- WM& MCUXpresso SDK Documentation
Release 25.06.00

NXP

Jun 26, 2025 -

Table of contents

1 FRDM-KE02Z40M
11 OVEIVIEW . . o oo e e e e e e e e e e e e e e e e
1.2 Getting Started with MCUXpresso SDKPackage
1.2.1 Getting Started with MCUXpresso SDKPackage
1.3 Getting Started with MCUXpresso SDKGitHub
1.3.1 Getting Started with MCUXpresso SDK Repository
1.4 Release NOteS ot i e e e e e
1.41 MCUXpresso SDKReleaseNotes,
1.5 Changelog o ittt e e e e e e e e e e e e e e e e e
1.5.1 MCUXpresso SDKChangelogo ...
1.6 Driver API Reference Manual eenen...
1.7 Middleware Documentation
1.7.1 FreeMASTER e e

2 MKE02Z4
2.1 ACMP: Analog Comparator Driver. ittt it
2.2 ADC: 12-bit Analog to Digital Converter Driver
2.3 Clock DIiVer o e e e e e
2.4 CRC: Cyclic Redundancy Check Driver
2.5 FGPIODIIVEI. . . . o o e e e e e e e e e
2.6 FTMRx FlashDriver i e e e et e
2.7 FTM: FlexTimer Driver @ it e et et e e
2.8 GPIO: General-Purpose Input/Output Driver,
2.9 GPIODIIVEr ¢ e
2.10 I2C:Inter-Integrated Circuit Driver
211 I2CDIIVEr . . o o e e e e e e e e e e e e e e e e
202 IXq . oo o e e e e e e e e e e e
2.13 IRQ: external interrupt (RQ) module
2.14 KBI: Keyboard interrupt Driver
215 Common Driver e e e
2.16 MCM: Miscellaneous Control Module
2.17 PIT: Periodic Interrupt Timer ittt
218 PORT DIIVET . o . vt ot it et e e e e e e e et e e e e e e e e
219 RTC:Real Time Clock oo o e e e et
2.20 SPI: Serial Peripheral Interface Driver,
221 SPIDTIVET . . . o ot e e e e e e e e e
2.22 TPM: Timer PWM Module e
2.23 UART: Universal Asynchronous Receiver/Transmitter Driver
2.24 UART DIIVET . . . o o e e e e e e e e e e e e e e e e e
2.25 WDOGS: 8-bit Watchdog Timer it ittt et et ee

3 Middleware
3.1 Motor Control vt e e e e e e e e e e e
3.1.1 FreeMASTER ottt e e e e e e

4 RTOS
4.1 FreeRTOS . . . o e e e e e e e e e e e e e e e

100
106
117
120
122
140
162
163
165
165
179
182
182
183
195
200
204
211
216
216
229
239
239
255

259
259
259

297
297

411
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7
4.1.8
4.1.9

FreeRTOS kernel o o o i i i i e s e e e e e e e e e e e e e e 297

FreeRTOS Arivers o i e e e e e e 297
backoffalgorithm 297
Corenttp . . . v o e e 297
(670 =3 170) 297
(o003 =) 01 o X 298
coremqtt-agent e e e e e e e e e e 298
CorepkesTl e e e e e e 298
freertos-plus-tCp o oo e 298

ii

MCUXpresso SDK Documentation, Release 25.06.00

This documentation contains information specific to the frdmke02z40m board.

Table of contents 1

MCUXpresso SDK Documentation, Release 25.06.00

2 Table of contents

Chapter 1

FRDM-KE02Z40M

1.1 Overview

The Freedom-KE02Z40M is an ultra-low-cost development platform for Kinetis KE02 MCUs

MCU device and part on board is shown below:
* Device: MKE02Z4
* PartNumber: MKE02Z64VQH4

1.2 Getting Started with MCUXpresso SDK Package

1.2.1 Getting Started with MCUXpresso SDK Package
Overview

The NXP MCUXpresso software and tools offer comprehensive development solutions designed
to optimize, ease, and help accelerate embedded system development of applications based on
general purpose, crossover, and Bluetooth-enabled MCUs from NXP. The MCUXpresso SDK in-
cludes a flexible set of peripheral drivers designed to speed up and simplify development of
embedded applications. Along with the peripheral drivers, the MCUXpresso SDK provides an ex-
tensive and rich set of example applications covering everything from basic peripheral use case
examples to full demo applications. The MCUXpresso SDK contains optional RTOS integrations
such as FreeRTOS and Azure RTOS, and various other middleware to support rapid development.

For supported toolchain versions, see MCUXpresso SDK Release Notes (document MCUXSDKRN).
For more details about MCUXpresso SDK, see MCUXpresso Software Development Kit (SDK).

http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.06.00

Application Code

Stacks and Middleware
(Connectivity, Security, Board Support
DMA, Filesystem, etc,)

Peripheral Drivers

CMSIS-CORE and CMSIS-DSP

(Device Header Files: Core Access Functions, Intrinsics, Peripheral & Interrupt Definitions, DSP Library)

Microcontroller Hardware

MCUXpresso SDK board support package folders

MCUXpresso SDK board support package provides example applications for NXP development
and evaluation boards for Arm Cortex-M cores including Freedom, Tower System, and LPCX-
presso boards. Board support packages are found inside the top-level boards folder and each
supported board has its own folder (an MCUXpresso SDK package can support multiple boards).
Within each <board name> folder, there are various subfolders to classify the type of examples
it contains. These include (but are not limited to):

* cmsis_driver__examples: Simple applications intended to show how to use CMSIS drivers.

* demo_ apps: Full-featured applications that highlight key functionality and use cases of the
target MCU. These applications typically use multiple MCU peripherals and may leverage
stacks and middleware.

* driver__examples: Simple applications that show how to use the MCUXpresso SDK’s periph-
eral drivers for a single use case. These applications typically only use a single peripheral
but there are cases where multiple peripherals are used (for example, SPI conversion using
DMA).

* emwin_ examples: Applications that use the emWin GUI widgets.

* rtos_examples: Basic FreeRTOS OS examples that show the use of various RTOS objects
(semaphores, queues, and so on) and interfaces with the MCUXpresso SDK’s RTOS drivers

* usb_examples: Applications that use the USB host/device/OTG stack.

Example application structure This section describes how the various types of example ap-
plications interact with the other components in the MCUXpresso SDK. To get a comprehensive
understanding of all MCUXpresso SDK components and folder structure, see MCUXpresso SDK
API Reference Manual.

Each <board_name> folder in the boards directory contains a comprehensive set of examples
that are relevant to that specific piece of hardware. Although we use the hello_ world exam-
ple (part of the demo_ apps folder), the same general rules apply to any type of example in the
<board_name> folder.

In the hello_ world application folder you see the following contents:

4 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

armgec

iar — Toolchain folders: project and linker files
mdk

R Board macro definitions (LEDs, buttons, etc)
board.h

clock_config.c o . .
Application-specific clock configuration

[
=
——
=
" #
—

clock_config.h

hello_world bin » Pre-compiled application

&l hello_world.c » Application main source file

B8 hello_world.mex —» Application-specific MCUXpresso Config Tool configuration
hello_world.xml > Project definition file for MCUXpresso IDE and PG

:: z::‘::; Application-specific pin configuration
readme. txt » Description and instructions for running

All files in the application folder are specific to that example, so it is easy to copy and paste an
existing example to start developing a custom application based on a project provided in the
MCUXpresso SDK.

Locating example application source files When opening an example application in any of
the supported IDEs, various source files are referenced. The MCUXpresso SDK devices folder is
the central component to all example applications. It means that the examples reference the
same source files and, if one of these files is modified, it could potentially impact the behavior of
other examples.

The main areas of the MCUXpresso SDK tree used in all example applications are:

* devices/<device_name>: The device’s CMSIS header file, MCUXpresso SDK feature file, and
a few other files

* devices/<device_name> /cmsis_ drivers: All the CMSIS drivers for your specific MCU
* devices/<device_name> /drivers: All of the peripheral drivers for your specific MCU

* devices/<device name>/<tool name>: Toolchain-specific startup code, including vector ta-
ble definitions

* devices/<device_name>/utilities: Items such as the debug console that are used by many of
the example applications

* devices/<devices name> /project: Project template used in CMSIS PACK new project creation

For examples containing middleware/stacks or an RTOS, there are references to the appropriate
source code. Middleware source files are located in the middleware folder and RTOSes are in the
rtos folder. The core files of each of these are shared, so modifying one could have potential
impacts on other projects that depend on that file.

Run a demo using MCUXpresso IDE

Note: Ensure that the MCUXpresso IDE toolchain is included when generating the MCUXpresso
SDK package.

This section describes the steps required to configure MCUXpresso IDE to build, run, and debug
example applications. The hello_world demo application targeted for the hardware platform is

1.2. Getting Started with MCUXpresso SDK Package 5

MCUXpresso SDK Documentation, Release 25.06.00

used as an example, though these steps can be applied to any example application in the MCUX-
presso SDK.

Select the workspace location Every time MCUXpresso IDE launches, it prompts the user to
select a workspace location. MCUXpresso IDE is built on top of Eclipse which uses workspace
to store information about its current configuration, and in some use cases, source files for the
projects are in the workspace. The location of the workspace can be anywhere, but it is recom-
mended that the workspace be located outside the MCUXpresso SDK tree.

Build an example application To build an example application, follow these steps.
1. Drag and drop the SDK zip file into the Installed SDKs view to install an SDK. In the window
that appears, click OK and wait until the import has finished.

[Installed SDKs 22 [Properties EJ Console |® Problems [] Memory 2 Instruction”

7 Installed SDKs

To install an 50K, simply drag and drop an SDK (zip file/folder) into the 'Installed SDKs' view.

Mame Wersion Location

2. On the Quickstart Panel, click Import SDK example(s)....
U Quickstart Panel "= Global Variables = Variables ® Breakpoints &= Outline

4 MCUXpresso IDE - Quickstart Panel
= No project selected

~ Create or import a project

I

) Import SDK example(s)

¥ Import project(s) from file system

* Build your project
~ Debug your project B-Ed~vHA~
- Miscellaneous

& Quick Settings>>

" Build all projects []

3. Expand the demo_ apps folder and select hello_ world.
4. Click Next.

6 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

() SDK Import Wizard T O v o= o

M -
1, The source from the SDIC will be copied into the workspace. \E
If you want te use linked files, please unzip the '5DK_2.x_FRDM-KB4F' SDK.
. Import projects =

Project name prefix: — i Project name suffic:

»

Use default location
CihUsersh b59906"\Documents\MCUXpressclDE_10.0.0_299_beta\workspacefrdmbGaf_ Browse...

Project Type Project Options

@ C Project C++ Project C Static Library C++ Static Library Copy sources

Examples |\‘Q|LL8%|E|

m

Mame Version i
p [[] S cmsis_driver_examples
4 = demo_apps
> O £ hwip
> O] £ mbedtls
» [0 S wifi_gea
> [0 £ wolfss|
[= adclé_low_power
[[] = bubble
[[] = dac_adc
[[] = ecompass
[[] = ftm_pdb_adclé
[[] = ftrm quad_decoder
Ey = helloworld 23

[[] = power_manager

m

[[] = power_mode_switch
[[] = rte_func

= chell i
] [|

@ < Back Net> [[Ensh | [cancel |

5. Ensure Redlib: Use floating-point version of printf is selected if the example prints
floating-point numbers on the terminalfor demo applications such as adc_ basic, adc__burst,
adc_dma, and adc_ interrupt. Otherwise, it is not necessary to select this option. Then, click
Finish.

Run an example application For more information on debug probe support in the MCUX-
presso IDE, see community.nxp.com.

To download and run the application, perform the following steps:

1. Ensure the host driver for the debugger firmware has been installed. See On-board debug-
ger.

2. Connect the development platform to your PC via a USB cable.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug serial port number (to determine the COM port number, see How to determine COM
port. Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_DEBUG_UART_BAUDRATE variable in board.h file)

2. No parity

1.2. Getting Started with MCUXpresso SDK Package 7

https://community.nxp.com/message/630901

MCUXpresso SDK Documentation, Release 25.06.00

3. 8 data bits

PuTTY Configuration

Category:

= Session
= Terminal

- Keyboard

- Bell

- Features

= Window

- Appearance
- Behaviour

- Translation
- Selection

- Colours

= Connection
Data

- Proxy

- Telnet

- Rlogin

[+ SSH

- Serial

Basic options for your PuTTY session

Specify the destination you want to connect to

) About
4. 1stop bit

Serial line Speed
com4 115200
Connection type:

(OJRaw () Telnet ()Rlogin ()SSH | (@) Serial

Load, save or delete a stored session

Saved Sessions

Default Settings Load
Save
Delete

Close window on exit:
() Aways () Never (®) Only on clean exit

Open Cancel

4. On the Quickstart Panel, click Debug to launch the debug session.

5. The first time you debug a project, the Debug Emulator Selection dialog is displayed, show-
ing all supported probes that are attached to your computer. Select the probe through
which you want to debug and click OK. (For any future debug sessions, the stored probe
selection is automatically used, unless the probe cannot be found.)

Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

-
. Probes discovered ==

Connect to target: MK64FN1IMMookl2
1 probe found. Select the probe to use:

Available attached probes

Marne Serial number/ID Type Manu... IDE Debug Mode

Eﬂ USEL - OpenSDA (JATI0E4D TATI0E4D USB1 P&E M All-Stop

Supported Probes (tick/untick to enable/disable)
MCUXpresso IDE LinkServer (inc, CM3IS-DAP) probes
P&E Micro probes

SEGGER J-Link probes i

Probe search options

-

Remember my selection (for this Launch configuration)
®

6. The application is downloaded to the target and automatically runs to main().

b

7. Start the application by clicking Resume.

Project peliies Window
din @l

The hello_world application is now running and a banner is displayed on the terminal. If not,
check your terminal settings and connections.

1.2. Getting Started with MCUXpresso SDK Package 9

MCUXpresso SDK Documentation, Release 25.06.00

hello world.

]

Build a multicore example application This section describes the steps required to configure
MCUZXpresso IDE to build, run, and debug multicore example applications. The following steps
can be applied to any multicore example application in the MCUXpresso SDK. Here, the dual-
core version of hello_world example application targeted for the LPCXpresso54114 hardware
platform is used as an example.

1. Multicore examples are imported into the workspace in a similar way as single core ap-
plications, explained in Build an example application. When the SDK zip package for
LPCXpresso54114 is installed and available in the Installed SDKs view, click Import SDK
example(s)... on the Quickstart Panel. In the window that appears, expand the LPCxx
folder and select LPC54114]J256. Then, select Ipcxpresso54114 and click Next.

2. Expand the multicore_examples/hello_world folder and select cm4. The cmOplus counterpart
project is automatically imported with the cm4 project, because the multicore examples are
linked together and there is no need to select it explicitly. Click Finish.

10 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

- SDK Import Wizard O x

Y The source from the SDK will be copied into the workspace.
If you want to use linked files, please unzip the ‘SDK_2.x_FRDM-K32L3A6' SDK. The advanced options page is disabled when either more than one

. Import projects
Project name prefix frdmk3213ab Project name suffix

i¥] Use default location

Project Type Project Options
SDK Debug Console (_) Semihost UART (®) Example default

~| Import other files

Examples = ¥ iy | &

Name Description Version -~
[[] & fatfs_examples
[[] & mbedtls_examples

~ [m] = multicore_examples

erpc_matrix_multiply_mu_cm0plus The Multicore eRPC Matrix Multiply project is a simple demonstration program that
4 i The Multicore eRPC Matrix Multiply project is a simple demonstration program that ..
erpc_matrix_multiply_mu_rtos_cmDplus The Multicore eRPC Matrix Multiply RTOS project is a simple demonstration progra...
t y t The Multicore eRPC Matrix Multiply RTOS project is a simple demonstration progra.
[] erpc_matrix_multiply_rpmsg_cm0Oplus The Multicore eRPC Matrix Multiply project is a simple demonstration program that ...
t I t The Multicore eRPC Matrix Multiply project is a simple demonstration program that ...
L ¥ erpc_matrix_multiply_rpmsg_rtos_cmOplus The Multicore eRPC Matrix Multiply RTOS project is a simple demonstration progra...
t tiply rp t The Multicore eRPC Matrix Multiply RTOS project is a simple demonstration progra...
| = hello_world_cmOplus The Multicore Hello World demo application demonstrates how to set up projects f...
] A The Multicore Hello World demo application demaonstrates how to set up projects f...
[multicore_manager_cm0Oplus The Multicore Manager example application demonstrates advanced features of the. v
L < Back Next Cancel

3. Now, two projects should be imported into the workspace. To start building the
multicore application, highlight the Ipcxpresso54114_ multicore examples_hello world_ c¢m4
project (multicore master project) in the Project Explorer. Then choose the appropriate
build target, Debug or Release, by clicking the downward facing arrow next to the ham-
mer icon, as shown in the figure. For this example, select Debug.

. workspace - Develop - Welcome page - MCUXpresso]D_
File Edit Mavigate Search Project Run FreeRTOS Window Help
N B R 2 PR BN R FS
v 1 Debug (Debug build)
2 Release (Release build)

H"_‘, Project Explorer &3 bol Viewer

=l

. 25 Ipoxepresso54114_multicore_examples_helle_world_cmplus
» |25 Ipcxpresso54114 _multicore_examples_hello_world_cmd

The project starts building after the build target is selected. Because of the project reference
settings in multicore projects, triggering the build of the primary core application (cm4) also
causes the referenced auxiliary core application (cmOplus) to build.

Note: When the Release build is requested, it is necessary to change the build configuration of
both the primary and auxiliary core application projects first. To do this, select both projects in
the Project Explorer view and then right click which displays the context-sensitive menu. Select
Build Configurations -> Set Active -> Release. This alternate navigation using the menu item
is Project -> Build Configuration -> Set Active -> Release. After switching to the Release build
configuration, the build of the multicore example can be started by triggering the primary core
application (cm4) build.

1.2. Getting Started with MCUXpresso SDK Package 11

MCUXpresso SDK Documentation, Release 25.06.00

I wortpace - Deveop - Welione page“We Dz CENI

File Edit Mavigate Search Project Run FreeRTOS Window Help

Huil | S -R-@iw|0ENe 2SR bHEARRKNS LI HE-09Q
[Project Explorer 3% | 2, Peripherals+ [l Registers . Symbol Viewer = 0O @ Welcome 53
=05 ~ @ 5 file///Crp/MCUXpressol

(=3 Ipcxpresso54114_multicore_examples_hello_werld_cmOplus
s | Ipcxpresso54114_multicore_examples_hello_world_cmé

Mew 3

Go Into

Copy Ctrl+C
Paste Chrl+V
Delete Delete

Source »
Move...

Rename... F2

Import...

EE

Export...

Build Project
Clean Project
Refresh Fa
Close Project

Close Unrelated Projects

Build Cenfigurations 4 Set Active »
Build Targets 2 Manage... v 2 Release (Release build)

Index 3

Build All

Run As 4 Clean All
Debug As 4 Build Selected...
Profile As 3 [

Run a multicore example application The primary core debugger handles flashing of both
the primary and the auxiliary core applications into the SoC flash memory. To download and run
the multicore application, switch to the primary core application project and perform all steps
as described in Run an example application. These steps are common for both single-core
applications and the primary side of dual-core applications, ensuring both sides of the multicore
application are properly loaded and started. However, there is one additional dialogue that is
specific to multicore examples which requires selecting the target core. See the following figures
as reference.

o] MCUXpre:

J Cruackstart Panel ©° *=Variables *e Breakpoints .
Help -> MCUXpresso IDE User Gu
A MCUXpresso IDE - Quickstart Panel

" Project: frdmk3213a6_hello_world_cmd [Release] Help H'Hp L.O,'“e'm

= Create or import a project

B e proiect =T¢
[/ I
L] 4 CDT Build Console [frdmk3213a6_hello world_om
= Build your project make --no-print-directory post-buil
™ Performing post-build steps
m arm-none-eabi-size "frdmk3213aé_hel
r text data bss dec
Teee e 8488 15488
* Debug your project E~d-B~
® o ® Debug using LinkServer probes (CTRL+SHIFT+ALT+L)
Attach to a running target using LinkServer (CTRL+ALT+L)
o g targel ng

Program flash action using LinkServer
= Miscellanecus

. Erase flash action using LinkServer

12 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

-
B Probes discovered E@g

Connect to target: LPC54114J256

{1y The following probes have been disabled in the preferences:
P&E Micro probes SEGGER J-Link probes

Available attached probes

Mame Serial number/ID Type Manufa... IDE Debug Mode
LPC-LIMEKZ CM5IS-DAP V5,134 ADODO00002 LinkServe MNXP Semi MNon-Stop

Supported Probes (tick/untick to enable/disable)
MCUKXpresso IDE LinkServer (inc, CMSIS-DAP) probes
[C] P&E Micro probes

[C] SEGGER J-Link probes

Probe search options

Rermember my selection (for this Launch configuration)

®
b
F'. Eg N

SWD Configuration

(1, 2 available SWD Devices detected.
Target 'Cortex-M4' has been selected, but it may be incompatible!

Bevicen| Name TAP Id Details

0 Corex-M4 0:2ball477 APID:24770011
|1 Cortex-MO+ 0:2bal1477 APID:24770011

®

1.2. Getting Started with MCUXpresso SDK Package 13

MCUXpresso SDK Documentation, Release 25.06.00

. workspace - Develop - Ipoxpresso54114_multicore_examples_hello_world_cmd/source/hello_world_core(.c - MCUXpresso [D_
File Edit 5Source Refactor Mavigate Search Project Bun FreeRTOS Window Help

- B -/ -@in| B CEN-NAES [- ESCHUEZ LR R
E # Debug 3

rb 4 . Ipcxpresso54114_multicore_examples_hello_werld_cmd Debug [C/C++ (NXP Semiconductors) MCU Application]

?b 4 L,_"'E} Ipcupresso54114_multicore_examples_helle_world_cmd.axf [LPC54114)256 (cortex-m0plus]]

a f® Thread #1 1 (Stopped) (Suspended : Breakpoint)
= main() at hello_world_corel.c:85 1:98a
& s arm-none-eabi-gdb (7.12.0.20161204)

) [hello_werld_corel.c 32

)= 68
o= 63 uint32_t corel image size;
72 #if defined(_ CC_ARM)
% 71 corel_image_size = (uint32_t)&Imagef$COREL_REGIONFFLength;
e 72 #elif defined(_ ICCARM_)
== 73 #pragma section = "_ sec_core”
74 corel_image_size = (uint32_t)_ section_end("_ sec_core™) - (uint32_t)&corel_image_start;
75 #endif
76 return corel image size;
78 #endif
792 /*!
88 * (ibrief Main function
82- int main(void)
83 {
34 /* Define the init structure for the switches*/
a5 | gpio pin_config t sw_config = {kGPIO DigitalInput, @};
86
87 /* Init board hardware.*/
38 /* attach 12 MHz clock to FLEXCOMM@ (debug console) */
89 CLOCK_AttachClk(kFROIZM to FLEXCOMMA);
o
91 BOARD_InitPins_Core@();
92 BOARD_BootClockFROHFAEM();
93 BOARD_InitDebugConsole();
94
95 /* Init switches */
96 GPIO_PinInit(BOARD SW1 GPIO, BOARD SW1_GPIO PORT, BOARD SW1_GPIO PIN, &sw_config);
97 GPIO_PinInit(BOARD SW2 GPIO, BOARD SW2 GPIO PORT, BOARD SW2_GPIO PIN, &sw_config);

After clicking the “Resume All Debug sessions” button, the hello_world multicore application
runs and a banner is displayed on the terminal. If this is not the case, check your terminal
settings and connections.

File Edit Setup Control Window KanjiCode Help

Hello World from the Primary Core!

Starting Secondary core, _
The secondary core application has been started.

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary
core has been released from the reset and running correctly. It is also possible to de-
bug both sides of the multicore application in parallel. After creating the debug ses-
sion for the primary core, perform same steps also for the auxiliary core application.
Highlight the lpcxpresso54114_multicore_examples_hello_world_cmOplus project (multicore
slave project) in the Project Explorer. On the Quickstart Panel, click “Debug ‘lpcx-
presso54114_multicore_examples_hello_world_cmOplus’ [Debug]” to launch the second debug

14 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

session.

U Quickstart Pa... ®-Global Varia.. ®=Variables % Breakpoints B Qutline — O Fur

~ Installed SDKs [E Properties 22 E Consols

g MCUXpresso IDE - Quickstart Panel Property

Project: Ipcxpresso54114_hello_world_cmOplus [Debug]
~ Create or import a project

. & New project..
. Import SDK example(s)...

2 Import project(s) from file system...
~ Build your project

R Build
& Clean

~ Debug your project W~EH~H~
3 Debug M Debug using LinkServer probes (CTRL+SHIFT+L)
35 B Attach to a running target using LinkServer (CTRL+ALT+L)
) B Program flash using LinkServer
v Micrallananiic B Erase flash using LinkServer

1.2. Getting Started with MCUXpresso SDK Package 15

MCUXpresso SDK Documentation, Release 25.06.00

. workspace - Develop - Ipexpresso54114 multicore_examples_hello_world_cmd/source/hello_world_corel.c - MCUXprﬁsoID-
Eile Edit Scurce Refactor MNavigate Search Project Bun FreeRTOS Window Help

™ | B~ -@in|[®E 2R g i @E 2R E LA -0
E %5 Debug 53

rﬁ__‘ 4 . Ipcxpresso54114_multicore_exarmples_hello_world_cmd Debug [C/C++ (NXP Semiconductors) MCU Application]

4 E Ipcxpressa54114_multicore_examples_hello_world_cmd.axf [LPC54114)256 (cortex-mOplus)]

T a4 f® Thread #1 1 (Stopped) (Suspended : Breakpaoint)

it = main(] at hello_world_corel.c:85 0:98a

& w | arm-none-eabi-gdb (7.12.0.20161204)

= 4 . Ipcxpresso54114_multicore_examples_helle_world_cm0plus Debug [C/C++ (NXP Semicenductors) MCU Application]

& 4 % lpcxpresso54114_multicore_examples_hello_world_crm0plus.axf [LPC54114)256 {cortex-m0Oplus)]

0! 4 o Thread #1 1 (Stopped) (Suspended : Signal : SIGSTOP:Stopped (signal])

-~ = Oxlec

#= = <signal handler called> () at Dxfffffffo

(e = 00

% w arm-none-eabi-gdb (7.12.0.20161204)

o=

[£] hello_world_cored.c &3

68 {

63 uint32 t corel_image_size;

72 #if defined(_ CC_ARM)

71 corel_image_size = (uint32 t)&Image$$COREL_REGION$SLength;

72 #elif defined(ICCARM)

73 #pragma section = "_ sec_core”

74 corel image size = (uint32 t) section_end(" sec_core™) - (uint32_t)&corel_image start;
75 #endif

return corel _image size;

J
~] O

-

78 #endif

792 f*!

38 * @brief Main function

81 */

2= int main(void)

83

34 /* Define the init structure for the switches*/

85 | gpio_pin_config t sw_config = {kGPIO DigitalInput, @};
86

87 /* Init board hardware.*/

88 /* attach 12 MHz clock to FLEXCOMM@ (debug console) */
89 CLOCK_AttachClk({kFROI2M to FLEXCOMMB);

98

a1 BOARD_InitPins_Core@();

a2 BOARD BootClockFROHF48M();

a3 BOARD_InitDebugConsole();

o4

a5 /* Init switches */

96 GPIO_PinInit({BOARD_SW1_GPIO, BOARD_SW1_GPIO_PORT, BOARD_SW1_GPIO_PIN, &sw_config);
a7

GPIO_PinInit(BOARD SW2 GPIO, BOARD SW2 GPIO PORT, BOARD SW2 GPIO PIN, &sw_config);

=]
a

Now, the two debug sessions should be opened, and the debug controls can be used for both
debug sessions depending on the debug session selection. Keep the primary core debug session
selected by clicking the “Resume” button. The hello_world multicore application then starts run-
ning. The primary core application starts the auxiliary core application during runtime, and the
auxiliary core application stops at the beginning of the main() function. The debug session of the
auxiliary core application is highlighted. After clicking the “Resume” button, it is applied to the
auxiliary core debug session. Therefore, the auxiliary core application continues its execution.

16 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

. wiorkspace - Develop - Ipc::pre55054114_muHimm_mn’ples_hellu_mrld_cmﬂphslmEE E E - E@_

Eile Edit 5curce Refactor Mavigate 5Search Project Bun FreeRTOS Window Help

Hmil | B-(R-@Biw|(I ENIR LS lERRSE LI 0G|

Debug 3

32 Thread #1 1 (Stopped] (Running)
s arm-none-eabi-gdb (7.12.0.20161204)

[Step Return All Debug sessions l

a . Ipcxpresso54114_multicore_examples_hello_werld_cmd Debug [C/C++ [NXP Semiconductors) MCU Application]
4 &? Ipcupresso54114_multicore_examples_helle_world_cmd.axf [LPC54114)256 (cortex-m0plus]]

i a . Ipcxpressod4114_multicore_examples_hello_world_cmOplus Debug [C/C++ (NXP Semiconductors) MCU Application]
4 E;} Ipcxpresso54114_multicore_examples_helle_world_cm0plus.axf [LPC54114)256 (cortex-m0plus)]

= a o Thread #1 1 (Stopped) (Suspended : Breakpoint)
= main() at hello_world_corel .c:71 0x20010846
s | arm-none-eabi-gdb (7.12.0.20161204)

h VO | fel_mailbox.h @ hello_world_corel.c &3

=]
m

6@ 1

61 }

62

632 /*!

