peripheral base address.

status_t ENET__GetRxFrameSize(enet_handle_t *handle, uint32_t *length, uint8_t ringld)
Gets the size of the read frame for specified ring.

This function gets a received frame size from the ENET buffer descriptors.

Note: The FCS of the frame is automatically removed by MAC and the size is the length
without the FCS. After calling ENET_GetRxFrameSize, ENET_ReadFrame() should be called
to receive frame and update the BD if the result is not “kStatus_ENET_RxFrameEmpty”.

Parameters

* handle — The ENET handler structure. This is the same handler pointer
used in the ENET _Init.

198 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

* length — The length of the valid frame received.
* ringld — The ring index or ring number.
Return values

* kStatus. ENET RxFrameEmpty — No frame received. Should not call
ENET_ReadFrame to read frame.

* kStatus_ ENET_RxFrameError — Data error happens. ENET_ReadFrame
should be called with NULL data and NULL length to update the receive
buffers.

* kStatus_ Success — Receive a frame Successfully then the ENET_ReadFrame
should be called with the right data buffer and the captured data length
input.

status_t ENET_ReadFrame(ENET_Type *base, enet_handle_t *handle, uint8_t *data, uint32_t
length, uint8_t ringld, uint32_t *ts)

Reads a frame from the ENET device. This function reads a frame (both the data and the
length) from the ENET buffer descriptors. User can get timestamp through ts pointer if the
ts is not NULL.

Note: It doesn’t store the timestamp in the receive timestamp queue. The
ENET_GetRxFrameSize should be used to get the size of the prepared data buffer. This
API uses memcpy to copy data from DMA buffer to application buffer, 4 bytes aligned data
buffer in 32 bits platforms provided by user may let compiler use optimization instruction
to reduce time consumption. This is an example:

uint32_t length;

enet__handle_t g handle;

Comments: Get the received frame size firstly.

status = ENET__GetRxFrameSize(&g_handle, &length, 0);
if (length != 0)

Comments: Allocate memory here with the size of "length”
uint8_t *data = memory allocate interface;
if (Idata)

ENET_ReadFrame(ENET, &g handle, NULL, 0, 0, NULL);
Comments: Add the console warning log.

}

else

{

status = ENET _ReadFrame(ENET, &g _handle, data, length, 0, NULL);
Comments: Call stack input API to deliver the data to stack

}
}
else if (status == kStatus ENET RxFrameError)

{

Comments: Update the received buffer when a error frame is received.
ENET_ReadFrame(ENET, &g handle, NULL, 0, 0, NULL);

}

Parameters
* base — ENET peripheral base address.

* handle — The ENET handler structure. This is the same handler pointer
used in the ENET _Init.

* data— The data buffer provided by user to store the frame which memory
size should be at least “length”.

2.13. ENET: Ethernet MAC Driver 199

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

* length — The size of the data buffer which is still the length of the received
frame.

* ringld — The ring index or ring number.
* ts — The timestamp address to store received timestamp.

Returns
The execute status, successful or failure.

status_t ENET_SendFrame(ENET_Type *base, enet_handle_t *handle, const uint8_t *data,
uint32_t length, uint8_t ringld, bool tsFlag, void *context)

Transmits an ENET frame for specified ring.

Note: The CRC is automatically appended to the data. Input the data to send without
the CRC. This API uses memcpy to copy data from DMA buffer to application buffer, 4 bytes
aligned data buffer in 32 bits platforms provided by user may let compiler use optimization
instruction to reduce time consumption.

Parameters
* base — ENET peripheral base address.

* handle — The ENET handler pointer. This is the same handler pointer used
in the ENET _Init.

* data — The data buffer provided by user to send.

* length — The length of the data to send.

* ringld — The ring index or ring number.

* tsFlag — Timestamp enable flag.

* context — Used by user to handle some events after transmit over.
Return values

* kStatus Success — Send frame succeed.

* kStatus. ENET TxFrameBusy — Transmit buffer descriptor is busy under
transmission. The transmit busy happens when the data send rate is over
the MAC capacity. The waiting mechanism is recommended to be added
after each call return with kStatus_ENET_TxFrameBusy.

status_t ENET_SetTxReclaim(enet_handle_t *handle, bool isEnable, uint8_t ringld)
Enable or disable tx descriptors reclaim mechanism.

Note: This function must be called when no pending send frame action. Set enable if you
want to reclaim context or timestamp in interrupt.

Parameters

* handle — The ENET handler pointer. This is the same handler pointer used
in the ENET _Init.

* isEnable — Enable or disable flag.
* ringld — The ring index or ring number.
Return values
* kStatus_ Success — Succeed to enable/disable Tx reclaim.

* kStatus Fail — Fail to enable/disable Tx reclaim.

200 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

void ENET_ReclaimTxDescriptor(ENET_Type *base, enet_handle_t *handle, uint8_t ringld)

Reclaim tx descriptors. This function is used to update the tx descriptor status and store
the tx timestamp when the 1588 feature is enabled. This is called by the transmit interupt
IRQ handler after the complete of a frame transmission.

Parameters
* base — ENET peripheral base address.

* handle — The ENET handler pointer. This is the same handler pointer used
in the ENET _Init.

* ringld — The ring index or ring number.
status_t ENET__GetRxFrame(ENET _Type *base, enet_handle_t *handle, enet_rx_frame_struct_t
*rxFrame, uint8_t ringld)
Receives one frame in specified BD ring with zero copy.
This function uses the user-defined allocation and free callbacks. Every time appli-
cation gets one frame through this function, driver stores the buffer address(es) in
enet_buffer_struct_t and allocate new buffer(s) for the BD(s). If there’s no memory buffer in

the pool, this function drops current one frame to keep the Rx frame in BD ring is as fresh
as possible.

Note: Application must provide a memory pool including at least BD number + n buffers
in order for this function to work properly, because each BD must always take one buffer
while driver is running, then other extra n buffer(s) can be taken by application. Here n
is the ceil(max_frame_length(set by RCR) / bd_rx_size(set by MRBR)). Application must also
provide an array structure in rxFrame->rxBuffArray with n index to receive one complete
frame in any case.

Parameters
* base — ENET peripheral base address.

* handle — The ENET handler pointer. This is the same handler pointer used
in the ENET _Init.

* rxFrame — The received frame information structure provided by user.
* ringld — The ring index or ring number.
Return values

* kStatus_Success — Succeed to get one frame and allocate new memory for
Rx buffer.

e kStatus_ ENET_ RxFrameEmpty — There’s no Rx frame in the BD.
* kStatus. ENET RxFrameError — There’s issue in this receiving.

* kStatus_ ENET _RxFrameDrop — There’s no new buffer memory for BD,
drop this frame.

status_t ENET _ StartTxFrame(ENET _Type *base, enet_handle_t *handle, enet_tx_frame_struct_t
*txFrame, uint8_t ringld)

Sends one frame in specified BD ring with zero copy.

This function supports scattered buffer transmit, user needs to provide the buffer array.

Note: Tx reclaim should be enabled to ensure the Tx buffer ownership can be given back
to application after Tx is over.

2.13. ENET: Ethernet MAC Driver 201

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Parameters
* base — ENET peripheral base address.

* handle — The ENET handler pointer. This is the same handler pointer used
in the ENET _Init.

¢ txFrame — The Tx frame structure.

* ringld — The ring index or ring number.
Return values

* kStatus_ Success — Succeed to send one frame.

* kStatus_ ENET_ TxFrameBusy — The BD is not ready for Tx or the reclaim
operation still not finishs.

* kStatus_ ENET_TxFrameOverLen — The Tx frame length is over max ether-
net frame length.

void ENET_ TransmitIRQHandler(ENET_Type *base, enet_handle_t *handle)
The transmit IRQ handler.

Parameters
* base — ENET peripheral base address.
* handle — The ENET handler pointer.

void ENET_ReceivelRQHandler(ENET_Type *base, enet_handle_t *handle)
The receive IRQ handler.

Parameters
* base — ENET peripheral base address.
* handle — The ENET handler pointer.

void ENET _ErrorIRQHandler(ENET_Type *base, enet_handle_t *handle)
Some special IRQ handler including the error, mii, wakeup irq handler.

Parameters
* base — ENET peripheral base address.
* handle — The ENET handler pointer.

void ENET _Ptp1588IRQHandler(ENET Type *base)
the common IRQ handler for the 1588 irq handler.

This is used for the 1588 timer interrupt.
Parameters
* base — ENET peripheral base address.

void ENET__CommonFrame0IRQHandler(ENET_Type *base)
the common IRQ handler for the tx/rx/error etc irq handler.

This is used for the combined tx/rx/error interrupt for single/mutli-ring (frame 0).
Parameters
* base — ENET peripheral base address.

FSL _ENET DRIVER_VERSION
Defines the driver version.

ENET_BUFFDESCRIPTOR_RX_ EMPTY_MASK
Empty bit mask.

202 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

ENET BUFFDESCRIPTOR RX SOFTOWNER1 MASK
Software owner one mask.

ENET_BUFFDESCRIPTOR_RX_WRAP_MASK
Next buffer descriptor is the start address.
ENET_BUFFDESCRIPTOR_RX_SOFTOWNER2_ Mask
Software owner two mask.

ENET BUFFDESCRIPTOR RX LAST MASK
Last BD of the frame mask.

ENET_BUFFDESCRIPTOR_RX_MISS_MASK
Received because of the promiscuous mode.
ENET_BUFFDESCRIPTOR_RX_BROADCAST_MASK

Broadcast packet mask.
ENET_BUFFDESCRIPTOR_RX_MULTICAST_MASK

Multicast packet mask.
ENET_BUFFDESCRIPTOR_RX_LENVLIOLATE_MASK

Length violation mask.
ENET_BUFFDESCRIPTOR_RX_NOOCTET_MASK

Non-octet aligned frame mask.
ENET_BUFFDESCRIPTOR_RX_CRC_MASK

CRC error mask.

ENET BUFFDESCRIPTOR_ RX OVERRUN MASK
FIFO overrun mask.

ENET BUFFDESCRIPTOR_ RX TRUNC_ MASK
Frame is truncated mask.

ENET BUFFDESCRIPTOR TX READY MASK
Ready bit mask.

ENET_ BUFFDESCRIPTOR_TX SOFTOWENERI1 MASK
Software owner one mask.

ENET BUFFDESCRIPTOR TX WRAP MASK
Wrap buffer descriptor mask.

ENET_ BUFFDESCRIPTOR_TX SOFTOWENER2 MASK
Software owner two mask.

ENET BUFFDESCRIPTOR_ TX LAST MASK
Last BD of the frame mask.

ENET_BUFFDESCRIPTOR_TX_TRANMITCRC_MASK
Transmit CRC mask.
ENET_FRAME_MAX_ FRAMELEN
Default maximum Ethernet frame size without VLAN tag.
ENET_FRAME_VLAN_TAGLEN
Ethernet single VLAN tag size.

ENET FRAME CRC_LEN
CRC size in a frame.

2.13. ENET: Ethernet MAC Driver 203

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

ENET_FRAME_TX_LEN_LIMITATION(X)

ENET FIFO MIN RX FULL
ENET minimum receive FIFO full.

ENET RX_ MIN_ BUFFERSIZE

ENET minimum buffer size.
ENET_PHY MAXADDRESS

Maximum PHY address.
ENET_ TX INTERRUPT

Enet Tx interrupt flag.
ENET_ RX INTERRUPT

Enet Rx interrupt flag.
ENET_TS_INTERRUPT

Enet timestamp interrupt flag.

ENET ERR_INTERRUPT
Enet error interrupt flag.

Defines the status return codes for transaction.
Values:

enumerator kStatus_ ENET _InitMemoryFail
Init fails since buffer memory is not enough.

enumerator kStatus. ENET RxFrameError
A frame received but data error happen.

enumerator kStatus. ENET RxFrameFail
Failed to receive a frame.

enumerator kStatus_ ENET RxFrameEmpty
No frame arrive.

enumerator kStatus_ ENET _RxFrameDrop
Rx frame is dropped since no buffer memory.

enumerator kStatus. ENET TxFrameOverLen
Tx frame over length.

enumerator kStatus_ ENET _TxFrameBusy
Tx buffer descriptors are under process.

enumerator kStatus ENET TxFrameFail
Transmit frame fail.

enum enet mii mode

Defines the MII/RMII/RGMII mode for data interface between the MAC and the PHY.

Values:

enumerator kENET MiiMode
MII mode for data interface.

enumerator kENET RmiiMode
RMII mode for data interface.

204

Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator KENET RgmiiMode
RGMII mode for data interface.

enum _ enet_ mii_speed
Defines the 10/100/1000 Mbps speed for the MII data interface.
Notice: “kENET_MiiSpeed1000M” only supported when mii mode is “kENET_RgmiiMode”.
Values:

enumerator kKENET MiiSpeed10M
Speed 10 Mbps.

enumerator kKENET_MiiSpeed100M
Speed 100 Mbps.

enumerator kKENET MiiSpeed1000M
Speed 1000M bps.

enum _ enet_ mii_duplex
Defines the half or full duplex for the MII data interface.
Values:

enumerator kKENET MiiHalfDuplex
Half duplex mode.

enumerator KENET MiiFullDuplex
Full duplex mode.

enum enet mii write
Define the MII opcode for normal MDIO_CLAUSES_22 Frame.
Values:
enumerator kENET _MiiWriteNoCompliant
Write frame operation, but not MII-compliant.

enumerator kENET MiiWriteValidFrame
Write frame operation for a valid MII management frame.

enum _enet mii read
Defines the read operation for the MII management frame.
Values:
enumerator kENET MiiReadValidFrame
Read frame operation for a valid MII management frame.

enumerator kENET _MiiReadNoCompliant
Read frame operation, but not MII-compliant.
enum _ enet_ mii_extend_opcode
Define the MII opcode for extended MDIO_CLAUSES_45 Frame.
Values:
enumerator kENET _MiiAddrWrite_ C45
Address Write operation.
enumerator kKENET _MiiWriteFrame_ C45
Write frame operation for a valid MII management frame.

enumerator kENET MiiReadFrame C45
Read frame operation for a valid MII management frame.

2.13. ENET: Ethernet MAC Driver 205

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enum _ enet_ special__control_flag

Defines a special configuration for ENET MAC controller.

These control flags are provided for special user requirements. Normally, these control
flags are unused for ENET initialization. For special requirements, set the flags to mac-
SpecialConfig in the enet_config_t. The KENET_ControlStoreAndFwdDisable is used to dis-
able the FIFO store and forward. FIFO store and forward means that the FIFO read/send is
started when a complete frame is stored in TX/RX FIFO. If this flag is set, configure rxFifo-
FullThreshold and txFifoWatermark in the enet_config t.

Values:

enumerator kENET ControlFlowControlEnable
Enable ENET flow control: pause frame.

enumerator kENET ControlRxPayloadCheckEnable
Enable ENET receive payload length check.

enumerator kENET ControlRxPadRemoveEnable
Padding is removed from received frames.

enumerator kENET ControlRxBroadCastRejectEnable
Enable broadcast frame reject.

enumerator kENET ControlMacAddrInsert
Enable MAC address insert.

enumerator kKENET ControlStoreAndFwdDisable
Enable FIFO store and forward.

enumerator kENET ControlSMIPreambleDisable
Enable SMI preamble.

enumerator kENET ControlPromiscuousEnable
Enable promiscuous mode.

enumerator KENET ControlMIILoopEnable
Enable ENET MII loop back.

enumerator kENET ControlVLANTagEnable
Enable normal VLAN (single vlan tag).

enumerator kENET ControlSVLANEnable
Enable S-VLAN.

enumerator kKENET__ControlVLANUseSecondTag
Enable extracting the second vlan tag for further processing.

enum _ enet_ interrupt_ enable

List of interrupts supported by the peripheral. This enumeration uses one-bit encoding to
allow a logical OR of multiple members. Members usually map to interrupt enable bits in
one or more peripheral registers.

Values:

enumerator kKENET BabrInterrupt

Babbling receive error interrupt source
enumerator kKENET BabtInterrupt

Babbling transmit error interrupt source

enumerator KENET GraceStopInterrupt
Graceful stop complete interrupt source

206

Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator KENET TxFramelnterrupt
TX FRAME interrupt source

enumerator kENET _TxBufferInterrupt
TX BUFFER interrupt source

enumerator KENET RxFramelnterrupt
RX FRAME interrupt source

enumerator kENET RxBufferInterrupt
RX BUFFER interrupt source

enumerator KENET Miilnterrupt
MII interrupt source

enumerator kKENET EBusERInterrupt
Ethernet bus error interrupt source

enumerator kENET LateCollisionInterrupt
Late collision interrupt source

enumerator KENET RetryLimitInterrupt
Collision Retry Limit interrupt source

enumerator kENET__UnderrunInterrupt
Transmit FIFO underrun interrupt source

enumerator KENET PayloadRxInterrupt
Payload Receive error interrupt source

enumerator kENET__WakeuplInterrupt
WAKEUP interrupt source

enumerator KENET TsAvaillnterrupt
TS AVAIL interrupt source for PTP

enumerator kENET _TsTimerInterrupt
TS WRAP interrupt source for PTP

enum enet event
Defines the common interrupt event for callback use.

