
JNUG3130
ZigBee 3.0 Stack User Guide
Rev. 4.2 — 24 January 2025 User guide

Document information
Information Content

Keywords JNUG3130, ZigBee 3.0 wireless networking protocol, K32W041, K32W061, K32W1, MCXW71,
MCXW72, and JN518x family of microprocessors, Zigbee stack software

Abstract This document provides detailed information relating to the ZigBee 3.0 wireless networking
protocol, its associated stack. It also provides details for implementing the stack on NXP
hardware platforms: K32W148-EVK, FRDM-MCXW71, FRDM-MCXW72, MCX-W71-EVK, and
MCX-W72-EVK. These platforms belong to NXP provided K32W041, K32W061, K32W1,
MCXW71, MCXW72, and JN518x family of wireless microcontrollers.

https://www.nxp.com

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

1 Preface

This manual provides a single point of reference for information relating to the ZigBee 3.0 wireless networking
protocol and its associated stack, when implemented on the NXP K32W041, K32W061, K32W1, MCXW71,
MCXW72, and JN518x family of wireless microcontrollers. It supports the NXP hardware platforms:- K32W148-
EVK, FRDM-MCXW71, FRDM-MCXW72, MCX-W71-EVK, and MCX-W72-EVK. The manual provides both
conceptual and practical information concerning the ZigBee 3.0 protocol and the supporting NXP software.
Guidance is provided on the use of the NXP Application Programming Interfaces (APIs) for ZigBee 3.0. The
API resources (such as functions, network parameters, enumerations, data types and events) are described in
detail. The document can be used as a reference resource during ZigBee 3.0 application development.

Note:

1. The ZigBee 3.0 protocol employs the ZigBee PRO stack - in particular, Revision 22/ZigBee 2017 of this
stack. Therefore, this User Guide relates to this stack revision.

2. This User Guide is concerned with the development of applications that operate over the ZigBee PRO
stack. These applications may conform to ZigBee 3.0 or may use ZigBee or manufacturer-specific
application profiles. ZigBee 3.0 applications are based on ZigBee device types for which users should also
refer to the ZigBee 3.0 Devices User Guide (JNUG3131).

For more detailed information on the ZigBee 3.0 standard, refer to the protocol specifications available from the
ZigBee Alliance.

1.1 Organization of this manual
This manual is divided into four parts:

• Part I: Concept and Operational Information consists of six chapters:
– Chapter 1: Preface provides an overview of the document contents, conventions, support resources, and

compatibility information.
– Chapter 2: Section 2 introduces the ZigBee 3.0 wireless network protocol.
– Chapter 3: Section 3 describes the architecture and features of ZigBee 3.0.
– Chapter 4: Section 4 introduces the NXP ZigBee PRO stack software.
– Chapter 5: Section 5 provides an overview of the ZigBee 3.0 application development environment and

process.
– Chapter 6: Section 6 describes how to perform common wireless network operations using the functions of

the NXP ZigBee 3.0 APIs.
• Part II: Reference Information consists of six chapters:

– Chapter 7: Section 7 details the functions and associated resources of the ZigBee Device Objects (ZDO)
API.

– Chapter 8: Section 8 details the functions and associated resources of the Application Framework (AF) API.
– Chapter 9: Section 9 details the functions and associated resources of the ZigBee Device Profile (ZDP)

API.
– Chapter 10: Section 10 details the general functions and associated resources provided with the NXP

ZigBee PRO stack.
– Chapter 11: Section 11 details the stack events and the return/status codes used by the ZigBee PRO APIs.
– Chapter 12: Section 12 details the ZigBee network parameters.

• Part III: Network Configuration consists of one chapter:
– Chapter 13: Section 13 describes how to use the ZPS Configuration Editor.

• Part IV: contains various ancillary information that include the following:
– Appendix A: Section 14: a description of the handling of ZigBee PRO stack events.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
2 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

– Appendix B: Section 15: a set of design application notes.
– Appendix C: Section 16: a description of frame counters.
– Appendix D: Section 17: a description of application storage in Flash memory.
– Appendix E: a glossary of terms used in ZigBee 3.0 networks.
– Appendix F: Revision History for the document.

1.2 Conventions
Files, folders, functions and parameter types are represented in bold type. Function parameters are
represented in italics type.

Code fragments are represented in the Courier New typeface.

Note: A note represents an important fact, guideline, or information.

1.3 Acronyms and abbreviations
The table below lists the acronyms and abbreviations used in this document.

Acronym Description

AF Application Framework

AIB APS Information Base

APDU Application Protocol Data Unit

API Application Programming Interface

APS Application Support (sub-layer)

APSDE Application Support (sub-layer) Data

APSME Application Support (sub-layer) Management

BDB Base Device Behavior

DIO Digital Input/Output

EPID Extended PAN ID

HA Home Automation

HVAC Heating, Ventilation, and Air-Conditioning

IO Input/Output

ISR Interrupt Service Routine

MAC Media Access Control

PAN Personal Area Network

NIB NWK Information Base

NPDU Network Protocol Data Unit

NVM Non-Volatile Memory Manager

NWK Network

OS Operating System

PDU Protocol Data Unit

Table 1. Acronyms and abbreviations

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
3 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Acronym Description

PDUM Protocol Data Unit Manager

PIC Programmable Interrupt Controller

RF Radio Frequency

SAP Service Access Point

SDK Software Developer’s Kit

UART Universal Asynchronous Receiver-Transmitter

ZCL ZigBee Cluster Library

ZCP ZigBee Compliant Platform

ZDO ZigBee Device Objects

ZDP ZigBee Device Profile

ZCP ZigBee Compliant Platform

ZDO ZigBee Device Objects

ZDP ZigBee Device Profile

Table 1. Acronyms and abbreviations...continued

1.4 Related documents
For further information, refer to the following documents:

• JNUG3131 ZigBee 3.0 Devices User Guide
• JNUG3132 ZigBee Cluster Library (for ZigBee 3.0) User Guide
• JNUG133 Core Utilities User Guide
• JNUG3134 ZigBee Green Power (for ZigBee 3.0) User Guide

1.5 Support resources
• To access online support resources such as SDKs, Application Notes, and User Guides, visit the Wireless

Connectivity page of the NXP website: https://www.nxp.com/products/wireless:WIRELESS-CONNECTIVITY
• ZigBee resources can be accessed from the ZigBee page, whose URL is: https://www.nxp.com/pages/

jn516x-7x-zigbee-3-0:ZIGBEE-3-0.

All NXP resources referred to in this manual can be found at the above addresses, unless otherwise stated.

1.6 Trademarks
All trademarks are the property of their respective owners.

1.7 Chip compatibility
The software described in this manual can be used on the NXP K32W041, K32W061, K32W1, MCXW71,
MCXW72, and JN518x family of wireless microcontrollers.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
4 / 322

https://www.nxp.com/products/wireless:WIRELESS-CONNECTIVITY
https://www.nxp.com/pages/jn516x-7x-zigbee-3-0:ZIGBEE-3-0
https://www.nxp.com/pages/jn516x-7x-zigbee-3-0:ZIGBEE-3-0
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

2 ZigBee overview

The ZigBee protocol was developed to provide low-power, wireless connectivity for a wide range of network
applications concerned with monitoring and control. ZigBee is a worldwide open standard controlled by the
ZigBee Alliance. ZigBee PRO was then developed as an enhancement of the original ZigBee protocol, providing
a number of extra features that are particularly useful for very large networks (that may include hundreds or
even thousands of nodes).

2.1 ZigBee features
The ZigBee standard builds on the established IEEE 802.15.4 standard for packet-based wireless transport.
ZigBee enhances the functionality of IEEE 802.15.4 by providing flexible, extendable network topologies with
integrated set-up and routing intelligence to facilitate easy installation and high resilience to failure. ZigBee
networks also incorporate listen-before-talk and rigorous security measures that enable them to co-exist with
other wireless technologies (such as Bluetooth and Wi-Fi) in the same operating environment.

ZigBee provides wireless connectivity that enables it to be installed on networks easily and cheaply. Its built-
in intelligence and flexibility allow networks to be easily adapted to changing needs by adding, removing, or
moving network nodes. The protocol is designed in such a manner that nodes can appear in and disappear
from the network. Thus, it allows some devices to be put into a power-saving mode, when not active. This
feature allows many devices in a ZigBee network to be battery-powered, making them self-contained and
reduces installation costs.

Figure 1 shows a simple example of a ZigBee network in an HVAC (Heating, Ventilation, and Air-Conditioning)
system.

2.2 ZigBee 3.0
ZigBee 3.0 employs the ZigBee PRO protocol and is designed to facilitate general wireless networks that are
not market-specific. Thus, devices from different market sectors can belong to the same wireless network. For
example, lighting and healthcare devices in a hospital may share a single ZigBee network, allowing data to be
routed through any intermediate (routing) device, irrespective of the device functionality.

Connecting the network to the Internet brings the devices into the ‘Internet of Things’ (IoT), allowing the network
devices to be controlled and monitored from IP-based devices such as computers, tablets, and smartphones.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
5 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Figure 1. Simple ZigBee Network (Heating and Air-conditioning)

2.3 ZigBee network nodes
A wireless network consists of a set of nodes that can communicate with each other by means of radio
transmissions, according to a set of routing rules (for passing messages between nodes). A ZigBee wireless
network includes three types of node:

• Coordinator: This is the first node to be started and is responsible for forming the network by allowing other
nodes to join the network through it. Once the network is established, the Coordinator has a routing role (is
able to relay messages from one node to another) and is also able to send/receive data. Every network must
have one and only one Coordinator.

• Router: This is a node with a routing capability, and is also able to send/receive data. It also allows other
nodes to join the network through it, so plays a role in extending the network. A network may have many
Routers.

• End Device: This is a node which is only capable of sending and receiving data (it has no routing capability).
A network may have many End Devices.

The Section 2.4 describes deployment of these node types in a ZigBee PRO network. More detailed information
about the node types is provided in Section 3.2.1.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
6 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

2.4 ZigBee PRO network topology
ZigBee facilitates a range of network topologies from the simplest Star topology, through the highly structured
Tree topology to the flexible Mesh topology. ZigBee PRO is designed primarily for Mesh networks.

A Mesh network has little implicit structure. It is a collection of nodes comprising a Coordinator and a number of
Routers and/or End Devices, where:

• Each node, except the Coordinator, is associated with a Router or the Co- ordinator - this is the node through
which it joined the network and is known as its ‘parent’. Each parent may have a number of ‘children’.

• An End Device can only communicate directly with its own parent.
• Each Router and the Coordinator can communicate directly with any other Router/Coordinator within radio

range.

It is the last property above that gives a Mesh network its flexibility and efficiency in terms of inter-node
communication. A Mesh network is illustrated in the figure below.

Figure 2. Simple Mesh Network

2.5 Ideal applications for ZigBee
ZigBee is suitable for a wide range of applications, covering both commercial and domestic use. These
applications include:

• Point-to-point cable replacement (for example, wireless mouse, remote controls, toys)
• Security systems (for example, fire and intruder)
• Environmental control (for example, heating and air-conditioning)
• Hospital patient monitoring

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
7 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• Lighting control
• Home automation (for example, home entertainment, doors, gates, curtains, and blinds)
• Automated meter reading (AMR)
• Industrial automation (for example, plant monitoring and control)

ZigBee provides wireless communication that enables those applications to be developed, which currently
cannot be implemented with cabled systems. Examples are applications that involve mobility, which must
be free of cabling (such as long-term health monitoring, asset tracking in warehouses). Existing applications
(such as lighting control and industrial plant monitoring) that currently rely on cable-based systems can
be implemented more cheaply as ZigBee reduces or removes cable installation costs. ZigBee can also be
beneficial in environments where cable-based solutions are difficult and expensive to install. Home security
systems are examples of such systems. In these systems, the sensors should be easy to install (no cables or
power supply wiring) and small and self-contained (battery-powered).

2.6 Wireless radio frequency operation
The IEEE 802.15.4 protocol, on which ZigBee is built, provides radio-based network connectivity operating
in one of three possible RF (Radio Frequency) bands: 868 MHz, 915 MHz, or 2400 MHz. These bands are
available for unlicensed use, depending on the geographical area (check your local radio communication
regulations).

The characteristics of these RF bands are shown in the table below.

RF Band Number of Channels

863 MHz - 876 MHz 63

915 MHz - 921 MHz 27

Total 90

Table 2. Total number of channels

Channel Page Description

863-876 MHz 63

915-921 MHz 27

Total 90

Table 3. Channel distribution across pages

The internal representation of the channels in our stack is as follows:

• A 32-bit mask is used to represent the channel mask.
• The top 5 bits are used for page number and the lower 27 bits are the channel masks.

In 2.4G, page number is 0 channel range 11-26. Thus, it will be 0x00000800 (page 0, Channel 11). In Sub Gig
Page 28 channel 0, is 0xE0000001. The 868 MHz and 915 MHz bands offer certain advantages such as fewer
users, less interference, and less absorption and reflection, but the 2400 MHz band is far more widely adopted
for a number of reasons:

• Worldwide availability for unlicensed use
• Higher data rate (250 kbit/s) and more channels
• Lower power (transmit/receive are on for shorter time due to higher data rate)
• Band more commonly understood and accepted by the marketplace

Therefore, the ZigBee standard assumes operation in the 2400-MHz band, although it is possible to implement
ZigBee networks in the other IEEE 802.15.4 bands. ZigBee includes measures to avoid interference between
radio communications. One is its ability to automatically select the best frequency channel at initialization.
JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
8 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

It is also possible to adapt to a changing RF environment by moving the network to another channel, if the
current channel proves problematic - this ‘frequency agility’ is a core feature of ZigBee PRO. Other measures
are described in Section 2.9. The range of a radio transmission is dependent on the operating environment -
for example, indoors or outdoors. Using an NXP JN518x or K32W041/K32W061/K32W1/MCXW71/MCXW72
standard module fitted with an external dipole antenna, a range of over 1 km can typically be achieved in an
open area, but inside a building this can be reduced due to absorption, reflection, diffraction and standing wave
effects caused by walls and other solid objects. A high-power module (greater than 15 dBm output power)
can achieve a range which is a factor of five greater than that of a standard module. In addition, the range
between devices can be extended in a ZigBee network since the network topology (see Section 3.2.2) can use
intermediate nodes (Routers) as stepping stones when passing data to destinations.

2.7 Battery-powered components
There are many wireless applications that benefit from battery power, including light-switches, active tags and
security detectors. The ZigBee and IEEE 802.15.4 protocols are specifically designed for battery-powered
applications. From a user perspective, battery power has certain advantages:

• Easy and low-cost installation of nodes: No need to connect node to separate power supply.
• Flexible location of nodes: Nodes can be installed in difficult places where there is no power supply, and

can even be used as mobile devices.
• Easily modified network: Nodes can easily be added or removed, on a temporary or permanent basis.

Since these devices are generally small, they use low-capacity batteries and therefore battery use must be
optimized. This is achieved by restricting the amount of time for which energy is required by the device.

• Since the major power drain in the system is the operation of the radio, data may be transmitted infrequently
(perhaps once per hour or even once per week), which results in a low duty cycle (transmission time as
proportion of time interval between transmissions).

• When data is not being sent, the device may revert to a low-power ‘sleep’ mode to minimize power
consumption.

In practice, not all nodes on a network can be battery-powered, notably those that need to be switched on all
the time for routing purposes (and therefore cannot sleep). These devices can often be installed in a mains-
powered appliance that is permanently connected to the mains supply (even if not switched on) - for example,
a ceiling lamp or an electric radiator. This avoids the need to install a dedicated mains power connection for the
node. Only End Devices are normally battery-powered.

Note:

A network device can also potentially use "energy harvesting" to absorb and store energy from its surroundings
- for example, the use of a solar cell panel on a device in a well-lit environment.

2.8 Easy installation and configuration
One of the great advantages of a ZigBee network is the ease with which it can be installed and configured.

As already mentioned, the installation is simplified and streamlined by the use of certain battery-powered
devices with no need for power cabling. In addition, since the whole system is radio-based, there is no need
for control wiring to any of the network devices. Therefore, ZigBee avoids much of the wiring and associated
construction work required when installing cable-based networks.

The configuration of the network depends on how the installed system has been developed. There are three
system possibilities: pre-configured, self-configuring, and custom.

• Pre-configured system: A system in which all parameters are configured by the manufacturer. The system
is used as delivered and cannot readily be modified or extended. Examples: vending machine, patient
monitoring unit.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
9 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• Self-configuring system: A system that is installed and configured by the end-user. The network is initially
configured by sending "discovery" messages between devices. Some initial user intervention is required to
set up the devices - for example, by pressing buttons on the nodes. Once installed, the system can be easily
modified or extended without any re-configuration by the user. The system detects when a node has been
added, removed, or simply moved, and automatically adjusts the system settings.
Example: off-the-shelf home security or home lighting system in which extra devices can be added later.

• Custom system: A system that is adapted for a specific application/location. It is designed and installed by a
system integrator using custom network devices. The system is usually configured using a software tool.

As indicated above, system commissioning (individually configuring the network nodes) can be performed in
either of the below modes:

• By using an IO interface (for example, buttons or a keypad) on the node in a self-configuring system.
• By using a commissioning tool (for example, by running on a lap-top PC) that interacts with the node in a

custom system.

In the latter case, ZigBee PRO allows commissioning to be conducted in a secure way - for example, using a
security key to gain access to the configurable parameters of the node, and using encryption in any wireless
communication between the commissioning tool and the node. For more information on system security, refer to
Section 2.10.

2.9 Highly reliable operation
ZigBee and IEEE 802.15.4 employ a range of techniques to ensure reliable communications between network
nodes - that is, to ensure communications reach their destinations uncorrupted. Corruption could result, for
example, from radio interference or poor transmission/reception conditions.

• Data Coding: At a first level, a coding mechanism is applied to radio transmissions. The coding method
employed in the 2400-MHz band uses QPSK (Quadrature Phase-Shift Keying) modulation with conversion of
4-bit data symbols to 32-bit chip sequences. This coding results in a high probability that a message reaches
its destination intact, even if there are conflicting transmissions. (A conflicting transmission implies that more
than one device transmits in the same frequency channel at the same time).

• Listen Before Send: The transmission scheme also avoids transmitting data when there is activity on its
chosen channel - this is known as Carrier Sense, Multiple Access with Collision Avoidance (CSMA-CA). Put
simply, this means that before beginning a transmission, a node listens on the channel to check whether it is
clear. If activity is detected on the channel, the node delays the transmission for a random amount of time and
listens again - if the channel is now clear, the transmission can begin, otherwise the delay-and-listen cycle is
repeated.

• acknowledgments: Two systems of acknowledgments are available to ensure that messages reach their
destinations:
– End-to-End: When a message arrives at its final destination, the receiving device sends an

acknowledgment to the source node to indicate that the message has been received. End-to-end
acknowledgments are optional.

– Next Hop: When a message is routed via intermediate nodes to reach its destination, the next routing
node (or ‘next hop’ node) in the route sends an acknowledgment to the previous node to indicate that it has
received the message. Next-hop acknowledgments are always implemented.

In both cases, if the sending device does not receive an acknowledgment within a certain time interval,
it resends the original message (it can resend the message several times until the message has been
acknowledged).

• Frequency Agility: When a ZigBee network is initially set up, the ‘best’ channel in the relevant radio band
is automatically chosen as the operating channel. The operating channel is normally the quietest channel
detected in an energy scan across the band. However, it might not always remain the quietest channel if
other networks that operate in the same channel are introduced nearby. For this reason, ZigBee includes an

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
10 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

optional frequency agility facility. If the operating channel becomes too noisy, this feature allows the whole
network to be moved to a better channel in the radio band.

• Route Repair: Networks that employ a Mesh topology (see Section 2.4) have built-in intelligence to ensure
that messages reach their destinations. If the default route to the destination node is down, due to a failed
intermediate node or link, the network can ‘discover’ and implement alternative routes for message delivery.
ZigBee PRO is designed for Mesh networks and therefore incorporates “route repair” as a core feature.

The above reliability measures allow a ZigBee network to operate even when there are other ZigBee networks
nearby operating in the same frequency band. Therefore, adjacent ZigBee networks do not interfere with each
other. In addition, ZigBee networks can also operate in the neighborhood of networks based on other standards,
such as Wi-Fi and Bluetooth, without any interference.

2.10 Secure operating environment
ZigBee networks can be made secure - measures can be incorporated to prevent intrusion from potentially
hostile parties and from neighboring ZigBee networks. ZigBee also provides privacy for communication between
nodes of the same network.

ZigBee PRO security includes the following features:

• Access control lists
• Key-based encryption of communications
• Frame counters

These security measures are outlined below.

2.10.1 Access control lists

An access control list allows only pre-defined ‘friendly’ nodes to join the network.

2.10.2 Key-based encryption

A very high-security, 128-bit AES-based encryption system (built into the device as a hardware function) is
applied to network communications, preventing external agents from interpreting ZigBee network data.

This encryption is key-based. Normally, the same ‘network key’ is used for all nodes in the network. However,
it is possible to use an individual ‘link key’ between a given pair of network nodes, allowing communications
(possibly containing sensitive data) between the two nodes to be private from other nodes in the same network.

Keys can be pre-configured in nodes in the factory, commissioned during system installation or distributed
around a working network from a central ‘Trust Centre’ node. A Trust Centre manages keys and security
policies - for example, changing the network key on all network nodes, issuing link keys for node pairs and
restricting the hours in which certain events or interactions can occur. Any node can be nominated as the Trust
Centre, but it is by default the Coordinator.

A distributed security model can alternatively be used, which does not have a Trust Centre - instead, security is
managed by the Router nodes in the network.

2.10.3 Frame counters

The use of frame counters prevents sending the same message twice, and freshness checking rejects any such
repeated messages, preventing message replay attacks on the network. An example of a replay attack would
be someone recording the open command for a garage door opener, and then replaying it to gain unauthorized
entry into the property. Frame counters are described in more detail in the Appendix A, Section 16.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
11 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

2.11 Co-existence and interoperability
ZigBee is an open standard devised by the ZigBee Alliance. Any device designed for use in a ZigBee network
must comply with the standard. This ensures "co-existence" and, to a certain extent, "interoperability" of ZigBee
devices:

• Co-existence: The ability of a device to operate in the same space and radio channel as devices in other
wireless networks (which possibly use protocols other than ZigBee) without interfering with them

• Interoperability: The ability of a device to operate in the same ZigBee network as devices from other
manufacturers - that is, to communicate and function with them.

The ZigBee Alliance coordinates the compliance issues for products based on the ZigBee protocol. It defines
two levels of compliance:

• ZigBee Compliant Platform (ZCP) applies to modules or platforms intended as building blocks for use
in end-products. All NXP products based on the supported chips are designed to be ZigBee Compliant
Platforms. Refer to the section Section 1.7.

• ZigBee Certified Product applies to end-products that are built on ZigBee Compliant Platforms, and that
use public ZigBee Alliance device types and clusters. After successful completion of the ZigBee Alliance
Certification program, the ZigBee Certified Product logo can be applied to the product.
Note: End-products based on manufacturer-specific device types and clusters can also obtain ZigBee
Certified Product status, but such products cannot carry the ZigBee Certified Product logo.

Test service providers are authorized by the ZigBee Alliance to undertake testing and certification. For details of
authorized test houses, contact the ZigBee Alliance.

In addition, products using an NXP ZCP must also be checked against the radio regulations of the country or
countries where they are to be marketed (these checks can often be performed by the same test house).

2.12 Device types and clusters
For the purpose of interoperability (described in Section 2.9), the ZigBee Alliance employs the concepts of
a device type and a cluster, which define the functionality of a network node. Clusters and device types are
introduced below (but more detailed information can be found in Section 3.4).

Note: The ZigBee ‘application profile’ (which collects together the device types for a market sector) is not so

prevalent in ZigBee 3.0. However, application profiles are still supported for backward compatibility.

2.12.1 Clusters

A cluster is a software entity that encompasses a particular piece of functionality for a network node. A cluster
is defined by a set of attributes (parameters) that relate to the functionality and a set of commands (that
can typically be used to request operations on the cluster attributes). As an example, a thermostat uses the
Temperature Measurement cluster that includes attributes such as the current temperature measurement, the
maximum temperature that can be measured, and the minimum temperature that can be measured. However,
the only operations that needs to be performed on these attributes would be reads and writes.

The ZigBee Alliance defines a collection of clusters in the ZigBee Cluster Library (ZCL). These clusters cover
the functionalities that are most likely to be used. The NXP implementations of these clusters are provided in
the ZigBee 3.0 Software Developer’s Kit (SDK) and are described in the ZigBee Cluster Library User Guide
(JNUG3132).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
12 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

2.12.2 Device types

The complete functionality of a network node is determined by its device type. This defines a collection of
clusters (some mandatory and some optional) that make up the supported features of the device. For example,
the Thermostat device uses the Basic and Temperature Measurement clusters, and can also use one or more
optional clusters. A device is an instance of a device type.

A network node can support more than one device type. The application for a device type runs on a software
entity called an endpoint and each node can have up to 240 endpoints.

All ZigBee 3.0 nodes must implement the ZigBee Base Device (which does not occupy an endpoint), which
handles fundamental operations such as commissioning.

The ZigBee device types and ZigBee Base Device are detailed in the ZigBee Devices User Guide (JNUG3131).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
13 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

3 ZigBee PRO architecture and operation

This chapter introduces ZigBee PRO from architectural and operational view-points by describing:

• Basic architecture on which ZigBee PRO is based. See Section 3.1, (Section 3.1)
• Concepts for an understanding of ZigBee PRO at the network level. See Section 3.2 (Section 3.2)
• Process of network formation. See Section 3.3, (Section 3.3)
• Concepts for an understanding of ZigBee PRO at the application level. See Section 3.4, (Section 3.4)
• Features and concepts related to message routing. See Section 3.5, (Section 3.5)
• Features and concepts related to exchanging messages. See Section 3.6, (Section 3.6)
• A detailed view of the ZigBee PRO software architecture. See Section 3.7, (Section 3.7)

3.1 Architectural overview
This section introduces the basic architecture of the software that runs on a ZigBee PRO network node.
The software architecture is built on top of IEEE 802.15.4, an established and proven standard for wireless
communication.

From a high-level view, the software architecture of any ZigBee network consists of four basic stack layers:
Application layer, Network layer, Data Link layer and Physical layer. The Application layer is the highest level
and the Physical layer is the lowest level, as illustrated in the figure below.

Data Link layer

Network layer

Application layer

Physical layer

Figure 3. Basic software architecture

The basic layers of the ZigBee software stack are described below, from top to bottom:

• Application layer: The Application layer contains the applications that run on the network node. These give
the device its functionality - essentially an application converts input into digital data, and/or converts digital
data into output. A single node may run several applications - for example, an environmental sensor may
contain separate applications to measure temperature, humidity and atmospheric pressure.

• Network layer: The Network layer provides the ZigBee PRO functionality and the application’s interface to
the IEEE 802.15.4 layers. The layer is concerned with network structure and multi-hop routing.

• Data Link layer: The Data Link layer is provided by the IEEE 802.15.4 standard and is responsible for
addressing - for outgoing data it determines where the data is going, and for incoming data it determines
where the data has come from. It is also responsible for assembling data packets or frames to be transmitted
and disassembling received frames. In the IEEE 802.15.4 standard, the Data Link layer is referred to as IEEE
802.15.4 MAC (Media Access Control) and the frames used are MAC frames.

• Physical layer: The Physical layer is provided by the IEEE 802.15.4 standard and is concerned with the
interface to the physical transmission medium (radio, in this case). It is facilitates exchange of data bits with

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
14 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

this medium, as well as with the layer above (the Data Link layer). In the IEEE 802.15.4 standard, the Physical
layer is referred to as IEEE 802.15.4 PHY.

For a more detailed view of the software architecture of ZigBee PRO, refer to Section 3.7, Section 3.7.

Note: Security measures are implemented throughout the stack, including the Application layer and lower stack
layers.

3.2 Network level concepts
This section describes important concepts relating to the work of the ZigBee stack.

3.2.1 ZigBee nodes

There are three general types of node that can exist in a ZigBee network:

• Coordinator
• Router
• End Device

Note: These roles exist at the network level - a ZigBee node may also be performing tasks at the Application
level, independent of the role it plays in the network.

For example, a network of ZigBee devices measuring temperature may have a temperature sensor application
in each node, irrespective of whether the node is an End Device, Router, or the Coordinator.

The roles of these node types are described in the sub-sections below.

3.2.1.1 Coordinator

All ZigBee networks must have one (and only one) Coordinator.

At the network level, the Coordinator is mainly needed at system initialization - it is the first node to be started
and performs the following initialization tasks:

• Selects the frequency channel to be used by the network (usually the one with the least detected activity)
• Starts the network
• Allows child nodes to join the network through it

The Coordinator can additionally provide other services such as message routing and security management. It
may also provide services at the Application level. If any of these additional services are used, the Coordinator
must be able to provide them at all times. However, if none of these additional services are used, the network
will be able to operate normally even if the Coordinator fails or is switched off.

3.2.1.2 Router

A ZigBee PRO network usually has at least one Router. The main tasks of a Router are:

• Relays messages from one node to another.
• Allows child nodes to join the network through it.

Note: An important feature of the Router is that it cannot sleep, as it must always be available for routing.

3.2.1.3 End Device

The main task of an End Device at the network level is sending and receiving messages. An End Device can
only communicate directly with its parent, so all messages to/from an End Device pass via its parent.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
15 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

An End Device can be battery-powered and, when not transmitting or receiving, can sleep in order to conserve
power. The parent device buffers messages destined for a sleep-enabled End Device. The End Device collects
these messages once it is awake (also see Section 3.2.2 Section 3.2.2 below).

Note: End Devices cannot relay messages and cannot allow other nodes to connect to the network through
them. In other words, it implies that they cannot have children.

3.2.2 Network topology

The ZigBee PRO standard was designed to facilitate wireless networks with the Mesh topology.

A Mesh network consists of a Coordinator, Routers, and End Devices. The Coordinator is associated with a
set of Routers and End Devices - its children. A Router may then be associated with more Routers and End
Devices - its children. This can continue to a number of levels. The relationships between the nodes must obey
the following rules:

• The Coordinator and Routers can have children, and can therefore be parents.
• A Router can be both a child and a parent.
• End Devices cannot have children, and therefore cannot be parents. The communication rules for a Mesh

network are as follows:
• An End Device can only directly communicate with its parent (and with no other node).
• A Router can directly communicate with its children, with its own parent, and with any other Router or

Coordinator within radio range.
• The Coordinator can directly communicate with its children and with any Router within radio range.

The resulting structure is illustrated in the figure below.

End Device

Co-ordinator

RouterRouter

Router

End Device

End Device

Router
Router

End Device

End Device

End Device

Router

Figure 4. Mesh topology

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
16 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

In ZigBee PRO, the maximum depth (number of levels below the Coordinator) of a network is 15. The maximum
number of hops that a message can make in traveling between the source and destination nodes is 30 (twice
the maximum depth).

A routing node (Router or Coordinator) can communicate directly with other routing nodes within radio range.
This specific property distinguishes a Mesh network from a Tree network. This property enables very efficient
and flexible message propagation. It also implies that alternative routes can be found if a link fails or there is
congestion.

Note: An End Device, which is able to sleep, is unable to receive messages directly. A message destined for a
sleep-enabled End Device is always buffered in its parent node if the End Device is asleep when the message
arrives. Once the End Device is awake, it must ask or ‘poll’ the parent for messages. In the Mesh topology, a
'route discovery' feature is provided, which allows the network to find the best available route for a message.
Refer further details in Section 3.5.2, "Section 3.5.2".

Note: Message propagation is handled by the network layer software and is transparent to the application
programs running on the nodes.

3.2.3 Neighbor tables

A routing node (Router or Coordinator) holds information about its neighboring nodes. This information is stored
in a Neighbor table containing entries for the node’s immediate children, for its own parent and, in a Mesh
network, for all peer Routers with which the node has direct radio communication.

It is possible to define the maximum number of entries in a Neighbor table. If this parameter is set to a low
value, it will result in a ‘long, thin network’.

The structure and configuration of a Neighbor table are described in Appendix B.5.1.

3.2.4 Network addressing

In a ZigBee network, each node must have a unique identification. For this purpose, each node has two
addresses:

• IEEE (MAC) address: A 64-bit address, allocated by the IEEE, which uniquely identifies the device. No two
devices in the world can have the same IEEE address. It is often referred to as the MAC address. In a ZigBee
network, it is sometimes called the ‘extended’ address.

• Network address: A 16-bit address that identifies the node in the network and is local to that network.
Thus, two nodes in separate networks may have the same network address. It is sometimes called the ‘short’
address.

In ZigBee PRO, the network address of a node is dynamically assigned as a random 16-bit value by the
parent when the node first joins the network. This is known as stochastic addressing due to the randomness
of the address allocation. Although random, the parent ensures that the chosen address has not already been
assigned to one of its neighbors. In the unlikely event of the address already existing in the network beyond the
immediate neighborhood, a mechanism exists to automatically detect and resolve the conflict. The allocated
network address can be retained by the joining node, even if it later loses its parent and acquires a new parent.

The Coordinator always has the network address 0x0000.

While an application on a node may use IEEE/MAC addresses or network addresses to identify remote nodes,
the ZigBee PRO stack always uses network addresses for this purpose. To facilitate translation between IEEE/
MAC addresses and network addresses, an Address Map table may be maintained on the node, where each
table entry contains the pair of addresses for a remote node.

In the NXP implementation of ZigBee PRO, the IEEE/MAC addresses (of other network nodes) are stored in
a single place on a node, called the MAC Address table. This avoids the need to repeat the 64-bit IEEE/MAC

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
17 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

addresses in other tables, such as the Address Map table and Neighbor table, and therefore saves storage
space. Instead, a 16-bit index to the relevant entry in the MAC Address table is stored in the other tables.

It is also possible to define a 16-bit ‘group address’ which refers to a set of applications (or endpoints that may
be located across several nodes. For details, refer to Section 3.4.1, Multiple applications and endpoints).

Specifying a group address in a data transfer results in the data being broadcast to all nodes in the network
but, at the destinations, the data is only passed to those applications, which are covered by the group address.
Refer to Section 6.3, Managing group addresses for more details of using group addresses.

3.2.5 Network identity

A ZigBee network must be uniquely identifiable. This allows more than one ZigBee network to operate in close
proximity - nodes operating in the same space must be able to identify which network they belong to.

For this purpose, ZigBee uses two identifiers, as follows:

• PAN ID: A 16-bit value called the PAN ID (Personal Area Network Identifier) is used in inter-node
communications (implemented at the IEEE 802.15.4 level of the stack) to identify the relevant network. A
value for the PAN ID is selected at random by the Coordinator when the network is started. When other
nodes join the network, they learn the network’s PAN ID and use it in all subsequent communications with the
network.

It is possible that the PAN ID generated for a newly installed network clashes with the PAN ID of another
network already operating on the same radio channel, in the same neighborhood. In this case, ZigBee PRO
automatically resolves such a conflict by generating another random PAN ID for the new network. This
continues until a value is obtained that does not clash with the PAN ID of any other detectable network.

• Extended PAN ID: A 64-bit value called the Extended PAN ID (EPID) is used in forming the network and
subsequently modifying the network, if necessary. This identifier can be pre-set to a random value in the user
application that runs on the Coordinator. Alternatively, the identifier can be pre-set to zero. In this case, the
Coordinator adopts its own 64-bit IEEE/MAC address as the Extended PAN ID when the network starts. This
is a sure way of obtaining a globally unique value (see Section 3.2.4).

When a Router or End Device first tries to find a network to join, it uses the Extended PAN ID in either of
following ways:

• If an Extended PAN ID has been pre-set in the user application for the Router or End Device, the node joins
the network that has this Extended PAN ID (provided this network is detected).

• If there is no pre-set Extended PAN ID for the Router or End Device, the node joins the first network detected,
irrespective of the Extended PAN ID. The joining node then learns the Extended PAN ID of its network. It
later uses this identifier to rejoin the network if, for some reason, it loses contact with the network (the node is
orphaned).

For more information on joining a network, refer to Section 3.3.2.

Note: At the Application level, you only need to be concerned with the Extended PAN ID, as the allocation and
use of the PAN ID is transparent to the application.

3.3 Network creation
This section outlines the process of starting and forming a ZigBee PRO network:

• Section 3.3.1 describes how the Coordinator starts a network.
• Section 3.3.2 describes how a Router or End Device joins a network as part of the network formation process.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
18 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Note: The network formation actions described in this section are performed automatically by the ZigBee
stack. The actions required at the application level are described later in Section 6.1, "Forming and Joining a
Network".

3.3.1 Starting a Network (Coordinator)

The Coordinator is responsible for starting a network. It must be the first node to be started and, once powered
on, goes through the following network initialization steps:

3.3.1.1 Set EPID and Coordinator address

The Coordinator first sets the Extended PAN ID (EPID) for the network and the device’s own network address:

• Sets the EPID to the 64-bit value specified in the Coordinator’s application (if this value is zero, the EPID will
be set to the 64-bit IEEE/MAC address of the Coordinator device)

• Sets the 16-bit network address of the Coordinator to 0x0000

3.3.1.2 Select radio channel

The Coordinator then selects the radio channel in which the network will operate, within the chosen RF band.
The Coordinator performs an Energy Detection Scan in which it scans the RF band to find a quiet channel (the
scan can be programmed to ‘listen’ to specific channels). The channel with the least detected activity is chosen.

3.3.1.3 Set the PAN ID of the network

Once the radio channel has been selected, the Coordinator chooses a 16-bit PAN ID for the network. To do this,
it listens in the channel for traffic from other networks and identifies the PAN IDs of these networks (if any). To
avoid conflicts, the Coordinator assigns its own network a random PAN ID that is not in use by another network.

3.3.1.4 Receive join requests from other devices

The Coordinator is now ready to receive requests from other devices (Routers and End Devices) to wirelessly
connect to the network through it. For more information on joining a network, refer to Section 3.3.2.

3.3.2 Joining a network (Routers and End Devices)

Routers and End Devices can join an existing network already created by a Coordinator. The Coordinator
and Routers have the capability to allow other nodes to join the network through them. The join process is as
follows:

3.3.2.1 Search for network

The new node first scans the channels of the relevant RF band to find a network. Multiple networks may
operate, even in the same channel, and the selection of a network is the responsibility of the application (for
example, this decision could be based on a pre-defined Extended PAN ID).

3.3.2.2 Select parent

The node now selects a parent node within the chosen network by listening to network activity. The node may
be able to 'hear' multiple Routers and the Co- ordinator from the network. Given a choice of parents, the node
chooses the parent with the smallest depth in the network - that is, the parent closest to the Coordinator (which
is at depth zero).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
19 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

3.3.2.3 Request joining

The node sends a message to the desired parent, asking to join the network.

3.3.2.4 Receive response

The node now waits for a response from the potential parent, which determines whether the node is a permitted
device and whether the parent is currently allowing devices to join. To determine whether the joining node is
a permitted device, the parent consults the Trust Centre (if it is not the Trust Centre itseIf). If these criteria are
satisfied, the parent will then allow the node to join the network as its child. In its acceptance response to its
new child, the parent will include the 16-bit network address that it has randomly allocated to the child (see
Section 3.2.4).

If the potential parent is unable to accept the node as a child, a rejection response is sent. to the node, which
must then try another potential parent (or another network).

3.3.2.5 Learn network IDs

The new node learns the PAN ID and Extended PAN ID of the network, as well as the network address that it
has been assigned. It will need the PAN ID for communications with the network and will need the Extended
PAN ID if, at some point in the future, it needs to rejoin the network (it will also be able to re- use its network
address if it later rejoins the network).

A Router or Coordinator can be configured to have a time-period during which joins are allowed, controlled by
its ‘permit joining’ status. The join period may be initiated by a user action, such as pressing a button. An infinite
join period can also be set, so that child nodes can join the parent node at any time.

Note: When an orphaned node attempts to rejoin the network, the ‘permit joining’ status of a potential parent is
ignored. Thus, the node is able to rejoin the network through a parent on which ‘permit joining’ is disabled.

3.4 Application level concepts
This section describes some key concepts required at the application level.

3.4.1 Multiple applications and endpoints

A node may have several applications running on it - for example, a node in a smart home network may
incorporate an occupancy sensor and a light switch, each of which is an application. In fact, each application
implements a ZigBee device type (see Section 2.10). Access to application instances is provided through
endpoints, which act as communication ports for the applications.

In order to direct a message to the appropriate application instance on a node, the relevant endpoint must be
specified. Endpoints are numbered from 1 to 240.

Therefore, to communicate with a remote application instance in a ZigBee network, you need to supply the
address of the remote node together with the required endpoint number on the node.

Endpoint 255 is the broadcast endpoint number - the same data can be sent to all application instances on a
node by sending the message to this endpoint number.

3.4.2 Descriptors

An application may need to obtain information about the nodes of the network in which it runs, as described in
Section 3.4.6. For this, it uses information stored in descriptors in the nodes.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
20 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

There are three mandatory descriptors and two optional descriptors stored in a node. The mandatory
descriptors are the Node, Node Power and Simple descriptors, while the optional descriptors are called the
Complex and User descriptors

For each node, there is only one Node and Node Power descriptor, but there is a Simple descriptor for each
endpoint. There may also be Complex and User descriptors in the device.

The Node, Node Power and Simple descriptors are outlined below. For full details of the descriptors, refer to
Section 9.2.1.

3.4.2.1 Simple descriptor

The Simple descriptor for an application includes:

• The endpoint on which the application runs and communicates
• The ZigBee device type that the application implements
• The ZigBee clusters that the device type implements
• Whether there are corresponding Complex and User descriptors
• Lists of input and output clusters (see Section 3.4.1) that the application uses and provides, respectively

3.4.2.2 Node descriptor

The Node descriptor contains information on the capabilities of the node, including:

• Type (End Device, Router or Coordinator)
• Frequency band in use (868 MHz, 902 MHz or 2400 MHz)
• IEEE 802.15.4 MAC capabilities - that is, whether:

– the device can be a PAN Coordinator
– the node implements a Full-Function or Reduced-Function IEEE 802.15.4 device
– the device is mains powered
– the device is capable of using MAC security
– the receiver stays on during idle periods

• Manufacturer code
• Stack compliance revision (of the ZigBee PRO Core specification to which the stack complies - prior to

Revision 22/ZigBee2017, these bits were reserved and set to zero)
• Maximum buffer size (the largest data packet that can be sent by an application in one operation)

3.4.2.3 Node power descriptor

The Node Power descriptor contains information on how the node is powered:

• Power mode - whether the device receiver is on all the time, or wakes up periodically as determined by the
network, or only when an application requires it (for example, during button press).

• Available power sources - indicates whether the mains supply, or rechargeable or disposable batteries (or any
combination) can be used to power the device.

• Current power sources - indicates which power source (mains supply, or rechargeable or disposable batteries)
is currently being used to power the device.

• Current power source level - indicates the level of charge of the current power source.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
21 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

3.4.3 Application profiles

One of the aims of ZigBee 3.0 is to unify the market-specific ZigBee application profiles that collect together
related device types. Application profile identifiers are still needed in ZigBee 3.0 (this ensures backward
compatibility with earlier ZigBee versions) but there has been some consolidation of the identifiers - for
example, ZigBee Light Link and Home Automation are both covered by the application profile ID 0x0104, which
now corresponds to the ZigBee Lighting and Occupancy (ZLO) devices. Profile matching rules exist and are
detailed in the ZigBee 3.0 specification.

3.4.4 Device types

To ensure the interoperability of ZigBee nodes from different manufacturers, the ZigBee Alliance has defined
a set of standard device types. A device type (for example, Dimmable Light) is a software entity which defines
the functionality of a device. This functionality is itself defined by the clusters included in the device type, where
each cluster corresponds to a specific functional aspect (for example, Level Control) of the device. For more
information on clusters, refer to Section 3.4.5.

A device is an instance of a device type and is implemented by an application that runs on an endpoint.
A device type usually supports both mandatory and optional clusters, so a device can be customized in
terms of the optional clusters used. The device type implemented by an application is specified in the
application’s Simple Descriptor (see Section 3.4.2.1). A node may implement more than one device type, each
corresponding to a device application that runs on its own endpoint.

Every ZigBee 3.0 node must employ the ZigBee Base Device, which provides a framework for using ZigBee
device types and handles fundamental operations such as commissioning (this device does not need an
endpoint).

The NXP implementations of the ZigBee device types and ZigBee Base Device are described in the ZigBee
Devices User Guide (JNUG3131).

3.4.5 Clusters and attributes

A data entity (for example, temperature measurement) handled by a ZigBee endpoint is referred to as an
attribute. The application may communicate via a set of attributes - for example, a thermostat application may
have attributes for temperature, minimum temperature, maximum temperature and tolerance.

ZigBee applications use the concept of a "cluster" for communicating attribute values. A cluster consists of a set
of related attributes together with a set of commands to interact with the attributes - for example, commands for
reading the attribute values.

A cluster corresponds to a specific piece of functionality for a device application. The total functionality for the
application is determined by the ZigBee device type that it implements and the clusters that the device type
uses (see Section 3.4.4). Thus, clusters are the functional building blocks of devices.

A cluster has two aspects, which are respectively concerned with receiving and sending commands (one or
both aspects may be used by a ZigBee application):

• Input Cluster or Server Cluster: This side of a cluster is used to store attributes and receive commands to
manipulate the stored attributes (to which the cluster may return responses) - for example, an input cluster
would store a temperature measurement and associated attributes, and respond to commands which request
readings of these attributes.

• Output Cluster or Client Cluster: This side of a cluster is used to manipulate attributes in the corresponding
input cluster by sending commands to it (and receiving the responses). Normally, these are write commands
to set attribute values and read commands to obtain attribute values (the read values being returned in
responses).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
22 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

The Output/Client and Input/Server sides of a cluster are illustrated below in Figure 5.

Application A

Output Cluster
(Client)

Application B

Input Cluster
(Server)

Commands sent from client to server

Responses returned from server to client
(may contain attribute values read) Attributes written

or read, according
to command

Figure 5. Input (Server) and Output (Client) Clusters

The input clusters and output clusters communicated via an endpoint are listed (separately) in the endpoint’s
Simple descriptor (see Section 3.4.2.1).

For consistency and interoperability, the ZigBee Alliance have defined a number of standard clusters for
different functional areas. These are collected together in the ZigBee Cluster Library (ZCL). Thus, developers
can use standard clusters from the ZCL in their device applications. The ZCL is fully detailed in the ZigBee
Cluster Library Specification (075123) from the ZigBee Alliance. The NXP implementation of these clusters is
detailed in the ZigBee Cluster Library User Guide (JNUG3132).

A Default cluster (with ID of 0xFFFF) is also available. If the Default cluster is present on an endpoint and a
message is received which is destined for a cluster that is not in the endpoint's list of supported input clusters,
this message will still be passed to the application (provided it comes from a defined application profile). If it is
required, the Default cluster must be explicitly added to the endpoint (see Section 13.4.3).

3.4.6 Discovery

The ZigBee specification provides the facility for devices to find out about the capabilities of other nodes on
a network, such as their addresses, which types of applications are running on them, their power source and
sleep behavior. This information is stored in descriptors (see Section 3.4.6) on each node, and is used by the
enquiring node to adapt its behavior to the requirements of the network.

Discovery is typically used when a node is being introduced into a user-configured network, such as a domestic
security or lighting control system. It may require the user to press a button or similar to begin the process of
integration of the device into the network. The first task is to find out if there are any appropriate devices with
which the new node can communicate.

3.4.6.1 Device discovery

Device discovery returns information about the addresses of a network node. The retrieved information can
be the IEEE/MAC address of the node with a given network address, or the network address of a node with a
given IEEE/MAC address. If the node being interrogated is a Router or Coordinator, it may optionally supply
the addresses of all the devices that are associated with it, as well as its own address. In this way, it is possible
to discover all the devices on a network by requesting this information from the Coordinator (network address
0x0000) and then using the list of addresses corresponding to the children of the Coordinator to launch other
queries about their child nodes.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
23 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

3.4.6.2 Service discovery

Service discovery allows a node to request information from a remote node about the remote node's
capabilities. This information is stored in a number of descriptors (see Section 3.4.2) on the remote node. It
includes the following:

• The device type and capabilities of the node.
• The power characteristics of the node.
• Information about each application running on the node.
• Optional information such as serial numbers.
• Other user-defined information - for example, easily understandable names such as ‘MtgRoomLight’.

Requests for these descriptors are made by a device during the discovery process that is typically part of the
device's configuration and integration into a ZigBee network.

3.4.7 ZigBee Device Objects (ZDO)

A special application, common to all ZigBee devices, is provided to manage the various processes that have
been described. This application is the ZigBee Device Objects or ZDO. It resides in the Application layer of
a node, and can communicate with remote nodes via endpoint 0 using the ZigBee Device Profile (ZDP) and
associated clusters. It has the following roles:

• Defines the type of network device: Coordinator, Router or End Device
• initializes the node to allow applications to be run
• Performs the device discovery and service discovery processes
• Implements the processes needed to allow a Coordinator to create a network, and Routers and End Devices

to join and leave a network
• Initiates and responds to binding requests (see Section 3.6.2)
• Provides security services which allow secure relationships to be established between applications
• Allows remote nodes to retrieve information from the node, such as Routing and Binding tables, and to

perform remote management of the node, such as instructing it to leave the network

The ZDO uses services within the stack to implement these roles and provides a means of allowing user
applications to access stack services.

3.5 Network routing
The basic operation of a network is to transfer data from one node to another. The data is sourced from an
input (possibly a switch or a sensor) on the originating node, and is communicated to another node which can
interpret and use the data.

In the simplest data communication, the data is transmitted directly from the source node to the destination
node. However, if the two nodes are far apart or in a difficult environment, direct communication may not be
possible. In this case, it is necessary to send the data to another node within radio range, which then passes
it on to another node, and so on until the desired destination node is reached - that is, to use one or more
intermediate nodes as stepping stones. The process of receiving data destined for another node and passing it
on is known as routing.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
24 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Figure 6. Message routing

Routing allows the range of a network to be extended beyond the distances supported by direct radio
communication. Remote devices can join the network by connecting to a Router.

Note: Application programs in intermediate nodes are not aware of the relayed message or its contents - the
relaying mechanism is handled by the ZigBee stack.

3.5.1 Message addressing and propagation

If a message sent from one node to another needs to pass through one or more intermediate nodes to reach its
final destination (up to 30 such hops are allowed), the message carries two destination addresses:

• Address of the final destination.
• Address of the node which is the next "hop".

ZigBee PRO is designed for Mesh networks (see Section 3.2.2) in which the message propagation path (the
route) depends on whether the target node is in radio range:

• If the target node is in range, only the "final destination" address is used.
• If the target node is not in range, the "next hop" address is that of the first node in the route to the final

destination.

The “next hop” address is determined using information stored in a Routing table on the routing node (Router
or Coordinator). An entry of this table contains information for a remote node, including the network addresses
of the remote node and of the next routing node in the route to the remote node. Thus, when a message is
received by a routing node, it looks for the destination address in its Routing table and extracts “next hop”
address from this table to insert into the message. The message is then passed on and propagation continues
in this way until the target node is reached.

Note: If the message originates from an End Device, the message is always first passed to the source node’s
parent before being passed on.

3.5.2 Route discovery

The ZigBee stack network layer supports a ‘route discovery’ facility which finds the best available route to the
destination, when sending a message. A message is normally routed along an already discovered mesh route,
if one exists. Otherwise, the routing node (Router or the Coordinator) involved in sending the message initiates
a route discovery. Once complete, the message is sent along the calculated route.

The mechanism for route discovery between two End Devices has the following steps:

1. A route discovery broadcast is sent by the parent of the source End Device, and contains the destination
End Device’s network address.

2. All routing nodes eventually receive the broadcast, one of which is the parent of the destination End Device.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
25 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

3. The parent of the destination node sends back a reply addressed to the parent of the source node.
4. As the reply travels back through the network, the hop count and a signal quality measure for each hop

are recorded. Each routing node in the path can build a Routing table entry containing the best path to the
destination End Device.

The best path is usually the one with the least number of hops. However, if a hop on the most direct route has a
poor signal quality, a greater chance that retries would be needed. In such cases, a route with more hops might
be chosen.

1. Eventually each routing node in the path has a Routing table entry and the route from source to destination
End Device is established. Note that the corresponding route from destination to source is not known - the
route discovered is unidirectional.

A source Router implements route discovery in a similar way to the above except the Router broadcasts its own
route discovery message (without needing its parent to do this). Similarly, the Coordinator broadcasts its own
route discovery messages.

Note:

Message routing is performed automatically by the ZigBee stack and is transparent to the user application. If
required, route discovery is also automatic and transparent to the application.

3.5.3 ‘Many-to-one’ routing

A common scenario in a wireless network is the need for most network nodes to communicate with a single
node that performs some centralized function, for example, a gateway. This node is often referred to as a
concentrator.

In order to establish communication with the concentrator, each remote node may initiate a ‘route discovery’,
resulting in a corresponding entry in the Routing table of each routing node along the way. If most network
nodes need to communicate with the concentrator, many such route discoveries may be initiated. Where
the resulting routes have a common leg, the relevant Routing table entries will not be duplicated but shared.
However, a large number of simultaneous route discoveries may require significant memory space in the nodes
near the concentrator for the temporary storage of route discovery information, and possibly result in memory
overflow and traffic congestion.

A more efficient method of establishing routes to a concentrator is for the concentrator to initiate a ‘many-to-one’
route discovery for routes from all other network nodes to itself. To do this, the concentrator broadcasts a route
discovery request and the Routing tables are updated as the broadcast propagates through the network. Since
no responses are generated, the temporary storage of route discovery information is not required and network
traffic congestion is minimized.

Many-to-one route discovery is illustrated in the figure below.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
26 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

"Concentrator" Node

Concentrator
broadcasts a route
discovery request for
routes back to itself

Figure 7. 'Many to one' routing

In order to avoid the storage of return routes (from the concentrator) in the Routing tables of intermediate
nodes, the technique of source routing is used - the outward route taken by a message to the concentrator is
remembered by the concentrator and embedded in the response message. In this case, the response message
must carry up to 30 addresses of the nodes along the return route (maximum number of hops allowed is 30).

3.6 Network communications
This section considers the processes that are needed to allow a network of devices to exchange information
and perform useful functions. In order to communicate with each other, two nodes must be compatible in that
one node can produce data which the other node can accept and interpret in a meaningful way. For example,
a temperature sensor node produces a temperature measurement that a heating controller node can use to
control a central heating system.

When a new node joins a network, it must find compatible nodes with which it is able to communicate - this
process is facilitated by the Service Discovery mechanism. It must then choose which of the compatible
nodes it will communicate with. A method of pairing nodes for easy communication is provided by the binding
mechanism.

Note: While you should always use Service Discovery to find compatible nodes, binding is an optional method
for pairing compatible nodes.

Service Discovery and binding are covered in the sub-sections below.

3.6.1 Service discovery

A device joining a network must be able to find other devices in the network that can use the information it
provides, or that can generate the information needed by the device to perform its own function. A node can
use Service Discovery to find nodes with which it can communicate. Service Discovery is introduced in Section
3.4.6.

The node requests the required services from other nodes by means of a broadcast message that propagates
throughout the network. Any node that has the requested services then unicasts a response back to the
requesting node. This means that the requesting node may receive more than one response.

A response includes the network address of the remote node that contains the requested services. The node
stores this address locally and the application can then use the address for all future communications to the
remote node. This is referred to as direct addressing.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
27 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Alternatively, rather than using direct addressing in their communications, two nodes can communicate through
the binding mechanism, described in Section 3.6.2below.

3.6.2 Binding

Once two nodes have been found to be compatible through Service Discovery (see Section 3.6.1), they may be
paired for communication purposes. For example, a light- switch may be paired with a particular light, and we
must ensure that this light-switch only ever switches the light that it is intended to control. An easy way to pair
nodes for communication is provided by the binding mechanism.

Binding allows nodes to be paired in such a way that a certain type of output data from one node is
automatically routed to the paired node, without the need to specify the destination address and endpoint every
time. The two nodes must first be bound together using the address and relevant endpoint number for each
node - these can be obtained through Service Discovery, described in Section 3.6.1. A binding has a source
node and a destination node, relating to the direction in which data is sent between the nodes (from source to
destination). The details of a binding are stored as an entry in a binding table, normally held on the source node
of the binding or sometimes on another nominated node.

In order to establish a binding, it must be requested in either of the following ways:

• Binding request is submitted to the source node for the binding by either the source node itself or a remote
node (not one of the nodes to be bound).

• Binding requests are submitted to the Coordinator by the source and destination nodes for the binding (for
example, by pressing a button on each node to generate a binding request). The two binding requests must
be received within a certain timeout period.

During the binding process, the Binding table for the source node is updated or, if necessary, created.

Binding occurs at the application level using clusters (described in Section 3.4.5). In order for two applications to
be bound, they must support the same cluster.

The binding between two applications is specified by:

• The node address and endpoint number of the source of the binding (for example, a light-switch).
• The node address and endpoint number of the destination of the binding (for example, the load controller for a

light).
• The cluster ID for the binding.

The following types of binding can be achieved:

• One-to-one: This is a simple binding in which an endpoint is bound to one (and only one) other endpoint,
requiring a single Binding table entry.

• One-to-many: This is a binding in which a source endpoint is bound to more than one destination endpoint.
The binding is achieved by having multiple Binding table entries for the same source endpoint.

• Many-to-one: This is a binding in which more than one source endpoint is bound to a single destination
endpoint. The binding is achieved by multiple nodes having one-to-one bindings for the same destination
endpoint.

These are illustrated in the figure below.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
28 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Figure 8. Types of binding

As an example of these bindings, consider a switch and load controller for lighting:

• In the one-to-one case, a single switch controls a single light
• In the one-to-many case, a single switch controls several lights
• In the many-to-one case, several switches control a single light, such as a light on a staircase, where there

are switches at the top and bottom of the stairs, either of which can be used to switch on the light

It is also possible to envisage many-to-many bindings where in the last scenario there are several lights on the
staircase, all of which are controlled by either switch.

The way bindings are configured depends on the type of network (described in Section2.6), as follows:

• Pre-configured system: Bindings are factory-configured and stored in the application image.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
29 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• Self-configuring system: Bindings are automatically created during network installation using discovery
software that finds compatible nodes/clusters.

• Custom system: Bindings are created manually by the system integrator or installation technician, who may
use a graphical software tool to draw binding lines between clusters on nodes.

3.7 Detailed architecture
This section elaborates on the simplified software architecture presented in "Section 3.1". The detailed
architecture is illustrated in the figure below.

Figure 9. Detailed software architecture

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
30 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

3.7.1 Software levels

The preceding figure Figure 9 shows the architecture diagram (from top to bottom).

3.7.1.1 Application (APL) Layer

This includes:

• Applications: Up to 240 application instances can be supported on a single ZigBee node. Each application
instance communicates via an endpoint, where endpoints are numbered between 1 and 240 (note that
endpoint 0 is reserved for the ZDO of the node - see below).

• Application Framework (AF): The AF facilitates interaction between the applications and the APS layer (see
below) through an interface known as a Service Access Point or SAP.

• ZigBee Device Objects (ZDO): The ZDO represents the ZigBee node type of the device (Coordinator,
Router, or End Device) and has a number of communication roles. The ZDO communicates via endpoint 0.
For more information, refer to "Section 3.4.7".

• ZigBee Base Device: This device is required for all ZigBee 3.0 nodes and deals with essential tasks for the
whole node, such as commissioning. It does not occupy an endpoint.

• ZigBee Cluster Library (ZCL): The ZCL provides the standard ZigBee clusters used by the device
applications that run on the endpoints.

• Application Support sub-layer (APS): The APS layer is responsible for:
– Communicating with the relevant application - for example, when a message arrives to illuminate an LED,

the APS layer relays this instruction to the responsible application using the endpoint information in the
message.

– Maintaining binding tables (see "Section 3.6.2") and sending messages between bound nodes.
– Providing communication with the Trust Centre to obtain authorization.

The APS layer has an associated database, called the APS Information Base (AIB). This contains attributes that
mainly relate to system security.

3.7.1.2 Network (NWK) layer

The NWK layer handles network addressing and routing by invoking actions in the MAC layer. It provides
services for:

• Starting the network
• Assigning network addresses
• Adding devices to and removing them from the network
• Routing messages to their intended destinations
• Applying security to outgoing messages
• Implementing route discovery and storing Routing table information

The NWK layer has an associated database, called the NWK Information Base (NIB). This contains attributes
required in the management of the NWK layer.

3.7.1.3 Physical/Data link layers

This consists of the IEEE 802.15.4 PHY and MAC layers, described in Section 3.1,"Section 3.1".

Note: The Security Service Provider (not shown in the figure) spans the APS and NWK layers, providing
security services - for example, security key management, datastream encryption and decryption. It may use
hardware functions provided in the node to perform the encode and decode operations efficiently.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
31 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

4 ZigBee Stack Software

This chapter introduces the NXP ZigBee 3.0 stack software.

4.1 Software overview
The NXP ZigBee 3.0 software provides all components of the ZigBee stack detailed in Section 2.7, Section 3.7.
In addition, it includes the JN51xx Core Utilities (JCU). The basic architecture of this software, in relation to the
wireless network application, is illustrated in the figure below.

JCU

Low-Power

Application

Integrated

Peripheral

API

NVM

P UDM

D BG

ZigBee 3.0 Stack

Figure 10. Overview of NXP ZigBee software architecture

The NXP ZigBee 3.0 software includes Application Programming Interfaces (APIs) to facilitate simplified
application development for wireless networks. These APIs consist of C functions that can be incorporated
directly in application code.

Two general categories of API are supplied:

• ZigBee PRO APIs - see Section 4.1.1
• JCU APIs - see Section 4.1.2

The above figure also shows the Integrated Peripherals API that can be used to interact with the on-chip
hardware peripherals of the device. This API is described in the MCUXpresso SDK API Reference Manual
((MCUXSDKJN5189APIRM or MCUXSDKK32W041APIRM).

In addition, the ZigBee Cluster Library (ZCL) provides APIs for the individual clusters, as well as more general
ZCL functions. The ZCL is located within the stack block.

All the above APIs are supplied in the ZigBee 3.0 Software Developer’s Kit (SDK). For more details on the SDK,
refer to Section 5.1, Section 5.1).

4.1.1 ZigBee PRO APIs

The ZigBee PRO APIs are concerned with network-specific operations and easy interaction with the ZigBee
PRO stack from the application code. These C-function APIs are supplied in the ZigBee 3.0 SDK (see Section
5.1, Section 5.1).
JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
32 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

There are three ZigBee PRO APIs:

• ZigBee Device Objects (ZDO) API: Concerned with the management of the local device (for example,
introducing the device into a network)

• ZigBee Device Profile (ZDP) API: Concerned with the management of remote devices (for example, device
discovery, service discovery, binding)

• Application Framework (AF) API: Concerned with creating data frames for transmission and modifying
device descriptors

The locations of these APIs, as well as the JCU and ZCL APIs, are illustrated in the figure below.

Application layer

Application Support sub-layer (APS)

ZigBee
Device
Objects
(ZDO)

Application Framework (AF)

ZDO APIDevice
Application

JCU

JCU APIs

ZCL APIs AF APIZDP API

Figure 11. Locations of ZigBee 3.0 APIs

Note: The C functions of all the ZigBee PRO APIs are fully detailed in Part II: Reference Information of this
manual.

4.1.2 JCU APIs

The Core Utilities (JCU) provide an easy-to-use interface to simplify the programming of a range of non-
network-specific operations. These utilities/modules each have a C function API, which allows a module to be
used from a user application. The JCU is supplied in the ZigBee 3.0 SDK.

The JCU modules are outlined below:

• Non-Volatile Memory Manager (NVM): This module handles the storage of context and application data in
Non-Volatile Memory (NVM), and the retrieval of this data. It provides a mechanism by which the device can
resume operation without loss of continuity following a power loss.

• Low-Power: This module manages the transitions of the device into and out of low-power modes, such as
sleep mode.

• Protocol Data Unit Manager (PDUM): This module is concerned with managing memory, as well as inserting
data into messages to be transmitted and extracting data from messages that have been received.

Note: The JCU modules are fully described in the DK6 Core Utilities User Guide (JNUG3133).

4.2 Summary of API functionality
This section summarizes the roles of the NXP ZigBee PRO and JCU APIs in an application. The table below
indicates the APIs needed for the different functionality that might be required in your code:

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
33 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Functionality ZigBee PRO APIs JCU APIs

Essential functionality, including
network formation and management

ZDO API: Network formation and
local network management ZDP API:
Network discovery and remote network
management

-

Basic data transfer AF API: Sending and receiving data
messages

PDUM API: Assembling and
disassembling data messages

Binding endpoints for data transfers
between them

ZDO API: Basic binding ZDP API:
Manipulation of remote Binding tables

-

Low-power modes (Sleep and Doze) - Low-Power API: Managing low-power
modes

Preserving context data (for example,
for resuming operation after sleep
without memory held)

- NVM API: Saving and restoring context
data

Network security ZDO API: Managing security -

Table 4. Use of ZigBee PRO and JCU APIs

Important points to note:

• ZigBee PRO API function names are prefixed with ‘ZPS’ (for ‘ZigBee PRO Stack’ function). The function
names also incorporate ‘Apl’ (for ‘Application’ function) and the acronym for the API to which the function
belongs:
– ZDO function names include ‘Zdo’ (for example, ZPS_eAplZdoPoll()).
– ZDP function names include ‘Zdp’ (for example, eAplZdpActiveEpRequest()).
– AF function names include ‘Af’ (for example, ZPS_eAplAfUnicastDataReq()).

• JCU API function names are prefixed with the acronym for the JCU module to which the function belongs:
– ‘NVM’ for NVM functions.
– ‘PWR’ for Low-Power functions.
– ‘PDUM’ for PDUM functions.

A similar naming convention is used in structures and enumerations.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
34 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

5 Application development overview

This chapter provides an overview of the main phases in developing a ZigBee 3.0 wireless network product. It
is important that you refer to this chapter, particularly Section 5.3, Section 5.3, before and during your product
development.

You should develop an application program for each node type in your product - Coordinator, Router, and End
Device. If a node type has variants, you might need to develop a separate application for each variant. For
example, an End Device, which is a Light Sensor and an End Device, which is an On/Off Light Switch in a
lighting system.

5.1 Development environment and resources
This User Guide supports the NXP ZigBee 3.0 Software Developer’s Kits (SDKs) for the JN518x and K32W041/
K32W061/K32W1/MCXW71/MCXW72 devices.

5.1.1 Development platform

5.1.1.1 MCUXpresso

NXP MCUXpresso provides an Eclipse-based platform for developing applications for the JN518x and
K32W041/K32W061/K32W1/MCXW71/MCXW72 devices. It can be obtained from https://community.nxp.
com/community/mcuxpresso/mcuxpresso-ide and must be a registered edition. The required version of
MCUXpresso is indicated in the Release Notes for the ZigBee 3.0 SDK.

For installation and operational instructions, first refer to the MCUXpresso Installation and User Guide. More
detailed operational instructions are provided in the MCUXpresso User Guide, available from the above
website.

5.1.2 ZigBee 3.0 SDK

The ZigBee 3.0 SDK provides the stack and API software resources needed to develop ZigBee 3.0 applications
for the JN518x and K32W041/K32W061/K32W1/MCXW71/MCXW72 devices and includes:

• ZigBee PRO and IEEE 802.15.4 stack software
• ZigBee PRO APIs
• ZigBee Base Device Behavior (BDB) APIs
• ZigBee Cluster Library (ZCL) APIs
• Connectivity Framework APIs
• ZPS Configuration Editor
• Integrated Peripherals APIs and Board APIs

NXP-specific tools have been devised for MCUXpresso, including the ZPS Configuration Editor, which is
provided as an Eclipse plug-in. This tool is used to set network parameters and is described in Chapter 13,
Section 13.

This ZigBee 3.0 SDK contains device-specific plug-ins for the MCUXpresso platform.

MCUXpresso must be installed before the ZigBee 3.0 SDK. Refer to Section 5.1.1, Section 5.1.1 for information
on this toolchain.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
35 / 322

https://community.nxp.com/community/mcuxpresso/mcuxpresso-ide
https://community.nxp.com/community/mcuxpresso/mcuxpresso-ide
https://community.nxp.com/community/mcuxpresso/mcuxpresso-ide
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

5.2 Zigbee application support resources
While developing your ZigBee 3.0 application for a JN518x or K32W041/K32W061/K32W1/MCXW71/MCXW72
device, you should also consult the User Guides along with JN-UG-3130:

• ZigBee Devices User Guide (JNUG3131)
• ZigBee Cluster Library User Guide (JNUG3132)
• Connectivity Framework Reference Manual

Refer to the following NXP Application Notes for further support in the development of ZigBee 3.0 applications
for the JN518x or K32W041/K32W061/K32W1/MCXW71/MCXW72 devices:

• ZigBee 3.0 Base Device Template (JN-AN-1217)
• ZigBee 3.0 Light Bulbs (JN-AN-1244)
• ZigBee 3.0 Controller and Switch (JN-AN-1245)
• ZigBee 3.0 Sensors (JN-AN-1246)
• ZigBee 3.0 IoT Control Bridge (JN-AN-1247)

Note: The relevant software and documentation resources can be obtained via the Wireless Connectivity area
of the NXP website (for the web address, see Section 1.5.

5.3 Development phases
The main phases of development of a ZigBee 3.0 application are as follows and are conducted in MCUXpresso:

1. Network Configuration: Configure the network parameters for the nodes using the ZPS Configuration
Editor (refer to Chapter 12, Section 12 and Chapter 13, Section 13).

2. Application Code Development: Develop the application code for your nodes using the ZigBee PRO,
ZCL, BDB, and JCU APIs.

3. Application Build: Build the application binaries for your nodes.
4. Node Programming: Load the application binaries into Flash memory on your nodes.

Note: As a starting point for your application development, you may wish to use one or more of the Application
Notes listed in Section 5.2, "Section 5.2".

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
36 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

6 Application coding with ZigBee PRO APIs

This chapter outlines how to use functions of the NXP ZigBee PRO APIs to perform common operations
required in a ZigBee PRO wireless network application.

The operations covered in this chapter are divided into the following areas:

• Forming a ZigBee PRO wireless network (Section 6.1)
• Discovering the properties of the formed network (Section 6.2)
• Managing group addresses (Section 6.3)
• Binding nodes for easy communication between them (Section 6.4)
• Transferring data between nodes (Section 6.5)
• Leaving and rejoining the network (Section 6.6)
• Return codes and extended error handling (.Section 6.7)
• Implementing ZigBee security (Section 6.8)
• Using support software features - message queues and timers (Section 6.9)
• Using advanced features (Section 6.10)

Many of the functions referenced in this chapter are non-blocking functions that submit a request to the relevant
node(s) of the network and then return - these functions have Request or Req in their names. The recipient of
the request normally replies by sending a response to the node that initiated the request. Once received, this
response message can be collected using the function ZQ_bZQueueReceive() - see Section 6.9.1.1.

The ZigBee PRO API functions mentioned in this chapter are fully detailed in Part II Reference Information
(chapter 7 to chapter 12). See Section 1.1.

Note: Further assistance in developing your own ZigBee 3.0 applications is provided in a range of NXP
Application Notes (see Section 5.2, Section 5.2).

The main stages of the life-cycle of a wireless network are illustrated in the figure below. These stages
incorporate many of the high-level operations described in this chapter.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
37 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Co-ordinator

Network Other Node

Start stack

Discover other nodes
(node addresses
and properties)

Bind with other nodes
(if required)

Send and
receive data

Search for and join network

Leave network

Start stack and
initialise network

This is the wireless
network created by the
Co-ordinator.

Initially, it consists only
of the Co-ordinator,
which other nodes can
then join.

As Router nodes join,
the network can expand
since new nodes may
join the Routers instead
of the Co-ordinator.

Figure 12. Wireless Network Life-cycle

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
38 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

6.1 Forming and joining a network
This section describes how to form a wireless network by first starting the Coordinator and then starting the
other nodes, which join the network initiated by the Coordinator.

Note: In order to start any network node, certain configuration values must have been pre-set for the

application. This configuration is performed using the steps described in Chapter 13, ZPS Configuration Editor.

At initialization, the same function calls are needed for all node types. However, once started, the stack
performs initialization tasks according to the specific node type, as described in Section 6.1.1 and Section 6.1.2.
These function calls are listed below, in the required order:

1. PDUM_vInit() to initialize the JCU Protocol Data Unit Manager (PDUM).
2. PWR_Init() to initialize the Low-Power module in order to facilitate low-power modes such as sleep and

doze.
3. NvModuleInit() to initialize the JCU Non-Volatile Memory Manager (NVM) in order to save context and

application data for retrieval after a power break.
4. eZCL_initialise() to initialize the ZigBee Cluster Library (ZCL).
5. eZCL_Register() for a custom device type, or the equivalent registration function for a standard ZigBee

device type, to register an endpoint for the application.
6. zps_eAplAfInit() to initialize the Application Framework.
7. BDB_vInit() to initialize the ZigBee Base Device.
8. zps_eAplZdoStartStack() to start the ZigBee PRO stack.

Note:

• The ZigBee PRO stack can later be reset to its default state (deleting context data except NWK frame
counters) using the zps_vDefaultStack() function.

• The IEEE 802.15.4 MAC capabilities of a Router or End Device can be configured by the application using
zps_vAplAfSetMacCapability() function.

6.1.1 Starting the Coordinator

The Coordinator must be the first node to be started. This node is pre-configured using the ZPS Configuration
Editor. The functions that must be called in the Coordinator application to initialize the node are those listed at
the start of this (Section 6.1).

Once the stack has been started using zps_eAplZdoStartStack(), the Coordinator works through the following
process to establish a network:

6.1.1.1 Setting the radio channel for the network

The choice of 2.4-GHz band channel for the network is pre-configured via the the ZPS Configuration Editor (see
Section 13.4.3). It is either a fixed channel in the range 11-26 or a set of channels from which the best channel
is selected by the Coordinator. In the latter case, the Coordinator performs an energy scan of the possible
channels and chooses the quietest channel.

6.1.1.2 Setting the Extended PAN ID for the network

The 64-bit Extended PAN ID (EPID) for the network is obtained as follows:

• A pre-configured value may be set in the advanced device parameter APS Use Extended PAN ID in the ZPS
Configuration Editor (see Section 13.4.4).

• If the pre-set value is zero, the Coordinator uses its own IEEE/MAC address as the EPID.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
39 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Note: The application might override the EPID value set by the ZPS Configuration Editor by calling
zps_eAplAibSetApsUseExtendedPanId() before calling zps_eAplZdoStartStack().

6.1.1.3 Accepting join requests from other devices (if enabled)

The Coordinator may now allow other devices (Routers and End Devices) to join the network as its children,
enabling the network to grow. A maximum number of (direct) children of the Coordinator is pre-set via the
advanced network parameters Active Neighbor Table Size and Child Table Size in the ZPS Configuration Editor
(see Section 13.4.4, Section 13.4.4), beyond which the Coordinator does not accept any further join requests
from prospective children.

Note:

The initial ‘permit joining’ status is pre-set via the Coordinator parameter Permit Joining Time in the ZPS
Configuration Editor.

If this is initially disabled, the Coordinator may not accept children until joining has been enabled using
zps_eAplZdoPermitJoining().

However, the ‘permit joining’ status is ignored during a join in which the pre-set EPID on the joining device is
non-zero and during any rejoin (see Section 6.6.2). The above function can be used at any time to allow joinings
for a limited time-period or indefinitely, and can also be used to disable joinings.

Once the Coordinator (and therefore network) has started, the stack event zps_EVENT_NWK_STARTED is
generated on the device. If the Coordinator fails to start, the stack event zps_EVENT_NWK_FAILED_TO_START
is generated.

When a node joins the Coordinator, the stack event zps_EVENT_NWK_NEW_NODE_HAS_JOINED is generated
on the Coordinator.

6.1.2 Starting Routers and End Devices

A Router or End Device is pre-configured using the ZPS Configuration Editor. The functions that must be called
in a Router or End Device application to initialize the node are listed at the beginning of this section (Section
6.1, Section 6.1).

Note: The start-up and join process described in this section is for a first-time join (cold start) only and not for a
rejoin (which is described in Section 6.6.2).

Once the stack has been started using zps_eAplZdoStartStack(), a Router or End Device works through the
following process to join a network:

1. Searches for a network to join
2. Selects a network to join
3. Submits a join request to network
4. Records the network's EPID for application use
5. Router accepts join requests from other devices (if enabled)

These processes are described in detail in the following sections.

6.1.2.1 Searches for a network to join

As part of the zps_eAplZdoStartStack() function call, the device searches for networks by listening for
beacons from Routers and Coordinators of ZigBee PRO networks in the neighborhood. The radio channel for
this search is pre-configured via the ZPS Configuration Editor (see Section 13.4.3). The configuration is done in
the same way as for the Coordinator as either a fixed channel (in the range 11-26) or a set of channels to scan.
Thus, the device listens for beacons in the relevant channel(s).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
40 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

A beacon filter can be optionally introduced using the function zps_bAppAddBeaconFilter() to allow only
beacons from networks of interest to be considered - beacons can be filtered on the basis of PAN ID, Extended
PAN ID, LQI value, and device joining status/capacity (see Appendix B.4, Section 15.4).

On completion of this search, the subsequent actions depend on the pre-set value of the 64-bit Extended PAN
ID (EPID), which is set via the advanced device parameter APS Use Extended PAN ID in the ZPS Configuration
Editor (see Section 13.4.4):

• If the pre-set EPID value is non-zero, this value identifies a specific network to join (assuming the Coordinator
has been pre-set with the same EPID - see Section 6.1.1). Provided that a network with this EPID has been
discovered in the search, the device attempts to join this network as described in Section 6.1.2.3(therefore
bypassing the steps listed in Section 6.1.2.2).

• If the pre-set EPID value is zero, the results of the search are reported in a
zps_EVENT_NWK_DISCOVERY_COMPLETE stack event, which contains details of the networks discovered
(see Section 6.2.1). The device must then select a network to join, as described in the following section.

6.1.2.2 Selects a network to join

On the basis of the results in zps_EVENT_NWK_DISCOVERY_COMPLETE, the application must select a
network which the device will attempt to join. The search results contain a recommended network, selected as
the first ZigBee PRO network detected that allows nodes to join. The application is, however, free to choose
another network, where this choice may be based on LQI value (detected signal strength).

6.1.2.3 Submits a join request to network

Once the device identifies a network to join, a request to join the network must be submitted. If a non-zero pre-
configured EPID has been set (see above), this join request is submitted automatically, otherwise the function
zps_eAplZdoJoinNetwork() must be called to submit the request. The outcome of this request is reported in
one of the following stack events on the requesting device:

• zps_EVENT_NWK_JOINED_AS_ROUTER (if joined as Router)
• zps_EVENT_NWK_JOINED_AS_ENDDEVICE (if joined as End Device)
• zps_EVENT_NWK_FAILED_TO_JOIN (if failed to join)

In the case of success, the above stack event contains the 16-bit network address that the network has
allocated to the local device. In addition, the event zps_EVENT_NWK_NEW_NODE_HAS_JOINED is
generated on the parent.

If the case of failure, the device can attempt another join by calling zps_eAplZdoJoinNetwork() with a different
result reported in the zps_EVENT_NWK_DISCOVERY_COMPLETE event.

6.1.2.4 Records the network's EPID for application use

The function zps_eAplAibSetApsUseExtendedPanId() may now be used to create a persistent record
of the EPID of the network that the node has joined (it is necessary to first obtain the EPID value using the
functions zps_pvAplZdoGetNwkHandle() and zps_u64NwkGetEpid()). If this EPID record is created, the
node automatically continues in the network following a reset without explicitly rejoining.

6.1.2.5 Router accepts join requests from other devices (if enabled)

A Router may now allow other devices (Routers and End Devices) to join it as its children. The number of
(direct) children of the Router is limited by the maximum number of neighbors for the node, which is pre-set via
the advanced network parameter Active Neighbor Table Size and Child Table Size in the ZPS Configuration
Editor (see Section 13.4.4).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
41 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Note: The initial ‘permit joining’ status is pre-set via the Router parameter Permit Joining Time in the ZPS
Configuration Editor. If this is initially disabled, the Router may not accept children until joining has been
enabled using zps_eAplZdoPermitJoining(). However, the ‘permit joining’ status is ignored during a join in which
the pre-set EPID on the joining device is non-zero and during any rejoin (see Section 6.6.2). The above function
can be used at any time to allow joinings for a limited time-period or indefinitely, and can also be used to disable
joinings.

Once a node has joined the network, each endpoint application on the node is next likely to search for
compatible endpoints on remote nodes with which it can communicate, as described in Section 6.2.2.

Note: A network can be set up such that an End Device or Router joins a particular parent node. The required
configuration and function calls to employ predetermined parents are described in Section 6.1.3.

6.1.3 Pre-determined parents

It is possible to force a parent (Router or the Coordinator) to accept certain nodes as its (direct) children. The
function zps_eAplZdoDirectJoinNetwork() can be used on this parent to register a potential child node (with
specified IEEE/MAC and network addresses) by adding this node to the Neighbor table - never write to the
Neighbor table directly. The parent then regards this node as an orphaned child. This function should only be
called when the parent node is fully up and running - that is, the node has been started as described in Section
6.1.1or Section 6.1.2.

When one of the designated children is started, its application should call the function
zps_eAplZdoOrphanRejoinNetwork() in order to attempt to join the network as if it were a previously
orphaned node. This function will start the ZigBee PRO stack and attempt to join the network whose EPID has
been pre-configured on the node (using the ZPS Configuration Editor). The function will only allow the node to
join a parent that already has knowledge of the node (in the parent’s Neighbor table).

Note:

• Note 1: When zps_eAplZdoOrphanRejoinNetwork() is used, the start-up procedure described in
Section 6.1.2 is not applicable to the joining node and the function zps_eAplZdoStartStack() must not
be explicitly called on the node.

• Note 2: When a node joins the network in this way, the ‘permit joining’ status on the parent is ignored.

If the node successfully joins the network (via the designated parent), the stack event
zps_EVENT_NWK_NEW_NODE_HAS_JOINED is generated on the parent node and one of the following stack
events is generated on the joined node:

• zps_EVENT_NWK_JOINED_AS_ROUTER (if joined as a Router)
• zps_EVENT_NWK_JOINED_AS_ENDDEVICE (if joined as an End Device)

These events contain the network address that the parent has allocated to the joined node.

If the join request is unsuccessful, the zps_EVENT_NWK_FAILED_TO_JOIN event is generated on the joining
node.

Once the node has joined the pre-determined parent, the node is next likely to search for compatible endpoints
on remote nodes with which it can communicate, as described in Section 6.2.2.

6.2 Discovering the network
This section describes how to discover properties of the network, including general network properties, node
addresses and features, and the services offered by nodes. The important task of finding nodes that can
communicate with each other is described. Maintenance of the ‘primary discovery cache’ of a node is also
described - this cache contains information about other nodes of the network (not all nodes will host a primary
discovery cache - only the Coordinator and Routers are allowed to).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
42 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

6.2.1 Obtaining network properties

A ‘network discovery’ is implemented when the function zps_eAplZdoStartStack() is called to start the stack on
an End Device or Router node (which needs to find a network to join). In addition, a network discovery can be
explicitly started by calling the function zps_eAplZdoDiscoverNetworks(). For example, this function could be
called if the initial network discovery did not find any suitable networks to join, in which case the function may be
used to initiate a scan of previously unscanned channels (detailed in the stack event described below, resulting
from the initial discovery).

Both of these function calls eventually result in the stack event zps_EVENT_NWK_DISCOVERY_COMPLETE
on the End Device or Router, where this event reports the following properties of the discovered networks:

• Extended PAN ID
• ZigBee version
• ZigBee stack profile

This stack event also indicates the recommended network to join, which is taken to be the first ZigBee PRO
network detected that is allowing nodes to join.

For information on joining a network, refer to Section 6.1.2.

6.2.2 Finding compatible endpoints

An endpoint on a newly joined node must find compatible endpoints on remote nodes with which to
communicate. The decision of whether a remote endpoint is compatible is based on the endpoint properties
stored in its Simple descriptor, notably the input/ output clusters supported.

The endpoint application can discover compatible nodes by sending out a Match_Desc_req request identifying
the required clusters. This request is submitted by calling the function zps_eAplZdpMatchDescRequest(),
which allows the request to be sent as a broadcast to all nodes or as a unicast to a particular node (the sending
node may already have a record of the network nodes and their addresses, as each node automatically
announces itself in a broadcast when it joins the network). The

request is sent in an APDU (Application Protocol Data Unit) which must first be allocated using the PDUM
function PDUM_hAPduAllocateAPduInstance().

A receiving endpoint which satisfies the supplied criteria replies to the request with a Match_Desc_rsp response
which, when received, must be collected on the requesting node using the function ZQ_bZQueueReceive().
The requesting application may bind to a compatible endpoint (see Section 5.4) and communicate with the
endpoint using binding or addressing (see Section 5.5).

6.2.3 Obtaining and maintaining node addresses

The addresses of network nodes are needed in order to access node information (see Section 6.2.4), send
data from one node to another (see Section 6.5) and bind nodes together (see Section 6.4). In most of these
operations, an application can specify either 64-bit IEEE/MAC addresses or 16-bit network addresses, but the
ZigBee PRO stack always works with network addresses. If the IEEE address (rather than the network address)
of a remote node is specified by the application, the network address must still be available to the stack in an
Address Map - see below.

The IEEE address of a node is assigned at the time of device manufacture and is fixed, while its network
address is dynamically allocated by its parent when the device joins the network (this address may change if
the network is re-started or the device later leaves and rejoins the network). Functions are provided to obtain
the IEEE address of a node given its network address or to obtain the network address given the IEEE address.
Use of these functions is described in Section 6.2.3.1 and Section 6.2.3.2.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
43 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Note: The IEEE/MAC and network addresses of a node can be broadcast to all other nodes in the network
using the function zps_eAplZdpDeviceAnnceRequest(). For example, this function would typically be called
when the node joins or rejoins the network. The information is sent in a Device_annce announcement, which
must be collected by the recipient nodes using the function ZQ_bZQueueReceive().

An Address Map table can be maintained on a node, where each entry of this table contains the pair of
addresses for a remote node - the 64-bit IEEE/MAC address and 16-bit network address. In fact, the IEEE/MAC
address is not directly stored in the Address Map table but in a MAC Address table - the Address Map table
contains the index of this address in the MAC Address table. The Address Map is automatically updated by
the stack when a Device_annce announcement is received from a remote node (described in the Note above),
but you can also add an address-pair to this table using the function zps_eAplZdoAddAddrMapEntry() -
never write to the Address Map table directly. The Address Map must be properly maintained if the application
employs IEEE/MAC addresses to identify remote nodes. In addition, when application- level security (see
Section 6.8) is used in sending data from one node to another, the Address Map on the sending node must
contain an entry for the target node.