64 * (ibrief Main function
85 */

66= int main{void)

7 {

uint32_t startupData, i;

gpioc_pin_config t led_config = {
kGPIO DigitalOutput, @,

Ti

/* Initialize MCMGR before calling its APT */
MCMGR_Init();

/* @et the startup data */
MCMGR_GetStartupData(kMCMGR_Corel, RstartupData);

/* Make a noticable delay after the reset */

for (i = @; 1 « startupData; i++)
delay();

¥ CO Dd 00 0O Co -

A wr e ®

/* Define the init structure for the output LED pin*/

/* Use startup parameter from the master core... */

At this point, it is possible to suspend and resume individual cores independently. It is also pos-
sible to make synchronous suspension and resumption of both the cores. This is done either
by selecting both opened debug sessions (multiple selections) and clicking the “Suspend” / “Re-
sume” control button, or just using the “Suspend All Debug sessions” and the “Resume All Debug

sessions” buttons.

1.2. Getting Started with MCUXpresso SDK Package

17

MCUXpresso SDK Documentation, Release 25.06.00

() workspace - Develop - Ipcxpresso54114 multicore_examples_hello_worid_cmOplus/source/hello_world_corel.c - MCUXpresso IDE NN

File Edit Source Refactor Mavigate Search Project Run FreeRTOS Window Help
ML B R @R Mo eS| plRBRDR S LI F0O

45 Debug &2
4 . Ipcxpresso54114_multicore_examples_helle_world_cmé Debug [C/C++ (MNXP Semicenductors) MCU Application]
4 Ipcxpresso34114_multicore_examples_hello_world_cmd.axf [LPC54114J256 (cortex-m0plus)]
| o8 Thread #1 1 (Stopped) (Running) |

ba arm-none-eabi-gdb (7.12.0.20161204)
{ 4 . Ipcxpressa54114_multicore_examples_hello_world_cm0Oplus Debug [C/C++ (NXP Semiconductors) MCU Application]
— 4 Ipcxpressa54114_multicore_examples_hello_world_cmOplus.axf [LPC54114)256 (cortex-m0plus)]
= |4 Thread #1 1 (Stopped) (Running) |

s arm-none-eabi-gdb (7.12.0.20161204)

)
b=
(x)=
%
Oz
o-
.| hello_world_corel.c h| f=l_mailbox.h @ hello_world_carel.c &2 o | 0x190
o L
59 __asm("NOP"); /* delay */
&8 1
61 }
62
632 /*!
64 * (@brief Main function
65 */

G66= int main(void)

67 {

68 uint32_t startupData, 1i;

69

78 /* Define the init structure for the output LED pin*/
71 gpio pin config t led config = {

72 kGPIO DigitalOutput, @,

73 1

74

75 /* Initialize MCMGR before calling its API */

76 MCMGR_Init();

77

78 /* @et the startup data */

79 MCMGR_GetStartupData (BMCHMGR_Corel, &startupData);
88

81 /* Make a ngticable delay after the reset */

82 /* Use startup parameter from the master core... */
83 for (i1 =8@; 1 < startupData; i++)

84 delay();

AL

18 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

. workspace - Develop - Ipcxpressoﬁ-dl14_mul|:icure_acan'fles_helIo_world_cmﬂplus.'snurce;‘hellu_mrid_corel.c - MCUXpresso ID'-
Eile Edit Scurce Refactor Mavigate Search Project Run FreeRTOS Window Help

Al |- K[-EBiw|Dms 2R npuuii».uzv-wieg,ioﬂjéﬁsvﬁv

=

B 4 . lpcxpresso54114_multicore_examples_helle_world_cm4 Debug [C/C++ (MXP Semiconductors) MCU Application]
4 ,_':E Ipcxpresso54114_multicore_examples_hello_world_cmd.axf [LPC54114)256 (cortex-m0plus)]

i) a4 f® Thread #1 1 (Stopped) (Suspended : Signal : SIGINT:Interrupt)

i = GPIO_ReadPinlnput() at fs|_gpio.h:146 0:85¢

main(} at hello_world_corel.c:134 Oxal0

w arm-none-eabi-gdb (7.12.0.20161204)

= 4 . Ipcxpresso54114_multicore_examples_hello_world_cm0plus Debug [C/C++ (NXP Semiconductors) MCU Application]

) 4 ,_':E Ipcxpressa54114_multicore_examples_hello_world_cmOplus.axf [LPC54114)256 (cortex-mOplus)]

a4 f® Thread #1 1 (Stopped) (Suspended : Signal : SIGINT:Interrupt)

delay() at hello_world_corel.c:58 020010824

a2 = main() at hello_world_corel.c:93 0x200108a0

% w arm-none-eabi-gdb (7.12.0.20161204)

45 Debug i3

(=)=

oz
[=N

[£] helle_world_corel.c &3

__asm("NOP"); /* delay */

LV N

@brief Main function

- int main(void)

{

)

uint32_t startupData, i;

e s B s O T o N VR
wnoca [LY =

=

* Define the init structure for the output LED pin®/
gpic pin_config t led config = {
kGPIO DigitalOutput, @,

]
[EV S

)

I

wd

[N

)

/* Initialize MCMGR before calling its API */
MCMGR_TInit();

TN
=~

* Get the startup data */
MCMER_GetStartupData(kMCMGR_Corel, &startupData);

J
wnoca

o]

* Make a ngticable delay after the reset */
'* Use startup parameter from the master core... */
for (i = @; 1 <« startupData; i++)

delay();

¥ CO 00 COC0 CO o~
LEVI S

n B

Build a TrustZone example application This section describes the steps required to configure
MCUXpresso IDE to build, run, and debug TrustZone example applications. The TrustZone ver-
sion of the hello_ world example application targeted for the MIMXRT595-EVK hardware platform
is used as an example, though these steps can be applied to any TrustZone example application
in the MCUXpresso SDK.

1. TrustZone examples are imported into the workspace in a similar way as single core ap-
plications. When the SDK zip package for MIMXRT595-EVK is installed and available in
the Installed SDKs view, click Import SDK example(s)... on the Quickstart Panel. In the
window that appears, expand the MIMXRT500 folder and select MIMXRTS595S. Then, select
evkmimxrt595 and click Next.

2. Expand the trustzone_examples/ folder and select hello_world_s. Because TrustZone exam-
ples are linked together, the non-secure project is automatically imported with the secure
project, and there is no need to select it explicitly. Then, click Finish.

1.2. Getting Started with MCUXpresso SDK Package 19

MCUXpresso SDK Documentation, Release 25.06.00

3 sDK Import Wizard @] 'S
i\, The source from the SDK will be copied into the workspace. ; &
If you want to use linked files, please unzip the 'SDK_2.x_board_EVK-MIMXRT393 SDK. The advanced options page is disabled when either more than one project has

. Import projects =

Project name prefic | Evkmimurt393 L7 | Project name suffic

Use default location

C\Usersinxal3435\Documents\MCUXpressolDE_11.0.1_2363\workspace\evkmimxrt395 Browse
Project Type Project Options
CProject (1 C++ Project C Static Library () C++ Static Library SDK Debug Console () Semihost @UART) Example default

Copy sources

[Import other files

Examples | & VM %|EE
[typeto fitter |
Name Description Version Lt

[1 £ mbedtls_examples
os_examples

dmmec_exsmples

The Hello World deme application provides a sanity check for the new SDK build environments ...
The Helle Werld deme application provides a sanity check for the new SDK build environments ...
The Secure Faults demo application demonstrates handling of different secure faults, This appli...

The Secure Faults demo application demonstrates handling of different secure faults, This appli...
The Secure GPI0 demo application demonstrates using of secure GPIO peripheral and GPIQ mas..
The Secure GPIO deme application demonstrates using of secure GPIO peripheral and GPIO mas...

Gy
) <Back e [CE] cn

3. Now, two projects should be imported into the workspace. To start building the TrustZone

application, highlight the evkmimxrt595_hello_world__s project (TrustZone master project)
in the Project Explorer. Then, choose the appropriate build target, Debug or Release, by
clicking the downward facing arrow next to the hammer icon, as shown in following figure.
For this example, select the Debug target.

nr@ waorkspace - Welcorne page - MCUXpresso IDE
File Edit Mavigate Search Project ConfigTools Run Analysis

[= | BRI I @riBin|
5 Project Bxpl... 53 |E + 1 Debug (Debug build) ’ = F

2 Releaze (Release build) . - G

E == evkmimxrt393_helle_world_ns

: == evkmimxrt393_hellc world s = Debug=

The project starts building after the build target is selected. It is requested to build the
application for the secure project first, because the non-secure project must know the se-

cure project since CMSE library when running the linker. It is not possible to finish the
non-secure project linker when the secure project since CMSE library is not ready.

Note: When the Release build is requested, it is necessary to change the build configu-
ration of both the secure and non-secure application projects first. To do this, select both
projects in the Project Explorer view by clicking to select the first project, then using shift-
click or control-click to select the second project. Right click in the Project Explorer view to
display the context-sensitive menu and select Build Configurations > Set Active >Release.
This is also possible by using the menu item of Project > Build Configuration >Set Active
>Release. After switching to the Release build configuration. Build the application for the
secure project first.

20

Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

=
.. workspace - Welcome page - MCUXpresso IDE
File Edit MNavigate Search Project ConfigTools FRun Analysis FreeRTOS Window Help

AR | &~/ -BIOVI@-iBIN| D BN SR bERR RIS
[ty Project Bxpl... 22 |2, Peripherals+ [} Registers % Faults = O @ Welcome &3

I
I
I
I
i
i
\
I
|
1 & - = & T P
: =IE=| | & v [files/1/C:/mp/MCUXpressolDE_11.0.1_2563/ide
: =5 evkmimxrt395_helln wnrld ns <Nehnns
Uy 25 evkmimxrt595_ New L]
|
| Go Into
|
|
| Show in Lecal Terminal »
|
| .
! =] Copy Ctrl+C
! Paste Ctrl+V
|
H ¥ Delete Delete
|
| Source ¥
|
! Move...
! Rename... F2
|
|
1 [y Import. Welc
| 2]
|
H i Export. MCUXpresso IDE provides an easy-t
| Cortex®-M cores, including LPC and
i Build Projects compiling, and debugging features w
| h debugging, and integrated configurat
: Clean Project o i
ocumentation
| Refresh F5
| Cl Prai For information on how to get started
| ose Projects please consult the supplied MCUXpr
| Close Unrelated Project # Help - MCUXpresso IDE User (
|
|
1! Build Configurations b Set Active » '+ 1Debug (Debug build) ra
i
! Build Targets > Manage... 2 Release (Release build)
! tiol
| Inelex ’ Build Al _
! o Help us improve MCUXpresso IDE
| Run As] Clean All
! i MCUXpresso IDE can send anonymi
! :ﬁ; Debug As > Build Selected... AL L RmARN TR e _m .
|
' () Quickstart Panel £ Profile As » E| nstalled SDKs || Properties Problems B Conscle 33

Run a TrustZone example application To download and run the application, perform all
steps as described in Run an example application. These steps are common for single core,
and TrustZone applications, ensuring <board_name>__hello_world_s is selected for debugging.

In the Quickstart Panel, click Debug to launch the second debug session.

1.2. Getting Started with MCUXpresso SDK Package 21

MCUXpresso SDK Documentation, Release 25.06.00

B8 workspace - evkmimxrtS95_hello_world_s/source/hello_world_s.c - MCUXpresso IDE

File Edit Source Refactor Mavigate Search Project ConfigTools Run Analysis FreeRTOS Window Help

i [B-R-BiYD@-Bin|b0Ey 3.0 (P EEZ2RE-SL I -0-%-i® -
P Blet o [auice acces] | 1 | [&] 4%

5P e P HR. FpF. T O dFDebug 32 |i#+ = = 8 = outiine = g
= ﬁ)‘ ‘ . v 7 v evkmimxrt395_hello_world_s LinkServer Debug [C/C++ (MXP Semiconductors) MCU Application] -~ = 1az W \S o % v
5 evkmimxrt395_hello_world_ns A il evkmimuat595_hello_world_s.axf [MIMXRTS93S (cortex-m33)] - U fsl_device_registersh
v (25 evkmimxrt55_hello_world_s < Debug» o 0 Thrazd 21 1 (Qrnandad - Brasbnnint) 21 fsl_debug_console.h
& Project Settings (€] hello_world_s.c &2 = 8 o arm_cmseh
3%, Binaries R B S 2 beardh
) Includes (@brief Main function I veneer table.h
@ cMsis nt main(void) 2 tzm_config.h
2 board o pin_muxh
component uncptr_ns ResetHandler_ns; clock_config.
2 comp Funcptr_ dler_ 5 clock configh
@ device # NON_SECURE_START
8 drivers /* Init board hardware. */ @ funcpte_ns: void(*)(void
BOARD_InitPins(); - ;
(2 flash_config BOARD_BootCLockRUN()5 & SysteminitHook{void) - void
(3 libs BOARD_InitDebugConsole(); @ main{void) : int
~ (2 source
[F) Tl el ooz v PRINTF("Hello from secure world!\r\n");
< >
. /* Set non-secure main stack (MSP_NS) */
O Quic... & B __TZ set_MSP_NS(*((uint32_t *)(NON_SECURE_START)));
/* Set non-secure vector table */ v
. ~ < >
- MCUXpresso IDE - Quicks
15) Project: evimimut393_hello_world_s B Comsole 12 & . =0 g Memoy i =o|
~ Create or import a project = | = BE B @@I‘ = Brs. =.|| E|] <§‘)| - =

- B8 New project...
Import SDK example(s)...
® Import project(s) from file systel

evkmimurt595_hello_world_s LinkServer Debug [C/C++ (NXP Semiconductors) MCU Application] evkmimxrt595_hello v M
[MCUXpresso Semihosting Telnet console for 'evkmimxrt595_hello_world_s LinkServer Debug » =

~ Build your project
& Build
& Clean
~ Debug your project LSihg

< > < >

Writable SmartInsert | 25:8 () NXP MIMXRT5955* (evkmimur..world s)

Now, the TrustZone sessions should be opened. Click Resume. The hello_ world TrustZone appli-

cation then starts running, and the secure application starts the non-secure application during
runtime.

Run a demo application using IAR
This section describes the steps required to build, run, and debug example applications provided
in the MCUXpresso SDK.

Note: IAR Embedded Workbench for Arm version 8.32.3 is used in the following example, and

the IAR toolchain should correspond to the latest supported version, as described in the MCUX-
presso SDK Release Notes.

Build an example application Do the following steps to build the hello_ world example appli-
cation.

1. Open the desired demo application workspace. Most example application workspace files
can be located using the following path:

<install _dir>/boards/<board_name>/<example type>/<application name> /iar
Other example applications may have additional folders in their path.

2. Select the desired build target from the drop-down menu.

For this example, select hello_world — debug.

22 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

Release
B (7 hello_world - Deb... v

(I board
[(Jdoc
(I drivers
([source
(1 startup
[(Jutilities
(1 Output

3. To build the demo application, click Make, highlighted in red in following figure.

Debugy

Files = I
& @ hello_world - Debug v

i board

M doc

i drivers

M source

B startup

i utilities

B Qutput

4. The build completes without errors.

Run an example application To download and run the application, perform these steps:

1. Ensure the host driver for the debugger firmware has been installed. See On-board debug-
ger.

2. Connect the development platform to your PC via USB cable.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug COM port (to determine the COM port number, see How to determine COM port).
Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_ DEBUG_ UART BAUDRATE variable in the board.h file)

2. No parity
3. 8 data bits

1.2. Getting Started with MCUXpresso SDK Package 23

MCUXpresso SDK Documentation, Release 25.06.00

PuTTY Configuration
g

Category:
= Session Basic options for your PuTTY session
- Logging Specify the destinati t to connect t
= Terminal pecify the destination you want to connect to
- Keyboard Serial line Speed
- Bell COM4 115200
- Features CoRmECTon Ty
= Window onneclion type:
- Appearance (OJRaw () Telnet ()Rlogin ()SSH | (@) Serial
Behawopr Load, save or delete a stored session
- Translation
.- Selection Saved Sessions
- Colours
= Connection :
. Data Default Settings Load
- Proxy
- Telnet Save
- Rlogin
[+ SSH Delete
- Serial
Close window on exit:
() Aways () Never (®) Only on clean exit
About Open Cancel

4. 1stop bit

4. In IAR, click the Download and Debug button to download the application to the target.

-

< Q >

=< B >0 B0 =

5. The application is then downloaded to the target and automatically runs to the main() func-

NMNEB@ = XEB0 9C »<Q>%(2< B[N0 BO-=EGCcO KA sl v @9~ dh;
Workspace v ax ‘hello_world.c x ‘
Debug ~ | |main()
- 41
Files & . LD [JHeti s b b s ek R R R R AR AR A AR A AR AR AR R R R R R R AR E AR AR R AR AR R R AR AR SRR R R
=] ‘helluiwurld - Debug L4 43 T # Prototypes
i hoard 08 L bt hht bt kb A bR AR R R AR AR SRR R AR R AR R AR R AR RS AR AR E AR R RERR LRk y
i doc 45
5 drivers A6 JEERE R R AR AR AR R R R AR AR AR AR AR AR AR E AR R AR AR R AR AR AR AR R AR AR AR AR AR R R AR
M source 47 T Cods
= 88 L ersnnsdn b ikt kR AR AR R AR R RS AR E R AR AR AR R RS RR AR SRR AR R R R AR RERR SR y
B starup
= '
M utilities ;ET ;k gbriet M Functi
= Ebrae: lain unction
L@ & Output = |
2 52 |int main(void)

53E {

54 char ch;

55

56 /* Init board hardware. */

57 /* attach 12 MHz clock to FLEXCOMMO (debug console) */
53 CLOCK_AttachClk (BORRD_DEEUG_UART_CLK ATTACH);

59

&0 BOARD_TnitPins():

61 BORRD BootClockFROHF4EM()

62

BOARD_InitDebugConscle():

6. Run the code by clicking the Go button.

24

Chapter 1

. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

Q> &5=< 0> BO-=GcO_ inIrsdr]oa-_i&f;

= -

7. The hello_ world application is now running and a banner is displayed on the terminal. If it
does not appear, check your terminal settings and connections.

Build a multicore example application This section describes the steps to build and run a
dual-core application. The demo applications workspace files are located in this folder:

<install_dir> /boards/<board__name>/multicore_examples/<application name>/<core_ type>/iar

Begin with a simple dual-core version of the Hello World application. The multicore Hello World
IAR workspaces are located in this folder:

<install dir>/boards/lpcxpresso54114 /multicore examples/hello_ world /cmOplus/iar/hello_world cmOplus.
SeWW

<install_dir> /boards/Ipcxpresso54114 /multicore__examples/hello_world/cm4 /iar /hello_world _cm4.eww

Build both applications separately by clicking the Make button. Build the application for the
auxiliary core (cmOplus) first, because the primary core application project (cm4) must know
the auxiliary core application binary when running the linker. It is not possible to finish the
primary core linker when the auxiliary core application binary is not ready.

Run a multicore example application The primary core debugger handles flashing both pri-
mary and the auxiliary core applications into the SoC flash memory. To download and run the
multicore application, switch to the primary core application project and perform steps 1 -4 as
described in Run an example application. These steps are common for both single core and
dual-core applications in IAR.

After clicking the “Download and Debug” button, the auxiliary core project is opened in the sep-
arate EWARM instance. Both the primary and auxiliary images are loaded into the device flash
memory and the primary core application is executed. It stops at the default C language entry
point in the *main()*function.

Run both cores by clicking the “Start all cores” button to start the multicore application.

0: O - l:lilv

During the primary core code execution, the auxiliary core is released from the reset. The
hello_world multicore application is now running and a banner is displayed on the terminal.
If this does not appear, check the terminal settings and connections.

1.2. Getting Started with MCUXpresso SDK Package 25

MCUXpresso SDK Documentation, Release 25.06.00

~ COM25:115200baud - Tera Term C=aran N
File Edit Setup Contrel Window KanjiCode Help

N

Hello World from the Primary Core! P

Starting Secondary core. _
The secondary core application has been started.

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary core has
been released from the reset and is running correctly. When both cores are running, use the
“Stop all cores”, and “Start all cores” control buttons to stop or run both cores simultaneously.

ke v LiW~-| o o

Build a TrustZone example application This section describes the particular steps that must
be done in order to build and run a TrustZone application. The demo applications workspace
files are located in this folder:

<install dir>/boards/<board name> /trustzone examples/<application name>/[<core_type>]/iar/
—<application_name>_ns/iar

<install _dir>/boards/<board_name> /trustzone examples/<application name>/[<core_type>]/iar/
—»<application_ name>_ s/iar

Begin with a simple TrustZone version of the Hello World application. The TrustZone Hello
World IAR workspaces are located in this folder:

<install dir>/boards/<board_name> /trustzone_ examples/hello_ world/hello_world ns/iar/hello_world
< NS.eWW

<install _dir>/boards/<board_name> /trustzone_ examples/hello_ world /hello_ world__s/iar/hello_ world_s.
—CWW

<install dir>/boards/<board_name> /trustzone examples/hello_world/hello_world s/iar/hello_world.eww

This project hello_ world.eww contains both secure and non-secure projects in one workspace and
it allows the user to easily transition from one project to another. Build both applications sep-
arately by clicking Make. It is requested to build the application for the secure project first,
because the non-secure project must know the secure project, since the CMSE library is running
the linker. It is not possible to finish the non-secure project linker with the secure project since
CMSE library is not ready.

Run a TrustZone example application The secure project is configured to download both
secure and non-secure output files, so debugging can be fully managed from the secure project.
To download and run the TrustZone application, switch to the secure application project and
perform steps 1 — 4 as described in Run an example application. These steps are common for
both single core, and TrustZone applications in IAR. After clicking Download and Debug, both
the secure and non-secure images are loaded into the device memory, and the secure application
is executed. It stops at the Reset_ Handler function.

26 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

9 hello_world - I1AR Embedded Workbench IDE - Arm 832.1

File Edit View Project Debug Disassembly CMSIS-DAP Tools Window Help

DOEe = 0 [y - Q 5= < > B@=GcO_ R I :H:» 8 - _GEmoaw P,
Waorkspace w o X | startup LPC55569 cm33 corel.s X hello world ns.c
hella_world_s - debug v
) Vectors_End
Files o . — =
= [l hello_warld
|-= @ hello_world_s -de__. « _ Vectors EQU _ wector table
® hello_world_ns-debug « _ Vectors Size EQU _ Vectors End - _ Vectors

2: Default interrupt handlers.

‘THUMB

PUBWEAK Reset_Handler
SECTION .text:CODE:REORDER:NOROOT (2)
Reset_Handler

E | CESID I ; Mask interrupts
LDR RO, =s3fb (CSTACK)
MSR MSPLIM, RO
LDR RO, =SystemlInit
BLX RO
CPSIE I s Ummask interrupts
LDR R0, =_ iar program start
BX RO

PUBWEAK NMI Handler

SECTION .text:CODE:REORDER:NOROOT (1)
HMI_Handler

B .

PUBWEAK HardFault Handler

SECTION .text:CODE:REORDER:NOROOT (1)
HardFault_Handler

B .

Run the code by clicking Go to start the application.

The TrustZone hello_ world application is now running and a banner is displayed on the terminal.
If this is not true, check your terminal settings and connections.

COMST7 - PuTTY - O *

Note: If the application is running in RAM (debug/release build target), in Op-
tions**>**Debugger > Download tab, disable Use flash loader(s). This can avoid the _ns
download issue on i. MXRT500.

1.2. Getting Started with MCUXpresso SDK Package 27

MCUXpresso SDK Documentation, Release 25.06.00

File

DO = %R

o C

Edit View Project CMSIS-DAP Tools Window Help

| £

[l S g

>0 e

]
v
41
L]
=
al

Workspace v o X

hello_world_s - debug v

Files G .
= Bl hello_world

[Jhello_world_s-debug [v [|

L1 @ hello_world_ns - debug v

Overview hello_warld_s | hello_waorld_ns

Debug Log

Log
‘Wed Jan 09, 2019 18:03:35: MultiCare: 5y
& Wed Jan 09, 20719 18:03:35: There was 1

Categony:

Options for node "hello_world_s"

General Options
Static Analysis
Runtime Checking
C/C++ Compiler
Assembler
Output Converter
Custom Build
Build Actions
Linker
Simulator
CADI
CMSIS DAP
GDB Server
I-jet/JTAGjet
J-Link/J-Trace
T1 Stellaris
Nu-Link
PE micro
ST-LINK
Third-Party Driver
TI MSP-FET
TIXDS

Setup Download Images Extra Options Multicors Plugins

Verify download

[Suppress download

[] Use flash loader(s)

Override default .board file
$TOOLKIT_DIR$\config\flashloaderNXP\FlashIMXRT

Edit...

Perform mass erase before flashing

Factory Settings

Cancel

A\ Wed Jan 09, 2019 18:03:35: Could not go to frain'.

Run a demo using Keil MDK/uVision

This section describes the steps required to build, run, and debug example applications provided

in the MCUXpresso SDK.

Install CMSIS device pack After the MDK tools are installed, Cortex Microcontroller Software
Interface Standard (CMSIS) device packs must be installed to fully support the device from a
debug perspective. These packs include things such as memory map information, register defi-
nitions, and flash programming algorithms. Follow these steps to install the appropriate CMSIS

pack.

1. Open the MDK IDE, which is called pVision. In the IDE, select the Pack Installer icon.

E pVision
File Edit

& A @] 4

| Lo#Dh

View Project Flash Debug Peripherals

Tools

SVCS Window

&

2. After the installation finishes, close the Pack Installer window and return to the pVision

IDE.

Build an example application

1. Open the desired example application workspace in:

<install _dir>/boards/<board_name>/<example_type>/<application_name>/mdk

The workspace file is named as <demo name>.uvmpw. For this specific example, the actual

path is:

28

Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

2. To build the demo project, select Rebuild, highlighted in red.

(¥ ﬂlg | "f,ﬂ hello_world Debug v J:\|

3. The build completes without errors.

Run an example application To download and run the application, perform these steps:

1. Ensure the host driver for the debugger firmware has been installed. See On-board debug-
ger.

2. Connect the development platform to your PC via USB cable using USB connector.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm and connect to the
debug serial port number (to determine the COM port number, see How to determine COM
port. Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_ DEBUG UART BAUDRATE variable in the board.h file)

2. No parity
3. 8 data bits

Category:

—I Session Basic options for your PuTTY session
~ Loggng Specify the destinat t t

1 Terminal pecify the destination you want to connect to
- Keyboard Serial line Speed
- Bell COoM4 115200
- Features g onTy

= Window onnection type:
. Appearance (ORaw () Telnet ()Rlogin ()SSH | (@) Serial
~Behaviour Load, save or delete a stored session
- Translation
.- Selection Saved Sessions
- Colours

= Connection -
- Data Default Settings Load
Proxy
- Telnet Save
- Rlogin

[+ SSH Delete
- Serial
Close window on exit:
(JAways ()Never (@) Only on clean exit
About Open Cancel

4. 1stop bit

4. In uVision, after the application is built, click the Download button to download the appli-
cation to the target.

1.2. Getting Started with MCUXpresso SDK Package 29

MCUXpresso SDK Documentation, Release 25.06.00

.............

| LOAD

¥4

Project

r B

=-&d WorkSpace
a- % Project: hello_world

hello_world Debug

5. After clicking the Download button, the application downloads to the target and is running.
To debug the application, click the Start/Stop Debug Session button, highlighted in red.

NEZd@| » A9 | | BPBABR

=L | @ vseussoororefs] s o ([@])

EEHolewee o s [DREEDA-

UISRE RE=RE R

Registers n B Disassembly
Rogler [Value = 000003802 4770 BX ir
B-C ul 57t BOARD InitPins():
: 0x00003804 FT7FDFAC6é BL.W BOARD InitPins (0x00000D94)

(<0D003805
E 58:

0x00003808 F7FDFASA BL.W
59:

AN -

BOARD BootClockRUN();

<[
) oo () ez |

BOARD BootClockRUN (0x00000D20)
BOARD InitDebugConsole():

52 int main (void)

Re (xD0000000 s34

R9 00000000 54 char ch;

R10 (00000000 =

R11 (00000000 56 /* Init board hardware. */

R12 (00000000 57 BOARD InitPins():

i AR 58 BOARD BootClockRUN () ;

R14(LR) s9 BOARD InitDebugConsole () :
! R15(PC) &0 -
Il PSR (61000000 61 PRINTF ("hello world.\r\n"):
Banked 62
* System 3 while (1)

6. Run the code by clicking the Run button to start the application.

o v e oo

o
Run (F5)
Start code execution

Registers
Register
=l Core

Ox1FFF044(

The hello_ world application is now running and a banner is displayed on the terminal. If
this does not appear, check your terminal settings and connections.

30

Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

Build a multicore example application This section describes the steps to build and run a
dual-core application. The demo applications workspace files are located in this folder:

<install_dir> /boards/<board name>/multicore_examples/<application_name>/<core_ type>/mdk

Begin with a simple dual-core version of the Hello World application. The multicore Hello World
Keil MSDK/uVision workspaces are located in this folder:

<install_dir> /boards/Ipcxpresso54114/multicore__examples/hello_world /cmOplus/mdk /hello_ world__
—cmOplus.uvmpw

<install_dir> /boards/Ipcxpresso54114/multicore__examples/hello_world /cm4/mdk /hello_ world__cm4.uvmpw

Build both applications separately by clicking the Rebuild button. Build the application for the
auxiliary core (cmOplus) first because the primary core application project (cm4) must know the
auxiliary core application binary when running the linker. It is not possible to finish the primary
core linker when the auxiliary core application binary is not ready.