Values:

enumerator kENET RxEvent
Receive event.
enumerator kENET TxEvent
Transmit event.
enumerator kENET ErrEvent
Error event: BABR/BABT/EBERR/LC/RL/UN/PLR .
enumerator KENET WakeUpEvent
Wake up from sleep mode event.
enumerator KENET TimeStampEvent
Time stamp event.

enumerator kENET TimeStampAvailEvent
Time stamp available event.

2.13. ENET: Ethernet MAC Driver 207

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enum _ enet__idle_ slope

Defines certain idle slope for bandwidth fraction.

Values:
enumerator KENET IdleSlopel

The bandwidth fraction is about 0.002.

enumerator KENET IdleSlope2

The bandwidth fraction is about 0.003.

enumerator KENET IdleSlope4

The bandwidth fraction is about 0.008.

enumerator KENET IdleSlope8
The bandwidth fraction is about 0.02.

enumerator KENET IdleSlopel6
The bandwidth fraction is about 0.03.

enumerator KENET IdleSlope32
The bandwidth fraction is about 0.06.

enumerator KENET IdleSlope64
The bandwidth fraction is about 0.11.

enumerator kENET _ IdleSlopel28
The bandwidth fraction is about 0.20.

enumerator KENET IdleSlope256
The bandwidth fraction is about 0.33.

enumerator KENET IdleSlope384
The bandwidth fraction is about 0.43.

enumerator kENET IdleSlope512
The bandwidth fraction is about 0.50.

enumerator KENET IdleSlope640
The bandwidth fraction is about 0.56.

enumerator KENET IdleSlope768
The bandwidth fraction is about 0.60.

enumerator KENET IdleSlope896
The bandwidth fraction is about 0.64.

enumerator kKENET _IdleSlopel024
The bandwidth fraction is about 0.67.

enumerator KENET IdleSlopel152
The bandwidth fraction is about 0.69.

enumerator KENET _IdleSlopel280
The bandwidth fraction is about 0.71.

enumerator KENET _IdleSlope1408
The bandwidth fraction is about 0.73.

enumerator kENET IdleSlopel536
The bandwidth fraction is about 0.75.

208

Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enum _enet_tx_accelerator
Defines the transmit accelerator configuration.

Note that the hardware does not insert ICMPv6 protocol checksums as mentioned in errata
ERR052152.

Values:

enumerator kENET TxAccellsShift16Enabled
Transmit FIFO shift-16.
enumerator kKENET TxAccellpCheckEnabled
Insert IP header checksum.
enumerator kKENET TxAccelProtoCheckEnabled
Insert protocol checksum (TCP, UDP, ICMPv4).
enum enet rx_accelerator

Defines the receive accelerator configuration.

Note that the hardware does not validate ICMPv6 protocol checksums as mentioned in er-
rata ERR052152.

Values:

enumerator kKENET RxAccelPadRemoveEnabled
Padding removal for short IP frames.
enumerator kENET RxAccellpCheckEnabled
Discard with wrong IP header checksum.
enumerator kKENET RxAccelProtoCheckEnabled
Discard with wrong protocol checksum (TCP, UDP, ICMPv4).
enumerator kKENET RxAccelMacCheckEnabled
Discard with Mac layer errors.
enumerator kENET RxAccelisShift16Enabled
Receive FIFO shift-16.
typedef enum _enet_mii_mode enet_ mii_mode_t
Defines the MII/RMII/RGMII mode for data interface between the MAC and the PHY.
typedef enum _enet_mii_speed enet_ mii_speed_ t
Defines the 10/100/1000 Mbps speed for the MII data interface.
Notice: “kENET_MiiSpeed1000M” only supported when mii mode is “kENET_RgmiiMode”.
typedef enum _enet_mii_duplex enet_mii_duplex_t
Defines the half or full duplex for the MII data interface.
typedef enum _enet_mii_write enet_ mii_ write_t
Define the MII opcode for normal MDIO_CLAUSES_22 Frame.
typedef enum _enet_mii_read enet_mii_read_t
Defines the read operation for the MII management frame.

typedef enum _enet_mii_extend_opcode enet_mii_extend_opcode
Define the MII opcode for extended MDIO_CLAUSES_45 Frame.

2.13. ENET: Ethernet MAC Driver 209

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

typedef enum _enet_special_control_flag enet_ special_control_flag_t
Defines a special configuration for ENET MAC controller.
These control flags are provided for special user requirements. Normally, these control
flags are unused for ENET initialization. For special requirements, set the flags to mac-
SpecialConfig in the enet_config_t. The KENET_ControlStoreAndFwdDisable is used to dis-
able the FIFO store and forward. FIFO store and forward means that the FIFO read/send is
started when a complete frame is stored in TX/RX FIFO. If this flag is set, configure rxFifo-
FullThreshold and txFifoWatermark in the enet_config t.

typedef enum _enet_interrupt_enable enet_ interrupt_ enable_ t
List of interrupts supported by the peripheral. This enumeration uses one-bit encoding to
allow a logical OR of multiple members. Members usually map to interrupt enable bits in
one or more peripheral registers.

typedef enum _enet_event enet_ event_ t
Defines the common interrupt event for callback use.

typedef enum _enet_idle_slope enet_idle_slope_t
Defines certain idle slope for bandwidth fraction.

typedef enum _enet_tx_accelerator enet_ tx_ accelerator_t
Defines the transmit accelerator configuration.

Note that the hardware does not insert ICMPv6 protocol checksums as mentioned in errata
ERR052152.

typedef enum _enet_rx_accelerator enet_ rx_ accelerator_t

Defines the receive accelerator configuration.

Note that the hardware does not validate ICMPv6 protocol checksums as mentioned in er-
rata ERR052152.

typedef struct _enet_rx_bd_struct enet_rx_bd_ struct_t
Defines the receive buffer descriptor structure for the little endian system.
typedef struct _enet_tx_bd_struct enet_tx_bd_ struct_t
Defines the enhanced transmit buffer descriptor structure for the little endian system.
typedef struct _enet_data_error_stats enet_ data_ error_ stats_t
Defines the ENET data error statistics structure.
typedef struct _enet_rx_frame_error enet_rx_ frame_error_t
Defines the Rx frame error structure.
typedef struct _enet_transfer_stats enet_ transfer_stats_t
Defines the ENET transfer statistics structure.
typedef struct enet_frame_info enet_ frame_info_t
Defines the frame info structure.
typedef struct _enet_tx_dirty_ring enet_ tx_ dirty_ring t
Defines the ENET transmit dirty addresses ring/queue structure.
typedef void *(*enet_rx_alloc_ callback_t)(ENET_Type *base, void *userData, uint8_t ringld)
Defines the ENET Rx memory buffer alloc function pointer.

typedef void (Yenet_rx_free_callback t)(ENET_Type *base, void *buffer, void *userData, uint8_t
ringld)

Defines the ENET Rx memory buffer free function pointer.

210 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

typedef struct _enet_buffer_config enet_ buffer_ config_t
Defines the receive buffer descriptor configuration structure.

Note that for the internal DMA requirements, the buffers have a corresponding alignment
requirements.

a. The aligned receive and transmit buffer size must be evenly divisible by
ENET BUFF_ALIGNMENT. when the data buffers are in cacheable region when
cache is enabled, all those size should be aligned to the maximum value of
“ENET_BUFF_ALIGNMENT” and the cache line size.

b. The aligned transmit and receive buffer descriptor start address must be at
least 64 bit aligned. @ However, it’s recommended to be evenly divisible by
ENET_BUFF_ALIGNMENT. buffer descriptors should be put in non-cacheable region
when cache is enabled.

c. The aligned transmit and receive data buffer start address must be evenly divisible
by ENET_BUFF_ALIGNMENT. Receive buffers should be continuous with the total size
equal to “rkBdNumber * rxBuffSizeAlign”. Transmit buffers should be continuous with
the total size equal to “txBdNumber * txBuffSizeAlign”. when the data buffers are in
cacheable region when cache is enabled, all those size should be aligned to the maxi-
mum value of “ENET_BUFF_ALIGNMENT” and the cache line size.

typedef struct _enet_intcoalesce_config enet_ intcoalesce config t
Defines the interrupt coalescing configure structure.

typedef struct _enet_avb_config enet_avb_config_t
Defines the ENET AVB Configure structure.

This is used for to configure the extended ring 1 and ring 2.

a. The classification match format is (CMP3 « 12) | (CMP2 « 8) | (CMP1 « 4) | CMPO. com-
posed of four 3-bit compared VLAN priority field cmpO~cmp3, cm0 ~ cmp3 are used in
parallel.

If CMP1,2,3 are not unused, please set them to the same value as CMPO.

a. The idleSlope is used to calculate the Band Width fraction, BW fraction = 1/ (1 +
512/idleSlope). For avb configuration, the BW fraction of Class 1 and Class 2 combined
must not exceed 0.75.

typedef struct _enet_handle enet_ handle_t

typedef void (*enet_ callback t)(ENET_Type *base, enet_handle_t *handle, enet_event_t event,
enet_frame_info_t *framelnfo, void *userData)

ENET callback function.

typedef struct _enet_config enet_ config_t
Defines the basic configuration structure for the ENET device.

Note:

a. macSpecialConfig is used for a special control configuration, A logical OR of
“enet_special_control_flag t”. For a special configuration for MAC, set this parameter
to 0.

b. txWatermark is used for a cut-through operation. It is in steps of 64 bytes: 0/1 - 64
bytes written to TX FIFO before transmission of a frame begins. 2 - 128 bytes written
to TX FIFO 3 - 192 bytes written to TX FIFO The maximum of txWatermark is
0x2F - 4032 bytes written to TX FIFO txWatermark allows minimizing the transmit
latency to set the txWatermark to 0 or 1 or for larger bus access latency 3 or larger due
to contention for the system bus.

c. rxFifoFullThreshold is similar to the txWatermark for cut-through operation in RX. It
is in 64-bit words. The minimum is ENET FIFO_MIN_RX FULL and the maximum is

2.13. ENET: Ethernet MAC Driver 211

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

OxFF. If the end of the frame is stored in FIFO and the frame size if smaller than the
txWatermark, the frame is still transmitted. The rule is the same for rxFifoFullThresh-
old in the receive direction.

. When “kENET_ControlFlowControlEnable” is set in the macSpecialConfig, ensure that

the pauseDuration, rxFifoEmptyThreshold, and rxFifoStatEmptyThreshold are set for
flow control enabled case.

. When “kENET_ControlStoreAndFwdDisabled” is set in the macSpecialConfig, ensure

that the rxFifoFullThreshold and txFifoWatermark are set for store and forward dis-
able.

. The rxAccelerConfig and txAccelerConfig default setting with 0 - accelerator are dis-

abled. The “enet_tx_accelerator_t” and “enet_rx_accelerator_t” are recommended
to be used to enable the transmit and receive accelerator. After the accelera-
tors are enabled, the store and forward feature should be enabled. As a result,
KENET_ControlStoreAndFwdDisabled should not be set.

g. The intCoalesceCfg can be used in the rx or tx enabled cases to decrese the CPU loading.

typedef struct _enet_tx_bd_ring enet_tx_ bd_ring t

Defines the ENET transmit buffer descriptor ring/queue structure.

typedef struct _enet_rx_bd_ring enet_rx_bd_ring t

Defines the ENET receive buffer descriptor ring/queue structure.

typedef struct _enet_buffer_struct enet_ buffer struct_t

typedef struct _enet_rx_frame_attribute_struct enet_rx_ frame_ attribute_ t

typedef struct _enet_rx_frame_struct enet_rx_ frame_ struct_t

typedef struct _enet_tx_frame_struct enet_ tx_ frame_struct_t

typedef void (Yenet_isr_ t)(ENET _Type *base, enet_handle_t *handle)

Define interrupt IRQ handler.

const clock_ip_name_t s_enetClock[]

Pointers to enet clocks for each instance.

const clock_ip_name_t s_enetExtraClock[]

uint32_t ENET GetInstance(ENET_Type *base)

Get the ENET instance from peripheral base address.

Parameters
* base — ENET peripheral base address.

Returns
ENET instance.

ENET_BUFFDESCRIPTOR_RX_ERR_MASK

Defines the receive error status flag mask.

struct enet rx_bd_ struct

#include <fsl_enet.h> Defines the receive buffer descriptor structure for the little endian
system.

Public Members

uint16_t length

Buffer descriptor data length.

212

Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

uint16_t control
Buffer descriptor control and status.

uint32_t buffer
Data buffer pointer.

struct enet tx bd_struct

#include <fsl_enet.h> Defines the enhanced transmit buffer descriptor structure for the little
endian system.

Public Members
uint16_t length
Buffer descriptor data length.

uint16_t control
Buffer descriptor control and status.

uint32_t buffer
Data buffer pointer.

struct enet data_error_stats
#include <fsl_enet.h> Defines the ENET data error statistics structure.

Public Members
uint32_t statsRxLenGreaterErr
Receive length greater than RCR[MAX_FL].

uint32_t statsRxAlignErr
Receive non-octet alignment/

uint32_t statsRxFcsErr
Receive CRC error.

uint32_t statsRxOverRunErr
Receive over run.

uint32_t statsRxTruncateErr
Receive truncate.

struct enet rx_frame error
#include <fsl_enet.h> Defines the Rx frame error structure.

Public Members
bool statsRxTruncateErr
Receive truncate.

bool statsRxOverRunErr
Receive over run.

bool statsRxFcsErr
Receive CRC error.

bool statsRxAlignErr
Receive non-octet alignment.

2.13. ENET: Ethernet MAC Driver 213

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

bool statsRxLenGreaterErr
Receive length greater than RCR[MAX_FL].

struct enet transfer stats
#include <fsl_enet.h> Defines the ENET transfer statistics structure.

Public Members
uint32_t statsRxFrameCount
Rx frame number.

uint32_t statsRxFrameOk
Good Rx frame number.

uint32_t statsRxCrcErr
Rx frame number with CRC error.

uint32_t statsRxAlignErr

Rx frame number with alignment error.
uint32_t statsRxDroplnvalidSFD

Dropped frame number due to invalid SFD.

uint32_t statsRxFifoOverflowErr
Rx FIFO overflow count.

uint32_t statsTxFrameCount
Tx frame number.

uint32_t statsTxFrameOk
Good Tx frame number.

uint32_t statsTxCrcAlignErr
The transmit frame is error.

uint32_t statsTxFifoUnderRunErr
Tx FIFO underrun count.

struct enet_ frame info
#include <fsl_enet.h> Defines the frame info structure.

Public Members
void *context
User specified data

struct _enet_ tx_ dirty_ring
#include <fsl_enet.h> Defines the ENET transmit dirty addresses ring/queue structure.

Public Members
enet_frame_info_t *txDirtyBase
Dirty buffer descriptor base address pointer.

uint16_t txGenldx
tX generate index.

uint16_t txConsumlIdx
tx consume index.

214 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

uint16_t txRingLen

tx ring length.
bool isFull

tx ring is full flag.

struct _enet_ buffer config
#include <fsl_enet.h> Defines the receive buffer descriptor configuration structure.

Note that for the internal DMA requirements, the buffers have a corresponding alignment
requirements.

a. The aligned receive and transmit buffer size must be evenly divisible by
ENET BUFF_ALIGNMENT. when the data buffers are in cacheable region when
cache is enabled, all those size should be aligned to the maximum value of
“ENET_BUFF_ALIGNMENT” and the cache line size.

b. The aligned transmit and receive buffer descriptor start address must be at
least 64 bit aligned. @ However, it’s recommended to be evenly divisible by
ENET_BUFF_ALIGNMENT. buffer descriptors should be put in non-cacheable region
when cache is enabled.

c. The aligned transmit and receive data buffer start address must be evenly divisible
by ENET_BUFF_ALIGNMENT. Receive buffers should be continuous with the total size
equal to “rxBdNumber * rxBuffSizeAlign”. Transmit buffers should be continuous with
the total size equal to “txBdNumber * txBuffSizeAlign”. when the data buffers are in
cacheable region when cache is enabled, all those size should be aligned to the maxi-
mum value of “ENET_BUFF_ALIGNMENT” and the cache line size.