6.2.3.1 Obtaining IEEE address

You may wish to obtain the IEEE address of the node with a given network address - for example, in order to
know which physical node corresponds to a particular dynamically allocated network address.

The IEEE address of the local node can be obtained simply by calling the function
zps_u64AplZdoGetIeeeAddr()

The IEEE address of a remote node can be obtained in either of two ways, depending on whether an entry for
the node exists in the local Address Map table:

• The function zps_u64AplZdoLookupIeeeAddr() can be used to search the local Address Map table for the
IEEE address which corresponds to a given network address.

• The required IEEE address can be obtained directly from the remote node by using the function
zps_eAplZdpIeeeAddrRequest() to submit a request for the IEEE address of the node with a particular
network address. This request, of type IEEE_addr_req, is sent in an APDU (Application Protocol Data
Unit) which must first be allocated using the PDUM function PDUM_hAPduAllocateAPduInstance(). The
request details are specified through the structure zps_tsAplZdpIeeeAddrReq, which includes an option
to also request the IEEE addresses of all the target node’s children (if any). The results are reported in an
IEEE_addr_resp response.

6.2.3.2 Obtaining network address

You may wish to obtain the network address of the node with a given IEEE address - for example, in order to
know the network address that has been dynamically allocated to a particular physical node.

The network address of the local node can be obtained simply by calling the function
zps_u16AplZdoGetNwkAddr().

The network address of a remote node can be obtained in either of two ways, depending on whether an entry
for the node exists in the local Address Map table:

• zps_u16AplZdoLookupAddr() can be used to search the local Address Map table for the network address
which corresponds to a given IEEE address.

• The required network address can be obtained directly from within the network by using the function
zps_eAplZdpNwkAddrRequest() to submit a request for the network address of the node with a particular
IEEE address. This request can be either unicast or broadcast, as follows:
– Unicast to another node that will ‘know’ the required network address (this may be the parent of the node of

interest or the Coordinator)

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
44 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

– Broadcast to the network

This request, of type NWK_addr_req, is sent in an APDU (Application Protocol Data Unit) which must first be
allocated using the PDUM function PDUM_hAPduAllocateAPduInstance(). The request details are specified
through the structure zps_tsAplZdpNwkAddrReq, which includes an option to also request the network
addresses of all the target node’s children (if any). The results are reported in a NWK_addr_resp response.

6.2.4 Obtaining node properties

Functions are provided to obtain information about the properties of network nodes. Much of this information is
held on a node in special structures, referred to as descriptors. Five types of descriptor are used:

• Node descriptor
• Node Power descriptor
• Simple descriptor
• User descriptor
• Complex descriptor

In addition to the above, information can be obtained about the active endpoints, primary discovery cache and
services of a node.

The required functions are detailed below. Functions are provided to obtain descriptors from the local
node and from a remote node. When obtaining information from a remote node, the function sends a
request in an APDU (Application Protocol Data Unit) which must first be allocated using the PDUM function
PDUM_hAPduAllocateAPduInstance(). The results of the request are reported in a response which must be
collected using the function ZQ_bZQueueReceive().

Note:

1. When obtaining a descriptor of a remote node, the request can be submitted to the node itself or to another
node which may hold the required descriptor in its primary discovery cache.

2. The structures that contain the descriptors (referenced below) are described in Section 7.2 and Section
8.2.1.

3. Where 64-bit IEEE/MAC addresses are used to identify remote nodes, the corresponding 16-bit network
addresses must be available in the local Address Map - see Section 5.2.3.

6.2.4.1 Node descriptor

The Node descriptor contains basic information about the node, such as its ZigBee node type and the radio
frequency bands supported. The following functions can be used to obtain a Node descriptor:

• zps_eAplAfGetNodeDescriptor() obtains the Node descriptor of the local node. The result is stored in a
structure of type zps_tsAplAfNodeDescriptor.

• zps_eAplZdpNodeDescRequest() requests the Node descriptor of a remote node. The result is stored in a
structure of type zps_tsAplZdpNodeDescriptor.

6.2.4.2 Power descriptor

The Node Power descriptor contains information about the node’s supported power sources and present power
source. The following functions can be used to obtain a Power descriptor:

• zps_eAplAfGetNodePowerDescriptor() obtains the Node Power descriptor of the local node. The result is
stored in a structure of type zps_tsAplAfNodePowerDescriptor.

• zps_eAplZdpPowerDescRequest() requests the Node Power descriptor of a remote node. The result is
stored in a structure of type zps_tsAplZdpNodePowerDescriptor.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
45 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Note that elements of the Node Power descriptor can be set on the local node using the ZPS Configuration
Editor.

6.2.4.3 Simple descriptor

There is a Simple descriptor for each endpoint on a node. The information in this descriptor includes the ZigBee
device type supported by the endpoint as well as details of its input and output clusters. The following functions
can be used to obtain a Simple descriptor:

• zps_eAplAfGetSimpleDescriptor() obtains the Simple descriptor of a particular endpoint on the local node.
The result is stored in a structure of type zps_tsAplAfSimpleDescriptor.

• zps_eAplZdpSimpleDescRequest() requests the Simple descriptor of a particular endpoint on a remote
node. The result is stored in a structure of type zps_tsAplZdpSimpleDescReq.

The returned Simple descriptor includes a list of input clusters and a list of output clusters of the endpoint.

When requesting a Simple descriptor from a remote node, if the cluster lists are long, the Simple descriptor may
not fit into the APDU of the response. In this case, the returned Simple descriptor will contain incomplete cluster
lists, but the remainder of the lists can be recovered using zps_eAplZdpExtendedSimpleDescRequest().

It is also possible to search for nodes on the basis of certain criteria in the Simple descriptors of their endpoints
- for example, search for endpoints which have a particular list of input clusters and/or output clusters. Such
a search can be performed using the function zps_eAplZdpMatchDescRequest(). Use of this function is
described in Section 6.2.2.

6.2.4.4 User Descriptor

The User descriptor is a user-defined character string, normally used to describe the node (for example,
“Thermostat”). The maximum length of the character string is 16, by default. A node need not have a User
descriptor - if it has one, this must be indicated in the Node descriptor. The following functions can be used to
access a User descriptor:

• zps_eAplZdpUserDescSetRequest() sets the User descriptor of a remote node.
• zps_eAplZdpUserDescRequest() requests the User descriptor of a remote node. The result is stored in a

structure of type zps_tsAplZdpUserDescReq.

The above functions can only be used to access the User descriptor of a non-NXP device (which supports this
descriptor), since the storage of a User descriptor on an NXP device is not supported.

6.2.4.5 Complex descriptor

The Complex descriptor is an optional descriptor which contains device information such as manufacturer,
model and serial number. The function zps_eAplZdpComplexDescRequest() allows the Complex descriptor
of a remote node to be requested. However, the NXP ZigBee PRO stack does not support the functionality to
produce a valid response and this function is provided only for compatibility with non-NXP products that do
support the relevant functionality.

6.2.4.6 Active endpoints

An endpoint on the local node can be configured as enabled or disabled using the function
zps_eAplAfSetEndpointState(). An enabled endpoint is described as ‘active’. The current state of a local
endpoint can be obtained using the function zps_eAplAfGetEndpointState().

It is also possible to configure whether a local endpoint will be included in the results of network discovery
operations, for example, when zps_eAplZdpMatchDescRequest() is called. The ‘discoverable’ state of a local

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
46 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

endpoint can be set using the function zps_eAplAfSetEndpointDiscovery(), while this state can be obtained
using the function zps_eAplAfGetEndpointDiscovery().

A list of the active endpoints on a remote can be obtain using the function zps_eAplZdpActiveEpRequest().
This functions submits an Active_EP_req request to the target node, which replies with an Active_EP_rsp
response. If the active endpoint list is too long to fit into the APDU of the response, the returned list will be
incomplete. However, the remainder of the list can be recovered using the function zps_eAplZdpExtended
ActiveEpRequest(). Note that an endpoint is included in the list only if it is active and discoverable.

6.2.4.7 Primary discovery cache

A ZigBee routing node (Router or the Coordinator) may be able to host a ‘primary discovery cache’. This is a
database, held in memory, containing ‘discovery information’ about a set of network nodes, normally children
and possibly other descendant nodes. The information held about a node includes the node’s addresses,
descriptors (Node, Node Power, Simple) and its list of active endpoints. Remote nodes can then interrogate the
primary discovery cache to obtain information about other nodes in the network.

Note: NXP nodes do not have the capability to hold a primary discovery cache, but functions are provided to
interface with a primary discovery cache held on a node from another manufacturer.

The function zps_eAplZdpDiscoveryCacheRequest() allows nodes which hold a primary discovery cache
to be detected. This function submits a Discovery_Cache_req request to the network. Nodes with a primary
discovery cache reply with a Discovery_Cache_rsp response.

In addition, the function zps_eAplZdpFindNodeCacheRequest() can be used to search for nodes
with a primary discovery cache that holds information about a particular node. This function submits a
Find_node_cache_req request to the network. Nodes with the required node information in their caches reply
with a Find_node_cache_rsp response.

Functions for storing node information in a primary discovery cache are described in Section 6.2.5.

6.2.4.8 Servers

A node can host one or more of the following ‘servers’ in a ZigBee PRO network:

• Primary Trust Centre
• Backup Trust Centre
• Primary Binding Table Cache
• Backup Binding Table Cache
• Primary Discovery Cache
• Backup Discovery Cache
• Network Manager

The function zps_eAplZdpSystemServerDiscoveryRequest() can be used to discover the servers hosted by
other nodes in the network. The function broadcasts a System_Server_Discovery_req request to all nodes. A
remote node replies with a System_Server_Discovery_rsp response containing a bitmap indicating the servers
hosted by the node.

6.2.5 Maintaining a primary discovery cache

Some routing nodes of a ZigBee PRO network may be capable of hosting a primary discovery cache, which
contains ‘discovery information’ relating to other nodes in the network - see Primary Discovery Cache .

Note: NXP nodes do not have the capability to hold a primary discovery cache, but functions are provided to
interface with a primary discovery cache held on a node from another manufacturer.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
47 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Functions are provided for storing the local node’s ‘discovery information’ in another node’s primary discovery
cache (normally in the parent or another ascendant node). First of all, zps_eAplZdpDiscoveryStoreRequest()
must be called to allocate memory space for this information in the remote node’s cache. This function sends
a Discovery_store_req request to the remote node, which replies with a Discovery_store_rsp response. The
local node’s information can then be stored in the remote node’s primary discovery cache using the following
functions (which all operate on a request/response basis):

• Node descriptor: Stored using zps_eAplZdpNodeDescStoreRequest()
• Power descriptor: Stored using zps_eAplZdpPowerDescStoreRequest()
• Simple descriptor: Stored using zps_eAplZdpSimpleDescStoreRequest()
• Active endpoints list: Stored using zps_eAplZdpActiveEpStoreRequest()

A node’s information can be removed from a primary discovery cache using the function
zps_eAplZdpRemoveNodeCacheRequest(). This function can be called on the local node to remove a third
node’s information from the primary discovery cache of a remote node.

6.2.6 Discovering Routes

The route from one network node to another can be pre-established by implementing a route discovery. As
a result, each routing node along the route will contain a Routing table entry for the destination node, where
this entry consists of the destination address and the ‘next hop’ address. Routing and route discovery are fully
introduced in Section 3.5.

Two functions are provided in the ZigBee PRO API to initiate route discoveries:

• zps_eAplZdoRouteRequest() can be used to establish a route from the local node to a specific destination
node. This kind of end-to-end route discovery is outlined in Section 3.5.2.

• zps_eAplZdoManyToOneRouteRequest() can be used on a ‘concentrator’ node to implement a ‘many-to-
one’ route discovery back to itself. The result is that Routing tables in routing nodes within a certain radius of
the concentrator will acquire entries with the concentrator as the destination. Many-to-one routing is outlined
in Section 3.5.3.

6.3 Managing group addresses
A ‘group address’ is a concept that simplifies data transfers (see Section 6.5) to multiple nodes/endpoints. It
is a collective 16-bit address which refers to a group of destination endpoints (that may be located on different
nodes). So, for example, when a group address is specified as the destination address for a data transfer, the
data will be delivered to all the nodes/endpoints in the associated group. It is the responsibility of the wireless
network application to allocate and manage group addresses on a network-wide basis.

A node which is to receive group-addressed communications must have a Group Address table. This table
contains information about all the groups to which endpoints on the node belong - that is, each group address
and the associated local endpoint numbers. The table is consulted on receiving a data packet with a group
address - if the group address exists in the table, the packet is passed to the corresponding endpoint(s).

A Group Address table is created on a node using the ZPS Configuration Editor. The table can then be
maintained by the application as follows:

• An endpoint can be added to a group by calling the function zps_eAplZdoGroupEndpointAdd() on the local
node (which contains the endpoint).

• An endpoint can be removed from a group by calling the function zps_eAplZdoGroupEndpointRemove() on
the local node (which contains the endpoint). Alternatively, zps_eAplZdoGroupAllEndpointRemove() can be
used to remove a specified local endpoint from all groups to which it belongs.

The group addresses used in a network are defined by the application developer.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
48 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

6.4 Binding
For the purpose of data communication between applications running on different nodes, it may be useful to
‘bind’ the relevant source and destination endpoints. When data is subsequently sent from the source endpoint,
it is automatically routed to the bound destination endpoint(s) without the need to specify a destination address.
For example, a binding could be created between the temperature sensor endpoint on a thermostat node and
the switch endpoint on a heating controller node. Details of a binding are held in a Binding table on the source
node. Binding is introduced more fully in Section 3.6.2, where bindings are one-to-one, one-to-many or many-to-
one.

This section describes setting up a Bind Request Server and how to bind together two nodes, as well as how to
unbind them. Access to the Binding tables is also described.

Note: Where 64-bit IEEE/MAC addresses are used to identify remote nodes, the corresponding 16-bit network
addresses must be available in the local Address Map - see Section 5.2.3.

6.4.1 Setting up bind request server

A Bind Request Server must be set up on each device that will be the source node of a bound data transfer.
This server manages a bound data transfer so that application processing is not blocked by concurrent requests
for transmissions to the multiple destinations of the transfer. It does this by limiting the number of destinations
and inserting a time delay between consecutive transmissions of a bound transfer.

Note: The bound server can only handle one bound request at a time. The application must wait for the
confirmation from the first bound request before attempting to send a second bound request.

The server is configured in the ZPS Configuration Editor (introduced in Chapter 13). Two parameter values must
be set:

6.4.1.1 Simultaneous requests

This refers to the maximum number of destinations for a bound data transfer. The value set must be less than
or equal to the value of the ZigBee network parameter Maximum Number of Simultaneous Data Requests or
Maximum Number of Simultaneous Data Requests with Acks, described in Section 11.7.

6.4.1.2 Time interval

This refers to the time interval between consecutive transmissions to the different destinations of a bound data
transfer and is measured in milliseconds.

In the ZPS Configuration Editor, these parameters are accessed by clicking on Bind Request Server under
ZDO Configuration for the device (the parameters appear in the Properties tab of the bottom pane).

Note: The bound server can only handle one bound request at a time. The application must wait for the
confirmation from the first bound request before attempting to send a second bound request.

6.4.2 Binding endpoints

An endpoint on the local node can be bound to one or more endpoints on remote nodes using the following
functions:

• zps_eAplZdoBind() creates a one-to-one binding to a single remote endpoint.
• zps_eAplZdoBindGroup() creates a one-to-many binding for which the destination endpoints are specified

via a group address (refer to Section 5.3).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
49 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

The function zps_eAplZdpEndDeviceBindRequest() is also provided, which allows an endpoint on one End
Device to be bound to an endpoint on another End Device via the Coordinator. This function must be called
on both End Devices, where the function call would typically be triggered by a user action such as pressing a
button on the node. The function submits an End_Device_Bind_req request to the Coordinator, which replies
with an End_Device_Bind_rsp response. The stack will then automatically update the Binding tables on the
End Devices (as the result of bind requests from the Coordinator), and these updates will be indicated by a
zps_EVENT_ZDO_BIND event on each of the End Devices.

6.4.3 Unbinding endpoints

Bindings can be removed using the following functions:

• Two endpoints previously bound using zps_eAplZdoBind() can be unbound using the function
zps_eAplZdoUnbind().

• Endpoints previously bound using zps_eAplZdoBindGroup() can be unbound using the function
zps_eAplZdoUnbindGroup().

6.4.4 Accessing binding tables

Information about established bindings is held in Binding tables on the relevant nodes. Normally, a Binding table
is held on a node which contains at least one source endpoint for a binding - thus, the table includes entries
for all bindings which involve source endpoints on the local node. Alternatively, the Binding table entries for a
particular source node can be held in a primary Binding table cache on the node’s parent or another ascendant
node. However, if a primary Binding table cache exists on an ascendant node, a source node can opt out of
membership of this table by calling the function zps_eAplZdpBindRegisterRequest() to indicate that the
source node will store its own Binding table entries locally.

Functions are provided which allow Binding tables to be remotely accessed and modified. These functions are
particularly useful in implementing a commissioning tool application.

A binding can be remotely created or removed by requesting a modification to the relevant Binding table on
a remote node. The remote Binding table may be a primary Binding table cache or the source node’s local
Binding table, which is relevant for the particular binding.

• The function zps_eAplZdpBindUnbindRequest() can be used to request that a new binding is added to
a remote Binding table. The addition of this binding is signaled by a zps_EVENT_ZDO_BIND event on the
remote node.

• The function zps_eAplZdpBindUnbindRequest() can also be used to request that an existing
binding is removed from a remote Binding table. The removal of this binding is signaled by a
zps_EVENT_ZDO_UNBIND event on the remote node. A Binding table entry can also be removed locally
using the function zps_eAplAibRemoveBindTableEntryForMacAddress(), which requests that the entry
containing a particular IEEE/MAC address is deleted.

In addition, binding entries in a remote primary Binding table cache can be modified using the function
zps_eAplZdpReplaceDeviceRequest(), to replace an IEEE/MAC address and/or endpoint number. This
operation works on a ‘search and replace’ basis in the Binding table, and the address/endpoint number to be
replaced could occur in the source or destination of one or more table entries.

The function zps_eAplZdpMgmtBindRequest() is also provided, which can be used to request the Binding
table of a remote node.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
50 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

6.5 Transferring data
This section describes how to send data to a remote node and receive the data at the destination. The data
polling method is also described, which is used by an End Device to obtain data that arrives at its parent while
the End Device is asleep.

6.5.1 Sending data

Data is sent across the wireless network in an Application Protocol Data Unit (APDU). Before calling
the function to send the data, an APDU instance must first be allocated using the PDUM function
PDUM_hAPduAllocateAPduInstance() and then populated with data using the PDUM function
PDUM_u16APduInstanceWriteNBO().

There are five ways to send data to one or more remote nodes:

• Unicast: Sending data to a single destination endpoint
• Broadcast: Sending data to (potentially) all endpoints
• Group Multicast: Sending data to a group of endpoints
• Bound Transfer: Sending data to bound endpoints
• Inter-PAN Transfer: Sending data to another ZigBee PRO network

These methods are described in the sub-sections below. However, in all cases except the inter-PAN transfer,
a general function zps_eAplAfApsdeDataReq() can be used which imposes no restrictions on the destination
address, destination cluster and destination endpoint number - these destination parameters do not need to be
known to the stack or defined in the ZPS configuration.

Note:

1. In all cases, once the data packet has been successfully sent, a ‘DATA_CONFIRM’ stack event is
generated. When sending data to one or more individual nodes (not broadcasting), this event is generated
after a MAC-level acknowledgment has been received from the ‘next hop’ node.

2. Where 64-bit IEEE/MAC addresses are used to identify remote nodes, the corresponding 16-bit network
addresses must be available in the local Address Map - see Section 5.2.3.

6.5.1.1 Unicast

A unicast is a data transmission to a single destination - in this case, a single endpoint. The destination node for
a unicast can be specified using the network address or the IEEE/MAC address of the node:

• zps_eAplAfUnicastDataReq() is used to send a data packet to an endpoint on a node with a given network
address.

• zps_eAplAfUnicastIeeeDataReq() is used to send a data packet to an endpoint on a node with a given
IEEE/MAC address.

Neither of these functions provide any indication that the data packet has been successfully delivered to its
destination. It is possible that a unicast packet will not reach its destination because the packet is lost - for
example, it becomes caught in a circular route. However, equivalent functions are available which request the
destination node to provide an acknowledgment of data received - these ‘with acknowledgment’ functions are
zps_eAplAfUnicastAckDataReq() and zps_eAplAfUnicastIeeeAckDataReq(), requiring network and IEEE/
MAC addresses respectively. These functions request end-to-end acknowledgments which, when received,
generate zps_EVENT_APS_DATA_ACK events (note that the ‘next hop’ zps_EVENT_APS_DATA_CONFIRM
events will also be generated). A timeout of approximately 1600 ms is applied to the acknowledgments. If an
acknowledgment has not been received within the timeout period, the data is re-sent, and up to 3 more re-tries
can subsequently be performed before the data transfer is abandoned completely (which occurs approximately
3 seconds after the initial send).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
51 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Note: If a message is unicast to a destination for which a route has not already been established, the message
will not be sent and a route discovery will be performed instead. If this is the case, the unicast function will
return zps_NWK_ENUM_ROUTE_ERROR. The application must then wait for the stack event zps_EVENT_NWK_
ROUTE_DISCOVERY_CONFIRM (success or failure) before attempting to re-send the message by calling the
same unicast function again.

6.5.1.1.1 Unicasts from sleepy nodes

To allow a unicast acknowledgment to be received as described above, the source node must remain awake for
a time equal to the timeout period. On a battery-powered node which sleeps, the use of acknowledgments and
retries may not be desirable from a power-saving point of view. In this case, acknowledgments should not be
used, but it is good practice for the application to monitor the route to a remote node by periodically attempting
to read an attribute on the node and wait for a response. If the response is not observed within a pre-defined
time then the application should take one of the actions listed below, depending on whether the source node is
an End Device or Router.

• If an End Device, the application should notify the parent node about the routing problem by sending it a
unicast network status command using the function zps_vNwkSendNwkStatusCommand(), with the status
as “No Route Available (0x00)”

• If a Router, the application should initiate an explicit route discovery to the destination node by calling the
function zps_eAplZdoRouteRequest()

6.5.1.1.2 Fragmenting large unicast packets

The unicast ‘with acknowledgment’ functions, zps_eAplAfUnicastAckDataReq() and
zps_eAplAfUnicastIeeeAckDataReq(), also allow a large data packet to be sent that may be fragmented into
multiple messages during transmission. Application design issues concerned with fragmented data transfers are
outlined in Section 15.1.

6.5.1.2 Broadcast

A broadcast is a data transmission to all network nodes, although it is possible to select a subset of nodes. The
following destinations are possible:

• All nodes
• All nodes for which ‘receiver on when idle’ - these include the Coordinator, Routers and non-sleeping End

Devices
• All Routers and the Coordinator

The function zps_eAplAfBroadcastDataReq() is used to broadcast a data packet. It is possible to specify a
particular destination endpoint on the nodes (the same endpoint number for all recipient nodes) or all endpoints.
Following this function call, the packet may be broadcast up to four times (in addition, the packet may be
subsequently re-broadcast up to four times by each intermediate routing node).

6.5.1.3 Group multicast

A group multicast is a data transmission which is intended for a selection of network nodes or, more specifically,
a selection of endpoints on these nodes. The set of destination endpoints must be pre-assembled into a group
with an associated ‘group address’, as described in Section 5.3.

The function zps_eAplAfGroupDataReq() is used to send a data packet to the group of endpoints with a given
group address. In practice, the data packet is broadcast to all nodes in the network and it is the responsibility of
each recipient node to determine whether it has endpoints in the target group (and therefore whether the packet
is of interest).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
52 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

6.5.1.4 Bound transfer

A data packet can be sent from an endpoint to all the remote endpoints with which the source endpoint has
been previously bound (see Section 5.4). The function zps_eAplAfBoundDataReq() is used to implement this
type of data transfer. This method provides an alternative to a group multicast (see Section 5.5.1.3) for sending
data to selected endpoints.

An equivalent to the above function is provided which also requests an ‘end-to-end’ acknowledgment from
the destination - zps_eAplAfBoundAckDataReq(). If an acknowledgment has not been received within
approximately 1600 ms of the initial request, the data is re-sent, with up to 3 more subsequent re-tries before
the data transfer is abandoned completely.

zps_eAplAfBoundAckDataReq() also allows a large data packet to be sent that may need to be fragmented
into multiple messages during transmission. Application design issues concerned with fragmented data
transfers are outlined in Section 15.1.

Following a call to one of the above bound transfer functions, a deferred
zps_EVENT_BIND_REQUEST_SERVER event is generated on the sending node. This event summarizes
the status of the transmission (see Section 7.2.2.21), including the number of bound endpoints for which the
transmission failed. The event is generated only after receiving MAC-level acknowledgments from the ‘next hop’
nodes or, if requested, after receiving end-to-end acknowledgments from the destination nodes.

Note: In the case of a bound transfer, the ‘next hop’ zps_EVENT_APS_DATA_CONFIRM events and ‘end-to-
end’ zps_EVENT_APS_DATA_ACK events are consumed and do not reach the application.

6.5.1.5 Inter-PAN transfer

A data packet can be sent to nodes in other IEEE 802.15.4 networks - this is referred to as an inter-PAN transfer
or transmission. Typically, this mechanism could be used to send information to optional low-cost devices
that are not part of the local network. Note that no security (encyption/decryption) can be applied to inter-PAN
transfers and only one application on a device can perform inter-PAN transmissions. The inter-PAN messages
are not forwarded and so will only be received by nodes within direct radio range of the transmitter.

The inter-PAN feature is enabled via the ZPS Configuration Editor. The Inter PAN value is set to true in the APS
Layer Configuration section of the Advanced Properties for the device.

The function zps_eAplAfInterPanDataReq() is used to request an inter-PAN transmission. This function
requires the destination(s) for the transfer to specified:

• Single destination node in a specific network (PAN ID and node address must be specified)
• Multiple destination nodes in a specific network

(PAN ID and a group address for the nodes must be specified)

• All nodes in a specific network

(PAN ID and broadcast address of 0xFFFF must be specified)

• All nodes in all reachable networks

(broadcast PAN ID and broadcast address, both of 0xFFFF, must be specified)

After successfully sending the data packet, the stack will generate the event
zps_EVENT_APS_INTERPAN_DATA_CONFIRM (for a single destination, this event is generated once the
‘next hop’ acknowledgment has been received).

A destination endpoint is not specified for this type of data transfer but a cluster must be specified for the
destination. On receiving the data packet, the recipient node will automatically pass the packet to the endpoint
which supports the given cluster (see Section 5.5.2).
JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
53 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Note:

1. In the case of a data packet received from another network by means of an inter-PAN transfer, the zps_
EVENT_APS_INTERPAN_DATA_INDICATION stack event will be generated. The data packet will be
passed to the endpoint which supports the specified cluster. The application must always handle these inter-
PAN packets and release the APDU instances (see below). The event will only be generated if the inter-PAN
feature has been enabled via the ZPS Configuration Editor. If an application transmits inter-PAN messages
but does not need to receive them, the application must enable inter-PAN in the ZPS Configuration Editor
and handle any zps_EVENT_APS_INTERPAN_DATA_INDICATION events by releasing the APDU
instances.

2. In the case of the arrival of a response packet which is destined for the ZDO, a
zps_EVENT_AF_DATA_INDICATION stack event will be generated with a destination endpoint of 0. It
will be necessary for the application to call the function zps_bAplZdpUnpackResponse() to extract the
response data from the event.

6.5.2 Receiving data

When a data packet (sent using one of the methods described in Section 6.5.1) is received by the destination
node, it is put into a message queue. A zps_EVENT_AF_DATA_INDICATION stack event is generated on the
destination node to indicate that a data packet has arrived (the destination endpoint is indicated in this event).
The packet must then be collected from the message queue using the function ZQ_bZQueueReceive().

Note:

• Note 1: In case a data packet is received from another network by means of an inter-PAN transfer, the zps_
EVENT_APS_INTERPAN_DATA_INDICATION stack event is generated. The data packet is passed to the
endpoint that supports the specified cluster. The application must always handle these inter-PAN packets and
release the APDU instances (see below). The event will only be generated if the inter-PAN feature has been
enabled via the ZPS Configuration Editor. If an application transmits inter-PAN messages but does not need
to receive them, the application must enable inter-PAN in the ZPS Configuration Editor and handle any zps_
EVENT_APS_INTERPAN_DATA_INDICATION events by releasing the APDU instances.

• Note 2: In the case of the arrival of a response packet which is destined for the ZDO, a
zps_EVENT_AF_DATA_INDICATION stack event is generated with a destination endpoint of 0. It is
necessary for the application to call the function zps_bAplZdpUnpackResponse() to extract the response
data from the event.

An End Device that is asleep would be unable to receive a data packet directly, so the data is buffered by
its parent for collection later. The End Device must explicitly request this data, once awake. This method of
receiving data is called data polling and is described in Section 6.5.3.

Once a data packet has been collected from a message queue, the data can be extracted from the APDU
instance using the PDUM function PDUM_u16APduInstanceReadNBO(). The APDU instance must then be
released using the PDUM function PDUM_eAPduFreeAPduInstance().

6.5.3 Polling for Data

In the case of an End Device which is capable of sleeping, messages are not delivered directly to the device,
since it may be asleep when the messages arrive. Instead, the messages are temporarily buffered by the End
Device’s parent. Once awake, the End Device can then ask or ‘poll’ its parent for data.

Note: End Devices that are not enabled for sleep can receive messages directly and therefore do not need to
poll. An End Device is pre-configured as either sleeping or non-sleeping via the End Device parameter Sleeping
in the ZPS Configuration Editor (see Section 12.4.2).

Data polling is performed using the function zps_eAplZdoPoll() in the End Device application. This function
requests the buffered data and should normally be called immediately after waking from sleep. If the

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
54 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

poll request is successfully sent to the parent, a zps_EVENT_NWK_POLL_CONFIRM stack event will
occur on the End Device. The subsequent arrival of data from the parent is indicated by the stack event
zps_EVENT_AF_DATA_INDICATION. Any messages forwarded from the parent should then be collected from
the relevant message queue using the function ZQ_bZQueueReceive(), just as for normal data reception
described in Section 6.5.2.

Application design issues concerned with transferring data to a sleeping End Device are outlined in Appendix
B.2.

6.5.4 Security in data transfers

The ‘send data’ functions for unicast, broadcast, group transfer and bound transfer contain a parameter to
select the required security setting for the protection of the sent message. In the NXP ZigBee PRO software,
there are currently three security options, as follows:

• No security
• Network-level security
• Application-level security

Application-level security is only available for unicast and bound transfers, while network-level security is
available for all transfer types except inter-PAN transfers.

Network-level and application-level security are detailed in Section 5.8.

Note:

1. No security is available for inter-PAN transfers (to other networks).
2. When application-level security is used in sending data, the IEEE/MAC address and network address of the

target node must be available through the local Address Map table - see Section 5.2.3.

6.6 Leaving and rejoining the network
This section describes how a node may leave the network and later rejoin either the same network or a different
network.

6.6.1 Leaving the network

A node may leave the network intentionally or unintentionally:

• The node may be intentionally (and temporarily) removed from the network for maintenance work, such as the
replacement of batteries.

• The node may unintentionally leave the network due to unforeseen circumstances, such as a broken radio link
with its parent (an obstacle may have been introduced into the path of the signal).

A node can be intentionally removed from the network using the function zps_eAplZdoLeaveNetwork(), which
issues a leave request. The target node can be the requesting node itself or a child of the requesting node. The
application may be designed to call this function when a button is pressed on the requesting node.

When calling zps_eAplZdoLeaveNetwork():

• You can specify whether the children of the leaving node should also be requested to leave the network. If this
is the case, the leaving node will first automatically call zps_eAplZdoLeaveNetwork() for each of its children.

• You can specify whether the leaving node should immediately attempt to rejoin the same network after leaving
(see Section 5.6.2).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
55 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

The stack event zps_EVENT_NWK_LEAVE_INDICATION is generated on the node which has been requested
to leave (this event is also generated when a neighboring node has left the network). Once a node has been
successfully removed from the network as the result of a call to zps_eAplZdoLeaveNetwork(), the stack event
zps_EVENT_NWK_LEAVE_CONFIRM is generated on the requesting node.

The function zps_eAplZdpMgmtLeaveRequest() is also provided which can be used to request a remote node
to leave the network.

By default, a Router will always act on leave request messages. However, it may be desirable for a Router to
ignore leave request messages in order to prevent a rogue node from disrupting the network. If the function
zps_vNwkNibSetLeaveAllowed() is called with the bLeave parameter as FALSE, the Router will ignore
network leave requests. End Devices always act on leave requests from their parent and ignore leave requests
from other nodes.

Alternatively, a callback function can be defined that is invoked when a leave request is received, where this
function determines whether the leave request is to be obeyed

- this decision may depend on where the leave request came from. The callback function is registered using
zps_eAplZdoRegisterZdoLeaveActionCallback() - refer to the description of this function for details of the
callback function.

6.6.2 Rejoining the network

A node may leave its network - for example, by:

• losing radio contact with its parent - the stack on the ‘orphaned’ node will detect this loss and automatically
attempt to rejoin the network

• calling zps_eAplZdoLeaveNetwork() - the node will automatically attempt to rejoin the network if an
immediate rejoin has been requested in the function call (although the node can be configured to always
rejoin the network following a leave, using the function zps_vNwkNibSetLeaveRejoin())

If the node successfully rejoins the network, the stack event zps_EVENT_NWK_NEW_NODE_HAS_JOINED is
generated on the parent node and one of the following stack events is generated on the joined node:

• zps_EVENT_NWK_JOINED_AS_ROUTER (if joined as a Router)
• zps_EVENT_NWK_JOINED_AS_ENDDEVICE (if joined as an End Device)

These events contain the network address that the parent has allocated to the joined node (this may be different
from the network address that the node previously had).

If the join request is unsuccessful, the zps_EVENT_NWK_FAILED_TO_JOIN event is generated on the
requesting node.

If an automatic rejoin has failed or has not been requested, the function zps_eAplZdoRejoinNetwork() can
be used to request a rejoin (this function must be called on the node that needs to rejoin). The application may
be designed to call this function when a button is pressed on the node. The result of this function call will be
indicated by means of the above events.

The function zps_eAplZdpMgmtDirectJoinRequest() is also provided which submits a request to a remote
parent to allow a particular node to join it. In addition, the function zps_eAplZdpMgmtPermitJoiningRequest()
is provided which allows joining to be enabled/disabled on a remote node.

Note:

1. When a device rejoins a network, the ‘permit joining’ status on the potential parent is ignored.
2. When a device joins the network, its application may call zps_eAplZdpDeviceAnnceRequest() to announce

the device’s membership and network address to the rest of the network. The information is sent in
a Device_annce announcement, which must be collected by the recipient nodes using the function
ZQ_bZQueueReceive().

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
56 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Note: (Caution): If a node rejoins the same secured network but its stack context data was cleared before
the rejoin (by calling NvErase()), data sent by the node will be rejected by the destination node since the frame
counter has been reset on the source node. Therefore, you are not recommended to clear the stack context
data before a rejoin. For more information and advice, refer to Appendix B.3.

6.7 Return codes and extended error handling
When a ZigBee PRO API function is called, a code is normally returned on completion of the function to indicate
the outcome. This code is taken from one of the following:

• zps_E_SUCCESS
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

An extended error handling mechanism can be optionally implemented which allows more detail to be obtained
about certain errors that can occur during function execution. The particular errors are:

• 0xA3: zps_APL_APS_E_ILLEGAL_REQUEST
• 0xA6: zps_APL_APS_E_INVALID_PARAMETER
• 0xC2: zps_NWK_ENUM_INVALID_REQUEST

The extended error codes are listed and described in Section 11.2.5.

In order to implement the extended error handling mechanism, you must register a callback function using the
function zps_vExtendedStatusSetCallback(). This registration function must be called before invoking the
first API function for which extended error handling is required. The registered callback function will then be
invoked during execution of the API function if one of the above errors occurs. The callback function will return
an extended error code (from those listed in Section11.2.5) but the API function will return only the basic error
code.

6.8 Implementing ZigBee security
The NXP ZigBee PRO APIs allow ZigBee security to be implemented, which applies key-based encryption
to communications between network nodes. The message frame content generated at the NWK layer and
higher is encrypted using 128-bit AES-based encryption (see Section 2.10). The NWK payload of the frame
is encrypted, and the NWK header and payload are integrity-protected with a 32-bit Message Integrity Code
(MIC).

This section describes security in a network with centralized security that is managed by a single Trust Centre,
which is usually the Coordinator node. A distributed security scheme can alternatively be used and this is
described in Section 6.10.2.

The sub-sections below deal with the following topics:

• Security levels - see Section 6.8.1
• Security keys - see Section 6.8.2
• Security set-up - see Section 6.8.3
• Security key modification - see Section 6.8.4

6.8.1 Security levels

Two types or levels of security can be applied in a ZigBee network:

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
57 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• Network-level security: This uses a ‘network key’ which is common throughout the network and is used to
encrypt/decrypt all communications between all nodes. The network key is randomly generated by the Trust
Centre before any nodes join the network. Setting up network-level security is described in Section 5.8.3.1.

• Application-level security: This uses an application ‘link key’ which is used (in addition to the network key)
to encrypt/decrypt communications between a pair of nodes. This link key may be unique for a pair of nodes.
Setting up application-level security is described in Section 5.8.3.2.

The encryption keys for these security levels are described in Section 5.8.2.

6.8.2 Security key types

The different ZigBee security keys are summarized in the Table,Table 5 and described in more detail below.

When a node joins the network, the Trust Centre must pass the network key to the joining node, so that the
node can participate in network-level encrypted communications with existing network nodes. The network
key must itself be protected by encryption when it is passed to the joining node. For this encryption, a pre-
configured link key is used, which is known by both the Trust Centre and the joining node. This can be a global
link key or a unique link key:

• Pre-configured global link key: This link key is the same for all nodes in the network. It may be ZigBee-
defined key or manufacturer-defined:
– The ZigBee-defined key (known as the ZigBee “09” key) allows nodes from different manufacturers to join

the network.
– A manufacturer-defined key allows only nodes from the specific manufacturer to join the network.

• Pre-configured unique link key: This link key is an exclusive key for the Trust Centre and joining node. In
this case, every node has a different link key.

The pre-configured link key must be pre-programmed into the relevant nodes either in the factory or during
commissioning.

The network-level security set-up process is described in Section 6.8.3.1. The active network key can
subsequently be changed at any time, as described in Section 6.8.4.

Once network-level security is set up, application-level security can be set up for more secure communications
- this level of security is applied on top of network-level security. If application-level security is required between
two nodes then a link key must be established for the nodes. This key can be any of the following:

• Pre-configured global link key (as detailed above): This is for communications between the Trust Centre
and all other nodes

• Pre-configured unique link key (as detailed above): This is for communications between the Trust Centre
and one other node

• Trust Centre Link Key (TCLK): This is for communications between the Trust Centre and one other node. It
is randomly generated by the Trust Centre and passed to the relevant node, for which it is encrypted with the
network key and, if it exists, the pre-configured unique link key for the node. The TCLK is then used to encrypt
all subsequent communications with the Trust Centre, replacing any pre-configured link key. The application
should hold on to the pre- configured key, in case it needs to be reinstated in the future (for example, for a re-
join).

• Application link key: This is for communications between a pair of nodes that does not include the Trust
Centre. It is requested from the Trust Centre by one of the two nodes. The Trust Centre randomly generates
the key and associates it with the IEEE/MAC addresses of the two nodes. The Trust Centre passes the key to
each node, for which it is encrypted with the network key and, if it exists, the pre-configured unique link key for
the node.

The application-level security set-up process is described in Section 6.8.3.2.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
58 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Security Key Description

Network-level Security

Network key • Essential key used to encrypt communications between all nodes of the network
• Randomly generated by the Trust Centre
• Distributed to joining nodes, encrypted with a pre-configured link key (see below)

Application-level Security

Global link key (pre-
configured)

• Used between the Trust Centre and all other nodes
• Pre-configured in all nodes (unless a unique link key is pre-configured - see below)
• Also used in joining to encrypt network key transported from Trust Centre to joining node
• If ZigBee-defined, allows nodes from all manufacturers to join the network
• If manufacturer-defined, allows only nodes from one manufacturer to join the network
• Touchlink Pre-configured Link Key is a key of this type
• Distributed Security Global Link Key is a key of this type

Optional key used to encrypt communications between a pair of nodes - may be one of the below
categories:

Pre-configured unique link
key

• Used between the Trust Centre and one other node
• Pre-configured in Trust Centre and relevant node
• Also used in joining to encrypt network key transported from Trust

Centre to joining node
• Install Code-derived Pre-configured Link Key is a key of this type

Trust Centre Link Key
(TCLK)

• Used between the Trust Centre and one other node
• Randomly generated by the Trust Centre
• Distributed to node encrypted with network key and pre- configured

link key (if any)
• Replaces pre-configured link key (if any) but application must retain

the pre-configured key in case it needs to be reinstated

Unique link key

Application link key • Used between a pair of nodes, not including the Trust Centre
• Randomly generated by the Trust Centre
• Distributed to each node encrypted with network key and pre-

configured link key (if any)

Table 5. ZigBee security key summary

Note:

1. A pre-configured unique link key for a node can be derived from an install code on the Trust Centre using
the zps_eAplZdoAddReplaceInstallCodes() function. Install codes are described in the ZigBee 3.0
Devices User Guide (JNUG3131).

2. In order to use a pre-configured link key in a ZigBee 3.0 application that uses the ZigBee Base Device
(see Section 3.4.4, "Device types"), the Base Device attribute bbdbJoinUsesInstallCodeKey must be
enabled and set to TRUE. For more information, refer to the ZigBee 3.0 Devices User Guide (JNUG3131).

6.8.3 Setting up ZigBee security

This section describes how to set up ZigBee security in your application code. Note that if security is enabled in
a ZigBee network then network-level security is always used, while application-level security is optional.

Security is enabled on a node via the device parameter Security Enabled in the ZPS Configuration Editor.
Enabling security also enables many-to-one routing toward the Trust Centre, which becomes a network
concentrator (see Section 3.5.3).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
59 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

A Trust Centre must be nominated (see Section 2.8) using the ZPS Configuration Editor. The Coordinator is
normally chosen as the Trust Centre. The maximum number of nodes that will require the services of the Trust
Centre must be set on the nominated node using the network parameter Route Record Table Size in the ZPS
Configuration Editor (the default number is 4).

Security can be set up in the application code using the function zps_vAplSecSetInitialSecurityState(), which
must be called before zps_eAplAfInit() and zps_eAplZdoStartStack() - see Section 6.1.

Note: As an alternative to using the function zps_vAplSecSetInitialSecurityState() in the application code,
ZigBee security can be set up in the ZPS Configuration Editor (see Section 6.8.3.1).

Once zps_vAplSecSetInitialSecurityState() has been called and the stack has been started, the stack will
automatically manage the subsequent network-level security set-up and implementation.

Network-level security set-up and application-level security set-up are further described in Section 6.8.3.1 and
Section 6.8.3.2 respectively.

Note: Certain functionality on the Trust Centre can be disabled using the zps_vSetTCLockDownOverride()
function. For more information, refer to the function description.

6.8.3.1 Network-level security set-up

The function zps_vAplSecSetInitialSecurityState(), described above, initiates the set-up process for network-
level security and requires the type of initial security key to be specified as one of:

• Pre-configured global link key
• Pre-configured unique link key

These keys are described in Section 5.8.2. They are used to encrypt the network key when it is transported to a
joining node.

The Trust Centre and other nodes must be pre-programmed with the relevant pre- configured link key(s). This
key can be specified in the application code for the node and referenced by zps_vAplSecSetInitialSecurity
State() or can be set through the Key Descriptor parameter Key in the ZPS Configuration Editor on both the
Trust Centre and other node(s). In the case of a unique link key, the IEEE/MAC address of the node must also
be pre-programmed into the Trust Centre along with the link key. For the Key Descriptor parameters, refer to
Section 11.7.9.

Note: Pre-configured link keys entered via the ZPS Configuration Editor are held in a Key Descriptor Table on
the Trust Centre, with one entry for each node/key. The key for a node with a given IEEE/MAC address can be
obtained (locally) from this table using the function zps_psGetActiveKey().

The Trust Centre generates a random network key to be used in network-level communications between all
nodes. When a new node joins the network, the Trust Centre transports this network key, encrypted using the
appropriate pre-configured link key, to the newly joined node.

Note:

1. The application on the Trust Centre can take control (from the stack) of whether a node is allowed to join the
network (possibly using its pre-configured link key) through a user-defined callback function. If required, this
callback function must be registered using the function zps_vTCSetCallback(). For more details, refer to
the function description.

2. When a device joins a ZigBee network and requires authentication which involves transporting a network
key to it, the parent opens an authentication interval during which the joining device must announce itself
to the network. This interval begins from the transmission of a rejoin response (if the device joins through a
NWK layer rejoin) or an association response (if it joins through an IEEE 802.15.4 association). If the device
fails to announce itself during this interval, the parent removes the Neighbor table entry for the joining
device to ensure that the child capacity of the parent is maintained. This authentication interval must be set

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
60 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

on all potential parent nodes via the network parameter APS Security Timeout Period (see Section 11.7),
which is 1 second by default but 6 seconds is a more reasonable setting.

6.8.3.2 Application-level security set-up

Once network-level security has been set up (as described in Section 6.8.3.1), application-level security can
be set up, if required. In application-level security, the communications between two nodes are encrypted/
decrypted using a link key which may be global or unique:

• Global link key: This is shared between all nodes on the network and is pre- configured in all the nodes.
Frame counters are not checked for freshness when using a global link key.

• Unique link key: This is exclusive to a pair of nodes that need to communicate privately. It may be a pre-
configured unique link key, Trust Centre Link Key (TCLK) or application link key. Frame counters are checked
for freshness to prevent rogue nodes replaying stale messages. This provides the most secure method of
application security.

The different types of link key are described in Section 6.8.2and summarized in Table 4 .

In order to set up application-level security with a unique link key between two nodes, the function
zps_eAplZdoRequestKeyReq() must be called on one of the nodes to request a link key from the Trust
Centre. There are two possibilities:

• To request a Trust Centre Link Key (TCLK) for communication between the local node and the Trust Centre -
the Trust Centre will respond with the requested link key

• To request an application link key for communication with another node that is not the Trust Centre (in this
case, the IEEE/MAC address of the other node must be supplied in the function call) - the Trust Centre will
send the requested link key to both nodes

The Trust Centre will ignore the request if the node is not permitted to send APS secured data. The Trust Centre
responses are encrypted as follows:

• If a link key exists for communications between the Trust Centre and the target node (for example, a pre-
configured link key), this key and the network key are both used to encrypt the requested link key.

• Otherwise, only the network key is used to encrypt the requested link key.

On receiving the link key, the ZigBee stack on the node will automatically save the key. The event
zps_EVENT_ZDO_LINK_KEY is generated to indicate that the link key is available. Any subsequent unicast or
bound data transfer between these two nodes can opt to use this key (zps_E_APL_AF_SECURE_APL).

Note: An application link key can be introduced directly by the application using the function
zps_eAplZdoAddReplaceLinkKey().

Note:

1. When a link key is used to encrypt a data packet, the packet payload is encrypted at the application level
using the link key and then the packet is encrypted at the ZigBee stack NWK layer using the network key
(therefore, both keys are used).

2. When application-level security is used in sending data, the IEEE/MAC address and network address of the
target node must be available through the local Address Map table - see Section 6.2.3.

6.8.4 Security key modification

The network key and an application link key can be changed while the network is operating, as described below.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
61 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

6.8.4.1 Network key modification

It is possible to store more than one network key on a node, although only one key can be active at any one
time. Each network key is identified by means of a unique ‘key sequence number’ assigned by the Trust Centre
application.

A new network key can be installed in a node in one of two ways:

• Distributed by the Trust Centre to one or multiple nodes of the network using the function
zps_eAplZdoTransportNwkKey(), which requires the associated key sequence number to be specified

• Requested from the Trust Centre by calling the function

zps_eAplZdoRequestKeyReq() on the node that needs the network key

On reaching its destination(s), the transported key is automatically saved but not activated. A stored network
key can be adopted as the active key using the function zps_eAplZdoSwitchKeyReq(), which is called on the
Trust Centre and which identifies the required key by means of its unique sequence number.

6.8.4.2 Application link key modification

An application link key can be introduced or replaced by the application using
zps_eAplZdoAddReplaceLinkKey(). If a link key already exists for the same node- pair, it will be replaced by
the new link key. The function must be called on both nodes in the pair.

6.9 Using support software features
This section describes certain support software features and how to include them in your application code:

• Message queues are described in Section 6.9.1
• Software timers are described in Section 6.9.2 The referenced API resources are detailed in Chapter 10.

6.9.1 Message queues

Communications between application tasks on a node are implemented via message queues. The application
can create a dedicated message queue for a particular communication channel. A set of functions are
provided to implement message queues, as indicated in Section 6.9.1.1below (these functions are detailed in
Section10.1). The stack requires certain standard queues, as indicated in Section 6.9.1.2 below.

Note: To allow the device to enter sleep mode, the message queues must not contain any messages. All
message queues must first be emptied.

6.9.1.1 General queue management

A queue can be created using the function ZQ_vZQueueCreate(). This function allows the queue size
(number of messages that it can hold) and the size of a message to be specified. A queue is given a unique
handle, which is a pointer to a tszQueue structure containing up-to-date information about the queue (see
Section101.2.1).

A message can be placed in a (created) queue using the function ZQ_bZQueueSend() and a message can be
retrieved from a queue using the function ZQ_bZQueueReceive(). This is illustrated in Figure 13 below.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
62 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Figure 13. Sending/Receiving a Message via a Message Queue

When the above two functions are called, the tszQueuestructure for the queue is automatically updated to
reflect the new state of the queue. Retrieving a message results in the message being deleted from the queue.
The application must regularly poll a message queue through which it expects to receive messages. It can do
this by periodically calling the ZQ_bQueueIsEmpty() function, which checks whether the queue is empty. If
the queue is not empty, it should call ZQ_bZQueueReceive() until there are no more messages in the queue.
The number of messages currently waiting to be collected from the queue can be obtained using the function
ZQ_u32QueueGetQueueMessageWaiting().

6.9.1.2 Standard stack queues

Three standard queues must be created by the application for use by the stack:

• Queue with handle zps_msgMlmeDcfmInd to receive IEEE 802.15.4 MAC command packets from other
nodes

• Queue with handle zps_msgMcpsDcfmInd to receive IEEE 802.15.4 MAC data packets from other nodes
• Queue with handle zps_TimeEvents to receive internal software timer events (such as a timer expiry event)

Example code for the creation of these queues is provided below:

ZQ_vZQueueCreate(&zps_msgMlmeDcfmInd, MLME_QUEUE_SIZE, sizeof(MAC_tsMlmeVsDcfm
Ind),(uint8*)asMacMlmeVsDcfmInd);

ZQ_vZQueueCreate(&zps_msgMcpsDcfmInd, MCPS_QUEUE_SIZE, sizeof(MAC_tsMcpsVsDcfm
Ind),(uint8*)asMacMcpsDcfmInd);

ZQ_vQueueCreate(&zps_TimeEvents,TIMER_QUEUE_SIZE,sizeof(zps_tsTimeEvent),
(uint8*)asTimeEvent);

You simply need to include the above code in your application. You do not need to process these queues in
your code.

More information on the receive queues is provided in Section 15.6.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
63 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

6.9.2 Software timers

The ZigBee 3.0 SDK provides resources that allow an application to implement and interact with software timers
on the local node. Multiple software timers can be used concurrently and they are all derived from the same
source counter, which is the ZigBee Tick Timer.

Note: To allow the device to enter sleep mode, no software timers should be active. Any running software timers
must first be stopped and all timers must be closed.

6.9.2.1 Setting up timers

To set up software timers in your application code, you must:

• Declare an array of ZTIMER_tsTimer structures (see Section 10.2.2.1), where each element/structure
contains information on one timer

• Call the function ZTIMER_vTask() in the while loop of your application - this allows the stack software to
automatically update the structure for each timer as the timer runs

For each timer, a user-defined callback function must be provided, which is referenced from the timer’s
structure. This callback function, ZTIMER_tpfCallback(), is called when the timer expires (reaches its timed
period) in order to perform any operations that the application requires as a result of the timer expiration.

Before any of the software timers can be used, they must be collectively initialized by calling the function
ZTIMER_eInit(). This function takes the array of timer structures as an input.

Before an individual timer can be used, it must be opened using the function ZTIMER_eOpen(). Similarly, when
the timer is no longer required, it should be closed using the function ZTIMER_eClose(). A timer is specified in
these functions by means of its index in the array of timer structures.

6.9.2.2 Operating timers

Once an individual software timer has been opened, it can be run one or more times before it is closed. A
timer can be run by calling the function ZTIMER_eStart(). The timed period must be specified in milliseconds.
On expiration of the timer, the user-defined callback function ZTIMER_tpfCallback() is called to perform any
operations required by the application.

A running timer can be stopped before it expires by calling the function ZTIMER_eStop(). The status of an
individual timer can be obtained at any time using the function ZTIMER_eGetState(). The possible reported
states are Running, Stopped, Expired and Closed.

6.9.3 Critical sections and Mutual Exclusion (Mutex)

The ZigBee 3.0 stack software provides features to prevent sections of application code from being preempted
and/or re-entered. For example, when the application is writing data to memory, it may not be desirable for this
operation to be interrupted and for an interrupt service routine to start writing to the same memory block.

Two features are provided to protect sections of application code:

• Critical Section: A section of application code can be designated as a ‘critical section’, which means that the
execution of this code section cannot be

preempted by an interrupt with a priority level less than 12. A critical section should be short in order to avoid
suspending interrupts for a long period of time.

• Mutual Exclusion (Mutex): It may be desirable for a section of code not to be re-entrant. A ‘mutex’ can be
associated with a code section to prevent it from being entered again before the current execution of the
section has completed.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
64 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

These features are described in more detail in the sub-sections below. The API resources to implement these
features are detailed in Section 9.3.

6.9.3.1 Implementing a critical section

Interrupts with a priority level less than 12 cannot preempt the execution of a critical section of application code
(though higher-priority interrupts can always preempt a critical section). This is illustrated in Figure 14 below,
which shows the interplay between the main application thread and an interrupt service routine (ISR).

Priority of Main thread < Priority of Interrupt Service Routine (ISR) < 12

Figure 14. Critical Section Illustration

6.9.3.1.1 Critical section illustration

Time

A critical section of code must be delimited by the following two functions:

• zps_eEnterCriticalSection() must be called at the start of the critical section.
• zps_eExitCriticalSection() must be called at the end of the critical section.

A mutex can also be optionally associated with a critical section, to protect the section from re-entrancy. If
required, the mutex can be specified in a parameter of zps_eEnterCriticalSection(). Mutexes are described in
Section 5.9.3.2.

To implement critical sections, the application must maintain a ‘priority level’ value u8Level (see Section
9.3.2.1) which contains the current priority level of the main application thread (when critical sections are not
being executed). When a critical section is entered, the priority level of the main thread is increased such that
interrupts with a priority of 11 or less cannot preempt the main thread. At the end of the critical section, the
priority level of the main thread is returned to the value that was contained in u8Level before the critical
section was entered.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
65 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

6.9.3.2 Implementing a Mutex

A mutex can be associated with a section of application code to prevent the section from being re-entered
before the current execution of the section has finished. The section of code to which the mutex will be applied
must be delimited by the following two functions:

• zps_u8GrabMutexLock() must be called at the start of the code section.
• zps_u8ReleaseMutexLock() must be called at the end of the code section.

It is also possible to apply a mutex to a critical section, as described in Section 5.9.3.1.

When applying a mutex, a pointer must be provided to a user-defined mutex function with the following
prototype:

((bool_t*) (*) (void))

This function must define and maintain a Boolean flag which indicates whether the corresponding mutex is
active (TRUE) or inactive (FALSE). This flag is used by the API functions to determine whether the specified
mutex is available. If this flag reads as FALSE at the start of the relevant code section, the mutex is applied and
the above mutex function must set the flag to TRUE, but if the flag is already TRUE then the mutex cannot be
applied (and the API function returns with a failure).

To implement mutex protection, the application must maintain a ‘priority level’ value u8Level (see Section
9.3.2.1) which contains the current priority level of the main application thread (when mutex-protected sections
are not being executed). When a mutex is applied, the priority level of the main thread is increased such that
interrupts with a priority of 11 or less cannot preempt the main thread. When the mutex is released, the priority
level of the main thread is returned to the value that was contained in u8Level before the mutex was applied.

6.10 Advanced features
This section describes the implementation of advanced ZigBee features that have been introduced in ZigBee
3.0.

6.10.1 End device aging

A Router that is a parent needs to maintain its Neighbor table. This involves discarding inactive children (that
may have left the network) in order to make way for potential new children. An End Device Aging mechanism is
available to support this maintenance.

In this mechanism, a timeout is applied to every child entry in the Router’s Neighbor table. If a packet, called a
‘keep-alive’ packet, is not received from an End Device child before its timeout expires, the child is assumed to
be no longer active and is removed from the table (and therefore from the Router’s children).

6.10.1.1 Timeout period

The timeout period is specific to an individual child and is set on the End Device using the function
zps_bAplAfSetEndDeviceTimeout(). This period is communicated to the parent via an End Device Timeout
Request when the End Device joins (or re-joins) the network. The timeout is applied by the Router to the
Neighbor table entry for the End Device. The arrival of a keep-alive packet from the End Device will result in the
timeout being re-started from the beginning. If the timeout is allowed to expire (without a keep-alive packet), the
Router will delete the relevant child entry from the Neighbor table.

• Note 1: The Router initially sets the timeout for all End Device children to the default value defined in the NIB,
which is 256 minutes in the NXP software. The timeout will remain at this value unless changed by the End
Device, as described above.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
66 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• Note 2: After receiving the End Device Timeout Request, the parent will send an End Device Timeout
Response to the End Device, indicating the outcome of the request. If the request has been successful, the
End Device can subsequently send keep-alive packets

6.10.1.2 Keep-alive packets

A keep-alive packet can be sent from the End Device using the function zps_eAplAfSendKeepAlive(). It is
recommended that this function is called at least three times within the timeout period defined for the End
Device, in order to prevent the child from being accidentally removed from the network due to missed keep-alive
packets at the parent.

A keep-alive packet can be either of the following types:

• MAC Data Poll: In this case, the parent may send pending data back to the End Device. The arrival of this
data at the End Device will be indicated by a zps_EVENT_AF_DATA_INDICATION event (as described in
Section 6.5.2).

• End Device Timeout Request: This packet type simply has the effect of re- starting the timeout for the End
Device on the parent, which will return an End Device Timeout Response to the End Device, indicating the
outcome of the request.

The keep-alive packet type to be used is determined by the Router parent and is configured in the NIB on the
parent - in the NXP software, a Router is configured to accept either packet type, by default. This information
is communicated to the End Device in the initial End Device Timeout Response that is sent to the End Device
on joining the network. The zps_eAplAfSendKeepAlive() function will then automatically send the appropriate
keep-alive packet type - where either packet type is accepted by the parent, the function sends a Data Poll
packet.

6.10.2 Distributed security networks

In a traditional ZigBee network, security is implemented by a Trust Centre, which is normally the Coordinator -
this uses a centralized security scheme. In a distributed security network, any Router node can manage security
and so security management is distributed throughout the network. A distributed security network does not have
a Coordinator/Trust Centre, and consists only of Routers and End Devices - any Router can create the network.

In a distributed security network, only network-level security can be implemented. A network key is generated
by the Router that creates the network (as described in Section 6.8.3) and is passed on to other nodes,
including other Routers, as the network grows. During this distribution, the network key is encrypted using a
‘Distributed Security Global Link Key’, which is a type of pre-configured global link key (see Section 6.8.2).

A distributed security network can be started on a Router node using the function zps_eAplFormDistributed
NetworkRouter(). The start parameters are specified through a zps_tsAftsStartParamsDistributed
structure (see Section 8.2.3.7). These parameters include:

• PAN ID
• Extended PAN ID (EPID)
• Radio channel
• Pointer to a location to receive the network key

This first node of the network will generate the network key (saved to the above location) and pass this key to
nodes that join it.

The function zps_eAplFormDistributedNetworkRouter() can also be called on other Router nodes
to join them to the network. An End Device can be joined to a distributed network using the function
zps_eAplInitEndDeviceDistributed().

However, these nodes are more likely to be introduced to the network via other commissioning methods, such
as Touchlink and NFC commissioning.
JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
67 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

6.10.3 Filtering packets on LQI Value/Link cost

This section describes the operation and configuration of the filtering of received data packets based on LQI
value (detected signal strength). Packet filtering results in some received packets with low LQI values being
discarded.

In practice, the measured LQI values of packets are translated into ‘link cost’ values for filtering, as detailed in
Section 6.10.3.1.

Packet filtering is optional and can be beneficial during:

• network joining
• route discovery
• normal network operation

The operation and benefits of packet filtering are described in Section 6.10.3.2. Packet filtering can be enabled
using the function zps_vAplAfEnableMcpsFilter() and modified as described in Section 6.10.3.3.

6.10.3.1 Link cost

For the purpose of packet filtering, LQI values are translated into ‘link cost’ values. Thus, a range of LQI values
maps to a single link cost, which is an integer value. The default mappings implemented by the ZigBee PRO
stack are shown in the table below.

LQI Range Link Cost

≥ 51 1

46 - 50 2

41 - 45 3

39 - 40 4

36 - 38 5

25 - 35 6

≤ 24 7

Table 6. ‘LQI to Link Cost’ Mappings

The above mappings can be modified, as described in Section 6.10.3.3. A link cost of 5 is used as the
packet filtering threshold by the NXP ZigBee PRO stack. Thus, packets with link costs greater than 5 may
be discarded. For the device, this threshold is more suitable than the value of 3 proposed in the ZigBee
specification. However, the threshold is configurable, as described in Section 6.10.3.3.

6.10.3.2 Packet filtering in operation

Packet filtering is an optional feature of the ZigBee PRO stack that is applied by the IEEE 802.15.4 MAC layer.
It is useful during network joining, route discovery and normal network operation to optimize the processing of
received packets.

6.10.3.2.1 Network joining

During network joining, a form of packet filtering is applied to the results of the network discovery phase. Any
potential parents that have been discovered are filtered such that nodes with link costs greater than 5 (low LQI
values) are discarded. This feature aids the formation of networks with strong links between neighbors and is

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
68 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

most effective in dense networks. For more information about this process during network joining, refer to the
ZigBee specification.

6.10.3.2.2 Route discovery and normal network operation

In a large network, traffic levels are high during both route discovery and normal operation, and a node is likely
to receive many data packets. There is, however, limited storage capacity on a node to hold these packets until
they can be processed. To restrict the number of received packets that are submitted to the receive queue, the
following filtering system is applied:

• All unicast packets are queued (without filtering) provided that sufficient space is available in the receive
queue.

• Broadcast packets are queued provided that at least 50% of the receive queue capacity is free, otherwise the
packet filtering mechanism is applied and only packets with a link cost of 5 or less are queued.

During route discovery, this filtering prevents nodes with low associated LQI values from being entered into the
Neighbor table, allowing reliable routes to be established. For example, it may be more desirable to establish a
route comprising multiple hops with good LQI values than a single hop with a poor LQI value.

6.10.3.3 Packet filtering configuration

Packet filtering is disabled by default but can be enabled and re-configured as described below.

6.10.3.3.1 Basic configuration

The function zps_vAplAfEnableMcpsFilter() allows the stack’s packet filtering to be enabled and the link cost
threshold to be adjusted (from the default value of 5). This function is detailed in Section 8.1.1. If required, it can
be called at any time after zps_eAplAfInit().

6.10.3.3.2 Link cost configuration

The mappings between LQI values and link costs can be modified from the default mappings detailed in Section
6.10.3.1. To modify the mappings, the following function must be user-defined, which translates an LQI value
(input) into a link cost (output):

uint8 APP_u8LinkCost(uint8 u8Lqi);

An example function that implements the default mapping is shown below:

PRIVATE uint8 APP_u8LinkCost (uint8 u8Lqi)
 {
 uint8 u8Lc;
 if (u8Lqi > 50)
 {
 u8Lc = 1;
 }
 else if ((u8Lqi <= 50) && (u8Lqi > 45))
 {
 u8Lc = 2;
 }
 else if ((u8Lqi <= 45) && (u8Lqi > 40))
 {
 u8Lc = 3;
 }
 else if ((u8Lqi <= 40) && (u8Lqi > 38))
 {

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
69 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

 u8Lc = 4;
 }
 else if ((u8Lqi <= 38) && (u8Lqi > 35))
 {
 u8Lc = 5;
 }
 else if ((u8Lqi <= 35) && (u8Lqi > 24))
 {
 u8Lc = 6;
 }
 else
 {
 u8Lc = 7;
 }
 return u8Lc;
 }

The above function must be registered as a callback function using the following callback registration function
zps_vNwkLinkCostCallbackRegister(), which is detailed in Section 8.1.1. This function takes a pointer to
the APP_u8LinkCost() function to be registered. If required, the registration function must be called before
zps_eAplAfInit(), and on both cold and warm starts.

6.10.4 Device permissions

The function zps_eAplZdoSetDevicePermission() allows certain permissions to be set on the local device.
These permissions are as follows:

Enumeration Description

zps_DEVICE_PERMISSIONS_ALL_PERMITED Allow all requests from other nodes

zps_DEVICE_PERMISSIONS_JOIN_DISALLOWED Do not allow join requests from other nodes

zps_DEVICE_PERMISSIONS_DATA_REQUEST_DISALLOWED Do not allow data requests from other nodes and
disable end-to-end acknowledgments

Table 7. Device permissions

When a device joins the network, the ALL_PERMITED option is set by default, so the device can respond to
requests from other nodes.

However, if the network employs security set up using the ZigBee Key Establishment cluster (for example, a
Smart Energy network), it is necessary to disallow data requests and end-to-end acknowledgments on the
newly joined node during the key establishment process. The application must do this as follows:

1. Once an event has occurred to indicate that the device has joined the network (the event
zps_EVENT_NWK_JOINED_AS_ROUTER or zps_EVENT_NWK_JOINED_AS_ENDDEVICE),
the application must disallow data requests and APS end-to-end acknowledgments by calling
zps_eAplZdoSetDevicePermission() with the option DATA_REQUEST_DISALLOWED.

2. The key establishment process can then be started using the function provided for the Key Establishment
cluster.

3. Once the key establishment process has successfully completed, data requests and APS end-to-end
acknowledgments can be allowed again by calling zps_eAplZdoSetDevicePermission() with the
ALL_PERMITED option.

The key establishment process and associated resources are fully described in the documentation for the Key
Establishment cluster (for example, in the ZigBee Smart Energy User Guide).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
70 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

7 ZigBee Device Objects (ZDO) API

The chapter describes the resources of the ZigBee Device Objects (ZDO) API. This API is primarily
concerned with starting, forming, and modifying a ZigBee PRO network. The API is defined in the header file
zps_apl_zdo.h.

In this chapter:

• Section 7.1 details the ZDO API functions.
• Section 7.2 details the ZDO API enumerations.

7.1 ZDO API functions
The ZDO API functions are divided into the following categories:

1. Network Deployment functions, described in Section 7.1.1.
2. Security functions, described in Section 7.1.2.
3. Addressing functions, described in Section 7.1.3.
4. Routing functions, described in Section 7.1.4.
5. Object Handle functions, described in Section 7.1.5.
6. Optional Cluster function, described in Section 7.1.6.

7.1.1 Network deployment functions

The ZDO Network Deployment functions are used to start the ZigBee PRO stack, and allow devices to join the
network and bind to each other, as well as leave the network.

The functions are listed below.

7.1.1.1 Function page

1. ZPS_eAplZdoStartStack
2. ZPS_vDefaultStack
3. ZPS_eAplZdoGetDeviceType
4. ZPS_eAplZdoDiscoverNetworks
5. ZPS_eAplZdoJoinNetwork
6. ZPS_eAplZdoRejoinNetwork
7. ZPS_eAplZdoDirectJoinNetwork
8. ZPS_eAplZdoOrphanRejoinNetwork
9. ZPS_eAplZdoPermitJoining

10. ZPS_u16AplZdoGetNetworkPanId
11. ZPS_u64AplZdoGetNetworkExtendedPanId
12. ZPS_u8AplZdoGetRadioChannel
13. ZPS_eAplZdoBind
14. ZPS_eAplZdoUnbind
15. ZPS_eAplZdoBindGroup
16. ZPS_eAplZdoUnbindGroup
17. ZPS_ePurgeBindTable
18. ZPS_eAplZdoPoll
19. ZPS_eAplZdoLeaveNetwork
20. ZPS_vNwkNibSetLeaveAllowed

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
71 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

21. ZPS_vNwkNibSetLeaveRejoin
22. ZPS_vSetTablesClearOnLeaveWithoutRejoin
23. ZPS_vNtSetUsedStatus
24. ZPS_vNwkSendNwkStatusCommand
25. ZPS_eAplZdoRegisterZdoLeaveActionCallback

Note: The ZDO initialization and start stack functions use network parameter values that have been pre-set
and saved using the steps described in Chapter 13, ZPS Configuration Editor .

7.1.1.2 ZPS_eAplZdoStartStack

ZPS_teStatus ZPS_eAplZdoStartStack(void);

Description

This function starts the ZigBee PRO stack. The steps taken depend on the node type:

• If the device is the Coordinator, this function starts the network formation process.
• If the device is a Router or End Device, this function starts the network discovery process - that is, the device

searches for a network to join.

When the stack starts, the 2400 MHz radio channel to be used by the device is selected. The channels (in the
range 11 to 26) available to the device should be specified in advance using the ZPS Configuration Editor (see
Chapter 13) and can be either of the following:

• A fixed channel
• A set of channels for a channel scan:

– If the device is the Coordinator, this is the set of channels that the device scans to find a suitable operating
channel for the network.

– If the device is a Router or End Device, this is the set of channels that the device scans to find a network to
join.

If this function successfully initiates network formation or discovery, it returns ZPS_E_SUCCESS. Subsequent
results from this process are then reported through stack events (see Section 11.1 for details of these events):

• If the Coordinator successfully creates a network, the event ZPS_EVENT_NWK_STARTED is generated.
Otherwise, the event ZPS_EVENT_NWK_FAILED_TO_START is generated.

• When the network discovery process for a Router or End Device is complete, the subsequent actions depend
on the Extended PAN ID (EPID) that is pre-set using the ZPS Configuration Editor:
– If a zero EPID value was pre-set, the stack event ZPS_EVENT_NWK_DISCOVERY_COMPLETE is generated.

This includes a list of the detected networks and the index (in the list) of the recommended network to join.
You can then call ZPS_eAplZdoJoinNetwork() to join the desired network.

– If a non-zero EPID value was pre-set, the device automatically attempts to join the network with this EPID,
provided that such a network has been discovered. Note that the ‘permit joining’ setting of the potential
parent is ignored.

The maximum depth (number of levels below the Coordinator) of the network is 15.

7.1.1.2.1 Parameters

None

7.1.1.2.2 Returns

• ZPS_E_SUCCESS (stack started and network formation/discovery begun)

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
72 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

7.1.1.3 ZPS_vDefaultStack

void ZPS_vDefaultStack(void);

Description

This function can be used to reset the ZigBee PRO stack to its default state. It removes previous context data
for the stack, but leaves NWK layer frame counters intact.

Note: After calling this function, all security keys must be re-configured.

Parameters None

Returns None

7.1.1.4 ZPS_eAplZdoGetDeviceType

ZPS_teZdoDeviceType ZPS_eAplZdoGetDeviceType(void);

Description

This function can be used to obtain the ZigBee node type (Coordinator, Router, or End Device) of the local
node.

Parameters

None

Returns

ZigBee node type, one of:

• ZPS_ZDO_DEVICE_COORD (Coordinator)
• ZPS_ZDO_DEVICE_ROUTER (Router)
• ZPS_ZDO_DEVICE_ENDDEVICE (End Device)

7.1.1.5 ZPS_eAplZdoDiscoverNetworks

ZPS_teStatus ZPS_eAplZdoDiscoverNetworks(uint32 u32ChannelMask);

Description

This function can be used by a Router or End Device to initiate a network discovery

- that is, to find a network to join.

A network discovery is performed when the stack is started using the function ZPS_eAplZdoStartStack().
The function ZPS_eAplZdoDiscoverNetworks() can be used to perform subsequent network discoveries (for
example, if the initial search did not yield any suitable networks).

As part of this function call, you must specify a value which indicates the 2400-MHz radio channels (numbered
11 to 26) to be used in the network search. There are two ways of setting this parameter:

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
73 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• A single value in the range 11 to 26 can be specified, indicating that the corresponding channel (and no other)
must be used - for example, 12 indicates use channel 12.

• A 32-bit mask can be used to specify a set of channels that the device will scan to find a network - each of bits
11 to 26 represents the corresponding radio channel, where the channel will be included in the scan if the bit
is set to 1 (and excluded if cleared to 0). Therefore, the value 0x07FFF800 represents all channels.

Note: If an invalid value is specified for this parameter, the default value of 0x07FFF800 (all channels) will be
used.

If this function successfully initiates a network discovery, ZPS_E_SUCCESS will be returned. The network
discovery results will then be reported through the event ZPS_EVENT_NWK_DISCOVERY_COMPLETE (for
details of this event, refer to Section 7.2.2.9). This includes a list of the detected networks and the index (in the
list) of the recommended network to join. You should then call ZPS_eAplZdoJoinNetwork() to join the desired
network.

Parameters

u32ChannelMask Radio channel(s) for network discovery (see above)

Returns

ZPS_E_SUCCESS (network discovery started)

• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

7.1.1.6 ZPS_eAplZdoJoinNetwork

ZPS_teStatus ZPS_eAplZdoJoinNetwork(ZPS_tsNwkNetworkDescr *psNetworkDescr);

Description

This function can be used by a Router or End Device to send a request to join a particular network, following a
network discovery.

The required network is specified using its network descriptor, obtained in a
ZPS_EVENT_NWK_DISCOVERY_COMPLETE event which results from a network discovery previously
implemented using ZPS_eAplZdoStartStack() or ZPS_eAplZdoDiscoverNetworks(). For details of this event,
refer to Section 8.2.2.9.

If the join request is successfully sent, the function will return ZPS_E_SUCCESS (note that this does not mean
that device has joined the network). The result of the join request will then be reported through a stack event
(see Section 11.1for details of these events):

• If the device successfully joined the network as a Router, the event
ZPS_EVENT_NWK_JOINED_AS_ROUTER is generated. The allocated 16-bit network address of the Router
is returned as part of this stack event.

• If the device successfully joined the network as an End Device, the event
ZPS_EVENT_NWK_JOINED_AS_ENDDEVICE is generated. The allocated 16-bit network address of the
End Device is returned as part of this stack event.

• If the join request was unsuccessful, the event ZPS_EVENT_NWK_FAILED_TO_JOIN is generated.

Note: Note that nodes can join a ZigBee PRO network to a maximum depth of 15 (levels below the
Coordinator).

Parameters

*psNetworkDescr Pointer to network descriptor of network to join.
JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
74 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Returns

• ZPS_E_SUCCESS (join request successfully sent)

• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

7.1.1.7 ZPS_eAplZdoRejoinNetwork

ZPS_teStatus ZPS_eAplZdoRejoinNetwork(bool_t bWithDiscovery);

This function can be used by an active Router or End Device to send a request to rejoin its previous
network. The function should be called if the application detects that it has lost its connection to the network
- this is indicated by an excessive number of failed communications (for example, with many missing
acknowledgments).

Options are provided to first perform a network discovery to find potential parents to join or simply rejoin the
previous parent.

If the rejoin request is successfully sent, the function returns ZPS_E_SUCCESS. Note that this does not mean
that device has rejoined the network. The result of the rejoin request is then reported through a stack event (see
Section 10.1 for details of these events):

• If the device successfully rejoined the network as a Router, the event
ZPS_EVENT_NWK_JOINED_AS_ROUTER is generated.

• If the device successfully rejoined the network as an End Device, the event
ZPS_EVENT_NWK_JOINED_AS_ENDDEVICE is generated.

• If the rejoin request was unsuccessful, the event ZPS_EVENT_NWK_FAILED_TO_JOIN is generated.

In the case of a successful rejoin, the node will retain its previously allocated 16-bit network address.

Note that the ‘permit joining’ status of the potential parent is ignored during a rejoin.

Parameters

bWithDiscovery Specifies whether a network discovery is required:

• TRUE - perform network discovery before rejoining
• FALSE - rejoin previous parent

• TRUE - perform network discovery before rejoining
• FALSE - rejoin previous parent

ZPS_E_SUCCESS (rejoin request successfully sent)

• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

7.1.1.8 ZPS_eAplZdoDirectJoinNetwork

ZPS_teStatus ZPS_eAplZdoDirectJoinNetwork(uint64 u64Addr, uint16 u16Addr, uint8
 u8Capability);

Description

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
75 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

This function can be used on a Router and on the Coordinator to pre-determine the child nodes that will directly
join it. The function is called to register each child node separately, and the IEEE/MAC and network addresses
of the child node must be specified. The function adds the registered node to its Neighbor table (it actually
adds the node’s IEEE/MAC address to the MAC Address table and then includes the index of this address in a
Neighbor table entry for the node).

The function must be called only when the parent node is fully up and running in the network. Since the child
node has not yet joined the network but is in the Neighbor table, it will be perceived by the parent as having
been orphaned. Therefore, when the child node attempts to join the network, it must perform a rejoin as an
orphan by calling the function ZPS_eAplZdoOrphanRejoinNetwork().

Note: You should only modify the Neighbor table using this function and never write to it directly.

Parameters

• u64Addr IEEE/MAC address of child node to be registered
• u16Addr Network address of child node to be registered
• u8Capability A bitmap indicating the operational capabilities of the child node - this bitmap is detailed in

Table 14 in section Section 8.2.2.10.

Returns

• ZPS_E_SUCCESS (child node successfully registered)
• ZPS_APL_APS_E_ILLEGAL_REQUEST (address 0x0, address 0xFFFFFFFFFFFFFFFF, own address, ZDO

busy)
• ZPS_NWK_ENUM_ALREADY_PRESENT
• ZPS_NWK_ENUM_NEIGHBOR_TABLE_FULL

7.1.1.9 ZPS_eAplZdoOrphanRejoinNetwork

ZPS_teStatus ZPS_eAplZdoOrphanRejoinNetwork(void);

This function can be used by an orphaned node to attempt to rejoin the network - the orphaned node may be an
End Device or a Router. The function should also be used for a first-time join for which the parent has been pre-
determined using the function ZPS_eAplZdoDirectJoinNetwork().

The function starts the stack on the node. Therefore, when this function is used, there is no need to explicitly
start the stack using ZPS_eAplZdoStartStack().

If the rejoin request is successfully sent, the function will return ZPS_E_SUCCESS (note that this does not
mean that device has rejoined the network). The result of the rejoin request will then be reported through a
stack event (see Section 10.1 for details of these events):

• If the device successfully rejoined the network as a Router, the event ZPS_EVENT_NWK_JOINED_AS_ROUTER
is generated.

• If the device successfully rejoined the network as an End Device, the event
ZPS_EVENT_NWK_JOINED_AS_ENDDEVICE is generated.

• If the rejoin request was unsuccessful, the event ZPS_EVENT_NWK_FAILED_TO_JOIN is generated.

In the case of a successful rejoin of a genuinely orphaned node, the node will retain its previously allocated 16-
bit network address.

Note: The ‘permit joining’ status of the potential parent is ignored during a rejoin.

7.1.1.9.1 Parameters

None

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
76 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

7.1.1.9.2 Returns

• ZPS_E_SUCCESS (rejoin request successfully sent)
• ZPS_APL_APS_E_ILLEGAL_REQUEST (missing EPID, called from Coordinator, ZDO busy)

7.1.1.10 ZPS_eAplZdoPermitJoining

ZPS_teStatus ZPS_eAplZdoPermitJoining(
 uint8 u8PermitDuration);

7.1.1.10.1 Description

This function can be used on a Router or the Coordinator to control whether new child nodes are allowed to join
it - that is, to set the node’s ‘permit joining’ status. The function can be used to enable joining permanently or for
a fixed duration, or to disable joining (permanently).

The specified parameter value determines the ‘permit joining’ status, as follows:

• 0: Disables joining
• 1- 254: Enables joining for specified time interval, in seconds
• 255: Enables joining permanently

For example, if the parameter is set to 60, joining is enabled for the next 60 seconds and then automatically
disabled.

Note: The ‘permit joining’ setting of a device is ignored during a join attempt in which a non-zero Extended PAN
ID is specified on the joining device and during any rejoin attempt.

7.1.1.10.2 Parameters

u8PermitDuration Time duration, in seconds, for which joining will be permitted (see above)

7.1.1.10.3 Returns

• ZPS_E_SUCCESS (‘permit joining’ status successfully set)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

7.1.1.11 ZPS_u16AplZdoGetNetworkPanId

uint16 ZPS_u16AplZdoGetNetworkPanId(void);

7.1.1.11.1 Description

This function obtains the 16-bit PAN ID of the ZigBee network to which the local node currently belongs.

7.1.1.11.2 Parameters

None.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
77 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

7.1.1.11.3 Returns

PAN ID of current network.

7.1.1.12 ZPS_u64AplZdoGetNetworkExtendedPanId

uint64 ZPS_u64AplZdoGetNetworkExtendedPanId(void)

7.1.1.12.1 Description

This function obtains the 64-bit Extended PAN ID (EPID) of the ZigBee PRO network to which the local node
currently belongs.

7.1.1.12.2 Parameters

None

7.1.1.12.3 Returns

Extended PAN ID of current network.

7.1.1.13 ZPS_u8AplZdoGetRadioChannel

uint8 ZPS_u8AplZdoGetRadioChannel(void);

7.1.1.13.1 Description

This function obtains the 2400-MHz band channel in which the local node is currently operating. The channel is
represented by an integer in the range 11 to 26.

7.1.1.13.2 Parameters

None.

7.1.1.13.3 Returns

Radio channel number (in range 11-26).

7.1.1.14 ZPS_eAplZdoBind

ZPS_teStatus ZPS_eAplZdoBind(
 uint16 u16ClusterId,
 uint8 u8SrcEndpoint,
 uint16 u16DstAddr,
 uint64 u64DstIeeeAddr,
 uint8 u8DstEndpoint);

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
78 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

7.1.1.14.1 Description

This function requests a binding to be created between an endpoint on the local node and an endpoint on a
remote node. The source endpoint and cluster must be specified, as well as the destination node and endpoint.
The destination node is specified using both its 64-bit IEEE (MAC) address and its 16-bit network address.

The binding is added to the binding table on the local node.

A binding to multiple remote endpoints (collected into a group) can be created using the function
ZPS_eAplZdoBindGroup().

7.1.1.14.2 Parameters

u16ClusterId Identifier of cluster on source node to be bound u8SrcEndpoint Number of endpoint (1-240) on
source node to be bound u16DstAddr 16-bit network address of destination for binding u64DstIeeeAddr 64-bit
IEEE (MAC) address of destination for binding u8DstEndpoint Number of endpoint on destination node to be
bound

7.1.1.14.3 Returns

• ZPS_E_SUCCESS (binding successfully created)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

7.1.1.15 ZPS_eAplZdoUnbind

ZPS_teStatus ZPS_eAplZdoUnbind(
 uint16 u16ClusterId,
 uint8 u8SrcEndpoint,
 uint16 u16DstAddr,
 uint64 u64DstIeeeAddr,
 uint8 u8DstEndpoint);

7.1.1.15.1 Description

This function requests an existing binding to be removed between an endpoint on the local node and an
endpoint on a remote node, where this binding was created using the function ZPS_eAplZdoBind(). The
source endpoint and cluster must be specified, as well as the destination node and endpoint. The destination
node is specified using both its 64-bit IEEE (MAC) address and its 16-bit network address.

The binding is removed from the binding table on the local node.

7.1.1.15.2 Parameters

u16ClusterId Identifier of bound cluster on source node u8SrcEndpoint Number of bound endpoint (1-240) on
source node u16DstAddr 16-bit network address of destination for binding u64DstIeeeAddr 64-bit IEEE (MAC)
address of destination for binding u8DstEndpoint Number of bound endpoint on destination node

7.1.1.15.3 Returns

• ZPS_E_SUCCESS (binding successfully removed)
• APS return codes, listed and described in Section 11.2.2

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
79 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

7.1.1.16 ZPS_eAplZdoBindGroup

ZPS_teStatus ZPS_eAplZdoBindGroup(
 uint16 u16ClusterId,
 uint8 u8SrcEndpoint,
 uint16 u16DstGrpAddr);

7.1.1.16.1 Description

This function requests a binding to be created between an endpoint on the local node and multiple endpoints
on remote nodes. The source endpoint and cluster must be specified, as well as the destination nodes/
endpoints for the binding, which must be specified using a 16-bit group address, previously set up using
ZPS_eAplZdoGroupEndpointAdd().

The binding is added to the binding table on the local node.

7.1.1.16.2 Parameters

u16ClusterId Identifier of cluster on source node to be bound u8SrcEndpoint Number of endpoint (1-240) on
source node to be bound u16DstGrpAddr 16-bit group address of destination group for binding

7.1.1.16.3 Returns

• ZPS_E_SUCCESS (binding successfully created)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

7.1.1.17 ZPS_eAplZdoUnbindGroup

ZPS_teStatus ZPS_eAplZdoUnbindGroup(
 uint16 u16ClusterId,
 uint8 u8SrcEndpoint,
 uint16 u16DstGrpAddr);

7.1.1.17.1 Description

This function requests an existing binding to be removed between an endpoint on the local node and a group of
endpoints on remote nodes, where this binding was created using the function ZPS_eAplZdoBindGroup(). The
source endpoint and cluster must be specified, as well as the destination nodes/endpoints for the binding, which
must be specified using a 16-bit group address.

The binding is removed from the binding table on the local node.