Run a multicore example application The primary core debugger flashes both the primary
and the auxiliary core applications into the SoC flash memory. To download and run the mul-
ticore application, switch to the primary core application project and perform steps 1 — 5 as
described in Run an example application. These steps are common for both single-core and
dual-core applications in pVision.

Both the primary and the auxiliary image is loaded into the device flash memory. After clicking
the “Run” button, the primary core application is executed. During the primary core code execu-
tion, the auxiliary core is released from the reset. The hello_world multicore application is now
running and a banner is displayed on the terminal. If this does not appear, check your terminal
settings and connections.

' COM25:115200baud - Tera Term VT | (5 S

|Ei|e Edit Setup Contrel Window KanjiCode Help

Hello World from the Primary Core!

Starting Secondary core. _
The secondary core application has been started.

1.2. Getting Started with MCUXpresso SDK Package 31

MCUXpresso SDK Documentation, Release 25.06.00

An LED controlled by the auxiliary core starts flashing indicating that the auxiliary core has been
released from the reset and is running correctly.

Attach the running application of the auxiliary core by opening the auxiliary core project in
the second pVision instance and clicking the “Start/Stop Debug Session” button. After this, the
second debug session is opened and the auxiliary core application can be debugged.

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

EH@| » @ |« | = | & e [@)
sBo|lawreu o [OEEERLE-O)2-2- 2 @ -
Registers o @ Disassembly
Register [Value | 51: for (i = 0; i < 1000000; ++i)
52:]
—I Core :
— ——— 0x20010B52 9000 STR r0, [=p, $0x00]
0x20010B5C EOQO3 B 0x20010B66
A1 (<000F4240 = sam (MHOE") : fe deiay o/
R2 (20000000 54: — i o e
Ei &Egggg@gﬁ 0x20010B5E B.FOO HCP
- Far (i = N« i « 1000OAN= 2243
R5 (00000001 |
R& bc20010C0C
R7 U<FFFFEFFE _] hello_world_corel.c
At QeFFFFFFFF T[] [e e e e e e o ke ok o ek R o o ok o e e Rk ok kR
RS bFFFFFFFF 3g * Prototypes
R10 QeFFFFFFFF 40 o e e e e e e e e e o R R R
R11 (FFFFFFFF an
R12 QeFFFFFFFF GO] [r R AR AR R AR RN AR AN A AR RN A IR RA N AR ANAARRRA R RR A AR
RI3(SP) (20026770 s T . Code
R14 (LR} (c20010BSF P
RI5(C) (x20010868 ...
* PSR (01000000 46T * @brief Function to create delay for Led blink.
+- Banked 47 ny
H System 48 void delay (void)
=l Intermal =l
Mode Thread 50 volatile wint32 © i = 0;
Privilege Privileged B> 51 for (i = 0; i < 1000000; +4+i)
Stack MSP 52 {
53 _ asm("NOP™); /% delay */
54 }
55
56

Arm describes multicore debugging using the NXP LPC54114 Cortex-M4/MO0+ dual-core processor
and Keil uVision IDE in Application Note 318 at www.keil.com/appnotes/docs/apnt_318.asp. The
associated video can be found here.

Build a TrustZone example application This section describes the particular steps that must
be done in order to build and run a TrustZone application. The demo applications workspace
files are located in this folder:

<install _dir>/boards/<board_name> /trustzone_examples/<application_name>/<application_name>_ ns/

<install dir>/boards/<board name>/trustzone examples/<application name>/<application name>_ s/
— mdk

Begin with a simple TrustZone version of the Hello World application. The TrustZone Hello
World Keil MSDK/uVision workspaces are located in this folder:

<install _dir>/boards/<board_ name> /trustzone__examples/hello_world/hello_ world_ns/mdk/hello_ world__
<,NS.UVMPW

<install _dir> /boards/<board_name> /trustzone_examples/hello_ world /hello_ world_s/mdk/hello_ world_ s.
< UuvVmpw

32 Chapter 1. FRDM-KE02Z40M

http://www.keil.com/appnotes/docs/apnt_318.asp
https://www.youtube.com/watch?v=lMX-2lrv7Zs

MCUXpresso SDK Documentation, Release 25.06.00

<install dir>/boards/<board name>/trustzone examples/hello_world/helloworld s/mdk/hello_world.
—uvmpw

This project hello_ world.uvmpw contains both secure and non-secure projects in one workspace
and it allows the user to easily transition from one project to another.

Build both applications separately by clicking Rebuild. It is requested to build the application
for the secure project first, because the non-secure project must know the secure project since
CMSE library is running the linker. It is not possible to finish the non-secure project linker with
the secure project because CMSE library is not ready.

Run a TrustZone example application The secure project is configured to download both
secure and non-secure output files so debugging can be fully managed from the secure project.

To download and run the TrustZone application, switch to the secure application project and
perform steps as described in Run an example application. These steps are common for single
core, dual-core, and TrustZone applications in pVision. After clicking Download and Debug,
both the secure and non-secure images are loaded into the device flash memory, and the secure
application is executed. It stops at the main() function.

K2 C\nxp\EVK-MIMXRT 395\ boards\evimimzxrt393\demo_apps\hello_world\mdk\hello_werld uvprojx - pVision - [m] X 1
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
Eda =% I == @ DEMO_NONSEC_ADDRESw 5} 9% | @) - | @ S &-a-| A |
HEO By DB EakE-8-3-R-8- 8- 8- |
Registers 2 E Disassembly n@f
Redister Value - 31z "~
[+ 32: char ch: '
33: F
34: /* Init board hardware. */
35: F
000082850 F7EDE BOARD_InitPins (0x000B073C) v
(, S N
0<0CO0F301] hello_worid.c v X
R7 (KE000EDOB I T
RE (R5ACICI5A 27 9/
R9 (xC33CC33C Z-ELT * @bri
R10 (x5AC3C3BA 29 ®
R11 (00000000 30 int main(void)
R12 40001010 =T |
R13(SP) 20300000 32
R14(LR) 0x00D3053D 33
R15(PC) 0x00D82250 34
Gl PSR (x69000000 35
- Banked 36
- Secure L 37
- Non-Secure 38
= Intemal 38
Mode Secure Thr 40
Privilege Privieged 41 while (1) -
(=] Project | = Registers < 2
Command o E Call Stack = Locals n @
A | Name Location/Value Type
Setup(): // Setup for Running
= % main 0x00082850 int {0
g, main ¢ ch <nat in scope> auto - uchar
v
ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet BreakAccess ‘},—‘J[a\lstack—mcals j em
CMSIS-DAP ARMYS-M Debugger | Debug: Secure CPU: Secure t1: 0.00009300 sec

Run the code by clicking Run to start the application.

The hello_ world application is now running and a banner is displayed on the terminal. If not,
check your terminal settings and connections.

E® COMST - PuTTY

1.2.

Getting Started with MCUXpresso SDK Package

33

MCUXpresso SDK Documentation, Release 25.06.00

Run a demo using Arm GCC

This section describes the steps to configure the command-line Arm GCC tools to build, run, and
debug demo applications and necessary driver libraries provided in the MCUXpresso SDK. The
hello_ world demo application is targeted which is used as an example.

Set up toolchain This section contains the steps to install the necessary components required
to build and run an MCUXpresso SDK demo application with the Arm GCC toolchain, as supported
by the MCUXpresso SDK. There are many ways to use Arm GCC tools, but this example focuses
on a Windows operating system environment.

Install GCC Arm Embedded tool chain Download and run the installer from GNU Arm Em-
bedded Toolchain. This is the actual toolset (in other words, compiler, linker, and so on). The
GCC toolchain should correspond to the latest supported version, as described in MCUXpresso
SDK Release Notes.

Install MinGW (only required on Windows 0S) The Minimalist GNU for Windows (MinGW)
development tools provide a set of tools that are not dependent on third-party C-Runtime DLLs
(such as Cygwin). The build environment used by the MCUXpresso SDK does not use the MinGW
build tools, but does leverage the base install of both MinGW and MSYS. MSYS provides a basic
shell with a Unix-like interface and tools.

1. Download the latest MinGW mingw-get-setup installer from MinGW.

2. Run the installer. The recommended installation path is C:\MinGW, however, you may
install to any location.

Note: The installation path cannot contain any spaces.

3. Ensure that the mingw32-base and msys-base are selected under Basic Setup.

3) MinGW Installation Manager
Installation Package Settings

Basic Setup

Package Class Installed Version Repository Version Description
All Packages

D mingw-developer-tool... bin 2013072300 An MSYS Installation for MinGW Developers {(meta)
mingw32-base bin 2013072200 A Basic MinGW Installation

[] mingw32-gcc-ada bin 4.5.1-4 The GNU Ada Compiler

D mingw32-gcc-fortran bin 4.8.1-4 The GMU FORTRAN Compiler
[] mingw3z-gee-g++ bin 4,8.1-4 The GNU C++ Compiler

[] mingw32-gec-objc bin 4.8.1-4 The GNU Objective-C Compiler

msys-base bin 2013072300 A Basic MSYS Installation {meta)

4. In the Installation menu, click Apply Changes and follow the remaining instructions to
complete the installation.

2 MinGW Installation Manager

Package Settings
Update Catalogue Fackage

Mark All Upgrades I:] mingw-developer-tool...
5] mingw32-base

D mingw32-gcc-ada

Quit Alt+F4 E] mingw32-gcc-fortran
|:| mingw32-gcc-g++

|:] mingw32-gcc-abjc

'El msys-base

I Apply Changes

5. Add the appropriate item to the Windows operating system path environment variable.
It can be found under Control Panel->System and Security->System->Advanced System
Settings in the Environment Variables... section. The path is:

34 Chapter 1. FRDM-KE02Z40M

http://sourceforge.net/projects/mingw/files/Installer/

MCUXpresso SDK Documentation, Release 25.06.00

<mingw__install_dir>\bin
Assuming the default installation path, C:\MinGW, an example is shown below. If the path
is not set correctly, the toolchain will not work.

Note: If you have C:\MinGW\msys\x.x\bin in your PATH variable (as required by Kinetis
SDK 1.0.0), remove it to ensure that the new GCC build system works correctly.

Systemn Properties E3
Computer Name | Hardware | Advanced | System Protection | Remate
= 1
Environment Variables | &l |
Edit System Variable | =2 |
Variable name: Path
Variable value: agram Files (x&a)\CMake \bin; C: \MinGW ibin
| oK | | Cancel |

System variables

Variable Value m
05 Windows_MNT W
Path C:\Program Files (x&a)\Parallels'\Farallel. ..
PATHEXT JZOM; EXE; BAT; . .CMD; VBS; NVBE;. 15;....
PROCESSOR_A..., AMDS4 v
| Mew.. || Edit. || Delete
| QK | | Cancel
= —

Add a new system environment variable for ARMGCC_DIR Create a new system environ-
ment variable and name it as ARMGCC_ DIR. The value of this variable should point to the Arm
GCC Embedded tool chain installation path. For this example, the path is:

C:\Program Files (x86)\GNU Tools Arm Embedded\8 2018-q4-major

See the installation folder of the GNU Arm GCC Embedded tools for the exact pathname of your
installation.

1.2. Getting Started with MCUXpresso SDK Package 35

MCUXpresso SDK Documentation, Release 25.06.00

Short path should be used for path setting, you could convert the path to short path by running
command for %I in (.) do echo %~sI in above path.

User variables for

Variable Value

OneDrive ChUsersy, \OneDrive - NXP

OneDriveCorfmercial ChUsersy \OneDrive - NXP

Path Ch\Ruby24-x64\binC\Users\nxa07 599 AppDatatLocal\Micros...

PATHEXT LOM.EXE.BAT.CMD; VBS; VBE:JS; JSE.WSF; W5H: M5C;.REB;RB...

TEMP ChUsersy, VappData\Local\Temp

TMP ChUsersy VAppData\Local\Temp
Mew User Variable x
Variable name: ARMGCC_DIR
Variable value: CAPROGRA~2\GNUTOO~1\82018-~1

Browse Directory...

l IAR_WORKBENCH
JLINK_DIR

KEIL

myCleanUp

Install CMake

Windows OS

Browse File... Cancel

C\Program Files (x86)\|AR Systemns\Embedded Workbench 8.2
Ch\Program Files (x86)\SEGGER\JLink_V&40

C\Keil_v5\Uv4

MNo

New.., Edit.. Delete

0K Cancel

1. Download CMake 3.0.x from www.cmake.org/cmake/resources/software.html.

2. Install CMake, ensuring that the option Add CMake to system PATH is selected when in-
stalling. The user chooses to select whether it is installed into the PATH for all users or just
the current user. In this example, it is installed for all users.

36

Chapter 1. FRDM-KE02Z40M

http://www.cmake.org/cmake/resources/software.html

MCUXpresso SDK Documentation, Release 25.06.00

A CMake3.0.2 Setup — o E=ma

Install Options
Choose options for instaling CMake 3.0.2

By default CMake does not add its directory to the system PATH.

Do not add CMake to the system PATH
@ Add CMake to the system PATH for all users
Add CMake to the system FATH for current user

[Create CMake Desktop Icon

| <Back | Next> | | Cancel

3. Follow the remaining instructions of the installer.
4. You may need to reboot your system for the PATH changes to take effect.

5. Make sure sh.exe is not in the Environment Variable PATH. This is a limitation of
mingw32-make.

Linux OS It depends on the distributions of Linux Operation System. Here we use Ubuntu as
an example.

Open shell and use following commands to install cmake and its version. Ensure the cmake
version is above 3.0.x.

$ sudo apt-get install cmake
$ cmake --version

Build an example application To build an example application, follow these steps.

1. Open a GCC Arm Embedded tool chain command window. To launch the window, from
the Windows operating system Start menu, go to Programs >GNU Tools Arm Embedded
<version> and select GCC Command Prompt.

1.2. Getting Started with MCUXpresso SDK Package 37

MCUXpresso SDK Documentation, Release 25.06.00

GMNU Tools for ARM Embedded Process
Documentation

25 GCC Command Prompt

&tl Uninstall GNU Tools for ARM Embec

2. Change the directory to the example application project directory which has a path similar
to the following:

<install _dir>/boards/<board_name>/<example_type>/<application_name>/armgcc

For this example, the exact path is:
Note: To change directories, use the cd command.

3. Type build_debug.bat on the command line or double click on build_debug.bat file in
Windows Explorer to build it. The output is as shown in following figure.

[B4x1
[92x1

[188:: 1 Linking C executable debug“hello_world.elf

Run an example application This section describes steps to run a demo application using J-
Link GDB Server application. To install J-Link host driver and update the on-board debugger
firmware to Jlink firmware, see On-board debugger.

After the J-Link interface is configured and connected, follow these steps to download and run
the demo applications:

1. Connect the development platform to your PC via USB cable between the on-board debug-
ger USB connector and the PC USB connector. If using a standalone J-Link debug pod, con-
nect it to the SWD/JTAG connector of the board.

2. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug serial port number (to determine the COM port number, see How to determine COM
port). Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_DEBUG_UART_BAUDRATE variable in board.h file)

2. No parity
3. 8 data bhits
4. 1 stop hit

38 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

Category:

= S_essi{:}n

..... Loggmg

= Terminal

- Keyboard
- Bell
- Features

= Window

- Appearance
- Behaviour

- Translation
- Selection

- Colours

= Connection

Data
- Proxy
- Telnet
- Rlogin
[+ SSH
- Serial

Basic options for your PuTTY session

Specify the destination you want to connect to

About

Serial line Speed
COM4 115200
Connection type:

(JRaw () Telnet ()Rlogin ()SSH | (@) Serial

Load, save or delete a stored session

Saved Sessions

Default Settings Load
Save
Delete

Close window on exit:
() Aways () Never (®) Only on clean exit

Open Cancel

3. To launch the application, open the Windows Start menu and select Programs > SEGGER

> J-Link <version> J-Link GDB Server.
Note: It is assumed that the J-Link software is already installed.

The SEGGER J-Link GDB Server Config settings dialog appears.

4. Make sure to check the following options.

1. Target interface: The debug connection on board uses internal SWD signaling. In
case of a wrong setting J-Link is unable to communicate with device under test.

. Script file: If required, a J-Link init script file can be used for board initialization.
The file with the “jlinkscript” file extension is located in the <install dir>/boards/
<board__name>/ directory.

. Under the Server settings, check the GDB port for connection with the gdb target re-
mote command. For more information, see step 9.

. There is a command line version of J-Link GDB server “JLinkGDBServerCL.exe”. Typical
path is C:\Program Files\SEGGER\JLink\. To start the J-Link GDB server with the same
settings as are selected in the UI, you can use these command line options.

1.2.

Getting Started with MCUXpresso SDK Package 39

MCUXpresso SDK Documentation, Release 25.06.00

SEGGER J-Link GDB Server V7.94b Config

Connection to J-Link

O uss [SN/ Nickname 0

O Ter/p

Target device

MIMXRT102 oo A

Little Endian ~

Flash banks

BaseAddr Name Loader
0x60000000 External QSPI flash Default

Target interface d)

SWD

Speed

() Auto Selection

() Adaptive clocking

© Fixed 4000 <~ kHz

Script file (optional) b)

| .-

Server settings

() it registers

@ Localhost only

(") Generate logfile C)

GDB port ? 2331 I

SWO port ? 2332

Telnet port ? 2333

Command line option d)

2331 -SWOPort 2332 -TelnetPort 2333

-select USB=0 -device MIMXRT1021x00¢4A -endian little -if
SWD -speed 4000 -noir -LocalhostOnly -nologtofile -port

oK Cancel

40

Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

5. After it is connected, the screen should look like this figure:

B SEGGER J-Link GDB Server V6.46g - X
File Help
GDB Waiting for connection I [] stay on top
Jink |Connected || [swo 4000 kHz (/] show log window
Device 'L3A60%0_M4 (Halted)| | [3.20v little endian [Generate logfile

D Verify download

Clear Log

Firmware: J-Link Lite-FSL V1 compiled Jun 25 2012 16:40:07 A
Hardware: V1.00

S/N: 361000738

Checking target voltage...
Target wvoltage: 3.29 V
Listening on TCP/IP port 2331
Connecting to target...
Connected to target

Waiting for GDB connection...

0 bytes downloaded

. If not already running, open a GCC Arm Embedded tool chain command window. To launch
the window, from the Windows operating system Start menu, go to Programs - GNU Tools
Arm Embedded <version> and select GCC Command Prompt.

GNU Teols for ARM Embedded Process
Documentation

2 GCC Command Prompt

{9 Uninstall GNU Tools for ARM Embec

. Change to the directory that contains the example application output. The output can be
found in using one of these paths, depending on the build target selected:

<install dir>/boards/<board name>/<example type>/<application name>/armgcc/debug
<install dir>/boards/<board name>/<example type>/<application name>/armgcc/release

. Run the arm-none-eabi-gdb.exe <application_name>.elf command. For this example, it is
arm-none-eabi-gdb.exe hello_ world.elf.

1.2. Getting Started with MCUXpresso SDK Package 11

MCUXpresso SDK Documentation, Release 25.06.00

online at:

9. Run these commands:
1. target remote localhost:2331
2. monitor reset
3. monitor halt
4. load
5. monitor reset

10. The application is now downloaded and halted. Execute the monitor go command to start
the demo application.

The hello_world application is now running and a banner is displayed on the terminal. If
this does not appear, check your terminal settings and connections.

Build a multicore example application This section describes the steps to build and run a
dual-core application. The demo application build scripts are located in this folder:

<install dir>/boards/<board name>/multicore examples/<application name>/<core type>/armgcc

Begin with a simple dual-core version of the Hello World application. The multicore Hello World
GCC build scripts are located in this folder:

<install_dir> /boards/Ipcxpresso54114/multicore _examples/hello_world /cmOplus/armgcc/build__debug.bat

<install_dir>/boards/lpcxpresso54114/multicore__examples/hello_ world /cm4 /armgcce/build__debug.bat

42 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

Build both applications separately following steps for single core examples as described in Build
an example application.

BN GCC Cornmand Prompt - build_debug.bat - O X

hello wor

mples\hello_world\cmep

BN GCC Command Prompt - build_debug.bat — O b

Run a multicore example application When running a multicore application, the same pre-
requisites for J-Link/J-Link OpenSDA firmware, and the serial console as for the single-core ap-
plication, applies, as described in Run an example application.

The primary core debugger handles flashing of both the primary and the auxiliary core appli-
cations into the SoC flash memory. To download and run the multicore application, switch to
the primary core application project and perform steps 1 to 10, as described in Run an example
application. These steps are common for both single-core and dual-core applications in Arm
GCC.

Both the primary and the auxiliary image is loaded into the SPI flash memory. After execution
of the monitor go command, the primary core application is executed. During the primary core
code execution, the auxiliary core code is reallocated from the flash memory to the RAM, and the
auxiliary core is released from the reset. The hello_ world multicore application is now running

1.2. Getting Started with MCUXpresso SDK Package 43

MCUXpresso SDK Documentation, Release 25.06.00

and a banner is displayed on the terminal. If this is not true, check your terminal settings and
connections.

Bl Administrater: GCC Command Prompt |£I—E—3—J

c:xD-5DK_2 .A_LPCipressoS4lil4shoards s 1pocxpressob4ildsmulticore_examplesshello_wow
ldcmd~armgcc>IF "' == """ {(pause 2
Press any key to continue . . .

c 5w\ D~EDK_2.8_LPCipressobd4ildshoardsslpecxpressob4lildsmulticore_examplesshello_wowr
ldcmd~armgce rcd debug

c 5\ D~EDK_2.8_LPCipressob4ildshoardsslpecxpressob4lildsmulticore_examplesshello_wowr
ldcmnd~armgcesdebug *arm—none—eahi—gdbh.exe hello_world_cmd.elf

GMU gdh ¢GHU Tools for ARM Embedded Processors 6—2017—gZ2—update? 7.12.1.2801780417
—git

Copyright (C> 2817 Free Software Foundation, Inc.

License GPLw3+: GHU GPL version 3 or later <{http:-/Agnu.orgslicensessgpl.html>
Thiz iz free software: you ave free to change and redistribute it.

There iz NO WARRANTY. to the extent permitted by law. Type “show copying"
and "show warranty' for details.

Thiz GDB was configured as "——host=i686—wbd—mingwl2 —target=arm—none—eahi'.
Type "show configuration" for configuration details.

For bug reporting instructions,. please szee:

<http: - vuww.gnu.org-sof twaregdb-bugs->.

Find the GDB manual and other documentation resources online at:
<Chttp:A2wuw.gnu.orgssof tuare/gdb/documentation~>.

For help. type "help'.

Tuype "apropos word"" to search for commands related to "word"...

Reading symbols from hello_world _cmd.elf...done.

(gdb? target remote localhost:2331

Remote debugging using localhost:-2331

HxAAEA4298 in 7 (O

Cgdb? monitor reset

Resetting target

Cgdh? monitor halt

Cgdb> load

Loading section .interrupts, size Bxed lma BxB

Loading section .text, size Bx3614 lma BAxed

Loading section .ARM, size Ox8 1lma Bx3I6fB

Loading section .init_array. size Hxd Ima Bx3708

Loading section .fini_array,. size Bxd 1Ima Bx3784

Loading section .data, size Ox68 1lma B@x3768

Loading section .mBcode, size Bxifo4d lma Bx380008

Start address Bx1d8. load size 22224

Transfer rate: 1973 KB/sec, 3174 hytessurite.

Cgdb) monitor reset

Resetting target

Cgdh? monitor go

Cgdb) g

A debugging session is active.

Inferior 1 [Remote target] will be killed.

Quit anyway? ¢y or n} vy

c:%~DSSDKE_2.8_LPCYpressob4ll4shoardss1pcxpressob4ild4smulticore_examplesshello_wow
ld~cmd~armgccdebug >

S COMI7:115200baud - Tera Term VT =S

File Edit Setup Control Window KanjiCode Help
Starting Secondary core. e

Hello World from the Primary Core!

Press the SW1 button to Stop Secondary core.
Press the SW2 button to Start Secondary core.
Secondary core is in startup code.

Secondary core is in exception number 3.

Build a TrustZone example application This section describes the steps to build and run a
TrustZone application. The demo application build scripts are located in this folder:

44 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

<install dir>/boards/<board name>/trustzone examples/<application name>/[<core_ type>]/
—<application_name>_ ns/armgcc

<install _dir>/boards/<board_name> /trustzone_ examples/<application_name>/[<core_type>|/
—»<application_name>_s/armgcc

Begin with a simple TrustZone version of the Hello World application. The TrustZone Hello
World GCC build scripts are located in this folder:

<install _dir>/boards/<board_name> /trustzone_ examples/hello_ world /hello_ world_ ns/armgcc/build__
—debug.bat

<install_dir> /boards/<board_name> /trustzone__examples/hello_world/hello_world_s/armgcc/build__
—debug.bat

Build both applications separately, following steps for single core examples as described in Build
an example application. It is requested to build the application for the secure project first,
because the non-secure project must know the secure project, since CMSE library is running the
linker. It is not possible to finish the non-secure project linker with the secure project because
the CMSE library is not ready.

BN C\WINDOWS\system32\cmd.exe - O X

" (paus

1.2. Getting Started with MCUXpresso SDK Package 45

MCUXpresso SDK Documentation, Release 25.06.00

BN C:\WINDOWS\system32\cmd.exe —] X

orld_ns. elf

kmimxrt595\trustzone examples\hello world\hello world ns)\

o continue . . .

Run a TrustZone example application When running a TrustZone application, the same pre-
requisites for J-Link/J-Link OpenSDA firmware, and the serial console as for the single core ap-
plication, apply, as described in Run an example application.

To download and run the TrustZone application, perform steps 1 to 10, as described in Run an
example application. These steps are common for both single core and TrustZone applications
in Arm GCC.

Then, run these commands:

1. arm-none-eabi-gdb.exe
target remote localhost:2331
monitor reset

monitor halt

monitor exec SetFlashDLNoRMW Threshold = 0x20000

S T o

load <install_dir>/boards/evkmimxrt595/trustzone_examples/hello_world /hello_ world_ns/
armgcc/debug/hello_world_ ns.elf

7. load <install _dir>/boards/evkmimxrt595/trustzone_ examples/hello_ world/hello_ world_s/
armgce/debug/hello_world_s.elf

8. monitor reset

The application is now downloaded and halted. Execute the c command to start the demo appli-
cation.

46 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

Bl Command Prompt - arm-none-eabi-gdb — O X

Arm-norn

online at:

MCUXpresso Config Tools

MCUZXpresso Config Tools can help configure the processor and generate initialization code for
the on chip peripherals. The tools are able to modify any existing example project, or create a
new configuration for the selected board or processor. The generated code is designed to be used
with MCUXpresso SDK version 24.12.00 or later.

Following table describes the tools included in the MCUXpresso Config Tools.

1.2. Getting Started with MCUXpresso SDK Package 47

MCUXpresso SDK Documentation, Release 25.06.00

Config Tool Description

m —
Q 3
(0] 1

Pins tool For configuration of pin routing and pin electrical properties.

Clock tool For system clock configuration

als tools

TEE tool Configures access policies for memory area and peripherals helping to
protect and isolate sensitive parts of the application.

Peripher- For configuration of other peripherals @

Device Configures Device Configuration Data (DCD) contained in the program
Config- image that the Boot ROM code interprets to set up various on-chip pe-
uration ripherals prior to the program launch.

tool

MCUXpresso Config Tools can be accessed in the following products:

* Integrated in the MCUXpresso IDE. Config tools are integrated with both compiler and de-
bugger which makes it the easiest way to begin the development.

» Standalone version available for download from www.nxp.com/mcuxpresso. Recom-
mended for customers using IAR Embedded Workbench, Keil MDK pVision, or Arm GCC.

* Online version available on mcuxpresso.nxp.com. Recommended doing a quick evalua-
tion of the processor or use the tool without installation.

Each version of the product contains a specific Quick Start Guide document MCUXpresso IDE
Config Tools installation folder that can help start your work.

How to determine COM port

This section describes the steps necessary to determine the debug COM port number of your
NXP hardware development platform. All NXP boards ship with a factory programmed, onboard
debug interface, whether it is based on MCU-Link or the legacy OpenSDA, LPC-Link2, P&E Micro
OSJTAG interface. To determine what your specific board ships with, see Default debug interfaces.

1. Linux: The serial port can be determined by running the following command after the USB
Serial is connected to the host:

$ dmesg | grep "ttyUSB”
[503175.307873] usb 3-12: cp210x converter now attached to ttyUSBO
[503175.309372] usb 3-12: cp210x converter now attached to ttyUSB1
There are two ports, one is for core0 debug console and the other is for corel.

2. Windows: To determine the COM port open Device Manager in the Windows operating
system. Click the Start menu and type Device Manager in the search bar.

In the Device Manager, expand the Ports (COM & LPT) section to view the available ports.
The COM port names are different for all the NXP boards.

1. CMSIS-DAP/mbed/DAPLInk interface:

48 Chapter 1. FRDM-KE02Z40M

http://www.nxp.com/mcuxpresso
http://mcuxpresso.nxp.com

MCUXpresso SDK Documentation, Release 25.06.00

4 7% Ports (COM &L LPT)
¥ W Forts lCOM &1LFT) (] ~' mbed Serial Port (COM41)

E MCL-Link VCom Part (COMT)

2. P&E Micro:

4 73" Ports (COM & LPT)
- .75 OpenSDA - CDC Serial Port (http://www.pemicro.com/opensda) (COM22)

3. J-Link:

4 77" Ports (COM & LPT)
- L.JF" JLink CDC UART Port (COML12)

4. P&E Micro OSJTAG:

475 Ports (COM & LPT)

5. MRB-KW01:

“‘? Ports (COM & LPT)
P +" Freescale CDC Device (COMA43)

On-board Debugger

This section describes the on-board debuggers used on NXP development boards.