Public Members
uint16_t rxBdNumber
Receive buffer descriptor number.
uint16_t txBdNumber
Transmit buffer descriptor number.
uint16_t rxBuffSizeAlign
Aligned receive data buffer size.
uint16_t txBuffSizeAlign
Aligned transmit data buffer size.
volatile enet_rx_bd_struct_t *rxBdStartAddrAlign
Aligned receive buffer descriptor start address: should be non-cacheable.
volatile enet_tx_bd_struct_t *txBdStartAddrAlign
Aligned transmit buffer descriptor start address: should be non-cacheable.
uint8_t *rxBufferAlign
Receive data buffer start address.
uint8_t *txBufferAlign
Transmit data buffer start address.
bool rxMaintainEnable
Receive buffer cache maintain.

bool txMaintainEnable
Transmit buffer cache maintain.

2.13. ENET: Ethernet MAC Driver 215

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enet_frame_info_t *txFramelnfo
Transmit frame information start address.

struct _enet_ intcoalesce_ config
#include <fsl_enet.h> Defines the interrupt coalescing configure structure.

Public Members

uint8_t txCoalesceFrameCount[1]
Transmit interrupt coalescing frame count threshold.

uint16_t txCoalesceTimeCount[1]
Transmit interrupt coalescing timer count threshold.

uint8_t rxCoalesceFrameCount[1]
Receive interrupt coalescing frame count threshold.

uint16_t rxCoalesceTimeCount[1]
Receive interrupt coalescing timer count threshold.

struct _enet_ avb_ config
#include <fsl_enet.h> Defines the ENET AVB Configure structure.

This is used for to configure the extended ring 1 and ring 2.

a. The classification match format is (CMP3 « 12) | (CMP2 « 8) | (CMP1 « 4) | CMPO. com-
posed of four 3-bit compared VLAN priority field cmmp0O~cmp3, cmO ~ cmp3 are used in
parallel.

If CMP1,2,3 are not unused, please set them to the same value as CMP0.

a. The idleSlope is used to calculate the Band Width fraction, BW fraction =1/ (1 +
512/idleSlope). For avb configuration, the BW fraction of Class 1 and Class 2 combined
must not exceed 0.75.

Public Members

uint16_t rxClassifyMatch[1 - 1]
The classification match value for the ring.

enet_idle_slope_t idleSlope[1 - 1]
The idle slope for certian bandwidth fraction.

struct _enet_ config
#include <fsl_enet.h> Defines the basic configuration structure for the ENET device.

Note:

a. macSpecialConfig is used for a special control configuration, A logical OR of
“enet_special_control_flag t”. For a special configuration for MAC, set this parameter
to 0.

b. txWatermark is used for a cut-through operation. It is in steps of 64 bytes: 0/1 - 64
bytes written to TX FIFO before transmission of a frame begins. 2 - 128 bytes written
to TX FIFO 3 - 192 bytes written to TX FIFO The maximum of txWatermark is
0x2F - 4032 bytes written to TX FIFO txWatermark allows minimizing the transmit
latency to set the txWatermark to 0 or 1 or for larger bus access latency 3 or larger due
to contention for the system bus.

c. rxFifoFullThreshold is similar to the txWatermark for cut-through operation in RX. It
is in 64-bit words. The minimum is ENET_FIFO_MIN RX FULL and the maximum is
OxFF. If the end of the frame is stored in FIFO and the frame size if smaller than the

216 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

txWatermark, the frame is still transmitted. The rule is the same for rxFifoFullThresh-
old in the receive direction.

d. When “KENET_ControlFlowControlEnable” is set in the macSpecialConfig, ensure that
the pauseDuration, rxFifoEmptyThreshold, and rxFifoStatEmptyThreshold are set for
flow control enabled case.

e. When “kENET_ControlStoreAndFwdDisabled” is set in the macSpecialConfig, ensure
that the rxFifoFullThreshold and txFifoWatermark are set for store and forward dis-
able.

f. The rxAccelerConfig and txAccelerConfig default setting with 0 - accelerator are dis-
abled. The “enet_tx_accelerator_t” and “enet_rx_accelerator_t” are recommended
to be used to enable the transmit and receive accelerator. After the accelera-
tors are enabled, the store and forward feature should be enabled. As a result,
KENET_ControlStoreAndFwdDisabled should not be set.

g. The intCoalesceCfg can be used in the rx or tx enabled cases to decrese the CPU loading.

Public Members

uint32_t macSpecialConfig
Mac special configuration. A logical OR of “enet_special_control_flag_t”.

uint32_t interrupt
Mac interrupt source. A logical OR of “enet_interrupt_enable_t”.

uint16_t rxMaxFrameLen
Receive maximum frame length.

enet_mii_mode_t miiMode
MII mode.

enet_mii_speed_t miiSpeed
MII Speed.

enet_mii_duplex_t miiDuplex
MII duplex.

uint8_t rxAccelerConfig
Receive accelerator; A logical OR of “enet_rx_accelerator_t”.

uint8_t txAccelerConfig
Transmit accelerator, A logical OR of “enet_rx_accelerator_t”.

uint16_t pauseDuration
For flow control enabled case: Pause duration.

uint8_t rxFifoEmptyThreshold
For flow control enabled case: when RX FIFO level reaches this value, it makes MAC
generate XOFF pause frame.

uint8_t rxFifoStatEmptyThreshold

For flow control enabled case: number of frames in the receive FIFO, independent of
size, that can be accept. If the limit is reached, reception continues and a pause frame
is triggered.

uint8_t rxFifoFullThreshold

For store and forward disable case, the data required in RX FIFO to notify the MAC
receive ready status.

2.13. ENET: Ethernet MAC Driver 217

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

uint8_t txFifoWatermark

For store and forward disable case, the data required in TX FIFO before a frame trans-
mit start.

enet_intcoalesce_config t *intCoalesceCfg
If the interrupt coalsecence is not required in the ring n(0,1,2), please set to NULL.

uint8_t ringNum
Number of used rings. default with 1 — single ring.

enet_rx_alloc_callback_t rxBuffAlloc
Callback function to alloc memory, must be provided for zero-copy Rx.

enet_rx_free_callback_t rxBuffFree
Callback function to free memory, must be provided for zero-copy Rx.

enet_callback _t callback
General callback function.

void *userData
Callback function parameter.

struct _enet_tx_bd_ring
#include <fsl_enet.h> Defines the ENET transmit buffer descriptor ring/queue structure.

Public Members
volatile enet_tx_bd_struct_t *txBdBase
Buffer descriptor base address pointer.

uint16_t txGenldx
The current available transmit buffer descriptor pointer.

uint16_t txConsumlIdx
Transmit consume index.

volatile uint16_t txDescUsed
Transmit descriptor used number.

uint16_t txRingLen
Transmit ring length.

struct _enet_rx_bd_ ring
#include <fsl_enet.h> Defines the ENET receive buffer descriptor ring/queue structure.

Public Members
volatile enet_rx_bd_struct_t *rxBdBase
Buffer descriptor base address pointer.
uint16_t rxGenldx
The current available receive buffer descriptor pointer.

uint16_t rxRingLen
Receive ring length.

struct _enet_handle
#include <fsl_enet.h> Defines the ENET handler structure.

218 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Public Members
enet_rx_bd_ring t rxBdRing[1]
Receive buffer descriptor.
enet_tx_bd_ring t txBdRing[1]
Transmit buffer descriptor.
uint16_t rxBuffSizeAlign[1]
Receive buffer size alignment.
uint16_t txBuffSizeAlign[1]
Transmit buffer size alignment.
bool rxMaintainEnable[1]
Receive buffer cache maintain.

bool txMaintainEnable[1]

Transmit buffer cache maintain.
uint8_t ringNum

Number of used rings.

enet_callback _t callback
Callback function.

void *userData

Callback function parameter.
enet_tx_dirty_ring t txDirtyRing[1]

Ring to store tx frame information.
bool txReclaimEnable[1]

Tx reclaim enable flag.
enet_rx_alloc_callback_t rxBuffAlloc

Callback function to alloc memory for zero copy Rx.
enet_rx_free_callback_t rxBuffFree

Callback function to free memory for zero copy Rx.
uint8_t multicastCount[64]

Multicast collisions counter

struct enet buffer struct
#include <fsl_enet.h>

Public Members
void *buffer
The buffer store the whole or partial frame.

uint16_t length
The byte length of this buffer.

struct enet rx_frame attribute struct
#include <fsl_enet.h>

2.13. ENET: Ethernet MAC Driver 219

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Public Members
bool promiscuous
This frame is received because of promiscuous mode.

struct enet rx frame struct
#include <fsl_enet.h>

Public Members
enet_buffer_struct_t *rxBuffArray
Rx frame buffer structure.

uint16_t totLen
Rx frame total length.

enet_rx_frame_attribute_t rxAttribute
Rx frame attribute structure.

enet_rx_frame_error._t rxFrameError
Rx frame error.

struct enet_tx_frame struct
#include <fsl_enet.h>

Public Members
enet_buffer_struct_t *txBuffArray
Tx frame buffer structure.

uint32_t txBuffNum
Buffer number of this Tx frame.

void *context

Driver reclaims and gives it in Tx over callback, usually store network packet header.

2.14 FLEXCOMM: FLEXCOMM Driver

2.15 FLEXCOMM Driver

FSL FLEXCOMM _ DRIVER_VERSION
FlexCOMM driver version 2.0.2.

enum FLEXCOMM_PERIPH T
FLEXCOMM peripheral modes.
Values:
enumerator FLEXCOMM_PERIPH NONE
No peripheral
enumerator FLEXCOMM _PERIPH USART
USART peripheral

enumerator FLEXCOMM PERIPH SPI
SPI Peripheral

220

Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator FLEXCOMM _PERIPH_ 12C
I2C Peripheral

enumerator FLEXCOMM PERIPH 12S TX
I2S TX Peripheral

enumerator FLEXCOMM_PERIPH I12S RX
I2S RX Peripheral

typedef void (*flexcomm_ irq handler_t)(void *base, void *handle)
Typedef for interrupt handler.

IRQn_Type const kFlexcommIrgs[]
Array with IRQ number for each FLEXCOMM module.

uint32_t FLEXCOMM_ GetInstance(void *base)
Returns instance number for FLEXCOMM module with given base address.

status_t FLEXCOMM_ Init(void *base, FLEXCOMM_PERIPH_T periph)
Initializes FLEXCOMM and selects peripheral mode according to the second parameter.

void FLEXCOMM__SetIRQHandler(void *base, flexcomm_irq_handler._t handler, void
*flexcommHandle)

Sets IRQ handler for given FLEXCOMM module. It is used by drivers register IRQ handler
according to FLEXCOMM mode.

2.16 FLEXSPI: Flexible Serial Peripheral Interface Driver

uint32_t FLEXSPI_GetlInstance(FLEXSPI_Type *base)
Get the instance number for FLEXSPI.

Parameters
* base — FLEXSPI base pointer.

status_t FLEXSPI_ CheckAndClearError(FLEXSPI_Type *base, uint32_t status)
Check and clear IP command execution errors.

Parameters
* base — FLEXSPI base pointer.
* status — interrupt status.

void FLEXSPI_Init(FLEXSPI_Type *base, const flexspi_config_t *config)
Initializes the FLEXSPI module and internal state.

This function enables the clock for FLEXSPI and also configures the FLEXSPI with the input
configure parameters. Users should call this function before any FLEXSPI operations.

Parameters
* base — FLEXSPI peripheral base address.
* config — FLEXSPI configure structure.

void FLEXSPI GetDefaultConfig(flexspi_config_t *config)
Gets default settings for FLEXSPI.

Parameters

* config — FLEXSPI configuration structure.

2.16. FLEXSPI: Flexible Serial Peripheral Interface Driver 221

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

void FLEXSPI_ Deinit(FLEXSPI_Type *base)
Deinitializes the FLEXSPI module.

Clears the FLEXSPI state and FLEXSPI module registers.
Parameters
* base — FLEXSPI peripheral base address.

void FLEXSPI UpdateDIlValue(FLEXSPI_Type *base, flexspi_device_config t *config,
flexspi_port_t port)

Update FLEXSPI DLL value depending on currently flexspi root clock.
Parameters
* base — FLEXSPI peripheral base address.
* config — Flash configuration parameters.
* port — FLEXSPI Operation port.

void FLEXSPI_ SetFlashConfig(FLEXSPI_Type *base, flexspi_device_config t *config,
flexspi_port_t port)

Configures the connected device parameter.

This function configures the connected device relevant parameters, such as the size, com-
mand, and so on. The flash configuration value cannot have a default value. The user needs
to configure it according to the connected device.

Parameters
* base — FLEXSPI peripheral base address.
* config — Flash configuration parameters.
¢ port — FLEXSPI Operation port.

void FLEXSPI SoftwareReset(FLEXSPI_Type *base)
Software reset for the FLEXSPI logic.

This function sets the software reset flags for both AHB and buffer domain and resets both
AHB buffer and also IP FIFOs.

Parameters
* base — FLEXSPI peripheral base address.

static inline void FLEXSPI Enable(FLEXSPI_Type *base, bool enable)
Enables or disables the FLEXSPI module.

Parameters
* base — FLEXSPI peripheral base address.
* enable — True means enable FLEXSPI, false means disable.

void FLEXSPI_UpdateAhbBuffersSettings(FLEXSPI_Type *base, flexspi_ahbBuffers_ctrl_t
*ptrAhbBufferCtrl)

Update all AHB buffers’ settings, including buffer size, master ID.
Parameters
* base — FLEXSPI peripheral base address.

* ptrAhbBufferCtrl — Pointer to structure flexspi_ahbBuffers_ctrl t which
store all AHB buffers’ settings.

222 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

static inline void FLEXSPI_ EnableInterrupts(FLEXSPI_Type *base, uint32_t mask)
Enables the FLEXSPI interrupts.

Parameters
* base — FLEXSPI peripheral base address.
» mask — FLEXSPI interrupt source.

static inline void FLEXSPI_ DisableInterrupts(FLEXSPI_Type *base, uint32_t mask)
Disable the FLEXSPI interrupts.

Parameters
* base — FLEXSPI peripheral base address.
* mask — FLEXSPI interrupt source.

static inline void FLEXSPI_EnableTxDMA (FLEXSPI_Type *base, bool enable)
Enables or disables FLEXSPI IP Tx FIFO DMA requests.

Parameters
* base — FLEXSPI peripheral base address.

* enable — Enable flag for transmit DMA request. Pass true for enable, false
for disable.

static inline void FLEXSPI_EnableRxDMA (FLEXSPI_Type *base, bool enable)
Enables or disables FLEXSPI IP Rx FIFO DMA requests.

Parameters
* base — FLEXSPI peripheral base address.

* enable — Enable flag for receive DMA request. Pass true for enable, false
for disable.

static inline uint32_t FLEXSPI GetTxFifoAddress(FLEXSPI_Type *base)
Gets FLEXSPI IP tx fifo address for DMA transfer.

Parameters
* base — FLEXSPI peripheral base address.

Return values
The - tx fifo address.

static inline uint32_t FLEXSPI GetRxFifoAddress(FLEXSPI_Type *base)
Gets FLEXSPI IP rx fifo address for DMA transfer.

Parameters
* base — FLEXSPI peripheral base address.

Return values
The - rx fifo address.

static inline void FLEXSPI_ ResetFifos(FLEXSPI_Type *base, bool txFifo, bool rxFifo)
Clears the FLEXSPI IP FIFO logic.

Parameters
* base — FLEXSPI peripheral base address.
* txFifo — Pass true to reset TX FIFO.
* rxFifo —Pass true to reset RX FIFO.

2.16. FLEXSPI: Flexible Serial Peripheral Interface Driver 223

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

static inline void FLEXSPI_ GetFifoCounts(FLEXSPI_Type *base, size_t *txCount, size_t
*rxCount)

Gets the valid data entries in the FLEXSPI FIFOs.
Parameters
* base — FLEXSPI peripheral base address.

* txCount — [out] Pointer through which the current number of bytes in the
transmit FIFO is returned. Pass NULL if this value is not required.

¢ rxCount — [out] Pointer through which the current number of bytes in the
receive FIFO is returned. Pass NULL if this value is not required.

static inline uint32_t FLEXSPI_ GetInterruptStatusFlags(FLEXSPI_Type *base)
Get the FLEXSPI interrupt status flags.

Parameters
* base — FLEXSPI peripheral base address.