7.1.1.17.2 Parameters

u16ClusterId Identifier of bound cluster on source node

u8SrcEndpoint Number of bound endpoint (1-240) on source node

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
80 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

u16DstGrpAddr 16-bit group address of bound destination group

7.1.1.17.3 Returns

• ZPS_E_SUCCESS (binding successfully removed)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

7.1.1.18 ZPS_ePurgeBindTable

ZPS_teStatus ZPS_ePurgeBindTable(void);

7.1.1.18.1 Description

This function removes all bindings from the binding table on the local node.

7.1.1.18.2 Parameters

None

7.1.1.18.3 Returns

• ZPS_E_SUCCESS (binding successfully removed)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

7.1.1.19 ZPS_eAplZdoPoll

ZPS_teStatus ZPS_eAplZdoPoll(void);

7.1.1.19.1 Description

This function can be used by an End Device to poll its parent for pending data.

Since an End Device is able to sleep, messages addressed to the End Device are buffered by the parent
for delivery when the child is ready. This function requests this buffered data and should normally be called
immediately after waking from sleep.

This function call will trigger a confirmation event, ZPS_EVENT_NWK_POLL_CONFIRM, if the poll
request is successfully sent to the parent. The subsequent arrival of data from the parent is indicated by a
ZPS_EVENT_APS_DATA_INDICATION event. Any messages forwarded from the parent should then be
collected using the function ZQ_bZQueueReceive().

7.1.1.19.2 Parameters

None

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
81 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

7.1.1.19.3 Returns

• ZPS_E_SUCCESS
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

7.1.1.20 ZPS_eAplZdoLeaveNetwork

ZPS_teStatus ZPS_eAplZdoLeaveNetwork(
 uint64 u64Addr,
 bool bRemoveChildren,
 bool bRejoin);

7.1.1.20.1 Description

This function can be used to request a node to leave the network. The leaving node can be a child of the
requesting node or can be the requesting node itself (excluding the Coordinator).

The node being asked to leave the network is specified by means of its IEEE (MAC) address (or zero, if a node
is requesting itself to leave the network). You must also:

• Use the parameter bRemoveChildren to specify whether children of the leaving node must leave their parent
- if this is the case, the leaving node will automatically call ZPS_eAplZdoLeaveNetwork() for each of its
children. This parameter must always be set to FALSE when the function is called on an End Device (as there
are no children).

• Use the parameter bRejoin to specify whether the leaving node must attempt to rejoin the network (probably
via another parent) immediately after leaving.

Note: If you wish to move a whole network branch from under the requesting node to a different parent node,
set bRemoveChildren to FALSE and bRejoin to TRUE.

If this function successfully initiates the removal of a node, ZPS_E_SUCCESS will be returned. Subsequently,
when the removal is complete, the stack event ZPS_EVENT_NWK_LEAVE_CONFIRM is generated. For details
of this event, refer to Section 7.2.2.12.

7.1.1.20.2 Parameters

u64Addr 64-bit IEEE (MAC) address of node to leave network (zero value will cause requesting node to leave
network)

bRemoveChildren Boolean value indicating whether children of leaving node must leave their parent:

TRUE: Children to leave FALSE: Children not to leave

bRejoin Boolean value indicating whether leaving node must attempt to rejoin network immediately after
leaving:

TRUE: Rejoin network immediately FALSE: Do not rejoin network

7.1.1.20.3 Returns

• ZPS_E_SUCCESS (removal of node successfully started)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
82 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

7.1.1.21 ZPS_vNwkNibSetLeaveAllowed

void ZPS_vNwkNibSetLeaveAllowed(void *pvNwk,
 bool bLeave);

7.1.1.21.1 Description

This function can be called on a Router or End Device to determine whether the device should leave the
network on receiving a leave request. It has no effect on a Coordinator.

• If called with bLeave set to TRUE, the device obeys a leave request.
• If called with bLeave set to FALSE, the device ignores a leave request.

7.1.1.21.2 Parameters

• pvNwk Pointer to NWK layer instance

• bLeave Boolean value indicating whether the device leaves the network when requested or ignores leave
request messages:
– TRUE - Obey leave request messages.
– FALSE - Ignore leave request messages.

7.1.1.21.3 Returns

None

7.1.1.22 ZPS_vNwkNibSetLeaveRejoin

void ZPS_vNwkNibSetLeaveRejoin(void *pvNwk,
 bool bRejoin);

7.1.1.22.1 Description

This function can be called on a Router or End Device to configure the device to automatically rejoin after
leaving the network, even when a ‘leave without rejoin’ was requested.

• If called with bRejoin set to TRUE, the device will rejoin following a leave.
• If called with bRejoin set to FALSE, the device will not rejoin following a leave.

7.1.1.22.2 Parameters

• pvNwk Pointer to NWK layer instance
• bLeave Boolean value indicating whether the device will rejoin the network following a leave:

– TRUE - Rejoin the network
– FALSE - Do not rejoin the network

7.1.1.22.3 Returns

None

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
83 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

7.1.1.23 ZPS_vSetTablesClearOnLeaveWithoutRejoin

void ZPS_vSetTablesClearOnLeaveWithoutRejoin(
 bool_t bClear);

7.1.1.23.1 Description

This function can be called on a Router or End Device to configure whether various tabulated context data must
be cleared from the node when it leaves the network without the intention to rejoin.

By default, the Neighbor table, Binding table and Group table are cleared on a Router, and the network key is
cleared on a Router and End Device. In addition, other devices remove the node from their Binding tables on
detecting the leave request (without the rejoin flag set).

This function can be used to over-ride this behavior in order to preserve this table data. It can also be used to
later reinstate the default behavior.

7.1.1.23.2 Parameters

• bClear Boolean value indicating whether the node should clear the table data when leaving the network
without a future rejoin:
– TRUE - Clear table data (default behavior)
– FALSE - Do not clear table data

7.1.1.23.3 Returns

None

7.1.1.24 ZPS_vNtSetUsedStatus

void ZPS_vNtSetUsedStatus(
 void *pvNwk,
 ZPS_tsNwkActvNtEntry *psActvNtEntry,
 bool_t bStatus);

7.1.1.24.1 Description

This function can be used to set the status of a local Neighbor Table to either ‘used’ or ‘unused’:

• Setting the status of an entry to unused effectively removes the entry from the table.
• Setting the status of an entry to used effectively adds an entry to the table.

When adding an entry to the table, it is first necessary for the application to find an entry marked unused. The
entry can then be populated with data and marked as used via this function.

7.1.1.24.2 Parameters

• pvNwk Pointer to NWK layer instance
• psActvNtEntry Pointer to Neighbor Table entry to access (this must be populated with data when adding a

new entry to the table)
• bStatus Entry status to be set:

– TRUE - Set entry status to ‘used’
– FALSE - Set entry status to ‘unused’

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
84 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

7.1.1.24.3 Returns

None

7.1.1.25 ZPS_vNwkSendNwkStatusCommand

void ZPS_vNwkSendNwkStatusCommand(
 void *pvNwk,
 uint16 u16DstAddress,
 uint16 u16TargetAddress,
 uint8 u8CommandId,
 uint8 u8Radius);

7.1.1.25.1 Description

This function can be used to send a network status command to another node. For example, it can be used by
an End Device to report a routing problem (concerning a remote node) to its parent.

7.1.1.25.2 Parameters

• pvNwk Pointer to NWK layer instance
• u16DstAddress Network address of the remote node to which the status command relates (for example, the

node for which a routing problem is being reported)
• u16TargetAddress Network address of the node to which the status command is to be sent (for example, the

parent of the local node)
• u8CommandId Value representing the network status command to be sent (the possible values are provided

in the ZigBee PRO specification)
• u8Radius Maximum number of hops permitted to target node (zero value specifies that default maximum is to

be used)

7.1.1.25.3 Returns

None

7.1.1.26 ZPS_eAplZdoRegisterZdoLeaveActionCallback

void ZPS_eAplZdoRegisterZdoLeaveActionCallback(
 void *fnPtr);

7.1.1.26.1 Description

This function can be used to register a user-defined callback function that will be invoked when a leave request,
a management leave request or a remove device request (from a remote node, normally the Trust Centre)
is received by the local node. The callback function must determine whether the request must be obeyed or
ignored by the stack - this decision may depend on the originator of the request.

The prototype of the callback function is as follows:

bool_t ZPS_bPerformLeaveActionDecider(uint8 u8Value,

uint64 u64Address, uint8 u8Flags);

where:
JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
85 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• u8Value is an enumerated value indicating the type of request - one of: ZPS_LEAVE_ORIGIN_NLME (NLME-
LEAVE.request from NWK layer) ZPS_LEAVE_ORIGIN_MGMT_LEAVE (management leave request)
ZPS_LEAVE_ORIGIN_REMOVE_DEVICE (remove request from remote node)

• u64Address is the IEEE/MAC address of the node that issued the request
• u8Flags is a user-defined bitmap containing flagged information

The callback function must return TRUE to allow or FALSE to disallow the requested leave.

7.1.1.26.2 Parameters

fnPtr: Pointer to user-defined callback function to be registered.

7.1.1.26.3 Returns

None

7.1.2 Security functions

The ZDO Security functions are used to set up network security (at the ‘standard’ level), including the keys used
in the encryption/decryption of network communications.

The functions are listed below.

7.1.2.1 Function page

1. ZPS_vAplSecSetInitialSecurityState
2. ZPS_eAplZdoTransportNwkKey
3. ZPS_eAplZdoSwitchKeyReq
4. ZPS_eAplZdoRequestKeyReq
5. ZPS_eAplZdoAddReplaceLinkKey
6. ZPS_eAplZdoAddReplaceInstallCodes
7. ZPS_eAplZdoRemoveLinkKey
8. ZPS_eAplZdoRemoveDeviceReq
9. ZPS_eAplZdoSetDevicePermission

10. ZPS_bAplZdoTrustCenterSetDevicePermissions
11. ZPS_bAplZdoTrustCenterGetDevicePermissions
12. ZPS_bAplZdoTrustCenterRemoveDevice
13. ZPS_vTcInitFlash
14. ZPS_vSetTCLockDownOverride
15. ZPS_psGetActiveKey
16. ZPS_vTCSetCallback

Note:

1. Before using the above functions on a node, security must be enabled on the node via the device parameter
Security Enabled in the ZPS Configuration Editor (security is enabled by default).

2. Enabling security also enables many-to-one routing toward the Trust Centre, which then becomes a network
concentrator. You must set the maximum number of nodes to be serviced by the Trust Centre using its
network parameter Route Record Table Size in the ZPS Configuration Editor (the default number is
4).

3. Many of the security settings and keys that are set up using the above functions can alternatively be pre-
configured via the ZPS Configuration Editor.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
86 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

7.1.2.2 ZPS_vAplSecSetInitialSecurityState

ZPS_teStatus ZPS_vAplSecSetInitialSecurityState(
 ZPS_teZdoNwkKeyState eState,
 uint8 *pu8Key,
 uint8 u8KeySeqNum
 ZPS_teApsLinkKeyType eKeyType);

Description

This function is used to configure the initial state of ZigBee security on the local node. This requires a security
key to be specified that is used in setting up network-level security.

Note: Before using this function, security must be enabled on the node via the device parameter Security
Enabled in the ZPS Configuration Editor.

You must provide a pointer to an initial link key of one of the following types:

• Pre-configured global link key
• Pre-configured unique link key

These key types are described in Section 6.8.2. The network key randomly generated by the Trust Centre is
communicated to the local node in encrypted form using the specified link key.

7.1.2.2.1 Parameters

• eState: The state of the link key, one of:
– ZPS_ZDO_PRECONFIGURED_LINK_KEY
– ZPS_ZDO_ZLL_LINK_KEY

• pu8Key: Pointer to pre-configured link key
• u8KeySeqNum: Not used when specifying a link key - ignore this parameter
• eKeyType: Type of link key, one of:

– ZPS_APS_UNIQUE_LINK_KEY
– ZPS_APS_GLOBAL_LINK_KEY

7.1.2.2.2 Returns

• ZPS_E_SUCCESS (security state successfully initialized)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

7.1.2.3 ZPS_eAplZdoTransportNwkKey

ZPS_teStatus ZPS_eAplZdoTransportNwkKey(
 uint8 u8DstAddrMode,
 ZPS_tuAddress uDstAddress,
 uint8 au8Key[ZPS_SEC_KEY_LENGTH],
 uint8 u8KeySeqNum,
 bool bUseParent,
 uint64 u64ParentAddr);

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
87 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

7.1.2.3.1 Description

This function can be used on the Trust Centre to send the network key to one or multiple nodes. On reaching
the target node(s), the key is only stored but can be subsequently designated the active network key using the
function ZPS_eAplZdoSwitchKeyReq().

The target node can be specified by means of its network address or IEEE/MAC address. A broadcast to
multiple nodes in the network can be achieved by specifying a special network address or IEEE/MAC address -
see Section 9.3.

If the destination is a single node, it is possible to send the key to the parent of the destination node.

Note: This function also resets the frame counter on the target node(s).

7.1.2.3.2 Parameters

• u8DstAddrMode Type of destination address:
– ZPS_E_ADDR_MODE_SHORT - 16-bit network address.
– ZPS_E_ADDR_MODE_IEEE - 64-bit IEEE/MAC address.
– All other values are reserved.

• uDstAddress: Destination address (address type as specified through u8DstAddrMode) - special broadcast
addresses are detailed in Section 9.3

• au8Key[]: Array containing the network key to be transported. This array has a length equal to
ZPS_SEC_KEY_LENGTH

• u8KeySeqNum: Sequence number of the specified key
• bUseParent: Indicates whether to send key to parent of target node:

– TRUE - send to parent
– FALSE - do not send to parent

• u64ParentAddr: 64-bit IEEE/MAC address of parent (if used).

7.1.2.3.3 Returns

• ZPS_E_SUCCESS (key successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

7.1.2.4 ZPS_eAplZdoSwitchKeyReq

ZPS_teStatus ZPS_eAplZdoSwitchKeyReq(
 uint8 u8DstAddrMode,
 ZPS_tuAddress uDstAddress,
 uint8 u8KeySeqNum);

7.1.2.4.1 Description

This function can be used (normally by the Trust Centre) to request one or multiple nodes to switch to a
different active network key. The new network key is specified using its unique sequence number and the key
must have been pre-loaded into the target node(s) using the function ZPS_eAplZdoTransportNwkKey() or
ZPS_eAplZdoRequestKeyReq().

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
88 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

The target node can be specified by means of its network address or IEEE/MAC address. A broadcast to
multiple nodes in the network can be achieved by specifying a special network address or IEEE/MAC address -
see Section 9.3.

7.1.2.4.2 Parameters

• u8DstAddrMode Type of destination address:
– ZPS_E_ADDR_MODE_SHORT - 16-bit network address.
– ZPS_E_ADDR_MODE_IEEE - 64-bit IEEE/MAC address.
– All other values are reserved.

• uDstAddress Destination address (address type as specified through u8DstAddrMode) - special broadcast
addresses are detailed in Section 9.3.

• u8KeySeqNum Sequence number of new network key to adopt.

7.1.2.4.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

7.1.2.5 ZPS_eAplZdoRequestKeyReq

ZPS_teStatus ZPS_eAplZdoRequestKeyReq(
 uint8 u8KeyType,
 uint64 u64IeeePartnerAddr);

7.1.2.5.1 Description

This function can be used to request a link key from the Trust Centre for application-level security. The possible
key types that can be requested are:

• Application link key: This key is used to encrypt/decrypt communications with another ‘partner node’. The
IEEE/MAC address of this partner node must be specified as part of the function call. The Trust Centre
responds by sending the application link key to both the local node and the partner node. When it arrives, the
stack automatically saves this key. Also, the event ZPS_EVENT_ZDO_LINK_KEY is generated once the link
key has been installed and is ready for use.

• Trust Centre Link Key (TCLK): This key is used to encrypt/decrypt communications between the Trust
Centre and the local node. The Trust Centre responds by sending the TCLK to the requesting node.

While requesting a TCLK, the function parameter u64IeeePartnerAddr is ignored.

For more information on requesting link keys, refer to Section 6.8.3.2.

7.1.2.5.2 Parameters

• u8KeyType Type of key to request:
– 2 - application link key
– 4 - Trust Centre Link Key (TCLK)
– All other values reserved

• u64IeeePartnerAddr IEEE/MAC address of partner node (for application link key)

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
89 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

7.1.2.5.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

7.1.2.6 ZPS_eAplZdoAddReplaceLinkKey

ZPS_teStatus ZPS_eAplZdoAddReplaceLinkKey(
 uint64 u64IeeeAddr,
 uint8 au8Key[ZPS_SEC_KEY_LENGTH],
 ZPS_teApsLinkKeyType eKeyType);

7.1.2.6.1 Description

This function can be used to introduce or replace the application link key on the local node, where this key is
used to encrypt and decrypt communications with the specified ‘partner node’. If an application link key already
exists, then it is replaced.

The function must be called on both the local node and the partner node. Note that the Trust Centre’s record of
the application link key for this pair of nodes remains unchanged.

If the JCU Non-Volatile Memory Manager (NVM) module is enabled, this function also saves the application link
key to Non-Volatile Memory. This allows the key to be automatically recovered during a subsequent cold start
(for example, following a power failure).

The eKeyType parameter of this function can be used to specify ‘unique’ or ‘global’. This does not relate to the
type of key being added or replaced, which is always a unique key.

• Setting this parameter to ‘unique’ means that the node only ever uses the unique key.
• Setting the parameter to ‘global’ means that the node uses the unique key, where appropriate, and also the

pre-configured global link key, where appropriate. For example, the global key would be used when another
node joins the network via the local node.

7.1.2.6.2 Parameters

• u64IeeeAddr: 64-bit IEEE/MAC address of partner node for which the specified link key is valid.
• au8Key[]: Array containing the link key to be added/replaced. This array has a length equal to

ZPS_SEC_KEY_LENGTH.
• eKeyType: Type of the key to be used by the node (see above), one of the below:

– ZPS_APS_UNIQUE_LINK_KEY, or
– ZPS_APS_GLOBAL_LINK_KEY.

7.1.2.6.3 Returns

• ZPS_E_SUCCESS (link key successfully installed)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
90 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

7.1.2.7 ZPS_eAplZdoAddReplaceInstallCodes

ZPS_teStatus ZPS_eAplZdoAddReplaceInstallCodes(
 uint64 u64IeeeAddr,
 uint8 au8InstallCode[ZPS_INSTALL_CODE_LENGTH],
 uint8 u8InstallCodeSize,
 ZPS_teApsLinkKeyType eKeyType);

7.1.2.7.1 Description

This function can be used on the Trust Centre to generate a pre-configured unique link key from an install code,
where this key is used to encrypt and decrypt communications between the Trust Centre and the specified
node (install codes are described in the ZigBee Devices User Guide (JNUG3131)). If a pre-configured link key
already exists for the node then it will be replaced.

The function must be called on the Trust Centre only. The other node will have the relevant pre-configured
unique link key factory-installed.

If the JCU Non-Volatile Memory Manager (NVM) module is enabled, this function also saves the link key to Non-
Volatile Memory. This allows the key to be automatically recovered during a subsequent cold start (for example,
following a power failure).

The eKeyType parameter of this function can be used to specify ‘unique’ or ‘global’. This does not relate to the
type of key being added or replaced, which is always a unique key.

• Setting this parameter to ‘unique’ means that the Trust Centre only, ever uses the unique key with this node.
• Setting the parameter to ‘global’ means that the Trust Centre uses the pre-configured global link key (if

available) when there is no unique link key for the node.

7.1.2.7.2 Parameters

• u64IeeeAddr 64-bit IEEE/MAC address of node for which the generated link key is valid.
• au8InstallCode[] Array containing the install code - the array length ZPS_INSTALL_CODE_LENGTH is given

below in u8InstallCodeSize.
• u8InstallCodeSize Number of characters in the install code - this is the size of the array au8InstallCode[].
• eKeyType Type of the key to be used by the node (see above), one of the below:

– ZPS_APS_UNIQUE_LINK_KEY
– ZPS_APS_GLOBAL_LINK_KEY

7.1.2.7.3 Returns

• ZPS_E_SUCCESS (permissions successfully obtained)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

7.1.2.8 ZPS_eAplZdoRemoveLinkKey

ZPS_teStatus ZPS_eAplZdoRemoveLinkKey(
 uint64 u64IeeeAddr);

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
91 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

7.1.2.8.1 Description

This function can be used to remove the current application link key that is used to encrypt and decrypt
communications between the local node and the specified ‘partner node’.

The function must be called on both the local node and the partner node. Note that the Trust Centre’s record of
the application link key for this pair of nodes remains unchanged.

In the absence of an application link key, communications between these nodes is subsequently secured using
the network key.

7.1.2.8.2 Parameters

u64IeeeAddr: 64-bit IEEE/MAC address of partner node for which the link key is to be removed.

7.1.2.8.3 Returns

• ZPS_E_SUCCESS (permissions successfully removed)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

7.1.2.9 ZPS_eAplZdoRemoveDeviceReq

ZPS_teStatus ZPS_eAplZdoRemoveDeviceReq(
 uint64 u64ParentAddr,
 uint64 u64ChildAddr);

7.1.2.9.1 Description

This function can be used (normally by the Coordinator/Trust Centre) to request another node (such as a
Router) to remove one of its children from the network (for example, if the child node does not satisfy security
requirements).

The Router receiving this request ignores the request unless it has originated from the Trust Centre or is a
request to remove itself. If the request was sent without APS layer encryption, the device ignores the request. If
APS layer security is not in use, the alternative function ZPS_eAplZdoLeaveNetwork() should be used.

7.1.2.9.2 Parameters

• u64ParentAddr 64-bit IEEE/MAC address of parent to be instructed.
• u64ChildAddr 64-bit IEEE/MAC address of child node to be removed.

7.1.2.9.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
92 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

7.1.2.10 ZPS_eAplZdoSetDevicePermission

void ZPS_eAplZdoSetDevicePermission(
 ZPS_teDevicePermissions u8DevicePermissions);

7.1.2.10.1 Description

This function can be used on any device to set the permissions for certain requests from other nodes. The
possible settings are:

• Allow all requests from all other nodes (ALL_PERMITED)
• Do not allow join requests from all other nodes (JOIN_DISALLOWED)
• Do not allow data requests from all other nodes (DATA_REQUEST_DISALLOWED)

The function is particularly useful in disabling the generation of APS (end-to-end) acknowledgments, using
DATA_REQUEST_DISALLOWED.

7.1.2.10.2 Parameters

u8DevicePermissions: Bitmap of permissions to be set, constructed using the following enumerations:

• ZPS_DEVICE_PERMISSIONS_ALL_PERMITED
• ZPS_DEVICE_PERMISSIONS_JOIN_DISALLOWED
• ZPS_DEVICE_PERMISSIONS_DATA_REQUEST_DISALLOWED

7.1.2.10.3 Returns

• ZPS_E_SUCCESS (permissions successfully set)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

7.1.2.11 ZPS_bAplZdoTrustCenterSetDevicePermissions

ZPS_teStatus
ZPS_bAplZdoTrustCenterSetDevicePermissions(
 uint64 u64DeviceAddr,
 ZPS_teTCDevicePermissions u8DevicePermissions);

7.1.2.11.1 Description

This function can be used by the Trust Centre to set the permissions for certain requests from a particular node.
The possible settings are:

• Allow all requests from the specified node (ALL_PERMITED)
• Do not allow join requests from the specified node (JOIN_DISALLOWED)
• Do not allow data requests from the specified node (DATA_REQUEST_DISALLOWED)

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
93 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

7.1.2.11.2 Parameters

• u64DeviceAddr: 64-bit IEEE/MAC address of node for which permissions are to be set
• u8DevicePermissions: Bitmap of permissions to be set, constructed using the following enumerations:

– ZPS_TRUST_CENTER_ALL_PERMITED
– ZPS_TRUST_CENTER_JOIN_DISALLOWED
– ZPS_TRUST_CENTER_DATA_REQUEST_DISALLOWED

7.1.2.11.3 Returns

• ZPS_E_SUCCESS (permissions successfully set)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

7.1.2.12 ZPS_bAplZdoTrustCenterGetDevicePermissions

ZPS_teStatus
ZPS_bAplZdoTrustCenterGetDevicePermissions(
 uint64 u64DeviceAddr,
 ZPS_teTCDevicePermissions *pu8DevicePermissions);

7.1.2.12.1 Description

This function can be used by the Trust Centre to obtain its own permissions for certain requests from a
particular node. The possible settings are:

• Allow all requests from the specified node.
• Do not allow join requests from the specified node.
• Do not allow data requests from the specified node.

7.1.2.12.2 Parameters

• u64DeviceAddr: 64-bit IEEE/MAC address of node for which permissions are to be obtained.
• pu8DevicePermissions: Pointer to bitmap containing permissions obtained, where:

– 0 indicates all requests allowed.
– 1 indicates join requests disallowed.
– 2 indicates data requests disallowed.
– 3 indicates data and join requests disallowed.
– Higher bits are reserved for future use

7.1.2.12.3 Returns

• ZPS_E_SUCCESS (permissions successfully obtained)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

7.1.2.13 ZPS_bAplZdoTrustCenterRemoveDevice

ZPS_teStatus ZPS_bAplZdoTrustCenterRemoveDevice(

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
94 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

 uint64 u64DeviceAddr);

7.1.2.13.1 Description

This function can be used by the Trust Centre to delete a node in its information base.

7.1.2.13.2 Parameters

u64DeviceAddr : It is the 64-bit IEEE/MAC address of the node to be removed from the list.

7.1.2.13.3 Returns

• ZPS_E_SUCCESS (node successfully removed from list)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

7.1.2.14 ZPS_vTcInitFlash

void ZPS_vTcInitFlash(
 ZPS_tsAfFlashInfoSet *psFlashInfoSet,
 ZPS_TclkDescriptorEntry *psTclkStruct);

7.1.2.14.1 Description

This function can be used on the network Coordinator/Trust Centre to enable the persistent storage of the Trust
Centre Link Keys (TCLKs) for all nodes in the network.

Each of these keys is a unique application-level link key for a node. The key is used to encrypt/decrypt
communications between Trust Centre and the node during the commissioning of the node into the network
(and is issued by the Trust Centre to replace the pre-configured unique link key).

The function allows these link keys to be stored in devices Flash memory.

• Information about the Flash memory sector to be used to store the link keys is specified in a
ZPS_tsAfFlashInfoSet structure.

• Information about an individual link key is stored in RAM in a read-only ZPS_TclkDescriptorEntry
structure, which is for internal use by the stack. An array of these structures must be allocated in RAM, with
one element for each node in the network - for example, if there are up to 250 nodes in the network, the
required allocation would be:

ZPS_TclkDescriptorEntry sData[250];

The application can determine at any time whether this feature is enabled by reading the Boolean variable
bSetTclkFlashFeature, which reads as TRUE if the feature is enabled and as FALSE if it is disabled.

When a new Trust Centre Link Key has been negotiated for a node, the stack on the Trust Centre notifies
the application by means of a ZPS_EVENT_TC_STATUS event. The application can discover the IEEE/MAC
address of the corresponding node by calling ZPS_u64GetFlashMappedIeeeAddress() with the value of
u16ExtAddrLkup from the key descriptor passed in the event.

Please note that when the key table is held in RAM, ZPS_u64NwkNibGetMappedIeeeAddr() would be called
instead.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
95 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

7.1.2.14.2 Parameters

• psFlashInfoSet Pointer to a structure containing information about the Flash memory sector to be used to
store the link keys for the network nodes (see Section 8.2.3.8)

• psTclkStruct Pointer to a structure in RAM that is used to hold information about the storage of one link key in
Flash memory (see Section 8.2.3.9)

7.1.2.14.3 Returns

None

7.1.2.15 ZPS_vSetTCLockDownOverride

void ZPS_vSetTCLockDownOverride(
 void* pvApl,
 bool_t u8RemoteOverride,
 bool_t bDisableAuthentications);

7.1.2.15.1 Description

This function can be called on the network Coordinator to disable Trust Centre functionality on the device.

The function provides two configuration options:

• Allows remote devices to over-ride the Trust Centre policy.
• Disables authentication of network joins (any transport key is also disabled).

7.1.2.15.2 Parameters

• pvApl: Handle for the relevant Application layer instance.
• u8RemoteOverride: Boolean specifying whether remote overrides of Trust Centre policy are to be permitted:

– TRUE - Does not allow remote over-rides; stack does not allow the permit join remotely sent to change its
local state.

– FALSE - Allows remote over-rides; stack accepts permit join requests coming in and obeys them.

• bDisableAuthentications: Boolean specifying whether network join authentications are to be disabled:
– TRUE - Disable authentications
– FALSE - Do not disable authentications

When this flag is set to TRUE, permit join is not accepted remotely and the TC does not transport a key to
any joiner.

7.1.2.15.3 Returns

None

7.1.2.16 ZPS_psGetActiveKey

ZPS_tsAplApsKeyDescriptorEntry *ZPS_psGetActiveKey(
 uint64 u64IeeeAddress,
 uint32* pu32Index);

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
96 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

7.1.2.16.1 Description

This function can be used on the Trust Centre to obtain the Pre-configured Unique Link Key for the node
with the specified IEEE/MAC address. The function searches the local Key Descriptor Table for an entry
corresponding to the specified address. If it finds a relevant entry, it returns the entry as well as the index
number of the entry in the table. The required key is in the returned table entry.

7.1.2.16.2 Parameters

• u64IeeeAddress: IEEE/MAC address of the node of interest
• pu32Index: Pointer to a location to receive the index number of the relevant Key Descriptor Table entry

7.1.2.16.3 Returns

Pointer to requested Key Descriptor Table entry (for structure, see Section 8.2.3.6).

7.1.2.17 ZPS_vTCSetCallback

void ZPS_vTCSetCallback(void *pCallbackFn);

7.1.2.17.1 Description

This function can be used to register a user-defined callback function on the Trust Centre, where this callback
function allows the application to react to a notification from another network node - for example, to decide
whether to permit a node to join that may or may not be known to the Trust Centre application.

The prototype of the user-defined callback function is:

bool bTransportKeyDecider (uint16 u16ShortAddress,
 uint64 u64DeviceAddress,
 uint64 u64ParentAddress,
 uint8 u8Status,
 uint16 u16Interface);

where:

• u16ShortAddr is the network address of the relevant node.
• u64DeviceAddress is the IEEE/MAC address of the relevant node.
• u64ParentAddress is the IEEE/MAC address of the parent that sent the notification.
• u8Status is the nature of the notification:

– 0: Secure rejoin
– 1: Unsecure join (association)
– 2: Leave
– 3: Unsecure rejoin
– 4: Leave with a rejoin

• u16Interface is the MAC interface this join has happened on. If it is 2.4 G only the value is always 0. If it is a
MultiMAC device 2.4 G interface, it will return value 0 and sub Gig will return value 1.

To disallow the notified action (for example, a join), the callback function should return FALSE.

If the callback function is not registered or returns TRUE, the Trust Centre will allow the notified action. In the
case of a join, the Trust Centre will send the network key in a ‘transport key’ command to the node, either:

• encrypted with the node’s pre-configured link key, if this key is known to the Trust Centre, or
JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
97 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• encrypted with the Trust Centre’s default pre-configured link key otherwise (in this case, the joining node will
only be able to decrypt the ‘transport key’ command and complete the join if it also has the Trust Centre’s
default pre-configured link key)

Registration of this callback function may be useful in controlling rejoins. A node can initially join a network
using its pre-configured link key (which is also known by the Trust Centre), but this key may subsequently be
replaced on the Trust Centre by an application link key (shared only by the node and the Trust Centre). If the
node later leaves the network and loses its context data (including the application link key), it may attempt to
rejoin the network using its pre-configured link key again. The callback function can allow the application to
decide whether to permit such a rejoin. If the rejoin is to be allowed, the callback function must replace the
stored application link key with the pre-configured link key on the Trust Centre before returning TRUE.

7.1.2.17.2 Parameters

pCallbackFn Pointer to user-defined callback function.

7.1.2.17.3 Returns

None

7.1.3 Addressing functions

The ZDO Addressing functions allow node addresses to be stored and obtained. They include the group
address functions that allow a group of nodes/endpoints, with an assigned group address, to be created and
modified (this group can be used as the destinations for a multicast message).

The functions are listed below.

7.1.3.1 Function page

1. ZPS_u16AplZdoGetNwkAddr
2. ZPS_u64AplZdoGetIeeeAddr
3. ZPS_eAplZdoAddAddrMapEntry
4. ZPS_u16AplZdoLookupAddr
5. ZPS_u64AplZdoLookupIeeeAddr
6. ZPS_u64NwkNibGetMappedIeeeAddr
7. ZPS_u64GetFlashMappedIeeeAddress
8. ZPS_bNwkFindAddIeeeAddr
9. ZPS_vSetOverrideLocalIeeeAddr

10. ZPS_eAplZdoGroupEndpointAdd
11. ZPS_eAplZdoGroupEndpointRemove
12. ZPS_eAplZdoGroupAllEndpointRemove

Note: Further addressing functions are provided in the ZDP API and are described in Section 9.1.1, "Address
Discovery functions".

7.1.3.2 ZPS_u16AplZdoGetNwkAddr

uint16 ZPS_u16AplZdoGetNwkAddr(void);

Description

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
98 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

This function obtains the 16-bit network address of the local node.

7.1.3.2.1 Parameters

None

7.1.3.2.2 Returns

16-bit network address obtained.

7.1.3.3 ZPS_u64AplZdoGetIeeeAddr

uint64 ZPS_u64AplZdoGetIeeeAddr(void);

7.1.3.3.1 Description

This function obtains the 64-bit IEEE (MAC) address of the local node.

7.1.3.3.2 Parameters

None

7.1.3.3.3 Returns

64-bit IEEE/MAC address obtained

7.1.3.4 ZPS_eAplZdoAddAddrMapEntry

ZPS_teStatus ZPS_eAplZdoAddAddrMapEntry(
 uint16 u16NwkAddr,
 uint64 u64ExtAddr);

7.1.3.4.1 Description

This function can be used to add the addresses of a remote node to the local Address Map table. Each entry in
this table stores a remote node’s 16-bit network address and an index to its 64-bit IEEE (MAC) address in the
MAC Address table (see Section3.2.4). Thus, the function adds the IEEE address to the MAC Address table
and then the index of this entry to the Address Map table.

Note: You should only modify the Address Map table using the supplied API functions and never write to it
directly.

7.1.3.4.2 Parameters

• u16NwkAddr: 16-bit network address of node to be added
• u64ExtAddr: 64-bit IEEE/MAC address of node to be added

7.1.3.4.3 Returns

• ZPS_E_SUCCESS (addresses successfully added to tables)

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
99 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4.

7.1.3.5 ZPS_vPurgeAddressMap

void ZPS_vPurgeAddressMap(void);

7.1.3.5.1 Description

This function removes all entries from the Address Map table on the local node.

Note: You should modify the Address Map table only using the supplied API functions and never write to it
directly.

7.1.3.5.2 Parameters

None.

7.1.3.5.3 Returns

None.

7.1.3.6 ZPS_u16AplZdoLookupAddr

uint16 ZPS_u16AplZdoLookupAddr(uint64 u64ExtAddr);

7.1.3.6.1 Description

This function can be used to search the local Address Map table for the 16-bit network address of the node with
a given 64-bit IEEE (MAC) address.

7.1.3.6.2 Parameters

u64ExtAddr 64-bit IEEE/MAC address of node to be searched for.

7.1.3.6.3 Returns

16-bit network address obtained.

7.1.3.7 ZPS_u64AplZdoLookupIeeeAddr

uint64 ZPS_u64AplZdoLookupIeeeAddr(
 uint16 u16NwkAddr);

7.1.3.7.1 Description

This function can be used to search the local Address Map table for the 64-bit IEEE (MAC) address of the node
with a given 16-bit network address.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
100 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

7.1.3.7.2 Parameters

u16NwkAddr 16-bit network address of node to be searched for.

7.1.3.7.3 Returns

64-bit IEEE/MAC address obtained.

7.1.3.8 ZPS_u64NwkNibGetMappedIeeeAddr

uint64 ZPS_u64NwkNibGetMappedIeeeAddr(
 void *pvNwk,
 uint16 u16Location);

7.1.3.8.1 Description

This function can be used to obtain the 64-bit IEEE (MAC) address that is stored in a particular entry in the local
MAC Address table. The number of the entry must be specified as well as the handle of the relevant network.

7.1.3.8.2 Parameters

• pvNwk: Pointer to relevant NWK layer instance
• u16Location: Number of entry to access in MAC Address table

7.1.3.8.3 Returns

64-bit IEEE/MAC address obtained.

7.1.3.9 ZPS_u64GetFlashMappedIeeeAddress

uint64 ZPS_u64GetFlashMappedIeeeAddress(
 uint16 u16Location);

7.1.3.9.1 Description

This function can be used on the Trust Centre to obtain the 64-bit IEEE (MAC) address of the node for which a
link key has been persistently stored in the specified location in devices Flash memory. The location is specified
as the number of the array element for the node - see the description of Section 7.1.2.14.

7.1.3.9.2 Parameters

u16Location: Number of the array element for the node

7.1.3.9.3 Returns

64-bit IEEE/MAC address obtained.

7.1.3.10 ZPS_bNwkFindAddIeeeAddr

bool_t ZPS_bNwkFindAddIeeeAddr(

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
101 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

 void *pvNwk,
 uint64 u64IeeeAddr,
 uint16 *pu16Location,
 bool_t bNeighborTable;

7.1.3.10.1 Description

This function can be used to add the 64-bit IEEE (MAC) address of a node to the local MAC Address table. The
function first searches the table to determine whether the address already exists in the table. If there is no entry
for this address, a new entry for it is added to the table. The number of the entry where the address was found
or added is returned in a specified location.

Note: You should modify the MAC Address table only using the supplied API functions and never write to it
directly.

7.1.3.10.2 Parameters

• pvNwk: Pointer to relevant NWK layer instance
• u64IeeeAddr: 64-bit IEEE/MAC address to be added
• pu16Location: Pointer to location to receive number of entry in MAC Address table where specified address

was found or added
• bNeighborTable: Always set to FALSE

7.1.3.10.3 Returns

Boolean indicating the outcome of the operation:

• TRUE - address successfully added to the table
• FALSE - address found to already exist in the table

7.1.3.11 ZPS_vSetOverrideLocalIeeeAddr

void ZPS_vSetOverrideLocalIeeeAddr(
 uint64 *pu64Address);

7.1.3.11.1 Description

This function can be used to over-ride the 64-bit IEEE (MAC) address of the device where this address is stored
locally in the index sector of Flash memory.

Note: If required, this function must be called before the ZigBee PRO stack is initialized.

7.1.3.11.2 Parameters

pu64Address Pointer to the 64-bit IEEE MAC address

Note: The stack stores a pointer to pu64Address and does not take a copy of the address. The memory
pointed to by pu64Address must therefore be static or constant, and must not be on the CPU stack.

7.1.3.12 ZPS_eAplZdoGroupEndpointAdd

ZPS_teStatus ZPS_eAplZdoGroupEndpointAdd(

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
102 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

 uint16 u16GroupAddr,
 uint8 u8DstEndpoint);

7.1.3.12.1 Description

This function requests that the specified endpoint (on the local node) is added to the group with the specified
group address. This means that this endpoint will become one of the destinations for messages sent to the
given group address.

To form a group comprising endpoints from different nodes, it is necessary to call this function for each endpoint
individually, on the endpoint’s local node.

An endpoint can belong to more than one group.

Information on the endpoints in a group can be obtained from the Group Address table in the AIB (which can be
accessed using the function ZPS_psAplAibGetAib()).

Note: In order to add an endpoint to a group using this function, a Group Address table must exist on the local
node. This table is created using the ZPS Configuration Editor.

7.1.3.12.2 Parameters

• u16GroupAddr: 16-bit group address
• u8DstEndpoint: Number of destination endpoint (1-240) on local node

7.1.3.12.3 Returns

• ZPS_E_SUCCESS (endpoint successfully added to group)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

7.1.3.13 ZPS_eAplZdoGroupEndpointRemove

ZPS_teStatus ZPS_eAplZdoGroupEndpointRemove(
 uint16 u16GroupAddr,
 uint8 u8DstEndpoint);

7.1.3.13.1 Description

This function requests that the specified endpoint (on the local node) is removed from the group with the
specified group address.

If you wish to remove an endpoint from all groups to which it belongs, use the
functionZPS_eAplZdoGroupAllEndpointRemove().

Information on the endpoints in a group can be obtained from the Group Address table in the AIB (which can be
accessed using the function ZPS_psAplAibGetAib()).

7.1.3.13.2 Parameters

• u16GroupAddr: 16-bit group address
• u8DstEndpoint: Number of destination endpoint (1-240) on local node

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
103 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

7.1.3.13.3 Returns

• ZPS_E_SUCCESS (endpoint successfully removed from group)
• APS return codes, listed and described in Section 111.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

7.1.3.14 ZPS_eAplZdoGroupAllEndpointRemove

ZPS_teStatus ZPS_eAplZdoGroupAllEndpointRemove(
 uint8 u8DstEndpoint);

7.1.3.14.1 Description

This function requests that the specified endpoint (on the local node) is removed from all groups to which it
currently belongs.

Information on the endpoints in a group can be obtained from the Group Address table in the AIB (which can be
accessed using the function ZPS_psAplAibGetAib()).

7.1.3.14.2 Parameters

u8DstEndpoint Number of destination endpoint (1-240) on local node

7.1.3.14.3 Returns

• ZPS_E_SUCCESS (endpoint successfully removed from all groups)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

7.1.4 Routing functions

The ZDO Routing functions can be used to make route discovery requests. The functions are listed below.

7.1.4.1 Function page

1. ZPS_eAplZdoRouteRequest
2. ZPS_eAplZdoManyToOneRouteRequest

7.1.4.2 ZPS_eAplZdoRouteRequest

ZPS_teStatus ZPS_eAplZdoRouteRequest(
 uint16 u16DstAddr,
 uint8 u8Radius);

7.1.4.2.1 Description

This function requests the discovery of a route to the specified remote node (and that this route is added to the
Routing tables in the relevant Router nodes).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
104 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

7.1.4.2.2 Parameters

• u16DstAddr 16-bit network address of destination node
• u8Radius Maximum number of hops permitted to destination node (zero value specifies that default maximum

is to be used)

7.1.4.2.3 Returns

• ZPS_E_SUCCESS (route discovery request successfully initiated)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

7.1.4.3 ZPS_eAplZdoManyToOneRouteRequest

ZPS_teStatus ZPS_eAplZdoManyToOneRouteRequest(
 bool bCacheRoute,
 uint8 u8Radius);

7.1.4.3.1 Description

This function requests a ‘many-to-one’ route discovery and should be called on a node that will act as a
‘concentrator’ in the network (that is, a node with which many other nodes will need to communicate).

As a result of this function call, a route discovery message is broadcast across the network and Routing table
entries (for routes back to the concentrator) are stored in the Router nodes.

The maximum number of hops to be taken by a route discovery message in this broadcast must be specified.
There is also an option to store the discovered routes in a Route Record Table on the concentrator (for return
communications).

7.1.4.3.2 Parameters

• bCacheRoute: Indicates whether to store routes in Route Record Table:
– TRUE - store routes
– FALSE - do not store routes

• u8Radius: Maximum number of hops of route discovery message (zero value specifies that default maximum
is to be used)

7.1.4.3.3 Returns

• ZPS_E_SUCCESS (many-to-one route discovery successfully initiated)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

7.1.5 Object Handle functions

The ZDO Object Handle functions can be used to obtain the handles of various objects. The functions are listed
below:

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
105 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

7.1.5.1 Function page

1. ZPS_pvAplZdoGetAplHandle
2. ZPS_pvAplZdoGetMacHandle
3. ZPS_pvAplZdoGetNwkHandle
4. ZPS_psNwkNibGetHandle
5. ZPS_psAplAibGetAib
6. ZPS_psAplZdoGetNib
7. ZPS_u64NwkNibGetEpid

7.1.5.2 ZPS_pvAplZdoGetAplHandle

void *ZPS_pvAplZdoGetAplHandle(void);

Description

This function obtains a handle for the Application layer instance.

7.1.5.2.1 Parameters

None

7.1.5.2.2 Returns

Pointer to Application layer instance

7.1.5.3 ZPS_pvAplZdoGetMacHandle

void *ZPS_pvAplZdoGetMacHandle(void);

7.1.5.3.1 Description

This function obtains a handle for the IEEE 802.15.4 MAC layer instance.

7.1.5.3.2 Parameters

None

7.1.5.3.3 Returns

Pointer to MAC layer instance

7.1.5.4 ZPS_pvAplZdoGetNwkHandle

void *ZPS_pvAplZdoGetNwkHandle(void);

7.1.5.4.1 Description

This function obtains a handle for the ZigBee NWK layer instance.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
106 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

7.1.5.4.2 Parameters

None

7.1.5.4.3 Returns

Pointer to NWK layer instance

7.1.5.5 ZPS_psNwkNibGetHandle

ZPS_tsNwkNib *ZPS_psNwkNibGetHandle(void *pvNwk);

7.1.5.5.1 Description

This function obtains a handle for the NIB (Network Information Base) corresponding to the specified NWK layer
instance.

The function should be called after ZPS_pvAplZdoGetNwkHandle(), which is used to obtain a pointer to the
NWK layer instance.

The NIB is detailed in the ZigBee Specification (05347) from the ZigBee Alliance. This function is not strictly a
ZDO function.

7.1.5.5.2 Parameters

pvNwk Pointer to NWK layer instance

7.1.5.5.3 Returns

Pointer to NIB structure

7.1.5.5.4 Example

void *pvNwk; = ZPS_pvAplZdoGetNwkHandle();
 ZPS_tsNwkNib *pNib = ZPS_psNwkNibGetHandle(pvNwk);

7.1.5.6 ZPS_psAplAibGetAib

ZPS_tsAplAib *ZPS_psAplAibGetAib(void);

7.1.5.6.1 Description

This function obtains a pointer to the AIB (Application Information Base) structure for the application.

7.1.5.6.2 Parameters

None

7.1.5.6.3 Returns

Pointer to AIB structure
JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
107 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

7.1.5.7 ZPS_psAplZdoGetNib

ZPS_tsNwkNib *ZPS_psAplZdoGetNib(void);

7.1.5.7.1 Description

This function obtains a pointer to the NIB (Network Information Base) structure. The NIB is detailed in the
ZigBee Specification (05347) from the ZigBee Alliance.

7.1.5.7.2 Parameters

None

7.1.5.7.3 Returns

Pointer to NIB structure

7.1.5.8 ZPS_u64NwkNibGetEpid

uint64 ZPS_u64NwkNibGetEpid(void *pvNwk);

7.1.5.8.1 Description

This function can be used to obtain the Extended PAN ID (EPID) from a local NIB (Network Information Base).

The handle of the NWK layer instance that contains the relevant NIB must be specified. This handle can be
obtained using ZPS_pvAplZdoGetNwkHandle().

7.1.5.8.2 Parameters

pNibHandle Pointer to NWK layer instance that contains the NIB

7.1.5.8.3 Returns

64-bit Extended PAN ID from NIB

7.1.6 Optional Cluster function

The ZDO Optional Cluster function can be used to register a user-defined callback function to handle messages
for a ZDO cluster that is not currently supported by the NXP ZigBee PRO stack.

The function is listed below on the function page.

7.1.6.1 Function page

ZPS_eAplZdoRegisterZdoFilterCallback

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
108 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

7.1.6.2 ZPS_eAplZdoRegisterZdoFilterCallback

ZPS_teStatus ZPS_eAplZdoRegisterZdoFilterCallback(
 void *fnptr);

7.1.6.2.1 Description

This function can be used to register a user-defined callback function which handles messages received for an
unsupported cluster which resides on the ZDO endpoint (0), such as the cluster for an optional descriptor (for
example, a user descriptor).

The prototype of the user-defined callback function is: bool fn(uint16 clusterid);

where clusterid is the ID of the cluster that the function handles.

Normally, a message arriving for an unsupported ZDO cluster is not handled and the stack automatically returns
an ‘unsupported’ message to the originating node. If this function is used to register a callback function for an
unsupported ZDO cluster then on receiving a message for the cluster, the stack will invoke the callback function.
The stack will not respond with an ‘unsupported message’ provided that the callback function returns TRUE,
otherwise the normal stack behavior will continue.

The callback function allows the received message to be passed to the application for servicing.

7.1.6.2.2 Parameters

fnptr: Pointer to user-defined callback function

7.1.6.2.3 Returns

• ZPS_E_SUCCESS (callback function successfully registered)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

7.2 ZDO enumerations
This section details the enumerated types used by the ZDO functions. These are all defined in the header file
zps_apl_zdo.h.

7.2.1 Security keys (ZPS_teZdoNwkKeyState)

This structure ZPS_teZdoNwkKeyState contains the enumerations used to specify a type of security key:

typedef enum
{
ZPS_ZDO_NO_NETWORK_KEY,
ZPS_ZDO_PRECONFIGURED_LINK_KEY,
ZPS_ZDO_DISTRIBUTED_LINK_KEY,
ZPS_ZDO_PRCONFIGURED_INSTALLATION_CODE
} PACK ZPS_teZdoNwkKeyState

These enumerations are described in the table below:

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
109 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Enumeration Description

ZPS_ZDO_NO_NETWORK_KEY No network key should be used.

ZPS_ZDO_PRECONFIGURED_LINK_KEY A pre-configured link key should be used. This key can be fixed at
the time of manufacture.

ZPS_ZDO_DISTRIBUTED_LINK_KEY A pre-configured ZigBee Light Link (ZLL) link key should be used.
This key can be fixed at the time of manufacture. A ZLL node
contains both a ZPS_ZDO_PRECONFIG- URED_LINK_KEY
for Home Automation (HA) compatibility and a ZPS_ZDO_ZLL_
LINK_KEY for ZLL networks.

ZPS_ZDO_PRCONFIGURED_INSTALLATION_CODE A preconfigured install code is to be used. This results in a key
being generated from the install code.

Table 8. Security Key Enumerations

7.2.2 Device types (ZPS_teZdoDeviceType)

This structure ZPS_teZdoDeviceType contains the enumerations used to specify a ZigBee device type

typedef enum
{
ZPS_ZDO_DEVICE_COORD,
ZPS_ZDO_DEVICE_ROUTER,
ZPS_ZDO_DEVICE_ENDDEVICE
} PACK ZPS_teZdoDeviceType;

These enumerations are described in the table below.

Enumeration Description

ZPS_ZDO_DEVICE_COORD Coordinator

ZPS_ZDO_DEVICE_ROUTER Router

ZPS_ZDO_DEVICE_ENDDEVICE End Device

Table 9. Device Type Enumerations

7.2.3 Device permissions (ZPS_teDevicePermissions)

This structure ZPS_teDevicePermissions contains the enumerations used on a device to specify the
permissions for certain requests from other nodes:

typedef enum
{
ZPS_DEVICE_PERMISSIONS_ALL_PERMITED = 0,
ZPS_DEVICE_PERMISSIONS_JOIN_DISALLOWED = 1,
ZPS_DEVICE_PERMISSIONS_DATA_REQUEST_DISALLOWED = 2,
ZPS_DEVICE_PERMISSIONS_REJOIN_DISALLOWED = 4,
} PACK ZPS_teDevicePermissions;

These enumerations are described in the table below:

Enumeration Description

ZPS_DEVICE_PERMISSIONS_ALL_PERMITED Allow all requests from other nodes

ZPS_DEVICE_PERMISSIONS_JOIN_DISALLOWED Do not allow join requests from other nodes

Table 10. Device Permissions Enumerations

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
110 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Enumeration Description

ZPS_DEVICE_PERMISSIONS_DATA_REQUEST_DISALLOWED Do not allow data requests from other nodes and
disable end-to-end acknowledgments

ZPS_DEVICE_PERMISSIONS_REJOIN_DISALLOWED Do not allow insecure rejoin.

Table 10. Device Permissions Enumerations...continued

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
111 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

8 Application Framework (AF) API

The chapter describes the resources of the Application Framework (AF) API. This API is concerned with
transmitting data, controlling/monitoring local endpoints, and copying descriptors to/from the context area of the
stack. The API is defined in the header file zps_apl_af.h.

In this chapter:

• Section 8.1 details the AF API functions.
• Section 8.2 details the AF API structures.

8.1 AF API functions
The AF API functions are divided into the following categories:

• initialization functions, described in Section 8.1.1.
• Data Transfer functions, described in Section 8.1.2.
• Endpoint functions, described in Section 8.1.3.
• Descriptor functions, described in Section 8.1.4.

8.1.1 initialization functions

The AF API contains the below initialization functions.

The functions are listed below.

1. ZPS_eAplAfInit
2. ZPS_vAplAfSetMacCapability
3. ZPS_eAplAibSetApsUseExtendedPanId
4. ZPS_vExtendedStatusSetCallback
5. ZPS_bAppAddBeaconFilter
6. ZPS_eAplFormDistributedNetworkRouter
7. ZPS_eAplInitEndDeviceDistributed
8. ZPS_vAplAfEnableMcpsFilter
9. ZPS_vNwkLinkCostCallbackRegister

Note: The function ZPS_eAplAfInit() is mandatory and must be the first network function called in your
application.

8.1.1.1 ZPS_eAplAfInit

ZPS_teStatus ZPS_eAplAfInit(void);

8.1.1.1.1 Description

This function initializes the Application Framework and must be the first network function called in your
application code. The function first requests a reset of the Network (NWK) layer of the ZigBee PRO stack.
It then initializes certain network parameters with values that have been pre-configured using the ZPS
Configuration Editor (see Chapter 13, Section 13). These parameters include the node type and the Extended
PAN ID of the network.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
112 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

The device is started as the pre-configured node type. If this is a Coordinator, the Extended PAN ID of the node
is set to the pre-configured value. Note that if a zero value is specified, the Coordinator uses its own IEEE/MAC
address for the Extended PAN ID.

8.1.1.1.2 Parameters

None.

8.1.1.1.3 Returns

• ZPS_E_SUCCESS (AF successfully initialized).
• APS return codes, listed and described in Section 11.2.2.
• NWK return codes, listed and described in Section 11.2.3.
• MAC return codes, listed and described in Section 11.2.4.

8.1.1.2 ZPS_vAplAfSetMacCapability

void ZPS_vAplAfSetMacCapability(uint8 u8MacCapability);

8.1.1.2.1 Description

This function can be used on a Router or End Device to configure the IEEE 802.15.4 MAC capabilities in the
Node descriptor. The MAC capabilities are specified in an 8-bit bitmap, detailed in the table below.

Bits Description

0 Coordinator capability:
1: Node able to act as Coordinator
0: Node not able to act as Coordinator

1 Device type:
1: Full-Function Device (FFD)
0: Reduced-Function Device (RFD)
An FFD can act as any node type while an RFD cannot act as the network Coordinator.

2 Power source:
1: Node is mains-powered
0: Node is not mains-powered

3 Receiver on when idle:
1: Receiver enabled during idle periods
0: Receiver disabled during idle periods to conserve power

4-5 Reserved

6 Security capability:
1: High security
0: Standard security

7 Allocate address:
1: Network address should be allocated to node
0: Network address need not be allocated to node

Table 11. MAC capabilities bitmap

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
113 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

8.1.1.2.2 Parameters

• u8MacCapability Bitmap containing the MAC capabilities to be configured (see table above).

8.1.1.2.3 Returns

None.

8.1.1.3 ZPS_eAplAibSetApsUseExtendedPanId

ZPS_teStatus ZPS_eAplAibSetApsUseExtendedPanId
 (uint64 u64UseExtPanId);

8.1.1.3.1 Description

This function can be used to create an application record of the Extended PAN ID (EPID) of the network to
which the local device belongs.

• The only use of this function for a Coordinator is described in Section 6.1.1.
• The function should only be called on a Router or End Device in the manner described in Section 6.1.2.

8.1.1.3.2 Parameters

u64UseExtPanId Extended PAN ID of network to which device belongs.

8.1.1.3.3 Returns

• ZPS_E_SUCCESS (Extended PAN ID record successfully created).
• NWK return codes, listed and described in Section 11.2.3.
• MAC return codes, listed and described in Section 11.2.4.
• APS return codes, listed and described in Section 11.2.2.

8.1.1.4 ZPS_vExtendedStatusSetCallback

void ZPS_vExtendedStatusSetCallback(
 tpfExtendedStatusCallBack pfExtendedStatusCallBack);

8.1.1.4.1 Description

This function can be used to register a callback function for extended error handling (see (Section 6.7)

The prototype of the callback function is:

ZPS_teExtendedStatus vExtendedStatusCb();

The registered callback function is invoked if a subsequent API function call results in one of the following
errors:

• 0xA3: ZPS_APL_APS_E_ILLEGAL_REQUEST
• 0xA6: ZPS_APL_APS_E_INVALID_PARAMETER
• 0xC2: ZPS_NWK_ENUM_INVALID_REQUEST

The callback function returns another error code (from those listed and described in Section 11.2.5), which
provides a more specific reason for the error.
JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
114 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

8.1.1.4.2 Parameters

pfExtendedStatusCallBack Pointer to extended error handling callback function to be registered.

8.1.1.4.3 Returns

None.

8.1.1.5 ZPS_bAppAddBeaconFilter

void ZPS_bAppAddBeaconFilter(tsBeaconFilterType *psAppBeaconStruct);

8.1.1.5.1 Description

This function can be used to introduce a filter that will be used for filtering beacons in network searches (on a
Router or End Device). Beacons can be filtered on the basis of PAN ID, Extended PAN ID, LQI value and device
joining status/capacity. The filter details are provided in a tsBeaconFilterType structure (see Section
8.2.3.5).

If required, this function should be called immediately before ZPS_eAplZdoDiscoverNetworks(),
ZPS_eAplZdoRejoinNetwork() or ZPS_eAplZdoStartStack().

Note: A filter should NOT be implemented unless attempting a join, as this would prevent some stack
operations from working correctly.

Once the join or discovery has completed, the filter is automatically removed and needs to be re-instated if a
retry is required.

Guidelines on the implementation of beacon filters are provided in , Appendix B.4, "Section 15.4".

8.1.1.5.2 Parameters

• *psAppBeaconStruct Pointer to a structure containing the beacon filter details. (see Section 8.2.3.5).

8.1.1.5.3 Returns

None.

8.1.1.6 ZPS_eAplFormDistributedNetworkRouter

ZPS_teStatus ZPS_eAplFormDistributedNetworkRouter(
 ZPS_tsAftsStartParamsDistributed *psStartParms,
 bool_t bSendDeviceAnnce);

8.1.1.6.1 Description

This function can be used on a Router node to introduce the node into a distributed security network (see
Section 6.10.2). The function must be called on the Router node that creates the distributed security network,
therefore, the first node of the new network.

Subsequent Router nodes may be introduced using this function, but could be introduced using other
commissioning methods, such as Touchlink.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
115 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

8.1.1.6.2 Parameters

• psStartParms Pointer to structure containing the start parameter values for the Router- see Section 8.2.3.7.
• bSendDeviceAnnce Boolean indicating whether a device announcement message is to be sent:

– TRUE - send device announcement
– FALSE - do not send device announcement

8.1.1.6.3 Returns

• ZPS_E_SUCCESS (network successfully created).
• NWK return codes, listed and described in Section 11.2.3.
• MAC return codes, listed and described in Section 11.2.4.
• APS return codes, listed and described in Section 11.2.2.

8.1.1.7 ZPS_eAplInitEndDeviceDistributed

ZPS_teStatus ZPS_eAplInitEndDeviceDistributed(
 ZPS_tsAftsStartParamsDistributed *psStartParms);

8.1.1.7.1 Description

This function can be used on an End Device node to introduce the node into a distributed security network
(see Section 6.10.2). This network must have already been created by a Router using the ZPS_eAplForm
DistributedNetworkRouter() function. End Device nodes may be introduced into the network in this way or
using other commissioning methods, such as Touchlink.

8.1.1.7.2 Parameters

psStartParms Pointer to structure containing the start parameter values for the End Device - see Section
8.2.3.7, Section 8.2.3.7.

8.1.1.7.3 Returns

• ZPS_E_SUCCESS (network successfully created).
• NWK return codes, listed and described in Section 11.2.3.
• MAC return codes, listed and described in Section 11.2.4.
• APS return codes, listed and described in Section 11.2.2.

8.1.1.8 ZPS_vAplAfEnableMcpsFilter

void ZPS_vAplAfEnableMcpsFilter(
 bool bEnableFilter,
 uint8 u8LinkCostThreshold);

8.1.1.8.1 Description

This function allows packet filtering based on ‘link cost’ to be enabled/disabled, as well as some basic
configuration of the filtering. Packet filtering is disabled by default.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
116 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

The default ‘link cost threshold’ is 5. This means that when packet filtering is enabled, received packets with a
link cost of 5 or less are discarded by the stack and not queued for processing. The link cost threshold can be
modified (from the default value of 5) using this function.

If required, this function can be called at any time after ZPS_eAplAfInit().

For more information on packet filtering and link costs, refer to Section 6.10.3, Section 6.10.3.

8.1.1.8.2 Parameters

psStartParms Pointer to structure containing the start parameter values for the End Device - see Section
8.2.3.7, Section 8.2.3.7.

8.1.1.8.3 Returns

None.

8.1.1.9 ZPS_vNwkLinkCostCallbackRegister

void ZPS_vNwkLinkCostCallbackRegister(void *pvFn);

8.1.1.9.1 Description

This function can be used to register a user-defined callback function that defines custom mappings between
LQI values and link costs that are to be used in packet filtering, based on link cost. When packet filtering is
enabled, the stack uses a default set of mappings, detailed in Section 6.10.3.1. The callback function is only
needed if custom mappings are to be used that will over-ride the default mappings. If required, this registration
function must be called before ZPS_eAplAfInit(), and on both cold and warm starts.

The user-defined callback function to be registered has the following prototype:

uint8 APP_u8LinkCost(uint8 u8Lqi);

This callback function translates a measured LQI value (u8Lqi) into a link cost value. An example function is
given in Section 6.10.3.3.

For more information on packet filtering and link costs, refer to Section 6.10.3.

8.1.1.9.2 Parameters

pvFn Pointer to user-defined callback function to be registered.

8.1.1.9.3 Returns

None.

8.1.2 Data Transfer functions

The AF Data Transfer functions are used to request the transmission of data, in the form of an Application
Protocol Data Unit (APDU), to one or more remote nodes.

The functions are listed below.

1. ZPS_eAplAfApsdeDataReq
2. ZPS_eAplAfUnicastDataReq
3. ZPS_eAplAfUnicastIeeeDataReq

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
117 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

4. ZPS_eAplAfUnicastAckDataReq
5. ZPS_eAplAfUnicastIeeeAckDataReq
6. ZPS_eAplAfGroupDataReq
7. ZPS_eAplAfBroadcastDataReq
8. ZPS_eAplAfBoundDataReq
9. ZPS_eAplAfBoundAckDataReq

10. ZPS_eAplAfInterPanDataReq
11. ZPS_u8AplGetMaxPayloadSize

Note: Functions for handling APDUs are provided in the PDUM API, described in the JN51xx Core Utilities
User Guide (JNUG3133).

APDUs for Requests and Responses

A request generated by this API is sent in an APDU (Application Protocol Data Unit). A local APDU instance
for the request must first be allocated using the PDUM function PDUM_hAPduAllocateAPduInstance(). This
function returns a handle for the APDU instance, which is subsequently used in the relevant AF API request
function. Once the request has been successfully sent, the APDU instance is automatically de-allocated by the
stack (there is no need for the application to de-allocate it).

Note: If the request is not successfully sent (the send function does not return ZPS_E_SUCCESS), then the
APDU instance is not automatically de-allocated and the application should de-allocate it using the PDUM
function PDUM_eAPduFreeAPduInstance().

When a response is subsequently received, the stack automatically allocates a local APDU instance and
includes its handle in the notification event for the response. Once the response has been dealt with, the
application must de-allocate the APDU instance using the function PDUM_eAPduFreeAPduInstance().

8.1.2.1 ZPS_eAplAfApsdeDataReq

ZPS_teStatus ZPS_eAplAfApsdeDataReq(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tsAfProfileDataReq *psProfileDataReq,
 uint8 *pu8SeqNum);

8.1.2.1.1 Description

This function submits a request to send data to a remote node, with no restrictions on the type of transmission,
destination address, destination application profile, destination cluster and destination endpoint number - these
destination parameters do not need to be known to the stack or defined in the ZPS configuration. In this sense,
this is most general of the Data Transfer functions.

The destination details and type of transmission are specified in the function call in a
ZPS_tsAfProfileDataReq structure (see Section 8.2.3.4).

The data is sent in an Application Protocol Data Unit (APDU) instance. This instance can be
allocated using the PDUM function PDUM_hAPduAllocateAPduInstance() and then written to using
PDUM_u16APduInstanceWriteNBO().

If the APDU size is larger than the maximum packet size allowed on the network, this function call fails (and
returns ZPS_E_ADSU_TOO_LONG). To send large APDUs, use the function ZPS_eAplAfUnicastAckDataReq(),
which automatically implements data fragmentation (if required).

Once the sent data has reached the first hop node in the route to its destination, a
ZPS_EVENT_APS_DATA_CONFIRM event is generated on the local node.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
118 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

8.1.2.1.2 Parameters

• hAPduInst: Handle of APDU instance to be sent.
• *psProfileDataReq: Pointer to structure containing the details for the transmission (see Section 8.2.3.4).
• *pu8SeqNum: Pointer to location to receive sequence number assigned to data transfer request. If not

required, set to NULL.

8.1.2.1.3 Returns

• ZPS_E_SUCCESS
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

8.1.2.2 ZPS_eAplAfUnicastDataReq

ZPS_teStatus ZPS_eAplAfUnicastDataReq(
 PDUM_thAPduInstance hAPduInst,
 uint16 u16ClusterId,
 uint8 u8SrcEndpoint,
 uint8 u8DstEndpoint,
 uint16 u16DestAddr,
 ZPS_teAplAfSecurityMode eSecurityMode,
 uint8 u8Radius,
 uint8 *pu8SeqNum);

8.1.2.2.1 Description

This function submits a request to send data to a remote node (unicast), using the remote node’s network
address. You must specify the local endpoint and output cluster from which the data originates (the cluster
must be in the Simple descriptor for the endpoint), as well as the network address of the remote node and the
destination endpoint on the node.

The data is sent in an Application Protocol Data Unit (APDU) instance, which can be allocated
using the PDUM function PDUM_hAPduAllocateAPduInstance() and then written to using
PDUM_u16APduInstanceWriteNBO().

If the APDU size is larger than the maximum packet size allowed on the network, this function
call will fail (and return ZPS_E_ADSU_TOO_LONG). To send large APDUs, use the function
ZPS_eAplAfUnicastAckDataReq(), which automatically implements data fragmentation (if required).

Once the sent data has reached the first hop node in the route to its destination, a
ZPS_EVENT_APS_DATA_CONFIRM event will be generated on the local node.

If data is sent using this function to a destination for which a route has not already been established, the
data will not be sent and a route discovery will be performed instead. In this case, the function will return
ZPS_NWK_ENUM_ROUTE_ERROR and must later be re-called to send the data (see Note under Section
6.5.1.1, "Unicast”).

Security (encryption/decryption) can be applied to the APDU, where this security can be implemented at the
Application layer or the network (ZigBee) layer, or both.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
119 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

8.1.2.2.2 Parameters

• hAPduInst: Handle of APDU instance to be sent
• u16ClusterId: Identifier of relevant output cluster on source endpoint
• u8SrcEndpoint: Source endpoint number (1-240) on local node
• u8DstEndpoint: Destination endpoint number (1-240) on remote node
• u16DstAddr: Network address of destination node
• eSecurityMode: Security mode for data transfer:

– ZPS_E_APL_AF_UNSECURE (no security enabled)
– ZPS_E_APL_AF_SECURE (Application-level security using link key and network key)
– ZPS_E_APL_AF_SECURE_NWK (Network-level security using network key)
– ZPS_E_APL_AF_SECURE | ZPS_E_APL_AF_EXT_NONCE (Application-level security using link key and

network key with the extended NONCE included in the frame)
– ZPS_E_APL_AF_WILD_PROFILE (May be combined with above flags using OR operator. Sends the

message using the wildcard profile (0xFFFF) instead of the profile in the associated Simple descriptor)
• u8Radius: Maximum number of hops permitted to destination node (zero value specifies that default

maximum is to be used)
• *pu8SeqNum: Pointer to location to receive sequence number assigned to data transfer request. If not

required, set to NULL

8.1.2.2.3 Returns

• ZPS_E_SUCCESS
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

8.1.2.3 ZPS_eAplAfUnicastIeeeDataReq

ZPS_teStatus ZPS_eAplAfUnicastIeeeDataReq(
 PDUM_thAPduInstance hAPduInst,
 uint16 u16ClusterId,
 uint8 u8SrcEndpoint,
 uint8 u8DstEndpoint,
 uint64 u64DestAddr,
 ZPS_teAplAfSecurityMode eSecurityMode,
 uint8 u8Radius,
 uint8 *pu8SeqNum);

8.1.2.3.1 Description

This function submits a request to send data to a remote node (unicast), using the remote node’s IEEE (MAC)
address. You must specify the local endpoint and output cluster from which the data originates (the cluster
must be in the Simple descriptor for the endpoint), as well as the IEEE address of the remote node and the
destination endpoint on the node.

The data is sent in an Application Protocol Data Unit (APDU) instance, which can be allocated
using the PDUM function PDUM_hAPduAllocateAPduInstance() and then written to using
PDUM_u16APduInstanceWriteNBO().

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
120 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

If the APDU size is larger than the maximum packet size allowed on the network, this function
call will fail (and return ZPS_E_ADSU_TOO_LONG). To send large APDUs, use the function
ZPS_eAplAfUnicastIeeeAckDataReq(), which automatically implements data fragmentation (if required).

Once the sent data has reached the first hop node in the route to its destination, a
ZPS_EVENT_APS_DATA_CONFIRM event is generated on the local node.

If users try to send data using this function to a destination for which a route has not already been
established, the data is not sent. Instead, a route discovery is performed. In this case, the function returns
ZPS_NWK_ENUM_ROUTE_ERROR and must later be re-called to send the data (see Note under Section
6.5.1.1, "Unicast”).

Security (encryption/decryption) can be applied to the APDU, where this security can be implemented at the
Application layer or the network (ZigBee) layer, or both.

8.1.2.3.2 Parameters

• hAPduInst: Handle of APDU instance to be sent
• u16ClusterId: Identifier of relevant output cluster on source endpoint
• u8SrcEndpoint: Source endpoint number (1-240) on local node
• u8DstEndpoint: Destination endpoint number (1-240) on remote node
• u64DestAddr: IEEE (MAC) address of destination node
• eSecurityMode: Security mode for data transfer:

– ZPS_E_APL_AF_UNSECURE (no security enabled)
– ZPS_E_APL_AF_SECURE (Application-level security using link key and network key)
– ZPS_E_APL_AF_SECURE_NWK (Network-level security using network key)
– ZPS_E_APL_AF_SECURE | ZPS_E_APL_AF_EXT_NONCE (Application-level security using link key and

network key with the extended NONCE included in the frame)
– ZPS_E_APL_AF_WILD_PROFILE (May be combined with above flags using OR operator. Sends the

message using the wildcard profile (0xFFFF) instead of the profile in the associated Simple descriptor)
• u8Radius: Maximum number of hops permitted to destination node (zero value specifies that default

maximum is to be used)
• *pu8SeqNum: Pointer to location to receive sequence number assigned to data transfer request. If not

required, set to NULL

8.1.2.3.3 Returns

• ZPS_E_SUCCESS
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

8.1.2.4 ZPS_eAplAfUnicastAckDataReq

ZPS_teStatus ZPS_eAplAfUnicastAckDataReq(
 PDUM_thAPduInstance hAPduInst,
 uint16 u16ClusterId,
 uint8 u8SrcEndpoint,
 uint8 u8DstEndpoint,
 uint16 u16DestAddr,
 ZPS_teAplAfSecurityMode eSecurityMode,
 uint8 u8Radius,

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
121 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

 uint8 *pu8SeqNum);

8.1.2.4.1 Description

This function submits a request to send data to a remote node (unicast), using the remote node’s network
address, and requires an acknowledgment to be returned by the remote node once the data reaches its
destination. You must specify the local endpoint and output cluster from which the data originates (the cluster
must be in the Simple descriptor for the endpoint), as well as the network address of the remote node and the
destination endpoint on the node.

The data is sent in an Application Protocol Data Unit (APDU) instance, which can be allocated
using the PDUM function PDUM_hAPduAllocateAPduInstance() and then written to using
PDUM_u16APduInstanceWriteNBO().

If the APDU size is larger than the maximum packet size allowed on the network, the APDU is broken up into
fragments (NPDUs) for transmission. For this to happen, users should enable fragmentation by setting the
ZigBee network parameter Maximum Number of Transmitted Simultaneous Fragmented Messages to a non-
zero value.

If data is sent using this function to a destination for which a route has not already been established,
the data fails to send and a route discovery is performed instead. In this case, the function returns
ZPS_NWK_ENUM_ROUTE_ERROR and must later be re-called to send the data (see Note under Section
6.5.1.1, "Unicast”).

Once the sent data has reached the first hop node in the route to its destination, a
ZPS_EVENT_APS_DATA_CONFIRM event is generated on the local node. Then, once an acknowledgment
has been received from the destination node, a ZPS_EVENT_APS_DATA_ACK is generated on the sending
node.

Security (encyption/decryption) can be applied to the APDU, where this security can be implemented at the
Application layer or the network (ZigBee) layer, or both.

8.1.2.4.2 Parameters

• hAPduInst Handle of APDU instance to be sent
• u16ClusterId Identifier of relevant output cluster on source endpoint
• u8SrcEndpoint Source endpoint number (1-240) on local node
• u8DstEndpoint Destination endpoint number (1-240) on remote node
• u16DstAddr Network address of destination node
• eSecurityMode Security mode for data transfer:

– ZPS_E_APL_AF_UNSECURE (no security enabled)
– ZPS_E_APL_AF_SECURE (Application-level security using link key and network key)
– ZPS_E_APL_AF_SECURE_NWK (Network-level security using network key)
– ZPS_E_APL_AF_SECURE | ZPS_E_APL_AF_EXT_NONCE (Application-level security using link key and

network key with the extended NONCE included in the frame)
– ZPS_E_APL_AF_WILD_PROFILE (May be combined with above flags using OR operator. Sends the

message using the wildcard profile (0xFFFF) instead of the profile in the associated Simple descriptor)

• u8Radius Maximum number of hops permitted to destination node (zero value specifies that default
maximum is to be used).

• *pu8SeqNum Pointer to location to receive sequence number assigned to data transfer request. If not
required, set to NULL.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
122 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

8.1.2.4.3 Returns

• ZPS_E_SUCCESS
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

8.1.2.5 ZPS_eAplAfUnicastIeeeAckDataReq

ZPS_teStatus ZPS_eAplAfUnicastIeeeAckDataReq(
 PDUM_thAPduInstance hAPduInst,
 uint16 u16ClusterId,
 uint8 u8SrcEndpoint,
 uint8 u8DstEndpoint,
 uint64 u64DestAddr,
 ZPS_teAplAfSecurityMode eSecurityMode,
 uint8 u8Radius,
 uint8 *pu8SeqNum);

8.1.2.5.1 Description

This function submits a request to send data to a remote node (unicast), using the remote node’s IEEE (MAC)
address. The function also requires an acknowledgment to be returned by the remote node once the data
reaches its destination. You must specify the local endpoint and output cluster from which the data originates
(the cluster must be in the Simple descriptor for the endpoint), as well as the IEEE address of the remote node
and the destination endpoint on the node.

The data is sent in an Application Protocol Data Unit (APDU) instance, which can be allocated
using the PDUM function PDUM_hAPduAllocateAPduInstance() and then written to using
PDUM_u16APduInstanceWriteNBO().

If the APDU size is larger than the maximum packet size allowed on the network, the APDU can be broken up
into fragments (NPDUs) for transmission. To enable this fragmentation, users should set the ZigBee network
parameter Maximum Number of Transmitted Simultaneous Fragmented Messages to a non-zero value.

If data is sent using this function to a destination for which a route has not already been established,
the data is not sent and a route discovery is performed instead. In this case, the function returns
ZPS_NWK_ENUM_ROUTE_ERROR and must later be re-called to send the data (see Note under Section
6.5.1.1, "Unicast”).

Once the sent data has reached the first hop node in the route to its destination, a
ZPS_EVENT_APS_DATA_CONFIRM event will be generated on the local node. Then, once an
acknowledgment has been received from the destination node, a ZPS_EVENT_APS_DATA_ACK is generated
on the sending node.

Security (encyption/decryption) can be applied to the APDU, where this security can be implemented at the
Application layer or the network (ZigBee) layer, or both.

8.1.2.5.2 Parameters

• hAPduInst: Handle of APDU instance to be sent
• u16ClusterId: Identifier of relevant output cluster on source endpoint
• u8SrcEndpoint: Source endpoint number (1-240) on local node
• u8DstEndpoint: Destination endpoint number (1-240) on remote node

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
123 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• u64DestAddr: IEEE (MAC) address of destination node
• eSecurityMode: Security mode for data transfer:

– ZPS_E_APL_AF_UNSECURE (no security enabled)
– ZPS_E_APL_AF_SECURE (Application-level security using link key and network key)
– ZPS_E_APL_AF_SECURE_NWK (Network-level security using network key)
– ZPS_E_APL_AF_SECURE | ZPS_E_APL_AF_EXT_NONCE (Application-level security using link key and

network key with the extended NONCE included in the frame)
– ZPS_E_APL_AF_WILD_PROFILE (May be combined with above flags using OR operator. Sends the

message using the wildcard profile (0xFFFF) instead of the profile in the associated Simple descriptor)
• u8Radius: Maximum number of hops permitted to destination node (zero value specifies that default

maximum is to be used).
• *pu8SeqNum: Pointer to location to receive sequence number assigned to data transfer request. If not

required, set to NULL.

8.1.2.5.3 Returns

• ZPS_E_SUCCESS
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

8.1.2.6 ZPS_eAplAfGroupDataReq

ZPS_teStatus ZPS_eAplAfGroupDataReq(
 PDUM_thAPduInstance hAPduInst,
 uint16 u16ClusterId,
 uint8 u8SrcEndpoint,
 uint16 u16DstGroupAddr,
 ZPS_teAplAfSecurityMode eSecurityMode,
 uint8 u8Radius,
 uint8 *pu8SeqNum);

8.1.2.6.1 Description

This function submits a request to send data to a group of endpoints located on one or more nodes (group
multicast). Users must specify the local endpoint and output cluster from which the data originates (the cluster
must be in the Simple descriptor for the endpoint) as well as the ‘group address’ of the group of destination
endpoints. A group is set up using the function ZPS_eAplZdoGroupEndpointAdd(). The data is actually
broadcast to all network nodes and each recipient node assesses whether it has endpoints in the specified
group.

The data is sent in an Application Protocol Data Unit (APDU) instance, which can be allocated
using the PDUM function PDUM_hAPduAllocateAPduInstance() and then written to using
PDUM_u16APduInstanceWriteNBO().

If the APDU size is larger than the maximum packet size allowed on the network, this function call fails (and
returns ZPS_E_ADSU_TOO_LONG). Once the data is transmitted, a ZPS_EVENT_APS_DATA_CONFIRM
event is generated on the local node.

Security (encyption/decryption) can be applied to the APDU, where this security can be implemented at the
Application layer or the network (ZigBee) layer, or both.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
124 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

8.1.2.6.2 Parameters

• hAPduInst: Handle of APDU instance to be sent
• u16ClusterId: Identifier of relevant output cluster on source endpoint
• u8SrcEndpoint: Source endpoint number (1-240) on local node
• u16DstGroupAddr: Group address of destination endpoints
• eSecurityMode: Security mode for data transfer, one of:

– ZPS_E_APL_AF_UNSECURE (no security enabled)
– ZPS_E_APL_AF_SECURE_NWK (Network-level security using network key)
– ZPS_E_APL_AF_WILD_PROFILE (May be combined with above flags using OR operator. Sends the

message using the wildcard profile (0xFFFF) instead of the profile in the associated Simple descriptor)

• u8Radius: Maximum number of hops permitted to destination node (zero value specifies that default
maximum is to be used)

• *pu8SeqNum: Pointer to location to receive sequence number assigned to data transfer request. If not
required, set to NULL.

8.1.2.6.3 Returns

• ZPS_E_SUCCESS
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

8.1.2.7 ZPS_eAplAfBroadcastDataReq

ZPS_teStatus ZPS_eAplAfBroadcastDataReq(
 PDUM_thAPduInstance hAPduInst,
 uint16 u16ClusterId,
 uint8 u8SrcEndpoint,
 uint8 u8DstEndpoint,
 ZPS_teAplAfBroadcastMode eBroadcastMode,
 ZPS_teAplAfSecurityMode eSecurityMode,
 uint8 u8Radius,
 uint8 *pu8SeqNum);

8.1.2.7.1 Description

This function submits a request to send data to all network nodes that conform to the specified broadcast mode.
You must specify the local endpoint and output cluster from which the data originates (the cluster must be in the
Simple descriptor for the endpoint), as well as the destination endpoint(s) on the remote nodes.

The data is sent in an Application Protocol Data Unit (APDU) instance, which can be allocated
using the PDUM function PDUM_hAPduAllocateAPduInstance() and then written to using
PDUM_u16APduInstanceWriteNBO().

If the APDU size is larger than the maximum packet size allowed on the network, this function call fails (and
return ZPS_E_ADSU_TOO_LONG).

Following this function call, the APDU may be broadcast up to four times by the source node (in addition,
the APDU may be subsequently re-broadcast up to four times by each intermediate routing node). If the
transmission is successful, the event ZPS_EVENT_APS_DATA_CONFIRM is generated on the local node.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
125 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Security (encyption/decryption) can be applied to the APDU, where this security can be implemented at the
Application layer or the network (ZigBee) layer, or both.

8.1.2.7.2 Parameters

• hAPduInst: Handle of APDU instance to be sent
• u16ClusterId: Identifier of relevant output cluster on source endpoint
• u8SrcEndpoint: Source endpoint number (1-240) on local node
• u8DstEndpoint: Destination endpoint number (1-240) on remote node, or 255 for all endpoints on node
• eBroadcastMode: Type of broadcast, one of:

– ZPS_E_BROADCAST_ALL (all nodes)
– ZPS_E_BROADCAST_ALL RX_ON (all nodes with radio receiver permanently enabled)
– ZPS_E_BROADCAST_ZC_ZR (all Routers and Coordinator)

• eSecurityMode: Security mode for data transfer:
– ZPS_E_APL_AF_UNSECURE (no security enabled)
– ZPS_E_APL_AF_SECURE_NWK (Network-level security using network key)
– ZPS_E_APL_AF_WILD_PROFILE (May be combined with above flags using OR operator. Sends the

message using the wildcard profile (0xFFFF) instead of the profile in the associated Simple descriptor)

• u8Radius: Maximum number of hops permitted to destination node (zero value specifies that default
maximum is to be used)

• *pu8SeqNum: Pointer to location to receive sequence number assigned to data transfer request. If not
required, set to NULL

8.1.2.7.3 Returns

• ZPS_E_SUCCESS
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

8.1.2.8 ZPS_eAplAfBoundDataReq

ZPS_teStatus ZPS_eAplAfBoundDataReq(
 PDUM_thAPduInstance hAPduInst,
 uint16 u16ClusterId,
 uint8 u8SrcEndpoint,
 ZPS_teAplAfSecurityMode eSecurityMode,
 uint8 u8Radius,
 uint8 *pu8SeqNum);

8.1.2.8.1 Description

This function submits a request to send data to all nodes/endpoints to which the source node/endpoint has been
previously bound (using the binding functions, described in Section 9.1.3). You must specify the local endpoint
and output cluster from which the data originates (the cluster must be in the Simple descriptor for the endpoint).

The data is sent in an Application Protocol Data Unit (APDU) instance, which can be allocated
using the PDUM function PDUM_hAPduAllocateAPduInstance() and then written to using
PDUM_u16APduInstanceWriteNBO().

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
126 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

If the APDU size is larger than the maximum packet size allowed on the network, this function call fails (and
return ZPS_E_ADSU_TOO_LONG).

Once the sent data has reached the first hop node in the route to its destination(s), a
ZPS_EVENT_BIND_REQUEST_SERVER event is generated on the local node. This event reports the status of
the bound transmission, including the number of bound endpoints for which the transmission has failed.

Security (encyption/decryption) can be applied to the APDU, where this security can be implemented at the
Application layer or the network (ZigBee) layer, or both.

8.1.2.8.2 Parameters

• hAPduInst: Handle of APDU instance to be sent
• u16ClusterId: Identifier of relevant output cluster on source endpoint
• u8SrcEndpoint: Source endpoint number (1-240) on local node
• eSecurityMode: Security mode for data transfer:

– ZPS_E_APL_AF_UNSECURE (no security enabled)
– ZPS_E_APL_AF_SECURE (Application-level security using link key and network key)
– ZPS_E_APL_AF_SECURE_NWK (Network-level security using network key)
– ZPS_E_APL_AF_SECURE | ZPS_E_APL_AF_EXT_NONCE (Application-level security using link key and

network key with the extended NONCE included in the frame)
– ZPS_E_APL_AF_WILD_PROFILE (May be combined with above flags using OR operator. Sends the

message using the wildcard profile (0xFFFF) instead of the profile in the associated Simple descriptor)
• u8Radius: Maximum number of hops permitted to destination node (zero value specifies that default

maximum is to be used)
• *pu8SeqNum: Pointer to location to receive sequence number assigned to data transfer request. If not

required, set to NULL.

8.1.2.8.3 Returns

• ZPS_E_SUCCESS
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

8.1.2.9 ZPS_eAplAfBoundAckDataReq

 ZPS_teStatus ZPS_eAplAfBoundAckDataReq(
 PDUM_thAPduInstance hAPduInst,
 uint16 u16ClusterId,
 uint8 u8SrcEndpoint,
 ZPS_teAplAfSecurityMode eSecurityMode,
 uint8 u8Radius,
 uint8 *pu8SeqNum);

8.1.2.9.1 Description

This function submits a request to send data to all nodes/endpoints to which the source node/endpoint has been
previously bound (using the binding functions, described in Section 9.1.3) and requires an acknowledgment to
be returned by the remote node(s) once the data reaches its destination(s). You must specify the local endpoint
and output cluster from which the data originates (the cluster must be in the Simple descriptor for the endpoint).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
127 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

The data is sent in an Application Protocol Data Unit (APDU) instance, which can be allocated
using the PDUM function PDUM_hAPduAllocateAPduInstance() and then written to using
PDUM_u16APduInstanceWriteNBO().