On-board debugger MCU-Link MCU-Link is a powerful and cost effective debug probe that can
be used seamlessly with MCUXpresso IDE, and is also compatible with 3rd party IDEs that support
CMSIS-DAP protocol. MCU-Link also includes a USB to UART bridge feature (VCOM) that can be
used to provide a serial connection between the target MCU and a host computer. MCU-Link
features a high-speed USB interface for high performance debug. MCU-Link is compatible with
Windows, MacOS and Linux. A free utility from NXP provides an easy way to install firmware
updates.

On-board MCU-Link debugger supports CMSIS-DAP and J-Link firmware. See the table in Default
debug interfaces to determine the default debug interface that comes loaded on your specific
hardware platform.

The corresponding host driver must be installed before debugging.

* For boards with CMSIS-DAP firmware, visit developermbed.org/handbook/Windows-
serial-configuration and follow the instructions to install the Windows operating system
serial driver. If running on Linux OS, this step is not required.

* If using J-Link with either a standalone debug pod or MCU-Link, install the J-Link software
(drivers and utilities) from www.segger.com/jlink-software.html.

Updating MCU-Link firmware This firmware in this debug interface may be updated using
the host computer utility called MCU-Link. This typically used when switching between the de-
fault debugger protocol (CMSIS-DAP) to SEGGER J-Link, or for updating this firmware with new
releases of these. This section contains the steps to reprogram the debug probe firmware.

Note: If MCUXpresso IDE is used and the jumper making DFUlink is installed on the board (JP5
on some boards, but consult the board user manual or schematic for specific jumper number),
MCU-Link debug probe boots to DFU mode, and MCUXpresso IDE automatically downloads the

1.2. Getting Started with MCUXpresso SDK Package 49

http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration
https://www.segger.com/downloads/jlink/

MCUXpresso SDK Documentation, Release 25.06.00

CMSIS-DAP firmware to the probe before flash memory programming (after clicking Debug).
Using DFU mode ensures that most up-to-date/compatible firmware is used with MCUXpresso
IDE.

NXP provides the MCU-Link utility, which is the recommended tool for programming the latest
versions of CMSIS-DAP and J-Link firmware onto MCU-Link or NXP boards. The utility can be
downloaded from MCU-Link.

These steps show how to update the debugger firmware on your board for Windows operating
system.

1. Install the MCU-Link utility.

2. Unplug the board’s USB cable.

3. Make the DFU link (install the jumper labeled DFUlink).

4. Connect the probe to the host via USB (use Link USB connector).
5

. Open a command shell and call the appropriate script located in the MCU-Link installation
directory (<MCU-Link install dir>).

1. To program CMSIS-DAP debug firmware: <MCU-Link install dir>/scripts/
program__CMSIS

2. To program J-Link debug firmware: <MCU-Link install dir>/scripts/program_JLINK
6. Remove DFU link (remove the jumper installed in Step 3).

7. Repower the board by removing the USB cable and plugging it in again.

On-board debugger LPC-Link LPC-Link 2 is an extensible debug probe that can be used seam-
lessly with MCUXpresso IDE, and is also compatible with 3rd party IDEs that support CMSIS-DAP
protocol. MCU-Link also includes a USB to UART bridge feature (VCOM) that can be used to pro-
vide a serial connection between the target MCU and a host computer. LPC-Link 2 is compati-
ble with Windows, MacOS and Linux. A free utility from NXP provides an easy way to install
firmware updates.

On-board LPC-Link 2 debugger supports CMSIS-DAP and J-Link firmware. See the table in Default
debug interfaces to determine the default debug interface that comes loaded on your specific
hardware platform.

The corresponding host driver must be installed before debugging.

* For boards with CMSIS-DAP firmware, visit developermbed.org/handbook/Windows-
serial-configuration and follow the instructions to install the Windows operating system
serial driver. If running on Linux OS, this step is not required.

* If using J-Link with either a standalone debug pod or MCU-Link, install the J-Link software
(drivers and utilities) from www.segger.com/jlink-software.html.

Updating LPC-Link firmware The LPCXpresso hardware platform comes with a CMSIS-DAP-
compatible debug interface (known as LPC-Link2). This firmware in this debug interface may
be updated using the host computer utility called LPCScrypt. This typically used when switch-
ing between the default debugger protocol (CMSIS-DAP) to SEGGER J-Link, or for updating this
firmware with new releases of these. This section contains the steps to reprogram the debug
probe firmware.

Note: If MCUXpresso IDE is used and the jumper making DFUlink is installed on the board (JP5
on some hoards, but consult the board user manual or schematic for specific jumper number),
LPC-Link2 debug probe boots to DFU mode, and MCUXpresso IDE automatically downloads the
CMSIS-DAP firmware to the probe before flash memory programming (after clicking Debug).
Using DFU mode ensures that most up-to-date/compatible firmware is used with MCUXpresso
IDE.

30 Chapter 1. FRDM-KE02Z40M

https://www.nxp.com/design/design-center/software/development-software/mcu-link-debug-probe-architecture:MCU-LINK-ARCHITECTURE
http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration
https://www.segger.com/downloads/jlink/

MCUXpresso SDK Documentation, Release 25.06.00

NXP provides the LPCScrypt utility, which is the recommended tool for programming the latest
versions of CMSIS-DAP and J-Link firmware onto LPC-Link2 or LPCXpresso boards. The utility
can be downloaded from LPCScrypt.

These steps show how to update the debugger firmware on your board for Windows operating
system. For Linux OS, follow the instructions described in LPCScrypt user guide (LPCScrypt,
select LPCScrypt, and then the documentation tab).

1. Install the LPCScript utility.

2. Unplug the board’s USB cable.

3. Make the DFU link (install the jumper labeled DFUlink).

4. Connect the probe to the host via USB (use Link USB connector).
5

. Open a command shell and call the appropriate script located in the LPCScrypt installation
directory (<LPCScrypt install dir>).

1. To program CMSIS-DAP debug firmware: <LPCScrypt install dir>/scripts/
program__ CMSIS

2. To program J-Link debug firmware: <LPCScrypt install dir> /scripts/program_ JLINK
6. Remove DFU link (remove the jumper installed in Step 3).

7. Repower the board by removing the USB cable and plugging it in again.

On-board debugger OpenSDA OpenSDA/OpenSDAv2 is a serial and debug adapter that is built
into several NXP evaluation boards. It provides a bridge between your computer (or other USB
host) and the embedded target processor, which can be used for debugging, flash programming,
and serial communication, all over a simple USB cable.

The difference is the firmware implementation: OpenSDA: Programmed with the proprietary
P&E Micro developed bootloader. P&E Micro is the default debug interface app. OpenSDAv2:
Programmed with the open-sourced CMSIS-DAP/mbed bootloader. CMSIS-DAP is the default de-
bug interface app.

See the table in Default debug interfaces to determine the default debug interface that comes
loaded on your specific hardware platform.

The corresponding host driver must be installed before debugging.

» For boards with CMSIS-DAP firmware, visit developermbed.org/handbook/Windows-
serial-configuration and follow the instructions to install the Windows operating system
serial driver. If running on Linux OS, this step is not required.

» Tor boards with a P&E Micro interface, see PE micro to download and install the P&E Micro
Hardware Interface Drivers package.

Updating OpenSDA firmware Any NXP hardware platform that comes with an OpenSDA-
compatible debug interface has the ability to update the OpenSDA firmware. This typically
means to switch from the default application (either CMSIS-DAP or P&E Micro) to a SEGGER
J-Link. This section contains the steps to switch the OpenSDA firmware to a J-Link interface.
However, the steps can be applied to restoring the original image also. For reference, OpenSDA
firmware files can be found at the links below:

* J-Link: Download appropriate image from www.segger.com/opensda.html. Choose the ap-
propriate J-Link binary based on the table in Default debug interfaces. Any OpenSDA v1.0
interface should use the standard OpenSDA download (in other words, the one with no
version). For OpenSDA 2.0 or 2.1, select the corresponding binary.

* CMSIS-DAP: CMSIS-DAP OpenSDA firmware is available at www.nxp.com/opensda.

1.2. Getting Started with MCUXpresso SDK Package 51

https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/lpcscrypt:LPCSCRYPT
https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/lpcscrypt:LPCSCRYPT
http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration
http://www.pemicro.com/support/downloads_find.cfm
http://www.segger.com/opensda.html
http://www.nxp.com/opensda

MCUXpresso SDK Documentation, Release 25.06.00

» P&E Micro: Downloading P&E Micro OpenSDA firmware images requires registration with
P&E Micro (www.pemicro.com).

Perform the following steps to update the OpenSDA firmware on your board for Windows and
Linux OS users:

1. Unplug the board’s USB cable.

2. Press the Reset button on the board. While still holding the button, plug the USB cable back
into the board.

3. When the board re-enumerates, it shows up as a disk drive called MAINTENANCE.

1M Computer

ﬂ_w Primary (C:)
= MAINTEMAMCE (E:)

4. Drag and drop the new firmware image onto the MAINTENANCE drive.

Note: If for any reason the firmware update fails, the board can always reenter mainte-
nance mode by holding down Reset button and power cycling.

These steps show how to update the OpenSDA firmware on your board for Mac OS users.
1. Unplug the board’s USB cable.

2. Press the Reset button of the board. While still holding the button, plug the USB cable back
into the board.

3. For boards with OpenSDA v2.0 or v2.1, it shows up as a disk drive called BOOTLOADER in
Finder. Boards with OpenSDA v1.0 may or may not show up depending on the bootloader
version. If you see the drive in Finder, proceed to the next step. If you do not see the drive
in Finder, use a PC with Windows OS 7 or an earlier version to either update the OpenSDA
firmware, or update the OpenSDA hootloader to version 1.11 or later. The bootloader up-
date instructions and image can be obtained from P&E Microcomputer website.

4. For OpenSDA v2.1 and OpenSDA v1.0 (with bootloader 1.11 or later) users, drag the new
firmware image onto the BOOTLOADER drive in Finder.

5. For OpenSDA v2.0 users, type these commands in a Terminal window:

> sudo mount -u -w -o sync /Volumes/BOOTLOADER
> cp -X <path to update file> /Volumes/BOOTLOADER

Note: If for any reason the firmware update fails, the board can always reenter bootloader
mode by holding down the Reset button and power cycling.

On-board debugger Multilink An on-board Multilink debug circuit provides a JTAG interface
and a power supply input through a single micro-USB connector. It is a hardware interface that
allows PC software to debug and program a target processor through its debug port.

The host driver must be installed before debugging.

* See PE micro to download and install the P&E Micro Hardware Interface Drivers package.

On-board debugger OSJTAG An on-board OSJTAG debug circuit provides a JTAG interface and
a power supply input through a single micro-USB connector. Itis a hardware interface that allows
PC software to debug and program a target processor through its debug port.

The host driver must be installed before debugging.

* See PE micro to download and install the P&E Micro Hardware Interface Drivers package.

52 Chapter 1. FRDM-KE02Z40M

http://www.pemicro.com/opensda/index.cfm
http://www.pemicro.com/support/downloads_find.cfm
http://www.pemicro.com/support/downloads_find.cfm

MCUXpresso SDK Documentation, Release 25.06.00

Default debug interfaces

The MCUXpresso SDK supports various hardware platforms that come loaded with various fac-
tory programmed debug interface configurations. The following table lists the hardware plat-
forms supported by the MCUXpresso SDK, their default debug firmware, and any version infor-
mation that helps differentiate a specific interface configuration.

Hardware platform Default debugger firmware On-board debugger probe
EVK-MCIMX7ULP N/A N/A
EVK-MIMX8MM N/A N/A
EVK-MIMX8MN N/A N/A
EVK-MIMX8MNDDR3L N/A N/A
EVK-MIMX8MP N/A N/A
EVK-MIMX8MQ N/A N/A
EVK-MIMX8ULP N/A N/A
EVK-MIMXRT1010 CMSIS-DAP LPC-Link2
EVK-MIMXRT1015 CMSIS-DAP LPC-Link2
EVK-MIMXRT1020 CMSIS-DAP LPC-Link2
EVK-MIMXRT1064 CMSIS-DAP LPC-Link2
EVK-MIMXRT595 CMSIS-DAP LPC-Link2
EVK-MIMXRT685 CMSIS-DAP LPC-Link2
EVK9-MIMX8ULP N/A N/A
EVKB-IMXRT1050 CMSIS-DAP LPC-Link2
FRDM-K22F CMSIS-DAP OpenSDA v2
FRDM-K321.2A4S CMSIS-DAP OpenSDA v2
FRDM-K32L2B CMSIS-DAP OpenSDA v2
FRDM-K32L3A6 CMSIS-DAP OpenSDA v2
FRDM-KE02Z40M P&E Micro OpenSDA v1
FRDM-KE15Z CMSIS-DAP OpenSDA v2
FRDM-KE16Z CMSIS-DAP OpenSDA v2
FRDM-KE17Z CMSIS-DAP OpenSDA v2
FRDM-KE17Z512 CMSIS-DAP MCU-Link
FRDM-MCXA153 CMSIS-DAP MCU-Link
FRDM-MCXA156 CMSIS-DAP MCU-Link
FRDM-MCXA346 CMSIS-DAP MCU-Link
FRDM-MCXC041 CMSIS-DAP MCU-Link
FRDM-MCXC242 CMSIS-DAP MCU-Link
FRDM-MCXC444 CMSIS-DAP MCU-Link
FRDM-MCXE247 CMSIS-DAP MCU-Link
FRDM-MCXN236 CMSIS-DAP MCU-Link
FRDM-MCXN947 CMSIS-DAP MCU-Link
FRDM-MCXW23 CMSIS-DAP MCU-Link
FRDM-MCXW71 CMSIS-DAP MCU-Link
FRDM-MCXW72 CMSIS-DAP MCU-Link
FRDM-RW612 CMSIS-DAP MCU-Link
IMX943-EVK N/A N/A
IMX95LP4XEVK-15 N/A N/A
IMX95LPD5EVK-19 N/A N/A
IMX95VERDINEVK N/A N/A
KW45B41Z-EVK CMSIS-DAP MCU-Link
KW45B417-1.0C CMSIS-DAP MCU-Link
KW47-EVK CMSIS-DAP MCU-Link
KW47-LOC CMSIS-DAP MCU-Link
LPC845BREAKOUT CMSIS-DAP LPC-Link2
LPCXpresso51U68 CMSIS-DAP LPC-Link2
LPCXpresso54628 CMSIS-DAP LPC-Link2

continues on next page

1.2. Getting Started with MCUXpresso SDK Package

33

MCUXpresso SDK Documentation, Release 25.06.00

Table 1 - continued from previous page

Hardware platform

Default debugger firmware

On-board debugger probe

LPCXpresso54S018 CMSIS-DAP LPC-Link2
LPCXpresso545018M CMSIS-DAP LPC-Link2
LPCXpresso55S06 CMSIS-DAP LPC-Link2
LPCXpresso55S16 CMSIS-DAP LPC-Link2
LPCXpresso55S28 CMSIS-DAP LPC-Link2
LPCXpresso55S36 CMSIS-DAP MCU-Link
LPCXpresso55S69 CMSIS-DAP LPC-Link2
LPCXpresso802 CMSIS-DAP LPC-Link2
LPCXpresso804 CMSIS-DAP LPC-Link2
LPCXpresso824MAX CMSIS-DAP LPC-Link2
LPCXpresso845MAX CMSIS-DAP LPC-Link2
LPCXpresso860MAX CMSIS-DAP LPC-Link2
MC56F80000-EVK P&E Micro Multilink
MC56F81000-EVK P&E Micro Multilink
MC56F83000-EVK P&E Micro OSJTAG
MCIMX93-EVK N/A N/A
MCIMX93-QSB N/A N/A
MCIMX93AUTO-EVK N/A N/A
MCX-N5XX-EVK CMSIS-DAP MCU-Link
MCX-N9XX-EVK CMSIS-DAP MCU-Link
MCX-W71-EVK CMSIS-DAP MCU-Link
MCX-W72-EVK CMSIS-DAP MCU-Link
MIMXRT1024-EVK CMSIS-DAP LPC-Link2
MIMXRT1040-EVK CMSIS-DAP LPC-Link2
MIMXRT1060-EVKB CMSIS-DAP LPC-Link2
MIMXRT1060-EVKC CMSIS-DAP MCU-Link
MIMXRT1160-EVK CMSIS-DAP LPC-Link2
MIMXRT1170-EVKB CMSIS-DAP MCU-Link
MIMXRT1180-EVK CMSIS-DAP MCU-Link
MIMXRT685-AUD-EVK ~ CMSIS-DAP LPC-Link2
MIMXRT700-EVK CMSIS-DAP MCU-Link
RD-RW612-BGA CMSIS-DAP MCU-Link
TWR-KM34Z50MV3 P&E Micro OpenSDA v1
TWR-KM34Z75M P&E Micro OpenSDA v1
TWR-KM35Z75M CMSIS-DAP OpenSDA v2
TWR-MC56F8200 P&E Micro OSJTAG
TWR-MC56F8400 P&E Micro OSJTAG

How to define IRQ handler in CPP files

With MCUXpresso SDK, users could define their own IRQ handler in application level to over-
ride the default IRQ handler. For example, to override the default PIT IRQHandler define in
startup_ DEVICE.s, application code like app.c can be implement like:

/] ¢
void PIT_ IRQHandler(void)

// Your code
}

When application file is CPP file, like app.cpp, then extern ”C” should be used to ensure the func-
tion prototype alignment.

534 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

// cpp
extern "C” {
void PIT_TRQHandler(void);

void PIT TRQHandler(void)
{

}

// Your code

1.3 Getting Started with MCUXpresso SDK GitHub

1.3.1 Getting Started with MCUXpresso SDK Repository
Installation

NOTE

If the installation instruction asks/selects whether to have the tool installation path added to
the PATH variable, agree/select the choice. This option ensures that the tool can be used in any
terminal in any path. Verify the installation after each tool installation.

Install Prerequisites with MCUXpresso Installer The MCUXpresso Installer offers a quick
and easy way to install the basic tools needed. The MCUXpresso Installer can be obtained from
https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Dependency-Installation. The MCUX-
presso Installer is an automated installation process, simply select MCUXpresso SDK Developer
from the menu and click install. If you prefer to install the basic tools manually, refer to the next
section.

MCUXpresso Installer v24.09 a

MCUXpresso Installer < & €& =

Choose one or more categories from the list below: Install

Software Kits

MCUXpresso SDK Developer

é’ N fora M Oer| Wil install:

1. macos-homebrew - Homebrew, package mang
. CMake - Open-source system that manages th
inja - Small build system with a focus on spej
. Git - Free and open source distributed version
. Arm GNU Toolchain - Toolchain for Arm Archit
b. libncurses5 - Library managing an application’
. Arm GNU Toolchain add-ons - Additional NXP
. Arm GNU T hain Standalone add-ons - Ad

. Python - Programming language support.

Arm GNU Toolchain 10. pip - Package installer for Python.
11. west - Manage multiple Git repositories unde

[

Zephyr Developer

Ne ols for a Zephyr de

S NS

Matter Developer
Ne for a Matter

Al

~ g

o

ARM components

o

Arm GNU ain and additional N;

Standalone Toolchain Add-ons

1.3. Getting Started with MCUXpresso SDK GitHub 55

MCUXpresso SDK Documentation, Release 25.06.00

Alternative: Manual Installation

Basic tools

Git Git is a free and open source distributed version control system. Git is designed to handle
everything from small to large projects with speed and efficiency. To install Git, visit the official
Git website. Download the appropriate version(you may use the latest one) for your operating
system (Windows, macOS, Linux). Then run the installer and follow the installation instructions.

User git --version to check the version if you have a version installed.

Then configure your username and email using the commands:

git config --global user.name ”Your Name”
git config --global user.email ”youremail@example.com”

Python Install python 3.10 or latest. Follow the Python Download guide.

Use python —-version to check the version if you have a version installed.

West Please use the west version equal or greater than 1.2.0

Note: you can add option '--default-timeout=1000" if you meet connection issue. Or you may set a different
—source using option '-i'.

for example, in China you could try: pip install -U west -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install -U west

Build And Configuration System

CMake Itis strongly recommended to use CMake version equal or later than 3.30.0. You can get
latest CMake distributions from the official CMake download page.

For Windows, you can directly use the .msi installer like cmake-3.31.4-windows-x86_64.msi to
install.

For Linux, CMake can be installed using the system package manager or by getting binaries from
the official CMake download page.

After installation, you can use cmake --version to check the version.

Ninja Please use the ninja version equal or later than 1.12.1.

By default, Windows comes with the Ninja program. If the default Ninja version is too old, you
can directly download the ninja binary and register the ninja executor location path into your
system path variable to work.

For Linux, you can use your system package manager or you can directly download the ninja
binary to work.

After installation, you can use ninja --version to check the version.

Kconfig MCUXpresso SDK uses Kconfig python implementation. We customize it based on our
needs and integrate it into our build and configuration system. The Kconfiglib sources are placed
under mcuxsdk/scripts/kconfig folder.

Please make sure python environment is setup ready then you can use the Kconfig.

56 Chapter 1. FRDM-KE02Z40M

https://git-scm.com/
https://wiki.python.org/moin/BeginnersGuide/Download
https://cmake.org/download/
https://github.com/Kitware/CMake/releases/download/v3.31.4/cmake-3.31.4-windows-x86_64.msi
https://cmake.org/download/
https://github.com/ninja-build/ninja/releases
https://github.com/ninja-build/ninja/wiki/Pre-built-Ninja-packages
https://github.com/ninja-build/ninja/releases
https://github.com/ninja-build/ninja/releases

MCUXpresso SDK Documentation, Release 25.06.00

Ruby Our build system supports IDE project generation for iar, mdk, codewarrior and xtensa
to provide OOBE from build to debug. This feature is implemented with ruby. You can follow
the guide ruby environment setup to setup the ruby environment. Since we provide a built-in
portable ruby, it is just a simple one cmd installation.

If you only work with CLI, you can skip this step.

Toolchain MCUXpresso SDK supports all mainstream toolchains for embedded development.
You can install your used or interested toolchains following the guides.

Toolchain Download and Installation Guide Note
Armgcc Arm GNU Toolchain Install Guide ARMGCC is default
toolchain
IAR IAR Installation and Licensing quick ref-
erence guide
MDK MDK Installation
Armclang Installing Arm Compiler for Embedded
Zephyr Zephyr SDK
Codewarrior NXP CodeWarrior
Xtensa Tensilica Tools

NXP S32Compiler RISC-
V Zen-V

NXP Website

After you have installed the toolchains, register them in the system environment variables. This
will allow the west build to recognize them:

1.3. Getting Started with MCUXpresso SDK GitHub 57

https://learn.arm.com/install-guides/gcc/arm-gnu/
https://www.iar.com/siteassets/knowledge/support/tech-notes/qr_lms2.pdf
https://www.iar.com/siteassets/knowledge/support/tech-notes/qr_lms2.pdf
https://developer.arm.com/documentation/109350/v6/Installation?lang=en
https://developer.arm.com/documentation/100748/0618/Getting-Started/Installing-Arm-Compiler-for-Embedded
https://docs.zephyrproject.org/latest/develop/toolchains/zephyr_sdk.html
https://www.nxp.com/design/design-center/software/development-software/codewarrior-development-tools:CW_HOME
https://tensilicatools.com/platforms/
https://www.nxp.com/search?keyword=NXP%2520S32Compiler%2520RISC-V&start=0

MCUXpresso SDK Documentation, Release 25.06.00

Toolchain Environ- Example Cmd
ment Line Ar-
Variable gument
Armgcc AR- C:\armgcc for windows/usr for Linux. Typically -
MGCC DIR arm-none-eabi-* is installed under /usr/bin toolchain
armgcc
IAR IAR_DIR C:\iar\ewarm-9.60.3 for =~ Windows/opt/iarsystems/ —
bxarm-9.60.3 for Linux toolchain
iar
MDK MDK DIR C:\Keil_v5 for Windows.MDK IDE is not officially sup- -
ported with Linux. toolchain
mdk
Armclang ARM- C:\ArmCompilerforEmbedded6.22 for Windows/opt/ -
CLANG_DIF ArmCompilerforEmbedded6.21 for Linux toolchain
mdk
Zephyr ZEPHYR ST c¢:\NXP\zephyr-sdk-<version> for windows/opt/ -
zephyr-sdk-<version> for Linux toolchain
zephyr
CodeWar- CW_DIR C:\Freescale\CW MCU v11.2 for windowsCodeWarrioris -
rior not supported with Linux toolchain
code-
warrior
Xtensa XCC_DIR C:\xtensa\XtDevTools\install\tools\RI-2023.11-win32\ =
XtensaTools for windows/opt/xtensa/XtDevTools/ toolchain
install/tools/RI-2023.11-Linux/XtensaTools for Linux xtensa
NXP RISCVL- C:\riscv-llvim-win32 b298 b298 2024.08.12 for Win- -
S32Compiler LVM_DIR dows/opt/riscv-llvm-Linux-x64 b298 b298 2024.08.12 toolchain
RISC-V for Linux riscvl-
Zen-V Ivm

* The <toolchain>_DIR is the root installation folder, not the binary location folder. For IAR,
it is directory containing following installation folders:

arm
common
install-info

* MDK IDE using armclang toolchain only officially supports Windows. In Linux, please di-
rectly use armclang toolchain by setting ARMCLANG_ DIR. In Windows, since most Keil
users will install MDK IDE instead of standalone armclang toolchain, the MDK_ DIR has
higher priority than ARMCLANG__DIR.

» For Xtensa toolchain, please set the XTENSA_CORE environment variable. Here’s an ex-

ample list:

38

Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

Device Core XTENSA_CORE

RT500 fusion1 nxp_ rt500 RI23 11 newlib
RT600 hifi4 nxp_ rt600__RI23_11_newlib
RT700 hifi1l rt700_hifil RI23 11 nlib
RT700 hifi4 t700__hifi4 RI23 11 nlib

i.MX8ULP fusionl fusion nxp02 dsp_ prod

* In Windows, the short path is used in environment variables. If any toolchain is using
the long path, you can open a command window from the toolchain folder and use below
command to get the short path: for %i in (.) do echo %-~fsi

Tool installation check Once installed, open a terminal or command prompt and type the
associated command to verify the installation.

If you see the version number, you have successfully installed the tool. Else, check whether the
tool’s installation path is added into the PATH variable. You can add the installation path to the
PATH with the commands below:

* Windows: Open command prompt or powershell, run below command to show the user
PATH variable.

reg query HKEY_CURRENT__USER)\Environment /v PATH

The tool installation path should be C:\Users\xxx\AppData\Local\Programs\Git\cmd. If the
path is not seen in the output from above, append the path value to the PATH variable with
the command below:

reg add HKEY_CURRENT__USER)\Environment /v PATH /d "% PATH%;C:\Users\xxx\AppData\

—Local\Programs\Git\cmd”

Then close the command prompt or powershell and verify the tool command again.

e Linux:

1.
2.
3.

Open the $HOME/ .bashrc file using a text editor, such as vim.
Go to the end of the file.

Add the line which appends the tool installation path to the PATH variable and export
PATH at the end of the file. For example, export PATH="/Directory1:$PATH".

. Save and exit.

5. Execute the script with source .bashrc or reboot the system to make the changes live. To

verify the changes, run echo $PATH.

* macOS:

. Open the $SHOME/.bash_profile file using a text editor, such as nano.
. Go to the end of the file.
. Add the line which appends the tool installation path to the PATH variable and export

PATH at the end of the file. For example, export PATH="/Directory1:$PATH".

. Save and exit.

5. Execute the script with source .bash_ profile or reboot the system to make the changes

live. To verify the changes, run echo $PATH.

1.3. Getting Started with MCUXpresso SDK GitHub 59

MCUXpresso SDK Documentation, Release 25.06.00

Get MCUXpresso SDK Repo

Establish SDK Workspace To get the MCUXpresso SDK repository, use the west tool to clone
the manifest repository and checkout all the west projects.

Initialize west with the manifest repository
west init -m https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/ mcuxpresso-sdk

Update the west projects
cd mcuxpresso-sdk
west update

Allow the usage of west extensions provided by MCUXpresso SDK
west config commands.allow__extensions true

Install Python Dependency(If do tool installation manually) To create a Python virtual en-
vironment in the west workspace core repo directory mcuxsdk, follow these steps:

1. Navigate to the core directory:

cd mcuxsdk

2. [Optional] Create and activate the virtual environment: If you don’t want to use the python
virtual environment, skip this step. We strongly suggest you use venv to avoid conflicts
with other projects using python.

python -m venv .venv

For Linux/MacOS
source .venv/bin/activate

For Windows

\.venv\Scripts\activate

If you are using powershell and see the issue that the activate script cannot be run.

You may fix the issue by opening the powershell as administrator and run below command:
powershell Set-ExecutionPolicy RemoteSigned

then run above activate command again.

Once activated, your shell will be prefixed with (.venv). The virtual environment can be
deactivated at any time by running deactivate command.

Remember to activate the virtual environment every time you start working in this
directory. If you are using some modern shell like zsh, there are some powerful plugins to
help you auto switch venv among workspaces. For example, zsh-autoswitch-virtualenv.

3. Install the required Python packages:

1

Note: you can add option '--default-timeout=1000" if you meet connection issue. Or you may set a,
—different source using option '-i'.
for example, in China you could try: pip3 install -r mcuxsdk/scripts/requirements.txt -i https://pypi.
<tuna.tsinghua.edu.cn/simple

pip install -r scripts/requirements.txt

Explore Contents

This section helps you build basic understanding of current fundamental project content and
guides you how to build and run the provided example project in whole SDK delivery.