Return values
interrupt — status flag, use status flag to AND flexspi_flags_t could get the related
status.

static inline void FLEXSPI_ ClearInterruptStatusFlags(FLEXSPI_Type *base, uint32_t mask)
Get the FLEXSPI interrupt status flags.

Parameters
* base — FLEXSPI peripheral base address.
* mask — FLEXSPI interrupt source.

static inline void FLEXSPI_ GetDataLearningPhase(FLEXSPI_Type *base, uint8_t *portAPhase,
uint8_t *portBPhase)

Gets the sampling clock phase selection after Data Learning.
Parameters
* base — FLEXSPI peripheral base address.

* portAPhase —Pointer to a uint8_t type variable to receive the selected clock
phase on PORTA.

» portBPhase — Pointer to a uint8_t type variable to receive the selected clock
phase on PORTB.

static inline flexspi_arb_command_source_t FLEXSPI_GetArbitratorCommandSource(FLEXSPI_Type
*base)

Gets the trigger source of current command sequence granted by arbitrator.
Parameters
* base — FLEXSPI peripheral base address.

Return values
trigger — source of current command sequence.

static inline flexspi_ip_error_code_t FLEXSPI _GetIPCommandErrorCode(FLEXSPI_Type *base,
uint8_t *index)

Gets the error code when IP command error detected.
Parameters
* base — FLEXSPI peripheral base address.

* index — Pointer to a uint8_t type variable to receive the sequence index
when error detected.

224 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Return values
error — code when IP command error detected.

static inline flexspi_ahb_error_code_t FLEXSPI GetAHBCommandErrorCode(FLEXSPI_Type
*base, uint8_t
*index)

Gets the error code when AHB command error detected.
Parameters
* base — FLEXSPI peripheral base address.

* index — Pointer to a uint8_t type variable to receive the sequence index
when error detected.

Return values
error — code when AHB command error detected.

static inline bool FLEXSPI_GetBusldleStatus(FLEXSPI_Type *base)
Returns whether the bus is idle.

Parameters

* base — FLEXSPI peripheral base address.
Return values

* true — Bus is idle.

* false — Bus is busy.

void FLEXSPI_UpdateRxSampleClock(FLEXSPI_Type *base, flexspi_read_sample_clock_t
clockSource)

Update read sample clock source.
Parameters
* base — FLEXSPI peripheral base address.
* clockSource — clockSource of type flexspi_read_sample_clock_t

void FLEXSPI_UpdateLUT(FLEXSPI_Type *base, uint32_t index, const uint32_t *cmd, uint32_t
count)

Updates the LUT table.
Parameters
* base — FLEXSPI peripheral base address.

¢ index — From which index start to update. It could be any index of the LUT
table, which also allows user to update command content inside a com-
mand. Each command consists of up to 8 instructions and occupy 4*32-bit
memory.

« ¢cmd — Command sequence array.
* count — Number of sequences.

static inline void FLEXSPI_ WriteData(FLEXSPI_Type *base, uint32_t data, uint8_t fifoIndex)
Writes data into FIFO.

Parameters
* base — FLEXSPI peripheral base address
* data — The data bytes to send

* fifoIndex — Destination fifo index.

2.16. FLEXSPI: Flexible Serial Peripheral Interface Driver 225

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

static inline uint32_t FLEXSPI_ReadData(FLEXSPI_Type *base, uint8_t fifoIndex)
Receives data from data FIFO.

Parameters
* base — FLEXSPI peripheral base address
* fifoIndex — Source fifo index.

Returns
The data in the FIFO.

status_t FLEXSPI_ WriteBlocking(FLEXSPI_Type *base, uint8_t *buffer, size_t size)
Sends a buffer of data bytes using blocking method.

Note: This function blocks via polling until all bytes have been sent.

Parameters

* base — FLEXSPI peripheral base address

* buffer — The data bytes to send

* size — The number of data bytes to send
Return values

* kStatus_ Success — write success without error

* kStatus_ FLEXSPI__SequenceExecutionTimeout — sequence execution time-
out

* kStatus_ FLEXSPI_IpCommandSequenceError — IP command sequence er-
ror detected

* kStatus_ FLEXSPI IpCommandGrantTimeout — [P command grant timeout
detected

status_t FLEXSPI_ReadBlocking(FLEXSPI_Type *base, uint8_t *buffer, size_t size)
Receives a buffer of data bytes using a blocking method.

Note: This function blocks via polling until all bytes have been sent.

Parameters

* base — FLEXSPI peripheral base address

* buffer - The data bytes to send

* size — The number of data bytes to receive
Return values

* kStatus_ Success — read success without error

* kStatus_ FLEXSPI__SequenceExecutionTimeout — sequence execution time-
out

* kStatus. FLEXSPI IpCommandSequenceError — IP command sequencen er-
ror detected

* kStatus_ FLEXSPI IpCommandGrantTimeout — [P command grant timeout
detected

226 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

status_t FLEXSPI_ TransferBlocking(FLEXSPI_Type *base, flexspi_transfer_t *xfer)

Execute command to transfer a buffer data bytes using a blocking method.
Parameters
* base — FLEXSPI peripheral base address
* xfer — pointer to the transfer structure.
Return values
* kStatus_ Success — command transfer success without error

* kStatus_ FLEXSPI_SequenceExecutionTimeout — sequence execution time-
out

* kStatus_ FLEXSPI_IpCommandSequenceError — IP command sequence er-
ror detected

* kStatus_ FLEXSPI_IpCommandGrantTimeout — IP command grant timeout
detected

void FLEXSPI_ TransferCreateHandle(FLEXSPI_Type *base, flexspi_handle_t *handle,

flexspi_transfer_callback_t callback, void *userData)
Initializes the FLEXSPI handle which is used in transactional functions.

Parameters
* base — FLEXSPI peripheral base address.
* handle — pointer to flexspi_handle_t structure to store the transfer state.
* callback — pointer to user callback function.

* userData — user parameter passed to the callback function.

status_t FLEXSPI_ TransferNonBlocking(FLEXSPI_Type *base, flexspi_handle_t *handle,

flexspi_transfer_t *xfer)
Performs a interrupt non-blocking transfer on the FLEXSPI bus.

Note: Calling the API returns immediately after transfer initiates. The user needs to
call FLEXSPI_GetTransferCount to poll the transfer status to check whether the transfer
is finished. If the return status is not kStatus_FLEXSPI_Busy, the transfer is finished. For
FLEXSPI_Read, the dataSize should be multiple of rx watermark level, or FLEXSPI could
not read data properly.

Parameters
* base — FLEXSPI peripheral base address.

* handle — pointer to flexspi_handle_t structure which stores the transfer
state.

* xfer — pointer to flexspi_transfer_t structure.
Return values
* kStatus_ Success — Successfully start the data transmission.

* kStatus FLEXSPI Busy — Previous transmission still not finished.

status_t FLEXSPI_ TransferGetCount(FLEXSPI_Type *base, flexspi_handle_t *handle, size_t

*count)
Gets the master transfer status during a interrupt non-blocking transfer.

Parameters

2.16. FLEXSPI: Flexible Serial Peripheral Interface Driver 227

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

* base — FLEXSPI peripheral base address.

* handle — pointer to flexspi_handle_t structure which stores the transfer
state.

* count— Number of bytes transferred so far by the non-blocking transaction.
Return values

* kStatus_ InvalidArgument — count is Invalid.

* kStatus_ Success — Successfully return the count.

void FLEXSPI TransferAbort(FLEXSPI_Type *base, flexspi_handle_t *handle)
Aborts an interrupt non-blocking transfer early.

Note: This API can be called at any time when an interrupt non-blocking transfer initiates
to abort the transfer early.

Parameters
* base — FLEXSPI peripheral base address.

* handle — pointer to flexspi_handle_t structure which stores the transfer
state

void FLEXSPI TransferHandleIRQ(FLEXSPI_Type *base, flexspi_handle_t *handle)
Master interrupt handler.

Parameters
* base — FLEXSPI peripheral base address.
* handle — pointer to flexspi_handle_t structure.

FSL FLEXSPI DRIVER VERSION
FLEXSPI driver version.

Status structure of FLEXSPI.
Values:

enumerator kStatus_ FLEXSPI_Busy
FLEXSPI is busy

enumerator kStatus_ FLEXSPI_SequenceExecutionTimeout
Sequence execution timeout error occurred during FLEXSPI transfer.

enumerator kStatus_ FLEXSPI_IpCommandSequenceError
IP command Sequence execution timeout error occurred during FLEXSPI transfer.

enumerator kStatus_ FLEXSPI_IpCommandGrantTimeout
IP command grant timeout error occurred during FLEXSPI transfer.

CMD definition of FLEXSPI, use to form LUT instruction, _flexspi_command.
Values:

enumerator kFLEXSPI Command STOP
Stop execution, deassert CS.

enumerator kFLEXSPI Command SDR
Transmit Command code to Flash, using SDR mode.

228 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kKFLEXSPI_Command RADDR_ SDR
Transmit Row Address to Flash, using SDR mode.

enumerator kFLEXSPI_Command_CADDR_ SDR

Transmit Column Address to Flash, using SDR mode.
enumerator kFLEXSPI_Command_ MODE1_SDR

Transmit 1-bit Mode bits to Flash, using SDR mode.
enumerator kFLEXSPI_Command MODE2_ SDR

Transmit 2-bit Mode bits to Flash, using SDR mode.
enumerator kFLEXSPI Command MODE4 SDR

Transmit 4-bit Mode bits to Flash, using SDR mode.
enumerator kFLEXSPI _Command MODES SDR

Transmit 8-bit Mode bits to Flash, using SDR mode.
enumerator kKFLEXSPI Command WRITE SDR

Transmit Programming Data to Flash, using SDR mode.
enumerator kFLEXSPI Command READ SDR

Receive Read Data from Flash, using SDR mode.
enumerator kFLEXSPI Command LEARN SDR

Receive Read Data or Preamble bit from Flash, SDR mode.
enumerator kFLEXSPI Command DATSZ SDR

Transmit Read/Program Data size (byte) to Flash, SDR mode.
enumerator kFLEXSPI Command DUMMY SDR

Leave data lines undriven by FlexSPI controller.
enumerator KFLEXSPI__Command_ DUMMY_RWDS_SDR

Leave data lines undriven by FlexSPI controller, dummy cycles decided by RWDS.
enumerator kKFLEXSPI Command_DDR

Transmit Command code to Flash, using DDR mode.
enumerator kKFLEXSPI_Command RADDR_DDR

Transmit Row Address to Flash, using DDR mode.
enumerator kKFLEXSPI_Command CADDR_DDR

Transmit Column Address to Flash, using DDR mode.
enumerator kFLEXSPI Command MODE1 DDR

Transmit 1-bit Mode bits to Flash, using DDR mode.
enumerator kFLEXSPI Command MODE2 DDR

Transmit 2-bit Mode bits to Flash, using DDR mode.
enumerator kFLEXSPI Command MODE4 DDR

Transmit 4-bit Mode bits to Flash, using DDR mode.
enumerator kKFLEXSPI__Command_MODES8 DDR

Transmit 8-bit Mode bits to Flash, using DDR mode.
enumerator kKFLEXSPI__Command_WRITE_DDR

Transmit Programming Data to Flash, using DDR mode.

enumerator kFLEXSPI Command READ DDR
Receive Read Data from Flash, using DDR mode.

2.16. FLEXSPI: Flexible Serial Peripheral Interface Driver 229

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kFLEXSPI Command LEARN DDR
Receive Read Data or Preamble bit from Flash, DDR mode.

enumerator kFLEXSPI Command DATSZ DDR
Transmit Read/Program Data size (byte) to Flash, DDR mode.

enumerator kFLEXSPI__Command_DUMMY__ DDR
Leave data lines undriven by FlexSPI controller.
enumerator kFLEXSPI Command DUMMY_ RWDS_ DDR
Leave data lines undriven by FlexSPI controller, dummy cycles decided by RWDS.

enumerator kFLEXSPI Command JUMP_ ON_ CS

Stop execution, deassert CS and save operand[7:0] as the instruction start pointer for
next sequence

enum _ flexspi_pad

pad definition of FLEXSPI, use to form LUT instruction.
Values:
enumerator kFLEXSPI _1PAD
Transmit command/address and transmit/receive data only through DATAO/DATA1.

enumerator kFLEXSPI 2PAD
Transmit command/address and transmit/receive data only through DATA[1:0].

enumerator kFLEXSPI 4PAD
Transmit command/address and transmit/receive data only through DATA[3:0].

enumerator kFLEXSPI 8PAD
Transmit command/address and transmit/receive data only through DATA[7:0].

enum _ flexspi_ flags

FLEXSPI interrupt status flags.
Values:

enumerator kFLEXSPI_SequenceExecutionTimeoutFlag
Sequence execution timeout.

enumerator kFLEXSPI__ AhbBusTimeoutFlag
AHB Bus timeout.
enumerator kFLEXSPI__SckStoppedBecauseTxEmptyFlag
SCK is stopped during command sequence because Async TX FIFO empty.
enumerator kFLEXSPI_ SckStoppedBecauseRxFullFlag
SCK is stopped during command sequence because Async RX FIFO full.
enumerator kFLEXSPI_ DataLearningFailedFlag
Data learning failed.
enumerator kFLEXSPI_ IpTxFifoWatermarkEmptyFlag
IP TX FIFO WaterMark empty.
enumerator kFLEXSPI_ IpRxFifoWatermarkAvailableFlag
IP RX FIFO WaterMark available.
enumerator kFLEXSPI_ AhbCommandSequenceErrorFlag
AHB triggered Command Sequences Error.

enumerator kFLEXSPI_IpCommandSequenceErrorFlag
IP triggered Command Sequences Error.

230

Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kFLEXSPI__AhbCommandGrantTimeoutFlag
AHB triggered Command Sequences Grant Timeout.

enumerator kFLEXSPI_IpCommandGrantTimeoutFlag
IP triggered Command Sequences Grant Timeout.

enumerator kFLEXSPI_IpCommandExecutionDoneFlag
IP triggered Command Sequences Execution finished.

enumerator kFLEXSPI__AlllnterruptFlags
All flags.

enum _flexspi_read_sample clock
FLEXSPI sample clock source selection for Flash Reading.

Values:

enumerator kFLEXSPI_ReadSampleClkLoopbackInternally
Dummy Read strobe generated by FlexSPI Controller and loopback internally.

enumerator kFLEXSPI_ReadSampleClkLoopbackFromDgsPad
Dummy Read strobe generated by FlexSPI Controller and loopback from DQS pad.

enumerator kFLEXSPI_ReadSampleClkLoopbackFromSckPad
SCK output clock and loopback from SCK pad.

enumerator kFLEXSPI_ReadSampleClkExternallnputFromDgsPad
Flash provided Read strobe and input from DQS pad.

enum _ flexspi_ cs_interval_cycle_ unit
FLEXSPI interval unit for flash device select.
Values:

enumerator kFLEXSPI CsIntervalUnit1SckCycle
Chip selection interval: CSINTERVAL * 1 serial clock cycle.

enumerator kFLEXSPI_ CsIntervalUnit256SckCycle
Chip selection interval: CSINTERVAL * 256 serial clock cycle.

enum _ flexspi_ahb_write wait_ unit
FLEXSPI AHB wait interval unit for writing.
Values:

enumerator kFLEXSPI__AhbWriteWaitUnit2AhbCycle
AWRWAIT unit is 2 ahb clock cycle.

enumerator kFLEXSPI__AhbWriteWait Unit8 AhbCycle
AWRWAIT unit is 8 ahb clock cycle.

enumerator kFLEXSPI__AhbWriteWaitUnit32AhbCycle
AWRWAIT unit is 32 ahb clock cycle.

enumerator kFLEXSPI__ AhbWriteWaitUnit128 AhbCycle
AWRWAIT unit is 128 ahb clock cycle.

enumerator kFLEXSPI__ AhbWriteWaitUnit512AhbCycle
AWRWAIT unit is 512 ahb clock cycle.

enumerator kFLEXSPI__ AhbWriteWaitUnit2048 AhbCycle
AWRWAIT unit is 2048 ahb clock cycle.