If the APDU size is larger than the maximum packet size allowed on the network, the APDU can be broken
up into fragments (NPDUs) for transmission. To enable this fragmentation, set the ZigBee network parameter
Maximum Number of Transmitted Simultaneous Fragmented Messages to a non-zero value.

Once the sent data reaches its final destination node(s), a ZPS_EVENT_BIND_REQUEST_SERVER event is
generated on the local node. This event reports the status of the bound transmission, including the number of
bound endpoints for which the transmission has failed.

Security (encyption/decryption) can be applied to the APDU, where this security can be implemented at the
Application layer or the network (ZigBee) layer, or both.

8.1.2.9.2 Parameters

• hAPduInst: Handle of APDU instance to be sent
• u16ClusterId: Identifier of relevant output cluster on source endpoint
• u8SrcEndpoint: Source endpoint number (1-240) on local node
• eSecurityMode: Security mode for data transfer:

– ZPS_E_APL_AF_UNSECURE (no security enabled)
– ZPS_E_APL_AF_SECURE (Application-level security using link key and network key)
– ZPS_E_APL_AF_SECURE_NWK (Network-level security using network key)
– ZPS_E_APL_AF_SECURE | ZPS_E_APL_AF_EXT_NONCE (Application-level security using link key and

network key with the extended NONCE included in the frame)
– ZPS_E_APL_AF_WILD_PROFILE (May be combined with above flags using OR operator. Sends the

message using the wildcard profile (0xFFFF) instead of the profile in the associated Simple descriptor)
• u8Radius: Maximum number of hops permitted to destination node (zero value specifies that default

maximum is to be used)
• *pu8SeqNum: Pointer to location to receive sequence number assigned to data transfer request. If not

required, set to NULL.

8.1.2.9.3 Returns

• ZPS_E_SUCCESS
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

8.1.2.10 ZPS_eAplAfInterPanDataReq

ZPS_teStatus ZPS_eAplAfInterPanDataReq(
 PDUM_thAPduInstance hAPduInst,
 uint16 u16ClusterId,
 uint16 u16ProfileId,
 ZPS_tsInterPanAddress *psDstAddr,
 uint8 u8Handle);

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
128 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

8.1.2.10.1 Description

This function submits a request to send data to one or more nodes in another ZigBee PRO network - that is, to
implement an inter-PAN transmission. The destination for the data is specified in a structure (detailed in Section
8.2.3.3) which contains:

• PAN ID of destination network (a broadcast to all reachable ZigBee PRO networks can also be configured)
• Address of destination node (this can be an IEEE/MAC or network address for a single node, a group address

for multiple nodes or a broadcast address for all nodes).

The data is sent in an Application Protocol Data Unit (APDU) instance, which can be allocated
using the PDUM function PDUM_hAPduAllocateAPduInstance() and then written to using
PDUM_u16APduInstanceWriteNBO().

If the APDU size is larger than the maximum packet size allowed on the local network, this function call fails
(and returns ZPS_E_ADSU_TOO_LONG).

Once the sent data reaches the first hop node in the route to its destination, a
ZPS_EVENT_APS_INTERPAN_DATA_CONFIRM event is generated on the local node. In case of a broadcast
or group multicast, this event is simply generated once the data has been sent from the local node.

Security (encyption/decryption) cannot be applied to inter-PAN transmissions.

8.1.2.10.2 Parameters

• hAPduInst: Handle of APDU instance to be sent
• u16ClusterId: Identifier of cluster for which data is intended at destination (must be a cluster of the application

profile specified below)
• u16ProfileId: Identifier of application profile for which data is intended at destination
• psDstAddr: Pointer to structure containing destination PAN ID and address (see Section 8.2.3.3)
• u8Handle: Handle for internal use (set to any value)

8.1.2.10.3 Returns

• ZPS_E_SUCCESS.
• ZPS_APL_APS_E_ILLEGAL_REQUEST.
• MAC return codes, listed and described in Section 11.2.4.

8.1.2.11 ZPS_u8AplGetMaxPayloadSize

uint8 ZPS_u8AplGetMaxPayloadSize(void *pvApl,
 uint16 u16Addr);

8.1.2.11.1 Description

This function obtains the effective payload size, in bytes, within an IEEE802.15.4 data frame to be sent to the
node with the specified network address. The handle of the relevant Application layer instance must also be
specified, which can be obtained using ZPS_pvAplZdoGetAplHandle().

An IEEE802.15.4 data frame contains 127 bytes, but the effective payload is reduced by the various
IEEE802.15.4 and ZigBee headers. The function returns the size of the payload available for data but does not
take into account bytes needed for ZCL cluster headers (so may not reflect the exact amount of space available
for data).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
129 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

8.1.2.11.2 Parameters

• pvApl: Handle of handle for the Application layer instance
• u16Addr: 16-bit network address of node to which data is to be sent

8.1.2.11.3 Returns

Number of data frame payload bytes available for data (ignoring ZCL headers).

8.1.3 Endpoint functions

The AF Endpoint functions are used to control and monitor the states of endpoints on the local node.

The functions are listed below.

1. ZPS_vAplAfSetEndpointState
2. ZPS_eAplAfGetEndpointState
3. ZPS_eAplAfSetEndpointDiscovery
4. ZPS_eAplAfGetEndpointDiscovery

8.1.3.1 ZPS_vAplAfSetEndpointState

ZPS_teStatus ZPS_eAplAfSetEndpointState(
 uint8 u8Endpoint,
 bool bEnabled);

8.1.3.1.1 Description

This function puts the specified endpoint on the local node into the specified state (enabled or disabled).

8.1.3.1.2 Parameters

• u8Endpoint: Endpoint number (on local node)
• bEnabled: State in which to put endpoint, one of:

– TRUE: enable endpoint
– FALSE: disable endpoint

8.1.3.1.3 Returns

• ZPS_E_SUCCESS (endpoint state successfully set)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

8.1.3.2 ZPS_eAplAfGetEndpointState

ZPS_teStatus ZPS_eAplAfGetEndpointState(
 uint8 u8Endpoint,
 bool *pbEnabled);

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
130 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

8.1.3.2.1 Description

This function obtains the current state (enabled or disabled) of the specified endpoint on the local node.

8.1.3.2.2 Parameters

• u8Endpoint: Endpoint number (on local node)
• *pbEnabled: Pointer to location to receive endpoint state. The returned state is one of:

– TRUE: endpoint enabled
– FALSE: endpoint disabled

8.1.3.2.3 Returns

• ZPS_E_SUCCESS
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

8.1.3.3 ZPS_eAplAfSetEndpointDiscovery

ZPS_teStatus ZPS_eAplAfSetEndpointDiscovery(
 uint8 u8Endpoint,
 uint16 u16ClusterId,
 bool bOutput,
 bool bDiscoverable);

8.1.3.3.1 Description

This function sets the discoverable state of the specified cluster of the specified endpoint on the local node -
that is, whether the cluster/endpoint will be included in ‘device discoveries’ initiated on the network.

If the cluster/endpoint is discoverable, it appears in the Simple descriptor of the local node and is also included
in match results requested using the function ZPS_eAplZdpMatchDescRequest().

The initial discoverable state of the cluster/endpoint is pre-set using the ZPS Configuration Editor (see Chapter
13).

8.1.3.3.2 Parameters

• u8Endpoint: Endpoint number (on local node)
• u16ClusterId: Cluster ID
• bOutput: Type of cluster (output or input), one of:

– TRUE: Output cluster
– FALSE: Input cluster

• bDiscoverable: Discoverable state to set, one of:
– TRUE: Discoverable
– FALSE: Not discoverable

8.1.3.3.3 Returns

• ZPS_E_SUCCESS
• APS return codes, listed and described in Section 11.2.2

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
131 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

8.1.3.4 ZPS_eAplAfGetEndpointDiscovery

ZPS_teStatus ZPS_eAplAfGetEndpointDiscovery(
 uint8 u8Endpoint,
 uint16 u16ClusterId,
 bool bOutput,
 bool_t *pbDiscoverable);

8.1.3.4.1 Description

This function obtains the discoverable state of the specified cluster of the specified endpoint on the local node -
that is, whether the cluster/endpoint will be included in ‘device discoveries’ initiated on the network.

If the cluster/endpoint is discoverable, it appears in the Simple descriptor of the local node and is also included
in match results requested using the function ZPS_eAplZdpMatchDescRequest().

The initial discoverable state of the cluster/endpoint is pre-set using the ZPS Configuration
Editor (see Chapter 13). The state can subsequently be changed at runtime using the function
ZPS_eAplAfSetEndpointDiscovery().

8.1.3.4.2 Parameters

• u8Endpoint: Endpoint number (on local node)
• u16ClusterId: Cluster ID
• bOutput: Type of cluster (output or input), one of:

– TRUE: Output cluster
– FALSE: Input cluster

• *pbDiscoverable: Pointer to location to receive discoverable state, which is one of the below:
– TRUE: Discoverable
– FALSE: Not discoverable

8.1.3.4.3 Returns

• ZPS_E_SUCCESS
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

8.1.4 Descriptor functions

The AF Descriptor functions allow ZigBee descriptors for the local node to be copied to and from the context
area of the ZigBee PRO stack. The functions are listed below.

1. ZPS_eAplAfGetNodeDescriptor
2. ZPS_eAplAfGetNodePowerDescriptor
3. ZPS_eAplAfGetSimpleDescriptor

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
132 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

8.1.4.1 ZPS_eAplAfGetNodeDescriptor

ZPS_teStatus ZPS_eAplAfGetNodeDescriptor(
 ZPS_tsAplAfNodeDescriptor *psDesc);

8.1.4.1.1 Description

This function copies the Node descriptor (for the local node) from the context area of the stack to the specified
structure (the descriptor is returned through the function’s parameter).

8.1.4.1.2 Parameters

*psDesc: Pointer to structure (see Section 8.2.1.1) to receive Node descriptor.

8.1.4.1.3 Returns

• ZPS_E_SUCCESS
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

8.1.4.2 ZPS_eAplAfGetNodePowerDescriptor

ZPS_teStatus ZPS_eAplAfGetNodePowerDescriptor(
 ZPS_tsAplAfNodePowerDescriptor *psDesc);

8.1.4.2.1 Description

This function copies the Node Power descriptor (for the local node) from the context area of the stack to the
specified structure (the descriptor is returned through the function’s parameter).

8.1.4.2.2 Parameters

*psDesc Pointer to structure (see Section 8.2.1.2) to receive Node Power descriptor

8.1.4.2.3 Returns

• ZPS_E_SUCCESS
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

8.1.4.3 ZPS_eAplAfGetSimpleDescriptor

ZPS_teStatus ZPS_eAplAfGetSimpleDescriptor(
 uint8 u8Endpoint,
 ZPS_tsAplAfSimpleDescriptor *psDesc);

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
133 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

8.1.4.3.1 Description

This function copies the Simple descriptor for the specified endpoint (on the local node) from the context area of
the stack to the specified structure (the descriptor is returned through the function’s parameter).

8.1.4.3.2 Parameters

*psDesc Pointer to structure (see Section 8.2.1.3) to receive Simple descriptor

8.1.4.3.3 Returns

• ZPS_E_SUCCESS
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

8.1.5 Other functions

This section described other functions in the AF API. These functions are listed below:

• ZPS_vSaveAllZpsRecords
• ZPS_bAplAfSetEndDeviceTimeout
• ZPS_eAplAfSendKeepAlive

8.1.5.1 ZPS_vSaveAllZpsRecords

void ZPS_vSaveAllZpsRecords(void);

8.1.5.1.1 Description

This function saves to Non-Volatile Memory (NVM) all the NVM records related to the ZigBee PRO stack. This
function must be used in conjunction with the Non-Volatile Memory Manager (NVM), which is described in the
JN51xx Core Utilities User Guide (JNUG3133).

8.1.5.1.2 Parameters

None

8.1.5.1.3 Returns

None

8.1.5.2 ZPS_bAplAfSetEndDeviceTimeout

bool ZPS_bAplAfSetEndDeviceTimeout
 (teZedTimeout eZedTimeout);

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
134 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

8.1.5.2.1 Description

This function can be used on an End Device to configure a timeout period for the End Device Aging mechanism,
which is described in Section 6.10.1.

The End Device communicates this timeout period to its parent on joining the network. The parent
applies this timeout to the ‘keep-alive’ packets sent from the End Device child using the function
ZPS_eAplAfSendKeepAlive(). If the parent does not receive a keep-alive packet from the End Device before
the timeout expires, then the parent assumes the End Device is no longer active and discards it.

8.1.5.2.2 Parameters

eZedTimeout Enumeration indicating timeout period to be set - one of the below:

• ZED_TIMEOUT_10_SEC (10 seconds)
• ZED_TIMEOUT_2_MIN (2 minutes)
• ZED_TIMEOUT_4_MIN (4 minutes)
• ZED_TIMEOUT_8_MIN (8 minutes)
• ZED_TIMEOUT_16_MIN (16 minutes)
• ZED_TIMEOUT_32_MIN (32 minutes)
• ZED_TIMEOUT_64_MIN (64 minutes)
• ZED_TIMEOUT_128_MIN (128 minutes)
• ZED_TIMEOUT_256_MIN (256 minutes)
• ZED_TIMEOUT_512_MIN (512 minutes)
• ZED_TIMEOUT_1024_MIN (1024 minutes)
• ZED_TIMEOUT_2048_MIN (2048 minutes)
• ZED_TIMEOUT_4096_MIN (4096 minutes)
• ZED_TIMEOUT_8192_MIN (8192 minutes)
• ZED_TIMEOUT_16384_MIN (16384 minutes)

8.1.5.2.3 Returns

• TRUE - timeout successfully set
• FALSE - timeout not set

8.1.5.3 ZPS_eAplAfSendKeepAlive

ZPS_teStatus ZPS_eAplAfSendKeepAlive(void);

8.1.5.3.1 Description

This function can be used on an End Device to send a ‘keep-alive’ packet to its parent as part of the End Device
Aging mechanism, which is described in Section 6.10.1. This packet informs the parent that the End Device is
still active, so that the parent does not discard the child.

The parent must receive at least one keep-alive packet from the End Device within the timeout period defined
using the function ZPS_bAplAfSetEndDeviceTimeout(). Otherwise, the parent assumes that the child is no
longer active and discard the child. It is recommended that at least three keep-alive packets are sent within
the timeout period to ensure that the End Device child is not accidentally discarded due to missed keep-alive
packets.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
135 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

A keep-alive packet can take the form of a MAC Data Poll or an End Device Timeout Request, as required by
the parent - the keep-alive packet type is configured in the NIB on the parent but, by default, both packets types
are configured to be acceptable in the NXP software. This function automatically sends the appropriate keep-
alive packet type but when both packet types are acceptable, a Data Poll is sent. Both packet types have the
effect of re-starting the timeout for the End Device on the parent. When a Data Poll packet is used, the parent
may also return pending data to the End Device, indicated by a ZPS_EVENT_AF_DATA_INDICATION event on
the End Device.

8.1.5.3.2 Parameters

None

8.1.5.3.3 Returns

• ZPS_E_SUCCESS
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

8.2 AF structures
This section describes the structures of the Application Framework (AF) API. These include the following
categories of structure:

• Descriptor structures - see Section 8.2.1
• Event structures - see Section 8.2.2
• Other structures - see Section 8.2.3

8.2.1 Descriptor structures

These structures are used to represent the following descriptors that contain information about the host node:

• Node descriptor
• Node Power descriptor
• Simple descriptor

The structures are listed below.

1. ZPS_tsAplAfNodeDescriptor
2. ZPS_tsAplAfNodePowerDescriptor
3. ZPS_tsAplAfSimpleDescriptor

8.2.1.1 ZPS_tsAplAfNodeDescriptor

The AF Node descriptor structure ZPS_tsAplAfNodeDescriptor is shown below.

typedef struct {
 uint32 : 8;/* padding */
 uint32 eLogicalType : 3;
 uint32 bComplexDescAvail : 1;
 uint32 bUserDescAvail : 1;
 uint32 eReserved : 3; /* reserved */
 uint32 eFrequencyBand : 5;
 uint32 eApsFlags : 3;

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
136 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

 uint32 u8MacFlags : 8;
 uint16 u16ManufacturerCode;
 uint8 u8MaxBufferSize;
 uint16 u16MaxRxSize;
 uint16 u16ServerMask;
 uint16 u16MaxTxSize;
 uint8 u8DescriptorCapability;
} ZPS_tsAplAfNodeDescriptor;

where:

• eLogicalType contains 3 bits (bits 0-2) indicating the ZigBee device type of the node, as follows:
– 000: Coordinator
– 001: Router
– 010: End Device

• bComplexDescAvail is set to 1 if there is a Complex descriptor available for node.
• bUserDescAvail is set to 1 if there is a User descriptor available for node.
• eReserved is reserved.
• eFrequencyBand contains 5 bits detailing the frequency bands supported by the node, as follows (a bit is

set to 1 if the corresponding band is supported):
– Bit 0: 868-868.6 MHz
– Bit 2: 902-928 MHz
– Bit 3: 2400-2483.5 MHz
– Bits 1 and 4 are reserved

• eApsFlags is not currently supported and set to zero.
• eMacFlags contains 8 bits (bits 0-7) indicating the node capabilities, as required by the IEEE 802.15.4 MAC

sub-layer. These node capability flags are described in the table: Table 14.
• u16ManufacturerCode contains 16 bits (bits 0-15) indicating the manufacturer code for the node, where

this code is allocated to the manufacturer by the ZigBee Alliance.
• u8MaxBufferSize is the maximum size, in bytes, of an NPDU (Network Protocol Data Unit).
• u16MaxRxSize is the maximum size, in bytes, of an APDU (Application Protocol Data Unit). This value can

be greater than the value of u8MaxBufferSize, due to the fragmentation of an APDU into NPDUs.
• u16ServerMask contains 8 bits (bits 0-7) indicating the server status of the node. This server mask is

detailed in the table: Table 19.
• u16MaxTxSize is the maximum size, in bytes, of the ASDU (Application Sub-layer Data Unit) in which a

message can be sent (the message may actually be transmitted in smaller fragments)
• u8DescriptorCapability contains 8 bits (bits 0-7) indicating the properties of the node that can be used

by other nodes in network discovery, as follows:

Bit Description

0 Set to 1 if Extended Active Endpoint List is available on the node, 0 otherwise.

1 Set to 1 if Extended Simple Descriptor List is available on the node, 0 otherwise.

2-7 Reserved

Table 12.  Bit description of u8DescriptorCapability

8.2.1.2 ZPS_tsAplAfNodePowerDescriptor

The AF Node Power descriptor structure ZPS_tsAplAfNodePowerDescriptor is shown below.

typedef struct {
 uint32 eCurrentPowerMode : 4;

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
137 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

 uint32 eAvailablePowerSources : 4;
 uint32 eCurrentPowerSource : 4;
 uint32 eCurrentPowerSourceLevel : 4;
} ZPS_tsAplAfNodePowerDescriptor;

where:

• eCurrentPowerMode contains 4 bits (bits 0-3) indicating the power mode currently used by the node, as
follows:
– 0000: Receiver configured according to “Receiver on when idle” MAC flag in the Node Descriptor (see

Section 8.2.1.1)
– 0001: Receiver switched on periodically
– 0010: Receiver switched on when stimulated, for example, by pressing a button
– All other values are reserved

• eAvailablePowerSources contains 4 bits (bits 0-3) indicating the available power sources for the node,
as follows (a bit is set to 1 if the corresponding power source is available):
– Bit 0: Permanent mains supply
– Bit 1: Rechargeable battery
– Bit 2: Disposable battery
– Bit 4: Reserved

• eCurrentPowerSource contains 4 bits (bits 0-3) indicating the current power source for the node, as
detailed for the element above (the bit corresponding to the current power source is set to 1, all other bits are
set to 0).

• eCurrentPowerSourceLevel contains 4 bits (bit 0-3) indicating the current level of charge of the node’s
power source (mainly useful for batteries), as follows:
– 0000: Critically low
– 0100: Approximately 33%
– 1000: Approximately 66%
– 1100: Approximately 100% (near fully charged)

8.2.1.3 ZPS_tsAplAfSimpleDescriptor

The AF Simple descriptor structure ZPS_tsAplAfSimpleDescriptor is shown below.

typedef struct {
 uint16 u16ApplicationProfileId;
 uint16 u16DeviceId;
 uint8 u8DeviceVersion;
 uint8 u8Endpoint;
 uint8 u8InClusterCount;
 uint8 u8OutClusterCount;
 uint16 *pu16InClusterList;
 uint16 *pu16OutClusterList;
} ZPS_tsAplAfSimpleDescriptor;

where:

• u16ApplicationProfileId is the 16-bit identifier of the ZigBee application profile supported by the
endpoint. This must be an application profile identifier issued by the ZigBee Alliance (for Lighting and
Occupancy devices, it is 0x0104).

• u16DeviceId is the 16-bit identifier of the ZigBee device type supported by the endpoint. This must be a
device type identifier issued by the ZigBee Alliance.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
138 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• u8DeviceVersion contains 4 bits (bits 0-3) representing the version of the supported device description
(default is 0000, unless set to another value according to the application profile used).

• u8Endpoint is the number, in the range 1-240, of the endpoint to which the Simple descriptor corresponds.
• u8InClusterCount is an 8-bit count of the number of input clusters, supported on the endpoint, that will

appear in the list pointed to by the pu16InClusterList element.
• u8OutClusterCount is an 8-bit count of the number of output clusters, supported on the endpoint, that will

appear in the pu16OutClusterList element.
• *pu16InClusterList is a pointer to the list of input clusters supported by the endpoint (for use during

the service discovery and binding procedures). This is a sequence of 16-bit values, representing the cluster
numbers (in the range 1-240), where the number of values is equal to count u8InClusterCount. If this
count is zero, the pointer can be set to NULL.

• *pu16OutClusterList is a pointer to the list of output clusters supported by the endpoint (for use during
the service discovery and binding procedures). This is a sequence of 16-bit values, representing the cluster
numbers (in the range 1-240), where the number of values is equal to count u8OutClusterCount. If this
count is zero, the pointer can be set to NULL.

8.2.2 Event structures

These structures are used to contain events. Event details (type and associated data) are passed to the
application in the structure ZPS_tsAfEvent. Data structures for the individual event types are contained in the
union ZPS_tuAfEventData.

Enumerations for the event types are provided in the structure ZPS_teAfEventType. This structure and the
associated events are detailed in Chapter 11, Section 11.

The structures are listed below.

1. ZPS_tsAfEvent
2. ZPS_tuAfEventData
3. ZPS_tsAfDataIndEvent
4. ZPS_tsAfDataConfEvent
5. ZPS_tsAfDataAckEvent
6. ZPS_tsAfNwkFormationEvent
7. ZPS_tsAfNwkJoinedEvent
8. ZPS_tsAfNwkJoinFailedEvent
9. ZPS_tsAfNwkDiscoveryEvent

10. ZPS_tsAfNwkJoinIndEvent
11. ZPS_tsAfNwkLeaveIndEvent
12. ZPS_tsAfNwkLeaveConfEvent
13. ZPS_tsAfNwkStatusIndEvent
14. ZPS_tsAfNwkRouteDiscoveryConfEvent
15. ZPS_tsAfPollConfEvent
16. ZPS_tsAfNwkEdScanConfEvent
17. ZPS_tsAfErrorEvent
18. ZPS_tsAfZdoBindEvent
19. ZPS_tsAfZdoUnbindEvent
20. ZPS_tsAfZdoLinkKeyEvent
21. ZPS_tsAfBindRequestServerEvent
22. ZPS_tsAfInterPanDataIndEvent
23. ZPS_tsAfInterPanDataConfEvent
24. ZPS_tsAfTCstatusEvent
JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
139 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

25. ZPS_tsAfZdpEvent

8.2.2.1 ZPS_tsAfEvent

This structure contains the details of an event. The ZPS_tsAfEvent structure is detailed below.

typedef struct {
 ZPS_teAfEventType eType;
 ZPS_tuAfEventData uEvent;
} ZPS_tsAfEvent;

where

• eType indicates the event type, using the enumerations listed and described in Section 11.1.
• uEvent is a structure containing the event data from the union of structures detailed in Section 8.2.2.2.

8.2.2.2 ZPS_tuAfEventData

This structure is a union of the data structures for the individual events described in Section 8.2.2.3 through to
Section 8.2.2.25.

The ZPS_tuAfEventData structure is detailed below.

typedef union
{
ZPS_tsAfDataIndEvent sApsDataIndEvent;
ZPS_tsAfDataConfEvent sApsDataConfirmEvent;
ZPS_tsAfDataAckEvent sApsDataAckEvent;
ZPS_tsAfNwkFormationEvent sNwkFormationEvent;
ZPS_tsAfNwkJoinedEvent sNwkJoinedEvent;
ZPS_tsAfNwkJoinFailedEvent sNwkJoinFailedEvent;
ZPS_tsAfNwkDiscoveryEvent sNwkDiscoveryEvent;
ZPS_tsAfNwkJoinIndEvent sNwkJoinIndicationEvent;
ZPS_tsAfNwkLeaveIndEvent sNwkLeaveIndicationEvent;
ZPS_tsAfNwkLeaveConfEvent sNwkLeaveConfirmEvent;
ZPS_tsAfNwkStatusIndEvent sNwkStatusIndicationEvent;
ZPS_tsAfNwkRouteDiscoveryConfEvent sNwkRouteDiscoveryConfirmEvent;
ZPS_tsAfPollConfEvent sNwkPollConfirmEvent;
ZPS_tsAfNwkEdScanConfEvent sNwkEdScanConfirmEvent;
ZPS_tsAfErrorEvent sAfErrorEvent;
ZPS_tsAfZdoBindEvent sZdoBindEvent;
ZPS_tsAfZdoUnbindEvent sZdoUnbindEvent;
ZPS_tsAfZdoLinkKeyEvent sZdoLinkKeyEvent;
ZPS_tsAfBindRequestServerEvent sBindRequestServerEvent;
ZPS_tsAfInterPanDataIndEvent sApsInterPanDataIndEvent;
ZPS_tsAfInterPanDataConfEvent sApsInterPanDataConfirmEvent;
ZPS_tsAfZdpEvent sApsZdpEvent;
} ZPS_tuAfEventData;

8.2.2.3 ZPS_tsAfDataIndEvent

This structure is used in the ZPS_EVENT_APS_DATA_INDICATION event, which indicates the arrival of data
on the local node.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
140 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

The ZPS_tsAfDataIndEvent structure is detailed below.

typedef struct
{
uint8 u8DstAddrMode;
ZPS_tuAddress uDstAddress;
uint8 u8DstEndpoint;
uint8 u8SrcAddrMode;
ZPS_tuAddress uSrcAddress;
uint8 u8SrcEndpoint;
uint16 u16ProfileId;
uint16 u16ClusterId;
PDUM_thAPduInstance hAPduInst;
uint8 eStatus;
uint8 eSecurityStatus;
uint8 u8LinkQuality;
uint32 u32RxTime;
} ZPS_tsAfDataIndEvent;

where:

• u8DstAddrMode indicates the type of destination address specified through the element uDstAddress
(see the Table 13 below.)

• uDstAddress is the address of the destination node for the data packet (the type of address is specified
using the element u8DstAddrMode above).

• u8DstEndpoint is the number of the destination endpoint (in range 0-240).
• u8SrcAddrMode indicates the type of source address specified through the element uSrcAddress (below)

- this can be a 64-bit MAC/IEEE address or a 16-bit network address.
• uSrcAddress is the address of the source node for the data packet (the type of address is specified using

the element u8SrcAddrMode above).
• u8SrcEndpoint is the number of the source endpoint (in range 1-240).
• u16ProfileId is the identifier of the ZigBee device profile of the device which can interpret the data.
• u16ClusterId is the identifier of the cluster (which belongs to the device profile specified in
u16ProfileId) which is capable of interpreting the data.

• hAPduInst is the handle of the APDU which contains the data.
• eStatus is one of the status codes from the NWK layer or MAC layer, detailed in Section 11.2.3 and Section

11.2.4.
• eSecurityStatus indicates the type of security with which the packet was sent. It can be: unsecured

(0xAF), secured with network key (0xAC), or secured with link key (0xAB).
• u8LinkQuality is a measure of the signal strength of the radio link over which the data packet was sent

(for the last hop).
• u32RxTime is reserved for future use.

u8DstAddrMode Code Description

0x00 ZPS_E_ADDR_MODE_BOUND Bound endpoint

0x01 ZPS_E_ADDR_MODE_GROUP 16-bit Group address

0x02 ZPS_E_ADDR_MODE_SHORT 16-bit Network (Short) address

0x03 ZPS_E_ADDR_MODE_IEEE 64-bit IEEE/MAC address

Table 13. Addressing modes

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
141 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

8.2.2.4 ZPS_tsAfDataConfEvent

This structure is used in the ZPS_EVENT_APS_DATA_CONFIRM event, which confirms that a data packet sent
by the local node has been successfully passed down the stack to the MAC layer and has made its first hop
toward its destination (an acknowledgment has been received from the next hop node).

The ZPS_tsAfDataConfEvent structure is detailed below.

typedef struct {
uint8 u8Status;
uint8 u8SrcEndpoint;
uint8 u8DstEndpoint;
uint8 u8DstAddrMode;
ZPS_tuAddress uDstAddr;
uint8 u8SequenceNum;
} ZPS_tsAfDataConfEvent;

where:

• u8Status is one of the status codes from the lower stack layers, detailed in Section 11.2.
• u8SrcEndpoint is the number of the (local) source endpoint for the data transfer (in range 1-240).
• u8DstEndpoint is the number of the destination endpoint for the data transfer (in range 1-240).
• u8DstAddrMode indicates the type of destination address specified through the element uDstAddr (see

Table 13) - only values 0x02 (group address) and 0x03 (network address) are valid in this structure.
• uDstAddr is the address of the destination node for the data packet (the type of address is specified using

the element u8DstAddrMode above).
• u8SequenceNum is the sequence number of the request that initiated the data transfer.

8.2.2.5 ZPS_tsAfDataAckEvent

This structure is used in the ZPS_EVENT_APS_DATA_ACK event, which is generated when an end-to-end
acknowledgment is received from the destination node during a data transfer in which an acknowledgment was
requested.

typedef struct {
 uint8 u8Status;
 uint8 u8SrcEndpoint;
 uint8 u8DstEndpoint;
 uint8 u8DstAddrMode;
 uint16 u16DstAddr;
 uint8 u8SequenceNum;
 uint16 u16ProfileId;
 uint16 u16ClusterId;
} ZPS_tsAfDataAckEvent;

where:

• u8Status is one of the status codes from the lower stack layers, detailed in Section 11.2.
• u8SrcEndpoint is the number of the (local) source endpoint for the data transfer (in range 1-240).
• u8DstEndpoint is the number of the destination endpoint for the data transfer (in range 1-240).
• u8DstAddrMode indicates the type of destination address specified through the element u16DstAddr (see

Table 13) - only values 0x01 (group address) and 0x02 (network address) are valid in this structure.
• u16DstAddr is the 16-bit address of the destination node for the data transfer and therefore of the node that

sent the acknowledgment (the type of address is specified using the element u8DstAddrMode above).
• u8SequenceNum is the sequence number of the request that initiated the data transfer.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
142 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• u16ProfileId is the identifier of the ZigBee device profile of the device for which the data transfer was
intended.

• u16ClusterId is the identifier of the cluster (which belongs to the device profile specified in
u16ProfileId) for which the data transfer was intended.

8.2.2.6 ZPS_tsAfNwkFormationEvent

This structure is used in the event ZPS_EVENT_NWK_STARTED, which indicates whether the network has
been started (on the Coordinator).

The ZPS_tsAfNwkFormationEvent structure is detailed below.

typedef struct {
 uint8 u8Status;
} ZPS_tsAfNwkFormationEvent;

where is one of the status codes from the lower stack layers, detailed in Section 11.2.

8.2.2.7 ZPS_tsAfNwkJoinedEvent

This structure is used in the events ZPS_EVENT_NWK_JOINED_AS_ROUTER and
ZPS_EVENT_NWK_JOINED_AS_ENDDEVICE, which confirm that the local device (Router or End Device) has
successfully joined a network.

The ZPS_tsAfNwkJoinedEvent structure reports the network address that the parent has assigned to the
new node and is detailed below.

typedef struct
{
 uint16 u16Addr;
 bool_t bRejoin;
} ZPS_tsAfNwkJoinedEvent;

where:

• u16Addr is the 16-bit network address allocated to the joining node.
• bRejoin indicates whether the join was a rejoin (TRUE) or a new association (FALSE).

8.2.2.8 ZPS_tsAfNwkJoinFailedEvent

This structure is used in the event ZPS_EVENT_NWK_FAILED_TO_JOIN, which indicates that the local device
has failed to join a network.

The ZPS_tsAfNwkJoinFailedEvent structure is detailed below.

typedef struct
{
 uint8 u8Status;
 bool_t bRejoin;
} ZPS_tsAfNwkJoinFailedEvent;

where:

• u8Status is one of the status codes from the lower stack layers, detailed in Section 11.2.
• bRejoin indicates whether the join attempt was a rejoin (TRUE) or a new association (FALSE).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
143 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

8.2.2.9 ZPS_tsAfNwkDiscoveryEvent

This structure is used in the ZPS_EVENT_NWK_DISCOVERY_COMPLETE event, which reports the details of
the networks detected in a network discovery initiated by a Router or End Device that needs to join a network.

The ZPS_tsAfNwkDiscoveryEvent structure is detailed below.

typedef struct
{
 uint32 u32UnscannedChannels;
 uint8 eStatus;
 uint8 u8NetworkCount;
 uint8 u8SelectedNetwork;
 ZPS_tsNwkNetworkDescr *psNwkDescriptors;
} ZPS_tsAfNwkDiscoveryEvent;

where:

• u32UnscannedChannels is a 32-bit bitmap representing the set of channels from the network discovery
that had not yet been scanned when this event was generated. Bits 11 to 26 represent the 2400-MHz
channels 11 to 26, where 1 indicates channel scanned and 0 indicates channel not yet scanned.

• estatus is the status of the network discovery process, returned by the lower layers (see Section 11.2) -
MAC_ENUM_SUCCESS, if the discovery was successfully completed.

• u8NetworkCount is the number of networks that had been discovered when this event was generated.
• u8SelectedNetwork is the index of the recommended network in the array of reported networks (see

below).
• psNwkDescriptors is a pointer to the network discovery table in the network NIB. The network discovery

table contains an array of data structures, where each structure contains details of a discovered network.
Each array element is a structure of the type ZPS_tsNwkNetworkDescr, described in Section 8.2.3.1. The
number of array elements is given by u8NetworkCount, described above.

8.2.2.10 ZPS_tsAfNwkJoinIndEvent

This structure is used in the event ZPS_EVENT_NWK_NEW_NODE_HAS_JOINED, which notifies a Router or
the Coordinator that a new child node has joined the network.

The ZPS_tsAfNwkJoinIndEvent structure contains information about the new node and is detailed below.

typedef struct
{
 uint64 u64ExtAddr;
 uint16 u16NwkAddr;
 uint8 u8Capability;
 uint8 u8Rejoin;
 uint8 u8SecureRejoin;
} ZPS_tsAfNwkJoinIndEvent;

where:

• u64ExtAddr is the 64-bit IEEE (MAC) address of the joining node.
• u16NwkAddr is the 16-bit network address assigned to the joining node.
• u8Capability is a bitmap indicating the operational capabilities of the joining node. This bitmap is detailed

in Table 14 below.
• u8Rejoin indicates the method used to join the network:

– 0x00 if joined through association.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
144 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

– 0x01 if joined directly or used orphaning.
– 0x02 if was network rejoin.

• u8SecureRejoin indicates whether the join was performed in a secure manner.
– zero represents FALSE.
– a non-zero value represents TRUE.

Bits Description

0 Coordinator capability:
• 1: Node able to act as Coordinator
• 0: Node not able to act as Coordinator

1 Device type:
• 1: Full-Function Device (FFD)
• 0: Reduced-Function Device (RFD)
An FFD can act as any node type while an RFD cannot act as the network Coordinator.

2 Power source:
• 1:Node is mains-powered
• 0: Node is not mains-powered

3 Receiver on when idle:
• 1: Receiver enabled during idle periods
• 0: Receiver disabled during idle periods to conserve power

4-5 Reserved

6 Security capability:
• 1: High security
• 0: Standard security

7 Allocate address:
• 1: Network address should be allocated to node
• 0: Network address need not be allocated to node

Table 14. Node capabilities bitmap

8.2.2.11 ZPS_tsAfNwkLeaveIndEvent

This structure is used in the ZPS_EVENT_LEAVE_INDICATION event, which indicates that a neighboring node
has left the network or a remote node has requested the local node to leave.

The ZPS_tsAfNwkLeaveIndEvent structure is detailed below.

typedef struct {
 uint64 u64ExtAddr;
 uint8 u8Rejoin;
} ZPS_tsAfNwkLeaveIndEvent;

where:

• u64ExtAddr is the 64-bit IEEE (MAC) address of the node that has left the network, or is zero if the local
node has been requested to leave the network

• u8Rejoin indicates whether the leaving node was requested to attempt a subsequent rejoin of the network:
– zero represents FALSE
– a non-zero value represents TRUE.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
145 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

8.2.2.12 ZPS_tsAfNwkLeaveConfEvent

This structure is used in the event ZPS_EVENT_NWK_LEAVE_CONFIRM, which reports the results of a node
leave request issued by the local node.

The ZPS_tsAfNwkLeaveConfEvent structure is detailed below.

typedef struct {
 uint64 u64ExtAddr;
 uint8 eStatus;
} ZPS_tsAfNwkLeaveConfEvent;

where:

• u64ExtAddr is the 64-bit IEEE (MAC) address of the leaving node. This value is zero if the local node itself
is leaving.

• eStatus is the leave status returned by the lower layers - ZPS_NWK_ENUM_SUCCESS, if the leave
request has been successful.

8.2.2.13 ZPS_tsAfNwkStatusIndEvent

This structure is used in the ZPS_EVENT_NWK_STATUS_INDICATION event, which reports status information
from the NWK layer of the stack.

The ZPS_tsAfNwkStatusIndEvent structure is detailed below.

typedef struct {
 uint16 u16NwkAddr;
 uint8 u8Status;
} ZPS_tsAfNwkStatusIndEvent;

where:

• u16NwkAddr is the 16-bit network address of the node associated with the event.
• u8Status is one of the status codes from the lower stack layers, detailed in Section 11.2.

8.2.2.14 ZPS_tsAfNwkRouteDiscoveryConfEvent

This structure is used in the ZPS_EVENT_NWK_ROUTE_DISCOVERY_CONFIRM event, which confirms that
a route discovery has been performed.

The ZPS_tsAfNwkRouteDiscoveryConfEvent structure is detailed below.

typedef struct {
 uint16 u16DstAddress;
 uint8 u8Status;
 uint8 u8NwkStatus;
} ZPS_tsAfNwkRouteDiscoveryConfEvent;

where:

• u16DstAddress is the destination address for which the route discovery confirm event was generated.
• u8Status is one of the status codes from the MAC layer, detailed in Section11.2.4.
• u8NwkStatus is one of the status codes from the NWK layer, detailed in Section 11.2.3.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
146 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

8.2.2.15 ZPS_tsAfPollConfEvent

This structure is used in the ZPS_EVENT_NWK_POLL_CONFIRM event, which reports the completion of a poll
request sent from the (local) End Device to its parent.

The ZPS_tsAfPollConfEvent structure is detailed below.

typedef struct {
 uint8 u8Status;
} ZPS_tsAfPollConfEvent;

where u8Status is one of the status codes from the lower stack layers, detailed in Section 11.2.

8.2.2.16 ZPS_tsAfNwkEdScanConfEvent

This structure is used in the ZPS_EVENT_NWK_ED_SCAN event, which indicates that an ‘energy detect’ scan
in the 2.4-GHz radio band is completed.

The ZPS_tsAfNwkEdScanConfEvent structure is defined as:

typedef ZPS_tsNwkNlmeCfmEdScan ZPS_tsAfNwkEdScanConfEvent;

where ZPS_tsNwkNlmeCfmEdScan is described in Section 8.2.3.2.

8.2.2.17 ZPS_tsAfErrorEvent

This structure is used in the ZPS_EVENT_ERROR event, which reports error situations concerning the storage
of received messages in APDU instances.

The ZPS_tsAfErrorEvent structure is detailed below.

typedef struct {
 enum {
 ZPS_ERROR_APDU_TOO_SMALL,
 ZPS_ERROR_APDU_INSTANCES_EXHAUSTED,
 ZPS_ERROR_NO_APDU_CONFIGURED,
 ZPS_ERROR_OS_MESSAGE_QUEUE_OVERRUN
 } eError;
 union {
 struct {
 uint16 u16ProfileId;
 uint16 u16ClusterId;
 uint16 u16SrcAddr;
 uint16 u16DataSize;
 PDUM_thAPdu hAPdu;
 uint8 u8SrcEndpoint;
 uint8 u8DstEndpoint;
 }sAfErrorApdu;
 struct {
 OS_thMessage hMessage;
 } sAfErrorOsMessageOverrun;
 } uErrorData;
} ZPS_tsAfErrorEvent;

The member enumerations and structures of the above structure are detailed below.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
147 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

8.2.2.17.1 eError enumerations

The error enumerations which are part of the ZPS_tsAfErrorEvent structure are listed and described below.

eError Enumeration Description

ZPS_ERROR_APDU_TOO_SMALL Allocated APDU instance is too small to accommodate
received message. This error is detailed in the structure sAf
ErrorApdu, which is described below.

ZPS_ERROR_APDU_INSTANCES_EXHAUSTED The are no APDU instances available to accommodate the
received message. This error is detailed in the structure sAf
ErrorApdu, which is described below.

ZPS_ERROR_NO_APDU_CONFIGURED No APDU has been configured to accommodate the received
message. This error is detailed in the structure sAfError
Apdu, which is described below.

ZPS_ERROR_OS_MESSAGE_QUEUE_OVERRUN A message queue is full and can accept no more messages.
This error is detailed in the structure sAfErrorOsMessage
Overrun, which is described below.

Table 15. eError Enumerations

sAfErrorApdu

This structure is used in the following errors:

• ZPS_ERROR_APDU_TOO_SMALL, which reports that the allocated APDU instance is too small to store a
received message.

• ZPS_ERROR_APDU_INSTANCES_EXHAUSTED, which reports that there are no allocated APDU instances
left to store a received message.

• ZPS_ERROR_NO_APDU_CONFIGURED, which reports that no APDU has been configured to store the
received message.

The sAfErrorApdustructure is detailed below.

struct {
 uint16 u16ProfileId;
 uint16 u16ClusterId;
 uint16 u16SrcAddr;
 uint16 u16DataSize;
 PDUM_thAPdu hAPdu;
 uint8 u8SrcEndpoint;
 uint8 u8DstEndpoint;
}sAfErrorApdu;

where:

• u16ProfileIdis the identifier of the ZigBee application profile associated with the source and destination
endpoints for the message.

• u16ClusterIdis the identifier of the cluster associated with the source and destination endpoints for the
message.

• u16SrcAddris the 16-bit network address of the source node of the message.
• u16DataSizeis the size of the received message, in bytes.
• hAPduis the handle of the local APDU pool from which the APDU instance comes.
• u8SrcEndpointis the number of the source endpoint of the message.
• u8DstEndpointis the number of the destination endpoint of the message.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
148 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

8.2.2.17.2 sAfErrorOsMessageOverrun

This structure is used in the ZPS_ERROR_OS_MESSAGE_QUEUE_OVERRUN error, which indicates that a
message queue is full and can accept no more messages.

The sAfErrorOsMessageOverrun structure is detailed below.

struct {
 OS_thMessage hMessage;
} sAfErrorOsMessageOverrun;

where hMessage is the handle of the message type for the queue which is full.

8.2.2.18 ZPS_tsAfZdoBindEvent

This structure is used in the ZPS_EVENT_ZDO_BIND event, which indicates that the local node has been
successfully bound to one or more remote nodes.

The ZPS_tsAfZdoBindEvent structure is detailed below.

typedef struct { ZPS_tuAddress uDstAddr; uint8 u8DstAddrMode; uint8 u8SrcEp;
 uint8 u8DstEp; } ZPS_tsAfZdoBindEvent;

where

• uDstAddr is the address of the remote node for the binding (the type of address is specified using the
element u8DstAddrMode above).

• u8DstAddrMode indicates the type of address specified through the element uDstAddr (see Table 13).

• u8SrcEp is the number of the source endpoint for the binding (in range 1-240).
• u8DstEp is the number of the destination endpoint for the binding (in range 1-240).

8.2.2.19 ZPS_tsAfZdoUnbindEvent

This structure is used in the ZPS_EVENT_ZDO_UNBIND event, which indicates that the local node has been
successfully unbound from one or more remote nodes.

The ZPS_tsAfZdoUnbindEvent structure is defined as:

typedef ZPS_tsAfZdoBindEvent ZPS_tsAfZdoUnbindEvent;

where ZPS_tsAfZdoBindEvent is described in Section 8.2.2.18 (but for this event, the data in the structure
relates to unbinding rather than binding).

8.2.2.20 ZPS_tsAfZdoLinkKeyEvent

This structure is used in the ZPS_EVENT_ZDO_LINK_KEY event, which indicates that a new application link
key has been received and installed, and is ready for use.

The ZPS_tsAfZdoLinkKeyEvent structure is defined as:

typedef struct {
 uint64 u64IeeeLinkAddr;
} ZPS_tsAfZdoLinkKeyEvent;

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
149 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

where u64IeeeLinkAddr is the IEEE/MAC address of the remote device with which the installed link key is
valid.

8.2.2.21 ZPS_tsAfBindRequestServerEvent

This structure is used in the ZPS_EVENT_BIND_REQUEST_SERVER event, which reports the status of a data
transmission sent from the (local) node to a set of bound endpoints.

The ZPS_tsAfBindRequestServerEvent structure is detailed below.

typedef struct {
 uint8 u8Status;
 uint8 u8SrcEndpoint;
 uint32 u32FailureCount;
} ZPS_tsAfBindRequestServerEvent;

where:

• u8Status is the overall status of the bound data transmission:
– Success (0) indicates that the data packet was successfully transmitted to all bound endpoints
– Failure (non-zero value) indicates that the data packet was not successfully sent to at least one bound

endpoint (see u32FailureCount below).
• u8SrcEndpoint is the number of the local endpoint from which the data packet was sent.
• u32FailureCount is the number of bound endpoints for which the transmission failed.

8.2.2.22 ZPS_tsAfInterPanDataIndEvent

This structure is used in the ZPS_EVENT_APS_INTERPAN_DATA_INDICATION event, which indicates that an
inter-PAN data packet has arrived.

The ZPS_tsAfInterPanDataIndEvent structure is detailed below.

typedef struct
{
 ZPS_tsInterPanAddress sDstAddr;
 uint8 u8SrcAddrMode;
 uint16 u16SrcPan;
 uint64 u64SrcAddress;
 uint16 u16ProfileId;
 uint16 u16ClusterId;
 PDUM_thAPduInstance hAPduInst;
 uint8 eStatus;
 uint8 u8DstEndpoint;
 uint8 u8LinkQuality;
} ZPS_tsAfInterPanDataIndEvent;

where

• sDstAddr is a structure of the type ZPS_tsInterPanAddress (see Section 8.2.3.3) which contains the
PAN ID and address for the destination node(s) of the inter-PAN data packet.

• u8SrcAddrMode indicates the type of address specified through the element u64SrcAddress (see
Table 13).

• u16SrcPan is the PAN ID of the network from which the data packet originates.
• u64SrcAddress is the address of the node which sent the data packet (the type of address is specified

using the element u8SrcAddrMode above).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
150 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• u16ProfileId is the identifier of the application profile for which the data packet is intended.
• u16ClusterId is the identifier of the cluster for which the data packet is intended.
• hAPduInst is the handle of the APDU instance for the data packet.
• eStatus is one of the status codes from the lower stack layers, detailed in Section 11.2.
• u8DstEndpoint is the number of the destination endpoint for the data packet (in range 1-240).
• u8LinkQuality is an LQI value indicating the perceived strength of the radio signal which carried the

received data packet.

8.2.2.23 ZPS_tsAfInterPanDataConfEvent

This structure is used in the ZPS_EVENT_APS_INTERPAN_DATA_CONFIRM event, which indicates that an
inter-PAN communication has been sent by the local node and an acknowledgment has been received from the
first hop node (this acknowledgment is not generated in the case of a broadcast).

The ZPS_tsAfInterPanDataConfEvent structure is detailed below.

typedef struct {
 uint8 u8Status;
 uint8 u8Handle;
} ZPS_tsAfInterPanDataConfEvent;

where

• u8Status is one of the status codes from the lower stack layers, detailed in Section 11.2.
• u8Handle is a handle for internal use.

8.2.2.24 ZPS_tsAfTCstatusEvent

This structure is used in the ZPS_EVENT_TC_STATUS event, which indicates whether negotiations to establish
a link key with the Trust Centre have been successful and, if so, which key is the active key.

The ZPS_tsAfTCstatusEvent structure is detailed below.

typedef struct
{
 ZPS_tuTcStatusData uTcData;
 uint8 u8Status;
}ZPS_tsAfTCstatusEvent;

where:

• uTcData is dependent on u8Status (below) and is either a pointer to the link key descriptor in the case of
success or the address of the Trust Centre node in the case of failure. ZPS_tuTcStatusData is a union,
detailed below.

• u8Status indicates the results of the link key negotiations - one of:
– ZPS_E_SUCCESS (link key successfully established)
– ZPS_APL_APS_E_SECURITY_FAIL (link key not established)

The ZPS_tuTcStatusData structure is detailed below.

typedef union {
 ZPS_tsAplApsKeyDescriptorEntry *pKeyDesc;
 uint64 u64ExtendedAddress;
} PS_tuTcStatusData;

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
151 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

where:

• pKeyDesc is a pointer to the active link key, if successfully established, which is contained in the structure
described in Section 8.2.3.6.

• u64ExtendedAddress is the IEEE/MAC address of the Trust Centre node with which link key negotiations
failed.

8.2.2.25 ZPS_tsAfZdpEvent

This structure is used when a ZPS_EVENT_APS_DATA_INDICATION event is generated containing a
response which is destined for the ZDO at endpoint 0. The application can extract the response data from the
event using the function ZPS_bAplZdpUnpackResponse() and this structure is used to receive the extracted
data.

The ZPS_tsAfZdpEvent structure is detailed below.

typedef struct {
 uint8 u8SequNumber;
 uint16 u16ClusterId;
 union {
 ZPS_tsAplZdpDeviceAnnceReq sDeviceAnnce;
 ZPS_tsAplZdpMgmtNwkUpdateReq sMgmtNwkUpdateReq;
 ZPS_tsAplZdpMgmtPermitJoiningReq sPermitJoiningReq;
 ZPS_tsAplZdpDiscoveryCacheRsp sDiscoveryCacheRsp;
 ZPS_tsAplZdpDiscoveryStoreRsp sDiscoveryStoreRsp;
 ZPS_tsAplZdpNodeDescStoreRsp sNodeDescStoreRsp;
 ZPS_tsAplZdpActiveEpStoreRsp sActiveEpStoreRsp;
 ZPS_tsAplZdpSimpleDescStoreRsp sSimpleDescStoreRsp;
 ZPS_tsAplZdpRemoveNodeCacheRsp sRemoveNodeCacheRsp;
 ZPS_tsAplZdpEndDeviceBindRsp sEndDeviceBindRsp;
 ZPS_tsAplZdpBindRsp sBindRsp;
 ZPS_tsAplZdpUnbindRsp sUnbindRsp;
 ZPS_tsAplZdpReplaceDeviceRsp sReplaceDeviceRsp;
 ZPS_tsAplZdpStoreBkupBindEntryRsp sStoreBkupBindEntryRsp;
 ZPS_tsAplZdpRemoveBkupBindEntryRsp sRemoveBkupBindEntryRsp;
 ZPS_tsAplZdpBackupSourceBindRsp sBackupSourceBindRsp;
 ZPS_tsAplZdpMgmtLeaveRsp sMgmtLeaveRsp;
 ZPS_tsAplZdpMgmtDirectJoinRsp sMgmtDirectJoinRsp;
 ZPS_tsAplZdpMgmtPermitJoiningRsp sPermitJoiningRsp;
 ZPS_tsAplZdpNodeDescRsp sNodeDescRsp;
 ZPS_tsAplZdpPowerDescRsp sPowerDescRsp;
 ZPS_tsAplZdpSimpleDescRsp sSimpleDescRsp;
 ZPS_tsAplZdpNwkAddrRsp sNwkAddrRsp;
 ZPS_tsAplZdpIeeeAddrRsp sIeeeAddrRsp;
 ZPS_tsAplZdpUserDescConf sUserDescConf;
 ZPS_tsAplZdpSystemServerDiscoveryRsp sSystemServerDiscoveryRsp;
 ZPS_tsAplZdpPowerDescStoreRsp sPowerDescStoreRsp;
 ZPS_tsAplZdpUserDescRsp sUserDescRsp;
 ZPS_tsAplZdpActiveEpRsp sActiveEpRsp;
 ZPS_tsAplZdpMatchDescRsp sMatchDescRsp;
 ZPS_tsAplZdpComplexDescRsp sComplexDescRsp;
 ZPS_tsAplZdpFindNodeCacheRsp sFindNodeCacheRsp;
 ZPS_tsAplZdpExtendedSimpleDescRsp sExtendedSimpleDescRsp;
 ZPS_tsAplZdpExtendedActiveEpRsp sExtendedActiveEpRsp;
 ZPS_tsAplZdpBindRegisterRsp sBindRegisterRsp;
 ZPS_tsAplZdpBackupBindTableRsp sBackupBindTableRsp;
 ZPS_tsAplZdpRecoverBindTableRsp sRecoverBindTableRsp;
 ZPS_tsAplZdpRecoverSourceBindRsp sRecoverSourceBindRsp;
 ZPS_tsAplZdpMgmtNwkDiscRsp sMgmtNwkDiscRsp;

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
152 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

 ZPS_tsAplZdpMgmtLqiRsp sMgmtLqiRsp;
 ZPS_tsAplZdpMgmtRtgRsp sRtgRsp;
 ZPS_tsAplZdpMgmtBindRsp sMgmtBindRsp;
 ZPS_tsAplZdpMgmtCacheRsp sMgmtCacheRsp;
 ZPS_tsAplZdpMgmtNwkUpdateNotify sMgmtNwkUpdateNotify;
 }uZdpData;
 union {
 ZPS_tsAplZdpBindingTableEntry asBindingTable[5];
 ZPS_tsAplZdpNetworkDescr asNwkDescTable[5];
 ZPS_tsAplZdpNtListEntry asNtList[2];
 ZPS_tsAplDiscoveryCache aDiscCache[5];
 uint16 au16Data[34];
 uint8 au8Data[77];
 uint64 au64Data[9];
 }uLists;
}ZPS_tsAfZdpEvent;

where:

• u8SequNumber is the sequence number of the ZDP request/response
• u16ClusterId is the ID of the cluster to which the request/response relates
• uZdpData is a union of the different ZDP request/response types:

– sDeviceAnnce is a structure of the type ZPS_tsAplZdpDeviceAnnceReq, described in Section 9.2.2.3
• sMgmtNwkUpdateReq is a structure of the type ZPS_tsAplZdpMgmtNwkUpdateReq, described in Section

9.2.2.41
• sPermitJoiningReq is a structure of the type ZPS_tsAplZdpMgmtPermitJoiningReq, described in

Section 9.2.3.39
• sDiscoveryCacheRsp is a structure of the type ZPS_tsAplZdpDiscoveryCacheRsp, described in

Section 9.2.3.14
• sDiscoveryStoreRsp is a structure of the type ZPS_tsAplZdpDiscoveryStoreRsp, described in

Section 9.2.3.15
• sNodeDescStoreRsp is a structure of the type ZPS_tsAplZdpNodeDescStoreRsp, described in Section

9.2.3.16
• sActiveEpStoreRsp is a structure of the type ZPS_tsAplZdpActiveEpStoreRsp, described in Section

9.2.3.19
• sSimpleDescStoreRsp is a structure of the type ZPS_tsAplZdpSimpleDescStoreRsp, described in

Section 9.2.3.18
• sRemoveNodeCacheRsp is a structure of the type ZPS_tsAplZdpRemoveNodeCacheRsp, described in

Section 9.2.3.21
• sEndDeviceBindRsp is a structure of the type ZPS_tsAplZdpEndDeviceBindRsp, described in Section

9.2.3.22
• sBindRsp is a structure of the type ZPS_tsAplZdpBindRsp, described in Section 9.2.3.23
• sUnbindRsp is a structure of the type ZPS_tsAplZdpUnbindRsp, described in Section 9.2.3.24
• sReplaceDeviceRsp is a structure of the type ZPS_tsAplZdpReplaceDeviceRsp, described in Section

9.2.3.26
• sStoreBkupBindEntryRsp is a structure of the type ZPS_tsAplZdpStoreBkupBindEntryRsp,

described in Section 9.2.2.27
• sRemoveBkupBindEntryRsp is a structure of the type ZPS_tsAplZdpRemoveBkupBindEntryRsp,

described in Section 9.2.2.28
• sBackupSourceBindRsp is a structure of the type ZPS_tsAplZdpBackupSourceBindRsp, described in

Section 9.2.3.31
• sMgmtLeaveRsp is a structure of the type ZPS_tsAplZdpMgmtLeaveRsp, described in Section 9.2.3.37

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
153 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• sMgmtDirectJoinRsp is a structure of the type ZPS_tsAplZdpMgmtDirectJoinRsp, described in
Section 9.2.3.38

• sPermitJoiningRsp is a structure of the type ZPS_tsAplZdpMgmtPermitJoiningRsp, described in
Section 9.2.3.39

• sNodeDescRsp is a structure of the type ZPS_tsAplZdpNodeDescRsp, described in Section 8.2.3.3
• sPowerDescRsp is a structure of the type ZPS_tsAplZdpPowerDescRsp, described in Section 9.2.3.4
• sSimpleDescRsp is a structure of the type ZPS_tsAplZdpSimpleDescRsp, described in Section 9.2.3.5
• sNwkAddrRsp is a structure of the type ZPS_tsAplZdpNwkAddrRsp, described in Section 9.2.3.1
• sIeeeAddrRsp is a structure of the type ZPS_tsAplZdpIeeeAddrRsp, described in Section 9.2.3.2
• sUserDescConf is a structure of the type ZPS_tsAplZdpUserDescConf, described in Section 9.2.3.12
• sSystemServerDiscoveryRsp is a structure of the type ZPS_tsAplZdpSystemServerDiscoveryRsp,

described in Section 9.2.3.13
• sPowerDescStoreRsp is a structure of the type ZPS_tsAplZdpPowerDescStoreRsp, described in

Section 9.2.3.17
• sUserDescRsp is a structure of the type ZPS_tsAplZdpUserDescRsp, described in Section 9.2.3.8
• sActiveEpRsp is a structure of the type ZPS_tsAplZdpActiveEpRsp, described in Section 9.2.3.10
• sMatchDescRsp is a structure of the type ZPS_tsAplZdpMatchDescRsp, described in Section 9.2.3.9
• sComplexDescRsp is a structure of the type ZPS_tsAplZdpComplexDescRsp, described in Section

9.2.3.7
• sFindNodeCacheRsp is a structure of the type ZPS_tsAplZdpFindNodeCacheRsp, described in Section

9.2.3.20
• sExtendedSimpleDescRsp is a structure of the type ZPS_tsAplZdpExtendedSimpleDescRsp,

described in Section 9.2.3.6
• sExtendedActiveEpRsp is a structure of the type ZPS_tsAplZdpExtendedActiveEpRsp, described in

Section 9.2.3.11
• sBindRegisterRsp is a structure of the type ZPS_tsAplZdpBindRegisterRsp, described in Section

9.2.3.25
• sBackupBindTableRsp is a structure of the type ZPS_tsAplZdpBackupBindTableRsp, described in

Section 9.2.3.29
• sRecoverBindTableRsp is a structure of the type ZPS_tsAplZdpRecoverBindTableRsp, described in

Section 9.2.3.30
• sRecoverSourceBindRsp is a structure of the type ZPS_tsAplZdpRecoverSourceBindRsp, described

in Section 9.2.3.32
• sMgmtNwkDiscRsp is a structure of the type ZPS_tsAplZdpMgmtNwkDiscRsp, described in Section

9.2.3.33
• sMgmtLqiRsp is a structure of the type ZPS_tsAplZdpMgmtLqiRsp, described in Section 9.2.3.34
• sRtgRsp is a structure of the type ZPS_tsAplZdpMgmtRtgRsp, described in Section 9.2.3.35
• sMgmtBindRsp is a structure of the type ZPS_tsAplZdpMgmtBindRsp, described in Section 9.2.3.36
• sMgmtCacheRsp is a structure of the type ZPS_tsAplZdpMgmtCacheRsp, described in Section 9.2.3.40
• sMgmtNwkUpdateNotify is a structure of the type ZPS_tsAplZdpMgmtNwkUpdateNotify, described in

Section 9.2.3.41
• uLists is a union of the different arrays/tables which act as temporary storage for data elements used by

the stack (and are therefore for internal use only)

8.2.3 Other structures

This section describes various structures used by the AF API. The structures are listed below.

1. ZPS_tsNwkNetworkDescr
2. ZPS_tsNwkNlmeCfmEdScan

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
154 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

3. ZPS_tsInterPanAddress
4. ZPS_tsAplApsKeyDescriptorEntry
5. ZPS_tsAftsStartParamsDistributed
6. ZPS_tsAfFlashInfoSet
7. ZPS_TclkDescriptorEntry

8.2.3.1 ZPS_tsNwkNetworkDescr

This structure is used in an array element in the structure ZPS_tsAfNwkDiscoveryEvent, which is created
as part of the ZPS_EVENT_NWK_DISCOVERY_COMPLETE event. This event reports the networks detected
during a network discovery (see Section 8.2.2.9).

The ZPS_tsNwkNetworkDescr structure contains information on a detected network and is detailed below.

typedef struct
{
 uint64 u64ExtPanId;
 uint8 u8LogicalChan;
 uint8 u8StackProfile;
 uint8 u8ZigBeeVersion;
 uint8 u8PermitJoining;
 uint8 u8RouterCapacity;
 uint8 u8EndDeviceCapacity;
} ZPS_tsNwkNetworkDescr;

where:

• u64ExtPanId is the Extended PAN ID of the discovered network.
• u8LogicalChan is the 2400-MHz channel on which the network was found.
• u8StackProfile is the Stack Profile of the discovered network:

– 0 - manufacturer-specific
– 1 - ZigBee
– 2 - ZigBee PRO
– other values reserved, and is fixed at 2 for the NXP stack

• u8ZigBeeVersion is the ZigBee version of the discovered network.
• u8PermitJoining indicates the number of detected nodes with ‘permit joining’ enabled (and therefore

allowing nodes to join the network through them).
• u8RouterCapacity indicates the number of detected nodes that are allowing Routers to join the network

through them.
• u8EndDeviceCapacity indicates the number of detected nodes that are allowing End Devices to join the

network through them.

8.2.3.2 ZPS_tsNwkNlmeCfmEdScan

This structure is used by the structure ZPS_tsAfNwkEdScanConfEvent, which is created as part of the
ZPS_EVENT_NWK_ED_SCAN event which reports the results of an ‘energy detect’ scan in the 2.4-GHz radio
band.

The ZPS_tsNwkNlmeCfmEdScant structure is detailed below.

typedef struct
{
 uint8 u8Status;
 uint8 u8ResultListSize;

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
155 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

 uint8 au8EnergyDetect[ZPS_NWK_MAX_ED_RESULTS];
} ZPS_tsNwkNlmeCfmEdScan;

where

• u8Status is one of the status codes from the lower stack layers, detailed in Section 11.2.
• u8ResultListSize is the number of entries in the results list (see below).
• au8EnergyDetect[] is an array containing the list of results of the energy scan (8-bit values representing

the detected energy levels in the channels). There is one array element for each channel scanned, where
element 0 is for the first channel scanned, element 1 is for the second channel scanned, etc.

8.2.3.3 ZPS_tsInterPanAddress

This structure is used to specify the destination for an inter-PAN transmission. The ZPS_tsInterPanAddress
structure is detailed below.

typedef struct
{
 enum {
 ZPS_E_AM_INTERPAN_GROUP = 0x01,
 ZPS_E_AM_INTERPAN_SHORT,
 ZPS_E_AM_INTERPAN_IEEE
 }eMode;
 uint16 u16PanId;
 ZPS_tuAddress uAddress;
} ZPS_tsInterPanAddress;

where:

• eMode is used to specify the type of destination address that will be used in the field uAddress below. One
of the following enumerations must be specified:
– ZPS_E_AM_INTERPAN_GROUP indicates that a 16-bit group address will be used to specify multiple target

nodes in the destination network (the group address must be valid in the destination network)
– ZPS_E_AM_INTERPAN_SHORT indicates that a 16-bit network/short address will be used to specify a single

target node or a broadcast to all nodes in the destination network
– ZPS_E_AM_INTERPAN_IEEE indicates that a 64-bit IEEE/MAC address will be used to specify a single

target node in the destination network
• u16PanId is the PAN ID of the destination network - a value 0xFFFF can be used to specify a broadcast to

all reachable ZigBee PRO networks
• uAddress is the address of the target node(s) in the destination network (the address type must be as

specified above in the eMode field) - a value of 0xFFFF can be used to specify a broadcast to all nodes in the
destination network(s).

8.2.3.4 ZPS_tsAfProfileDataReq

This structure is used to specify the transmission details for a data transmission submitted using the function
ZPS_eAplAfApsdeDataReq().

The ZPS_tsAfProfileDataReq structure is detailed below.

typedef struct {
 ZPS_tuAddress uDstAddr;
 uint16 u16ClusterId;
 uint16 u16ProfileId;
 uint8 u8SrcEp;

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
156 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

 ZPS_teAplApsdeAddressMode eDstAddrMode;
 uint8 u8DstEp;
 ZPS_teAplAfSecurityMode eSecurityMode;
 uint8 u8Radius;
}ZPS_tsAfProfileDataReq;

where:

• uDstAddr is the address of the destination node for the transmission request (can be 16- or 64-bit, as
specified by eDstAddrMode).

• u16ClusterId is the Cluster ID of the destination cluster.
• u16ProfileId is the Profile ID of the destination application profile.
• u8SrcEp is the source endpoint number (1-240) on the local node.
• eDstAddrMode is the type of destination address, one of (also see the table, Table 13):

– ZPS_E_ADDR_MODE_BOUND (no address needed for bound nodes).
– ZPS_E_ADDR_MODE_GROUP (16-bit group address).
– ZPS_E_ADDR_MODE_SHORT (16-bit network address).
– ZPS_E_ADDR_MODE_IEEE (64-bit IEEE/MAC address).

• u8DstEp is the destination endpoint number (1-240) on the remote node.
• eSecurityMode is the security mode for the data transfer, one of:

– ZPS_E_APL_AF_UNSECURE (no security enabled)
– ZPS_E_APL_AF_SECURE (Application-level security using link key and network key)
– ZPS_E_APL_AF_SECURE_NWK (Network-level security using network key)
– ZPS_E_APL_AF_SECURE | ZPS_E_APL_AF_EXT_NONCE (Application-level security using link key and

network key with the extended NONCE included in the frame)
– ZPS_E_APL_AF_WILD_PROFILE (May be combined with the above flags using OR operator. Sends the

message using the wildcard profile (0xFFFF) instead of the profile in the associated Simple descriptor).

• u8Radius is the maximum number of hops permitted to the destination node (zero value specifies that
default maximum is to be used).

8.2.3.5 tsBeaconFilterType

This structure contains the details of a beacon filter that can be introduced using the function
ZPS_bAppAddBeaconFilter().

The tsBeaconFilterType structure is detailed below.

typedef struct
{
 uint64 *pu64ExtendPanIdList;
 uint16 u16Panid;
 uint16 u16FilterMap;
 uint8 u8ListSize;
 uint8 u8Lqi;
 uint8 u8Depth;
} tsBeaconFilterType;

where:

• pu64ExtendPanIdList is a pointer to a list of 64-bit Extended PAN IDs (EPIDs) which acts as a blacklist or
whitelist of networks, depending on the settings of bits 0 and 1 in the u8FilterMap bitmap:
– If this is a blacklist, beacons from networks with EPIDs in the list will not be accepted
– If this is a whitelist, only beacons from networks with EPIDs in the list will be accepted

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
157 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• u16Panid is a 16-bit PAN ID on which beacons can be filtered
• u8ListSize is the number of Extended PAN IDs in the list pointed to by

pu64ExtendPanIdList

• u8Lqi is the minimum LQI value (in the range 0 to 255) of an acceptable beacon (any beacon with LQI
value less than this minimum will be filtered out) - if required, this field must be enabled through bit 2 in the
u8FilterMap bitmap

• u8Depth is the tree depth of the neighbor device. A value of 0x00 indicates that the device is the ZigBee
coordinator for the network.

• u16FilterMap is an 16-bit bitmap detailing the filtering requirements, as follows:

Bit Enumeration Description

0 BF_BITMAP_BLACKLIST(0x1) If set, field pu64ExtendPanIdList points to a blacklist of
networks.

1 BF_BITMAP_WHITELIST (0x2) If set, field pu64ExtendPanIdList points to a whitelist of
networks.

2 BF_BITMAP_LQI (0x4) If set, beacons must be filtered according to LQI value using the
minimum in field u8Lqi.

3 BF_BITMAP_CAP_ENDDEVICE (0x8) If set, beacons from nodes with capacity for End Device children
can be accepted.

4 BF_BITMAP_CAP_ROUTER (0x10) If set, beacons from nodes with capacity for Router children can
be accepted.

5 BF_BITMAP_PERMIT_JOIN (0x20) If set, beacons from nodes with ‘permit join- ing’ enabled can be
accepted.

6 BF_BITMAP_SHORT_PAN (0x40) If set, beacons from nodes on a network with the PAN ID in u16
Panid can be accepted.

7 - Reserved.

8 BF_BITMAP_DEPTH If set, beacons from nodes on a network with the depth in u8
Depth. if it is set to 0xff - filters out any beacon which is not from
the coordinator. Any other value of u8Depth, filters out beacons
with greater than or equal to u8Depth.

Table 16. u16FilterMap Bitmap

Note: Bits 0 and 1 must not both be set.

Note: After each discovery or rejoin, the flags contained in the u16FilterMap field are cleared, while all other
fields of this structure remain intact.

8.2.3.6 ZPS_tsAplApsKeyDescriptorEntry

This structure contains a link key for secured communications with another node.

typedef struct
{
 uint32 u32OutgoingFrameCounter;
 uint16 u16ExtAddrLkup;
 uint8 au8LinkKey[ZPS_SEC_KEY_LENGTH];
} ZPS_tsAplApsKeyDescriptorEntry;

where:

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
158 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• u32OutgoingFrameCounter is the outgoing frame counter value which is incremented on each
transmission to a destination address below.

• u16ExtAddrLkup is the index of the local look-up table entry that contains the IEEE/MAC address of either
the Trust Centre or the target node.

• au8LinkKey[] is an array containing the link key.

8.2.3.7 ZPS_tsAftsStartParamsDistributed

This structure contains the start parameter values for a node in a distributed security network.

typedef struct
{
 uint64 u64ExtPanId;
 uint8 *pu8NwkKey;
 uint16 u16PanId;
 uint16 u16NwkAddr;
 uint8 u8KeyIndex;
 uint8 u8LogicalChannel;
 uint8 u8NwkupdateId;
} ZPS_tsAftsStartParamsDistributed;

where:

• u64ExtPanId is the Extended PAN ID of the distributed security network.
• pu8NwkKey is a pointer to a location to receive the network key.
• u16PanId is the PAN ID of the network.
• u16NwkAddr is the network address of the local node.
• u8KeyIndex is the sequence number required to identify the network key in the security set.
• u8LogicalChannel is the number of the radio channel on which the network operates.
• u8NwkupdateId is a unique byte value which is incremented when the network parameters are updated

(and is therefore used to determine whether a receiving node has missed an update).

8.2.3.8 ZPS_tsAfFlashInfoSet

This structure contains information about the devices Flash memory sector used for the persistent storage of
unique link keys on the Trust Centre, as enabled by the function ZPS_vTcInitFlash().

typedef struct
{
 uint16 u16SectorSize;
 uint16 u16CredNodesCount;
 uint8 u8SectorSet;
} ZPS_tsAfFlashInfoSet;

where:

• u16SectorSize is the size, in bytes, of the Flash memory sector used to store the link keys.
• u16CredNodesCount is the maximum number of nodes for which link keys can be stored in the Flash

memory sector.
• u8SectorSet is the number of the Flash memory sector used for this storage.

Note: Care should be taken that this sector is set greater than the current flash usage of the image you are
running. If this clashes with something else (image or user data), it would lead to flash corruption and the
behavior might become non-deterministic.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
159 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

8.2.3.9 ZPS_TclkDescriptorEntry

This structure is used on the Trust Centre to hold information in RAM about a link key for a node, where this
link key is held in persistent storage in devices Flash memory, as enabled by the function ZPS_vTcInitFlash().
If this feature is used, the application must allocate space for an array of these structures in RAM, with one
structure for each potential node in the network.

typedef struct
{
 uint16 u16CredOffset;
 uint16 u16TclkRetries;
} ZPS_TclkDescriptorEntry;

where:

• u16CredOffset is the offset, in bytes, of the storage location for the node’s link key in the relevant Flash
memory sector.

• u16TclkRetries is the number of retries that were attempted to negotiate the link key between the Trust
Centre and the node.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
160 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9 ZigBee Device Profile (ZDP) API

The chapter describes the resources of the ZigBee Device Profile (ZDP) API. This API is concerned with
sending network requests (for example, binding requests) and receiving responses. The API is defined in the
header file zps_apl_zdp.h.

In this chapter:

• Section 9.1 details the ZDP API functions.
• Section 9.2 details the ZDP API structures.
• Section 9.3 describes the broadcast options when sending requests using the ZDP API functions.

9.1 ZDP API functions
The ZDP API functions are divided into the following categories:

• Address Discovery functions, described in Section 9.1.1.
• Service Discovery functions, described in Section 9.1.2.
• Binding functions, described in Section 9.1.3.
• Network Management Service functions, described in Section 9.1.4.
• Response Data Extraction function, described in Section 9.1.5.

Common parameters

All the ZDP API functions, except ZPS_bAplZdpUnpackResponse(), are concerned with sending out a request
and all use a similar set of parameters. These parameters are described below, but more specific information is
provided as part of the function descriptions:

• hAPdu: This is the unique handle of the APDU (Application Protocol Data Unit) instance for the request to be
sent (see below).

• uDstAddr: This is the IEEE address or network address of the node to which the request is sent (the
parameter bExtAddr must be set according to the type of address used). For a broadcast, uDstAddr must be
set to a special address, as described in Section 9.3.

• bExtAddr: This is a Boolean indicating the type of address specified in the parameter uDstAddr as a 64-bit
IEEE address (TRUE) or 16-bit network address (FALSE).

• pu8SeqNumber: This is a pointer to the sequence number for the request - each request must have a
unique sequence number to help determine the order in which requests were sent. On sending a request, the
function automatically increments the sequence number for the next request.

• u16ProfileId: This is the identifier of the ZigBee application profile being used.
• psZdpNwkAddrReq: This is a pointer to a structure representing the request. The structure used is

dependent on the specific function. The different request structures are detailed in Section 9.2.2.

APDUs for requests and responses

A request generated by this API is sent in an APDU (Application Protocol Data Unit). A local APDU instance
for the request must first be allocated using the PDUM function PDUM_hAPduAllocateAPduInstance(). This
function returns a handle for the APDU instance, which is subsequently used in the relevant ZDP API request
function. Once the request is successfully sent, the APDU instance is automatically de-allocated by the stack
(there is no need for the application to de-allocate it).

Note: If the request is not successfully sent (the send function does not return ZPS_E_SUCCESS), then the
APDU instance is not de-allocated automatically. In such cases, the application should de-allocate it using the
PDUM function PDUM_eAPduFreeAPduInstance().

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
161 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

When a response is subsequently received, the stack automatically allocates a local APDU instance and
includes its handle in the notification event for the response. Once the response has been dealt with, the
application must de-allocate the APDU instance using the function PDUM_eAPduFreeAPduInstance().

9.1.1 Address discovery functions

The ZDP Address Discovery functions are concerned with obtaining addresses of nodes in the network.

The functions are listed below:

1. ZPS_eAplZdpNwkAddrRequest
2. ZPS_eAplZdpIEEEAddrRequest
3. ZPS_eAplZdpDeviceAnnceRequest

Note: Further addressing functions are provided in the ZDO API and are described in Section 7.1.3.

9.1.1.1 ZPS_eAplZdpNwkAddrRequest

ZPS_teStatus ZPS_eAplZdpNwkAddrRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpNwkAddrReq *psZdpNwkAddrReq);

9.1.1.1.1 Description

This function requests the 16-bit network address of the node with a particular 64-bit IEEE (MAC) address. The
function sends out an NWK_addr_req request, which can be either unicast or broadcast, as follows:

• Unicast to another node, specified through uDstAddr, that will ‘know’ the required network address (this may
be the parent of the node of interest or the Coordinator)

• Broadcast to the network, in which case uDstAddr must be set to the special network address 0xFFFF (see
Section 9.3)

The IEEE address of the node of interest must be specified in the request, represented by the structure below
(detailed further in Section 9.2.2.1).

typedef struct {
 uint64 u64IeeeAddr;
 uint8 u8RequestType;
 uint8 u8StartIndex;
} ZPS_tsAplZdpNwkAddrReq;

The required network address is received in an NWK_addr_resp response, which should be collected using the
function ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpNwkAddrRsp (detailed in
Section 9.2.3.1). Note that this response can optionally contain the network addresses of the responding node’s
neighbors (this option is selected as part of the request through u8RequestType).

9.1.1.1.2 Parameters

• hAPduInst: Handle of APDU instance in which request is sent

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
162 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• uDstAddr: Address of destination node of request (can be 16- or 64-bit, as specified by bExtAddr)
• bExtAddr: Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber: Pointer to sequence number of request
• *psZdpNwkAddrReq: Pointer to request (see above).

9.1.1.1.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.1.2 ZPS_eAplZdpIEEEAddrRequest

ZPS_teStatus ZPS_eAplZdpIeeeAddrRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpIeeeAddrReq *psZdpIeeeAddrReq);

9.1.1.2.1 Description

This function requests the 64-bit IEEE (MAC) address of the node with a particular 16-bit network address. The
function sends an IEEE_addr_req request to the relevant node, specified through uDstAddr.

The network address of the node of interest must also be specified in the request, represented by the structure
below (detailed further in Section 9.2.2.2).

typedef struct {

uint16 u16NwkAddrOfInterest; uint8 u8RequestType;

uint8 u8StartIndex;

} ZPS_tsAplZdpIeeeAddrReq;

The required IEEE address is received in an IEEE_addr_resp response, which should be collected using the
function ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpIeeeAddrRsp (detailed in
Section 9.2.3.2). Note that this response can optionally contain the IEEE addresses of the responding node’s
neighbors (this option is selected as part of the request through u8RequestType).

9.1.1.2.2 Parameters

• hAPduInst Handle of APDU instance in which request is sent
• uDstAddr Network address of destination node of request (bExtAddr must be set to FALSE - see below)
• bExtAddr Type of destination address: TRUE: 64-bit IEEE (MAC) address FALSE: 16-bit network address

– *pu8SeqNumber Pointer to sequence number of request
– *psZdpIeeeAddrReq Pointer to request (see above)

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
163 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.1.1.2.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.1.3 ZPS_eAplZdpDeviceAnnceRequest

ZPS_teStatus ZPS_eAplZdpDeviceAnnceRequest(
 PDUM_thAPduInstance hAPduInst,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpDeviceAnnceReq *psZdpDeviceAnnceReq);

9.1.1.3.1 Description

This function is used to notify other nodes that the local node has joined or rejoined the network. The function
broadcasts a Device_annce announcement to the network and is normally automatically called by the ZDO
when the local node joins or rejoins the network.

The IEEE (MAC) and allocated network addresses as well as the capabilities of the sending node must be
specified in the announcement, represented by the structure below (detailed further in Section 9.2.2.3).

typedef struct {
 uint16 u16NwkAddr;
 uint64 u64IeeeAddr;
 uint8 u8Capability;
} ZPS_tsAplZdpDeviceAnnceReq;

On receiving this announcement, a network node updates any information it holds that relates to the supplied
IEEE and network addresses:

• If it already holds the supplied IEEE address, it updates the corresponding network address with the supplied
one (if necessary).

• If it already holds the supplied network address but with a different corresponding IEEE address, the latter is
marked as not having a valid corresponding network address.

9.1.1.3.2 Parameters

• hAPduInst Handle of APDU instance in which request is sent
• *pu8SeqNumber Pointer to sequence number of announcement
• *psZdpDeviceAnnceReq Pointer to announcement (see above)

9.1.1.3.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
164 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.1.2 Service Discovery functions

The ZDP Service Discovery functions are concerned with obtaining information about the nature and
capabilities of a network node.

The functions are listed below.

1. ZPS_eAplZdpNodeDescRequest
2. ZPS_eAplZdpPowerDescRequest
3. ZPS_eAplZdpSimpleDescRequest
4. ZPS_eAplZdpExtendedSimpleDescRequest
5. ZPS_eAplZdpComplexDescRequest
6. ZPS_eAplZdpUserDescRequest
7. ZPS_eAplZdpMatchDescRequest
8. ZPS_eAplZdpActiveEpRequest
9. ZPS_eAplZdpExtendedActiveEpRequest

10. ZPS_eAplZdpUserDescSetRequest
11. ZPS_eAplZdpSystemServerDiscoveryRequest
12. ZPS_eAplZdpDiscoveryCacheRequest
13. ZPS_eAplZdpDiscoveryStoreRequest
14. ZPS_eAplZdpNodeDescStoreRequest
15. ZPS_eAplZdpPowerDescStoreRequest
16. ZPS_eAplZdpSimpleDescStoreRequest
17. ZPS_eAplZdpActiveEpStoreRequest
18. ZPS_eAplZdpFindNodeCacheRequest
19. ZPS_eAplZdpRemoveNodeCacheRequest

9.1.2.1 ZPS_eAplZdpNodeDescRequest

ZPS_teStatus ZPS_eAplZdpNodeDescRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpNodeDescReq *psZdpNodeDescReq);

9.1.2.1.1 Description

This function requests the Node descriptor of the node with a particular network address. The function sends a
Node_Desc_req request either to the relevant node or to another node that may hold the required information in
its primary discovery cache.

The network address of the node of interest must be specified in the request, which is represented by the
structure below (further detailed in Section 9.2.2.4).

typedef struct {
 uint16 u16NwkAddrOfInterest;
} ZPS_tsAplZdpNodeDescReq;

The required Node descriptor is received in a Node_Desc_rsp response, which should be collected using the
function ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpNodeDescRsp (detailed in
Section 9.2.3.3).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
165 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.1.2.1.2 Parameters

• hAPduInst: Handle of APDU instance in which request is sent
• uDstAddr: Address of destination node of request (can be 16- or 64-bit, as specified by bExtAddr)
• bExtAddr: Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber: Pointer to sequence number of request
• *psZdpNodeDescReq: Pointer to request (see above).

9.1.2.1.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.2.2 ZPS_eAplZdpPowerDescRequest

ZPS_teStatus ZPS_eAplZdpPowerDescRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpPowerDescReq *psZdpPowerDescReq);

9.1.2.2.1 Description

This function requests the Power descriptor of the node with a particular network address. The function sends a
Power_Desc_req request either to the relevant node or to another node that may hold the required information
in its primary discovery cache.

The network address of the node of interest must be specified in the request, which is represented by the
structure below (further detailed in Section 9.2.2.5).

typedef struct {

uint16 u16NwkAddrOfInterest;

} ZPS_tsAplZdpPowerDescReq;

The required Power descriptor is received in a Power_Desc_rsp response. The descriptor should be collected
using the function ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpPowerDescRsp
(detailed in Section 9.2.3.4).

9.1.2.2.2 Parameters

• hAPduInst: Handle of APDU instance in which request is sent
• uDstAddr: Address of destination node of request (can be 16- or 64-bit, as specified by bExtAddr)
• bExtAddr: Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber: Pointer to sequence number of request

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
166 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• *psZdpPowerDescReq: Pointer to request (see above)

9.1.2.2.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.2.3 ZPS_eAplZdpSimpleDescRequest

ZPS_teStatus ZPS_eAplZdpSimpleDescRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpSimpleDescReq *psZdpSimpleDescReq);

9.1.2.3.1 Description

This function requests the Simple descriptor for a specific endpoint on the node with a particular network
address. The function sends a Simple_Desc_req request either to the relevant node or to another node that
may hold the required information in its primary discovery cache.

The network address of the node of interest and the relevant endpoint on the node must be specified in the
request, which is represented by the structure below (further detailed in Section 9.2.2.6).

typedef struct {

uint16 u16NwkAddrOfInterest; uint8 u8EndPoint;

} ZPS_tsAplZdpSimpleDescReq;

The required Simple descriptor is received in a Simple_Desc_rsp response, which should be collected using the
function ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpSimpleDescRsp (detailed
in Section 9.2.3.5).

9.1.2.3.2 Parameters

• hAPduInst: Handle of APDU instance in which request is sent
• uDstAddr: Address of destination node of request (can be 16- or 64-bit, as specified by bExtAddr)
• bExtAddr: Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber: Pointer to sequence number of request
• *psZdpSimpleDescReq: Pointer to request (see above).

9.1.2.3.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
167 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.1.2.4 ZPS_eAplZdpExtendedSimpleDescRequest

ZPS_teStatus ZPS_eAplZdpExtendedSimpleDescRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpExtendedSimpleDescReq
 *psZdpExtendedSimpleDescReq);

9.1.2.4.1 Description

This function requests a cluster list for a specific endpoint on the node with a particular network address.
The function should be called if the endpoint has more input or output clusters than could be included in the
response to ZPS_eAplZdpSimpleDescRequest(). The function sends an Extended_Simple_Desc_req request
either to the relevant node or to another node that may hold the required information in its primary discovery
cache.

The network address of the node of interest and the relevant endpoint on the node must be specified in the
request, which is represented by the structure below (further detailed in Section 9.2.2.7).

typedef struct { uint16 u16NwkAddr; uint8 u8EndPoint;

uint8 u8StartIndex;

} ZPS_tsAplZdpExtendedSimpleDescReq;

This structure allows you to specify the first input/output cluster of interest in the endpoint’s input and
output cluster lists. Thus, this should normally be the cluster after the last one reported following a call to
ZPS_eAplZdpSimpleDescRequest().