60 Chapter 1. FRDM-KE02Z40M

https://github.com/MichaelAquilina/zsh-autoswitch-virtualenv

MCUXpresso SDK Documentation, Release 25.06.00

Folder View The whole MCUXpresso SDK project, after you have done the west init and west
update operations follow the guideline at Getting Started Guide, have below folder structure:

Folder Description

mani- Manifest repo, contains the manifest file to initialize and update the west

fests workspace.

mcuxsdk The MCUXpresso SDK source code, examples, middleware integration and script
files.

All the projects record in the Manifest repo are checked out to the folder mcuxsdk/, the layout of
mcuxsdk folder is shown as below:

Folder Description

arch Arch related files such as ARM CMSIS core files, RISC-V files and the build files related
to the architecture.

cmake The cmake modules, files which organize the build system.

com- Software components.

po-

nents

de- Device support package which categorized by device series. For each device, header

vices file, feature file, startup file and linker files are provided, also device specific drivers
are included.

docs Documentation source and build configuration for this sphinx built online documen-

tation.
drivers Peripheral drivers.
ex- Various demos and examples, support files on different supported boards. For each
am- board support, there are board configuration files.
ples
mid- Middleware components integrated into SDK.
dle-
ware

rtos Rtos components integrated into SDK.

scripts Script files for the west extension command and build system support.

svd Svd files for devices, this is optional because of large size. Customers run west manifest
config group.filter +optional and west update mcux-soc-svd to get this folder.

Examples Project The examples project is part of the whole SDK delivery, and locates in the
folder mcuxsdk/examples of west workspace.

Examples files are placed in folder of <example_category>, these examples include (but are not
limited to)

* demo_apps: Basic demo set to start using SDK, including hello_world and led_blinky.

* driver_examples: Simple applications that show how to use the peripheral drivers for a
single use case. These applications typically only use a single peripheral but there are cases
where multiple peripherals are used (for example, SPI transfer using DMA).

Board porting layers are placed in folder of _boards/<board name> which aims at providing the
board specific parts for examples code mentioned above.

Run a demo using MCUXpresso for VS Code

This section explains how to configure MCUXpresso for VS Code to build, run, and debug example
applications. This guide uses the hello_ world demo application as an example. However, these

1.3. Getting Started with MCUXpresso SDK GitHub 61

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests

MCUXpresso SDK Documentation, Release 25.06.00

steps can be applied to any example application in the MCUXpresso SDK.

Build an example application This section assumes that the user has already obtained the
SDK as outlined in Get MCUXpresso SDK Repo.

To build an example application:

1. Import the SDK into your workspace. Click Import Repository from the QUICKSTART

PANEL.
File Edit Selection WView Go Run Terminal Help
MCUXPRESSO FOR VS CODE

~ QUICKSTART PANEL @ o [0 £
-+ Import Repository

1% Import Example from FLE-pI:'E“-r‘_'," Import Local/Remote Repository

B+8 Import Pro
13 New Proje

o

~ IMPORTED REPOSITORIES

Note: You can import the SDK in several ways. Refer to MCUXpresso for VS Code Wiki for
details.

Select Local if you’ve already obtained the SDK as seen in Get MCUXpresso SDK Repo. Select
your location and click Import.

= Import Repository X

Import Repository

Location: c\Repos\mouxsdk

Import

2. Click Import Example from Repository from the QUICKSTART PANEL.

MCUXPRESSO FOR WS CODE
~ QUICKSTART PAMEL
~+ Import Repository

% import Example from Repository “

£+8 Import Project
13 New Project Wizard

Import Examg

In the dropdown menu, select the MCUXpresso SDK, the Arm GNU Toolchain, your board,
template, and application type. Click Import.

62

Chapter 1. FRDM-KE02Z40M

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Working-with-MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.06.00

< Import Example from Repository X

Import Example from Repository

Repository: c\Repos\mouxsdk

Toolchain: (Arm GNU Toolchain 13.2.rel1 (Build arm-13.7)) 13.2.1 20231009 ®

Board:

FRDM-MCXC444

Template: demo_apps/hello_world

The Helloworld demo prints the "Hello World" string to the terminal using the S

input. The purpose of this demo is to show how to use the UART, and to provide a simple project for debugging and
further developm

Please refer to README file for more details.

App type: Freestanding application

Name: frdmmacxc444_hello_world

Location: c\nxp_examples

Note: Path doesn't exist. Folder(s) will be created.

Open readme file after project is imported

import

Note: The MCUXpresso SDK projects can be imported as Repository applications or Free-
standing applications. The difference between the two is the import location. Projects im-
ported as Repository examples will be located inside the MCUXpresso SDK, whereas Free-
standing examples can be imported to a user-defined location. Select between these by
designating your selection in the App type dropdown menu.

3. VS Code will prompt you to confirm if the imported files are trusted. Click Yes.
4. Navigate to the PROJECTS view. Find your project and click the Build Project icon.

~ PROJECTS MY 88 T &
> frdmmcxc444 hello world MCU SDK 25.6.0 |._'-1'| L @

Build Project

The integrated terminal will open at the bottom and will display the build output.

1.3. Getting Started with MCUXpresso SDK GitHub 63

MCUXpresso SDK Documentation, Release 25.06.00

OUTPUT TERMINAL PORTS E OLE SERIALMONITOR O PERIPHERALS [] CMake: build|

debug_console.c.obj
Building C ob; keFiles/| W di dk d 51 k.c.obj
Building C ob;
Building C ob: / art/fsl_uart.c.obj
Linking C executable hello worl
Xage Used
1 rupts: 512 37.58%
m_flash_config: & .eex
3 3.02%
74

- Terminal will be reused by tasks, press any key to close it.

Run an example application Note: for full details on MCUXpresso for VS Code debug probe
support, see MCUXpresso for VS Code Wiki.

1. Open the Serial Monitor from the VS Code’s integrated terminal. Select the VCom Port for
your device and set the baud rate to 115200.

+ Open an additional monitor
Monitor e Serial V' View e Text “ Port COM40 - MCU-Link VCom Port (COM40) v U Baudrate 115200 v
Line ending CR - [> Start Monitoring = & B &

2. Navigate to the PROJECTS view and click the play button to initiate a debug session.

~ PROJECTS
> frdmmcxcd44 hello_world M

The debug session will begin. The debug controls are initially at the top.

64 Chapter 1. FRDM-KE02Z40M

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/DebugK

MCUXpresso SDK Documentation, Release 25.06.00

hello world.c X

main(

ch;

BOARD InitHardware();
PRINTF("hello

while
ch = GETCHAR
PUTCHAR(ch) ;

3. Click Continue on the debug controls to resume execution of the code. Observe the output
on the Serial Monitor.

SERIAL MOMIT
—+ Open an additional menitor
Monitor Mode View Mode ' Port COMA40 - MCU-Link VCom Port (COM40)

¢y

[stop Monitoring = & [@ (1]

tark

---- Opened the serial port COM4@ ----
hello world.

Running a demo using ARMGCC CLI/IAR/MDK

Supported Boards Use the west extension west list_project to understand the board support
scope for a specified example. All supported build command will be listed in output:

west list__project -p examples/demo__apps/hello_world [-t armgcc]

INFO: [1][west build -p always examples/demo_apps/hello world --toolchain armgcc --config release -b,

—evk9mimx8ulp -Dcore_ id=cm33]

INFO: [2|[west build -p always examples/demo_ apps/hello_ world --toolchain armgcc --config release -b,

—evkbimxrt1050]

INFO: | 3][west build -p always examples/demo__apps/hello_ world --toolchain armgcc --config release -b,
(continues on next page)

1.3. Getting Started with MCUXpresso SDK GitHub 65

MCUXpresso SDK Documentation, Release 25.06.00

(continued from previous page)
—evkbmimxrt1060]
INFO: [4][west build -p always examples/demo__apps/hello_ world --toolchain armgcc --config release -b,
—evkbmimxrt1170 -Dcore_ id=cm4]
INFO: [5][west build -p always examples/demo__apps/hello_ world --toolchain armgcc --config release -b,
—evkbmimxrt1170 -Dcore_id=cm7]
INFO: [6][west build -p always examples/demo_ apps/hello_world --toolchain armgcc --config release -b,
—evkemimxrt1060]
INFO: [7|[west build -p always examples/demo_ apps/hello_ world --toolchain armgcc --config release -b,
—evkmecimx7ulp]

The supported toolchains and build targets for an example are decided by the example-self exam-
ple.yml and board example.yml, please refer Example Toolchains and Targets for more details.

Build the project Use west build -h to see help information for west build command. Compared
to zephyr’s west build, MCUXpresso SDK’s west build command provides following additional
options for mcux examples:

* —toolchain: specify the toolchain for this build, default armgce.

* —-config: value for CMAKE_BUILD_TYPE. If not provided, build system will get all the ex-
ample supported build targets and use the first debug target as the default one. Please refer
Example Toolchains and Targets for more details about example supported build targets.

Here are some typical usages for generating a SDK example:

Generate example with default settings, default used device is the mainset MK22F51212
west build -b frdmk22f examples/demo_apps/hello_ world

Just print cmake commands, do not execute it
west build -b frdmk22f examples/demo_ apps/hello_ world --dry-run

Generate example with other toolchain like iar, default armgcc
west build -b frdmk22f examples/demo_ apps/hello_ world --toolchain iar

Generate example with other config type
west build -b frdmk22f examples/demo_ apps/hello_ world --config release

Generate example with other devices with --device
west build -b frdmk22f examples/demo_ apps/hello_ world --device MK22F12810 --config release

For multicore devices, you shall specify the corresponding core id by passing the command line
argument -Dcore__id. For example

west build -b evkbmimxrt1170 examples/demo__apps/hello_ world --toolchain iar -Dcore_id=cm?7 --config, ,
—flexspi__nor__ debug

For shield, please use the --shield to specify the shield to run, like

west build -b mimxrt700evk --shield a8974 examples/issdk examples/sensors/fx1s8974cf/fx1s8974cf poll -
—Dcore_id=cm33__core0

Syshuild(System build) To support multicore project building, we ported Sysbuild from
Zephyr. It supports combine multiple projects for compilation. You can build all projects by
adding --sysbuild for main application. For example:

west build -b evkbmimxrt1170 --sysbuild ./examples/multicore_examples/hello_world /primary -Dcore__
—id=cm7 --config flexspi nor_ debug --toolchain=armgcc -p always

For more details, please refer to System build.

66 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

Config a Project Example in MCUXpresso SDK is configured and tested with pre-defined con-
figuration. You can follow steps blow to change the configuration.

1. Run cmake configuration

west build -b evkbmimxrt1170 examples/demo_ apps/hello_ world -Dcore_id=cm7 --cmake-only -p

Please note the project will be built without --cmake-only parameter.

2. Run guiconfig target

west build -t guiconfig

Then you will get the Kconfig GUI launched, like

) Hello World - O ot

Save Save as.. || 5ave minimal (advanced]... Open... Jump to...

[] Show name [] Showall [] Single-menu mode

(Top)
Board Boot Header s
Project Segrments
Device Boot Header
=l Device MIMXRT1176 Part (Device part MIMXRTT1760YVIMAAL)
@Device part MIMXRT1176DVIMAL
ODevice part MIMERT1176AVIMEA
ODevice part MIMERT11TECVIMEA
B Device specific drivers
K |Use driver clock
EUse driver iormuxe
:|U5e driver mipi csi2rx
:|U5E driver mipi dsi
EUEE driver anatop_ai
E'Use driver memory
:|U5e driver nic301
E'Use driver dedc
EUse driver gpc
EUse driver pgrmc
EUEE driver prmu
EUEE driver src W

Econfig definition., with parent deps. propagated to " depends on’

4t D fedk_next/mouxsdkydevicesh.. /devices/ET/RT1170/NIMET11 76 \drivers/Kconfig: B
Included wia D: fadk_next/mouxsdk/examples/demo_appsfhello_world/Econfiz: 6 —>

D: fedk_next/mouzsdk/Koconfig. mouxpreszo: @ —» D fedk_next/mouxsdk\devices/Econfig: 1
= I f=dk_next/mouxsdkydevicesh.. fdevices/RT/RT1170,/ NIMET11 76,/ Econfig: &

Merm path: (Topd

memi “Device specific driwers”

You can reconfigure the project by selecting/deselecting Kconfig options.

After saving and closing the Kconfig GUI, you can directly run west build to build with the new
configuration.

1.3. Getting Started with MCUXpresso SDK GitHub 67

MCUXpresso SDK Documentation, Release 25.06.00

Flash Note: Please refer Flash and Debug The Example to enable west flash/debug support.
Flash the hello_world example:

west flash -r linkserver

Debug Start a gdb interface by following command:

west debug -r linkserver

Work with IDE Project The above build functionalities are all with CLI If you want to use
the toolchain IDE to work to enjoy the better user experience especially for debugging or you
are already used to develop with IDEs like IAR, MDK, Xtensa and CodeWarrior in the embedded
world, you can play with our IDE project generation functionality.

This is the cmd to generate the evkbmimxrt1170 hello_world IAR IDE project files.

west build -b evkbmimxrt1170 examples/demo__apps/hello_ world --toolchain iar -Dcore_id=cm?7 --config, |
—flexspi_nor__debug -p always -t guiproject

By default, the IDE project files are generated in mcuxsdk/build/<toolchain> folder, you can open
the project file with the IDE tool to work:

k-next\mcu-sdk-3.0
N-3¢) rc west build frdmk64f . \exampl

Note, please follow the Installation to setup the environment especially make sure that ruby has
been installed.

1.4 Release Notes

1.4.1 MCUXpresso SDK Release Notes
Overview

The MCUXpresso SDK is a comprehensive software enablement package designed to simplify
and accelerate application development with Arm Cortex-M-based devices from NXP, including
its general purpose, crossover and Bluetooth-enabled MCUs. MCUXpresso SW and Tools for DSC

68 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

further extends the SDK support to current 32-bit Digital Signal Controllers. The MCUXpresso
SDK includes production-grade software with integrated RTOS (optional), integrated enabling
software technologies (stacks and middleware), reference software, and more.

In addition to working seamlessly with the MCUXpresso IDE, the MCUXpresso SDK also supports
and provides example projects for various toolchains. The Development tools chapter in the
associated Release Notes provides details about toolchain support for your board. Support for
the MCUXpresso Config Tools allows easy cloning of existing SDK examples and demos, allowing
users to leverage the existing software examples provided by the SDK for their own projects.

Underscoring our commitment to high quality, the MCUXpresso SDK is MISRA compliant and
checked with Coverity static analysis tools. For details on MCUXpresso SDK, see MCUXpresso-
SDK: Software Development Kit for MCUXpresso.

MCUXpresso SDK

As part of the MCUXpresso software and tools, MCUXpresso SDK is the evolution of Kinetis SDK,
includes support for LPC, DSC,PN76, and i.MX System-on-Chip (SoC). The same drivers, APIs, and
middleware are still available with support for Kinetis, LPC, DSC, and i.MX silicon. The MCUX-
presso SDK adds support for the MCUXpresso IDE, an Eclipse-based toolchain that works with
all MCUXpresso SDKs. Easily import your SDK into the new toolchain to access to all of the avail-
able components, examples, and demos for your target silicon. In addition to the MCUXpresso
IDE, support for the MCUXpresso Config Tools allows easy cloning of existing SDK examples and
demos, allowing users to leverage the existing software examples provided by the SDK for their
own projects.

In order to maintain compatibility with legacy Freescale code, the filenames and source code in
MCUZXpresso SDK containing the legacy Freescale prefix FSL has been left as is. The FSL prefix
has been redefined as the NXP Foundation Software Library.

Development tools

The MCUXpresso SDK was tested with following development tools. Same versions or above are
recommended.

* MCUXpresso IDE, Rev. 25.06.xx

IAR Embedded Workbench for Arm, version is 9.60.4
Keil MDK, version is 5.41

MCUXpresso for VS Code v25.06

GCC Arm Embedded Toolchain 14.2.x

Supported development systems

This release supports board and devices listed in following table. The board and devices in bold
were tested in this release.

De- MCU devices
velop-

ment

boards

FRDM- MKE02Z16VFM4, MKE02Z16VLC4, MKE02Z16VLD4, MKEQ02Z32VFM4,

KE02Z40 MKE02Z32VLC(C4, MKE02Z32VLD4, MKE02Z32VLH4, MKE02Z32VQH4,
MKE02Z64VFM4, MKE02Z64VLC(C4, MKE02Z64VLD4, MKE02Z64VLH4,
MKE02Z64VQH4

1.4. Release Notes 69

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.06.00

MCUXpresso SDK release package

The MCUXpresso SDK release package content is aligned with the silicon subfamily it supports.
This includes the boards, CMSIS, devices, middleware, and RTOS support.

Device support The device folder contains the whole software enablement available for the
specific System-on-Chip (SoC) subfamily. This folder includes clock-specific implementation,
device register header files, device register feature header files, and the system configuration
source files. Included with the standard SoC support are folders containing peripheral drivers,
toolchain support, and a standard debug console. The device-specific header files provide a di-
rect access to the microcontroller peripheral registers. The device header file provides an overall
SoC memory mapped register definition. The folder also includes the feature header file for each
peripheral on the microcontroller. The toolchain folder contains the startup code and linker files
for each supported toolchain. The startup code efficiently transfers the code execution to the
main() function.

Board support The boards folder provides the board-specific demo applications, driver exam-
ples, and middleware examples.

Demo application and other examples The demo applications demonstrate the usage of the
peripheral drivers to achieve a system level solution. Each demo application contains a readme
file that describes the operation of the demo and required setup steps. The driver examples
demonstrate the capabilities of the peripheral drivers. Each example implements a common
use case to help demonstrate the driver functionality.

Middleware

CMSIS DSP Library The MCUXpresso SDK is shipped with the standard CMSIS development
pack, including the prebuilt libraries.

FreeMASTER FreeMASTER communication driver for 32-bit platforms.

Release contents

Provides an overview of the MCUXpresso SDK release package contents and locations.

70 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

Deliverable

Location

Boards

Demo Applications

Driver Examples

elQ examples

Board Project Template for MCUXpresso IDE NPW
Driver, SoC header files, extension header files and
feature header files, utilities

CMSIS drivers

Peripheral drivers

Toolchain linker files and startup code

Utilities such as debug console

Device Project Template for MCUXpresso IDE NPW
CMSIS Arm Cortex-M header files, DSP library source
Components and board device drivers

RTOS

Release Notes, Getting Started Document and other
documents

Tools such as shared cmake files

Middleware

INSTALL_DIR/boards
INSTALL_DIR/boards/<board_name>/demo_apps
INSTALL_DIR/boards/<board_name>/driver_examples
INSTALL_DIR/boards/<board_name>/eiq_examples
INSTALL_DIR/boards/<board_name>/project_template
INSTALL_DIR/devices/<device_name>

INSTALL_DIR/devices/<device_name>/cmsis_drivers
INSTALL_DIR/devices/<device_name>/drivers
INSTALL_DIR/devices/<device_name>/<toolchain_nam
INSTALL_DIR/devices/<device_name>/utilities
INSTALL_DIR/devices/<device_name>/project_templat
INSTALL_DIR/CMSIS

INSTALL_DIR/components

INSTALL_DIR/rtos

INSTALL_DIR/docs

INSTALL_DIR/tools
INSTALL_DIR/middleware

Known issues

This section lists the known issues, limitations, and/or workarounds.

Cannot add SDK components into FreeRTOS projects

It is not possible to add any SDK components into FreeRTOS project using the MCUXpresso IDE

New Project wizard.

1.5 ChangelLog

1.5.1 MCUXpresso SDK Changelog
Board Support Files

board

[25.06.00]

 Initial version
clock _config

[25.06.00]

 Initial version

pin_mux

1.5. ChangeLog

71

MCUXpresso SDK Documentation, Release 25.06.00

[25.06.00]

 Initial version

ACMP
[2.0.2]
* Bug Fixes
— Fixed the out-of-bounds error of Coverity caused by missing an assert sentence to avoid
the return value of ACMP_GetInstance() exceeding the array bounds.
— Fixed the violation of MISRA C-2012 rules:
% Rule 3.18.310.317.7.
[2.0.1]
* Bug Fixes
— Fixed the missing right pair definition for extern C.
[2.0.0]

* Initial version.

ADC

[2.1.0]
* Improvements

— Added the ADC_GetDefaultFIFOConfig() API to get default setting for FIFO configura-
tion.

* Bug Fixes
— Fixed violations of MISRA C-2012 rule 10.3.

[2.0.2]
* Bug Fixes
— Fixed the violations of MISRA C-2012 rules:
* Rule 10.1 10.3 10.4 15.5 17.7.

[2.0.1]
* Bug Fixes

— Fixed the missing right pair definition for extern C.

72 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

[2.0.0]

 Initial version.

COMMON

[2.6.0]
* Bug Fixes
— Fix CERT-C violations.

[2.5.0]
* New Features

— Added new APIs InitCriticalSectionMeasurementContext, DisableGlobalIRQEX and En-
ableGloballRQEx so that user can measure the execution time of the protected sections.

[2.4.3]
* Improvements

— Enable irgs that mount under irgsteer interrupt extender.

[2.4.2]
* Improvements

— Add the macros to convert peripheral address to secure address or non-secure address.

[2.4.1]
* Improvements

— Improve for the macro redefinition error when integrated with zephyr.

[2.4.0]
* New Features
— Added EnableIRQWithPriority, IRQ_SetPriority, and IRQ_ClearPendingIRQ for ARM.
— Added MSDK_EnableCpuCycleCounter, MSDK_GetCpuCycleCount for ARM.

[2.3.3]
* New Features

— Added NETC into status group.

[2.3.2]
* Improvements

— Make driver aarch64 compatible

1.5. ChangeLog 73

MCUXpresso SDK Documentation, Release 25.06.00

[2.3.1]
* Bug Fixes
— Fixed MAKE_VERSION overflow on 16-bit platform:s.
[2.3.0]

* Improvements

— Split the driver to common part and CPU architecture related part.

[2.2.10]
* Bug Fixes

— Fixed the ATOMIC macros build error in cpp files.

[2.2.9]
* Bug Fixes
- Fixed MISRA C-2012 issue, 5.6, 5.8, 8.4, 8.5, 8.6, 10.1, 10.4, 17.7, 21.3.

— Fixed SDK_Malloc issue that not allocate memory with required size.

[2.2.8]
* Improvements
— Included stddef.h header file for MDK tool chain.
* New Features:

— Added atomic modification macros.

[2.2.7]
* Other Change
— Added MECC status group definition.

[2.2.6]
* Other Change
— Added more status group definition.
* Bug Fixes
— Undef _ VECTOR_TABLE to avoid duplicate definition in cmsis_clang.h

[2.2.5]
* Bug Fixes
- Fixed MISRA C-2012 rule-15.5.

74 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

[2.2.4]
* Bug Fixes
- Fixed MISRA C-2012 rule-10.4.
[2.2.3]

* New Features

— Provided better accuracy of SDK_DelayAtLeastUs with DWT, wuse macro
SDK_DELAY_USE_DWT to enable this feature.

— Modified the Cortex-M7 delay count divisor based on latest tests on RT series boards,
this setting lets result be closer to actual delay time.

[2.2.2]
* New Features
— Added include RTE_Components.h for CMSIS pack RTE.

[2.2.1]
* Bug Fixes
- Fixed violation of MISRA C-2012 Rule 3.1, 10.1, 10.3, 10.4, 11.6, 11.9.
[2.2.0]

* New Features

— Moved SDK_DelayAtLeastUs function from clock driver to common driver.

[2.1.4]
* New Features
— Added OTFAD into status group.

[2.1.3]
* Bug Fixes
— MISRA C-2012 issue fixed.
* Fixed the rule: rule-10.3.
[2.1.2]

* Improvements

— Add SUPPRESS_FALL_THROUGH_WARNING() macro for the usage of suppressing
fallthrough warning.

[2.1.1]
* Bug Fixes

— Deleted and optimized repeated macro.

1.5. ChangeLog 75

MCUXpresso SDK Documentation, Release 25.06.00

[2.1.0]
* New Features
— Added IRQ operation for XCC toolchain.
— Added group IDs for newly supported drivers.

[2.0.2]
* Bug Fixes
— MISRA C-2012 issue fixed.
* Fixed the rule: rule-10.4.
[2.0.1]

* Improvements
— Removed the implementation of LPC8XX Enable/DisableDeepSleepIRQ() function.

— Added new feature macro switch “FSL,_FEATURE_HAS_NO_NONCACHEABLE_SECTION”
for specific SoCs which have no noncacheable sections, that helps avoid an unneces-
sary complex in link file and the startup file.

— Updated the align(x) to attribute(aligned(x)) to support MDK v6 armclang compiler.

[2.0.0]

 Initial version.

CRC

[2.0.4]
* Improvements

— Release peripheral from reset if necessary in init function.

[2.0.3]
* Bug fix:
— Fix MISRA issues.

[2.0.2]
* Bug fix:
— Fix MISRA issues.

[2.0.1]
* Bug fix:
— DATA and DATALL macro definition moved from header file to source file.

76 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

[2.0.0]

 Initial version.

FLASH

[2.1.2]

* Improvements — The improved FLASH_EepromWrite function can write more data at once
time.

[2.1.1]
* Bug Fixes — MISRA C-2012 issue fixed: rule 14.4

[2.1.0]
* New Features

— add feature macro before the declaration of the EEPROM_check_range.

[2.0.0]

 Initial version.

FTM
[2.7.1]
* Bug Fixes
— Added function macro when accsee FLTCTRL register FSTATE bit to prevent access
nonexistent register.
— Added function macro to prevent access nonexistent FTM channel for API
FTM_ConfigSinglePWM() and FTM_ConfigCombinePWM().
[2.7.0]

* Improvements

— Support period dithering and edge dithering feature with new APIs:
% FTM_SetPeriodDithering()
% FTM_SetEdgeDithering()

— Support get channel n output and input state feature with new APIs:
% FTM_GetChannelOutputState()
* FTM_GetChannellnputState()

— Support configure deadtime for specific combined channel pair with new API:
* FTM_SetPairDeadTime()

— Support filter clock prescale, fault output state.

1.5. ChangeLog 77

MCUXpresso SDK Documentation, Release 25.06.00

— Support new APIs to configure PWM and Modified Combine PWM:
* FTM_ConfigSinglePWM()
* FTM_ConfigCombinePWM()
— Support new API to configure channel software output control:
* FTM_SetSoftwareOutputCtrl()
* FTM_GetSoftwareOutputValue()
* FTM_GetSoftwareOutputEnable()
— Support new API to update FTM counter initial value, modulo value and chanle value:
% FTM_SetInitialModuloValue()
* FTM_SetChannelValue()

[2.6.1]
* Improvements

— Release peripheral from reset if necessary in init function.

[2.6.0]
* Improvements
— Added support to half and full cycle reload feature with new APIs:
* FTM_SetLdok()
* FTM_SetHalfCycPeriod()
* FTM_LoadFreq()
* Bug Fixes
— Set the HWRSTCNT and SWRSTCNT bhits to optional at initialization.

[2.5.0]
¢ Improvements
— Added FTM_CalculateCounterClkDiv to help calculates the counter clock prescaler.
— Modify FTM_UpdatePwmDutycycle API to make it return pwm duty cycles status.
* Bug Fixes

— Fixed TPM_SetupPwm can’t configure 100% center align combined PWM issues.

[2.4.1]
* Bug Fixes

— Added function macro to determine if FTM instance has only basic features, to prevent
access to protected register bits.

78 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

[2.4.0]
* Improvements
— Added CNTIN register initialization in FTM_SetTimerPeriod APIL.

— Added a new API to read the captured value of a FTM channel configured in capture
mode:

* FTM_GetInputCaptureValue()

[2.3.0]
* Improvements

— Added support of EdgeAligned/CenterAligned/Asymmetrical combine PWM mode in
FTM_SetupPWM() and FTM_SetupPwmMode() APIs.

— Remove KFTM_ComplementaryPwm from support PWM mode, and add new parame-
ter “enableComplementary” in structure ftm_chnl_pwm_signal_param_t.

— Rename FTM_SetupFault() API to FTM_SetupFaultInput() to avoid ambiguity.

[2.2.3]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 14.4 and 17.7.
[2.2.2]
* Bug Fixes
— Fixed the issue that when FTM instance has only TPM features cannot be initialized by
FTM_Init() function. By added function macro to assert FTM is TPM only instance.
[2.2.1]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 10.1, 10.3, 10.4, 10.6, 10.7 and 11.9.
[2.2.0]
* Bug Fixes

- Fixed the issue of comparison between signed and unsigned integer expressions.
* Improvements

— Added support of complementary mode in FTM_SetupPWM(and
FTM_SetupPwmMode() APIs.

— Added new parameter “enableDeadtime” in structure ftm_chnl_pwm_signal_param_t.

[2.1.1]
* Bug Fixes

— Fixed COVERITY integer handing issue where the right operand of a left bit shift state-
ment should not be a negative value. This appears in FTM_SetReloadPoints().

1.5. ChangeLog 79

MCUXpresso SDK Documentation, Release 25.06.00

[2.1.0]
* Improvements

— Added a new API FTM_SetupPwmMode() to allow the user to set the chan-
nel match value in units of timer ticks. New configure structure called
ftm_chnl_pwm_config_param_t was added to configure the channel’s PWM parame-
ters. This API is similar with FTM_SetupPwm() API, but the new API will not set the
timer period(MOD value), it will be useful for users to set the PWM parameters with-
out changing the timer period.