2.16. FLEXSPI: Flexible Serial Peripheral Interface Driver 231

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kFLEXSPI__AhbWriteWaitUnit8192AhbCycle
AWRWAIT unit is 8192 ahb clock cycle.

enumerator kFLEXSPI__AhbWriteWait Unit32768 AhbCycle
AWRWAIT unit is 32768 ahb clock cycle.
enum _ flexspi_ip_error_code
Error Code when IP command Error detected.
Values:
enumerator kFLEXSPI_IpCmdErrorNoError
No error.
enumerator kFLEXSPI_IpCmdErrorJumpOnCsInlpCmd
IP command with JMP_ON_CS instruction used.
enumerator kFLEXSPI_IpCmdErrorUnknownOpCode
Unknown instruction opcode in the sequence.
enumerator kFLEXSPI_IpCmdErrorSdrDummyInDdrSequence
Instruction DUMMY_SDR/DUMMY_RWDS_SDR used in DDR sequence.
enumerator kFLEXSPI_IpCmdErrorDdrDummyInSdrSequence
Instruction DUMMY_DDR/DUMMY_RWDS_DDR used in SDR sequence.
enumerator kFLEXSPI_ IpCmdErrorInvalid Address
Flash access start address exceed the whole flash address range (A1/A2/B1/B2).
enumerator kFLEXSPI_IpCmdErrorSequenceExecutionTimeout
Sequence execution timeout.
enumerator kFLEXSPI_ IpCmdErrorFlashBoundaryAcrosss
Flash boundary crossed.
enum _ flexspi_ahb_error code
Error Code when AHB command Error detected.
Values:
enumerator kFLEXSPI__AhbCmdErrorNoError
No error.
enumerator kFLEXSPI_ AhbCmdErrorJumpOnCsInWriteCmd
AHB Write command with JMP_ON_CS instruction used in the sequence.
enumerator kFLEXSPI__ AhbCmdErrorUnknownOpCode
Unknown instruction opcode in the sequence.
enumerator kFLEXSPI_ AhbCmdErrorSdrDummyInDdrSequence
Instruction DUMMY_SDR/DUMMY_RWDS_SDR used in DDR sequence.
enumerator kFLEXSPI_ AhbCmdErrorDdrDummyInSdrSequence
Instruction DUMMY_DDR/DUMMY_RWDS_DDR used in SDR sequence.
enumerator kFLEXSPI_ AhbCmdSequenceExecutionTimeout
Sequence execution timeout.
enum _ flexspi_ port
FLEXSPI operation port select.

Values:

232 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kFLEXSPI_PortAl
Access flash on A1 port.

enumerator kFLEXSPI PortA2
Access flash on A2 port.

enumerator kFLEXSPI_PortB1
Access flash on B1 port.

enumerator kFLEXSPI PortB2
Access flash on B2 port.

enumerator kFLEXSPI PortCount
enum _ flexspi_arb_ command_ source
Trigger source of current command sequence granted by arbitrator.
Values:
enumerator kFLEXSPI__ AhbReadCommand
enumerator kFLEXSPI AhbWriteCommand
enumerator kFLEXSPI_ IpCommand
enumerator kFLEXSPI SuspendedCommand
enum _ flexspi__command_ type
Command type.
Values:

enumerator kFLEXSPI Command
FlexSPI operation: Only command, both TX and Rx buffer are ignored.

enumerator kFLEXSPI_Config
FlexSPI operation: Configure device mode, the TX fifo size is fixed in LUT.

enumerator kFLEXSPI_ Read
enumerator kFLEXSPI_ Write

typedef enum _flexspi_pad flexspi_pad_t
pad definition of FLEXSPI, use to form LUT instruction.

typedef enum _flexspi flags flexspi_flags_t
FLEXSPI interrupt status flags.

typedef enum _flexspi read _sample_clock flexspi_read__sample_ clock_t
FLEXSPI sample clock source selection for Flash Reading.

typedef enum _flexspi_cs_interval_cycle_unit flexspi_ cs_ interval cycle_unit_ t
FLEXSPI interval unit for flash device select.

typedef enum _flexspi_ahb_write_wait_unit flexspi_ahb_ write wait_ unit_t
FLEXSPI AHB wait interval unit for writing.

typedef enum _flexspi_ip_error_code flexspi_ip_error_ code_t
Error Code when IP command Error detected.

typedef enum _flexspi_ahb_error_code flexspi_ahb_ error_ code_t
Error Code when AHB command Error detected.

2.16. FLEXSPI: Flexible Serial Peripheral Interface Driver 233

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

typedef enum _flexspi_port flexspi_port_t
FLEXSPI operation port select.

typedef enum _flexspi_arb_command_source flexspi_arb_ command_ source_t
Trigger source of current command sequence granted by arbitrator.

typedef enum _flexspi command_type flexspi_command__type_t
Command type.

typedef struct _flexspi_ahbBuffer_config flexspi_ ahbBuffer_ config_t
typedef struct _flexspi_ahbBuffers_ctrl flexspi_ahbBuffers_ ctrl_t
Structure to control all AHB buffers.

typedef struct _flexspi_config flexspi_ config_t
FLEXSPI configuration structure.

typedef struct _flexspi_device_config flexspi_ device_ config_t
External device configuration items.

typedef struct _flexspi_transfer flexspi_ transfer_t
Transfer structure for FLEXSPIL.

typedef struct _flexspi_handle flexspi__handle_t

typedef void (*flexspi_ transfer_ callback_t)(FLEXSPI_Type *base, flexspi_handle_t *handle,
status_t status, void *userData)

FLEXSPI transfer callback function.
typedef struct _flexspi_addr_map_config flexspi_addr_map_ config_t

Address mapping configuration structure.

FSL FEATURE FLEXSPI AHB BUFFER COUNT
FLEXSPI_LUT_SEQ(cmd0, pad0, op0, cmmd1, padl, opl)
Formula to form FLEXSPI instructions in LUT table.

struct _ flexspi_ ahbBuffer_ config
#include <fsl_flexspi.h>

Public Members
uint8_t priority
This priority for AHB Master Read which this AHB RX Buffer is assigned.
uint8_t masterIndex
AHB Master ID the AHB RX Buffer is assigned.
uint16_t bufferSize
AHB buffer size in byte.

bool enablePrefetch
AHB Read Prefetch Enable for current AHB RX Buffer corresponding Master, allows
prefetch disable/enable separately for each master.
struct _ flexspi_ahbBuffers_ ctrl
#include <fsl_flexspi.h> Structure to control all AHB buffers.

234 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Public Members

flexspi_ahbBuffer_config_t buffer[FSL_FEATURE_FLEXSPI_AHB_BUFFER_COUNTn(0)]
Configurations of all AHB buffers.

struct _ flexspi_ config
#include <fsl_flexspi.h> FLEXSPI configuration structure.

Public Members

flexspi_read_sample_clock_t rxSampleClock
Sample Clock source selection for Flash Reading.

bool enableSckFreeRunning
Enable/disable SCK output free-running.

bool enableCombination
Enable/disable combining PORT A and B Data Pins (SIOA[3:0] and SIOB[3:0]) to support
Flash Octal mode.

bool enableDoze
Enable/disable doze mode support.

bool enableHalfSpeed Access
Enable/disable divide by 2 of the clock for half speed commands.

flexspi_read_sample_clock_t rxSampleClockPortB
Sample Clock source_b selection for Flash Reading.

bool rxSampleClockDiff
Sample Clock source or source_b selection for Flash Reading.

bool enableSckBDiffOpt
Enable/disable SCKB pad use as SCKA differential clock output, when enable, Port B
flash access is not available.

bool enableSameConfigForAll
Enable/disable same configuration for all connected devices when enabled, same con-
figuration in FLASHA1CRx is applied to all.

uint16_t seqTimeoutCycle
Timeout wait cycle for command sequence execution, timeout after ahbGrantTimeout-
Cyle*1024 serial root clock cycles.

uint8_t ipGrantTimeoutCycle
Timeout wait cycle for IP command grant, timeout after ipGrantTimeoutCycle*1024
AHB clock cycles.

uint8_t txWatermark
FLEXSPI IP transmit watermark value.

uint8_t rxWatermark
FLEXSPI receive watermark value.

struct _ flexspi_ device_ config
#include <fsl_flexspi.h> External device configuration items.

2.16. FLEXSPI: Flexible Serial Peripheral Interface Driver 235

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Public Members

uint32_t flexspiRootClk
FLEXSPI serial root clock.

bool isSck2Enabled
FLEXSPI use SCK2.

uint32_t flashSize
Flash size in KByte.

bool addressShift
Address shift.

flexspi_cs_interval _cycle_unit_t CSIntervalUnit
CS interval unit, 1 or 256 cycle.

uint16_t CSInterval
CS line assert interval, multiply CS interval unit to get the CS line assert interval cycles.

uint8_t CSHoldTime
CS line hold time.

uint8_t CSSetupTime
CS line setup time.

uint8_t dataValidTime
Data valid time for external device.

uint8_t columnspace
Column space size.

bool enableWordAddress
If enable word address.

uint8_t AWRSeqIndex
Sequence ID for AHB write command.

uint8_t AWRSeqNumber
Sequence number for AHB write command.

uint8_t ARDSeqlndex
Sequence ID for AHB read command.

uint8_t ARDSeqNumber
Sequence number for AHB read command.
flexspi_ahb_write_wait_unit_t AHBWriteWaitUnit
AHB write wait unit.
uint16_t AHBWriteWaitInterval

AHB write wait interval, multiply AHB write interval unit to get the AHB write wait
cycles.

bool enableWriteMask
Enable/Disable FLEXSPI drive DQS pin as write mask when writing to external device.

struct _ flexspi_ transfer
#include <fsl_flexspi.h> Transfer structure for FLEXSPIL.

236 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Public Members
uint32_t deviceAddress
Operation device address.
flexspi_port_t port
Operation port.

flexspi_command_type_t cmdType

Execution command type.
uint8_t seqIndex

Sequence ID for command.
uint8_t SeqNumber

Sequence number for command.
uint32_t *data

Data buffer.
size_t dataSize

Data size in bytes.

struct _ flexspi_ handle
#include <fsl_flexspi.h> Transfer handle structure for FLEXSPI.

Public Members
uint32_t state

Internal state for FLEXSPI transfer
uint8_t *data

Data buffer.

size_t dataSize
Remaining Data size in bytes.
size_t transferTotalSize
Total Data size in bytes.
flexspi_transfer_callback_t completionCallback
Callback for users while transfer finish or error occurred
void *userData
FLEXSPI callback function parameter.

struct _ flexspi_ addr_ map_ config
#include <fsl_flexspi.h> Address mapping configuration structure.

Public Members
uint32_t addrStart

Remapping start address.
uint32_t addrEnd

Remapping end address.

uint32_t addrOffset
Address offset.

2.16. FLEXSPI: Flexible Serial Peripheral Interface Driver 237

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

bool remapEnable
Enable address remapping.

struct ahbConfig

Public Members

uint8_t ahbGrantTimeoutCycle
Timeout wait cycle for AHB command grant, timeout after ahbGrantTimeoutCyle*1024
AHB clock cycles.

uint16_t ahbBusTimeoutCycle
Timeout wait cycle for AHB read/write access, timeout after ahbBusTimeoutCy-
cle*1024 AHB clock cycles.

uint8_t resumeWaitCycle
Wait cycle for idle state before suspended command sequence resume, timeout after
ahbBusTimeoutCycle AHB clock cycles.

flexspi_ahbBuffer_config_t buffer[FSL_FEATURE_FLEXSPI_AHB_BUFFER_COUNTnN(0)]
AHB buffer size.

bool enableClear AHBBufferOpt
Enable/disable automatically clean AHB RX Buffer and TX Buffer when FLEXSPI re-
turns STOP mode ACK.

bool enableRead AddressOpt
Enable/disable remove AHB read burst start address alignment limitation. when en-
able, there is no AHB read burst start address alignment limitation.

bool enableAHBPrefetch
Enable/disable AHB read prefetch feature, when enabled, FLEXSPI will fetch more data
than current AHB burst.

bool enable AHBBufferable
Enable/disable AHB bufferable write access support, when enabled, FLEXSPI return
before waiting for command execution finished.

bool enable AHBCachable
Enable AHB bus cachable read access support.

2.17 FLEXSPI DMA Driver

void FLEXSPI_ TransferCreateHandleDMA (FLEXSPI_Type *base, flexspi dma_handle_t *handle,
flexspi_dma_callback_t callback, void *userData,
dma_handle_t *txDmaHandle, dma_handle_t

*rxDmaHandle)
Initializes the FLEXSPI handle for transfer which is used in transactional functions and set
the callback.
Parameters

* base — FLEXSPI peripheral base address
* handle — Pointer to flexspi_dma_handle_t structure
* callback — FLEXSPI callback, NULL means no callback.

* userData — User callback function data.

238 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

* txDmaHandle — User requested DMA handle for TX DMA transfer.
* rxDmaHandle — User requested DMA handle for RX DMA transfer.

void FLEXSPI_TransferUpdateSizeDMA (FLEXSPI_Type *base, flexspi_dma_handle_t *handle,
flexspi_dma_transfer_nsize_t nsize)

Update FLEXSPI DMA transfer source data transfer size(SSIZE) and destination data trans-
fer size(DSIZE).

See also:

flexspi_dma_transfer_nsize_t .

Parameters
* base — FLEXSPI peripheral base address
* handle — Pointer to flexspi_dma_handle_t structure

* nsize — FLEXSPI DMA transfer data transfer size(SSIZE/DSIZE), by default
the size is KFLEXPSI_DMAnRSize1Bytes(one byte).

status_t FLEXSPI_ TransferDMA (FLEXSPI_Type *base, flexspi_dma_handle_t *handle,
flexspi_transfer_t *xfer)

Transfers FLEXSPI data using an dma non-blocking method.

This function writes/receives data to/from the FLEXSPI transmit/receive FIFO. This function
is non-blocking.

Parameters
* base — FLEXSPI peripheral base address.
* handle — Pointer to flexspi_dma_handle_t structure
* xfer — FLEXSPI transfer structure.
Return values
* kStatus_ FLEXSPI_ Busy — FLEXSPI is busy transfer.

* kStatus_InvalidArgument — The watermark configuration is invalid, the wa-
termark should be power of 2 to do successfully DMA transfer.

* kStatus_ Success — FLEXSPI successfully start dma transfer.

void FLEXSPI_ TransferAbort DMA (FLEXSPI_Type *base, flexspi dma_handle_t *handle)
Aborts the transfer data using dma.

This function aborts the transfer data using dma.
Parameters
* base — FLEXSPI peripheral base address.
* handle — Pointer to flexspi_dma_handle_t structure

status_t FLEXSPI_ TransferGetTransferCountDMA (FLEXSPI_Type *base, flexspi_ dma_handle_t
*handle, size_t *count)

Gets the transferred counts of transfer.
Parameters
* base — FLEXSPI peripheral base address.
* handle — Pointer to flexspi_dma_handle_t structure.

* count — Bytes transfer.

2.17. FLEXSPI DMA Driver 239

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Return values
* kStatus_ Success — Succeed get the transfer count.

* kStatus_ NoTransferInProgress— There is not a non-blocking transaction cur-
rently in progress.

FSL_FLEXSPI_DMA_DRIVER_ VERSION
FLEXSPI DMA driver version 2.2.1.
enum _ flexspi_ dma_ ntransfer_ size
dma transfer configuration
Values:
enumerator kFLEXPSI__DMAnSizel Bytes
Source/Destination data transfer size is 1 byte every time
enumerator kFLEXPSI_ DM AnSize2Bytes
Source/Destination data transfer size is 2 bytes every time
enumerator kFLEXPSI_DMAnSize4Bytes
Source/Destination data transfer size is 4 bytes every time
typedef struct _flexspi_dma_handle flexspi__dma_ handle_t
typedef void (*flexspi_dma_ callback_t)(FLEXSPI_Type *base, flexspi_dma_handle_t *handle,
status_t status, void *userData)
FLEXSPI dma transfer callback function for finish and error.
typedef enum _flexspi_dma_ntransfer_size flexspi_dma_ transfer nsize_t
dma transfer configuration

struct _ flexspi__dma_ handle

#include <fsl_flexspi_dma.h> FLEXSPI DMA transfer handle, users should not touch the con-
tent of the handle.

Public Members
dma_handle_t *txDmaHandle
dma handler for FLEXSPI Tx.

dma_handle_t *rxDmaHandle
dma handler for FLEXSPI Rx.

size_t transferSize

Bytes need to transfer.
flexspi_dma_transfer_nsize_t nsize

dma SSIZE/DSIZE in each transfer.

uint8_t nbytes
dma minor byte transfer count initially configured.

uint8 t count
The transfer data count in a DMA request.

uint32_t state
Internal state for FLEXSPI dma transfer.

flexspi_dma_callback_t completionCallback
A callback function called after the dma transfer is finished.

240 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

void *userData
User callback parameter

2.18 FMEAS: Frequency Measure Driver

static inline void FMEAS__ StartMeasure(FMEAS_SYSCON_Type *base)
Starts a frequency measurement cycle.

Parameters
* base —: SYSCON peripheral base address.

static inline bool FMEAS_IsMeasureComplete(FMEAS_SYSCON_Type *base)
Indicates when a frequency measurement cycle is complete.