The required cluster information is received in a Extended_Simple_Desc_rsp response, which
should be collected using the function ZQ_bZQueueReceive() and stored in a structure of type
ZPS_tsAplZdpExtendedSimpleDescRsp (detailed in Section 9.2.3.6).

9.1.2.4.2 Parameters

• hAPduInst: Handle of APDU instance in which request is sent
• uDstAddr: Address of destination node of request (can be 16-bit or 64-bit, as specified by bExtAddr)
• bExtAddr: Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber: Pointer to sequence number of request
• *psZdpExtendedSimpleDescReq: Pointer to request (see above)

9.1.2.4.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
168 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.1.2.5 ZPS_eAplZdpComplexDescRequest

ZPS_teStatus ZPS_eAplZdpComplexDescRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
ZPS_tsAplZdpComplexDescReq *psZdpComplexDescReq);

9.1.2.5.1 Description

This function requests the Complex descriptor of the node with a particular network address. The function
sends a Complex_Desc_req request either to the relevant node or to another node that may hold the required
information in its primary discovery cache.

The network address of the node of interest must be specified in the request, which is represented by the
structure below (further detailed in Section 9.2.2.8).

typedef struct {

uint16 u16NwkAddrOfInterest;

} ZPS_tsAplZdpComplexDescReq;

The required Complex descriptor will be received in a Complex_Desc_rsp response, which should be collected
using the function ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpComplexDescRsp
(detailed in Section 9.2.3.7).

9.1.2.5.2 Parameters

• hAPduInst: Handle of APDU instance in which request is sent
• uDstAddr: Address of destination node of request (can be 16-bit or 64-bit, as specified by bExtAddr)
• bExtAddr: Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber: Pointer to sequence number of request
• *psZdpComplexDescReq: Pointer to request (see above)

9.1.2.5.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.2.6 ZPS_eAplZdpUserDescRequest

ZPS_teStatus ZPS_eAplZdpUserDescRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
ZPS_tsAplZdpUserDescReq *psZdpUserDescReq);

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
169 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.1.2.6.1 Description

This function requests the User descriptor of the node with a particular network address. The function sends a
User_Desc_req request either to the relevant node or to another node that may hold the required information in
its primary discovery cache.

Note: This function can only be used to access the User descriptor of a non-NXP device (which supports this
descriptor), since the storage of a User descriptor on an NXP remove device is not supported.

The network address of the node of interest must be specified in the request, which is represented by the
structure below (further detailed in Section 9.2.2.9).

typedef struct {

uint16 u16NwkAddrOfInterest;

} ZPS_tsAplZdpUserDescReq;

The required User descriptor will be received in a User_Desc_rsp response, which should be collected using
the function ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpUserDescRsp (detailed
in Section 9.2.3.8).

9.1.2.6.2 Parameters

• hAPduInst: Handle of APDU instance in which request is sent
• uDstAddr: Address of destination node of request (can be 16-bit or 64-bit, as specified by bExtAddr)
• bExtAddr: Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber: Pointer to sequence number of request
• *psZdpUserDescReq: Pointer to request (see above).

9.1.2.6.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.2.7 ZPS_eAplZdpMatchDescRequest

ZPS_teStatus ZPS_eAplZdpMatchDescRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpMatchDescReq *psZdpMatchDescReq);

9.1.2.7.1 Description

This function requests responses from network nodes with endpoints that match specified criteria in their Simple
descriptors. More specifically, these criteria include: application profile, number of input clusters, number of
output clusters, list of input clusters, and list of output clusters. The function sends out a Match_Desc_req
command, as a broadcast to all network nodes. It might also be sent as a unicast to either a specific node of

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
170 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

interest or to another node that may hold the required information in its primary discovery cache. The wildcard
profile (0xFFFF) can be used to match any profile ID.

The request is represented by the structure below (further detailed in Section 9.2.2.10).

typedef struct {
 uint16 u16NwkAddrOfInterest;
 uint16 u16ProfileId;
 /* rest of message is variable length */
 uint8 u8NumInClusters;
 uint16* pu16InClusterList;
 uint8 u8NumOutClusters;
 uint16* pu16OutClusterList;
} ZPS_tsAplZdpMatchDescReq;

A node with matching endpoint criteria responds with a Match_Desc_rsp response, which should be collected
using the function ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpMatchDescRsp
(detailed in Section9.2.3.9).

9.1.2.7.2 Parameters

• hAPduInst: Handle of APDU instance in which request is sent
• uDstAddr: Address of destination node of request (can be 16- or 64-bit, as specified by bExtAddr)
• bExtAddr: Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber: Pointer to sequence number of request
• *psZdpMatchDescReq: Pointer to request (see above).

9.1.2.7.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.2.8 ZPS_eAplZdpActiveEpRequest

ZPS_teStatus ZPS_eAplZdpActiveEpRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpActiveEpReq *psZdpActiveEpReq);

9.1.2.8.1 Description

This function requests a list of the active endpoints on a remote node. The function sends an Active_EP_req
request either to the relevant node or to another node that may hold the required information in its primary
discovery cache.

The network address of the node of interest must be specified in the request, which is represented by the
structure below (further detailed in Section 9.2.2.11).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
171 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

typedef struct {

uint16 u16NwkAddrOfInterest;

} ZPS_tsAplZdpActiveEpReq;

The endpoint list is received in an Active_EP_rsp response, which should be collected using the function
ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpActiveEpRsp (detailed in Section
9.2.3.10).

9.1.2.8.2 Parameters

• hAPduInst: Handle of APDU instance in which request is sent
• uDstAddr: Address of destination node of request (can be 16-bit or 64-bit, as specified by bExtAddr)
• bExtAddr: Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber: Pointer to sequence number of request
• *psZdpActiveEpReq: Pointer to request (see above)

9.1.2.8.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.2.9 ZPS_eAplZdpExtendedActiveEpRequest

ZPS_teStatus ZPS_eAplZdpExtendedActiveEpRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpExtendedActiveEpReq
 *psZdpExtendedActiveEpReq);

9.1.2.9.1 Description

This function requests a list of the active endpoints on a remote node. The function should be called if the node
has more active endpoints than could be included in a response to ZPS_eAplZdpActiveEpRequest(). The
function sends an Extended_Active_EP_req request either to the relevant node or to another node that may
hold the required information in its primary discovery cache.

The network address of the node of interest must be specified in the request, which is represented by the
structure below (further detailed in Section 9.2.2.12).

typedef struct { uint16 u16NwkAddr;

uint8 u8StartIndex;

} ZPS_tsAplZdpExtendedActiveEpReq;

This structure allows you to specify the first endpoint of interest for the request.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
172 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

The endpoint list is received in an Extended_Active_EP_rsp response, which should be collected using the
function ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpExtendedActiveEpRsp
(detailed in Section9.2.3.11).

9.1.2.9.2 Parameters

• hAPduInst Handle of APDU instance in which request is sent.
• uDstAddr Address of destination node of request (can be 16- or 64-bit, as specified by bExtAddr)
• bExtAddr Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber Pointer to sequence number of request
• *psZdpActiveEpReq Pointer to request (see above)

9.1.2.9.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.2.10 ZPS_eAplZdpUserDescSetRequest

ZPS_teStatus ZPS_eAplZdpUserDescSetRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpUserDescSet *psZdpUserDescSetReq);

9.1.2.10.1 Description

This function can be used to configure the User descriptor on a remote node. The function sends a
User_Desc_set request either to the remote node or to another node that may hold the relevant User descriptor
in its primary discovery cache.

Note: This function can only be used to access the User descriptor of a non-NXP device (which supports this
descriptor), since the storage of a User descriptor on an NXP device is not supported.

The network address of the node of interest as well as the required modifications must be specified in the
request, which is represented by the structure below (further detailed in Section 9.2.2.13).

typedef struct {

uint16 u16NwkAddrOfInterest; uint8 u8Length;

char szUserDescriptor[ZPS_ZDP_LENGTH_OF_USER_DESC];

} ZPS_tsAplZdpUserDescSet;

If the specified User descriptor was successfully modified, a User_Desc_conf response is received. This
response should be collected by the application task using the function ZQ_bZQueueReceive() and stored in a
structure of type ZPS_tsAplZdpUserDescConf (detailed in Section 9.2.3.12).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
173 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.1.2.10.2 Parameters

• hAPduInst Handle of APDU instance in which request is sent
• uDstAddr Address of destination node of request (can be 16-bit or 64-bit, as specified by bExtAddr)
• bExtAddr: Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber: Pointer to sequence number of request
• *psZdpUserDescSetReq: Pointer to request (see above)

9.1.2.10.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.2.11 ZPS_eAplZdpSystemServerDiscoveryRequest

ZPS_teStatus ZPS_eAplZdpSystemServerDiscoveryRequest(
 PDUM_thAPduInstance hAPduInst,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpSystemServerDiscoveryReq
 *psZdpSystemServerDiscoveryReq);

9.1.2.11.1 Description

This function can be used to request information on the available servers hosted by remote nodes (Primary or
Backup Trust Centre, Primary or Backup Binding Table Cache, Primary or Backup Discovery Cache, Network
Manager). The function broadcasts a System_Server_Discovery_req request to all network nodes.

The required servers must be specified by means of a bitmask in the request, which is represented by the
structure below (further detailed in Section 9.2.2.14).

typedef struct {

uint16 u16ServerMask;

} ZPS_tsAplZdpSystemServerDiscoveryReq;

A remote node replies with a System_Server_Discovery_rsp response, indicating which of the requested
servers are implemented. This response should be collected using the function ZQ_bZQueueReceive() and
stored in a structure of type ZPS_tsAplZdpSystemServerDiscoveryRsp (detailed in Section 9.2.3.13).

9.1.2.11.2 Parameters

• hAPduInst Handle of APDU instance in which request is sent.
• *pu8SeqNumber Pointer to sequence number of request
• *psZdpSystemServerDiscoveryReq Pointer to request (see above)

9.1.2.11.3 Returns

• ZPS_E_SUCCESS (request successfully sent)

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
174 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.2.12 ZPS_eAplZdpDiscoveryCacheRequest

ZPS_teStatus ZPS_eAplZdpDiscoveryCacheRequest(
 PDUM_thAPduInstance hAPduInst,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpDiscoveryCacheReq
 *psZdpDiscoveryCacheReq);

9.1.2.12.1 Description

This function is used to discover which nodes in the network have a primary discovery cache - that is, a bank of
information about other nodes in the network. The function broadcasts a Discovery_Cache_req request to the
network.

The request includes the network and IEEE addresses of the sending device, and is represented by the
structure below (further detailed in Section 9.2.2.15).

typedef struct {

uint16 u16NwkAddr;

uint64 u64IeeeAddr;

} ZPS_tsAplZdpDiscoveryCacheReq;

A node with a primary discovery cache replies with a Discovery_Cache_rsp response, which
should be collected using the function ZQ_bZQueueReceive() and stored in a structure of type
ZPS_tsAplZdpDiscoveryCacheRsp (detailed in Section 9.2.3.14).

9.1.2.12.2 Parameters

• hAPduInst: Handle of APDU instance in which request is sent.
• *pu8SeqNumber: Pointer to sequence number of request.
• *psZdpDiscoveryCacheReq: Pointer to request (see above).

9.1.2.12.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.2.13 ZPS_eAplZdpDiscoveryStoreRequest

ZPS_teStatus ZPS_eAplZdpDiscoveryStoreRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpDiscoveryStoreReq

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
175 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

 *psZdpDiscoveryStoreReq);

9.1.2.13.1 Description

This function can be called on an End Device to request a remote node to reserve memory space to store
the local node’s ‘discovery information’. To do this, the remote node must contain a primary discovery cache.
The ‘discovery information’ includes the local node’s IEEE address, network address, Node descriptor, Power
descriptor, Simple descriptor and number of active endpoints. The function sends a Discovery_store_req
request to the remote node.

This request includes the network and IEEE addresses of the sending node as well as the amount of storage
space (in bytes) needed to store the information. The request is represented by the structure below (further
detailed in Section 9.2.2.16).

typedef struct {
 uint16 u16NwkAddr;
 uint64 u64IeeeAddr;
 uint8 u8NodeDescSize;
 uint8 u8PowerDescSize;
 uint8 u8ActiveEpSize;
 uint8 u8SimpleDescCount;
 /* Rest of message is variable length */
 uint8* pu8SimpleDescSizeList;
} ZPS_tsAplZdpDiscoveryStoreReq;

On receiving this request, the remote node first checks whether it has a primary discovery cache. If this is the
case, it checks whether it has storage space in the cache for the new discovery information. If the space is
available, it is reserved until the information is later uploaded from the local node.

The node replies with a Discovery_store_rsp response, which should be collected using the function
ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpDiscoveryStoreRsp (detailed in
Section 9.2.3.15).

9.1.2.13.2 Parameters

• hAPduInst: Handle of APDU instance in which request is sent.
• uDstAddr: Address of destination node of request (can be 16-bit or 64-bit, as specified by bExtAddr)
• bExtAddr: Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber: Pointer to sequence number of request
• *psZdpDiscoveryStoreReq: Pointer to request (see above)

9.1.2.13.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.2.14 ZPS_eAplZdpNodeDescStoreRequest

ZPS_teStatus ZPS_eAplZdpNodeDescStoreRequest(

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
176 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpNodeDescStoreReq
 *psZdpNodeDescStoreReq);

9.1.2.14.1 Description

This function can be called on an End Device to upload the local node’s Node descriptor for storage in the
primary discovery cache on a remote node. The function sends a Node_Desc_store_req command to the
remote node.

This request includes the network and IEEE addresses of the sending node as well as the Node descriptor to
store. The request is represented by the structure below (further detailed in Section 9.2.2.17).

typedef struct { uint16 u16NwkAddr; uint64 u64IeeeAddr;

/* Rest of message is variable length */ ZPS_tsAplZdpNodeDescriptor
sNodeDescriptor;

} ZPS_tsAplZdpNodeDescStoreReq;

On receiving the request, the remote node will first check whether it has a primary discovery cache. If this is the
case, it will check whether it has previously reserved storage space in its cache for the local node. If it has, it will
store the Node descriptor in its cache.

The node replies with a Node_Desc_store_rsp response, which should be collected using the function
ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpNodeDescStoreRsp (detailed in
Section 9.2.3.16).

Note: This function should only be called if storage space for the local node’s ‘discovery information’ has
previously been reserved on the remote node following a call to ZPS_eAplZdpDiscoveryStoreRequest().

9.1.2.14.2 Parameters

• hAPduInst: Handle of APDU instance in which request is sent.
• uDstAddr: Address of destination node of request (can be 16- or 64-bit, as specified by bExtAddr)
• bExtAddr: Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber: Pointer to sequence number of request
• *psZdpNodeDescStoreReq: Pointer to request (see above)

9.1.2.14.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.2.15 ZPS_eAplZdpPowerDescStoreRequest

ZPS_teStatus ZPS_eAplZdpPowerDescStoreRequest(

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
177 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpPowerDescStoreReq
 *psZdpPowerDescStoreReq);

9.1.2.15.1 Description

This function can be called on an End Device to upload the local node’s Power descriptor for storage in the
primary discovery cache on a remote node. The function sends a Power_Desc_store_req request to the
remote node.

This request includes the network and IEEE addresses of the sending node as well as the Power descriptor to
store. The request is represented by the structure below (further detailed in Section 9.2.2.18).

typedef struct {
 uint16 u16NwkAddr;
 uint64 u64IeeeAddr;
 /* Rest of message is variable length */
 ZPS_tsAplZdpNodePowerDescriptor sPowerDescriptor;
} ZPS_tsAplZdpPowerDescStoreReq;

On receiving the request, the remote node first checks whether it has a primary discovery cache. If this is the
case, it checks whether it has previously reserved storage space in its cache for the local node. If it has, it
stores the Power descriptor in its cache.

The node replies with a Power_Desc_store_rsp response, which should be collected using the function
ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpPowerDescStoreRsp (detailed in
Section 9.2.3.17).

Note: This function should only be called if storage space for the local node’s ‘discovery information’ has
previously been reserved on the remote node following a call to ZPS_eAplZdpDiscoveryStoreRequest().

9.1.2.15.2 Parameters

• hAPduInst: Handle of APDU instance in which request is sent.
• uDstAddr: Address of destination node of request (can be 16- or 64-bit, as specified by bExtAddr)
• bExtAddr: Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber: Pointer to sequence number of request
• *psZdpPowerDescStoreReq: Pointer to request (see above)

9.1.2.15.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
178 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.1.2.16 ZPS_eAplZdpSimpleDescStoreRequest

ZPS_teStatus ZPS_eAplZdpSimpleDescStoreRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpSimpleDescStoreReq
 *psZdpSimpleDescStoreReq);

9.1.2.16.1 Description

This function can be called on an End Device to upload a Simple descriptor from the local node for storage in
the primary discovery cache on the specified remote node. The Simple descriptor for each endpoint on the local
node must be uploaded separately using this function. The function sends a Simple_Desc_store_req request to
the remote node.

This request includes the network and IEEE addresses of the sending node as well as the Simple descriptor to
store. The request is represented by the structure below (further detailed in Section 9.2.2.19).

typedef struct {
 uint16 u16NwkAddr;
 uint64 u64IeeeAddr;
 uint8 u8Length;
 /* Rest of message is variable length */
 ZPS_tsAplZdpSimpleDescType sSimpleDescriptor;
} ZPS_tsAplZdpSimpleDescStoreReq;

On receiving the request, the remote node first checks whether it has a primary discovery cache. If this is the
case, it checks whether it has previously reserved storage space in its cache for the local node. If it has, it
stores the Simple descriptor in its cache.

The node replies with a Simple_Desc_store_rsp response, which should be collected using the function
ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpSimpleDescStoreRsp (detailed in
Section 9.2.3.18).

Note: This function should only be called if storage space for the local node’s ‘discovery information’ has
previously been reserved on the remote node following a call to ZPS_eAplZdpDiscoveryStoreRequest().

9.1.2.16.2 Parameters

• hAPduInst: Handle of APDU instance in which request is sent.
• uDstAddr: Address of destination node of request (can be 16-bit or 64-bit, as specified by bExtAddr)
• bExtAddr: Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber: Pointer to sequence number of request
• *psZdpSimpleDescStoreReq: Pointer to request (see above)

9.1.2.16.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
179 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• MAC return codes, listed and described in Section 11.2.4

9.1.2.17 ZPS_eAplZdpActiveEpStoreRequest

ZPS_teStatus ZPS_eAplZdpActiveEpStoreRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpActiveEpStoreReq
 *psZdpActiveEpStoreReq);

9.1.2.17.1 Description

This function can be called on an End Device to upload a list of its active endpoints for storage in the primary
discovery cache on a remote node. The function sends an Active_EP_store_req command to the remote node.

This request includes the network and IEEE addresses of the sending node as well as the list of active
endpoints to store. The request is represented by the structure below (further detailed in Section 9.2.2.20).

typedef struct {
 uint16 u16NwkAddr;
 uint64 u64IeeeAddr;
 uint8 u8ActiveEPCount;
 /* Rest of message is variable length */
 uint8* pu8ActiveEpList;
} ZPS_tsAplZdpActiveEpStoreReq;

On receiving the request, the remote node first checks whether it has a primary discovery cache. If this is the
case, it checks whether it has previously reserved storage space in its cache for the local node. If it has, it
stores the list of active endpoints in its cache.

The node replies with an Active_EP_store_rsp response, which should be collected using the function
ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpActiveEpStoreRsp (detailed in
Section 9.2.3.19).

Note: This function should only be called if storage space for the local node’s ‘discovery information’ has
previously been reserved on the remote node following a call to ZPS_eAplZdpDiscoveryStoreRequest().

9.1.2.17.2 Parameters

• hAPduInst: Handle of APDU instance in which request is sent.
• uDstAddr: Address of destination node of request (can be 16- or 64-bit, as specified by bExtAddr)
• bExtAddr: Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber: Pointer to sequence number of request
• *psZdpActiveEpStoreReq: Pointer to request (see above).

9.1.2.17.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
180 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• MAC return codes, listed and described in Section 11.2.4

9.1.2.18 ZPS_eAplZdpFindNodeCacheRequest

ZPS_teStatus ZPS_eAplZdpFindNodeCacheRequest(
 PDUM_thAPduInstance hAPduInst,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpFindNodeCacheReq
 *psZdpFindNodeCacheReq);

9.1.2.18.1 Description

This function can be used to search for nodes in the network that hold ‘discovery information’ about a particular
node. The function broadcasts a Find_node_cache_req request to the network.

This request includes the network and IEEE addresses of the node of interest. The request is represented by
the structure below (further detailed in Section 8.2.2.21).

typedef struct {
 uint16 u16NwkAddr;
 uint64 u64IeeeAddr;
} ZPS_tsAplZdpFindNodeCacheReq;

On receiving the request, a remote node first checks whether it has a primary discovery cache, or is the
specified node itself. If either is the case, it checks whether it holds the required information and, if this is the
case, replies with a Find_node_cache_rsp response. This response should be collected using the function
ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpFindNodeCacheRsp (detailed in
Section 8.2.3.20).

Only nodes that hold the required information respond to the request.

9.1.2.18.2 Parameters

• hAPduInst: Handle of APDU instance in which request is sent.
• *pu8SeqNumber: Pointer to sequence number of request
• *psZdpFindNodeCacheReq: Pointer to request (see above)

9.1.2.18.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.2.19 ZPS_eAplZdpRemoveNodeCacheRequest

ZPS_teStatus ZPS_eAplZdpRemoveNodeCacheRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpRemoveNodeCacheReq

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
181 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

 *psZdpRemoveNodeCacheReq);

9.1.2.19.1 Description

This function requests a Primary Discovery Cache node to remove from its cache all ‘discovery information’
relating to a particular End Device. The function sends a Remove_node_cache_req request to the Primary
Discovery Cache node.

The effect of a successful request is to remove the relevant ‘discovery information’ and free the corresponding
storage space in the cache previously reserved by ZPS_eAplZdpDiscoveryStoreRequest() (which may have
been called from another node in the network).

This request includes the network and IEEE addresses of the End Device whose ‘discovery information’ is to be
removed. The request is represented by the structure below (further detailed in Section 9.2.2.22).

typedef struct {
 uint16 u16NwkAddr;
 uint64 u64IeeeAddr;
} ZPS_tsAplZdpRemoveNodeCacheReq;

On receiving the request, the remote node first checks whether it has a primary discovery cache. If this is the
case, it checks whether it has previously received and implemented a Discovery_store_req request for the
specified End Device, resulting from a call to ZPS_eAplZdpDiscoveryStoreRequest(). If it has, it deletes the
relevant data and unreserve the corresponding part of the cache.

The node replies with a Remove_node_cache_rsp response, which should be collected using the function
ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpRemoveNodeCacheRsp (detailed in
Section 9.2.3.21).

9.1.2.19.2 Parameters

• hAPduInst: Handle of APDU instance in which request is sent.
• uDstAddr: Address of destination node of request(can be 16- or 64-bit, as specified by bExtAddr)
• bExtAddr: Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber: Pointer to sequence number of request
• *psZdpRemoveNodeCacheReq: Pointer to request (see above)

9.1.2.19.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.3 Binding functions

The ZDP Binding functions are concerned with binding nodes together, to aid communication between them,
and managing binding tables.

1. ZPS_eAplZdpEndDeviceBindRequest
2. ZPS_eAplZdpBindUnbindRequest

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
182 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

3. ZPS_eAplZdpBindRegisterRequest
4. ZPS_eAplZdpReplaceDeviceRequest
5. ZPS_eAplZdpStoreBkupBindEntryRequest
6. ZPS_eAplZdpRemoveBkupBindEntryRequest
7. ZPS_eAplZdpBackupBindTableRequest
8. ZPS_eAplZdpRecoverBindTableRequest
9. ZPS_eAplZdpBackupSourceBindRequest

10. ZPS_eAplZdpRecoverSourceBindRequest
11. ZPS_eAplAibRemoveBindTableEntryForMacAddress

Note:

1. Some of the above binding functions cannot be used to send requests to nodes that run the NXP ZigBee
PRO stack. They are supplied in the NXP ZDP API in order to facilitate interoperability with nodes based on
non-NXP software, which supports the corresponding requests. If applicable, this restriction is noted in the
function description.

2. Further binding functions are provided in the ZDO API and are described in Section 7.1.1, "Network
Deployment Functions".

9.1.3.1 ZPS_eAplZdpEndDeviceBindRequest

ZPS_teStatus ZPS_eAplZdpEndDeviceBindRequest(
 PDUM_thAPduInstance hAPduInst,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpEndDeviceBindReq
 *psZdpEndDeviceBindReq);

Description

This function sends a binding request to the Coordinator in order to bind an endpoint on the local node to an
endpoint on a remote node (these nodes can be End Devices or Routers). The function should normally be
invoked as the result of a user action on the local node, such as pressing a button. The function sends an
End_Device_Bind_req request to the Coordinator.

This request includes details of the source node, endpoint and clusters. The request is represented by the
structure below (further detailed in Section 9.2.2.23).

typedef struct {
 uint16 u16BindingTarget;
 uint64 u64SrcIeeeAddress;
 uint8 u8SrcEndpoint;
 uint16 u16ProfileId;
 /* Rest of message is variable length */
 uint8 u8NumInClusters;
 uint16 *pu16InClusterList;
 uint8 u8NumOutClusters;
 uint16 *pu16OutClusterList;
} ZPS_tsAplZdpEndDeviceBindReq;

On receiving the request, the Coordinator waits (for a pre-defined timeout period) for another binding request,
from a different node, so that it can pair the requests and bind the endpoints. In order to bind the endpoints,
their application profile IDs must match, and they must have compatible clusters in their input and output cluster
lists.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
183 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

The Coordinator replies to a binding request with an End_Device_Bind_rsp response, which should be
collected on the requesting node using the function ZQ_bZQueueReceive() and stored in a structure of type
ZPS_tsAplZdpEndDeviceBindRsp (detailed in Section 9.2.3.22).

The stack will automatically update the Binding tables on the two End Devices (following further bind requests
from the Coordinator) and an ZPS_EVENT_ZDO_BIND event will be generated on the End Devices to signal
these updates.

9.1.3.1.1 Description

This function sends a binding request to the Coordinator in order to bind an endpoint on the local node to an
endpoint on a remote node (these nodes can be End Devices or Routers). The function should normally be
invoked as the result of a user action on the local node, such as pressing a button. The function sends an
End_Device_Bind_req request to the Coordinator.

This request includes details of the source node, endpoint and clusters. The request is represented by the
structure below (further detailed in Section 9.2.2.23).

typedef struct {
 uint16 u16BindingTarget;
 uint64 u64SrcIeeeAddress;
 uint8 u8SrcEndpoint;
 uint16 u16ProfileId;
 /* Rest of message is variable length */
 uint8 u8NumInClusters;
 uint16 *pu16InClusterList;
 uint8 u8NumOutClusters;
 uint16 *pu16OutClusterList;
} ZPS_tsAplZdpEndDeviceBindReq;

On receiving the request, the Coordinator waits (for a pre-defined timeout period) for another binding request,
from a different node, so that it can pair the requests and bind the endpoints. In order to bind the endpoints,
their application profile IDs must match, and they must have compatible clusters in their input and output cluster
lists.

The Coordinator replies to a binding request with an End_Device_Bind_rsp response, which should be
collected on the requesting node using the function ZQ_bZQueueReceive() and stored in a structure of type
ZPS_tsAplZdpEndDeviceBindRsp (detailed in Section 9.2.3.22).

The stack automatically updates the Binding tables on the two End Devices (following further bind requests
from the Coordinator) and an ZPS_EVENT_ZDO_BIND event is generated on the End Devices to signal these
updates.

9.1.3.1.2 Parameters

• hAPduInst: Handle of APDU instance in which request is sent.
• *pu8SeqNumber: Pointer to sequence number of request
• *psZdpEndDeviceBindReq: Pointer to request (see above)

9.1.3.1.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
184 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.1.3.2 ZPS_eAplZdpBindUnbindRequest

ZPS_teStatus ZPS_eAplZdpBindUnbindRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 bool bBindReq,
 ZPS_tsAplZdpBindUnbindReq *psZdpBindReq);

9.1.3.2.1 Description

This function sends a binding or unbinding request (as specified) to a remote node which hosts a binding table.
The function requests a modification of the binding table in order to bind or unbind two endpoints of nodes in
the network. The nodes to be bound/unbound may be different from the node sending the request and the node
receiving the request. The latter must be either a node with a primary binding table cache or the source node for
the binding. This function could typically be used in a commissioning application to configure bindings between
nodes during system set- up.

The function sends a Bind_req or Unbind_req request to the remote node which hosts the binding table to be
modified. This request includes details of the source node and endpoint, and the target node and endpoint for
the binding. The request is represented by the structure below (further detailed in Section 9.2.2.24).

typedef struct {
 uint64 u64SrcAddress;
 uint8 u8SrcEndpoint;
 uint16 u16ClusterId;
 uint8 u8DstAddrMode;
 union {
 struct {
 uint16 u16DstAddress;
 } sShort;
 struct {
 uint64 u64DstAddress;
 uint8 u8DstEndPoint;
 } sExtended;
 } uAddressField;
} ZPS_tsAplZdpBindUnbindReq;

On receiving the request, the remote node adds or removes the relevant entry in its binding table and locally
generates the event ZPS_EVENT_ZDO_BIND or ZPS_EVENT_ZDO_UNBIND, as appropriate, to signal the
relevant update.

If the remote node holds a primary binding table cache, it checks whether the source node for the binding holds
a table of its own source bindings (see the description of ZPS_eAplZdpBindRegisterRequest()). If it is so,
it automatically requests an update of this table. A node with a primary binding table cache also requests an
update of the back-up cache, if one exists.

The remote node replies with a Bind_rsp or Unbind_rsp response, which should be collected using the function
ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpBindRsp (detailed in Section
9.2.3.23) or ZPS_tsAplZdpUnbindRsp (detailed in Section 9.2.3.24).

9.1.3.2.2 Parameters

• hAPduInst Handle of APDU instance in which request is sent.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
185 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• uDstAddr Address of destination node of request (can be 16- or 64-bit, as specified by bExtAddr)
• bExtAddr Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber Pointer to sequence number of request
• bBindReq Bind or unbind request:

– TRUE: bind
– FALSE: unbind

• *psZdpBindReq Pointer to request (see above)

9.1.3.2.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.3.3 ZPS_eAplZdpBindRegisterRequest

ZPS_teStatus ZPS_eAplZdpBindRegisterRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpBindRegisterReq *psZdpBindRegisterReq);

9.1.3.3.1 Description

This function informs a remote node with a primary binding table cache that the local node will hold its own
binding table entries (and therefore the remote node does not need to hold these entries). The function sends a
Bind_Register_req request to the remote node.

The IEEE address of the local node must be specified in the request, which is represented by the structure
below (further detailed in Section 8.2.2.25).

typedef struct {

uint64 u64NodeAddress;

} ZPS_tsAplZdpBindRegisterReq;

The remote node replies with a Bind_Register_rsp response, which should be collected using the function
ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpBindRegisterRsp (detailed in
Section 9.2.3.25). This response contains any information stored about the binding on the remote.

9.1.3.3.2 Parameters

• hAPduInst Handle of APDU instance in which request is sent.
• uDstAddr Address of destination node of request (can be 16- or 64-bit, as specified by bExtAddr)
• bExtAddr Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber Pointer to sequence number of request

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
186 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• *psZdpPowerDescReq Pointer to request (see above)

9.1.3.3.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.3.4 ZPS_eAplZdpReplaceDeviceRequest

ZPS_teStatus ZPS_eAplZdpReplaceDeviceRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpReplaceDeviceReq *psZdpReplaceDeviceReq);

9.1.3.4.1 Description

This function requests a remote node with a primary binding table cache to modify binding table entries with
new data - more specifically, binding table entries can be modified by replacing an IEEE address and/or
associated endpoint number. This function could typically be used in a commissioning application to modify
bindings between nodes. The function sends a Replace_Device_req request to the remote node.

This request must include the old IEEE address and its replacement, as well as the corresponding endpoint
number and its replacement (if any). The request is represented by the structure below (further detailed in
Section 9.2.2.26).

typedef struct {

uint64 u64OldAddress;

uint8 u8OldEndPoint;

uint64 u64NewAddress;

uint8 u8NewEndPoint;

} ZPS_tsAplZdpReplaceDeviceReq;

On receiving this request, the remote node will search its binding table for entries containing the old IEEE
address and old endpoint number from the request - this pair of values may make up the source or destination
data of the binding table entry.

These values will be replaced by the new IEEE address and endpoint number from the request. Note that if
the endpoint number in the request is zero, only the address will be included in the ‘search and replace’ (the
endpoint number in the modified binding table entries will be left unchanged).

The remote node will check whether a node affected by a binding table change holds a table of its own source
bindings (see ZPS_eAplZdpBindRegisterRequest()) and, if so, automatically requests an update of this table.
The remote node will also request an update of the back-up of the primary binding table cache, if one exists.

The remote node will reply with a Replace_Device_rsp response, which should be collected using the function
ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpReplaceDeviceRsp (detailed in
Section 9.2.3.26).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
187 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.1.3.4.2 Parameters

• hAPduInst Handle of APDU instance in which request is sent.
• uDstAddr Address of destination node of request (can be 16- or 64-bit, as specified by bExtAddr)
• bExtAddr Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber Pointer to sequence number of request
• *psZdpReplaceDeviceReq Pointer to request (see above)

9.1.3.4.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.3.5 ZPS_eAplZdpStoreBkupBindEntryRequest

ZPS_teStatus ZPS_eAplZdpStoreBkupBindEntryRequest(
 PDUM_thAPdu hAPdu,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 uint16 u16ProfileId,
 ZPS_tsAplZdpStoreBkupBindEntryReq
 *psZdpStoreBkupBindEntryReq);

9.1.3.5.1 Description

This function requests that a back-up of an entry in the local primary binding table cache is performed on a
remote node. The destination node of the request must hold the corresponding back-up binding table cache.
The back-up operation is normally required when a new entry has been added to the primary binding table
cache.

Note: This function is provided in the NXP ZDP API for the reason of interoperability with nodes running non-
NXP ZigBee PRO stacks that support the generated request. On receiving a request from this function, the NXP
ZigBee PRO stack will return the status ZPS_ZDP_NOT_SUPPORTED.

This request must include the binding table entry to be backed up. The request is represented by the structure
below (further detailed in Section 9.2.2.27).

typedef struct {
 uint64 u64SrcAddress;
 uint8 u8SrcEndPoint;
 uint16 u16ClusterId;
 uint8 u8DstAddrMode;
 union {
 struct {
 uint16 u16DstAddress;
 } sShort;
 struct {
 uint64 u64DstAddress;
 uint8 u8DstEndPoint;

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
188 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

 } sExtended;
 };
} ZPS_tsAplZdpStoreBkupBindEntryReq;

On receiving the request, the remote node adds the specified binding table entry to its back-up binding table
cache, if possible.

The remote node replies with a Store_Bkup_Bind_Entry_rsp response, which should be collected using the
function ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpStoreBkupBindEntryRsp
(detailed in Section 9.2.3.27).

9.1.3.5.2 Parameters

• hAPdu Handle of APDU in which request is sent.
• uDstAddr Address of destination node of request (can be 16- or 64-bit, as specified by bExtAddr)
• bExtAddr Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber Pointer to sequence number of request
• u16ProfileId Application profile ID
• *psZdpStoreBkupBindEntryReq Pointer to request (see above)

9.1.3.5.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.3.6 ZPS_eAplZdpRemoveBkupBindEntryRequest

ZPS_teStatus ZPS_eAplZdpRemoveBkupBindEntryRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpRemoveBkupBindEntryReq
 *psZdpRemoveBkupBindEntryReq);

9.1.3.6.1 Description

This function requests the removal of an entry in the back-up binding table cache on a remote node. The
function must be called from the node with the corresponding primary binding table cache. The removal of a
back-up entry is normally required when an entry in the primary binding table cache has been removed.

Note: This function is provided in the NXP ZDP API for the reason of interoperability with nodes running non-
NXP ZigBee PRO stacks that support the generated request. On receiving a request from this function, the NXP
ZigBee PRO stack will return the status ZPS_ZDP_NOT_SUPPORTED.

This request must include the binding table entry to be removed. The request is represented by the structure
below (further detailed in Section 9.2.2.28).

typedef struct {

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
189 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

uint64 u64SrcAddress; uint8 u8SrcEndPoint; uint16 u16ClusterId; uint8
u8DstAddrMode; union {

struct {

uint16 u16DstAddress;

} sShort; struct {

uint64 u64DstAddress; uint8 u8DstEndPoint;

} sExtended;

};

} ZPS_tsAplZdpRemoveBkupBindEntryReq;

On receiving the request, the remote node removes the specified binding table entry from its back-up binding
table cache, if possible.

The remote node replies with a Remove_Bkup_Bind_Entry_rsp response, which should be collected using the
function ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpRemoveBkupBindEntryRsp
(detailed in Section9.2.3.28).

9.1.3.6.2 Parameters

• hAPduInst Handle of APDU instance in which request is sent.
• uDstAddr Address of destination node of request (can be 16- or 64-bit, as specified by bExtAddr)
• bExtAddr Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber Pointer to sequence number of request
• *psZdpRemoveBkupBindEntryReq Pointer to request (see above)

9.1.3.6.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.3.7 ZPS_eAplZdpBackupBindTableRequest

ZPS_teStatus ZPS_eAplZdpBackupBindTableRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpBackupBindTableReq
 *psZdpBackupBindTableReq);

9.1.3.7.1 Description

This function requests that a back-up of the locally held primary binding table cache is performed on a remote
node - the whole or part of the table can be backed up. The destination node of the request must hold the

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
190 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

corresponding back-up binding table cache. The latter must already exist and be associated with the cache on
the local node through a previous discovery.

Note: This function is provided in the NXP ZDP API for the reason of interoperability with nodes running non-
NXP ZigBee PRO stacks that support the generated request. On receiving a request from this function, the NXP
ZigBee PRO stack will return the status ZPS_ZDP_NOT_SUPPORTED.

This request must include the binding table entries to be backed up. The request is represented by the structure
below (further detailed in Section 9.2.2.29).

typedef struct {

uint16 u16BindingTableEntries; uint16 u16StartIndex;

uint16 u16BindingTableListCount;

/* Rest of message is variable length */ ZPS_tsAplZdpBindingTable sBindingTable;

} ZPS_tsAplZdpBackupBindTableReq;

On receiving the request, the remote node saves the new binding table, if possible, overwriting existing entries.
If the new table is longer than the previous one, as many extra entries as possible will be saved.

The remote node replies with a Backup_Bind_Table_rsp response, which should be collected using the function
ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpBackupBindTableRsp (detailed in
Section 9.2.3.29).

9.1.3.7.2 Parameters

• hAPduInst Handle of APDU instance in which request is sent.
• uDstAddr Address of destination node of request (can be 16-bit or 64-bit, as specified by bExtAddr)
• bExtAddr Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber Pointer to sequence number of request
• *psZdpBackupBindTableReq Pointer to request (see above)

9.1.3.7.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.3.8 ZPS_eAplZdpRecoverBindTableRequest

ZPS_teStatus ZPS_eAplZdpRecoverBindTableRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpRecoverBindTableReq
 *psZdpRecoverBindTableReq);

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
191 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.1.3.8.1 Description

This function requests that a back-up of the locally held primary binding table cache is recovered from a remote
node. The destination node of the request must hold the back-up binding table cache which is associated with
the primary cache on the local node.

Note: This function is provided in the NXP ZDP API for the reason of interoperability with nodes running non-
NXP ZigBee PRO stacks that support the generated request. On receiving a request from this function, the NXP
ZigBee PRO stack will return the status ZPS_ZDP_NOT_SUPPORTED.

This request must indicate the starting index in the binding table for the recovery. The request is represented by
the structure below (further detailed in Section 9.2.2.30).

typedef struct {

uint16 u16StartIndex;

} ZPS_tsAplZdpRecoverBindTableReq;

The remote node replies with a Recover_Bind_Table_rsp response containing the required binding table
entries, which should be collected using the function ZQ_bZQueueReceive() and stored in a structure of type
ZPS_tsAplZdpRecoverBindTableRsp (detailed in Section 9.2.3.30). As many binding entries as possible
are included in this response. If the returned binding table is incomplete, this is indicated in the response and
this function must be called again, with the appropriate starting index, to recover the rest of the table.

9.1.3.8.2 Parameters

• hAPduInst Handle of APDU instance in which request is sent.
• uDstAddr Address of destination node of request (can be 16-bit or 64-bit, as specified by bExtAddr)
• bExtAddr Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber Pointer to sequence number of request
• *psZdpRecoverBindTableReq Pointer to request (see above)

9.1.3.8.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.3.9 ZPS_eAplZdpBackupSourceBindRequest

ZPS_teStatus ZPS_eAplZdpBackupSourceBindRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpBackupSourceBindReq
 *psZdpBackupSourceBindReq);

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
192 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.1.3.9.1 Description

This function requests that a back-up of the locally held source binding table is performed on a remote node.
This source binding table contains entries only relevant to the local node. The function must be called from a
node with a primary binding table cache and the destination node of the request must hold the corresponding
back-up binding table cache.

Note: This function is provided in the NXP ZDP API for the reason of interoperability with nodes running non-
NXP ZigBee PRO stacks that support the generated request. On receiving a request from this function, the NXP
ZigBee PRO stack will return the status ZPS_ZDP_NOT_SUPPORTED.

This request must include the source binding table entries to be backed up. The request is represented by the
structure below (further detailed in Section 9.2.2.31).

typedef struct {

uint16 u16SourceTableEntries; uint16 u16StartIndex;

uint16 u16SourceTableListCount;

/* Rest of message is variable length */ uint64* pu64SourceAddress;

} ZPS_tsAplZdpBackupSourceBindReq;

On receiving the request, the remote node saves the new source binding table, if possible, overwriting existing
entries. If the new table is longer than the previous one, as many extra entries as possible will be saved.

The remote node replies with a Backup_Source_Bind_rsp response, which should be collected using the
function ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpBackupSourceBindRsp
(detailed in Section 9.2.3.31).

9.1.3.9.2 Parameters

• hAPduInst Handle of APDU instance in which request is sent.
• uDstAddr Address of destination node of request (can be 16- or 64-bit, as specified by bExtAddr)
• bExtAddr Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber Pointer to sequence number of request
• *psZdpBackupSourceBindReq Pointer to request (see above)

9.1.3.9.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.3.10 ZPS_eAplZdpRecoverSourceBindRequest

ZPS_teStatus ZPS_eAplZdpBackupSourceBindRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpBackupSourceBindReq

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
193 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

 *psZdpBackupSourceBindReq);

9.1.3.10.1 Description

This function requests that a back-up of the locally held source binding table is recovered from a remote node.
The function must be called from a node with a primary binding table cache and the destination node of the
request must hold the corresponding back-up binding table cache.

Note: This function is provided in the NXP ZDP API for the reason of interoperability with nodes running non-
NXP ZigBee PRO stacks that support the generated request. On receiving a request from this function, the NXP
ZigBee PRO stack will return the status ZPS_ZDP_NOT_SUPPORTED.

This request must indicate the starting index in the binding table for the recovery. The request is represented by
the structure below (further detailed in Section 9.2.2.32).

typedef struct {

uint16 u16StartIndex;

} ZPS_tsAplZdpRecoverSourceBindReq;

The remote node replies with a Recover_Source_Bind_rsp response containing the required binding table
entries, which should be collected using the function ZQ_bZQueueReceive() and stored in a structure of type
ZPS_tsAplZdpRecoverSourceBindRsp (detailed in Section 9.2.3.32). As many binding entries as possible
are included in this response. If the returned binding table is incomplete, this is indicated in the response and
this function must be called again, with the appropriate starting index, to recover the rest of the table.

9.1.3.10.2 Parameters

• hAPduInst Handle of APDU instance in which request is sent.
• uDstAddr Address of destination node of request (can be 16-bit or 64-bit, as specified by bExtAddr)
• bExtAddr Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber Pointer to sequence number of request
• *psZdpRecoverSourceBindReq Pointer to request (see above)

9.1.3.10.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.3.11 ZPS_eAplAibRemoveBindTableEntryForMacAddress

ZPS_teStatus
 ZPS_eAplAibRemoveBindTableEntryForMacAddress(
 uint64 u64MacAddress);

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
194 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.1.3.11.1 Description

This function requests the removal of the entry corresponding to the specified IEEE/ MAC address from the
local binding table.

9.1.3.11.2 Parameters

u64MacAddress IEEE/MAC address contained in the binding table entry to be removed

9.1.3.11.3 Returns

ZPS_E_SUCCESS

9.1.4 Network Management Services functions

The ZDP Network Management Services functions are concerned with requests for network operations to be
implemented remotely.

The functions are listed below.

1. ZPS_eAplZdpMgmtNwkDiscRequest
2. ZPS_eAplZdpMgmtLqiRequest
3. ZPS_eAplZdpMgmtRtgRequest
4. ZPS_eAplZdpMgmtBindRequest
5. ZPS_eAplZdpMgmtLeaveRequest
6. ZPS_eAplZdpMgmtDirectJoinRequest
7. ZPS_eAplZdpMgmtPermitJoiningRequest
8. ZPS_eAplZdpMgmtCacheRequest
9. ZPS_eAplZdpMgmtNwkUpdateRequest

10. ZPS_eAplZdpParentAnnceReq

Note: Some of these functions cannot be used to send requests to nodes that run the NXP ZigBee PRO stack.
They are supplied in the ZDP API in order to facilitate interoperability with nodes based on non-NXP software
which supports the corresponding requests.

9.1.4.1 ZPS_eAplZdpMgmtNwkDiscRequest

ZPS_teStatus ZPS_eAplZdpMgmtNwkDiscRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpMgmtNwkDiscReq
 *psZdpMgmtNwkDiscReq);

9.1.4.1.1 Description

This function requests a remote node to perform a channel scan in order to discover any other wireless
networks that are operating in the neighborhood.

Note: This function is provided in the ZDP API for the reason of interoperability with nodes running non-NXP
ZigBee PRO stacks that support the generated request. On receiving a request from this function, the NXP
ZigBee PRO stack will return the status ZPS_ZDP_NOT_SUPPORTED.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
195 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

This request must specify the requirements for the scan: channels to scan, duration of scan, starting channel.
The request is represented by the structure below (further detailed in Section 8.2.2.33).

typedef struct {

uint32 u32ScanChannels;

uint8 u8ScanDuration;

uint8 u8StartIndex;

} ZPS_tsAplZdpMgmtNwkDiscReq;

The remote node replies with a Mgmt_NWK_Disc_rsp response containing the scan results, which
should be collected using the function ZQ_bZQueueReceive() and stored in a structure of type
ZPS_tsAplZdpMgmtNwkDiscRsp (detailed in Section 8.2.3.33).

9.1.4.1.2 Parameters

• hAPduInst Handle of APDU instance in which request is sent.
• uDstAddr Address of destination node of request (can be 16-bit or 64-bit, as specified by bExtAddr)
• bExtAddr Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber Pointer to sequence number of request
• *psZdpMgmtNwkDiscReq Pointer to request (see above)

9.1.4.1.3 Returns

• ZPS_E_SUCCESS (request successfully sent)

• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.4.2 ZPS_eAplZdpMgmtLqiRequest

ZPS_teStatus ZPS_eAplZdpMgmtLqiRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpMgmtLqiReq *psZdpMgmtLqiReq);

9.1.4.2.1 Description

This function requests a remote node to provide a list of neighboring nodes, from its Neighbor table, including
LQI (link quality) values for radio transmissions from each of these nodes. The destination node of this request
must be a Router or the Co- ordinator.

This request must specify the index of the first node in the Neighbor table to report. The request is represented
by the structure below (further detailed in Section 8.2.2.34).

typedef struct {

uint8 u8StartIndex;

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
196 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

} ZPS_tsAplZdpMgmtLqiReq;

The remote node replies with a Mgmt_Lqi_rsp response containing the required information, which
should be collected using the function ZQ_bZQueueReceive() and stored in a structure of type
ZPS_tsAplZdpMgmtLqiRsp (detailed in Section 8.2.3.34).

9.1.4.2.2 Parameters

• hAPduInst Handle of APDU instance in which request is sent.
• uDstAddr Address of destination node of request (can be 16-bit or 64-bit, as specified by bExtAddr)
• bExtAddr Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber Pointer to sequence number of request
• *psZdpMgmtLqiReq Pointer to request (see above)

9.1.4.2.3 Returns

• ZPS_E_SUCCESS (request successfully sent)

• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.4.3 ZPS_eAplZdpMgmtRtgRequest

ZPS_teStatus ZPS_eAplZdpMgmtRtgRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpMgmtRtgReq *psZdpMgmtRtgReq);

9.1.4.3.1 Description

This function requests a remote node to provide the contents of its Routing table. The destination node of this
request must be a Router or the Coordinator.

This request must specify the index of the first entry in the Routing table to report. The request is represented
by the structure below (further detailed in Section 8.2.2.35).

typedef struct {

uint8 u8StartIndex;

} ZPS_tsAplZdpMgmtRtgReq;

The remote node replies with a Mgmt_Rtg_rsp response containing the required information, which
should be collected using the function ZQ_bZQueueReceive() and stored in a structure of type
ZPS_tsAplZdpMgmtRtgRsp (detailed in Section 8.2.3.35).

9.1.4.3.2 Parameters

• hAPduInst Handle of APDU instance in which request is sent.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
197 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• uDstAddr Address of destination node of request (can be 16-bit or 64-bit, as specified by bExtAddr)
• bExtAddr Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber Pointer to sequence number of request
• *psZdpMgmtRtgReq Pointer to request (see above)

9.1.4.3.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.4.4 ZPS_eAplZdpMgmtBindRequest

ZPS_teStatus ZPS_eAplZdpMgmtBindRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpMgmtBindReq *psZdpMgmtBindReq);

9.1.4.4.1 Description

This function requests a remote node to provide the contents of its Binding table. The destination node of this
request must be a Router or the Coordinator.

This request must specify the index of the first entry in the Binding table to report. The request is represented by
the structure below (further detailed in Section8.2.2.36).

typedef struct {

uint8 u8StartIndex;

} ZPS_tsAplZdpMgmtBindReq;

The remote node replies with a Mgmt_Bind_rsp response containing the required information, which
should be collected using the function ZQ_bZQueueReceive() and stored in a structure of type
ZPS_tsAplZdpMgmtBindRsp (detailed in Section8.2.3.36).

9.1.4.4.2 Parameters

• hAPduInst Handle of APDU instance in which request is sent.
• uDstAddr Address of destination node of request (can be 16-bit or 64-bit, as specified by bExtAddr)
• bExtAddr Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber Pointer to sequence number of request
• *psZdpMgmtBindReq Pointer to request (see above)

9.1.4.4.3 Returns

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
198 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.4.5 ZPS_eAplZdpMgmtLeaveRequest

ZPS_teStatus ZPS_eAplZdpMgmtLeaveRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpMgmtLeaveReq *psZdpMgmtLeaveReq);

9.1.4.5.1 Description

This function requests a remote node to leave the network. The request also indicates whether the children
of the leaving node should also be requested to leave and whether the leaving node(s) should subsequently
attempt to rejoin the network.

Note: This function is provided in the ZDP API for the reason of interoperability with nodes running non-NXP
ZigBee PRO stacks that support the generated request. On receiving a request from this function, the NXP
ZigBee PRO stack will return the status ZPS_ZDP_NOT_SUPPORTED.

The IEEE address of the node to leave the network must be included in the request, as well as flags indicating
the children and rejoin choices (see above). The request is represented by the structure below (further detailed
in Section 8.2.2.37).

typedef struct {

uint64 u64DeviceAddress;

uint8 u8Flags;

} ZPS_tsAplZdpMgmtLeaveReq;

The remote node replies with a Mgmt_Leave_rsp response, which should be collected using the function
ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpMgmtLeaveRsp (detailed in Section
8.2.3.37).

9.1.4.5.2 Parameters

• hAPduInst Handle of APDU instance in which request is sent.
• uDstAddr Address of destination node of request (can be 16-bit or 64-bit, as specified by bExtAddr)
• bExtAddr Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber Pointer to sequence number of request
• *psZdpMgmtLeaveReq Pointer to request (see above)

9.1.4.5.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
199 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.4.6 ZPS_eAplZdpMgmtDirectJoinRequest

ZPS_teStatus ZPS_eAplZdpMgmtDirectJoinRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpMgmtDirectJoinReq
 *psZdpMgmtDirectJoinReq);

9.1.4.6.1 Description

This function requests a remote node to allow a particular device (identified through its IEEE address) to join
the network as a child of the node. Thus, joining should be enabled on the remote node just for the nominated
device. The destination node of this request must be a Router or the Coordinator.

Note: This function is provided in the ZDP API for the reason of interoperability with nodes running non-NXP
ZigBee PRO stacks that support the generated request. On receiving a request from this function, the NXP
ZigBee PRO stack will return the status ZPS_ZDP_NOT_SUPPORTED.

The IEEE address of the nominated device as well as its capabilities must be included in the request. The
request is represented by the structure below (further detailed in Section 8.2.2.38).

typedef struct {

uint64 u64DeviceAddress; uint8 u8Capability;

} ZPS_tsAplZdpMgmtDirectJoinReq;

The remote node replies with a Mgmt_Direct_Join_req response, which should be collected using the function
ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpMgmtDirectJoinRsp (detailed in
Section 8.2.3.38).

9.1.4.6.2 Parameters

• hAPduInst Handle of APDU instance in which request is sent.
• uDstAddr Address of destination node of request (can be 16-bit or 64-bit, as specified by bExtAddr)
• bExtAddr Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber Pointer to sequence number of request
• *psZdpMgmtDirectJoinReq Pointer to request (see above)

9.1.4.6.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
200 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.1.4.7 ZPS_eAplZdpMgmtPermitJoiningRequest

ZPS_teStatus ZPS_eAplZdpMgmtPermitJoiningRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpMgmtPermitJoiningReq
 *psZdpMgmtPermitJoiningReq);

9.1.4.7.1 Description

This function requests a remote node to enable or disable joining for a specified amount of time. The destination
node of this request must be a Router or the Co- ordinator. The request can be unicast to a particular node
or broadcast to all routing nodes (for which the destination address must be set to the 16-bit network address
0xFFFC).

Note: This function is provided in the ZDP API for the reason of interoperability with nodes running non-NXP
ZigBee PRO stacks that support the generated request. On receiving a request from this function, the NXP
ZigBee PRO stack will return the status ZPS_ZDP_NOT_SUPPORTED.

The duration of the enable or disable joining state must be specified in the request. The request is represented
by the structure below (further detailed in Section8.2.2.39).

typedef struct {

uint8 u8PermitDuration; bool_t bTcSignificance;

} ZPS_tsAplZdpMgmtPermitJoiningReq;

If the request was unicast, the remote node replies with a Mgmt_Permit_Joining_rsp response, which
should be collected using the function ZQ_bZQueueReceive() and stored in a structure of type
ZPS_tsAplZdpMgmtPermitJoiningRsp (detailed in Section 8.2.3.39).

9.1.4.7.2 Parameters

• hAPduInst Handle of APDU instance in which request is sent.
• uDstAddr Address of destination node of request (can be 16-bit or 64-bit, as specified by bExtAddr)
• bExtAddr Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber Pointer to sequence number of request
• *psZdpMgmtPermitJoiningReq Pointer to request (see above)

9.1.4.7.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.4.8 ZPS_eAplZdpMgmtCacheRequest

ZPS_teStatus ZPS_eAplZdpMgmtCacheRequest(
 PDUM_thAPduInstance hAPduInst,

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
201 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpMgmtCacheReq *psZdpMgmtCacheReq);

9.1.4.8.1 Description

This function requests a remote node to provide a list of the End Devices registered in its primary discovery
cache. Therefore, the destination node must contain a primary discovery cache.

Note: This function is provided in the ZDP API for the reason of interoperability with nodes running non-NXP
ZigBee PRO stacks that support the generated request. On receiving a request from this function, the NXP
ZigBee PRO stack will return the status ZPS_ZDP_NOT_SUPPORTED.

The request is represented by the structure below (further detailed in Section9.2.2.40).

typedef struct {

uint8 u8StartIndex;

} ZPS_tsAplZdpMgmtCacheReq;

The remote node replies with a Mgmt_Cache_rsp response, which should be collected using the function
ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpMgmtCacheRsp (detailed in Section
9.2.3.40).

9.1.4.8.2 Parameters

• hAPduInst Handle of APDU in which request is sent.
• uDstAddr Address of destination node of request
• (can be 16- or 64-bit, as specified by bExtAddr)
• bExtAddr Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

• *pu8SeqNumber Pointer to sequence number of request
• *psZdpMgmtCacheReq Pointer to request (see above)

9.1.4.8.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.4.9 ZPS_eAplZdpMgmtNwkUpdateRequest

ZPS_teStatus ZPS_eAplZdpMgmtNwkUpdateRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpMgmtNwkUpdateReq
 *psZdpMgmtNwkUpdateReq);

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
202 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.1.4.9.1 Description

This function requests an update of network parameters related to radio communication. The request can
specify any of the following:

• update the radio channel mask (for scans) and the 16-bit network address of the network manager (node
nominated to manage radio-band operation of network)

• change the radio channel used
• scan radio channels and report the results

The request can be broadcast or unicast to nodes with radio receivers that are configured to remain on during
idle periods.

The request is represented by the structure below (further detailed in Section9.2.2.41).

typedef struct {

uint32 u32ScanChannels;

uint8 u8ScanDuration;

uint8 u8ScanCount;

uint8 u8NwkUpdateId;

uint16 u16NwkManagerAddr;

} ZPS_tsAplZdpMgmtNwkUpdateReq;

The specific action to be taken as a result of this request is indicated through the element u8ScanDuration,
as described in the table below.

u8ScanDuration Action

0x00-0x05 Perform radio channel scan on the set of channels specified through u32Scan
Channels. The time, in seconds, spent scanning each channel is determined by the
value of u8ScanDuration and the number of scans is equal to the value of u8Scan
Count. Valid for unicasts only.

0x06-0xFD Reserved

0xFE Change radio channel to single channel specified through u32ScanChannels and
set the network man- ager address to that specified through u16NwkManag- erAddr.
Valid for broadcasts only.

0xFF Update the stored radio channel mask with that specified through u32ScanChannels
(but do not scan).
Valid for broadcasts only.

Table 17. u8ScanDuration and allowed actions

The remote node replies with a Mgmt_NWK_Update_notify notification, which should be collected using the
function ZQ_bZQueueReceive() and stored in a structure of type ZPS_tsAplZdpMgmtNwkUpdateNotify
(detailed in Section 9.2.3.41).

9.1.4.9.2 Parameters

• hAPduInst Handle of APDU instance in which request is sent.
• uDstAddr Address of destination node of request (can be 16-bit or 64-bit, as specified by bExtAddr)
• bExtAddr Type of destination address:

– TRUE: 64-bit IEEE (MAC) address
– FALSE: 16-bit network address

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
203 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• *pu8SeqNumber Pointer to sequence number of request
• *psZdpMgmtNwkUpdateReq Pointer to request (see above)

9.1.4.9.3 Returns

• ZPS_E_SUCCESS (request successfully sent)
• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.4.10 ZPS_eAplZdpParentAnnceReq

ZPS_teStatus ZPS_eAplZdpParentAnnceReq(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpParentAnnceReq *psZdpParentAnnceReq);

9.1.4.10.1 Description

This function is used on a Router or the Coordinator to send a Parent Announcement message to one or more
other nodes. In this announcement, the originating node declares which nodes it has as children. These child
nodes are specified using their IEEE/MAC addresses.

The message contains the above data in following structure (further detailed in Section 8.2.2.42):

typedef struct {

uint8 u8NumberOfChildren;

uint64* pu64ChildList;

} ZPS_tsAplZdpParentAnnceReq;

If a node which receives this message also has one of the specified nodes as its child (so there is a conflict), the
receiving node broadcasts a response to indicate this. The response data is contained in the structure below
(further detailed in Section 8.2.3.42):

typedef struct {

uint64* pu64ChildList; uint8 u8NumberOfChildren; uint8 u8Status;

} ZPS_tsAplZdpParentAnnceRsp;

9.1.4.10.2 Parameters

• hAPduInst Handle of APDU instance in which message is sent.
• uDstAddr Address of destination node of message (16-bit or 64-bit, as specified by bExtAddr)
• bExtAddr Type of destination address: TRUE: 64-bit IEEE (MAC) address FALSE: 16-bit network address
• *pu8SeqNumber Pointer to sequence number of message
• *psZdpParentAnnceReq Pointer to message (see above)

9.1.4.10.3 Returns

• ZPS_E_SUCCESS (request successfully sent)

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
204 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• APS return codes, listed and described in Section 11.2.2
• NWK return codes, listed and described in Section 11.2.3
• MAC return codes, listed and described in Section 11.2.4

9.1.5 Response Data Extraction Function

The ZDP Response Data Extraction function is concerned with obtaining the data from a
received response packet which is destined for the ZDO. The function should be called when a
ZPS_EVENT_APS_DATA_INDICATION event is generated for destination endpoint 0.

Note: This function and the related structure ZPS_tsAfZdpEvent are defined in the header file

appZdpExtraction.h.

The function is listed below:

ZPS_bAplZdpUnpackResponseSection 9.1.5.2

9.1.5.1 Function Page

9.1.5.2 ZPS_bAplZdpUnpackResponse

bool ZPS_bAplZdpUnpackResponse(
 ZPS_tsAfEvent *psZdoServerEvent,
 ZPS_tsAfZdpEvent *psReturnStruct);

9.1.5.2.1 Description

This function can be used to extract data received in a response packet which is destined for the ZDO (at
endpoint 0). When such a packet is received, the event ZPS_EVENT_APS_DATA_INDICATION is generated.
The application must then check whether the destination endpoint number is 0 in the event and, if this is the
case, call this function to extract the response data from the event.

A pointer to a ZPS_tsAfZdpEvent structure must be provided, which the function will populate with the
extracted data.

9.1.5.2.2 Parameters

• *psZdoServerEvent Pointer to structure containing the event (see Section 7.2.2.1)
• *psReturnStruct Pointer to structure to receive extracted data (see Section 7.2.2.25)

9.1.5.2.3 Returns

• TRUE if data successfully extracted
• FALSE if data not successfully extracted

9.2 ZDP structures
This section describes the structures used by the ZigBee Device Profile (ZDP) API. Three sets of structures are
presented:

• Structures used to represent the descriptors that reside on a node - see Section9.2.1

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
205 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• Structures used to issue requests using the ZDP functions - see Section 9.2.2
• Structures used to receive responses to the ZDP requests - see Section 9.2.3

9.2.1 Descriptor structures

These structures are used to represent the following descriptors that contain information about the host node:

• Node descriptor
• Node Power descriptor
• Simple descriptor

The structures are listed below.

• ZPS_tsAplZdpNodeDescriptor
• ZPS_tsAplZdpNodePowerDescriptor
• ZPS_tsAplZdpSimpleDescType

9.2.1.1 ZPS_tsAplZdpNodeDescriptor

The ZDP Node descriptor structure ZPS_tsAplZdpNodeDescriptor is shown below.

typedef struct {
 union
 {
 ZPS_tsAplZdpNodeDescBitFields sBitFields;
 uint16 u16Value;
 } uBitUnion;
 uint8 u8MacFlags;
 uint16 u16ManufacturerCode;
 uint8 u8MaxBufferSize;
 uint16 u16MaxRxSize;
 uint16 u16ServerMask;
 uint16 u16MaxTxSize;
 uint8 u8DescriptorCapability;
} ZPS_tsAplZdpNodeDescriptor;

where:

• sBitFields is a structure of the type ZPS_tsAplZdpNodeDescBitFields

(described below) containing various items of information about the node.

• u16Value is used for the union and should be set to 0x0000.
• eMacFlags contains 8 bits (bits 0-7) indicating the node capabilities, as required by the IEEE 802.15.4 MAC

sub-layer. These node capability flags are described in Table 8.
• u16ManufacturerCode contains 16 bits (bits 0-15) indicating the manufacturer code for the node, where

this code is allocated to the manufacturer by the ZigBee Alliance.
• u8MaxBufferSize is the maximum size, in bytes, of an NPDU (Network Protocol Data Unit).
• u16MaxRxSize is the maximum size, in bytes, of an APDU (Application Protocol Data Unit). This value can

be greater than the value of u8MaxBufferSize, due to the fragmentation of an APDU into NPDUs.
• u16ServerMask contains 8 bits (bits 0-7) indicating the server status of the node. This server mask is

detailed in Table 18 on page 389.
• u16MaxTxSize is the maximum size, in bytes, of the ASDU (Application Sub- layer Data Unit) in which a

message can be sent (the message may actually be transmitted in smaller fragments)
• u8DescriptorCapability contains 8 bits (bits 0-7) indicating the properties of the node that can be used

by other nodes in network discovery, as indicated in the table below.
JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
206 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Bit Description

0 Set to 1 if Extended Active Endpoint List is available on the node, 0 otherwise.

1 Set to 1 if Extended Simple Descriptor List is available on the node, 0 otherwise.

2-7 Reserved

Table 18. 

9.2.1.1.1 ZPS_tsAplZdpNodeDescBitFields

The ZPS_tsAplZdpNodeDescBitFields structure is used by the sBitFields

element in the Node descriptor structure (see above), and is shown below:

typedef struct {
 unsigned eFrequencyBand : 5;
 unsigned eApsFlags : 3;
 unsigned eReserved : 3; /* reserved */
 unsigned bUserDescAvail : 1;
 unsigned bComplexDescAvail : 1;
 unsigned eLogicalType : 3;
}ZPS_tsAplZdpNodeDescBitFields;

where:

• eFrequencyBand is a 5-bit value representing the IEEE 802.15.4 radio- frequency band used by the node:
– 0: 868-MHz band
– 2: 915-MHz band
– 3: 2400-MHz band

• eApsFlags is a 3-bit value containing flags that indicate the ZigBee APS capabilities of the node (not
currently supported and should be set to 0).

• eReserved is a 3-bit reserved value.
• bUserDescAvail is a 1-bit value indicating whether a User descriptor is available for the node - 1 indicates

available, 0 indicates unavailable.
• bComplexDescAvail is a 1-bit value indicating whether a Complex descriptor is available for the node - 1

indicates available, 0 indicates unavailable.
• eLogicalType is a 3-bit value indicating the ZigBee device of the node:

– 0: Coordinator
– 1: Router
– 2: End Device

9.2.1.2 ZPS_tsAplZdpNodePowerDescriptor

The ZDP Node Power descriptor structure ZPS_tsAplZdpNodePowerDescriptor is shown below.

typedef struct {
 union
 {
 ZPS_tsAplZdpPowerDescBitFields sBitFields;
 uint16 u16Value;
 }uBitUnion;
} ZPS_tsAplZdpNodePowerDescriptor;

where:

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
207 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• sBitFields is a structure of type ZPS_tsAplZdpPowerDescBitFields (described below) containing
various items of information about the node’s power.

• u16value is used for the union and should be set to 0x0000.

9.2.1.2.1 ZPS_tsAplZdpPowerDescBitFields

The ZPS_tsAplZdpPowerDescBitFields structure is used by the sBitFields

element in the Node Power descriptor structure (see above), and is shown below:

typedef struct {
 unsigned eCurrentPowerSourceLevel : 4;
 unsigned eCurrentPowerSource : 4;
 unsigned eAvailablePowerSource : 4;
 unsigned eCurrentPowerMode : 4;
}ZPS_tsAplZdpPowerDescBitFields;

where:

• eCurrentPowerSourceLevel is a 4-bit value roughly indicating the level of charge of the node’s power
source (mainly useful for batteries), as follows:
– 0000: Critically low
– 0100: Approximately 33%
– 1000: Approximately 66%
– 1100: Approximately 100% (near fully charged)

• eCurrentPowerSource is a 4-bit value indicating the current power source for the node, as detailed below
(the bit corresponding to the current power source is set to 1, all other bits are set to 0):
– Bit 0: Permanent mains supply
– Bit 1: Rechargeable battery
– Bit 2: Disposable battery
– Bit 4: Reserved

• eAvailablePowerSource is a 4-bit value indicating the available power sources for the node, as detailed
above (a bit is set to 1 if the corresponding power source is available).

• eCurrentPowerMode is a 4-bit value indicating the power mode currently used by the node, as follows:
– 0000: Receiver synchronized with the “receiver on when idle” subfield of the Node descriptor
– 0001: Receiver switched on periodically, as defined by the Node Power descriptor
– 0010: Receiver switched on when stimulated, for example, by pressing a button
– All other values are reserved.

9.2.1.3 ZPS_tsAplZdpSimpleDescType

The ZDP Simple descriptor structure ZPS_tsAplZdpSimpleDescType is shown below.

typedef struct {
 uint8 u8Endpoint;
 uint16 u16ApplicationProfileId;
 uint16 u16DeviceId;
 union
 {
 ZPS_tsAplZdpSimpleDescBitFields sBitFields;
 uint8 u8Value;
 }uBitUnion;
uint8 u8InClusterCount;
uint16* pu16InClusterList;

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
208 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

uint8 u8OutClusterCount;
uint16* pu16OutClusterList;
}ZPS_tsAplZdpSimpleDescType;

where:

• u8Endpoint is the number, in the range 1-240, of the endpoint to which the Simple descriptor corresponds.
• u16ApplicationProfileId is the 16-bit identifier of the ZigBee application profile supported by

the endpoint. This must be an application profile identifier issued by the ZigBee Alliance (for Lighting &
Occupancy devices, it is 0x0104).

• u16DeviceId is the 16-bit identifier of the ZigBee device description supported by the endpoint. This must
be a device description identifier issued by the ZigBee Alliance.

• sBitFields is a structure of type ZPS_tsAplZdpSimpleDescBitFields (described below) containing
information about the endpoint.

• u8Value is used for the union and must be set to 0x00.
• u8InClusterCount is an 8-bit count of the number of input clusters, supported on the endpoint, that will

appear in the list pointed to by the pu16InClusterList element.
• *pu16InClusterList is a pointer to the list of input clusters supported by the endpoint (for use during

the service discovery and binding procedures). This is a sequence of 16-bit values, representing the cluster
numbers (in the range 1-240), where the number of values is equal to count u8InClusterCount. If this
count is zero, the pointer can be set to NULL.

• u8OutClusterCount is an 8-bit count of the number of output clusters, supported on the endpoint, that will
appear in the pu16OutClusterList element.

• *pu16OutClusterList is a pointer to the list of output clusters supported by the endpoint (for use during
the service discovery and binding procedures). This is a sequence of 16-bit values, representing the cluster
numbers (in the range 1-240), where the number of values is equal to count u8OutClusterCount. If this
count is zero, the pointer can be set to NULL.

9.2.1.3.1 ZPS_tsAplZdpSimpleDescBitFields

The ZPS_tsAplZdpSimpleDescBitFields structure is used by the sBitFields element in the Simple
descriptor structure (see above), and is shown below:

typedef struct
{
unsigned eDeviceVersion :4;
unsigned eReserved :4;
}ZPS_tsAplZdpSimpleDescBitFields;

where:

• eDeviceVersion is a 4-bit value identifying the version of the device description supported by the endpoint.
• eReserved is a 4-bit reserved value.

9.2.2 ZDP Request structures

These structures are used to represent requests in the ZDP functions.

The ZDP request structures are listed below.

Address Discovery Request Structures

1. ZPS_tsAplZdpNwkAddrReq
2. ZPS_tsAplZdpIEEEAddrReq
3. ZPS_tsAplZdpDeviceAnnceReq

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
209 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Service Discovery Request Structures
4. ZPS_tsAplZdpNodeDescReq
5. ZPS_tsAplZdpPowerDescReq
6. ZPS_tsAplZdpSimpleDescReq
7. ZPS_tsAplZdpExtendedSimpleDescReq
8. ZPS_tsAplZdpComplexDescReq
9. ZPS_tsAplZdpUserDescReq

10. ZPS_tsAplZdpMatchDescReq
11. ZPS_tsAplZdpActiveEpReq
12. ZPS_tsAplZdpExtendedActiveEpReq
13. ZPS_tsAplZdpUserDescSet
14. ZPS_tsAplZdpSystemServerDiscoveryReq
15. ZPS_tsAplZdpDiscoveryCacheReq
16. ZPS_tsAplZdpDiscoveryStoreReq
17. ZPS_tsAplZdpNodeDescStoreReq
18. ZPS_tsAplZdpPowerDescStoreReq
19. ZPS_tsAplZdpSimpleDescStoreReq
20. ZPS_tsAplZdpActiveEpStoreReq
21. ZPS_tsAplZdpFindNodeCacheReq
22. ZPS_tsAplZdpRemoveNodeCacheReq

Binding Request Structures
23. ZPS_tsAplZdpEndDeviceBindReq
24. Section 9.2.2.24
25. ZPS_tsAplZdpBindUnbindReq
26. ZPS_tsAplZdpBindRegisterReq
27. ZPS_tsAplZdpReplaceDeviceReq
28. ZPS_tsAplZdpStoreBkupBindEntryReq
29. ZPS_tsAplZdpRemoveBkupBindEntryReq
30. ZPS_tsAplZdpBackupBindTableReq
31. ZPS_tsAplZdpRecoverBindTableReq
32. ZPS_tsAplZdpBackupSourceBindReq
33. ZPS_tsAplZdpRecoverSourceBindReq

Network Management Services Request Structures
34. ZPS_tsAplZdpMgmtNwkDiscReq
35. ZPS_tsAplZdpMgmtLqiReq
36. ZPS_tsAplZdpMgmtRtgReq
37. ZPS_tsAplZdpMgmtBindReq
38. ZPS_tsAplZdpMgmtLeaveReq
39. ZPS_tsAplZdpMgmtDirectJoinReq
40. ZPS_tsAplZdpMgmtPermitJoiningReq
41. ZPS_tsAplZdpMgmtCacheReq
42. ZPS_tsAplZdpMgmtNwkUpdateReq
43. ZPS_tsAplZdpParentAnnceReq

9.2.2.1 ZPS_tsAplZdpNwkAddrReq

This structure is used by the function ZPS_eAplZdpNwkAddrRequest(). It represents a request for the network
address of the node with a given IEEE address.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
210 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

The ZPS_tsAplZdpNwkAddrReq structure is detailed below.

typedef struct {
 uint64 u64IeeeAddr;
 uint8 u8RequestType;
 uint8 u8StartIndex;
} ZPS_tsAplZdpNwkAddrReq;

where:

• u64IeeeAddr is the IEEE address of the node of interest.
• u8RequestType is the type of response required:

– 0x00: Single device response, which contains only the network address of the target node.
– 0x01: Extended response, which also includes the network addresses of neighboring nodes.
– All other values are reserved.

• u8StartIndex is the Neighbor table index of the first neighboring node to be included in the response, if an
extended response has been selected.

9.2.2.2 ZPS_tsAplZdpIEEEAddrReq

This structure is used by the function ZPS_eAplZdpIEEEAddrRequest(). It represents a request for the IEEE
address of a node with a given network address.

The ZPS_tsAplZdpIEEEAddrReq structure is detailed below.

typedef struct {

uint16 u16NwkAddrOfInterest; uint8 u8RequestType;

uint8 u8StartIndex;

} ZPS_tsAplZdpIEEEAddrReq;

where:

• u16NwkAddrOfInterest is the network address of the node of interest
• u8RequestType is the type of response required:

– 0x00: Single device response, which will contain only the IEEE address of the target node
– 0x01: Extended response, which will also include the IEEE addresses of neighboring nodes
– All other values are reserved

• u8StartIndex is the Neighbor table index of the first neighboring node to be included in the response, if an
extended response has been selected

9.2.2.3 ZPS_tsAplZdpDeviceAnnceReq

This structure is used by the function ZPS_eAplZdpDeviceAnnceRequest(). It represents an announcement
that the sending node has joined or rejoined the network.

The ZPS_tsAplZdpDeviceAnnceReq structure is detailed below.

typedef struct { uint16 u16NwkAddr; uint64 u64IeeeAddr;

uint8 u8Capability;

} ZPS_tsAplZdpDeviceAnnceReq;

where:

• u16NwkAddr is the network address of the sending node

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
211 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• u64IeeeAddr is the IEEE address of the sending node
• u8Capability is a bitmap representing the capabilities of the sending node. This bitmap is detailed in

Table 14 in section Section 8.2.2.10.

9.2.2.4 ZPS_tsAplZdpNodeDescReq

This structure is used by the function ZPS_eAplZdpNodeDescRequest(). It represents a request for the Node
descriptor of the node with a given network address.

The ZPS_tsAplZdpNodeDescReq structure is detailed below.

typedef struct {

uint16 u16NwkAddrOfInterest;

} ZPS_tsAplZdpNodeDescReq;

where u16NwkAddrOfInterest is the network address of the node of interest.

9.2.2.5 ZPS_tsAplZdpPowerDescReq

This structure is used by the function ZPS_eAplZdpPowerDescRequest(). It represents a request for the
Power descriptor of the node with a given network address.

The ZPS_tsAplZdpPowerDescReq structure is detailed below.

typedef struct {

uint16 u16NwkAddrOfInterest;

} ZPS_tsAplZdpPowerDescReq;

where u16NwkAddrOfInterest is the network address of the node of interest.

9.2.2.6 ZPS_tsAplZdpSimpleDescReq

This structure is used by the function ZPS_eAplZdpSimpleDescRequest(). It represents a request for the
Simple descriptor of an endpoint on the node with a given network address.

The ZPS_tsAplZdpSimpleDescReq structure is detailed below.

typedef struct {
 uint16 u16NwkAddrOfInterest;
 uint8 u8EndPoint;
} ZPS_tsAplZdpSimpleDescReq;

where:

• u16NwkAddrOfInterest is the network address of the node of interest.
• u8EndPoint is the number of the relevant endpoint on the node (1-240).

9.2.2.7 ZPS_tsAplZdpExtendedSimpleDescReq

This structure is used by the ZPS_eAplZdpExtendedSimpleDescRequest() function. It represents a request
for the Simple descriptor of an endpoint on the node with a given network address. This request is required
when the endpoint has more input/output clusters than the usual ZPS_eAplZdpSimpleDescRequest() function
can deal with.

The ZPS_tsAplZdpExtendedSimpleDescReq structure is detailed below.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
212 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

typedef struct { uint16 u16NwkAddr; uint8 u8EndPoint;

uint8 u8StartIndex;

} ZPS_tsAplZdpExtendedSimpleDescReq;

where:

• u16NwkAddrOfInterest is the network address of the node of interest
• u8EndPoint is the number of the relevant endpoint on the node (1-240)
• u8StartIndex is the index of the first cluster of interest in the input and output cluster lists for the endpoint

(this and subsequent clusters will be reported in the response)

9.2.2.8 ZPS_tsAplZdpComplexDescReq

This structure is used by the function ZPS_eAplZdpComplexDescRequest(). It represents a request for the
Complex descriptor of the node with a given network address.

The ZPS_tsAplZdpComplexDescReq structure is detailed below.

typedef struct {

uint16 u16NwkAddrOfInterest;

} ZPS_tsAplZdpComplexDescReq;

where u16NwkAddrOfInterest is the network address of the node of interest.

9.2.2.9 ZPS_tsAplZdpUserDescReq

This structure is used by the function ZPS_eAplZdpUserDescRequest(). It represents a request for the User
descriptor of the node with a given network address.

The ZPS_tsAplZdpUserDescReq structure is detailed below.

typedef struct {

uint16 u16NwkAddrOfInterest;

} ZPS_tsAplZdpUserDescReq;

where u16NwkAddrOfInterest is the network address of the node of interest.

9.2.2.10 ZPS_tsAplZdpMatchDescReq

This structure is used by the function ZPS_eAplZdpMatchDescRequest(). It represents a request for nodes
with endpoints that match certain criteria in their Simple descriptors.

The ZPS_tsAplZdpMatchDescReq structure is detailed below.

typedef struct {

uint16 u16NwkAddrOfInterest; uint16 u16ProfileId;

/* rest of message is variable length */ uint8 u8NumInClusters;

uint16* pu16InClusterList; uint8 u8NumOutClusters; uint16* pu16OutClusterList;

} ZPS_tsAplZdpMatchDescReq;

where:

• u16NwkAddrOfInterest is the network address of the node of interest

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
213 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• u16ProfileId is the identifier of the ZigBee application profile used
• u8NumInClusters is the number of input clusters to be matched
• pu16InClusterList is a pointer to the list of input clusters to be matched - this is a variable-length list of

input cluster IDs, two bytes for each cluster
• u8NumOutClusters is the number of output clusters to be matched
• pu16OutClusterList is a pointer to the list of output clusters to be matched - this is a variable-length list

of output cluster IDs, two bytes for each cluster

9.2.2.11 ZPS_tsAplZdpActiveEpReq

This structure is used by the function ZPS_eAplZdpActiveEpRequest(). It represents a request for a list of the
active endpoints on the node with a given network address.

The ZPS_tsAplZdpActiveEpReq structure is detailed below.

typedef struct {

uint16 u16NwkAddrOfInterest;

} ZPS_tsAplZdpActiveEpReq;

where u16NwkAddrOfInterest is the network address of the node of interest.

9.2.2.12 ZPS_tsAplZdpExtendedActiveEpReq

This structure is used by the function ZPS_eAplZdpExtendedActiveEpRequest(). It represents a request for
a list of the active endpoints on the node with a given network address. This request is required when the node
has more active endpoints than the usual ZPS_eAplZdpActiveEpRequest() function can deal with.

The ZPS_tsAplZdpExtendedActiveEpReq structure is detailed below.

typedef struct { uint16 u16NwkAddr;

uint8 u8StartIndex;

} ZPS_tsAplZdpExtendedActiveEpReq;

where:

• u16NwkAddr is the network address of the node of interest
• u8StartIndex is the index of the first endpoint of interest in the list of active endpoints (this and

subsequent endpoints will be reported in the response)

9.2.2.13 ZPS_tsAplZdpUserDescSet

This structure is used by the function ZPS_eAplZdpUserDescSetRequest(). It represents a request used to
configure the User descriptor on a remote node.

The ZPS_tsAplZdpUserDescSet structure is detailed below.

typedef struct {

uint16 u16NwkAddrOfInterest; uint8 u8Length;

char szUserDescriptor[ZPS_ZDP_LENGTH_OF_USER_DESC];

} ZPS_tsAplZdpUserDescSet;

where:

• u16NwkAddrOfInterest is the network address of the node of interest
JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
214 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• u8Length is the length of the User descriptor
• szUserDescriptor is the new User descriptor for the remote node as a character array.

9.2.2.14 ZPS_tsAplZdpSystemServerDiscoveryReq

This structure is used by the ZPS_eAplZdpSystemServerDiscoveryRequest() function. It represents a
request for information on the available services of a remote node.

The ZPS_tsAplZdpSystemServerDiscoveryReq structure is detailed below.

typedef struct {
uint16 u16ServerMask;
} ZPS_tsAplZdpSystemServerDiscoveryReq;

where u16ServerMask is a bitmask representing the required services (1 for ‘required’, 0 for ‘not required’).
This bitmask is detailed in the table below.

Bit Service

0 Primary Trust Centre

1 Backup Trust Centre

2 Primary Binding Table Cache

3 Backup Binding Table Cache

4 Primary Discovery Cache

5 Back-up Discovery Cache

6 Network Manager

7-15 Reserved

Table 19. Services Bitmask

9.2.2.15 ZPS_tsAplZdpDiscoveryCacheReq

This structure is used by the function ZPS_eAplZdpDiscoveryCacheRequest(). It represents a request to find
the nodes in the network which have a primary discovery cache.

The ZPS_tsAplZdpDiscoveryCacheReq structure is detailed below.

typedef struct { uint16 u16NwkAddr; uint64 u64IeeeAddr;

} ZPS_tsAplZdpDiscoveryCacheReq;

where:

• u16NwkAddr is the network address of the sending node
• u64IeeeAddr is the IEEE address of the sending node

9.2.2.16 ZPS_tsAplZdpDiscoveryStoreReq

This structure is used by the function ZPS_eAplZdpDiscoveryStoreRequest(). It represents a request to a
remote node to reserve memory space to store the local node’s ‘discovery information’.

The ZPS_tsAplZdpDiscoveryStoreReq structure is detailed below.

typedef struct { uint16 u16NwkAddr; uint64 u64IeeeAddr;

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
215 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

uint8 u8NodeDescSize; uint8 u8PowerDescSize; uint8 u8ActiveEpSize; uint8
u8SimpleDescCount;

/* Rest of message is variable length */ uint8* pu8SimpleDescSizeList;

} ZPS_tsAplZdpDiscoveryStoreReq;

where:

• u16NwkAddr is the network address of the sending node
• u64IeeeAddr is the IEEE address of the sending node
• u8NodeDescSize is the size of the Node descriptor to store
• u8PowerDescSize is the size of the Power descriptor to store
• u8ActiveEpSize is the size of the list of active endpoints to store
• u8SimpleDescCount is the number of Simple descriptors to store
• pu8SimpleDescSizeList is a pointer to a list of sizes of the Simple descriptors

9.2.2.17 ZPS_tsAplZdpNodeDescStoreReq

This structure is used by the function ZPS_eAplZdpNodeDescStoreRequest(). It represents a request to a
remote node to store the Node descriptor of the local node.

The ZPS_tsAplZdpNodeDescStoreReq structure is detailed below.

typedef struct { uint16 u16NwkAddr; uint64 u64IeeeAddr;

/* Rest of message is variable length */ ZPS_tsAplZdpNodeDescriptor
sNodeDescriptor;

} ZPS_tsAplZdpNodeDescStoreReq;

where:

• u16NwkAddr is the network address of the sending node
• u64IeeeAddr is the IEEE address of the sending node
• sNodeDescriptor is a pointer to the Node descriptor to store (this is itself a structure of the type
ZPS_tsAplZdpNodeDescriptor, detailed in Section 8.2.1.1)

9.2.2.18 ZPS_tsAplZdpPowerDescStoreReq

This structure is used by the function ZPS_eAplZdpPowerDescStoreRequest(). It represents a request to a
remote node to store the Power descriptor of the local node.

The ZPS_tsAplZdpPowerDescStoreReq structure is detailed below.

typedef struct { uint16 u16NwkAddr; uint64 u64IeeeAddr;

/* Rest of message is variable length */ ZPS_tsAplZdpNodePowerDescriptor
sPowerDescriptor;

} ZPS_tsAplZdpPowerDescStoreReq;

where:

• u16NwkAddr is the network address of the sending node
• u64IeeeAddr is the IEEE address of the sending node
• sPowerDescriptor is a pointer to the Power descriptor to store (this is itself a structure of the type
ZPS_tsAplZdpNodePowerDescriptor, detailed in Section 8.2.1.2)

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
216 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.2.2.19 ZPS_tsAplZdpSimpleDescStoreReq

This structure is used by the function ZPS_eAplZdpSimpleDescStoreRequest(). It represents a request to a
remote node to store the Simple descriptor of one of the local node’s endpoints.