* Bug Fixes

— Added feature macro to enable/disable the external trigger source configuration.

[2.0.4]
* Improvements
— Added a new API to enable DMA transfer:
* FTM_EnableDmaTransfer()

[2.0.3]
* Bug Fixes
- Updated the FTM driver to enable fault input after configuring polarity.
[2.0.2]

¢ Improvements
— Added support to Quad Decoder feature with new APIs:
* FTM_GetQuadDecoderFlags()
% FTM_SetQuadDecoderModuloValue()
* FTM_GetQuadDecoderCounterValue()
* FTM_ClearQuadDecoderCounterValue()

[2.0.1]
* Bug Fixes
— Updated the FTM driver to fix write to ELSA and ELSB bits.
— FTM combine mode: set the COMBINE bit before writing to CnV register.
[2.0.0]

 Initial version.

GPIO

[2.1.1]
* Improvements:

— Enhanced FGPIO_PinlInit to enable clock internally.

80 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

[2.1.0]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 8.6.

— Updated parameter from base into port in port_init() APL

[2.0.1]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 3.1, 10.1, 10.3, 10.6, 10.7.

[2.0.0]

« Initial version.

I12C

[2.0.10]
* Bug Fixes

— Fixed coverity issues.

[2.0.9]
* Bug Fixes
— Fixed the MISRA-2012 violations.
* Fixed rule 8.4, 10.1, 10.4, 13.5, 20.8.

[2.0.8]
* Bug Fixes
- Fixed the bug that DFEN bit of I2C Status register 2 could not be set in 12C_MasterInit.
— MISRA C-2012 issue fixed: rule 14.2, 15.7, and 16.4.

— Eliminated IAR Pa082 warnings from 12C_MasterTransferDMA and
I12C_MasterTransferCallbackDMA by assigning volatile variables to local variables and
using local variables instead.

— Fixed MISRA issues.
Fixed rules 10.1, 10.3, 10.4, 11.9, 14.4, 15.7, 17.7.
¢ Improvements
— Improved timeout mechanism when waiting certain state in transfer API.
— Updated the I12C_WAIT_TIMEOUT macro to unified name I2C_RETRY_TIMES.

— Moved the master manually acknowledge byte operation into static function
12C_MasterAckByte.

— Fixed control/status clean flow issue inside I2C_MasterReadBlocking to avoid potential
issue that pending status is cleaned before it’s proceeded.

1.5. ChangeLog 81

MCUXpresso SDK Documentation, Release 25.06.00

[2.0.7]
* Bug Fixes
— Fixed the issue for MISRA-2012 check.

* Fixed rule 11.9,15.7 ,14.4,10.4 ,10.8 ,10.3, 10.1, 10.6, 13.5, 11.3, 13.2, 17.7, 5.7, 8.3,
8.5,11.1, 16.1.

— Fixed Coverity issue of unchecked return value in I2C_RTOS_Transfer.
— Fixed variable redefine issue by moving i2cBases from fsl_i2c.h to fsl_i2c.c.
* Improvements

— Added I2C_MASTER_FACK_CONTROL macro to enable FACK control for master trans-
fer receive flow with IP supporting double buffer, then master could hold the SCL by
manually setting TX AK/NAK during data transfer.

[2.0.6]
* Bug Fixes
— Fixed the issue that 12C Master transfer APIs(blocking/non-blocking) did not support
the situation of master transfer with subaddress and transfer data size being zero,
which means no data followed by the subaddress.
[2.0.5]

* Improvements

— Added I12C_WATI_TIMEOUT macro to allow the user to specify the timeout times for
waiting flags in functional API and blocking transfer API.

[2.0.4]
* Bug Fixes
— Added a proper handle for transfer config flag kI2C_TransferNoStartFlag to support
transmit with kI2C_TransferNoStartFlag flag. Support write only or write+read with
no start flag; does not support read only with no start flag.
[2.0.3]
* Bug Fixes
— Removed enableHighDrive member in the master/slave configuration structure be-
cause the operation to HDRS bit is useless, the user need to use DSE bit in port register
to configure the high drive capability.
— Added register reset operation in 12C_MasterInit and I2C_Slavelnit APIs. Fixed issue
where I2C could not switch between master and slave mode.
— Improved slave IRQ handler to handle the corner case that stop flag and address match
flag come synchronously.
[2.0.2]
* Bug Fixes

— Fixed issue in master receive and slave transmit mode with no stop flag. The master
could not succeed to start next transfer because the master could not send out re-start
signal.

82 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

— Fixed the out-of-order issue of data transfer due to memory barrier.

— Added hold time configuration for slave. By leaving the SCL divider and MULT reset
values when configured to slave mode, the setup and hold time of the slave is then
reduced outside of spec for lower baudrates. This can cause intermittent arbitration
loss on the master side.

* New Features
— Added address nak event for master.

— Added general call event for slave.

[2.0.1]
* New Features

— Added double buffer enable configuration for SoCs which have the DFEN bhit in S2 reg-
ister.

— Added flexible transmit/receive buffer size support in I12C_SlaveHandleIRQ.

— Added start flag clear, address match, and release bus operation in
12C_SlaveWrite/ReadBlocking API.

* Bug Fixes
— Changed the kI2C_SlaveRepeatedStartEvent to kI2C_SlaveStartEvent.

[2.0.0]

 Initial version.

IRQ
[2.0.2]
* Bug Fixes
— Fixed violation of MISRA C-2012 Rule 3.1, 8.4, 10.3 and 10.6.
[2.0.1]

* New Features

— Added control macros to enable/disable the CLOCK code in current driver.

[2.0.0]

 Initial version.

KBI

[2.0.3]
* Bug Fixes
— Fixed violation of the MISRA C-2012 rules 10.8.

1.5. ChangeLog 83

MCUXpresso SDK Documentation, Release 25.06.00

[2.0.2]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 10.3.

[2.0.1]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 10.1, 10.3,10.4, 17.7.

[2.0.0]

¢ Initial version.

MCM

[2.2.0]
* Improvements

— Support platforms with less features.

[2.1.0]
* Others
— Remove byteID from mcm_Imem_fault_attribute_t for document update.
[2.0.0]

« Initial version.

PIT

[2.2.0]
* Bug Fixes

— According to ERR050763, PIT_LDVAL_STAT register is not reliable in dynamic load
mode, so remove the status check in PIT_SetRtiTimerPeriod which added since 2.1.1.

— Removed not used bit PIT_RTI_TCTRL_CHN_MASK.
* Improvements
— Added more guide about get RTI load status in PIT_SetRtiTimerPeriod’s API comment.
— Change PIT_RTI_Deinit to inline API.
— Ensure PIT peripheral clock enabled in PIT_RTI Init.
* New Features
— Added PIT_ClearRtiSyncStatus API to clear the RTI_LDVAL_STAT register.

84 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

[2.1.1]
* Bug Fixes
— Enable PIT when using RTI to ensure RTI can work properly in debug mode.
* Improvements

— Added status check in PIT_SetRtiTimerPeriod to ensure the load value is synchronized
into the RTI clock domain.

— Added note for PIT_RTI_Init to remind users wait RTI sync.

[2.1.0]
* New Features

— Support RTI (Real Time Interrupt) timer.

[2.0.5]
* Improvements

— Support workaround for ERR007914. This workaround guarantee the write to MCR
register is not ignored.

[2.0.4]
* Bug Fixes
— Fixed PIT_SetTimerPeriod implementation, the load value trigger should be PIT clock
cycles minus 1.
[2.0.3]
* Bug Fixes
— Clear all status bits for all channels to make sure the status of all TCTRL registers is
clean.
[2.0.2]
* Bug Fixes
— Fixed MISRA-2012 issues.
Rule 10.1.
[2.0.1]
* Bug Fixes

— Cleared timer enable bit for all channels in function PIT_Init() to make sure all channels
stay in disable status before setting other configurations.

— Fixed MISRA-2012 rules.
* Rule 14.4, rule 10.4.

1.5. ChangeLog 85

MCUXpresso SDK Documentation, Release 25.06.00

[2.0.0]

 Initial version.

RTC
[2.0.6]
* Bug Fixes
— Fix RTC_GetDatetime function validating datetime issue.
[2.0.5]
* Bug Fixes
— Fixed CERT INT30-C, INT31-C violations.
[2.0.4]

* Improvements

— Changed the behavior of calling alarm callback when alarm seconds reach counter
seconds, instead of previous behavior when counter seconds reach alarm seconds and
counter seconds increments.

[2.0.3]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 10.1, 10.3, 10.4 and 14.4.
[2.0.2]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 10.3 and 11.9.
[2.0.1]
* Bug Fixes
— Fixed the issue of Pa082 warning.
[2.0.0]

 Initial version.

86 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

SPI

[2.1.4]
* Bug Fixes

— Fixed coverity issues.

[2.1.3]
* Bug Fixes

— Fixed the txData from void * to const void * in transmit API.

[2.1.2]
¢ Improvements
- Changed SPI_DUMMYDATA to 0x00.

[2.1.1]
* Bug Fixes
— Fixed MISRA 10.3 violation.
[2.1.0]

* Improvements
— Added timeout mechanism when waiting certain states in transfer driver.
* Bug Fixes

— Fixed the bug that, when working as a slave, instance that does not have FIFO may
miss some rx data.

— Fixed master RX data overflow issue by synchronizing transmit and receive process.

— Fixed issue that slave should not share the same non-blocking initialization API and
IRQ handler with master to prevent dead lock issue.

— Fixed issue that callback should be invoked after all data is sent out to bus.

— Added code in SPI_SlaveTransferNonBlocking to empty rx buffer before initializing
transfer.

[2.0.5]
* Bug Fixes
— Eliminated Pa082 warnings from SPI_WriteNonBlocking and SPI_GetStatusFlags.
— Fixed MISRA issues.
* Fixed issues 10.1, 10.3, 10.4, 10.7, 10.8, 11.9, 14.4, 17.7.

1.5. ChangeLog 87

MCUXpresso SDK Documentation, Release 25.06.00

[2.0.4]
* New Features

— Supported 3-wire mode for SPI driver. Added new API SPI_SetPinMode() to control the
transfer direction of the single wire. For master instance, MOSI is selected as I/O pin.
For slave instance, MISO is selected as I/O pin.

— Added dummy data setup API to allow users to configure the dummy data to be trans-

ferred.
[2.0.3]
* Bug Fixes
— Fixed the potential interrupt race condition at high baudrate when calling API
SPI_MasterTransferNonBlocking.
[2.0.2]

* New Features

— Allowed users to set the transfer size for SPI_TransferNoBlocking non-integer times of
watermark.

— Allowed users to define the dummy data. Users only need to define the macro
SPI_DUMMYDATA in applications.

[2.0.1]
* Bug Fixes
— Fixed SPI_Enable function parameter error.
— Set the s_dummy variable as static variable in fsl_spi_dma.c.
* Improvements
— Optimized the code size while not using transactional APL
— Improved performance in polling method.

— Added #ifndef/#endif to allow users to change the default tx value at compile time.

[2.0.0]

 Initial version.

TPM

[2.3.5]
* New Feature
— Added IRQ handler entry for TPM2.

[2.3.4]
* New Feature
— Added common IRQ handler entry TPM_DriverIRQHandler.

88 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

[2.3.3]
* Improvements

— Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

[2.3.2]
* Bug Fixes
— Fixed ERR008085 TPM writing the TPMx_MOD or TPMx_CnV registers more than once
may fail when the timer is disabled.
[2.3.1]
* Bug Fixes
— Fixed compilation error when macro FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL is
1.
[2.3.0]

* Improvements

— Create callback feature for TPM match and timer overflow interrupts.

[2.2.4]
* Improvements
- Add feature macros(FSL_FEATURE_TPM_HAS_GLOBAL_TIME_BASE_EN,
FSL_FEATURE_TPM_HAS_GLOBAL_TIME_BASE_SYNC).
[2.2.3]

* Improvements

— Release peripheral from reset if necessary in init function.

[2.2.2]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 10.4.

[2.2.1]
* Bug Fixes

— Fixed CCM issue by splitting function from TPM_SetupPwm() function to reduce func-
tion complexity.

— Fixed violations of MISRA C-2012 rule 17.7.

1.5. ChangeLog 89

MCUXpresso SDK Documentation, Release 25.06.00

[2.2.0]
* Improvements
— Added TPM_SetChannelPolarity to support select channel input/output polarity.

— Added TPM_EnableChannelExtTrigger to support enable external trigger input to be
used by channel.

— Added TPM_CalculateCounterClkDiv to help calculates the counter clock prescaler.
— Added TPM_GetChannelValue to support get TPM channel value.
— Added new TPM configuration.
* syncGlobalTimeBase
* extTriggerPolarity
* chnlPolarity
— Added new PWM signal configuration.
* secPauseLevel
* Bug Fixes

— Fixed TPM_SetupPwm can’t configure 0% combined PWM issues.

[2.1.1]
* Improvements

— Add feature macro for PWM pause level select feature.

[2.1.0]
* Improvements
— Added TPM_EnableChannel and TPM_DisableChannel APIs.
— Added new PWM signal configuration.
% pauseLevel - Support select output level when counter first enabled or paused.

* enableComplementary - Support enable/disable generate complementary PWM
signal.

* deadTimeValue - Support deadtime insertion for each pair of channels in combined
PWM mode.

* Bug Fixes

— Fixed issues about channel MSnB:MSnA and ELSnB:ELSnA bit fields and CnV register
change request acknowledgement. Writes to these bits are ignored when the interval
between successive writes is less than the TPM clock period.

[2.0.8]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 10.1, 10.4,10.7 and 14.4.

[2.0.7]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 10.4 and 17.7.

90 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

[2.0.6]
* Bug Fixes
- Fixed Out-of-bounds issue.
[2.0.5]
* Bug Fixes
— Fixed MISRA-2012 rules.
% Rule 10.6, 10.7
[2.0.4]
* Bug Fixes
— Fixed ERR050050 in functions TPM_SetupPwm/TPM_UpdatePwmDutycycle. When
TPM was configured in EPWM mode as PS = 0, the compare event was missed on the
first reload/overflow after writing 1 to the CnV register.
[2.0.3]
* Bug Fixes
— MISRA-2012 issue fixed.
* Fixed rules: rule-12.1, rule-17.7, rule-16.3, rule-14.4, rule-1.3, rule-10.4, rule-10.3,
rule-10.7, rule-10.1, rule-10.6, and rule-18.1.
[2.0.2]
* Bug Fixes
— Fixed issues in functions TPM_SetupPwm/TPM_UpdateChnlEdgeLevelSelect
/TPM_SetupInputCapture/TPM_SetupOutputCompare/TPM_SetupDualEdgeCapture,
wait acknowledgement when the channel is disabled.
[2.0.1]
* Bug Fixes
— Fixed TPM_UpdateChnIEdgeLevelSelect ACK wait issue.
— Fixed the issue that TPM_SetupdualEdgeCapture could not set FILTER register.
— Fixed TPM_UpdateChnEdgeLevelSelect ACK wait issue.
[2.0.0]

« Initial version.

1.5. ChangeLog 91

MCUXpresso SDK Documentation, Release 25.06.00

UART

[2.5.1]
* Improvements
— Use separate data for TX and RX in uart_transfer_t.
* Bug Fixes

- Fixed bug that when ring buffer is used, if some data is received in ring buffer first
before calling UART TransferReceiveNonBlocking, the received data count returned
by UART_TransferGetReceiveCount is wrong.

[2.5.0]
* New Features

— Added APIs UART_GetRxFifoCount/UART_GetTxFifoCount to get rx/tx FIFO data count.

— Added APIs UART SetRxFifoWatermark/UART SetTxFifowWatermark to set rx/tx FIFO
water mark.

* Bug Fixes

— Fixed bug of race condition during UART transfer using transactional APIs, by disabling

and re-enabling the global interrupt before and after critical operations on interrupt
enable registers.

— Fixed DMA/eDMA transfer blocking issue by enabling tx idle interrupt after
DMA/eDMA transmission finishes.

[2.4.0]

* New Features

— Added APIs to configure 9-bit data mode, set slave address and send address.

[2.3.0]
* Bug Fixes

— Fixed the bug that, when framing/parity/noise/overflow flag or idle line detect flag is
set, receive FIFO should be flushed to avoid FIFO pointer being in unknown state, since
FIFO has no valid data.

* Improvements

— Modified UART_TransferHandleIRQ so that txState will be set to idle only when all data
has been sent out to bus.

— Modified UART_TransferGetSendCount so that this API returns the real byte count that
UART has sent out rather than the software buffer status.

— Added timeout mechanism when waiting for certain states in transfer driver.

[2.2.0]
* New Features

— Added UART hardware FIFO enable/disable API.
* Improvements

92 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

— Added check for KUART_TransmissionCompleteFlag in UART_TransferHandleIRQ,
UART_SendEDMACallback and UART_TransferSendDMACallback to ensure all the data
would be sent out to bus.

* Bug Fixes

— Eliminated IAR Pa082 warnings from UART_TransferGetRxRingBufferLength,
UART_GetEnabledInterrupts, UART_GetStatusFlags and UART TransferHandleIRQ.

— Added code in UART_ReadBlocking so that if more than one receiver errors occur, all
status flags will be cleared and the most severe error status will be returned.

— Fixed MISRA issues.
* Fixed rules 10.1, 10.3, 10.4, 14.4, 11.6, 17.7.

[2.1.6]
* Bug Fixes
— Fixed the issue of register’s being in repeatedly reading status while performing the
IRQ routine.
[2.1.5]

* Improvements
— Added hardware flow control function support.

— Added idle-line-detecting feature in UART_TransferNonBlocking function. If an idle
line is detected, a callback will be triggered with status kStatus_UART_IdleLineDetected
returned. This feature may be useful when the number of received bytes is less than
the expected receive data size. Before triggering the callback, data in the FIFO is read
out (if it has FIFO), and no interrupt will be disabled except for the case that the receive
data size reaches 0.

— Enabled the RX FIFO watermark function. With the idle-line-detecting feature enabled,
you can set the watermark value to whatever you want (should not be bigger than the
RX FIFO size). Data is then received and a callback will be triggered when data receive
ends.

[2.1.4]
* Improvements

— Changed parameter type in UART_RTOS_Init() struct rtos_uart_config -—>
uart_rtos_config_t.

* Bug Fixes

— Disabled UART receive interrupt instead of global interrupt when reading data from
ring buffer. With ring buffer used, receive nonblocking will disable global interrupt to
protect the ring buffer. This has a negative effect on other IPs using interrupt.

[2.1.3]
* New Features

— Added RX framing error and parity error status check when using interrupt transfer.

1.5. ChangeLog 93

MCUXpresso SDK Documentation, Release 25.06.00

[2.1.2]
* Bug Fixes

— Fixed baud rate fine adjust bug to make the computed baud rate more accurate.

[2.1.1]
* Bug Fixes
— Removed needless check of event flags and assert in UART _RTOS_Receive.
- Always waited for RX event flag in UART_RTOS_Receive.

[2.1.0]
* Improvements
— Added transactional API.

[2.0.0]

 Initial version.

WDOGS8

[2.0.1]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 10.3, 10.4, 10.6, 10.7 and 11.9.
— Fixed the issue of the inseparable process interrupted by other interrupt source.
* WDOGB8_Refresh

[2.0.0]

« Initial version.

1.6 Driver API Reference Manual

This section provides a link to the Driver API RM, detailing available drivers and their usage to
help you integrate hardware efficiently.

MKE027Z4

1.7 Middleware Documentation

Find links to detailed middleware documentation for key components. While not all onboard
middleware is covered, this serves as a useful reference for configuration and development.

94 Chapter 1. FRDM-KE02Z40M

MCUXpresso SDK Documentation, Release 25.06.00

1.7.1 FreeMASTER

freemaster

1.7. Middleware Documentation 95

MCUXpresso SDK Documentation, Release 25.06.00

96 Chapter 1. FRDM-KE02Z40M

Chapter 2

MKE(02Z4

2.1 ACMP: Analog Comparator Driver

void ACMP_ Init(ACMP_Type *base, const acmp_config_t *config)
Initialize the ACMP.

The default configuration can be got by calling ACMP_GetDefaultConfig().
Parameters
* base — ACMP peripheral base address.
* config — Pointer to ACMP configuration structure.
void ACMP_ Deinit(ACMP_Type *base)
De-Initialize the ACMP.
Parameters
* base — ACMP peripheral basic address.

void ACMP__GetDefaultConfig(acmp_config_t *config)
Gets the default configuration for ACMP.

This function initializes the user configuration structure to default value. The default value
are: Example:

config->enablePinOut = false;
config->hysteresisMode = kKACMP__ HysterisisLevell;

Parameters
* config — Pointer to ACMP configuration structure.

static inline void ACMP_ Enable(ACMP_Type *base, bool enable)
Enable/Disable the ACMP module.

Parameters
* base — ACMP peripheral base address.
* enable — Switcher to enable/disable ACMP module.

void ACMP__EnableInterrupt(ACMP_Type *base, acmp_interrupt_mode_t mode)
Enable the ACMP interrupt and determines the sensitivity modes of the interrupt trigger.

Parameters

* base — ACMP peripheral base address.

97

MCUXpresso SDK Documentation, Release 25.06.00

* mode — Select one interrupt mode to generate interrupt.

static inline void ACMP_ DisableInterrupt(ACMP_Type *base)
Disable the ACMP interrupt.

Parameters
* base — ACMP peripheral base address.

void ACMP__SetChannelConfig(ACMP_Type *base, acmp_input_channel_selection_t PositiveInput,
acmp_input_channel_selection_t negativelnout)

Configure the ACMP positive and negative input channel.
Parameters
* base — ACMP peripheral base address.

* Positivelnput - ACMP Positive Input Select. Refer to
“acmp_input_channel_selection_t”.

* negativelnout - ACMP Negative Input Select. Refer to
“acmp_input_channel_selection_t”.

void ACMP_SetDACConfig(ACMP_Type *base, const acmp_dac_config_t *config)

void ACMP__EnableInputPin(ACMP_Type *base, uint32_t mask, bool enable)

Enable/Disable ACMP input pin. The API controls if the corresponding ACMP external pin
can be driven by an analog input.

Parameters
* base — ACMP peripheral base address.

* mask — The mask of the pin associated with channel ADx. Valid range is
ADO0:0x1U ~ AD3:0x4U. For example: If enable ADO, AD1 and AD2 pins,
mask should be set to 0x7U(0x1 | 0x2 | 0x4).

* enable — Switcher to enable/disable ACMP module.

static inline uint8_t ACMP_ GetStatusFlags(ACMP_Type *base)
Get ACMP status flags.

Parameters
* base — ACMP peripheral base address.

Returns
Flags’ mask if indicated flags are asserted. See “_acmp_status_flags”.

static inline void ACMP__ClearInterruptFlags(ACMP_Type *base)
Clear interrupts status flag.

Parameters
* base — ACMP peripheral base address.

FSL_ACMP_DRIVER_VERSION
ACMP driver version 2.0.2.

enum _ acmp_ hysterisis__ mode
Analog Comparator Hysterisis Selection.

Values:

enumerator kACMP_ HysterisisLevell
ACMP hysterisis is 20mv. >

98 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kACMP__ HysterisisLevel2
ACMP hysterisis is 30mv. >

enum _acmp_ reference_voltage source
DAC Voltage Reference source.

Values:

enumerator kACMP_ VrefSourceVinl
The DAC selects Bandgap as the reference.

enumerator kACMP_ VrefSourceVin2
The DAC selects VDDA as the reference.

enum _acmp_ interrupt_ mode
The sensitivity modes of the interrupt trigger.

Values:

enumerator kACMP_ OutputFallingInterruptMode
ACMP interrupt on output falling edge. >

enumerator kACMP_ OutputRisingInterruptMode
ACMP interrupt on output rising edge. >

enumerator kACMP_ OutputBothEdgelnterruptMode
ACMP interrupt on output falling or rising edge. >

enum _ acmp_ input_ channel selection
The ACMP input channel selection.

Values:

enumerator kACMP_ExternalReference0
External reference 0 is selected to as input channel. >

enumerator kACMP_ExternalReferencel
External reference 1 is selected to as input channel. >

enumerator kACMP__ExternalReference2
External reference 2 is selected to as input channel. >

enumerator kKACMP_ Internal DACOutput
Internal DAC putput is selected to as input channel. >

enum _acmp_ status_ flags
The ACMP status flags.

Values:

enumerator kACMP_ InterruptFlag
ACMP interrupt on output valid edge. >
enumerator kACMP_ OutputFlag
The current value of the analog comparator output. >
typedef enum _acmp_hysterisis_mode acmp__ hysterisis_ mode_ t
Analog Comparator Hysterisis Selection.
typedef enum _acmp_ ref erence_voltag e_source acmpﬁreferenceivoltagefsourceit
DAC Voltage Reference source.

typedef enum _acmp_interrupt_mode acmp__ interrupt_ mode_ t
The sensitivity modes of the interrupt trigger.

2.1. ACMP: Analog Comparator Driver 99

MCUXpresso SDK Documentation, Release 25.06.00

typedef enum _acmp_input_channel_selection acmp__input_ channel _selection_t
The ACMP input channel selection.

typedef struct _acmp_config acmp__config_t
Configuration for ACMP.

typedef struct _acmp_dac_config acmp_ dac__config_t
Configuration for Internal DAC.

struct _acmp_ config
#include <fsl_acmp.h> Configuration for ACMP.

Public Members
bool enablePinOut
The comparator output is available on the associated pin.

acmp_hysterisis_mode_t hysteresisMode
Hysteresis mode.

struct _acmp_ dac_ config
#include <fsl_acmp.h> Configuration for Internal DAC.

Public Members
uint8_t DACValue
Value for DAC Output Voltage. Available range is 0-63.

acmp_reference_voltage_source_t referenceVoltageSource
Supply voltage reference source.

2.2 ADC: 12-bit Analog to Digital Converter Driver

void ADC_Init(ADC_Type *base, const adc_config_t *config)
Initializes the ADC module.

Parameters
* base — ADC peripheral base address.
* config — Pointer to configuration structure. See “adc_config_t”.

void ADC_ Deinit(ADC_Type *base)
De-initialize the ADC module.

Parameters
* base — ADC peripheral base address.

void ADC_ GetDefaultConfig(adc_config t *config)
Gets an available pre-defined settings for the converter’s configuration.

This function initializes the converter configuration structure with available settings. The
default values are as follows.

100 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.06.00

config->referenceVoltageSource = kADC__ReferenceVoltageSourceAlt0;
config->enableLowPower = false;

config->enableLongSampleTime = false;

config->clockDivider = kADC__ClockDividerl;
config->ResolutionMode = kADC_ Resolution8BitMode;
config->clockSource = kADC__ClockSourceAlt0;

Parameters
* config — Pointer to the configuration structure.

static inline void ADC_ EnableHardwareTrigger(ADC_Type *base, bool enable)
Enable the hardware trigger mode.

Parameters
* base — ADC peripheral base address.

* enable — Switcher of the hardware trigger feature. “true” means enabled,
“false” means not enabled.

void ADC_ SetHardwareCompare(ADC_Type *base, const adc_hardware_compare_config_t
*config)

Configure the hardware compare mode.

The compare function can be configured to check for an upper or lower limit. After the
inputis sampled and converted, the resultis added to the complement of the compare value
(ADC_CW).

Parameters
* base — ADC peripheral base address.
* config — Pointer to “adc_hardware_compare_config_t” structure.
void ADC_ SetFifoConfig(ADC_Type *base, const adc_fifo_config_t *config)
Configure the Fifo mode.

The ADC module supports FIFO operation to minimize the interrupts to CPU in order to
reduce CPU loading in ADC interrupt service routines. This module contains two FIFOs to
buffer analog input channels and analog results respectively.

Parameters
* base — ADC peripheral base address.
* config — Pointer to “adc_fifo_config_t” structure.

void ADC_ GetDefault FIFOConfig(adc_fifo_config_t *config)
Gets an available pre-defined settings for the FIFO’s configuration.

Parameters

* config — Pointer to the FIFO configuration structure, please refer to
adc_fifo_config_t for details.

void ADC_SetChannelConfig(ADC_Type *base, const adc_channel_config_t *config)
Configures the conversion channel.

This operation triggers the conversion when in software trigger mode. When in hardware
trigger mode, this API configures the channel while the external trigger source helps to
trigger the conversion.

Parameters
* base — ADC peripheral base address.

* config — Pointer to “adc_channel _config t” structure.

2.2. ADC: 12-bit Analog to Digital Converter Driver 101

MCUXpresso SDK Documentation, Release 25.06.00

bool ADC__ GetChannelStatusFlags(ADC_Type *base)
Get the status flags of channel.

Parameters
* base — ADC peripheral base address.

Returns
“True” means conversion has completed and “false” means conversion has
not completed.

uint32_t ADC_ GetStatusFlags(ADC_Type *base)
Get the ADC status flags.

Parameters
* base — ADC peripheral base address.

Returns
Flags’ mask if indicated flags are asserted. See “_adc_status_flags”.

static inline void ADC_ EnableAnalogInput(ADC_Type *base, uint32_t mask, bool enable)
Disables the I/O port control of the pins used as analog inputs.

When a pin control register bit is set, the following conditions are forced for the associated
MCU pin: -The output buffer is forced to its high impedance state. -The input buffer is
disabled. A read of the I/O port returns a zero for any pin with its input buffer disabled.
-The pullup is disabled.

Parameters
* base — ADC peripheral base address.

* mask — The mask of the pin associated with channel ADx. Valid range is
ADO:0x1U ~ AD15:0x8000U. For example: If enable ADO, AD1 and AD2 pins,
mask should be set to 0x7U.