Parameters
* base —: SYSCON peripheral base address.

Returns
true if a measurement cycle is active, otherwise false.

uint32_t FMEAS_ GetFrequency(FMEAS_SYSCON_Type *base, uint32_t refClockRate)
Returns the computed value for a frequency measurement cycle.

Parameters
* base —: SYSCON peripheral base address.

* refClockRate — : Reference clock rate used during the frequency measure-
ment cycle.

Returns
Frequency in Hz.

FSL_FMEAS_DRIVER_ VERSION
Defines LPC Frequency Measure driver version 2.1.1.

typedef FREQME_Type FMEAS_ SYSCON_ Type
FMEAS SYSCON_FREQMECTRL_CAPVAL_MASK
FMEAS SYSCON_FREQMECTRL_CAPVAL_SHIFT
FMEAS_SYSCON_FREQMECTRL_CAPVAL
FMEAS_SYSCON_FREQMECTRL_PROG_MASK
FMEAS_SYSCON_FREQMECTRL_PROG_SHIFT
FMEAS SYSCON_FREQMECTRL_PROG

2.19 GDMA: General DMA(GDMA) Driver

void GDMA_ Init(GDMA_Type *base)
Initializes GDMA peripheral.

It ungates the GDMA access clock, after this function, the GDMA module is ready to be used.
Parameters

* base — GDMA peripheral base address.

2.18. FMEAS: Frequency Measure Driver 241

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

void GDMA_ Deinit(GDMA_Type *base)
Deinitializes GDMA peripheral.

Parameters
* base —- GDMA peripheral base address.

static inline void GDMA_ SetChannelSourceAddress(GDMA_Type *base, uint8_t channel, uint32_t
addr)

Set GDMA channel source address.
Parameters
* base — GDMA peripheral base address.
* channel - GDMA channel number.
* addr - Source address.

static inline void GDMA_ SetChannelDestAddress(GDMA_Type *base, uint8_t channel, uint32_t
addr)

Set GDMA channel destination address.
Parameters
* base — GDMA peripheral base address.
* channel - GDMA channel number.
* addr — Destination address.

static inline void GDMA __ StartChannel(GDMA_Type *base, uint8_t channel)
Start GDMA channel to work.

Parameters
* base —- GDMA peripheral base address.
* channel - GDMA channel number.

static inline void GDMA_ StopChannel(GDMA_Type *base, uint8_t channel)
Stop GDMA channel.

Parameters
* base — GDMA peripheral base address.
* channel — GDMA channel number.

static inline bool GDMA _ IsChannelBusy(GDMA_Type *base, uint8_t channel)
Return whether GDMA channel is processing transfer.

When GDMA_StopChannel is called, if the channel is on service, it does not stop immedi-
ately, application could call this API to check whether the channel is stopped.

Parameters
* base —- GDMA peripheral base address.
* channel - GDMA channel number.

Returns
True if the channel is busy, false if not.

static inline void GDMA__EnableChannellnterrupts(GDMA_Type *base, uint8_t channel, uint32_t
interrupts)

Enables the interrupt for the GDMA transfer.
Parameters

* base — GDMA peripheral base address.

242 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

* channel - GDMA channel number.

o interrupts — The interrupts to enable, it is ORed value of
_gdma_interrupt_enable.

static inline void GDMA_ DisableChannellnterrupts(GDMA_Type *base, uint8_t channel, uint32_t
interrupts)

Disables the interrupt for the GDMA transfer.
Parameters
* base — GDMA peripheral base address.
* channel - GDMA channel number.

o interrupts — The interrupts to disable, it is ORed value of
_gdma_interrupt_enable.

static inline uint32_t GDMA__ GetChannellnterruptFlags(GDMA_Type *base, uint8_t channel)
Get the GDMA channel interrupt flags.

Parameters
* base —- GDMA peripheral base address.
* channel - GDMA channel number.

Returns
The interrupt flags, it is OR’ed value of _gdma_interrupt_flags.

static inline void GDMA_ ClearChannellnterruptFlags(GDMA_Type *base, uint8_t channel,
uint32_t flags)

Clear the GDMA channel interrupt flags.

The kGDMA_ChannellnterruptFlag is OR’ed status of all other unmasked interrupt flags, it
could not be clear directly, it should be cleared by clear all other flags.

Parameters
* base — GDMA peripheral base address.
* channel - GDMA channel number.

o lags — The interrupt flags to clea, it is ORed value of
_gdma_interrupt_flags.

static inline uint32_t GDMA_ GetChannelFinishedDescriptorNumber(GDMA_Type *base, uint8_t
channel)

Get the number of finished descriptor.
The counter increases when an item of descriptor is done in linklist mode.
Parameters
* base — GDMA peripheral base address.
* channel - GDMA channel number.

Returns
Number of finished descriptor.

static inline void GDMA_ ClearChannelFinishedDescriptorNumber(GDMA_Type *base, uint8_t
channel)

Clear the number of finished descriptor.
Parameters
* base — GDMA peripheral base address.

* channel - GDMA channel number.

2.19. GDMA: General DMA(GDMA) Driver 243

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

static inline void GDMA_ SetChannelPriority(GDMA_Type *base, uint8_t channel,
gdma_priority_t priority)

Set priority of channel.
Parameters
* base —- GDMA peripheral base address.
* channel - GDMA channel number.
» priority — Channel priority value.

status_t GDMA_ SetChannelTransferConfig(GDMA_Type *base, uint8_t channel, const
gdma_channel_xfer_config_t *config)

Set channel transfer configuration..

This function configures the channel transfer, after configured, GDMA_StartChannel could
be called to start the transfer.

This function must be called when previous transfer finished. Application can use
GDMA_IsChannelBusy to check whether the channel has finished the previous work.

Note: The transfer configuration must follow the requirements:
* SRCBSIZE * SRCWIDTH == DESTBSIZE * DESTWIDTH
» If wrap not used, the address should align with WIDTH
 If wrap used, the address should align with WIDTH * BURST_SIZE.

Parameters
* base — GDMA base address.

¢ channel - GDMA channel number. @config Pointer to the transfer configu-
ration.

Return values
* kStatus_ Fail - GDMA is busy with previous transfer.
* kStatus_ Success — Configuration set successfully.
* kStatus_ InvalidArgument — Configuration wrong.

void GDMA_ CreateHandle(gdma_handle_t *handle, GDMA_Type *base, uint8_t channel)
Creates the GDMA handle.

This function is called if using transaction API for GDMA. This function initializes the inter-
nal state of GDMA handle.

Parameters
* handle - GDMA handle pointer. It stores callback function and parameters.
* base — GDMA peripheral base address.
* channel - GDMA channel number.

void GDMA_ SetCallback(gdma_handle_t *handle, gdma_callback_t callback, void *userData)
Installs a callback function for the GDMA transfer.

This callback is called in GDMA IRQ handler to inform user the interrupt status.
Parameters
* handle —- GDMA handle pointer.
* callback — GDMA callback function pointer.

244 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

» userData — Parameter for callback function.

status_t GDMA_ SubmitTransfer(gdma_handle_t *handle, gdma_channel _xfer_config t *config)
Submits the GDMA channel transfer request.

After this function, user could call GDMA_StartTransfer to start GDMA transfer.

This function must be called when previous transfer finished. Application can use
GDMA_IsChannelBusy to check whether the channel has finished the previous work.

Note: The transfer configuration must follow the requirements:
* SRCBSIZE * SRCWIDTH == DESTBSIZE * DESTWIDTH
» If wrap not used, the address should align with WIDTH
« If wrap used, the address should align with WIDTH * BURST_SIZE.

Parameters

* handle - GDMA handle pointer.

* config — Pointer to GDMA transfer configuration structure.
Return values

* kStatus_ Fail - GDMA is busy with previous transfer.

* kStatus_ Success — Configuration set successfully.

* kStatus_ InvalidArgument — Configuration wrong.

void GDMA _ StartTransfer(gdma_handle_t *handle)
GDMA start transfer.

User can call this function after GDMA_SubmitTransfer.
Parameters
* handle - GDMA handle pointer.

void GDMA_ AbortTransfer(gdma_handle_t *handle)
Abort running transfer by handle.

When this function is called, if the channel is on service, it only stops when service finished.
Parameters
* handle - GDMA handle pointer.

void GDMA_TRQHandle(GDMA_Type *base)
GDMA IRQ handler.

This function checks all GDMA channel interrupts and inform application the interrupt
flags through user registered callback.

Parameters
* base — GDMA peripheral.
FSL__GDMA_DRIVER_VERSION
enum _gdma_ transfer_ width
GDMA transfer width.

Values:

2.19. GDMA: General DMA(GDMA) Driver 245

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kGDMA_ TransferWidth1Byte
1 byte.

enumerator kGDMA_ TransferWidth2Byte
2 bytes.

enumerator kGDMA_ TransferWidth4Byte
4 bytes.

enum _ gdma_ burst_ size
GDMA burst size.

Values:

enumerator kGDMA_BurstSizel
Burst 1.

enumerator kGDMA_BurstSize4
Burst 4.

enumerator kGDMA_ BurstSize8
Burst 8.

enumerator kGDMA_ BurstSizel6
Burst 16.

enumerator kGDMA_ BurstSizeWrap4
Wrap 4.

enumerator kGDMA_ BurstSizeWrap8
Wrap 8.

enumerator kGDMA_ BurstSizeWrapl6
Wrap 16.

enum _gdma_ ahb_ prot

GDMA AHB HPROT flags. .

Values:

enumerator kGDMA_ ProtUserMode
The access is in user mode.

enumerator kGDMA_ ProtPrevilegedMode
The access is in previleged mode.

enumerator kGDMA_ProtUnbufferable
The access is not bufferable.

enumerator kGDMA_ ProtBufferable
The access is bufferable.

enumerator kGDMA_ ProtUncacheable
The access is not cacheable.

enumerator kGDMA_ ProtCacheable
The access is cacheable.

enum _ gdma_ priority
GDMA channel priority.

Values:

246

Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kGDMA__ChannelPriority0
Lowest channel priority - priority 0

enumerator kGDMA__ ChannelPriority1l
Channel priority 1

enumerator kGDMA__ChannelPriority2
Channel priority 2

enumerator kGDMA__ChannelPriority3
Channel priority 3

enumerator kGDMA__ChannelPriority4
Channel priority 4

enumerator kGDMA __ChannelPriority5
Channel priority 5

enumerator kGDMA__ChannelPriority6
Channel priority 6

enumerator kGDMA__ChannelPriority7
Channel priority 7

enumerator kGDMA__ ChannelPriority8
Channel priority 8

enumerator kGDMA__ChannelPriority9
Channel priority 9

enumerator kGDMA__ ChannelPriority10
Channel priority 10

enumerator kGDMA_ ChannelPriority11
Channel priority 11

enumerator kGDMA_ ChannelPriority12
Channel priority 12

enumerator kGDMA__ChannelPriority13
Channel priority 13

enumerator kGDMA__ ChannelPriority14
Channel priority 14

enumerator kGDMA__ChannelPriorityl5
Highest channel priority - priority 15

enum _gdma_ interrupt_ enable
GDMA interrupts to enable .
Values:

enumerator kGDMA_ DescriptorTransferDonelnterruptEnable

Descriptor transfer done interrupt. This happens when the descriptor is configured to
generate interrupt when transfer done.

enumerator kGDMA__ AddressErrorInterruptEnable
Channel source or destination address is not aligned to corresponding transfer width.

enumerator kGDMA_ BusErrorInterruptEnable
AHB bus interrupt.

2.19. GDMA: General DMA(GDMA) Driver 247

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kGDMA_ TransferDonelnterruptEnable
DMA transfer done interrupt.

enumerator kGDMA_ BlockTransferDonelnterruptEnable
DMA block single/burst transfer done interrupt.
enumerator kGDMA__ AlllnterruptEnable
All interrupt enable.
enum _ gdma_ interrupt_ flags
GDMA interrupt status flags. .
Values:

enumerator kGDMA_ DescriptorTransferDoneFlag

Descriptor transfer done interrupt. This happens when the descriptor is configured to
generate interrupt when transfer done.

enumerator kGDMA_ ChannellnterruptFlag
OR of the content of the respective unmasked interrupt of channel.

enumerator kGDMA__ AddressErrorFlag
Channel source or destination address is not aligned to corresponding transfer width.
enumerator kGDMA_ BusErrorFlag
AHB bus interrupt.
enumerator kGDMA_ TransferDoneFlag
DMA transfer done interrupt.
enumerator kGDMA_ BlockTransferDoneFlag
DMA block single/burst transfer done interrupt.
enumerator kGDMA__ AlllnterruptFlag
All interrupt flags.
typedef enum _gdma_transfer_width gdma_ transfer_ width_t
GDMA transfer width.
typedef enum _gdma_burst_size gdma_ burst_ size_t
GDMA burst size.
typedef enum _gdma_priority gdma_ priority_t
GDMA channel priority.

typedef struct _gdma_channel_xfer_config gdma_ channel xfer_ config_t
GDMA channel transfer configuration.

Note: The transfer configuration must follow the requirements:
* SRCBSIZE * SRCWIDTH == DESTBSIZE * DESTWIDTH
 If wrap not used, the address should align with WIDTH
» If wrap used, the address should align with WIDTH * BURST_SIZE.

typedef void (*gdma_ callback_ t)(struct _gdma_handle *handle, void *userData, uint32_t
interrupts)

Define Callback function for GDMA.

handle: Pointer to the GDMA driver handle. userData: The userData registered using
GDMA_SetCallback. interrupts: The interrupts flags of the specific channel.

248 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

typedef struct _gdma_handle gdma_handle_t
GDMA transfer handle structure.

gdma_ descriptor_t
struct _ ALIGNED (16) _gdma_ descriptor
GDMA channel link list descriptor structure.

GDMA_DESC_LLI(linkListAddr, stopAfterDescFinished, enableDescInterrupt)
Macro for GDMA link list descriptor LLIL

This macro constructs gdma_descriptor_t::1li.
Parameters
¢ linkListAddr — Address of next link list descriptor item.
* stopAfterDescFinished — Stop or not after this descriptor transfer done.

* enableDescInterrupt — Generate interrupt after this descriptor transfer
done.

GDMA_DESC_CTRL(ahbProt, srcAddrinc, destAddrInc, srcWidth, destWidth, srcBurstSize,
destBurstSize, length)

struct _gdma_ channel xfer config
#include <fsl_gdma.h> GDMA channel transfer configuration.

Note: The transfer configuration must follow the requirements:
* SRCBSIZE * SRCWIDTH == DESTBSIZE * DESTWIDTH
 If wrap not used, the address should align with WIDTH
» If wrap used, the address should align with WIDTH * BURST_SIZE.

Public Members
uint32_t srcAddr
Source data address
uint32_t destAddr
Destination data address
uint8_t ahbProt
GDMA AHB HPROT flags, it could be OR’ed value of _gdma_ahb_prot.
gdma_burst_size_t srcBurstSize
Source address burst size.
gdma_burst_size_t destBurstSize
Destination address burst size.
gdma_transfer_width_t sccWidth
Source transfer width.
gdma_transfer_width_t destWidth
Destination transfer width.

bool srcAddrInc
Increase source address on each successive access.

2.19. GDMA: General DMA(GDMA) Driver 249

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

bool destAddrInc
Increase destination address on each successive access.

uint16_t transferLen
Transfer length in bytes, max value is 8 * 1024 - 1, should align with transfer size.

bool enableLinkList
Enable link list or not.

bool enableDescInterrupt

Generate interrupt when descriptor transfer finished, only used when enableLinkList
is true.

bool stopAfterDescFinished
Stop channel when descriptor transfer finished, only used when enableLinkList is true.

uint32_t linkList Addr
Link list address, only used when enableLinkList is true.

struct _gdma_ handle
#include <fsl_gdma.h> GDMA transfer handle structure.