The ZPS_tsAplZdpSimpleDescStoreReq structure is detailed below.

typedef struct { uint16 u16NwkAddr; uint64 u64IeeeAddr; uint8 u8Length;

/* Rest of message is variable length */ ZPS_tsAplZdpSimpleDescType
sSimpleDescriptor;

} ZPS_tsAplZdpSimpleDescStoreReq;

where:

• u16NwkAddr is the network address of the sending node
• u64IeeeAddr is the IEEE address of the sending node
• u8Length is the length of the Simple descriptor to store
• sSimpleDescriptor is a pointer to the Simple descriptor to store (this is itself a structure of the type
ZPS_tsAplZdpSimpleDescType, detailed in Section 8.2.1.3)

9.2.2.20 ZPS_tsAplZdpActiveEpStoreReq

This structure is used by the function ZPS_eAplZdpActiveEpStoreRequest(). It represents a request to a
remote node to store the list of active endpoints of the local node.

The ZPS_tsAplZdpActiveEpStoreReq structure is detailed below.

typedef struct { uint16 u16NwkAddr; uint64 u64IeeeAddr;

uint8 u8ActiveEPCount;

/* Rest of message is variable length */ uint8* pu8ActiveEpList;

} ZPS_tsAplZdpActiveEpStoreReq;

where:

• u16NwkAddr is the network address of the sending node
• u64IeeeAddr is the IEEE address of the sending node
• u8ActiveEPCount is the number of active endpoints in the list to store
• pu8ActiveEpList is a pointer to the list of active endpoints to store

9.2.2.21 ZPS_tsAplZdpFindNodeCacheReq

This structure is used by the function ZPS_eAplZdpActiveEpStoreRequest(). It represents a request to search
for nodes in the network that hold ‘discovery information’ about a particular node.

The ZPS_tsAplZdpFindNodeCacheReq structure is detailed below.

typedef struct { uint16 u16NwkAddr; uint64 u64IeeeAddr;
} ZPS_tsAplZdpFindNodeCacheReq;

where:

• u16NwkAddr is the network address of the node of interest
• u64IeeeAddr is the IEEE address of the node of interest

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
217 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.2.2.22 ZPS_tsAplZdpRemoveNodeCacheReq

This structure is used by the function ZPS_eAplZdpActiveEpStoreRequest(). It represents a request to a
remote node to remove from its Primary Discovery Cache all ‘discovery information’ relating to a particular End
Device.

The ZPS_tsAplZdpRemoveNodeCacheReq structure is detailed below.

typedef struct { uint16 u16NwkAddr; uint64 u64IeeeAddr;
} ZPS_tsAplZdpRemoveNodeCacheReq;

where:

• u16NwkAddr is the network address of the End Device of interest
• u64IeeeAddr is the IEEE address of the End Device of interest

9.2.2.23 ZPS_tsAplZdpEndDeviceBindReq

This structure is used by the function ZPS_eAplZdpEndDeviceBindRequest(). It represents a request to
the Coordinator to bind an endpoint on the local node to an endpoint on a remote node (the Coordinator must
match two such binding requests, from the local node and remote node).

The ZPS_tsAplZdpEndDeviceBindReq structure is detailed below.

typedef struct {
uint16 u16BindingTarget;
uint64 u64SrcIeeeAddress;
uint8 u8SrcEndpoint;
uint16 u16ProfileId;
/* Rest of the message is variable length */
uint8 u8NumInClusters;
uint16 *pu16InClusterList;
uint8 u8NumOutClusters;
uint16 *pu16OutClusterList;
} ZPS_tsAplZdpEndDeviceBindReq;

where:

• u16BindingTarget is the network address of the node to hold the binding (either a node with primary
binding table cache or the local node).

• u64SrcIeeeAddress is the IEEE address of the local node.
• u8SrcEndpoint is the number of the local endpoint to be bound (1-240).
• u16ProfileId is the application profile ID to be matched for the binding.
• u8NumInClusters is the number of input clusters of the local endpoint (available for matching with output

clusters of remote node to be bound).
• pu16InClusterList is a pointer to the input cluster list of the local endpoint (containing clusters for

matching with output clusters of remote node).
• u8NumOutClusters is the number of output clusters of the local endpoint (available for matching with input

clusters of remote node to be bound).
• pu16OutClusterList is a pointer to the output cluster list of the local endpoint (containing clusters for

matching with input clusters of remote node).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
218 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.2.2.24 ZPS_tsAplZdpBindUnbindReq

This structure is used by the function ZPS_eAplZdpBindUnbindRequest(). It represents a request for a
modification of the Binding table on the target node, in order to either bind or unbind two nodes in the network.

The ZPS_tsAplZdpBindUnbindReq structure is detailed below.

typedef struct {
uint64 u64SrcAddress;
uint8 u8SrcEndpoint;
uint16 u16ClusterId;
uint8 u8DstAddrMode;
union {
 struct {
 uint16 u16DstAddress;
 } sShort;
 struct {
 uint64 u64DstAddress;
 uint8 u8DstEndPoint;
 } sExtended;
 } uAddressField;
} ZPS_tsAplZdpBindUnbindReq;

where:

• u64SrcAddress is the IEEE address of the source node for the binding
• u8SrcEndpoint is the number of the source endpoint for the binding (1-240)
• u16ClusterId is the ID of the cluster (on the local endpoint) for the binding
• u8DstAddrMode is the destination addressing mode (see Table 14 below):

– ZPS_E_ADDR_MODE_SHORT: network address (u8DstEndPoint is unspecified)
– ZPS_E_ADDR_MODE_IEEE: IEEE address (u8DstEndPoint is specified)
– All other values are reserved

• u16DstAddress or u64DstAddress is the address of the destination node for the binding:
– network address u16DstAddress if u8DstAddrMode is set to ZPS_E_ADDR_MODE_SHORT
– IEEE address u64DstAddress if 8DstAddrMode is set to ZPS_E_ADDR_MODE_IEEE

• u8DstEndPoint is the number of the destination endpoint for the binding

(1-240) - not required if u8DstAddrMode set to ZPS_E_ADDR_MODE_SHORT (network address)

u8DstAddrMode Code Description

0x02 ZPS_E_ADDR_MODE_SHORT 16-bit Network (Short) address

0x03 ZPS_E_ADDR_MODE_IEEE 64-bit IEEE/MAC address

Table 20. Addressing modes

9.2.2.25 ZPS_tsAplZdpBindRegisterReq

This structure is used by the function ZPS_eAplZdpBindRegisterRequest(). It represents a request to inform a
remote node with a primary binding table cache that the local node will hold its own Binding table entries.

The ZPS_tsAplZdpBindRegisterReq structure is detailed below.

typedef struct {

uint64 u64NodeAddress;

} ZPS_tsAplZdpBindRegisterReq;

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
219 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

where u64NodeAddress is the IEEE address of the local node.

9.2.2.26 ZPS_tsAplZdpReplaceDeviceReq

This structure is used by the function ZPS_eAplZdpReplaceDeviceRequest(). It represents a request to
a remote node (with a primary binding table cache) to modify its binding table entries by replacing an IEEE
address and/or associated endpoint number.

The ZPS_tsAplZdpReplaceDeviceReq structure is detailed below.

typedef struct {

uint64 u64OldAddress; uint8 u8OldEndPoint; uint64 u64NewAddress; uint8
u8NewEndPoint;

} ZPS_tsAplZdpReplaceDeviceReq;

where:

• u64OldAddress is the IEEE address to be replaced
• u8OldEndPoint is the endpoint number to be replaced

(0-240, where 0 indicates that the endpoint number is not to be replaced)

• u64NewAddress is the replacement IEEE address
• u8NewEndPoint is the replacement endpoint number (1-240)

9.2.2.27 ZPS_tsAplZdpStoreBkupBindEntryReq

This structure is used by the function ZPS_eAplZdpStoreBkupBindEntryRequest(). It represents a request to
a remote node to save a back-up of an entry from the local primary binding table cache.

The ZPS_tsAplZdpStoreBkupBindEntryReq structure is detailed below.

typedef struct {
uint64 u64SrcAddress;
uint8 u8SrcEndPoint;
uint16 u16ClusterId;
uint8 u8DstAddrMode;
union {
 struct {
 uint16 u16DstAddress;
 } sShort;
 struct {
 uint64 u64DstAddress;
 uint8 u8DstEndPoint;
 } sExtended;
 };
} ZPS_tsAplZdpStoreBkupBindEntryReq;

where:

• u64SrcAddress is the IEEE address of the source node for the binding entry
• u8SrcEndpoint is the number of the source endpoint for the binding (1-240)
• u16ClusterId is the ID of the cluster (on the local endpoint) for the binding
• u8DstAddrMode is the destination addressing mode for remaining elements (see Table 15 below)
• u16DstAddress is the address of the destination node for the binding (address type according to setting of
u8DstAddrMode)

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
220 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• u8DstEndPoint is the number of the destination endpoint for the binding (1-240)

u8DstAddrMode Code Description

0x01 ZPS_E_ADDR_MODE_GROUP 16-bit Group address

0x03 ZPS_E_ADDR_MODE_IEEE 64-bit IEEE/MAC address

Table 21. Addressing modes

9.2.2.28 ZPS_tsAplZdpRemoveBkupBindEntryReq

This structure is used by the ZPS_eAplZdpRemoveBkupBindEntryRequest() function. It represents a request
to a remote node to remove the back-up of an entry from the local primary binding table cache.

The ZPS_tsAplZdpRemoveBkupBindEntryReq structure is detailed below.

typedef struct {
uint64 u64SrcAddress;
uint8 u8SrcEndPoint;
uint16 u16ClusterId;
uint8 u8DstAddrMode;
 union {
 struct {
 uint16 u16DstAddress;
 } sShort;
 struct
 {
 uint64 u64DstAddress;
 uint8 u8DstEndPoint;
 } sExtended;
 };
} ZPS_tsAplZdpRemoveBkupBindEntryReq;

where:

• u64SrcAddress is the IEEE address of the source node for the binding entry.
• u8SrcEndpoint is the number of the source endpoint for the binding (1-240).
• u16ClusterId is the ID of the cluster (on the local endpoint) for the binding.
• u8DstAddrMode is the destination addressing mode for remaining elements (see the Table below) .
• u16DstAddress is the address the destination node for the binding (address type according to setting of
u8DstAddrMode).

• u8DstEndPoint is the number of the destination endpoint for the binding (1-240).

u8DstAddrMode Code Description

0x01 ZPS_E_ADDR_MODE_GROUP 16-bit Group address

0x03 ZPS_E_ADDR_MODE_IEEE 64-bit IEEE/MAC address

Table 22. Addressing modes

9.2.2.29 ZPS_tsAplZdpBackupBindTableReq

This structure is used by the function ZPS_eAplZdpBackupBindTableRequest(). It represents a request to a
remote node to save a back-up of the local primary binding table cache (whole or in part).

The ZPS_tsAplZdpBackupBindTableReq structure is detailed below.

typedef struct {

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
221 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

 uint16 u16BindingTableEntries;
 uint16 u16StartIndex;
 uint16 u16BindingTableListCount;
 /* Rest of message is variable length */
 ZPS_tsAplZdpBindingTable sBindingTable;
} ZPS_tsAplZdpBackupBindTableReq;

where:

• u16BindingTableEntries is the total number of entries in the primary binding table cache.
• u16StartIndex is the binding table index of the first entry to be backed up.
• u16BindingTableListCount is the number of binding table entries in the list to be backed up

(sBindingTable).
• sBindingTable is a pointer to the list of binding table entries to be backed up. Each list item is of the type
ZPS_tsAplZdpBindingTable detailed below:

ZPS_tsAplZdpBindingTable

typedef struct
{
uint64 u64SourceAddress;
ZPS_tsAplZdpBindingTableEntry* psBindingTableEntryForSpSrcAddr;
}ZPS_tsAplZdpBindingTable;

where:

• u64SourceAddress is the IEEE source address for the binding table entry.
• psBindingTableEntryForSpSrcAddr is the binding table entry. This is of the type
ZPS_tsAplZdpBindingTableEntry detailed below.

ZPS_tsAplZdpBindingTableEntry

typedef struct
{
 uint16 u16ClusterId;
 uint8 u8SourceEndpoint;
 uint8 u8DstAddrMode;
union {
 struct {
 uint16 u16DstAddress;
 } sShort;
 struct {
 uint64 u64DstAddress;
 uint8 u8DstEndPoint;
 } sExtended;
 };
}ZPS_tsAplZdpBindingTableEntry;

where:

• u16ClusterId is the ID of the cluster (on the local endpoint) for the binding
• u8SrcEndpoint is the number of the source endpoint for the binding (1-240)
• u8DstAddrMode is the destination addressing mode for remaining elements (see Table below)
• u16DstAddress is the address the destination node for the binding (address type according to setting of
u8DstAddrMode)

• u8DstEndPoint is the number of the destination endpoint for the binding (1-240)

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
222 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

u8DstAddrMode Code Description

0x01 ZPS_E_ADDR_MODE_GROUP 16-bit Group address

0x03 ZPS_E_ADDR_MODE_IEEE 64-bit IEEE/MAC address

Table 23. Addressing modes

9.2.2.30 ZPS_tsAplZdpRecoverBindTableReq

This structure is used by the function ZPS_eAplZdpRecoverBindTableRequest(). It represents a request to a
remote node to recover a back-up of the local primary binding table cache.

The ZPS_tsAplZdpRecoverBindTableReq structure is detailed below.

typedef struct {
uint16 u16StartIndex;
} ZPS_tsAplZdpRecoverBindTableReq;

where u16StartIndex is the binding table index of the first entry to be recovered.

9.2.2.31 ZPS_tsAplZdpBackupSourceBindReq

This structure is used by the function ZPS_eAplZdpBackupSourceBindRequest(). It represents a request to a
remote node to save a back-up of the local node’s source binding table (whole or in part).

The ZPS_tsAplZdpBackupSourceBindReq structure is detailed below.

typedef struct {
 uint16 u16SourceTableEntries;
 uint16 u16StartIndex;
 uint16 u16SourceTableListCount;
 /* Rest of message is variable length */
 uint64* pu64SourceAddress;
} ZPS_tsAplZdpBackupSourceBindReq;

where:

• u16SourceTableEntries is the total number of entries in the source binding table.
• u16StartIndex is the binding table index of the first entry to be backed up.
• u16SourceTableListCount is the number of binding table entries in the list to be backed up

(pu64SourceAddress).
• pu64SourceAddress is a pointer to the list of IEEE source addresses corresponding to the binding table

entries to be backed up.

9.2.2.32 ZPS_tsAplZdpRecoverSourceBindReq

This structure is used by the function ZPS_eAplZdpRecoverSourceBindRequest(). It represents a request to
a remote node to recover the back-up of the local node’s source binding table (whole or in part).

The ZPS_tsAplZdpRecoverSourceBindReq structure is detailed below.

typedef struct {
uint16 u16StartIndex;
} ZPS_tsAplZdpRecoverSourceBindReq;

where u16StartIndex is the binding table index of the first entry to be recovered.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
223 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.2.2.33 ZPS_tsAplZdpMgmtNwkDiscReq

This structure is used by the function ZPS_eAplZdpMgmtNwkDiscRequest(). It represents a request to a
remote node to discover any other wireless networks that are operating in the neighborhood.

The ZPS_tsAplZdpMgmtNwkDiscReq structure is detailed below.

typedef struct {
 uint32 u32ScanChannels;
 uint8 u8ScanDuration;
 uint8 u8StartIndex;
} ZPS_tsAplZdpMgmtNwkDiscReq;

where:

• u32ScanChannels is a bitmask of the radio channels to scan (‘1’ means scan, ‘0’ means do not scan):
– Bits 0 to 26 respectively represent channels 0 to 26 (only bits 11 to 26 are relevant to the 2400-MHz band)
– Bits 27 to 31 are reserved

• u8ScanDuration is a value in the range 0x00 to 0x0E that determines the time spent scanning each
channel - this time is proportional to 2u8ScanDuration+1

• u8StartIndex is the index of the first result from the results list to include in the response to this request

9.2.2.34 ZPS_tsAplZdpMgmtLqiReq

This structure is used by the function ZPS_eAplZdpMgmtLqiRequest(). It represents a request to a remote
node to provide a list of neighboring nodes, from its Neighbor table, including a radio signal strength (LQI) value
for each of these nodes.

The ZPS_tsAplZdpMgmtLqiReq structure is detailed below.

typedef struct {
uint8 u8StartIndex;
} ZPS_tsAplZdpMgmtLqiReq;

where u8StartIndex is the Neighbor table index of the first entry to be included in the response to this
request.

9.2.2.35 ZPS_tsAplZdpMgmtRtgReq

This structure is used by the function ZPS_eAplZdpMgmtRtgRequest(). It represents a request to a remote
node to provide the contents of its Routing table.

The ZPS_tsAplZdpMgmtRtgReq structure is detailed below.

typedef struct {
uint8 u8StartIndex;
} ZPS_tsAplZdpMgmtRtgReq;

where u8StartIndex is the Routing table index of the first entry to be included in the response to this
request.

9.2.2.36 ZPS_tsAplZdpMgmtBindReq

This structure is used by the function ZPS_eAplZdpMgmtBindRequest(). It represents a request to a remote
node to provide the contents of its Binding table.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
224 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

The ZPS_tsAplZdpMgmtBindReq structure is detailed below.

typedef struct {
 uint8 u8StartIndex;
} ZPS_tsAplZdpMgmtBindReq;

where u8StartIndex is the Binding table index of the first entry to be included in the response to this request.

9.2.2.37 ZPS_tsAplZdpMgmtLeaveReq

This structure is used by the function ZPS_eAplZdpMgmtLeaveRequest(). It requests a remote node to leave
the network.

The ZPS_tsAplZdpMgmtLeaveReq structure is detailed below.

typedef struct {
 uint64 u64DeviceAddress;
 uint8 u8Flags;
} ZPS_tsAplZdpMgmtLeaveReq;

where:

• u64DeviceAddress is the IEEE address of the device being asked to leave the network.
• u8Flags is an 8-bit bitmap containing the following flags:

– Rejoin flag (bit 0): Set to 1 if the node requested to leave the network should immediately try to rejoin the
network, otherwise set to 0.

– Remove Children flag (bit 1): Set to 1 if the node requested to leave the network should also request its own
children (if any) to leave the network, otherwise set to 0.

– Reserved (bits 7-2).

9.2.2.38 ZPS_tsAplZdpMgmtDirectJoinReq

This structure is used by the function ZPS_eAplZdpMgmtDirectJoinRequest(). It requests a remote node to
allow a particular device to join it (and therefore the network).

The ZPS_tsAplZdpMgmtDirectJoinReq structure is detailed below.

typedef struct { uint64 u64DeviceAddress; uint8 u8Capability; }
 ZPS_tsAplZdpMgmtDirectJoinReq;

where:

• u64DeviceAddress is the IEEE address of the device to be allowed to join
• u8Capability is a bitmask of the operating capabilities of the device to be allowed to join. This bitmap is

detailed in Table 14 in section Section 8.2.2.10.

9.2.2.39 ZPS_tsAplZdpMgmtPermitJoiningReq

This structure is used by the function ZPS_eAplZdpMgmtPermitJoiningRequest(). It requests a remote node
(Router or Coordinator) to enable or disable joining for a specified amount of time.

The ZPS_tsAplZdpMgmtPermitJoiningReq structure is detailed below.

typedef struct {

uint8 u8PermitDuration; bool_t bTcSignificance;

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
225 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

} ZPS_tsAplZdpMgmtPermitJoiningReq;

where:

• u8PermitDuration is the time period, in seconds, during which joining will be allowed (0x00 means that
joining is enabled or disabled with no time limit)

• bTcSignificance determines whether the remote device is a ‘Trust Centre’:
– TRUE: A Trust Centre
– FALSE: Not a Trust Centre

9.2.2.40 ZPS_tsAplZdpMgmtCacheReq

This structure is used by the function ZPS_eAplZdpMgmtCacheRequest(). It requests a remote node to
provide a list of the End Devices registered in its primary discovery cache.

The ZPS_tsAplZdpMgmtCacheReq structure is detailed below.

typedef struct {

uint8 u8StartIndex;

} ZPS_tsAplZdpMgmtCacheReq;

where u8StartIndex is the discovery cache index of the first entry to be included in the response to this
request.

9.2.2.41 ZPS_tsAplZdpMgmtNwkUpdateReq

This structure is used by the function ZPS_eAplZdpMgmtNwkUpdateRequest(). It requests an update of
network parameters related to radio communication and may optionally initiate an energy scan in the 2400-MHz
band.

The ZPS_tsAplZdpMgmtNwkUpdateReq structure is detailed below.

typedef struct {

uint32 u32ScanChannels; uint8 u8ScanDuration; uint8 u8ScanCount; uint8
u8NwkUpdateId;

uint16 u16NwkManagerAddr;

} ZPS_tsAplZdpMgmtNwkUpdateReq;

where:

• u32ScanChannels is a bitmask of the radio channels to be scanned (‘1’ means scan, ‘0’ means do not
scan):
– Bits 0 to 26 respectively represent channels 0 to 26 (only bits 11 to 26 are relevant to the 2400-MHz band)
– Bits 27 to 31 are reserved

• u8ScanDuration is a key value used to determine the action to be taken, as follows:
– 0x00-0x05: Indicates that an energy scan is required and determines the time to be spent scanning each

channel - this time is proportional to 2u8ScanDuration+1. The set of channels to scan is specified through

u32ScanChannels and the maximum number of scans is equal to the value of u8ScanCount. Valid for
unicasts only

• 0x06-0xFD: Reserved
• 0xFE: Indicates that radio channel is to be changed to single channel specified through u32ScanChannels

and that network manager address to be set to that specified through u16NwkManagerAddr. Valid for
broadcasts only

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
226 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• 0xFF: Indicates that stored radio channel mask to be updated with that specified through u32ScanChannels
(but scan not required). Valid for broadcasts only.

• u8ScanCount is the number of energy scans to be conducted and reported. Valid only if a scan has been
enabled through u8ScanDuration (0x00-0x05)

• u8NwkUpdateId is a value set by the Network Channel Manager before the request is sent. Valid only if
u8ScanDuration set to 0xFE or 0xFF

• u16NwkManagerAddr is the 16-bit network address of the Network Manager (node nominated to manage
radio-band operation of network). Valid only if u8ScanDuration set to 0xFF

9.2.2.42 ZPS_tsAplZdpParentAnnceReq

This structure is used by the function ZPS_eAplZdpParentAnnceReq(), which sends out a Parent
Announcement message. The structure specifies the nodes that are the children of the local node which called
the function.

The ZPS_tsAplZdpParentAnnceReq structure is detailed below.

typedef struct {

uint8 u8NumberOfChildren; uint64* pu64ChildList;

} ZPS_tsAplZdpParentAnnceReq;

where:

• u8NumberOfChildren is the number of child nodes
• pu64ChildList is a pointer to a list of the 64-bit IEEE/MAC addresses of the child nodes

9.2.3 ZDP response structures

This section details the structures that are used to store ZDP responses, resulting from requests sent using
the ZDP functions. A received response is collected using the function ZQ_bZQueueReceive(). As part of this
function call, you must provide a pointer to a structure to store the message data. This structure must be of the
appropriate type for the response, from those described in this section.

The ZDP response structures are listed below.

1. ZPS_tsAplZdpNwkAddrRsp
2. ZPS_tsAplZdpIeeeAddrRsp

Service Discovery Response Structures
3. ZPS_tsAplZdpNodeDescRsp
4. ZPS_tsAplZdpPowerDescRsp
5. ZPS_tsAplZdpSimpleDescRsp
6. ZPS_tsAplZdpExtendedSimpleDescRsp
7. ZPS_tsAplZdpComplexDescRsp
8. ZPS_tsAplZdpUserDescRsp
9. ZPS_tsAplZdpMatchDescRsp

10. ZPS_tsAplZdpActiveEpRsp
11. ZPS_tsAplZdpExtendedActiveEpRsp
12. ZPS_tsAplZdpUserDescConf
13. ZPS_tsAplZdpSystemServerDiscoveryRsp
14. ZPS_tsAplZdpDiscoveryCacheRsp
15. ZPS_tsAplZdpDiscoveryStoreRsp

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
227 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

16. ZPS_tsAplZdpNodeDescStoreRsp
17. ZPS_tsAplZdpPowerDescStoreRsp
18. ZPS_tsAplZdpSimpleDescStoreRsp
19. ZPS_tsAplZdpActiveEpStoreRsp
20. ZPS_tsAplZdpFindNodeCacheRsp
21. ZPS_tsAplZdpRemoveNodeCacheRsp

Binding Response Structures
22. ZPS_tsAplZdpEndDeviceBindRsp
23. ZPS_tsAplZdpBindRsp
24. ZPS_tsAplZdpUnbindRsp
25. ZPS_tsAplZdpBindRegisterRsp
26. ZPS_tsAplZdpReplaceDeviceRsp
27. ZPS_tsAplZdpStoreBkupBindEntryRsp
28. ZPS_tsAplZdpRemoveBkupBindEntryRsp
29. ZPS_tsAplZdpBackupBindTableRsp
30. ZPS_tsAplZdpRecoverBindTableRsp
31. ZPS_tsAplZdpBackupSourceBindRsp
32. ZPS_tsAplZdpRecoverSourceBindRsp

Network Management Services Response Structures
33. ZPS_tsAplZdpMgmtNwkDiscRsp
34. ZPS_tsAplZdpMgmtLqiRsp
35. ZPS_tsAplZdpMgmtRtgRsp
36. ZPS_tsAplZdpMgmtBindRsp
37. ZPS_tsAplZdpMgmtLeaveRsp
38. ZPS_tsAplZdpMgmtDirectJoinRsp
39. ZPS_tsAplZdpMgmtPermitJoiningRsp
40. ZPS_tsAplZdpMgmtCacheRsp
41. ZPS_tsAplZdpMgmtNwkUpdateNotify
42. ZPS_tsAplZdpParentAnnceRsp

9.2.3.1 ZPS_tsAplZdpNwkAddrRsp

This structure is used to store NWK_addr_rsp message data - a response to a call to the function
ZPS_eAplZdpNwkAddrRequest(). This response contains the network address of the node with a given IEEE
address.

The ZPS_tsAplZdpNwkAddrRsp structure is detailed below.

typedef struct { uint8 u8Status;
 uint64 u64IeeeAddrRemoteDev;
 uint16 u16NwkAddrRemoteDev;
 uint8 u8NumAssocDev;
 uint8 u8StartIndex;
 /* Rest of the message is variable Length */
 uint16* pNwkAddrAssocDevList;
} ZPS_tsAplZdpNwkAddrRsp;

where:

• u8Status is the return status for ZPS_eAplZdpNwkAddrRequest()
• u64IeeeAddrRemoteDev is the IEEE address of the remote node that sent the response (this is the IEEE

address specified in the original request)
JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
228 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• u16NwkAddrRemoteDev is the network address of the remote node that sent the response (this is the
network address that was requested)

• u8NumAssocDev is the number of neighboring nodes for which network addresses are also being reported
(in the remainder of the structure)

• u8StartIndex is the index in the remote node’s Neighbor table of the first entry to be included in this report.
This element should be ignored if the element u8NumAssocDev is 0.

• pNwkAddrAssocDevList is a pointer to a list of 16-bit network addresses of the remote node’s neighbors
(this is a variable-length list with four bytes per node). This element should be ignored if the element
u8NumAssocDev is 0.

9.2.3.2 ZPS_tsAplZdpIeeeAddrRsp

This structure is used to store IEEE_addr_rsp message data - a response to a call to the function
ZPS_eAplZdpIeeeAddrRequest(). This response contains the IEEE address of the node with a given network
address.

The ZPS_tsAplZdpIeeeAddrRsp structure is detailed below.

typedef struct
 { uint8 u8Status;
 uint64 u64IeeeAddrRemoteDev;
 uint16 u16NwkAddrRemoteDev;
 uint8 u8NumAssocDev;
 uint8 u8StartIndex;
 /* Rest of the message is variable Length */
 uint16* pNwkAddrAssocDevList;
} ZPS_tsAplZdpIeeeAddrRsp;

where:

• u8Status is the return status for ZPS_eAplZdpIeeeAddrRequest().
• u64IeeeAddrRemoteDev is the IEEE address of the remote node that sent the response (this is the IEEE

address that was requested).
• u16NwkAddrRemoteDev is the network address of the remote node that sent the response (this is the

network address specified in the original request).
• u8NumAssocDev is the number of neighboring nodes for which network addresses are also being reported

(in the remainder of the structure).
• u8StartIndex is the index in the remote node’s Neighbor table of the first entry to be included in this report.

This element should be ignored if the element u8NumAssocDev is 0.
• pNwkAddrAssocDevList is a pointer to a list of 16-bit network addresses of the remote node’s neighbors

(this is a variable-length list with four bytes per node). This element should be ignored if the element
u8NumAssocDev is 0.

9.2.3.3 ZPS_tsAplZdpNodeDescRsp

This structure is used to store Node_Desc_rsp message data - a response to a call to the function
ZPS_eAplZdpNodeDescRequest(). This response contains the Node descriptor of the node with a given
network address.

The ZPS_tsAplZdpNodeDescRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
 uint16 u16NwkAddrOfInterest;

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
229 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

 /* Rest of the message is variable length */
 ZPS_tsAplZdpNodeDescriptor tsNodeDescriptor;
} ZPS_tsAplZdpNodeDescRsp;

where:

• u8Status is the return status for ZPS_eAplZdpNodeDescRequest().
• u16NwkAddrOfInterest is the network address of the remote node that sent the response (this is the

network address that was specified in the request).
• tsNodeDescriptor is the returned Node descriptor, a structure of type ZPS_tsAplZdpNodeDescriptor

(detailed in Section 9.2.1.1). This is only included if u8Status reports success.

9.2.3.4 ZPS_tsAplZdpPowerDescRsp

This structure is used to store Power_Desc_rsp message data - a response to a call to the function
ZPS_eAplZdpPowerDescRequest(). This response contains the Power descriptor of the node with a given
network address.

The ZPS_tsAplZdpPowerDescRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
 uint16 u16NwkAddrOfInterest;
 /* Rest of the message is variable length */
 ZPS_tsAplZdpNodePowerDescriptor sPowerDescriptor;
} ZPS_tsAplZdpPowerDescRsp;

where:

• u8Status is the return status for ZPS_eAplZdpPowerDescRequest()
• u16NwkAddrOfInterest is the network address of the remote node that sent the response (this is the

network address that was specified in the request)
• sPowerDescriptor is the returned Power descriptor, a structure of type
ZPS_tsAplZdpNodePowerDescriptor (detailed in Section 9.2.1.2). This is only included if u8Status
reports success

9.2.3.5 ZPS_tsAplZdpSimpleDescRsp

This structure is used to store Simple_Desc_rsp message data - a response to a call to the function
ZPS_eAplZdpSimpleDescRequest(). This response contains the Simple descriptor of a given endpoint on the
node with a given network address.

The ZPS_tsAplZdpSimpleDescRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
 uint16 u16NwkAddrOfInterest;
 uint8 u8Length;
 /* Rest of the message is variable length */
 ZPS_tsAplZdpSimpleDescType sSimpleDescriptor;
} ZPS_tsAplZdpSimpleDescRsp;

where:

• u8Status is the return status for ZPS_eAplZdpSimpleDescRequest().

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
230 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• u16NwkAddrOfInterest is the network address of the remote node that sent the response (this is the
network address that was specified in the request).

• u8Length is the length of the returned Simple descriptor, in bytes (depends on the number of clusters
supported by the endpoint).

• sSimpleDescriptor is the returned Simple descriptor, a structure of type
ZPS_tsAplZdpSimpleDescType (detailed in Section 9.2.1.3). This is only included if u8Status reports
success.

9.2.3.6 ZPS_tsAplZdpExtendedSimpleDescRsp

This structure is used to store Extended_Simple_Desc_rsp message data - a response to a call to the function
ZPS_eAplZdpExtendedSimpleDescRequest(). This response contains a cluster list (combined input and
output) for a given endpoint on the node with a given network address.

The ZPS_tsAplZdpExtendedSimpleDescRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
 uint16 u16NwkAddr;
 uint8 u8EndPoint;
 uint8 u8AppInputClusterCount;
 uint8 u8AppOutputClusterCount;
 uint8 u8StartIndex;
 /* Rest of the message is variable length */
 uint16* pAppClusterList;
} ZPS_tsAplZdpExtendedSimpleDescRsp;

where:

• u8Status is the return status for ZPS_eAplZdpExtendedSimpleDescRequest()

• u16NwkAddr is the network address of the remote node that sent the response (this is the network address
that was specified in the request)

• u8EndPoint is the number of the endpoint for which the response was sent (this is the endpoint number that
was specified in the request)

• u8AppInputClusterCount is the total number of input clusters in the endpoint’s complete input cluster list
• u8AppOutputClusterCount is the total number of output clusters in the endpoint’s complete output cluster

list
• u8StartIndex is the index, in the endpoint’s complete input or output cluster list, of the first cluster reported

in this response
• pAppClusterList is a pointer to the reported cluster list, input clusters first then output clusters. This is

only included if u8Status reports success

9.2.3.7 ZPS_tsAplZdpComplexDescRsp

This structure is used to store Complex_Desc_rsp message data - a response to a call to the function
ZPS_eAplZdpComplexDescRequest(). This response contains the Complex descriptor of the node with a
given network address.

The ZPS_tsAplZdpComplexDescRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
 uint16 u16NwkAddrOfInterest;
 uint8 u8Length;

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
231 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

 /* Rest of the message is variable Length */
 ZPS_tsAplZdpComplexDescElement sComplexDescriptor;
} ZPS_tsAplZdpComplexDescRsp;

where:

• u8Status is the return status for ZPS_eAplZdpComplexDescRequest().
• u16NwkAddrOfInterest is the network address of the remote node that sent the response (this is the

network address that was specified in the request).
• u8Length is the length of the returned Complex descriptor, in bytes.
• sComplexDescriptor is the returned Complex descriptor, a structure of type.
ZPS_tsAplZdpComplexDescRsp (described below). This is only included if u8Status reports success .

9.2.3.7.1 ZPS_tsAplZdpComplexDescElement

typedef struct { uint8 u8XMLTag;
 uint8 u8FieldCount;
 uint8 *pu8Data;
} ZPS_tsAplZdpComplexDescElement;

where:

• u8XMLTag is the XML tag for the current field.
• u8FieldCount is the number of fields in the Complex descriptor.
• *pu8Data is a pointer to the data of the current field.

9.2.3.8 ZPS_tsAplZdpUserDescRsp

This structure is used to store User_Desc_rsp message data - a response to a call to the function
ZPS_eAplZdpUserDescRequest(). This response contains the User descriptor of the node with a given
network address.

The ZPS_tsAplZdpUserDescRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
 uint16 u16NwkAddrOfInterest;
 uint8 u8Length;
 /* Rest of the message is variable Length */
 char szUserDescriptor[ZPS_ZDP_LENGTH_OF_USER_DESC];
} ZPS_tsAplZdpUserDescRsp;

where:

• u8Status is the return status for ZPS_eAplZdpUserDescRequest().
• u16NwkAddrOfInterest is the network address of the remote node that sent the response (this is the

network address that was specified in the request).
• u8Length is the length of the returned User descriptor, in bytes (maximum: 16).
• szUserDescriptor is the returned User descriptor as a character array. This is only included if u8Status

reports success.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
232 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.2.3.9 ZPS_tsAplZdpMatchDescRsp

This structure is used to store Match_Desc_rsp message data - a response to a call to the function
ZPS_eAplZdpMatchDescRequest(). This response contains details of the endpoints on the remote node that
matched the criteria specified in the original request.

The ZPS_tsAplZdpMatchDescRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
 uint16 u16NwkAddrOfInterest;
 uint8 u8MatchLength;
 /* Rest of message is variable length */
 uint8* u8MatchList;
} ZPS_tsAplZdpMatchDescRsp;

where:

• u8Status is the return status for ZPS_eAplZdpMatchDescRequest().
• u16NwkAddrOfInterest is the network address of the remote node that sent the response (this is the

network address that was specified in the request).
• u8MatchLength is the length of the list of matched endpoints, in bytes.
• u8MatchList is a pointer to the list of matched endpoints, where each endpoint is represented by an 8-bit

value (in the range 1-240).

9.2.3.10 ZPS_tsAplZdpActiveEpRsp

This structure is used to store Active_EP_rsp message data - a response to a call to the function
ZPS_eAplZdpActiveEpRequest(). This response contains a list of the active endpoints on a given network
node.

The ZPS_tsAplZdpActiveEpRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
 uint16 u16NwkAddrOfInterest;
 uint8 u8ActiveEpCount;
 /* Rest of the message is variable */
 uint8* pActiveEpList;
} ZPS_tsAplZdpActiveEpRsp;

where:

• u8Status is the return status for ZPS_eAplZdpActiveEpRequest().
• u16NwkAddrOfInterest is the network address of the remote node that sent the response (this is the

network address that was specified in the request).
• u8ActiveEpCount is the number of active endpoints on the node.
• pActiveEpList is a pointer to the list of active endpoints, where each endpoint is represented by an 8-bit

value (in the range 1-240).

9.2.3.11 ZPS_tsAplZdpExtendedActiveEpRsp

This structure is used to store Extended_Active_EP_rsp message data - a response to a call to the function
ZPS_eAplZdpExtendedActiveEpRequest(). This response contains a list of the active endpoints on the node
with a given network address.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
233 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

The ZPS_tsAplZdpExtendedActiveEpRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
 uint16 u16NwkAddr;
 uint8 u8ActiveEpCount;
 uint8 u8StartIndex;
 /* Rest of the message is variable Length */
 uint8* pActiveEpList;
} ZPS_tsAplZdpExtendedActiveEpRsp;

where:

• u8Status is the return status for ZPS_eAplZdpExtendedActiveEpRequest().
• 16NwkAddr is the network address of the remote node that sent the response (this is the network address

that was specified in the request).
• u8ActiveEpCount is the total number of active endpoints on the node.
• u8StartIndex is the index, in the node’s list of active endpoints, of the first endpoint reported in this

response.
• pActiveEpList is a pointer to the reported list of active endpoints (starting with the endpoint with index
u8StartIndex).

9.2.3.12 ZPS_tsAplZdpUserDescConf

This structure is used to store User_Desc_conf message data - a response to a call to the function
ZPS_eAplZdpUserDescSetRequest(). This response contains a confirmation of the requested configuration of
the User descriptor on a given network node.

The ZPS_tsAplZdpUserDescConf structure is detailed below.

typedef struct {
 uint8 u8Status;
 uint16 u16NwkAddrOfInterest;
} ZPS_tsAplZdpUserDescConf;

where:

• u8Status is the return status for ZPS_eAplZdpUserDescSetRequest().
• u16NwkAddrOfInterest is the network address of the remote node that sent the response (this is the

network address that was specified in the request).

9.2.3.13 ZPS_tsAplZdpSystemServerDiscoveryRsp

This structure is used to store System_Server_Discovery_rsp message data - a response to a call to the
function ZPS_eAplZdpSystemServerDiscoveryRequest(). This response indicates which of the requested
services are supported by a given network node.

The ZPS_tsAplZdpSystemServerDiscoveryRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
 uint16 u16ServerMask;
} ZPS_tsAplZdpSystemServerDiscoveryRsp;

where:

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
234 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• u8Status is the return status for the function ZPS_eAplZdpSystemServerDiscoveryRequest().
• u16ServerMask is the returned bitmask that summarizes the requested services supported by the node (1

for ‘supported’, 0 for ‘not supported’ or ‘not requested’). This bitmask is detailed in the table below.

Bit Service

0 Primary Trust Centre

1 Backup Trust Centre

2 Primary Binding Table Cache

3 Backup Binding Table Cache

4 Primary Discovery Cache

5 Back-up Discovery Cache

6 Network Manager

7-15 Reserved

Table 24. Services Bitmask

9.2.3.14 ZPS_tsAplZdpDiscoveryCacheRsp

This structure is used to store Discovery_Cache_rsp message data - a response to a call to the function
ZPS_eAplZdpDiscoveryCacheRequest(). This response indicates that the sending node has a primary
discovery cache.

The ZPS_tsAplZdpDiscoveryCacheRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
} ZPS_tsAplZdpDiscoveryCacheRsp;

where u8Status is the return status for ZPS_eAplZdpDiscoveryCacheRequest().

9.2.3.15 ZPS_tsAplZdpDiscoveryStoreRsp

This structure is used to store Discovery_Store_rsp message data - a response to a call to the function
ZPS_eAplZdpDiscoveryStoreRequest(). This response indicates whether the sending node has successfully
reserved space in its primary discovery cache.

The ZPS_tsAplZdpDiscoveryStoreRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
} ZPS_tsAplZdpDiscoveryStoreRsp;

where u8Status is the return status for ZPS_eAplZdpDiscoveryStoreRequest().

9.2.3.16 ZPS_tsAplZdpNodeDescStoreRsp

This structure is used to store Node_Desc_store_rsp message data - a response to a call to the function
ZPS_eAplZdpNodeDescStoreRequest(). This response indicates whether the sending node has successfully
stored the received Node descriptor in its primary discovery cache.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
235 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

The ZPS_tsAplZdpNodeDescStoreRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
} ZPS_tsAplZdpNodeDescStoreRsp;

where u8Status is the return status for ZPS_eAplZdpNodeDescStoreRequest().

9.2.3.17 ZPS_tsAplZdpPowerDescStoreRsp

This structure is used to store Power_Desc_store_rsp message data - a response to a call to the function
ZPS_eAplZdpPowerDescStoreRequest(). This response indicates whether the sending node has successfully
stored the received Power descriptor in its primary discovery cache.

The ZPS_tsAplZdpPowerDescStoreRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
 uint64 u64IeeeAddr;
 /* Rest of message is variable length */
 ZPS_tsAplZdpNodePowerDescriptor sPowerDescriptor;
} ZPS_tsAplZdpPowerDescStoreRsp;

where:

• u8Status is the return status for ZPS_eAplZdpPowerDescStoreRequest().
• u64IeeeAddr is the IEEE/MAC address of the device whose Power descriptor has been stored in the

primary discovery cache.
• sPowerDescriptor is the Power descriptor stored (see Section 9.2.1.1).

9.2.3.18 ZPS_tsAplZdpSimpleDescStoreRsp

This structure is used to store Power_Desc_store_rsp message data - a response to a call to the function
ZPS_eAplZdpSimpleDescStoreRequest(). This response indicates whether the sending node has
successfully stored the received Simple descriptor in its primary discovery cache.

The ZPS_tsAplZdpSimpleDescStoreRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
} ZPS_tsAplZdpSimpleDescStoreRsp;

where u8Status is the return status for ZPS_eAplZdpSimpleDescStoreRequest().

9.2.3.19 ZPS_tsAplZdpActiveEpStoreRsp

This structure is used to store Active_EP_store_rsp message data - a response to a call to the function
ZPS_eAplZdpActiveEpStoreRequest(). This response indicates whether the sending node has successfully
stored the received list of active endpoints in its primary discovery cache.

The ZPS_tsAplZdpActiveEpStoreRsp structure is detailed below.

typedef struct {
 uint8 u8Status;

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
236 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

} ZPS_tsAplZdpActiveEpStoreRsp;

where u8Status is the return status for ZPS_eAplZdpActiveEpStoreRequest().

9.2.3.20 ZPS_tsAplZdpFindNodeCacheRsp

This structure is used to store Find_node_cache_rsp message data - a response to a call to the function
ZPS_eAplZdpFindNodeCacheRequest(). This response indicates that the sending node holds ‘discovery
information’ about a given network node in its primary discovery cache.

The ZPS_tsAplZdpFindNodeCacheRsp structure is detailed below.

typedef struct {
 uint16 u16CacheNwkAddr;
 uint16 u16NwkAddr;
 uint64 u64IeeeAddr;
} ZPS_tsAplZdpFindNodeCacheRsp;

where:

• u16CacheNwkAddr is the network address of the remote node that sent the response.
• u16NwkAddr is the network address of the node of interest (this is the network address that was specified in

the request).
• u64IeeeAddr is the IEEE address of the node of interest (this is the IEEE address that was specified in the

request).

9.2.3.21 ZPS_tsAplZdpRemoveNodeCacheRsp

This structure is used to store Remove_node_cache_rsp message data - a response to a call to the function
ZPS_eAplZdpRemoveNodeCacheRequest(). This response indicates whether the sending node has
successfully removed from its primary discovery cache all ‘discovery information’ relating to a given End Device
node.

The ZPS_tsAplZdpRemoveNodeCacheRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
} ZPS_tsAplZdpRemoveNodeCacheRsp;

where u8Status is the return status for the function ZPS_eAplZdpRemoveNodeCacheRequest().

9.2.3.22 ZPS_tsAplZdpEndDeviceBindRsp

This structure is used to store End_Device_Bind_rsp message data - a response to a call to the function
ZPS_eAplZdpEndDeviceBindRequest(). This response is issued by the Coordinator to indicate the status of
an End Device binding request.

The ZPS_tsAplZdpEndDeviceBindRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
} ZPS_tsAplZdpEndDeviceBindRsp;

where u8Status is the return status for ZPS_eAplZdpEndDeviceBindRequest().

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
237 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.2.3.23 ZPS_tsAplZdpBindRsp

This structure is used to store Bind_rsp message data - a response to a call to the function
ZPS_eAplZdpBindUnbindRequest(). This response indicates the status of a binding request (a request to
modify of a binding table).

The ZPS_tsAplZdpBindRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
} ZPS_tsAplZdpBindRsp;

where u8Status is the return status for ZPS_eAplZdpBindUnbindRequest().

9.2.3.24 ZPS_tsAplZdpUnbindRsp

This structure is used to store Unbind_rsp message data - a response to a call to the function
ZPS_eAplZdpBindUnbindRequest(). This response indicates the status of an unbinding request (a request to
modify of a binding table).

The ZPS_tsAplZdpUnbindRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
} ZPS_tsAplZdpUnbindRsp;

where u8Status is the return status for ZPS_eAplZdpBindUnbindRequest().

9.2.3.25 ZPS_tsAplZdpBindRegisterRsp

This structure is used to store Bind_Register_rsp message data - a response to a call to the function
ZPS_eAplZdpBindRegisterRequest(). This response contains binding information held on the responding
node concerning the requesting node.

The ZPS_tsAplZdpBindRegisterRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
 uint16 u16BindingTableEntries;
 uint16 u16BindingTableListCount;
 /* Rest of the message is variable Length */
 ZPS_tsAplZdpBindingTable sBindingTableList;
} ZPS_tsAplZdpBindRegisterRsp;

where:

• u8Status is the return status for ZPS_eAplZdpBindRegisterRequest().
• u16BindingTableEntries is the total number of binding table entries concerning the requesting node

held on the responding node.
• u16BindingTableListCount is the number of binding table entries concerning the requesting node

contained in this response.
• sBindingTableList is a pointer to the first item in the list of reported binding table entries. A list item is of

type ZPS_tsAplZdpBindingTable detailed below.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
238 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.2.3.25.1 ZPS_tsAplZdpBindingTable

typedef struct
{
uint64 u64SourceAddress;
ZPS_tsAplZdpBindingTableEntry* psBindingTableEntryForSpSrcAddr;
}ZPS_tsAplZdpBindingTable;

where:

• u64SourceAddress is the IEEE address of the node to which the binding table entry relates.
• psBindingTableEntryForSpSrcAddr is a pointer to the relevant binding table information. This

information is contained in a structure of type ZPS_tsAplZdpBindingTableEntry detailed below.

9.2.3.25.2 ZPS_tsAplZdpBindingTableEntry

typedef struct
{
 uint8 u8SourceEndpoint;
 uint16 u16ClusterId;
 uint8 u8DstAddrMode;
 union {
 struct {
 uint16 u16DstAddress;
 } sShort;
 struct {
 uint64 u64DstAddress;
 uint8 u8DstEndPoint;
 } sExtended;
 };
}ZPS_tsAplZdpBindingTableEntry;

where:

• u8SourceEndpoint is the number of the bound endpoint (1-240) on the source node of the binding
• u16ClusterId is the ID of the cluster involved in the binding, on the source node of the binding
• u8DstAddrMode is the addressing mode used in the rest of the structure (see Table 19 below)
• u16DstAddress is the network address of the destination node of the binding (this is only application if
u8DstAddrMode is set to 0x03)

• u64DstAddress is the IEEE address of the destination node of the binding (this is only application if
u8DstAddrMode is set to 0x04)

• u8DstEndPoint is the number of the bound endpoint (1-240) on the destination node of the binding

u8DstAddrMode Code Description

0x00 ZPS_E_ADDR_MODE_BOUND Bound endpoint

0x01 ZPS_E_ADDR_MODE_GROUP 16-bit Group address

0x02 ZPS_E_ADDR_MODE_SHORT 16-bit Network (Short) address

0x03 ZPS_E_ADDR_MODE_IEEE 64-bit IEEE/MAC address

Table 25. Addressing modes

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
239 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.2.3.26 ZPS_tsAplZdpReplaceDeviceRsp

This structure is used to store Replace_Device_rsp message data - a response to a call to the function
ZPS_eAplZdpReplaceDeviceRequest(). This response indicates the status of the replace request.

The ZPS_tsAplZdpReplaceDeviceRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
} ZPS_tsAplZdpReplaceDeviceRsp;

where u8Status is the return status for ZPS_eAplZdpReplaceDeviceRequest().

9.2.3.27 ZPS_tsAplZdpStoreBkupBindEntryRsp

This structure is used to store Store_Bkup_Bind_Entry_rsp message data - a response to a call to the function
ZPS_eAplZdpStoreBkupBindEntryRequest(). This response indicates the status of the back-up request.

The ZPS_tsAplZdpStoreBkupBindEntryRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
} ZPS_tsAplZdpStoreBkupBindEntryRsp;

where u8Status is the return status for the function ZPS_eAplZdpStoreBkupBindEntryRequest().

9.2.3.28 ZPS_tsAplZdpRemoveBkupBindEntryRsp

This structure is used to store Remove_Bkup_Bind_Entry_rsp message data - a response to a call to the
function ZPS_eAplZdpRemoveBkupBindEntryRequest(). This response indicates the status of the remove
request.

The ZPS_tsAplZdpRemoveBkupBindEntryRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
} ZPS_tsAplZdpRemoveBkupBindEntryRsp;

where u8Status is the return status for the function ZPS_eAplZdpRemoveBkupBindEntryRequest().

9.2.3.29 ZPS_tsAplZdpBackupBindTableRsp

This structure is used to store Backup_Bind_Table_rsp message data - a response to a call to the function
ZPS_eAplZdpBackupBindTableRequest(). This response indicates the status of the back-up request.

The ZPS_tsAplZdpBackupBindTableRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
 uint16 u16EntryCount;
} ZPS_tsAplZdpBackupBindTableRsp;

where:

• u8Status is the return status for ZPS_eAplZdpBackupBindTableRequest()
• u16EntryCount is the number of binding table entries that have been backed up

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
240 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.2.3.30 ZPS_tsAplZdpRecoverBindTableRsp

This structure is used to store Recover_Bind_Table_rsp message data - a response to a call to the function
ZPS_eAplZdpRecoverBindTableRequest(). This response indicates the status of the recover request and
contains the recovered binding table entries.

The ZPS_tsAplZdpRecoverBindTableRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
 uint16 u16StartIndex;
 uint16 u16BindingTableEntries;
 uint16 u16BindingTableListCount;
 /* Rest of the message is variable length */
 ZPS_tsAplZdpBindingTable sBindingTableList;
} ZPS_tsAplZdpRecoverBindTableRsp;

where:

• u8Status is the return status for ZPS_eAplZdpRecoverBindTableRequest()
• u16StartIndex is the binding table index of the first entry in the set of recovered binding table entries

(sBindingTableList)
• u16BindingTableEntries is the total number of entries in the back-up binding table cache
• u16BindingTableListCount is the number of entries in the set of recovered binding table entries

(sBindingTableList)
• sBindingTableList is a pointer to the first item in the list of recovered binding table entries. A list item is

of type ZPS_tsAplZdpBindingTable, detailed in Section 8.2.3.26.

9.2.3.31 ZPS_tsAplZdpBackupSourceBindRsp

This structure is used to store Backup_Source_Bind_rsp message data - a response to a call to the function
ZPS_eAplZdpBackupSourceBindRequest(). This response indicates the status of the back-up request.

The ZPS_tsAplZdpBackupSourceBindRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
} ZPS_tsAplZdpBackupSourceBindRsp;

where u8Status is the return status for the function ZPS_eAplZdpBackupSourceBindRequest().

9.2.3.32 ZPS_tsAplZdpRecoverSourceBindRsp

This structure is used to store Recover_Source_Bind_rsp message data - a response to a call to the function
ZPS_eAplZdpRecoverSourceBindRequest(). This response indicates the status of the recover request and
contains the recovered binding table entries.

The ZPS_tsAplZdpRecoverSourceBindRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
 uint16 u16StartIndex;
 uint16 u16SourceTableEntries;
 uint16 u16SourceTableListCount;
 /* Rest of the message is variable length */
 uint64* pu64SourceTableList;

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
241 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

} ZPS_tsAplZdpRecoverSourceBindRsp;

where:

• u8Status is the return status for the function ZPS_eAplZdpRecoverSourceBindRequest().

• u16StartIndexis the binding table index of the first entry in the set of recovered binding table entries
(pu64SourceTableList).

• u16SourceTableEntriesis the total number of source binding table entries in the back-up binding table
cache.

• u16SourceTableListCountis the number of entries in the set of recovered binding table entries.
(pu64SourceTableList).

• pu64SourceTableListis a pointer to the first item in the list of recovered binding table entries.

9.2.3.33 ZPS_tsAplZdpMgmtNwkDiscRsp

This structure is used to store Mgmt_NWK_Disc_rsp message data - a response to a call to the function
ZPS_eAplZdpMgmtNwkDiscRequest(). This response reports the networks discovered in a network discovery
(all the networks or a subset).

The ZPS_tsAplZdpMgmtNwkDiscRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
 uint8 u8NetworkCount;
 uint8 u8StartIndex;
 uint8 u8NetworkListCount;
 /* Rest of the message is variable length */
 ZPS_tsAplZdpNetworkDescr* psNetworkDescrList;
} ZPS_tsAplZdpMgmtNwkDiscRsp;

where:

• u8Status is the return status for ZPS_eAplZdpMgmtNwkDiscRequest()
• u8NetworkCount is the total number of networks discovered
• u8StartIndex is the index, in the complete list of discovered networks, of the first network reported in this

response (through psNetworkDescrList)
• u8NetworkListCount is the number of discovered networks reported in this response (through
psNetworkDescrList)

• psNetworkDescrList is a pointer to the first entry in a list of network descriptors for the discovered
networks. Each entry is of the type ZPS_tsAplZdpNetworkDescr detailed below.
ZPS_tsAplZdpNetworkDescr

typedef struct
{
 uint64 u64ExtPanId;
 uint8 u8LogicalChan;
 uint8 u8StackProfile;
 uint8 u8ZigBeeVersion;
 uint8 u8PermitJoining;
 uint8 u8RouterCapacity;
 uint8 u8EndDeviceCapacity;
} ZPS_tsAplZdpNetworkDescr;

where:
– u64ExtPanId is the 64-bit extended PAN ID of the discovered network.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
242 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

– u8LogicalChan is the radio channel in which the discovered network operates (value in range 0 to 26,
but only channels 11 to 26 relevant to 2400-MHz band).

– u8StackProfile is the 4-bit identifier of the ZigBee stack profile used by the discovered network (0 -
manufacturer-specific, 1 - ZigBee, 2 - ZigBee PRO, other values reserved) and is fixed at 2 for the NXP
stack.

– u8ZigBeeVersion is the 4-bit version of the ZigBee protocol used by the discovered network.
– u8PermitJoining indicates whether the discovered network is currently allowing joinings - that is, at

least one node (a Router or the Coordinator) of the network is allowing other nodes to join it:
– 0x01: Joinings allowed.
– 0x00: Joinings not allowed.
– All other values reserved.

– u8RouterCapacity indicates whether the device is capable of accepting join requests from Routers - set
to TRUE if capable, FALSE otherwise.

– u8EndDeviceCapacity indicates whether the device is capable of accepting join requests from End
Devices - set to TRUE capable, FALSE otherwise.

9.2.3.34 ZPS_tsAplZdpMgmtLqiRsp

This structure is used to store Mgmt_Lqi_rsp message data - a response to a call to the function
ZPS_eAplZdpMgmtLqiRequest(). This response reports a list of neighboring nodes along with their LQI (link
quality) values.

The ZPS_tsAplZdpMgmtLqiRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
 uint8 u8NeighborTableEntries;
 uint8 u8StartIndex;
 uint8 u8NeighborTableListCount;
 /* Rest of the message is variable length */
 ZPS_tsAplZdpNtListEntry* pNetworkTableList;
} ZPS_tsAplZdpMgmtLqiRsp;

where:

• u8Status is the return status for ZPS_eAplZdpMgmtLqiRequest()
• u8NeighborTableEntries is the total number of Neighbor table entries on the remote node
• u8StartIndex is the Neighbor table index of the first entry reported in this response (through
pNetworkTableList)

• u8NetworkListCount is the number of Neighbor table entries reported in this response (through
pNetworkTableList)

• pNetworkTableList is a pointer to the first entry in the list of reported Neighbor table entries. Each entry is
of the type ZPS_tsAplZdpNtListEntry detailed below.
ZPS_tsAplZdpNtListEntry
typedef struct
{
 uint64 u64ExtPanId;
 uint64 u64ExtendedAddress;
 uint16 u16NwkAddr;
 uint8 u8LinkQuality;
 uint8 u8Depth;
 /*
 * Bitfields are used for syntactic neatness and space saving.
 * May need to assess whether these are suitable for embedded

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
243 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

 environment and may need to watch endianness on u8Assignment
 */
 union
 {
 struct
 {
 unsigned u1Reserved1:1;
 unsigned u2Relationship:3;
 unsigned u2RxOnWhenIdle:2;
 unsigned u2DeviceType:2;
 unsigned u6Reserved2:6;
 unsigned u2PermitJoining:2;
 } ;
 uint8 au8Field[2];
 } uAncAttrs;
} ZPS_tsAplZdpNtListEntry;

where:
– u64ExtPanId is the 64-bit extended PAN ID of the network .
– u64ExtendedAddress is the IEEE address of the neighboring node.
– u16NwkAddr is the network address of the neighboring node.
– u8LinkQuality is the estimated LQI (link quality) value for radio transmissions from the neighboring

node.
– u8Depth is the tree depth of the neighboring node (where the Coordinator is at depth zero).
– u1Reserved1:1 is a 1-bit reserved value and should be set zero.
– u2Relationship:3 is a 3-bit value representing the neighboring node’s relationship to the local node:

– 0: Neighbor is the parent.
– 1: Neighbor is a child.
– 2: Neighbor is a sibling (has same parent).
– 3: None of the above.
– 4: Neighbor is a former child.

– u2RxOnWhenIdle:2 is a 2-bit value indicating whether the neighboring node’s receiver is enable during
idle periods:
– 0: Receiver off when idle (sleeping device)
– 1: Receiver on when idle (non-sleeping device)
– 2: Unknown

– u2DeviceType:2 is a 2-bit value representing the ZigBee device type of the neighboring node:
– 0: Coordinator
– 1: Router
– 2: End Device
– 3: Unknown

– u6Reserved2:6 is a 6-bit reserved value and should be set zero.
– u2PermitJoining:2 is a 2-bit value indicating whether the neighboring node is accepting joining

requests:
– 0: Not accepting join requests
– 1: Accepting join requests
– 2: Unknown

– au8Field[2] is the allocation of two bytes for the union.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
244 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.2.3.35 ZPS_tsAplZdpMgmtRtgRsp

This structure is used to store Mgmt_Rtg_rsp message data - a response to a call to the function
ZPS_eAplZdpMgmtRtgRequest(). This response reports the contents of the remote node’s Routing table

The ZPS_tsAplZdpMgmtRtgRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
 uint8 u8RoutingTableEntries;
 uint8 u8StartIndex;
 uint8 u8RoutingTableCount;
 /* Rest of the message is variable length */
 ZPS_tsAplZdpRtEntry* pRoutingTableList;
} ZPS_tsAplZdpMgmtRtgRsp;

where:

• u8Status is the return status for ZPS_eAplZdpMgmtRtgRequest()
• u8RoutingTableEntries is the total number of Routing table entries on the remote node
• u8StartIndex is the Routing table index of the first entry reported in this response (through
pRoutingTableList)

• u8RoutingTableCount is the number of Routing table entries reported in this response (through
pRoutingTableList)

• pRoutingTableList is a pointer to the first entry in the list of reported Routing table entries. Each entry is
of the type ZPS_tsAplZdpRtEntry detailed below

typedef struct
{
 uint16 u16NwkDstAddr; /**< Destination Network address */
 uint16 u16NwkNxtHopAddr; /**< Next hop Network address */
 union
 {
 struct
 {
 unsigned u3Status:3;
 unsigned u1MemConst:1;
 unsigned u1ManyToOne:1;
 unsigned u1RouteRecordReqd:1;
 unsigned u1Reserved:2;
 } bfBitfields;
 uint8 u8Field;
 } uAncAttrs;
} ZPS_tsAplZdpRtEntry;

where:
– u16NwkDstAddr is the destination network address of the route.
– u16NwkNxtHopAddr is the ‘next hop’ network address of the route.
– u3Status:3 is the 3-bit status for the route:

– 000 = ACTIVE
– 001 = DISCOVERY_UNDERWAY
– 010 = DISCOVERY_FAILED
– 011 = INACTIVE
– 100 = VALIDATION_UNDERWAY
– 101-111 = Reserved.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
245 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

– u1MemConst:1 is a bit indicating whether the device is a memory-constrained concentrator.
– u1ManyToOne:1 is a bit indicating whether the destination node is a concentrator that issued a many-to-

one request.
– u1RouteRecordReqd:1 is a bit indicating whether a route record command frame. should be sent to the

destination before the next data packet.
– u1Reserved:2 are reserved bits.
– u8Field contains the full set of flags of the bfBitfields sub-structure, with u3Status:3 occupying

the most significant bits and u1Reserved:2 occupying the least significant bits (for a big-endian device).

9.2.3.36 ZPS_tsAplZdpMgmtBindRsp

This structure is used to store Mgmt_Bind_rsp message data - a response to a call to the function
ZPS_eAplZdpMgmtBindRequest(). This response reports the contents of the remote node’s Binding table.

The ZPS_tsAplZdpMgmtBindRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
 uint16 u16BindingTableEntries;
 uint16 u16StartIndex;
 uint16 u16BindingTableListCount;
 /* Rest of the message is variable length */
 ZPS_tsAplZdpBindingTable sBindingTableList;
} ZPS_tsAplZdpMgmtBindRsp;

where:

• u8Status is the return status for ZPS_eAplZdpMgmtBindRequest()
• u16BindingTableEntries is the total number of Binding table entries on the remote node
• u8StartIndex is the Binding table index of the first entry reported in this response (through
sBindingTableList)

• u16BindingTableListCount is the number of Binding table entries reported in this response (through
sBindingTableList)

• sBindingTableList is a pointer to the first entry in the list of reported Binding table entries. Each entry is
of the type ZPS_tsAplZdpBindingTable, detailed in Section 9.2.2.29

9.2.3.37 ZPS_tsAplZdpMgmtLeaveRsp

This structure is used to store Mgmt_Leave_rsp message data - a response to a call to the function
ZPS_eAplZdpMgmtLeaveRequest(). This response is issued by a remote node that has been requested to
leave the network.

The ZPS_tsAplZdpMgmtLeaveRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
} ZPS_tsAplZdpMgmtLeaveRsp;

where u8Status is the return status for ZPS_eAplZdpMgmtLeaveRequest().

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
246 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.2.3.38 ZPS_tsAplZdpMgmtDirectJoinRsp

This structure is used to store Mgmt_Direct_Join_rsp message data - a response to a call to the function
ZPS_eAplZdpMgmtDirectJoinRequest(). This response is issued by a remote node (Router or Coordinator)
that has been requested to allow a particular device to join the network as a child of the node.

The ZPS_tsAplZdpMgmtDirectJoinRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
} ZPS_tsAplZdpMgmtDirectJoinRsp;

where u8Status is the return status for ZPS_eAplZdpMgmtDirectJoinRequest().

9.2.3.39 ZPS_tsAplZdpMgmtPermitJoiningRsp

This structure is used to store Mgmt_Permit_Joining_rsp message data - a response to a call to the function
ZPS_eAplZdpMgmtPermitJoiningRequest(). This response is issued by a remote node (Router or
Coordinator) that has been requested to enable or disable joining for a specified amount of time. The response
is only sent if the original request was unicast (and not if it was broadcast).

The ZPS_tsAplZdpMgmtPermitJoiningRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
} ZPS_tsAplZdpMgmtPermitJoiningRsp;

where u8Status is the return status for the function ZPS_eAplZdpMgmtPermitJoiningRequest().

9.2.3.40 ZPS_tsAplZdpMgmtCacheRsp

This structure is used to store Mgmt_Cache_rsp message data - a response to a call to the function
ZPS_eAplZdpMgmtCacheRequest(). This response reports a list of the End Devices registered in the node’s
primary discovery cache.

The ZPS_tsAplZdpMgmtCacheRsp structure is detailed below.

typedef struct {
 uint8 u8Status;
 uint8 u8DiscoveryCacheEntries;
 uint8 u8StartIndex;
 uint8 u8DiscoveryCacheListCount;
 /* Rest of the message is variable length */
 ZPS_tsAplDiscoveryCache* pDiscoveryCacheList;
} ZPS_tsAplZdpMgmtCacheRsp;

where:

• u8Status is the return status for ZPS_eAplZdpMgmtCacheRequest()
• u8DiscoveryCacheEntries is the total number of discovery cache entries on the remote node.
• u8StartIndex is the discovery cache index of the first entry reported in this response (through
pDiscoveryCacheList).

• u8DiscoveryCacheListCount is the number of discovery cache entries reported in this response
(through pDiscoveryCacheList).

• pRoutingTableList is a pointer to the first entry in the list of reported discovery cache entries. Each entry
is of the type ZPS_tsAplDiscoveryCache detailed below.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
247 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.2.3.40.1 ZPS_tsAplDiscoveryCache

typedef struct {
 uint64 u64ExtendedAddress;
 uint16 u16NwkAddress;
} ZPS_tsAplDiscoveryCache;

where:

• u64ExtendedAddress is the IEEE address of the End Device.
• u16NwkAddress is the network address of the End Device.

9.2.3.41 ZPS_tsAplZdpMgmtNwkUpdateNotify

This structure is used to store Mgmt_NWK_Update_notify message data - a notification which can be sent
in response to a call to the function ZPS_eAplZdpMgmtNwkUpdateRequest(). This notification reports the
results of an energy scan on the wireless network radio channels.

The ZPS_tsAplZdpMgmtNwkUpdateNotify structure is detailed below.

Sample Codeblock:

typedef struct {
 uint8 u8Status;
 uint32 u32ScannedChannels;
 uint16 u16TotalTransmissions;
 uint16 u16TransmissionFailures;
 uint8 u8ScannedChannelListCount;
 /* Rest of the message is variable Length */
 uint8* u8EnergyValuesList;
} ZPS_tsAplZdpMgmtNwkUpdateNotify;

where:

• u8Status is the return status for ZPS_eAplZdpMgmtNwkUpdateRequest()
• u32ScannedChannels is a bitmask of the set of scanned radio channels (‘1’ means scanned, ‘0’ means not

scanned):
– Bits 0 to 26 respectively represent channels 0 to 26 (only bits 11 to 26 are relevant to the 2400-MHz band)
– Bits 27 to 31 are reserved

• u16TotalTransmissions is the total number of transmissions (from other networks) detected during the
scan

• u16TransmissionFailures is the number of failed transmissions detected during the scan
• u8ScannedChannelListCount is the number of energy-level measurements (one per scanned channel)

reported in this notification (through u8EnergyValuesList)
• u8EnergyValuesList is a pointer to the first in the set of reported energy-level measurements (the value

0xFF indicates there is too much interference on the channel)

9.2.3.42 ZPS_tsAplZdpParentAnnceRsp

This structure is used to store the data for a response to a Parent Announcement message that was sent using
the function ZPS_eAplZdpParentAnnceReq(). This response reports any child nodes of the responding node
that conflict with child nodes specified in the received Parent Announcement message.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
248 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

The ZPS_tsAplZdpParentAnnceRsp structure is detailed below.

typedef struct {
 uint64* pu64ChildList;
 uint8 u8NumberOfChildren;
 uint8 u8Status;
} ZPS_tsAplZdpParentAnnceRsp;

where:

• pu64ChildList is a pointer to a list of 64-bit IEEE/MAC addresses of the child nodes in common.
• u8NumberOfChildren is the number of child nodes in common.
• u8Status is the status of the response.

9.3 Broadcast addresses
When sending a request using a ZDP API function, the request can be broadcast to all nodes in the network by
specifying a special 16-bit network address (0xFFFF) or 64-bit IEEE/MAC address (0xFFFFFFFFFFFFFFFF).
Other broadcast options are also available in order to target particular groups of nodes, as indicated in the table
below.

Address Type Broadcast Address Target Nodes

0xFFFF All nodes in the network

0xFFFD All nodes for which ‘Rx on when idle’ is TRUE

Network (16-bit)

0xFFFC All Routers and the Coordinator

IEEE/MAC (64-bit) 0xFFFFFFFFFFFFFFFF All nodes in the network

Table 26. Broadcast addresses and their Target Nodes

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
249 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

10 General ZPS Resources

The chapter describes the general API resources provided in the ZigBee PRO Stack (ZPS) software.

In this chapter:

• The ZigBee Queue resources are detailed in Section 10.1.
• The ZigBee Timer resources are detailed in Section 10.2.
• The Critical Section and Mutex resources are detailed in Section 10.3.

Note: Amongst the general resources, functions are supplied to allow the extraction of payload data from
received ZDP packets. These resources are not documented here but are provided in the header file
appZdpExtractions.h.

10.1 ZigBee Queue Resources
The ZigBee Queue resources are concerned with creating and operating queues for passing messages from
one task to another. These resources are provided in the header file ZQueue.h.

• The ZigBee Queue functions are described in Section 10.1.1.
• The ZigBee Queue structures are described in Section 10.1.2.

10.1.1 ZigBee queue functions

The ZigBee Queue functions are listed below.

10.1.1.1 Function page

1. ZQ_vQueueCreate
2. ZQ_bQueueSend
3. ZQ_bQueueReceive
4. ZQ_bQueueIsEmpty
5. ZQ_u32QueueGetQueueSize
6. ZQ_u32QueueGetQueueMessageWaiting

10.1.1.2 ZQ_vQueueCreate

void ZQ_vQueueCreate(tszQueue *psQueueHandle,
 const uint32 uiQueueLength,
 const uint32 uiItemSize,
 uint8 *pu8StartQueue);

Description

This function creates a message queue for use by the application or stack (message queues are described in
Section 6.9.1). The size of the queue and the size of a message in the queue must be specified, as well as the
location in memory where the queue should start. A unique handle must also be given to the queue, where this
handle is a pointer to a tszQueue structure that contains up-to-date information about the queue.

10.1.1.2.1 Parameters

• psQueueHandle Handle of message queue - this is a pointer to a tszQueue structure (see Section 10.1.2.1).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
250 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• uiQueueLength Size of the queue in terms of the number of messages that it can hold.
• uiItemSize Size of a message in the queue, in bytes.
• pu8StartQueue Pointer to the start of the message queue.

10.1.1.2.2 Returns

None

10.1.1.3 ZQ_bQueueSend

bool_t ZQ_bQueueSend(void *pvQueueHandle,
 const void *pvItemToQueue);

10.1.1.3.1 Description

This function submits a message to the specified message queue. The return code indicates whether the
message was successfully added to the queue.

10.1.1.3.2 Parameters

• pvQueueHandle Handle of message queue
• pvItemToQueue Pointer to the message to be added to the queue

10.1.1.3.3 Returns

Boolean indicating the outcome of the operation:

• TRUE - message successfully added to the queue
• FALSE - message not added to the queue

10.1.1.4 ZQ_bQueueReceive

ZQ_bQueueReceive(void *pvQueueHandle,
 void *pvItemFromQueue);

10.1.1.4.1 Description

This function obtains a message from the specified message queue. The return code indicates whether a
message was successfully obtained from the queue.

10.1.1.4.2 Parameters

• pvQueueHandle: Handle of message queue
• pvItemFromQueue: Pointer to memory location to receive the obtained message

10.1.1.4.3 Returns

Boolean indicating the outcome of the operation:

• TRUE - message successfully obtained from the queue.
• FALSE - message not obtained from the queue.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
251 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

10.1.1.5 ZQ_bQueueIsEmpty

bool_t ZQ_bQueueIsEmpty(void *pvQueueHandle);

10.1.1.5.1 Description

This function checks whether the specified message queue is empty. The return code indicates whether the
queue is empty.

10.1.1.5.2 Parameters

pvQueueHandle Handle of message queue

10.1.1.5.3 Returns

Boolean indicating the outcome of the operation:

• TRUE - message queue is empty.
• FALSE - message queue is not empty.

10.1.1.6 ZQ_u32QueueGetQueueSize

bool_t ZQ_bQueueIsEmpty(void *pvQueueHandle);

10.1.1.6.1 Description

This function obtains the capacity of the specified message queue. The return code indicates the size of the
queue in terms of the number of messages that it can hold.

10.1.1.6.2 Parameters

pvQueueHandle Handle of message queue

10.1.1.6.3 Returns

The capacity of the queue in terms of the number of messages that it can hold.

10.1.1.7 ZQ_u32QueueGetQueueMessageWaiting

uint32 ZQ_u32QueueGetQueueMessageWaiting(
 void *pu8QueueHandle);

10.1.1.7.1 Description

This function obtains the number of messages that are currently waiting in the specified message queue.

10.1.1.7.2 Parameters

pvQueueHandle Handle of message queue

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
252 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

10.1.1.7.3 Returns

Number of messages waiting in the queue

10.1.2 ZigBee queue structures

10.1.2.1 tszQueue

The ZigBee queue structure tszQueue is shown below.

typedef struct
{
uint32 u32Length;
uint32 u32ItemSize;
uint32 u32MessageWaiting;
void *pvHead;
void *pvWriteTo;
void *pvReadFrom;
}tszQueue;

where:

• u32Length is the size of the queue in terms of the number of messages that it can hold
• u32ItemSize is the size of a message, in bytes
• u32MessageWaiting is the number of messages currently in the queue
• pvHead is a pointer to the beginning of the queue storage area
• pvWriteTo is a pointer to the next free place in the storage area where a new message can be written
• pvReadFrom is a pointer to the next message to be read from the storage area

10.2 ZigBee Timer resources
The ZigBee Timer functions are concerned with initializing and operating software timers. These resources are
provided in the header file ZTimer.h.

• The ZigBee Timer functions are described in Section 10.2.1
• The ZigBee Timer structures are described in Section 10.2.2

10.2.1 ZigBee Timer functions

The functions are listed below.

10.2.1.1 Function page

1. ZTIMER_eInit
2. ZTIMER_eOpen
3. ZTIMER_eClose
4. ZTIMER_eStart
5. ZTIMER_eStop
6. ZTIMER_eGetState

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
253 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

To use the software timers, the while loop of your application must include a call to the following function:

void ZTIMER_vTask(void);

This allows the stack software to automatically update the ZTIMER_tsTimer structure for each timer as the timer
runs.

10.2.1.2 ZTIMER_eInit

ZTIMER_teStatus ZTIMER_eInit(ZTIMER_tsTimer *psTimers,
 uint8 u8NumTimers);

10.2.1.2.1 Description

This function initializes a set of software timers for use by the application. A list of timers is provided in an array,
in which each array element is a structure containing information on one timer (see Section 10.2.2.1). The index
of an array element is used as a reference for the corresponding timer.

In order to use one of the initialized timers, it must first be opened using ZTIMER_eOpen().

10.2.1.2.2 Parameters

• psTimers: Pointer to an array of structures, where each array element contains information for one timer (see
Section 10.2.2.1)

• u8NumTimers: Number of timers in the above array

10.2.1.2.3 Returns

• E_ZTIMER_OK (timers successfully initialized)
• E_ZTIMER_FAIL (timers not initialized)

10.2.1.3 ZTIMER_eOpen

ZTIMER_teStatus ZTIMER_eOpen(
 uint8 *pu8TimerIndex,
 ZTIMER_tpfCallback pfCallback,
 void *pvParams,
 uint8 u8Flags);

10.2.1.3.1 Description

This function is used to open the specified software timer. A list of parameter values for the timer must be
provided as well as a user-defined callback function that will be used to perform any operations required on
expiration of the timer.

The callback function has the following prototype:

typedef void (*ZTIMER_tpfCallback)(void *pvParam);

where pvParam is a pointer to the timer parameters.

The function also includes a parameter u8Flags, which specifies whether the timer should allow or prevent
sleep. When activity checks are made to decide whether the device can enter sleep mode, the value of this flag
determines if the (running) timer will stop the device from going to sleep.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
254 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Before a timer is opened, it must have been initialized in a call to ZTIMER_eInit().

10.2.1.3.2 Parameters

• pu8TimerIndex Pointer to location containing the index number of the timer in the list of timers initialized using
ZTIMER_eInit()

• pfCallback Pointer to the user-defined callback function for the timer
• pvParams Pointer to a list of parameter values for the timer u8Flags Flag indicating whether the timer should

allow or prevent sleep, one of:
– ZTIMER_FLAG_ALLOW_SLEEP
– ZTIMER_FLAG_PREVENT_SLEEP

10.2.1.3.3 Returns

• E_ZTIMER_OK (timer successfully opened)
• E_ZTIMER_FAIL (timer not opened)

10.2.1.4 ZTIMER_eClose

ZTIMER_teStatus ZTIMER_eClose(uint8 u8TimerIndex);

10.2.1.4.1 Description

This function is used to close the specified software timer when it is no longer needed. The timer must have
been previously opened using ZTIMER_eOpen().

10.2.1.4.2 Parameters

u8TimerIndex: Index number of the timer in the list of timers initialized using ZTIMER_eInit().

10.2.1.4.3 Returns

• E_ZTIMER_OK (timer successfully closed)
• E_ZTIMER_FAIL (timer not closed - may be running or already closed)

10.2.1.5 ZTIMER_eStart

ZTIMER_teStatus ZTIMER_eStart(uint8 u8TimerIndex,
 uint32 u32Time);

10.2.1.5.1 Description

This function is used to start the specified software timer. The length of time for which the timer will run must be
specified in milliseconds.

Before a timer is started, it must have been opened using ZTIMER_eOpen(). Once started, the timer can be
stopped (before it expires) using ZTIMER_eStop().

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
255 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

10.2.1.5.2 Parameters

• pu8TimerIndex: Index number of the timer in the list of timers initialized using ZTIMER_eInit().
• u32Time: The time, in milliseconds, for which the timer should run.

10.2.1.5.3 Returns

• E_ZTIMER_OK (timer successfully started)
• E_ZTIMER_FAIL (timer not started)

10.2.1.6 ZTIMER_eStop

ZTIMER_teStatus ZTIMER_eStop(uint8 u8TimerIndex);

10.2.1.6.1 Description

This function is used to stop the specified software timer (before it expires). The timer must have been
previously started using ZTIMER_eStart().

10.2.1.6.2 Parameters

pu8TimerIndex: Index number of the timer in the list of timers initialized using ZTIMER_eInit().

10.2.1.6.3 Returns

• E_ZTIMER_OK (timer successfully stopped)
• E_ZTIMER_FAIL (timer not stopped - may be already stopped or expired)

10.2.1.7 ZTIMER_eGetState

ZTIMER_teStatus ZTIMER_eGetState(uint8 u8TimerIndex);

10.2.1.7.1 Description

This function is used to obtain the current state of the specified software timer. The possible reported states are:

• Running
• Stopped
• Expired
• Closed

10.2.1.7.2 Parameters

pu8TimerIndex Index number of the timer in the list of timers initialized using ZTIMER_eInit().

10.2.2 ZigBee timer structures

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
256 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

10.2.2.1 ZTIMER_tsTimer

The ZigBee timer structure is shown below. It is used to represent a single software timer that may be used by
the application.

typedef struct
{
 ZTIMER_teState eState;
 uint32 u32Time;
 void *pvParameters;
 ZTIMER_tpfCallback pfCallback;
} ZTIMER_tsTimer;

where:

• eState represents the current state of the timer, as one of:
– E_ZTIMER_STATE_CLOSED
– E_ZTIMER_STATE_STOPPED
– E_ZTIMER_STATE_RUNNING
– E_ZTIMER_STATE_EXPIRED

• u32Time is the remaining time, in milliseconds, that the timer still has to run
• pvParameters is a pointer to a set of parameters used by the timer
• pfCallback is a pointer to the user-defined callback function that will be called when the timer expires - this

function has the prototype:

typedef void (*ZTIMER_tpfCallback)(void *pvParam);

where pvParam is a pointer to the timer parameters.

10.3 Critical Section and Mutex Resources
The Critical Section and Mutex functions are concerned with protecting sections of application code from
preemption and re-entrancy. These resources are provided in the header file portmacro.h.

• The Critical Section and Mutex functions are described in Section 10.3.1.
• The Critical Section and Mutex structures are described in Section 10.3.2.

10.3.1 Critical Section and Mutex functions

The functions are listed below.

10.3.1.1 Function page

1. ZPS_eEnterCriticalSection
2. ZPS_eExitCriticalSection
3. ZPS_u8GrabMutexLock
4. ZPS_u8ReleaseMutexLock

10.3.1.2 ZPS_eEnterCriticalSection

uint8 ZPS_eEnterCriticalSection(
 void *hMutex,

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
257 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

 uint32* psIntStore);

10.3.1.2.1 Description

This function can be used to mark the end of a critical section of application code. The function
ZPS_eEnterCriticalSection() must have been called at the start of the critical section.

This function can be used to mark the start of a critical section of application code - this is a code section that
cannot be preempted by an interrupt with priority level less than 12. The function ZPS_eExitCriticalSection()
must be called at the end of the critical section.

A pointer to a ‘priority level’ value must be provided, which contains the current priority level of the main
application thread (when critical sections are not being executed). When a critical section is entered, the priority
level of the main thread is increased such that interrupts with a priority of 11 or less cannot preempt the main
thread. At the end of the critical section, the priority level of the main thread is returned to its value from before
the critical section was entered.

Optionally, a mutex can also be applied during the critical section to protect the section from re-entrancy. If a
mutex is required, a pointer must be provided to a user- defined mutex function with the following prototype:

((bool_t*) (*) (void))

This function must define and maintain a Boolean flag that indicates whether the corresponding mutex is active
(TRUE) or inactive (FALSE). This flag is used by ZPS_eEnterCriticalSection() to determine whether the mutex
is available.

• If this flag reads as FALSE, the mutex is applied and the above mutex function must set the flag to TRUE.
• If the flag is already TRUE, then the mutex cannot be applied - in this case, ZPS_eEnterCriticalSection()

returns a failure.

Critical sections and mutexes are further described in Section 6.9.3.

10.3.1.2.2 Parameters

• hMutex Pointer to user-defined mutex function (see above) - set to NULL if no mutex is required
• psIntStore Pointer to structure containing ‘priority level’ value (see Section 10.3.2.1)

10.3.1.2.3 Returns

0x00 for success, 0x01 for failure (all other values are reserved)

10.3.1.3 ZPS_eExitCriticalSection

uint8 ZPS_eExitCriticalSection(
 void *hMutex,
 uint32* psIntStore);

10.3.1.3.1 Description

This function can be used to mark the end of a critical section of application code. The function
ZPS_eEnterCriticalSection() should be called at the start of the critical section.

A pointer to the ‘priority level’ value must be provided. If a mutex was used in the critical section, a pointer to the
relevant mutex function must be provided in order to release the mutex.

Critical sections and mutexes are further described in Section 6.9.3.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
258 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

10.3.1.3.2 Parameters

• hMutex Pointer to user-defined mutex function (see above) - set to NULL if no mutex was used.
• psIntStore Pointer to structure containing ‘priority level’ value (see Section 10.3.2.1).

10.3.1.3.3 Returns

0x00 for success, 0x01 for failure (all other values are reserved)

10.3.1.4 ZPS_u8GrabMutexLock

uint8 ZPS_u8GrabMutexLock(
 void *hMutex,
 uint32* psIntStore);

10.3.1.4.1 Description

This function can be used to apply a mutex at the start of a section of application code that is to be protected
from re-entrancy. The function ZPS_u8ReleaseMutexLock() must be called at the end of the mutex-protected
section to release the mutex.

A pointer must be provided to a user-defined mutex function with the following prototype:

((bool_t*) (*) (void))

This function must define and maintain a Boolean flag which indicates whether the corresponding mutex is
active (TRUE) or inactive (FALSE). This flag is used by ZPS_u8GrabMutexLock() to determine whether
the mutex is available. If this flag reads as FALSE, the mutex is applied and the above mutex function must
set the flag to TRUE, but if the flag is already TRUE then the mutex cannot be applied - in the latter case,
ZPS_u8GrabMutexLock() returns a failure.

A pointer to a ‘priority level’ value must be provided, which contains the current priority level of the main
application thread (when mutex protection is not being implemented). When a mutex is applied, the priority level
of the main thread is increased such that interrupts with a priority of 11 or less cannot preempt the main thread.
When the mutex is released, the priority level of the main thread will be returned to its value from before the
mutex was applied.

Mutexes are further described in Section 6.9.3.

10.3.1.4.2 Parameters

• hMutex Pointer to user-defined mutex function (see above)
• psIntStore Pointer to structure containing ‘priority level’ value (see Section 10.3.2.1).

10.3.1.4.3 Returns

0x00 for success, 0x01 for failure (all other values are reserved).

10.3.1.5 ZPS_u8ReleaseMutexLock

uint8 ZPS_u8ReleaseMutexLock(
 void *hMutex,
 uint32* psIntStore);

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
259 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

10.3.1.5.1 Description

This function can be used to release a mutex that has been applied to a section of application code. The
function ZPS_u8GrabMutexLock() must have been called at the start of the mutex-protected section.

A pointer to the relevant mutex function must be provided in order to release the mutex. A pointer to the ‘priority
level’ value must also be provided.

Mutexes are further described in Section 6.9.3.