* enable — The “true” means enabled, “false” means not enabled.

static inline uint32_t ADC_ GetChannelConversionValue(ADC_Type *base)
Gets the conversion value.

Parameters
* base — ADC peripheral base address.

Returns
Conversion value.

static inline void ADC_ SetHardwareTriggerMaskMode(ADC_Type *base,
adc_hardware_trigger_mask_mode_t
mode)

enum _ adc_reference_ voltage source
Reference voltage source.
Values:

enumerator kADC_ ReferenceVoltageSourceAlt0
Default voltage reference pin pair (VREFH/VREFL). >

enumerator kADC_ ReferenceVoltageSourceAlt1
Analog supply pin pair (VDDA/VSSA). >

enum adc_clock divider
Clock divider for the converter.

Values:

102 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kADC_ ClockDividerl
Divide ration = 1, and clock rate = Input clock. >

enumerator kKADC_ ClockDivider2
Divide ration = 2, and clock rate = Input clock / 2. >

enumerator kKADC_ ClockDivider4
Divide ration = 3, and clock rate = Input clock / 4. >

enumerator kKADC_ ClockDivider8
Divide ration = 4, and clock rate = Input clock / 8. >

enum _adc_resolution mode

ADC converter resolution mode.

Values:

enumerator kADC _Resolution8BitMode
8-bit conversion (N = 8). >

enumerator kADC_Resolution10BitMode
10-bit conversion (N = 10) >

enumerator kADC_Resolution12BitMode
12-bit conversion (N = 12) >

enum _adc_clock source
ADC input Clock source.
Values:

enumerator kADC_ ClockSourceAlt0
Bus clock. >

enumerator kADC_ ClockSourceAlt1l
Bus clock divided by 2. >

enumerator kADC_ ClockSourceAlt2
Alternate clock (ALTCLK). >

enumerator kADC_ ClockSourceAlt3
Asynchronous clock (ADACK). >

enum _ adc_ compare__mode
Compare function mode.

Values:

enumerator kADC_ CompareDisableMode
Compare function disabled. >
enumerator kADC_ CompareLessMode
Compare triggers when input is less than compare level. >
enumerator kADC_ CompareGreaterOrEqualMode
Compare triggers when input is greater than or equal to compare level. >
enum _adc_status_ flags
ADC status flags mask.
Values:
enumerator kADC_ ActiveFlag
Indicates that a conversion is in progress. >

2.2. ADC: 12-bit Analog to Digital Converter Driver 103

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kADC_ FifoEmptyFlag
Indicates that ADC result FIFO have no valid new data. >

enumerator kADC_ FifoFullFlag
Indicates that ADC result FIFO is full. >
enum _ adc_ hardware_ trigger mask mode
Hardware tigger mask mode.
Values:
enumerator kADC__HWTriggerMaskDisableMode
Hardware trigger mask disable and hardware trigger can trigger ADC conversion. >
enumerator kADC_ HWTriggerMask AutoMode
Hardware trigger mask automatically when data fifo is not empty. >

enumerator kADC__HWTriggerMaskFEnableMode

Hardware trigger mask enable and hardware trigger cannot trigger ADC conversion.
>

typedef enum _adc_reference_voltage_source adc_ reference_voltage_source_t
Reference voltage source.

typedef enum _adc_clock_divider adc_ clock_ divider t
Clock divider for the converter.

typedef enum _adc_resolution_mode adc_ resolution_mode_ t
ADC converter resolution mode.

typedef enum _adc_clock_source adc_ clock_source_t
ADC input Clock source.

typedef enum _adc_compare_mode adc_ compare__mode_t
Compare function mode.

typedef enum _adc_hardware_trigger_mask_mode adc_hardware_ trigger _mask_mode_ t
Hardware tigger mask mode.

typedef struct _adc_config adc_ config_t
ADC converter configuration.

typedef struct _adc_hardware_compare_config adc_hardware_ compare_ config_t
ADC hardware comparison configuration.

typedef struct _adc_fifo_config adc_ fifo_ config_t
ADC FIFO configuration.

typedef struct _adc_channel config adc_ channel_config_t
ADC channel conversion configuration.

FSL ADC DRIVER VERSION
ADC driver version.

Version 2.1.0.

struct _adc_ config
#include <fsl_adc.h> ADC converter configuration.

104 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.06.00

Public Members

adc_reference_voltage_source_t referenceVoltageSource
Selects the voltage reference source used for conversions. >

bool enableLowPower
Enable low power mode. The power is reduced at the expense of maximum clock
Speed. >

bool enableLongSampleTime
Enable long sample time mode. >

adc_clock_divider _t clockDivider
Select the divider of input clock source. >

adc_resolution_mode_t ResolutionMode
Select the sample resolution mode. >

adc_clock_source_t clockSource
Select the input Clock source. >

struct _adc__hardware compare_ config
#include <fsl_adc.h> ADC hardware comparison configuration.

Public Members

uint32_t compareValue
Setting the compare value. The value are compared to the conversion result. >

adc_compare_mode_t compareMode
Setting the compare mode. Refer to “adc_compare_mode_t”. >

struct _adc_ fifo_ config
#include <fsl_adc.h> ADC FIFO configuration.

Public Members

bool enableHW TriggerMultConv
The field is valid when FIFO is enabled.Enable hardware trigger multiple conversion.
One hardware trigger pulse triggers multiple conversions in fifo mode. >

bool enableFifoScanMode

The field is valid when FIFO is enabled. Enable the FIFO scan mode. If enable, ADC
will repeat using the first FIFO channel as the conversion channel until the result FIFO
is fulfilled. >

bool enableCompareAndMode

The field is valid when FIFO is enabled. If enable, ADC will AND all of compare triggers
and set COCO after all of compare triggers occur. If disable, ADC will OR all of compare
triggers and set COCO after at least one of compare trigger occurs. >

uint32_t FifoDepth
Setting the depth of FIFO. Depth of fifo is FifoDepth + 1. When FifoDepth = 0U, the FIFO
is DISABLED. When FifoDepth is set to nonzero, the FIFO function is ENABLED and the
depth is indicated by the FifoDepth field. >
struct _adc_ channel config
#include <fsl_adc.h> ADC channel conversion configuration.

2.2. ADC: 12-bit Analog to Digital Converter Driver 105

MCUXpresso SDK Documentation, Release 25.06.00

Public Members

uint32_t channelNumber

Setting the conversion channel number. The available range is 0-31. See channel con-
nection information for each chip in Reference Manual document.

bool enableContinuousConversion
enables continuous conversions. >

bool enableInterruptOnConversionCompleted

Generate an interrupt request once the conversion is completed.

2.3 Clock Driver

enum _clock name

Clock name used to get clock frequency.
Values:
enumerator kCLOCK__ CoreSysClk
Core/system clock
enumerator kCLOCK _PlatClk
Platform clock

enumerator kCLOCK BusClk
Bus clock

enumerator kCLOCK FlashClk
Flash clock

enumerator kCLOCK OscOErClk
0SCO0 external reference clock (OSCOERCLK)

enumerator kCLOCK ICSFixedFreqClk
ICS fixed frequency clock (ICSFFCLK)

enumerator kCLOCK ICSInternalRefClk
ICS internal reference clock (ICSIRCLK)

enumerator kCLOCK_ICSF1Clk
ICSFLLCLK

enumerator kCLOCK_ICSOutClk
ICS Output clock

enumerator kCLOCK__ LpoClk
LPO clock

enum _ clock ip_name

Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.

Values:
enumerator kCLOCK _ IpInvalid

enumerator kCLOCK_12c0
enumerator kCLOCK_Uart0

enumerator kCLOCK_Uartl

106

Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kCLOCK __ Uart2
enumerator kCLOCK__ Acmp0
enumerator kCLOCK__Acmpl
enumerator kCLOCK__Spi0
enumerator kCLOCK_ Spil
enumerator kCLOCK_ Irq0
enumerator kCLOCK __Kbi0
enumerator kCLOCK_Kbil
enumerator kCLOCK__Adc0
enumerator kCLOCK__Crc0
enumerator kCLOCK_ Ftm0
enumerator kCLOCK_ Ftm1l
enumerator kCLOCK__Ftm2
enumerator kCLOCK __ Pit0
enumerator kCLOCK__Rtc0
enum _osc__work mode
0OSC work mode.

Values:

enumerator kOSC_ModeExt
0OSC source from external clock.

enumerator kOSC_ ModeOscLowPower
Oscillator low freq low power.

enumerator kOSC_ ModeOscHighGain
Oscillator low freq high gain.

enum _osc_enable mode
OSC enable mode.

Values:

enumerator kOSC Enable
Enable.

enumerator kOSC_ EnableInStop
Enable in stop mode.

enum ics fll src
ICS FLL reference clock source select.

Values:

enumerator kICS FllSrcExternal
External reference clock is selected

enumerator kICS FllSrcInternal
The slow internal reference clock is selected

2.3. Clock Driver

107

MCUXpresso SDK Documentation, Release 25.06.00

enum _ics clkout_src
ICSOUT clock source.

Values:

enumerator kICS_ ClkOutSrcFIll
Output of the FLL is selected (reset default)

enumerator kICS ClkOutSrcInternal
Internal reference clock is selected, FLL is bypassed

enumerator kICS ClkOutSrcExternal
External reference clock is selected, FLL is bypassed

ICS status. .
Values:

enumerator kStatus_ICS_ModeUnreachable
Can’t switch to target mode.

enumerator kStatus ICS_SourceUsed
Can’t change the clock source because it is in use.

enum _ics_irclk enable mode
ICS internal reference clock (ICSIRCLK) enable mode definition.

Values:

enumerator kICS_ IrclkDisable
ICSIRCLK disable.
enumerator kICS_ IrclkEnable
ICSIRCLK enable.
enumerator kICS_ IrclkEnableInStop
ICSIRCLK enable in stop mode.
enum _ics mode
ICS mode definitions.
Values:
enumerator kICS_ ModeFEI
FEI - FLL Engaged Internal
enumerator kICS_ModeFBI
FBI - FLL Bypassed Internal
enumerator kICS ModeBILP
BILP - Bypassed Low Power Internal
enumerator kICS ModeFEE
FEE - FLL Engaged External
enumerator kICS_ ModeFBE
FBE - FLL Bypassed External
enumerator kICS_ ModeBELP
BELP - Bypassed Low Power External

enumerator kICS ModeError
Unknown mode

108

Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.06.00

typedef enum _clock_name clock_name_t
Clock name used to get clock frequency.

typedef enum _clock_ip_name clock__ip_name_t
Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.

typedef struct _sim_clock_config sim_ clock_ config_t
SIM configuration structure for clock setting.

typedef struct _osc_config osc_ config_t
OSC Initialization Configuration Structure.

Defines the configuration data structure to initialize the OSC. When porting to a new board,
set the following members according to the board setting:

a. freq: The external frequency.
b. workMode: The OSC module mode.
c. enableMode: The OSC enable mode.

typedef enum _ics_fll_srcics_fll_src_t
ICS FLL reference clock source select.

typedef enum _ics_clkout_src ics_ clkout_src_t
ICSOUT clock source.

typedef enum _ics_mode ics_ mode_ t
ICS mode definitions.

typedef struct _ics_config ics_ config_t
ICS configuration structure.

When porting to a new board, set the following members according to the board setting:
a. icsMode: ICS mode
b. irClkEnableMode: ICSIRCLK enable mode

c. rDiv: If the FLL uses the external reference clock, set this value to ensure that the
external reference clock divided by rDiv is in the 31.25 kHz to 39.0625 kHz range.

d. bDiv, this divider determine the ISCOUT clock

volatile uint32_t g xtalOFreq
External XTALO (OSCO0) clock frequency.

The XTALO/EXTALO (OSCO) clock frequency in Hz. When the clock is set up, use the function
CLOCK _SetXtalOFreq to set the value in the clock driver. For example, if XTALO is 8 MHz:

CLOCK _ InitOsc0(...);
CLOCK _SetXtal0Freq(80000000)

This is important for the multicore platforms where only one core needs to set up the OSCO
using the CLOCK InitOsc0. All other cores need to call the CLOCK_SetXtalOFreq to get a
valid clock frequency.

static inline void CLOCK _ EnableClock(clock_ip_name_t name)
Enable the clock for specific IP.

Parameters

* name — Which clock to enable, see clock_ip_name_t.

2.3. Clock Driver 109

MCUXpresso SDK Documentation, Release 25.06.00

static inline void CLOCK_ DisableClock(clock_ip_name_t name)
Disable the clock for specific IP.

Parameters
* name — Which clock to disable, see clock_ip_name_t.

static inline void CLOCK _ SetBusClkDiv(uint32_t busDiv)
clock divider

Set the SIM_BUSDIV. Carefully configure the SIM_BUSDIV to avoid bus/flash clock frequency
higher than 24MHZ.

Parameters
* busDiv — bus clock output divider value.

uint32_t CLOCK_ GetFreq(clock_name_t clockName)
Gets the clock frequency for a specific clock name.

This function checks the current clock configurations and then calculates the clock fre-
quency for a specific clock name defined in clock_name_t. The ICS must be properly con-
figured before using this function.

Parameters
* clockName — Clock names defined in clock_name_t

Returns
Clock frequency value in Hertz

uint32_t CLOCK __GetCoreSysClkFreq(void)
Get the core clock or system clock frequency.

Returns
Clock frequency in Hz.

uint32_t CLOCK __GetBusClkFreq(void)
Get the bus clock frequency.

Returns
Clock frequency in Hz.

uint32_t CLOCK_ GetFlashClkFreq(void)
Get the flash clock frequency.

Returns
Clock frequency in Hz.

uint32_t CLOCK__GetOscOErClkFreq(void)
Get the OSCO external reference clock frequency (OSCOERCLK).

Returns
Clock frequency in Hz.

void CLOCK_SetSimConfig(sim_clock_config t const *config)
Set the clock configure in SIM module.

This function sets system layer clock settings in SIM module.
Parameters

* config — Pointer to the configure structure.

110 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.06.00

static inline void CLOCK_ SetSimSafeDivs(void)
Set the system clock dividers in SIM to safe value.

The system level clocks (core clock, bus clock, and flash clock) must be in allowed ranges.
During ICS clock mode switch, the ICS output clock changes then the system level clocks
may be out of range. This function could be used before ICS mode change, to make sure
system level clocks are in allowed range.

FSL CLOCK_ DRIVER VERSION
CLOCK driver version 2.2.3.

SDK_DEVICE MAXIMUM_CPU_CLOCK_FREQUENCY

UART _CLOCKS
Clock ip name array for UART.

ADC_CLOCKS

Clock ip name array for ADC16.
IRQ CLOCKS

Clock ip name array for IRQ.
KBI_CLOCKS

Clock ip name array for KBI.
SPI_CLOCKS

Clock ip name array for SPI.
12C_CLOCKS

Clock ip name array for I12C.
FTM_CLOCKS

Clock ip name array for FTM.
ACMP__CLOCKS

Clock ip name array for CMP.
CRC_CLOCKS

Clock ip name array for CRC.
PIT CLOCKS

Clock ip name array for PIT.
RTC_CLOCKS

Clock ip name array for RTC.
LPO_CLK_FREQ

LPO clock frequency.
CLK_GATE_REG_OFFSET_SHIFT

CLK_GATE_REG_OFFSET_ MASK
CLK_GATE_BIT_SHIFT_SHIFT
CLK_GATE_BIT_SHIFT_ MASK
CLK__GATE_DEFINE(reg_offset, bit_shift)
CLK_GATE_ABSTRACT_REG_OFFSET(X)
CLK GATE ABSTRACT BITS SHIFT(X)

2.3. Clock Driver 111

MCUXpresso SDK Documentation, Release 25.06.00

uint32_t CLOCK_ GetICSOutClkFreq(void)
Gets the ICS output clock (ICSOUTCLK) frequency.

This function gets the ICS output clock frequency in Hz based on the current ICS register
value.

Returns
The frequency of ICSOUTCLK.

uint32_t CLOCK _GetFllFreq(void)
Gets the ICS FLL clock (ICSFLLCLK) frequency.

This function gets the ICS FLL clock frequency in Hz based on the current ICS register
value. The FLL is enabled in FEI/FBI/FEE/FBE mode and disabled in low power state in
other modes.

Returns
The frequency of ICSFLLCLK.

uint32_t CLOCK_ GetInternalRefClkFreq(void)
Gets the ICS internal reference clock (ICSIRCLK) frequency.

This function gets the ICS internal reference clock frequency in Hz based on the current ICS
register value.

Returns
The frequency of ICSIRCLK.

uint32_t CLOCK_ GetICSFixedFreqClkFreq(void)
Gets the ICS fixed frequency clock (ICSFFCLK) frequency.

This function gets the ICS fixed frequency clock frequency in Hz based on the current ICS
register value.

Returns
The frequency of ICSFFCLK.

static inline void CLOCK_ SetLowPowerEnable(bool enable)
Enables or disables the ICS low power.

Enabling the ICS low power disables the PLL and FLL in bypass modes. In other words, in
FBE and PBE modes, enabling low power sets the ICS to BELP mode. In FBI and PBI modes,
enabling low power sets the ICS to BILP mode. When disabling the ICS low power, the PLL
or FLL are enabled based on ICS settings.

Parameters
* enable — True to enable ICS low power, false to disable ICS low power.

static inline void CLOCK_ SetInternalRefClkConfig(uint8_t enableMode)
Configures the Internal Reference clock (ICSIRCLK).

This function sets the ICSIRCLK base on parameters. This function also sets whether the
ICSIRCLK is enabled in stop mode.

Parameters

* enableMode - ICSIRCLK enable mode, ORed value of
_ICS_irclk_enable_mode.

Return values

* kStatus_ICS_ SourceUsed — Because the internal reference clock is used as a
clock source, the configuration should not be changed. Otherwise, a glitch
occurs.

* kStatus_ Success — ICSIRCLK configuration finished successfully.

112 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.06.00

static inline void CLOCK_ SetFlIExtRefDiv(uint8_t rdiv)
Set the FLL external reference clock divider value.

Sets the FLL external reference clock divider value, the register ICS_C1[RDIV]. Resulting
frequency must be in the range 31.25KHZ to 39.0625KHZ.

Parameters
* rdiv—-The FLL external reference clock divider value, ICS_C1[RDIV].

static inline void CLOCK_ SetOscOMonitorMode(bool enable)
Sets the OSCO clock monitor mode.

This function sets the OSCO clock monitor mode. See ics_monitor_mode_t for details.
Parameters
* enable — True to enable clock monitor, false to disable clock monitor.

void CLOCK _ InitOscO(osc_config t const *config)
Initializes the OSCO.

This function initializes the OSCO according to the board configuration.
Parameters
* config — Pointer to the OSCO configuration structure.

void CLOCK_ DeinitOsc0O(void)
Deinitializes the OSCO.

This function deinitializes the OSCO.

static inline void CLOCK_SetXtalOFreq(uint32_t freq)
Sets the XTALO frequency based on board settings.

Parameters
¢ freq — The XTALO/EXTALO input clock frequency in Hz.

static inline void CLOCK_ SetOscOEnable(uint8_t enable)
Sets the OSC enable.

Parameters
* enable — osc enable mode.

ics_mode_t CLOCK__GetMode(void)
Gets the current ICS mode.

This function checks the ICS registers and determines the current ICS mode.

Returns
Current ICS mode or error code; See ics_mode_t.

status_t CLOCK_SetFeiMode(uint8_t bDiv)
Sets the ICS to FEI mode.

This function sets the ICS to FEI mode. If setting to FEI mode fails from the current mode,
this function returns an error.

Parameters
* bDiv —bus clock divider
Return values
* kStatus_ICS_ ModeUnreachable — Could not switch to the target mode.

* kStatus_ Success — Switched to the target mode successfully.

2.3. Clock Driver 113

MCUXpresso SDK Documentation, Release 25.06.00

status_t CLOCK_SetFeeMode(uint8_t bDiv, uint8_t rDiv)
Sets the ICS to FEE mode.

This function sets the ICS to FEE mode. If setting to FEE mode fails from the current mode,
this function returns an error.

Parameters
* bDiv —bus clock divider
* rDiv - FLL reference clock divider setting, RDIV.
Return values
* kStatus_ICS_ModeUnreachable — Could not switch to the target mode.
* kStatus_ Success — Switched to the target mode successfully.

status_t CLOCK _SetFbiMode(uint8_t bDiv)
Sets the ICS to FBI mode.

This function sets the ICS to FBI mode. If setting to FBI mode fails from the current mode,
this function returns an error.

Parameters
* bDiv —bus clock divider

Return values
* kStatus_ICS_ ModeUnreachable — Could not switch to the target mode.
* kStatus_ Success — Switched to the target mode successfully.s

status_t CLOCK_ SetFbeMode(uint8_t bDiv, uint8_t rDiv)
Sets the ICS to FBE mode.

This function sets the ICS to FBE mode. If setting to FBE mode fails from the current mode,
this function returns an error.

Parameters
* bDiv —bus clock divider
* rDiv - FLL reference clock divider setting, RDIV.
Return values
* kStatus_ICS_ModeUnreachable — Could not switch to the target mode.
* kStatus_ Success — Switched to the target mode successfully.

status_t CLOCK _SetBilpMode(uint8_t bDiv)
Sets the ICS to BILP mode.

This function sets the ICS to BILP mode. If setting to BILP mode fails from the current mode,
this function returns an error.

Parameters
* bDiv —bus clock divider
Return values
* kStatus_ ICS_ModeUnreachable — Could not switch to the target mode.

* kStatus_ Success — Switched to the target mode successfully.

114 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.06.00

status_t CLOCK_ SetBelpMode(uint8_t bDiv)
Sets the ICS to BELP mode.

This function sets the ICS to BELP mode. If setting to BELP mode fails from the current
mode, this function returns an error.

Parameters
* bDiv —bus clock divider

Return values
* kStatus_ICS_ModeUnreachable — Could not switch to the target mode.
* kStatus_ Success — Switched to the target mode successfully.

status_t CLOCK_ BootToFeiMode(uint8_t bDiv)
Sets the ICS to FEI mode during system boot up.

This function sets the ICS to FEI mode from the reset mode. It can also be used to set up ICS
during system boot up.

Parameters
* bDiv —bus clock divider.

Return values
* kStatus_ICS_ModeUnreachable — Could not switch to the target mode.
* kStatus_ Success — Switched to the target mode successfully.

status_t CLOCK_ BootToFeeMode(uint8_t bDiv, uint8_t rDiv)
Sets the ICS to FEE mode during system bootup.

This function sets ICS to FEE mode from the reset mode. It can also be used to set up the
ICS during system boot up.

Parameters
* bDiv —bus clock divider.
* rDiv - FLL reference clock divider setting, RDIV.
Return values
* kStatus_ICS_ModeUnreachable — Could not switch to the target mode.
* kStatus_ Success — Switched to the target mode successfully.

status_t CLOCK_ BootToBilpMode(uint8_t bDiv)
Sets the ICS to BILP mode during system boot up.

This function sets the ICS to BILP mode from the reset mode. It can also be used to set up
the ICS during system boot up.

Parameters
* bDiv - bus clock divider.

Return values
* kStatus_ICS_ SourceUsed — Could not change ICSIRCLK setting.
* kStatus_Success — Switched to the target mode successfully.

status_t CLOCK_BootToBelpMode(uint8_t bDiv)
Sets the ICS to BELP mode during system boot up.

This function sets the ICS to BELP mode from the reset mode. It can also be used to set up
the ICS during system boot up.

2.3. Clock Driver 115

MCUXpresso SDK Documentation, Release 25.06.00

Parameters
* bDiv —bus clock divider.

Return values
* kStatus_ ICS_ModeUnreachable — Could not switch to the target mode.
* kStatus_ Success — Switched to the target mode successfully.

status_t CLOCK _ SetIcsConfig(ics_config t const *config)
Sets the ICS to a target mode.

This function sets ICS to a target mode defined by the configuration structure. If switching
to the target mode fails, this function chooses the correct path.

Note: Iftheexternal clockisusedinthetargetmode, ensure thatitisenabled. For example,
if the OSCO is used, set up OSCO correctly before calling this function.

Parameters
* config — Pointer to the target ICS mode configuration structure.

Returns
Return kStatus_Success if switched successfully; Otherwise, it returns an error
code _ICS_status.

uint32_t busDiv
SIM_BUSDIV.

uint8_t busClkPrescaler
A option prescaler for bus clock

uint32_t freq
External clock frequency.

uint8_t workMode
0OSC work mode setting.

uint8_t enableMode
Configuration for OSCERCLK.

ics_mode_t icsMode
ICS mode.

uint8_t irClkEnableMode
ICSIRCLK enable mode.

uint8_t rDiv
Divider for external reference clock, ICS_C1[RDIV].

uint8_t bDiv
Divider for ICS output clock ICS_C2[BDIV].

ICS_CONFIG_CHECK_PARAM
Configures whether to check a parameter in a function.

Some ICS settings must be changed with conditions, for example:

a. ICSIRCLK settings, such as the source, divider, and the trim value should not change
when ICSIRCLK is used as a system clock source.

b. ICS_C7[0OSCSEL] should not be changed when the external reference clock is used as a
system clock source. For example, in FBE/BELP/PBE modes.

116 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.06.00

c. The users should only switch between the supported clock modes.

ICS functions check the parameter and ICS status before setting, if not allowed to change, the
functions return error. The parameter checking increases code size, if code size is a critical
requirement, change ICS_CONFIG_CHECK_PARAM to 0 to disable parameter checking.

FSL_SDK_ DISABLE DRIVER CLOCK_CONTROL
Configure whether driver controls clock.

When set to 0, peripheral drivers will enable clock in initialize function and disable clock in
de-initialize function. When set to 1, peripheral driver will not control the clock, application
could control the clock out of the driver.

Note: All drivers share this feature switcher. If it is set to 1, application should handle
clock enable and disable for all drivers.

struct _sim_ clock config
#include <fsl_clock.h> SIM configuration structure for clock setting.

struct _osc_ config
#include <fsl_clock.h> OSC Initialization Configuration Structure.

Defines the configuration data structure to initialize the OSC. When porting to a new board,
set the following members according to the board setting:

a. freq: The external frequency.
b. workMode: The OSC module mode.
c. enableMode: The OSC enable mode.

struct _ics_ config
#include <fsl_clock.h> ICS configuration structure.

When porting to a new board, set the following members according to the board setting:
a. icsMode: ICS mode
b. irClkEnableMode: ICSIRCLK enable mode

c. rDiv: If the FLL uses the external reference clock, set this value to ensure that the
external reference clock divided by rDiv is in the 31.25 kHz to 39.0625 kHz range.

d. bDiv, this divider determine the ISCOUT clock

2.4 CRC: Cyclic Redundancy Check Driver

FSL CRC_DRIVER_ VERSION
CRC driver version. Version 2.0.4.

Current version: 2.0.4

Change log:

* Version 2.0.4

— Release peripheral from reset if necessary in init function.
* Version 2.0.3

- Fix MISRA issues

* Version 2.0.2

2.4. CRC: Cyclic Redundancy Check Driver 117

MCUXpresso SDK Documentation, Release 25.06.00

— Fix MISRA issues
* Version 2.0.1
— move DATA and DATALL macro definition from header file to source file

enum _crc_ bits
CRC bit width.

Values:

enumerator kCrcBits16
Generate 16-bit CRC code

enumerator kCrcBits32
Generate 32-bit CRC code

enum _crc_result
CRC result type.

Values:

enumerator kCrcFinalChecksum

CRC data register read value is the final checksum. Reflect out and final xor protocol
features are applied.

enumerator kCrclntermediateChecksum

CRC data register read value is intermediate checksum (raw value). Reflect out and
final xor protocol feature are not applied. Intermediate checksum can be used as a
seed for CRC_Init() to continue adding data to this checksum.

typedef enum _crc_bits crc_ bits_t
CRC bit width.

typedef enum _crc_result crc_result_t
CRC result type.

typedef struct _crc_config crc_ config_t
CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

void CRC_ Init(CRC_Type *base, const crc_config_t *config)
Enables and configures the CRC peripheral module.

This function enables the clock gate in the SIM module for the CRC peripheral. It also con-
figures the CRC module and starts a checksum computation by writing the seed.

Parameters
* base — CRC peripheral address.
* config — CRC module configuration structure.

static inline void CRC_ Deinit(CRC_Type *base)
Disables the CRC peripheral module.

This function disables the clock gate in the SIM module for the CRC peripheral.
Parameters
* base — CRC peripheral address.

void CRC_ GetDefaultConfig(crc_config_t *config)
Loads default values to the CRC protocol configuration structure.

Loads default values to the CRC protocol configuration structure. The default values are as
follows.

118 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.06.00

config->polynomial = 0x1021;
config->seed = OxFFFF;
config->reflectIn = false;
config->reflectOut = false;
config->complementChecksum = false;
config->crcBits = kCrcBits16;
config->crcResult = kCrcFinalChecksum;

Parameters
* config — CRC protocol configuration structure.

void CRC_ WriteData(CRC_Type *base, const uint8_t *data, size_t dataSize)
Writes data to the CRC module.

Writes input data buffer bytes to the CRC data register. The configured type of transpose is
applied.

Parameters
* base — CRC peripheral address.
* data — Input data stream, MSByte in data[0].
* dataSize — Size in bytes of the input data buffer.

uint32_t CRC_ Get32bitResult(CRC_Type *base)
Reads the 32-bit checksum from the CRC module.

Reads the CRC data register (either an intermediate or the final checksum). The configured
type of transpose and complement is applied.

Parameters
* base — CRC peripheral address.

Returns
An intermediate or the final 32-bit checksum, after configured transpose and
complement operations.

uint16_t CRC_ Get16bitResult(CRC_Type *base)
Reads a 16-bit checksum from the CRC module.