Public Members
GDMA_Type *gdma
GDMA peripheral base address

uint8_t channel
GDMA channel number

gdma_callback_t callback
Callback function. Invoked interrupt happens.

void *userData
Callback function parameter

2.20 I2C: Inter-Integrated Circuit Driver

2.21 1I2C DMA Driver

void 12C_ MasterTransferCreateHandleDMA (I2C_Type *base, i2c_master_dma_handle_t *handle,
i2c_master_dma_transfer_callback_t callback, void
*userData, dma_handle_t *dmaHandle)

Init the I12C handle which is used in transactional functions.
Parameters
* base — I2C peripheral base address
* handle — pointer to i2c_master_dma_handle_t structure
* callback — pointer to user callback function
* userData — user param passed to the callback function
* dmaHandle - DMA handle pointer

250 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

status_t 12C_ MasterTransferDMA (I12C_Type *base, i2¢_master_dma_handle_t *handle,
i2c_master_transfer_t *xfer)

Performs a master dma non-blocking transfer on the I2C bus.
Parameters
* base — I2C peripheral base address
* handle — pointer to i2c_master_dma_handle_t structure
* xfer — pointer to transfer structure of i2c_master_transfer_t
Return values
* kStatus_ Success — Sucessully complete the data transmission.
e kStatus_I2C_ Busy — Previous transmission still not finished.
* kStatus_I2C_Timeout — Transfer error, wait signal timeout.
* kStatus_ I2C_ ArbitrationLost — Transfer error, arbitration lost.
* kStataus_ I2C_ Nak — Transfer error, receive Nak during transfer.

status_t 12C_ MasterTransferGetCountDMA (I12C_Type *base, i2¢_master_dma_handle_t *handle,
size_t *count)

Get master transfer status during a dma non-blocking transfer.
Parameters
* base — I2C peripheral base address
* handle — pointer to i2c_master_dma_handle_t structure
* count— Number of bytes transferred so far by the non-blocking transaction.

void 12C_ MasterTransferAbortDMA (I2C_Type *base, i2c_master_dma_handle_t *handle)
Abort a master dma non-blocking transfer in a early time.
Parameters
* base — I2C peripheral base address
* handle — pointer to i2c_master_dma_handle_t structure
FSL_I12C_DMA_ DRIVER_ VERSION
12C DMA driver version.
typedef struct _i2c_master_dma_handle i2¢c_master_dma_ handle_t
I12C master dma handle typedef.

typedef void (*i2c_master_dma_ transfer_ callback_ t)(I2C_Type *base, i2c_master_dma_handle_t
*handle, status_t status, void *userData)

I12C master dma transfer callback typedef.

typedef void (*flexcomm_ i2¢_dma_ master_irq handler_t)(I2C_Type *base,
i2¢c_master_dma_handle_t *handle)

Typedef for master dma handler.

12C_MAX_DMA_TRANSFER_COUNT
Maximum lenght of single DMA transfer (determined by capability of the DMA engine)

struct i2c master dma_handle
#include <fsl_i2c_dma.h> 12C master dma transfer structure.

2.21. 12C DMA Driver 251

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Public Members

uint8_t state
Transfer state machine current state.

uint32_t transferCount
Indicates progress of the transfer
uint32_t remainingBytesDMA
Remaining byte count to be transferred using DMA.
uint8_t *pbuf
Buffer pointer for current state.
bool checkAddrNack
Whether to check the nack signal is detected during addressing.
dma_handle_t *dmaHandle
The DMA handler used.
i2c_master_transfer._t transfer
Copy of the current transfer info.
i2c_master_dma_transfer_callback_t completionCallback
Callback function called after dma transfer finished.

void *userData
Callback parameter passed to callback function.

2.22 12C Driver

FSL_12C_DRIVER VERSION

I12C driver version.

I2C status return codes.
Values:

enumerator kStatus_ 12C_ Busy

The master is already performing a transfer.
enumerator kStatus 12C_Idle

The slave driver is idle.
enumerator kStatus I12C_Nak

The slave device sent a NAK in response to a byte.
enumerator kStatus_I2C_ InvalidParameter

Unable to proceed due to invalid parameter.
enumerator kStatus_12C_ BitError

Transferred bit was not seen on the bus.
enumerator kStatus_I12C_ ArbitrationLost

Arbitration lost error.

enumerator kStatus_ 12C_ NoTransferInProgress
Attempt to abort a transfer when one is not in progress.

252

Chapter 2

. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kStatus_ I12C_ DmaRequestFail
DMA request failed.

enumerator kStatus_ 12C_ StartStopError
Start and stop error.

enumerator kStatus_ I2C_ UnexpectedState
Unexpected state.
enumerator kStatus I2C_Timeout
Timeout when waiting for I12C master/slave pending status to set to continue transfer.

enumerator kStatus 12C Addr Nak
NAK received for Address

enumerator kStatus_ I12C_EventTimeout
Timeout waiting for bus event.

enumerator kStatus_ I12C_SclLowTimeout
Timeout SCL signal remains low.
enum _i2c_status_ flags
12C status flags.

Note: These enums are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2C_ MasterPendingFlag
The I12C module is waiting for software interaction. hit 0

enumerator kI2C_ MasterArbitrationLostFlag

The arbitration of the bus was lost. There was collision on the bus. bit 4
enumerator kI2C_ MasterStartStopErrorFlag

There was an error during start or stop phase of the transaction. hit 6
enumerator kI2C_ MasterldleFlag

The I2C master idle status. bit 5

enumerator kI2C_ MasterRxReadyFlag
The I2C master rx ready status. bit 1

enumerator kI2C_ MasterTxReadyFlag
The I2C master tx ready status. hit 2

enumerator kI2C_ MasterAddrNackFlag
The I2C master address nack status. hit 7
enumerator kI2C_ MasterDataNackFlag
The I2C master data nack status. bit 3
enumerator kI2C_ SlavePendingFlag
The I2C module is waiting for software interaction. hit 8
enumerator kI2C_ SlaveNotStretching
Indicates whether the slave is currently stretching clock (0 = yes, 1 = no). bit 11

enumerator kI2C_SlaveSelected
Indicates whether the slave is selected by an address match. bit 14

2.22. 12C Driver 253

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kI2C SaveDeselected

Indicates that slave was previously deselected (deselect event took place, wlc). bit 15

enumerator kI2C_SlaveAddressedFlag
One of the I2C slave’s 4 addresses is matched. bit 22

enumerator kI2C_ SlaveReceiveFlag
Slave receive data available. bit 9

enumerator kI2C_ SlaveTransmitFlag
Slave data can be transmitted. bit 10

enumerator kI2C_ SlaveAddressOMatchFlag
Slave addressO match. bit 20

enumerator kI2C_ SlaveAddress1MatchFlag
Slave address1 match. bit 12

enumerator kI2C_ SlaveAddress2MatchFlag
Slave address2 match. bit 13

enumerator kI2C_ SlaveAddress3MatchFlag
Slave address3 match. bit 21

enumerator kI2C_ MonitorReadyFlag
The I2C monitor ready interrupt. bit 16

enumerator kI2C_ MonitorOverflowFlag
The monitor data overrun interrupt. bit 17

enumerator kI2C_ MonitorActiveFlag
The monitor is active. bit 18

enumerator kI2C_ MonitorldleFlag
The monitor idle interrupt. bhit 19

enumerator kI2C_ EventTimeoutFlag
The bus event timeout interrupt. bit 24

enumerator kI2C_ SclTimeoutFlag
The SCL timeout interrupt. bit 25

enumerator kI2C_ MasterAllClearFlags
enumerator kI2C_ SlaveAllClearFlags

enumerator kI2C_ CommonAllClearFlags

enum _ i2c_ interrupt_ enable

12C interrupt enable.

Note: These enums are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2C_ MasterPendingInterruptEnable
The I2C master communication pending interrupt.

enumerator kI2C_ MasterArbitrationLostInterruptEnable
The I2C master arbitration lost interrupt.

254

Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kI2C_ MasterStartStopErrorInterrupt Enable
The I2C master start/stop timing error interrupt.

enumerator kI2C_ SlavePendingInterruptEnable
The 12C slave communication pending interrupt.

enumerator kI2C_SlaveNotStretchingInterruptEnable

The I2C slave not streching interrupt, deep-sleep mode can be entered only when this
interrupt occurs.

enumerator kI2C_ SlaveDeselectedInterruptEnable
The I2C slave deselection interrupt.

enumerator kI2C_ MonitorReadyInterruptEnable
The I2C monitor ready interrupt.

enumerator kI2C_ MonitorOverflowInterruptEnable
The monitor data overrun interrupt.

enumerator kI2C_ MonitorIdleInterruptEnable
The monitor idle interrupt.

enumerator kI2C_EventTimeoutInterruptEnable
The bus event timeout interrupt.

enumerator kI2C_ SclTimeoutInterruptEnable
The SCL timeout interrupt.

enumerator kI2C_Master AllInterruptEnable

enumerator kI2C_SlaveAllInterruptEnable

enumerator kI2C__ CommonAllInterruptEnable
12C_RETRY_ TIMES

Retry times for waiting flag.

12C_MASTER_TRANSMIT IGNORE_LAST NACK
Whether to ignore the nack signal of the last byte during master transmit.

I12C STAT MSTCODE IDLE
Master Idle State Code

12C_STAT MSTCODE_RXREADY
Master Receive Ready State Code

12C_STAT MSTCODE_TXREADY
Master Transmit Ready State Code

12C_STAT MSTCODE_NACKADR
Master NACK by slave on address State Code

12C_STAT MSTCODE_NACKDAT
Master NACK by slave on data State Code

12C_STAT SLVST ADDR
I12C_STAT SLVST RX

I2C_STAT_SLVST_TX

2.22. 12C Driver 255

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

2.23 1I2C Master Driver

void 12C_ MasterGetDefaultConfig(i2¢_master_config_t *masterConfig)
Provides a default configuration for the 12C master peripheral.

This function provides the following default configuration for the I2C master peripheral:

masterConfig->enableMaster = true;
masterConfig- >baudRate_ Bps = 100000U;
masterConfig->enableTimeout = false;

After calling this function, you can override any settings in order to customize the configu-
ration, prior to initializing the master driver with 12C_MasterlInit().

Parameters

* masterConfig — [out] User provided configuration structure for default val-
ues. Refer to i2c_master_config_t.

void 12C_ MasterInit(I2C_Type *base, const i2c_master._config_t *masterConfig, uint32_t
srcClock_Hz)

Initializes the I12C master peripheral.

This function enables the peripheral clock and initializes the I12C master peripheral as de-
scribed by the user provided configuration. A software reset is performed prior to config-
uration.

Parameters

* base — The I2C peripheral base address.

* masterConfig - User provided peripheral configuration. Use
I12C_MasterGetDefaultConfig() to get a set of defaults that you can
override.

* srcClock_Hz — Frequency in Hertz of the I12C functional clock. Used to cal-
culate the baud rate divisors, filter widths, and timeout periods.

void 12C_ MasterDeinit(I2C_Type *base)
Deinitializes the I2C master peripheral.

This function disables the 12C master peripheral and gates the clock. It also performs a
software reset to restore the peripheral to reset conditions.

Parameters
* base — The I2C peripheral base address.

uint32_t 12C_ GetInstance(I12C_Type *base)
Returns an instance number given a base address.

If an invalid base address is passed, debug builds will assert. Release builds will just return
instance number 0.

Parameters
* base — The I2C peripheral base address.

Returns
I2C instance number starting from 0.

static inline void I2C_ MasterReset(I2C_Type *base)
Performs a software reset.

Restores the I2C master peripheral to reset conditions.

Parameters

256 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

* base — The I2C peripheral base address.
static inline void 12C_ MasterEnable(I2C_Type *base, bool enable)
Enables or disables the I2C module as master.
Parameters
* base — The I2C peripheral base address.
* enable — Pass true to enable or false to disable the specified I12C as master.
uint32_t 12C_ GetStatusFlags(I2C_Type *base)
Gets the I2C status flags.

A bit mask with the state of all I2C status flags is returned. For each flag, the corresponding
bit in the return value is set if the flag is asserted.

See also:

_i2c_status_flags.

Parameters
* base — The I2C peripheral base address.

Returns
State of the status flags:

* 1: related status flag is set.
* 0: related status flag is not set.
static inline void 12C__ClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C status flag state.

Refer to KkI2C_CommonAllClearStatusFlags, kI2C_MasterAllClearStatusFlags and
kI2C_SlaveAllClearStatusFlags to see the clearable flags. Attempts to clear other flags
has no effect.

See also:
_i2c_status_flags, _i2c_master_status_flags and _i2c_slave_status_flags.

Parameters
* base — The I2C peripheral base address.

» statusMask — A bitmask of status flags that are to be cleared. The
mask is composed of the members in kI2C_CommonAllClearStatusFlags,
kI2C_MasterAllClearStatusFlags and kI2C_SlaveAllClearStatusFlags. You
may pass the result of a previous call to I2C_GetStatusFlags().

static inline void 12C_ MasterClearStatusFlags(I2C_Type *base, uint32_t statusMask)

Clears the I2C master status flag state.

Deprecated:
Do not use this function. It has been superceded by I12C_ClearStatusFlags The following
status register flags can be cleared:

» kI2C_MasterArbitrationLostFlag
» kI2C_MasterStartStopErrorFlag

2.23. 12C Master Driver 257

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Attempts to clear other flags has no effect.

See also:

_i2c_status_flags.

Parameters
* base — The I2C peripheral base address.

* statusMask — A bitmask of status flags that are to be cleared. The mask is
composed of _i2c_status_flags enumerators OR’d together. You may pass
the result of a previous call to I12C_GetStatusFlags().

static inline void 12C__EnableInterrupts(I2C_Type *base, uint32_t interruptMask)
Enables the I2C interrupt requests.

Parameters
* base — The I2C peripheral base address.

* interruptMask — Bit mask of interrupts to enable. See _i2c_interrupt_enable
for the set of constants that should be OR’d together to form the bit mask.

static inline void 12C_ DisableInterrupts(I2C_Type *base, uint32_t interruptMask)
Disables the I12C interrupt requests.

Parameters
* base — The I2C peripheral base address.

¢ interruptMask — Bit mask of interrupts to disable. See _i2c_interrupt_enable
for the set of constants that should be OR’d together to form the bit mask.

static inline uint32_t 12C_ GetEnabledInterrupts(I2C_Type *base)
Returns the set of currently enabled 12C interrupt requests.

Parameters
* base — The I2C peripheral base address.

Returns
A bitmask composed of _i2c_interrupt_enable enumerators OR’d together to
indicate the set of enabled interrupts.

void 12C_ MasterSetBaudRate(I2C_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
Sets the I12C bus frequency for master transactions.

The I2C master is automatically disabled and re-enabled as necessary to configure the baud
rate. Do not call this function during a transfer, or the transfer is aborted.

Parameters
* base — The I2C peripheral base address.
* srcClock_Hz —12C functional clock frequency in Hertz.
* baudRate Bps — Requested bus frequency in bits per second.

void 12C_ MasterSet TimeoutValue(I2C_Type *base, uint8_t timeout_Ms, uint32_t srcClock_Hz)
Sets the I2C bus timeout value.

If the SCL signal remains low or bus does not have event longer than the timeout value,
kI2C_SclTimeoutFlag or kI2C_EventTimeoutFlag is set. This can indicete the bus is held by
slave or any fault occurs to the I2C module.

Parameters

258 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

* base — The I2C peripheral base address.
* timeout_ Ms — Timeout value in millisecond.
* srcClock__Hz —I12C functional clock frequency in Hertz.
static inline bool I2C_ MasterGetBusIdleState(I2C_Type *base)
Returns whether the bus is idle.
Requires the master mode to be enabled.
Parameters
* base — The I2C peripheral base address.
Return values
* true — Bus is busy.
* false — Bus is idle.
status_t 12C_ MasterStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)

Sends a START on the I2C bus.
This function is used to initiate a new master mode transfer by sending the START signal.

The slave address is sent following the I2C START signal.
Parameters
* base — I2C peripheral base pointer
¢ address — 7-bit slave device address.
* direction — Master transfer directions(transmit/receive).
Return values
* kStatus_ Success — Successfully send the start signal.
* kStatus_I2C_ Busy — Current bus is busy.
status_t 12C_ MasterStop(I2C_Type *base)
Sends a STOP signal on the I2C bus.

Return values
* kStatus_ Success — Successfully send the stop signal.

* kStatus_I2C_ Timeout — Send stop signal failed, timeout.

static inline status_t 12C_ MasterRepeatedStart(I2C_Type *base, uint8_t address, i2¢_direction _t
direction)

Sends a REPEATED START on the 12C bus.
Parameters
* base — I2C peripheral base pointer
* address — 7-bit slave device address.
* direction — Master transfer directions(transmit/receive).
Return values
* kStatus_ Success — Successfully send the start signal.
* kStatus_I2C_Busy — Current bus is busy but not occupied by current 12C
master.

2.23. 12C Master Driver 259

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

status_t 12C_ MasterWriteBlocking(I2C_Type *base, const void *txBuff, size_t txSize, uint32_t
flags)

Performs a polling send transfer on the I2C bus.

Sends up to txSize number of bytes to the previously addressed slave device. The slave may
reply with a NAK to any byte in order to terminate the transfer early. If this happens, this
function returns kStatus_I2C_Nak.