10.3.1.5.2 Parameters

• hMutex Pointer to user-defined mutex function (see above).
• psIntStore Pointer to structure containing ‘priority level’ value (see Section 10.3.2.1).

10.3.1.5.3 Returns

0x00 for success, 0x01 for failure (all other values are reserved)

10.3.2 Critical Section and Mutex Structures

10.3.2.1 u32MicroIntStorage

u32MicroIntStorage is a 32-bit mask of the interrupts currently enabled. The u32MicroIntStorage
structure is used in critical sections and mutex-protected sections where u32MicroIntStorage takes the
interrupts that have been enabled.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
260 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

11 Event and Status Codes

This chapter summarizes the event and return/status codes of the ZigBee PRO stack.

11.1 Events
The events that can be generated by the ZigBee PRO stack are enumerated in the structure
ZPS_teAfEventType (from the AF API), shown below.

typedef enum {
ZPS_EVENT_NONE, /* 0, 0x00 */
ZPS_EVENT_APS_DATA_INDICATION, /* 1, 0x01 */
ZPS_EVENT_APS_DATA_CONFIRM, /* 2, 0x02 */
ZPS_EVENT_APS_DATA_ACK, /* 3, 0x03 */
ZPS_EVENT_NWK_STARTED, /* 4, 0x04 */
ZPS_EVENT_NWK_JOINED_AS_ROUTER, /* 5, 0x05 */
ZPS_EVENT_NWK_JOINED_AS_ENDDEVICE, /* 6, 0x06 */
ZPS_EVENT_NWK_FAILED_TO_START, /* 7, 0x07 */
ZPS_EVENT_NWK_FAILED_TO_JOIN, /* 8, 0x08 */
ZPS_EVENT_NWK_NEW_NODE_HAS_JOINED, /* 9, 0x09 */
ZPS_EVENT_NWK_DISCOVERY_COMPLETE, /* 10, 0x0a */
ZPS_EVENT_NWK_LEAVE_INDICATION, /* 11, 0x0b */
ZPS_EVENT_NWK_LEAVE_CONFIRM, /* 12, 0x0c */
ZPS_EVENT_NWK_STATUS_INDICATION, /* 13, 0x0d */
ZPS_EVENT_NWK_ROUTE_DISCOVERY_CONFIRM, /* 14, 0x0e */
ZPS_EVENT_NWK_POLL_CONFIRM, /* 15, 0x0f */
ZPS_EVENT_NWK_ED_SCAN, /* 16, 0x10 */
ZPS_EVENT_ZDO_BIND, /* 17, 0x11 */
ZPS_EVENT_ZDO_UNBIND, /* 18, 0x12 */
ZPS_EVENT_ZDO_LINK_KEY, /* 19, 0x13 */
ZPS_EVENT_BIND_REQUEST_SERVER, /* 20, 0x14.*/
ZPS_EVENT_ERROR, /* 21, 0x15 */
ZPS_EVENT_APS_INTERPAN_DATA_INDICATION, /* 22, 0x16 */
ZPS_EVENT_APS_INTERPAN_DATA_CONFIRM, /* 23, 0x17 */
ZPS_EVENT_APS_ZGP_DATA_INDICATION, /* 24, 0x18 */
ZPS_EVENT_APS_ZGP_DATA_CONFIRM, /* 25, 0x19 */
ZPS_EVENT_TC_STATUS, /* 26, 0X1A */
ZPS_EVENT_NWK_DUTYCYCLE_INDICATION, /* 27, 0x1B */
ZPS_EVENT_NWK_FAILED_TO_SELECT_AUX_CHANNEL, /* 28, 0x1C */
ZPS_EVENT_NWK_ROUTE_RECORD_INDICATION, /* 29, 0x1D */
ZPS_EVENT_NWK_FC_OVERFLOW_INDICATION, /* 30, 0x1E */
ZPS_ZCP_EVENT_FAILURE
} ZPS_teAfEventType;

The events in the above structure are outlined in the table below.

Note: The AF structures which contain the data for the above events are detailed in Section 8.2.2, Event
Structures .

Stack Event Description

ZPS_EVENT_NONE Used as initial value in structure which receives a message collected from a message
queue.

ZPS_EVENT_APS_DATA_
INDICATION

Indicates that data has arrived on the local node. The event provides information about
the data packet through the structure ZPS_tsAfDataIndEvent - see Section 8.2.2.3.

Table 27. ZigBee PRO stack Events

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
261 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

ZPS_EVENT_APS_DATA_
CONFIRM

Indicates whether a sent data packet has been successfully passed down the stack
and has reached the next hop node toward its destination. The results are reported
through the structure ZPS_tsAfDataConfEvent- see Section 8.2.2.4.

ZPS_EVENT_APS_DATA_ACK Indicates that a sent message has reached its destination node. Details of the received
acknowledgment are reported through the structure ZPS_tsAfDataAckEvent- see
Section 8.2.2.5.

ZPS_EVENT_NWK_STARTED Indicates that network has started on Coordinator. This is reported through the structure
ZPS_tsAfNwkFormationEvent- see Section 8.2.2.6. ‘Permit joining’ state is set as
specified in APL data structure.

ZPS_EVENT_NWK_JOINED_
AS_ROUTER

Indicates that device has successfully joined network - as Router and reports allocated
network address through the structure ZPS_tsAfNwkJoinedEvent - see Section
8.2.2.7.

ZPS_EVENT_NWK_JOINED_
AS_ENDDEVICE

Indicates that device has successfully joined network as End Device and reports
allocated network address through the structure ZPS_tsAfNwkJoinedEvent - see
Section 8.2.2.7.

ZPS_EVENT_NWK_FAILED_
TO_START

Indicates that network has failed to start on Coordinator.

ZPS_EVENT_NWK_FAILED_
TO_JOIN

Indicates that device failed to join network. This is reported through the structure ZPS_
tsAfNwkJoinFailedEvent- see Section 8.2.2.8

ZPS_EVENT_NWK_NEW_
NODE_HAS_JOINED

Indicates to Coordinator or Router that new node has joined as child and reports
details of new child through the structure ZPS_tsAfNwkJoinIndEvent - see Section
8.2.2.10.

ZPS_EVENT_NWK_
DISCOVERY_COMPLETE

Indicates that network discovery on Router or End Device has finished and reports
details of detected net- work through the structure ZPS_tsAfNwkDiscoveryEvent-
see Section 8.2.2.9. This event (and associated structure) is generated for each
network detected.

ZPS_EVENT_NWK_LEAVE_
INDICATION

Indicates that a neighboring node has left the network or a remote node has requested
the local node to leave. Details are provided through the structure ZPS_tsAfNwkLeave
IndEvent- see Section 8.2.2.11.

ZPS_EVENT_NWK_LEAVE_
CONFIRM

Reports the results of a node leave request issued by the local node. The results
are reported through the structure ZPS_tsAfNwkLeaveConfEvent - see Section
8.2.2.12.

ZPS_EVENT_NWK_STATUS_
INDICATION

Reports network status event from a remote or local node through the structure ZPS_
tsAfNwkStatusIndEvent- see Section 8.2.2.13.

ZPS_EVENT_NWK_ROUTE_
DISCOVERY_CONFIRM

Indicates that a route discovery has been performed. The results are reported in the
structure ZPS_tsAfNwkRouteDiscoveryConfEvent- see Section8.2.2.14.

ZPS_EVENT_NWK_POLL_
CONFIRM

Generated on an End Device to indicate that a poll request submitted to its parent has
completed. The outcome of the poll request is indicated through the structure ZPS_ts
AfPollConfEvent - see Section8.2.2.15.

ZPS_EVENT_NWK_ED_SCAN Indicates that an ‘energy detect’ scan in the 2.4-GHz radio band has completed. The
results of the scan are reported through the structure ZPS_tsAfNwkEdScanConf
Event- see Section 8.2.2.16.

ZPS_EVENT_ZDO_BIND Indicates that the local node has been successfully bound to one or more remote
nodes. The details of the binding are reported through the structure ZPS_tsAfZdo
BindEvent - see Section 8.2.2.18.

ZPS_EVENT_ZDO_UNBIND Indicates that the local node has been successfully unbound from one or more remote
nodes. The details of the unbinding are reported through the structure ZPS_tsAfZdo
UnbindEvent - see Section 8.2.2.19.

Table 27. ZigBee PRO stack Events...continued

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
262 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

ZPS_EVENT_ZDO_LINK_KEY Indicates that a new application link key has been received and installed, and is ready
for use. The details of the link key are reported through the structure ZPS_tsAfZdo
LinkKeyEvent - see Section 8.2.2.20.

ZPS_EVENT_BIND_REQUEST_
SERVER

Indicates the results of a bound data transmission. The results are reported through the
structure ZPS_tsAfBindRequestServerEvent- see Section 8.2.2.21.

ZPS_EVENT_ERROR Indicates that an error has occurred on the local node. The nature of the error is
reported through the structure ZPS_tsAfErrorEvent - see Section 8.2.2.17.

ZPS_EVENT_APS_INTERPAN_
DATA_INDICATION

Indicates that an inter-PAN communication has arrived (from a node in another
network). Details of the inter-PAN communication are reported through the structure
ZPS_tsAfInterPanDataIndEvent - see Section 8.2.2.22.

ZPS_EVENT_APS_INTERPAN_
DATA_CONFIRM

Indicates that an inter-PAN communication (to another network) has been sent by the
local node and an acknowledgment has been received from the first hop node (this
acknowledgment is not generated in the case of a broadcast). The status of the inter-
PAN communication is reported through the structure ZPS_tsAfInterPanDataConf
Event - see Section 8.2.2.23.

ZPS_EVENT_TC_STATUS Indicates whether the negotiation for a link key with the Trust Centre has been
successful and, if so, provides the key. These details are provided through the structure
ZPS_tsAfTCstatusEvent- see Section 8.2.2.24.

ZPS_EVENT_NWK_
DUTYCYCLE_INDICATION

Relevant only for Sub Gig. Indicates the duty cycle state.

ZPS_EVENT_NWK_FAILED_
TO_SELECT_AUX_CHANNEL

Relevant for Sub Gig only. Failure on a multiMAC interface to form a network on the
selected channel.

ZPS_EVENT_NWK_ROUTE_
RECORD_INDICATION

Indicates when a route record is received.

ZPS_EVENT_NWK_FC_
OVERFLOW_INDICATION

Indicates the overflow of the frame counter when frame counter > 0x80000000.

Table 27. ZigBee PRO stack Events...continued

Note: Event handling is outlined in "Appendix A".

11.2 Return/Status Codes
The return/status codes that can result from ZigBee PRO API function calls are divided into the following
groups:

• ZDP codes - see Section 11.2.1
• APS codes - see Section 11.2.2
• NWK codes - see Section 11.2.3
• MAC codes - see Section 11.2.4
• Extended error codes - see Section 11.2.5

11.2.1 ZDP codes

The ZDP codes are carried in request and response messages.

Name Value Description

ZPS_APL_ZDP_E_INV_REQUESTTYPE 0x80 The supplied request type was invalid.

ZPS_APL_ZDP_E_DEVICE_NOT_FOUND 0x81 The requested device did not exist on a device following a
child descriptor request to a parent.

Table 28. ZDP codes

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
263 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

ZPS_APL_ZDP_E_INVALID_EP 0x82 The supplied endpoint was equal to 0x00 or between 0xF1
and 0xFF.

ZPS_APL_ZDP_E_NOT_ACTIVE 0x83 The requested endpoint is not described by a Simple
descriptor.

ZPS_APL_ZDP_E_NOT_SUPPORTED 0x84 The requested optional feature is not supported on the target
device.

ZPS_APL_ZDP_E_TIMEOUT 0x85 A timeout has occurred with the requested operation.

ZPS_APL_ZDP_E_NO_MATCH 0x86 The End Device bind request was unsuccessful due to a
failure to match any suitable clusters.

ZPS_APL_ZDP_E_NO_ENTRY 0x88 The unbind request was unsuccessful due to the Co-
ordinator or source device not having an entry in its binding
table to unbind.

ZPS_APL_ZDP_E_NO_DESCRIPTOR 0x89 A child descriptor was not available following a discovery
request to a parent.

ZPS_APL_ZDP_E_INSUFFICIENT_SPACE 0x8A The device does not have storage space to support the
requested operation.

ZPS_APL_ZDP_E_NOT_PERMITTED 0x8B The device is not in the proper state to support the requested
operation.

ZPS_APL_ZDP_E_TABLE_FULL 0x8C The device does not have table space to support the
operation.

ZPS_APL_ZDP_E_NOT_AUTHORIZED 0x8D The permissions configuration table on the target indicates
that the request is not authorized from this device.

Table 28. ZDP codes...continued

11.2.2 APS codes

The APS codes relate to sending/receiving messages.

Name Value Description

ZPS_APL_APS_E_ASDU_TOO_LONG 0xA0 A transmit request failed since the ASDU is too large
and fragmentation is not supported.

ZPS_APL_APS_E_DEFRAG_DEFERRED 0xA1 A received fragmented frame could not be
defragmented at the current time.

ZPS_APL_APS_E_DEFRAG_UNSUPPORTED 0xA2 A received fragmented frame could not be
defragmented since the device does not support
fragmentation.

ZPS_APL_APS_E_ILLEGAL_REQUEST 0xA3 A parameter value was out of range.

ZPS_APL_APS_E_INVALID_BINDING 0xA4 An APSME-UNBIND.request failed due to the
requested binding link not existing in the binding
table.

ZPS_APL_APS_E_INVALID_GROUP 0xA5 An APSME-REMOVE-GROUP.request has been
issued with a group identifier that does not appear in
the group table.

ZPS_APL_APS_E_INVALID_PARAMETER 0xA6 A parameter value was invalid or out of range.

ZPS_APL_APS_E_NO_ACK 0xA7 An APSDE-DATA.request requesting acknowledged
transmission failed due to no acknowledgment being
received.

Table 29. APS codes

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
264 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

ZPS_APL_APS_E_NO_BOUND_DEVICE 0xA8 An APSDE-DATA.request with a destination
addressing mode set to 0x00 failed due to there being
no devices bound to this device.

ZPS_APL_APS_E_NO_SHORT_ADDRESS 0xA9 An APSDE-DATA.request with a destination
addressing mode set to 0x03 failed due to no
corresponding short address found in the address
map table.

ZPS_APL_APS_E_NOT_SUPPORTED 0xAA An APSDE-DATA.request with a destination
addressing mode set to 0x00 failed due to a binding
table not being supported on the device.

ZPS_APL_APS_E_SECURED_LINK_KEY 0xAB An ASDU was received that was secured using a link
key.

ZPS_APL_APS_E_SECURED_NWK_KEY 0xAC An ASDU was received that was secured using a
network key.

ZPS_APL_APS_E_SECURITY_FAIL 0xAD An APSDE-DATA.request requesting security has
resulted in an error during the corresponding security
processing.

ZPS_APL_APS_E_TABLE_FULL 0xAE An APSME-BIND.request or APSME.ADDGROUP.
request issued when the binding or group tables,
respectively, were full.

ZPS_APL_APS_E_UNSECURED 0xAF An ASDU was received without any security.

ZPS_APL_APS_E_UNSUPPORTED_ATTRIBUTE 0xB0 An APSME-GET.request or APSMESET. request has
been issued with an unknown attribute identifier.

Table 29. APS codes...continued

11.2.3 NWK codes

The NWK codes come from the NWK layer of the stack and may be returned by any ZigBee PRO API function
with a non-void return.

Name Value Description

ZPS_NWK_ENUM_SUCCESS 0x00 Success

ZPS_NWK_ENUM_INVALID_PARAMETER 0xC1 An invalid or out-of-range parameter has been
passed

ZPS_NWK_ENUM_INVALID_REQUEST 0xC2 Request cannot be processed

ZPS_NWK_ENUM_NOT_PERMITTED 0xC3 NLME-JOIN.request not permitted

ZPS_NWK_ENUM_STARTUP_FAILURE 0xC4 NLME-NETWORK-FORMATION.request failed

ZPS_NWK_ENUM_ALREADY_PRESENT 0xC5 NLME-DIRECT-JOIN.request failure - device already
present

ZPS_NWK_ENUM_SYNC_FAILURE 0xC6 NLME-SYNC.request has failed

ZPS_NWK_ENUM_NEIGHBOR_TABLE_FULL 0xC7 NLME-DIRECT-JOIN.request failure - no space in
Router table

ZPS_NWK_ENUM_UNKNOWN_DEVICE 0xC8 NLME-LEAVE.request failure - device not in Neighbor
table

ZPS_NWK_ENUM_UNSUPPORTED_ATTRIBUTE 0xC9 NLME-GET/SET.request unknown attribute identifier

ZPS_NWK_ENUM_NO_NETWORKS 0xCA NLME-JOIN.request detected no networks

Table 30. NWK codes

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
265 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

ZPS_NWK_ENUM_RESERVED_1 0xCB Reserved

ZPS_NWK_ENUM_MAX_FRM_CTR 0xCC Security processing has failed on outgoing frame due
to maximum frame counter

ZPS_NWK_ENUM_NO_KEY 0xCD Security processing has failed on outgoing frame due
to no key

ZPS_NWK_ENUM_BAD_CCM_OUTPUT 0xCE Security processing has failed on outgoing frame due
CCM

ZPS_NWK_ENUM_NO_ROUTING_CAPACITY 0xCF Attempt at route discovery has failed due to lack of
table space

ZPS_NWK_ENUM_ROUTE_DISCOVERY_FAILED 0xD0 Attempt at route discovery has failed due to any
reason except lack of table space

ZPS_NWK_ENUM_ROUTE_ERROR 0xD1 NLDE-DATA.request has failed due to routing failure
on sending device

ZPS_NWK_ENUM_BT_TABLE_FULL 0xD2 Broadcast or broadcast-mode multicast has failed as
there is no room in BTT

ZPS_NWK_ENUM_FRAME_NOT_BUFFERED 0xD3 Unicast mode multi-cast frame was discarded
pending route discovery

ZPS_NWK_ENUM_FRAME_IS_BUFFERED 0xD4 Unicast frame does not have a route available but it is
buffered for automatic resend.

Table 30. NWK codes...continued

11.2.4 MAC codes

The MAC codes come from the IEEE 802.15.4 MAC layer of the stack. The MAC codes may be returned by any
ZigBee PRO API function with a non-void return. The codes are also described in the IEEE 802.15.4 Stack User
Guide (JN-UG-3024).

Name Value Description

MAC_ENUM_SUCCESS 0x00 Success

MAC_ENUM_BEACON_LOSS 0xE0 Beacon loss after synchronization request

MAC_ENUM_CHANNEL_ACCESS_FAILURE 0xE1 CSMA/CA channel access failure

MAC_ENUM_DENIED 0xE2 GTS request denied

MAC_ENUM_DISABLE_TRX_FAILURE 0xE3 Could not disable transmit or receive

MAC_ENUM_FAILED_SECURITY_CHECK 0xE4 Incoming frame failed security check

MAC_ENUM_FRAME_TOO_LONG 0xE5 Frame too long, after security processing, to be sent

MAC_ENUM_INVALID_GTS 0xE6 GTS transmission failed

MAC_ENUM_INVALID_HANDLE 0xE7 Purge request failed to find entry in queue

MAC_ENUM_INVALID_PARAMETER 0xE8 Out-of-range parameter in function

MAC_ENUM_NO_ACK 0xE9 No acknowledgment received when expected

MAC_ENUM_NO_BEACON 0xEA Scan failed to find any beacons

MAC_ENUM_NO_DATA 0xEB No response data after a data request

MAC_ENUM_NO_SHORT_ADDRESS 0xEC No allocated network (short) address for operation

Table 31. MAC codes

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
266 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

MAC_ENUM_OUT_OF_CAP 0xED Receiver-enable request could not be executed, as CAP
finished

MAC_ENUM_PAN_ID_CONFLICT 0xEE PAN ID conflict has been detected

MAC_ENUM_REALIGNMENT 0xEF Coordinator realignment has been received

MAC_ENUM_TRANSACTION_EXPIRED 0xF0 Pending transaction has expired and data discarded

MAC_ENUM_TRANSACTION_OVERFLOW 0xF1 No capacity to store transaction

MAC_ENUM_TX_ACTIVE 0xF2 Receiver-enable request could not be executed, as in
transmit state

MAC_ENUM_UNAVAILABLE_KEY 0xF3 Appropriate key is not available in ACL

MAC_ENUM_UNSUPPORTED_ATTRIBUTE 0xF4 PIB Set/Get on unsupported attribute

Table 31. MAC codes...continued

11.2.5 Extended error codes

If extended error handling is implemented (see Section 6.7), it provides more detail about the error that led to
any one of the following function return codes:

• APS codes 0xA3, 0xA6, and 0xAD (see Section 11.2.2).
• NWK code 0xC2 (see Section 11.2.3).

The extended error codes, which elaborate on the above codes are provided in the ZPS_teExtendedStatus
enumerations.

Name Value Description

ZPS_XS_OK 0x00 Success

ZPS_XS_E_FATAL 0x01 Fatal error - retrying will cause the error again

ZPS_XS_E_LOOPBACK_BAD_ENDPOINT 0x02 Endpoint is not valid for loopback (fatal error)

ZPS_XS_E_SIMPLE_DESCRIPTOR_NO_ OUTPUT_
CLUSTER

0x03 No output cluster in the Simple descriptor for this
endpoint/cluster (fatal error)

ZPS_XS_E_FRAG_NEEDS_ACK 0x04 Fragmented data requests must be sent with APS
ack (fatal error)

ZPS_XS_E_COMMAND_MANAGER_BAD_ PAR
AMETER

0x05 Bad parameter has been passed to the command
manager (fatal error)

ZPS_XS_E_INVALID_ADDRESS 0x06 Address parameter is out-of-range (fatal error). For
example, broadcast address when calling unicast
function

ZPS_XS_E_INVALID_TX_ACK_FOR_LOCAL_EP 0x07 TX ACK bit has been set when attempting to post to a
local endpoint (fatal error)

ZPS_XS_E_RESOURCE 0x08 Resource error/shortage - retrying may succeed

ZPS_XS_E_NO_FREE_NPDU 0x80 No free NPDUs (resource error) - the number of
NPDUs is set in the "Number of NPDUs" property of
the "PDU Manager" section of the ZPS Configuration
Editor

ZPS_XS_E_NO_FREE_APDU 0x81 No free APDUs (resource error) - the number of
APDUs is set in the "Instances" property of the
appropriate "APDU" child of the "PDU Manager"
section of the ZPS Configuration Editor.

Table 32. Extended error codes

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
267 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

ZPS_XS_E_NO_FREE_SIM_DATA_REQ 0x82 No free simultaneous data request handles (resource
error) - the number of handles is set in the "Maximum
Number of Simultaneous Data Requests" field of
the "APS layer configuration" section of the ZPS
Configuration Editor

ZPS_XS_E_NO_FREE_APS_ACK 0x83 No free APS acknowledgment handles (resource
error) - the number of handles is set in the "Maximum
Number of Simultaneous Data Requests with Acks"
field of the "APS layer con- figuration" section of the
ZPS Configuration Editor

ZPS_XS_E_NO_FREE_FRAG_RECORD 0x84 No free fragment record handles (resource error)
- the number of handles is set in the "Maximum
Number of Transmitted Simultaneous Fragmented
Messages" field of the "APS layer configuration"
section of the ZPS Configuration Editor

ZPS_XS_E_NO_FREE_MCPS_REQ 0x85 No free MCPS request descriptors (resource error) -
there are 8 MCPS request descriptors and these are
only ever likely to be exhausted under a very heavy
network load or when trying to transmit too many
frames too close together

ZPS_XS_E_NO_FREE_LOOPBACK 0x86 Loopback send is currently busy (resource error)
- there can be only one loopback request at a time

ZPS_XS_E_NO_FREE_EXTENDED_ADDR 0x87 No free entries in the extended address table
(resource error) - this table is configured in the ZPS
Configuration Editor

ZPS_XS_E_SIMPLE_DESCRIPTOR_NOT_ FOUND 0x88 Simple descriptor does not exist for this endpoint/
cluster

ZPS_XS_E_BAD_PARAM_APSDE_REQ_RSP 0x89 Bad parameter has been found while processing an
APSDE request or response

ZPS_XS_E_NO_RT_ENTRY 0x8a No routing table entries free

ZPS_XS_E_NO_BTR 0x8b No Broadcast transaction table entries free

ZPS_XS_E_FRAME_COUNTER_ERROR 0xC0 Decryption failed due to frame counter of received
frame not greater than stored frame counter.

ZPS_XS_E_CCM_INVALID_ERROR 0xC1 Decryption failed due to invalid CCM data.

ZPS_XS_E_UNKNOWN_SRC_ADDR 0xC2 Decryption failed due to unknown source address in
the received frame.

ZPS_XS_E_NO_KEY_DESCRIPTOR 0xC3 Decryption failed due to missing the matching key
descriptor.

ZPS_XS_E_NULL_KEYDESCR 0xC4 Decryption failed due to NULL key descriptor.

ZPS_XS_E_PDUM_ERROR 0xC5 Decryption failed due to PDUM packet clone failure.

ZPS_XS_E_NULL_EXT_ADDR 0xC6 Encryption failed due to missing the Extended
Address.

ZPS_XS_E_ENCRYPT_NULL_DESCR 0xC7 Encryption failed due to NULL key descriptor.

ZPS_XS_E_ENCRYPT_FRAME_COUNTER_FAIL 0xC8 Encryption failed due to frame counter of outgoing
frame being invalid.

ZPS_XS_E_ENCRYPT_DEFAULT 0xC9 Encryption failed due to internal error.

Table 32. Extended error codes...continued

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
268 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

ZPS_XS_E_FRAME_COUNTER_EXPIRED 0xCA Decryption failed due to frame counter expiration of
the received frame.

Table 32. Extended error codes...continued

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
269 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

12 ZigBee network parameters

This chapter lists and describes the ZigBee network parameters that can be set using the ZPS Configuration
Editor described in Chapter 13.

12.1 Basic parameters
The basic parameters are listed and described in the table below.

Parameter Name Description Default Value Range

Default Extended Pan ID The default Extended PAN ID (EPID) when add- ing
new devices to the wireless network. The extended
PAN ID is the globally unique 64-bit identifier for
the network. This identifier is used to avoid PAN
ID conflicts between distinct networks and must be
unique among the networks overlap- ping in a given
area. If the value is zero on the Coordinator, the
device will use its own IEEE/ MAC address as the
EPID. A zero value on a Router/End Device means
that the device will not look for a particular EPID
when joining a network. Note that this value is the
default EPID used when adding devices in the ZPS
Configuration Editor. The actual EPID used for an
individual device can be set via the parameter APS
Use Extended PAN ID – see Section 12.7.

0 64 bits

Default Security Enabled The default setting for Security Enabled when adding
new devices to the wireless network.

true true / false

Maximum Number of Nodes The maximum number of nodes for the wireless
network. This setting controls the size of tables
when adding new devices to the network to ensure
adequate resources are available for correct
operation a network of the specified size.

20

Table 33. ZigBee Wireless Network parameters

The rest of the network parameters are detailed in the sections that follow, according to their area of application.

12.2 Profile definition parameters

Parameter Name Description Default Value Range

Profile Id The application profile identifier. This is
assigned by the ZigBee Alliance for a public
profile.

16 bits
(Value 0 is reserved
for the ZDP, 0xFFFF is
wildcard profile)

Name Textual name for the profile. This is used as
a prefix for generated macro definitions in
zps_gen.h.

Valid C identifier. (“ZDP”
is reserved for the
ZigBee Device Profile)

Table 34. Profile definition parameters

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
270 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

12.3 Cluster definition parameters

Parameter Name Description Default Value Range

Cluster Id The cluster identifier. This may be defined by the ZigBee
Alliance for a public cluster or may be manufacturer-
specific.
Clusters are designated as inputs or outputs in the simple
descriptor for use in creating a binding table.

- 16 bits

Name Textual name for the cluster. This is used as a prefix for
generated macro definitions in zps_gen.h.

- Valid C identifier

Table 35. Cluster definition parameters

12.4 Coordinator parameters

Parameter Name Description Default Value Range

Miscellaneous Coordinator Parameters

Name Textual name for the node. Used as a prefix
when generating macro definitions in zps_
gen.h.

Valid C identifier

Permit Joining Time Default number of seconds for which permit
joining is enabled.
• '255' means permanently on
• '0' means permanently off

255 0-255

Security Enabled Specifies whether the Coordinator will
secure communication with other devices in
the network.

true true / false

Initial Security Key The initial key that will be used when
security is enabled. These are selected
from the keys available on the Trust Centre.

None

Table 36. Coordinator node type parameters

12.5 Router parameters

Parameter Name Description Default Value Range

Miscellaneous Router Parameters

Name Textual name for the node. Used as a pre- fix
when generating macro definitions in zps_gen.
h.

Valid C identifier

Permit Joining Time Default number of seconds for which permit
joining is enabled.
• 255 means permanently on
• 0 means permanently off

255 0-255

Scan Duration Time The length of time to scan the selected RF
channels when searching for a network to join.
The time spent scanning each channel is:
[aBaseSuperframeDuration x (2n + 1)] symbols

3 0 – 14

Table 37. Router Node Type Parameters

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
271 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

where n is the value of the Scan Duration Time
parameter.

Security Enabled Specifies whether the Router will secure
communication with other devices in the
network.

true true / false

Initial Security Key The initial key that will be used when security
is enabled. These are selected from the keys
available on the Trust Centre.

None

Table 37. Router Node Type Parameters...continued

12.6 End Device parameters

Parameter Name Description Default Value Range

Miscellaneous End Device Parameters

Name Textual name for the node. Used as a prefix when
generating macro definitions in zps_- gen.h.

Valid C identifier

Scan Duration Time The length of time to scan the selected RF
channels when searching for a network to join.
The time spent scanning each channel is:
(aBaseSuperframeDuration * (2n +
1)) symbols
where n is the value of the Scan Duration Time
parameter.

3 0 – 14

Security Enabled Specifies whether the End Device will secure
communication with other devices in the
network.

true true / false

Initial Security Key The initial key that will be used when security
is enabled. These are selected from the keys
available on the Trust Centre.

None

Sleeping Indicates whether the device will turn its
receiver off and enter a low-power mode. The
End Device’s parent will buffer any incoming
data until the device returns to its normal
operating state and issues a poll request.

false true / false

Number of Poll Failures
Before Rejoin

This parameter controls the number of
consecutive poll failures from when the device
returns to its normal operating state before
attempting to find a new parent by initiating a
network rejoin.

5 0 will disable this
behavior

Table 38. End Device Node Type Parameters

12.7 Advanced device parameters
These are advanced parameters for Coordinator, Router, and End Device.

Parameter Name Description Default Value Range

AF Parameters

-

Table 39. Advanced device parameters

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
272 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

AIB Parameters

APS Designated Coordinator
(read only)

Indicates that on start-up the node should
assume the Coordinator role within the
network.

• true for
Coordinator

• false for
Routers / End
Devices

true / false

APS Use Extended PAN ID Indicates the Extended PAN ID (EPID)
that the device will use. This is the globally
unique 64-bit identifier for the network. This
identifier is used to avoid PAN ID conflicts
between distinct net- works and must be
unique among the networks overlapping
in a given area. If the value is zero on the
Coordinator, the device will use its own
IEEE/MAC address as the EPID. A zero
value on a Router/End Device means that
the device will not look for a particular EPID
when joining a network.

Default Extended
PAN ID

64 bits

APS Inter-frame Delay Number of milliseconds between APS
data frames. Following transmission of
each data block, the APS starts a timer. If
there are more unacknowledged blocks to
send in the current transmission window,
then, after a delay of apsInterframeDelay
milliseconds, the next block is passed to the
NWK data service. Otherwise, the timer is
set to apscAckWaitDuration seconds.

10 10-255

APS Max Window Size APS fragmented data window size.
Fragmentation is a way of sending
messages (APDUs) longer than the
payload of a single NPDU. The ASDU
is segmented and split across a number
of NPDUs, then reassembled at the
destination. APS Max Window Size defines
how many fragments are sent before an
acknowledgment is expected. For example,
if APS Max Window Size is set to 4 and
a message is split into 16 fragments,
then an acknowledgment is expected
after sending fragments 1-4. Sending of
fragments 5-8 does not commence until this
acknowledgment is received.

8 1-8

APS Non-member Radius Multicast non-member radius size. Defines
the number of hops away from the core
multi-cast members that a multi-cast
transmission can be received.

2 0-7

APS Security Timeout Period Authentication timeout period in
milliseconds for nodes joining the network.
If either the initiator or responder waits for
an expected incoming message for a time
greater than APS Security Timeout Period,
then a TIMEOUT error is generated.

1000
(6000 is
advised)

APS Use Insecure Join Controls action when a secured network
rejoin fails. If true, a join using the MAC

true true / false

Table 39. Advanced device parameters...continued

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
273 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

layer association procedure is performed
when a secure rejoin fails.

APS Layer Configuration Parameters

APS Duplicate Table Size The size of the APS layer duplicate
rejection table. This removes duplicated
APS packets.

8 1 or higher

APS Persistence Time Time, in milliseconds, for which the
resources associated with an incoming
fragmented message will be retained after
the complete message has been received.

100 1-255

Maximum Number of
Simultaneous Data Requests

The maximum number of simultaneous
APSDE data requests without APS
acknowledgments. Should be set to the
maximum number of target nodes in one
bound transmission.

5 1 or higher

Maximum Number of
Simultaneous Data Requests
with Acks

The maximum number of simultaneous
APSDE data requests with APS
acknowledgments. Should be set to the
maximum number of target nodes in one
bound transmission.

3 1 or higher

Inter PAN True if inter PAN functionality is enabled,
see Section 6.5.1.5

false true or false

APS Poll Period The polling period, in milliseconds, of a
sleeping End Device collecting data of
any kind (received messages, received
fragmented messages and all transmit
acknowledgments).

100 25 or higher

Maximum Number of Received
Simultaneous Fragmented
Messages

Maximum number of simultaneous
fragmented APSDE incoming data
requests. Set to a non-zero value to enable
reception of fragmented messages (note
that doing this increases the stack size).

0 1 or higher

Maximum Number of
Transmitted Simultaneous
Fragmented Messages

Maximum number of simultaneous
fragmented APSDE outgoing data
requests. Set to a non-zero value to enable
transmission of fragmented messages (note
that doing this increases the stack size).

0 1 or higher

Network Layer Configuration Parameters for Coordinator and Routers

Active Neighbor Table Size Size of the active Neighbor table. Each
routing node (Coordinator or Router) has
a Neighbor table which must be large
enough to accommodate entries for the
node’s immediate children, for its own
parent and, in a Mesh network, for all peer
Routers with which the node has direct
radio communication.

26 1 or higher

Child Table Size Size of the persisted sub-table of the active
Neighbor table. This sub-table contains
entries for the node’s parent and immediate
children. This value therefore determines
the number of children that the node is

5 1 or higher

Table 39. Advanced device parameters...continued

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
274 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

allowed to have. It is one greater than the
permitted number of children, for example,
with the default value of 5, up to 4 children
are allowed.
This value must not be greater than two-
thirds of the Active Neighbor Table Size
value.

Address Map Table Size Size of the address map, which maps 64-
bit IEEE addresses to 16-bit network (short)
addresses. Should be set to the number of
nodes in the network.

10 1 or higher

Broadcast Transaction Table
Size

Size of broadcast transaction table. The
broadcast transaction table stores the
broadcast transaction records, which
are records of the broadcast messages
received by the node.

9 1 or higher

Discovery Neighbor Table Size Size of the Discovery Neighbor table. This
table keeps a list of the neighboring devices
associated with the node.

8 8-16

Route Discovery Table Size Size of the Route Discovery table.
This table is used by the node to store
temporary information used during route
discovery. Route Discovery table entries
last only as long as the duration of a single
route discovery operation.

2 1 or higher

Route Record Table Size Size of the Route Record table. Each route
record contains the destination network
address, a count of the number of relay
nodes to reach the destination, and a list of
the network addresses of the relay nodes.

1 1 or higher

Routing Table Size Size of the Routing table. This table stores
the information required for the node
to participate in the routing of message
packets. Each table entry contains the
destination address, the status of the route,
various flags and the network address of
the next hop on the way to the destination.
A Routing table entry is made when a new
route is initiated by the node or routed via
the node. The entry is stored in the Routing
table and is read whenever that route is
used; the entry is only deleted if the route
is no longer valid. A node is said to have
routing capacity if there are free entries in
the routing table.

70 1 or higher

Security Material Sets Number of supported network keys. 2 1 or higher

Network Layer Configuration Parameters for End Devices

Active Neighbor Table Size Size of the active Neighbor table. Set to
one (for the parent).

2 1

Address Map Table Size Size of the address map, which maps 64-
bit IEEE addresses to 16-bit network (short)
addresses. Should be set to the number

10 1 or higher

Table 39. Advanced device parameters...continued

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
275 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

of nodes that the End Device application
needs to communicate with plus one (for
the parent).

Broadcast Transaction Table
Size

Size of broadcast transaction table. The
broadcast transaction table stores the
broadcast transaction records, which
are records of the broadcast messages
received by the node.

9 1 or higher

Discovery Neighbor Table Size Size of the Discovery Neighbor table. This
table keeps a list of the neighboring devices
associated with the node.

8 8-16

Route Discovery Table Size Not applicable - set to one. 2 1

Route Record Table Size Not applicable - set to one. 1 1

Routing Table Size Not applicable - set to one. 70 1

Security Material Sets Number of supported network keys. 2 1 or higher

Stack Profile The ZigBee Stack Profile which defines the
stack features supported. Set to one for
ZigBee, two for ZigBee PRO or any other
value for a private stack profile.

2 0 to 15

Table 39. Advanced device parameters...continued

12.7.1 Endpoint parameters

Parameter Name Description Default Value Range

Application Device Id Device ID for the endpoint.

Application Device Version Version number for the device.

Enabled Whether the endpoint is enabled or
disabled.

true true / false

End Point Id The endpoint number (must be unique
within the network).

1-240

Name Textual name for the endpoint. Used as a
prefix when generating macro definitions.

Valid C identifier

Profile The application profile for the endpoint. This
as a link to a profile definition.

Table 40. Endpoint parameters

Input Cluster

Specifies that the endpoint will receive for the specified cluster.

Parameter Name Description Default Value Range

Cluster A link to an input cluster that will receive on
the endpoint.

Receive APDU A link to an APDU that will buffer any
incoming messages.

Table 41. Input cluster parameters

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
276 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Discoverable Defines whether the input cluster will be
present in the endpoints simple descriptor
which is used for service discovery.

true true / false
Table 41. Input cluster parameters...continued

Output cluster

Specifies that the endpoint will transmit for the specified cluster.

Parameter Name Description Default Value Range

Cluster A link to an output cluster that will transmit
on the endpoint.

- -

Transmit APDUs List of APDUs that will be used to transmit
the cluster.

- -

Discoverable Defines whether the input cluster will be
present in the endpoints Simple descriptor
which is used for service dis- covery.

true true / false

Table 42. Output cluster parameters

12.7.2 Bound addressing table

Specifies that the device should include a Binding table. Binding is optional. If Binding tables are used, they
are located on any node which is a source for a binding, but the ZigBee Coordinator handles end device bind
requests on behalf of all devices in the network. Nodes that use Binding tables should be allocated enough
Binding table entries to handle their own communication needs.

Parameter Name Description Default Value Range

Size The size of the Binding table. Each binding
table entry contains:
• The node address and endpoint number of

the source of the binding
• The node address and endpoint number of

the destination of the binding
• The cluster ID for the binding
If a binding is one-to-many, then a table entry
is required for each destination.

Table 43. Bound addressing table parameters

12.7.3 PDU Manager

The Protocol Data Unit Manager (PDUM) configuration is mandatory and must always be present.

Parameter Name Description Default Value Range

Number of NPDUs The number of NPDUs available to the
ZigBee stack. These are internal to the stack.

16 8 or higher

Table 44. PDU Manager parameters

APDU

Specifies a buffer to contain instances of a cluster.

Parameter Name Description Default Value Range
Table 45. APDU parameters

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
277 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Instances The maximum number of instances of
this APDU. Note that this value must be
greater than the value of the parameter
Maximum Number of Simultaneous Data
Requests with Acks - see Advanced device
parameters.

Name The name of the APDU. This is the
identifier that should be used in the
application C code to refer to the APDU.

Valid C identifier

Size The maximum size of the APDU.

Table 45. APDU parameters...continued

12.7.4 Group Addressing table

Specifies that the device contains a Group table.

Parameter Name Description Default Value Range

Size The size of the Group table. Group
membership for endpoints on the current
device is controlled by adding and removing
entries in the Group table.

- -

Table 46. Group Addressing table parameters

12.7.5 RF channels

Specifies the default RF channels that the device will operate on. If not present, the default will be all channels.

Parameter Name Description Default Value Range

Channel x
(x=11-26)

Control for channel x – setting to true
includes the channel in energy scan. By
default, only channel 15 is included.

true for x=15,
false for all other
values

true / false

Table 47. RF channel parameters

12.7.6 MAC interface table

Specifies the number of interfaces which are present on this device. One interface must be setup.

Parameter Name Description Default Value Range

Channel List size (Needs to be
set to 1 if only 2.4g)

Number of channel masks 1 No value ranges

Enabled Is interface enabled/disabled Enabled TRUE/FALSE

Index Index of the entry 0 0 to channel list size

Radio Type 2.4G or SubGig RT2400MHz RT2400MHz/ RT868
MHz/ RT915MHz

Routers Allowed Are routers allowed on this interface FALSE TRUE/FALSE

Table 48. MAC interface table parameters

12.7.7 Node descriptor

This is mandatory and defines the type and capabilities of the node.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
278 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Parameter Name Description Default Value Range

Descriptor Availability Parameters

Complex Descriptor Available Complex descriptors are not supported. Not
editable.

false false

User Descriptor Available Indicates whether a user descriptor is
present. Not editable.

false true / false

Descriptor Capabilities Parameters

Extended Active Endpoint List
Available

Indicates whether an extended active
endpoint list is available. Not editable.

false false

Extended Simple Descriptor List
Available

Indicates whether an extended simple
descriptor list is available. Not editable.

false false

MAC Capability Flags

Allocate Address Indicates whether the device will allocate
short (network) addresses or not. Not
editable.

true / false

Alternate PAN Coordinator Indicates whether the device will act as an
alternative PAN Coordinator. Not editable.

true / false

Device type Indicates whether the device is a Full
Functionality Device (FFD) or Reduced
Functionality Device (RFD). Not editable.

true / false

Power source Indicates whether the device is mains
powered or not. Not editable.

true / false

Rx On When Idle Indicates whether the device has its receiver
enabled while the device is idle. Not editable.

true / false

Security Indicates whether the device uses high or
standard security. Only standard security is
supported. Not editable.

false true / false

Miscellaneous parameters

APS flags Not editable. 0 0

Frequency Band Frequency band of radio. The the JN518x
and K32W041/K32W061/K32W1/MCXW71/
MCXW72 devices only support the 2.4 GHz
band. Not editable.

2.4 GHz 2.4 GHz

Logical Type The device type: Coordinator, Router, or
End Device. Not editable.

ZC/ZR/ZED

Manufacturer Code The manufacturer ID code.
These are allocated by the ZigBee Alliance.

0 - 65535

Maximum buffer size The maximum buffer size. Not editable. 127

Maximum incoming transfer size The maximum incoming transfer size
supported by the device. This is calculated
from the APDU sizes for input clusters. Not
editable.

Maximum outgoing transfer size The maximum incoming transfer size
supported by the device. This is calculated
from the APDU sizes for output clusters.
Not editable

Table 49. Node descriptor parameters

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
279 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

System Server Capabilities parameters

Backup binding table cache Indicates if the node can act as a back-up
binding table cache. Not supported and not
editable.

false true / false

Backup discovery cache Indicates if the node can act as a back-
up discovery cache. Not supported and not
editable.

false true / false

Backup trust center Indicates if the node can act as a back-
up trust centre. Not supported and not
editable.

false true / false

Network manager Indicates if the node can act as a net- work
manager. Not editable.

false true / false

Primary binding table cache Indicates if the node can act as a primary
binding table cache. Not supported and not
editable.

false true / false

Primary discovery cache Indicates if the node can act as a primary
discovery cache. Not supported and not
editable.

false true / false

Primary trust center Indicates if the node can act as a trust
center. Not editable.

false true / false

Table 49. Node descriptor parameters...continued

12.7.8 Node Power Descriptor

The Node Power descriptor for the device is mandatory.

Parameter Name Description Default Value Range

Available Power Sources parameters

Constant power Indicates whether a constant power source
is available.

false true / false

Disposable Battery Indicates whether a disposable battery
power source is available.

false true / false

Rechargeable Battery Indicates whether a rechargeable battery
power source is available.

false true / false

Miscellaneous parameters

Default power mode The default power mode of the device. Synchronized
with RxOn-
WhenIdle

Synchronized with Rx
OnWhenIdle / Periodic /
Constant Power

Default power source The default power source of the device. Constant /
rechargeable /
disposable

Constant

Table 50. Node Power Descriptor Parameters

12.7.9 Key Descriptor table

Specifies that the device should contain a Key Descriptor Table (for APS security).

Parameter Name Description Default Value Range
Table 51. Key Descriptor table parameters

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
280 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Size The size of the key descriptor table. 1 or higher
Table 51. Key Descriptor table parameters...continued

Preconfigured Key

Specifies a pre-configured link key for the Key Descriptor Table.

Parameter Name Description Default Value Range

IEEE address The IEEE address to use with the key. - 64 bit

Key The pre-configured key value. - 128 bit

Table 52. Preconfigured Key parameters

12.7.10 Trust Centre

Specifies that the device will have the capability to act as a Trust Centre.

Parameter Name Description Default Value Range

Device Table Size The size of the Trust Centre's device table. Maximum
Number of
Nodes setting
from the ZigBee
PRO Wireless
Network

1 or higher

Table 53. Trust Centre parameters

A Trust Centre link key must be pre-set in the Key Descriptor Table (see Section12.7.9) on each node.

12.8 ZDO configuration
Specifies the ZigBee Device Object (ZDO) servers that are present on the device. Most of these are mandatory
for a ZCP.

The ZDO configuration parameters are detailed in the following categories:

Category Page
Default Server
ZDO Client
Device Annce Server
Active Ep Server
Nwk Addr Server
IEEE Address Server
System Server Discovery Server
Permit Joining Server
Node Descriptor Server
Power Descriptor Server
Match Descriptor Server
Simple Descriptor Server
Mgmt Lqi Server
Mgmt Rtg Server
Mgmt Leave Server
Mgmt NWK Update Server

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
281 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Bind Unbind Server
Extended Active Ep Server
Extended Simple Descriptor Server
End Device Bind Server
Parent Announcement Server
Management Enhanced Network Update Server
MIB IEEE List Server

Default Server

Mandatory. Replies to any unimplemented server requests.

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to
unimplemented server request messages.

apduZDP -

Table 54. Default Server Parameters

ZDO Client

Mandatory. Processes ZDO client messages.

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to ZDO
client messages.

apduZDP -

Table 55. ZDO Client Parameters

Device Annce Server

Mandatory. Processes device announcements.

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to device
announcement messages.

apduZDP -

Table 56. Default Server Parameters

Active Ep Server

Mandatory. Processes active endpoint requests.

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to active
endpoint request messages.

apduZDP

Table 57. Active Ep Server Parameters

Nwk Addr Server

Mandatory. Processes network address discovery requests.

Parameter Name Description Default Value Range
Table 58. Nwk Addr Server Parameters

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
282 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Output APDU The APDU to use when replying to net-work
address discovery request messages.

apduZDP
Table 58. Nwk Addr Server Parameters...continued

IEEE Address Server

Mandatory. Processes IEEE address discovery requests.

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to IEEE
address discovery request messages.

apduZDP

Table 59. IEEE Address Server Parameters

System Server Discovery Server

Mandatory. Processes system server discovery requests.

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to system server
discovery request messages.

apduZDP

Table 60. System Server Discovery Server Parameters

Permit Joining Server

Mandatory. Processes 'permit joining' requests.

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to permit joining
request messages.

apduZDP

Table 61. Permit Joining Server Parameters

Node Descriptor Server

Mandatory. Processes Node descriptor requests.

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to node
descriptor request messages.

apduZDP

Table 62. Node Descriptor Server Parameters

Power Descriptor Server

Mandatory. Processes Node Power descriptor requests.

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to power
descriptor request messages.

apduZDP

Table 63. Power Descriptor Server Parameters

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
283 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Match Descriptor Server

Mandatory. Processes Match descriptor requests.

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to Match
descriptor request messages.

apduZDP

Table 64. Match Descriptor Server Parameters

Simple Descriptor Server

Mandatory. Processes simple descriptor requests.

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to Simple
descriptor request messages.

apduZDP

Table 65. Simple Descriptor Server Parameters

Mgmt Lqi Server

Mandatory. Processes management LQI requests.

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to Link
Quality Indicator (LQI) request messages.

apduZDP

Table 66. Mgmt Lqi Server Parameters

Mgmt Rtg Server

Mandatory. Processes management routing requests.

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to
management routing request messages.

apduZDP

Table 67. Mgmt Rtg Server Parameters

Mgmt Leave Server

Mandatory. Processes management leave requests.

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to
management leave request messages.

apduZDP

Table 68. Mgmt Leave Server Parameters

Mgmt NWK Update Server

Mandatory. Processes management network update requests.

Parameter Name Description Default Value Range
Table 69. Mgmt NWK Update Server Parameters

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
284 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Output APDU The APDU to use when replying to
management network update request
messages.

apduZDP
Table 69. Mgmt NWK Update Server Parameters...continued

Bind Unbind Server

Mandatory. Processes both bind and unbind requests.

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to bind and
unbind request messages.

apduZDP

Table 70. Bind Unbind Server Parameters

Extended Active Ep Server

Mandatory. Processes extended active endpoint discovery requests.

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to
extended active endpoint discovery request
messages.

apduZDP

Table 71. Active Ep Server Parameters

Extended Simple Descriptor Server

Mandatory. Processes extended Simple descriptor discovery requests.

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to
extended Simple descriptor discovery
request messages.

apduZDP

Table 72. Extended Simple Descriptor Server Parameters

End Device Bind Server

Mandatory (Coordinator only). Processes End Device bind requests.

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to end
device bind request messages.

apduZDP

Timeout Number of seconds before timing out an
End Device bind request.

5 1 or higher

Bind Num Retries Number of binding retries attempted if a
binding request (zdo_bind_req or end_
device_bind_req) fails.

Table 73. End Device Bind Server Parameters

Parent Announcement Server

Mandatory on the coordinator and router devices.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
285 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to
parent announce broadcast messages.

Table 74. End Parent Announcement Server

Management Enhanced Network Update Server

Mandatory for Sub Gig; optional for 2.4G.

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to
management enhanced network update
request messages.

apduZDP

Table 75. Management Enhanced Network Update Server

MIB IEEE List Server

Mandatory on routers in Sub Gig; optional on 2.4G.

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to MIB
IEEE request messages.

apduZDP

Table 76. MIB IEEE List Server

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
286 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

13 ZPS Configuration Editor

In developing a ZigBee PRO application, certain static configuration is required before the application is built.
The ZPS Configuration Editor is used to simplify this configuration. This editor is supplied as an NXP plug-in for
Eclipse and is provided in the ZigBee 3.0 SDK (see Section 5.1.2Section 5.1.2). The plug-in is suitable for use
with MCUXpresso software.

The ZPS Configuration Editor provides a convenient way to set ZigBee network parameters, such as the
properties of the Coordinator, Routers and End Devices (for example, by setting elements of the device
descriptors). This chapter describes how to use the ZPS Configuration Editor, as follows: Section 13.1

• Section 13.1 Section 13.1 describes how the ZigBee network configuration is used in the application build
process.

• Section 13.2 Section 13.2 describes how to access the ZPS Configuration Editor wizard.
• Section 13.3 Section 13.3 provides an overview of the interface provided by the ZPS Configuration Editor.
• Section 13.4 Section 13.4 describes how to use the ZPS Configuration Editor to perform important

configuration tasks.

13.1 Configuration principles
The build process for a ZigBee PRO application takes a number of configuration files, in addition to the
application source file and header file. The following files are generated from the MCUXpresso IDE to feed into
the build process:

• ZigBee PRO Stack files:
– zps_gen.c
– zps_gen.h

• PDUM files:
– pdum_gen.c
– pdum_gen.h

• Other files:
– port.c
– portasm.h
– portmacro
– irq.s

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
287 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

IDE

zps_gen.c
zps_gen.h

pdum_gen.c
pdum_gen.h

port.c
portasm.h

portmacro.h

Compiler

user_app.c
user_app.h

Application
(unlinked)

Linker

user_app.bin

ZigBee
Libraries

ZPS
Configuration

Editor
XML

File
generation

by
command
line utilities

irq.s

Figure 15. Application Build Process

13.2 ZPS Configuration Editor wizard
Before you can start to create a new ZigBee PRO stack configuration, the ZPS Configuration Editor plug-in
must be installed in MCUXpresso.

To check if the plug-in is already installed, start MCUXpresso and select

File > New > Other from the main menu. Check that a Jennic option exists in the Select a Wizard dialogue
box - expanding the Jennic option should show "ZBPro Configuration", as illustrated in the screenshot below.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
288 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Figure 16. Selecting a Wizard

Using the wizard highlighted in the screenshot above, you can start to create a new ZigBee PRO configuration,
as described in Section 12.4.1.

If the wizard is not present, install the ZPS Configuration Editor plug-in, which is supplied in the ZigBee 3.0
SDK.

13.3 Overview of ZPS Configuration Editor Interface
The ZPS Configuration Editor allows ZigBee network parameters to be configured through an easy-to-use
Windows Explorer-style interface. This interface is outlined below.

The parameter values for the whole network are stored in a file with extension .zpscfg, and the ZPS
Configuration Editor provides a convenient way to view and edit the contents of this file.

The network parameters are presented in an expandible tree, as shown below.

Figure 17. Network Parameters

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
289 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

The information under each of these entries is described below.

Entries that sit at the same level in the tree are termed ‘siblings’, while an entry that sits under another entry in
the tree (a sub-entry) is termed a ‘child’.

The top level of the tree shows the Extended PAN ID. The next level shows the following siblings:

• Entries for the ZigBee application profiles used in the network
• Entry for the Coordinator
• Entries for the Routers
• Entries for the End Devices

13.3.1 Profile

An application profile has a numeric ID and a name. The Profile entry contains child entries for the clusters
supported by the profile - each cluster is identified by a numeric ID and a name.

Note: There must be entries for all application profiles supported by the network. An individual device may
not use all profiles, although a device can use more than one profile to support multiple features (for example,
measurement of temperature, humidity, and light level).

13.3.2 Coordinator

The Coordinator entry contains a name and a number of associated parameters, mainly related to the APS and
NWK layers of the ZigBee PRO stack.

The child entries for the Coordinator are shown above and include the following:

• Endpoint entries, one for each endpoint on the Coordinator, with each endpoint having child entries specifying
the input and output clusters used (note that each input cluster must be paired with an APDU).

• PDU Manager, with child entries specifying the APDUs used.
• Channel Mask, specifying the 2.4-GHz band channels to scan when creating the network.
• Node Descriptor for the Coordinator.
• Node Power Descriptor for the Coordinator.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
290 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

13.3.3 Router

Each Router entry contains a name and a number of associated parameters, mainly related to the APS and
NWK layers of the ZigBee PRO stack. The child entries for a Router include the following:

• Endpoint entries, one for each endpoint on the Router, with each endpoint having child entries specifying input
and output clusters used (note that each input cluster must be paired with an APDU).

• PDU Manager, with child entries specifying the APDUs used.
• Channel Mask, specifying the 2.4-GHz band channels to scan when attempting to join a network.
• Node Descriptor for the Router.
• Node Power Descriptor for the Router.

13.3.4 End Device

Each End Device entry contains a name and a number of associated parameters, mainly related to the APS and
NWK layers of the ZigBee PRO stack. The child entries for an End Device include the following:

• Endpoint entries, one for each endpoint on the End Device, with each endpoint having child entries specifying
the input and output clusters used (note that each input cluster must be paired with an APDU).

• PDU Manager, with child entries specifying the APDUs used.
• Channel Mask, specifying the 2.4-GHz band channels to scan when attempting to join a network.
• Node Descriptor for the End Device.
• Node Power Descriptor for the End Device.

13.4 Using the ZPS Configuration Editor
Note: This section assumes that you wish to add a ZigBee PRO stack configuration to a project which you
have already created in MCUXpresso (in this example, HelloWorld).

13.4.1 Creating a New ZPS Configuration

Step 1: In MCUXpresso, start the ZPS Configuration Editor wizard. To do this, follow the menu path File > New
> Other and in the Select a Wizard dialogue box, select "Jennic ZBPro Configuration" and click Next (shown in
Figure 13 on page 283).

The New dialogue box opens for the ZBPro Configuration.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
291 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Figure 18. New ZPS Configuration

Step 2: Click on your project to select it as the parent folder. In the File name field, enter a name for the
configuration file (keep the extension .zpscfg) and then click Finish.

A new configuration (with the default set of parameters) will open in the editor, as shown below.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
292 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Figure 19. ZPS Configuration Editor Window

13.4.2 Adding Device Types

Follow the steps below to add devices:

Step 1: Right-click on ZigBee PRO Wireless Network and select New Child > Coordinator from the drop-
down menu. This inserts a Coordinator with the minimum necessary child elements.

Step 2: Add Routers and End Devices in the same way, as required. The network can only have one
Coordinator, but as many different Router or End Device types (that is, running different application features and
with different endpoints) as required.

Step 3: For each new device, use the Properties tab (bottom pane) to enter the required top-level parameters.
For a sleeping End Device, set Sleeping to True (by right-clicking on the value and using the drop-down box).

Note: To display the advanced properties, click the Advanced tool button to the right of the Properties view tab.
Refer to Section 13.4.4 Section 13.4.4. These properties are all set to default values and can be left unchanged,
unless specific changes are required.

13.4.2.1 To add a profile

Step 1 Right-click on ZigBee PRO Wireless Network and select New Child > Profile from the drop-down
menu. This inserts a profile with no child elements.

Step 2 Edit the properties in the Properties tab to set Name and Id for the new profile.

13.4.2.2 To add clusters to the new profile

Step 1 Right-click on the new profile created above and select New Child > Cluster from the drop-down menu.

Step 2 Edit the properties in the Properties tab to set Name and Id for the new cluster.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
293 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Step 3 Repeat Step 1 and Step 2 to add more clusters, as required.

Figure 20.  Cluster properties

13.4.3 Setting Coordinator properties

To set the channel mask and Node Power descriptor, use the below steps:

Step 1: Expand the Coordinator node in the editor. This reveals the default set of features for the Coordinator,
ZDO endpoint, and ZDO servers.

Step 2: Click on the RF Channels element to modify the channel mask.

There are 16 channels available, numbered 11 to 26, which are now shown in the Properties tab. A single
channel or a set of channels can be selected for the channel mask, as required.

Step 3: In the Properties tab, set the desired channel(s) to true (by right-clicking on the value and using the
drop-down box).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
294 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Figure 21. Channel Mask Selection

Step 4: Click to select the Node Power Descriptor.

Step 5: Edit the properties in the Properties tab, as required.

13.4.3.1 To add a new endpoint

Step 1: Right-click on the Coordinator node and select New Child > End Point from the drop-down menu.

Step 2: Edit the properties in the Properties tab to set Name and Profile for the endpoint (the profile is
selected from the drop-down box).

Step 3: Repeat Steps 1 and 2 for as many endpoints as are required.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
295 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Figure 22. Endpoint Properties

13.4.3.2 To add an APDU

At least one APDU is required before an endpoint can send or receive data. The same APDU can be used to
send and receive data, or different APDUs can be set up for send and receive - this allows control of buffering
and memory resources, and is the decision of the application designer.

Step 1: Right-click on PDU Manager and select New Child > APDU from the drop-down menu.

Step 2: Edit the properties in the Properties tab to set Name, Instances (number of) and Size (of each
instance - this should be set to the size of the largest APDU to be received).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
296 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

13.4.3.3 To add input and output clusters to an endpoint

To add input and output clusters to an endpoint

Step 1: Right-click on the endpoint and select New Child > Input Cluster or New Child > Output Cluster, as
required, from the drop-down menu.

Step 2: Edit the properties in the Properties tab to set Cluster - select from the available clusters in the drop-
down list.

Step 3: Edit the Rx APDU or Tx APDU property to assign an APDU to the cluster - select from the available
APDUs in the drop-down list.

To receive data, a cluster must have an assigned APDU. The same cluster can be both an input and output
cluster, i.e. it will both send and receive data.

When an endpoint with an output cluster sends data, the receiving endpoint must have an input cluster in order
to receive the data, otherwise the stack will reject it and will not notify the receiving endpoint. However, the
Default cluster can be added to the endpoint in order to deal with received data that is destined for input clusters
not supported by the endpoint (see the Note below this procedure).

Step 4: Repeat Step 1 to Step 3 to add as many clusters as are required for the endpoint.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
297 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Step 5: Repeat Step 1 to Step 4 for Routers and End Devices, as required.

Note: In the above procedure, you may want to add the Default cluster (with a Cluster ID of 0xFFFF) as an
input cluster. The inclusion of the Default cluster means that received messages that were intended for input
clusters not supported by the endpoint will still be passed to the application. The messages must, however,
come from defined application profiles, otherwise they are discarded.

13.4.4 Setting advanced device parameters

You can set the advanced device parameters (detailed in Section 12.7) for a device as follows:

Step 1: Click on the relevant device (for example, Coordinator) in the Resource Set pane.

Step 2: Click on the Advanced Device Parameters button in the tool bar of the lower pane (indicated below).

Step 3: Edit the relevant parameters in the Properties tab of the lower pane.

Step 4: Save your settings.

The ZigBee PRO R22 version of the stack allows the presence of multiple MAC interfaces. This is to support
both 2.4G and 868 MHz frequency bands using the single ZigBee stack. To address this, a MAC interface table
needs to be configured in the ZPS Configuration diagram.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
298 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

The MAC interface list can be found as an option for the node, for example, if you have ZigBee network with a
router node. You can select the router node and press the right mouse button to provide the options. The MAC
interface list can be found under New Child > Mac Interface List.

After adding the MAC interface list, select and right-click on the MAC interface list to provide the options. The
MAC interface can be found under New Child > MAC Interface.

After adding the MAC interface, the properties can be updated. The default is 2.4G. This default can be kept.
The “Router Allowed” properties should be set to “true”.

Note: Users should edit the advanced device parameters in order to change the Extended PAN ID (APS
Use Extended PAN ID parameter) and the maximum number of children of the Coordinator or Router (Active
Neighbor Table Size parameter) from the default values - see Section 6.1.1 and Section 6.1.2.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
299 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

14 Appendix A: Handling stack events

The NXP ZigBee PRO stack events are listed below (they are detailed in Chapter 11.1):

ZPS_EVENT_NONE
ZPS_EVENT_APS_DATA_INDICATION
ZPS_EVENT_APS_DATA_CONFIRM
ZPS_EVENT_APS_DATA_ACK
ZPS_EVENT_NWK_STARTED
ZPS_EVENT_NWK_JOINED_AS_ROUTER
ZPS_EVENT_NWK_JOINED_AS_ENDDEVICE
ZPS_EVENT_NWK_FAILED_TO_START
ZPS_EVENT_NWK_FAILED_TO_JOIN
ZPS_EVENT_NWK_NEW_NODE_HAS_JOINED
ZPS_EVENT_NWK_DISCOVERY_COMPLETE
ZPS_EVENT_NWK_LEAVE_INDICATION
ZPS_EVENT_NWK_LEAVE_CONFIRM
ZPS_EVENT_NWK_STATUS_INDICATION
ZPS_EVENT_NWK_ROUTE_DISCOVERY_CONFIRM
ZPS_EVENT_NWK_POLL_CONFIRM
ZPS_EVENT_NWK_ED_SCAN
ZPS_EVENT_ZDO_BIND
ZPS_EVENT_ZDO_UNBIND
ZPS_EVENT_ZDO_LINK_KEY
ZPS_EVENT_BIND_REQUEST_SERVER
ZPS_EVENT_ERROR
ZPS_EVENT_APS_INTERPAN_DATA_INDICATION
ZPS_EVENT_APS_INTERPAN_DATA_CONFIRM
ZPS_EVENT_TC_STATUS

These events are handled by the following stack-supplied callback function:

void APP_vGenCallback(uint8 u8Endpoint, ZPS_tsAfEvent *psStackEvent);

The stack populates psStackEvent with a pointer to one of the above events, when it occurs.

Note:

• The above callback function must be incorporated in your application code, otherwise your application will not
compile.

• You are recommended to push the stack events onto a message queue for delayed processing rather than
process the event in the callback function.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
300 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

15 Appendix B: Application design notes

This Chapter describes information and recommendations useful to designers who are incorporating non-
routine operations in their applications. The topics covered are:

• Section 15.1
• Section 15.2
• Section 15.3
• Section 15.4
• Section 15.5
• Section 15.6
• Section 15.7

15.1 Fragmented data transfers
The send ‘with acknowledgment’ functions (ZPS_eAplAfUnicastAckDataReq() ,
ZPS_eAplAfUnicastIeeeAckDataReq() , and ZPS_eAplAfBoundAckDataReq()) allow a large data packet to
be sent that may be fragmented into multiple messages/ frames during transmission. As a general rule, one of
these two functions should be used when sending a data packet with a payload size greater than 80 bytes. It is
important to note, however, that the use of APS security will reduce this limit, as payload bytes are taken up by
security data.

The processes of fragmentation at the sender and de-fragmentation at the receiver are transparent to the
applications at the two ends, but the points described in the sub-sections below should be noted.

Note:

1. Fragmentation is described further in Section 15.2.2: in connection with fragmented data transfers to
sleeping End Devices.

2. The ZigBee network parameters referenced in this section are configured using the ZPS Configuration
Editor and are described in Chapter 13, "ZigBee Network Parameters". When setting up the APDUs
to handle Rx fragmentation, care must be taken to ensure that the configuration setting in the ZPS
Configuration Editor is sized to be able to handle 3* Tx Fragments.

15.1.1 Enabling/disabling fragmentation

In order to allow fragmented data transfers between two nodes, you must appropriately configure two ZigBee
network parameters:

• Set the parameter Maximum Number of Transmitted Simultaneous Fragmented Messages to a non-zero
value on the sending node, to allow transmitted messages to be fragmented.

• Set the parameter Maximum Number of Received Simultaneous Fragmented Messages to a non-zero value
on the receiving node, to allow received fragmented messages to be re-assembled.

Note: Setting either of these parameters to zero would disable the corresponding fragmentation feature but
reduce the size of your compiled application code.

15.1.2 Configuring acknowledgments

You can configure how acknowledgments are generated during a fragmented data transfer by setting the
ZigBee network parameter APS Max Window Size. This parameter must be set to the same value on the
source and destination nodes. The parameter determines the number of fragments to be transferred before an
acknowledgment is generated. For example, if a data packet is divided into 6 fragments and this parameter is
set to 3, an acknowledgment will be generated after the third fragment and after the sixth fragment.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
301 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Note: Setting this parameter to a low value results in a high level of network traffic, since a large number of
acknowledgment packets are sent.

The acknowledgment for a group of fragments contains an indication of any missing fragments from the group,
thus requesting the missing fragment(s) to be re-sent.

15.1.3 Acknowledgment timeout

A timeout of approximately 1600 ms is applied to each acknowledgment, measured from the time at which
the last data fragment in the relevant group was transmitted - if no acknowledgment is received within this
timeout period, the entire group of fragments is automatically re-sent. Up to 3 more re-tries can subsequently
be performed. For a fragmented data transfer, the time that elapses before a completely unacknowledged
transmission is abandoned is difficult to estimate, since this time depends on the number of fragments, the
network parameter APS Max Window Size and the network parameter APS Inter-frame Delay (time between
transmissions of consecutive fragments).

15.2 Sending data to sleeping end devices
As described in Section 6.5.3, data sent to a sleeping End Device is buffered in the node’s parent until the End
Device collects the data through a polling mechanism, typically on waking from sleep. It is important that the
polling interval is not too long, as the buffered data is discarded after 7 seconds. In addition, there is limited
buffering space in the parent and the buffers are shared by all the children of the parent. Therefore, applications
should be designed in such a way that data is only sent to a sleeping End Device when it is either awake or will
wake in a timely manner to collect the data from its parent.

The following issues should also be considered when sending data to a sleeping End Device using one of the
send ‘with acknowledgment’ functions:

• ZPS_eAplAfUnicastAckDataReq()
• ZPS_eAplAfUnicastIeeeAckDataReq()
• ZPS_eAplAfBoundAckDataReq()

Note: The ZigBee network parameters referenced in this appendix are configured using the steps described in
Chapter 13, ZPS Configuration Editor.

15.2.1 Acknowledged data transmission to sleeping end device

When data is sent and an acknowledgment is required from the receiver, a timeout of approximately 1600 ms is
applied to the acknowledgment. If no acknowledgment is received by the sender within this timeout period, the
data is automatically re-sent. Up to 3 more re-tries can subsequently be performed, totalling just over 3 seconds
before the data transfer is finally abandoned.

In the case of data sent to a sleeping End Device, the acknowledgment is generated by the End Device after
collecting the data from its parent. Thus, if the data is not collected within the acknowledgment timeout period,
the data is re-sent to the End Device (via its parent).

Note: There can be a case when the buffered data is collected by the End Device after the final re-try by the
sender but before the data is discarded by the parent (between approximately 3 and 7 seconds after the initial
transmission). In such cases, the acknowledgment that is eventually generated by the End Device is ignored by
the sender, since the transaction has already timed out and terminated.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
302 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

15.2.2 Fragmented data transmission to sleeping End Device

The Section 6.5.1 and Section 15.1 explain how the send ‘with acknowledgment’ functions can be used to send
large data packets that require to be fragmented into multiple NPDUs during transmission. Therefore, when
sending a fragmented data packet to a sleeping End Device, the issues described in Section 15.2.1 apply.

In such a data transfer, the End Device should aim to collect all buffered data fragments from its parent before
the transfer has completely timed out on the sender. Once the sender has abandoned the transaction, it does
not respond to any acknowledgments requesting missing fragments (see Appendix B.1).

Once the End Device starts to receive fragmented data, it stays awake until the transaction is complete and
runs its own poll timer to automatically collect each fragment - the polling period for this timer is set through the
ZigBee advanced device parameter APS Poll Period. This poll timer runs for the duration of the fragmented
transaction and then stops. The responsibility for polling then returns to the application.

Sending fragmented data to a sleeping End Device is likely to result in duplicate fragments of the message
being sent. A list of the last few fragments received, called the APS Duplicate table, is maintained in the End
Device. This table allows new fragments to be compared with previous fragments and duplicates identified.
The maximum number of entries (fragments) in this table can be configured through the network parameter
APS Duplicate Table Size. This table size should not be made too small, as a short table prevents duplicate
fragments from being caught (4 may be a suitable value). This value should be considered in conjunction
with the value of the network parameter APS Persistence Time. This parameter represents the time for which
resources associated with a message are retained after the complete message has been received. Once the
resources have been released, they may be used for a new transaction) - during this period, any duplicate
fragments that are received are ignored.

15.3 Clearing stack context data before a rejoin
If a node rejoins the same secured network (with ZigBee PRO security enabled) but its stack context data was
cleared before the rejoin (by calling NvErase()), data sent by the node will be rejected by the destination node
since the frame counter has been reset on the source node - frame counters are described in Section 2.8 and
Appendix A.

• Sent data will be accepted again by the destination node when the frame counter for the source node reaches
its last count known before the rejoin. Therefore, you are not recommended to clear the stack context data
before a rejoin.

However, it is worth noting that frame counters are reset across the entire network when a new network key is
broadcast by the Trust Centre using the function ZPS_eAplZdoTransportNwkKey() - see Section 6.8.4.
Thus, if stack context data is cleared before a rejoin, the frame counter problem can be avoided by broadcasting
a new network key from the Trust Centre (normally the Coordinator) immediately after the rejoin.

To restore the stack to a default state and not clear the frame counters ZPS_vDefaultStack should be used -
see Section 7.1.1.

15.4 Beacon filtering guidelines
A filter can be introduced for filtering beacons in network searches (on a Router or End Device). Beacons can
be filtered on the basis of Extended PAN ID (EPID), LQI value and device joining status/capacity (see below).
The filter can be applied using the function ZPS_bAppAddBeaconFilter().

If required, the above function must be called immediately before ZPS_eAplZdoDiscoverNetworks(),
ZPS_eAplZdoRejoinNetwork() or ZPS_eAplZdoStartStack().

A tsBeaconFilterType structure is supplied to the ZPS_bAppAddBeaconFilter()

function in order to specify the details of the filter to be implemented, including:

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
303 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

• A blacklist or whitelist of networks in terms of a list of EPIDs.
• The PAN ID of the network from which acceptable beacons should come.
• The minimum LQI value of an acceptable beacon.
• Flags indicating the properties on which beacons will be filtered, which include:

– LQI value of beacon.
– Permit Join enabled on sending device.
– Capacity of sending device to accept Router children.
– Capacity of sending device to accept End Device children.

After each discovery or rejoin, the flags are cleared while all other fields of the structure remain intact. The
structure is detailed in Section 8.2.3.5.

The following general guidelines should be followed in using beacon filters:

• Do not implement a filter unless attempting a join, as this would prevent some stack operations from working
correctly.

• Do not enable a blacklist and whitelist at the same time.
• Do not declare your filter structure as a local variable in a function, as it needs to exist for the duration of the

discovery.

The following guidelines are relevant to network rejoins and associations.

15.4.1 Network rejoin

• Do set up a whitelist containing a single EPID corresponding to the network that the node is to rejoin (if only
one network is of interest) and/or the PAN ID of this network.

• Do set up an LQI filter to reject distant beacons, if required.
• Do not enable filtering on Permit Join or Router/End Device Capacity.

15.4.2 Association

• Do set up an LQI filter to reject distant beacons, if required.
• Do filter on the Permit Join status to only find potential parents and networks that are accepting association

requests.
• Do filter on Router/End Device Capacity, if required, depending on device type.

Note: A blacklist can be built up over several attempts to discover and associate, by keeping on adding to the
array of EPIDs, as each network is rejected.

15.5 Table configuration guidelines
This section provides guidelines on configuring various tables used by the ZigBee PRO stack. These tables can
be configured through ZigBee network parameters in the ZPS Configuration Editor. The tables are sized, by
default, to support a network of up to 250 nodes. The table sizes can be increased to support more nodes, but
this will be at the expense of RAM and/or Flash usage.

The tables and their configuration are individually described in the sections below, which reference to the
ZigBee network parameters used to configure the table sizes (the network parameters are detailed in Chapter
12).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
304 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

15.5.1 Neighbor table

The Neighbor table on a routing node (Router or Coordinator) holds information about the node’s immediate
neighbors:

• The first entry in the table contains information about the node’s parent.
• Part of the table holds information about child nodes which have joined the network through the local device.
• The rest of the table holds information about nodes which are neither children nor the parent (these ‘other’

nodes are only relevant to Mesh networks).

The Neighbor table size is, by default, set to 26 - this is the minimum size required for a ZigBee-Compliant
Platform. The table size may be increased through the parameter Active Neighbor Table Size to reflect the
density of the network. However, increasing the table size uses more RAM. Increasing the Neighbor table size
beyond 26 also results in an extra link status packet since one of these packets can accommodate a maximum
of 26 neighbors. Thus it doubles the traffic for these periodic packets.

The first two parts of the Neighbor table, for the device’s parent and children, form a sub-table that is persisted
in Flash. This sub-table must not occupy more than two-thirds of the Neighbor table. Since this sub-table
contains child entries, the size of the sub-table determines the number of children that the device is allowed to
have - the maximum number of children is one less than the sub-table size.

The default size for the sub-table is 5, allowing up to 4 child nodes, but the size can be changed through the
parameter Child Table Size (which corresponds to the total number of sub-table entries including the parent’s
entry, not just the child entries).

Note: Increasing the sub-table size uses more Flash for persisted data.

15.5.2 Address Map table

The Address Map table on a node is used to keep a record of the address-pairs of network nodes with which
the local node needs to communicate directly - that is, the IEEE/MAC address and network address of each of
these nodes. In fact, an Address Map table entry only contains an index to an entry in the MAC Address table,
where the actual addresses of the node are stored (see Section 15.5.3). The population of these tables is done
as the result of device announcement messages.

The default size of the Address Map table is 10, but the size can be changed through the parameter Address
Map Table Size. The Address Map table is fully persisted in Flash. Therefore, increasing the size of this table
will impact both RAM and Flash usage.

15.5.3 MAC Address table

The MAC Address table on a node is used to store the address-pairs of other network nodes - that is, the
IEEE/MAC address and network address of each of these nodes. The entries in the MAC Address table are
referenced from entries of both the Neighbor table and Address Map table. Therefore, the MAC Address table
should be sized according to the combined sizes of the Neighbor table and Address Map table.

The default size of the MAC Address table is 36, but the size can be changed through the parameter Maximum
Number of Nodes. The MAC Address table is fully persisted in Flash. Therefore, increasing the size of this table
impacts both RAM and Flash usage.

15.5.4 Routing table

A Routing table is held by the Coordinator and Router nodes to store routing information to other nodes in the
network.

The default size of the Routing table is 70, which should be sufficient for most applications, but the size
can be changed through the parameter Routing Table Size. The table size should be increased if routing
JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
305 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

bottlenecks are observed. The Coordinator needs to store routes to all the nodes in the network if it is required
to communicate with every node. In this case, the Routing table size should be increased to the size of the
network.

The Routing table is not persisted. Therefore, any increase only affects the RAM usage.

15.5.5 Broadcast Transaction table

The Broadcast Transaction table is used for the origination, processing and passive acknowledgment of
broadcast transmissions. The minimum required size of this table for a ZigBee-Compliant Platform is 9.
However, an application that produces a large number of broadcasts may need a larger table. The size of the
table can be set through the parameter Broadcast Transaction Table Size.

15.5.6 Route Discovery table

The Route Discovery table is used to hold temporary details of a route discovery transaction. The table size
dictates how many individual route discoveries can occur on the local node at a given time. The default size
of the Route Discovery table is 2, but the size can be changed through the parameter Route Discovery Table
Size. The default value severely restricts the number route discoveries and hence broadcasts on the network.
Increasing the table size also requires increases in the Routing table and Broadcast Transaction table sizes.

The Route Discovery table is not persisted. Therefore, any increase only affects the RAM usage.

15.5.7 Discovery table

A Discovery table is held by the Router and End Device nodes to store the results of a channel scan when
searching for a network to join. The default size of the Discovery table is 8, but the size can be changed through
the parameter Discovery Neighbor Table Size.

15.5.8 Route Record table

The Route Record table is only relevant to a device, which will be the concentrator in a network, if many-to-one
routing is implemented. This table replaces the Routing table in the node.

• The size of the Route Record table can be set through the parameter Route Record Table Size.
• In the concentrator node, this table size should be set to the size of the network. Since this table then replaces

the Routing table in the node, the Routing table size should be set to 1 (see Appendix B.5.4).
• In all other network nodes, the size of the Route Record table should be set to 1.

15.6 Received message queues
All messages received ZPS_msgMcpsInd on a network node are pushed into one of the following two queues:

• ZPS_msgMcpsDcfm
• ZPS_msgMcpsInd

These queues must be created by the application using the function ZQ_vZQueueCreate(). An example code is
described in Section 6.9.1.2.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
306 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

15.6.1 ZPS_msgMcpsDcfm

All IEEE 802.15.4 MAC data deferred confirm events are added to this queue. The default size of this queue
is 8 but a different queue size can be set when the queue is created. The queue can overflow if there is heavy
network traffic.

15.6.2 ZPS_msgMcpsInd

All IEEE 802.15.4 MAC data packets are added to this queue. The default size of this queue is 24 but a different
queue size can be set when the queue is created. The queue can overflow if there is heavy network traffic.

15.7 Noise threshold for forming a network
The ZigBee PRO stack provides a mechanism for forming a new network in the quietest IEEE802.15.4 radio
channel. The Coordinator (centralized network) or Router (distributed network) that forms the network performs
a channel scan to listen for activity from other local networks.

During the channel scan, the activity in each channel is assigned a noise level in the range 0 to 254. This result
is compared with a noise level threshold, which is defined by the NIB value u8VsFormEdThreshold (which
is part of the structure ZPS_tsNwkNibInitialValues). If the measured noise level for a channel is above
this threshold, the channel is excluded from further consideration. Therefore, if all the channels in the scan are
noisier than the threshold allows, no network is formed.

The stack then re-scans the channels that passed the noise threshold test (if any) and selects the one with the
lowest beacon count in which to form the network.

Note:

• This assessment takes into account IEEE802.15.4 beacons only and no activity from networks based on other
systems, such as Wi-Fi.

• The assessment is based on beacons only and does not consider the noise levels of the shortlisted channels.

15.7.1 Default Behavior

To avoid the situation in which no network is formed, the default value of u8VsFormEdThreshold is 0xFF,
which is a special value and not a noise threshold. In this case, the network is always formed in the channel
with the lowest IEEE802.15.4 beacon activity (no noise level assessment is performed).

15.7.2 Customizing the scan

You can implement network formation based on the noise level threshold, as described above, by setting
u8VsFormEdThreshold to an appropriate value in the range 0 to 254. In the following code fragment, a noise
level threshold of 100 is set:

ZPS_psNwkNibGetHandle(ZPS_pvAplZdoGetNwkHandle())->u8VsFormEdThreshold = 100

Thus, in the above case, all channels with a noise level above 100 will be rejected.

If no suitable channel is found and no network formed, the application can dynamically increase the value of
u8VsFormEdThreshold and initiate another scan.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
307 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

16 Appendix C: Implementation of frame counters

Frame counters are used to prevent message replay attacks (see Section 2.10, "Section 2.10"). Each message
sent across the network carries a frame count. It is inserted by the sending node and is part of a sequence of
frame counter values for messages from this node.

Two types of frame counter exist:

• NWK frame counters: These are implemented automatically at the NWK layer of the stack and are used in
all network communications.

• APS frame counters: These are optional and applied by the APS layer of the stack to one or more specific
source/destination links.

The rest of this section describes the standard NWK frame counters. Detailed information on NWK and APS
frame counters can be found in the ZigBee 3.0 specification.

A node locally maintains two types of NWK frame counters:

• Outgoing frame counter: A single frame counter for all sent messages is maintained in RAM. It is
incremented every time a message is transmitted (to any destination node) and its value is inserted in the
message. Its value can be persisted in non-volatile memory - the NXP method of persisting this counter is
described later.

• Incoming frame counters: A frame counter is maintained in RAM for every node in the local Neighbor
table. It records the frame count contained in the last message received from this node. Persisting the frame
counters for all neighbors would use too much space in non-volatile memory. Hence, its value is not persisted.
On a power-cycle or reset, these values are all reset to 0.

If a destination node receives a message containing a frame count which is less than the locally held incoming
frame counter value for the same source node (corresponding to the frame count of the previous message
received from the source node), it rejects the message. The receiving node informs the rest of the network by
sending out a Network Status command with a status value of 0x11 (bad frame counter).

A problem might occur if the outgoing frame counter is not persisted and reverts to 0 when the node is reset.
This would result in messages being sent with a frame count lower than the value expected by the destination
node(s). Consequently, the messages from this node would be rejected.

Persisting the outgoing frame counter is therefore advisable, but doing this on every update of the counter
causes excessive Flash wear. To minimize this wear, the NXP stack software only persists the outgoing frame
counter every time it reaches a multiple of 1024. If the node is reset, the current frame counter value is likely to
be greater than the persisted value, so 1024 is added to the recovered value. This ensures that the outgoing
frame counter is always larger than the value in the last message sent before the reset.

For example, consider a case when the last message transmitted had a frame count of 4000 and then the
node is reset. In such a case, the last persisted value of 3072 is recovered but 1024 is added to it to make an
outgoing frame counter of 4096 (which will be persisted).

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
308 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

17 Appendix D: storing applications in device flash memory

During start-up, the device bootloader (provided in internal ROM) searches for a valid application image in
internal Flash memory. If it is present, then the device boots directly from Flash memory. If no image is found,
the bootloader drops into In System Programming (ISP) mode.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
309 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

18 Appendix E: Glossary of terms

Term Description

Address A numeric value that is used to identify a network node. In ZigBee, the device’s 64-bit IEEE/
MAC address or 16-bit network address is used.

AIB APS Information Base: A database for the Application Support (APS) layer of the ZigBee
stack, containing attributes concerned with system security.

APDU Application Protocol Data Unit: Part of a wireless network message that is handled by the
application and contains user data.

API Application Programming Interface: A set of programming functions that can be incorporated
in application code to provide an easy-to-use interface to underlying functionality and
resources.

APS Application Support: A sub-layer of the Application layer of the ZigBee stack, relating to
communications with applications, binding and security.

Application The program that deals with the input/output/processing requirements of the node, as well as
high-level interfacing to the network.

Application Profile A collection of device descriptors that characterize an application for a particular market sector.
An application profile can be public or private. A public profile is identified by a 16-bit number,
assigned by the ZigBee Alliance.

Attribute A data entity used by an application, for example, a temperature measurement. It is part of a
‘cluster’ along with a set of commands which can be used to pass attribute values between
applications or modify attributes.

Binding The process of associating an endpoint on one node with an endpoint on another node, so
that communications from the source endpoint are automatically routed to the destination
endpoint without specifying addresses.

Channel A narrow frequency range within the designated radio band - for example, the IEEE 802.15.4
2400-MHz band is divided into 16 channels. A wireless network operates in a single channel
which is determined at network initialization.

Child A node which is connected directly to a parent node and for which the parent node provides
routing functionality. A child can be an End Device or Router. Also see Parent.

Cluster A collection of attributes and commands associated with the endpoint for an application.
The commands are used to communicate or modify attribute values. A cluster has input and
output sides. The output cluster issues a command which is received and acted on by an
input cluster.

Context Data Data which reflects the current state of the node. The context data must be preserved during
sleep (of an End Device).

Coordinator The node through which a network is started, initialized and formed. The Coordinator acts as
the seed from which the network grows, as it is joined by other nodes. The Coordinator also
usually provides a routing function. All networks must have one and only one Coordinator.

End Device A node which has no networking role (such as routing) and is only concerned with data input/
output/processing. As such, an End Device cannot be a parent but can sleep to conserve
power.

Endpoint A software entity that acts as a communications port for an application on a ZigBee node. A
node can support up to 240 endpoints, numbered 1 to 240. Two special endpoints are also
supported. The endpoint 0 is used by the ZDO and endpoint 255 is used for a broadcast to
all endpoints on the node.