Reads the CRC data register (either an intermediate or the final checksum). The configured
type of transpose and complement is applied.

Parameters
* base — CRC peripheral address.

Returns
An intermediate or the final 16-bit checksum, after configured transpose and
complement operations.
CRC_DRIVER,_USE_CRC16_CCIT_FALSE_AS_DEFAULT
Default configuration structure filled by CRC_GetDefaultConfig(). Use CRC16-CCIT-FALSE as
defeault.
struct _ crc_ config
#include <fsl_crc.h> CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

2.4. CRC: Cyclic Redundancy Check Driver 119

MCUXpresso SDK Documentation, Release 25.06.00

Public Members

uint32_t polynomial
CRC Polynomial, MSBit first. Example polynomial: 0x1021 = 1_0000_0010_0001 =
XA12+xA5+1

uint32_t seed
Starting checksum value

bool reflectIn
Reflect bits on input.

bool reflectOut
Reflect bits on output.

bool complementChecksum
True if the result shall be complement of the actual checksum.

crc_bits_t crcBits
Selects 16- or 32- bit CRC protocol.

crc_result_t crcResult

Selects final or intermediate checksum return from CRC_Getl6bitResult() or
CRC_Get32bitResult()

2.5 FGPIO Driver

void FGPIO_ PortInit(gpio_port_num_t port)
Initializes the FGPIO peripheral.

This function ungates the FGPIO clock.
Parameters

* port — FGPIO PORT number, see “gpio_port_num_t”. For each group FGPIO
(FGPIOA, FGPIOB,etc) control registers, they handles four PORT number
controls. FGPIOA serial registers —-— PTAO ~ 7, PTB0 ~7 ... PTD 0 ~
7. FGPIOB serial registers -— PTEQ0 ~ 7, PTF0~7 ...PTHO ~ 7. ...

void FGPIO_ Pinlnit(gpio_port_num_t port, uint8_t pin, const gpio_pin_config_t *config)
Initializes a FGPIO pin used by the board.

To initialize the FGPIO driver, define a pin configuration, as either input or output, in the
user file. Then, call the FGPIO_PinInit() function.

This is an example to define an input pin or an output pin configuration:

Define a digital input pin configuration,
gpio_ pin_ config t config =

kGPIO_ Digitallnput,

07
}
Define a digital output pin configuration,
gpio_ pin_ config t config =

kGPIO_ DigitalOutput,
0,

}

Parameters

120 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.06.00

* port — FGPIO PORT number, see “gpio_port_num_t”. For each group FGPIO
(FGPIOA, FGPIOB,etc) control registers, they handles four PORT number
controls. FGPIOA serial registers —— PTAQ ~7,PTB0 ~7 ... PTD 0 ~
7. FGPIOB serial registers —-— PTEO0 ~ 7, PTF 0 ~7 ... PTHO ~ 7. ...

* pin — FGPIO port pin number
* config — FGPIO pin configuration pointer
void FGPIO_PinWrite(gpio_port_num_t port, uint8_t pin, uint8_t output)
Sets the output level of the multiple FGPIO pins to the logic 1 or 0.

Parameters

* port — FGPIO PORT number, see “gpio_port_num_t”. For each group FGPIO
(FGPIOA, FGPIOB,etc) control registers, they handles four PORT number
controls. FGPIOA serial registers —-— PTA0 ~7,PTB0 ~7 ... PTD 0 ~
7. FGPIOB serial registers —— PTEO ~ 7, PTF0~7 ... PTHO ~ 7. ...

¢ pin — FGPIO pin number

* output — FGPIOpin output logic level.
— 0: corresponding pin output low-logic level.
- 1: corresponding pin output high-logic level.

void FGPIO_ PortSet(gpio_port_num_t port, uint8_t mask)
Sets the output level of the multiple FGPIO pins to the logic 1.

Parameters

* port — FGPIO PORT number, see “gpio_port_num_t”. For each group FGPIO
(FGPIOA, FGPIOB,etc) control registers, they handles four PORT number
controls. FGPIOA serial registers —— PTAQ ~7,PTB0 ~7 ... PTD 0 ~
7. FGPIOB serial registers —-— PTEO0 ~ 7, PTF 0 ~7 ... PTHO ~ 7. ...

* mask — FGPIO pin number macro

void FGPIO_ PortClear(gpio_port_num_t port, uint8_t mask)
Sets the output level of the multiple FGPIO pins to the logic 0.

Parameters

* port — FGPIO PORT number, see “gpio_port_num_t”. For each group FGPIO
(FGPIOA, FGPIOB,etc) control registers, they handles four PORT number
controls. FGPIOA serial registers —-— PTAO ~7, PTB0 ~7 ... PTD 0 ~
7. FGPIOB serial registers —— PTEO ~ 7, PTF 0 ~7 ... PTHO ~ 7. ...

* mask — FGPIO pin number macro

void FGPIO_ PortToggle(gpio_port_num_t port, uint8_t mask)
Reverses the current output logic of the multiple FGPIO pins.

Parameters

* port — FGPIO PORT number, see “gpio_port_num_t”. For each group FGPIO
(FGPIOA, FGPIOB,etc) control registers, they handles four PORT number
controls. FGPIOA serial registers —-— PTAQ ~7,PTB0 ~7 ... PTD 0 ~
7. FGPIOB serial registers —— PTEO0 ~ 7, PTF 0 ~7 ... PTHO ~ 7. ...

* mask — FGPIO pin number macro

uint32_t FGPIO_PinRead(gpio_port_num_t port, uint8_t pin)
Reads the current input value of the FGPIO port.

Parameters

2.5. FGPIO Driver 121

MCUXpresso SDK Documentation, Release 25.06.00

* port — FGPIO PORT number, see “gpio_port_num_t”. For each group FGPIO
(FGPIOA, FGPIOB,etc) control registers, they handles four PORT number
controls. FGPIOA serial registers —— PTAQ ~7,PTB0 ~7 ... PTD 0 ~
7. FGPIOB serial registers —-— PTEO0 ~ 7, PTF 0 ~7 ... PTHO ~ 7. ...

* pin — FGPIO pin number

Return values
FGPIO - port input value

* 0: corresponding pin input low-logic level.

* 1: corresponding pin input high-logic level.

2.6 FTMRx Flash Driver

enum _flash driver version constants
Flash driver version for ROM.

Values:

enumerator kFLASH DriverVersionName
Flash driver version name.

enumerator kFLASH_ DriverVersionMajor
Major flash driver version.

enumerator kFLASH DriverVersionMinor
Minor flash driver version.

enumerator kFLASH_ DriverVersionBugfix
Bugfix for flash driver version.

MAKE VERSION(major, minor, bugfix)
Constructs the version number for drivers.

FSL FLASH DRIVER VERSION
Flash driver version for SDK.

Version 2.1.2.

Flash driver status codes.
Values:

enumerator kStatus_ FLASH Success
API is executed successfully

enumerator kStatus_ FLASH_ InvalidArgument
Invalid argument

enumerator kStatus FLASH_SizeError
Error size

enumerator kStatus_ FLASH__AlignmentError
Parameter is not aligned with the specified baseline

enumerator kStatus_ FLASH__AddressError
Address is out of range

122 Chapter 2

. MKEO02Z4

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kStatus. FLASH AccessError
Invalid instruction codes and out-of bound addresses

enumerator kStatus. FLASH ProtectionViolation
The program/erase operation is requested to execute on protected areas
enumerator kStatus. FLASH CommandFailure
Run-time error during command execution.
enumerator kStatus_ FLASH_UnknownProperty
Unknown property.
enumerator kStatus_ FLASH EraseKeyError
API erase key is invalid.
enumerator kStatus. FLASH RegionExecuteOnly
The current region is execute-only.
enumerator kStatus_ FLASH ExecuteInRamFunctionNotReady
Execute-in-RAM function is not available.
enumerator kStatus_ FLASH_PartitionStatusUpdateFailure
Failed to update partition status.
enumerator kStatus_ FLASH_SetFlexramAsEepromError
Failed to set FlexRAM as EEPROM.

enumerator kStatus. FLASH RecoverFlexramAsRamError
Failed to recover FlexRAM as RAM.

enumerator kStatus. FLASH SetFlexramAsRamError
Failed to set FlexRAM as RAM.

enumerator kStatus_ FLASH_RecoverFlexramAsEepromError
Failed to recover FlexRAM as EEPROM.

enumerator kStatus_ FLASH CommandNotSupported
Flash API is not supported.
enumerator kStatus_ FLASH SwapSystemNotInUninitialized
Swap system is not in an uninitialzed state.
enumerator kStatus. FLASH Swaplndicator AddressError
The swap indicator address is invalid.
enumerator kStatus_ FLASH ReadOnlyProperty
The flash property is read-only.
enumerator kStatus_ FLASH_ InvalidPropertyValue
The flash property value is out of range.
enumerator kStatus_ FLASH_ InvalidSpeculationOption
The option of flash prefetch speculation is invalid.
enumerator kStatus FLASH ClockDivider
Flash clock prescaler is wrong
enumerator kStatus_ FLASH_EepromDoubleBitFault
A double bit fault was detected in the stored parity.
enumerator kStatus_ FLASH_EepromSingleBitFault
A single bit fault was detected in the stored parity.

2.6. FTMRx Flash Driver 123

MCUXpresso SDK Documentation, Release 25.06.00

kStatusGroupGeneric
Flash driver status group.

kStatusGroupFlashDriver
MAKE_ STATUS(group, code)
Constructs a status code value from a group and a code number.

enum _ flash_driver_api_keys
Enumeration for Flash driver API keys.

Note: The resulting value is built with a byte order such that the string being readable in
expected order when viewed in a hex editor; if the value is treated as a 32-bit little endian
value.

Values:

enumerator kFLASH ApiEraseKey
Key value used to validate all flash erase APIs.

FOUR_CHAR_CODE(a, b, ¢, d)
Constructs the four character code for the Flash driver API key.

status_t FLASH_ Init(flash_config_t *config)
Initializes the global flash properties structure members.

This function checks and initializes the Flash module for the other Flash APIs.
Parameters
* config — Pointer to the storage for the driver runtime state.
Return values
* kStatus_ FLASH_ Success — API was executed successfully.
* kStatus_ FLASH_ InvalidArgument — An invalid argument is provided.
* kStatus_ FLASH_ClockDivider — Flash clock prescaler is wrong.

* kStatus_ FLASH_ExecuteInRamFunctionNotReady — Execute-in-RAM func-
tion is not available.

status_t FLASH_ SetCallback(flash_config_t *config, flash_callback_t callback)
Sets the desired flash callback function.

Parameters
* config — Pointer to the storage for the driver runtime state.
¢ callback — A callback function to be stored in the driver.
Return values
* kStatus_ FLASH_ Success — API was executed successfully.
* kStatus. FLASH InvalidArgument — An invalid argument is provided.

status_t FLASH_ PrepareExecuteInRamFunctions(flash_config t *config)
Prepares flash execute-in-RAM functions.

Parameters
* config — Pointer to the storage for the driver runtime state.
Return values

* kStatus_ FLASH_ Success — API was executed successfully.

124 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.06.00

* kStatus_ FLASH_ InvalidArgument — An invalid argument is provided.

status_t FLASH_ EraseAll(flash_config_t *config, uint32_t key)
Erases entire flash.

Parameters
* config — Pointer to the storage for the driver runtime state.
» key — A value used to validate all flash erase APIs.
Return values
* kStatus_ FLASH_ Success — API was executed successfully.
* kStatus_ FLASH_ InvalidArgument — An invalid argument is provided.
* kStatus_ FLASH_ EraseKeyError — API erase key is invalid.

* kStatus_ FLASH_ ExecuteInRamFunctionNotReady — Execute-in-RAM func-
tion is not available.

* kStatus FLASH AccessError —Invalid instruction codes and out-of bounds
addresses.

* kStatus_ FLASH_ ProtectionViolation — The program/erase operation is re-
quested to execute on protected areas.

* kStatus_ FLASH_CommandFailure — Run-time error during command exe-

cution.
* kStatus. FLASH_EepromSingleBitFault — EEPROM single bit fault error
code.
e kStatus FLASH EepromDoubleBitFault — EEPROM double bit fault error
code.
status_t FLASH_ Erase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, uint32_t
key)

Erases the flash sectors encompassed by parameters passed into function.

This function erases the appropriate number of flash sectors based on the desired start
address and length.

Parameters
* config — The pointer to the storage for the driver runtime state.

* start —The start address of the desired flash memory to be erased. The start
address does not need to be sector-aligned but must be word-aligned.

* lengthInBytes — The length, given in bytes (not words or long-words) to be
erased. Must be word-aligned.

* key — The value used to validate all flash erase APIs.
Return values
* kStatus_ FLASH_ Success — API was executed successfully.
* kStatus. FLASH InvalidArgument — An invalid argument is provided.

* kStatus_ FLASH__ AlignmentError — The parameter is not aligned with the
specified baseline.

* kStatus_ FLASH_ AddressError — The address is out of range.
» kStatus_ FLASH_ EraseKeyError — The API erase key is invalid.

* kStatus_ FLASH_ ExecuteInRamFunctionNotReady — Execute-in-RAM func-
tion is not available.

2.6. FTMRx Flash Driver 125

MCUXpresso SDK Documentation, Release 25.06.00

* kStatus FLASH AccessError —Invalid instruction codes and out-of bounds
addresses.

* kStatus_ FLASH_ ProtectionViolation — The program/erase operation is re-
quested to execute on protected areas.

* kStatus. FLASH CommandFailure — Run-time error during the command
execution.

status_t FLASH_ EraseEEprom(flash_config_t *config, uint32_t start, uint32_t lengthInBytes,
uint32_t key)

Erases the eeprom sectors encompassed by parameters passed into function.

This function erases the appropriate number of eeprom sectors based on the desired start
address and length.

Parameters
* config — The pointer to the storage for the driver runtime state.

* start — The start address of the desired eeprom memory to be erased. The
start address does not need to be sector-aligned but must be word-aligned.

* lengthInBytes — The length, given in bytes (not words or long-words) to be
erased. Must be word-aligned.

* key — The value used to validate all eeprom erase APIs.
Return values
* kStatus_ FLASH_ Success — API was executed successfully.
* kStatus_ FLASH_ InvalidArgument — An invalid argument is provided.

* kStatus_ FLASH_AlignmentError — The parameter is not aligned with the
specified baseline.

* kStatus_ FLASH_ AddressError — The address is out of range.
* kStatus. FLASH FEraseKeyError — The API erase key is invalid.

e kStatus FLASH ExecuteInRamFunctionNotReady — Execute-in-RAM func-
tion is not available.

* kStatus FLASH AccessError —Invalid instruction codes and out-of bounds
addresses.

* kStatus_ FLASH_ ProtectionViolation — The program/erase operation is re-
quested to execute on protected areas.

* kStatus_ FLASH_ CommandFailure — Run-time error during the command
execution.

status_t FLASH_ EraseAllUnsecure(flash_config_t *config, uint32_t key)
Erases the entire flash, including protected sectors.

Parameters
* config — Pointer to the storage for the driver runtime state.
* key — A value used to validate all flash erase APIs.
Return values
* kStatus_ FLASH_ Success — API was executed successfully.
* kStatus. FLASH InvalidArgument — An invalid argument is provided.
* kStatus. FLASH_FEraseKeyError — API erase key is invalid.

* kStatus_ FLASH_ ExecuteInRamFunctionNotReady — Execute-in-RAM func-
tion is not available.

126 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.06.00

* kStatus FLASH AccessError —Invalid instruction codes and out-of bounds
addresses.

* kStatus_ FLASH_ ProtectionViolation — The program/erase operation is re-
quested to execute on protected areas.

* kStatus. FLASH CommandFailure — Run-time error during command exe-

cution.

* kStatus_ FLASH_ EepromSingleBitFault — EEPROM single bit fault error
code.

e kStatus_ FLASH_ EepromDoubleBitFault — EEPROM double bit fault error
code.

status_t FLASH_ Program(flash_config_t *config, uint32_t start, uint32_t *src, uint32_t
lengthInBytes)

Programs flash with data at locations passed in through parameters.

This function programs the flash memory with the desired data for a given flash area as
determined by the start address and the length.

Parameters
* config — A pointer to the storage for the driver runtime state.

* start — The start address of the desired flash memory to be programmed.
Must be word-aligned.

* src — A pointer to the source buffer of data that is to be programmed into
the flash.

* lengthInBytes — The length, given in bytes (not words or long-words), to be
programmed. Must be word-aligned.

Return values
* kStatus_ FLASH_ Success — API was executed successfully.
* kStatus_ FLASH_ InvalidArgument — An invalid argument is provided.

* kStatus_ FLASH__ AlignmentError — Parameter is not aligned with the speci-
fied baseline.

* kStatus_ FLASH_ AddressError — Address is out of range.

* kStatus_ FLASH_ ExecuteInRamFunctionNotReady — Execute-in-RAM func-
tion is not available.

* kStatus FLASH AccessError —Invalid instruction codes and out-of bounds
addresses.

* kStatus_ FLASH_ ProtectionViolation — The program/erase operation is re-
quested to execute on protected areas.

* kStatus. FLASH CommandFailure — Run-time error during the command
execution.

status_t FLASH_ ProgramOnce(flash_config_t *config, uint32_t index, uint32_t *src, uint32_t
lengthInBytes)

Programs Program Once Field through parameters.

This function programs the Program Once Field with the desired data for a given flash area
as determined by the index and length.

Parameters

* config — A pointer to the storage for the driver runtime state.

2.6. FTMRx Flash Driver 127

MCUXpresso SDK Documentation, Release 25.06.00

* index — The index indicating which area of the Program Once Field to be
programmed.

* src — A pointer to the source buffer of data that is to be programmed into
the Program Once Field.

* lengthInBytes — The length, given in bytes (not words or long-words), to be
programmed. Must be word-aligned.

Return values
* kStatus_ FLASH_ Success — API was executed successfully.
* kStatus_ FLASH_ InvalidArgument — An invalid argument is provided.

* kStatus_ FLASH_ ExecuteInRamFunctionNotReady — Execute-in-RAM func-
tion is not available.

* kStatus FLASH AccessError —Invalid instruction codes and out-of bounds
addresses.

* kStatus_ FLASH_ ProtectionViolation — The program/erase operation is re-
quested to execute on protected areas.

* kStatus_ FLASH_CommandFailure — Run-time error during the command
execution.

status_t FLASH_ EepromWrite(flash_config_t *config, uint32_t start, uint8_t *src, uint32_t
lengthInBytes)

Programs the EEPROM with data at locations passed in through parameters.

This function programs the emulated EEPROM with the desired data for a given flash area
as determined by the start address and length.

Parameters
* config — A pointer to the storage for the driver runtime state.

* start — The start address of the desired flash memory to be programmed.
Must be word-aligned.

* src — A pointer to the source buffer of data that is to be programmed into
the flash.

* lengthInBytes — The length, given in bytes (not words or long-words), to be
programmed. Must be word-aligned.

Return values
* kStatus. FLASH_Success — API was executed successfully.
* kStatus. FLASH_ InvalidArgument — An invalid argument is provided.
* kStatus_ FLASH_ AddressError — Address is out of range.

* kStatus_ FLASH_ ProtectionViolation — The program/erase operation is re-
quested to execute on protected areas.

* kStatus_ FLASH_EepromSingleBitFault — EEPROM single bit fault error
code.

e kStatus FLASH_EepromDoubleBitFault — EEPROM double bit fault error
code.

status_t FLASH_ ReadOnce(flash_config_t *config, uint32_t index, uint32_t *dst, uint32_t
lengthInBytes)

Reads the Program Once Field through parameters.

This function reads the read once feild with given index and length.

128 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.06.00

Parameters
* config — A pointer to the storage for the driver runtime state.
¢ index — The index indicating the area of program once field to be read.

* dst — A pointer to the destination buffer of data that is used to store data to
be read.

* lengthInBytes — The length, given in bytes (not words or long-words), to be
programmed. Must be word-aligned.

Return values
* kStatus. FLASH_Success — API was executed successfully.
* kStatus_ FLASH_ InvalidArgument — An invalid argument is provided.

e kStatus FLASH_ExecuteInRamFunctionNotReady — Execute-in-RAM func-
tion is not available.

e kStatus FLASH_AccessError —Invalid instruction codes and out-of bounds
addresses.

* kStatus_ FLASH_ ProtectionViolation — The program/erase operation is re-
quested to execute on protected areas.

* kStatus_ FLASH_CommandFailure — Run-time error during the command
execution.

status_t FLASH__ GetSecurityState(flash_config t *config, flash_security_state_t *state)
Returns the security state via the pointer passed into the function.

This function retrieves the current flash security status, including the security enabling
state and the backdoor key enabling state.

Parameters

* config — A pointer to storage for the driver runtime state.

* state — A pointer to the value returned for the current security status code:
Return values

* kStatus_ FLASH_ Success — API was executed successfully.

* kStatus_ FLASH_ InvalidArgument — An invalid argument is provided.

status_t FLASH_ SecurityBypass(flash_config t *config, const uint8_t *backdoorKey)
Allows users to bypass security with a backdoor key.

If the MCU is in secured state, this function unsecures the MCU by comparing the provided
backdoor key with ones in the flash configuration field.

Parameters

* config — A pointer to the storage for the driver runtime state.

* backdoorKey — A pointer to the user buffer containing the backdoor key.
Return values

* kStatus_ FLASH_ Success — API was executed successfully.

* kStatus_ FLASH_InvalidArgument — An invalid argument is provided.

e kStatus. FLASH_ExecuteInRamFunctionNotReady — Execute-in-RAM func-
tion is not available.

* kStatus FLASH AccessError —Invalid instruction codes and out-of bounds
addresses.

2.6. FTMRx Flash Driver 129

MCUXpresso SDK Documentation, Release 25.06.00

* kStatus_ FLASH_ ProtectionViolation — The program/erase operation is re-
quested to execute on protected areas.

* kStatus_ FLASH_ CommandFailure — Run-time error during the command
execution.

status_t FLASH VerifyEraseAll(flash_config_t *config, flash_margin_value_t margin)
Verifies erasure of the entire flash at a specified margin level.

This function checks whether the flash is erased to the specified read margin level.
Parameters
* config — A pointer to the storage for the driver runtime state.
* margin — Read margin choice.
Return values
* kStatus_ FLASH_ Success — API was executed successfully.
* kStatus_ FLASH_ InvalidArgument — An invalid argument is provided.

e kStatus_ FLASH_ ExecuteInRamFunctionNotReady — Execute-in-RAM func-
tion is not available.

* kStatus FLASH AccessError —Invalid instruction codes and out-of bounds
addresses.

* kStatus. FLASH ProtectionViolation — The program/erase operation is re-
quested to execute on protected areas.

* kStatus_ FLASH__CommandFailure — Run-time error during the command

execution.

* kStatus_ FLASH_ EepromSingleBitFault — EEPROM single bit fault error
code.

* kStatus FLASH FEepromDoubleBitFault — EEPROM double bit fault error
code.

status_t FLASH_ VerifyErase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes,
flash_margin_value_t margin)

Verifies an erasure of the desired flash area at a specified margin level.

This function checks the appropriate number of flash sectors based on the desired start
address and length to check whether the flash is erased to the specified read margin level.

Parameters
* config — A pointer to the storage for the driver runtime state.
* margin — Read margin choice.

* start — The start address of the desired flash memory to be verified. The
start address does not need to be sector-aligned but must be word-aligned.

* lengthInBytes — The length, given in bytes (not words or long-words), to be
verified. Must be word-aligned.

Return values
* kStatus_ FLASH_ Success — API was executed successfully.
* kStatus_ FLASH_InvalidArgument — An invalid argument is provided.

* kStatus FLASH AlignmentError — Parameter is not aligned with specified
baseline.

* kStatus. FLASH AddressError — Address is out of range.

130 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.06.00

* kStatus_ FLASH_ ExecuteInRamFunctionNotReady — Execute-in-RAM func-
tion is not available.

* kStatus FLASH AccessError —Invalid instruction codes and out-of bounds
addresses.

* kStatus. FLASH ProtectionViolation — The program/erase operation is re-
quested to execute on protected areas.

* kStatus_ FLASH_ CommandFailure — Run-time error during the command
execution.

status_t FLASH_ IsProtected(flash_config_t *config, uint32_t start, uint32_t lengthInBytes,
flash_protection_state_t *protection_state)

Returns the protection state of the desired flash area via the pointer passed into the func-
tion.

This function retrieves the current flash protect status for a given flash area as determined
by the start address and length.

Parameters
* config — A pointer to the storage for the driver runtime state.

* start — The start address of the desired flash memory to be checked. Must
be word-aligned.

* lengthInBytes — The length, given in bytes (not words or long-words) to be
checked. Must be word-aligned.

* protection_ state— A pointer to the value returned for the current protection
status code for the desired flash area.

Return values
* kStatus. FLASH_Success — API was executed successfully.
* kStatus. FLASH_InvalidArgument — An invalid argument is provided.

* kStatus_ FLASH_AlignmentError — Parameter is not aligned with specified
baseline.

* kStatus. FLASH AddressError — The address is out of range.

status_t FLASH_ GetProperty(flash_config t *config, flash_property_tag t whichProperty,
uint32_t *value)

Returns the desired flash property.
Parameters
* config — A pointer to the storage for the driver runtime state.

» whichProperty — The desired property from the list of properties in enum
flash_property_tag_t

* value — A pointer to the value returned for the desired flash property.
Return values

* kStatus_ FLASH_ Success — API was executed successfully.

* kStatus. FLASH_ InvalidArgument — An invalid argument is provided.

* kStatus_ FLASH_ UnknownProperty — An unknown property tag.

status_t FLASH_ SetProperty(flash_config_t *config, flash_property_tag t whichProperty,
uint32_t value)

Sets the desired flash property.

Parameters

2.6. FTMRx Flash Driver 131

MCUXpresso SDK Documentation, Release 25.06.00

* config — A pointer to the storage for the driver runtime state.

* whichProperty — The desired property from the list of properties in enum
flash_property_tag_t

* value — A to set for the desired flash property.
Return values
* kStatus_ FLASH_ Success — API was executed successfully.
* kStatus_ FLASH_InvalidArgument — An invalid argument is provided.
* kStatus. FLASH UnknownProperty — An unknown property tag.
* kStatus. FLASH_ InvalidPropertyValue — An invalid property value.
* kStatus. FLASH ReadOnlyProperty — An read-only property tag.

status_t FLASH_ PflashSetProtection(flash_config_t *config, pflash_protection_status_t
*protectStatus)

Sets the PFlash Protection to the intended protection status.
Parameters
* config — A pointer to storage for the driver runtime state.

* protectStatus — The expected protect status to set to the PFlash protection
register.

Return values
* kStatus. FLASH_Success — API was executed successfully.
* kStatus_ FLASH_ InvalidArgument — An invalid argument is provided.

* kStatus_ FLASH_CommandFailure — Run-time error during command exe-
cution.

status_t FLASH_ PflashGetProtection(flash_config_t *config, pflash_protection_status_t
*protectStatus)

Gets the PFlash protection status.
Parameters
* config — A pointer to the storage for the driver runtime state.
* protectStatus — Protect status returned by the PFlash IP.
Return values
* kStatus_ FLASH_ Success — API was executed successfully.
* kStatus_ FLASH_InvalidArgument — An invalid argument is provided.

status_t FLASH EepromSetProtection(flash_config_t *config, uint8_t protectStatus)
Sets the EEPROM protection to the intended protection status.

Parameters
* config — A pointer to the storage for the driver runtime state.

* protectStatus — The expected protect status to set to the EEPROM protection
register.

Return values
* kStatus_ FLASH_ Success — API was executed successfully.
* kStatus_ FLASH_ InvalidArgument — An invalid argument is provided.
* kStatus_ FLASH_CommandNotSupported — Flash API is not supported.

132 Chapter 2. MKE02Z4

MCUXpresso SDK Documentation, Release 25.06.00

* kStatus_ FLASH_ CommandFailure — Run-time error during command exe-
cution.

status_t FLASH_EepromGetProtection(flash_config_t *config, uint8_t *protectStatus)
Gets the EEPROM protection status.

Parameters
* config — A pointer to the storage for the driver runtime state.
* protectStatus — EEPROM Protect status returned by the EEPROM IP.
Return values
* kStatus_ FLASH_ Success — API was executed successfully.
* kStatus. FLASH_InvalidArgument — An invalid argument is provided.
* kStatus. FLASH CommandNotSupported — Flash API is not supported.

status_t FLASH_ PflashSetPrefetchSpeculation(flash_prefetch_speculation_status_t
*speculationStatus)

Sets the PFlash prefetch speculation to the intended speculation status.
Parameters

* speculationStatus — The expected protect status to set to the PFlash protec-
tion register. Each bit is

Return values
* kStatus_ FLASH_ Success — API was executed successfully.

* kStatus_ FLASH_ InvalidSpeculationOption — An invalid speculation option
argument is provided.

status_t FLASH_ PflashGetPrefetchSpeculation(flash_prefetch_speculation_status_t
*speculationStatus)

Gets the PFlash prefetch speculation status.
Parameters

* speculationStatus — Speculation status returned by the PFlash IP.

Return values
kStatus FLASH_ Success — API was executed successfully.

FLASH_SSD__CONFIG_ENABLE_EEPROM_SUPPORT
Indicates whether to support EEPROM in the Flash driver.

Enables the EEPROM support.

FLASH SSD IS EEPROM_ENABLED
Indicates whether the EEPROM is enabled in the Flash driver.

FLASH_SSD_ CONFIG_ENABLE_SECONDARY_FLASH_SUPPORT
Indicates whether to support Secondary flas