Parameters
* base — The I2C peripheral base address.
* txBuff — The pointer to the data to be transferred.
* txSize — The length in bytes of the data to be transferred.

* flags — Transfer control flag to control special behavior like suppressing
start or stop, for normal transfers use kI2C_TransferDefaultFlag

Return values
* kStatus_ Success — Data was sent successfully.
* kStatus_ I2C_ Busy — Another master is currently utilizing the bus.
* kStatus_I2C_Nak — The slave device sent a NAK in response to a byte.
* kStatus_I2C_ ArbitrationLost — Arbitration lost error.

status_t 12C_ MasterReadBlocking(I2C_Type *base, void *rxBuff, size_t rxSize, uint32_t flags)
Performs a polling receive transfer on the 12C bus.

Parameters
* base — The I2C peripheral base address.
* rxBuff — The pointer to the data to be transferred.
* rxSize — The length in bytes of the data to be transferred.

* flags — Transfer control flag to control special behavior like suppressing
start or stop, for normal transfers use kI2C_TransferDefaultFlag

Return values
* kStatus_ Success — Data was received successfully.
* kStatus_ I2C_ Busy — Another master is currently utilizing the bus.
* kStatus_I2C_Nak — The slave device sent a NAK in response to a byte.
* kStatus_I2C_ ArbitrationLost — Arbitration lost error.

status_t 12C_ MasterTransferBlocking(I2C_Type *base, i2c_master_transfer_t *xfer)
Performs a master polling transfer on the I2C bus.

Note: The API does not return until the transfer succeeds or fails due to arbitration lost or
receiving a NAK.

Parameters
* base — I2C peripheral base address.
* xfer — Pointer to the transfer structure.
Return values
* kStatus_ Success — Successfully complete the data transmission.

» kStatus_I2C_Busy — Previous transmission still not finished.

260 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

* kStatus_I2C_ Timeout — Transfer error, wait signal timeout.

* kStatus_ I2C_ ArbitrationLost — Transfer error, arbitration lost.

* kStataus_ I2C_ Nak — Transfer error, receive NAK during transfer.

* kStataus_I2C_Addr_ Nak — Transfer error, receive NAK during addressing.

void 12C_ MasterTransferCreateHandle(I2C_Type *base, i2¢c_master_handle_t *handle,
i2c_master_transfer_callback_t callback, void *userData)

Creates a new handle for the I2C master non-blocking APIs.

The creation of a handle is for use with the non-blocking APIs. Once a handle is created,
there is not a corresponding destroy handle. If the user wants to terminate a transfer, the
I12C_MasterTransferAbort() API shall be called.

Parameters
* base — The I12C peripheral base address.
* handle — [out] Pointer to the I2C master driver handle.
* callback — User provided pointer to the asynchronous callback function.
» userData — User provided pointer to the application callback data.

status_t 12C_ MasterTransferNonBlocking(I2C_Type *base, i2¢c_master_handle_t *handle,
i2c_master_transfer_t *xfer)

Performs a non-blocking transaction on the I12C bus.
Parameters
* base — The I2C peripheral base address.
* handle — Pointer to the I2C master driver handle.
* xfer — The pointer to the transfer descriptor.
Return values
* kStatus_ Success — The transaction was started successfully.

* kStatus_I2C_ Busy — Either another master is currently utilizing the bus,
or a non-blocking transaction is already in progress.

status_t 12C_ MasterTransferGetCount(I2C_Type *base, i2c_master_handle_t *handle, size_t
*count)

Returns number of bytes transferred so far.
Parameters
* base — The I2C peripheral base address.
* handle — Pointer to the I2C master driver handle.

* count — [out] Number of bytes transferred so far by the non-blocking trans-
action.

Return values
e kStatus_ Success —
* kStatus_ 12C_ Busy —

status_t 12C_ MasterTransferAbort(I2C_Type *base, i2c_master_handle_t *handle)
Terminates a non-blocking I2C master transmission early.

Note: Itisnot safe to call this function from an IRQ handler that has a higher priority than
the I2C peripheral’s IRQ priority.

2.23. 12C Master Driver 261

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

Parameters
* base — The I2C peripheral base address.
* handle — Pointer to the 12C master driver handle.
Return values
* kStatus_ Success — A transaction was successfully aborted.
* kStatus_I2C_Timeout — Timeout during polling for flags.

void 12C_ MasterTransferHandleIRQ(I2C_Type *base, i2c_master_handle_t *handle)
Reusable routine to handle master interrupts.

Note: This function does not need to be called unless you are reimplementing the non-
blocking APT’s interrupt handler routines to add special functionality.

Parameters
* base — The I2C peripheral base address.
* handle — Pointer to the I12C master driver handle.

enum _i2¢_direction
Direction of master and slave transfers.

Values:

enumerator kI2C Write
Master transmit.

enumerator kI2C_Read
Master receive.

enum _i2c_master_ transfer flags
Transfer option flags.

Note: These enumerations are intended to be OR’d together to form a bit mask of options
for the _i2c_master_transfer::flags field.

Values:

enumerator kI2C_ TransferDefaultFlag
Transfer starts with a start signal, stops with a stop signal.

enumerator kI2C_ TransferNoStartFlag
Don’t send a start condition, address, and sub address

enumerator kI2C_ TransferRepeatedStartFlag
Send a repeated start condition

enumerator kI2C_ TransferNoStopFlag
Don’t send a stop condition.

enum _i2c transfer states
States for the state machine used by transactional APIs.

Values:

enumerator kldleState

enumerator kTransmitSubaddrState

262 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

enumerator kTransmitDataState

enumerator kReceiveDataBeginState

enumerator kReceiveDataState

enumerator kReceiveLastDataState

enumerator kStartState

enumerator kStopState

enumerator kWaitForCompletionState
typedef enum _i2¢_direction i2¢c_ direction_t

Direction of master and slave transfers.

typedef struct _i2c_master_config i2c_ master_config_t
Structure with settings to initialize the I2C master module.

This structure holds configuration settings for the I2C peripheral. To initialize this structure
to reasonable defaults, call the 12C_MasterGetDefaultConfig() function and pass a pointer
to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

typedef struct _i2c_master_transfer i2c_ master_transfer_t
12C master transfer typedef.

typedef struct _i2c_master_handle i2c_ master_handle_t
12C master handle typedef.

typedef void (*i2c_master_ transfer_ callback_t)(I2C_Type *base, i2c_master_handle_t *handle,
status_t completionStatus, void *userData)

Master completion callback function pointer type.

This callback is used only for the non-blocking master transfer API. Specify the callback you
wish to use in the call to I2C_MasterTransferCreateHandle().

Param base
The 12C peripheral base address.

Param completionStatus
Either kStatus_Success or an error code describing how the transfer com-
pleted.

Param userData
Arbitrary pointer-sized value passed from the application.

struct _i2c_master_config
#include <fsl_i2c.h> Structure with settings to initialize the 12C master module.

This structure holds configuration settings for the I2C peripheral. To initialize this structure
to reasonable defaults, call the I2C_MasterGetDefaultConfig() function and pass a pointer
to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members

bool enableMaster
Whether to enable master mode.

2.23. 12C Master Driver 263

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

uint32_t baudRate_ Bps
Desired baud rate in bits per second.

bool enableTimeout
Enable internal timeout function.

uint8_t timeout_ Ms
Event timeout and SCL low timeout value.

struct i2c_ master transfer
#include <fsl_i2c.h> Non-blocking transfer descriptor structure.

This structure is used to pass transaction parameters to the
12C_MasterTransferNonBlocking() APIL

Public Members

uint32_t flags
Bit mask of options for the transfer. See enumeration _i2c_master_transfer_flags for
available options. Set to 0 or kI2C_TransferDefaultFlag for normal transfers.

uint8_t slaveAddress
The 7-bit slave address.

i2c_direction_t direction
Either kI2C_Read or kI2C_Write.

uint32_t subaddress
Sub address. Transferred MSB first.

size_t subaddressSize
Length of sub address to send in bytes. Maximum size is 4 bytes.
void *data
Pointer to data to transfer.
size_t dataSize
Number of bytes to transfer.
struct i2c master handle
#include <fsl_i2c.h> Driver handle for master non-blocking APIs.

Note: The contents of this structure are private and subject to change.

Public Members
uint8_t state

Transfer state machine current state.
uint32_t transferCount

Indicates progress of the transfer
uint32_t remainingBytes

Remaining byte count in current state.
uint8_t *buf

Buffer pointer for current state.

264 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

bool checkAddrNack
Whether to check the nack signal is detected during addressing.

i2c_master_transfer._t transfer
Copy of the current transfer info.
i2c_master_transfer_callback_t completionCallback
Callback function pointer.

void *userData
Application data passed to callback.

2.24 12C Slave Driver

void 12C_ SlaveGetDefaultConfig(i2c_slave_config_t *slaveConfig)
Provides a default configuration for the I2C slave peripheral.

This function provides the following default configuration for the 12C slave peripheral:

slaveConfig- >enableSlave = true;

slaveConfig- >address0.disable = false;

slaveConfig- >address0.address = Ou;
slaveConfig->addressl.disable = true;

slaveConfig- >address2.disable = true;

slaveConfig- >address3.disable = true;
slaveConfig->busSpeed = kI2C__SlaveStandardMode;

After calling this function, override any settings to customize the configuration, prior to
initializing the master driver with I2C_Slavelnit(). Be sure to override at least the ad-
dress0.address member of the configuration structure with the desired slave address.

Parameters

* slaveConfig — [out] User provided configuration structure that is set to de-
fault values. Refer to i2c_slave_config t.

status_t 12C_SlaveInit(I2C_Type *base, const i2¢_slave_config t *slaveConfig, uint32_t
srcClock_Hz)

Initializes the I12C slave peripheral.

This function enables the peripheral clock and initializes the I12C slave peripheral as de-
scribed by the user provided configuration.

Parameters
* base — The I2C peripheral base address.

* slaveConfig - User provided peripheral configuration. Use
12C_SlaveGetDefaultConfig() to get a set of defaults that you can override.

* srcClock_Hz — Frequency in Hertz of the I12C functional clock. Used to cal-
culate CLKDIV value to provide enough data setup time for master when
slave stretches the clock.

void 12C_ SlaveSet Address(I2C_Type *base, i2¢_slave_address_register_t addressRegister, uint8_t
address, bool addressDisable)

Configures Slave Address n register.
This function writes new value to Slave Address register.
Parameters

* base — The I2C peripheral base address.

2.24. 12C Slave Driver 265

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

* addressRegister — The module supports multiple address registers. The pa-
rameter determines which one shall be changed.

* address — The slave address to be stored to the address register for match-
ing.

* addressDisable — Disable matching of the specified address register.

void I2C_ SlaveDeinit(I2C_Type *base)
Deinitializes the I2C slave peripheral.

This function disables the I2C slave peripheral and gates the clock. It also performs a soft-
ware reset to restore the peripheral to reset conditions.

Parameters
* base — The I2C peripheral base address.

static inline void I12C_ SlaveEnable(I2C_Type *base, bool enable)
Enables or disables the I12C module as slave.

Parameters
* base — The I2C peripheral base address.
* enable — True to enable or flase to disable.

static inline void 12C__ SlaveClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C status flag state.

The following status register flags can be cleared:
* slave deselected flag

Attempts to clear other flags has no effect.

See also:

_i2c_slave_flags.

Parameters
* base — The I12C peripheral base address.

* statusMask — A bitmask of status flags that are to be cleared. The mask is
composed of _i2c_slave_flags enumerators OR’d together. You may pass
the result of a previous call to I2C_SlaveGetStatusFlags().

status_t 12C__SlaveWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize)
Performs a polling send transfer on the I2C bus.

The function executes blocking address phase and blocking data phase.
Parameters
* base — The I2C peripheral base address.
* txBuff — The pointer to the data to be transferred.
* txSize — The length in bytes of the data to be transferred.

Returns
kStatus_Success Data has been sent.

Returns

kStatus_Fail Unexpected slave state (master data write while master read
from slave is expected).

266 Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

status_t 12C__SlaveReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize)
Performs a polling receive transfer on the I12C bus.

The function executes blocking address phase and blocking data phase.
Parameters
* base — The I2C peripheral base address.
 rxBuff — The pointer to the data to be transferred.
* rxSize — The length in bytes of the data to be transferred.

Returns
kStatus_Success Data has been received.

Returns
kStatus_Fail Unexpected slave state (master data read while master write to
slave is expected).

void 12C_ SlaveTransferCreateHandle(I2C_Type *base, i2¢_slave_handle_t *handle,
i2¢_slave_transfer_callback_t callback, void *userData)

Creates a new handle for the I2C slave non-blocking APIs.

The creation of a handle is for use with the non-blocking APIs. Once a handle is created,
there is not a corresponding destroy handle. If the user wants to terminate a transfer, the
I12C_SlaveTransferAbort() API shall be called.

Parameters
* base — The I2C peripheral base address.
* handle — [out] Pointer to the I12C slave driver handle.
* callback — User provided pointer to the asynchronous callback function.
* userData — User provided pointer to the application callback data.

status_t 12C_ SlaveTransferNonBlocking(I2C_Type *base, i2¢_slave_handle_t *handle, uint32_t
eventMask)

Starts accepting slave transfers.

Call this API after calling 12C_Slavelnit() and 12C_SlaveTransferCreateHandle() to start pro-
cessing transactions driven by an I2C master. The slave monitors the I2C bus and pass
events to the callback that was passed into the call to I2C_SlaveTransferCreateHandle().
The callback is always invoked from the interrupt context.

If no slave Tx transfer is busy, a master read from slave request invokes
kI2C_SlaveTransmitEvent callback. If no slave Rx transfer is busy, a master write to
slave request invokes kI2C_SlaveReceiveEvent callback.

The set of events received by the callback is customizable. To do so, set the eventMask pa-
rameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events
you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are
always enabled and do not need to be included in the mask. Alternatively, you can pass
0 to get a default set of only the transmit and receive events that are always enabled. In
addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all
events.

Parameters
* base — The I2C peripheral base address.

* handle — Pointer to i2c_slave_handle_t structure which stores the transfer
state.

2.24. 12C Slave Driver 267

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

* eventMask — Bit mask formed by OR’ing together i2c_slave_transfer_event_t
enumerators to specify which events to send to the callback. Other ac-
cepted values are 0 to get a default set of only the transmit and receive
events, and kI2C_SlaveAllEvents to enable all events.

Return values
* kStatus_ Success — Slave transfers were successfully started.

* kStatus_ I2C_ Busy — Slave transfers have already been started on this han-
dle.

status_t 12C__SlaveSetSendBuffer(I2C_Type *base, volatile i2¢_slave_transfer_t *transfer, const

void *txData, size_t txSize, uint32_t eventMask)
Starts accepting master read from slave requests.

The function can be called in response to kI2C_SlaveTransmitEvent callback to start a new
slave Tx transfer from within the transfer callback.

The set of events received by the callback is customizable. To do so, set the eventMask pa-
rameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events
you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are
always enabled and do not need to be included in the mask. Alternatively, you can pass
0 to get a default set of only the transmit and receive events that are always enabled. In
addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all
events.

Parameters
* base — The I12C peripheral base address.
* transfer — Pointer to i2c_slave_transfer_t structure.
* txData — Pointer to data to send to master.
* txSize — Size of txData in bytes.

* eventMask — Bit mask formed by OR’ing together i2c_slave_transfer_event_t
enumerators to specify which events to send to the callback. Other ac-
cepted values are 0 to get a default set of only the transmit and receive
events, and kI2C_SlaveAllEvents to enable all events.

Return values
* kStatus_ Success — Slave transfers were successfully started.

*» kStatus_ I2C_ Busy — Slave transfers have already been started on this han-
dle.

status_t 12C__SlaveSetReceiveBuffer(I2C_Type *base, volatile i2c_slave_transfer._t *transfer, void

*rxData, size_t rxSize, uint32_t eventMask)
Starts accepting master write to slave requests.

The function can be called in response to kI2C_SlaveReceiveEvent callback to start a new
slave Rx transfer from within the transfer callback.

The set of events received by the callback is customizable. To do so, set the eventMask pa-
rameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events
you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are
always enabled and do not need to be included in the mask. Alternatively, you can pass
0 to get a default set of only the transmit and receive events that are always enabled. In
addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all
events.

Parameters

* base — The I2C peripheral base address.

268

Chapter 2. RW612

MCUXpresso SDK Documentation, Release 25.09.00-pvw2

» transfer — Pointer to i2c_slave_transfer_t structure.
* rxData — Pointer to data to store data from master.
* rxSize — Size of rxData in