Table 77. Terms and their description

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
310 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Term Description

Extended PAN ID (EPID) A 64-bit identifier for a ZigBee PRO network that is assigned when the net- work is started. A
value can be pre-set or, alternatively, the IEEE/MAC address of the Coordinator can be used
as the EPID.

IEEE 802.15.4 A standard network protocol that is used as the lowest level of the ZigBee software stack.
Among other functionality, it provides the physical interface to the network’s transmission
medium (radio).

IEEE/MAC Address A unique 64-bit address that is allocated to a device at the time of manufacture and is
retained by the device for its lifetime. No two devices in the world can have the same IEEE/
MAC address.

Joining The process by which a device becomes a node of a network. The device transmits a joining
request. If this is received and accepted by a parent node (Coordinator or Router), the device
becomes a child of the parent. Note that the parent must have “permit joining” enabled.

Mesh Network A wireless network topology in which all routing nodes (Routers and the Coordinator) can
communicate directly with each other, provided that they are within radio range. This allows
optimal and flexible routing, with alternative routes if the most direct route is not available.

Network Address A 16-bit address that is allocated to a ZigBee node when it joins a network. The Coordinator
always has the network address 0x0000. In IEEE
802.15.4 terminology, it is called the short address.

NIB NWK Information Base: A database containing attributes needed in the management of the
Network (NWK) layer of the ZigBee stack.

Node Descriptor A set of information about the capabilities of a node.

Node Power Descriptor A set of information about a node’s current and potential power supply.

NPDU Network Protocol Data Unit: The transmitted form of a wireless network message
(incorporates APDU and header/footer information from stack).

PAN ID Personal Area Network Identifier: This is a 16-bit value that uniquely identifies the network -
all neighboring networks must have different PAN IDs.

Parent A node which allows other nodes (children) to join the network through it and provides a
routing function for these child nodes. A parent can be a Router or the Coordinator. Also see
Child.

Router A node which provides routing functionality (in addition to input/output/processing) if used as
a parent node. Also see Routing.

Routing The ability of a node to pass messages from one node to another, acting as a stepping stone
from the source node to the target node. Routing functionality is provided by Routers and
the Coordinator. Routing is handled by the network level software and is transparent to the
application on the node.

Simple Descriptor A set of assorted information about a particular application/endpoint.

Sleep Mode An operating state of a node in which the device consumes minimal power. During sleep, the
only activity of the node may be to time the sleep duration to determine when to wake up and
resume normal operation. Only End Devices can sleep.

Stack The hierarchical set of software layers used to operate a system. The high- level user application
is at the top of the stack and the low-level interface to the transmission medium is at the bottom
of the stack.

Stack Profile The set of features implemented from the ZigBee specification - that is, all the mandatory
features together with a subset of the optional features. The ZigBee Alliance define two Stack
Profiles for use with public Application Profiles - ZigBee and ZigBee PRO.

Table 77. Terms and their description...continued

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
311 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Term Description

UART Universal Asynchronous Receiver Transmitter: A standard interface used for cabled serial
communications between two devices (each device must have a UART).

User Descriptor A user-defined description of a node (for example, “KitchenLight“).

ZigBee Base Device A framework for the use of ZigBee device types that provides basic functionality such
as commissioning. Its functionality is defined in the ZigBee Base Device Behavior (BDB)
specification from the ZigBee Alliance.

ZigBee Certified Product An end-product that uses ZigBee Compliant Platforms and public Application Profiles, and
which has been tested for ZigBee compliance and subsequently authorized to carry the
ZigBee Alliance logo.

ZigBee Cluster Library
(ZCL)

A collection of clusters that can be individually employed in ZigBee devices, as required, to
implement the functionality of a device.

ZigBee Compliant Platform A component (such as a module) that has been tested for ZigBee compliance and authorized
to be used as a building block for a ZigBee end-product.

ZigBee Device Objects
(ZDO)

A special application which resides in the Application Layer on all nodes and performs
various standard tasks (for example, device discovery, binding). The ZDO communicates via
endpoint 0.

Table 77. Terms and their description...continued

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
312 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

19 Revision history

Table 78 summarizes the changes to this document.

Document ID Release Date Description

JNUG3130_v.4.2 24 January 2025 Added support for MCXW71 and MCXW72 devices

JNUG3130_v.4.1 2 March 2023 Added support for K32W1 devices

JNUG3130_v.4 29 September 2022 Updated the document template. Other minor updates

JNUG3130_v.3.0 6 December 2021 • Added new values in Section 11.2.5, "Extended error codes".
• Updated the document template.

JNUG3130_v.2.0 18 November 2019 Updated for K32W\JN5189

JNUG3130_v.1.0 19 June 2018 First release

Table 78. Document revision history

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
313 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

20 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2018-2025 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
314 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.
Bluetooth — the Bluetooth wordmark and logos are registered trademarks
owned by Bluetooth SIG, Inc. and any use of such marks by NXP
Semiconductors is under license.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
315 / 322

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Matter, Zigbee — are developed by the Connectivity Standards Alliance.
The Alliance's Brands and all goodwill associated therewith, are the
exclusive property of the Alliance.

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
316 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

Contents
1 Preface ..2
1.1 Organization of this manual2
1.2 Conventions ... 3
1.3 Acronyms and abbreviations 3
1.4 Related documents ..4
1.5 Support resources ... 4
1.6 Trademarks ..4
1.7 Chip compatibility .. 4
2 ZigBee overview .. 5
2.1 ZigBee features ... 5
2.2 ZigBee 3.0 ... 5
2.3 ZigBee network nodes6
2.4 ZigBee PRO network topology 7
2.5 Ideal applications for ZigBee 7
2.6 Wireless radio frequency operation 8
2.7 Battery-powered components9
2.8 Easy installation and configuration 9
2.9 Highly reliable operation 10
2.10 Secure operating environment11
2.10.1 Access control lists ..11
2.10.2 Key-based encryption 11
2.10.3 Frame counters ... 11
2.11 Co-existence and interoperability 12
2.12 Device types and clusters 12
2.12.1 Clusters ..12
2.12.2 Device types .. 13
3 ZigBee PRO architecture and operation 14
3.1 Architectural overview14
3.2 Network level concepts15
3.2.1 ZigBee nodes .. 15
3.2.1.1 Coordinator .. 15
3.2.1.2 Router .. 15
3.2.1.3 End Device .. 15
3.2.2 Network topology ...16
3.2.3 Neighbor tables ... 17
3.2.4 Network addressing ...17
3.2.5 Network identity ... 18
3.3 Network creation ..18
3.3.1 Starting a Network (Coordinator) 19
3.3.1.1 Set EPID and Coordinator address 19
3.3.1.2 Select radio channel ..19
3.3.1.3 Set the PAN ID of the network 19
3.3.1.4 Receive join requests from other devices 19
3.3.2 Joining a network (Routers and End

Devices) ...19
3.3.2.1 Search for network .. 19
3.3.2.2 Select parent ... 19
3.3.2.3 Request joining ..20
3.3.2.4 Receive response ..20
3.3.2.5 Learn network IDs ... 20
3.4 Application level concepts 20
3.4.1 Multiple applications and endpoints20
3.4.2 Descriptors ...20
3.4.2.1 Simple descriptor ...21
3.4.2.2 Node descriptor ... 21
3.4.2.3 Node power descriptor 21

3.4.3 Application profiles ...22
3.4.4 Device types .. 22
3.4.5 Clusters and attributes22
3.4.6 Discovery ... 23
3.4.6.1 Device discovery ... 23
3.4.6.2 Service discovery ...24
3.4.7 ZigBee Device Objects (ZDO) 24
3.5 Network routing ... 24
3.5.1 Message addressing and propagation25
3.5.2 Route discovery ...25
3.5.3 ‘Many-to-one’ routing 26
3.6 Network communications27
3.6.1 Service discovery ...27
3.6.2 Binding ...28
3.7 Detailed architecture ..30
3.7.1 Software levels .. 31
3.7.1.1 Application (APL) Layer31
3.7.1.2 Network (NWK) layer31
3.7.1.3 Physical/Data link layers31
4 ZigBee Stack Software32
4.1 Software overview ... 32
4.1.1 ZigBee PRO APIs ..32
4.1.2 JCU APIs ... 33
4.2 Summary of API functionality 33
5 Application development overview35
5.1 Development environment and resources 35
5.1.1 Development platform35
5.1.1.1 MCUXpresso ..35
5.1.2 ZigBee 3.0 SDK ...35
5.2 Zigbee application support resources36
5.3 Development phases 36
6 Application coding with ZigBee PRO

APIs ...37
6.1 Forming and joining a network 39
6.1.1 Starting the Coordinator 39
6.1.1.1 Setting the radio channel for the network 39
6.1.1.2 Setting the Extended PAN ID for the

network .. 39
6.1.1.3 Accepting join requests from other devices

(if enabled) ...40
6.1.2 Starting Routers and End Devices40
6.1.2.1 Searches for a network to join40
6.1.2.2 Selects a network to join 41
6.1.2.3 Submits a join request to network 41
6.1.2.4 Records the network's EPID for application

use ... 41
6.1.2.5 Router accepts join requests from other

devices (if enabled) ... 41
6.1.3 Pre-determined parents 42
6.2 Discovering the network 42
6.2.1 Obtaining network properties43
6.2.2 Finding compatible endpoints 43
6.2.3 Obtaining and maintaining node addresses43
6.2.3.1 Obtaining IEEE address 44
6.2.3.2 Obtaining network address44
6.2.4 Obtaining node properties 45

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
317 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

6.2.4.1 Node descriptor ... 45
6.2.4.2 Power descriptor ..45
6.2.4.3 Simple descriptor ...46
6.2.4.4 User Descriptor ..46
6.2.4.5 Complex descriptor ..46
6.2.4.6 Active endpoints .. 46
6.2.4.7 Primary discovery cache 47
6.2.4.8 Servers ...47
6.2.5 Maintaining a primary discovery cache47
6.2.6 Discovering Routes ..48
6.3 Managing group addresses 48
6.4 Binding ...49
6.4.1 Setting up bind request server 49
6.4.1.1 Simultaneous requests 49
6.4.1.2 Time interval .. 49
6.4.2 Binding endpoints .. 49
6.4.3 Unbinding endpoints ..50
6.4.4 Accessing binding tables 50
6.5 Transferring data ... 51
6.5.1 Sending data ... 51
6.5.1.1 Unicast ...51
6.5.1.2 Broadcast ...52
6.5.1.3 Group multicast ... 52
6.5.1.4 Bound transfer ... 53
6.5.1.5 Inter-PAN transfer .. 53
6.5.2 Receiving data ...54
6.5.3 Polling for Data ..54
6.5.4 Security in data transfers55
6.6 Leaving and rejoining the network55
6.6.1 Leaving the network .. 55
6.6.2 Rejoining the network56
6.7 Return codes and extended error handling57
6.8 Implementing ZigBee security 57
6.8.1 Security levels ... 57
6.8.2 Security key types ... 58
6.8.3 Setting up ZigBee security 59
6.8.3.1 Network-level security set-up60
6.8.3.2 Application-level security set-up 61
6.8.4 Security key modification61
6.8.4.1 Network key modification62
6.8.4.2 Application link key modification62
6.9 Using support software features62
6.9.1 Message queues ... 62
6.9.1.1 General queue management62
6.9.1.2 Standard stack queues63
6.9.2 Software timers ..64
6.9.2.1 Setting up timers ... 64
6.9.2.2 Operating timers .. 64
6.9.3 Critical sections and Mutual Exclusion

(Mutex) ...64
6.9.3.1 Implementing a critical section 65
6.9.3.2 Implementing a Mutex 66
6.10 Advanced features ...66
6.10.1 End device aging ...66
6.10.1.1 Timeout period ...66
6.10.1.2 Keep-alive packets .. 67
6.10.2 Distributed security networks67
6.10.3 Filtering packets on LQI Value/Link cost68
6.10.3.1 Link cost .. 68

6.10.3.2 Packet filtering in operation 68
6.10.3.3 Packet filtering configuration69
6.10.4 Device permissions ..70
7 ZigBee Device Objects (ZDO) API 71
7.1 ZDO API functions ...71
7.1.1 Network deployment functions71
7.1.1.1 Function page ..71
7.1.1.2 ZPS_eAplZdoStartStack 72
7.1.1.3 ZPS_vDefaultStack ..73
7.1.1.4 ZPS_eAplZdoGetDeviceType 73
7.1.1.5 ZPS_eAplZdoDiscoverNetworks73
7.1.1.6 ZPS_eAplZdoJoinNetwork74
7.1.1.7 ZPS_eAplZdoRejoinNetwork 75
7.1.1.8 ZPS_eAplZdoDirectJoinNetwork75
7.1.1.9 ZPS_eAplZdoOrphanRejoinNetwork 76
7.1.1.10 ZPS_eAplZdoPermitJoining77
7.1.1.11 ZPS_u16AplZdoGetNetworkPanId 77
7.1.1.12 ZPS_

u64AplZdoGetNetworkExtendedPanId 78
7.1.1.13 ZPS_u8AplZdoGetRadioChannel 78
7.1.1.14 ZPS_eAplZdoBind ... 78
7.1.1.15 ZPS_eAplZdoUnbind 79
7.1.1.16 ZPS_eAplZdoBindGroup 80
7.1.1.17 ZPS_eAplZdoUnbindGroup 80
7.1.1.18 ZPS_ePurgeBindTable81
7.1.1.19 ZPS_eAplZdoPoll ...81
7.1.1.20 ZPS_eAplZdoLeaveNetwork82
7.1.1.21 ZPS_vNwkNibSetLeaveAllowed 83
7.1.1.22 ZPS_vNwkNibSetLeaveRejoin83
7.1.1.23 ZPS_

vSetTablesClearOnLeaveWithoutRejoin 84
7.1.1.24 ZPS_vNtSetUsedStatus84
7.1.1.25 ZPS_vNwkSendNwkStatusCommand 85
7.1.1.26 ZPS_

eAplZdoRegisterZdoLeaveActionCallback85
7.1.2 Security functions .. 86
7.1.2.1 Function page ..86
7.1.2.2 ZPS_vAplSecSetInitialSecurityState87
7.1.2.3 ZPS_eAplZdoTransportNwkKey 87
7.1.2.4 ZPS_eAplZdoSwitchKeyReq 88
7.1.2.5 ZPS_eAplZdoRequestKeyReq89
7.1.2.6 ZPS_eAplZdoAddReplaceLinkKey 90
7.1.2.7 ZPS_eAplZdoAddReplaceInstallCodes 91
7.1.2.8 ZPS_eAplZdoRemoveLinkKey91
7.1.2.9 ZPS_eAplZdoRemoveDeviceReq92
7.1.2.10 ZPS_eAplZdoSetDevicePermission93
7.1.2.11 ZPS_

bAplZdoTrustCenterSetDevicePermissions93
7.1.2.12 ZPS_

bAplZdoTrustCenterGetDevicePermissions94
7.1.2.13 ZPS_bAplZdoTrustCenterRemoveDevice94
7.1.2.14 ZPS_vTcInitFlash ... 95
7.1.2.15 ZPS_vSetTCLockDownOverride96
7.1.2.16 ZPS_psGetActiveKey 96
7.1.2.17 ZPS_vTCSetCallback 97
7.1.3 Addressing functions 98
7.1.3.1 Function page ..98
7.1.3.2 ZPS_u16AplZdoGetNwkAddr 98
7.1.3.3 ZPS_u64AplZdoGetIeeeAddr 99

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
318 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

7.1.3.4 ZPS_eAplZdoAddAddrMapEntry 99
7.1.3.5 ZPS_vPurgeAddressMap 100
7.1.3.6 ZPS_u16AplZdoLookupAddr 100
7.1.3.7 ZPS_u64AplZdoLookupIeeeAddr 100
7.1.3.8 ZPS_u64NwkNibGetMappedIeeeAddr 101
7.1.3.9 ZPS_u64GetFlashMappedIeeeAddress 101
7.1.3.10 ZPS_bNwkFindAddIeeeAddr 101
7.1.3.11 ZPS_vSetOverrideLocalIeeeAddr102
7.1.3.12 ZPS_eAplZdoGroupEndpointAdd 102
7.1.3.13 ZPS_eAplZdoGroupEndpointRemove 103
7.1.3.14 ZPS_eAplZdoGroupAllEndpointRemove 104
7.1.4 Routing functions ...104
7.1.4.1 Function page ..104
7.1.4.2 ZPS_eAplZdoRouteRequest104
7.1.4.3 ZPS_eAplZdoManyToOneRouteRequest 105
7.1.5 Object Handle functions 105
7.1.5.1 Function page ..106
7.1.5.2 ZPS_pvAplZdoGetAplHandle106
7.1.5.3 ZPS_pvAplZdoGetMacHandle106
7.1.5.4 ZPS_pvAplZdoGetNwkHandle106
7.1.5.5 ZPS_psNwkNibGetHandle107
7.1.5.6 ZPS_psAplAibGetAib107
7.1.5.7 ZPS_psAplZdoGetNib108
7.1.5.8 ZPS_u64NwkNibGetEpid108
7.1.6 Optional Cluster function 108
7.1.6.1 Function page ..108
7.1.6.2 ZPS_eAplZdoRegisterZdoFilterCallback 109
7.2 ZDO enumerations .. 109
7.2.1 Security keys (ZPS_teZdoNwkKeyState)109
7.2.2 Device types (ZPS_teZdoDeviceType) 110
7.2.3 Device permissions (ZPS_

teDevicePermissions) 110
8 Application Framework (AF) API112
8.1 AF API functions ..112
8.1.1 initialization functions112
8.1.1.1 ZPS_eAplAfInit ...112
8.1.1.2 ZPS_vAplAfSetMacCapability113
8.1.1.3 ZPS_eAplAibSetApsUseExtendedPanId 114
8.1.1.4 ZPS_vExtendedStatusSetCallback114
8.1.1.5 ZPS_bAppAddBeaconFilter 115
8.1.1.6 ZPS_eAplFormDistributedNetworkRouter 115
8.1.1.7 ZPS_eAplInitEndDeviceDistributed116
8.1.1.8 ZPS_vAplAfEnableMcpsFilter116
8.1.1.9 ZPS_vNwkLinkCostCallbackRegister 117
8.1.2 Data Transfer functions 117
8.1.2.1 ZPS_eAplAfApsdeDataReq 118
8.1.2.2 ZPS_eAplAfUnicastDataReq 119
8.1.2.3 ZPS_eAplAfUnicastIeeeDataReq 120
8.1.2.4 ZPS_eAplAfUnicastAckDataReq 121
8.1.2.5 ZPS_eAplAfUnicastIeeeAckDataReq 123
8.1.2.6 ZPS_eAplAfGroupDataReq 124
8.1.2.7 ZPS_eAplAfBroadcastDataReq 125
8.1.2.8 ZPS_eAplAfBoundDataReq126
8.1.2.9 ZPS_eAplAfBoundAckDataReq127
8.1.2.10 ZPS_eAplAfInterPanDataReq128
8.1.2.11 ZPS_u8AplGetMaxPayloadSize 129
8.1.3 Endpoint functions ... 130
8.1.3.1 ZPS_vAplAfSetEndpointState130
8.1.3.2 ZPS_eAplAfGetEndpointState 130

8.1.3.3 ZPS_eAplAfSetEndpointDiscovery 131
8.1.3.4 ZPS_eAplAfGetEndpointDiscovery132
8.1.4 Descriptor functions 132
8.1.4.1 ZPS_eAplAfGetNodeDescriptor133
8.1.4.2 ZPS_eAplAfGetNodePowerDescriptor133
8.1.4.3 ZPS_eAplAfGetSimpleDescriptor 133
8.1.5 Other functions .. 134
8.1.5.1 ZPS_vSaveAllZpsRecords134
8.1.5.2 ZPS_bAplAfSetEndDeviceTimeout134
8.1.5.3 ZPS_eAplAfSendKeepAlive135
8.2 AF structures ... 136
8.2.1 Descriptor structures136
8.2.1.1 ZPS_tsAplAfNodeDescriptor136
8.2.1.2 ZPS_tsAplAfNodePowerDescriptor137
8.2.1.3 ZPS_tsAplAfSimpleDescriptor 138
8.2.2 Event structures ...139
8.2.2.1 ZPS_tsAfEvent ...140
8.2.2.2 ZPS_tuAfEventData140
8.2.2.3 ZPS_tsAfDataIndEvent 140
8.2.2.4 ZPS_tsAfDataConfEvent 142
8.2.2.5 ZPS_tsAfDataAckEvent 142
8.2.2.6 ZPS_tsAfNwkFormationEvent143
8.2.2.7 ZPS_tsAfNwkJoinedEvent 143
8.2.2.8 ZPS_tsAfNwkJoinFailedEvent 143
8.2.2.9 ZPS_tsAfNwkDiscoveryEvent144
8.2.2.10 ZPS_tsAfNwkJoinIndEvent 144
8.2.2.11 ZPS_tsAfNwkLeaveIndEvent145
8.2.2.12 ZPS_tsAfNwkLeaveConfEvent 146
8.2.2.13 ZPS_tsAfNwkStatusIndEvent146
8.2.2.14 ZPS_tsAfNwkRouteDiscoveryConfEvent146
8.2.2.15 ZPS_tsAfPollConfEvent 147
8.2.2.16 ZPS_tsAfNwkEdScanConfEvent147
8.2.2.17 ZPS_tsAfErrorEvent147
8.2.2.18 ZPS_tsAfZdoBindEvent 149
8.2.2.19 ZPS_tsAfZdoUnbindEvent 149
8.2.2.20 ZPS_tsAfZdoLinkKeyEvent149
8.2.2.21 ZPS_tsAfBindRequestServerEvent150
8.2.2.22 ZPS_tsAfInterPanDataIndEvent150
8.2.2.23 ZPS_tsAfInterPanDataConfEvent 151
8.2.2.24 ZPS_tsAfTCstatusEvent 151
8.2.2.25 ZPS_tsAfZdpEvent .. 152
8.2.3 Other structures ...154
8.2.3.1 ZPS_tsNwkNetworkDescr155
8.2.3.2 ZPS_tsNwkNlmeCfmEdScan155
8.2.3.3 ZPS_tsInterPanAddress 156
8.2.3.4 ZPS_tsAfProfileDataReq 156
8.2.3.5 tsBeaconFilterType .. 157
8.2.3.6 ZPS_tsAplApsKeyDescriptorEntry 158
8.2.3.7 ZPS_tsAftsStartParamsDistributed 159
8.2.3.8 ZPS_tsAfFlashInfoSet159
8.2.3.9 ZPS_TclkDescriptorEntry 160
9 ZigBee Device Profile (ZDP) API 161
9.1 ZDP API functions ... 161
9.1.1 Address discovery functions 162
9.1.1.1 ZPS_eAplZdpNwkAddrRequest162
9.1.1.2 ZPS_eAplZdpIEEEAddrRequest163
9.1.1.3 ZPS_eAplZdpDeviceAnnceRequest 164
9.1.2 Service Discovery functions165
9.1.2.1 ZPS_eAplZdpNodeDescRequest165

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
319 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.1.2.2 ZPS_eAplZdpPowerDescRequest166
9.1.2.3 ZPS_eAplZdpSimpleDescRequest 167
9.1.2.4 ZPS_

eAplZdpExtendedSimpleDescRequest 168
9.1.2.5 ZPS_eAplZdpComplexDescRequest 169
9.1.2.6 ZPS_eAplZdpUserDescRequest169
9.1.2.7 ZPS_eAplZdpMatchDescRequest 170
9.1.2.8 ZPS_eAplZdpActiveEpRequest 171
9.1.2.9 ZPS_eAplZdpExtendedActiveEpRequest 172
9.1.2.10 ZPS_eAplZdpUserDescSetRequest 173
9.1.2.11 ZPS_

eAplZdpSystemServerDiscoveryRequest 174
9.1.2.12 ZPS_eAplZdpDiscoveryCacheRequest 175
9.1.2.13 ZPS_eAplZdpDiscoveryStoreRequest 175
9.1.2.14 ZPS_eAplZdpNodeDescStoreRequest 176
9.1.2.15 ZPS_eAplZdpPowerDescStoreRequest 177
9.1.2.16 ZPS_eAplZdpSimpleDescStoreRequest179
9.1.2.17 ZPS_eAplZdpActiveEpStoreRequest180
9.1.2.18 ZPS_eAplZdpFindNodeCacheRequest 181
9.1.2.19 ZPS_eAplZdpRemoveNodeCacheRequest ... 181
9.1.3 Binding functions ... 182
9.1.3.1 ZPS_eAplZdpEndDeviceBindRequest183
9.1.3.2 ZPS_eAplZdpBindUnbindRequest185
9.1.3.3 ZPS_eAplZdpBindRegisterRequest186
9.1.3.4 ZPS_eAplZdpReplaceDeviceRequest 187
9.1.3.5 ZPS_eAplZdpStoreBkupBindEntryRequest ... 188
9.1.3.6 ZPS_

eAplZdpRemoveBkupBindEntryRequest 189
9.1.3.7 ZPS_eAplZdpBackupBindTableRequest190
9.1.3.8 ZPS_eAplZdpRecoverBindTableRequest 191
9.1.3.9 ZPS_eAplZdpBackupSourceBindRequest192
9.1.3.10 ZPS_eAplZdpRecoverSourceBindRequest ... 193
9.1.3.11 ZPS_

eAplAibRemoveBindTableEntryForMacAddress
.. 194

9.1.4 Network Management Services functions195
9.1.4.1 ZPS_eAplZdpMgmtNwkDiscRequest 195
9.1.4.2 ZPS_eAplZdpMgmtLqiRequest196
9.1.4.3 ZPS_eAplZdpMgmtRtgRequest197
9.1.4.4 ZPS_eAplZdpMgmtBindRequest 198
9.1.4.5 ZPS_eAplZdpMgmtLeaveRequest199
9.1.4.6 ZPS_eAplZdpMgmtDirectJoinRequest 200
9.1.4.7 ZPS_eAplZdpMgmtPermitJoiningRequest201
9.1.4.8 ZPS_eAplZdpMgmtCacheRequest201
9.1.4.9 ZPS_eAplZdpMgmtNwkUpdateRequest202
9.1.4.10 ZPS_eAplZdpParentAnnceReq 204
9.1.5 Response Data Extraction Function 205
9.1.5.1 Function Page ... 205
9.1.5.2 ZPS_bAplZdpUnpackResponse 205
9.2 ZDP structures ...205
9.2.1 Descriptor structures206
9.2.1.1 ZPS_tsAplZdpNodeDescriptor206
9.2.1.2 ZPS_tsAplZdpNodePowerDescriptor207
9.2.1.3 ZPS_tsAplZdpSimpleDescType208
9.2.2 ZDP Request structures 209
9.2.2.1 ZPS_tsAplZdpNwkAddrReq210
9.2.2.2 ZPS_tsAplZdpIEEEAddrReq211
9.2.2.3 ZPS_tsAplZdpDeviceAnnceReq 211
9.2.2.4 ZPS_tsAplZdpNodeDescReq212

9.2.2.5 ZPS_tsAplZdpPowerDescReq212
9.2.2.6 ZPS_tsAplZdpSimpleDescReq 212
9.2.2.7 ZPS_tsAplZdpExtendedSimpleDescReq 212
9.2.2.8 ZPS_tsAplZdpComplexDescReq213
9.2.2.9 ZPS_tsAplZdpUserDescReq213
9.2.2.10 ZPS_tsAplZdpMatchDescReq 213
9.2.2.11 ZPS_tsAplZdpActiveEpReq 214
9.2.2.12 ZPS_tsAplZdpExtendedActiveEpReq 214
9.2.2.13 ZPS_tsAplZdpUserDescSet214
9.2.2.14 ZPS_tsAplZdpSystemServerDiscoveryReq ... 215
9.2.2.15 ZPS_tsAplZdpDiscoveryCacheReq 215
9.2.2.16 ZPS_tsAplZdpDiscoveryStoreReq 215
9.2.2.17 ZPS_tsAplZdpNodeDescStoreReq 216
9.2.2.18 ZPS_tsAplZdpPowerDescStoreReq 216
9.2.2.19 ZPS_tsAplZdpSimpleDescStoreReq217
9.2.2.20 ZPS_tsAplZdpActiveEpStoreReq217
9.2.2.21 ZPS_tsAplZdpFindNodeCacheReq 217
9.2.2.22 ZPS_tsAplZdpRemoveNodeCacheReq 218
9.2.2.23 ZPS_tsAplZdpEndDeviceBindReq218
9.2.2.24 ZPS_tsAplZdpBindUnbindReq219
9.2.2.25 ZPS_tsAplZdpBindRegisterReq219
9.2.2.26 ZPS_tsAplZdpReplaceDeviceReq 220
9.2.2.27 ZPS_tsAplZdpStoreBkupBindEntryReq 220
9.2.2.28 ZPS_tsAplZdpRemoveBkupBindEntryReq 221
9.2.2.29 ZPS_tsAplZdpBackupBindTableReq221
9.2.2.30 ZPS_tsAplZdpRecoverBindTableReq 223
9.2.2.31 ZPS_tsAplZdpBackupSourceBindReq223
9.2.2.32 ZPS_tsAplZdpRecoverSourceBindReq 223
9.2.2.33 ZPS_tsAplZdpMgmtNwkDiscReq 224
9.2.2.34 ZPS_tsAplZdpMgmtLqiReq224
9.2.2.35 ZPS_tsAplZdpMgmtRtgReq224
9.2.2.36 ZPS_tsAplZdpMgmtBindReq 224
9.2.2.37 ZPS_tsAplZdpMgmtLeaveReq225
9.2.2.38 ZPS_tsAplZdpMgmtDirectJoinReq 225
9.2.2.39 ZPS_tsAplZdpMgmtPermitJoiningReq225
9.2.2.40 ZPS_tsAplZdpMgmtCacheReq226
9.2.2.41 ZPS_tsAplZdpMgmtNwkUpdateReq226
9.2.2.42 ZPS_tsAplZdpParentAnnceReq227
9.2.3 ZDP response structures227
9.2.3.1 ZPS_tsAplZdpNwkAddrRsp228
9.2.3.2 ZPS_tsAplZdpIeeeAddrRsp229
9.2.3.3 ZPS_tsAplZdpNodeDescRsp229
9.2.3.4 ZPS_tsAplZdpPowerDescRsp 230
9.2.3.5 ZPS_tsAplZdpSimpleDescRsp 230
9.2.3.6 ZPS_tsAplZdpExtendedSimpleDescRsp 231
9.2.3.7 ZPS_tsAplZdpComplexDescRsp 231
9.2.3.8 ZPS_tsAplZdpUserDescRsp232
9.2.3.9 ZPS_tsAplZdpMatchDescRsp233
9.2.3.10 ZPS_tsAplZdpActiveEpRsp 233
9.2.3.11 ZPS_tsAplZdpExtendedActiveEpRsp 233
9.2.3.12 ZPS_tsAplZdpUserDescConf234
9.2.3.13 ZPS_tsAplZdpSystemServerDiscoveryRsp ... 234
9.2.3.14 ZPS_tsAplZdpDiscoveryCacheRsp 235
9.2.3.15 ZPS_tsAplZdpDiscoveryStoreRsp 235
9.2.3.16 ZPS_tsAplZdpNodeDescStoreRsp 235
9.2.3.17 ZPS_tsAplZdpPowerDescStoreRsp236
9.2.3.18 ZPS_tsAplZdpSimpleDescStoreRsp236
9.2.3.19 ZPS_tsAplZdpActiveEpStoreRsp236
9.2.3.20 ZPS_tsAplZdpFindNodeCacheRsp237

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
320 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

9.2.3.21 ZPS_tsAplZdpRemoveNodeCacheRsp 237
9.2.3.22 ZPS_tsAplZdpEndDeviceBindRsp237
9.2.3.23 ZPS_tsAplZdpBindRsp 238
9.2.3.24 ZPS_tsAplZdpUnbindRsp 238
9.2.3.25 ZPS_tsAplZdpBindRegisterRsp238
9.2.3.26 ZPS_tsAplZdpReplaceDeviceRsp 240
9.2.3.27 ZPS_tsAplZdpStoreBkupBindEntryRsp 240
9.2.3.28 ZPS_tsAplZdpRemoveBkupBindEntryRsp 240
9.2.3.29 ZPS_tsAplZdpBackupBindTableRsp240
9.2.3.30 ZPS_tsAplZdpRecoverBindTableRsp 241
9.2.3.31 ZPS_tsAplZdpBackupSourceBindRsp 241
9.2.3.32 ZPS_tsAplZdpRecoverSourceBindRsp241
9.2.3.33 ZPS_tsAplZdpMgmtNwkDiscRsp242
9.2.3.34 ZPS_tsAplZdpMgmtLqiRsp243
9.2.3.35 ZPS_tsAplZdpMgmtRtgRsp245
9.2.3.36 ZPS_tsAplZdpMgmtBindRsp 246
9.2.3.37 ZPS_tsAplZdpMgmtLeaveRsp246
9.2.3.38 ZPS_tsAplZdpMgmtDirectJoinRsp247
9.2.3.39 ZPS_tsAplZdpMgmtPermitJoiningRsp247
9.2.3.40 ZPS_tsAplZdpMgmtCacheRsp 247
9.2.3.41 ZPS_tsAplZdpMgmtNwkUpdateNotify 248
9.2.3.42 ZPS_tsAplZdpParentAnnceRsp248
9.3 Broadcast addresses 249
10 General ZPS Resources250
10.1 ZigBee Queue Resources 250
10.1.1 ZigBee queue functions250
10.1.1.1 Function page ..250
10.1.1.2 ZQ_vQueueCreate ...250
10.1.1.3 ZQ_bQueueSend ...251
10.1.1.4 ZQ_bQueueReceive 251
10.1.1.5 ZQ_bQueueIsEmpty 252
10.1.1.6 ZQ_u32QueueGetQueueSize252
10.1.1.7 ZQ_u32QueueGetQueueMessageWaiting 252
10.1.2 ZigBee queue structures 253
10.1.2.1 tszQueue ..253
10.2 ZigBee Timer resources 253
10.2.1 ZigBee Timer functions253
10.2.1.1 Function page ..253
10.2.1.2 ZTIMER_eInit ...254
10.2.1.3 ZTIMER_eOpen ...254
10.2.1.4 ZTIMER_eClose .. 255
10.2.1.5 ZTIMER_eStart .. 255
10.2.1.6 ZTIMER_eStop .. 256
10.2.1.7 ZTIMER_eGetState 256
10.2.2 ZigBee timer structures 256
10.2.2.1 ZTIMER_tsTimer ..257
10.3 Critical Section and Mutex Resources 257
10.3.1 Critical Section and Mutex functions257
10.3.1.1 Function page ..257
10.3.1.2 ZPS_eEnterCriticalSection 257
10.3.1.3 ZPS_eExitCriticalSection 258
10.3.1.4 ZPS_u8GrabMutexLock259
10.3.1.5 ZPS_u8ReleaseMutexLock 259
10.3.2 Critical Section and Mutex Structures260
10.3.2.1 u32MicroIntStorage ..260
11 Event and Status Codes 261
11.1 Events ..261
11.2 Return/Status Codes 263
11.2.1 ZDP codes ...263

11.2.2 APS codes ...264
11.2.3 NWK codes ..265
11.2.4 MAC codes .. 266
11.2.5 Extended error codes 267
12 ZigBee network parameters270
12.1 Basic parameters ...270
12.2 Profile definition parameters 270
12.3 Cluster definition parameters271
12.4 Coordinator parameters271
12.5 Router parameters ...271
12.6 End Device parameters 272
12.7 Advanced device parameters 272
12.7.1 Endpoint parameters 276
12.7.2 Bound addressing table277
12.7.3 PDU Manager ..277
12.7.4 Group Addressing table278
12.7.5 RF channels .. 278
12.7.6 MAC interface table278
12.7.7 Node descriptor ... 278
12.7.8 Node Power Descriptor 280
12.7.9 Key Descriptor table 280
12.7.10 Trust Centre ...281
12.8 ZDO configuration ..281
13 ZPS Configuration Editor287
13.1 Configuration principles 287
13.2 ZPS Configuration Editor wizard288
13.3 Overview of ZPS Configuration Editor

Interface ...289
13.3.1 Profile ...290
13.3.2 Coordinator .. 290
13.3.3 Router .. 291
13.3.4 End Device .. 291
13.4 Using the ZPS Configuration Editor291
13.4.1 Creating a New ZPS Configuration291
13.4.2 Adding Device Types293
13.4.2.1 To add a profile ... 293
13.4.2.2 To add clusters to the new profile293
13.4.3 Setting Coordinator properties294
13.4.3.1 To add a new endpoint295
13.4.3.2 To add an APDU ... 296
13.4.3.3 To add input and output clusters to an

endpoint ... 297
13.4.4 Setting advanced device parameters298
14 Appendix A: Handling stack events300
15 Appendix B: Application design notes 301
15.1 Fragmented data transfers 301
15.1.1 Enabling/disabling fragmentation301
15.1.2 Configuring acknowledgments301
15.1.3 Acknowledgment timeout302
15.2 Sending data to sleeping end devices 302
15.2.1 Acknowledged data transmission to

sleeping end device302
15.2.2 Fragmented data transmission to sleeping

End Device .. 303
15.3 Clearing stack context data before a rejoin303
15.4 Beacon filtering guidelines303
15.4.1 Network rejoin ..304
15.4.2 Association ...304
15.5 Table configuration guidelines 304

JNUG3130 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 4.2 — 24 January 2025 Document feedback
321 / 322

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

NXP Semiconductors JNUG3130
ZigBee 3.0 Stack User Guide

15.5.1 Neighbor table ... 305
15.5.2 Address Map table .. 305
15.5.3 MAC Address table ..305
15.5.4 Routing table ... 305
15.5.5 Broadcast Transaction table 306
15.5.6 Route Discovery table 306
15.5.7 Discovery table .. 306
15.5.8 Route Record table 306
15.6 Received message queues 306
15.6.1 ZPS_msgMcpsDcfm 307
15.6.2 ZPS_msgMcpsInd ..307
15.7 Noise threshold for forming a network 307
15.7.1 Default Behavior .. 307
15.7.2 Customizing the scan 307
16 Appendix C: Implementation of frame

counters ..308
17 Appendix D: storing applications in

device flash memory 309
18 Appendix E: Glossary of terms 310
19 Revision history ...313
20 Note about the source code in the

document ..314
Legal information ...315

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2025 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 24 January 2025
Document identifier: JNUG3130

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3130

	1 Preface
	1.1 Organization of this manual
	1.2 Conventions
	1.3 Acronyms and abbreviations
	1.4 Related documents
	1.5 Support resources
	1.6 Trademarks
	1.7 Chip compatibility

	2 ZigBee overview
	2.1 ZigBee features
	2.2 ZigBee 3.0
	2.3 ZigBee network nodes
	2.4 ZigBee PRO network topology
	2.5 Ideal applications for ZigBee
	2.6 Wireless radio frequency operation
	2.7 Battery-powered components
	2.8 Easy installation and configuration
	2.9 Highly reliable operation
	2.10 Secure operating environment
	2.10.1 Access control lists
	2.10.2 Key-based encryption
	2.10.3 Frame counters

	2.11 Co-existence and interoperability
	2.12 Device types and clusters
	2.12.1 Clusters
	2.12.2 Device types

	3 ZigBee PRO architecture and operation
	3.1 Architectural overview
	3.2 Network level concepts
	3.2.1 ZigBee nodes
	3.2.1.1 Coordinator
	3.2.1.2 Router
	3.2.1.3 End Device

	3.2.2 Network topology
	3.2.3 Neighbor tables
	3.2.4 Network addressing
	3.2.5 Network identity

	3.3 Network creation
	3.3.1 Starting a Network (Coordinator)
	3.3.1.1 Set EPID and Coordinator address
	3.3.1.2 Select radio channel
	3.3.1.3 Set the PAN ID of the network
	3.3.1.4 Receive join requests from other devices

	3.3.2 Joining a network (Routers and End Devices)
	3.3.2.1 Search for network
	3.3.2.2 Select parent
	3.3.2.3 Request joining
	3.3.2.4 Receive response
	3.3.2.5 Learn network IDs

	3.4 Application level concepts
	3.4.1 Multiple applications and endpoints
	3.4.2 Descriptors
	3.4.2.1 Simple descriptor
	3.4.2.2 Node descriptor
	3.4.2.3 Node power descriptor

	3.4.3 Application profiles
	3.4.4 Device types
	3.4.5 Clusters and attributes
	3.4.6 Discovery
	3.4.6.1 Device discovery
	3.4.6.2 Service discovery

	3.4.7 ZigBee Device Objects (ZDO)

	3.5 Network routing
	3.5.1 Message addressing and propagation
	3.5.2 Route discovery
	3.5.3 ‘Many-to-one’ routing

	3.6 Network communications
	3.6.1 Service discovery
	3.6.2 Binding

	3.7 Detailed architecture
	3.7.1 Software levels
	3.7.1.1 Application (APL) Layer
	3.7.1.2 Network (NWK) layer
	3.7.1.3 Physical/Data link layers

	4 ZigBee Stack Software
	4.1 Software overview
	4.1.1 ZigBee PRO APIs
	4.1.2 JCU APIs

	4.2 Summary of API functionality

	5 Application development overview
	5.1 Development environment and resources
	5.1.1 Development platform
	5.1.1.1 MCUXpresso

	5.1.2 ZigBee 3.0 SDK

	5.2 Zigbee application support resources
	5.3 Development phases

	6 Application coding with ZigBee PRO APIs
	6.1 Forming and joining a network
	6.1.1 Starting the Coordinator
	6.1.1.1 Setting the radio channel for the network
	6.1.1.2 Setting the Extended PAN ID for the network
	6.1.1.3 Accepting join requests from other devices (if enabled)

	6.1.2 Starting Routers and End Devices
	6.1.2.1 Searches for a network to join
	6.1.2.2 Selects a network to join
	6.1.2.3 Submits a join request to network
	6.1.2.4 Records the network's EPID for application use
	6.1.2.5 Router accepts join requests from other devices (if enabled)

	6.1.3 Pre-determined parents

	6.2 Discovering the network
	6.2.1 Obtaining network properties
	6.2.2 Finding compatible endpoints
	6.2.3 Obtaining and maintaining node addresses
	6.2.3.1 Obtaining IEEE address
	6.2.3.2 Obtaining network address

	6.2.4 Obtaining node properties
	6.2.4.1 Node descriptor
	6.2.4.2 Power descriptor
	6.2.4.3 Simple descriptor
	6.2.4.4 User Descriptor
	6.2.4.5 Complex descriptor
	6.2.4.6 Active endpoints
	6.2.4.7 Primary discovery cache
	6.2.4.8 Servers

	6.2.5 Maintaining a primary discovery cache
	6.2.6 Discovering Routes

	6.3 Managing group addresses
	6.4 Binding
	6.4.1 Setting up bind request server
	6.4.1.1 Simultaneous requests
	6.4.1.2 Time interval

	6.4.2 Binding endpoints
	6.4.3 Unbinding endpoints
	6.4.4 Accessing binding tables

	6.5 Transferring data
	6.5.1 Sending data
	6.5.1.1 Unicast
	6.5.1.1.1 Unicasts from sleepy nodes
	6.5.1.1.2 Fragmenting large unicast packets

	6.5.1.2 Broadcast
	6.5.1.3 Group multicast
	6.5.1.4 Bound transfer
	6.5.1.5 Inter-PAN transfer

	6.5.2 Receiving data
	6.5.3 Polling for Data
	6.5.4 Security in data transfers

	6.6 Leaving and rejoining the network
	6.6.1 Leaving the network
	6.6.2 Rejoining the network

	6.7 Return codes and extended error handling
	6.8 Implementing ZigBee security
	6.8.1 Security levels
	6.8.2 Security key types
	6.8.3 Setting up ZigBee security
	6.8.3.1 Network-level security set-up
	6.8.3.2 Application-level security set-up

	6.8.4 Security key modification
	6.8.4.1 Network key modification
	6.8.4.2 Application link key modification

	6.9 Using support software features
	6.9.1 Message queues
	6.9.1.1 General queue management
	6.9.1.2 Standard stack queues

	6.9.2 Software timers
	6.9.2.1 Setting up timers
	6.9.2.2 Operating timers

	6.9.3 Critical sections and Mutual Exclusion (Mutex)
	6.9.3.1 Implementing a critical section
	6.9.3.1.1 Critical section illustration

	6.9.3.2 Implementing a Mutex

	6.10 Advanced features
	6.10.1 End device aging
	6.10.1.1 Timeout period
	6.10.1.2 Keep-alive packets

	6.10.2 Distributed security networks
	6.10.3 Filtering packets on LQI Value/Link cost
	6.10.3.1 Link cost
	6.10.3.2 Packet filtering in operation
	6.10.3.2.1 Network joining
	6.10.3.2.2 Route discovery and normal network operation

	6.10.3.3 Packet filtering configuration
	6.10.3.3.1 Basic configuration
	6.10.3.3.2 Link cost configuration

	6.10.4 Device permissions

	7 ZigBee Device Objects (ZDO) API
	7.1 ZDO API functions
	7.1.1 Network deployment functions
	7.1.1.1 Function page
	7.1.1.2 ZPS_eAplZdoStartStack
	7.1.1.2.1 Parameters
	7.1.1.2.2 Returns

	7.1.1.3 ZPS_vDefaultStack
	7.1.1.4 ZPS_eAplZdoGetDeviceType
	7.1.1.5 ZPS_eAplZdoDiscoverNetworks
	7.1.1.6 ZPS_eAplZdoJoinNetwork
	7.1.1.7 ZPS_eAplZdoRejoinNetwork
	7.1.1.8 ZPS_eAplZdoDirectJoinNetwork
	7.1.1.9 ZPS_eAplZdoOrphanRejoinNetwork
	7.1.1.9.1 Parameters
	7.1.1.9.2 Returns

	7.1.1.10 ZPS_eAplZdoPermitJoining
	7.1.1.10.1 Description
	7.1.1.10.2 Parameters
	7.1.1.10.3 Returns

	7.1.1.11 ZPS_u16AplZdoGetNetworkPanId
	7.1.1.11.1 Description
	7.1.1.11.2 Parameters
	7.1.1.11.3 Returns

	7.1.1.12 ZPS_u64AplZdoGetNetworkExtendedPanId
	7.1.1.12.1 Description
	7.1.1.12.2 Parameters
	7.1.1.12.3 Returns

	7.1.1.13 ZPS_u8AplZdoGetRadioChannel
	7.1.1.13.1 Description
	7.1.1.13.2 Parameters
	7.1.1.13.3 Returns

	7.1.1.14 ZPS_eAplZdoBind
	7.1.1.14.1 Description
	7.1.1.14.2 Parameters
	7.1.1.14.3 Returns

	7.1.1.15 ZPS_eAplZdoUnbind
	7.1.1.15.1 Description
	7.1.1.15.2 Parameters
	7.1.1.15.3 Returns

	7.1.1.16 ZPS_eAplZdoBindGroup
	7.1.1.16.1 Description
	7.1.1.16.2 Parameters
	7.1.1.16.3 Returns

	7.1.1.17 ZPS_eAplZdoUnbindGroup
	7.1.1.17.1 Description
	7.1.1.17.2 Parameters
	7.1.1.17.3 Returns

	7.1.1.18 ZPS_ePurgeBindTable
	7.1.1.18.1 Description
	7.1.1.18.2 Parameters
	7.1.1.18.3 Returns

	7.1.1.19 ZPS_eAplZdoPoll
	7.1.1.19.1 Description
	7.1.1.19.2 Parameters
	7.1.1.19.3 Returns

	7.1.1.20 ZPS_eAplZdoLeaveNetwork
	7.1.1.20.1 Description
	7.1.1.20.2 Parameters
	7.1.1.20.3 Returns

	7.1.1.21 ZPS_vNwkNibSetLeaveAllowed
	7.1.1.21.1 Description
	7.1.1.21.2 Parameters
	7.1.1.21.3 Returns

	7.1.1.22 ZPS_vNwkNibSetLeaveRejoin
	7.1.1.22.1 Description
	7.1.1.22.2 Parameters
	7.1.1.22.3 Returns

	7.1.1.23 ZPS_vSetTablesClearOnLeaveWithoutRejoin
	7.1.1.23.1 Description
	7.1.1.23.2 Parameters
	7.1.1.23.3 Returns

	7.1.1.24 ZPS_vNtSetUsedStatus
	7.1.1.24.1 Description
	7.1.1.24.2 Parameters
	7.1.1.24.3 Returns

	7.1.1.25 ZPS_vNwkSendNwkStatusCommand
	7.1.1.25.1 Description
	7.1.1.25.2 Parameters
	7.1.1.25.3 Returns

	7.1.1.26 ZPS_eAplZdoRegisterZdoLeaveActionCallback
	7.1.1.26.1 Description
	7.1.1.26.2 Parameters
	7.1.1.26.3 Returns

	7.1.2 Security functions
	7.1.2.1 Function page
	7.1.2.2 ZPS_vAplSecSetInitialSecurityState
	7.1.2.2.1 Parameters
	7.1.2.2.2 Returns

	7.1.2.3 ZPS_eAplZdoTransportNwkKey
	7.1.2.3.1 Description
	7.1.2.3.2 Parameters
	7.1.2.3.3 Returns

	7.1.2.4 ZPS_eAplZdoSwitchKeyReq
	7.1.2.4.1 Description
	7.1.2.4.2 Parameters
	7.1.2.4.3 Returns

	7.1.2.5 ZPS_eAplZdoRequestKeyReq
	7.1.2.5.1 Description
	7.1.2.5.2 Parameters
	7.1.2.5.3 Returns

	7.1.2.6 ZPS_eAplZdoAddReplaceLinkKey
	7.1.2.6.1 Description
	7.1.2.6.2 Parameters
	7.1.2.6.3 Returns

	7.1.2.7 ZPS_eAplZdoAddReplaceInstallCodes
	7.1.2.7.1 Description
	7.1.2.7.2 Parameters
	7.1.2.7.3 Returns

	7.1.2.8 ZPS_eAplZdoRemoveLinkKey
	7.1.2.8.1 Description
	7.1.2.8.2 Parameters
	7.1.2.8.3 Returns

	7.1.2.9 ZPS_eAplZdoRemoveDeviceReq
	7.1.2.9.1 Description
	7.1.2.9.2 Parameters
	7.1.2.9.3 Returns

	7.1.2.10 ZPS_eAplZdoSetDevicePermission
	7.1.2.10.1 Description
	7.1.2.10.2 Parameters
	7.1.2.10.3 Returns

	7.1.2.11 ZPS_bAplZdoTrustCenterSetDevicePermissions
	7.1.2.11.1 Description
	7.1.2.11.2 Parameters
	7.1.2.11.3 Returns

	7.1.2.12 ZPS_bAplZdoTrustCenterGetDevicePermissions
	7.1.2.12.1 Description
	7.1.2.12.2 Parameters
	7.1.2.12.3 Returns

	7.1.2.13 ZPS_bAplZdoTrustCenterRemoveDevice
	7.1.2.13.1 Description
	7.1.2.13.2 Parameters
	7.1.2.13.3 Returns

	7.1.2.14 ZPS_vTcInitFlash
	7.1.2.14.1 Description
	7.1.2.14.2 Parameters
	7.1.2.14.3 Returns

	7.1.2.15 ZPS_vSetTCLockDownOverride
	7.1.2.15.1 Description
	7.1.2.15.2 Parameters
	7.1.2.15.3 Returns

	7.1.2.16 ZPS_psGetActiveKey
	7.1.2.16.1 Description
	7.1.2.16.2 Parameters
	7.1.2.16.3 Returns

	7.1.2.17 ZPS_vTCSetCallback
	7.1.2.17.1 Description
	7.1.2.17.2 Parameters
	7.1.2.17.3 Returns

	7.1.3 Addressing functions
	7.1.3.1 Function page
	7.1.3.2 ZPS_u16AplZdoGetNwkAddr
	7.1.3.2.1 Parameters
	7.1.3.2.2 Returns

	7.1.3.3 ZPS_u64AplZdoGetIeeeAddr
	7.1.3.3.1 Description
	7.1.3.3.2 Parameters
	7.1.3.3.3 Returns

	7.1.3.4 ZPS_eAplZdoAddAddrMapEntry
	7.1.3.4.1 Description
	7.1.3.4.2 Parameters
	7.1.3.4.3 Returns

	7.1.3.5 ZPS_vPurgeAddressMap
	7.1.3.5.1 Description
	7.1.3.5.2 Parameters
	7.1.3.5.3 Returns

	7.1.3.6 ZPS_u16AplZdoLookupAddr
	7.1.3.6.1 Description
	7.1.3.6.2 Parameters
	7.1.3.6.3 Returns

	7.1.3.7 ZPS_u64AplZdoLookupIeeeAddr
	7.1.3.7.1 Description
	7.1.3.7.2 Parameters
	7.1.3.7.3 Returns

	7.1.3.8 ZPS_u64NwkNibGetMappedIeeeAddr
	7.1.3.8.1 Description
	7.1.3.8.2 Parameters
	7.1.3.8.3 Returns

	7.1.3.9 ZPS_u64GetFlashMappedIeeeAddress
	7.1.3.9.1 Description
	7.1.3.9.2 Parameters
	7.1.3.9.3 Returns

	7.1.3.10 ZPS_bNwkFindAddIeeeAddr
	7.1.3.10.1 Description
	7.1.3.10.2 Parameters
	7.1.3.10.3 Returns

	7.1.3.11 ZPS_vSetOverrideLocalIeeeAddr
	7.1.3.11.1 Description
	7.1.3.11.2 Parameters

	7.1.3.12 ZPS_eAplZdoGroupEndpointAdd
	7.1.3.12.1 Description
	7.1.3.12.2 Parameters
	7.1.3.12.3 Returns

	7.1.3.13 ZPS_eAplZdoGroupEndpointRemove
	7.1.3.13.1 Description
	7.1.3.13.2 Parameters
	7.1.3.13.3 Returns

	7.1.3.14 ZPS_eAplZdoGroupAllEndpointRemove
	7.1.3.14.1 Description
	7.1.3.14.2 Parameters
	7.1.3.14.3 Returns

	7.1.4 Routing functions
	7.1.4.1 Function page
	7.1.4.2 ZPS_eAplZdoRouteRequest
	7.1.4.2.1 Description
	7.1.4.2.2 Parameters
	7.1.4.2.3 Returns

	7.1.4.3 ZPS_eAplZdoManyToOneRouteRequest
	7.1.4.3.1 Description
	7.1.4.3.2 Parameters
	7.1.4.3.3 Returns

	7.1.5 Object Handle functions
	7.1.5.1 Function page
	7.1.5.2 ZPS_pvAplZdoGetAplHandle
	7.1.5.2.1 Parameters
	7.1.5.2.2 Returns

	7.1.5.3 ZPS_pvAplZdoGetMacHandle
	7.1.5.3.1 Description
	7.1.5.3.2 Parameters
	7.1.5.3.3 Returns

	7.1.5.4 ZPS_pvAplZdoGetNwkHandle
	7.1.5.4.1 Description
	7.1.5.4.2 Parameters
	7.1.5.4.3 Returns

	7.1.5.5 ZPS_psNwkNibGetHandle
	7.1.5.5.1 Description
	7.1.5.5.2 Parameters
	7.1.5.5.3 Returns
	7.1.5.5.4 Example

	7.1.5.6 ZPS_psAplAibGetAib
	7.1.5.6.1 Description
	7.1.5.6.2 Parameters
	7.1.5.6.3 Returns

	7.1.5.7 ZPS_psAplZdoGetNib
	7.1.5.7.1 Description
	7.1.5.7.2 Parameters
	7.1.5.7.3 Returns

	7.1.5.8 ZPS_u64NwkNibGetEpid
	7.1.5.8.1 Description
	7.1.5.8.2 Parameters
	7.1.5.8.3 Returns

	7.1.6 Optional Cluster function
	7.1.6.1 Function page
	7.1.6.2 ZPS_eAplZdoRegisterZdoFilterCallback
	7.1.6.2.1 Description
	7.1.6.2.2 Parameters
	7.1.6.2.3 Returns

	7.2 ZDO enumerations
	7.2.1 Security keys (ZPS_teZdoNwkKeyState)
	7.2.2 Device types (ZPS_teZdoDeviceType)
	7.2.3 Device permissions (ZPS_teDevicePermissions)

	8 Application Framework (AF) API
	8.1 AF API functions
	8.1.1 initialization functions
	8.1.1.1 ZPS_eAplAfInit
	8.1.1.1.1 Description
	8.1.1.1.2 Parameters
	8.1.1.1.3 Returns

	8.1.1.2 ZPS_vAplAfSetMacCapability
	8.1.1.2.1 Description
	8.1.1.2.2 Parameters
	8.1.1.2.3 Returns

	8.1.1.3 ZPS_eAplAibSetApsUseExtendedPanId
	8.1.1.3.1 Description
	8.1.1.3.2 Parameters
	8.1.1.3.3 Returns

	8.1.1.4 ZPS_vExtendedStatusSetCallback
	8.1.1.4.1 Description
	8.1.1.4.2 Parameters
	8.1.1.4.3 Returns

	8.1.1.5 ZPS_bAppAddBeaconFilter
	8.1.1.5.1 Description
	8.1.1.5.2 Parameters
	8.1.1.5.3 Returns

	8.1.1.6 ZPS_eAplFormDistributedNetworkRouter
	8.1.1.6.1 Description
	8.1.1.6.2 Parameters
	8.1.1.6.3 Returns

	8.1.1.7 ZPS_eAplInitEndDeviceDistributed
	8.1.1.7.1 Description
	8.1.1.7.2 Parameters
	8.1.1.7.3 Returns

	8.1.1.8 ZPS_vAplAfEnableMcpsFilter
	8.1.1.8.1 Description
	8.1.1.8.2 Parameters
	8.1.1.8.3 Returns

	8.1.1.9 ZPS_vNwkLinkCostCallbackRegister
	8.1.1.9.1 Description
	8.1.1.9.2 Parameters
	8.1.1.9.3 Returns

	8.1.2 Data Transfer functions
	8.1.2.1 ZPS_eAplAfApsdeDataReq
	8.1.2.1.1 Description
	8.1.2.1.2 Parameters
	8.1.2.1.3 Returns

	8.1.2.2 ZPS_eAplAfUnicastDataReq
	8.1.2.2.1 Description
	8.1.2.2.2 Parameters
	8.1.2.2.3 Returns

	8.1.2.3 ZPS_eAplAfUnicastIeeeDataReq
	8.1.2.3.1 Description
	8.1.2.3.2 Parameters
	8.1.2.3.3 Returns

	8.1.2.4 ZPS_eAplAfUnicastAckDataReq
	8.1.2.4.1 Description
	8.1.2.4.2 Parameters
	8.1.2.4.3 Returns

	8.1.2.5 ZPS_eAplAfUnicastIeeeAckDataReq
	8.1.2.5.1 Description
	8.1.2.5.2 Parameters
	8.1.2.5.3 Returns

	8.1.2.6 ZPS_eAplAfGroupDataReq
	8.1.2.6.1 Description
	8.1.2.6.2 Parameters
	8.1.2.6.3 Returns

	8.1.2.7 ZPS_eAplAfBroadcastDataReq
	8.1.2.7.1 Description
	8.1.2.7.2 Parameters
	8.1.2.7.3 Returns

	8.1.2.8 ZPS_eAplAfBoundDataReq
	8.1.2.8.1 Description
	8.1.2.8.2 Parameters
	8.1.2.8.3 Returns

	8.1.2.9 ZPS_eAplAfBoundAckDataReq
	8.1.2.9.1 Description
	8.1.2.9.2 Parameters
	8.1.2.9.3 Returns

	8.1.2.10 ZPS_eAplAfInterPanDataReq
	8.1.2.10.1 Description
	8.1.2.10.2 Parameters
	8.1.2.10.3 Returns

	8.1.2.11 ZPS_u8AplGetMaxPayloadSize
	8.1.2.11.1 Description
	8.1.2.11.2 Parameters
	8.1.2.11.3 Returns

	8.1.3 Endpoint functions
	8.1.3.1 ZPS_vAplAfSetEndpointState
	8.1.3.1.1 Description
	8.1.3.1.2 Parameters
	8.1.3.1.3 Returns

	8.1.3.2 ZPS_eAplAfGetEndpointState
	8.1.3.2.1 Description
	8.1.3.2.2 Parameters
	8.1.3.2.3 Returns

	8.1.3.3 ZPS_eAplAfSetEndpointDiscovery
	8.1.3.3.1 Description
	8.1.3.3.2 Parameters
	8.1.3.3.3 Returns

	8.1.3.4 ZPS_eAplAfGetEndpointDiscovery
	8.1.3.4.1 Description
	8.1.3.4.2 Parameters
	8.1.3.4.3 Returns

	8.1.4 Descriptor functions
	8.1.4.1 ZPS_eAplAfGetNodeDescriptor
	8.1.4.1.1 Description
	8.1.4.1.2 Parameters
	8.1.4.1.3 Returns

	8.1.4.2 ZPS_eAplAfGetNodePowerDescriptor
	8.1.4.2.1 Description
	8.1.4.2.2 Parameters
	8.1.4.2.3 Returns

	8.1.4.3 ZPS_eAplAfGetSimpleDescriptor
	8.1.4.3.1 Description
	8.1.4.3.2 Parameters
	8.1.4.3.3 Returns

	8.1.5 Other functions
	8.1.5.1 ZPS_vSaveAllZpsRecords
	8.1.5.1.1 Description
	8.1.5.1.2 Parameters
	8.1.5.1.3 Returns

	8.1.5.2 ZPS_bAplAfSetEndDeviceTimeout
	8.1.5.2.1 Description
	8.1.5.2.2 Parameters
	8.1.5.2.3 Returns

	8.1.5.3 ZPS_eAplAfSendKeepAlive
	8.1.5.3.1 Description
	8.1.5.3.2 Parameters
	8.1.5.3.3 Returns

	8.2 AF structures
	8.2.1 Descriptor structures
	8.2.1.1 ZPS_tsAplAfNodeDescriptor
	8.2.1.2 ZPS_tsAplAfNodePowerDescriptor
	8.2.1.3 ZPS_tsAplAfSimpleDescriptor

	8.2.2 Event structures
	8.2.2.1 ZPS_tsAfEvent
	8.2.2.2 ZPS_tuAfEventData
	8.2.2.3 ZPS_tsAfDataIndEvent
	8.2.2.4 ZPS_tsAfDataConfEvent
	8.2.2.5 ZPS_tsAfDataAckEvent
	8.2.2.6 ZPS_tsAfNwkFormationEvent
	8.2.2.7 ZPS_tsAfNwkJoinedEvent
	8.2.2.8 ZPS_tsAfNwkJoinFailedEvent
	8.2.2.9 ZPS_tsAfNwkDiscoveryEvent
	8.2.2.10 ZPS_tsAfNwkJoinIndEvent
	8.2.2.11 ZPS_tsAfNwkLeaveIndEvent
	8.2.2.12 ZPS_tsAfNwkLeaveConfEvent
	8.2.2.13 ZPS_tsAfNwkStatusIndEvent
	8.2.2.14 ZPS_tsAfNwkRouteDiscoveryConfEvent
	8.2.2.15 ZPS_tsAfPollConfEvent
	8.2.2.16 ZPS_tsAfNwkEdScanConfEvent
	8.2.2.17 ZPS_tsAfErrorEvent
	8.2.2.17.1 eError enumerations
	8.2.2.17.2 sAfErrorOsMessageOverrun

	8.2.2.18 ZPS_tsAfZdoBindEvent
	8.2.2.19 ZPS_tsAfZdoUnbindEvent
	8.2.2.20 ZPS_tsAfZdoLinkKeyEvent
	8.2.2.21 ZPS_tsAfBindRequestServerEvent
	8.2.2.22 ZPS_tsAfInterPanDataIndEvent
	8.2.2.23 ZPS_tsAfInterPanDataConfEvent
	8.2.2.24 ZPS_tsAfTCstatusEvent
	8.2.2.25 ZPS_tsAfZdpEvent

	8.2.3 Other structures
	8.2.3.1 ZPS_tsNwkNetworkDescr
	8.2.3.2 ZPS_tsNwkNlmeCfmEdScan
	8.2.3.3 ZPS_tsInterPanAddress
	8.2.3.4 ZPS_tsAfProfileDataReq
	8.2.3.5 tsBeaconFilterType
	8.2.3.6 ZPS_tsAplApsKeyDescriptorEntry
	8.2.3.7 ZPS_tsAftsStartParamsDistributed
	8.2.3.8 ZPS_tsAfFlashInfoSet
	8.2.3.9 ZPS_TclkDescriptorEntry

	9 ZigBee Device Profile (ZDP) API
	9.1 ZDP API functions
	9.1.1 Address discovery functions
	9.1.1.1 ZPS_eAplZdpNwkAddrRequest
	9.1.1.1.1 Description
	9.1.1.1.2 Parameters
	9.1.1.1.3 Returns

	9.1.1.2 ZPS_eAplZdpIEEEAddrRequest
	9.1.1.2.1 Description
	9.1.1.2.2 Parameters
	9.1.1.2.3 Returns

	9.1.1.3 ZPS_eAplZdpDeviceAnnceRequest
	9.1.1.3.1 Description
	9.1.1.3.2 Parameters
	9.1.1.3.3 Returns

	9.1.2 Service Discovery functions
	9.1.2.1 ZPS_eAplZdpNodeDescRequest
	9.1.2.1.1 Description
	9.1.2.1.2 Parameters
	9.1.2.1.3 Returns

	9.1.2.2 ZPS_eAplZdpPowerDescRequest
	9.1.2.2.1 Description
	9.1.2.2.2 Parameters
	9.1.2.2.3 Returns

	9.1.2.3 ZPS_eAplZdpSimpleDescRequest
	9.1.2.3.1 Description
	9.1.2.3.2 Parameters
	9.1.2.3.3 Returns

	9.1.2.4 ZPS_eAplZdpExtendedSimpleDescRequest
	9.1.2.4.1 Description
	9.1.2.4.2 Parameters
	9.1.2.4.3 Returns

	9.1.2.5 ZPS_eAplZdpComplexDescRequest
	9.1.2.5.1 Description
	9.1.2.5.2 Parameters
	9.1.2.5.3 Returns

	9.1.2.6 ZPS_eAplZdpUserDescRequest
	9.1.2.6.1 Description
	9.1.2.6.2 Parameters
	9.1.2.6.3 Returns

	9.1.2.7 ZPS_eAplZdpMatchDescRequest
	9.1.2.7.1 Description
	9.1.2.7.2 Parameters
	9.1.2.7.3 Returns

	9.1.2.8 ZPS_eAplZdpActiveEpRequest
	9.1.2.8.1 Description
	9.1.2.8.2 Parameters
	9.1.2.8.3 Returns

	9.1.2.9 ZPS_eAplZdpExtendedActiveEpRequest
	9.1.2.9.1 Description
	9.1.2.9.2 Parameters
	9.1.2.9.3 Returns

	9.1.2.10 ZPS_eAplZdpUserDescSetRequest
	9.1.2.10.1 Description
	9.1.2.10.2 Parameters
	9.1.2.10.3 Returns

	9.1.2.11 ZPS_eAplZdpSystemServerDiscoveryRequest
	9.1.2.11.1 Description
	9.1.2.11.2 Parameters
	9.1.2.11.3 Returns

	9.1.2.12 ZPS_eAplZdpDiscoveryCacheRequest
	9.1.2.12.1 Description
	9.1.2.12.2 Parameters
	9.1.2.12.3 Returns

	9.1.2.13 ZPS_eAplZdpDiscoveryStoreRequest
	9.1.2.13.1 Description
	9.1.2.13.2 Parameters
	9.1.2.13.3 Returns

	9.1.2.14 ZPS_eAplZdpNodeDescStoreRequest
	9.1.2.14.1 Description
	9.1.2.14.2 Parameters
	9.1.2.14.3 Returns

	9.1.2.15 ZPS_eAplZdpPowerDescStoreRequest
	9.1.2.15.1 Description
	9.1.2.15.2 Parameters
	9.1.2.15.3 Returns

	9.1.2.16 ZPS_eAplZdpSimpleDescStoreRequest
	9.1.2.16.1 Description
	9.1.2.16.2 Parameters
	9.1.2.16.3 Returns

	9.1.2.17 ZPS_eAplZdpActiveEpStoreRequest
	9.1.2.17.1 Description
	9.1.2.17.2 Parameters
	9.1.2.17.3 Returns

	9.1.2.18 ZPS_eAplZdpFindNodeCacheRequest
	9.1.2.18.1 Description
	9.1.2.18.2 Parameters
	9.1.2.18.3 Returns

	9.1.2.19 ZPS_eAplZdpRemoveNodeCacheRequest
	9.1.2.19.1 Description
	9.1.2.19.2 Parameters
	9.1.2.19.3 Returns

	9.1.3 Binding functions
	9.1.3.1 ZPS_eAplZdpEndDeviceBindRequest
	9.1.3.1.1 Description
	9.1.3.1.2 Parameters
	9.1.3.1.3 Returns

	9.1.3.2 ZPS_eAplZdpBindUnbindRequest
	9.1.3.2.1 Description
	9.1.3.2.2 Parameters
	9.1.3.2.3 Returns

	9.1.3.3 ZPS_eAplZdpBindRegisterRequest
	9.1.3.3.1 Description
	9.1.3.3.2 Parameters
	9.1.3.3.3 Returns

	9.1.3.4 ZPS_eAplZdpReplaceDeviceRequest
	9.1.3.4.1 Description
	9.1.3.4.2 Parameters
	9.1.3.4.3 Returns

	9.1.3.5 ZPS_eAplZdpStoreBkupBindEntryRequest
	9.1.3.5.1 Description
	9.1.3.5.2 Parameters
	9.1.3.5.3 Returns

	9.1.3.6 ZPS_eAplZdpRemoveBkupBindEntryRequest
	9.1.3.6.1 Description
	9.1.3.6.2 Parameters
	9.1.3.6.3 Returns

	9.1.3.7 ZPS_eAplZdpBackupBindTableRequest
	9.1.3.7.1 Description
	9.1.3.7.2 Parameters
	9.1.3.7.3 Returns

	9.1.3.8 ZPS_eAplZdpRecoverBindTableRequest
	9.1.3.8.1 Description
	9.1.3.8.2 Parameters
	9.1.3.8.3 Returns

	9.1.3.9 ZPS_eAplZdpBackupSourceBindRequest
	9.1.3.9.1 Description
	9.1.3.9.2 Parameters
	9.1.3.9.3 Returns

	9.1.3.10 ZPS_eAplZdpRecoverSourceBindRequest
	9.1.3.10.1 Description
	9.1.3.10.2 Parameters
	9.1.3.10.3 Returns

	9.1.3.11 ZPS_eAplAibRemoveBindTableEntryForMacAddress
	9.1.3.11.1 Description
	9.1.3.11.2 Parameters
	9.1.3.11.3 Returns

	9.1.4 Network Management Services functions
	9.1.4.1 ZPS_eAplZdpMgmtNwkDiscRequest
	9.1.4.1.1 Description
	9.1.4.1.2 Parameters
	9.1.4.1.3 Returns

	9.1.4.2 ZPS_eAplZdpMgmtLqiRequest
	9.1.4.2.1 Description
	9.1.4.2.2 Parameters
	9.1.4.2.3 Returns

	9.1.4.3 ZPS_eAplZdpMgmtRtgRequest
	9.1.4.3.1 Description
	9.1.4.3.2 Parameters
	9.1.4.3.3 Returns

	9.1.4.4 ZPS_eAplZdpMgmtBindRequest
	9.1.4.4.1 Description
	9.1.4.4.2 Parameters
	9.1.4.4.3 Returns

	9.1.4.5 ZPS_eAplZdpMgmtLeaveRequest
	9.1.4.5.1 Description
	9.1.4.5.2 Parameters
	9.1.4.5.3 Returns

	9.1.4.6 ZPS_eAplZdpMgmtDirectJoinRequest
	9.1.4.6.1 Description
	9.1.4.6.2 Parameters
	9.1.4.6.3 Returns

	9.1.4.7 ZPS_eAplZdpMgmtPermitJoiningRequest
	9.1.4.7.1 Description
	9.1.4.7.2 Parameters
	9.1.4.7.3 Returns

	9.1.4.8 ZPS_eAplZdpMgmtCacheRequest
	9.1.4.8.1 Description
	9.1.4.8.2 Parameters
	9.1.4.8.3 Returns

	9.1.4.9 ZPS_eAplZdpMgmtNwkUpdateRequest
	9.1.4.9.1 Description
	9.1.4.9.2 Parameters
	9.1.4.9.3 Returns

	9.1.4.10 ZPS_eAplZdpParentAnnceReq
	9.1.4.10.1 Description
	9.1.4.10.2 Parameters
	9.1.4.10.3 Returns

	9.1.5 Response Data Extraction Function
	9.1.5.1 Function Page
	9.1.5.2 ZPS_bAplZdpUnpackResponse
	9.1.5.2.1 Description
	9.1.5.2.2 Parameters
	9.1.5.2.3 Returns

	9.2 ZDP structures
	9.2.1 Descriptor structures
	9.2.1.1 ZPS_tsAplZdpNodeDescriptor
	9.2.1.1.1 ZPS_tsAplZdpNodeDescBitFields

	9.2.1.2 ZPS_tsAplZdpNodePowerDescriptor
	9.2.1.2.1 ZPS_tsAplZdpPowerDescBitFields

	9.2.1.3 ZPS_tsAplZdpSimpleDescType
	9.2.1.3.1 ZPS_tsAplZdpSimpleDescBitFields

	9.2.2 ZDP Request structures
	9.2.2.1 ZPS_tsAplZdpNwkAddrReq
	9.2.2.2 ZPS_tsAplZdpIEEEAddrReq
	9.2.2.3 ZPS_tsAplZdpDeviceAnnceReq
	9.2.2.4 ZPS_tsAplZdpNodeDescReq
	9.2.2.5 ZPS_tsAplZdpPowerDescReq
	9.2.2.6 ZPS_tsAplZdpSimpleDescReq
	9.2.2.7 ZPS_tsAplZdpExtendedSimpleDescReq
	9.2.2.8 ZPS_tsAplZdpComplexDescReq
	9.2.2.9 ZPS_tsAplZdpUserDescReq
	9.2.2.10 ZPS_tsAplZdpMatchDescReq
	9.2.2.11 ZPS_tsAplZdpActiveEpReq
	9.2.2.12 ZPS_tsAplZdpExtendedActiveEpReq
	9.2.2.13 ZPS_tsAplZdpUserDescSet
	9.2.2.14 ZPS_tsAplZdpSystemServerDiscoveryReq
	9.2.2.15 ZPS_tsAplZdpDiscoveryCacheReq
	9.2.2.16 ZPS_tsAplZdpDiscoveryStoreReq
	9.2.2.17 ZPS_tsAplZdpNodeDescStoreReq
	9.2.2.18 ZPS_tsAplZdpPowerDescStoreReq
	9.2.2.19 ZPS_tsAplZdpSimpleDescStoreReq
	9.2.2.20 ZPS_tsAplZdpActiveEpStoreReq
	9.2.2.21 ZPS_tsAplZdpFindNodeCacheReq
	9.2.2.22 ZPS_tsAplZdpRemoveNodeCacheReq
	9.2.2.23 ZPS_tsAplZdpEndDeviceBindReq
	9.2.2.24 ZPS_tsAplZdpBindUnbindReq
	9.2.2.25 ZPS_tsAplZdpBindRegisterReq
	9.2.2.26 ZPS_tsAplZdpReplaceDeviceReq
	9.2.2.27 ZPS_tsAplZdpStoreBkupBindEntryReq
	9.2.2.28 ZPS_tsAplZdpRemoveBkupBindEntryReq
	9.2.2.29 ZPS_tsAplZdpBackupBindTableReq
	9.2.2.30 ZPS_tsAplZdpRecoverBindTableReq
	9.2.2.31 ZPS_tsAplZdpBackupSourceBindReq
	9.2.2.32 ZPS_tsAplZdpRecoverSourceBindReq
	9.2.2.33 ZPS_tsAplZdpMgmtNwkDiscReq
	9.2.2.34 ZPS_tsAplZdpMgmtLqiReq
	9.2.2.35 ZPS_tsAplZdpMgmtRtgReq
	9.2.2.36 ZPS_tsAplZdpMgmtBindReq
	9.2.2.37 ZPS_tsAplZdpMgmtLeaveReq
	9.2.2.38 ZPS_tsAplZdpMgmtDirectJoinReq
	9.2.2.39 ZPS_tsAplZdpMgmtPermitJoiningReq
	9.2.2.40 ZPS_tsAplZdpMgmtCacheReq
	9.2.2.41 ZPS_tsAplZdpMgmtNwkUpdateReq
	9.2.2.42 ZPS_tsAplZdpParentAnnceReq

	9.2.3 ZDP response structures
	9.2.3.1 ZPS_tsAplZdpNwkAddrRsp
	9.2.3.2 ZPS_tsAplZdpIeeeAddrRsp
	9.2.3.3 ZPS_tsAplZdpNodeDescRsp
	9.2.3.4 ZPS_tsAplZdpPowerDescRsp
	9.2.3.5 ZPS_tsAplZdpSimpleDescRsp
	9.2.3.6 ZPS_tsAplZdpExtendedSimpleDescRsp
	9.2.3.7 ZPS_tsAplZdpComplexDescRsp
	9.2.3.7.1 ZPS_tsAplZdpComplexDescElement

	9.2.3.8 ZPS_tsAplZdpUserDescRsp
	9.2.3.9 ZPS_tsAplZdpMatchDescRsp
	9.2.3.10 ZPS_tsAplZdpActiveEpRsp
	9.2.3.11 ZPS_tsAplZdpExtendedActiveEpRsp
	9.2.3.12 ZPS_tsAplZdpUserDescConf
	9.2.3.13 ZPS_tsAplZdpSystemServerDiscoveryRsp
	9.2.3.14 ZPS_tsAplZdpDiscoveryCacheRsp
	9.2.3.15 ZPS_tsAplZdpDiscoveryStoreRsp
	9.2.3.16 ZPS_tsAplZdpNodeDescStoreRsp
	9.2.3.17 ZPS_tsAplZdpPowerDescStoreRsp
	9.2.3.18 ZPS_tsAplZdpSimpleDescStoreRsp
	9.2.3.19 ZPS_tsAplZdpActiveEpStoreRsp
	9.2.3.20 ZPS_tsAplZdpFindNodeCacheRsp
	9.2.3.21 ZPS_tsAplZdpRemoveNodeCacheRsp
	9.2.3.22 ZPS_tsAplZdpEndDeviceBindRsp
	9.2.3.23 ZPS_tsAplZdpBindRsp
	9.2.3.24 ZPS_tsAplZdpUnbindRsp
	9.2.3.25 ZPS_tsAplZdpBindRegisterRsp
	9.2.3.25.1 ZPS_tsAplZdpBindingTable
	9.2.3.25.2 ZPS_tsAplZdpBindingTableEntry

	9.2.3.26 ZPS_tsAplZdpReplaceDeviceRsp
	9.2.3.27 ZPS_tsAplZdpStoreBkupBindEntryRsp
	9.2.3.28 ZPS_tsAplZdpRemoveBkupBindEntryRsp
	9.2.3.29 ZPS_tsAplZdpBackupBindTableRsp
	9.2.3.30 ZPS_tsAplZdpRecoverBindTableRsp
	9.2.3.31 ZPS_tsAplZdpBackupSourceBindRsp
	9.2.3.32 ZPS_tsAplZdpRecoverSourceBindRsp
	9.2.3.33 ZPS_tsAplZdpMgmtNwkDiscRsp
	9.2.3.34 ZPS_tsAplZdpMgmtLqiRsp
	9.2.3.35 ZPS_tsAplZdpMgmtRtgRsp
	9.2.3.36 ZPS_tsAplZdpMgmtBindRsp
	9.2.3.37 ZPS_tsAplZdpMgmtLeaveRsp
	9.2.3.38 ZPS_tsAplZdpMgmtDirectJoinRsp
	9.2.3.39 ZPS_tsAplZdpMgmtPermitJoiningRsp
	9.2.3.40 ZPS_tsAplZdpMgmtCacheRsp
	9.2.3.40.1 ZPS_tsAplDiscoveryCache

	9.2.3.41 ZPS_tsAplZdpMgmtNwkUpdateNotify
	9.2.3.42 ZPS_tsAplZdpParentAnnceRsp

	9.3 Broadcast addresses

	10 General ZPS Resources
	10.1 ZigBee Queue Resources
	10.1.1 ZigBee queue functions
	10.1.1.1 Function page
	10.1.1.2 ZQ_vQueueCreate
	10.1.1.2.1 Parameters
	10.1.1.2.2 Returns

	10.1.1.3 ZQ_bQueueSend
	10.1.1.3.1 Description
	10.1.1.3.2 Parameters
	10.1.1.3.3 Returns

	10.1.1.4 ZQ_bQueueReceive
	10.1.1.4.1 Description
	10.1.1.4.2 Parameters
	10.1.1.4.3 Returns

	10.1.1.5 ZQ_bQueueIsEmpty
	10.1.1.5.1 Description
	10.1.1.5.2 Parameters
	10.1.1.5.3 Returns

	10.1.1.6 ZQ_u32QueueGetQueueSize
	10.1.1.6.1 Description
	10.1.1.6.2 Parameters
	10.1.1.6.3 Returns

	10.1.1.7 ZQ_u32QueueGetQueueMessageWaiting
	10.1.1.7.1 Description
	10.1.1.7.2 Parameters
	10.1.1.7.3 Returns

	10.1.2 ZigBee queue structures
	10.1.2.1 tszQueue

	10.2 ZigBee Timer resources
	10.2.1 ZigBee Timer functions
	10.2.1.1 Function page
	10.2.1.2 ZTIMER_eInit
	10.2.1.2.1 Description
	10.2.1.2.2 Parameters
	10.2.1.2.3 Returns

	10.2.1.3 ZTIMER_eOpen
	10.2.1.3.1 Description
	10.2.1.3.2 Parameters
	10.2.1.3.3 Returns

	10.2.1.4 ZTIMER_eClose
	10.2.1.4.1 Description
	10.2.1.4.2 Parameters
	10.2.1.4.3 Returns

	10.2.1.5 ZTIMER_eStart
	10.2.1.5.1 Description
	10.2.1.5.2 Parameters
	10.2.1.5.3 Returns

	10.2.1.6 ZTIMER_eStop
	10.2.1.6.1 Description
	10.2.1.6.2 Parameters
	10.2.1.6.3 Returns

	10.2.1.7 ZTIMER_eGetState
	10.2.1.7.1 Description
	10.2.1.7.2 Parameters

	10.2.2 ZigBee timer structures
	10.2.2.1 ZTIMER_tsTimer

	10.3 Critical Section and Mutex Resources
	10.3.1 Critical Section and Mutex functions
	10.3.1.1 Function page
	10.3.1.2 ZPS_eEnterCriticalSection
	10.3.1.2.1 Description
	10.3.1.2.2 Parameters
	10.3.1.2.3 Returns

	10.3.1.3 ZPS_eExitCriticalSection
	10.3.1.3.1 Description
	10.3.1.3.2 Parameters
	10.3.1.3.3 Returns

	10.3.1.4 ZPS_u8GrabMutexLock
	10.3.1.4.1 Description
	10.3.1.4.2 Parameters
	10.3.1.4.3 Returns

	10.3.1.5 ZPS_u8ReleaseMutexLock
	10.3.1.5.1 Description
	10.3.1.5.2 Parameters
	10.3.1.5.3 Returns

	10.3.2 Critical Section and Mutex Structures
	10.3.2.1 u32MicroIntStorage

	11 Event and Status Codes
	11.1 Events
	11.2 Return/Status Codes
	11.2.1 ZDP codes
	11.2.2 APS codes
	11.2.3 NWK codes
	11.2.4 MAC codes
	11.2.5 Extended error codes

	12 ZigBee network parameters
	12.1 Basic parameters
	12.2 Profile definition parameters
	12.3 Cluster definition parameters
	12.4 Coordinator parameters
	12.5 Router parameters
	12.6 End Device parameters
	12.7 Advanced device parameters
	12.7.1 Endpoint parameters
	12.7.2 Bound addressing table
	12.7.3 PDU Manager
	12.7.4 Group Addressing table
	12.7.5 RF channels
	12.7.6 MAC interface table
	12.7.7 Node descriptor
	12.7.8 Node Power Descriptor
	12.7.9 Key Descriptor table
	12.7.10 Trust Centre

	12.8 ZDO configuration

	13 ZPS Configuration Editor
	13.1 Configuration principles
	13.2 ZPS Configuration Editor wizard
	13.3 Overview of ZPS Configuration Editor Interface
	13.3.1 Profile
	13.3.2 Coordinator
	13.3.3 Router
	13.3.4 End Device

	13.4 Using the ZPS Configuration Editor
	13.4.1 Creating a New ZPS Configuration
	13.4.2 Adding Device Types
	13.4.2.1 To add a profile
	13.4.2.2 To add clusters to the new profile

	13.4.3 Setting Coordinator properties
	13.4.3.1 To add a new endpoint
	13.4.3.2 To add an APDU
	13.4.3.3 To add input and output clusters to an endpoint

	13.4.4 Setting advanced device parameters

	14 Appendix A: Handling stack events
	15 Appendix B: Application design notes
	15.1 Fragmented data transfers
	15.1.1 Enabling/disabling fragmentation
	15.1.2 Configuring acknowledgments
	15.1.3 Acknowledgment timeout

	15.2 Sending data to sleeping end devices
	15.2.1 Acknowledged data transmission to sleeping end device
	15.2.2 Fragmented data transmission to sleeping End Device

	15.3 Clearing stack context data before a rejoin
	15.4 Beacon filtering guidelines
	15.4.1 Network rejoin
	15.4.2 Association

	15.5 Table configuration guidelines
	15.5.1 Neighbor table
	15.5.2 Address Map table
	15.5.3 MAC Address table
	15.5.4 Routing table
	15.5.5 Broadcast Transaction table
	15.5.6 Route Discovery table
	15.5.7 Discovery table
	15.5.8 Route Record table

	15.6 Received message queues
	15.6.1 ZPS_msgMcpsDcfm
	15.6.2 ZPS_msgMcpsInd

	15.7 Noise threshold for forming a network
	15.7.1 Default Behavior
	15.7.2 Customizing the scan

	16 Appendix C: Implementation of frame counters
	17 Appendix D: storing applications in device flash memory
	18 Appendix E: Glossary of terms
	19 Revision history
	20 Note about the source code in the document
	Legal information
	Contents

